
NOTE TO USERS

This reproduction is the best copy available.

UMJ'

ADAPTABLE STATEFUL APPLICATION SERVER REPLICATION

Huaigu Wu

DOCTOR OF PHILOSOPHY

the School of Computer Science

MCGILL UNIVERSITY

MONTREAL, QUEBEC

OCTOBER 2008

A THESIS SUBMITTED TO MCGLLL UNIVERSITY IN PARTIAL FULFILMENT OF THE

REQUIREMENTS OF THE DEGREE OF DOCTOR OF PHILOSOPHY

COPYRIGHT BY HUAIGU WU 2009

(C) A L L RIGHTS RESERVED

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-66694-4
Our file Notre reference
ISBN: 978-0-494-66694-4

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my supervisor, Dr. Bettina Kemme, for her con­

tinued guidance, financial supports, encouragement and patience through all the phases of this re­

search.

Extended thanks to Dr. A. Bartoli, Dr. V. Maverick, and all other research colleagues in the

project "ADAPT" , for their lively and fruitful collaborations and discussions regarding this re­

search.

My sincere appreciation to all my friends and colleagues whom I met in Montreal, Chengdu and

Chongqing, for their joys and laughs.

My deepest appreciation to my family, especially to my wife, my parents, and my parents-in-

law, who have been so supportive and loving. Without them, this report would not be the same.

Finally, I dedicate my thesis to my unborn baby with my love.

u

ABSTRACT

In recent years, multi-tier architectures have become the standard computing environment for web-

and enterprise applications. The application server tier is often the heart of the system embedding

the business logic. Adaptability, in particular the capability to adjust to the load submitted to the

system and to handle the failure of individual components, are of outmost importance in order

to provide 7/24 access and high performance. Replication is a common means to achieve these

reliability and scalability requirements. With replication, the application server tier consists of

several server replicas. Thus, if one replica fails, others can take over. Furthermore, the load can be

distributed across the available replicas. Although many replication solutions have been proposed

so far, most of them have been either developed for fault-tolerance or for scalability. Furthermore,

only few have considered that the application server tier is only one tier in a multi-tier architecture,

that this tier maintains state, and that execution in this environment can follow complex patterns.

Thus, existing solutions often do not provide correctness beyond some basic application scenarios.

In this thesis we tackle the issue of replication of the application server tier from ground off

and develop a unified solution that provides both fault-tolerance and scalability. We first describe

a set of execution patterns that describe how requests are typically executed in multi-tier architec­

tures. They consider the flow of execution across client tier, application server tier, and database

tier. In particular, the execution patterns describe how requests are associated with transactions,

the fundamental execution units at application server and database tiers. Having these execution

patterns in mind, we provide a formal definition of what it means to provide a correct execution

across all tiers, even in case failures occur and the application server tier is replicated. Informally, a

in

replicated system is correct if it behaves exactly as a non-replicated that never fails. From there, we

propose a set of replication algorithms for fault-tolerance that provide correctness for the execution

patterns that we have identified. The main principle is to let a primary AS replica to execute all

client requests, and to propagate any state changes performed by a transaction to backup replicas

at transaction commit time. The challenges occur as requests can be associated in different ways

with transactions. Then, we extend our fault-tolerance solution and develop a unified solution that

provides both fault-tolerance and load-balancing. In this extended solution, each application server

replica is able to execute client requests as a primary and at the same time serves as backup for

other replicas. The framework provides a transparent, truly distributed and lightweight load distri­

bution mechanism which takes advantage of the fault-tolerance infrastructure. Our replication tool

is implemented as a plug-in of JBoss application server and the performance is carefully evaluated,

comparing with JBoss' own replication solutions. The evaluation shows that our protocols have

very good performance and compare favorably with existing solutions.

IV

ABREGE

Au cours des dernieres annees, l'architecture multi-tiers est devenue la norme pour le developpement

d'applications Web et d'entreprise. Dans cette architecture, le serveur d'applications represente

souvent le coeur du systeme encapsulant la logique de traitement. La capacite d'un tel systeme a

s'adapter a la charge soumise et a gerer les defaillances des composantes individuelles sont d'une

importance capitale afin de fournir un acces permanent et performant a l'application.

La replication est un moyen tres utilise pour atteindre la fiabilite et l'extensibilite requises. Avec

la replication, le serveur d'applications dispose de plusieurs copies. Ainsi, si une copie ne parvient

pas a repondre a une requete, les autres peuvent prendre la releve. En outre, la charge peut etre

repartie entre les copies disponibles. Bien que de nombreuses solutions de replication aient ete

proposees, la plupart d'entre elles ont ete concues soit pour resoudre le probleme de tolerance aux

fautes, soit pour resoudre le probleme d'extensibilite. En plus, seules quelques unes ont considere le

fait que le serveur ne represente qu'un seul niveau dans l'architecture multi-tiers et que l'execution

dans cet environnement peut suivre des patrons complexes. Ainsi, souvent les solutions existantes

ne prevoient pas l'exactitude au-dela de quelques scenarios de base.

Dans cette these, nous abordons la question de la replication du serveur d'applications ainsi que

le developpement d'une approche de replication qui unifie la tolerance aux fautes et l'extensibilite

du systeme. Pour adresser ce point, nous avons d'abord identifie un ensemble de patrons d'execution

qui decrivent comment les requetes sont generalement executees dans les differents niveaux de

l'architecture. Ces patrons considerent le flux d'execution a travers le client, le serveur, et la base

de donnees. En particulier, ils decrivent comment les requetes sont liees a des transactions et des

unites d'execution fondamentales au serveur d'applications et aux bases de donnees.

v

Ayant ces patrons, nous fournissons une definition formelle de 1'execution correcte dans tous

les niveaux de l'architecture, meme dans le cas ou des defaillances se produisent et le serveur

d'applications est replique. Oflficieusement, une replication d'un serveur est correcte si elle se com-

porte exactement comme si le serveur n'a jamais fait face a des defaillances. De la, nous proposons

une serie d'algorithmes de replication pour la tolerance aux fautes qui assurent l'exactirude des

patrons d'execution que nous avons identifies. L'idee principale est de laisser une copie primaire

executer toutes les requetes des clients, et de propager tout changement d'etat aux copies de sauve-

garde quand la transaction est validee. Les defis resident dans le fait que les requetes peuvent etre

associees aux transactions de differentes manieres. Ensuite, nous etendons notre solution pour pren­

dre en consideration la tolerance aux fautes et Pequilibrage de charge entre les serveurs. Dans cette

solution, chaque copie du serveur d'applications est en mesure d'executer les requetes des clients

comme une copie primaire et en meme temps elle sert comme sauvegarde pour les autres copies.

Cette plate-forme offre un mecanisme de repartition de la charge qui est transparent, distribue, leger

et qui profite de 1'infrastructure de la tolerance aux fautes. Notre outil de replication est implemente

comme un plug-in du serveur d'applications JBoss. Les performances ont ete evaluees avec soin,

en les comparant avec les solutions de replication JBoss. L'evaluation montre que nos protocoles

ont de tres bonnes performances et qu'elles depassent celles des solutions existantes.

VI

Contents

ACKNOWLEDGEMENTS ii

ABSTRACT iii

ABREGE v

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Motivation 1

1.1.1 Replication for Fault Tolerance 2

1.1.2 Replication for Load Balancing 5

1.2 About This Work 6

1.2.1 Modeling Execution Patterns in a Multi-Tier Architecture 7

1.2.2 Development of a Replication Tool for Fault Tolerance 7

1.2.3 Extension of the Replication Tool to Support Load Balancing 8

1.2.4 Implementation of a Replicated Application Server 9

1.2.5 Contribution of this Thesis 10

1.3 Structure of the Thesis 11

2 Background 12

vn

2.1 Overview of Multi-tier Architecture 12

2.2 Overview of Application Server Tier 13

2.2.1 Execution Flow 13

2.2.2 Calling Schemes 14

2.2.3 Server State 15

2.2.4 Determinism 15

2.3 J2EE Application Server 16

2.3.1 Enterprise JavaBean 16

2.3.2 Execution Flow 17

2.4 Transaction Management 18

2.4.1 Lifespan of a Transaction 18

2.4.2 State Consistency 20

2.4.3 Concurrent Transactions 21

2.4.4 Relation between Requests and Transactions 22

2.5 Overview of Failures 26

2.5.1 Failure Types 26

2.5.2 Crash of an Application Server 27

2.6 Tolerate Failures through Replication 28

2.6.1 Passive Replication Category 29

2.6.2 Correctness of Replication 31

2.7 Communication Mechanism for Replication 31

2.7.1 Group Membership Maintenance 32

2.7.2 Multicast 33

Traditional Application Server Replication Solutions and Correctness Criteria 35

3.1 Overview of Existing Replication Solutions for Fault Tolerance 35

3.1.1 Replication for J2EE Architecture 36

3.1.2 Replication for CORBA Architecture 37

3.1.3 Replication for .NET Architecture 39

vm

3.2 Traditional Correctness Criteria for Replication 40

3.2.1 One Copy Serializability 40

3.2.2 State Machine Replication 41

3.2.3 X-ability 42

3.3 Load Balancing and Combined Approaches 44

4 Execution Patterns for Application Server 46

4.1 Request Execution 47

4.1.1 Histories of Request Execution 48

4.2 Transactions and Execution Patterns 49

4.2.1 1-1 Pattern 49

4.2.2 N-l Pattern 51

4.2.3 1-N Pattern 52

4.2.4 N-N Pattern 55

4.3 State Changes 56

4.3.1 Transaction Histories to Reflect the Order of State Changes 57

4.3.2 Matching State Changes at Application Server and Database 58

4.3.3 Matching State Changes at Application Server and Client Request Execution 59

4.4 Correct Request Execution 63

4.5 How a Crash Affects Correctness 64

4.6 Correctness of Passive Replication 65

5 ADAPT-SIB Replication Algorithm for 1-1 Pattern 66

5.1 Structure of ADAPT-SIB 67

5.2 1-1 Replication Algorithm for Full State Consistency 69

5.3 Correctness 72

5.3.1 Successfully Completed Requests 73

5.3.2 Crash during Request Execution 74

5.4 1-1 Replication Algorithm for Relaxed State Consistency 79

5.5 Correctness of Relaxed State Consistency Algorithm 81

ix

6 Advanced Algorithms for Advanced Execution Patterns 83

6.1 N-l Pattern 83

6.1.1 N-l-best-effort 84

6.1.2 Correctness of N-l-best-effort 88

6.1.3 Relaxed State Consistency 95

6.1.4 Increasing the Chances for Exactly-Once 96

6.2 1-N Pattern 97

6.2.1 Sub-requests and Nested Transactions 97

6.2.2 1-N Algorithm Overview 100

6.2.3 1-N Algorithm Details 102

6.2.4 Correctness Discussion 105

6.2.5 Undo Ghost Transactions 113

7 Miscellaneous Extensions of ADAPT-SIB 115

7.1 Different Failover Strategies 115

7.2 Recovery 117

7.3 Non-transactional Client Requests 118

7.4 Accessing more than one Database 119

7.5 Client and Database Crashes 120

7.5.1 Database Crash 120

7.5.2 Client Crash 121

7.5.3 Replicated Database and Replicated Clients 121

8 ADAPT-LB: Load Balancing Architecture based on ADAPT-SIB 123

8.1 Algorithm Overview 124

8.2 Cluster Initialization 126

8.3 Load Balancing Algorithm 127

8.3.1 Simple Load Distribution 127

8.3.2 Load Forwarding 128

8.3.3 Discussion 130

x

8.4 Reconfiguration 131

8.4.1 Server Crash 131

8.4.2 Server Recovery 132

8.4.3 Reconfiguration Effects on Client 133

9 Implementation 134

9.1 J2EE Architecture 134

9.1.1 EJB Lookup 135

9.1.2 Interceptor Chain 136

9.1.3 Associating Transactions with Requests 137

9.2 Implementation based on the Adapt Framework 138

9.2.1 Components and States 139

9.2.2 Invocation Interception 140

9.2.3 Requests and Responses 141

9.2.4 Transaction Interception 142

9.2.5 JDBC Interception 144

9.2.6 Overall Architecture 144

9.3 Implementation Issues 145

9.3.1 Extended Naming Service for the Replicated Application Server 146

9.3.2 Deciding on the Primary 147

9.3.3 Processing Requests and Transactions 147

9.4 Summary : 148

10 Experiments and Evaluation 149

10.1 Evaluation of ADAPT-SIB 149

10.1.1 Performance Comparison between warm and cold Replication 150

10.1.2 Component Analysis 152

10.1.3 Evaluation of Different Execution Patterns 155

10.1.4 Evaluation of Failover 159

10.2 Evaluation of ADAPT-LB 162

XI

10.2.1 Experiment 1: Basic Performance 163

10.2.2 Experiment 2: Scalability 165

10.2.3 Experiment 3: Heterogeneity 165

10.2.4 Experiment 4: ECperf Benchmark 168

10.2.5 Experiment5: Reconfiguration 169

11 Conclusions and Future Work 173

11.1 Summary 173

11.1.1 Correct Replication for Different Execution Patterns 173

11.1.2 Performance 174

11.1.3 Practicability 174

11.2 Future Work 175

11.2.1 Enhancement to Handle Shared Data 176

11.2.2 Replication across a WAN 176

11.2.3 Extension of ADAPT-LB 177

Bibliography 178

xn

List of Tables

2.1 Classification of passive replication of commercial products 30

10.1 1-1 execution accessing one or more than one database 159

xiii

List of Figures

1.1 Online shopping: an example of a web based application 2

2.1 Application server architecture 14

2.2 Execution flow in J2EE architecture 17

2.3 Code snippet of CMT 23

2.4 Code snippet of BMT 23

2.5 Code snippet of user transaction 24

2.6 Group communication system 32

4.1 Sample scenario of request execution 48

4.2 1-1 pattern 50

4.3 N-l pattern 52

4.4 1-N pattern 53

4.5 N-N pattern 55

5.1 Architecture of ADAPT-SIB 67

5.2 1-1 Algorithm at the client and primary 69

5.3 1-1 failover 72

5.4 Possible crash intervals of the 1-1 algorithm in case of a commit 74

5.5 Possible crash intervals of the 1-1 algorithm in case of an abort during execution . . 77

5.6 Possible crash intervals of the 1-1 algorithm incase of an abort at commit 79

5.7 "1-1-relaxed" algorithm to support relaxed state consistency 80

xiv

5.8 Possible crash intervals of the relaxed state consistency algorithm in case of an abort

during execution 81

5.9 Possible crash intervals of the relaxed state consistency algorithm in case of an abort

at commit 82

6.1 N-l-best-effort at the client side 86

6.2 N-l-best-effort at primary 87

6.3 Possible crash intervals of the N-l algorithm in case of a commit 89

6.4 Possible crash intervals of the N-l algorithm in case of a commit 92

6.5 An example execution of the 1-N pattern 98

6.6 Ttree and Rtree 98

6.7 "1-N" algorithm 103

6.8 Possible crash intervals of the 1-N algorithm for sibling inner transactions in case

of a commit 106

6.9 Possible crash intervals in case of an abort of an outer transaction 109

6.10 Possible crash intervals in case of an abort of an inner transaction 110

6.11 Possible crash intervals of the 1 -N algorithm for nested inner transactions in case of

a commit I l l

8.1 Unified architecture of ADAPT-LB 125

8.2 Initial setting with m = 2 127

8.3 Forwarding a request 129

8.4 Crash scenario 132

8.5 Recovery scenario 132

9.1 Lookup EJB from the client side 135

9.2 Interceptor chain 136

9.3 ADAPT framework separates replication algorithm from J2EE server 139

9.4 ADAPT framework intercepts the execution flow at three points 140

9.5 ADAPT framework wraps transaction manager and client-side user transaction 143

xv

9.6 The implementation architecture of the ADAPT framework in JBoss 145

10.1 Performance comparison between warm and cold replication 150

10.2 No database access 153

10.3 Conflict-free database access 153

10.4 Conflicting database access 153

10.5 ECperf comparison for the "1-1" Pattern 157

10.6 ECperf comparison for the "N-l" Pattern 157

10.7 ECperf comparison for the" 1-N" Pattern 157

10.8 Restore strategies comparison 160

10.9 Failover time for different running time of ECPerf at 5 IR 162

10.10Performance improvement 163

10.11 Scale-up homogenous setup 164

10.12 Scale-up heterogeneous hardware 164

10.13 Throughput distribution 166

10.14Response time distribution 166

10.15 Heterogeneous workloads 167

10.16Scalability for ECperf benchmark 169

10.17Reconfiguration: Failover 169

10.18Reconfiguration: Recovery 169

10.19Comparison of failover operations 171

xvi

Chapter 1

Introduction

1.1 Motivation

In recent years, with the rapid growth of the Internet, more and more enterprise applications are

established using web technology. Typical web-based applications are using a 4-tier architecture,

which consists of client tier, web server tier (WS), application server tier (AS), and backend database

tier. In such an architecture, clients first send requests to a WS, which processes presentation logic,

such as generating web pages. Then, the request is passed to an AS, which processes business

logic (e.g., maintaining a shopping cart, executing a purchase operation, etc.) and accesses database

systems to manage persistent data. WS and AS together are also called the middle tier.

Clients of the WS are usually the real clients of the application and are connected via the In­

ternet. The client of the AS is the WS, and the AS is the client of the backend database. Both WS

and AS can contain volatile state that can exist beyond the execution of individual requests. We say

such systems are stateful. Figure 1.1 shows a typical example of a web based application, where a

client buys a book online. The client submits the purchasing request through the web page of an

online book store like Amazon. The request is first parsed on the WS and then passed to the AS. The

AS processes the purchase that includes adding the book to the client's shopping cart and executing

the payment. The records about the purchase and the payment are stored at the backend database.

The request execution on the AS including the accesses to the database are typically transactional

1

Chapter 1. Introduction 2

Client A

-SKSS H«-»~-V<*»
Web Server Application Server

Figure 1.1: Online shopping: an example of a web based application

in order to provide durability for the persistent data, isolation from concurrent transactions, and

atomicity. Nowadays, web-based applications, such as online stores, online banking, online games,

and online communities, are growing very fast, involving people all over the world, and influencing

almost all areas of our life.

The AS is the heart of the typical 4-tier architecture executing the kernel logic. The use of

AS technology is growing very fast along with the increasing market of web-based applications.

With 400 million web sites already in existence and growing, the need for AS is growing. As

reported in [105], the AS market at $1.5 billion in 2003, is expected to reach $5.2 billion by 2009.

In many web-based applications, the AS executes crucial and heavy loaded tasks, demanding to

be accessible on a 7/24 basis and to provide short response time to users. Both AS's fast growing

market and AS's vital position in web-based applications strongly require the AS tiers to be highly

adaptable, in particular, to provide high reliability, availability, and scalability. Special challenges

exist for the adaptability of stateful AS due to the difficulties of managing the volatile state at the

AS.

Motivated by these requirements, this dissertation focuses on using replication to implement

adaptable stateful AS. This dissertation studies fault tolerance to address reliability and availability,

and studies load balancing to address scalability. Replication is used to provide extra resources to

both tolerate failures and to distribute load.

1.1.1 Replication for Fault Tolerance

Replication is an essential mechanism to tolerate failures by allowing a system to have more replicas

to backup data or actions. It can be used in every tier of a multi-tier architecture. The basic idea is

Chapter 1. Introduction 3

to let a tier have several replicas. When one replica of the tier fails, other replicas can take over and

continue the work assigned to the failed replica. Replication can be either active or passive. In an

active scheme, a request is sent to and executed at all replicas. When a replica fails, other replicas

continue execution. In a passive scheme, only the primary replica executes the request, and other

replicas backup the data changes executed at the primary replica. If the primary fails, one of the

backups becomes the new primary to take over request execution.

Replication of the database tier has been well studied, e.g., [17, 104, 2, 24, 64]. Most DBMSs

(database management system) already use replication to tolerate failures, such as Oracle Real Ap­

plication Clusters (RAC), Microsoft SQL Server 2000 Failover Clustering, and IBM's DB2 repli­

cation solution. Replication is also widely used for middle tier systems, as proposed in, e.g.,

[29, 72, 73, 74, 46, 41, 114, 113, 11, 10, 62]. Both the prevailing WS products (e.g., Apache,

Tomcat, and Microsoft IIS) and AS products (e.g., BEA WebLogic, IBM WebSphere, JBoss and

Microsoft .NET) have their own replication solutions. Most middle tier systems use passive replica­

tion since it requires less resources and less management overhead, and allows for non-deterministic

execution.

Nevertheless, replication of the middle tier still has many open questions. A crucial problem is

how to guarantee correctness in a replicated middle tier system. To solve this problem, we have to

clarify what correctness means for such a system. Informally speaking, correctness of a replication

algorithm requires the replicated system to act in the same way as a non-faulty non-replicated sys­

tem. However, the standard behavior of such a middle tier system is not clearly defined yet. Most

of the existing solutions only assume quite simple semantics for request execution across the tiers.

When an application does not follow the basic execution model, corresponding replicated systems

might expose incorrect behavior. So far, however, only few approaches (e.g., [11,114]) consider

the more complex execution models that often occur in real systems.

This problem is very severe for the AS tier. The business logic processed at the AS might be

very complex. A particular challenge is that the execution of client requests at AS and database can

be associated with transactions in different ways. The simplest association is that each client request

executes within an individual transaction. That is, all read and write operations on data residing on

the AS and/or the database take place in a single transaction. For example, as shown in figure 1.1,

Chapter 1. Introduction 4

when a WS receives a request to buy a book from a web client, it submits only one request to the

AS to be executed within a single transaction. Most of the existing solutions assume this simple

association. In practice, however, execution can be more complex. At the one extreme, the AS's

client, namely the WS, can start a transaction, and then submit several requests in the context of this

transaction before committing it. For instance, within a purchase transaction, the WS might submit

several requests to the AS to retrieve the book and make the payment. At the other extreme, a

client request might create several independent transactions. For example, application programmers

often chop the execution of a request into a set of small transactions to avoid lock contention at the

database. Existing solutions will simply not work correctly if an application follows such advanced

execution models. As a result, there is a large gap: the AS required to be replicated is usually

used in critical environments with heavy load and high possibility of failures, but existing solutions

cannot guarantee correct fault tolerance for the AS under such circumstances. In order to bridge

this gap, this dissertation analyzes execution patterns that are used in practice to associate requests

and transactions and proposes a set of replication algorithms, each of which provides the correct

replication semantics for a different pattern. Our algorithms follow the passive scheme, i.e., a

primary executes requests, backups can take over in the failure case.

Another major challenge is how to prove the correctness of these algorithms. So far, much of the

research on correctness of replication of middle tier systems looks at specific aspects by considering

specific replication abstractions (e.g., relation between replication and failure types [22], total order

broadcast of requests [88], or consensus [25, 31]), but falls short of considering the global picture

(different replicated systems, different application semantics, interaction with other tiers, etc.). Only

a few approaches (e.g. [44] and [33]) present a formal correctness criteria for replication of middle

tier systems. However, these criteria are usually built on some specific assumptions or for some

specific environments. Hence, another effort of this dissertation is to define a suite of correctness

criteria for AS replication, and use it to prove the correctness of our replication algorithms.

Except for correctness, our replication algorithms also address two usability requirements. First,

the replication of the AS tier should not require any special support from other tiers. Ideally, the

other tiers are not even aware of the fact that the AS tier is replicated. In this way, the replicated

AS will be general enough to connect with different kinds of WS and backend DBMSs without

Chapter I. Introduction 5

changing the standard interaction models defined in the corresponding specifications. Thus, no

changes to the other tiers are needed. Secondly, since different execution patterns might be mixed

in an application, different replication algorithms need to be supported concurrently to automatically

adapt to the different execution patterns at runtime.

1.1.2 Replication for Load Balancing

Replication is also the major approach to implement load balancing. It increases the scalability of

a system by distributing the load across the replicas of the system. Typical load balancing solutions

for AS (or WS) use a centralized load balancer (also called scheduler) to manage the load dispatch.

A task is first sent to the load balancer. Then, the load balancer uses a content-blind policy or a

content-aware policy [4] to choose replicas to dispatch loads. In content-blind policies, such as

Random or Round Robin, the load balancer does not know the load on each site. These policies

can be easily implemented and hence, are widely used in practice, especially in most AS products,

such as BEA WebLogic, IBM WebSphere, and JBoss. However, they cannot work well when the

workload is diverse, or the system is heterogenous. A content-aware policy means the load balancer

has knowledge about the load on each replica, e.g., the CPU and memory resource utilization or

the response times. The load balancer can use the knowledge to optimize the load distribution and

orchestrate resources of all replicas.

Load balancing strategies are pervasively used in many enterprise applications, especially in

critical environments, where heavy load has to be processed. However, a crucial problem is that a

replication architecture should not only support load balancing, but also fault tolerance, since such a

critical environment is usually failure prone as well. In particular, this is a vital requirement for the

AS tier, since the core business logic is processed at the AS. In order to fulfill this requirement, an

intuitive way is to build a combined replication architecture that supports both load balancing and

fault tolerance. However, while replication has been separately studied and applied widely for both

issues for a long time, only little research has been performed on providing a combined replication

solution to handle both in a single architecture.

This dissertation proposes a unified replication architecture, where a cluster of AS replicas is

used to balance load and tolerate failures. The main challenge to implement such a combined

Chapter 1. Introduction 6

replication architecture is that the mechanisms to use replication respectively for scalability and

fault-tolerance are different and even conflicting, although both have a cluster of AS replicas. In

order to achieve scalability, load balancing algorithms use AS replicas as resources to execute client

requests. Ideally, the more replicas the cluster has, the higher the maximum throughput it can

achieve. In contrast, fault-tolerance algorithms use AS replicas as redundant resources that can

mask the failures of individual replicas. In both the passive and the active scheme, different replicas

have the same data or execute the same tasks. Apparently, the redundancy decreases the scalability.

Fortunately, the failure probability of an individual replica is low, and hence having two or three

running replicas are enough for most applications. In a passive schema, since tasks performed by

a backup typically require much less resources than executing requests itself, resources at backups

might often be wasted. Our approach does not waste resources as it lets each replica be a primary

for some clients executing requests and be a backup for some other servers at the same time.

A further challenge of load balancing strategies is the tradeoff between a precise load distri­

bution and the overhead of implementation, maintenance and management of the load balancing

strategy. As mentioned before, a content-aware policy can provide precise load distribution using

the knowledge of the load at different replicas. However, the exchange and the maintenance of load

knowledge among different replicas normally requires a significant overhead. The more precise

the load distribution is, the higher overhead the system needs to pay. Moreover, a centralized load

balancer is a stateful single point of failure and requires extra replication overhead for fault toler­

ance. A distributed load balancer is rarely used for AS because it is too complex to be implemented.

This dissertation addresses this issue by building an effective yet simple distributed load balancing

algorithm.

1.2 About This Work

The work of this thesis is part of the "ADAPT" (Middleware Technologies for Adaptive and Com-

posable Distributed Components) project, which is interested in developing support for the creation

of adaptable web services. Partners involved in this project are Universita di Bologna, Universita

di Trieste, Universidad Politecnica de Madrid, ETH Zurich, Universita di Trieste, University of

Chapter}. Introduction 7

Newcastle, HP Arjuna Labs, and McGill University.

In this context, my thesis focuses on replication solutions for AS, addressing fault tolerance and

load balancing. The following sections provide a detailed overview of the contributions.

1.2.1 Modeling Execution Patterns in a Multi-Tier Architecture

Informally speaking, a correct replication algorithm should guarantee that the replicated system,

despite the possibility of failures, works in the same way as a non-faulty non-replicated system.

Hence, to define the correctness criteria to be supported by the AS replication algorithm, we need to

model the behavior of a non-faulty non-replicated AS in a multi-tier architecture as the standard for

correctness. We use execution patterns to model the relationship between requests and transactions.

Due to the multi-tier architecture, the failure and the replication of the AS might not only affect the

AS itself, but also affect the client tier of the AS and the database tier linked to the AS. Hence, the

analysis has to take the client tier and the database tier into account.

The simplest execution pattern, referred as "1-1" pattern, indicates that each client request exe­

cutes within its own individual transaction. The N-l pattern associates a transaction with more than

one client request, and the 1-N pattern associates a client request with more than one transaction.

For each execution pattern, we analyze different transaction termination behaviors. Then, we model

a failure of an AS by analyzing the side effect of the failure. To simplify the problem, the thesis

currently only focuses on crash failures.

Finally, we model the replicated AS, and formally define correctness criteria for AS replication.

Considering most practical AS products use passive replication schemes, our correctness criteria

currently only focuses on passive replication schemes for simplification. However, we believe that

similar mechanisms can be used to describe other schemes, such as active replication.

1.2.2 Development of a Replication Tool for Fault Tolerance

Although there exist some research using active replication (e.g., [69, 7, 35, 72]), and some consid­

ering a combination of active and passive replication (e.g., [31, 32]), most practical solutions for

middle tier replication (e.g. [51, 45, 43, 41, 73, 11, 62]), especially those of commercial systems,

Chapter 1. Introduction 8

use passive replication. Our replication tool also uses the passive approach.

In our solution, called ADAPT-SIB, a server replica is the primary executing client requests,

and other replicas are backups. The primary propagates state changes to the backups whenever

a transaction commits. If the primary fails, a backup replica fails over, reconstructs the state of

the old primary, and continues the client connections. Requests that were active at the time the

primary crashed are automatically restarted at the new primary. The resubmission of requests is

automatically done by a special stub at the client side that is implicitly downloaded from the server

side without affecting the original client program. When requests are reexecuted after a crash, their

sub-requests to the database are required to be coordinated with original transactions before the

crash. To do so, we use a special agreement protocol using a marker mechanism similar to [43].

Unlike other coordination mechanisms, which either require additional support from the database

like [11] or change the interface between AS and database like [114], our coordination mechanism

does not require any additional support from the database, and uses the most common interface to

access the database. It also differs from traditional agreement protocols like 2-phase-commit [65]

since it has a highly reduced logging cost and does not require all participants to have executed the

request before terminating. As a result, our replication solution guarantees independence to other

tiers. We first design the replication algorithm for the simplest 1-1 pattern (published in [109]).

Then, we extend the algorithm to support all execution patterns (published in [106]) and different

transaction termination behaviors.

Besides above main issues, the work of the thesis also includes miscellaneous technologies

associated with replication, such as designing and implementing a recovery strategy to allow failed

nodes to recover and rejoin the system.

Moreover, when designing the algorithm, we always keep performance in mind. In particular,

we address strategies to speedup failover. Our performance analysis shows that the approach com­

pares favorably with other fault-tolerant solutions during normal processing, and has a fast failover.

1.2.3 Extension of the Replication Tool to Support Load Balancing

Based on the above ADAPT-SIB replication tool, we build an innovative AS replication solution

to provide load balancing and fault tolerance in a unified architecture called ADAPT-LB. Unlike

Chapter 1. Introduction 9

ADAPT-SIB that just needs two or three replicas to support fault tolerance, ADAPT-LB can contain

a large number of replicas. The entire cluster of replicas constructs a single load distribution group

(LDG), where each member is a primary replica for some clients, executing the requests of this

subset of clients. At the same time, each replica is backup for some other replicas. We refer to the

group of one primary replica (executing requests) and the replicas that are backups of this primary

as fault tolerance group (FTG). Thus, each replica is the primary of a small FTG and is backup in

few other FTGs. As backup activity requires only few resources, the main capacity of each server

is used for request execution.

The system uses a truly distributed, lightweight load-distribution algorithm that takes advantage

of the existence of FTG groups. It does not require the maintenance of load information and keeps

communication overhead for load-balancing purposes low. When a replica joins the system, it joins

the LDG and creates a new FTG for which it is primary. When a replica fails or is removed from

the system, a backup replica takes over its tasks. As part of any join or leave operation, the FTG

configuration is adjusted to guarantee that all FTGs have a sufficient number of replicas and no

replica is overburdened with backup tasks.

The load distribution algorithm combines the content-blind and content-aware policies. This

way, the load balancing strategy can automatically adapt to the simple and low-overhead content-

blind policy in a homogeneous environment, and switch to the content-aware policy to achieve

precise load distribution in a heterogeneous environment. Furthermore, the load-balancing module

will quickly remove any load imbalance that might occur during reconfiguration.

1.2.4 Implementation of a Replicated Application Server

To make our replication tool practical, we have implemented our replication tool within the context

of a concrete AS architecture, namely J2EE [94] and integrated it into the open-source AS JBoss

[49]. We choose the J2EE architecture because it is used very widely and it has many open-source

products. We believe, however, that the principle ideas can be applied to other kinds of AS architec­

tures (e.g., CORBA, .NET), and hence, we keep the algorithmic description as general as possible.

The implementation consists of several parts. The implementation of the suite of ADAPT-SIB

replication algorithms is within a single replication package. The proper replication algorithm is

Chapter I. Introduction 10

dynamically chosen at runtime according to the execution pattern used. The replication package is

not directly linked to the JBoss environment. Instead, it is built on top of the ADAPT replication

framework [6], whose implementation was a joint effort of our partners from Universita di Bologna

and Universita di Trieste and us.

The ADAPT framework is an extension of a J2EE server, allowing replication algorithms to be

plugged in. On the upper side, the framework defines a set of APIs for the replication algorithm

to get state information and get control over requests and transactions. The replication algorithm

can be implemented using these APIs without considering the architecture of a certain AS. Under­

neath the API, the framework has to implement the provided functionality. The implementation is

highly compatible with underlying AS. In our implementation, the framework is based on the JBoss

environment, the Java transaction APIs, and JDBC 2.0. Hence, our replication tool can be easily

integrated into JBoss through the ADAPT J2EE replication framework.

To use ADAPT-SIB and ADAPT-LB for other J2EE products, we just need to change the

ADAPT framework without any change to our replication algorithm itself.

1.2.5 Contribution of this Thesis

In summary, this thesis makes three main contributions.

• Modeling: The thesis defines a formal model to describe the behavior of a non-faulty non-

replicated AS in a multi-tier architecture. The model helps to analyze the correctness of an

AS replication algorithm, taking execution patterns into account.

• Performance: The thesis proposes replication protocols to support fault tolerance with good

performance, i.e., about 15% extra overhead compared to a non-replicated AS. The load bal­

ancing strategy proposed in this thesis significantly increases the scalability of the replicated

AS for both homogeneous and heterogeneous environments.

• Practicability: The thesis proposes a replication tool as a pluggable module that can be easily

deployed and managed on different AS products without affecting clients (WS) and databases.

The load balancing strategy Uses a truly distributed, lightweight load-distribution algorithm

that can be easily implemented and managed.

Chapter I. Introduction 11

1.3 Structure of the Thesis

The structure of the thesis is as follows. Chapter 2 introduces some background in regard to AS

replication, including the structure of application server, the execution patterns, failures, generic

replication approaches, and the communication tool used for this thesis. Chapter 3 discusses re­

lated work. Chapter 4 describes the behavior of AS using execution patterns and defines the general

correctness criteria for AS replication based on these patterns. Chapter 5, 6 and 7 present the

replication tool for fault tolerance, called ADAPT-S1B. Chapter 5 presents the basic replication al­

gorithm for the 1-1 pattern and discusses the correctness. Chapter 6 presents advanced replication

algorithms for advanced execution patterns. Chapter 7 presents special features and extensions.

Chapter 8 presents the extended unified replication framework called ADAPT-LB that supports both

load balancing and fault tolerance. Chapter 9 presents the implementation of the replication tool for

the JBoss Application server. Chapter 10 presents a thorough evaluation of the replication tool for

both fault tolerance and load balancing. Chapter 11 concludes the thesis and discusses future work.

The replication algorithms proposed in Chapters 5, 6 and 7 have been previously published

in [109, 106]. The correctness criteria of replication proposed in Chapter 4 was guided by our

paper [107] that describes a formal model for reasoning about correctness of replication in 3-tier

architectures. The ADAPT framework is described in [6]. A demo of the system was given in [108].

The unified replication framework proposed in Chapter 8 has been submitted for publication.

Chapter 2

Background

This chapter provides an overview of all basic concepts and terminology that will be used throughout

the thesis. It introduces the concepts of multi-tier architecture, failure, replication, and a very useful

communication mechanism to do replication, namely group communication.

2.1 Overview of Multi-tier Architecture

The multi-tier architecture is an extension of the traditional client-server computing model. The

client resides outside the server, and only sees the service interface. It is the front tier, which usually

directly interacts with end users and does not receive requests from other tiers. On the server side,

the all-in-one server is split into multiple tiers. The backend tier is usually a database, which only

receives requests from other tiers, but does not submit further requests to other tiers. Between these

two tiers, there could be one or more middle tiers. When a middle tier receives a request from a

preceding tier, the preceding tier is its client. Reversely, when the tier makes calls to another tier, it

becomes the client of the called tier. A middle tier might be a client to more than one tier, and also

be a server to more than one client. A multi-tier architecture separates an application into a set of

building blocks. Each tier can be implemented as a self-contained component and deployed onto a

separated machine.

An important benefit of a multi-tier architecture is that each tier can be designed and main­

tained separately without affecting the functionality of other tiers. It decreases the development and

12

Chapter 2. Background 13

maintenance cost of applications. Another advantage is that the overall overhead of an application

is distributed across different tiers deployed on different machines. Although the corresponding

communication overhead increases, the much heavier overhead to process application logic is dis­

tributed, and hence the overall performance can become better. Moreover, the performance at each

tier can be fine-tuned separately, and hence better performance can be reached much easier.

2.2 Overview of Application Server Tier

Web based applications are typical use cases of the multi-tier architecture. The most prevalent mid­

dle tier systems used in these applications are WS and AS. In industry, there are three mainstream

specifications to build the AS tier: J2EE [94], CORBA [77], and .NET [70]. Usually, in an AS,

the business logic is modularized into different components that can call each other. Components

can have state. All components of the AS are running within the same environment. Clients of the

AS are usually the WS tier but also normal client programs. Backend servers of AS are usually

databases. In some large enterprise applications, e.g. B2B applications, web services provided by

different companies can be integrated into composite services according to some protocols such as

UDDI, SOAP, and WSDL. In these applications, the AS also could call other WS or AS. But this is

out of the scope of this thesis.

2.2.1 Execution Flow

Clients trigger business logic of the AS by submitting requests to the AS. When a client submits a

request to the AS, the request typically calls a component method with input parameters. During

the execution of the request, it may change the state of the component, and/or submit sub-requests

to other components in the same AS or to the backend database. Each sub-request also may change

the state of the component or the database, and/or submit further sub-requests. At the end of the ex­

ecution of the request, the client will receive a response from the AS. The communication between

clients and AS is usually based on existing protocols, like JAVA RMI, CORBA ORB, or Microsoft

COM/DCOM. The communication between AS and database is usually based on database connec­

tion drivers provided by different DBMS products.

Chapter 2. Background 14

Client

Application server

Transaction Manager

-Container

Transaction t ,

Request ' J / JCOMP

COMP K3

Figure 2.1: Application server architecture

Within the runtime environment, the AS also provides a set of services like transactions, persis­

tence, security, messages, and database connection to support business logic. Most AS architectures

provide two ways to access such services. Either components explicitly make service calls from pro­

grams or such service calls are made automatically by the runtime environment whenever a method

of a component is activated. In the later case, the runtime environment can call the services before

or after requests are executed. Figure 2.1 shows the execution flow of a client request within the AS

with a transaction service being called.

2.2.2 Calling Schemes

When a client submits a request to an AS, the execution on the client is usually blocked until the

response of the request is returned. This calling scheme is called blocking scheme. This is in contrast

to the non-blocking scheme, which usually applies message queues. In here, after submitting a

request, the client continues its execution without waiting for the response. In the AS, client requests

are queued and processed in turn. The caller usually uses a listener to intercept the response, which

triggers corresponding actions then. In this thesis we focus on the blocking calling scheme, because

this is the typical model that are used by many communication protocols between clients and AS,

e.g., JAVA RMI and CORBA ORB.

Chapter 2. Background 15

2.2.3 Server State

The state of an AS is the union of the states of all components of the AS. The state of an AS usually

remains volatile in memory. Some AS products provide persistence mechanism for component

state by temporally storing it on their local disk. This persistence is usually used to extend the

main memory of the machine of an AS during runtime, but does not guarantee the durability in the

same way a database would do. If the AS stops or crashes, the state stored on the local machine is

discarded and no more available, even after the AS resumes work. Hence, in any case, we can think

of the state of the AS as volatile.

In many cases, especially for the blocking scheme, when an AS receives requests from its

clients, each client will build an individual session with the AS. In this case, much of the volatile

state of an AS is session-related. Session-related state is only available for a certain client session,

and is not shared by different sessions or different clients. Hence, no concurrency issues occur on

session-oriented state, since concurrent requests of different clients access different state informa­

tion.

However, there is state called shared state that can be concurrently accessed by different clients

and different requests. The AS requires some concurrency control mechanism to reconcile poten­

tially conflicting access to shared state. Different isolation levels are possible. Details are discussed

in Section 2.4.3.

2.2.4 Determinism

Here, determinism means that if an AS runs two identical requests based on the same initial state, the

responses and the state changes generated by the two requests are same. In particular, determinism

is hard to achieve, even if we do not allow any non-deterministic programming model, e.g., multiple

threads or time events are forbidden. This is because a very common cause for non-determinism are

exceptions. An exception might be caused by many reasons, e.g., memory leak, system overload,

program defect, or application semantics. If an exception in the backend database is not specially

handled, it might be returned to the AS to cause non-determinism at the AS, and then be passed to

the client. Accordingly, non-determinism can be passed from tier to tier. Hence, in this thesis, we

Chapter 2. Background 16

always keep non-determinism in mind.

2.3 J2EE Application Server

In recent years, J2EE has become the most popular specification to implement application servers.

This section looks in detail how a J2EE based AS works. Taking a J2EE based AS as an example

will help us to understand the practical issues relevant to AS replication.

2.3.1 Enterprise JavaBean

In a J2EE application server, components that implement business logics are special Java objects

called Enterprise JavaBeans (EJB) [100]. We distinguish two categories: session beans (SB) and

entity beans (EB)1. A session bean is a non-persistent object that represents the actions associated

with a caller session. There are two subtypes. Stateless session beans (SLSB) do not maintain

any internal state across method calls. Stateful session beans (SFSB) maintain internal state for

the lifetime of a caller session. Obviously, SFSBs are components that have volatile state, and the

state of a SFSB is the typical session-related state. The J2EE specification provides a passivation

mechanism to transfer the in-memory volatile state of an SFSB instance to the storage managed by

the AS, allowing the SFSB instance to be garbage-collected or reused. As we mentioned before,

although this mechanism makes the state of an SFSB instance persistent, it is not designed for fault

tolerance purposes, since when the AS crashes the persistent storage is not accessible either.

In contrast, an entity bean (EB) is an object that represents persistent data in persistent storage

(mostly a database system). The state of an EB is the typical example of a shared state since different

requests from different caller sessions can access the same EB. Also, the state of an EB represents

cached data from the database. An EB synchronizes its state with the data in the database (i.e., read

from or write to the database) within the boundaries of transactions. Thus, the concurrency control

mechanism of the database can be used to manage the concurrent access of EBs in the cache. Further

details in regard to the shared state follow in Section 2.4.3.

1 Message beans are a third kind of EJBs. They are outside the scope of this dissertation.

Chapter 2. Background 17

Figure 2.2: Execution flow in J2EE architecture

2.3.2 Execution Flow

At the client side, a client accesses EJB objects using the Java remote invocation (RMI) protocol. In

order to access an EJB object, the client needs to first create a connection session to the AS. From

this connection session, the client gets a remote reference (called stub) of an EJB object. Then, the

client takes advantage of the stub to send requests to the server side EJB. The implementation detail

of this procedure is described in Section 9.1.1.

At the server side, the runtime environment where EJBs are running in a J2EE AS is called

EJB container. Whenever an outside client or an inside EJB makes a request to another EJB, the

request will first be intercepted by the container, and then be dispatched to the destination EJB. The

container is a wrapper of EJBs, which connects EJBs with services provided by the AS. It implicitly

calls services according to the configuration, thus eliminating the need to code them within the

application programs. To do so, the container intercepts requests to EJBs and calls certain services

before requests are really executed, or after requests are executed but before the corresponding

responses are returned to the caller. Figure 2.2 shows how an outside client submits two requests to

an SFSB and an SLSB and how the container intercepts the two requests to call certain services.

Often, more than one service is required to be called in regard to a request. Hence, an EJB

container usually consists of several interceptors, each of which is responsible for calling a certain

service. All these interceptors' form an interceptor chain (more on this in Section 9.1.2). Regarding

the execution of a client request, the most relevant interceptor is the transaction interceptor that

associates transactions with request executions.

Chapter 2. Background 18

2.4 Transaction Management

Transaction management is a key service for both AS and database. In an AS, requests are usually

executed within the scope of a transaction. There also exists the possibility that a client request

is executed without the context of a transaction in case there is no database access. However, for

the sake of generality, we assume that all client requests have to be executed within the contexts of

transactions. For a request that is not assigned to a transaction, we assume that a pseudo transaction

covers its execution.

A transaction is a logical unit of read and write operations on component and database state.

The well-known transactional properties are atomicity, consistency, isolation, and durability. In an

AS, the transaction management is implemented by a transaction manager (TM). Figure 2.1 shows

a typical way to call the transaction service. In the example, when the client request r\ is passing

the container, the container calls the TM to immediately trigger the start of a transaction t\, then all

execution related to r\ happens within the boundaries of this transaction. That is, both the accesses

to the three components in the AS and the access to the database triggered by r\ are executed within

the transaction t\. Typically, each transaction is associated with a single thread in the AS and the

execution of operations of the transaction is serial.

2.4.1 Lifespan of a Transaction

Typically, a transaction spans both execution on the AS and on the database. In practice, during

runtime, such a global transaction consists of two parts: a transaction on the AS (called AS trans­

action) and a transaction on the database (called DB transaction), since the AS and the database

are two different systems and have their own transaction management systems. Usually a global

transaction identifier is used to identify that an AS transaction and a database transaction belong to

the same global transaction.

Start of a global transaction

We can consider the lifespan of a global transaction as follows. Immediately after the TM executes

a transaction begin request, a global transaction is started, and the corresponding AS transaction is

Chapter 2. Background 19

started at this time point. The corresponding DB transaction is only started when a sub-request is

submitted to access the database during the AS transaction. If no sub-request accesses the database,

the global transaction only contains the AS transaction but does not contain a DB transaction. After a

global transaction is started, all state changes on AS and database triggered by the thread associated

with the global transaction belong to this transaction (unless the transaction is suspended).

Termination of a global transaction

When a global transaction wants to commit, the TM executes a transaction commit request. During

the execution, the TM submits a commit sub-request to the database. Only after the database suc­

cessfully executes the commit request and returns the response to the AS, the AS can successfully

finish the commit process. At this time point, the global transaction has committed on both the

AS and the database, meaning both the corresponding AS transaction and the corresponding DB

transaction have successfully committed.

A global transaction could be aborted. If an abort is triggered on the AS, the process is similar to

the commit. That is, the TM executes the corresponding transaction abort request, sending an abort

sub-request to the database. However, an abort can also be triggered by the database (e.g., deadlock,

integration constraint violation). In this case, the database directly aborts the corresponding DB

transaction, and then notifies the AS. After the AS receives the notification, the TM executes the

abort request without sending an abort sub-request to the database.

Clearly, in all cases, a global transaction is first started on the AS as an AS transaction. Then,

when persistent data is accessed, the corresponding DB transaction is started. No matter whether

a global transaction eventually commits or aborts, its DB transaction always terminates before the

termination of the corresponding AS transaction.

Accessing more than one database

In some applications, a transaction accesses more than one database. In this case, a 2-phase commit

protocol (2PC) is necessary at-commit time for atomicity [18]. The TM of the AS is the coordinator.

Chapter 2. Background 20

It first sends a prepare request to all participating databases which return either with a prepared

message or their decision to abort. If all databases have successfully prepared, the TM sends a com­

mit decision to all databases, otherwise (at least one aborted) an abort confirmation. The databases

terminate the transaction accordingly.

2.4.2 State Consistency

The behavior of a DB transaction is clearly defined by the transaction properties. If a DB transaction

commits, the state changes performed by the transaction on the database are made persistent. If the

transaction aborts, any changes performed so far on the database are undone by the database system.

In contrast, at the AS, the behavior depends often on whether it is shared or session state. Shared

state is usually transactional by making it persistent. That is, at commit time the latest in-memory

shared state is written to the database. In case of abort, changes are either undone or discarded and

the state is reloaded from the database. In the following, we assume that shared state is always

synchronized in this way with the database.

Most AS products do not provide durability for session-related state. Instead, changes on

session-related state remain volatile. Moreover, some AS products do not provide atomicity for

session-related state. That is, the abort of an AS transaction does not automatically trigger that

changes on session-related state are undone. However, programmers can provide rollback methods

to undo these state changes to guarantee atomicity. For example, in J2EE, programmers can define

rollback methods for stateful EJBs. These methods are automatically called by the J2EE server in

the abort case. We say the AS server provides/w// state consistency if mechanisms exist to abort

changes on session-related state, otherwise it provides relaxed state consistency. When a global

transaction aborts in case of relaxed state consistency, the AS might keep some state changes that

have already been done so far or make some further changes before request execution finishes, while

the database always aborts state changes of the corresponding DB transaction and is correctly rolled

back in the abort case.

Chapter 2. Background 21

2.4.3 Concurrent Transactions

The AS might execute requests from different clients concurrently, leading to concurrent transac­

tions, since requests from different clients have to run within different transactions. Accordingly,

there can be concurrent AS and DB transactions.

On the database, a DBMS normally has well-established concurrency control mechanisms that

can guarantee the isolation of concurrent transactions. In this dissertation, we assume that the DB

provides serializability, which means that the execution of a set of transactions is equivalent to some

serial execution of these transactions.

On the AS, as mentioned in Section 2.2.3, no concurrency control mechanism is required for

session-related state since they are naturally isolated. However, a concurrency control mechanism

has to be used to isolate accesses of concurrent transactions to shared state. There are two main

alternatives. One option is that the AS has its own concurrency control mechanism; traditional

approaches such as optimistic or pessimistic concurrency control could be used. Alternatively, the

AS relies on the concurrency control mechanism of the database system. In our model, all shared

state can be considered cached database state. Thus, the following approach can be taken. When an

AS transaction wants to read a certain shared object for the first time it loads it from the database.

Assuming locking, the corresponding DB transaction has a shared lock on this data item in the

database. If now a concurrent transaction wants to write the data item, it also goes to the database

and will be blocked in the database since the requested write lock conflicts with the existing read

lock. The level of isolation is then the one provided by the DBMS. While having concurrency

control at the AS level allows caching across transaction boundaries, relying on the DBMS for

isolation only allows for intra-transaction caching. Whenever a transaction accesses a data item for

the first time it has to go to the database. Clearly, the first approach is likely to be more efficient,

and thus, more desirable as it allows for inter-transaction caching.

When we now consider the replicated case, in a purely fault-tolerant architecture where one pri­

mary AS replica executes all client requests, both concurrency control options are feasible, because

then the concurrency control mechanism at the primary AS will serialize all transactions. How­

ever, in the case of load-balancing, several AS replicas execute client requests concurrently. In this

Chapter 2. Background 22

case the concurrency control modules of the different AS would need to coordinate. In contrast, if

all the concurrency control is delegated to the DBMS it remains centralized at the DBMS and no

extensions to the isolation infrastructure are needed.

As our solution aims at both fault-tolerance and load-balancing, we assume from now on that

all shared state is synchronized with the database and concurrency control is only performed at the

DBMS level. However, if our approach is used only for fault-tolerance, then the AS concurrency

control method can be used without interfering with our replication mechanism.

In practice, most J2EE application servers offer the option to leave isolation of EBs to the

DBMS. Each EB maps to a data record in the database. A transaction reads the up-to-date state

of an EB from the database the first time it accesses the EB. Changes to the EB are written to the

database and synchronized at commit time.

2.4.4 Relation between Requests and Transactions

In an AS, requests can be associated in different ways with transactions. Execution patterns are used

to describe the association. We classify execution patterns by the number of client requests involved

in a transaction and the number of transactions generated by a request. In the simplest execution

pattern, a client request executes within its own individual transaction. All further sub-requests that

are triggered by the client request to access other components in the AS and to access the database

are also executed within the transaction. This basic execution pattern is called "1-1" pattern (1-

request/1-transaction). But execution patterns could be more complex. In particular, J2EE allows a

wide range of association of requests with transactions.

Transaction management at AS

In a J2EE AS, a transaction could be Container-Managed or Bean-Managed. In the container

managed transaction (CMT) scheme, the EJB container has a transaction interceptor that intercepts

each request and decides how to associate the execution with a transaction. Figure 2.3 shows a

sample code snippet of the CMT scheme. In the CMT scheme, if a request is required to be executed

within a new transaction, the transaction interceptor sends a transaction request to the TM to start a

Chapter 2. Background 23

TransactionInterceptor{

Response invoke (Request req,
Component comp){

Sample EJB object{

void sampleMethod(){

TM. begin () ,•
call an EJB method;

., , ,. . ,, update the database;
if (condition-1) { ,*:

m.« ^ • , * lf condition-2) TM.beginO; m w ._,,
. ' ' v TM.commit();

comp.invoke(req); ,
^M. commit () ; _/ , ,̂.

TM.abort();
roll back changes;

}

Figure 2.3: Code snippet of CMT Figure 2.4: Code snippet of BMT

transaction. If the execution successfully completes, the transaction interceptor sends a transaction

commit request to the TM to commit the transaction, and only then returns the response. J2EE

provides a set of options to decide where and when transactions are started. Each method of an EJB

has a transaction attribute with the possible values: Requ i red , RequiresNew, Mandatory,

S u p p o r t s , NotSuppor ted , and Never. The most useful and popular attributes are R e q u i r e d

and RequiresNew. The R e q u i r e d attribute means that an EJB method should be executed

within a transaction. If a transaction is already associated with the current execution thread the

method is executed within the existing transaction, otherwise a new transaction has to be started for

the execution. The RequiresNew attribute means that an EJB method should be executed within

a new transaction no matter whether a transaction already exists or not.

In the bean managed transaction (BMT) scheme, the code of a session bean2 explicitly marks the

boundaries of a transaction within an EJB method as shown in Figure 2.4. In this case, a transaction

is only started during the execution of a request. Furthermore, during the execution, more than one

transaction can be started one after another. According to the assumption that each request should

be executed within the context of a transaction, we can assume a pseudo top-level transaction to

cover the execution of each client request in the BMT scheme. Thus, each real transaction triggered

within the method execution is kind of nested within the pseudo transaction.

An Entity Bean cannot have Bean-Managed transaction according to the EJB specification [99]

Chapter 2. Background 24

UserTransaction.begin();
call EJB1.methodl()
call EJBl.method2()
call EJB2.methodl(),

if (condition-3){
UserTransaction.commit();

else
UserTransaction.abort 0;

}

Figure 2.5: Code snippet of user transaction

User Transaction

Additionally to the CMT and BMT schemes, both controlling transactions at the AS, the J2EE

AS also provides an approach called User Transaction to control transactions from the client side.

Using the user transaction object, the client program can explicitly mark the boundaries of a trans­

action. Figure 2.5 provides a sample code showing how a client program uses the user transaction

to associate client requests with transactions. The begin method of the user transaction object will

trigger the TM of the AS to start a new transaction. Within the transaction, the client can send one or

more requests to one or more EJB objects. Finally, the commit/abort method of the user transaction

object lets the TM commit/abort the transaction.

Execution patterns

In a J2EE AS, CMT, BMT and user transactions can be used independently or together within a

single application. Thus, different ways to use these approaches can lead to a variety of associations

between client requests and transactions, i.e., to many different execution patterns. According to our

analysis shown later, we find that the variety will cause different side effects when a crash occurs,

and thus affect the design of the replication algorithm.

Although there could be many different execution patterns, only some of them make sense in

practice. Hence, this dissertation focuses on those patterns that are usually applied in practical ap­

plications. In fact, the 1-1 pattern is the most common pattern, that can be implemented very easily

using the default configuration of the CMT scheme. In the CMT scheme, the default transaction

Chapter 2. Background 25

attribute of each EJB method is Requ i red . Hence, when a client request is submitted to the EJB

object, a new transaction is created for the execution of the client request since yet no transaction

is associated with the execution thread. If during the execution, sub-requests are submitted to other

methods of the EJB, all these executions will be within the same transaction since the transaction is

already associated with the execution thread. This way, the association between the client request

and the transaction is the 1-1 pattern. Chapter 4 will discuss in detail not only the 1-1 pattern, but

also other patterns, and show how they can occur in J2EE through a combination of CMT, BMT,

and user transactions.

Transaction Abort

When a global transaction is aborted, the full state consistency requires the AS to rollback state

changes performed by the corresponding AS transaction. In the BMT scheme, the rollback opera­

tion can be included in the code of the EJB method as shown in Figure 2.4. However, in the CMT

scheme, the case is different, since the abort operation is not explicitly controlled by the transaction

interceptor. J2EE addresses this issue by providing a S e s s i o n S y n c h r o n i z a t i o n interface to

let an EJB instance be notified of the boundaries of a transaction by the container. The interface has

a method called af t e r C o m p l e t i o n (boo lean commi t t ed) . An EJB class that implements

the S e s s i o n S y n c h r o n i z a t i o n interface has to implement the af t e r C o m p l e t i o n method.

The rollback operations can be implemented in this method under the condition that commit ted

is false. Then, when a transaction that accessed an EJB instance of this class is aborted, the TM

calls the af t e r C o m p l e t i o n method to do rollback operations. Thus, state changes performed

by the transaction on the object can be automatically aborted, and full state consistency is guaran­

teed. The rollback action implemented in the af t e r C o m p l e t i o n method should not access the

database since the DB transaction has aborted. They should also not access other components to

prevent disseminating the abort to other objects. If more than one object is involved in an aborted

transaction, each of them runs its own af t e r C o m p l e t i o n method without interfering with each

other.

Chapter 2. Background 26

2.5 Overview of Failures

A failure of a system means the observation of deviation of the system from its specification [86].

Before a failure is observed, the deviation is called error, i.e., an abnormal state of the system.

Error is caused by some defect in the system. Almost all systems have defects, and hence error is

almost inevitable for any system. The goal of fault-tolerance is to prevent deviation being observed

when an error occurs in the system, i.e., to make the observed behavior of the system look like a

non-faulty system. This is also the base line to evaluate the correctness of a fault-tolerant algorithm.

2.5.1 Failure Types

A system might have different kinds of failures. Different failures have different side effects, and

the corresponding fault-tolerance algorithm has to address the differences. Failures can be classified

as following [28]:

• A crash failure occurs when the system stops working completely. If the clients of the system

can eventually detect the failure, the failure is called fail stop. Otherwise, it is called fail silent.

The typical reasons for a crash can be categorized into: (1) programming error (e.g., deadlock,

or stack overflow), (2) OS error (e.g., OS crash), and (3) catastrophic error (e.g., power cut).

• An omission failure occurs when the system does not respond to a request when it is expected

to do so. When the omission failure takes place, the system might still keep working. A typical

reason for a omission failure is a network partition between the client and the system.

• A timing failure can occur in real time systems if the system fails to respond within the specified

time slice. Both early and late response might be considered as timing failures. Late timing

failures are typically caused by some bottleneck in the system or in the network.

• A Byzantine failure occurs if the failure makes the system behave arbitrarily.

This thesis focuses on crash failure and assumes no omission and Byzantine failures occur.

We assume reliable, asynchronous communication and no network partitions because we believe

that assuming no network partitions is reasonable for a LAN environment. Timing failures are not

considered because we do not look at timing requirements. With this, if a non-replicated system does

not crash, clients of the system eventually receive correct responses for all requests. Furthermore,

Chapter 2. Background 27

we do not consider programming errors. How to tolerate programming error is an important topic,

but it is out of the scope of our research.

2.5.2 Crash of an Application Server

When an AS crashes, we think it is not accessible any longer, and all connections between the

crashed AS and its clients and the backend database are lost. The crashed AS might be recovered

later as a new instance. Before designing a correct replication algorithm to tolerate crash, it is very

important to understand the side effects of a crash of a non-replicated AS.

i. The crash causes the crashed AS to lose its state, since the state is volatile in memory. Some

AS systems have built-in persistence mechanisms that can make its state persistent locally.

However, as mentioned before, the persistent state is not accessible until the system is restarted.

If the AS system logs its state in a database or a file on another machine and the persistent state

can survive crash, .we consider this logging mechanism as a special form of replication (please

see Section 2.6.1).

ii. For any request executing on the AS system, if the crash takes place before the response of

the request is returned, the crash causes the client not to receive the normal response. Instead,

in practice, the client usually receives an exception to show the disconnection to the server or

time out. That means, the client can detect the crash. Hence, in this thesis, we assume that the

crash failure is fail stop. Our solution achieves that the crash exception is invisible to the client

program to guarantee transparent fault tolerance,

iii. The crash can also affect databases that were called by the crashed AS. Assume an AS trans­

action had submitted a set of requests to a database before it crashed. On the database, the

corresponding DB transaction is still active at the time of crash. According to the specification

of transaction services in J2EE and CORBA [76], the AS transaction has one connection to the

database, and the association of the AS transaction and the DB transaction is through this con­

nection. When the AS crashes, the connection to the database breaks, and the DB transaction

is aborted. The abort undoes all state changes done so far on the database. In summary, when

an AS crashes all active DB transactions that had a corresponding AS transaction at the AS are

Chapter 2. Background 28

aborted.

One of the worst cases is that the AS crashes in the middle of the 2PC of a transaction, where

some databases have returned the prepared message but have not received the commit/abort

decision yet. In this case, these databases will keep the state changes made by the transac­

tion, keep locks on those changed data, and always wait for the final decision. Nevertheless,

as DBMS are the most prevalent backend tier, we only consider standard DBMS behaviors.

However, if the system called by the crashed AS is not a database, or the request to the data­

base is executed according to some other specification, the callee system might have a different

reaction, e.g., stop where it is, continue to execute the request, etc.. In this thesis, we assume

that the database will undo all state changes made by the transactions that are active at the time

of crash except those in the prepared state (in case of 2PC) which will remain active until the

database receives a commit/abort decision.

2.6 Tolerate Failures through Replication

Replication is an efficient mechanism to tolerate crash failure. Replication can be active or pas­

sive [104]. In the active scheme [89, 1, 35, 72], a request is sent to and executed at all replicas.

The crash of a replica will not affect execution on other replicas. The client receives a response

as long as one replica is available^duplicate suppression must be in place). In passive replica­

tion [22, 51, 44, 73, 41, 11, 62], only the primary replica executes the request, and propagates

updated state to the backup replicas. If the primary fails, failover takes place, and one of the back­

ups becomes the new primary, installs the up-to-date sate, and continues working. Requests that are

active on the primary at the time of crash should reexecute on the new primary. The new primary

has different ways to know which requests are required to be reexecuted. A first option is that reex-

ecution relies on resubmission-after crash. In this way, after the crash, clients resubmits all active

requests whose responses were not returned before the crash, to the new primary. This is the typical

way used in most commercial products, such as JBoss [60] and WebLogic [14]. A second option

is that reexecution relies on the multicast of requests. This way, each client request is multicast to

all replicas during normal processing and is recorded at each backup. Thus, after failover, the new

Chapter 2. Background 29

primary already knows the requests required to be reexecuted. The Eternal system [73] uses this

way to do passive replication. A third option is that reexecution relies on a request log. Each client

request is logged during normal processing. After failover, the new primary reexecutes interrupted

requests by reading them from the log. The Phoenix system [9] uses this option. For replayed

requests that are interrupted by the crash, the resubmission mechanism has a longer delay than the

other two, since requests have to be resubmitted by the client tier. Whereas, it saves time during

normal processing since it does not require additional time to multicast or log requests. To get better

performance during normal processing, we use the resubmission mechanism in our solution.

Active replication requires deterministic behavior (otherwise, complex consensus mechanisms

such as are required), and induces heavy load, since all replicas have to execute all requests. A

new approach called Midas, proposed in [92], lets active replication live with non-deterministic

behaviors by running compensation code that is generated by statically analyzing application source

code to eliminate inconsistent states caused by non-determinism. Passive replication allows for non-

determinism. Although primarily designed for fault-tolerance, it has some potential for scalability,

since applying changes sent from the primary is usually less time consuming than executing the

requests themselves. The spared resources can be used to perform other tasks. Furthermore, in

our solution, each replica is a primary for a subset of requests, and backup for the others. On the

negative site, passive replication requires complex state propagation and failover. There also exist

some research considering a combination of active and passive scheme (e.g., [31, 32]) and some

replication tools support both active and passive replication (e.g., [74, 114]).

2.6.1 Passive Replication Category

When looking at commercial AS products, almost all rely on passive replication (e.g., Phoenix/.Net [9],

WebLogic [14], WebSphere [103], JBoss [49], Sun AS [96], Oracle9i [78], IONA E2A [56], Pra-

mati [85], Orion AS [57]). Passive replication can be categorized by two parameters:

i. The primary can replicate state changes to the backups in different ways. Using cold replica­

tion, the primary stores the state information on a persistent storage which can be accessed at

failover by the new primary. This mechanism is also known as logging or checkpointing. In

this case, the new primary needs only to be initiated when needed after a crash. Using warm

Chapter 2. Background 30

Warm
Cold

Eager
JBoss/Oracle9i

IONA E2A/Pramati/Sun AS/Phoenix

Lazy
WebLogic

Orion AS/Phoenix

Table 2.1: Classification of passive replication of commercial products

replication, the primary sends state changes to the backups directly, e.g., via messages. This

alleviates the load on the persistent storage but introduces message overhead. Backup instances

must exist to receive replicated state. During normal processing, the time to do replication de­

pends on the communication time between the primary and backups for warm replication, and

depends on the communication time between the primary and the persistent storage for cold

replication. In Section 10.1.1, the performance evaluation shows that the replication time of

warm replication is faster than that of cold replication. Moreover, failover of warm replication

is also faster than that of cold replication, since in warm replication the backup has already

the state in memory, while in cold replication it needs to read the replicated state from the

persistent storage first,

ii. The propagation time defines when state propagation takes place. The propagation time is

demarcated by the boundary of transactions. If state changes are propagated before the related

transaction commits, we say it is eager propagation. Otherwise, if state changes are replicated

at some time after, we say it is lazy propagation. When using eager replication, at the time a DB

transaction commits, all AS replicas have the state changes of the associated AS transaction.

This makes it possible to guarantee in case of primary crash that the state of the new AS primary

and the DB is consistent. In contrast, in lazy replication, the AS might lose state changes as

the old primary might crash before propagating changes of an AS transaction for which the

corresponding DB transaction has committed. As a tradeoff, eager replication increases user

response time by adding the time to do synchronous replication, but lazy replication provides

fast response time.

Table 2.1 shows a classification of the schemes used by commercial products. Most of them use

eager replication to guarantee consistency. Phoenix uses a lazy approach for deterministic requests,

but uses an eager approach for non-deterministic requests. The products using warm replication

Chapter 2. Background 31

usually initiate a server cluster at system start-up and then choose one as the primary. The products

using cold replication usually only start a single server and start the new primary only after the old

primary crashes. As one of the main focuses of this thesis are consistency and correctness, we use

eager replication. Moreover, our experiments show that warm replication has better performance

than lazy replication. Hence, we pay more attention to warm replication.

2.6.2 Correctness of Replication

In regard to correctness, an ideal replication algorithm should make the replicated system behave

in the failure case in the same way as a non-replicated system behaves when no failure occurs.

Informally, it means exactly once execution of each client request and consistent state changes at

the AS and the database. On the client side, exactly-once execution means each client request

receives only one response that is not a crash exception. This guarantees transparent fault tolerance

from the client viewpoint. On the AS, exactly-once execution means each client request changes

the state of the AS and/or the database exactly once. Consistent state changes on the AS and the

database means correct and is "all or nothing" on both AS and the database in case of full state

consistency or "all or nothing" on the database in case of relaxed state consistency. A replication

algorithm is required to provide this form of correctness for a replicated AS even in the event of

failures. We will discuss in more detail and more formally what correctness means in Chapter 4.

2.7 Communication Mechanism for Replication

When using replication to tolerate failures, failure detection and message propagation among repli­

cas (for warm replication) are two important issues. How to detect failures in a distributed environ­

ment, and how to deal with possible message loss during communication are non-trivial problems.

Fortunately, Group Communication Systems (GCS) [52,26,102,39,21,19,25] provide us powerful

functionality. Examples of group communication systems include Spread [1], JGroups [50], ISIS

[58], Horus [102], Ensemble [38], Transis [34], and Totem [71].

Figure 2.6 depicts the basic architecture of a group communication system. A set of applications

build the group. Each application is a member of the group. When an application sends a message

Chapter 2. Background 32

Application

1 4
send receive

messages ordered messages
• i

GCS layer

1

<ZZZ1

Application

•
receive

ordered messages
1

GCS layer

1

Application

t
receive

ordered messages
1

Broadcast
(UDP)

GCS layer

Figure 2.6: Group communication system

to all members, it first sends the message to the underlying GCS layer. The layer typically uses

consecutive point-to-point communication or physical broadcast like UDP to send the message to

all machines that have members of the group. At each site, the GCS layer first receives the message,

then delivers the message to the member applications, at which time the application receives the

message. When a GCS layer receives a set of messages, they may not be in the correct order.

Thus, the GCS layer will reorder these messages before delivering them to the application. In this

dissertation, according to the requirement of the algorithm, a set of AS replicas compose such a

group, where each replica is a group member and uses GCS to manage the communication among

all replicas in the same group. An AS replica can join one or more groups. Typically, a GCS

provides two primitives: group membership maintenance and multicast.

2.1.\ Group Membership Maintenance

The membership service maintains a listing of the currently active and connected members and

handles group operations such as joining and leaving a group. The output of the membership is

called a view. At each site, the GCS contains a view V that contains the list of members with which

communication is possible. An application might join or leave a group. This changes the view of the

group. When a view change takes place, the GCS delivers a view change message to all members

of the new view indicating that the new view is V. The typical property for group membership

is virtual synchrony [20, 26]: If members p and q receive the same new view V while having the

same previous view V, any message delivered to p, which is a member of V, is also delivered to q

in V. This protocol guarantees that the GCS delivers exactly the same messages at all non-failed

Chapter 2. Background 33

members of the view V. Hence, the applications on the different sites perceive view change events

at the same virtual time.

Since it is well known that accurately detecting failure in asynchronous environments is im­

possible [27], the membership service often uses an inaccurate failure detector, typically based on

timeout: when the GCS does not receive any message from a member p beyond a time limitation,

the GCS suspects p to be faulty, then excludes p from the current view [68]. In this case, p might

have really crashed, or be partitioned from the network, or just be delayed by a slow connection.

If the GCS excludes a correct member, we require that the affected replica shuts down itself and

attempts to rejoin the group.

2.7.2 Multicast

The multicast sends a message from a member to all members in the current view. A GCS provides

various multicast primitives with various degrees of reliability and ordering [52]. The possible

reliability semantics are:

unreliable delivery no guarantee that a message will be delivered at all members,

reliable delivery when a message is delivered to member p, and if p dose not fail for sufficiently

long time, the message will be delivered to all other members of the current view unless they

fail,

uniform reliable delivery when a message is delivered to a member p, even if p fails immediately

after the delivery, the message will be delivered to all other members unless they fail.

The difference between the uniform reliable delivery and the reliable delivery is on messages that

might be delivered at failed members. With uniform reliable delivery, whenever a message is deliv­

ered at any member, no matter whether the member fails or remains available, all other non-failed

member will receive the same message. Hence, the set of messages delivered to a failed member is

a subset of messages delivered to surviving members. In contrast, with reliable delivery, a message

might be delivered to a member that fails immediately after that, but the message is not delivered

to other non-failed members. As a result, with uniform reliable delivery, when a member receives

Chapter 2. Background 34

a message sent by itself, it is guaranteed that all other non-failed members also receives the same

message. Whereas, with reliable delivery, the sender of a message cannot know whether the mes­

sage is delivered to other members by just testing if it has received the message itself. We will use

uniform reliable delivery when the replication algorithm should not proceed before it is assured that

all non-faulty AS replicas will receive a state change message.

The ordering primitive is very important when different messages might depend on each other.

The offered ordering semantics are:

FIFO ordering If a member sends a message m before it sends message m', all members in the

view receive m before m',

Causal ordering If a member sends a message m' after it receives message m, all other members

in the view receive m before m',

Total ordering If a member receives a message m before it receives m' in a view, all members in

the view receive m before m'.

In our context we will use FIFO andtotal ordering. The FIFO ordering guarantees that all members

receive messages sent by a member in sending order. The total ordering guarantees that all members

receive all messages in the same order.

Chapter 3

Traditional Application Server

Replication Solutions and Correctness

Criteria

This chapter reviews existing AS replication solutions. Most of them do not consider the effects

caused by different execution patterns and relaxed state consistency, and only provide solutions for

the simplest 1-1 pattern. Although some of these solutions might also be applicable for a certain

advanced execution pattern, they do not clearly discuss this option. Most solutions either consider

fault-tolerance or load-balancing, but not both. This chapter also reviews traditional correctness

criteria for replication. These criteria normally only consider one tier, and do not distinguish the

effects of different execution patterns.

3.1 Overview of Existing Replication Solutions for Fault Tolerance

In this section, we review existing replication solutions for three prevalent AS specifications, namely

J2EE, CORBA and .NET, and investigate which execution patterns are assumed for them.

Chapter 3. Traditional Application Server Replication Solutions and Correctness Criteria 36

3.1.1 Replication for J2EE Architecture

Most J2EE products use passive replication based on the resubmission mechanism. A typical ex­

ample is JBoss's clustering solution [60]. It uses passive, warm, and eager replication. Each replica

can act as a primary for a client session. If a client request triggers execution on several stateful

components, state transfer takes place individually for each component once execution on this com­

ponent has terminated. Problems occur if replication on some components was successful but the

primary crashes before the corresponding database transaction commits. In this case the backups

have a partially replicated state while the database transaction aborted. Obviously, the state of the

new primary is inconsistent with the state of the database. Hence, this replication solution does not

work correctly even for the l-l pattern.

Some commercial products, like Oracle 9i [78] and IONA E2A [56], do replication at the end

of each client request. Pasin et al. [83] propose a High-Available EJB server architecture where

the state changes are replicated at commit time. For the 1-1 pattern, these mechanisms are similar

to ours since the end of each client request is the commit time of the transaction associated with

the client request. However, there always exists a time difference between the time to do state

propagation and the time to do commit. Thus, like the JBoss solution, state inconsistency occurs

if the primary crashes after state has been successfully propagated but before the corresponding

database transaction commits. In this case the backups have the state changes while the database

transaction aborted. Although there exist some mechanisms to coordinate between the AS and the

DB, they are not clearly described. Moreover, above solutions do not consider advanced patterns.

Kistijantoro et al. [62] also propose to do replication at time of commit. The solution checkpoints

the state changes on AS into the database within the context of the transaction, and hence the

state changes on the AS and on the database are consistent. As a result, this solution works for

the 1-1 pattern. Pramati [85] uses a similar solution to persist states at the time of commit and

hence guarantees consistency for the 1-1 pattern. However, both solutions do not consider advanced

patterns and relaxed state consistency.

One of the leading products of AS, WebLogic [14], uses passive, warm, and lazy replication.

Each EJB instance has a single primary server, which processes requests to the EJB instance, and

Chapter 3. Traditional Application Server Replication Solutions and Correctness Criteria 37

propagates the state of the instance soon after returning the response to keep replicas as consistent as

possible. Due to lazy replication, inconsistencies arise when the primary crashes after the database

has committed a transaction, but before the corresponding state changes on the AS are replicated.

Orion AS [57], which also uses lazy replication, has a similar problem. Another famous AS product,

WebSphere [103], does not replicate the state of the AS, and hence, its clustering only works for

stateless applications.

Existing replication solutions for J2EE AS products usually have their main emphasis on ease

of implementation, as they are mostly industry solutions. Most of them do not change the interfaces

between AS and clients, and between AS and database, and do not require any additional support

from other tiers. As a tradeoff, these solutions sacrifice consistency. Until now, we are not aware of

any commercial J2EE product, that clearly provides even for the 1-1 pattern a replication solution

that guarantees full state consistency.

3.1.2 Replication for CORBA Architecture

Although there are less AS products based on CORBA than on J2EE, there exists more research

on replication in CORBA than in J2EE. While most existing J2EE solutions are quite simple, many

CORBA solutions have an advanced framework supporting both active and passive replication, such

as [29,30,72,65,40,74,7]. Some solutions combine active and passive replication as semi-passive

solutions ([31, 32, 15]). These research projects consider the internal architecture of CORBA, and

the replication solution is tightly bound to CORBA. For active replication, the solutions have to

make sure that all replicas receive the same requests in the same order, e.g. by using the total

order delivery of group communication systems ([30, 40, 47, 72, 42]). For instance, Marchetti et

al. [69] propose to build a sequencer service based on the total order delivery between clients and

server replicas to guarantee that all server replicas execute client requests in the same order while

messages of requests might be arbitrarily delayed or timeout between clients and server replicas.

For passive replication, either warm or cold replication is used to replicate state changes. When

using warm replication, to guarantee that all replicas receive the same changes, some solutions use

a group communication system to reliably broadcast state changes ([29, 74]). Other solutions use a

2PC protocol, where the backups are the participants of the 2PC ([65]).

Chapter 3. Traditional Application Server Replication Solutions and Correctness Criteria 38

In here we look at the Eternal system [73,74] in more detail as an example in CORBA. Eternal is

based on the FT CORBA architecture [75]. It supports both warm and cold passive replication. The

primary replicates the state to backups periodically in form of checkpoints. Between two check­

points, all messages from clients and the database are logged. At crash of the primary, the new

primary first restores the state of the last checkpoint, and then replays logged requests. At recovery

of a replica, the primary transfers the last checkpoint state to the recovering replica. Zhao et al.

[114, 115] extend the Eternal system [74] so that CORBA components can access a backend data­

base. A special replicated out-bound gateway is used to manage the transaction context between the

application server and the database. Database connections are protected by the outbound gateway.

A response from the database will be replicated to all backups. The replay mechanism assumes de­

terministic execution at the AS. If a new primary has to reexecute requests at failover time, duplicate

database access can be avoided by directly taking the replicated response without reexecution. Al­

though the solution does not look at different execution patterns, we think it can support them with

some extensions. However, if non-determinism exists, the solution cannot guarantee correctness

even for the 1-1 pattern, since reexecution might generate responses or database accesses that are

different from the logged information. This will lead to executions that do not follow the original

execution path. Moreover, the solution is not based on the common interface between the AS and

the database. Instead, it depends on a special transaction manager that does not directly connect to

the resources but multicasts the transaction requests to the out-bound gateway.

Two other solutions proposed by Felber and Narasimhan [41] and by Frolund and Guerraoui

[43] use a much simpler marker mechanism to coordinate state changes on the AS and on the

database. The former solution acts similar to the J2EE replication solution of [62,85], checkpointing

the state changes on the AS of a given AS transaction into the database within the context of the

corresponding DB transaction. Then, at failover time, the new primary checks the database. If the

transaction aborted, neither DB nor AS changes exist. Otherwise, the new primary can get the AS

state changes from the database. The latter solution propagates the state changes of the AS to the

backups immediately before the commit and then inserts a marker into the database as part of the

DB transaction. At failover time, the new primary checks the marker for each transaction. If a maker

exists in the database, it means that the database has already committed the DB transaction and has

Chapter 3. Traditional Application Server Replication Solutions and Correctness Criteria 39

the state changes related to the persistent data. Thus, the new primary installs the corresponding

state changes of the AS components. Otherwise, the database had aborted the DB transaction and

the new primary discards the AS changes. Although the details of these two solutions are different,

both solutions are taking advantage of the transaction's property to coordinate the state changes

of the AS and the database. This mechanism works well for the 1-1 pattern and does not require

additional support from the database. We use the same idea in our algorithm. However, these

two solutions do not consider advanced execution patterns and relaxed state consistency. In fact,

although there are many CORBA-based replication solutions, only a few of them regard a CORBA-

based AS as the middle tier of a multi-tier system. Furthermore, although several solutions can

correctly handle the 1-1 pattern, so far, none can correctly handle advanced patterns and relaxed

state consistency.

3.1.3 Replication for .NET Architecture

For Microsoft's AS platform .NET, the main replication solution has been developed in the Phoenix

project ([11, 9, 10, 8]). It has similarities to the Eternal system. State is replicated periodically,

and requests between two checkpoints are logged. Fai lover starts from the last checkpoint and

applies logged requests assuming piecewise deterministic behavior [37]. It requires the database

to be able to identify duplicate requests and log replies. This would be possible, if a persistent

queue exists between AS and database. Unlike the Eternal system, it distinguishes non-deterministic

events from deterministic events. For non-deterministic events, it uses eager replication (namely

immediately logging the result of these events before returning) to guarantee consistency. Although

the papers present a formal discussion of correctness, the transactional properties are not clear.

Although eagerly replicating results of non-deterministic events enables the algorithm to support

non-determinism in some cases, it is not sufficient. A problem is the database access. When the

primary crashes, active transactions will abort at the database. Then, during reexecution of these

transactions, the replayed database accesses might get logged replies without real reexecution on

the database. As a result the database might miss the state changes of these replayed transactions.

Chapter 3. Traditional Application Server Replication Solutions and Correctness Criteria 40

3.2 Traditional Correctness Criteria for Replication

Traditional correctness criteria normally only focus on one aspect or on one tier, ignoring the global

picture of the entire system. These criteria often dig into depth into one aspect, e.g., concurrent data

access, or the ordering of messages, but do not consider the relationship between different tiers and

different execution patterns.

In this section, we look at three well-known traditional correctness criteria for replication mech­

anisms: one-copy-serializabiIity, state machine replication, and X-ability.

3.2.1 One Copy Serializability

One copy serializability (1CSR) [16] has been developed for replicated databases. It addresses

correctness in regard to two aspects: multiple copies of a data object must appear as a single log­

ical copy (1-copy-equivalence) and the effect of the concurrent execution of transactions must be

equivalent to a serial execution (serializability).

To achieve 1-copy-equivalence, read and write operations on logical data items have to be trans­

lated to serial operations on the physical data copies. When using eager replication, a simple ap­

proach to do so is read-one/write-all (ROWA) [17, 16], which requires write operations to access

all copies while read operations are done locally at one copy. Alternatively, quorum protocols

[101, 48, 59, 82] require both read and write operations to access a quorum of copies. As long as

a quorum of copies agrees on executing the operation, the operation can succeed. When using lazy

replication together with primary copy, 1 -copy-equivalence can be guaranteed only in the primary

copy, backup copies are only ensured to be eventually equivalent.

To guarantee serializability, concurrency control mechanisms are required. A typical example

is locking, e.g., 2-phase-lo.cking.X2PL). If updates are always first executed on a primary replica,

local concurrency control on the primary is enough. Whereas, if updates can be done concurrently

on different copies, distributed locking is required. When proving a replication algorithm provides

1CSR, one has to show that all executions that are possible under the given concurrency control

and propagation approaches, are equivalent to some serial execution on a single logical copy of the

database. For passive replication with a single primary replica, 1CSR is not difficult to achieve,

http://2-phase-lo.cking.X2PL

Chapter 3. Traditional Application Server Replication Solutions and Correctness Criteria 41

since local concurrency control on the primary is sufficient to guarantee serializability, and eager

replication can easily guarantee 1 -copy-equivalence.

However 1CSR has been designed for database replication, and thus is not appropriate to check

correctness for AS replication, since it does not consider the interaction between the replicated AS

and a backend tier. For instance, it cannot check duplicate or missed requests to the database.

Linearizability [53, 5] is another well-known criteria to evaluate correctness of concurrent ex­

ecutions. While serializability is addressing the internal sequence of concurrent transactions on a

shared object, linearizability considers the external observed sequence of concurrent operations on

a shared object. It does not address transactions. Instead, it considers the sequence of requests and

responses. For instance, given two concurrent requests r\ and r^ on the same object, if T\ 'S response

is perceived before r2 is invoked, the linearizable execution sequence of r\ and r-i must guarantee

that T\ 's execution is before r2's execution. Although linearizability could be a useful criteria for the

replicated AS to check if the ordering of requests and corresponding responses is preserved linearly

in case of resubmission, it is not a sufficient correctness criteria for replicated AS yet, since it does

not consider the interaction between the replicated AS and a backend tier.

3.2.2 State Machine Replication

State machine replication [88] is a very well-known formalism for active replication. The replicated

system is modeled as a state machine, and each replica has a replica of the state machine. A request

triggers actions on all state machine replicas to transfer the state machine from the same initial state

to the same final state. The correctness criteria addressed by the state machine replication is that

all replicas receive and process the same sequence of requests. It has two requirements: (1) every

correct replica receives every request (Agreement), and (2) every correct replica processes requests

it receives in the same relative order (Order). Then, based on the assumption of determinism, all

replicas executing the same sequence of requests based on the same initial state will reach the same

final state. Using a group communication system to multicast requests to all replicas can easily fulfill

the agreement requirement via uniform reliable delivery, and the order requirement mechanism via

the total ordering mechanism. For example, in [112], the state machine replication is used to build

a fault tolerance framework for web services and the total ordering of requests is guaranteed by a

Chapter 3. Traditional Application Server Replication Solutions and Correctness Criteria 42

consensus-based algorithm.

However, when considering that an execution might submit sub-requests to other tiers, e.g., the

database, more problems arise. For example, connections to the database are a problem. Typically,

there are three possibilities. The first option is that each replica has an individual connection to the

database, and the database needs to detect and suppress duplicate requests and needs to guarantee

that the crash of a replica will not affect connections from other replicas. The second option is

that only one replica builds a connection to the database, and the replica needs to pass responses

to all other replicas afterwards. If the replica crashes, the original connection is lost, and another

replica must be chosen to connect to the database. In this case, problems about missed requests and

duplicate requests might arise. The third option is that all replicas connect to a specific gateway,

and the gateway filters duplicate requests and builds a connection to the database; however the

gateway itself might need to tolerate failures using replication, and hence, similar problems arise

again. The Eternal system [73, 74] uses the gateway approach. All of these problems might arise

even for deterministic execution, but so far we are not aware of any correctness criteria based on

state machine replication that would address them.

As an alternative to group communication, consensus mechanisms [25,31] are widely discussed

for active replication to guarantee all replicas agree on the sub-requests and the responses despite

non-determinism or Byzantine failures. However, consensus mechanisms do not consider issues

such as duplicate requests, missed requests, and state consistency between tiers. Hence, we still

need a correctness criteria to consider these problems.

3.2.3 X-ability

The X-ability framework [44] allows reasoning about correctness in a multi-tier replicated system

based on execution histories. It takes into account that the replicated tier can call other tier in the

system. X-ability assumes that in the non-faulty non-replicated case, many different execution se­

quences are possible for a given set of requests. Such a sequence is called a failure free execution

history. If the tier is replicated and some replicas might crash, the execution sequences for these

requests will be more complex, since some requests will be interrupted by the crash and reexecute

on other replicas. A sequence in a replicated system with failures is called a real execution history.

Chapter 3. Traditional Application Server Replication Solutions and Correctness Criteria 43

X-ability proves that a replication algorithm is correct for a tier by checking if all real execution

histories on the tier, which are possible under the given replication algorithm, can be reduced to

failure free histories. The rule of reduction is that if an interrupted execution of a request and the

corresponding reexecution have the same side-effect as that of a possible failure free execution of

the request, then the interrupted execution and the reexecution can be reduced to the failure free

execution. X-ability considers an execution to possibly change the state and invoke servers of other

tiers. This reduction mechanism implicitly checks missed requests and duplicate requests for the

replicated tier. X-ability assumes a request to another tier is either idempotent or undoable. If a

request is idempotent, no matter how many times the request reexecutes, the sum of these execu­

tions has the same effect as the idempotent failure free single execution. If a request is undoable,

before the request reexecutes, the side effect of its last execution can be undone, and hence the last

successful reexecution can be considered as a failure free execution.

X-ability allows reasoning about the correctness of a composite system very easily by assuming

that each tier provides X-ability. As such, proof of correctness can be done independently for

each tier. For instance, at failover, a replication algorithm for a tier might restart any execution

that was active on a crashed replica at time of failover. If the original execution on the crashed

replica had submitted a sub-request to another tier, the reexecution might resubmit the very same

request. This, however, is not problematic since such request is assumed to be idempotent, hence,

a resubmission does not lead to any inconsistency. However, things are more complicated if a

called component does not provide X-ability. For instance, a backend database system usually does

not provide X-ability, since it does not provide idempotent operations or the possibility to undo

committed transactions. A replication algorithm for an AS has to take this into account. In this

case, proof of correctness cannot be done independently on the replicated AS; both the client tier

and the database tier are required to be considered. In this thesis, we model execution that goes

beyond an individual tier in order to reason about such cases.

Chapter 3. Traditional Application Server Replication Solutions and Correctness Criteria 44

3.3 Load Balancing and Combined Approaches

Load balancing and fault-tolerance have traditionally been handled as orthogonal issues, and re­

search on one topic usually does not attempt to solve the other. Section 3.1 has pointed out that

the primary-backup approach is used in many AS replication solutions for fault tolerance purposes.

The main differences between these solutions are when to do replication and whether or how to

guarantee state consistency after failover. Most solutions we discussed in Section 3.1 only use the

primary replica to execute all the load, and do not aim at scalability.

However, for load balancing purposes, we need more replicas to be able to execute requests

to share the load. Typical load balancing solutions of application servers (or web servers) use a

centralized load balancer (also called scheduler) to manage to distribute the load to different repli­

cas. In content-blind policies [4], such as Random or Round Robin, the load balancer does not

know the load on each site. As content-blind policies can be easily implemented, they are widely

used in practice. However, they do not work well in heterogeneous environments. Content-aware

policies require some knowledge about the environment. There exist many strategies, e.g. sending

requests to the least loaded replica [87, 79], distributing requests according to data size [111], or

locality of requests [81, 3, 36]. Feedback-control and resource consumption predictions are other

mechanisms [110, 66]. Such strategies can dispatch load more precisely, but either need a central

scheduler with global knowledge or require frequent exchange of load information. Central sched­

ulers present a single point of failure. Replicating them is possible but has its own overhead. In

contrast, our content-blind approach with request forwarding is purely distributed with little over­

head, and is easy to implement.

Several commercial solutions (e.g., used in JBoss [60], Weblogic [14] and Sun Application

Server [96]) use component replication for both fault-tolerance and load-distribution. In the basic

approach, all components are replicated on all servers and requests are balanced across all replicas

in the clusters. If a replica fails, any replica can take over. However, as was discussed in Section 3.1,

many of the commercial replication solutions do not work correctly in the presence of failure. Fur­

thermore, the approach does not provide enough scalability since replicas spend too much time on

Chapter 3. Traditional Application Server Replication Solutions and Correctness Criteria 45

backup activity when the cluster size increases. The scalability problem can be overcome by par­

titioning a cluster into sub-clusters and let a component be only deployed and replicated in a sub-

cluster. Therefore, updates only need to be propagated in the sub-cluster leading to less overhead.

However, requests to this component can also only be distributed to this sub-cluster. Furthermore,

the approach requires to artificially define a sub-cluster for each component which makes reconfig­

uration complex. In our approach, a component is deployed on all replicas. However, at run time,

component instances are only replicated on a fixed number of replicas which is independent of the

size of the entire cluster.

Only a few approaches in the research literature consider both load distribution and fault-

tolerance. Singh et al [91] propose a system that merges the Eternal [74] fault tolerance architecture

and the TAO's load balancer [87]. All servers in a cluster are partitioned to several disjoint FTG

groups. A similar architecture is used in [80]. However, only the primary server in each replica

group is used for load balancing while backups do not contribute to load distribution. Moreover,

these solutions do not address reconfiguration problems. Long et al [67] propose a solution in which

each server acts as both a primary and a backup. However, their solution is specific for a cluster with

only 2 machines. In [84] all components are replicated on all replicas leading to limited scalability.

Other combined solutions do not consider stateful AS. For example, Ho and Leong [54] propose to

replicate event channels and share the load among replicas using the replicated channel. However

the approach only replicates stateless event channels.

Chapter 4

Execution Patterns for Application

Server

In Section 2.6.2, we discussed informally what it means for a replication algorithm to show correct

behavior. Informally, the execution despite possible failures of individual components should be

equivalent to the execution in a non-faulty non-replicated system. The challenge in defining cor­

rectness lies in the many different ways client requests and their execution at the AS and database

tiers can be coupled with the notion of transactions that require atomicity, durability and isolation.

This chapter addresses this issue by formally modeling a set of execution patterns that reflect

the most common way in which client requests and transactions are associated with each other in a

3-tier architecture. In order to do so, we first model request executions. Then, transaction execution

is modeled using the concept of execution patterns. We then model state changes performed by

transactions. At last, we derive a set of correctness properties for the execution in a non-faulty

non-replicated 3-tier system.

The model is then extended to include the behavior in case of a crash and typical actions of a

passive replication algorithm. Based on this extended model, a set of correctness criteria is presented

that a replicated system should fulfill in order to emulate a non-faulty non-replicated system.

46

Chapter 4. Execution Patterns for Application Server 47

4.1 Request Execution

We refer to Requests as the set of all requests. Actions is the set of all possible actions triggered

by requests at the AS and database and Responses is the set of all possible responses. We assume

each client C% first establishes a session with the AS and all requests of this client are executed

within this session. We denote the session of the client d from the first request establishing the

connection to the last response before disconnection as a special Action CA{. Furthermore, we

assume that each client submits requests in a single thread based on the blocking scheme. That is,

a client only submits the next request when it has received a response to the previous request. Each

r € Requests submitted to the AS by CAi triggers an a £ Actions on the AS. We refer to this as

an AS action. The action performs read and write operations on the state of the AS and performs

calculations. Please note, we assume that the client never accesses the database directly.

Additionally, an AS action a might make further calls to the database or to other components on

the AS again based on the blocking scheme. A call to the database is typically an SQL statement. We

refer to this as a request r 6 Requests and it triggers an action a e Actions on the database referred

to as a DB action, which executes the SQL statement. This includes read and write operations on

the data of the DB. After the completion of an AS or a DB action, a response rp e Responses

is returned to the caller. When an AS action a makes calls within the AS, in some cases, the calls

are also requests, triggering new (nested) actions on the AS. Sometimes, the execution of the call is

considered part of the action a. We will discuss this later, when we introduce transactions.

Thus, an action refers to a set of operations on one tier. It has a unique corresponding request

and one response. The function R(a) represents the request leading to the action a, and RP(a)

represents the response provided by a. The signature function SIGRP(rp) indicates the action that

returned the response rp (i.e., a = SIGRP(RP(a)). Due to non-determinism, a request might

cause different actions (different set of read and write operations), depending, for example, on the

previous state of the AS/DB. The function A(r) represents the set of actions that might be triggered

by the request.

Figure 4.1 denotes a sample execution of all requests within the client session CA{. In the

figure, the first line represents time at the client, the second represents time at the AS, and the

Chapter 4. Execution Patterns for Application Server 48

CA,
Client - r j r T - *

\ 3' 1 ' [\ I 3 ' 1 '\ f \ P<
a2 a4

Figure 4.1: Sample scenario of request execution

third represents time at the database. The boundaries of an action are denoted with [and]. In the

execution, request r^ triggers action a^ which returns response rpk- The client submits requests r\

and r3. AS action a,\ submits request r-i to the database triggering action a-i- AS action az submits

request r± to the database, triggering DB action 04, and then submits request 7-5 within the AS,

triggering the nested AS action 05.

4.1.1 Histories of Request Execution

As execution is single-threaded, we can specify a strict ordering of requests, responses, and actions

related to one client. We denote as the request history RHa of action a the sequence of requests

submitted by a. For instance, in Figure 4.1, RHcAi = ^1^3, and RHa3 = r^r^. Similarly, we

denote as response history RPHa of action a the sequence of responses that a receives for the

requests it submits. We denote the number of requests in the request history RHa with \RHa\

and the position of a request r in the history RHa with POSr
RH . Similar notation \RPHa\ and

POSrjipH is used for the cardinality of a response history RPHa and the position of a response

RP in the history RPHa. Due to our model of blocking calls, it is always true that either \RHa\ —

\RPHa\ or \RHa\ = '\RPHa\+ I. '

An important property of a correct execution is that the request and response histories must

match.

Definition 4.1.1. Let a be an action. We say RHa and RPHa match (denoted as RHa 1x1 RPHa)

if the following holds:

Chapter 4. Execution Patterns for Application Server 49

/. Vr € RHa: eventually 3rp e RPHa, POSr
RHa = POSjPHa-

2. \/rp e RPHa: 3r £ RHa, POSr
RHa = P 0 5 ^ , ^ A SIGRP{rp) e A(r).

The above indicates that each request in the request history triggers one of the possible ac­

tions for this request and this action returns the appropriate response. For a client action CAi, the

matching is denoted as RHcAi cxi RPHCAV

4.2 Transactions and Execution Patterns

Per our assumption in Section 2.4, all execution (read and write operations on data) have to be per­

formed in the context of transactions. As outlined before, transactions can be triggered in various

ways - either implicitly by the container, explicitly by the client or explicitly by the application pro­

grammer within the code executed by the AS. We now derive a set of execution patterns, which are

denoted as 1-1, N-1,1-N, or N-N to indicate the number of client requests involved in a transaction

and the number of transactions generated by a request.

Recall that wesplit a global transaction in an AS transaction, which is denoted as AST(t),

and a DB transaction, which is denoted as DBT(t). Accordingly, for an AS or DB transaction t',

GTX(t') indicates its global transaction. For the global transaction t, both AST(t) and DBT(t)

must terminate in the same way. Namely, if DBT(t) commits (aborts), then AST(t) has to com­

mit (abort), and vise versa. Please note, every global transaction must have a corresponding AS

transaction since transactions are always started at the AS. However, a global transaction might not

contain a DB transaction since AS actions involved in the transaction might not access the database.

Furthermore, for a transaction t, we denote the client of the transaction as CL(t).

We now discuss our execution patterns in more detail. We first describe them informally, then

discuss their use in practice and then define them formally.

4.2.1 1-1 Pattern

The /-/ pattern (1 request - 1 transaction) means the execution related to a single client request is

encapsulated in one global transaction which spans operations at the AS and possibly operations

Chapter 4. Execution Patterns for Application Server 50

. t,.commit
•"ft '

Figure 4.2: 1-1 pattern

at the database. As introduced in Section 2.4.4, it is the default execution pattern in J2EE when

EJB objects use the CMT scheme. Therefore many applications use exclusively the 1-1 pattern.

Figure 4.2 illustrates a sample 1-1 pattern. When the AS receives client request n , the TM starts a

transaction ti on the AS. Then, r\ is executed within t\ as an AS action oi. During m, a sub-request

r2 is submitted to access the database. At this moment, the DB transaction of t\ is started at the

database. The next sub-request r% is executed within the same DB transaction. At the end of the

execution, the TM submits the commit request t\ .commit to commit t\ 's DB transaction. Then,

ti 's AS transaction commits at the AS. At last, ri 's response rpi is returned the client. In the figure,

we use +t\ and —t\ to indicate the begin and end of transaction t\ at the AS and the database. As

each request triggers exactly one transaction, there is a single AS transaction per client request that

coincides with the boundaries of the AS action triggered by the request.

From the above example, we can find that in the 1-1 pattern an AS action can submit several

requests to the database that are all executed within the same DB transaction. The DB transaction

starts with the first action on the DB and terminates with the last. Typically, the last request to

the database is the commit request. However, the AS action could also request an abort so that

both AS and DB transaction abort. Furthermore, any database action might result in an abort (e.g.,

because of integrity violation) that then returns an abort notification as response to the AS action. In

case of commit, the AS action and transaction usually terminate directly after receiving the commit

response from the DB. In case of abort, an abort operation is required to rollback state changes

performed by the transaction on the AS for full state consistency. Referring to Section 2.4.4, an

Chapter 4. Execution Patterns for Application Server 51

abort operation at the AS could be part of the original method execution in the BMT scheme, or

be done by a specific abort method, e.g., executing the af t e r C o m p l e t i o n method in the CMT

scheme. The response of an abort operation is an abort response. In both cases, we consider the

abort activity as part of the original AS action. In case of an abort, the client typically receives a

special abort response, which is denoted as rpabt.

In summary, the 1-1 pattern has the following relationships. Each client request/response pair is

associated with exactly one AS transaction. Thus, there is exactly one AS action per AS transaction.

There is at most one DB transaction per AS transaction. Several request/response pairs between AS

and DB can belong to this DB transaction. Thus, many DB actions can belong to one DB transaction.

It also might be that a client request only triggers operations at the AS. In this case, there is only an

AS transaction but no DB transaction.

4.2.2 N-l Pattern

The N-l pattern (N requests - 1 transaction) means several client/response pairs of a client are

encapsulated within one global transaction. It is often used when a web-server (WS) runs between

the real client and the AS. In this case, the real client makes a request to a component in the WS

(e.g., a servlet) which makes in turn several calls to the AS. In order to guarantee all-or-nothing for

the external client request, all calls to the AS should be embedded within the same transaction. In

order to do so, the AS has to export the begin/commit/abort methods of the TM to the client. In

an J2EE AS, it is the user transaction that enables the N-l pattern. As shown in Figure 2.5, the

client program can call the begin method of a user transaction object to start a transaction on the

AS and call the commit or abort method of the user transaction to commit or abort the transaction

on the AS. Between a begin and a termination request, several client requests can be submitted to

one or more EJB objects. If each EJB method called within the transaction is in the CMT scheme

and has the R e q u i r e d attribute, all these requests are executed within the same transaction. In this

case, more than one client request is associated with a transaction. This behavior follows the N-l

pattern. Controlling transactions from outside the AS has also become important in the context of

web-services.

Figure 4.3 illustrates a sample N-l pattern. In this pattern, the client explicitly controls the

Chapter 4. Execution Patterns for Application Server 52

Figure 4.3: N-l pattern

demarcation of transactions. The first client request starts the transaction on the AS, i.e., t\ in the

figure. Each following client request on behalf of t\ triggers a new AS action. Each AS action

can submit several requests to the DB, triggering several DB actions. Finally, the client submits a

commit request ti.commit that commits t\ at the DB and the AS. At any time an AS or DB action

can trigger an abort, resulting in an abort of the entire global transaction that triggers an abort at the

AS and the DB and an abort response to the client.

4.2.3 1-N Pattern

The 1-N pattern (1 request - N transactions) means the execution of a single client request is as­

sociated with more than one transaction. Although this seems unusual at first, it is widely used

in practice when a long execution needs to be chopped into small transactions in order to increase

concurrency and decrease blocking within the database [90, 63]. It is then up to programmers to

guarantee that the effect of executing a suite of transactions is the same as if there were only one

big transaction. In particular, if not all of the transactions commit the effects of already committed

transactions must be undone by executing corresponding compensating transactions provided by the

programmer. Despite the added complexity, for applications where such compensation is easy, the

advantage can be high.

In an J2EE AS, the 1-N pattern can be easily implemented in the CMT scheme using the

RequiresNew attribute. When a client request calls a method of an EJB object configured as

R e q u i r e d or RequiresNew, a transaction is started for the execution as in the 1-1 pattern. If

Chapter 4. Execution Patterns for Application Server 53

CA

rl L i L&V . Jj. . d
DB © H W © H H© Hi

3 2 3 3 ^ a 6

Figure 4.4: 1-N pattern

some EJB methods are configured as RequiresNew, when sub-requests are submitted to these

methods during the execution of the client request, new transactions are created within the context

of the existing transaction. In this case, the client request triggers more than one transactions at the

AS. This association follows the 1 -N pattern.

Figure 4.4 illustrates a sample 1 -N pattern. Client request n triggers transaction t\ on the AS

and then starts an AS action a\ within t\. t\ starts and terminates with action a\. t\ starts on

the database when oi submits the first sub-request ri to access the database. At the end of a\,

t\ .commit is submitted to commit t\ on the database and then commits t\ on the AS. Transaction

t\ can have nested transactions, which are called child transactions, while t\ is called a parent

transaction. For instance, a\ might make a call to an AS method that requires the start of a new

transaction, e.g., calling a method marked as RequiresNew. This is the case where we use nested

actions within the AS. An AS action makes a request leading to a nested action within the AS when

the nested action is associated with a different transaction than the parent action. In the figure, action

a\ makes a request r4 triggering action <n which is associated with a child transaction t2 of t\. The

nested transaction can again be a global transaction spanning both AS and DB.

Thus, in the 1-N pattern, each client request/response pair is associated with a set of nested

transactions. The transaction that is directly triggered by a client request and involves the action

associated with the client request is called an outer transaction. For example, t\ is the outer trans­

action directly triggered by request r\. A nested transaction that is a child transaction of an outer

Chapter 4. Execution Patterns for Application Server 54

transaction is called an inner transaction. For example, £2 is an inner transaction. An inner trans­

action is associated with a nested action while its parent transaction is associated with the corre­

sponding parent action. A child transaction always terminates before its parent transaction; i.e., that

is true nesting. An outer transaction can trigger a sequence of inner transactions. We can consider

these inner transactions siblings as they have the same parent. Sibling transactions cannot be active

concurrently, since each of them is triggered by a sub-request submitted by the action associated

with the outer transaction and request execution is blocking. That is, one inner transaction has to

complete before its sibling can start. An inner transaction itself can have child transactions which

are also inner transactions. This leads to multiple levels of nesting where an inner transaction has

not only a direct parent but can have a whole set of ancestor transactions. The outer transaction is

ancestor of all inner transactions. An inner transaction is concurrent to all its ancestor transactions

but while the inner transaction is executing, the ancestor transactions are suspended. A suspended

transaction can only continue after all its descendants have terminated.

Please note, although many AS products allow the existence of nested transactions, most of them

do not clearly define the rule for the relationship between parent transaction and nested transactions.

J2EE regards a parent transaction and its nested transaction as two independent transactions, and

the commit/abort of the parent transaction and the nested transaction will not affect each other. That

is, the nested transaction can commit while the parent transaction aborts and vice versa. This is

different to the traditional closed nesting model assumed in database systems. If this closed nesting

model were applied, then all inner transactions and the outer transaction would commit at the same

time at the very end. In order to somehow address this, we only consider relaxed state consistency.

If a child transaction commits but the parent fails, it allows the parent transaction to adjust its state

to reflect this fact.

Whether the parent transaction can see changes a child transaction performs on the shared state

depends on the isolation level of the database system. The database system usually sees the differ­

ent transactions as independent. For example, in case of serializability, the parent transaction can

see changes of the child transaction after the child transaction commits. So can following sibling

transactions. If any rule is required by an application, application developers should manage it at

the application level.

Chapter 4. Execution Patterns for Application Server 55

Figure 4.5: N-N pattern

Session state has usually no concurrency control applied. In principle, all transactions involved

in a client request can access the same session state. As there are never two transactions executing

at the same time, this appears fine. However, things become complex in case of abort. A transaction

11 can change some session state and then trigger an inner transaction £2 that reads these changes,

performs further changes and then commits. If now t\ aborts what is the semantics as £2 has already

read the "dirty" data and committed? As this is a very undesirable behavior, which should be

avoided, we assume that nested transactions access disjoint session state. For instance, in J2EE, we

only consider applications, where an inner transaction is executed on an SFSB that is not accessed

by any of its ancestor transactions. Two sibling transactions, however, can access the same state as

they execute serially.

4.2.4 N-N Pattern

The N-N pattern (N requests - N transactions) means that more than one client request can be

executed within an outer transaction, and the execution can also trigger inner transactions. Typically,

it is the mix of the N-l pattern and the 1-N pattern. In an J2EE AS, if the user transaction and

CMT is used together, and some EJB methods are configured as RequiresNew, then several

client requests can be executed within one outer transaction, but sub-requests to methods with the

RequiresNew attributes are executed within new inner transactions. Thus, the scenario follows

the N-N pattern. Figure 4.5 illustrates such an N-N pattern. The client action CAt first begins

a transaction t\, and then client requests T<I and r^ are executed as actions 02 and 05 within t\.

Additionally, as triggers a transaction £2- On the AS, ti is started by request re that triggers action

Chapter 4. Execution Patterns for Application Server 56

a§. The consecutive request ri leads ti to be started at the database, t? eventually commits at the

end of 06- a^ is a nested action of as, and ti is a child transaction t\. Finally, the client action CAi

submits the commit request t\ .commit to commit transaction t\ on both the AS and the database.

The N-N pattern also could have nested N-l patterns. For example, when several client requests

are executed within an outer transaction according to the N-l pattern, the action associated with

one of these requests starts an inner transaction and then submits several sub-requests within this

inner transaction. It can happen in a J2EE AS when using the user transaction and BMT together.

The user transaction provides the N-l pattern for client requests. The BMT scheme allows an inner

transaction to span more than one sub-request.

Due to the complexity of the N-N pattern, it is very difficult to correctly apply this pattern in

a real application even without considering failure and replication. In practice, most of the time,

the N-N pattern does not make sense. Applications who use it, probably are not aware of the im­

plication of using such a complex pattern. If an application allows a client to explicitly bundle

several requests into one transaction, it seems counter-intuitive that then one of these requests ac­

tively triggers several transactions. Hence, in this dissertation, we do not discuss the N-N pattern

any further.

4.3 State Changes

We have seen all state changes at DB and AS are performed in the context of transactions. We now

describe what it means that the state changes at AS and DB are consistent. If an AS/DB action

changes the state of the AS/database, the action is called an update action. If a transaction involves

one or more update actions, it is called an update transaction, otherwise a read-only transaction.

Whether a DB action is an update action can be detected by analyzing the corresponding SQL

statement. The state changed by an update DB transaction is the aggregation of state changes of all

update DB actions involved in the DB transaction. At the AS, however, every AS action is assumed

to be an update action, since updates are generally difficult to detect. This implies that every global

transaction is assumed to be an update transaction in our model.

We consider two types of state at the AS: session-related state and shared state at the AS. As

Chapter 4. Execution Patterns for Application Server 57

we assume that shared state is cached data from the database, any change on the shared state at

the AS is also reflected as changes of a DB action at the database. The change on the AS and the

corresponding changes at the DB must belong to the same global transaction. Therefore, access

to shared data at the AS is not considered part of an AS action but only considered part of a DB

action. This means, we consider as state changed by an AS action only the changes performed on

session-related objects. The state changed by an AS transaction is the aggregation of state changes

of all AS actions involved in the transaction.

4.3.1 Transaction Histories to Reflect the Order of State Changes

In traditional serializability theory transactions are represented as a sequence of read and write oper­

ations. Serializability means that the interleaved execution of the operations of a set of transactions

needs to be equivalent to a serial execution of the same set of transactions. Traditional concurrency

control mechanisms such as strict 2-phase-Iocking and optimistic concurrency control furthermore

have the property that if in the concurrent execution ti commits before ti then there exist an equiv­

alent serial execution where t\ also commits before ti. Furthermore, no transaction ever reads

uncommitted data (except of its own writes). Assuming that the DB provides such form of commit-

order preserving serializability and given that the AS only changes session-related state where there

are no concurrency issues, we can describe the order in which state changes occur at the AS and the

DB through the order in which transactions commit.

At the AS (database), ATH (DTH) indicates the transaction history, i.e., the order in which

AS (DB) update transactions commit. At initialization time, both the AS and the database are in

the initial state, and both ATH and DTH are empty. After a transaction terminates, if it leaves

state changes at the AS and/or the database, it is a successful update transaction. A DB update

transaction is successful only when it commits, and an AS transaction is successful if it commits

or, in case of relaxed state consistency, also if it aborts. A successful AS (DB) update transaction

is appended to ATH (DTH) after it terminates. At any time, the visible state of the AS (database)

is the aggregation of state changes made by all successful AS update transactions (successful DB

update transactions) so far.

Chapter 4. Execution Patterns for Application Server 58

4.3.2 Matching State Changes at Application Server and Database

For a global transaction t, if state changes made by its DB transaction successfully commit, state

changes made by its AS transaction must successfully commit as well. This relationship implies that

each DB transaction in DTH must have a corresponding AS transaction in ATH. We assume that

the DB and AS transactions of a global transaction have the same unique identifier, which allows

them to be identified as being part of the same global transaction.

The ordering of transactions in ATH and DTH defines the ordering of state changes performed

at the AS and the database. The ordering of transactions in DTH represents a serial order that is

equivalent to the original concurrent execution of these transactions. Transactions can belong to

different clients. The ordering of such transactions in ATH does not matter since changes made

by them are performed on different session data and have no dependency. However, the ordering

of transactions of the same client at the AS is important since it reflects possible dependencies.

Furthermore, this order must be consistent with the order of the corresponding DB transactions. That

means, given two global transactions t\ and <2 of the same client that both have AS and DB update

transactions, if AST(t\) -< ASTfa) in ATH (-< representing the partial order in the history),

then DBT(t\) -< DBTfo) in DTH. There are two cases to consider. Given two transactions t\

and *2 of the same client, if t\ and ti are not nested transactions, t\ has to be completely executed

either before ti or after ti since we assume there are no concurrent transactions triggered by the

same client except for nested transactions. Otherwise, one transaction is the parent transaction of

the other, and then the child transaction has to terminate before the parent transaction. We define

the relationship between ATH and DTH in form of a matching property:

Definition 4.3.1. We say ATH and DTH match (denoted as ATH DXI DTH) if the following

holds:

1. V* G DTH: eventually AST(GTX(t)) G ATH.

2. Mt G ATH and

(a) t commits: ifDBT(GTX(t)) is an update transaction, DBT{GTX{t)) G DTH.

(b) t aborts (possible in case of relaxed state consistency): DBT(GTX(t)) 4. DTH.

Chapter 4. Execution Patterns for Application Server 59

3. Given tut2 € DTH and CL(GTX(h)) = CL(GTX(t2)): DBT(tx) -< DBT(t2) in

DTH & AST(GTX(ti)) -< AST(GTX(t2)) in ATH.

Definition 4.3.1 expresses the requirement that transactions and request executions at the AS

and the DB must match and are executed in a consistent order at both tiers.

4.3.3 Matching State Changes at Application Server and Client Request Execution

Definition 4.1.1 has indicated how requests must be properly associated with actions and corre­

sponding responses. Definition 4.3.1 relates the state at the AS and DB tier via transactions. As

a final property, we relate the requests at the client tier with the proper state at the AS and thus,

indirectly with the proper state at the DB. The state changes performed by AS transactions should

be consistent with client requests associated with these transactions. In our model, this consis­

tency is expressed by a matching between ATH and RHcAjRPHcAi of client session CAi and

is denoted as ATH t< RHcA(/RPHcAi- Matching not only means the content of ATH and

RHcAjRPHcAi match, namely each request/response in RHCAJRPHCAI has at least one as­

sociated transaction, but also means the ordering of ATH and RHcAjRPHcAi match, namely

transactions must be ordered according to request execution.

Since the association between client requests and transactions are different for different execu­

tion patterns, the definition of the matching rules depends on the execution pattern. Let's have a

look at each of them individually,

1-1 Pattern

Each client request r̂ and the triggered action a 6 A{ri) is associated with exactly one transaction.

This means that, on the one hand, for each successful update transaction t e ATH, the only action

a involved in t should have its corresponding request R(a) € RHcAi of a client d and have its

corresponding response RP(a) e RPHcAt of the same client session CA^ On the other hand,

for each request r e RHcAi of a client session CAi, ATH must eventually contain exactly one

transaction t that is associated with an action a € A(r), unless the request has an abort response in

RPHcAi in case of full state consistency. In case of full state consistency and an abort response,

Chapter 4. Execution Patterns for Application Server 60

ATH must not contain the transaction. For any two requests in RH, their ordering in RH should

be the same as the ordering of the corresponding AS transactions in ATH. We can formalize this

as follows.

Given AS transaction t, at(t) indicates the AS action involved in t. The matching property

between ATH and RHcAilRPHcAi of client d is called /-/ matching property.

Definition 4.3.2. ATH X RHcAi/RPHcA, if the following holds:

1. \/t e ATHACL{GTX(t)) = Q: eventually R(at(t)) e RHCAiARP(at(t)) e RPHCAi-

(a) In case of full state consistency, RP(at(t)) ^ rpa^.

(b) In case of relaxed state consistency, t aborts <s- RP(at(t)) — rpabt.

2. Vr € RHCAV

(a) In case of full state consistency, either eventually 3t,t € ATH A r = R(at(t)), or

eventually 3rp € RPHCAi,POSr
RHcAi = POS%PHcAi Arp = rpabt.

(b) In case of relaxed state consistency, eventually 3t, t G ATH A r = R(at(t)).

3. Given ti,t2&ATH A CL(GTX(ti)) = CL{GTX{t2)): h -< t2 in ATH <=> R(at(h)) -<

R(at(t2)) in RHCAV

Condition 1 captures that each successful update transaction has a matching request and re­

sponse. Condition 2 captures that each client request of client d has a matching successful update

transaction on the AS unless it is aborted in case of full state consistency, in which case the client

receives an abort response. Condition 3 captures that transactions must be ordered in ATH ac­

cording to the ordering of their corresponding requests. It actually also guarantees that neither two

transactions are associated With the same request nor two requests are associated with the same

transaction.

N-l Pattern

In this pattern, serval client requests and their actions are associated with a transaction. On the one

hand, for each transaction i € ATH, each action a involved in t should have its corresponding

Chapter 4. Execution Patterns for Application Server 61

request in RHcAt of a client session CAi and have its corresponding responses in RPHcAi of the

same client session. Furthermore, the requests (responses) of actions associated with a transaction t

should build a consecutive sequence in one RHcAt (RPHCAJ- Additionally, for two transactions

t\ and t<2 of the same client session CA%, if t\ -< £2 in ATH, then all requests (responses) of

actions associated with £1 are before all requests (responses) of actions associated with £2 in RHcAi

(RPHcAi)- On the other hand, in RHcAi of a client session CAi, if a sequence of requests belongs

to the same transaction, the transaction must be eventually contained in ATH exactly once, unless

the last request in this sequence has a corresponding abort response in RPHcAi in case of full state

consistency, in which case ATH should have no transaction associated with these requests.

To formalize this, we need some further notation. Given an AS transaction £, the function AT(t)

represents the sequence of AS actions that are associated with transaction £. Due to the blocking

scheme, the actions are in a sequential order. For example, if t contains actions a\ to an, then

AT(t) = aia2--.an. ATl(t) represents the ith action in the sequence.

We now apply functions R and RP to an action sequence to represent the request sequence that

triggers the action sequence and the response sequence generated by the action sequence. Thus,

R(AT(t)) = R(ai)R(a,2)...R(an) represents the sequence of client requests associated with trans­

action £ and RP(AT(t)) = RP{a\)RP(a2)~RP{an) represents the sequence of responses gener­

ated within transaction £. These two sequences must respectively be sub-sequences of the request

history and the response history of the client CL(GTX(t)) that triggers the transaction for the

matching between ATH and RHIRPH of the client.

In order to formally express the relationship of sequences, we define the following notations for

sequences.

• \s\ indicates the size of sequence s,

• sk (1 < k < \s\) indicates the fcth item of sequence s.

• s' <x s indicates that sequence s' is a sub-sequence of sequence s.

• si -< S2 indicates that the last item of sequence s\ precedes the first item of sequence s2-

Chapter 4. Execution Patterns for Application Server 62

With this, the fundamental property of ATH arid RHIRPH to match is that for a given AS trans­

action t, R(AT(t)) oc RHCL(t) a n d RP{AT{t) oc RPHCL(ty

Formally for the N-l pattern, the matching property between ATH and RHCAJRPHCA-I of

client d is called N-l matching property, and is defined as follows.

Definition 4.3.3. ATH ex RHcAt/RPHcAi if the following holds:

1. \Jt G ATH A CX(GTX(i)) = d: eventually R(AT(t)) oc RHCAi A i?P(^T(i)) oc

(a) In case of full state consistency, RP(ATk(t)) =£ rpabt (1 < k < \AT(t)\).

(b) In case of relaxed state consistency, t aborts & RP(ATk(t)) ^ rpaf,tfor 1 < k <

\AT{t)\, andRP(ATk(t)) = rpabtfork = \AT{t)\.

2. Vr G RHcAi--

(a) In case of full state consistency, either eventually 3t,t G ATH A r G R(AT(t)), or

eventually 3rs. (xRHCAvr G rs A P O S j ^ . = P O S ^ ^ A rp = rpa6 t .

(6) /n case of relaxed stale consistency, eventually 3t, t G ATH Are R(AT(t)).

3. Given tut2 G ATHACL(GTX(t0) = CL(GTX(t2)): h -< t2 »«^Ttf o fl(AT(*i)) -<

i?(^ir(t2)) /« RHCAV

Condition 1 captures that each successful update transaction has a sequence of matching re­

quests and responses. Condition 2 captures that a client request has a matching successful update

transaction on the AS unless the transaction is aborted in case of full state consistency, in which case

the last client request associated with the transaction has an abort response. Condition 3 captures

that transactions must be ordered in ATH according to the ordering of request sequences associated

with these transactions. In fact, it also guarantees that two transactions are not associated with the

same request.

Chapter 4. Execution Patterns for Application Server 63

1-N Pattern

In this pattern, the execution of a client request might be associated with more than one transaction.

The relationship between a client request, its action and the corresponding outer transaction is the

same as the 1-1 pattern. For each inner transaction in ATH, there is exactly one outer transaction

in ATH that is the ancestor of the inner transaction. We assume there is always an outer transaction

as we only consider relaxed state consistency (see Section 4.2.3). The ordering of two requests

in RHcAi of a client session CA\ should be the same as the ordering of the corresponding outer

transactions in ATH if applicable, just as in the 1-1 pattern. An inner transaction must always

precede the parent transaction in ATH since the child transaction always terminates before its

parent transaction. Transitively, any inner transaction must precede its outer transaction in ATH.

As it is more complex to define these properties formally, we make a formal description only in

Section 6.2.

4.4 Correct Request Execution

In conclusion, the standard behavior of a non-replicated non-faulty AS can be described by three

matching properties.

Definition 4.4.1. Given an execution in a J-tier system with client sessions CAi, 1 < i < n. Let

ATH be the transaction history at the AS, and DTH be the transaction history at the database.

The standard behavior of a non-replicated non-faulty AS has the following three properties:

1. Vi, 1 < i < n: RHcAi * RPHCAi,

2. Vi, 1 < * < n: ATH M RHCAJ'RPHCAt,

3. ATH x DTH.

The first property captures the exactly once execution of client requests as perceived by clients.

The second property captures the exactly once execution of client requests as it really happens on

the AS. The proper association between requests, responses and transactions is made. The third

Chapter 4. Execution Patterns for Application Server 64

property captures the consistency of state changes on the AS and the database at a per transaction

basis.

Compared with the traditional correctness criteria introduced in Section 3.2, our correctness

criteria consider the global picture of a multi-tier architecture, focusing on the relationship between

different tiers and how execution proceeds across these tiers. This is motivated by the fact that a

crash of one tier not only affects the crashed tier itself but also affects other tiers linking to the

crashed tier. For each tier,we define the behavior that makes sense:

1. Clients receive proper responses.

2. State changes at the AS and their relative order reflect the order in which requests are submit­

ted and how requests are associated with transactions.

3. State changes at the database and the AS are consistent.

What we ignore so far is the issue of serializability or potentially other isolation levels. We assume

the database to provide serializability and the AS not to require concurrency control as access to

shared data is synchronized via the central database.

4.5 How a Crash Affects Correctness

A failure on the AS has two implications. Firstly, ATH becomes A, namely empty, indicating that

the crashed AS loses its state. As a result ATH and DTH do not match anymore. While ATH

is now empty, DTH still contains, all committed update DB transactions, since persistent data is

not affected by the crash and only all ongoing DB transactions are automatically aborted at the

database. Furthermore, ATH does not match any more with RHIRPH of ongoing client sessions,

since these RHIRPH remain,as before the crash while ATH is empty. The second implication of

a failure is that all outstanding clientrequests do not receive their expected responses. This violates

the matching requirement of RHcAt and RPHcAi of a client session CAi.

Chapter 4. Execution Patterns for Application Server 65

4.6 Correctness of Passive Replication

In passive replication, a primary replica accepts and executes the client requests and propagates state

changes to the backup replicas where they are applied. Depending on the replication strategy, state

propagation can take place at different time points. When the primary crashes, a backup takes over

as new primary and continues execution. The correctness criteria summarized in Definition 4.4.1 can

be easily extended to reflect a replicated system using passive replication by requiring any change

in primary not to be visible at the client, and the current primary replica to fulfill the consistency

requirements.

Definition 4.6.1. Given cm execution in a 3-tier system with client sessions CAi, 1 < i < n. Let AS

= {ASj, 1 < j < m} be the set of AS replicas in the middle-tier, AT Hi be the transaction history

at AS replica ASi, and DTH be the transaction history at the database. The execution is correct if

1. Vi,l<i< n: RHcAi™RPHCA,

2. Let ASj, 1 < j < m be the current primary: V?, 1 <i <n, ATHj txi RHcAi/RPHcAi

3. Let ASj, 1 < j < m be the current primary: DTH \x ATHj.

The challenge of providing a correct replication algorithm lies in the fact that the different tiers

and the replicas communicate via asynchronous messages and histories get updated at different time

points. For instance, in the 1-1 pattern, a client receives the response after the transaction AS trans­

action terminates. The DB transaction always terminates before its corresponding AS transaction.

The primary replicates the changes performed by a transaction either before the transaction commits

or after the transaction commits. A crash can occur at any time, and thus, this asynchrony between

events can leave the system in an inconsistent state that has to be resolved before execution can

continue at the new primary.

Chapter 5

ADAPT-SIB Replication Algorithm for

1-1 Pattern

In the next two chapters we present the replication tool ADAPT-SIB which implements replication

algorithms for the various execution patterns. ADAPT-SIB focuses on fault-tolerance, but, as it uses

passive replication, and thus avoids redundant computation, it has the potential to be integrated into

an architecture where replicas are also used for scalability and load-balancing (which will be the

topic of Chapter 8).

ADAPT-SIB uses eager and warm replication for session-related state, propagating state changes

performed by a transaction from the primary to the backup replicas before the transaction terminates.

Shared state is synchronized via the database. In order to provide a generic and practical solution,

ADAPT-SIB does not require any special support from clients or the database.

As mentioned in the last chapter, the behavior of the AS can be categorized by different ex­

ecution patterns, which associate client requests and transactions in different ways. This chapter

presents a replication algorithm for the 1-1 pattern and proves its correctness.

66

Chapter 5. ADAPT-SIB Replication Algorithm for 1-1 Pattern 67

Figure 5.1: Architecture of ADAPT-SIB

5.1 Structure of ADAPT-SIB

Figure 5.1 shows the architecture of ADAPT-SIB. ADAPT-SIB assumes that a cluster of AS replicas

consists of one primary replica and several backup replicas. Each AS replica has a replication

manager (RM). The RM uses the group membership primitive of the GCS to maintain a fault

tolerance group (called FTG). The RM also uses the multicast primitive of the GCS to send messages

within the FTG. The replication algorithm has client, primary, backup and failover parts. The

primary algorithm is executed at the RM of the current primary AS. We assume the replication

tool obtains control before a request is sent to the TM (transaction manager) or a component, and

after the call returns. The backup algorithm is executed at the RM of each backup replica, and the

failover algorithm is executed at the RM of the backup that is selected as the new primary after the

crash of an old primary. At the client, there is a client replication manager (CRM) that runs the

client part of the replication algorithm. It intercepts each client request and response at the client

side. For web clients, CRM actually resides in the web server. As mentioned in Section 2.3.2, in

J2EE the client needs to create a connection session with the AS to get the stub of a targeting EJB

object. In our implementation solution, the CRM object is created when the connection session is

built, and is downloaded to the client side together with the stub of the EJB object from the server

side.

Here is the basic idea of the algorithm. Assuming the fault tolerance group contains m replicas.

A client request r is executed at the current primary. Changes on session-related data performed

Chapter5. ADAPT-SIB Replication Algorithm for 1-1 Pattern 68

within a transaction t is recorded. If the current primary does not crash, at the commit time of the

transaction t, recorded state changes and the response to the client are propagated to backups, and

only then the transaction is committed. No changes on shared data are sent since they are written

to the shared database. Backups only apply the state changes after they know that transaction t

has actually committed. If the current primary crashes before the client receives r's response rpr,

the CRM sends outstanding r to the new primary which is chosen from the remaining available

backups. The actions of the new primary at the time of failover depend on the state changes it has

received, and the set of transactions that successfully committed at the database.

Recall the correctness criteria proposed in Theorem 4.6.1. Let's analyze the most common

situations after the old primary crashes, the AS replica ASj is selected as the new primary and the

new primary ASj receives the resubmitted request r. If ASj has already received the state changes

of the transaction associated with the request r and the database transaction also committed, it does

not reexecute the request. Instead it applies the state changes and returns the response. With this, the

request has one matching response (Definition 4.1.1 (1)) and one matching transaction at the current

primary AS (Definition 4.3.2 (2)), which has one matching transaction at the DB (Definition 4.3.1

(2)). If ASj has received the state changes but the database transaction did not terminate properly

before the crash (note that this can be possible because the primary sends the changes eagerly),

then it may not apply the AS state changes. If it did, ATHj would no more match DTH (due

to 4.3.1 (2a)). Instead, it discards the state changes and starts request execution from scratch to

have exactly-once execution across all tiers. If it hasn't received the state changes, it knows that

the database transaction has not committed. Thus, neither ATHj nor DTH contain a transaction

associated with the request. Thus, it also starts request execution from scratch. This behavior

guarantees that neither the AS transaction nor the DB transaction is executed twice or that one or

both of the transactions are missing.

The main data structures uSed in the pseudo code of all algorithms of ADAPT-SIB are as follows.

Request, Response, and Component are encapsulated in corresponding objects. A transaction is

identified by a unique identifier txid of type TID. The server maintains an EU object for each

currently active transaction (one per client). EU keeps track of transaction identifier txid, the set

of components COMP that have been accessed so far, the pair of the client request req and its

Chapter 5. ADAPT-SIB Replication Algorithm for 1-1 Pattern 69

Response invoke (Request req. Component comp)
1. Generate req.rid;
2. while (true)
3. Response resp = primary.invoke(req, comp, nil);
4. if (p failure Exception) return resp;
5. else find a new primary;

(a) client replication algorithm

TID begin ()
1. new EU eu;
2. eu.txid = TM.beginQ;
3. return eu.txid;

(b) primary: intercept begin transaction request to TM

Response invoke (Request req, Component comp, TID txid)
1. if (3 (req.rid, resp) e RR)
2. TM.abort(txid);
3. return resp;
4. if (req is a client request) eu.req = req;
5. eu.COMP\J = {comp};
6. Response resp = comp.invoke(req);
7. if (req is a client request)
8. eu.resp = resp;
9. RRU — {(req.rid, eu.resp)};

10. if (resp == abort exception) abort.proc();
11. return resp;

(c) primary: intercept request to component

void abort-proc ()
1. eu.COMP = d;
2. new aborted Message m3;
3. m3.content = {eu};
4. multicast m3 by reliable delivery;

(d) primary: abort procedure

void commit (TID txid)
1. for each comp 6 eu. COMP
2. set comp.state to current state of

corresponding component;
3. new committing Message ml;
4. ml.content = {eu};
5. if (the current transaction updated the database)
6. eu.db = true;
7. multicast ml by uniform reliable delivery;
8. if (eu.db == true) insert eu.txid into database;
9. wait until receive ml;

10. TM.commit(txid);
11. if($ abort Exception and eu.db == true)
12. new committed Message m2;
13. m2.content = {eu.txid};
14. multicast m2 by reliable delivery;
15. else if(B abort Exception)
16. eu.resp - abort exception;
17. abort^procQ;

(e) primary: intercept commit transaction
request to TM

Figure 5.2: 1-1 Algorithm at the client and primary

response resp, and the flag db to mark whether or not the transaction updates the database. The

Message object represents messages between replicas. The content of a Message object depends

on the type of message. Further data structures will be introduced later.

5.2 1-1 Replication Algorithm for Full State Consistency

The algorithm for the 1-1 pattern supporting full state consistency is from [109]. Some of the ideas

are based on [43,41].

Figure 5.2 (a) shows that the client replication algorithm intercepts each request submitted from

the client to the server. It attaches a unique id, and forwards the request to the current primary (lines

1 and 3). Upon a failure exception, it resends the request with the same id to the new primary. This

repeats until it receives a correct response (lines 2,4, and 5).

Chapter 5. ADAPT-S1B Replication Algorithm for 1-1 Pattern 70

At the server site, each replica maintains a set RR. of past request/response pairs which is needed

to avoid duplicate request execution. The execution associated with a client request happens within

a single execution thread. We assume the replication algorithm intercepts a client request and any

further requests made to components. Furthermore, it intercepts begin and commit requests made

to the TM. For simplicity of description, we assume that transactions are server managed (CMT in

J2EE terminology), i.e., the container starts a transaction upon a client request before any compo­

nent method is called, and commits the transaction after all component execution has finished. Other

types of transaction management are conceptually the same, but would require a different notation

in description. Using container managed transactions, the begin transaction command submitted to

the TM is the first call intercepted by the replication algorithm for a client request r, and the commit

call is the last one. Upon intercepting a begin transaction request (Figure 5.2 (b)), an eu object is

created and associated with the thread before the begin is forwarded to the TM. Upon intercepting a

request to a component (Figure 5.2 (c)), the algorithm first checks whether the request was already

successfully executed. This can happen when the old primary executed the request successfully,

informed the backups and committed the transaction but crashed before returning the response. In

this case, the client algorithm resubmits the request to the new primary. The new primary, however,

has the response for this request stored in RR, and no new execution is triggered. The transaction

that has been associated with the thread is aborted, and the response immediately returned (lines

1 -3). Otherwise, if the request is a new client request, it is recorded in eu (line 4). Furthermore the

component to be accessed is recorded in eu before the request is forwarded to the corresponding

component (lines 5-6). Recall that there can be nested calls to different components, all within the

same transactional context. Each of them is intercepted, and the component information added to

the corresponding eu. If an abort takes place during execution of any request (client request or

nested sub-requests), an abort exception will be returned as response. In the case of an abort within

a nested request, this abort exception is simply forwarded upwards along the calling hierarchy until

it reaches the client request. Note also that each component rolls back its state changes associated

with the transaction (full state consistency). When the execution of the client request completes, the

server first records the response in eu and records the pair of request and response (it is an abort

exception in case of abort) in RR. (lines 8-9). In case an abort occurred during execution, an abort

Chapter 5. ADAPT-SIB Replication Algorithm for l-l Pattern 71

procedure (Figure 5.2 (d)) is called (line 10) which informs the backups about the abort. Since full

state consistency is assumed, no state changes need to be transferred within this aborted message.

Finally, the response is returned (line 11). Upon intercepting the commit transaction request (Figure

5.2 (e)), a committing message is multicast using uniform reliable delivery. The message includes

the final state for each accessed component and the pair of the client request and its response (line

1-4). While waiting for its uniform reliable delivery, the txid is inserted into the database if this is

a DB update transaction (lines 8). This will help backups to determine whether a transaction has

actually committed at the database or not if in-doubt. After the primary receives its own committing

message, it commits the database transaction (line 10). As uniform reliable delivery is used, re­

ceiving the own committing message is equivalent to receiving from all backups a confirmation that

they have received the message. Once commit was successful, the primary multicasts a committed

message (lines 12-14) if the transaction updated the database, and the commit procedure completes.

The committed message makes the backups be aware of the commit of the transaction. Note that, in

theory, the database might abort the transaction upon receiving the commit request. However, when

only one database system is accessed, this usually does not happen (it might happen if the data­

base uses optimistic concurrency control, but this is not the case for current relational databases).

This special abort case can be handled sending an abort message as if abort occurs during normal

processing (line 16-17).

All messages the primary sends to the backups use FIFO ordering. The backups, during normal

processing, store all received messages in a FIFO queue. Furthermore, if clients connect to them

while they are not primary (the GCS has not delivered a view change message and thus they have not

determined that they are the new primary), they respond to the client that they are not the primary. If

the GCS delivers a view change message indicating that the primary was excluded from the group,

one of the backups is selected as the new primary. This could be decided by a pre-defined priority list

or by an election procedure [59]. Any message from the now crashed primary, that the GCS delivers

after the view change, is ignored by all surviving replicas. The new primary now starts failover

(Figure 5.3). Committing messages are processed in FIFO order to track the latest state of each

component (lines 2-3). The procedure first checks whether the corresponding database transaction

committed or aborted (lines 4-5) if it is a DB update transaction. The DB transaction committed for

Chapter 5. ADAPT-SIB Replication Algorithm for I-I Pattern 72

voidfailover ()
I. new En eu, new set CO MP;
2. in order of reception process each committing message m
3. eu = m.content;
4. if(eu. db== true and $ committed message m' with m'. content, txid -

does not exist in database)
5. ignore committing message
6. else // transaction committed
7. for each comp 6 eu.COMP
8. if (3 c 6 COMP andc== comp)
9. estate = comp.state;

10. else COMP = COMP U {comp};
11. RR — RR U {(eu.req.rid, eu.resp)};
12. for each aborted message m
13. eu = m.content
14. RR = RR U {(eu.req.rid, eu.resp)};
15. for each comp € COMP
16. create corresponding component;
17. set component's state to comp.state;

= eu.txid and eu.txid

Figure 5.3: 1-1 failover

sure if the new primary received the committed message but also if the txid marker can be found in

the database, as only committed markers remain in the database. In the case of abort, the committing

message is ignored (line 6). Otherwise, the procedure determines the affected components, and

records the pair of the cllenFrequest associated with the transaction and its response in RR (lines 8-

12). This is then used to detect duplicate requests. For each aborted message, we record the pair of

the client request and the corresponding abort response in RR (lines 14-15). Finally, all necessary

components are recreated (16-18). In Section 7.1, we discuss alternative failover strategies in more

detail. Note that for clarity, the algorithm does not contain obvious garbage collection actions, such

as keeping for each client only the last request/response pair as it will, if at all, only resubmit the

last outstanding request. . . . • • . . •

5.3 Correctness

This section formally proves the correctness of the proposed algorithm for full state consistency by

showing that the algorithm fulfills all matching properties described in Theorem 4.2.1.

Chapter 5. ADAPT-SIB Replication Algorithm for 1-1 Pattern 73

5.3.1 Successfully Completed Requests

Assume that at the start of the system, AS0 is primary. As long as there is no crash it is obvious that

all properties are fulfilled since they have been defined to model a non-faulty environment. Given

client session CAi, suppose the client has submitted so far x — 1 requests and received x — 1 re­

sponses. Thus, RHcAi = r\r2 • • • rx-i, RPHcAt = rp\rp2 ... rpx_i. As the client is blocking,

if it has received rpx-i it is guaranteed to have received all rp\... rpx_2- Each request rh started

a transaction th but as some might abort, the projection of ATH0 on transactions of client session

CAi is ATHl = (AST(ti) V ±)(AST(i2) V I) . . . (AST(tx-i) V1) where _L refers to the ATE

having no entry for that specific transaction as it aborted. Similarly, the projection of DTH on trans­

actions of client session CAi is DTJtT = (DBT(h) V ±)(DBT(t2) V _L)... {DBT(tx-i) V X).

For each AST(tk) $. ATH0, DBT(tk) $ DTH but there might be DBT(tk) $ DTH where

AST(tk) G ATH0 as some committed transactions might not have a database transaction or

the database transaction is read-only and is not registered in DTH. As we assume the client to

be blocking and the database to provide prefix-committed serializability, the order of requests in

RHcAi, their corresponding responses in RPHcAi, and their corresponding committed transac­

tions in ATH0 and DTH is the same.

The backup ASj receives committing messages in FIFO order and puts them in a queue MQj.

Projected on client d the queue eventually contains for each committed transaction t the message

committingt- The uniform reliable delivery and the FIFO order guarantee that both the content

and the ordering of transactions in MQj match those of ATH0 (denoted as MQj tx ATH0). Note

that according to the discussion above it is guaranteed that when the client receives a response for a

committed transaction, MQj contains the corresponding committing message.

Now assume AS0 crashes after rp x _i was returned. After the crash the new primary ASj

installs state changes of committing messages in MQj according to the ordering. For each of the

committing messages (i) there is either no DB update transaction and the changes are installed,

(ii) a committed message was received'and the changes are installed, (iii) an aborted message was

received and the changes discarded, or no committed/aborted message is received and ASj checks

in the database for the transaction identifier. If it determines the database transaction committed it

Chapter 5. ADAPT-SIB Replication Algorithm for I-J Pattern 74

Crash
Time

Figure 5.4: Possible crash intervals of the 1-1 algorithm in case of a commit

applies the changes, otherwise it discards them. In any of the three cases above, changes are exactly

then installed and with it the AS transaction appended to ATHj if the corresponding AS transaction

at the old primary was appended to ATH0 before the crash. That is, in regard to client session CAi,

ATHj has now the same sequence of transactions as ATH0 had before the crash. Thus, correctness

up to request rx-\ is given.

5.3.2 Crash during Request Execution

Now we look when AS0 crashes just around the time at which the client session CAi submits request

rx. Assume ASj becomes the hew primary. Our approach to analyze the behavior is to enumerate

different "crash intervals", i.e., time intervals in which a crash requires different actions from the

system in order to guarantee correctness. As the order of certain events might be different from

execution to execution, our sequence of crash intervals is only an approximation to help structure

the proof.

Commit case Figure 5.4 extends the execution in case of a commit for the 1-1 pattern shown

in Figure 4.2. It shows client d, the primary AS0, the backup ASj, and the DB. Furthermore,

it has an axis depicting different crash intervals at which the failover needs to perform different

actions. In the figure, the client submits request rx. When receiving the request, the primary AS0

Chapter 5. ADAPT-SIB Replication Algorithm for I-I Pattern 75

starts action ax and at the same time global transaction tx. It sends two sub-requests, rx\ and

rX2 to the database, which are executed within the same transaction tx. Just before the commit,

it multicasts the committing message with state updates and the response to the backups. Only

when it has received its own message, the database transaction, if it exists, commits (and after

having written the transaction identifier into the database if it was an update transaction). Then,

the AS primary commits the AS transaction and sends the commit message (if there was an update

database transaction), before returning the answer to the client.

For depicting the crash intervals, we assume that when a message is sent, it will also be received.

If the primary sends a message, but the message is lost and the primary crashes before the GCS at

the primary resends it, we consider this a crash before message send. The first crash interval (CI1)

ends just before the primary sends the committing message as the backups have no knowledge

about the transaction before receiving the committing message. In the figure we have modeled

the uniform reliable delivery as a message/acknowledgement pair between primary and backup.

In principle, using uniform reliable delivery, the primary can receive its own committing message

before or after it is received at the backups. However, the GCS guarantees that if the primary

receives the message, then the backups will not only also receive the message but, in case of a crash

of the primary, they will also receive if before they receive the view change message excluding the

primary from the group. Furthermore, either they all receive it before the view change, or none

receives it, or they all receive it after the view change. The latter messages are ignored by all. Thus,

from a logical perspective, this uniform reliable delivery is equivalent to an acknowledge-based

propagation: the primary sends the committing message, the backups send confirmations and only

when the primary has received all these confirmations, it continues with the commit. The figure

depicts this logical ordering of messages. The second crash interval (CI2) starts after the primary

has sent the committing message (potentially allow the backups to add the transaction to their ATH)

and ends just before the commit of the database transaction (which adds this transaction to DTH).

The third crash interval (CI3) starts with the database commit (which adds this transaction to DTH)

and ends just before the primarysends the response to the client. The fourth interval (CI4) starts

after the response is sent (which allows the client to add it to RPH).

Let's now discuss what happens if the primary AS0 crashes while being in one of these crash

Chapter 5. ADAPT-SIB Replication Algorithm for 1-1 Pattern 76

intervals.

CU: The CRM receives a failure exception. ASj has not received the committing message and

has no knowledge about the request or the associated transaction. The database transaction, if

it exists, is aborted upon the crash of AS0. Thus, AST(tx) $ ATHj and DBT(tx) £ DTH.

The CRM resubmits the request to ASj where it is executed as a completely new request

leading to exactly one execution within the transaction t'x, eventually returning rpx as the last

response so far in RPHcAt, and possibly adding AST(t'x) to ATHj and DBT{t'x) to DTH

as the last transactions for client session CAi so far. All matching requirements are fulfilled.

CI2: The CRM receives a failure exception. The database transaction, if it exists, aborts upon the

crash. Thus DBT(tx) £ DTH. ASj has already received the committing message for tx.

There are two cases to consider. First, if eu.db — false, then ASj adds AST(tx) to ATHj

at failover. When CRM resubmits the request, ASj immediately returns the response. Cor­

rectness is given, as request, response and ATH match. DTH does not contain a transaction

but this is fine, as the original execution at AS0 was completed and did not involve database

updates. In the second case, i.e., eu.db = true, ASj checks the database for the transaction

identifier at failover. It can't find it since the database transaction did not commit. However,

ASj knows that an update DB transaction was involved. If it appended AST(tx) to ATHj, a

mismatch would occur (according to Definition 4.3.1 (2a)). Thus, ASj discards the content of

the committing message. Therefore, neither ATHj nor DTH have transactions related to rx.

When the CRM resubmits the request, ASj executes it as a completely new request leading

to exactly one execution and one response as discussed in CI1.

CI3: The CRM receives a failure exception and DBT(tx) e DTH. At ASj, the committing

message was received. At failover, ASj detects that DBT(tx) has committed because it either

has already received the committed message or it has looked for and found the transaction

identifier in the database. Thus, AST(tx) is added to ATH. Thus, ATHj already matches

the request history and DTH. When the CRM resubmits rx, ASj immediately returns the

response, completing the matching requirements.

Chapter 5. ADAPT-SIB Replication Algorithm for l-l Pattern 77

Crash
Time

Figure 5.5: Possible crash intervals of the 1-1 algorithm in case of an abort during execution

CI4: From the perspective of ASj this is the same as CIZ and AST{tx) is added to ATH. The

only difference is that the client receives the response from the old primary. Thus, there is no

resubmission.

Aborts Now let's have a look at the abort case. There are three cases to consider. First, the

AS initiates the abort for some reason. Second, the database triggers an abort some time during

execution. Third, the database aborts when the AS submits the commit request. The first two are

handled in the same way in our algorithm as the AS only sends the abort message after the database

aborts. Figure 5.5 shows the situation where aX2 leads to the abort at the database. In this case, the

first crash interval ends just before the database transaction aborts. As the situation is exactly as for

crash interval CI\ of the commit case, we do not discuss it further. Then, the AS receives an abort

response from the database, and the AS transaction also aborts. After the state is rolled back, an

aborted message is sent to the backups and then the abort response is returned to the client. As the

abort message is only sent with reliable delivery, the reception of the message at the backups (if at

all) and the response to the client can be in any order. If there is a crash, it could be that both the

abort response tothexlientrand the abort message to the backups were received, none was received,

or only one of them -was received. In regard to crash intervals, we consider crash interval CIS to

end just before the old primary sends the response to the client, and CI6 after sending this message.

Chapter 5. ADAPT-S1B Replication Algorithm for 1-1 Pattern 78

Let's now consider the actions upon a crash during these crash intervals:

CI5: The CRM receives a failure execution. As the DB transaction aborts, DBT(tx) & DTH.

For new primary ASj we can consider two cases.

(a) ASj has not received the aborted message before the crash. When CRM resubmits rx,

ASj will reexecute as if it were a new request as ASj does not know anything about

tx. Although there are now two executions this is correct as the first execution did not

leave any entries in either ATHj or DTH and no response to the client. The second

execution might again lead to an abort, with no transaction in ATHj or DTH and

an abort response, or execution might succeed with a commit and the corresponding

response. At this time, all histories do match.

(b) ASj has received the aborted message. In this case, when CRM resubmits rx, the abort

response rpx is immediately returned. Request, response, ATH and DTH histories

match with both AS and DB transactions aborted.

CI6: DBT(tx) $ DTH as the DB transaction aborts. AST(tx) $. ATHj, either because ASj has

received the aborted message or because it hasn't received any message at all. In the first case

ASj adds the request/response pair to RR, otherwise not. But this difference has no effect,

as the CRM will not resubmit the request since it already received the abort response. All

histories match.

Finally, Figure 5.6 shows what happens if the database transaction aborts upon the commit

request submitted by the AS. As in the commit case, crash interval CI1 ends just before the primary

AS0 sends the committing message, and CI2 ends just before the database transaction terminates.

CI7 now ends just before the primary AS0 sends the client response, and CI8 starts after sending

this message. .

CI7: The CRM receives a failure exception. The database transaction has aborted because of

application semantics; thus, DBT(tx) $. DTH. At the ASj there are two cases as before.

(a) ASj has not received the aborted message. As it has received the committing message

it will check in the database for the transaction identifier. It cannot find the transaction

Chapter 5. ADAPT-SIB Replication Algorithm for I-I Pattern 79

Crash
Time CI7 • CI8

Figure 5.6: Possible crash intervals of the 1-1 algorithm in case of an abort at commit

identifier and then discard the changes. Thus, AST(tx) g ATHj. When CRM re­

submits rx, ASj will reexecute as if it were a new request. As in case CI5 having two

executions is correct as the first did not leave any effects in ATHj, DTH and RPHcAi-

(b) ASj has received the aborted message. Thus, it has discarded the changes of the previ­

ously received committing message and not added AST(tx) to ATHj. From there, the

reasoning is the same as in case CI5b.

CI8: Due to application semantics, DBT(tx) & DTH. As above ASj might have received the

aborted message or checked for the database identifier in the database. In both cases, it does

not append AST(tx) to ATHj. All histories match.

5.4 1-1 Replication Algorithm for Relaxed State Consistency

In case a transaction commits, relaxed state consistency requires the same actions as full state con­

sistency. Hence, we only consider the abort of a transaction in the following. With relaxed state

consistency, even if a transaction aborts due to application semantics, it might change the state of

the AS, but not the state of the database. Therefore, we have to replicate state changes performed

by an AS transaction even in the abort case. As we have seen in the discussion above, abort is

often database induced. In these cases the AS only is informed about the abort after it has taken

Chapter 5. ADAPT-SIB Replication Algorithm for 1-1 Pattern 80

voidfailover Q
1. new Eu eu, new set COMP;
2. in order of reception process each

committing and aborted message m
void abort j>roc () 3- eu = /".content;

1. for each comp eeu.COMP f V(m & commit,ing ",ef f 1 -L

i -5. process eu as in the 1-1 algorithm;
2. set comp. state to current state y s •

/• .. . IIsee fig. 5.3 lines 4-12
of corresponding component; , . , , . , , . , , , , , . , 6. it (m is aborted message) 3. new aborted Message m3; ' ' , * , ' , „ . , , . r i 7. for each comp £ eu.COMP 4. m3.content = {eu}; J .,.„ ^ . m . , , ,.. . . . r ,. •• . i. 8. if (3 c e COMP and c == comp) 5. multicast ml using uniform reliable delivery; „ J y ^' , . , . . , . , y. estate - comp.state 6. wait until receive m3; / f t g f a e C O A / p = £QMp y

(a) primary: handle abort , , RRj = {(eU.req.rid,eu.resp)};
12. for each comp e COMP
13. create corresponding component;
14. set component's state to comp.state;

(b) failover

Figure 5.7: "1-1-relaxed" algorithm to support relaxed state consistency

place in the database, i.e., after the fact. Different to the commit case, this implies that state change

propagation cannot always be performed before the transaction actually aborts but only afterwards.

Figure 5.7 shows the changes to the 1-1 algorithm of Figure 5.2 to support relaxed state consis­

tency. When a transaction is aborted, the.abort routine (Figure 5.7 (a)) sends an aborted message

including the final state for each accessed component and the pair of the client request and the abort

response. The aborted message is sent with uniform reliable delivery, and execution only contin­

ues when the primary receives its own aborted message. This means, that the user only receives

the abort response when it is secured that the backups know about the abort and the corresponding

state changes at the AS. The backup stores each aborted message in the FIFO queue together with

other messages. Figure 5.7 (b) shows the modified failover. Both committing messages and aborted

messages are processed in FIFO order to track the latest state of each component (lines 2-3). For a

committing message, it will be processed as was the case for the full state consistency (lines 4-5).

For an aborted message, all components affected will be recorded with its latest state and the pair of

the client request and the corresponding abort response will be recorded in RR (lines 6-11). Finally,

all necessary components are recreated (12-14).

Chapters. ADAPT-SIB Replication Algorithm for 1-1 Pattern 81

Crash
Time i CI10 »CI11

Figure 5.8: Possible crash intervals of the relaxed state consistency algorithm in case of an abort
during execution

5.5 Correctness of Relaxed State Consistency Algorithm

The main difference compared to the full consistency algorithm is that the aborted message contains

the state changes and is sent with uniform reliable delivery. Figure 5.8 shows an abort during

execution. The only difference-to the execution for full state consistency, shown in Figure 5.5, is

that the abort message is guaranteed to have arrived at the backups before the abort response is

returned to the client. Crash interval CI\ remains as before and is not further discussed. CI9 now

starts with the abort at the database and ends just before the abort message is sent to the backups.

CI10 starts with sending this message and ends just before sending the client abort response, and

CI11 starts after sending this abort response.

CI9: The CRM receives a failure execution. As the DB transaction aborts, DBT(tx) g DTH.

ASj does not receive the abort message. The behavior and the reasoning for correctness is

the same as Clba. When CRM resubmits rx, ASj will reexecute as if it were a new request

as ASj does not know anything about tx. Although there are now two executions this is

correct as the first execution did not leave any entries in ATHj or DTH and no response to

the client. The second execution might again lead to an abort or to a commit. At this time, all

histories match.

Chapter 5. ADAPT-SIB Replication Algorithm for l-l Pattern 82

CI2 i CI12 • CI10 : CI11

Figure 5.9: Possible crash intervals of the relaxed state consistency algorithm in case of an abort at
commit

CI 10: ASj receives the aborted message. In this case, ASj applies the changes contained in the

abort message at failover, i.e., AST(tx) € ATH. With this ATH and DTH match. ASj

also puts the request/response pair into RR. When CRM resubmits rx, the abort response

rpx is immediately returned. Now request and response histories match with each other and

with ATH.

O i l : Request and response histories already match because the client has already received the

response. ASj is guaranteed to have received the aborted message and appended AST(tx) to

ATH. Thus, request/response histories match with ATH. Finally, DTH and ATH match

because it reflects the execution at the old primary.

Figure 5.9 shows the abort at commit time. CI1 and CI2 are as in the commit case. CIY1 starts

with the abort of the database transaction and ends before the backups receive the aborted message.

The behavior in case the backups receive the aborted message is the same as before and discussed

in CJ10 and CJ11.

C12: The behavior and reasoning is the same as CI7a. As ASj has received the committing mes­

sage it will check in the database but not find the transaction. Thus, upon resubmission of the

request, a second execution occurs. This is correct, as the first execution at the old primary

hasn't left any state changes in the system nor a response was returned.

Chapter 6

Advanced Algorithms for Advanced

Execution Patterns

In this chapter, we describe advanced algorithms that are extended from the 1-1 algorithm for ad­

vanced patterns, namely the N-l pattern and the 1-N pattern.

6.1 N-l Pattern

In the N-l algorithm, several client requests are associated with a single transaction. The basic idea

of the N-l algorithm is similar to the 1-1 algorithm. The primary AS propagates all state changes

on session-related data performed by a transaction to backups at the commit time of the transaction.

A backup only applies the state changes after it knows that the transaction has actually committed.

Using this approach allows the new primary ASj to match ATHj and DTH after the old primary

AS0 crashes. However, for the N-l pattern, matching ATHj and RHcAi/RPHcAi and matching

RHcAt and RPHcAt of a client session CA\ are more complex than for the 1-1 pattern.

The main problem occurs if a client has already submitted a sequence of requests T\ ... r^ all

belonging to a transaction t and has already received responses for r\... rk-i when the primary

crashes. As the transaction was still active, no transaction exists in DTH and the new primary

ASj also does not have any state changes. Thus, ATHj does not match with RHCA, and RPCA, •

83

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 84

As a solution, we resubmit all requests r\... rk to ASj and not only the last request r\. to ASj

and execute them within a new transaction t'. The challenge is that the reexecution of ri to r^_i

should generate the same responses as their original execution at the old primary. Furthermore,

these responses should not be seen by the client, as it has already received them during the original

execution at the old primary. Receiving them twice would mean that RHcAt and RPHcAt don't

match anymore.

If each response rp\... rpk-i generated during the reexecution is the same as the correspond­

ing response during the original execution, ATHj eventually matches RHcAi and RPHCA, • If

reexecution of one of the requests does not lead to the same response, we abort the transaction and

return an abort as response to rpk- Although the abort is not due to application semantics but due

to the failure of the old primary, this guarantees that all matching requirements are fulfilled. We

present two algorithms. The N-1-best-effort algorithm is simple and fast, but many transactions

might be aborted because their reexecutions produce different responses. The N-1-ordered alter­

native achieves better transparency and a lower rate of aborted transactions at the price of higher

overhead during normal processing.

Note that our algorithm is different from many implementations in current systems [78, 60, 56]

that propagate state changes every time a response is returned to the client. In the above example,

that would mean, state changes are propagated before rp\ is returned, before rp2 is returned etc.

If the old primary now crashes before returning the response for rk, ASj would have the state

changes triggered by r\... rfc_1? and possibly also those of rfc. However, the database transaction

still aborts completely. If ASj applied these state changes and only the outstanding request rk would

be reexecuted, DTH would riot match ATHj.

In the following we first discuss full state consistency, and then discuss the changes needed to

support relaxed state consistency.

6.1.1 N-l-best-effort

As mentioned in Section 4.2.2, the main difference between the N-l pattern and the 1-1 pattern is

that the client side controls the demarcation of transactions in the N-l pattern. Hence, the main

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 85

changes compared to the 1-1 algorithm are at the client side. The client replication algorithm inter­

cepts all requests, including begin, commit and abort requests. For each transaction, it keeps track

of all component requests made so far and the corresponding responses. Only at commit time the

server replication algorithm sends the primary state changes to the backups, not for each individual

request. If the primary crashes while a transaction was active, the client algorithm resubmits all

requests associated with the transaction to the new primary where they are executed within a new

transaction. If reexecution leads to the same responses as the original execution, the new primary

has equivalent actions to the actions performed at the old primary. Hence, reexecution was success­

ful and failover is completely transparent. If it leads to different results, the replay was unsuccessful

and the reexecuted transaction is aborted. The real client, having seen the old non-repeatable re­

sponses, is informed with a failure exception.

Our detailed algorithm description uses similar notations as the 1-1 algorithm. In the N-l-

best effort algorithm, a single CEU object ceu at the CRM keeps track of the execution within

the current transaction. It contains the transaction identifier txid and all requests executed so far

together with their responses (RR). The server maintains an EU object for each currently active

transaction but does not need to keep track of request/response pairs. Additionally, the server use a

set AT to record each aborted transaction.

The CRM (Figure 6.1) intercepts begin, invoke, commit and abort requests. For simplicity of

description, we assume that the client submits requests in the correct order (begin/invoke/invoke.../commit).

If a request to a component results in an abort, we expect the client to not continue with the trans­

action but submit a new begin transaction as next request.

Upon intercepting the begin request (Figure 6.1 (a)), the ceu object is initialized and the request

is forwarded to the current primary until it is successfully executed. Upon a component request

(Figure 6.1 (b)), the response from the primary is captured (lines 3-9). If the primary crashes before

a response is received, we have to consider two cases. Firstly, the primary might have been in

the middle of executing the request. Secondly, the request might have led to an application induced

abort. The abort might have completed on the primary and the primary already informed the backups

about this abort, but the primary crashed before returning the response to the client. In this case,

the new primary is aware of this (unsuccessful transaction). Therefore, when the CRM receives

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 86

void bemn 0
1.
2.
3.
4.
5.

while (true)
ceu.initializeQ;
ceu.txid = primary.beginQ;
if ($ failure Exception) return;
else find a new primary;

(a) intercept transaction begin

Response invoke (Request req. Component comp)
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Generate req. rid;
while (true)

Response resp =
primary.invokefreq, comp, ceu.txid);

if (resp == abort Exception)
throw abort Exception;

if ($ failure Exception)
ceu.RR U = {(req, comp, resp)};
return resp;

else
while (3 failure Exception)

find a new primary;
if (primary. isjxborted(ceu. txid))
ceu.initializeQ;
throw abort Exception;

else
replay(ceu);
if (3 replay failure)
ceu.initializeQ;
throw replay failure;

(b) intercept component request

void commit ()
I.
2.
3.
4.
5.
6.
7.
8.
9.

10.

11.
12.
13.
14.
15.
16.

while (true)
primary. commit(ceu. txid);
if ($ failure Exception)

ceu.initializeQ;
return;

else
while (3 failure Exception)

find a new primary;
if (primary. isxommitted(ceu. txid)) or

(primary. is-aborted(ceu. txid))
ceu.initializeQ;

return;
else

replay (ceu);
if (3 replay failure)
ceu.initializeQ;
throw replay failure;

(c) intercept transaction commit

void abort ()

I.
2.

primary.abort(ceu.txid);
throw abort Exception;

(d) intercept transaction abort

void replay (CEU ceu)
1.
2.
3.
4.
5.

6.
7.
8.
9.

10.

ceu. txid = primary. beginQ;
if(3 failure Exception) throw failure Exception
else

for each (oreq, ocomp, oresp) 6 ceu.RR
Response nresp = primary, invoke (oreq.

ocomp, ceu.txid);
if(3 failure exception) throw failure Exception
else if (3 abort exception) throw replay failure
else if (nresp != oresp)

primary.abort(ceu.txid);
throw replay failure;

(e) replay

Figure 6.1: N-l-best-effort at the client side

a failure exception (line 11), it checks at the new primary if the corresponding transaction had

regularly aborted. If yes, the client algorithm simply returns the abort response, which is an abort

exception (lines 13-15). Otherwise, a replay is initiated at the new primary (lines 17-20). Upon a

commit request (Figure 6.1 (c)), if no crash happens, the termination is successful and returned to

the user (line 2-5). If a crash occurred before the server returns from the commit, the transaction

might have committed before the crash, aborted at commit time or aborted upon the crash. The

CRM checks this at the new primary (lines 7-8). If the transaction committed or aborted at the

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 87

Response invoke (Request req, Component
1. eu.COMP V) = {comp};
2. Response resp = comp.invoke(rep)
i. if (req is a client request and resp ==
4. abort-proc(eu):
5. return resp;

(a) intercept request to component

void abort-proc (EU eu)
1. ATI) = {eu.txid};
2. new aborted Message mi;
3. mi.content = {eu.txid};
4. multicast mi by reliable delivery;

(b) abort procedure

void abort (TID txid)
1. TM.abortSransaction(txid);
2. abortjproc(eu);

(c) intercepts abort request

comp, TID txid)

- abort exception)

Bool isjcommitted (TID txid)
1. if txid can be found in database return true
2. else return false;

(d) check commit of transaction

Bool isjiborted (TID txid)
1. if (3 txid £AT) return true;
2. else return false;

(e) check abort of transaction

void failover ()
1. ... 1/see Fig. 5.i lines 1-12
2. for each aborted message m with

m.contenl == txid
3. ATU = {txid};
4. ... //see Fig. 5.i lines 16-18

f) failover at the new primary

Figure 6.2: N-l-best-effort at primary

time of commit, the request returns accordingly (lines 9-11). Otherwise, the transaction is replayed

at the new primary .(lines.13-1.6). When the client submits an abort request, it is simply forwarded

and considered successful independently of whether a crash occurred or not (Figure 6.1 (d)). The

replay (Figure 6.1 _(e)) starts a new transaction at the new primary and resubmits each request of

the old execution (lines 1-5). If one of these requests receives a different response than the original

execution, the reexecuted transaction is aborted throwing a replay failure exception (lines 7-10). It is

now up to the client to act upon this. Otherwise, reexecution has been successful and the algorithm

continues with the request that was active at the time of the crash. Note that after the reexecution

the state of the new primary (or the database) might not be exactly the same as the state of the old

primary after trie first execution. This does not really matter because only responses but not server

state is visible io the client. Throughout the algorithm additional AS crashes reset the algorithm to

the appropriate place. -

At the server side, the N-l -best-effort algorithm is very similar to the 1-1 algorithm. We ignore

the transaction begin and commit methods since they are the same as in the 1-1 algorithm. For a

regular request (Figure 6.2 (a)), we only keep track of each component accessed by a request, but

do not record the request/response pair as this is now done by the CRM. If the transaction aborts

during request execution, an abort exception is thrown to the client as the response. Before that,

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 88

however, the abort procedure is called (Figure 6.2 (b)) which informs the backups about the abort,

and stores the transaction identifier in the list of aborted transactions AT. The same procedure is

called when the client requests an abort (Figure 6.2 (c)). The commit is the same as in the 1-1

case multicasting a committing message and a committed message. When the CRM checks if a

transaction is committed, the is committed routine (Figure 6.2 (d)) looks in the database for the txid

and returns the answer. Correspondingly, the is.aborted routine (Figure 6.2 (e)) looks in the set AT

for the txid and returns the answer. The failover at the new primary (Figure 6.2 (f)) is also similar

to the 1-1 failover algorithm of Figure 5.3. However, instead of maintaining RR, AT must now be

updated.

6.1.2 Correctness of N-l-best-effort

Correctness reasoning is similar to the proof of correctness of the 1-1 algorithm (see Section 5.3.1)

for successfully completed transactions where the result was returned to the client without crash.

The challenge lies in the case when the primary AS0 crashes while a client session CAi has an

active transaction tx, i.e., the client has not yet received a commit or abort confirmation for tx.

Assume tx involves k + 1 client requests rx...rx+k. The primary AS0 might crash at any time point

during the execution. We again discuss correctness by enumerating different crash intervals.

Commit case Figure 6.3 extends the execution in case of a commit for the N-l pattern shown in

Figure 4.3. In the figure, the client session CA\ submits a sequence of requests rx to rx+k within the

transaction tx on the replicated AS. In this example, the sub-request ry\ submitted by the request

rx+i and the sub-request rvi submitted by the request rx+h update the database, which make tx be

a DB update transaction. After the crash, we assume ASj takes over as new primary and is up for

sufficiently long to answer any outstanding requests and transactions. To prove the correctness, we

check critical time points one by one. The first crash interval (CI1) ends just before the primary

sends the response of the first request n, which is the transaction begin request in the N-l pattern.

If the primary crashes within CI1, the C/?M resubmits the request r\ to the new primary ASj, and

then sends all following requests to ASj. This case is similar to the CIl case of the 1-1 algorithm,

where all requests are completely reexecuted on the new primary ASj. We omit the discussion for

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 89

Client

AS

CA f

m 'x(t x ^ g l n) / p x
 r 4 r p x 7 , , r j r p x J r\k(tx.commit) rp J " *

ASj

DB

Crash

ax+1
r y i | | r P y i ry2 rpy2! nmilpg ^.commit! coWnitted

I
+ T i m e CI1 : CI2 :CI3r CI4 I CI5 : Ci6

Figure 6.3: Possible crash intervals of the N-l algorithm in case of a commit

this case. The second crash interval (CI2) starts when the response of the first request is sent to

the client and ends just before the response of the request rx+k-i, that is the last request before

the commit request, is sent. The third crash interval (CI3) starts when the response of the request

rx+k-i is sent and ends just before the primary sends the committing message. That is, some time

during interval CIS, the client submits the commit request rx+k. As mentioned in Section 5.3.2,

the uniform reliable delivery is modeled as a message/acknowledgement pair between primary and

backup. The primary commits the transaction tx only after it receives the logical confirmation that

backups have already received the committing message of tx. The fourth crash interval (CI4) starts

after the primary has sent the committing message (i.e., the backups have the state changes) and

ends just before the commit of the database transaction. The fifth crash interval (CI5) starts with

the database commit (which adds this transaction to DTH) and ends just before the primary sends

the response to the client. The sixth interval (CI6) starts after the response is sent (which allows the

client to add it to B.PH).

Let's now discuss what happens if the primary AS0 crashes while being in one of these crash

intervals.

CI2: Without losing generality, we assume that the crash occurs during processing the request rx+h

(0 < h < k). At this moment, the client session CAj already received a sequence of responses

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 90

rpx...rpx+h-i, which are contained by RPHcAf The CRM receives a failure exception for

the outstanding request rx+h- ASj has not received the committing message and has no

knowledge about the transaction tx. The database transaction, if it exists, is aborted upon

the crash of AS0. Thus, AST(tx) <£ ATHj and DBT(tx) £ DTH. The CRM resubmits

requests from rx to rx+h to ASj, where each request is executed as a completely new request

within a new transaction t'x. The CRM checks whether or not each new response generated

during the reexecution is the same as the corresponding original response of the same request.

There are two situations:

(a) If all responses rpx ... rpx+h-\ generated during the reexecution of rx to rx+h-i are the

same as the corresponding original responses, the CRM suppresses all of these dupli­

cate responses. Then the response rp'x+h is returned as the response to the outstanding

request rx+h. Then, ASj continues executing requests from rx+h+\ to rx+k, returning

responses rp'x+h+1 to rp'x+k to the client. Finally, RPHCAi contains rpx ... rpx+h-i

rPx+h • • • rPx+fc t n a t m a t c n requests rx... rx+k contained by RPHQAV If transaction

t'k eventually commits, AST{t'x) is added to ATHj, and DBT{tfx) is added to DTH

\ft!x is a DB update transaction. Hence, all matching requirements are fulfilled. The t'x

also might be aborted due to application semantics. In this case, the last request associ­

ated withj'fc will have an abort response, AST{lfx) $ ATHj and DBT{t'x) £ DTH.

All matching requirements are fulfilled again.

(b) If any response generated during the reexecution is different from the corresponding

original response, e.g., the response rp'x+g (1 < g < x + h — 1) of the request rx+g

is not equivalent to the original response rpx+g, then the reexecution is stopped and

the transaction t' is aborted. The abort response rpab, is returned as the response for

the outstanding request rx+h- As a result, RHcAt contains rx ... rx+h and RPHcAi

contains rpx . . .rpx+h^rp^, and RHCAi to RPHCAV AST{t'x) £ ATHj and

DBT(t'x) i DTH. It is obvious that RHCAi ^ RPHCA{ and ATHj txi DTH. The

last request rx+h, has an abort response of t'x, which fulfills Condition 2a of the N-l

matching property (Definition 4.3.3). Thus ATHj ixi RHcAi/RPHcA,- However, the

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 91

abort of t'x is not caused by application semantics, but caused by an failure, and hence,

fault-tolerance is not transparent.

CI3: This case is similar to the above case CI2, where AST(tx) i ATHj and DBT(tx) £ DTH.

The CRM already received the responses for requests rx to rx+k-\, and receives a failure

exception for the last request rx+k> which is the commit request of the transaction. As in

CI2, the CRM has to start the resubmission from request rx.

CI4: The CRM already received the responses for requests rx to rx+k, and receives a failure

exception for the outstanding commit request rx+k- ASj has already received the committing

message for tx. If eu.db — false, then ASj adds AST(tx) to ATHj at failover. When

CRM resubmits the request rx+k, ASj immediately returns the successful commit response.

Correctness is given, as request, response and ATH match. If eu.db = true, ASj knows that

a DB update transaction was involved but aborted, since it cannot find the transaction identifier

in the database. Thus, ASj discards the content of the committing message. Therefore, neither

ATHj nor DTH have the transaction tx. Then, the CRM resubmits the request starting from

rx as discussed in CI2.

CI5: The CRM receives a failure exception for the last request rx+k and DBT(tx) e DTH.

At ASj, the committing message was received. At failover, ASj detects that DBT{tx) has

committed because it either has already received the commit message or it has looked for

and found the transaction identifier in the database. Thus, AST(tx) is added to ATHj, and

ATHj [X DTH, and ATHj&iRHcAi- When the CRM resubmits rx+k, ASj immediately

returns the successful commit response, and ATHj ixi RPHcAt and RHcAt »« RPHcAt-

CI6: The client receives the response ffdrh the old primary, RHcAi ix> RPHcAi and there is no

resubmission. From the perspective of ASj this is the same as CJ5 and AST{tx) is added to

ATH.

Aborts In the N-l pattern, the transaction tx can be aborted in three different cases. The first abort

case is that an abort is caused during execution by the AS or the database. Figure 6.4 (a) shows an

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 92

Client

AS,

CA,

'•T>'"V;-;P\. „gz:
aboii ^ p n ^

Client

AS„

AS,

CM ' CI2 ' CI7 I CI8
(a) Abort during execution

CA (

DB

Crash
Time

r P y i ryz rPy2

la, y2

CI1 • CI2 ' CI9
(b) Abort caused by application

CA,

CI10 " CI11

:: yM.«f*w

CI2 -CI3- CI4 ' CM2 'CM3
(c) Abort at the commit time

Figure 6!4: Possible crash intervals of the N-l algorithm in case of a commit

example of the first case, where the database access action aV2 leads to an abort at the database.

In this case, the first two crash intervals are exactly the same as the situation of the crash intervals

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 93

CI\ and CI2 of the commit case, and hence we omit the discussion. CI1 starts when the database

aborts tx. As in the 1-1 algorithm, the AS receives an abort response, aborts the AS transaction,

sends an aborted message to backups using reliable delivery, and finally sends the abort response to

the client. Crash interval CI1 ends just before the old primary sends the response to the client, and

CIS after sending this response.

CI7: The CRM receives a failure execution. As the DB transaction aborts, DBT{tx) £ DTH.

For .45, we can consider two cases.

(a) ASj has not received the aborted message before the crash. In this case, ASj has no

knowledge of the abort, and hence AST(tx) £ ATHj. The CRM receives the failure

exception and then begins the replay from rx. This is the same as the situation of the

crash interval CI2 of the commit case.

(b) ASj has received the aborted message, AST(tx) $ ATHj. In this case, when CRM

checks with the new primary ASj if the transaction tx is aborted or not, the answer

is yes. Then, the CRM directly returns the abort response of tx to the client as the

response of the outstanding request rx+h without resubmission. Request, response,

ATH and DTH histories match with both AS and DB transactions aborted.

CI8: DBT(tx) <£ DTH as the DB transaction aborts. AST(tx) $ ATHj, either because ASj has

received the aborted message or because it hasn't received any message at all. The CRM

will not resubmit the outstanding request rx+h since it already received the abort response.

All histories match.

The second abort case is that an abort is caused by the application at the end of the execution.

Figure 6.4 (b) shows an example of this case, where the client session submits an abort request as

the last request rx+k at the end of the execution. As before, the first two crash intervals are the same

as the situation of the crash interval CI\ and CI1 of the commit case, and hence we ignore the

discussion. Then, the client session submits the abort request to the AS. The AS receives the abort

request, aborts the transaction % at the database first and then at the AS, sends an aborted message

to backups using reliable delivery, and finally sends the abort response to the client. In regard to

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 94

crash intervals, we consider crash interval CI9 to start when the response to rx+k-i is returned and

to end before the database receives the abort request, CIIO to end before the old primary sends the

abort response to the client, and CJ11 after sending this response.

CI9: Although the database did not receive the abort request, the DB transaction is aborted due to

the crash, and hence DBT{tk) # DTH. The ASj has no knowledge about the transaction,

and hence AST(tk) £ ATHj. The CRM receives a failure execution, but it will not resubmit

the request. Instead, the CRM directly returns an abort response to the client as the response

of the abort request. All histories match.

CIIO: The DB transaction is aborted because it received the abort request and executed it, and hence

DBT{tk) £ DTH. At the AS, there are two cases as before: ASj either has already received

the aborted message or not. In either case, AST(tk) £ ATHj. The CRM receives a

failure execution and then directly returns an abort response to the abort request without

resubmission. All histories match.

O i l : DBT(tx) £ DTH as the DB transaction aborts. AST(tx) £ ATHj, either because ASj has

received the aborted message or because it hasn't received any message at all. The CRM

will not resubmit the outstanding request rx+n since it already received the abort response.

All histories match.

The last abort case is that the database transaction aborts upon the commit request submitted by

the AS as shown in Figure 6.4 (c). Crash intervals CI1, CI2, CIS, and CIA are the same as in the

commit case. CI\2 starts with the abort at the database and ends just before the primary AS0 sends

the abort response, and CI13 starts after sending this message.

CI 12: The database transaction has aborted because of application semantics, thus, DBT(tx) ^

DTH. The AS has two cases^

(a) ASj did not receive the aborted message. As it has received the committing message

it will check in the database for the transaction identifier. It will not find the identifier

and discard the changes. Thus, AST(tx) £ ATHj. The CRM receives the failure

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 95

exception and then begins the replay from rx. This is the same as the situation of the

crash interval CI2 of the commit case.

(b) ASj has received the aborted message. Thus, it has discarded the changes of the previ­

ously received committing message and not added AST(tx) to ATHj. From there, the

reasoning is the same as in case Cllb.

CI13: Due to application semantics, DBT(tx) £ DTH. As above ASj might have received the

aborted message or checked for the database identifier in the database. In both cases, it does

not append AST(tx) to ATHj. The last commit request rx+n receives the abort response.

All histories match.

In summary, in all of above cases, all three matching properties are fulfilled, and hence the replica­

tion algorithm works correctly.

6.1.3 Relaxed State Consistency

The relaxed state consistency algorithm is a simple adjustment to the full state consistency algo­

rithm. We only summarize the changes that have to be made to the N-l-best effort algorithm. At

the server side, the multicast in the abort procedure (Figure 6.2 (b)) has to send the final state of

all changed components. Furthermore, it must use uniform reliable delivery. Finally, the procedure

only returns once the primary has received its own aborted message. For the client replication al­

gorithm, also the abort changes (Figure 6.1 (d)). It has to implement similar steps as the commit

(Figure 6.1 (c)). If it receives a failure exception upon an abort request, it has to contact the next

primary. There it first checkswhether the abort (including the relevant state changes at the AS) was

successfully reported to the new primary. If yes, the abort was successful. Otherwise, we try to

replay the transaction. Jf replay succeeds the transaction aborts due to application semantics as it

did on the old primary. Also, the failover procedure at the new primary has to be slightly changed. It

has to apply the state changes sent in aborted messages similar to the 1 -1 algorithm for relaxed state

consistency. If replay does not succeed, namely a duplicate response is not equal to the correspond­

ing original response, we force the replay transaction to abort due to crash, and a corresponding

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 96

abort exception is returned to the client. We do not install the state changes performed by this ab­

normally aborted transaction in the current primary as is done for a normally aborted transaction in

case of relaxed state consistency. We also do not propagate the state changes to backups. That is,

this transaction is not contained in ATH. In fact, this violates Condition 2b of the N-l matching

property (Definition 4.3.3) that requires that for each request there is a corresponding t € ATH.

Instead this replayed transaction follows the rule of full state consistency. However, if we keep

all changes of the replayed transaction, we would violate Condition 1 as it requires the response

generated by this replayed transaction to be part of RPHcAi- But RPHcAi already contains the

different response of the original transaction.

The other correctness reasoning is similar to the proof for relaxed state consistency of the 1-1

algorithm. Sending the aborted message with uniform reliable delivery guarantees that the client re­

ceives an abort response only when backups can have state changes performed by the corresponding

aborted transaction. This, together with replaying transactions whose abort request was interrupted

by a crash, makes sure that the state changes of aborted transaction are not lost, unless replay was

unsuccessful.

6.1.4 Increasing the Chances for Exactly-Once

Reexecution might not succeed if non-determinism occurs which can happen because of database

access. For example, assume before the primary crash, T\ reads and updates x in the database, and

returns a response to the client. Then the primary crashes before T\ commits. At the new primary

assume a transaction Ti reads and updates x before Ti resubmits its request. Hence, T\ 's replay

reads a different value of a; than during the original execution. This might lead to a different response

if the value of x affects the response. To avoid such behavior, we propose an alternative algorithm

N-1-ordered that works for database systems that guarantee serializability through strict 2-phase

locking. With N-l-ordered, the reexecution of all database access is performed in the same order as

during the original execution. During normal processing, each database access is assigned a unique

increasing identifier. Before the response for the request is returned, an ordering message with the

identifiers of all access triggered by the request is multicast to the backups. If the request did not

trigger any database access then no message needs to be sent. At failover, the new primary discards

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 97

an ordering message it received if the corresponding transaction committed before the crash, since

client requests involved in this transaction will not be reexecuted. Otherwise, the request and the

database access identifiers are recorded. When clients now resubmit their requests and reexecution

starts at the new primary, each replayed database access must be executed according to its original

order and new requests may not start until all resubmissions have completed. In the example above,

when T2's request is submitted before Ti resubmits its request, it has to wait until Ti's request is

reexecuted to guarantee that T\ again reads the same data as in the original execution. In order to

handle clients that do not replay (e.g., they crashed by themselves), there is a timeout of how long a

request is blocked. If T\ does not resubmit its request within a certain time, T2's request (and other

waiting requests) will execute to guarantee termination.

6.2 1-N Pattern

In the 1 -N pattern, a client request triggers an AS action which is associated with an outer transac­

tion. During the execution of this action sub-requests can trigger one or more nested inner trans­

actions, e.g., in J2EE, if the method called is marked with the RequiresNew attribute. Inner

transactions can have further nested inner transactions. As we mentioned before, we only consider

relaxed state consistency given that outer and inner transactions might access the same session state.

In our model, for each AS transaction there is exactly one request that triggers the transaction

and the one AS action associated with the request is the only AS action that is part of the AS

transaction. In the following, given an AS transaction t, at(t) indicates the action associated with

the transaction, and R(at(t) is the request that triggered that action at(t).

6.2.1 Sub-requests and Nested Transactions

Let's have a closer look at ah example execution and derive some terminology using this exam­

ple. The example ignores the database transactions. Of course, every AS transaction can have a

corresponding database transaction. In Figure 6.5, client request r\ triggers action a\ within outer

AS transaction t\. ai submits ri triggering action a-i and inner transaction t<i, etc. The request

order is r\... r-j. Derived from Figure 6.5, we can model the execution of client request r\ as a

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 98

Figure 6.5: An example execution of the 1-N pattern

A
r6 r7

(a) Ttree of t\ (b) Rtree of r\

Figure 6.6: Ttree and Rtree

transaction tree Ttree(r{) as depicted in Figure 6.6 (a). The root of the tree is the outer transac­

tion t\. The children are the child transactions that are triggered by sub-requests submitted by the

action ai associated with a\. These child transactions can have further child transactions if they

trigger transactions themselves. A child transaction always terminates before its parent transaction.

Therefore, we obtain the termination order of transactions if we perform a post-order traversal of

the transaction tree and denote this as TSeq. In our example, TSeq(r\) = £4, £3, £2, *6, £7, h, *i-

In general, given a tree Ttree(r,) of client request n and rooted at outer transaction t,, for any

two transactions tj and tk in the tree, tj is parent of t^ if there is an edge from tj to tk, and t, is

ancestor of tf. if there is a path from tj to t^ We refer to ANCS(tj) as the set of all ancestors of

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 99

tj. Furthermore, for any transaction tj being non-root node in Ttree{ri), tj is inner transaction.

Generally, a transaction tj terminates before tk if tk is an ancestor of tj (e.g., t^ before ti), or if

both are siblings and R(at(tj)) was submitted before R(at(tk)) (e.g., t§ before £7), or they have a

common ancestor with at least two children, and tj is in the sub-tree rooted at the left child, and tk

is in the sub-tree rooted at the right child (e.g., £3 before t§). Note also that the client associated with

root transaction tj, i.e., CL(GTX(ti)), is indirectly client of each other transaction tj in Ttree(rt),

thus, CL(GTX(tj)) = CL(GTX(U)). Finally, for any transaction tj in Ttree(n) we denote as

cr(tj) = ri, i.e., the client request that triggered the entire execution.

Complementary to Ttreefa), we can build the request tree Rtree(ri) with client request n

as root, and the sub-requests that triggered new transactions as descendants. Each node in this

tree reflects the request that triggered the transaction at the same position in Ttree(ri). We de­

fine as RPost(ri) the post-order traversal of Rtree(rt) reflecting the order in which responses

for the requests are returned. This is the same order as the termination order of the correspond­

ing transactions. Furthermore, we define as RPre(rt) the pre-order traversal of Rtree(ri) which

reflects the order in which requests are submitted. Finally, given a request Tj (client request or

sub-request) of Rtree(ri), we denote as cr(rj) — r,, that is the client request that eventually

led to Tj. Figure 6.6 (b) shows Rtree(r\) of our example. Then RPre{r\) = r\, r2, • • • ri and

RPost(ri) = r4, r3, r2, r6, r7, r5,n

With this, we define the I-N matching property for a client C* as follows:

Definition 6.2.1. ATH M RHcAi/RPHcAi if the following holds:

1. Vt € ATH A CL(GTX(t)) = d:

(a) ift is an outer transaction, eventually R(at(t)) € RHcAt A RP(at(t)) G RPHcAr

Furthermore, t aborts -^ RP(at(t)) = rpa(,t.

(b) ift is an inner transaction, eventually W 6 ANCS(t), t' e ATH.

2. Vr e RHcAi' eventually 3t eATH Ar = R(at(t)).

3. Given h,t2 e ATH A CL(GTX(ti)) = CL(GTX(t2)):

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 100

(a) ifcr(ti) ^ cr(t2): h -< t2 in ATH <=> cr(ti) -< cr(t2) in RHCAV

(b) ifcr{t\) = cr(t2) = 7V thereexistsoneRtreefa) andt\ -< t2 in ATH4=>R{at{t\)) -<

R(at(t2)) in RPostin).

In the 1-N pattern, the relationship between client requests, responses and outer transaction is

almost the same as in the 1-1 pattern. It differs from the 1-1 pattern in inner transactions. Condi­

tion 1 a captures that each outer transaction in ATH has a matching client request and response, and

generates an abort response only if it aborts. Condition lb indicates that for each inner transaction,

all ancestors must also be included in ATH as we assume relaxed state consistency. Condition 2

captures that each client request of client Cj has a matching outer transaction in ATH. Condition 3

captures the ordering property of transactions associated to a client Cj. Condition 3a indicates that

transactions triggered by different client requests should be ordered in ATH in the same way the re­

quests were submitted. Condition 3b indicates that if two transactions are associated with the same

client request, then the requests that triggered these transactions must belong to the same request

tree and the order of the two transactions in ATH reflects the nesting structure of the tree. Note that

in the notation, any of ii or t2 could be the outer transaction ti.

6.2.2 1-N Algorithm Overview

The 1-N algorithm extends the 1-1 algorithm in order to handle outer and inner transactions and the

relationship between them. For each individual transaction, the replication algorithm is the same

as the 1-1 algorithm, where the primary propagates the state changes of the transaction to back­

ups immediately before committing the database transaction using uniform reliable delivery and a

backup only applies the state changes after it knows that the transaction has actually committed.

Whereas, for the 1-N pattern, matching ATH and RHcAi/RPHcAi is more complex than for

the 1-1 because of the inner transactions. We want to outline the main issues along three simple

examples only considering commit cases.

Assume first a client request r\ triggers an outer transaction t\ and during its execution a sub-

request r2 starts an inner transaction t2. if no crashes occur, then the primary first propagates the

state changes of t2 at commit time of t2, and then the state changes of t\ at commit time of t\. When

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 101

the primary crashes there are now three main cases. If both ti and ti were still active then the new

primary will not install state changes of any of the two transactions and no transactions related to r\

are in DTH or ATHj. Resubmission means complete reexecution. If both had committed, then no

reexecution takes place and ASj immediately returns the response. These cases are similar to the 1 -

1 pattern. The tricky case occurs if inner transaction ti has already committed but outer transaction

t\ was still active. In this case, the new primary can install the changes for ti but not for t\. Both

DTH and ASj contain only partial changes for n . Request n is resubmitted and the new primary

has to reexecute starting a new transaction t\. If the execution is deterministic, t[will submit the

very same request r-i that initiated ti on the old primary. ASj should not reexecute the request

since i2's state changes are already contained in the AS and the database. Thus, the new primary

has to keep the request/response pair for ti which it received in the committing message. Then it

can simply return the answer. After t!x has completed, we can consider t\ to be the parent of i2

and the matching conditions are fulfilled. However, if execution is non-deterministic, the execution

of t'x might not trigger ri and then ri — R{at{ti) and r t = R(at(t[)) belong to two different

Rtree(r\) which is a violation of the matching property. We consider £2 a ghost transaction as it

does not match the current execution. In this case, we abort the outer transaction tj providing a

corresponding message to the application. Correctness is not provided. It is up to the application to

handle ghost transaction £2- If could do so with some compensating methods, it might apply when

inner transactions commit and the outer transaction aborts during the standard execution.

The second example is a simple extension of the first to discuss sibling transactions. Assume

that the execution of transaction ti does not only submit a sub-request ri to execute £2 but after

ti terminates, a further sub-request r?, triggers transaction £3. Crash situations where none or all

of the transactions terminate, or where only ti terminates have already been covered with the first

example. The additional case here is that both ti and £3 committed while t\ was still active. In this

case, the reexecution of r\ in transaction t\ needs to resubmit both ri and r% and also in this proper

order. Only then reexecution can be successful, and we have single request and transaction trees.

If any of the two sub-requests are not regenerated or they are generated in different order, then the

matching orders are violated. We abort t[.

The third example extends the first example to further discuss nesting transactions. Assume that

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 102

client request r\ executes within outer transaction t\. During execution, a sub-request ri triggers

transaction t%. During execution of *2 a further sub-request r$ triggers transaction tn which is now

a child transaction of ti- Crash situations where none or all of the transactions terminate are the

same as in the first example. Now assume only £4 committed before the crash but t\ and £2 were

still active. Then ATHj and DTH only contain t j . During reexecution of ri in a new transaction

ifx, only if a request r^ is resubmitted and the corresponding transaction is the first to be committed,

the further execution of t\ can lead to a matching. In this case r± should not be reexecuted but the

response of £4 immediately returned as response to sub-request r^. If both £4 and £2 were committed,

during reexecution of r i in transaction t[, \ft[resubmits request T2, the response of transaction £2

should be immediately returned. As £4 is nested within <2> *i is not expected to resubmit request r$.

The resubmission of r-i implicitly includes the execution of £2 and £4. If t[does not resubmit ri,

then both ti and U become ghost transactions. Matching properties are violated, and we abort t[.

6.2.3 1 -N Algorithm Details

In order to correctly reexecute an outer transaction that had already triggered inner transactions, we

have to distinguish between client requests and sub-requests that trigger inner transactions, we need

to know for an inner transaction which was the client request that triggered its outer transaction,

and we need to know the request and transaction execution trees in order to know in which order

requests were submitted and in which order transactions committed. For that, each request r^ has

an attribute Ti.cr pointing to request crfa) and an attribute ri.parent to indicate its parent request

(if the parent request is not the client request itself). This information is part of the committing

message.

Figure 6.7 shows the 1-N algorithm. We ignore the client part of the algorithm and the commit

method and abort method of the algorithm since they are the same as those of the 1-1 algorithm for

relaxed state consistency (see Figure 5.7).

Let's first have a look at failover in Figure 6.7 (c). The new primary analyzes the committing

messages of all committed inner transaction triggered by the same client request in their receiving

order and puts the requests leading to these inner transactions in a sequence queue (denoted as

RSeq in the algorithm). The receiving order of the inner transactions and the outer transaction of

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 103

TID begin (Request req)
I. new EU eu;
2. eti.txid = TM.beginSransaction();
3. eu.req = req;
4. return eu.txid;

(a) intercepts a transaction's begin at primary

voidfailover ()
1. new Eu eu. new set CO MP;
2. in order of reception process each

committing and aborted message m
3. eu = m.content;
4. ifm is a committing message andeu.db == true

and $ committed message m' with m '.content = =
eu. txid and eu. txid does not exist in database)

5. ignore committing message
6. else
7. for each comp € eu.COMP
8. ' if(3ce COMP andc== comp)
9. estate = comp.state

10. else COMP U = {comp};
11. RRL) = {(eu.req.rid, eu.resp)};
12. find RSeq of eu.req.cr:
13. if (not found)
14. if (eu.req is a sub-request)
15. create RSeq for eu.req.cr;
16. append (eu.req, txid) to RSeq;
17. else
18. find the first item ereq in RSeq with

ereq.parent == eu.req
19. if (found)
20. for each item dreq in RSeq from ereq to

the end;
21. remove dreq from RSeq;
22. remove (dreq.rid, resp) from RR;
23. if (eu.req is a sub-request)
24. append (eu. req, txid) to the end of RSeq;
25. else
26. delete RSeq for eu.req
27. for each comp € COMP
28. create corresponding component;
29. set component s state to comp.state;

(c) failover at the new primary

Response invoke (Request req, Component comp, TID txid)
1.
2.
3.
4.
5.

6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

28.
29.
30.
31.
32.
33.
34.
35.
36.

New TID otid = null;
if (req is a client request)

if (3 (req.rid, resp) 6 RR)
return resp;

else if (req is a sub-request and a new transaction is
required)

find RSeq ofreq.cr;
if (found)

get the first item oreq from RSeq;
if (req == oreq)

find (oreq.rid, resp) from RR
remove the first item from RSeq;
return resp;

else if (isAncestor(req, oreq) ==false)
throw abort exception for ghost transaction;

otid = txid;
TM.suspend.Transaction(txid);
txid = begin(req);

find eu corresponding to txid;
eu.COMP U = {comp};
Response resp = comp.invoke(req);
if (req == eu.req)

eu.resp = resp;
if (resp == abort exception) abort(eu.txid);
else

if (RSeq ^ A)
get the first item oreq from RSeq;

if (req is a client request and RSeq ^ A.)
or (req is a sub-request and isAncestor(req, oreq))

resp = abort exception for ghost transactions;
abort(eu.txid);
break;

else
RR U = {(req.rid, eu.resp)};

if (otid=£ null) TM.resumeJTransaction(otid);
if(3 abort exception for ghost transactions)

throw abort exception for ghost transactions;
else return resp;

(b) intercepts a request at primary

Bool isAnceslor (Request reql, Request req2)
1.
2.

3.
4.
5.
6.

Request treq = req2;
do

if (reql == treq.parent) return true;
else treq = treq.parent;

while (treq is a client request);
return false;

(d) check the ancestor request of a request

Figure 6.7: "1-N" algorithm

a client request rj is the post-order traversal of Ttree(rj). When we receive for a client request the

first inner transaction U triggered by sub-request ri, RSeq for this client request is created and r.

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 104

is added (lines 14-16). When we receive inner transaction U triggered by sub-request r-j and RSeq

already exists, we first check whether £j had any nested child transactions (line 18). These nested

transactions terminated before £,, and thus, the sub-requests leading to them have already been added

to RSeq. If such requests exist, they are removed from RSeq and RR (lines 20-22). This is correct

as the transaction associated with their parent request has committed, and any potential replay will

directly get the response for the parent request and they will not be further replayed. Then rt itself

is added to RSeq because at replay time this request should be checked (lines 23-24). If the same

request is not made in proper order during replay, ghost transactions occur. If r, is a client request,

RSeq for r* can be deleted since all transactions related to r̂ have now successfully terminated

(lines 25-26). After this process, in RSeq, the sequence of sub-requests triggered by the original

execution of the client request is sorted according to the order in which requests were submitted

originally. However, the sequence might not be complete. If two transactions are siblings and both

committed, their requests are included in RSeq according to the commit order. If a transaction is

included in RSeq then none of its descendant transactions is included in RSeq. For instance, in

the nesting example of the previous section 6.2.2, if £2 and £4 committed but not t\, then only £2 is

included in RSeq. However, it might be that a transaction is included but its parent transaction is

not included. In our example in the previous section where we had the nesting of t\, £2 and £4, this

occurs if £4 committed but not £2 and t\. Then, only r± is included in RSeq.

Figure 6.7 (b) shows the algorithm on the primary. For a client request, we process it as the

1-1 algorithm (lines 2-4). If it is a duplicated request, its response is returned immediately without

reexecution. For a sub-request, if it is detected that a new transaction will be triggered, we first

check if the sub-request is triggered by a replayed client request (line 6). If yes, its client request

should have RSeq that is created at the time of failover. If RSeq is found, the sub-request is

compared with the current first request in RSeq (lines 7-9). If they are the same request, namely,

both requests calling the same method with same parameter values, the sub-request is regarded as

the request that triggered the inner transaction that already committed at the old primary. In this

case, the execution of the sub-request is suppressed, the current first item is pushed out from RSeq,

and the replicated response is directly returned (lines 10-12). If they are not the same, we should

check if the sub-request is an ancestor request of the current first request in RSeq (it is checked by

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 105

the function i s A n c e s t o r defined in Figure 6.7 (d)). If not, the corresponding inner transaction

is regarded as a ghost transaction and an abort exception is thrown (lines 13-14). Otherwise, it is

the case that an inner transaction is included in RSeq but its parent transaction is not included. In

this case, we can safely reexecute the sub-request, waiting for the possible resubmission of the first

request in RSeq during the reexecution of the sub-request. If RSeq is not found, it means that

the sub-request is not triggered by a replayed request and can be safely executed. In both cases,

the sub-request can safely create a new inner transaction, suspending the parent transaction (lines

16-18). Then the sub-request is processed as in the 1-1 algorithm (lines 19-21). When execution of

a leading request of a transaction is finished (it might be a client request or a sub-request and hence

the transaction might be an outer or inner transaction) (line 22), RSeq has to be checked again since

there exists the possibility that the replay of the current request does not replay all sub-requests of

all committed inner transactions of its original execution. Ghost transactions exist in two cases: (1)

for a replayed client request, RSeq is not empty, (2) for a replayed sub-request, it still has children

requests in RSeq. In both cases the current transaction has to be aborted (lines 25-30). Otherwise,

RR keeps request/response pairs for each committed transaction (lines 32). Then, if there is a

suspended parent transaction, it will be resumed to be executed (line 33). In this case, TM holds the

current transaction in a queue waiting for the termination command. Finally, if the current request

gets an abort exception, the abort is thrown to its caller without returning the real response (lines

34-35). This guarantees in case that ghost transaction exists, the outer transactions will eventually

be aborted. Otherwise, the real response will be returned. When the TM is notified that the request

is returned successfully, it commits the corresponding transaction.

6.2.4 Correctness Discussion

Correctness reasoning of the 1-N algorithm is similar to the proof of correctness of the 1-1 and

N-l algorithm (see Section 5.3.1). The major challenge is to check the situation where the primary

crashes when some inner transactions have become successful update transactions. For the sake

of simplification and avoiding long-winded repetition, the section uses two examples to show how

the 1-N algorithm guarantees the correctness for an outer transaction that has two sibling inner

transactions and an outer transaction that has nested inner transactions. Other cases can be derived

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 106

Client
CA,

KSX
rpJ

imittipg | t 3 .commit i \ dbirimitting

comtn^jei

_iiLJiLJa
•£>

CI4 i CI5 : CI6 i CI7

Figure 6.8: Possible crash intervals of the 1-N algorithm for sibling inner transactions in case of a
commit

from there.

Figure 6.8 shows an example where an out transaction has two sibling inner transactions. In the

figure, client action CAi submits request r\ to the primary AS0- If no crash occurs, r\ is executed

as the action a\ withjnthe transaction t\. The sub-request r2 is a database update request. The

sub-request r3 of ai triggers an inner transaction t2- Within ti, a further sub-request i4 updates the

database, and then t2 commits. Then, r^s response is returned to a\, and t\ resumes. Then, a\

submits a sibling sub-request rs triggering transaction f3. Finally £3 and then t\ eventually commits

and the response rp\ is returned. In this scenario, the first crash interval CI1 ends before the

inner transaction t2 commits at the database. The second crash interval CI2 starts after the inner

transaction t% commits at the database, and ends just before sending the sub-request r$. Then, the

third crash interval CIZ ends before the second inner transaction £3 commits at the database. The

fourth crash interval CIA ends before the primary sends the committing message of transaction t\

to backups. The fifth crash interval CIS ends before t\ commits at the database. Then the sixth

crash interval CI6 ends just before sending the response rp\ to the client request r\. Finally the

seventh crash interval CI1 ends after sending the response. Again, let's analyze all crash intervals

one after another.

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 107

CI1: No matter whether ASj received the state changes of the transaction t2, ASj knows that t2 has

aborted at the database. Hence, AST{t2) $ ATHj. It matches that DBT{t2) i DTH. The

CRM receives a failure exception for the outstanding request r%, and then resubmits r\ to

ASj. ASj does not have RSeq for the client request r\. ASj executes r\ as a completely new

request. Finally, if ASj can be up for sufficiently long to handle ri 's execution, all matching

requirements will be fulfilled as a normal execution.

CI2: The CRM receives a failure exception. t\ has aborted due to the crash and hence DBT{t\) £

DTH. t2 has committed and hence DBT(t2) G DTH. At ASj, the committing message of

t2 was received. At failover, ASj can detect the commit of DBT(t2), and thus AST fa) is

added to ATHj. ASj has the RSeq for the client request r\. The RSeq contains only the

sub-request r^ that triggers the committed inner transaction t2. Then, the CRM resubmits r\

to ASj. ASj executes r\ in a new transaction t[. The first sub-request r ' of the reexecution

that will trigger a new transaction has to be compared with 7-3, which is the first item in RSeq.

(a) If r ' is equal to r$, r' is suppressed, and the response rpz of 7*3 that is contained by the

committing message isreturned as the response of r'. Then, the remaining part of the

reexecution of r\ continues as the execution of a new request. When t[terminates, there

are AST(t\) G ATHyat\d possibly DBT{t\) € DTH. There are also AST(t2) G

ATHj and DBT(t2) € DTH. We can consider that t[and t2 are part of the same

Ttree{r{) and AST(t2) ^ AST(t[) in ATHj. There is also only one Rtree(n) and

r' -< r\ in RPost(r\)v All matching properties are fulfilled.

(b) If r' is not equal to r3 r t2 becomes a ghost transaction. Then, t[is aborted and the

aborted response rpab, is returned to the client as the response of r\. As a result, ATHj

contains AST(t2) and DTH contains DBT(t2), and ATHj also contains AST(*i).

However, t[and t2 do not belong to the same Ttree(ri) and there is more than one

Rtree{r\). Conditions lband.3ofthe 1-N matching property are violated. The request

n G RHCAI has a matching response rpai,, G RPHCAV This could be regarded as
*i

the satisfaction of Conditions la and 2 of the 1-N matching property.

(c) if the reexecution does not submit any sub-request to trigger an inner transaction, t2

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 108

becomes a ghost transaction. It will be detected by our algorithm at the end of the

reexecution of r\ since RSeq is not empty but still contains r3. Then t[is aborted and

the abort response is returned to the client side. The same violations occur as above.

CI3: The CRM receives a failure exception for the outstanding request r\. AST(ti) £ ATHj

and DBT(ti) ^ DTH due to the crash. Since the crash occurs before the inner transaction

£3 eventually commits at the database, both ATHj and DTH do not contain £3. However,

both of them contain £2 since £2 has committed at this moment. When the CRM resubmits

r i to ASj, the reexecution is the same as CI2.

CI4: In this case, ATHj and DTH eventually contain both £2 and £3, since ASj knows that both

£2 and £3 already committed at the database. ASj has the RSeq for the client request r%.

The RSeq contains two sub-requests ^ 5 that are leading request for £2 and £3. The CRM

receives a failure exception and resubmits r\ to .45,. When replaying r\ in a new transaction

t[, the first two sub-requests that trigger new transactions have to be compared with r3 and r5

in the proper order. If both are equal, both sub-requests are suppressed, correctness reasoning

is as in CI2a. Otherwise, £2 and/or £3 becomes ghost transactions, and correctness reasoning

is similar to the case of CI2b.

CI5: ASj received the committing message of £1, but can detect that £1 did not commit at the

database. Hence, AST\i{) <$. ATHj and DBT{ti) $ DTH. From there, this case is the

same as CIA.

CI6: ASj received the committing message of t\, and can detect that £1 already committed at the

database. Hence, AST(ti) € ATHj and DBT(tx) e DTH. Also, AST(t2), AST(t3) e

ATHj and DBT(t2), DBT(t3) £ DTH. Since the outer transaction £1 is already commit­

ted, RSeqfor the client request r\ is deleted at failover. Then, when the CRM resubmits

r\ to ASj, the original response of ri that is contained by the committing message of £1 is

directly returned without reexecution. As a result, all histories match.

CI7: From the perspective of ASj this is the same as CJ6. The only difference is that the client

receives the response from the old primary. Thus, there is no resubmission.

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 109

Client

CI1 ! CI2 ! CI3 I CI4 ! CI5 -CI8 • CI9 dllO

Figure 6.9: Possible crash intervals in case of an abort of an outer transaction

Figure 6.9 shows an example of an abort case, where the database transaction aborts upon the

commit request. In this case, the first five crash intervals are the same as CI\ to CI5 of the commit

case, and the different intervals are CIS, which starts after the database aborts the transaction t\ and

ends before the aborted message is received by ASj, CI9, which ends before the abort response is

returned to the client, and €710, which ends after the abort response is returned.

CI8: This case is similar to CIS. ASj received the committing message of t\, but can detect that

11 already aborted^ the database. The difference between Clh and CIS is that in the former

case the abort is caused by the crash and in the latter case the abort is caused by the application

semantics. However, the new primary cannot distinguish. Correctness reasoning is as in Clh.

CI9: The ASj received the aborted message of h, and can apply the state changes of t\. Then, ti,

£3 are contained by both ATHj and DTE, and £1 is only contained by ATHj. ASj deletes

RSeq for the client request r i since it received the aborted message of t\. When the CRM

resubmits the request r^ to ASj, the abort response of t\ is returned as the response. All

matching requirements are fulfilled.

CI10: This case is similar to CI9 except that the abort response of ti is already returned. Hence,

the CRM will not resubmit r\ to -AS,. Instead, it directly returns the abort response to the

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 10

Crash
CI3 :Clir CI12

Figure 6.10: Possible crash intervals in case of an abort of an inner transaction

client.

The primary might also crash at other time points, the correctness reasoning is similar to the

above case. Generally, if the new primary ASj has already received the aborted message of the

outer transaction, it will apply the state changes of the aborted outer transaction, and return the

abort response to the client upon resubmission. Otherwise, the reexecution is similar to the commit

case.

An inner transaction might be aborted, too. Figure 6.10 shows an example of the abort of

the inner transaction £3 in case of relaxed state consistency. Since each individual transaction can

independently commit ox abort, the outer transaction t t can commit after the abort of the inner

transaction £3. Most crash intervals in this case are similar to the commit case. The different crash

intervals are CIll, which starts after the transaction £3 is aborted at the database and ends before

ASj receives the aborted message, and CI12-, which starts after the aborted message is received by

ASj and ends before the committing message of t\ is propagated.

CIll: ASj did not receive any information about £3. After the crash, ASTfo) G ATHj and

DBTfa) € DTH. Then, the reexecution of r i is similar to CI2 of the commit case.

CI 12: The ASj received the aborted friessage Of £3, and can apply the state changes of £3. Then,

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 111

Client

AS„

CA,

r4~

AS, "

•PJ

©'

DB —©I"1 OH

^1
^ " ^ \ committing —... , , , .

f comtniVed I I -LAJLL
Crash-

Time

6* ft:
l\l
it

mit 11

cofijfitted

ll\
! ! l

— - » } - - » - •

en CI13 CI6 :CI7

Figure 6.11: Possible crash intervals of the 1 -N algorithm for nested inner transactions in case of a
commit

AST(t2) € ATHj and DBT(t2) e DTH and AST(t3) G ^ T ^ . Both *2 and *3 are

successful update transactions. RSeq of ri contains rr for *2 and *3. When the CRM re­

submits the request r\ to ASj, the reexecution should check if t2 and *3 are ghost transactions

and take the corresponding actions as CIA.

When an inner transaction is aborted, the outer transaction might be aborted as well. Correctness

reasoning for this case is omitted since it is similar to previous cases.

Figure 6.11 shows an example where an out transaction has two nested transactions. In the

figure, client action CA\ submits request T\ to the primary AS0- The client request r\ is executing

as an action ai within the transaction *T. The action a\ submits the sub-request r3 to trigger an

inner transaction *2. Within *2, a further.sub-request r$ triggers a nested inner transaction t4. The

committing order of these transactions is £4*2*1 • In this scenario, the first crash interval CI\ ends

before the inner transaction £4 commits at the database. The second crash interval CJ13 starts

after the inner transaction *4 commits at the database, and ends just before the inner transaction *2

commits at the database. The third crash interval CJ14 starts after the inner transaction *2 commits,

and ends before the outer transaction*! commits at the database. Then the crash intervals CI6 and

CI7 occur after the commit of the outer transaction. CI, C6 and CI are the same as the similar

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 112

crash intervals of Figure 6.8. Hence, we only look at C/13 and C14.

CI13: The CRM receives a failure exception. t\ and t-i have aborted due to the crash. i4 has com­

mitted and hence DBT{ti) € DTH. At ASj, the committing message of U was received.

At failover, ASj can detect the commit of DBT{U), and thus AST{U) is added to ATHj.

ASj has the RSeq for the client request r\. The RSeq contains only the sub-request re that

triggers the committed inner transaction f4. Then, the CRM resubmits r\ to ASj. ASj exe­

cutes r-j in a new transaction t[. The first sub-request r' of the reexecution that will trigger a

new transaction has to be compared with re, which is the first item in RSeq.

(a) If r' is equal to re, r' is suppressed, and the response rpe of r$ that is contained by the

committing message of the transaction i4 is returned as the response of r'. Then, the

remaining part of the reexecution of r\ continues as the execution of a new request. In

this case, the reexecution of r\ is in fact different from the original execution, since in

the reexecution, r' is the direct sub-request of r\ but in the original execution re is a

sub-request of the sub-request r^, which is skipped in the reexecution. However, this

is still a correct execution since r' is generated by the normal execution of r\ and the

response of re should be the same as the response of r' since r' is equal to re- We can

consider one Rtree(r\) that so far has pre-order RPre(r\) = r\r§ with corresponding

transactions t[and £4. The remaining execution completes the tree and all matching is

provided.

(b) If r' is not equal to re, we check if r' is an ancestor request of re, namely check if r'

is equal to r$. Ifyes,r ' is executed triggering a new transaction t'2. If the execution

of r' submits a sub-request r" that will trigger a new nested inner transaction, r" is

compared with re again. If r" is equal to re, then r" is suppressed and the response

rpe is returned as the response of r". Then, the remaining part of the execution of r'

continues. We have now one Rtree(r\) that so far has pre-order RPre(r\) = ryr're

with corresponding transactions i ^ ^ . The remaining execution completes the tree and

matching is provided. If r" is not equal to re, or the execution of r' does not submit

r", or r ' is not equal to r^, £4 becomes a ghost transaction. Then, t[is aborted and

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 113

the abort response rpaj,, is returned to the client as the response of r\. As a result,
h

AST{U) G ATHj and DBT(U) G DTH and AST{t\) G ATHj. The request n has

a matching response rpa(,,. The main violation lies in Conditions lb and 3.

(c) if the reexecution does not submit any sub-request to trigger an inner transaction, i4

becomes a ghost transaction. It will be detected by our algorithm at the end of the

reexecution of r\ since RSeq is not empty but still contains re. Then t[is aborted and

the abort response is returned to the client side. Violations are as above.

CI 14: The CRM receives a failure exception, ti has aborted due to the crash. i2 and i4 have

committed and hence DBT(U), DBTfo) G DTH. At ASj, the committing messages of t4

and £2 was received. At failover, ASj can detect the commit of DBT(ti) and DBTfo), and

thus AST(t4),AST(t2) G ATHj. ASj has the RSeq for the client request rx. The RSeq

contains the only sub-request r-a that triggers the committed inner transaction t^. The sub-

request re is already removed from RSeq since its parent transaction has committed. Then,

the CRM resubmits n to ASj. ASj executes r\ in a new transaction t[. The first sub-request

r' of the reexecution that will trigger a new transaction has to be compared with r%, which is

the first item in RSeq. This comparison is similar to CI2.

In summary, the 1 -N algorithm guarantees correctness in some but not all cases. The problems

are ghost transactions that do not match any proper tree perceived by the client. Since we only

consider relaxed state consistency, the abort case for nested inner transactions is similar to the

commit case and omitted here.

6.2.5 Undo Ghost Transactions

An alternative solution could be used if compensating transactions exist. Recall that if the 1-N pat­

tern is used to chop a long execution into small pieces, compensating transactions are often provided

by programmers. In this case, in the example above, when the discrepancy between an old request

and a new request is detected, ASj first executes the compensating transaction for the ghost transac­

tion, and then continues execution with the flew request. Please note that compensation transactions

Chapter 6. Advanced Algorithms for Advanced Execution Patterns 114

have to be called in the reverse order of their commits. Compensating transactions lead to com­

mitting/committed messages as any other transactions. The effect is that a compensated transaction

appears as if it had never been executed. However, if there exist some transactions that read data

changed by the compensated transaction on the database, these transactions have to be undone as

well, leading to "cascading compensation". The cascading compensation disseminates the ghost

transaction problem from one client to other clients, and hence has to be handled carefully. This

same problem already occurs during normal processing when committed transactions are undone by

using compensating transactions. However, such mechanism appears complex. In particular at the

implementation level it requires the replication algorithm have access to compensating transactions,

which is often not feasible.

Chapter 7

Miscellaneous Extensions of ADAPT-SIB

In this chapter, we discuss miscellaneous extensions to our ADAPT-SIB replication tool. These

extensions do not change the algorithm itself, but propose a couple of ways to make ADAPT-

SIB adaptable to wider use cases where our assumptions for the algorithm might not hold, or the

system has a more complicated architecture. These extensions handle different failover strategies,

recovery of crashed replicas, request execution without transaction boundary, access of more than

one database using 2PC, and crash of clients or the backend database.

7.1 Different Failover Strategies

An important parameter of fault tolerance is failover time, i.e., the period from the time point the

backup detects the primary's crash to the completion of failover. In general, the new primary has

to have the latest state of each component before any call to this component can be made. In the

algorithmic descriptions of the last sections, the new primary creates all necessary components at

the time of failover and installs for each the latest successful change. We call this strategy Install-

When-Failover. However, creating components and setting their states can be very time consuming.

Since the components are not accessible until failover is completed, clients might be blocked for a

long time. Hence, although the crash exception is not exposed to clients, transparency might be lost

since the system might seem to be frozen to the client.

115

CHAPTER 7. MISCELLANEOUS EXTENSIONS OF ADAPT-SIB 116

To solve this problem, we propose two further restore strategies. In the Install-Immediately strat­

egy, each backup creates a component when it receives the first message related to this component,

and it knows that the corresponding transaction succeeded. The state of the component is refreshed

immediately each time the backup receives a committing/committed message pair (or abort mes­

sage in case of weak consistency) that refers to this component. With this strategy, each backup

has a considerably higher load during normal processing when no crash occurs since not only the

last state change but all state changes on a component are restored. However, during failover, the

new primary only needs to consider components for which it had received a committing but no

commit/abort message before the crash. For those, it has to check in the database whether the state

changes recorded in the committing message should be installed. With this, failover can be very fast.

While the Install-Immediately strategy speeds up failover by doing the necessary updates before a

crash occurs, our last strategy improves on the failover time by delaying the necessary updates to

when they are actually needed. We refer to it as Install-After-Failover. During normal processing,

a backup simply queues all messages from the primary as with Install-When-Failover. At the time

of failover, the new primary parses through the messages and only checks which components need

to be restored (created and a final state installed). Then, it immediately allows client requests. Now,

when a client submits a request to a specific component, if the component needs to be restored, the

new primary recreates the component and installs the up-to-date state as found in the last relevant

message. This strategy slows down only those requests that are the first to access a component that

needs to be restored. However, the failover time during which all client requests are blocked, is very

short. Additionally, when the system runs for a long time, it might occur that many components

that were replicated are actually never reused again. Using the Install-After-Failover strategy, these

components will never be created at the new primary but only those components are recreated that

are really needed.

Note that the AS components we consider have usually a limited life-time and are then deleted,

because we mainly consider components that maintain all relevant information in regard to a user

session. The Install-Immediately strategy will create and delete such components on the backups

basically in real-time. In contrast, the other two strategies only create components at or after failover.

In order to avoid creating components at or after failover that were deleted, the replication algorithm

CHAPTER 7. MISCELLANEOUS EXTENSIONS OF ADAPT-SIB 117

during normal processing can be slightly changed. The primary simply informs backups about

deleted components by piggybacking such information on regular messages. The backups then

discard any information in regard to these components.

7.2 Recovery

Recovery is an important aspect of fault tolerance. In here, recovery means that a failed replica

recovers or a new replica joins. It is important that recovery occurs online, i.e., while processing

goes on in the rest of the system. When recovery takes place the recovered replica has to first receive

the current state, and then will become a backup. Our solution is that one of the existing replicas,

referred to as the peer, sends its current state to the joining replica. Either the current primary

or any existing backup can serve as peer. For a backup, its current state is the current content in

CO MP and RR. Hence, if choosing a backup as peer, we just need to send COMP and RR to

the recovered replica. For a primary, its current state includes the state on each component. It is

not trivial to collect the state of a component during runtime. For a component, we have to collect

its state when no execution is active on it. If two components are involved in the execution of

the same client request, we have to collect both states after the execution is finished to guarantee

consistency between them. Further requests to a component will be blocked until the collection is

finished. Hence, choosing a primary as peer not only adds extra load to the primary but also might

block normal processing. Its procedure is more complicated than if a backup is the peer. Whereas,

choosing a backup as peer requires the system always has at least one backup.

Thus, it is preferable to choose a backup as the peer for simplicity and better performance. If

there is more than one backup available, we need to choose one of them as peer. In our algorithm, the

new replica first joins the FTG (fault tolerance group). All replicas receive the view change message

and the new replica receives all messages delivered after the view change messages. Each backup

who is willing to become the peer multicasts a willing message to all replicas using uniform-reliable

delivery (to guarantee all or nothing) and total order delivery. The backup whose willing message is

the first to be delivered will become the peer. When a backup receives the first willing message and

it is the sender, it delays the processing of any new messages coming from the primary. It generates

CHAPTER 7. MISCELLANEOUS EXTENSIONS OF ADAPT-SIB 118

a recovery message containing the content of COMP and RR and sends it to the joining replica

using point-to-point communication. While waiting for the recovery message, the joining replica

might have already received messages from the primary (it starts receiving messages when the GCS

delivers the view change). It enqueue them in a queue Q. Once the joining site receives the recovery

message, it initializes its data structures accordingly. The recovery message might already contain

the state of some of the messages in Q. Hence, these messages must be removed from Q before the

backup algorithm can start processing messages from Q. In order to determine which messages to

remove, we timestamp all messages.

In practice, there also exist conditions that require the primary to send the recovery message,

e.g., only one replica keeps working while others crash. To adapt to these conditions, we propose a

solution to allow the primary be the peer. Recall that we use uniform reliable delivery to multicast

committing messages. This delivery mechanism requires that committing messages will also be

delivered to the sender. Hence, we get the current state of all components by parsing committing

messages on the primary. Although this solution requires the primary to use extra overhead to store

and process committing messages, it avoids state collection at recovery time and does not block

normal processing. In summary, if a replica joins and there is no other backup that could serve as

peer, the primary sends a recovery message to the replica without sending a willing message.

7.3 Non-transactional Client Requests

In some applications, execution of a client request might not happen within the boundaries of a

transaction. For example, in a J2EE environment, a method might have the transaction attribute

S u p p o r t s , NotSuppor ted , or Never. This is mainly used for simple executions that never

access the database, and hence, no transaction is required to be associated with the execution. Using

the BMT scheme, the start/commit/abort commands have to be written into the method code. If this

is not done, a client request calling the method is also not associated with a transaction. In another

scenario, a transaction might only be started before the first database access and be terminated after

the last database access but before the execution at the AS has finished. In the extreme case, the

application does not set any transaction boundaries. In this case, the database executes each request

CHAPTER 7. MISCELLANEOUS EXTENSIONS OF ADAPT-SIB 119

to the database within an individual transaction (when using JDBC, this is achieved by setting the

autocommit flag to on). We can handle such a non-transactional client request r by assuming its

action a is embedded within a pseudo transaction pt. pt is assumed to begin at the time the action

a is started at the primary, and to commit when the action a completes but before the response

to the client is returned. If r does not access the database, r's execution is transformed to the 1-1

pattern with pt being the only transaction. The state changes of the pseudo transaction are replicated

immediately before returning the response. If the execution of r actually triggers one or more "real"

transactions (which embed all database accesses), r 's execution is transformed to the 1-N pattern,

with pt being the outer transaction. Again, state changes of the pseudo transaction are replicated

immediately before returning the response.

7.4 Accessing more than one Database

In our previous discussion, we assumed that an application only accesses one database. In practice,

an application can access more than one database and then use the 2-phase commit protocol (2PC).

In order to handle 2PC, we take an idea proposed in the e-Transaction system [46] that provides

replication for stateless AS and adjust it to work with stateful AS. For that, we have to slightly

change the commit handling of our algorithms (see Figure 5.2 (c)). The primary intercepts the first

prepare request sent by the TM to a database and multicasts a preparing message to the backups

using uniform reliable delivery before forwarding the request to the database. Then it intercepts

the first decision (commit/abort) -that the TM sends to one of the databases. In case of commit, it

sends the committing message with uniform reliable delivery as in our previous algorithms before

forwarding the commit to the database. After the transaction has terminated at all databases, the

response is returned to the client and a corresponding commit /abort message is multicast to the

backups (reliable delivery). No transaction id needs to be inserted into the database.

At the time the old primary crashes, the new primary might have received for a given trans­

action (1) not yet any message, (2) the preparing message, (3) the committing message, (4) the

abort/commit message. In the first case, our failure assumptions guarantee an abort of the corre­

sponding transaction at all databases. In case (2), some might have aborted the transaction, others

CHAPTER 7. MISCELLANEOUS EXTENSIONS OF ADAPT-SIB 120

might be blocked in the prepared state. The new primary can now force all databases to abort the

transaction if they have not yet done so. In case (3), some databases might have committed the

transaction, others might be blocked, and the backup has received the component state changes.

The new primary can now ask all databases to commit the transaction if they have not yet done so.

In the last case, nothing needs to be done because all databases and the new primary have the correct

state after transaction execution.

We can easily integrate the above solution into the 1-1/N-l/l -N algorithms. Since 2PC does not

affect execution patterns, integration is not difficult. For each algorithm, we need to add the part to

process preparing messages during normal processing. At failover time, instead of checking the

marker, we have to consider the four phases described above.

7.5 Client and Database Crashes

So far, we have assumed that both clients and database are reliable. However, in practice, both of

them might crash as well.

7.5.1 Database Crash

If a database crashes, the AS receives failure exceptions when it submits operations. It has now to

wait until the database recovers. Upon recovery, the database aborts transactions that were active at

the time of the crash.

From the perspective of the AS, this means that transactions for which it has not yet submitted

the commit request, are aborted. Transactions for which the prepared request returned a failure

exception might be aborted or in the prepared state. And transactions for which the commit re­

quest returned a failure exception might be aborted (if there was no 2PC), in the prepared state or

committed.

The AS can determine the state of each transaction after recovery by looking for the txid in

the database or by asking the database whether a given transaction is in the prepared state. For an

aborted transaction, the AS primary can easily replay the transaction in the 1-1 and 1-N patterns. In

the N-l case it has to forward the abort exception to the client replication algorithm with a request

CHAPTER 7. MISCELLANEOUS EXTENSIONS OF ADAPT-SIB 121

to initiate the replay of the transaction. In the prepared case, the transaction can be terminated just

as would be done during normal processing.

7.5.2 Client Crash

If a client crashes, a 1-1 or 1-N execution can simply finish the execution. A N-l execution should

abort the transaction if the client had not yet submitted the commit request because the AS server

only has partial information about the transaction.

7.5.3 Replicated Database and Replicated Clients

Replicated Database Database replication has been widely used for fault-tolerance and perfor­

mance. In many solutions, replications is mostly transparent to the application, i.e., the application

is not aware of the fact that there are several database instances, each of them having a copy of the

database. The degree of transparency and the level of consistency provided by the different solutions

differ greatly. If the multi-tier architecture uses a replicated database layer, the AS layer must know

the exact semantics provided by the database layer and be adjusted to work with the new semantics.

In [61] the authors take ADAPT-SIB at the AS layer, and a simplified version of the database

replication solution proposed in [64] and show to what degree ADAPT-SIB has to be adjusted to

work properly with the replicated database. In this case, the database replication solution is very

powerful. It appears to the application nearly with the same semantics as a non-replicated database.

The main difference is that a transaction might abort with a failure exception. This is the case

when the database replica on which the transaction executes fails before the transaction commits.

However, the AS primary, being the client of the database, is automatically connected to a new

database replica. When the AS receives such an abort message due to failure, it can abort the

corresponding transaction at the AS. Then, in case of the 1-1 or 1-N pattern, it can simply replay

the transaction as is done in case of failover. In the N-l pattern, it has to ask the client replication

algorithm to initiate the replay.

Furthermore, in certain crash scenarios (e.g., both AS primary and the database replica the AS

primary is connected to crash), inconsistencies could occur if certain failover operations at the AS

CHAPTER 7. MISCELLANEOUS EXTENSIONS OF ADAPT-SIB 122

and the DB happen concurrently. In [108], we gave a demo of our ADAPT-SIB system working

with the replicated database system presented in [64].

Replicated Clients In many cases, the client of the AS layer is actually a web-server (WS). In a

well-designed system, the WS only calls the AS layer but not the database directly. The WS can

also have state. The WS might start the transaction itself but it might also send simple requests to

the AS, as we have discussed before. In order to provide fault-tolerance and load-balancing, also

the WS-tier can be replicated [13]. The challenge now is to provide exactly-once execution across

all three tiers: WS, AS and database. One problem is that request execution at the WS is often not

embedded in a transaction, making it hard to reason about correctness.

Clara Huizink has looked into WS replication and its integration with ADAPT-SIB in her M.Sc.

thesis [55].

Chapter 8

ADAPT-LB: Load Balancing

Architecture based on ADAPT-SIB

The ADAPT-SIB replication tool only considers fault-tolerance. All replicas are members of a sin-

gle fault-tolerance group (FTG). There is one primary executing all requests, and all other replicas

are backups. This addresses availability and reliability, but does not provide scalability compared

to a single-node system. Since backup tasks typically require much less resources than executing

the requests at the primary, the resources at the backups are wasted. In contrast, when replication is

used for scalability, a load balancing algorithm uses server replicas as resources to execute differ­

ent client requests. Ideally, the more replicas, the higher the maximum throughput the cluster can

achieve. We can consider a group of replicas all executing requests as load balancing group (LDG).

Considering that both fault-tolerance and scalability are important aspects of adaptability, this

chapter proposes a unified architecture that provides both.

One major challenge of a unified replication architecture is to use replicas so that they serve

both as resources for load-balancing and redundancy. That is, the question is how to build load

distribution and fault-tolerance groups such that all resources in the system are exploited and enough

redundancy is provided for fault-tolerance.

In this section, we present ADAPT-LB, a replication framework with both load-balancing and

fault-tolerance modules. Each module relies on features of the other module to fulfill its tasks. The

123

Chapter 8. ADAPT-LB: Load Balancing Architecture based on ADAPT-SIB 124

main idea is that each replica is primary for the requests of some clients and is used as backup for

other replicas. The solution has the following properties.

• Load distribution Each replica is member of a single large LDG and executes client requests.

• Fault-tolerant execution Each replica is primary of a small FTG and is backup in few other

FTGs. As backup activity requires only few resources, the main capacity of each server is

used for request execution.

• Load-balancing The system uses a truly distributed, lightweight load-distribution algorithm

that takes advantage of the existence of FTG groups. It does not require the maintenance of

load information and keeps communication overhead for load-balancing purposes low.

• Dynamic reconfiguration The system provides dynamic reconfiguration. When a replica

joins the system, it joins the LDG and creates a new FTG for which it is primary. When a

replica fails or is removed from the system, a backup replica takes over its tasks. As part of

any join or leave operation, the FTG configuration is adjusted to guarantee that all FTGs have

sufficient number of replicas and no replica is overburdened with backup tasks. Furthermore,

the load-balancing module will quickly remove any load imbalance that might occur during

reconfiguration.

As a summary, our unified solution distributes load across all replicas, handles failures trans­

parently, and can easily grow and shrink with the demands, providing an ideal framework for self-

provisioning.

8.1 Algorithm Overview

Assume the entire cluster consists of n (0 < n) replicas. In the ADAPT-LB architecture, the number

of FTGs in the cluster is equal to the number of replicas in the cluster, because each replica is the

primary in exactly one FTG, referred to as its primary FTG. Typically, it is enough for each FTG to

have one or two backup replicas to tolerate the failure of a replica. Therefore, we let each replica

join in one or two other FTGs as the backup. Each of these FTGs is called a backup FTG on the

Chapter 8. ADAPT-LB: Load Balancing Architecture based on ADAPT-SIB 125

I Client I

i ""it—
BRMS [PRM ^

I Client I

BRMS | PRM

Client I

LDG | LBM e
RM

RM

ContaperCr^-i

Comp

RM

RM

ContapeiO^-i

Comp

FTG

D

A R M

^ R M

PRM

Contajner̂ . r—i

Comp

FTG

Figure 8.1: Unified architecture of ADAPT-LB

replica. Generally, each replica is backup in m (0 < m < n) FTGs, and hence each FTG has m

backups. We refer to this as the m/m property. This property allows for a simple, yet powerful

automatic reconfiguration mechanism, and also helps in load distribution. Figure 8.1 sketches the

unified architecture of ADAPT-LB. Section 8.2 explains the components on the figure and describes

the algorithm to initialize this setting.

Each replica processes client requests, using the ADAPT-SIB primary algorithm and sending

replication messages (i.e., committing, committed, aborted messages) to the backups in its primary

FTG. Additionally, it receives and processes replication messages from the primaries of its backup

FTGs. The replica keeps the contexts of its FTG completely separated to avoid any interference.

When a client connects to the system, a session on one primary replica will be created, and all

requests within this session will be handled by this replica. This guarantees that each request sees

the current session state. Usually, sessions are randomly assigned to replicas. However, in case the

current load of a replica is above a certain threshold, it can forward the request to its backups. If one

backup is not overloaded it will accept the new client. Otherwise the request is forwarded to other

FTGs recursively. Section 8.3 describes load-balancing in detail.

When a replica crashes, it leaves all its FTGs. For its primary FTG, the crash causes the failover

process on backup replicas within the same FTG. According to the ADAPT-SIB protocol, one of

the backups is chosen as the new primary of the FTG. However, since only one primary FTG is

allowed on a replica and the chosen backup replica already has its own primary FTG, the chosen

Chapter 8. ADAPT-LB: Load Balancing Architecture based on ADAPT-SIB 126

replica has to merge the context of the backup FTG with the context of its own primary FTG. Then,

the replica processes all incoming requests, no matter whether they are originally designated to the

replica or they are resubmitted due to the crash, in the context of the primary FTG. Similarly, as the

crashed replica also had backup FTGs, these have to be reconfigured. When a new replica joins or

a failed replica recovers during runtime, it first initializes its primary FTG, and joins in other FTGs

as backups. The primary FTG on the new replica automatically finds backup replicas in the cluster.

Section 8.4 describes the algorithms to reconfigure the cluster when replicas fail or recover.

8.2 Cluster Initialization

Assume that the cluster starts up with a total of n (n > 0) replicas (note that the cluster size may

change later dynamically). Each replica uses its address as a unique identifer. Each replica runs a

Load Balancing Manager (LBM). When a replica starts up, its LBM first joins the LDG. Once all

n replicas have joined, each LBM multicasts its replica identifier using total-order, uniform-reliable

delivery. Each LBM receives the messages in the same order and stores the identifiers in an ordered

list RL according to the delivery order. Each replica in the system is assigned an order number i,

1 < i < n, which is the position of the replica in RL. We refer to the replica with order number

i as r,. Note that while the identifier of a replica does not change during its lifetime, the order

number might change, as we see later. Once ri has determined its order number i, it joins FTGi

as primary. If i > m, it furthermore joins FTGi-m to FTG,_i as backup. A replica with order

i < m joins FTGn-m+i to FTGn and FTG\ to FTGi-i as backup. For instance if m = 2,

then r3 joins FTGx and FTG2, r2 joins FTGn and FTGU and n joins FTGn-i and FTGn.

Figure 8.2 depicts this circular setup of FTGs. Figure 8.1 shows the entire architecture. At each

replica, PRM refers to the RM of the primary FTG, BRMS refers to the array of RMs for the

backup FTGs.

Chapter 8. ADAPT-LB: Load Balancing Architecture based on ADAPT-SIB 127

r, r, r, r,

Figure 8.2: Initial setting with m = 2

8.3 Load Balancing Algorithm

After the initialization is completed, the workloads, namely client requests, are distributed on all

replicas using the load balancing algorithm. While the algorithm uses generally a simply load

distribution technique, it adjusts to variances whenever necessary.

8.3.1 Simple Load Distribution

Load balancing is performed when a client wants to create a new session. At this time, the client

has to be assigned to a replica in the LDG. This replica becomes the primary replica for the client

session, and all requests within this session are handled by this replica. This guarantees that each

request sees the current sessibrfstate. Load-balancing goes through two phases. The client has a pre­

defined replica list CL (identi'fieTiist) that contains the replicas the client can potentially connect

to. For correctness, only one replica on the list must actually be available. But a more accurate list

has a positive impact on load distribution.

Our load distribution algorithm does not require extra message overhead. Instead, it is executed

when the client creates the connection session with the AS, which is the standard procedure of the

non-replicated AS to link a client with the AS (see Section 2.3.2). When the client wants to create a

Chapter 8. ADAPT-LB: Load Balancing Architecture based on ADAPT-SIB 128

connection session with the AS, it sends the request to any replica on CL. If it times out, it resends

it to another replica until it succeeds. An available replica r* receiving such a request becomes the

load-balancer for this request. The LBM of r, will decide on a replica rj to create the session and

serve the client by simply selecting a replica randomly from its RL list. The LBM of rj returns the

CRM code to the client. The message piggybacks an ordered list containing the identifiers of all

replicas that are members of FTGj (derived from RL) and indicates that rj is the primary. The

ordered list (called FL) on the CRM is used for fault tolerance, and is described in more detail in

Section 8.4.3. In the second phase, when the client sends the first request, the newly installed CRM

builds the physical connection session with tj and Tj accepts the request within this session. Then,

the CRM relays further client requests to rj within the session. As seen in Fig. 8.1, the LBM of

rj intercepts all requests and dispatches them to the PRM. The message overhead for the session

setup is the same as for standard J2EE involving one message round for the connection request (with

ri), and one for session creation (with 7j).

There exist many load-balancing algorithms that are more sophisticated than random, such as

load or weight-based algorithms, or algorithms that take locality into account. These algorithms,

however, require to exchange considerable information and maintain extra load information at each

node. Most use a central load-balancer which we want to avoid. Additionally, random has shown to

perform just as good as these load-balancing algorithms while having considerable less overhead.

Since most enterprise clusters tend to over-provision to some degree, random will be good enough

for most executions. Additionally, the random algorithm can be implemented locally at each replica.

Furthermore, clients can be configured more easily since their CL do not need to be accurate. If

CLs are stale, connection requests might not be equally distributed among replicas. However, the

sessions themselves will always be distributed across all replicas since this is done at the server side.

8.3.2 Load Forwarding

Random replica assignment, however, does not work well if request execution times are not uniform

since random assignment does not prevent that saturated replicas receive further clients leading to

degradation of their performance.

We address this issue with a simple but effective first-local-then-forward (FLTF) mechanism.

Chapter 8. ADAPT-LB: Load Balancing Architecture based on ADAPT-SIB 129

r j rj+1 fj+2 rj+3 r|+4 rj+5

LD<3

Figure 8.3: Forwarding a request

When the load of a replica is above a given threshold it will not accept any further client sessions

but searches for another replica. Load could be measured as memory usage, CPU usage, response

time, or the number of connected clients. We refer to a replica with a load below the threshold as a

valid replica.

When the LBM of replica rj receives a client session request and its load is below the threshold,

i.e., rj is a valid replica, it serves the client directly and establishes the session as described above.

Otherwise, rj multicasts a load query message Iqm to all replicas in FTGj in order to find a valid

replica. When a backup replica in FTGj receives the Iqm message it checks its local load and sends

an answer message back to ryT'which is positive if the load is below the threshold, otherwise it is

negative, rj chooses the r*, that was the first with a positive answer to serve the client. It returns to

the CRM the list of replicas belonging to FTGk- The CRM of the client refreshes its local FL,

and sends a session request to r^. In case of isolated overloads, contacting m other nodes will likely

find a node that can accept new clients.

However, if there is no positive answer among the backups, rj sends a forward message to the

replica with the smallest order number larger than any order number in FTGj, i.e., r(j+m+1)%„.

ry+TO+1)%„ now repeats the process, sending a new Iqm message in its own primary FTG^+m+i)%n

Figure 8.3 shows this scenario of a forward. If a valid replica is found, ry + m + 1)% n returns the in­

formation to rj so that it can forward the relevant replica list to the client. If no replica is found,

r-(j+m+1)%„ could iterate the process by sending a forward message to ry+2m+2)%n- We limit the

number of iterations to a maximum T. If after T iterations no valid replica is found, a negative

message is sent to the originator rj which either accepts the client or refuses the connection. If T is

Chapter 8. ADAPT-LB: Load Balancing Architecture based on ADAPT-SIB 130

set 0, then no forward message is sent at all. Setting T low makes sense because if all nodes in r / s

neighborhood are saturated, then it is likely that the entire system is close to saturation and further

forwarding will not help.

8.3.3 Discussion

A main benefit of our load distribution algorithm is that it is purely distributed without any central

controller and can be easily implemented. It does not affect the fault-tolerance algorithm but takes

advantage of the FTG infrastructure. Furthermore, load is checked in real time, and replicas can

individually decide to take on further load or not. The main disadvantage is the overhead of the

forward process.

One question is how often one has to forward to find a lightly loaded replica. The probability to

find a valid replica within the m backup replicas of the local FTG is equal to the probability to find

a valid replica within any m replicas in the cluster. If there are k valid replicas randomly distributed

in the cluster, the probability p to find one of the k valid replicas within the m backup replicas is:

••'-'-(""r'Kr)-
Since each forward searches ra + 1 replicas (a new FTG), the probability p to find one of k valid

replicas within the m backups of the initiator and T further forwards is:

P = l - (B - m - 1 - r * (n i + 1)) / (n - 1) . (8.2)

Assume the cluster has 100 replicas and m — 2. With 50 valid replicas and T = 1 we find a valid

replica with more than 97% probability. With only 20 valid replicas, setting T to 3, the probability is

still 92.8%. And even if there are only 10 available replicas, setting T to 5 will give us a probability

of 86.3% to find a valid replica. Thus, this simple mechanisms provides a high success rate even

for highly loaded clusters while keeping the message overhead low. Furthermore, there is no need

to keep load or other information from other replicas.

Note, when all client requests trigger similar overhead and all replicas have similar resource

Chapter 8. ADAPT-LB: Load Balancing Architecture based on ADAPT-SIB 131

configuration, the random algorithm works fine. In this case, when one replica is overloaded, others

are too, and forwarding only introduces unnecessary messages. But forwarding is useful if individ­

ual replicas are saturated for limited periods of time.

8.4 Reconfiguration

In Chapters 5 and 6, we discussed how the ADAPT-SIB algorithm performs failover and how

new replicas can join an FTG as backups. Now we adjust these algorithms to fit with our overall

architecture with the m/m property. When a replica fails or leaves, m existing FTGs now have only

m — 1 backups. Furthermore, when a new replica joins it needs m backups for its own primary FTG

and it should join m existing FTGs as backup. We want to have a mechanism that automatically

reconfigures the system back to an mJm configuration without any external intervention.

8.4.1 Server Crash

For simplicity of notation the following discussion assumes that a replica ri fails where i > m and

i + m < n. When a replica r* fails it leaves FTGi, and a new primary has to be found for r-j's

clients. Furthermore r, is removed as a backup from FTGi-m to FTG%-i. Thus, these FTGs need

new backups. Figure 8.4 illustrates the required changes. It shows the range of replicas around

the failed replica r̂ and the span of the FTGs. The bold lines are extensions, the dotted lines are

removals.

The failover process at the server side is slightly different from the original ADAPT-SIB pro­

tocol. No new primary can be built for FTGi, since r^+i to r j + m already have their own primary

FTGs. Instead, the clients associated with FTGi will be migrated to FTGi+\, and FTGi is re­

moved. The main reconfiguration steps are as follows.

1. r-j+i, which is a backup in FTGi, becomes the new primary for r-j's clients. It first blocks

client requests. r,+i then performs the failover on the components registered in FTGi a s

described in the failover part of ADAPT-SIB. Then, it migrates these components into the

context of FTGi+\. Finally, r,+i leaves FTGi because this FTG ceases to exist. It now

starts processing the blocked client requests.

Chapter 8. ADAPT-LB: Load Balancing Architecture based on ADAPT-SIB 132

f1 r2 rn-2 rn-1 rn rn+1

<C^p3>

Figure 8.4: Crash scenario
Figure 8.5: Recovery scenario

2. n+2 to n+m are backups for FTGi and FTGi+\. They simply migrate the backup informa­

tion they store for FTGi to the context of FTGi+i and leave FTGi.

3. ri+m+i is only backup of FTGi+\. It has to receive the backup information for the clients

that migrated from FTGi to FTGi+\. rj+i sends this information to rj+ m+i.

4. Since replicas r , + i to rj+m have left FTGi, they are now backups for only m — 1 FTGs.

Furthermore, FTGi-m to FTGi-i only have m — 1 backups since r« was removed from

these groups. To resolve this, r-j+i joins FTGi-m as backup, rj+2 joins FTGi-m+i, etc.

They use the normal recovery protocol of ADAPT-SIB.

Finally, each LBM removes rj from its replica list RL, and decreases the order numbers of

replicas ri+\ to rn by one. Each replica can do this independently when it is informed by the view

change protocol that r* was removed from the LDG group.

8.4.2 Server Recovery

When a failed replica recovers or a new replica joins in a cluster of size n, it first joins the LDG,

and all replicas are notified-about this event. Each replica adds the new replica with order number

n + 1 to is replica list RL and considers it in its load-balancing task. rn+i receives the replica list

Chapter 8. ADAPT-LB: Load Balancing Architecture based on ADAPT-SIB 133

RL from a peer replica. According to our setting, rn+\ must have a primary FTG and m backup

FTGs. The reconfiguration changes are depicted in Figure 8.5.

1. r„+i creates a new FTGn+i and joins it as the first member.

2. rn+\ joins FTGn-m+i to FTGn as backups. It uses the recovery process of ADAPT-SIB as

detailed in Section 7.2. These FTGs have now m + 1 backups.

3. Now, r\ to rm leave FTGn-m+i to FTGn respectively. The FTGs are now back to having

m backups.

4. Finally, r\ to rm join the new FTGn+\. They have again m backup FTGs and FTGn+i has

m backups. The recovery is fast, since this group is new and no backup information has to be

transferred. The reconfiguration is complete and rn+\ starts accepting client requests.

8.4.3 Reconfiguration Effects on Client

Reconfigurations are completely transparent to the clients since the CRM takes care of reconnecting

to a new replica if the primary it is connected to crashes. As mentioned before, when a client creates

a session, the CRM receives an ordered list FL with the identifiers of replicas r^, rj+i, ... ri+m

with r-j being marked as the primary. For the CRM this is a simple list and it does not need to be

aware that these servers constitute a FTG. If a backup leaves FTGi or a new replica joins FTGi, the

client is not directly affected because the primary r% is still available. Nevertheless, r\ piggybacks

the new member list on the first response to the CRM after such a reconfiguration so keep the

information at the CRM up-to-date. If the primary r, crashes, the CRM chooses the next replica

rj+i on its FL to continue the session. When r,+i receives the request, it processes it in its own

primary FTGi+i as discussed above. In the first response to the client, the new member list of

FTGi+i (i.e., rj+i, r-j+2,...) is returned to the client. Thus, the FL is always kept as accurate as

possible.

Chapter 9

Implementation

This chapter describes our implementation of ADAPT-SIB and ADAPT-LB in an existing J2EE

server. Our choice was on J2EE as it is more widely used than CORBA, and has more open source

products than .NET. Our implementation has been integrated into JBoss AS [49], which is one of

the most widely used open source J2EE products.

ADAPT-SIB and ADAPT-LB used the abstract concept of a component with volatile state,

and assume that the replication tool can intercept requests. In order to prove the practicability

of ADAPT-SIB and ADAPT-LB, the abstract components used so far have to be mapped to real

components in a working system, and the replication tool has to be able to obtain control during the

runtime of the system, in particular, before and after requests are executed. In the following, we first

describe the J2EE architecture in more detail and then show how the replication tool can be plugged

into the J2EE architecture. The implementation shows that the replication tool can be implemented

with little changes at the client- and the database- tiers and without complex changes at the AS-tier.

9.1 J2EE Architecture

The general architecture of an AS and in particular of a J2EE based AS have been introduced

in Chapter 2. This section,describes three important parts of the J2EE architecture in more detail,

namely, how a client sends requests to an EJB object, how the interceptor chain of the EJB container

works, and how client requests are associated with transactions at runtime.

134

Chapter 9. Implementation 135

client

lookup

Create Stub

—* EJB Home
Stub

Create EJB

*\

return

EJB Call

Create Stub

EJB Stub

JNOI EJB Home

Get Home stub

a
return Home stub

return EJB stub

-»| EJBObjecT|

1
Figure 9.1: Lookup EJB from the client side

9.1.1 EJB Lookup

A client accesses EJB objects using the corresponding EJB stub. Figure 9.1 shows how a client

gets the EJB stub. We have discussed this concept at a high level in Section 2.3.2 and then again in

Section 8.3.1. Each EJB class has a corresponding home interface. It manages the life cycle of the

EJB. When an EJB class is deployed on the AS, the home interface of the EJB class is registered

with the name of the EJB class using the Java naming service (JNDI). When an outside client wants

to access an EJB object, it connects to the JNDI service and looks up the EJB's name. If the name is

found, the stub of the home interface for the EJB class is returned to the client via Java RMI (remote

method invocation) [95]. The home interface provides remote methods to create a new EJB instance

on the AS. A create method can return a remote stub of the EJB to the client side. The stub is the

remote reference of-the EJB object acting as the local proxy. Now, the client can send requests to

the EJB object viaihe local EJB stub.

Although both session beans and entity beans can be accessed directly by the client using this

Chapter 9. Implementation 136

callfinvocation]

Intancamorl lnteKtt>ntor2 Intamflntnr3

return

:call{invocatiort)j

* - - - -

I
I
I
I
I
I

'art 1: wf rk around the

invocatio| before it is

processed

Jl(invocation)!

f h

return

call(invocation)

return
Jnvocation is really

/art 2: work around the J
result of the invocation •

Unprocessed, j

Figure 9.2: Interceptor chain

approach, the J2EE specification [94] suggests not to directly access entity beans from outside

clients to guarantee correctness and better performance. Hence, we assume clients only access

session beans. When a new session bean is created by a remote call from a client, a remote stub of

the session bean is returned to the client, and thus a new session is created between the client and

the AS. If the session bean is a SFSB, the state of this bean instance is bound to the session and is

only accessible to the client. Our assumption that no concurrency issues occur on session state is

based on this characteristic.

9.1.2 Interceptor Chain

As mentioned in Section 2.3.2, the EJB container consists of an interceptor chain, within which

each interceptor is responsible for calling a certain service. Figure 9.2 shows how a request passes

through the interceptor chain. A request passes through all interceptors in the chain before it reaches

the destination EJB, and its response passes again through all such interceptors before it returns to

the client. In JBoss, important interceptors in the interceptor chain of the EJB container are the

communication interceptor that translates a request message sent from a client back into a method

invocation to an EJB, the component resolution interceptor that finds the target EJB instance on

Chapter 9. Implementation 137

which the method will be invoked, and the transaction interceptor that associates the request exe­

cution with a transaction.

Taking advantage of the interceptor chain, we can easily manage to begin a service before the

request is executed and to stop the service after the execution is finished but before it is returned.

Considering the replication tool as a service, we can use a replication interceptor so that the repli­

cation tool can obtain control before and after a request is processed.

There could also be an interceptor chain at the client side. When downloading a remote stub of

an EJB object, an interceptor chain is downloaded as well that can intercept client requests to the

EJB object and the corresponding responses to the client side. The client side interceptor chain can

help us to deploy the client part of the replication algorithms.

9.1.3 Associating Transactions with Requests

The transaction service is a service that is typically called on the EJB container via the transaction

interceptor. The interceptor is responsible for associating a request with a transaction. Section 2.4.4

already introduced how the transaction interceptor associates requests with transactions for the CMT

and BMT schemes. The transaction management is implemented in the transaction manager (TM),

while the business logic is implemented in EJB objects. At runtime the TM and the EJB object

must exchange information. For instance, the TM needs to know which database is required to be

accessed by the business object, and the EJB method needs to know if a transaction has committed

or not. In this case, the transaction interceptor is used to help the TM and the EJB objects exchange

information.

If the client wants to determine the boundaries of the transaction, the client needs to download a

remote stub of a user transaction object that represents the TM, and then explicitly start/commit/abort

a transaction using the remote method invocation.

When a transaction is started, it first only executes at the AS. Only when the execution accesses

the database, a DB transaction starts. That is, the TM starts the DB transaction with the first oper­

ation to the database and then terminates both at the AS and the database. If there is no database

access, there is no DB transaction at all. Database access usually is controlled via a JDBC driver,

which is provided by the database but runs at the AS. Hence, to obtain control over transactions, the

Chapter 9. Implementation 138

replication tool needs to intercept transaction commands to the TM (start/commit/abort) and JDBC

commands sent to the database.

9.2 Implementation based on the Adapt Framework

Inspired by the interceptor mechanism, our partners at the Universita di Bologna, Italy, with our

help, implemented a pluggable module, called ADAPT framework [6] l. The ADAPT framework is

an extension of a J2EE server, allowing replication algorithms to be plugged in. Towards the upper

layer, the framework defines a set of APIs for the replication algorithm. The replication algorithm

can be implemented using these APIs without considering the architecture of a certain AS. Below

these interfaces, the framework for a specific J2EE AS implements a set of interceptors that gets

control of the system during runtime without affecting the original functions of the server.

When an EJB is invoked at runtime, the framework transfers control to the replication algorithm

implemented within the replication manager (RM). Through the APIs, the RM sees an abstract view

of EJBs, invocations, and other elements of the server. The RM may perform any actions, such as

setting component state or communicating with other replicas, before continuing the invocation.

The main advantage of using the ADAPT framework, rather than modifying the server directly, is

that it simplifies replication programming. The custom API isolates the replication algorithm from

the details of the server implementation. Further, the algorithm is centralized in just a few classes,

rather than scattered throughout the server system. Figure 9.3 shows how the framework separates

the J2EE server from the replication algorithm implemented within the replication manager. Within

the replication framework, RCS (remote component stub) and CH (component handle) represent ab­

stract views of components on the client side and the server side. In general, the ADAPT framework

has been designed to be used by various replication algorithms.

In order to implement ADAPT-SIB and ADAPT-LB, the replication framework should provide

APIs to see EJBs and their states, to see invocations on EJBs, to see transactions, and to see database

operations. In the following sub-sections, we introduce how this information is provided by the

replication framework.

'Our major contributions are described in Section 9.2.4 and Section 9.2.5

Chapter 9. Implementation 139

RCS: Remote Componet Stub
CH: Component Handle

Replicated J2EE Server

PrimaryJ2EE server

7r®

ition Manager

Replication Protocol

X
Replication Manager

f?ep('icatio«f«iBW»tH

Backup J2EE server

Figure 9.3: ADAPT framework separates replication algorithm from J2EE server

9.2.1 Components and States

The ADAPT framework API classifies components into three levels:

ComponentKind is the broadest classification. There are just a few kinds, fixed by the framework

implementation: entity beans, stateful and stateless session beans.

ComponentType is a kind plus.a name, specifying a particular "class" within the kind. The number

of types depends on the applications deployed on the server.

ComponentHandle refers to a specific EJB instance. It consists of a ComponentType plus an

instance identifier specific to that type. With an entity bean, the identifier is the primary key;

with a stateful session bean, it is the session ID. The number of distinct handles depends on

the number of EJBs invoked by the application.

All these classes may be transmitted between replicas. The classes also support comparison: two

ComponentHandles, for example, test equal if and only if they refer to the same component instance.

An EJB instance is created by a call to one of the create methods of its home interface. The

create method is intercepted by the ADAPT framework. After an EJB instance is created, the

framework creates the ComponentHandle to represent the EJB instance. Then, in the framework,

the information about the EJB instance can be received through the ComponentHandle.

Chapter 9. Implementation 140

\jgrogramy~
flS
KJ

r°\ (
\

3 > @)

/ \
Component
resolution

/ \
' > Transaction

interception

Figure 9.4: ADAPT framework intercepts the execution flow at three points

The ComponentHandle provides methods to test whether a EJB instance has state and to get

the state. The state of an EJB instance is an opaque serializable object, which can be sent between

replicas. To get the state of an SFSB, we use the passivation mechanism, saving the state to an array

in memory instead of persistent storage. The state value is simply the serialized form of the object

itself. The ComponentHandle can be replicated together with the array of the state value to backups.

The replication of SFSB states is implemented in this way.

The ComponentHandle provides create methods that can re-create the EJB instance. It also

provides a method to set the state value on the re-created EJB instance. Moreover, it provides the

call method:

Response call(Request request).

This method can be used to eventually execute the intercepted request on the EJB instance repre­

sented by the ComponentHandle.

9.2.2 Invocation Interception

The ADAPT framework gets control of an execution by intercepting an EJB invocation at three

points as shown in Figure 9.4. At each point, the replication algorithm may intervene, performing

any computation or communication before or after continuing. The first point is within the client-

side stubs. The interceptor at the first point is called the client replication interceptor. It is the entry

point for the client-side replication algorithm, passing the control to the CRM (client replication

manager). For example, when the interceptor intercepts a failure exception of the primary AS, it

notifies the CRM to re-direct requests to the new primary. Both the second and the third points

file:///jgrogramy~

Chapter 9. Implementation 141

are within the interceptor chain on the server side. The second point comes immediately after the

invocation reaches the server, before the target EJB reference has been resolved. Intercepting here

allows the replication algorithm to first re-create the EJB instance itself and set the state of the EJB

instance, if necessary. This is used, e.g., by the Install-After-Failover strategy on the new primary.

The interceptor at the second point is called the early replication interceptor. The third interceptor

point comes just before the invocation passes to the target EJB instance; i.e., after the reference has

been resolved, and all the EJB properties, such as security and transactions, have been set up. The

interceptor at this point is called the replication interceptor. At this point, the control is passed to

the RM (replication manager). Then, the RM can get the request and the corresponding response,

get the EJB's state, get the current transaction, etc.

9.2.3 Requests and Responses

The replication interceptor transfers the control of a method invocation to the RM by triggering the

invoke method of the RM as follows:

Response invoke(Request request, ComponentHandle component).

Within this method, the RM can get the state of the target EJB instance using the ComponentHandle

parameter and get information about the request using the Request parameter. To invoke the target

EJB instance, the RM calls the corresponding call method of the ComponentHandle described in

Section 9.2.1. After the call method of the ComponentHandle returns the response, the RM can

process the response (e.g., put it in the RR list), before the invoked method returns.

Generally, Request and Response are opaque to the replication algorithm. However, in a Re­

quest, the RM is allowed to read the name and the list of parameters of the method that is being

invoked. This permits the replication algorithm to check whether two requests are identical. When

the invocation completes normally, the Response encapsulates the return value. In this case, the

replication algorithm cannot examine the content. However, when the invocation throws an excep­

tion, this is wrapped in a special Response which provides the details of the exception and identifies

its source. ••„••••-.• -•••••- --..- ,-.,-.~<-..

Chapter 9. Implementation 142

Application exception The exception was thrown by the component, i.e., by the application code.

In this case, the replication algorithm should not examine the exception details, but should

simply pass the Response back, where it will be handled by the calling component.

System exception Thrown by the system or framework, for example when the server crashes. The

client-side replication can catch this and fail over to another server before returning to the

caller.

Replication exception Thrown by the replication algorithm, presumably from some other point in

the chain of invocation. In this case, the replication algorithm is free to examine the exception

details and handle them as it chooses.

Both Request and Response can be tagged with headers. These are arbitrary key-value pairs,

which are transmitted along with the content of the message. They are visible only to the replication

algorithm. The key must be a string; the value may be of any class that can be serialized in the

invocation. A common use for headers is to tag each request with a unique ID. This is to guarantee

that each request will be executed exactly once, despite retransmissions and communication failures.

For example, an ID can be set by the client-side stub in the client replication interceptor, before the

request is sent the first time.

9.2.4 Transaction Interception

As mentioned in Section 9.1.2, there is a transaction interceptor in the interceptor chain to associate

a request to a transaction. The transaction interceptor accesses the TM (transaction manager) of the

AS using the JNDI service. It gets the reference to the TM by looking up "TransactionManager" in

the naming service of the AS. In order to intercept transaction commands to the TM, the ADAPT

framework provides the TM wrapper that wraps the TM by providing methods to intercept typical

transaction commands, i.e., transaction begin, commit, and abort, as shown in the right side of

Figure 9.5. Within these methods, the TM wrapper passes transaction commands to the TM by

calling corresponding methods of the TM.

When the AS is started, the TM wrapper is started after the TM is started. Without changing

the TM, the TM wrapper gets the reference to the TM by looking up "TransactionManager" in the

Chapter 9. Implementation 143

Client Tx
Wrapper

TM
Wrapper N Transaction

Interceptor

Transaction
Manager

Figure 9.5: ADAPT framework wraps transaction manager and client-side user transaction

naming service. Then, the TM wrapper removes the binding of the TM and the name "Transac-

tionManager" from the naming service. Instead, it binds itself with "TransactionManager" in the

naming service. At runtime, when the transaction interceptor looks up "TransactionManager", it

gets the reference to the TM wrapper but not the direct reference to the TM. This way, the TM

wrapper intercepts all transaction commands that are sent from the outside, including the trans­

action interceptor. The TM wrapper has the reference to the RM, and hence can pass control of

transactions to the replication algorithm before or after passing transaction commands to the TM.

Thus, according to our replication algorithm, state propagation can be executed when a commit

command is intercepted by the TM wrapper but before it is passed to the TM.

In the N-l pattern, a transactionxan be explicitly started, committed and aborted by the client.

To do so, the client requires a remote stub referring to the TM. The remote stub is called Client

User Transaction, which is binding to the naming service with the name "UserTransaction". The

ADAPT framework provides the Client Tx Wrapper (CTW) to wrap the client user transaction, and

binds it with "UserTransaction" in the naming service to replace the client user transaction. When

a client is looking up "UserTransaction", the CTW containing the client user transaction is returned

to the client as shown in the left side of Figure 9.5. Thus, the CTW can get control of transactions

at the client side, and hence the client part of the N-l algorithms gets control of transactions.

The wrapper approach, replacing original services in the naming service with wrappers is an

easy way to plug our replication code into the system without modifying the original logic and code

of the affected services.

Chapter 9. Implementation 144

9.2.5 JDBC Interception

According to our replication algorithm, a marker is inserted into the database before the commit to

let the new primary check if a transaction eventually committed at the database or not. This insert

only needs to be done if the transaction is an update transaction, i.e., database access involved in

the transaction contains insert, update, or delete operations. In order to analyze database operations

the ADAPT framework uses a JDBC wrapper to wrap the JDBC driver of the database. The JDBC

wrapper implements the JDBC API defined in the JDBC 2.0 specification [97], and passes SQL

statements to the real JDBC driver after analyzing them. The JDBC wrapper has the reference to

the real JDBC driver by looking up the database source name in the naming service. Then, the

wrapper replaces the entry of the JDBC driver in the naming service with itself. Thus, when EJB

is accessing the database, it always gets the reference to the wrapper, and sends SQL statements

to the wrapper. The wrapper checks each SQL statement whether it is an update operation, and

if yes, marks the corresponding transaction as an update transaction. Then, the wrapper redirects

each SQL statement to the real JDBC driver to trigger a database operation. Thus the replication

algorithm can detect update transactions and insert a marker in the database accordingly.

9.2.6 Overall Architecture

Figure 9.6 shows the integration of the replication tool into JBoss using the ADAPT framework.

The white boxes in the figure show the default JBoss components, the default client and the default

database. The gray boxes show the building blocks provided by the ADAPT framework. The black

boxes show the building blocks where the replication algorithm is implemented. Apparently, the

client side replication algorithm is implemented within the CRM, and the server side replication

algorithm is implemented within the RM.

The ADAPT framework gets the state of EJB instances and gets controls of requests and trans­

actions in the standard J2EE environment. Using the ADAPT framework, the implementation of our

replication tool just needs to focus on the implementation of the proposed algorithms. To plug the

ADAPT framework into the JBoss application server, we have to implement the underlying APIs

of the framework using APIs provided by JBoss. Two parts of the framework have to use APIs

Chapter 9. Implementation 145

Other Replicas

Figure 9.6: The implementation architecture of the ADAPT framework in JBoss

provided by JBoss. Firstly, all of the three interceptors, namely the client replication interceptor, the

early replication interceptor, and the replication interceptor have to be extended from the abstract

client interceptor and the abstract server interceptor of the JBoss implementation. Then, these in­

terceptors are configured in the JBoss configuration file and are automatically loaded at runtime as

other interceptors of JBoss. Secondly, the implementations related with the ComponentHandle, the

Request and the Response have to use APIs provided by the JBoss container to get information about

EJB instances and information about invocations to the JBoss container. All of these implementa­

tions concerned with the JBoss container are called JBoss Container Support. Our implementation

of the JBoss container support is based on JBoss 3.2.3.

The transaction wrappers do not require the special support from the JBoss container since

they implement the standard APIs defined in the Java transaction API specification [98]. The JDBC

wrapper is based on the standard JDBC specification, and hence, does not require the special support

from the JBoss container.

9.3 Implementation Issues

The client-side and server-side replication algorithms are implemented in the CRM and the RM

respectively. The group communication system used for communication is based on Spread [1].

Chapter 9. Implementation 146

Our partners from Universita di Trieste enhanced Spread and provided a set of Java interfaces, called

JBora [12]. Hence, we use JBora for all inter-replica communication. In the ADAPT-SIB algorithm,

each replica joins a single FTG group using the join method provided by JBora. In the ADAPT-LB

algorithm, each replica joins a single LDG group, and also joins a set of FTGs depending on the

configuration of the number of replicas required by a FTG.

The major issues relevant to the implementation are (i) how to extend the naming service for

client applications to support a replicated AS, (ii) how to decide on the primary, and (iii) how the

RM processes requests and transactions.

9.3.1 Extended Naming Service for the Replicated Application Server

As mentioned in Section 9.1.1, a client connects to the AS by looking up the home interface of an

EJB. In order to do so, the client has a JNDI configuration with the destination address and port

number of the AS. The standard JNDI service only supports the lookup on a single AS. In our

implementation, we extend the JNDI lookup to support multiple AS replicas. On the client side,

the JNDI configuration is now able to provide a list of AS replicas. When the client performs a

lookup, the extended JNDI client randomly chooses a replica to send the lookup request to. If a

failure exception occurs it chooses another replica from the list. Every AS replica, whether primary

or only backup, has the same deployment of EJBs, and hence can generate the home interface of the

target EJB and send the stub to the client side. At the same time, the CRM instance is generated on

the server side. It contains the list of addresses of all available replicas with a flag on the address of

the real primary that should be assigned to the client. Then, the CRM is downloaded to the client

together with the stub of the home interface. When the client makes a request to the remote stub

of the target EJB instance via the home interface, the CRM intercepts the request, and redirects

the request to the rea) primary. Thus, the client communicates from now on with the real primary

independently of who provided the EJB stub and the CRM object.

By taking advantage of the JNDI lookup, the ADAPT-SIB framework does not need any extra

communication overhead to download the client part of our replication algorithm. The same holds

for the ADAPT-LB framework. After the client submits the lookup request to an available AS

replica, this replica decides randomly which AS replica will be the primary for the client, and

Chapter 9. Implementation 147

includes the relevant information with the CRM that is downloaded with the home stub to the

client. Then, when the client creates the EJB object and calls EJB methods, the CRM automatically

forwards these requests to the AS primary. This means, there is no extra communication overhead

between a client and the server cluster.

9.3.2 Deciding on the Primary

The ADAPT-SIB algorithm has to decide on the primary AS when the system is started and after the

current primary crashed. There are many ways to decide on a primary. We have not implemented

anything special and assume all machines have the same power, i.e., there is no preference who

is primary. At startup, a certain number of replicas is started, all joining the FTG group. Then,

each multicasts a voting message to the FTG using total order. Due to the total order property,

each replica receives the voting message in the same order. The replica, whose voting message is

the first one received, is selected as primary. This way, every replica can make the same decision

based on the voting messages. Lookup requests occurring during the select period are blocked until

the primary is selected. After the primary is selected the lookup request return the CRM with the

address of the primary. If other replicas join into the system after the primary is selected they will

become backups. When a replica crashes, all other replicas are notified via the membership service

of the GCS. If the crashed replica was the primary, the same voting mechanism is used as at system

start-up.

The ADAPT-LB framework does not use this approach to decide the primary since each AS

replica is a primary. At the beginning of the system, the LDG and FTGs are initialized using the

algorithm described in Section 8.2.

9.3.3 Processing Requests and Transactions

On the server side, the replication algorithm is implemented in the RM as described in Chapter 5

and 6. The RM provides beg in , commit, and a b o r t methods to process transactions, whereby

the control was obtained from the TM Wrapper. It also provides the i nvoke method to process

requests, whereby the control was obtained from the replication interceptor. Moreover, it provides

Chapter 9. Implementation 148

the e n l i s t D B R e s o u r c e s method to record the database configured for a specific application.

Fn our algorithm description in Chapter 5, we use transaction ids to associate requests and their

transactions in the replication algorithm. In the real implementation, we do not need to transfer

transaction ids through transaction handling methods or request handling methods. Instead, we bind

the transaction id with the thread that executes the transaction. Since requests have to be executed

in the same thread as the transactions associated with the request, the RM can get the transaction

id from the current thread. When intercepting a commit request of a transaction, the RM gets the

state of all involved components using their componentHandles, and multicasts the state using the

multicast API provided by JBora.

In order to insert the update marker into the database, the RM creates a special marker table

in the recorded database when the system starts up. Then, when the replication algorithm needs to

insert an update marker, the RM uses a standard SQL statement to insert the marker, which typically

is the corresponding transaction id, into the marker table. After a crash and the selection of the new

primary, failover executes simply as described in Section 5.2.

9.4 Summary

Our implementation of the replication tool does not depend on the JBoss implementation due to the

use of the ADAPT framework. When changing to another J2EE AS, only the ADAPT framework

has to be adjusted. Our implementation also does not require modifications to clients or database.

Chapter 10

Experiments and Evaluation

This chapter uses several suites of experiments to evaluate the performance of the ADAPT-SIB and

ADAPT-LB frameworks. The evaluation of ADAPT-SIB focuses on the extra overhead caused by

ADAPT-SIB. The evaluation of ADAPT-LB focuses on the scalability achievements. The repli­

cation algorithm and the load balancing algorithm provided by JBoss Cluster [60] are used as the

reference system to evaluate performance of ADAPT-SIB and ADAPT-LB respectively. All repli­

cation algorithms are implemented based on JBoss 3.2.3. The backend database is DB2. As GCS,

we use Spread [1] plus JBora [12].

10.1 Evaluation of ADAPT-SIB

This section uses four suite of experiments to evaluate ADAPT-SIB, our fault-tolerance framework.

First, we use a micro benchmark to compare the performance of warm replication and cold replica­

tion. Then, we use the micro benchmark to show the impact of replication for different components

and database access patterns. Then, we use the ECperf benchmark [93] to evaluate the performance

of ADAPT-SIB replication tool on a more realistic application and compare it with JBoss's existing

replication technique. The last experiment evaluates failover. We only use two AS replicas since

the overhead at both the primary and the backup remains the same no matter whether there are two

or more backups.; Only the GCS mighttake longer for message delivery if there are more replicas.

But the overhead between two, three, or four replicas is usually neglectable. All machines are 3.0

149

Chapter 10. Experiments and Evaluation 150

260

240

220

200

180

| 140
„ 120

I Warm Replication

a Cold Replication

t > t 1=±Z
3 6 9 12 15 18 21 24 27 30 33 36

Number of clients

150
140
130
120
110
100
90
80
70
60
50
40
30
20
10

0

+ Warm Replication

. - . a . . . Cold Replication o- •'?

, - o *

n*
. . o - " —

-^ »---° *—"""
°' i •-***'

i^+ ^ ^

1 3 6 9 12 15 18 21 24 27 30 33 36

Number of clients

(a) Response Time (b) Failover Time

Figure 10.1: Performance comparison between warm and cold replication

GHz Pentium 4 with 1 GB of RAM running RedHat Linux. The configuration in all experiments

consists of one machine emulating clients, one machine running the web server (if needed), two

machines running JBoss application server 3.2.3 instances, and one machine running DB2 as our

database system.

10.1.1 Performance Comparison between warm and cold Replication

In our first experiment suite, we use a simple test to compare the performance of warm replication

and cold replication. Recall in warm replication, state changes are propagated to a running backup

replica, while they are written to stable storage with cold replication, in our implementation to a

DB2 database. We only consider SFSB, since we always use cold replication for EB. In the test,

a client request triggers the execution of a single method of an SFSB within a transaction and the

1-1 algorithm applies. The main configuration variable is the number of clients. Each client is

configured to submit 10 requests per second. However, since a client does not submit a new request

before it receives the response for the previous request, if the execution time is longer than 100 ms,

the real injection rate is smaller than 10/sec.

We compare the performance in regard to two aspects. First, we look at the average response

time for each client request. Response time in this test includes the ordinary time to execute the

request in the JBoss AS, the time to do state propagation at the end of each transaction (namely

Chapter 10. Experiments and Evaluation 151

each client request due to the 1-1 pattern), and the additional time to pass the ADAPT-framework.

Hence, the response time implies the additional overhead induced by replication during normal

processing. Figure 10.1 (a) shows the results. Response times increase slowly with increasing

number of clients for both the warm replication and cold replication, and then increase sharply after

saturation. As the time to execute the request is the same for both runs and both go through the

same steps of the replication framework, the difference in the response times reflects the difference

in costs between cold and warm replication. The main overhead of warm replication are serializing

the state of the SFSB and propagating it to backups. The main overhead of cold replication are

serializing the SFSB state and writing it into the database. The figure shows that warm replication

has considerably better performance than cold replication. Before saturation, the response time

with cold replication is typically double the response time with warm replication. At 15 clients, the

response time with cold replication increases sharply due to CPU saturation, and the final saturation

is after 24 clients. Warm replication reaches the saturation point later at around 30 clients.

The second performance aspect is failover time. In Section 7.1, we proposed three failover

strategies. Cold replication can use the Install-When-Failover and the Install-After-Failover strate­

gies. In here, we take the Install-When-Failover strategy since it shows better the costs of the

failover steps as they all occur at once. We crash the primary after the system is running around

100 ms. Figure 10.1 (b) shows the corresponding failover time for both warm and cold replication

when there was a certain number of clients connected to the old primary. The main overhead during

failover for warm replication is to reconstruct all EJBs and restore the update-to-date state of each

SFSB. Cold replication has to do the same but also requires additional time to read the logged state

of each SFSB from the database. Both failover times increase slowly with increasing number of

clients, because the number of SFSBs required to be reconstructed is increasing with the number

of clients. The difference in failover times between cold and warm replication reflects the addi­

tional time to read the logged states of SFSBs from the database. This time gradually increases

with the increasing number of clients, since as more clients exist more SFSBs are stored in the

database. Please note that in this test the failover time is independent of the running time, because

each client always accesses the same SFSB, and hence no new SFSBs will be accessed after all

clients begin to submit requests. However, in a real application, a client might access more and

Chapter 10. Experiments and Evaluation 152

more EJBs during runtime. In this case, the failover time of the Install-When-Failover strategy will

be affected by the running time. Our later experiments focusing on failover will show the effect.

Although Install-After-Failover can shorten the failover time for both warm and cold replication,

the additional overhead for cold replication to read from the database remains the same.

We conclude that warm replication has better performance than cold replication during both

normal processing and failover. Hence, in the following experiments, we only focus on warm

replication.

10.1.2 Component Analysis

In our second experiment suite, we evaluate the overhead of replication for different components

and component combinations. This experiment suite is implemented as 1-1 pattern. We evaluate

the performance by comparing ADAPT-SIB with a non-replicated JBoss.

We consider the following- cases. Test 1: No database access takes place. Test 2: Database

access (update) takes place but no conflicts occur at the database. That is, different clients access

different tuples. Test 3: Database access takes place and all transactions conflict. That is, all requests

access the same tuple. In Test 1, a request triggers the execution of a single method of an SFSB. Test

2 and 3 have two different versions. In the first, a request executes only on one SFSB which makes

the database call. In the second, a request calls a SFSB, which calls an EB to access the database.

Each client submits 10 request per second, and the main configuration variable is the number of

clients. Again, if the execution time is longer than 100 ms, the real injection rate is smaller than

10/sec.

Test 1: No database access Figure 10.2 shows (a) the average response time and (b) the throughput

achievable with increasing number of clients. Response times increase slowly for both the replicated

and non-replicated system. Below the saturation point, ADAPT-SIB (including the framework) has

an overhead of around 4 ms. This is very low in total numbers, but means an overhead of around

100% for medium number of clients since response times are generally very small. This is the

worst case scenario for our algorithm since it contains only SFSBs which all must be replicated.

At 27 clients, response times increase sharply due to CPU saturation, and the final saturation is

Chapter 10. Experiments and Evaluation

- » — ADAPTSIB

• -o - - Non-Replicated JBoss

1 3 6 9 12 15 18 21 24 27 30 33 36

Number of clients

^ ^

1 3 6 9 12 15 18 21 24 27 30 33 36

Number of clients

(a) Response Time (b) Throughput

Figure 10.2: No database access

••' / / /
y A.,'_s

/A

• • -

* % ' • • " ' •

—A—ADAPT-SIB (SFB)

. . . u . . . Non-Replicated JBoss (SFB)

- • » - -ADAPT-SIB (SFB+EB)

- • * - • NonRepllcatedJBoss{SFB*EB)

9 12 15 18 21 24 27 30 33

Number of clients"

250

? 200

I 150

.1
I 100

1
•5
} 50

I

a-'' ' n .

x'?l*—*~~^_ t

^jjir.. .» -..._
/

/

*—ADAPTSIB (SFB)

o Non-fleplicalod JBoss (SF8)

- - » - - ADAPT-SIB (SFB+EB)

~ * M - - Non-Repllcatod JBoss (SFB+EB)

3 6 9 12 15 18 21 24 27 30 33 36

Number of clients

(a) Response Time (b) Throughput

Figure 10.3: Conflict-free database access

_ / • ' " _ r,

M ' a'

/ -P'
/ -a

K . * *

f n'

•rT.a'

— * — ADAPT-SIB (SFB)

a Non-Replicated JBoss (SFB)

9 12 15 18 --2-1- 24 -27-

Number of clients

p-" ' • • n — 0 - * ' 0 - . - o - a •• o - - [

7 * * * * * * * ,
/
/
f _ * _ ADAPT-SIB (SFB)

-••u-- Non-Replicated JBoss

l — , 1 <6FBI I , , 1

3 12 15 18 21 24 27 30

Number of clients

(a) Response Time (b) Throughput

Figure 1.0.4: Conflicting database access

Chapter 10. Experiments and Evaluation 154

after 33 clients. The non-replicated system does only saturate at around 66 clients again due to

CPU overhead. Since the system is CPU bound, and the non-replicated system takes half the time

to execute one request compared to the replicated system, it can execute double as many requests

before saturation.

There are two solutions to improve the results of the replicated system. The first is to improve

the implementation of the algorithm (e.g., data structures, access paths). This, however, can only

succeed to a certain point. After that, alternative replication strategies have to be found, e.g., lazy

replication.

Test 2: Conflict-free database access Figure 10.3 shows the results of test 2, in which transactions

access the database but concurrent transactions never conflict. The figure contains graphs both for

the SFSB only and SFSB/EB combinations. Let's first have a look at the SFSB only case. Compared

to Figure 10.2 (a) for no database access, response times increase more steeply, and are generally

higher. This is due to the database access. When the number of clients is smaller than 15, the

overhead of ADAPT-SIB is stable at around 15 ms. The total time spent in ADAPT-SIB is higher

than with no database access (4 ms) because the marker has to be inserted into the database (if a

transaction does not update the database, no marker is inserted). In this scenario, 15 ms only mean

an overhead of 20% for medium client numbers since transaction execution is generally long. With

more than 15 clients, the time spent in the replication algorithm increases linearly with the number

of clients and the throughput increases only very slowly 10.3 (b). At 15 clients, the CPU overhead

is around 85%. After that, it does not increase fast because the system always waits for operations

at the database to complete. The saturation point is at 22 clients. The non-replicated server reaches

saturation with 33 clients.

When database access is filtered through EBs, response times both for the non-replicated and

the replicated system are generally higher due to the EB overhead (see, e.g., [23], for a comparison

of SFSB and EB). However, the relative performance is similar to the SFSB only case.

The conclusion is the easy observation that if the original system has high execution times, than

the overhead of the replication algorithm has not such a big relative effect than with small execution

times.

Chapter 10. Experiments and Evaluation 155

Test 3: Conflicting database access Figure 10.4 shows the results when all transactions conflict at

the database. We only present the SFSB only case, since the effect of using EBs is similar to test 2.

Generally, response times (Figure 10.4 (a)) are much larger than in test 2 due to the long blocking

times at the database. They increase sharply with the number of clients for both replicated and

non-replicated case. The difference between replicated and non-replicated system is bigger than in

test 2 and also increases faster than in test 2. The reason is that ADAPT-SIB generally increases

the execution time for each transaction. Assume transaction Tl holds a lock, and T2 and T3 wait

for the lock. The time Tl needs longer to finish due to replication is also added to T2's and T3's

execution time. Additionally, the longer execution time of T2 is added to T3's execution time. This

means, waiting times are cumulative. We can also see that the maximum throughput (Figure 10.4

(b)) is only around 1/4 of the one in test 2 for both the replicated and non-replicated system due to

the blocking.

As a conclusion, although the CPU is not saturated, the CPU overhead of replication limits its

performance. Although the response time increase is due to longer waiting times at the database, it

is caused by the computation overhead.

10.1.3 Evaluation of Different Execution Patterns

The previous experiments seemed to show that ADAPT-SIB had quite bad performance. However,

the experiments were designed to show extreme cases, enabling us to understand the implications

and influence of replication. In this section, we evaluate the performance of ADAPT-SIB on a more

realistic application. We also pay attention to different execution patterns. ADAPT-SIB detects the

execution pattern depending on the requests it intercepts, and automatically applies the correspond­

ing algorithm.

To simulate a real application, we use the ECperf benchmark [93]. ECperf emulates businesses

involved in manufacturing, supply chain and order/inventory management. The application is split

into customer, manufacturing, supplier and corporate domains. The benchmark is quite database-

heavy, i.e., the database is accessed frequently. The transaction injection rate (IR) is an indicator of

the load submitted to the system (transactions per second). Results show the average response time

of order entry transactions of the customer domain in milliseconds. Results are only measured over

Chapter 10. Experiments and Evaluation 156

the steady state phase (10 minutes) of each test run.

Our evaluation compares (1) a regular, non-replicated JBoss server as baseline for comparison;

(2) two JBoss server replicas using ADAPT-SIB; (3) two JBoss server replicas using JBoss's own

replication solution called JBoss clustering. For both (2) and (3) one server was primary for all

clients. JBoss has to basic configurations. In a fault-tolerance configuration, one machine in the

cluster is primary and all others are backups. In this configuration, no load balancing property

is provided. In a load-balancing configuration, all machines are able to process client requests.

We discuss the load balancing configuration in more detail in Section 10.2. In this experiment,

we configure JBoss clustering in the primary-backup model. As mentioned before in Section 3.1.1,

JBoss clustering propagates state to backups on a component basis just before the component returns

from a method call. Hence, if several components are called within one client request, several

messages are sent. Moreover, please note that JBoss clustering cannot guarantee correctness even

for the 1-1 pattern.

We look at the 1-1, N-l, and 1 -N patterns individually to understand the impact of the particular

mechanisms. The patterns are all used with accessing one database. At the end of the section, we

have a test case with two databases that require 2PC.

1-1 algorithm

In the original ECPerf benchmark implementation we used, all execution follows the 1-1 pat­

tern. Figure 10.5 (a) shows the average response times of order entry transactions at increasing IR

for the 1-1 execution pattern. The gap between the curve of ADAPT-SIB and the non-replicated

system is the overhead of replication. At low load, the 1-1 algorithm adds 15 ms (15% overhead).

As a comparison, [72] also indicates around 15% overhead for FT-CORBA (primary-backup) com­

pared to non-replicated CORBA. JBoss clustering adds around 120 ms (120% overhead). The high

overhead is due because it sends state after each method invocation while our approach sends one

message per transaction. Response times for all setups increase steadily with increasing load until

saturation points which is around 27 IR for the non-replicated JBoss, 23 for JBoss clustering and

the 1-1 algorithm. More information about the saturation point can be found in Figure 10.5 (b)

which shows maximum achievable throughput of the system with increasing IR. All systems satu­

rate due to CPU overhead. Both the 1 -1 algorithm and JBoss clustering saturate at 23 IR, while the

Chapter 10. Experiments and Evaluation 157

— * — 1 - 1 algorithm
• --«•-• JBoss Clustering

p 7

/ • r —

/ v

n • - xs' - ^ " ^ * ' '

.«•"• f,.~'*

^ - r ^

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Injection Rate

2600
2600
2400
2200
2000
1600
1600
1400
1200
1000
600
600
400
200

-1-1 algorithm
- JBoss Clustering
• Non-Replicated JBoss

l < • ' — ' — i — ' —

^m
0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 [

Injection Rate

(a) Response Time (b) Throughput

Figure 10.5: ECperf comparison for the "1-1" Pattern

500

450

400

350

300

250

200

150

—A—N-1-best-etfort algorithm
- - o - - N-1-ordered algorithm
_ . « . , - Non-Replicated JBoss

' L '

A / •
/ Ji

• „ - ^ " '

- ^ * " . _ Z - • - - • * ' ~

1 2 3 4 5 7 8 9 10 11

1200

1100

1000

900

—ft— N-1 -best-effort algorithm

- -o- - N-1 -ordered algorithm

- - • — Non-Replicated JBoss

Injection Rate

(a) Response Time (b) Throughput

Figure 10.6: ECperf comparison for the "N-1" Pattern

600
550
500
450
400
350
300
250

. 200
150

— * — 1 -N algorithm —
. . .a- - . JBoss Clustering
-•-•••- Non-Replicated JBoss .0/

- . - U >* m

D - - " ^
„ . . - - » - ^ . • • "

̂<. .. ; -. " ' —f—3TTt -••" "

1 3 5 7 9 -11- -13 15-17-"19 21 23 25

Injection Rate

2600
2400

£ 1800

-1-N algorithm
- JBoss Clustering
-Non-Replicated JBoss

mz

•sao
z 2 Z ^ s s

0 1 3 5 7 9 11 13 15 17 19 21 23 :

Injection Rate

(a) Response Time (b) Throughput

Figure 10.7: ECperf comparison for the "1-N" Pattern

Chapter 10. Experiments and Evaluation 158

non-replicated JBoss saturates at 27 IR. As a summary, we believe the overhead of our approach is

acceptable considering its strong correctness properties.

N-l algorithm Figure 10.6 (a) shows the response times for the N-l execution pattern. We

modified the ECperf implementation so that each order entry transaction contains on average 5

order requests. The figure does not show results for JBoss clustering since response times are five

times as high as in the 1-1 model. Response times are generally higher than for the 1-1 model

shown in Figure 10.5 (a) since several client requests are included in one transaction. Compared

to no replication, the N-1-best-effort algorithm adds again about 15% overhead while N-l-ordered

adds 30%. The latter has higher overhead since it propagates the order in which database access

takes place at the end of each client request. Considering that these are five additional messages,

the overhead is quite small. This is true because the messages are small and only sent with reliable

delivery. In regard to throughput shown in Figure 10.6 (b), all configurations saturate much earlier

due to CPU overhead. N-1-ordered saturates at 8 IR, N-l-best-effort at 9 IR, and the non-replicated

JBoss at 10 IR.

We would like to note that in ECperf many updates are on client related data with only few

conflicts. Hence, even the N-l-best-effort algorithm provides exactly-once in most cases for this

particular application.

1-N algorithm Figure 10.7 (a) shows the response times for the 1-N execution pattern. We

changed the ECperf implementation such that each order entry request triggers an outer transaction

which on average contains three inner transactions. Again, response times are generally higher than

for the 1-1 execution pattern since now each order entry request includes several transactions. In

absolute times, the 1-N algorithm takes more additional time than the 1-1 algorithm in Figure 10.5

(a) since we now have to send an additional uniform-reliable message for each inside transaction.

In contrast, JBoss clustering adds the same time (120 ms) as in the 1-1 pattern since the replication

mechanism is not related to transactions. In terms of throughput shown in Figure 10.7 (b), the 1-N

algorithm saturates at 21 IR, JBoss clustering saturates at 23 IR, and the non-replicated JBoss satu­

rates at 25 IR. The 1-N algorithms saturates earlier than JBoss because of the increased bookkeeping

to guarantee all properties.

1-1 with 2PC Now, let's evaluate the extended algorithm which supports a transaction to access

Chapter 10. Experiments and Evaluation 159

Model

one database

more than one
database

Algorithm

Non-replicated JBoss
ADAPT-SIB

Non-replicated JBoss
ADAPT-SIB

Response
Time (ms)

34.9
40.3
103.5
111.8

Tx numbers
(per second)

30
26
10
9

Table 10.1: 1-1 execution accessing one or more than one database

more than one database. Please recall that the extended algorithm is independent of the execu­

tion pattern. Hence, we can use the 1-1 algorithm as a sample pattern for the evaluation. For this

experiment, we have not used the ECPerf but a simpler evaluation. A client submits one request

to a SFSB which performs two database updates that either access the same database (no 2PC)

or different databases (requiring a 2PC). Table 10.1 shows the average response time at a load of

10 transactions per second, and the maximum achievable throughput. Accessing one database, the

ADAPT-SIB adds 5.4 ms to the response time of the non-replicated JBoss reflecting a 15% increase,

while with a 2PC, ADAPT-SIB has an overhead of 8.3 ms (it has to send an additional preparing

message) but this reflects an increase of only 8%. The maximum throughput for ADAPT-SIB com­

pared to the non-replicated case is around 90% with a 2PC and 86% when one database is accessed.

ADAPT-SIB performs, in relative terms, better with a 2PC than without because the total response

times with a 2PC is so much higher than if no 2PC is necessary.

In summary, these experiments show that our solutions in general incur little overhead for all

typical execution patterns on a realistic, i.e., quite diverse, workload. Our ADAPT-SIB replication

tool clearly outperforms JBoss's clustering mechanism in all cases in terms of response time, and is

similar in terms of saturation point.

10.1.4 Evaluation of Failover

In this section, we evaluate the overhead during failover, and compare the effects of different re­

store strategies. In this experiment, we only test warm replication as we have already shown in

Section 10.1.1 that it has better performance than cold replication. We run ECPerf with an IR of

5 and crash the primary after different running times. Figure 10.8 (a) shows the time needed for

Chapter 10. Experiments and Evaluation 160

(a) Failover Time (b) Backup Overhead

Figure 10.8: Restore strategies comparison

failover (i.e., the time client requests are blocked and not executed). The failover time of Install-

When-Failover is magnitudes longer than that needed by the other two strategies, and increases

with the time the application server was running before the crash. When the primary was running

for 10 minutes, failover takes around 2 minutes, when it was running 240 minutes, failover takes

20 minutes. This is because this strategy restores all components replicated at the time of failover,

and the number of such components increases with the execution time. In JBoss, session beans are

not automatically deleted when a user disconnects from the system. Instead the programmer needs

to explicitly implement such methods, which was not done in the ECPerf implementation we have

used. Hence, as time goes on, more and more such beans are in the system, are replicated, but are

never removed. If beans were deleted at the primary, our algorithm would delete them at backups

as well. In any case, the long failover time is clearly not acceptable since client requests that were

submitted just before the crash or during the failover time are delayed during the entire failover

period. For the other two strategies, failover time is always below 100 ms and is independent of

the running time before the crash. This is because these two strategies do not restore components

at the time of failover. For these two strategies, the main factor that impacts the failover time is

the number of transactions for which the new primary received a committing message but no com­

mit/abort message. For those transactions the new primary has to query the database at failover

time. This number is independent of the running time and is usually very small because it reflects

the number of transactions that were in the commit phase at the time of the crash. In regard to the

100000

10000

- U - " -

_ Install-Whsn-Commined

- Inslall-When-Failover

- Install-alter-Failovef

Chapter 10. Experiments and Evaluation 161

response time experienced by clients that submitted their request around the time of the crash, in

the Install-Immediately strategy, these requests are delayed more or less by the failover time. Once

failover has completed, client requests experience the same response time as before the crash. When

using the Install-After-Failover strategy, response times for some requests are delayed beyond the

plain failover time. These are the requests that access a component that needs to be restored. In our

tests, such requests took around 1200 milliseconds compared to 110 milliseconds for consecutive

requests on this component. This means, for each client connected to the system at the time of the

crash, the first request to a component after failover takes long, but then execution is again fast.

In summary, although the discussion might simply be about an engineering problem, the large

differences in performance show how important it is to consider an efficient implementation.

Figure 10.8 (b) shows the overhead on the backups during normal processing. The memory

usage (simply measured using the UNIX top command) increases with the running time for all

strategies as more and more components reside in the system (recall that beans are not removed

when clients disconnect). Install-Immediately needs more memory than the others because it has

all components created and installed. The other two strategies, in contrast, only store the serialized

state information. The CPU overhead of Install-Immediately is around 20% CPU - needed to restore

components, while the other two strategies only use on average 3% CPU to store the replicated

information. With this, the backups can be used to do other work, as we do with ADAPT-SIB.

As a summary, we believe that Install-After-Failover is the best strategy. It has a much shorter

failover time than Install-When-Failover and much smaller overhead at the backups during nor­

mal processing than Install-Immediately. Therefore, we use Install-After-Failover in the remaining

experiments.

Figure 10.9 shows the failover time for the 1 -1,1 -N, and N-1 algorithms after different running

times of the ECPerf with an IR of 5. Additionally, the figure indicates the number of transactions for

which the new primary needed to check in the database whether they committed. Since this number

is small and independent of the running time, the failover time is always short. Comparing the

failover times for the different algorithms, we can observe that 1-1 and 1 -N have similar times, while

failover in N-l takes a bit longer. This is because the committing messages in the N-l algorithm

contain more information and hence need more time to be parsed during failover.

Chapter 10. Experiments and Evaluation 162

Algorithm

1-1

1-N

N-1

Running Time (minutes)
Number of committing transactions

failover time (ms)
Number of committing transactions

failover time (ms)
Number of committing transactions

failover time (ms)

30
2

44
1

35
2
58

60
1

38
2
48
3
76

120
3
58
1

36
1

46

240
2
52
2
54
4
94

Figure 10.9: Failover time for different running time of ECPerf at 5 IR

Failover is impacted by the throughput at the primary. The more transactions are running at

the same time, the more transactions might be committing at the time of the crash. We conducted

a second experiment where we run ECPerf with increasing IR and crashed the primary after 30

minutes. The failover time increased from 20 ms at 1 IR to 380 ms at 21 IR for the 1-1 and 1-N

algorithm and from 20 ms at 1 IR to 280 ms at 9 IR for the N-1 algorithm. Once the primary

saturates, message propagation becomes bursty. As a result, just before the crash, the backup might

have received many messages which must be processed first. In this case, failover time becomes

much longer. Nevertheless, they remain short in absolute numbers.

10.2 Evaluation of ADAPT-LB

This section evaluates our unified Framework ADAPT-LB, providing fault-tolerance and load-balancing.

We use two benchmarks. We first usea micro benchmark to test the effects of ADAPT-LB on the

AS, without considering the replication effects on the database. In the micro benchmark each client

request performs operations on stateful session beans associated with the client but the database is

not accessed. Clients connect to the.system and then run for 10 seconds continuously submitting

requests before they disconnect. All requests trigger transactions with similar load. We also use

the ECPerf benchmark, which involves significant access to the database. Unless otherwise stated,

experiments were performed on a cluster of 64-bit Xeon machines (3.0 GHz and 2G RAM) running

RedHat Linux. In all our settings, each FTG consists of one primary and two backups. In this suite

of experiments, we also use JBoss Clustering as the comparison framework. However, in this case,

we use a load-balancing configuration. In our configuration, every machine in the cluster of JBoss

Chapter 10. Experiments and Evaluation 163

600

500

400

300

200

100

0

• --a---RP/JBoss

—*—RP/ADAPT-SIB

. RP/ADAPT-LB

- • x- • RP/JC/RoundRobin

A „

J^ xr'

1 2 3 4 5 6 7 8 9 10 (1 12 13 14 15 16

Number of clients starting (per second)

•g 500
o

2 400

%
S 300
E

3

l 2°°
S
S too
E
H

0

. . - o . TP/JB0SS

t TP/ADAPT-SIB

- • » . - TP/ADAPT-LB

- X - - TP/JC/RoundRobin
x . x - x - x

. x "

- 1 • * '

x^ •^i-*—*-jr IQ-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of clients starting (per second)

(a) Response Time (b) Throughput

Figure 10.10: Performance improvement

Clustering can process client requests, but no bean instances are replicated, i.e., fault-tolerance is

not provided. JBoss clustering can be configured to integrate fault tolerance and load balancing

together. Then, each machine will replicate its state to all other machines. But as we have seen in

the previous section, the fault-tolerance mechanism of JBoss is very inefficient and does not provide

correctness. Hence, we switch it off in this experiment.

10.2.1 Experiment 1: Basic Performance

In this experiment we have a first look at the performance of our unified architecture when no

replicas leave or join thesystem. In Figure 10.10, JBoss refers to a standard single-node non-

replicated JBoss application server without fault-tolerance. All other configurations use three ma­

chines. ADAPT-SIB refers to a system running the ADAPT-SIB algorithm but no load-distribution,

i.e., there is one FTG but no LDG. ADAPT-LB refers to the unified architecture with one LDG using

our load-balancing approach and several FTGs running ADAPT-SIB. JC/RoundRobin refers to a

replicated cluster that uses the Round-Robin request distribution of the load balancing configuration

of JBoss Clustering.

The figure shows response times in figure (a) and the throughput in figure (b) with increasing

number of clients injected in the system per second. In the legend, throughput results are prefixed

with TP and response times with RP. The non-replicated JBoss and ADAPT-SIB saturate when 6

clients are injected per second after which the throughput decreases. The maximum throughput

Chapter 10. Experiments and Evaluation 164

Figure 10.11: Scale-up homogenous setup Figure 10.12: Scale-up heterogeneous hardware

for the non-replicated JBoss is 195 txn/sec and 130 txn/sec for ADAPT-SIB. As we have seen

in the previous section, fault-tolerance adds overhead, and the maximum achievable throughput

is smaller for ADAPT-SIB. The backups do not contribute to work distribution. The proposed

ADAPT-LB is able to increase the throughput up to 12 clients with a peak of 380 txn/sec. JBoss'

round-robing clustering can increase the throughput up to 15 clients with a peak of 480 txn/sec

(TP/JC/RoundRobin). It outperforms ADAPT-LB since ADAPT-LB performs additional fault-

tolerance measures.

Response times show similar results. For the non-replicated JBoss and ADAPT-SIB clients com­

pete soon for resources. Response times increase early and deteriorate quickly after the saturation

point. ADAPT-SIB has higher response times than a non-replicated JBoss, since the primary has

to perform the state change collection and propagation. As we discussed before, ADAPT-SIB has

similar response time behavior as other fault-tolerance algorithms [72]. In contrast, ADAPT-LB and

JC/RoundRobin have low response Jimes for all client numbers due to load distribution. Thus, each

node is less loaded and can provide faster service. While ADAPT-LB has higher response times than

JC/RoundRobin the difference is smaller than between ADAPT-SIB and the non-replicated JBoss,

because ADAPT-LB is able to distribute the fault-tolerance overhead across all replicas. That is,

our approach truly serves both fault-tolerance and scalability.

Chapter 10. Experiments and Evaluation 165

10.2.2 Experiment 2: Scalability

In this experiment we analyze whether our unified approach allows for sufficient scalability by

running the micro benchmark on an increasing number of replicas. For each configuration we deter­

mine the maximum achievable throughput by adjusting the number of clients injected in the system

per second. Figure 10.11 shows how the throughput increases when we increase the number of

machines from 3 to 20. One graph shows the "ideal" throughput as the product of the number of

machines and the maximum achievable throughput on a machine using the ADAPT-SIB primary al­

gorithm (i.e, the machine is not backup at the same time). The two other graphs show our framework

solution (ADAPT-LB) and JBoss' round-robin balancer (JC/RoundRobin). In both cases, through­

put increases linearly with the number of replicas. Due to fault-tolerance activity on each node,

ADAPT-LB achieves generally less throughput than JC/RoundRobin. But even JC/RoundRobin

does not provide ideal throughput since the integration of load-balancing has its own overhead. In

summary, our solution provides good scalability and at the same time provides fault-tolerance.

10.2.3 Experiment3: Heterogeneity

Heterogeneity is a challenge for load-balancing techniques. We fist analyze the impact of het­

erogeneous hardware by replacing half of the machines with PHI machines (850 MHz and 256M

RAM). As the forwarding mechanism described in Section 8.3.2 extends the simple random mech­

anism exactly for the purpose of handling heterogeneous environments, we analyze two different

versions of the ADAPT-LB system. We use ADAPT-LB with only random load-balancing with­

out forwarding, denoted as ADAPT-LP/Random, and ADAPT-LB with forwarding, denoted as

ADAPT-LB/FLTF. We again compare with JBoss' round-robin load-balancer (JC/RoundRobin).

Figure 10.12 shows the maximum achievable throughput when we increase machines from 3 to 20.

In general, the throughput is lower than in the homogeneous environment (Fig. 10.11), since half

of the machines are now weaker. ADAPT-LB/Random is the worst because random assignment

ignores heterogeneity and fault-tolerance adds overhead. ADAPT-LB/FLTF and JC/RoundRobin

have similar performance despite the fact that ADAPT-LB has the fault-tolerance overhead.

A more detailed throughput analysis helps to explain the results. Figure 10.13 shows the

Chapter 10. Experiments and Evaluation 166

X X

„ V

* K * *

x ADAPT-LB/Random
a ADAPT-LB/FLTF
«, JC/RoundRobin

K

. 1 * ' .
11 " " . » ̂ & ^

a » » a n ra

» K l f J l * S f t a B

0 1 2 3 4 5 6 7 8 9 1011121314151617181920

Machine ID

Figure 10.13: Throughput distribution Figure 10.14: Response time distribution

throughput on each machine when the cluster contains 20 machines. Machines 1 to 10 represent

the weak nodes. The figure shows that, compared to JC/RoundRobin, ADAPT-LB/FLFT has lower

throughput on the weak and higher throughput on the strong nodes. This is because with ADAPT-

LB/FLFT weak nodes forward requests that are then executed by the strong nodes. Thus, ADAPT-

LB/FLTF compensates the overhead of fault-tolerance by a smarter load-balancing strategy which

assigns more tasks to the stronger nodes.

Figure 10.14 shows the corresponding response time distribution. ADAPT-LB/Random has very

high response times for weak nodes since they are saturated. Using JC/RoundRobin, weak nodes

show worse response times than with ADAPT-LB/FLFT, which puts less load on the weak nodes.

Strong nodes have low response times for all solutions because the bottleneck in the heterogeneous

environment are the weak nodes. Since ADAPT-LB/FLFT puts more load on the strong nodes, it

has slightly higher response times than the other two on these nodes.

In the second heterogeneity tesjl, all machines are back to being the same but we add an addi­

tional very heavy client transaction to the micro benchmark with an average response time of around

2000 ms. We only compare ADAPT-LB/FLTF with JC/RoundRobin. At the beginning of this test,

a cluster consisting of 6 machines runs the micro benchmark for about 30 seconds. Then we arti­

ficially inject the heavy transaction into the system. We refer to the machine executing the heavy

transaction as HC. The other machines are denoted as LC. Figure 10.15 (a) has as x-axis time slots

of 100 ms and as y-axis the average response times within a time slot. The heavy transaction starts at

Chapter 10. Experiments and Evaluation 167

_x—HC/JC/RoundRobin
-•—LC/JC/RoundRobin
•o- • HC/ADAPT-LB/FLTF

-a—LC/AOPT-LB/FLTF

x* ** x\

IIHIII'UHIHII
f M*—— — *• • • • {

I I I I I I I I I ! I I I I I I I I I I I I I I I I K M I II I I I I I I I I I I I I I 11 I

1 6 11 16 21 26 31 36 41 46
Time Slot

B LC/JC/RoundRobin

H HC/JC/RoundRobin

• LC/ADAPT-IB/FLTF

• HC/ADAPT-LB/FLTF

During normal time During processing heavy
transactions

(a) Average response time (b) Average throughput

Figure 10.15: Heterogeneous workloads

time slot 5. Before injecting the heavy transaction, HC and LC have the same response times which

are higher for ADAPT-LB/FLTF because of the fault-tolerance overhead. Using JC/RoundRobin,

the HC response times increase to around 400 ms after the injection of the heavy transaction be­

cause the HC machine becomes saturated. The response times on the LC group remain the same

because they are not affected. Using ADAPT-LB/FLTF, response times on the HC machine in­

crease for the first 5 time slots after the heavy transaction is injected. This represents transactions

of clients that were already assigned to HC when the long transaction arrived. Then there is a long

gap, since HC does not accept any further clients anymore according to the forwarding strategy.

At time slot 27 the long transaction finishes (with a long response time). After that HC again ac­

cepts clients providing standard response times for them. While the heavy transaction is running on

HC we observe longer response times at the LC machines because HC redirects clients to them,

and thus they are more loaded. In total, response times are less affected using ADAPT-LB/FLTF

compared to JC/RoundRobin which has unacceptable high response times for some of the clients.

Figure 10.15 (b) shows the throughput distribution during normal processing and while the

heavy transaction is running. Without heavy transaction, ADAPT-LB and JC/RoundRobin have the

same throughput on HC and LC machines. JC/RoundRobin has higher throughput because there is

no fault-tolerance overhead. However, during processing the heavy transaction, the average through­

put on the LC group of ADAPT-LB/FLTF is higher than the throughput of JC/RoundRobin, since

Chapter 10. Experiments and Evaluation 168

the FLTF algorithm forwards more transactions on the LC group. For the same reason, the through­

put on the HC machine of ADAPT-LB/FLTF is less than the throughput of JC/RoundRobin on the

HC machine. In absolute numbers, ADAPT-LB has 5*2 transactions / 100 ms more on LC and 3

transactions / 100 ms less on HC. Thus, in total, it has a higher throughput than JC/RoundRobin

when the heavy transaction is injected.

In summary, our load-balancer can easily handle heterogeneous configurations and workloads

being able to dynamically distribute the load according to the conditions on individual replicas even

if inequalities only exist for short periods of time. It can achieve this without maintaining any

global knowledge or knowing about the application semantics. Instead, it adds a simple forwarding

mechanism exploiting the existing FTG groups.

10.2.4 Experiment 4: ECperf Benchmark

In this experiment, we conducted similar scalability experiments based on the ECperf benchmark

in both the homogeneous environment and the heterogeneous environment (with two kinds of ma­

chines). In the ECperf benchmark, the throughput is measured by the business operations (BBops)

processed per minute. Figure 10.16 shows the maximum achievable throughput for the ECperf

benchmark for ADAPT-LB (here again only using the standard FLTF Strategy) and JC/RoundRobin.

Generally, scalability is worse than with the micro benchmark and throughput even decreases with

large number of machines. The reason is that ECperf contains considerable database access and

the database becomes the bottleneck. One would need a stronger machine for the database server

or database replication would be needed. In both homogenous and heterogeneous environments,

JC/RoundRobin has slightly better throughput than ADAPT-LB with a small number of machines

but behaves similar with many machines as ADAPT-LB can distribute the fault-tolerance overhead

better with increasing number of machines. For heterogenous environments, the saturation point is

later than in the homogeneous environment. The reason is that the throughput is generally lower,

and thus, the database becomes the bottleneck later.

This experiment confirms our previous results. We are able to combine fault-tolerance with load

Chapter 10. Experiments and Evaluation 169

5000

4000

3000

2000

1000

*- « *K
/ - .» - " ^ ,

/ • % N

/ .••' .'<'* *i

.-'>''
I

y y *

> • . -
• V

-•
i-'

•a-- ADADP-LB/FLTF/Homogen.

- - * - - JC/RoundRobin/Heterogen

• ADAPT-LB/FLTF/Heterogen.

6 9 12 15 tS 21

Number of machines

Figure 10.16: Scalability for ECperf benchmark

Time Slot

120

"St

E. 'oo
©
E
jZ 80
<D
w

I M
(0
0)

ffi 40
CD

W

® 20

0

X

/ *
t

—*—Nl
—o—NR

- X-- B

A\ *»
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 17 18 19 20

Time Slot

Figure 10.17: Reconfiguration: Failover Figure 10.18: Reconfiguration: Recovery

distribution achieving scalability as long as the AS is the main bottleneck. The advantage of hav­

ing the forwarding strategy compared to a simple round-robin strategy compensates the additional

overhead for fault-tolerance.

10.2.5 Experiment5: Reconfiguration

In this experiment, we show the-detailed behavior of the ADAPT-LB system during and after re­

configuration. We first analyze thebehavior of the system itself at the time of failover and recovery.

Then, we compare the behavior of the ADAPT-LB system with the behavior of a typical alternative

solution.

One goal of ADAPT-LB is to facilitate smooth and fast reconfigurations in order to be able to

Chapter 10. Experiments and Evaluation 170

provision the system dynamically if the need arises. The following experiments show the behavior

of ADAPT-LB during and after reconfiguration. We use the micro-benchmark and a homogeneous

environment.

We first look at node failures. We have a cluster of 6 replicas (r\,..., r$) running the micro

benchmark for about 30 seconds when replica rs crashes. We distinguish three types of replicas.

NP (new primary) indicates the replica r± that takes over the clients of the failed replica r$. B

indicates replicas that have to reconfigure their backups (rs and r§). NI indicates all other replicas

on which the failure has no impact (r\ and r2). Figure 10.17 has as x-axis time slots of 100 ms, and

as y-axis the average response time within a time slot. The crash occurs at time slot 5.

Before the crash, the average response time is similar in each group. After the crash, the re­

sponse time on NP drastically increases because it requires considerable resources to perform the

failover. This process takes about 300-400 ms. After that, the average response time is still higher

than on the other groups because NP has now double the clients. The response time in B also

increases (it shortly doubles) because the state transfer that takes place to include the new backups

takes some of the resources. The recovery process to become a backup takes less than 100 ms.

However, the response time on B remains higher and actually also increases on NI. The reason is

that there is now one less replica in the system to execute requests. Furthermore, since NP is still

higher loaded, the replicas in B and NI accept more of the newly injected clients. Eventually, once

NP has stabilized, the system becomes balanced again. The average response time on all remaining

replicas converges eventually to the same value (although not shown in the figure). However, this

value is now higher because there is one less replica in the system to serve requests.

Figure 10.18 shows how the join of a new (recovered) replica affects the response time of the

client transactions. At the beginning, the cluster has again 6 replicas. A new replica rj joins the

system at the 5th slot (the time is counted when the server begins the LBM, and does not include the

time to start the server from scratch). We distinguish between the new replica NR (i.e., 7-7), replicas

B (i.e., ri and r2) that have to change FTGs and replicas NI with no direct impact. For B we see

that the response time doubles for a short period of time, similar to the failure case. The response

time on the NI replicas is lightly affected due to sending recovery data to NR. NR starts accepting

client requests at the next time slot after recovery. Shortly after recovery, the response time is not

Chapter 10. Experiments and Evaluation 171

of 700

-••••- . FC/JC/RoundRobin
— x — NFC/JC/RoundRobin
. FC/ADAPT-LB
—*—NFC/ADPT-LB

6 11 16 21 26 31 36 41
Time Slot

- - • - - FC/JC/RoundRobin

— x — NFC/JC/RoundRobin

- o • - FC/ADAPT-LB

NFC/ADPT-LB

0 '

6 11 16 21 26 31 36 41 46

Time Slot

(a) 6 machines cluster (b) 20 machines cluster

Figure 10.19: Comparison of failover operations

stable since some initialization process on the machine might not be completed yet. Eventually, all

replicas converge to the same average response time. It is lower than before the join since there is

now one more machine allowing for better load distribution.

As a final experiment, we compare ADAPT-LB with an alternative solution. Using JBoss'

round-robin architecture without fault-tolerance, when a replica crashes, each client originally con­

nected to the failed replica connects to any of the correct replicas and resubmits all requests from the

beginning of the session. We call this solution the re-execution solution. Note that this only works

correctly if the requests do not trigger changes on permanent components because these changes

are already in the database and should not be applied again. Thus, the solution is not applicable for

ECPerf but can be used for the micro-benchmark.

We again use 6 machines and crash one replica at time slot 5. This time, we group response

times by client type. FC clients were originally connected to the crashed replica, and NFC are all

other clients. Figure 10.19 shows the average response time over time. In ADAPT-LB, one replica

takes all FC clients (and has additionally NFC clients). As long as this new primary performs

failover, the FC are blocked. Therefore, there is a gap for FC clients where no response times are

measured. Once execution resumes there is a peak in average response times as failover time is part

of the response time. NFC clients on the new primary and also on other replicas are also affected,

but much less (as discussed before). Response times for both FC and NFC quickly go back to

normal levels. FC have still higher average response times than NFC clients since their primary

Chapter 10. Experiments and Evaluation 172

serves more clients in total. However, as new clients are prone to be distributed to other replicas due

to the forwarding strategy, the response times of NFC and FC converge.

In the re-execution solution, FC clients are distributed over all replicas, which have to execute

historical requests for them. This is a heavy task. For FC, the replay takes at least 10 time slots

where no response is created. In general, response times stay high for all clients for a long time and

only go down gradually because the machines are overloaded with the replay process. A peak in

the graph of the FC clients occurs when one of these clients finishes the failover process, pushing

the average response time for these clients up for this time slot. This shows that if replicas should

be used for both load distribution and fault-tolerance then it is paramount to have a fast failover

procedure as provided by ADAPT-SIB in order to keep the system responsive during failover times.

A replay solution seems too expensive.

In Figure 10.19 (b), we repeat the same test for a cluster with 20 replicas. Two replicas are

crashed at time slot 5 (namely the crash rate is about 10%). In this figure, the result of the proposed

framework is similar to that of the previous test. However, the result for the re-execution solution is

better than for the previous test. This is because the crash rate now is lower, and hence, each replica

will be assigned with less FC clients.

This experiment has shown if replicas should be used for both fault tolerance and load distrib­

ution, then it is paramount to have a fast failover procedure in order to keep the system responsive

during failure time. A replay solution will be expensive if it cannot be distributed well.

In summary, our approach can handle failures and recovery transparently and dynamically. Re­

configuration affects the client response times only shortly, and is relatively localized to few ma­

chines.

Chapter 11

Conclusions and Future Work

11.1 Summary

With application servers (AS) being a fundamental building block for web based applications, re­

liability, availability, and scalability are highly required guaranteeing 7/24 access and high perfor­

mance. Replication is a common means to provide fault tolerance and facilitate load balancing.

This dissertation presents novel AS replication solutions that are able to handle various execution

patterns, that provide good performance, and that can be easily integrated into existing AS products.

11.1.1 Correct Replication for Different Execution Patterns

AS is a typical middleware that links clients and the backend database. As failure and AS replication

do not only affect the AS tier itself but also the client tier and the database tier. Hence, it is necessary

for an AS replication algorithm to consider correctness from the viewpoint of the entire system

including the client tier, the AS tier, and the database tier. However, in practice, many AS replication

solutions do not address this issue, and hence do not guarantee that the replicated AS behaves

as a non-replicated non-faulty AS. We address this issue and identify a set of execution patterns

that describe the behavior of an AS and its interaction between clients and the backend database.

We observe that the crash of the AS affects clients because it interrupts the execution of client

requests, while it affects the database because it interrupts the execution of transactions. Hence, we

173

Chapter 11. Conclusions and Future Work 174

define execution patterns in terms of different associations between client requests and transactions

correlating clients, AS, and the backend database and thus, the entire system.

We formally describe the correctness requirements for AS replication based on different execu­

tion patterns, and accordingly propose a suite of replication algorithms in ADAPT-SIB framework.

The general base of all algorithms in ADAPT-SIB is that one primary executes client requests and

replicates state changes performed by a transaction to backups at commit time. We guarantee that

consistency is maintained if the AS crashes at any time during execution. For most algorithms we

provide a full proof of correctness.

11.1.2 Performance

Replication means extra overhead which is the price for fault tolerance. We carefully tune the per­

formance of ADAPT-SIB algorithms and only add 15% extra overhead for JBoss AS, outperforming

the JBoss Cluster replication algorithm. Furthermore, we provide a quick failover guaranteeing high

availability.

In order to provide high scalability, we build ADAPT-LB load balancing solution based on

ADAPT-SIB framework to offer an integrated solution providing both fault-tolerance and load bal­

ancing. In ADAPT-LB, each server acts as a primary to serve some of the client requests and at the

same time stores state changes occurring on some other servers for fault-tolerance. It dynamically

and transparently takes advantage of all resources in the cluster. It uses an effective, fully distrib­

uted load-balancing strategy that fits well with the completely distributed fault-tolerance solution.

Our J2EE based implementation shows that we can in fact take advantage of the full power of all

machines to provide fast response times, high throughput and high reliability, even in heterogenous

environment.

11.1.3 Practicability

When developing our solution we always had a real system in mind. On the one hand, this led us

to identify the advanced execution patterns. On the other hand this required to develop a solution

that can also be implemented and integrated into a real system. Thus, our ADAPT-SIB replication

Chapter 11. Conclusions and Future Work 175

tool provides a suite of replication algorithms that can handle realistic execution patterns, without

affecting the implementation on the client tier and the database tier. Furthermore, ADAPT-SIB tool

is implemented as a pluggable module for the JBoss AS that does not affect the original implemen­

tation of the JBoss system and could be easily migrated to other AS systems.

Furthermore, ADAPT-LB solution provides a truly distributed load distribution algorithm. It is

as simple and lightweight as content-blind approaches as it follows random distribution in underload

situations but automatically switches to a content-aware approach when the load level of a replica

reaches a critical threshold. Moreover, the content-aware mode takes advantage of the fault toler­

ance framework to distribute the load and does not introduce a complex or centralized distribution

component. Hence, it can be easily implemented and deployed on an AS system that already uses

ADAPT-SIB framework for fault tolerance.

11.2 Future Work

One major future work is to apply ADAPT-SIB and ADAPT-LB tool to other middleware systems.

Nowadays, the multi-tire architecture is used everywhere. While the multi-tier architecture likely

continues to dominate web-based applications, it is changing in structure, moving away from the

traditional 4-tier architecture and consisting of multiple fine-grained or coarse-grained tiers. For ex­

ample, on the micro level, a traditional AS might be deployed as a multi-tier distributed system, in

which communication/message management, security management, service management and data

management are deployed as different tiers. Each of these fine grained tiers manages a specific

functionality, providing good resource distribution and easy maintenance. On the macro level, fol­

lowing the new trend of service composition based on service oriented architectures, new enterprise

applications might be built upon composite multi-tier architectures, each tier of which is a normal

4-tier architecture. In both cases, we can see the trend that more and more middle tiers will be po­

sitioned in future applications; and many of them are stateful. One of the most obvious flaws of this

trend is that the more tiers a system has, the bigger the challenge to provide reliability, availability,

and scalability. Hence, an interesting future work is to analyze how to apply ADAPT-SIB and the

ADAPT-LB replication tools to these advanced middle-tiers architectures.

Chapter 11. Conclusions and Future Work 176

In different middle tiers, the content to be replicated and the right time point for state exchange

might be different from the ADAPT-SIB. However, the general idea to take interaction between

tiers into account and to analyze the correctness in terms of the effects on different tiers are still

valid, considering that the request/response model is still widely used for many middle tier systems.

Although there might not exist transactions, the non-transactional extension described in Section 7.3

could be applied to these systems and then be adapted according to the properties of their backend

systems.

11.2.1 Enhancement to Handle Shared Data

In ADAPT-SIB replication tool, we don't consider the replication of shared data since it is assumed

to be synchronized with the database. The correctness criteria developed in this thesis do not take

the state changes on shared data into account. However, with this, caching cannot be exploited very

well. The major relevant problem is how to handle concurrent accesses on the shared data. When

all accesses are supposed to be executed on a single primary, replication of shared data can be easily

handled. However, if accesses could occur on different replicas, e.g., in the load balancing approach,

distributed concurrency control mechanisms have to be adopted while replicating shared data [84].

As well, the correctness criteria have to be adjusted to reflect the requirements of concurrency

control.

11.2.2 Replication across a WAN

In ADAPT-SIB and ADAPT-LB tool, all AS replicas are assumed to be located within the same

LAN. This makes sense for a typical 4-tier architecture since AS is the center server in such a sys­

tem. However, when considering service composition, different middle tier systems of a composite

architecture are normally distributed across a WAN. This might lead to replication across the WAN

to achieve fast local access and high availability. However, coordination across a WAN is more

expensive and using a GCS or having eager replication might not be feasible. Also, load-balancing

might not be as important as providing clients services close to where they are. ADAPT-SIB and

ADAPT-LB need to be revisited to see whether they can be adjusted for WAN purposes.

Chapter 11. Conclusions and Future Work 177

11.2.3 Extension of ADAPT-LB

The general load-balancing mechanism of ADAPT-LB can be applied to any middle tier which re­

quires both fault tolerance and load balancing. If the replicated middle tier has a single backend

database, this backend will quickly become the bottleneck while the middle-tier, using ADAPT-LB,

can adjust to the load. In order to solve this problem, the backend has to apply a load balancing ap­

proach as well. There are two typical potential solutions. One solution is to use a replicated backend

that has its own independent replication solution which is transparent to the middle-tier [64]. An­

other solution is to let each replica of the replicated middle tier have its own separate backend [84].

We are planning to investigate both solutions and their integration with ADAPT-LB.

Bibliography

[1] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and J. Stanton. The Spread toolkit: Archi­

tecture and performance. Technical Report CNDS-2004-1, Center for Network and Distrib­

uted Systems, Johns Hopkins Univ., 2004.

[2] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed versioning: Consistent replication for

scaling back-end databases of dynamic content web sites. In Proc. of Int. ACM/IFIP/USENIX

Middleware Con/., pages 282-304, Rio de Janeiro, Brazil, 2003.

[3] C. Amza, A. L. Cox, and W. Zwaenepoel. A comparative evaluation of transparent scaling

techniques for dynamic content servers. In Proc. of Int. Conf. on Data Engineering (ICDE),

pages 230-241, 2005.

[4] M. Andreolini, M. Colajanni, and R. Morselli. Performance study of dispatching algorithms

in multi-tier web architectures. SIGMETRICS Performance Evaluation Review, pages 10-20,

2002.

[5] H. Attiya and J. L. Welch. Sequential consistency versus linearizability. ACM Transactions

on Computer Systems, 12(2):91-122, 1994.

[6] O. Babaoglu, A. Bartoli, V. Maverick, S. Patarin, and H. Wu. A framework for prototyping

J2EE replication algorithms. In Proc. of Int. Symp. on Distributed Objects and Applications

(DOA), pages 1413-1426, 2004. -,--•.

[7] R. Baldoni and C. Marchetti. Three-tier replication for FT-CORBA infrastructures. Software

- Practice and Experience, 33(8): 1—31, 2003.

178

BIBLIOGRAPHY 179

[8] R. Barga, S. Chen, and D. Lomet. Improving logging and recovery performance in

Phoenix/App. In Proc. of Int. Conf. on Data Engineering (ICDE), pages 486-497, 2004.

[9] R. Barga and D. Lome. Phoenix project: Fault tolerant applications. ACMSIGMOD Record,

31(2):94-100,2002.

[10] R. Barga, D. Lomet, S. Paparizos, H. Y, and S. Chandresekaran. Persistent applications

via automatic recovery. In Proc. of the Int. Database Engineering and Applications Symp.

(IDEAS), pages 258-267, 2003.

[11] R. Barga, D. Lomet, and G. Weikum. Recovery guarantees for general multi-tier applications.

In Proc. of Int. Conf. on Data Engineering (ICDE), pages 543-554, 2002.

[12] A. Bartoli, C. Calabrese, M. Prica, E. Antoniutti Di Muro, and A. Montresor. Adaptive

message packing for group communication systems. In Proc. ofOTM Workshop on Reliable

and Secure Middleware, pages 912-925, 2003.

[13] A. Bartoli, M. Prica, and E. Antoniutti Di Muro. A replication framework for program-to-

program interaction across unreliable networks and its implementation in a servlet container.

Technical report, DEEI, University of Trieste, Italy, 2004.

[14] BE A Systems Inc. BEA WebLogic server, release 7.0: Programming WebLogic enterprise

JavaBeans, 2002.

[15] T. Bennani, L. Blain, L. Courtes, J. C. Fabre, M.-O. Killijian, E. Marsden, and F. Taiani. Im­

plementing simple replication protocols using CORBA portable interceptors and Java serial­

ization. In Proc:. of Int. Conf. on Dependable Systems and Networks (DSN), pages 549-554,

Florence, Italy, 2004.

[16] P. A. Bernstein and N. Goodman. An algorithm for concurrency control and recovery in

replicated distributed databases. ACM Transactions on Database Systems, 9(4):596-615,

1984.

[17] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery in

database systems. Addison-Wesley, 1987.

BIBLIOGRAPHY 180

[18] P. A. Bernstein and E. Newcomer. Principles of transaction processing. Morgan Kaufmann,

1997.

[19] K. Birman. The process group approach to reliable distributed computing. Communications

of the ACM, 36(12):37-53, December 1993.

[20] K.. Birman and T. A. Joseph. Reliable communication in the presence of failures. ACM

Transactions on Computer Systems, 5(1):47—76, 1987.

[21] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multicast.

ACM Transactions on Computer Systemss, 9(3):272-314, 1991.

[22] N. Budhiraja, K.. Marzullo, F.B. Schneider, and S. Toueg. The primary-backup approach. In

Distributed Systems, second edition. ACM Press, pages 199-216, New York, 1993.

[23] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and scalability of EJB ap­

plications. In Proc. of ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,

Languages, and Applications, pages 246-261, 2002.

[24] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Partial replication: Achieving scalability in

redundant arrays of inexpensive databases. In Proc. of Int. Conf. on Principles of Distributed

Systems (OPODIS), pages 58-70, La Martinique, Frence, 2003.

[25] T. D. Chandra and S. Toueg. Unreliable failure detectors for asynchronous systems. In

Proc. of the ACM Symp. on Principles of Distributed Computing (PODC), pages 325-340,

Montreal, Canada, 1991.

[26] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: A com­

prehensive study. ACM Computing Surveys, 33(4):427-^169, 2001.

[27] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems concepts and design. Ad­

dison Wesley, 2001.

[28] F. Cristian. Understanding fault-tolerant distributed systems. Communications of the ACM,

34(2):56-78, 1991.

BIBLIOGRAPHY 181

[29] M. Cukier, J.. Ren, C. Sabnis, D. Henke, J. Pistole, W. H. Sanders, D. E. Bakken, M. E.

Berman, D. A. Karr, and R. E Schantz. AQuA: an adaptive architecture that provides de­

pendable distributed objects. In Proc. oflEEESymp. on Reliable Distributed Systems (SRDS),

pages 245-253, 1998.

[30] X. Defago, P. Felber, and A. Schiper. Replicating CORBA objects: a marriage between

active and passive replication. In Proc. of Int. Working Conf. on Distributed Applications and

Interoperable Systems, pages 375-387, 1999.

[31] X. Defago and A. Schiper. Specification of replication techniques, semi-passive replication,

and lazy consensus. Technical Report KS-RR-2002-001, Japan Advanced Institute of Science

and Technology, Ishikawa, Japan, February 2002.

[32] X. Defago and A. Schiper. Semi-passive replication and lazy consensus. Journal of Parallel

Distributed Computing, 64(12): 1380-1398, 2004.

[33] E. Dekel and G. Goft. ITRA: Inter-tier relationship architecture for end-to-end QoS. The

Journal of Supercomputing, 28(l):43-70,2004.

[34] D. Dolev and D. Malki. The Transis approach to high availability cluster communication.

Communications of the ACM, 39(4):64-70, 1996.

[35] A. Doudou, B. Garbinato, and R. Guerraoui. Tolerating arbitrary failures with state ma­

chine replication. In Dependable Computing Systems: Paradigms, Performance Issues, and

Applications, 2005.

[36] S. Elnikety, S. G. Dropsho, and W. Zwaenepoel. Tashkent^: Memory-aware load balancing

and update filtering in replicated databases. In Proc. of European Conf. on Computer Systems

(EuroSys), 2007.

[37] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-recovery

protocols in message-passing systems. ACM Computing Surveys, 34(3):375-408, 2002.

[38] Ensemble. Group communication systems, http://dsl.cs.technion.ac.il/projects/ensemble/.

http://dsl.cs.technion.ac.il/projects/ensemble/

BIBLIOGRAPHY 182

[39] P. Felber, R. Guerraoui, and A. Schiper. The implementation of a CORBA group communi­

cation service. Theory and Practice ofObject Systems, 4(2):93—105, 1998.

[40] P. Felber, R. Guerraoui, and A. Schiper. Replication of CORBA objects. Lecture Notes in

Computer Science, 1752:254-276, 2000.

[41] P. Felber and P. Narasimhan. Reconciling replication and transactions for the end-to-end

reliability of CORBA applications. In Proc. of Int. Symp. on Distributed Objects and Appli­

cations (DOA), 2002.

[42] R. Friedman and E. Hadad. A group adaptor-based to CORBA fault-tolerance. In IEEE

distributed systems online, middleware, 2001.

[43] S. Fralund and R. Guerraoui. A pragmatic implementation of E-transactions. In Proc. of

IEEE Symp. on Reliable Distributed Systems (SRDS), pages 186-195, 2000.

[44] S. Fralund and R. Guerraoui. X-ability: A theory of replication. In Proc. of the ACM Symp.

on Principles of Distributed Computing (PODC), pages 229-237, 2000.

[45] S. Fralund and R. Guerraoui. Implementing e-transactions with asynchronous replication.

IEEE Transactions on Parallel and Distributed Systems, 12(2): 133-146, 2001.

[46] S. Fralund and R. Guerraoui. E-transactions: End-to-end reliability for three-tier architec­

tures. IEEE Transactions on Software Engineering (TSE), 28(4):378-395, 2002.

[47] B. Garbinato, R. Guerraoui, and K. R. Mazouni. Implementation of the GARF replicated

objects platform. Distributed Systems Engineering, 2(1): 14-27, 1995.

[48] D. K. Gifford. Weighted voting for replicated data. In Proc. of the ACM Symp. on Operating

Systems Principles (SIGOPS), pages 150-162, 1979.

[49] The JBoss Group. JBoss application server, http://www.jboss.org.

[50] Java Groups, homepage: http://www.jgroups.org/.

http://www.jboss.org
http://www.jgroups.org/

BIBLIOGRAPHY 183

[51] R. Guerraoui and A. Schiper. Software-based replication for fault tolerance. IEEE Computer,

30(4):68-74, 1997.

[52] V. Hadzilacos and S. Toueg. Distributed systems, chapter Fault-tolerant broadcasts and re­

lated problems, pages 97-145. Addison-Wesley, 1993.

[53] M. P. Herlihy and J. M. Wing. Axioms for concurrent objects. In Proc. of ACM SIGACT-

SIGPLAN symposium on Principles of programming languages, 1987.

[54] K. S. Ho and H. V. Leong. An extended CORBA event service with support for load balancing

and fault-tolerance. In Proc. of Int. Symp. on Distributed Objects and Applications (DOA),

pages 49-58, Antwerp, Belgium, 2000.

[55] C. Huizink. Replication across loosely-coupled tiers in a multi-tier architecture. Master's

thesis, EPFL and McGill University, 2005.

[56] IONA Technologies PLC. White paper Orbix E2A application load balancing and fault

tolerance, April 2002.

[57] IronFlare AB. Orion application server clustering overview, 2003.

http://www.orionserver.com.

[58] ISIS. Group communication systems, http://www.cs.cornell.edu/Info/Projects/ISIS/.

[59] S. Jajodia and D. Mutchler. Dynamic voting. In Proc. of Int. Conf. on Management of Data

(SIGMOD), pages 227-238,1987.

[60] The JBoss Group. JBoss clustering, 2002.

[61] B. Kemme, R. Jimenez-Peris, M. Patino-Martinez, and J. Salas. Exactly-once interaction in

a multi-tier architecture. In (VLDB) Workshop on Design Implementation and Deployment

of Database Replication, 2005.

[62] A. I. Kistijantoro, G. Morgan, S. K. Shrivastava, and M. C. Little. Component replication in

distributed systems: A case study using Enterprise Java Beans. In Proc. of IEEE Symp. on

Reliable Distributed Systems (SRDS), pages 89-98, 2003.

http://www.orionserver.com
http://www.cs.cornell.edu/Info/Projects/ISIS/

BIBLIOGRAPHY 184

[63] S. Kounev and A. P. Buchmann. Improving data access of J2EE applications by exploiting

asynchronous messaging and caching services. In Proc. of Int. Conf. on Very Large Data

Bases (VLDB), pages 574-585, 2002.

[64] Y. Lin, B. Kemme, R. Jimenez-Peris, and M. Patino-Martinez. Middleware based data repli­

cation providing snapshot isolation. In Proc. of Int. Conf. on Management of Data (SIG-

MOD), pages 419-430, Baltimore, ML, USA, 2005.

[65] M. C. Little and S. K. Shrivastava. Implementing high availability CORBA applications

with Java. In Proc. of IEEE Workshop on Internet Applications, pages 112-119, San Jose,

California, July 1999.

[66] X. Liu, X. Zhu, P. Padala, Z. Wang, and S. Singhal. Optimal multivariate control for differen­

tiated services on a shared hosting platform. In Proc. of IEEE Conf. on Decision and Control

(CDC), pages 3792-3799,2007.

[67] X. Long, F. Yang, and S. Su. A CORBA design pattern to build load balancing and fault

tolerant telecommunication software. In Proc. of Int. Conf. on Communication Technology

(ICCT), pages 1575-1579, Beijing, China, 2003.

[68] D. Mallei, Y. Amir, D. Dolev, and S. Kramer. The Transis approach to high availability cluster

communication. Technical Report CS94-14, 1994.

[69] C. Marchetti, R. Baldoni, S. T. Piergiovanni, and A. Virgillito. Fully distributed three-tier

active software replication. IEEE Transactions on Parallel Distributed System, 17(7):633-

645, 2006.

[70] MicroSoft Corporation. Microsoft .NETframework 3.5, November 2007.

[71] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-

Papadopoulos. Totem: A fault-tolerant multicast group communication system. Commu­

nications of the ACM, 39(4):54-63, 1996.

[72] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. A fault tolerance framework for

CORBA. In Proc. of Int. Symp. on Fault-Tolerant Computing, pages 150-157, 1999.

BIBLIOGRAPHY 185

[73] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. State synchronization and recovery for

strongly consistent replicated CORBA objects. In P roc. of Int. Conf. on Dependable Systems

and Networks, pages 261 -270,2001.

[74] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Strongly consistent replication and

recovery of fault-tolerant CORBA applications. Journal of Computer System Science and

Engineering, 17(2): 103-114, 2002.

[75] Object Management Group. Fault tolerant CORBA specification, December 1999.

[76] Object Management Group. Transaction service specification, September 2002.

[77] Object Management Group. CORBA component model specification, April 2006.

[78] Oracle Corporation. Oracle9i applicatoin server, release 2 edition, April 2002.

[79] O. Othman, C. O'Ryan, and D. C. Schmidt. Strategies for CORBA middleware-based load

balancing. In IEEE Distributed Systems Online, 2001. http://www.computer.org/dsonline.

[80] O. Othman and D. C. Schmidt. Optimizing distributed system performance via adaptive mid­

dleware load balancing. In Proc. ofACMSIGPLAN Workshop on Optimization of Middleware

and Distributed Systems (OM), Snowbird, Utah, USA, 2001.

[81] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel, and E. Nahum.

Locality-aware request distribution in cluster-based network servers. In Proc. of Int. Conf. on

Architectural Support for Programming Languages and Operating Systems, pages 205-216,

1998.

[82] J. F. Paris and D. E. Long. Efficient dynamic voting algorithms. In Proc. of the Int. Conf. on

Data Engineering (ICDE), pages 268-275, 1988.

[83] M. Pasin, M. Riveill, and T. S. Weber. High-available enterprise JavaBeans using group

communication system support. In Proc. of the European Research Seminar on Advances in

Distributed Systems ERSADS, Berliner(Frolic),Italy, May 2001.

http://www.computer.org/dsonline

BIBLIOGRAPHY 186

[84] F. Perez-Sorrosal, M. Patino-Martinez, R. Jimenez-Peris, and B. Kemme. Consis­

tent and scalable cache replication for multi-tier J2EE applications. In Proc. of Int.

ACM/IFIP/USENIX Middleware Conf., pages 328-347, Newport Beach, CA, USA, 2007.

[85] Pramati Technologies Private Limited. Pramati server 3.0 administration guide, 2002.

http ://www.pramati .com.

[86] L. L. Pullum. Software fault tolerance: Techniques and implementation. Artech House,

Norwood, MA, 2001.

[87] D. C. Schmidt, D. L. Levine, and S. Mungee. The design of the TAO real-time object request

broker. Computer Communications, 21 (4):294- 324,1998.

[88] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A

tutorial. ACM Computing Surveys, 22(4):299-319, 1990.

[89] F. B. Schneider. Replication management using the state-machine approach. In Distributed

Systems, second edition. ACM Press, pages 169-197, New York, 1993.

[90] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transaction chopping: Algorithms and

performance studies. ACM Transactions on Database Systems, 20(3):325-363, 1995.

[91] A.V. Singh, L.E, Moser̂ and P.M. Melliar-Smith. Integrating fault tolerance and load balanc­

ing in distributed systems based on CORBA. In Proc. of European Dependable Computing

Conf. (EDCC), 2005.

[92] J. G. Slember and P. Narasimhan. Living with nondeterminism in replicated middleware

applications. In Proc. of Int. ACM/IFIP/USENIX Middleware Conf, pages 81-100, 2006.

[93] SUN Microsystems Inc.. ECperf™ specification, Version 1.1.

[94] SUN Microsystems. Inc. JAVA 2 platform enterprise edition specification, Version 1.3.

[95] SUN Microsystems Inc. Java remote method invocation.

[96] SUN Microsystems Inc. Sun Java™ system application server enterprise edition 7.

http://www.pramati

BIBLIOGRAPHY 187

[97] SUN Microsystems Inc. JDBC 2.0 standard extension API, December 1998.

[98] SUN Microsystems Inc. Java transaction API specificatoin, Version 1.0.1, April 1999.

[99] SUN Microsystems Inc. Java transaction service specification, Version 1.0, December 1999.

[100] SUN Microsystems Inc. Enterprise JavaBeans™ specification, Version 2.0, October 2000.

[101] R. H. Thomas. A majority consensus approach to concurrency control for multiple copy

databases. ACM Transactions on Database Systems, 4(2): 180-209, 1979.

[102] R. van Renesse, K. Birman, and S. Maffeis. Horus: A flexible group communication system.

Communications of the ACM, 39(4):76-83, 1996.

[103] H. Wang and M. Bransford. Server clusters For high availability in WebSphere applica­

tion server network deployment edition 5.0. Software Group, IBM Corporation, release 5.0

edition, April 2003.

[104] M. Wiesmann, F. Pedon, A. Schiper, B. Kemme, and G. Alonso. Understanding replication

in database and distributed systems. In Proc. of the Int. Conf. on Distributed Computing

Systems ICDCS, pages 464^174, Taipei, Taiwan, R.O.C., April 2000.

[105] Inc. WinterGreen Research. Application server market opportunities, strategies, and fore­

casts, 2004 to 2009. Technical report, 2004.

[106] H. Wu and B. Kemme. Fault-tolerance for stateful application servers in the presence of

advanced transactions patterns. In Proc. of IEEE Symp. on Reliable Distributed Systems

(SRDS), pages 95-105, Orlando, FL, USA, 2005.

[107] H. Wu and B. Kemme. Showing correctness of a replication algorithm in a component based

system. In Proc. of Int. Database Engineering and Application Symp. (IDEAS), 2008.

[108] H. Wu, B. Kemme, A. Bartoli, and S. Patarin. A replication toolkit for j2ee application

servers. In Software Demonstration at the Int. ACM/IFIP/USENIX Middleware Conf, 2005.

BIBLIOGRAPHY 188

[109] H. Wu, B. Kemme, and V. Maverick. Eager replication for stateful J2EE servers. In Proc. of

Int. Symp. on Distributed Objects and Applications (DOA), pages 1376-1394, 2004.

[110] M. Wu and X.-H. Sun. The GHS grid scheduling system: Implementation and performance

comparison. In Proc. of Int. Parallel and Distributed Processing Symp. (IPDPS), pages 25-

29, 2006.

[HI] Q. Zhang, A. Riska, W. Sun, E. Smirni, and G. Ciardo. Workload-aware load balancing for

clustered web servers. IEEE Transactions on Parallel Distributed System, 16(3):219-233,

2005.

[112] W. Zhao. A lightweight fault tolerance framework for web services. In Proc. of the

IEEE/WIC/ACM Int. Conf. on Web Intelligence, pages 542-548, 2006.

[113] W. Zhao, L. E. Moser, and P. M. Melliar-Smith. Design and implementation of a pluggable

fault tolerant CORBA infrastructure. In Proc. of Int. Parallel and Distributed Processing

Symp., pages 343-352, Fort Lauderdale, California, 2002.

[114] W. Zhao, L. E. Moser, and P. M. Melliar-Smith. Unification of replication and transaction

processing in three-tier architectures. In Proc. of Int. Conf. on Distributed Computing Systems

(ICDCS), pages 290-297, 2002.

[115] W. Zhao, L.E. Moser, and P.M. Melliar-Smith. Unification of transactions and replication

in three-tier architectures based on CORBA. IEEE Transactions on Dependable and Secure

Computing, 2(l):20-33,2005.

