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ABSTRACT 

In recent years, multi-tier architectures have become the standard computing environment for web-

and enterprise applications. The application server tier is often the heart of the system embedding 

the business logic. Adaptability, in particular the capability to adjust to the load submitted to the 

system and to handle the failure of individual components, are of outmost importance in order 

to provide 7/24 access and high performance. Replication is a common means to achieve these 

reliability and scalability requirements. With replication, the application server tier consists of 

several server replicas. Thus, if one replica fails, others can take over. Furthermore, the load can be 

distributed across the available replicas. Although many replication solutions have been proposed 

so far, most of them have been either developed for fault-tolerance or for scalability. Furthermore, 

only few have considered that the application server tier is only one tier in a multi-tier architecture, 

that this tier maintains state, and that execution in this environment can follow complex patterns. 

Thus, existing solutions often do not provide correctness beyond some basic application scenarios. 

In this thesis we tackle the issue of replication of the application server tier from ground off 

and develop a unified solution that provides both fault-tolerance and scalability. We first describe 

a set of execution patterns that describe how requests are typically executed in multi-tier architec­

tures. They consider the flow of execution across client tier, application server tier, and database 

tier. In particular, the execution patterns describe how requests are associated with transactions, 

the fundamental execution units at application server and database tiers. Having these execution 

patterns in mind, we provide a formal definition of what it means to provide a correct execution 

across all tiers, even in case failures occur and the application server tier is replicated. Informally, a 
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replicated system is correct if it behaves exactly as a non-replicated that never fails. From there, we 

propose a set of replication algorithms for fault-tolerance that provide correctness for the execution 

patterns that we have identified. The main principle is to let a primary AS replica to execute all 

client requests, and to propagate any state changes performed by a transaction to backup replicas 

at transaction commit time. The challenges occur as requests can be associated in different ways 

with transactions. Then, we extend our fault-tolerance solution and develop a unified solution that 

provides both fault-tolerance and load-balancing. In this extended solution, each application server 

replica is able to execute client requests as a primary and at the same time serves as backup for 

other replicas. The framework provides a transparent, truly distributed and lightweight load distri­

bution mechanism which takes advantage of the fault-tolerance infrastructure. Our replication tool 

is implemented as a plug-in of JBoss application server and the performance is carefully evaluated, 

comparing with JBoss' own replication solutions. The evaluation shows that our protocols have 

very good performance and compare favorably with existing solutions. 

IV 



ABREGE 

Au cours des dernieres annees, l'architecture multi-tiers est devenue la norme pour le developpement 

d'applications Web et d'entreprise. Dans cette architecture, le serveur d'applications represente 

souvent le coeur du systeme encapsulant la logique de traitement. La capacite d'un tel systeme a 

s'adapter a la charge soumise et a gerer les defaillances des composantes individuelles sont d'une 

importance capitale afin de fournir un acces permanent et performant a l'application. 

La replication est un moyen tres utilise pour atteindre la fiabilite et l'extensibilite requises. Avec 

la replication, le serveur d'applications dispose de plusieurs copies. Ainsi, si une copie ne parvient 

pas a repondre a une requete, les autres peuvent prendre la releve. En outre, la charge peut etre 

repartie entre les copies disponibles. Bien que de nombreuses solutions de replication aient ete 

proposees, la plupart d'entre elles ont ete concues soit pour resoudre le probleme de tolerance aux 

fautes, soit pour resoudre le probleme d'extensibilite. En plus, seules quelques unes ont considere le 

fait que le serveur ne represente qu'un seul niveau dans l'architecture multi-tiers et que l'execution 

dans cet environnement peut suivre des patrons complexes. Ainsi, souvent les solutions existantes 

ne prevoient pas l'exactitude au-dela de quelques scenarios de base. 

Dans cette these, nous abordons la question de la replication du serveur d'applications ainsi que 

le developpement d'une approche de replication qui unifie la tolerance aux fautes et l'extensibilite 

du systeme. Pour adresser ce point, nous avons d'abord identifie un ensemble de patrons d'execution 

qui decrivent comment les requetes sont generalement executees dans les differents niveaux de 

l'architecture. Ces patrons considerent le flux d'execution a travers le client, le serveur, et la base 

de donnees. En particulier, ils decrivent comment les requetes sont liees a des transactions et des 

unites d'execution fondamentales au serveur d'applications et aux bases de donnees. 
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Ayant ces patrons, nous fournissons une definition formelle de 1'execution correcte dans tous 

les niveaux de l'architecture, meme dans le cas ou des defaillances se produisent et le serveur 

d'applications est replique. Oflficieusement, une replication d'un serveur est correcte si elle se com-

porte exactement comme si le serveur n'a jamais fait face a des defaillances. De la, nous proposons 

une serie d'algorithmes de replication pour la tolerance aux fautes qui assurent l'exactirude des 

patrons d'execution que nous avons identifies. L'idee principale est de laisser une copie primaire 

executer toutes les requetes des clients, et de propager tout changement d'etat aux copies de sauve-

garde quand la transaction est validee. Les defis resident dans le fait que les requetes peuvent etre 

associees aux transactions de differentes manieres. Ensuite, nous etendons notre solution pour pren­

dre en consideration la tolerance aux fautes et Pequilibrage de charge entre les serveurs. Dans cette 

solution, chaque copie du serveur d'applications est en mesure d'executer les requetes des clients 

comme une copie primaire et en meme temps elle sert comme sauvegarde pour les autres copies. 

Cette plate-forme offre un mecanisme de repartition de la charge qui est transparent, distribue, leger 

et qui profite de 1'infrastructure de la tolerance aux fautes. Notre outil de replication est implemente 

comme un plug-in du serveur d'applications JBoss. Les performances ont ete evaluees avec soin, 

en les comparant avec les solutions de replication JBoss. L'evaluation montre que nos protocoles 

ont de tres bonnes performances et qu'elles depassent celles des solutions existantes. 
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Chapter 1 

Introduction 

1.1 Motivation 

In recent years, with the rapid growth of the Internet, more and more enterprise applications are 

established using web technology. Typical web-based applications are using a 4-tier architecture, 

which consists of client tier, web server tier (WS), application server tier (AS), and backend database 

tier. In such an architecture, clients first send requests to a WS, which processes presentation logic, 

such as generating web pages. Then, the request is passed to an AS, which processes business 

logic (e.g., maintaining a shopping cart, executing a purchase operation, etc.) and accesses database 

systems to manage persistent data. WS and AS together are also called the middle tier. 

Clients of the WS are usually the real clients of the application and are connected via the In­

ternet. The client of the AS is the WS, and the AS is the client of the backend database. Both WS 

and AS can contain volatile state that can exist beyond the execution of individual requests. We say 

such systems are stateful. Figure 1.1 shows a typical example of a web based application, where a 

client buys a book online. The client submits the purchasing request through the web page of an 

online book store like Amazon. The request is first parsed on the WS and then passed to the AS. The 

AS processes the purchase that includes adding the book to the client's shopping cart and executing 

the payment. The records about the purchase and the payment are stored at the backend database. 

The request execution on the AS including the accesses to the database are typically transactional 
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Client A 

-SKSS H«-»~-V<*» 
Web Server Application Server 

Figure 1.1: Online shopping: an example of a web based application 

in order to provide durability for the persistent data, isolation from concurrent transactions, and 

atomicity. Nowadays, web-based applications, such as online stores, online banking, online games, 

and online communities, are growing very fast, involving people all over the world, and influencing 

almost all areas of our life. 

The AS is the heart of the typical 4-tier architecture executing the kernel logic. The use of 

AS technology is growing very fast along with the increasing market of web-based applications. 

With 400 million web sites already in existence and growing, the need for AS is growing. As 

reported in [105], the AS market at $1.5 billion in 2003, is expected to reach $5.2 billion by 2009. 

In many web-based applications, the AS executes crucial and heavy loaded tasks, demanding to 

be accessible on a 7/24 basis and to provide short response time to users. Both AS's fast growing 

market and AS's vital position in web-based applications strongly require the AS tiers to be highly 

adaptable, in particular, to provide high reliability, availability, and scalability. Special challenges 

exist for the adaptability of stateful AS due to the difficulties of managing the volatile state at the 

AS. 

Motivated by these requirements, this dissertation focuses on using replication to implement 

adaptable stateful AS. This dissertation studies fault tolerance to address reliability and availability, 

and studies load balancing to address scalability. Replication is used to provide extra resources to 

both tolerate failures and to distribute load. 

1.1.1 Replication for Fault Tolerance 

Replication is an essential mechanism to tolerate failures by allowing a system to have more replicas 

to backup data or actions. It can be used in every tier of a multi-tier architecture. The basic idea is 
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to let a tier have several replicas. When one replica of the tier fails, other replicas can take over and 

continue the work assigned to the failed replica. Replication can be either active or passive. In an 

active scheme, a request is sent to and executed at all replicas. When a replica fails, other replicas 

continue execution. In a passive scheme, only the primary replica executes the request, and other 

replicas backup the data changes executed at the primary replica. If the primary fails, one of the 

backups becomes the new primary to take over request execution. 

Replication of the database tier has been well studied, e.g., [17, 104, 2, 24, 64]. Most DBMSs 

(database management system) already use replication to tolerate failures, such as Oracle Real Ap­

plication Clusters (RAC), Microsoft SQL Server 2000 Failover Clustering, and IBM's DB2 repli­

cation solution. Replication is also widely used for middle tier systems, as proposed in, e.g., 

[29, 72, 73, 74, 46, 41, 114, 113, 11, 10, 62]. Both the prevailing WS products (e.g., Apache, 

Tomcat, and Microsoft IIS) and AS products (e.g., BEA WebLogic, IBM WebSphere, JBoss and 

Microsoft .NET) have their own replication solutions. Most middle tier systems use passive replica­

tion since it requires less resources and less management overhead, and allows for non-deterministic 

execution. 

Nevertheless, replication of the middle tier still has many open questions. A crucial problem is 

how to guarantee correctness in a replicated middle tier system. To solve this problem, we have to 

clarify what correctness means for such a system. Informally speaking, correctness of a replication 

algorithm requires the replicated system to act in the same way as a non-faulty non-replicated sys­

tem. However, the standard behavior of such a middle tier system is not clearly defined yet. Most 

of the existing solutions only assume quite simple semantics for request execution across the tiers. 

When an application does not follow the basic execution model, corresponding replicated systems 

might expose incorrect behavior. So far, however, only few approaches (e.g., [11,114]) consider 

the more complex execution models that often occur in real systems. 

This problem is very severe for the AS tier. The business logic processed at the AS might be 

very complex. A particular challenge is that the execution of client requests at AS and database can 

be associated with transactions in different ways. The simplest association is that each client request 

executes within an individual transaction. That is, all read and write operations on data residing on 

the AS and/or the database take place in a single transaction. For example, as shown in figure 1.1, 
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when a WS receives a request to buy a book from a web client, it submits only one request to the 

AS to be executed within a single transaction. Most of the existing solutions assume this simple 

association. In practice, however, execution can be more complex. At the one extreme, the AS's 

client, namely the WS, can start a transaction, and then submit several requests in the context of this 

transaction before committing it. For instance, within a purchase transaction, the WS might submit 

several requests to the AS to retrieve the book and make the payment. At the other extreme, a 

client request might create several independent transactions. For example, application programmers 

often chop the execution of a request into a set of small transactions to avoid lock contention at the 

database. Existing solutions will simply not work correctly if an application follows such advanced 

execution models. As a result, there is a large gap: the AS required to be replicated is usually 

used in critical environments with heavy load and high possibility of failures, but existing solutions 

cannot guarantee correct fault tolerance for the AS under such circumstances. In order to bridge 

this gap, this dissertation analyzes execution patterns that are used in practice to associate requests 

and transactions and proposes a set of replication algorithms, each of which provides the correct 

replication semantics for a different pattern. Our algorithms follow the passive scheme, i.e., a 

primary executes requests, backups can take over in the failure case. 

Another major challenge is how to prove the correctness of these algorithms. So far, much of the 

research on correctness of replication of middle tier systems looks at specific aspects by considering 

specific replication abstractions (e.g., relation between replication and failure types [22], total order 

broadcast of requests [88], or consensus [25, 31]), but falls short of considering the global picture 

(different replicated systems, different application semantics, interaction with other tiers, etc.). Only 

a few approaches (e.g. [44] and [33]) present a formal correctness criteria for replication of middle 

tier systems. However, these criteria are usually built on some specific assumptions or for some 

specific environments. Hence, another effort of this dissertation is to define a suite of correctness 

criteria for AS replication, and use it to prove the correctness of our replication algorithms. 

Except for correctness, our replication algorithms also address two usability requirements. First, 

the replication of the AS tier should not require any special support from other tiers. Ideally, the 

other tiers are not even aware of the fact that the AS tier is replicated. In this way, the replicated 

AS will be general enough to connect with different kinds of WS and backend DBMSs without 
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changing the standard interaction models defined in the corresponding specifications. Thus, no 

changes to the other tiers are needed. Secondly, since different execution patterns might be mixed 

in an application, different replication algorithms need to be supported concurrently to automatically 

adapt to the different execution patterns at runtime. 

1.1.2 Replication for Load Balancing 

Replication is also the major approach to implement load balancing. It increases the scalability of 

a system by distributing the load across the replicas of the system. Typical load balancing solutions 

for AS (or WS) use a centralized load balancer (also called scheduler) to manage the load dispatch. 

A task is first sent to the load balancer. Then, the load balancer uses a content-blind policy or a 

content-aware policy [4] to choose replicas to dispatch loads. In content-blind policies, such as 

Random or Round Robin, the load balancer does not know the load on each site. These policies 

can be easily implemented and hence, are widely used in practice, especially in most AS products, 

such as BEA WebLogic, IBM WebSphere, and JBoss. However, they cannot work well when the 

workload is diverse, or the system is heterogenous. A content-aware policy means the load balancer 

has knowledge about the load on each replica, e.g., the CPU and memory resource utilization or 

the response times. The load balancer can use the knowledge to optimize the load distribution and 

orchestrate resources of all replicas. 

Load balancing strategies are pervasively used in many enterprise applications, especially in 

critical environments, where heavy load has to be processed. However, a crucial problem is that a 

replication architecture should not only support load balancing, but also fault tolerance, since such a 

critical environment is usually failure prone as well. In particular, this is a vital requirement for the 

AS tier, since the core business logic is processed at the AS. In order to fulfill this requirement, an 

intuitive way is to build a combined replication architecture that supports both load balancing and 

fault tolerance. However, while replication has been separately studied and applied widely for both 

issues for a long time, only little research has been performed on providing a combined replication 

solution to handle both in a single architecture. 

This dissertation proposes a unified replication architecture, where a cluster of AS replicas is 

used to balance load and tolerate failures. The main challenge to implement such a combined 
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replication architecture is that the mechanisms to use replication respectively for scalability and 

fault-tolerance are different and even conflicting, although both have a cluster of AS replicas. In 

order to achieve scalability, load balancing algorithms use AS replicas as resources to execute client 

requests. Ideally, the more replicas the cluster has, the higher the maximum throughput it can 

achieve. In contrast, fault-tolerance algorithms use AS replicas as redundant resources that can 

mask the failures of individual replicas. In both the passive and the active scheme, different replicas 

have the same data or execute the same tasks. Apparently, the redundancy decreases the scalability. 

Fortunately, the failure probability of an individual replica is low, and hence having two or three 

running replicas are enough for most applications. In a passive schema, since tasks performed by 

a backup typically require much less resources than executing requests itself, resources at backups 

might often be wasted. Our approach does not waste resources as it lets each replica be a primary 

for some clients executing requests and be a backup for some other servers at the same time. 

A further challenge of load balancing strategies is the tradeoff between a precise load distri­

bution and the overhead of implementation, maintenance and management of the load balancing 

strategy. As mentioned before, a content-aware policy can provide precise load distribution using 

the knowledge of the load at different replicas. However, the exchange and the maintenance of load 

knowledge among different replicas normally requires a significant overhead. The more precise 

the load distribution is, the higher overhead the system needs to pay. Moreover, a centralized load 

balancer is a stateful single point of failure and requires extra replication overhead for fault toler­

ance. A distributed load balancer is rarely used for AS because it is too complex to be implemented. 

This dissertation addresses this issue by building an effective yet simple distributed load balancing 

algorithm. 

1.2 About This Work 

The work of this thesis is part of the "ADAPT" (Middleware Technologies for Adaptive and Com-

posable Distributed Components) project, which is interested in developing support for the creation 

of adaptable web services. Partners involved in this project are Universita di Bologna, Universita 

di Trieste, Universidad Politecnica de Madrid, ETH Zurich, Universita di Trieste, University of 



Chapter}. Introduction 7 

Newcastle, HP Arjuna Labs, and McGill University. 

In this context, my thesis focuses on replication solutions for AS, addressing fault tolerance and 

load balancing. The following sections provide a detailed overview of the contributions. 

1.2.1 Modeling Execution Patterns in a Multi-Tier Architecture 

Informally speaking, a correct replication algorithm should guarantee that the replicated system, 

despite the possibility of failures, works in the same way as a non-faulty non-replicated system. 

Hence, to define the correctness criteria to be supported by the AS replication algorithm, we need to 

model the behavior of a non-faulty non-replicated AS in a multi-tier architecture as the standard for 

correctness. We use execution patterns to model the relationship between requests and transactions. 

Due to the multi-tier architecture, the failure and the replication of the AS might not only affect the 

AS itself, but also affect the client tier of the AS and the database tier linked to the AS. Hence, the 

analysis has to take the client tier and the database tier into account. 

The simplest execution pattern, referred as "1-1" pattern, indicates that each client request exe­

cutes within its own individual transaction. The N-l pattern associates a transaction with more than 

one client request, and the 1-N pattern associates a client request with more than one transaction. 

For each execution pattern, we analyze different transaction termination behaviors. Then, we model 

a failure of an AS by analyzing the side effect of the failure. To simplify the problem, the thesis 

currently only focuses on crash failures. 

Finally, we model the replicated AS, and formally define correctness criteria for AS replication. 

Considering most practical AS products use passive replication schemes, our correctness criteria 

currently only focuses on passive replication schemes for simplification. However, we believe that 

similar mechanisms can be used to describe other schemes, such as active replication. 

1.2.2 Development of a Replication Tool for Fault Tolerance 

Although there exist some research using active replication (e.g., [69, 7, 35, 72]), and some consid­

ering a combination of active and passive replication (e.g., [31, 32]), most practical solutions for 

middle tier replication (e.g. [51, 45, 43, 41, 73, 11, 62]), especially those of commercial systems, 
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use passive replication. Our replication tool also uses the passive approach. 

In our solution, called ADAPT-SIB, a server replica is the primary executing client requests, 

and other replicas are backups. The primary propagates state changes to the backups whenever 

a transaction commits. If the primary fails, a backup replica fails over, reconstructs the state of 

the old primary, and continues the client connections. Requests that were active at the time the 

primary crashed are automatically restarted at the new primary. The resubmission of requests is 

automatically done by a special stub at the client side that is implicitly downloaded from the server 

side without affecting the original client program. When requests are reexecuted after a crash, their 

sub-requests to the database are required to be coordinated with original transactions before the 

crash. To do so, we use a special agreement protocol using a marker mechanism similar to [43]. 

Unlike other coordination mechanisms, which either require additional support from the database 

like [11] or change the interface between AS and database like [114], our coordination mechanism 

does not require any additional support from the database, and uses the most common interface to 

access the database. It also differs from traditional agreement protocols like 2-phase-commit [65] 

since it has a highly reduced logging cost and does not require all participants to have executed the 

request before terminating. As a result, our replication solution guarantees independence to other 

tiers. We first design the replication algorithm for the simplest 1-1 pattern (published in [109]). 

Then, we extend the algorithm to support all execution patterns (published in [106]) and different 

transaction termination behaviors. 

Besides above main issues, the work of the thesis also includes miscellaneous technologies 

associated with replication, such as designing and implementing a recovery strategy to allow failed 

nodes to recover and rejoin the system. 

Moreover, when designing the algorithm, we always keep performance in mind. In particular, 

we address strategies to speedup failover. Our performance analysis shows that the approach com­

pares favorably with other fault-tolerant solutions during normal processing, and has a fast failover. 

1.2.3 Extension of the Replication Tool to Support Load Balancing 

Based on the above ADAPT-SIB replication tool, we build an innovative AS replication solution 

to provide load balancing and fault tolerance in a unified architecture called ADAPT-LB. Unlike 
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ADAPT-SIB that just needs two or three replicas to support fault tolerance, ADAPT-LB can contain 

a large number of replicas. The entire cluster of replicas constructs a single load distribution group 

(LDG), where each member is a primary replica for some clients, executing the requests of this 

subset of clients. At the same time, each replica is backup for some other replicas. We refer to the 

group of one primary replica (executing requests) and the replicas that are backups of this primary 

as fault tolerance group (FTG). Thus, each replica is the primary of a small FTG and is backup in 

few other FTGs. As backup activity requires only few resources, the main capacity of each server 

is used for request execution. 

The system uses a truly distributed, lightweight load-distribution algorithm that takes advantage 

of the existence of FTG groups. It does not require the maintenance of load information and keeps 

communication overhead for load-balancing purposes low. When a replica joins the system, it joins 

the LDG and creates a new FTG for which it is primary. When a replica fails or is removed from 

the system, a backup replica takes over its tasks. As part of any join or leave operation, the FTG 

configuration is adjusted to guarantee that all FTGs have a sufficient number of replicas and no 

replica is overburdened with backup tasks. 

The load distribution algorithm combines the content-blind and content-aware policies. This 

way, the load balancing strategy can automatically adapt to the simple and low-overhead content-

blind policy in a homogeneous environment, and switch to the content-aware policy to achieve 

precise load distribution in a heterogeneous environment. Furthermore, the load-balancing module 

will quickly remove any load imbalance that might occur during reconfiguration. 

1.2.4 Implementation of a Replicated Application Server 

To make our replication tool practical, we have implemented our replication tool within the context 

of a concrete AS architecture, namely J2EE [94] and integrated it into the open-source AS JBoss 

[49]. We choose the J2EE architecture because it is used very widely and it has many open-source 

products. We believe, however, that the principle ideas can be applied to other kinds of AS architec­

tures (e.g., CORBA, .NET), and hence, we keep the algorithmic description as general as possible. 

The implementation consists of several parts. The implementation of the suite of ADAPT-SIB 

replication algorithms is within a single replication package. The proper replication algorithm is 
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dynamically chosen at runtime according to the execution pattern used. The replication package is 

not directly linked to the JBoss environment. Instead, it is built on top of the ADAPT replication 

framework [6], whose implementation was a joint effort of our partners from Universita di Bologna 

and Universita di Trieste and us. 

The ADAPT framework is an extension of a J2EE server, allowing replication algorithms to be 

plugged in. On the upper side, the framework defines a set of APIs for the replication algorithm 

to get state information and get control over requests and transactions. The replication algorithm 

can be implemented using these APIs without considering the architecture of a certain AS. Under­

neath the API, the framework has to implement the provided functionality. The implementation is 

highly compatible with underlying AS. In our implementation, the framework is based on the JBoss 

environment, the Java transaction APIs, and JDBC 2.0. Hence, our replication tool can be easily 

integrated into JBoss through the ADAPT J2EE replication framework. 

To use ADAPT-SIB and ADAPT-LB for other J2EE products, we just need to change the 

ADAPT framework without any change to our replication algorithm itself. 

1.2.5 Contribution of this Thesis 

In summary, this thesis makes three main contributions. 

• Modeling: The thesis defines a formal model to describe the behavior of a non-faulty non-

replicated AS in a multi-tier architecture. The model helps to analyze the correctness of an 

AS replication algorithm, taking execution patterns into account. 

• Performance: The thesis proposes replication protocols to support fault tolerance with good 

performance, i.e., about 15% extra overhead compared to a non-replicated AS. The load bal­

ancing strategy proposed in this thesis significantly increases the scalability of the replicated 

AS for both homogeneous and heterogeneous environments. 

• Practicability: The thesis proposes a replication tool as a pluggable module that can be easily 

deployed and managed on different AS products without affecting clients (WS) and databases. 

The load balancing strategy Uses a truly distributed, lightweight load-distribution algorithm 

that can be easily implemented and managed. 
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1.3 Structure of the Thesis 

The structure of the thesis is as follows. Chapter 2 introduces some background in regard to AS 

replication, including the structure of application server, the execution patterns, failures, generic 

replication approaches, and the communication tool used for this thesis. Chapter 3 discusses re­

lated work. Chapter 4 describes the behavior of AS using execution patterns and defines the general 

correctness criteria for AS replication based on these patterns. Chapter 5, 6 and 7 present the 

replication tool for fault tolerance, called ADAPT-S1B. Chapter 5 presents the basic replication al­

gorithm for the 1-1 pattern and discusses the correctness. Chapter 6 presents advanced replication 

algorithms for advanced execution patterns. Chapter 7 presents special features and extensions. 

Chapter 8 presents the extended unified replication framework called ADAPT-LB that supports both 

load balancing and fault tolerance. Chapter 9 presents the implementation of the replication tool for 

the JBoss Application server. Chapter 10 presents a thorough evaluation of the replication tool for 

both fault tolerance and load balancing. Chapter 11 concludes the thesis and discusses future work. 

The replication algorithms proposed in Chapters 5, 6 and 7 have been previously published 

in [109, 106]. The correctness criteria of replication proposed in Chapter 4 was guided by our 

paper [107] that describes a formal model for reasoning about correctness of replication in 3-tier 

architectures. The ADAPT framework is described in [6]. A demo of the system was given in [108]. 

The unified replication framework proposed in Chapter 8 has been submitted for publication. 
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Background 

This chapter provides an overview of all basic concepts and terminology that will be used throughout 

the thesis. It introduces the concepts of multi-tier architecture, failure, replication, and a very useful 

communication mechanism to do replication, namely group communication. 

2.1 Overview of Multi-tier Architecture 

The multi-tier architecture is an extension of the traditional client-server computing model. The 

client resides outside the server, and only sees the service interface. It is the front tier, which usually 

directly interacts with end users and does not receive requests from other tiers. On the server side, 

the all-in-one server is split into multiple tiers. The backend tier is usually a database, which only 

receives requests from other tiers, but does not submit further requests to other tiers. Between these 

two tiers, there could be one or more middle tiers. When a middle tier receives a request from a 

preceding tier, the preceding tier is its client. Reversely, when the tier makes calls to another tier, it 

becomes the client of the called tier. A middle tier might be a client to more than one tier, and also 

be a server to more than one client. A multi-tier architecture separates an application into a set of 

building blocks. Each tier can be implemented as a self-contained component and deployed onto a 

separated machine. 

An important benefit of a multi-tier architecture is that each tier can be designed and main­

tained separately without affecting the functionality of other tiers. It decreases the development and 

12 
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maintenance cost of applications. Another advantage is that the overall overhead of an application 

is distributed across different tiers deployed on different machines. Although the corresponding 

communication overhead increases, the much heavier overhead to process application logic is dis­

tributed, and hence the overall performance can become better. Moreover, the performance at each 

tier can be fine-tuned separately, and hence better performance can be reached much easier. 

2.2 Overview of Application Server Tier 

Web based applications are typical use cases of the multi-tier architecture. The most prevalent mid­

dle tier systems used in these applications are WS and AS. In industry, there are three mainstream 

specifications to build the AS tier: J2EE [94], CORBA [77], and .NET [70]. Usually, in an AS, 

the business logic is modularized into different components that can call each other. Components 

can have state. All components of the AS are running within the same environment. Clients of the 

AS are usually the WS tier but also normal client programs. Backend servers of AS are usually 

databases. In some large enterprise applications, e.g. B2B applications, web services provided by 

different companies can be integrated into composite services according to some protocols such as 

UDDI, SOAP, and WSDL. In these applications, the AS also could call other WS or AS. But this is 

out of the scope of this thesis. 

2.2.1 Execution Flow 

Clients trigger business logic of the AS by submitting requests to the AS. When a client submits a 

request to the AS, the request typically calls a component method with input parameters. During 

the execution of the request, it may change the state of the component, and/or submit sub-requests 

to other components in the same AS or to the backend database. Each sub-request also may change 

the state of the component or the database, and/or submit further sub-requests. At the end of the ex­

ecution of the request, the client will receive a response from the AS. The communication between 

clients and AS is usually based on existing protocols, like JAVA RMI, CORBA ORB, or Microsoft 

COM/DCOM. The communication between AS and database is usually based on database connec­

tion drivers provided by different DBMS products. 
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Figure 2.1: Application server architecture 

Within the runtime environment, the AS also provides a set of services like transactions, persis­

tence, security, messages, and database connection to support business logic. Most AS architectures 

provide two ways to access such services. Either components explicitly make service calls from pro­

grams or such service calls are made automatically by the runtime environment whenever a method 

of a component is activated. In the later case, the runtime environment can call the services before 

or after requests are executed. Figure 2.1 shows the execution flow of a client request within the AS 

with a transaction service being called. 

2.2.2 Calling Schemes 

When a client submits a request to an AS, the execution on the client is usually blocked until the 

response of the request is returned. This calling scheme is called blocking scheme. This is in contrast 

to the non-blocking scheme, which usually applies message queues. In here, after submitting a 

request, the client continues its execution without waiting for the response. In the AS, client requests 

are queued and processed in turn. The caller usually uses a listener to intercept the response, which 

triggers corresponding actions then. In this thesis we focus on the blocking calling scheme, because 

this is the typical model that are used by many communication protocols between clients and AS, 

e.g., JAVA RMI and CORBA ORB. 



Chapter 2. Background 15 

2.2.3 Server State 

The state of an AS is the union of the states of all components of the AS. The state of an AS usually 

remains volatile in memory. Some AS products provide persistence mechanism for component 

state by temporally storing it on their local disk. This persistence is usually used to extend the 

main memory of the machine of an AS during runtime, but does not guarantee the durability in the 

same way a database would do. If the AS stops or crashes, the state stored on the local machine is 

discarded and no more available, even after the AS resumes work. Hence, in any case, we can think 

of the state of the AS as volatile. 

In many cases, especially for the blocking scheme, when an AS receives requests from its 

clients, each client will build an individual session with the AS. In this case, much of the volatile 

state of an AS is session-related. Session-related state is only available for a certain client session, 

and is not shared by different sessions or different clients. Hence, no concurrency issues occur on 

session-oriented state, since concurrent requests of different clients access different state informa­

tion. 

However, there is state called shared state that can be concurrently accessed by different clients 

and different requests. The AS requires some concurrency control mechanism to reconcile poten­

tially conflicting access to shared state. Different isolation levels are possible. Details are discussed 

in Section 2.4.3. 

2.2.4 Determinism 

Here, determinism means that if an AS runs two identical requests based on the same initial state, the 

responses and the state changes generated by the two requests are same. In particular, determinism 

is hard to achieve, even if we do not allow any non-deterministic programming model, e.g., multiple 

threads or time events are forbidden. This is because a very common cause for non-determinism are 

exceptions. An exception might be caused by many reasons, e.g., memory leak, system overload, 

program defect, or application semantics. If an exception in the backend database is not specially 

handled, it might be returned to the AS to cause non-determinism at the AS, and then be passed to 

the client. Accordingly, non-determinism can be passed from tier to tier. Hence, in this thesis, we 
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always keep non-determinism in mind. 

2.3 J2EE Application Server 

In recent years, J2EE has become the most popular specification to implement application servers. 

This section looks in detail how a J2EE based AS works. Taking a J2EE based AS as an example 

will help us to understand the practical issues relevant to AS replication. 

2.3.1 Enterprise JavaBean 

In a J2EE application server, components that implement business logics are special Java objects 

called Enterprise JavaBeans (EJB) [100]. We distinguish two categories: session beans (SB) and 

entity beans (EB)1. A session bean is a non-persistent object that represents the actions associated 

with a caller session. There are two subtypes. Stateless session beans (SLSB) do not maintain 

any internal state across method calls. Stateful session beans (SFSB) maintain internal state for 

the lifetime of a caller session. Obviously, SFSBs are components that have volatile state, and the 

state of a SFSB is the typical session-related state. The J2EE specification provides a passivation 

mechanism to transfer the in-memory volatile state of an SFSB instance to the storage managed by 

the AS, allowing the SFSB instance to be garbage-collected or reused. As we mentioned before, 

although this mechanism makes the state of an SFSB instance persistent, it is not designed for fault 

tolerance purposes, since when the AS crashes the persistent storage is not accessible either. 

In contrast, an entity bean (EB) is an object that represents persistent data in persistent storage 

(mostly a database system). The state of an EB is the typical example of a shared state since different 

requests from different caller sessions can access the same EB. Also, the state of an EB represents 

cached data from the database. An EB synchronizes its state with the data in the database (i.e., read 

from or write to the database) within the boundaries of transactions. Thus, the concurrency control 

mechanism of the database can be used to manage the concurrent access of EBs in the cache. Further 

details in regard to the shared state follow in Section 2.4.3. 

1 Message beans are a third kind of EJBs. They are outside the scope of this dissertation. 



Chapter 2. Background 17 

Figure 2.2: Execution flow in J2EE architecture 

2.3.2 Execution Flow 

At the client side, a client accesses EJB objects using the Java remote invocation (RMI) protocol. In 

order to access an EJB object, the client needs to first create a connection session to the AS. From 

this connection session, the client gets a remote reference (called stub) of an EJB object. Then, the 

client takes advantage of the stub to send requests to the server side EJB. The implementation detail 

of this procedure is described in Section 9.1.1. 

At the server side, the runtime environment where EJBs are running in a J2EE AS is called 

EJB container. Whenever an outside client or an inside EJB makes a request to another EJB, the 

request will first be intercepted by the container, and then be dispatched to the destination EJB. The 

container is a wrapper of EJBs, which connects EJBs with services provided by the AS. It implicitly 

calls services according to the configuration, thus eliminating the need to code them within the 

application programs. To do so, the container intercepts requests to EJBs and calls certain services 

before requests are really executed, or after requests are executed but before the corresponding 

responses are returned to the caller. Figure 2.2 shows how an outside client submits two requests to 

an SFSB and an SLSB and how the container intercepts the two requests to call certain services. 

Often, more than one service is required to be called in regard to a request. Hence, an EJB 

container usually consists of several interceptors, each of which is responsible for calling a certain 

service. All these interceptors' form an interceptor chain (more on this in Section 9.1.2). Regarding 

the execution of a client request, the most relevant interceptor is the transaction interceptor that 

associates transactions with request executions. 
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2.4 Transaction Management 

Transaction management is a key service for both AS and database. In an AS, requests are usually 

executed within the scope of a transaction. There also exists the possibility that a client request 

is executed without the context of a transaction in case there is no database access. However, for 

the sake of generality, we assume that all client requests have to be executed within the contexts of 

transactions. For a request that is not assigned to a transaction, we assume that a pseudo transaction 

covers its execution. 

A transaction is a logical unit of read and write operations on component and database state. 

The well-known transactional properties are atomicity, consistency, isolation, and durability. In an 

AS, the transaction management is implemented by a transaction manager (TM). Figure 2.1 shows 

a typical way to call the transaction service. In the example, when the client request r\ is passing 

the container, the container calls the TM to immediately trigger the start of a transaction t\, then all 

execution related to r\ happens within the boundaries of this transaction. That is, both the accesses 

to the three components in the AS and the access to the database triggered by r\ are executed within 

the transaction t\. Typically, each transaction is associated with a single thread in the AS and the 

execution of operations of the transaction is serial. 

2.4.1 Lifespan of a Transaction 

Typically, a transaction spans both execution on the AS and on the database. In practice, during 

runtime, such a global transaction consists of two parts: a transaction on the AS (called AS trans­

action) and a transaction on the database (called DB transaction), since the AS and the database 

are two different systems and have their own transaction management systems. Usually a global 

transaction identifier is used to identify that an AS transaction and a database transaction belong to 

the same global transaction. 

Start of a global transaction 

We can consider the lifespan of a global transaction as follows. Immediately after the TM executes 

a transaction begin request, a global transaction is started, and the corresponding AS transaction is 
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started at this time point. The corresponding DB transaction is only started when a sub-request is 

submitted to access the database during the AS transaction. If no sub-request accesses the database, 

the global transaction only contains the AS transaction but does not contain a DB transaction. After a 

global transaction is started, all state changes on AS and database triggered by the thread associated 

with the global transaction belong to this transaction (unless the transaction is suspended). 

Termination of a global transaction 

When a global transaction wants to commit, the TM executes a transaction commit request. During 

the execution, the TM submits a commit sub-request to the database. Only after the database suc­

cessfully executes the commit request and returns the response to the AS, the AS can successfully 

finish the commit process. At this time point, the global transaction has committed on both the 

AS and the database, meaning both the corresponding AS transaction and the corresponding DB 

transaction have successfully committed. 

A global transaction could be aborted. If an abort is triggered on the AS, the process is similar to 

the commit. That is, the TM executes the corresponding transaction abort request, sending an abort 

sub-request to the database. However, an abort can also be triggered by the database (e.g., deadlock, 

integration constraint violation). In this case, the database directly aborts the corresponding DB 

transaction, and then notifies the AS. After the AS receives the notification, the TM executes the 

abort request without sending an abort sub-request to the database. 

Clearly, in all cases, a global transaction is first started on the AS as an AS transaction. Then, 

when persistent data is accessed, the corresponding DB transaction is started. No matter whether 

a global transaction eventually commits or aborts, its DB transaction always terminates before the 

termination of the corresponding AS transaction. 

Accessing more than one database 

In some applications, a transaction accesses more than one database. In this case, a 2-phase commit 

protocol (2PC) is necessary at-commit time for atomicity [18]. The TM of the AS is the coordinator. 
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It first sends a prepare request to all participating databases which return either with a prepared 

message or their decision to abort. If all databases have successfully prepared, the TM sends a com­

mit decision to all databases, otherwise (at least one aborted) an abort confirmation. The databases 

terminate the transaction accordingly. 

2.4.2 State Consistency 

The behavior of a DB transaction is clearly defined by the transaction properties. If a DB transaction 

commits, the state changes performed by the transaction on the database are made persistent. If the 

transaction aborts, any changes performed so far on the database are undone by the database system. 

In contrast, at the AS, the behavior depends often on whether it is shared or session state. Shared 

state is usually transactional by making it persistent. That is, at commit time the latest in-memory 

shared state is written to the database. In case of abort, changes are either undone or discarded and 

the state is reloaded from the database. In the following, we assume that shared state is always 

synchronized in this way with the database. 

Most AS products do not provide durability for session-related state. Instead, changes on 

session-related state remain volatile. Moreover, some AS products do not provide atomicity for 

session-related state. That is, the abort of an AS transaction does not automatically trigger that 

changes on session-related state are undone. However, programmers can provide rollback methods 

to undo these state changes to guarantee atomicity. For example, in J2EE, programmers can define 

rollback methods for stateful EJBs. These methods are automatically called by the J2EE server in 

the abort case. We say the AS server provides/w// state consistency if mechanisms exist to abort 

changes on session-related state, otherwise it provides relaxed state consistency. When a global 

transaction aborts in case of relaxed state consistency, the AS might keep some state changes that 

have already been done so far or make some further changes before request execution finishes, while 

the database always aborts state changes of the corresponding DB transaction and is correctly rolled 

back in the abort case. 
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2.4.3 Concurrent Transactions 

The AS might execute requests from different clients concurrently, leading to concurrent transac­

tions, since requests from different clients have to run within different transactions. Accordingly, 

there can be concurrent AS and DB transactions. 

On the database, a DBMS normally has well-established concurrency control mechanisms that 

can guarantee the isolation of concurrent transactions. In this dissertation, we assume that the DB 

provides serializability, which means that the execution of a set of transactions is equivalent to some 

serial execution of these transactions. 

On the AS, as mentioned in Section 2.2.3, no concurrency control mechanism is required for 

session-related state since they are naturally isolated. However, a concurrency control mechanism 

has to be used to isolate accesses of concurrent transactions to shared state. There are two main 

alternatives. One option is that the AS has its own concurrency control mechanism; traditional 

approaches such as optimistic or pessimistic concurrency control could be used. Alternatively, the 

AS relies on the concurrency control mechanism of the database system. In our model, all shared 

state can be considered cached database state. Thus, the following approach can be taken. When an 

AS transaction wants to read a certain shared object for the first time it loads it from the database. 

Assuming locking, the corresponding DB transaction has a shared lock on this data item in the 

database. If now a concurrent transaction wants to write the data item, it also goes to the database 

and will be blocked in the database since the requested write lock conflicts with the existing read 

lock. The level of isolation is then the one provided by the DBMS. While having concurrency 

control at the AS level allows caching across transaction boundaries, relying on the DBMS for 

isolation only allows for intra-transaction caching. Whenever a transaction accesses a data item for 

the first time it has to go to the database. Clearly, the first approach is likely to be more efficient, 

and thus, more desirable as it allows for inter-transaction caching. 

When we now consider the replicated case, in a purely fault-tolerant architecture where one pri­

mary AS replica executes all client requests, both concurrency control options are feasible, because 

then the concurrency control mechanism at the primary AS will serialize all transactions. How­

ever, in the case of load-balancing, several AS replicas execute client requests concurrently. In this 
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case the concurrency control modules of the different AS would need to coordinate. In contrast, if 

all the concurrency control is delegated to the DBMS it remains centralized at the DBMS and no 

extensions to the isolation infrastructure are needed. 

As our solution aims at both fault-tolerance and load-balancing, we assume from now on that 

all shared state is synchronized with the database and concurrency control is only performed at the 

DBMS level. However, if our approach is used only for fault-tolerance, then the AS concurrency 

control method can be used without interfering with our replication mechanism. 

In practice, most J2EE application servers offer the option to leave isolation of EBs to the 

DBMS. Each EB maps to a data record in the database. A transaction reads the up-to-date state 

of an EB from the database the first time it accesses the EB. Changes to the EB are written to the 

database and synchronized at commit time. 

2.4.4 Relation between Requests and Transactions 

In an AS, requests can be associated in different ways with transactions. Execution patterns are used 

to describe the association. We classify execution patterns by the number of client requests involved 

in a transaction and the number of transactions generated by a request. In the simplest execution 

pattern, a client request executes within its own individual transaction. All further sub-requests that 

are triggered by the client request to access other components in the AS and to access the database 

are also executed within the transaction. This basic execution pattern is called "1-1" pattern (1-

request/1-transaction). But execution patterns could be more complex. In particular, J2EE allows a 

wide range of association of requests with transactions. 

Transaction management at AS 

In a J2EE AS, a transaction could be Container-Managed or Bean-Managed. In the container 

managed transaction (CMT) scheme, the EJB container has a transaction interceptor that intercepts 

each request and decides how to associate the execution with a transaction. Figure 2.3 shows a 

sample code snippet of the CMT scheme. In the CMT scheme, if a request is required to be executed 

within a new transaction, the transaction interceptor sends a transaction request to the TM to start a 
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TransactionInterceptor{ 

Response invoke (Request req, 
Component comp){ 

Sample EJB object{ 

void sampleMethod(){ 

TM. begin () ,• 
call an EJB method; 

., , ,. . ,, update the database; 
if (condition-1) { ,*: 

m.« ^ • , * lf condition-2) TM.beginO; m w ._,, 
. ' ' v TM.commit(); 

comp.invoke(req); , 
^M. commit () ; _/ , ,̂. 

TM.abort(); 
roll back changes; 

} 

Figure 2.3: Code snippet of CMT Figure 2.4: Code snippet of BMT 

transaction. If the execution successfully completes, the transaction interceptor sends a transaction 

commit request to the TM to commit the transaction, and only then returns the response. J2EE 

provides a set of options to decide where and when transactions are started. Each method of an EJB 

has a transaction attribute with the possible values: Requ i red , RequiresNew, Mandatory, 

S u p p o r t s , NotSuppor ted , and Never. The most useful and popular attributes are R e q u i r e d 

and RequiresNew. The R e q u i r e d attribute means that an EJB method should be executed 

within a transaction. If a transaction is already associated with the current execution thread the 

method is executed within the existing transaction, otherwise a new transaction has to be started for 

the execution. The RequiresNew attribute means that an EJB method should be executed within 

a new transaction no matter whether a transaction already exists or not. 

In the bean managed transaction (BMT) scheme, the code of a session bean2 explicitly marks the 

boundaries of a transaction within an EJB method as shown in Figure 2.4. In this case, a transaction 

is only started during the execution of a request. Furthermore, during the execution, more than one 

transaction can be started one after another. According to the assumption that each request should 

be executed within the context of a transaction, we can assume a pseudo top-level transaction to 

cover the execution of each client request in the BMT scheme. Thus, each real transaction triggered 

within the method execution is kind of nested within the pseudo transaction. 

An Entity Bean cannot have Bean-Managed transaction according to the EJB specification [99] 
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UserTransaction.begin(); 
call EJB1.methodl() 
call EJBl.method2() 
call EJB2.methodl(), 

if (condition-3){ 
UserTransaction.commit(); 

else 
UserTransaction.abort 0; 

} 

Figure 2.5: Code snippet of user transaction 

User Transaction 

Additionally to the CMT and BMT schemes, both controlling transactions at the AS, the J2EE 

AS also provides an approach called User Transaction to control transactions from the client side. 

Using the user transaction object, the client program can explicitly mark the boundaries of a trans­

action. Figure 2.5 provides a sample code showing how a client program uses the user transaction 

to associate client requests with transactions. The begin method of the user transaction object will 

trigger the TM of the AS to start a new transaction. Within the transaction, the client can send one or 

more requests to one or more EJB objects. Finally, the commit/abort method of the user transaction 

object lets the TM commit/abort the transaction. 

Execution patterns 

In a J2EE AS, CMT, BMT and user transactions can be used independently or together within a 

single application. Thus, different ways to use these approaches can lead to a variety of associations 

between client requests and transactions, i.e., to many different execution patterns. According to our 

analysis shown later, we find that the variety will cause different side effects when a crash occurs, 

and thus affect the design of the replication algorithm. 

Although there could be many different execution patterns, only some of them make sense in 

practice. Hence, this dissertation focuses on those patterns that are usually applied in practical ap­

plications. In fact, the 1-1 pattern is the most common pattern, that can be implemented very easily 

using the default configuration of the CMT scheme. In the CMT scheme, the default transaction 
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attribute of each EJB method is Requ i red . Hence, when a client request is submitted to the EJB 

object, a new transaction is created for the execution of the client request since yet no transaction 

is associated with the execution thread. If during the execution, sub-requests are submitted to other 

methods of the EJB, all these executions will be within the same transaction since the transaction is 

already associated with the execution thread. This way, the association between the client request 

and the transaction is the 1-1 pattern. Chapter 4 will discuss in detail not only the 1-1 pattern, but 

also other patterns, and show how they can occur in J2EE through a combination of CMT, BMT, 

and user transactions. 

Transaction Abort 

When a global transaction is aborted, the full state consistency requires the AS to rollback state 

changes performed by the corresponding AS transaction. In the BMT scheme, the rollback opera­

tion can be included in the code of the EJB method as shown in Figure 2.4. However, in the CMT 

scheme, the case is different, since the abort operation is not explicitly controlled by the transaction 

interceptor. J2EE addresses this issue by providing a S e s s i o n S y n c h r o n i z a t i o n interface to 

let an EJB instance be notified of the boundaries of a transaction by the container. The interface has 

a method called af t e r C o m p l e t i o n (boo lean commi t t ed ) . An EJB class that implements 

the S e s s i o n S y n c h r o n i z a t i o n interface has to implement the af t e r C o m p l e t i o n method. 

The rollback operations can be implemented in this method under the condition that commit ted 

is false. Then, when a transaction that accessed an EJB instance of this class is aborted, the TM 

calls the af t e r C o m p l e t i o n method to do rollback operations. Thus, state changes performed 

by the transaction on the object can be automatically aborted, and full state consistency is guaran­

teed. The rollback action implemented in the af t e r C o m p l e t i o n method should not access the 

database since the DB transaction has aborted. They should also not access other components to 

prevent disseminating the abort to other objects. If more than one object is involved in an aborted 

transaction, each of them runs its own af t e r C o m p l e t i o n method without interfering with each 

other. 
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2.5 Overview of Failures 

A failure of a system means the observation of deviation of the system from its specification [86]. 

Before a failure is observed, the deviation is called error, i.e., an abnormal state of the system. 

Error is caused by some defect in the system. Almost all systems have defects, and hence error is 

almost inevitable for any system. The goal of fault-tolerance is to prevent deviation being observed 

when an error occurs in the system, i.e., to make the observed behavior of the system look like a 

non-faulty system. This is also the base line to evaluate the correctness of a fault-tolerant algorithm. 

2.5.1 Failure Types 

A system might have different kinds of failures. Different failures have different side effects, and 

the corresponding fault-tolerance algorithm has to address the differences. Failures can be classified 

as following [28]: 

• A crash failure occurs when the system stops working completely. If the clients of the system 

can eventually detect the failure, the failure is called fail stop. Otherwise, it is called fail silent. 

The typical reasons for a crash can be categorized into: (1) programming error (e.g., deadlock, 

or stack overflow), (2) OS error (e.g., OS crash), and (3) catastrophic error (e.g., power cut). 

• An omission failure occurs when the system does not respond to a request when it is expected 

to do so. When the omission failure takes place, the system might still keep working. A typical 

reason for a omission failure is a network partition between the client and the system. 

• A timing failure can occur in real time systems if the system fails to respond within the specified 

time slice. Both early and late response might be considered as timing failures. Late timing 

failures are typically caused by some bottleneck in the system or in the network. 

• A Byzantine failure occurs if the failure makes the system behave arbitrarily. 

This thesis focuses on crash failure and assumes no omission and Byzantine failures occur. 

We assume reliable, asynchronous communication and no network partitions because we believe 

that assuming no network partitions is reasonable for a LAN environment. Timing failures are not 

considered because we do not look at timing requirements. With this, if a non-replicated system does 

not crash, clients of the system eventually receive correct responses for all requests. Furthermore, 
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we do not consider programming errors. How to tolerate programming error is an important topic, 

but it is out of the scope of our research. 

2.5.2 Crash of an Application Server 

When an AS crashes, we think it is not accessible any longer, and all connections between the 

crashed AS and its clients and the backend database are lost. The crashed AS might be recovered 

later as a new instance. Before designing a correct replication algorithm to tolerate crash, it is very 

important to understand the side effects of a crash of a non-replicated AS. 

i. The crash causes the crashed AS to lose its state, since the state is volatile in memory. Some 

AS systems have built-in persistence mechanisms that can make its state persistent locally. 

However, as mentioned before, the persistent state is not accessible until the system is restarted. 

If the AS system logs its state in a database or a file on another machine and the persistent state 

can survive crash, .we consider this logging mechanism as a special form of replication (please 

see Section 2.6.1). 

ii. For any request executing on the AS system, if the crash takes place before the response of 

the request is returned, the crash causes the client not to receive the normal response. Instead, 

in practice, the client usually receives an exception to show the disconnection to the server or 

time out. That means, the client can detect the crash. Hence, in this thesis, we assume that the 

crash failure is fail stop. Our solution achieves that the crash exception is invisible to the client 

program to guarantee transparent fault tolerance, 

iii. The crash can also affect databases that were called by the crashed AS. Assume an AS trans­

action had submitted a set of requests to a database before it crashed. On the database, the 

corresponding DB transaction is still active at the time of crash. According to the specification 

of transaction services in J2EE and CORBA [76], the AS transaction has one connection to the 

database, and the association of the AS transaction and the DB transaction is through this con­

nection. When the AS crashes, the connection to the database breaks, and the DB transaction 

is aborted. The abort undoes all state changes done so far on the database. In summary, when 

an AS crashes all active DB transactions that had a corresponding AS transaction at the AS are 
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aborted. 

One of the worst cases is that the AS crashes in the middle of the 2PC of a transaction, where 

some databases have returned the prepared message but have not received the commit/abort 

decision yet. In this case, these databases will keep the state changes made by the transac­

tion, keep locks on those changed data, and always wait for the final decision. Nevertheless, 

as DBMS are the most prevalent backend tier, we only consider standard DBMS behaviors. 

However, if the system called by the crashed AS is not a database, or the request to the data­

base is executed according to some other specification, the callee system might have a different 

reaction, e.g., stop where it is, continue to execute the request, etc.. In this thesis, we assume 

that the database will undo all state changes made by the transactions that are active at the time 

of crash except those in the prepared state (in case of 2PC) which will remain active until the 

database receives a commit/abort decision. 

2.6 Tolerate Failures through Replication 

Replication is an efficient mechanism to tolerate crash failure. Replication can be active or pas­

sive [104]. In the active scheme [89, 1, 35, 72], a request is sent to and executed at all replicas. 

The crash of a replica will not affect execution on other replicas. The client receives a response 

as long as one replica is available^duplicate suppression must be in place). In passive replica­

tion [22, 51, 44, 73, 41, 11, 62], only the primary replica executes the request, and propagates 

updated state to the backup replicas. If the primary fails, failover takes place, and one of the back­

ups becomes the new primary, installs the up-to-date sate, and continues working. Requests that are 

active on the primary at the time of crash should reexecute on the new primary. The new primary 

has different ways to know which requests are required to be reexecuted. A first option is that reex-

ecution relies on resubmission-after crash. In this way, after the crash, clients resubmits all active 

requests whose responses were not returned before the crash, to the new primary. This is the typical 

way used in most commercial products, such as JBoss [60] and WebLogic [14]. A second option 

is that reexecution relies on the multicast of requests. This way, each client request is multicast to 

all replicas during normal processing and is recorded at each backup. Thus, after failover, the new 
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primary already knows the requests required to be reexecuted. The Eternal system [73] uses this 

way to do passive replication. A third option is that reexecution relies on a request log. Each client 

request is logged during normal processing. After failover, the new primary reexecutes interrupted 

requests by reading them from the log. The Phoenix system [9] uses this option. For replayed 

requests that are interrupted by the crash, the resubmission mechanism has a longer delay than the 

other two, since requests have to be resubmitted by the client tier. Whereas, it saves time during 

normal processing since it does not require additional time to multicast or log requests. To get better 

performance during normal processing, we use the resubmission mechanism in our solution. 

Active replication requires deterministic behavior (otherwise, complex consensus mechanisms 

such as are required), and induces heavy load, since all replicas have to execute all requests. A 

new approach called Midas, proposed in [92], lets active replication live with non-deterministic 

behaviors by running compensation code that is generated by statically analyzing application source 

code to eliminate inconsistent states caused by non-determinism. Passive replication allows for non-

determinism. Although primarily designed for fault-tolerance, it has some potential for scalability, 

since applying changes sent from the primary is usually less time consuming than executing the 

requests themselves. The spared resources can be used to perform other tasks. Furthermore, in 

our solution, each replica is a primary for a subset of requests, and backup for the others. On the 

negative site, passive replication requires complex state propagation and failover. There also exist 

some research considering a combination of active and passive scheme (e.g., [31, 32]) and some 

replication tools support both active and passive replication (e.g., [74, 114]). 

2.6.1 Passive Replication Category 

When looking at commercial AS products, almost all rely on passive replication (e.g., Phoenix/.Net [9], 

WebLogic [14], WebSphere [103], JBoss [49], Sun AS [96], Oracle9i [78], IONA E2A [56], Pra-

mati [85], Orion AS [57]). Passive replication can be categorized by two parameters: 

i. The primary can replicate state changes to the backups in different ways. Using cold replica­

tion, the primary stores the state information on a persistent storage which can be accessed at 

failover by the new primary. This mechanism is also known as logging or checkpointing. In 

this case, the new primary needs only to be initiated when needed after a crash. Using warm 
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Warm 
Cold 

Eager 
JBoss/Oracle9i 

IONA E2A/Pramati/Sun AS/Phoenix 

Lazy 
WebLogic 

Orion AS/Phoenix 

Table 2.1: Classification of passive replication of commercial products 

replication, the primary sends state changes to the backups directly, e.g., via messages. This 

alleviates the load on the persistent storage but introduces message overhead. Backup instances 

must exist to receive replicated state. During normal processing, the time to do replication de­

pends on the communication time between the primary and backups for warm replication, and 

depends on the communication time between the primary and the persistent storage for cold 

replication. In Section 10.1.1, the performance evaluation shows that the replication time of 

warm replication is faster than that of cold replication. Moreover, failover of warm replication 

is also faster than that of cold replication, since in warm replication the backup has already 

the state in memory, while in cold replication it needs to read the replicated state from the 

persistent storage first, 

ii. The propagation time defines when state propagation takes place. The propagation time is 

demarcated by the boundary of transactions. If state changes are propagated before the related 

transaction commits, we say it is eager propagation. Otherwise, if state changes are replicated 

at some time after, we say it is lazy propagation. When using eager replication, at the time a DB 

transaction commits, all AS replicas have the state changes of the associated AS transaction. 

This makes it possible to guarantee in case of primary crash that the state of the new AS primary 

and the DB is consistent. In contrast, in lazy replication, the AS might lose state changes as 

the old primary might crash before propagating changes of an AS transaction for which the 

corresponding DB transaction has committed. As a tradeoff, eager replication increases user 

response time by adding the time to do synchronous replication, but lazy replication provides 

fast response time. 

Table 2.1 shows a classification of the schemes used by commercial products. Most of them use 

eager replication to guarantee consistency. Phoenix uses a lazy approach for deterministic requests, 

but uses an eager approach for non-deterministic requests. The products using warm replication 
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usually initiate a server cluster at system start-up and then choose one as the primary. The products 

using cold replication usually only start a single server and start the new primary only after the old 

primary crashes. As one of the main focuses of this thesis are consistency and correctness, we use 

eager replication. Moreover, our experiments show that warm replication has better performance 

than lazy replication. Hence, we pay more attention to warm replication. 

2.6.2 Correctness of Replication 

In regard to correctness, an ideal replication algorithm should make the replicated system behave 

in the failure case in the same way as a non-replicated system behaves when no failure occurs. 

Informally, it means exactly once execution of each client request and consistent state changes at 

the AS and the database. On the client side, exactly-once execution means each client request 

receives only one response that is not a crash exception. This guarantees transparent fault tolerance 

from the client viewpoint. On the AS, exactly-once execution means each client request changes 

the state of the AS and/or the database exactly once. Consistent state changes on the AS and the 

database means correct and is "all or nothing" on both AS and the database in case of full state 

consistency or "all or nothing" on the database in case of relaxed state consistency. A replication 

algorithm is required to provide this form of correctness for a replicated AS even in the event of 

failures. We will discuss in more detail and more formally what correctness means in Chapter 4. 

2.7 Communication Mechanism for Replication 

When using replication to tolerate failures, failure detection and message propagation among repli­

cas (for warm replication) are two important issues. How to detect failures in a distributed environ­

ment, and how to deal with possible message loss during communication are non-trivial problems. 

Fortunately, Group Communication Systems (GCS) [52,26,102,39,21,19,25] provide us powerful 

functionality. Examples of group communication systems include Spread [1], JGroups [50], ISIS 

[58], Horus [102], Ensemble [38], Transis [34], and Totem [71]. 

Figure 2.6 depicts the basic architecture of a group communication system. A set of applications 

build the group. Each application is a member of the group. When an application sends a message 
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Figure 2.6: Group communication system 

to all members, it first sends the message to the underlying GCS layer. The layer typically uses 

consecutive point-to-point communication or physical broadcast like UDP to send the message to 

all machines that have members of the group. At each site, the GCS layer first receives the message, 

then delivers the message to the member applications, at which time the application receives the 

message. When a GCS layer receives a set of messages, they may not be in the correct order. 

Thus, the GCS layer will reorder these messages before delivering them to the application. In this 

dissertation, according to the requirement of the algorithm, a set of AS replicas compose such a 

group, where each replica is a group member and uses GCS to manage the communication among 

all replicas in the same group. An AS replica can join one or more groups. Typically, a GCS 

provides two primitives: group membership maintenance and multicast. 

2.1.\ Group Membership Maintenance 

The membership service maintains a listing of the currently active and connected members and 

handles group operations such as joining and leaving a group. The output of the membership is 

called a view. At each site, the GCS contains a view V that contains the list of members with which 

communication is possible. An application might join or leave a group. This changes the view of the 

group. When a view change takes place, the GCS delivers a view change message to all members 

of the new view indicating that the new view is V. The typical property for group membership 

is virtual synchrony [20, 26]: If members p and q receive the same new view V while having the 

same previous view V, any message delivered to p, which is a member of V, is also delivered to q 

in V. This protocol guarantees that the GCS delivers exactly the same messages at all non-failed 
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members of the view V. Hence, the applications on the different sites perceive view change events 

at the same virtual time. 

Since it is well known that accurately detecting failure in asynchronous environments is im­

possible [27], the membership service often uses an inaccurate failure detector, typically based on 

timeout: when the GCS does not receive any message from a member p beyond a time limitation, 

the GCS suspects p to be faulty, then excludes p from the current view [68]. In this case, p might 

have really crashed, or be partitioned from the network, or just be delayed by a slow connection. 

If the GCS excludes a correct member, we require that the affected replica shuts down itself and 

attempts to rejoin the group. 

2.7.2 Multicast 

The multicast sends a message from a member to all members in the current view. A GCS provides 

various multicast primitives with various degrees of reliability and ordering [52]. The possible 

reliability semantics are: 

unreliable delivery no guarantee that a message will be delivered at all members, 

reliable delivery when a message is delivered to member p, and if p dose not fail for sufficiently 

long time, the message will be delivered to all other members of the current view unless they 

fail, 

uniform reliable delivery when a message is delivered to a member p, even if p fails immediately 

after the delivery, the message will be delivered to all other members unless they fail. 

The difference between the uniform reliable delivery and the reliable delivery is on messages that 

might be delivered at failed members. With uniform reliable delivery, whenever a message is deliv­

ered at any member, no matter whether the member fails or remains available, all other non-failed 

member will receive the same message. Hence, the set of messages delivered to a failed member is 

a subset of messages delivered to surviving members. In contrast, with reliable delivery, a message 

might be delivered to a member that fails immediately after that, but the message is not delivered 

to other non-failed members. As a result, with uniform reliable delivery, when a member receives 
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a message sent by itself, it is guaranteed that all other non-failed members also receives the same 

message. Whereas, with reliable delivery, the sender of a message cannot know whether the mes­

sage is delivered to other members by just testing if it has received the message itself. We will use 

uniform reliable delivery when the replication algorithm should not proceed before it is assured that 

all non-faulty AS replicas will receive a state change message. 

The ordering primitive is very important when different messages might depend on each other. 

The offered ordering semantics are: 

FIFO ordering If a member sends a message m before it sends message m', all members in the 

view receive m before m', 

Causal ordering If a member sends a message m' after it receives message m, all other members 

in the view receive m before m', 

Total ordering If a member receives a message m before it receives m' in a view, all members in 

the view receive m before m'. 

In our context we will use FIFO andtotal ordering. The FIFO ordering guarantees that all members 

receive messages sent by a member in sending order. The total ordering guarantees that all members 

receive all messages in the same order. 



Chapter 3 

Traditional Application Server 

Replication Solutions and Correctness 

Criteria 

This chapter reviews existing AS replication solutions. Most of them do not consider the effects 

caused by different execution patterns and relaxed state consistency, and only provide solutions for 

the simplest 1-1 pattern. Although some of these solutions might also be applicable for a certain 

advanced execution pattern, they do not clearly discuss this option. Most solutions either consider 

fault-tolerance or load-balancing, but not both. This chapter also reviews traditional correctness 

criteria for replication. These criteria normally only consider one tier, and do not distinguish the 

effects of different execution patterns. 

3.1 Overview of Existing Replication Solutions for Fault Tolerance 

In this section, we review existing replication solutions for three prevalent AS specifications, namely 

J2EE, CORBA and .NET, and investigate which execution patterns are assumed for them. 
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3.1.1 Replication for J2EE Architecture 

Most J2EE products use passive replication based on the resubmission mechanism. A typical ex­

ample is JBoss's clustering solution [60]. It uses passive, warm, and eager replication. Each replica 

can act as a primary for a client session. If a client request triggers execution on several stateful 

components, state transfer takes place individually for each component once execution on this com­

ponent has terminated. Problems occur if replication on some components was successful but the 

primary crashes before the corresponding database transaction commits. In this case the backups 

have a partially replicated state while the database transaction aborted. Obviously, the state of the 

new primary is inconsistent with the state of the database. Hence, this replication solution does not 

work correctly even for the l-l pattern. 

Some commercial products, like Oracle 9i [78] and IONA E2A [56], do replication at the end 

of each client request. Pasin et al. [83] propose a High-Available EJB server architecture where 

the state changes are replicated at commit time. For the 1-1 pattern, these mechanisms are similar 

to ours since the end of each client request is the commit time of the transaction associated with 

the client request. However, there always exists a time difference between the time to do state 

propagation and the time to do commit. Thus, like the JBoss solution, state inconsistency occurs 

if the primary crashes after state has been successfully propagated but before the corresponding 

database transaction commits. In this case the backups have the state changes while the database 

transaction aborted. Although there exist some mechanisms to coordinate between the AS and the 

DB, they are not clearly described. Moreover, above solutions do not consider advanced patterns. 

Kistijantoro et al. [62] also propose to do replication at time of commit. The solution checkpoints 

the state changes on AS into the database within the context of the transaction, and hence the 

state changes on the AS and on the database are consistent. As a result, this solution works for 

the 1-1 pattern. Pramati [85] uses a similar solution to persist states at the time of commit and 

hence guarantees consistency for the 1-1 pattern. However, both solutions do not consider advanced 

patterns and relaxed state consistency. 

One of the leading products of AS, WebLogic [14], uses passive, warm, and lazy replication. 

Each EJB instance has a single primary server, which processes requests to the EJB instance, and 
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propagates the state of the instance soon after returning the response to keep replicas as consistent as 

possible. Due to lazy replication, inconsistencies arise when the primary crashes after the database 

has committed a transaction, but before the corresponding state changes on the AS are replicated. 

Orion AS [57], which also uses lazy replication, has a similar problem. Another famous AS product, 

WebSphere [103], does not replicate the state of the AS, and hence, its clustering only works for 

stateless applications. 

Existing replication solutions for J2EE AS products usually have their main emphasis on ease 

of implementation, as they are mostly industry solutions. Most of them do not change the interfaces 

between AS and clients, and between AS and database, and do not require any additional support 

from other tiers. As a tradeoff, these solutions sacrifice consistency. Until now, we are not aware of 

any commercial J2EE product, that clearly provides even for the 1-1 pattern a replication solution 

that guarantees full state consistency. 

3.1.2 Replication for CORBA Architecture 

Although there are less AS products based on CORBA than on J2EE, there exists more research 

on replication in CORBA than in J2EE. While most existing J2EE solutions are quite simple, many 

CORBA solutions have an advanced framework supporting both active and passive replication, such 

as [29,30,72,65,40,74,7]. Some solutions combine active and passive replication as semi-passive 

solutions ([31, 32, 15]). These research projects consider the internal architecture of CORBA, and 

the replication solution is tightly bound to CORBA. For active replication, the solutions have to 

make sure that all replicas receive the same requests in the same order, e.g. by using the total 

order delivery of group communication systems ([30, 40, 47, 72, 42]). For instance, Marchetti et 

al. [69] propose to build a sequencer service based on the total order delivery between clients and 

server replicas to guarantee that all server replicas execute client requests in the same order while 

messages of requests might be arbitrarily delayed or timeout between clients and server replicas. 

For passive replication, either warm or cold replication is used to replicate state changes. When 

using warm replication, to guarantee that all replicas receive the same changes, some solutions use 

a group communication system to reliably broadcast state changes ([29, 74]). Other solutions use a 

2PC protocol, where the backups are the participants of the 2PC ([65]). 
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In here we look at the Eternal system [73,74] in more detail as an example in CORBA. Eternal is 

based on the FT CORBA architecture [75]. It supports both warm and cold passive replication. The 

primary replicates the state to backups periodically in form of checkpoints. Between two check­

points, all messages from clients and the database are logged. At crash of the primary, the new 

primary first restores the state of the last checkpoint, and then replays logged requests. At recovery 

of a replica, the primary transfers the last checkpoint state to the recovering replica. Zhao et al. 

[114, 115] extend the Eternal system [74] so that CORBA components can access a backend data­

base. A special replicated out-bound gateway is used to manage the transaction context between the 

application server and the database. Database connections are protected by the outbound gateway. 

A response from the database will be replicated to all backups. The replay mechanism assumes de­

terministic execution at the AS. If a new primary has to reexecute requests at failover time, duplicate 

database access can be avoided by directly taking the replicated response without reexecution. Al­

though the solution does not look at different execution patterns, we think it can support them with 

some extensions. However, if non-determinism exists, the solution cannot guarantee correctness 

even for the 1-1 pattern, since reexecution might generate responses or database accesses that are 

different from the logged information. This will lead to executions that do not follow the original 

execution path. Moreover, the solution is not based on the common interface between the AS and 

the database. Instead, it depends on a special transaction manager that does not directly connect to 

the resources but multicasts the transaction requests to the out-bound gateway. 

Two other solutions proposed by Felber and Narasimhan [41] and by Frolund and Guerraoui 

[43] use a much simpler marker mechanism to coordinate state changes on the AS and on the 

database. The former solution acts similar to the J2EE replication solution of [62,85], checkpointing 

the state changes on the AS of a given AS transaction into the database within the context of the 

corresponding DB transaction. Then, at failover time, the new primary checks the database. If the 

transaction aborted, neither DB nor AS changes exist. Otherwise, the new primary can get the AS 

state changes from the database. The latter solution propagates the state changes of the AS to the 

backups immediately before the commit and then inserts a marker into the database as part of the 

DB transaction. At failover time, the new primary checks the marker for each transaction. If a maker 

exists in the database, it means that the database has already committed the DB transaction and has 
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the state changes related to the persistent data. Thus, the new primary installs the corresponding 

state changes of the AS components. Otherwise, the database had aborted the DB transaction and 

the new primary discards the AS changes. Although the details of these two solutions are different, 

both solutions are taking advantage of the transaction's property to coordinate the state changes 

of the AS and the database. This mechanism works well for the 1-1 pattern and does not require 

additional support from the database. We use the same idea in our algorithm. However, these 

two solutions do not consider advanced execution patterns and relaxed state consistency. In fact, 

although there are many CORBA-based replication solutions, only a few of them regard a CORBA-

based AS as the middle tier of a multi-tier system. Furthermore, although several solutions can 

correctly handle the 1-1 pattern, so far, none can correctly handle advanced patterns and relaxed 

state consistency. 

3.1.3 Replication for .NET Architecture 

For Microsoft's AS platform .NET, the main replication solution has been developed in the Phoenix 

project ([11, 9, 10, 8]). It has similarities to the Eternal system. State is replicated periodically, 

and requests between two checkpoints are logged. Fai lover starts from the last checkpoint and 

applies logged requests assuming piecewise deterministic behavior [37]. It requires the database 

to be able to identify duplicate requests and log replies. This would be possible, if a persistent 

queue exists between AS and database. Unlike the Eternal system, it distinguishes non-deterministic 

events from deterministic events. For non-deterministic events, it uses eager replication (namely 

immediately logging the result of these events before returning) to guarantee consistency. Although 

the papers present a formal discussion of correctness, the transactional properties are not clear. 

Although eagerly replicating results of non-deterministic events enables the algorithm to support 

non-determinism in some cases, it is not sufficient. A problem is the database access. When the 

primary crashes, active transactions will abort at the database. Then, during reexecution of these 

transactions, the replayed database accesses might get logged replies without real reexecution on 

the database. As a result the database might miss the state changes of these replayed transactions. 
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3.2 Traditional Correctness Criteria for Replication 

Traditional correctness criteria normally only focus on one aspect or on one tier, ignoring the global 

picture of the entire system. These criteria often dig into depth into one aspect, e.g., concurrent data 

access, or the ordering of messages, but do not consider the relationship between different tiers and 

different execution patterns. 

In this section, we look at three well-known traditional correctness criteria for replication mech­

anisms: one-copy-serializabiIity, state machine replication, and X-ability. 

3.2.1 One Copy Serializability 

One copy serializability (1CSR) [16] has been developed for replicated databases. It addresses 

correctness in regard to two aspects: multiple copies of a data object must appear as a single log­

ical copy (1-copy-equivalence) and the effect of the concurrent execution of transactions must be 

equivalent to a serial execution (serializability). 

To achieve 1-copy-equivalence, read and write operations on logical data items have to be trans­

lated to serial operations on the physical data copies. When using eager replication, a simple ap­

proach to do so is read-one/write-all (ROWA) [17, 16], which requires write operations to access 

all copies while read operations are done locally at one copy. Alternatively, quorum protocols 

[101, 48, 59, 82] require both read and write operations to access a quorum of copies. As long as 

a quorum of copies agrees on executing the operation, the operation can succeed. When using lazy 

replication together with primary copy, 1 -copy-equivalence can be guaranteed only in the primary 

copy, backup copies are only ensured to be eventually equivalent. 

To guarantee serializability, concurrency control mechanisms are required. A typical example 

is locking, e.g., 2-phase-lo.cking.X2PL). If updates are always first executed on a primary replica, 

local concurrency control on the primary is enough. Whereas, if updates can be done concurrently 

on different copies, distributed locking is required. When proving a replication algorithm provides 

1CSR, one has to show that all executions that are possible under the given concurrency control 

and propagation approaches, are equivalent to some serial execution on a single logical copy of the 

database. For passive replication with a single primary replica, 1CSR is not difficult to achieve, 

http://2-phase-lo.cking.X2PL
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since local concurrency control on the primary is sufficient to guarantee serializability, and eager 

replication can easily guarantee 1 -copy-equivalence. 

However 1CSR has been designed for database replication, and thus is not appropriate to check 

correctness for AS replication, since it does not consider the interaction between the replicated AS 

and a backend tier. For instance, it cannot check duplicate or missed requests to the database. 

Linearizability [53, 5] is another well-known criteria to evaluate correctness of concurrent ex­

ecutions. While serializability is addressing the internal sequence of concurrent transactions on a 

shared object, linearizability considers the external observed sequence of concurrent operations on 

a shared object. It does not address transactions. Instead, it considers the sequence of requests and 

responses. For instance, given two concurrent requests r\ and r^ on the same object, if T\ 'S response 

is perceived before r2 is invoked, the linearizable execution sequence of r\ and r-i must guarantee 

that T\ 's execution is before r2's execution. Although linearizability could be a useful criteria for the 

replicated AS to check if the ordering of requests and corresponding responses is preserved linearly 

in case of resubmission, it is not a sufficient correctness criteria for replicated AS yet, since it does 

not consider the interaction between the replicated AS and a backend tier. 

3.2.2 State Machine Replication 

State machine replication [88] is a very well-known formalism for active replication. The replicated 

system is modeled as a state machine, and each replica has a replica of the state machine. A request 

triggers actions on all state machine replicas to transfer the state machine from the same initial state 

to the same final state. The correctness criteria addressed by the state machine replication is that 

all replicas receive and process the same sequence of requests. It has two requirements: (1) every 

correct replica receives every request (Agreement), and (2) every correct replica processes requests 

it receives in the same relative order (Order). Then, based on the assumption of determinism, all 

replicas executing the same sequence of requests based on the same initial state will reach the same 

final state. Using a group communication system to multicast requests to all replicas can easily fulfill 

the agreement requirement via uniform reliable delivery, and the order requirement mechanism via 

the total ordering mechanism. For example, in [112], the state machine replication is used to build 

a fault tolerance framework for web services and the total ordering of requests is guaranteed by a 
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consensus-based algorithm. 

However, when considering that an execution might submit sub-requests to other tiers, e.g., the 

database, more problems arise. For example, connections to the database are a problem. Typically, 

there are three possibilities. The first option is that each replica has an individual connection to the 

database, and the database needs to detect and suppress duplicate requests and needs to guarantee 

that the crash of a replica will not affect connections from other replicas. The second option is 

that only one replica builds a connection to the database, and the replica needs to pass responses 

to all other replicas afterwards. If the replica crashes, the original connection is lost, and another 

replica must be chosen to connect to the database. In this case, problems about missed requests and 

duplicate requests might arise. The third option is that all replicas connect to a specific gateway, 

and the gateway filters duplicate requests and builds a connection to the database; however the 

gateway itself might need to tolerate failures using replication, and hence, similar problems arise 

again. The Eternal system [73, 74] uses the gateway approach. All of these problems might arise 

even for deterministic execution, but so far we are not aware of any correctness criteria based on 

state machine replication that would address them. 

As an alternative to group communication, consensus mechanisms [25,31] are widely discussed 

for active replication to guarantee all replicas agree on the sub-requests and the responses despite 

non-determinism or Byzantine failures. However, consensus mechanisms do not consider issues 

such as duplicate requests, missed requests, and state consistency between tiers. Hence, we still 

need a correctness criteria to consider these problems. 

3.2.3 X-ability 

The X-ability framework [44] allows reasoning about correctness in a multi-tier replicated system 

based on execution histories. It takes into account that the replicated tier can call other tier in the 

system. X-ability assumes that in the non-faulty non-replicated case, many different execution se­

quences are possible for a given set of requests. Such a sequence is called a failure free execution 

history. If the tier is replicated and some replicas might crash, the execution sequences for these 

requests will be more complex, since some requests will be interrupted by the crash and reexecute 

on other replicas. A sequence in a replicated system with failures is called a real execution history. 
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X-ability proves that a replication algorithm is correct for a tier by checking if all real execution 

histories on the tier, which are possible under the given replication algorithm, can be reduced to 

failure free histories. The rule of reduction is that if an interrupted execution of a request and the 

corresponding reexecution have the same side-effect as that of a possible failure free execution of 

the request, then the interrupted execution and the reexecution can be reduced to the failure free 

execution. X-ability considers an execution to possibly change the state and invoke servers of other 

tiers. This reduction mechanism implicitly checks missed requests and duplicate requests for the 

replicated tier. X-ability assumes a request to another tier is either idempotent or undoable. If a 

request is idempotent, no matter how many times the request reexecutes, the sum of these execu­

tions has the same effect as the idempotent failure free single execution. If a request is undoable, 

before the request reexecutes, the side effect of its last execution can be undone, and hence the last 

successful reexecution can be considered as a failure free execution. 

X-ability allows reasoning about the correctness of a composite system very easily by assuming 

that each tier provides X-ability. As such, proof of correctness can be done independently for 

each tier. For instance, at failover, a replication algorithm for a tier might restart any execution 

that was active on a crashed replica at time of failover. If the original execution on the crashed 

replica had submitted a sub-request to another tier, the reexecution might resubmit the very same 

request. This, however, is not problematic since such request is assumed to be idempotent, hence, 

a resubmission does not lead to any inconsistency. However, things are more complicated if a 

called component does not provide X-ability. For instance, a backend database system usually does 

not provide X-ability, since it does not provide idempotent operations or the possibility to undo 

committed transactions. A replication algorithm for an AS has to take this into account. In this 

case, proof of correctness cannot be done independently on the replicated AS; both the client tier 

and the database tier are required to be considered. In this thesis, we model execution that goes 

beyond an individual tier in order to reason about such cases. 
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3.3 Load Balancing and Combined Approaches 

Load balancing and fault-tolerance have traditionally been handled as orthogonal issues, and re­

search on one topic usually does not attempt to solve the other. Section 3.1 has pointed out that 

the primary-backup approach is used in many AS replication solutions for fault tolerance purposes. 

The main differences between these solutions are when to do replication and whether or how to 

guarantee state consistency after failover. Most solutions we discussed in Section 3.1 only use the 

primary replica to execute all the load, and do not aim at scalability. 

However, for load balancing purposes, we need more replicas to be able to execute requests 

to share the load. Typical load balancing solutions of application servers (or web servers) use a 

centralized load balancer (also called scheduler) to manage to distribute the load to different repli­

cas. In content-blind policies [4], such as Random or Round Robin, the load balancer does not 

know the load on each site. As content-blind policies can be easily implemented, they are widely 

used in practice. However, they do not work well in heterogeneous environments. Content-aware 

policies require some knowledge about the environment. There exist many strategies, e.g. sending 

requests to the least loaded replica [87, 79], distributing requests according to data size [111], or 

locality of requests [81, 3, 36]. Feedback-control and resource consumption predictions are other 

mechanisms [110, 66]. Such strategies can dispatch load more precisely, but either need a central 

scheduler with global knowledge or require frequent exchange of load information. Central sched­

ulers present a single point of failure. Replicating them is possible but has its own overhead. In 

contrast, our content-blind approach with request forwarding is purely distributed with little over­

head, and is easy to implement. 

Several commercial solutions (e.g., used in JBoss [60], Weblogic [14] and Sun Application 

Server [96]) use component replication for both fault-tolerance and load-distribution. In the basic 

approach, all components are replicated on all servers and requests are balanced across all replicas 

in the clusters. If a replica fails, any replica can take over. However, as was discussed in Section 3.1, 

many of the commercial replication solutions do not work correctly in the presence of failure. Fur­

thermore, the approach does not provide enough scalability since replicas spend too much time on 
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backup activity when the cluster size increases. The scalability problem can be overcome by par­

titioning a cluster into sub-clusters and let a component be only deployed and replicated in a sub-

cluster. Therefore, updates only need to be propagated in the sub-cluster leading to less overhead. 

However, requests to this component can also only be distributed to this sub-cluster. Furthermore, 

the approach requires to artificially define a sub-cluster for each component which makes reconfig­

uration complex. In our approach, a component is deployed on all replicas. However, at run time, 

component instances are only replicated on a fixed number of replicas which is independent of the 

size of the entire cluster. 

Only a few approaches in the research literature consider both load distribution and fault-

tolerance. Singh et al [91 ] propose a system that merges the Eternal [74] fault tolerance architecture 

and the TAO's load balancer [87]. All servers in a cluster are partitioned to several disjoint FTG 

groups. A similar architecture is used in [80]. However, only the primary server in each replica 

group is used for load balancing while backups do not contribute to load distribution. Moreover, 

these solutions do not address reconfiguration problems. Long et al [67] propose a solution in which 

each server acts as both a primary and a backup. However, their solution is specific for a cluster with 

only 2 machines. In [84] all components are replicated on all replicas leading to limited scalability. 

Other combined solutions do not consider stateful AS. For example, Ho and Leong [54] propose to 

replicate event channels and share the load among replicas using the replicated channel. However 

the approach only replicates stateless event channels. 



Chapter 4 

Execution Patterns for Application 

Server 

In Section 2.6.2, we discussed informally what it means for a replication algorithm to show correct 

behavior. Informally, the execution despite possible failures of individual components should be 

equivalent to the execution in a non-faulty non-replicated system. The challenge in defining cor­

rectness lies in the many different ways client requests and their execution at the AS and database 

tiers can be coupled with the notion of transactions that require atomicity, durability and isolation. 

This chapter addresses this issue by formally modeling a set of execution patterns that reflect 

the most common way in which client requests and transactions are associated with each other in a 

3-tier architecture. In order to do so, we first model request executions. Then, transaction execution 

is modeled using the concept of execution patterns. We then model state changes performed by 

transactions. At last, we derive a set of correctness properties for the execution in a non-faulty 

non-replicated 3-tier system. 

The model is then extended to include the behavior in case of a crash and typical actions of a 

passive replication algorithm. Based on this extended model, a set of correctness criteria is presented 

that a replicated system should fulfill in order to emulate a non-faulty non-replicated system. 

46 
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4.1 Request Execution 

We refer to Requests as the set of all requests. Actions is the set of all possible actions triggered 

by requests at the AS and database and Responses is the set of all possible responses. We assume 

each client C% first establishes a session with the AS and all requests of this client are executed 

within this session. We denote the session of the client d from the first request establishing the 

connection to the last response before disconnection as a special Action CA{. Furthermore, we 

assume that each client submits requests in a single thread based on the blocking scheme. That is, 

a client only submits the next request when it has received a response to the previous request. Each 

r € Requests submitted to the AS by CAi triggers an a £ Actions on the AS. We refer to this as 

an AS action. The action performs read and write operations on the state of the AS and performs 

calculations. Please note, we assume that the client never accesses the database directly. 

Additionally, an AS action a might make further calls to the database or to other components on 

the AS again based on the blocking scheme. A call to the database is typically an SQL statement. We 

refer to this as a request r 6 Requests and it triggers an action a e Actions on the database referred 

to as a DB action, which executes the SQL statement. This includes read and write operations on 

the data of the DB. After the completion of an AS or a DB action, a response rp e Responses 

is returned to the caller. When an AS action a makes calls within the AS, in some cases, the calls 

are also requests, triggering new (nested) actions on the AS. Sometimes, the execution of the call is 

considered part of the action a. We will discuss this later, when we introduce transactions. 

Thus, an action refers to a set of operations on one tier. It has a unique corresponding request 

and one response. The function R(a) represents the request leading to the action a, and RP(a) 

represents the response provided by a. The signature function SIGRP(rp) indicates the action that 

returned the response rp (i.e., a = SIGRP(RP(a)). Due to non-determinism, a request might 

cause different actions (different set of read and write operations), depending, for example, on the 

previous state of the AS/DB. The function A(r) represents the set of actions that might be triggered 

by the request. 

Figure 4.1 denotes a sample execution of all requests within the client session CA{. In the 

figure, the first line represents time at the client, the second represents time at the AS, and the 
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Figure 4.1: Sample scenario of request execution 

third represents time at the database. The boundaries of an action are denoted with [ and ]. In the 

execution, request r^ triggers action a^ which returns response rpk- The client submits requests r\ 

and r3. AS action a,\ submits request r-i to the database triggering action a-i- AS action az submits 

request r± to the database, triggering DB action 04, and then submits request 7-5 within the AS, 

triggering the nested AS action 05. 

4.1.1 Histories of Request Execution 

As execution is single-threaded, we can specify a strict ordering of requests, responses, and actions 

related to one client. We denote as the request history RHa of action a the sequence of requests 

submitted by a. For instance, in Figure 4.1, RHcAi = ^1^3, and RHa3 = r^r^. Similarly, we 

denote as response history RPHa of action a the sequence of responses that a receives for the 

requests it submits. We denote the number of requests in the request history RHa with \RHa\ 

and the position of a request r in the history RHa with POSr
RH . Similar notation \RPHa\ and 

POSrjipH is used for the cardinality of a response history RPHa and the position of a response 

RP in the history RPHa. Due to our model of blocking calls, it is always true that either \RHa\ — 

\RPHa\ or \RHa\ = '\RPHa\+ I. ' 

An important property of a correct execution is that the request and response histories must 

match. 

Definition 4.1.1. Let a be an action. We say RHa and RPHa match (denoted as RHa 1x1 RPHa) 

if the following holds: 



Chapter 4. Execution Patterns for Application Server 49 

/. Vr € RHa: eventually 3rp e RPHa, POSr
RHa = POSjPHa-

2. \/rp e RPHa: 3r £ RHa, POSr
RHa = P 0 5 ^ , ^ A SIGRP{rp) e A(r). 

The above indicates that each request in the request history triggers one of the possible ac­

tions for this request and this action returns the appropriate response. For a client action CAi, the 

matching is denoted as RHcAi cxi RPHCAV 

4.2 Transactions and Execution Patterns 

Per our assumption in Section 2.4, all execution (read and write operations on data) have to be per­

formed in the context of transactions. As outlined before, transactions can be triggered in various 

ways - either implicitly by the container, explicitly by the client or explicitly by the application pro­

grammer within the code executed by the AS. We now derive a set of execution patterns, which are 

denoted as 1-1, N-1,1-N, or N-N to indicate the number of client requests involved in a transaction 

and the number of transactions generated by a request. 

Recall that wesplit a global transaction in an AS transaction, which is denoted as AST(t), 

and a DB transaction, which is denoted as DBT(t). Accordingly, for an AS or DB transaction t', 

GTX(t') indicates its global transaction. For the global transaction t, both AST(t) and DBT(t) 

must terminate in the same way. Namely, if DBT(t) commits (aborts), then AST(t) has to com­

mit (abort), and vise versa. Please note, every global transaction must have a corresponding AS 

transaction since transactions are always started at the AS. However, a global transaction might not 

contain a DB transaction since AS actions involved in the transaction might not access the database. 

Furthermore, for a transaction t, we denote the client of the transaction as CL(t). 

We now discuss our execution patterns in more detail. We first describe them informally, then 

discuss their use in practice and then define them formally. 

4.2.1 1-1 Pattern 

The /-/ pattern (1 request - 1 transaction) means the execution related to a single client request is 

encapsulated in one global transaction which spans operations at the AS and possibly operations 
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Figure 4.2: 1-1 pattern 

at the database. As introduced in Section 2.4.4, it is the default execution pattern in J2EE when 

EJB objects use the CMT scheme. Therefore many applications use exclusively the 1-1 pattern. 

Figure 4.2 illustrates a sample 1-1 pattern. When the AS receives client request n , the TM starts a 

transaction ti on the AS. Then, r\ is executed within t\ as an AS action oi. During m, a sub-request 

r2 is submitted to access the database. At this moment, the DB transaction of t\ is started at the 

database. The next sub-request r% is executed within the same DB transaction. At the end of the 

execution, the TM submits the commit request t\ .commit to commit t\ 's DB transaction. Then, 

ti 's AS transaction commits at the AS. At last, ri 's response rpi is returned the client. In the figure, 

we use +t\ and —t\ to indicate the begin and end of transaction t\ at the AS and the database. As 

each request triggers exactly one transaction, there is a single AS transaction per client request that 

coincides with the boundaries of the AS action triggered by the request. 

From the above example, we can find that in the 1-1 pattern an AS action can submit several 

requests to the database that are all executed within the same DB transaction. The DB transaction 

starts with the first action on the DB and terminates with the last. Typically, the last request to 

the database is the commit request. However, the AS action could also request an abort so that 

both AS and DB transaction abort. Furthermore, any database action might result in an abort (e.g., 

because of integrity violation) that then returns an abort notification as response to the AS action. In 

case of commit, the AS action and transaction usually terminate directly after receiving the commit 

response from the DB. In case of abort, an abort operation is required to rollback state changes 

performed by the transaction on the AS for full state consistency. Referring to Section 2.4.4, an 



Chapter 4. Execution Patterns for Application Server 51 

abort operation at the AS could be part of the original method execution in the BMT scheme, or 

be done by a specific abort method, e.g., executing the af t e r C o m p l e t i o n method in the CMT 

scheme. The response of an abort operation is an abort response. In both cases, we consider the 

abort activity as part of the original AS action. In case of an abort, the client typically receives a 

special abort response, which is denoted as rpabt. 

In summary, the 1-1 pattern has the following relationships. Each client request/response pair is 

associated with exactly one AS transaction. Thus, there is exactly one AS action per AS transaction. 

There is at most one DB transaction per AS transaction. Several request/response pairs between AS 

and DB can belong to this DB transaction. Thus, many DB actions can belong to one DB transaction. 

It also might be that a client request only triggers operations at the AS. In this case, there is only an 

AS transaction but no DB transaction. 

4.2.2 N-l Pattern 

The N-l pattern (N requests - 1 transaction) means several client/response pairs of a client are 

encapsulated within one global transaction. It is often used when a web-server (WS) runs between 

the real client and the AS. In this case, the real client makes a request to a component in the WS 

(e.g., a servlet) which makes in turn several calls to the AS. In order to guarantee all-or-nothing for 

the external client request, all calls to the AS should be embedded within the same transaction. In 

order to do so, the AS has to export the begin/commit/abort methods of the TM to the client. In 

an J2EE AS, it is the user transaction that enables the N-l pattern. As shown in Figure 2.5, the 

client program can call the begin method of a user transaction object to start a transaction on the 

AS and call the commit or abort method of the user transaction to commit or abort the transaction 

on the AS. Between a begin and a termination request, several client requests can be submitted to 

one or more EJB objects. If each EJB method called within the transaction is in the CMT scheme 

and has the R e q u i r e d attribute, all these requests are executed within the same transaction. In this 

case, more than one client request is associated with a transaction. This behavior follows the N-l 

pattern. Controlling transactions from outside the AS has also become important in the context of 

web-services. 

Figure 4.3 illustrates a sample N-l pattern. In this pattern, the client explicitly controls the 
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Figure 4.3: N-l pattern 

demarcation of transactions. The first client request starts the transaction on the AS, i.e., t\ in the 

figure. Each following client request on behalf of t\ triggers a new AS action. Each AS action 

can submit several requests to the DB, triggering several DB actions. Finally, the client submits a 

commit request ti.commit that commits t\ at the DB and the AS. At any time an AS or DB action 

can trigger an abort, resulting in an abort of the entire global transaction that triggers an abort at the 

AS and the DB and an abort response to the client. 

4.2.3 1-N Pattern 

The 1-N pattern (1 request - N transactions) means the execution of a single client request is as­

sociated with more than one transaction. Although this seems unusual at first, it is widely used 

in practice when a long execution needs to be chopped into small transactions in order to increase 

concurrency and decrease blocking within the database [90, 63]. It is then up to programmers to 

guarantee that the effect of executing a suite of transactions is the same as if there were only one 

big transaction. In particular, if not all of the transactions commit the effects of already committed 

transactions must be undone by executing corresponding compensating transactions provided by the 

programmer. Despite the added complexity, for applications where such compensation is easy, the 

advantage can be high. 

In an J2EE AS, the 1-N pattern can be easily implemented in the CMT scheme using the 

RequiresNew attribute. When a client request calls a method of an EJB object configured as 

R e q u i r e d or RequiresNew, a transaction is started for the execution as in the 1-1 pattern. If 
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Figure 4.4: 1-N pattern 

some EJB methods are configured as RequiresNew, when sub-requests are submitted to these 

methods during the execution of the client request, new transactions are created within the context 

of the existing transaction. In this case, the client request triggers more than one transactions at the 

AS. This association follows the 1 -N pattern. 

Figure 4.4 illustrates a sample 1 -N pattern. Client request n triggers transaction t\ on the AS 

and then starts an AS action a\ within t\. t\ starts and terminates with action a\. t\ starts on 

the database when oi submits the first sub-request ri to access the database. At the end of a\, 

t\ .commit is submitted to commit t\ on the database and then commits t\ on the AS. Transaction 

t\ can have nested transactions, which are called child transactions, while t\ is called a parent 

transaction. For instance, a\ might make a call to an AS method that requires the start of a new 

transaction, e.g., calling a method marked as RequiresNew. This is the case where we use nested 

actions within the AS. An AS action makes a request leading to a nested action within the AS when 

the nested action is associated with a different transaction than the parent action. In the figure, action 

a\ makes a request r4 triggering action <n which is associated with a child transaction t2 of t\. The 

nested transaction can again be a global transaction spanning both AS and DB. 

Thus, in the 1-N pattern, each client request/response pair is associated with a set of nested 

transactions. The transaction that is directly triggered by a client request and involves the action 

associated with the client request is called an outer transaction. For example, t\ is the outer trans­

action directly triggered by request r\. A nested transaction that is a child transaction of an outer 
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transaction is called an inner transaction. For example, £2 is an inner transaction. An inner trans­

action is associated with a nested action while its parent transaction is associated with the corre­

sponding parent action. A child transaction always terminates before its parent transaction; i.e., that 

is true nesting. An outer transaction can trigger a sequence of inner transactions. We can consider 

these inner transactions siblings as they have the same parent. Sibling transactions cannot be active 

concurrently, since each of them is triggered by a sub-request submitted by the action associated 

with the outer transaction and request execution is blocking. That is, one inner transaction has to 

complete before its sibling can start. An inner transaction itself can have child transactions which 

are also inner transactions. This leads to multiple levels of nesting where an inner transaction has 

not only a direct parent but can have a whole set of ancestor transactions. The outer transaction is 

ancestor of all inner transactions. An inner transaction is concurrent to all its ancestor transactions 

but while the inner transaction is executing, the ancestor transactions are suspended. A suspended 

transaction can only continue after all its descendants have terminated. 

Please note, although many AS products allow the existence of nested transactions, most of them 

do not clearly define the rule for the relationship between parent transaction and nested transactions. 

J2EE regards a parent transaction and its nested transaction as two independent transactions, and 

the commit/abort of the parent transaction and the nested transaction will not affect each other. That 

is, the nested transaction can commit while the parent transaction aborts and vice versa. This is 

different to the traditional closed nesting model assumed in database systems. If this closed nesting 

model were applied, then all inner transactions and the outer transaction would commit at the same 

time at the very end. In order to somehow address this, we only consider relaxed state consistency. 

If a child transaction commits but the parent fails, it allows the parent transaction to adjust its state 

to reflect this fact. 

Whether the parent transaction can see changes a child transaction performs on the shared state 

depends on the isolation level of the database system. The database system usually sees the differ­

ent transactions as independent. For example, in case of serializability, the parent transaction can 

see changes of the child transaction after the child transaction commits. So can following sibling 

transactions. If any rule is required by an application, application developers should manage it at 

the application level. 
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Figure 4.5: N-N pattern 

Session state has usually no concurrency control applied. In principle, all transactions involved 

in a client request can access the same session state. As there are never two transactions executing 

at the same time, this appears fine. However, things become complex in case of abort. A transaction 

11 can change some session state and then trigger an inner transaction £2 that reads these changes, 

performs further changes and then commits. If now t\ aborts what is the semantics as £2 has already 

read the "dirty" data and committed? As this is a very undesirable behavior, which should be 

avoided, we assume that nested transactions access disjoint session state. For instance, in J2EE, we 

only consider applications, where an inner transaction is executed on an SFSB that is not accessed 

by any of its ancestor transactions. Two sibling transactions, however, can access the same state as 

they execute serially. 

4.2.4 N-N Pattern 

The N-N pattern (N requests - N transactions) means that more than one client request can be 

executed within an outer transaction, and the execution can also trigger inner transactions. Typically, 

it is the mix of the N-l pattern and the 1-N pattern. In an J2EE AS, if the user transaction and 

CMT is used together, and some EJB methods are configured as RequiresNew, then several 

client requests can be executed within one outer transaction, but sub-requests to methods with the 

RequiresNew attributes are executed within new inner transactions. Thus, the scenario follows 

the N-N pattern. Figure 4.5 illustrates such an N-N pattern. The client action CAt first begins 

a transaction t\, and then client requests T<I and r^ are executed as actions 02 and 05 within t\. 

Additionally, as triggers a transaction £2- On the AS, ti is started by request re that triggers action 
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a§. The consecutive request ri leads ti to be started at the database, t? eventually commits at the 

end of 06- a^ is a nested action of as, and ti is a child transaction t\. Finally, the client action CAi 

submits the commit request t\ .commit to commit transaction t\ on both the AS and the database. 

The N-N pattern also could have nested N-l patterns. For example, when several client requests 

are executed within an outer transaction according to the N-l pattern, the action associated with 

one of these requests starts an inner transaction and then submits several sub-requests within this 

inner transaction. It can happen in a J2EE AS when using the user transaction and BMT together. 

The user transaction provides the N-l pattern for client requests. The BMT scheme allows an inner 

transaction to span more than one sub-request. 

Due to the complexity of the N-N pattern, it is very difficult to correctly apply this pattern in 

a real application even without considering failure and replication. In practice, most of the time, 

the N-N pattern does not make sense. Applications who use it, probably are not aware of the im­

plication of using such a complex pattern. If an application allows a client to explicitly bundle 

several requests into one transaction, it seems counter-intuitive that then one of these requests ac­

tively triggers several transactions. Hence, in this dissertation, we do not discuss the N-N pattern 

any further. 

4.3 State Changes 

We have seen all state changes at DB and AS are performed in the context of transactions. We now 

describe what it means that the state changes at AS and DB are consistent. If an AS/DB action 

changes the state of the AS/database, the action is called an update action. If a transaction involves 

one or more update actions, it is called an update transaction, otherwise a read-only transaction. 

Whether a DB action is an update action can be detected by analyzing the corresponding SQL 

statement. The state changed by an update DB transaction is the aggregation of state changes of all 

update DB actions involved in the DB transaction. At the AS, however, every AS action is assumed 

to be an update action, since updates are generally difficult to detect. This implies that every global 

transaction is assumed to be an update transaction in our model. 

We consider two types of state at the AS: session-related state and shared state at the AS. As 
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we assume that shared state is cached data from the database, any change on the shared state at 

the AS is also reflected as changes of a DB action at the database. The change on the AS and the 

corresponding changes at the DB must belong to the same global transaction. Therefore, access 

to shared data at the AS is not considered part of an AS action but only considered part of a DB 

action. This means, we consider as state changed by an AS action only the changes performed on 

session-related objects. The state changed by an AS transaction is the aggregation of state changes 

of all AS actions involved in the transaction. 

4.3.1 Transaction Histories to Reflect the Order of State Changes 

In traditional serializability theory transactions are represented as a sequence of read and write oper­

ations. Serializability means that the interleaved execution of the operations of a set of transactions 

needs to be equivalent to a serial execution of the same set of transactions. Traditional concurrency 

control mechanisms such as strict 2-phase-Iocking and optimistic concurrency control furthermore 

have the property that if in the concurrent execution ti commits before ti then there exist an equiv­

alent serial execution where t\ also commits before ti. Furthermore, no transaction ever reads 

uncommitted data (except of its own writes). Assuming that the DB provides such form of commit-

order preserving serializability and given that the AS only changes session-related state where there 

are no concurrency issues, we can describe the order in which state changes occur at the AS and the 

DB through the order in which transactions commit. 

At the AS (database), ATH (DTH) indicates the transaction history, i.e., the order in which 

AS (DB) update transactions commit. At initialization time, both the AS and the database are in 

the initial state, and both ATH and DTH are empty. After a transaction terminates, if it leaves 

state changes at the AS and/or the database, it is a successful update transaction. A DB update 

transaction is successful only when it commits, and an AS transaction is successful if it commits 

or, in case of relaxed state consistency, also if it aborts. A successful AS (DB) update transaction 

is appended to ATH (DTH) after it terminates. At any time, the visible state of the AS (database) 

is the aggregation of state changes made by all successful AS update transactions (successful DB 

update transactions) so far. 
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4.3.2 Matching State Changes at Application Server and Database 

For a global transaction t, if state changes made by its DB transaction successfully commit, state 

changes made by its AS transaction must successfully commit as well. This relationship implies that 

each DB transaction in DTH must have a corresponding AS transaction in ATH. We assume that 

the DB and AS transactions of a global transaction have the same unique identifier, which allows 

them to be identified as being part of the same global transaction. 

The ordering of transactions in ATH and DTH defines the ordering of state changes performed 

at the AS and the database. The ordering of transactions in DTH represents a serial order that is 

equivalent to the original concurrent execution of these transactions. Transactions can belong to 

different clients. The ordering of such transactions in ATH does not matter since changes made 

by them are performed on different session data and have no dependency. However, the ordering 

of transactions of the same client at the AS is important since it reflects possible dependencies. 

Furthermore, this order must be consistent with the order of the corresponding DB transactions. That 

means, given two global transactions t\ and <2 of the same client that both have AS and DB update 

transactions, if AST(t\) -< ASTfa) in ATH (-< representing the partial order in the history), 

then DBT(t\) -< DBTfo) in DTH. There are two cases to consider. Given two transactions t\ 

and *2 of the same client, if t\ and ti are not nested transactions, t\ has to be completely executed 

either before ti or after ti since we assume there are no concurrent transactions triggered by the 

same client except for nested transactions. Otherwise, one transaction is the parent transaction of 

the other, and then the child transaction has to terminate before the parent transaction. We define 

the relationship between ATH and DTH in form of a matching property: 

Definition 4.3.1. We say ATH and DTH match (denoted as ATH DXI DTH) if the following 

holds: 

1. V* G DTH: eventually AST(GTX(t)) G ATH. 

2. Mt G ATH and 

(a) t commits: ifDBT(GTX(t)) is an update transaction, DBT{GTX{t)) G DTH. 

(b) t aborts (possible in case of relaxed state consistency): DBT(GTX(t)) 4. DTH. 
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3. Given tut2 € DTH and CL(GTX(h)) = CL(GTX(t2)): DBT(tx) -< DBT(t2) in 

DTH & AST(GTX(ti)) -< AST(GTX(t2)) in ATH. 

Definition 4.3.1 expresses the requirement that transactions and request executions at the AS 

and the DB must match and are executed in a consistent order at both tiers. 

4.3.3 Matching State Changes at Application Server and Client Request Execution 

Definition 4.1.1 has indicated how requests must be properly associated with actions and corre­

sponding responses. Definition 4.3.1 relates the state at the AS and DB tier via transactions. As 

a final property, we relate the requests at the client tier with the proper state at the AS and thus, 

indirectly with the proper state at the DB. The state changes performed by AS transactions should 

be consistent with client requests associated with these transactions. In our model, this consis­

tency is expressed by a matching between ATH and RHcAjRPHcAi of client session CAi and 

is denoted as ATH t< RHcA(/RPHcAi- Matching not only means the content of ATH and 

RHcAjRPHcAi match, namely each request/response in RHCAJRPHCAI has at least one as­

sociated transaction, but also means the ordering of ATH and RHcAjRPHcAi match, namely 

transactions must be ordered according to request execution. 

Since the association between client requests and transactions are different for different execu­

tion patterns, the definition of the matching rules depends on the execution pattern. Let's have a 

look at each of them individually, 

1-1 Pattern 

Each client request r̂  and the triggered action a 6 A{ri) is associated with exactly one transaction. 

This means that, on the one hand, for each successful update transaction t e ATH, the only action 

a involved in t should have its corresponding request R(a) € RHcAi of a client d and have its 

corresponding response RP(a) e RPHcAt of the same client session CA^ On the other hand, 

for each request r e RHcAi of a client session CAi, ATH must eventually contain exactly one 

transaction t that is associated with an action a € A(r), unless the request has an abort response in 

RPHcAi in case of full state consistency. In case of full state consistency and an abort response, 
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ATH must not contain the transaction. For any two requests in RH, their ordering in RH should 

be the same as the ordering of the corresponding AS transactions in ATH. We can formalize this 

as follows. 

Given AS transaction t, at(t) indicates the AS action involved in t. The matching property 

between ATH and RHcAilRPHcAi of client d is called /-/ matching property. 

Definition 4.3.2. ATH X RHcAi/RPHcA, if the following holds: 

1. \/t e ATHACL{GTX(t)) = Q: eventually R(at(t)) e RHCAiARP(at(t)) e RPHCAi-

(a) In case of full state consistency, RP(at(t)) ^ rpa^. 

(b) In case of relaxed state consistency, t aborts <s- RP(at(t)) — rpabt. 

2. Vr € RHCAV 

(a) In case of full state consistency, either eventually 3t,t € ATH A r = R(at(t)), or 

eventually 3rp € RPHCAi,POSr
RHcAi = POS%PHcAi Arp = rpabt. 

(b) In case of relaxed state consistency, eventually 3t, t G ATH A r = R(at(t)). 

3. Given ti,t2&ATH A CL(GTX(ti)) = CL{GTX{t2)): h -< t2 in ATH <=> R(at(h)) -< 

R(at(t2)) in RHCAV 

Condition 1 captures that each successful update transaction has a matching request and re­

sponse. Condition 2 captures that each client request of client d has a matching successful update 

transaction on the AS unless it is aborted in case of full state consistency, in which case the client 

receives an abort response. Condition 3 captures that transactions must be ordered in ATH ac­

cording to the ordering of their corresponding requests. It actually also guarantees that neither two 

transactions are associated With the same request nor two requests are associated with the same 

transaction. 

N-l Pattern 

In this pattern, serval client requests and their actions are associated with a transaction. On the one 

hand, for each transaction i € ATH, each action a involved in t should have its corresponding 
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request in RHcAt of a client session CAi and have its corresponding responses in RPHcAi of the 

same client session. Furthermore, the requests (responses) of actions associated with a transaction t 

should build a consecutive sequence in one RHcAt (RPHCAJ- Additionally, for two transactions 

t\ and t<2 of the same client session CA%, if t\ -< £2 in ATH, then all requests (responses) of 

actions associated with £1 are before all requests (responses) of actions associated with £2 in RHcAi 

(RPHcAi)- On the other hand, in RHcAi of a client session CAi, if a sequence of requests belongs 

to the same transaction, the transaction must be eventually contained in ATH exactly once, unless 

the last request in this sequence has a corresponding abort response in RPHcAi in case of full state 

consistency, in which case ATH should have no transaction associated with these requests. 

To formalize this, we need some further notation. Given an AS transaction £, the function AT(t) 

represents the sequence of AS actions that are associated with transaction £. Due to the blocking 

scheme, the actions are in a sequential order. For example, if t contains actions a\ to an, then 

AT(t) = aia2--.an. ATl(t) represents the ith action in the sequence. 

We now apply functions R and RP to an action sequence to represent the request sequence that 

triggers the action sequence and the response sequence generated by the action sequence. Thus, 

R(AT(t)) = R(ai)R(a,2)...R(an) represents the sequence of client requests associated with trans­

action £ and RP(AT(t)) = RP{a\)RP(a2)~RP{an) represents the sequence of responses gener­

ated within transaction £. These two sequences must respectively be sub-sequences of the request 

history and the response history of the client CL(GTX(t)) that triggers the transaction for the 

matching between ATH and RHIRPH of the client. 

In order to formally express the relationship of sequences, we define the following notations for 

sequences. 

• \s\ indicates the size of sequence s, 

• sk (1 < k < \s\) indicates the fcth item of sequence s. 

• s' <x s indicates that sequence s' is a sub-sequence of sequence s. 

• si -< S2 indicates that the last item of sequence s\ precedes the first item of sequence s2-



Chapter 4. Execution Patterns for Application Server 62 

With this, the fundamental property of ATH arid RHIRPH to match is that for a given AS trans­

action t, R(AT(t)) oc RHCL(t) a n d RP{AT{t) oc RPHCL(ty 

Formally for the N-l pattern, the matching property between ATH and RHCAJRPHCA-I of 

client d is called N-l matching property, and is defined as follows. 

Definition 4.3.3. ATH ex RHcAt/RPHcAi if the following holds: 

1. \Jt G ATH A CX(GTX(i)) = d: eventually R(AT(t)) oc RHCAi A i?P(^T(i)) oc 

(a) In case of full state consistency, RP(ATk(t)) =£ rpabt (1 < k < \AT(t)\). 

(b) In case of relaxed state consistency, t aborts & RP(ATk(t)) ^ rpaf,tfor 1 < k < 

\AT{t)\, andRP(ATk(t)) = rpabtfork = \AT{t)\. 

2. Vr G RHcAi--

(a) In case of full state consistency, either eventually 3t,t G ATH A r G R(AT(t)), or 

eventually 3rs. (xRHCAvr G rs A P O S j ^ . = P O S ^ ^ A rp = rpa6 t . 

(6) /n case of relaxed stale consistency, eventually 3t, t G ATH Are R(AT(t)). 

3. Given tut2 G ATHACL(GTX(t0) = CL(GTX(t2)): h -< t2 »«^Ttf o fl(AT(*i)) -< 

i?(^ir(t2)) /« RHCAV 

Condition 1 captures that each successful update transaction has a sequence of matching re­

quests and responses. Condition 2 captures that a client request has a matching successful update 

transaction on the AS unless the transaction is aborted in case of full state consistency, in which case 

the last client request associated with the transaction has an abort response. Condition 3 captures 

that transactions must be ordered in ATH according to the ordering of request sequences associated 

with these transactions. In fact, it also guarantees that two transactions are not associated with the 

same request. 
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1-N Pattern 

In this pattern, the execution of a client request might be associated with more than one transaction. 

The relationship between a client request, its action and the corresponding outer transaction is the 

same as the 1-1 pattern. For each inner transaction in ATH, there is exactly one outer transaction 

in ATH that is the ancestor of the inner transaction. We assume there is always an outer transaction 

as we only consider relaxed state consistency (see Section 4.2.3). The ordering of two requests 

in RHcAi of a client session CA\ should be the same as the ordering of the corresponding outer 

transactions in ATH if applicable, just as in the 1-1 pattern. An inner transaction must always 

precede the parent transaction in ATH since the child transaction always terminates before its 

parent transaction. Transitively, any inner transaction must precede its outer transaction in ATH. 

As it is more complex to define these properties formally, we make a formal description only in 

Section 6.2. 

4.4 Correct Request Execution 

In conclusion, the standard behavior of a non-replicated non-faulty AS can be described by three 

matching properties. 

Definition 4.4.1. Given an execution in a J-tier system with client sessions CAi, 1 < i < n. Let 

ATH be the transaction history at the AS, and DTH be the transaction history at the database. 

The standard behavior of a non-replicated non-faulty AS has the following three properties: 

1. Vi, 1 < i < n: RHcAi * RPHCAi, 

2. Vi, 1 < * < n: ATH M RHCAJ'RPHCAt, 

3. ATH x DTH. 

The first property captures the exactly once execution of client requests as perceived by clients. 

The second property captures the exactly once execution of client requests as it really happens on 

the AS. The proper association between requests, responses and transactions is made. The third 
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property captures the consistency of state changes on the AS and the database at a per transaction 

basis. 

Compared with the traditional correctness criteria introduced in Section 3.2, our correctness 

criteria consider the global picture of a multi-tier architecture, focusing on the relationship between 

different tiers and how execution proceeds across these tiers. This is motivated by the fact that a 

crash of one tier not only affects the crashed tier itself but also affects other tiers linking to the 

crashed tier. For each tier,we define the behavior that makes sense: 

1. Clients receive proper responses. 

2. State changes at the AS and their relative order reflect the order in which requests are submit­

ted and how requests are associated with transactions. 

3. State changes at the database and the AS are consistent. 

What we ignore so far is the issue of serializability or potentially other isolation levels. We assume 

the database to provide serializability and the AS not to require concurrency control as access to 

shared data is synchronized via the central database. 

4.5 How a Crash Affects Correctness 

A failure on the AS has two implications. Firstly, ATH becomes A, namely empty, indicating that 

the crashed AS loses its state. As a result ATH and DTH do not match anymore. While ATH 

is now empty, DTH still contains, all committed update DB transactions, since persistent data is 

not affected by the crash and only all ongoing DB transactions are automatically aborted at the 

database. Furthermore, ATH does not match any more with RHIRPH of ongoing client sessions, 

since these RHIRPH remain,as before the crash while ATH is empty. The second implication of 

a failure is that all outstanding clientrequests do not receive their expected responses. This violates 

the matching requirement of RHcAt and RPHcAi of a client session CAi. 
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4.6 Correctness of Passive Replication 

In passive replication, a primary replica accepts and executes the client requests and propagates state 

changes to the backup replicas where they are applied. Depending on the replication strategy, state 

propagation can take place at different time points. When the primary crashes, a backup takes over 

as new primary and continues execution. The correctness criteria summarized in Definition 4.4.1 can 

be easily extended to reflect a replicated system using passive replication by requiring any change 

in primary not to be visible at the client, and the current primary replica to fulfill the consistency 

requirements. 

Definition 4.6.1. Given cm execution in a 3-tier system with client sessions CAi, 1 < i < n. Let AS 

= {ASj, 1 < j < m} be the set of AS replicas in the middle-tier, AT Hi be the transaction history 

at AS replica ASi, and DTH be the transaction history at the database. The execution is correct if 

1. Vi,l<i< n: RHcAi™RPHCA, 

2. Let ASj, 1 < j < m be the current primary: V?, 1 <i <n, ATHj txi RHcAi/RPHcAi 

3. Let ASj, 1 < j < m be the current primary: DTH \x ATHj. 

The challenge of providing a correct replication algorithm lies in the fact that the different tiers 

and the replicas communicate via asynchronous messages and histories get updated at different time 

points. For instance, in the 1-1 pattern, a client receives the response after the transaction AS trans­

action terminates. The DB transaction always terminates before its corresponding AS transaction. 

The primary replicates the changes performed by a transaction either before the transaction commits 

or after the transaction commits. A crash can occur at any time, and thus, this asynchrony between 

events can leave the system in an inconsistent state that has to be resolved before execution can 

continue at the new primary. 



Chapter 5 

ADAPT-SIB Replication Algorithm for 

1-1 Pattern 

In the next two chapters we present the replication tool ADAPT-SIB which implements replication 

algorithms for the various execution patterns. ADAPT-SIB focuses on fault-tolerance, but, as it uses 

passive replication, and thus avoids redundant computation, it has the potential to be integrated into 

an architecture where replicas are also used for scalability and load-balancing (which will be the 

topic of Chapter 8). 

ADAPT-SIB uses eager and warm replication for session-related state, propagating state changes 

performed by a transaction from the primary to the backup replicas before the transaction terminates. 

Shared state is synchronized via the database. In order to provide a generic and practical solution, 

ADAPT-SIB does not require any special support from clients or the database. 

As mentioned in the last chapter, the behavior of the AS can be categorized by different ex­

ecution patterns, which associate client requests and transactions in different ways. This chapter 

presents a replication algorithm for the 1-1 pattern and proves its correctness. 

66 
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Figure 5.1: Architecture of ADAPT-SIB 

5.1 Structure of ADAPT-SIB 

Figure 5.1 shows the architecture of ADAPT-SIB. ADAPT-SIB assumes that a cluster of AS replicas 

consists of one primary replica and several backup replicas. Each AS replica has a replication 

manager (RM). The RM uses the group membership primitive of the GCS to maintain a fault 

tolerance group (called FTG). The RM also uses the multicast primitive of the GCS to send messages 

within the FTG. The replication algorithm has client, primary, backup and failover parts. The 

primary algorithm is executed at the RM of the current primary AS. We assume the replication 

tool obtains control before a request is sent to the TM (transaction manager) or a component, and 

after the call returns. The backup algorithm is executed at the RM of each backup replica, and the 

failover algorithm is executed at the RM of the backup that is selected as the new primary after the 

crash of an old primary. At the client, there is a client replication manager (CRM) that runs the 

client part of the replication algorithm. It intercepts each client request and response at the client 

side. For web clients, CRM actually resides in the web server. As mentioned in Section 2.3.2, in 

J2EE the client needs to create a connection session with the AS to get the stub of a targeting EJB 

object. In our implementation solution, the CRM object is created when the connection session is 

built, and is downloaded to the client side together with the stub of the EJB object from the server 

side. 

Here is the basic idea of the algorithm. Assuming the fault tolerance group contains m replicas. 

A client request r is executed at the current primary. Changes on session-related data performed 
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within a transaction t is recorded. If the current primary does not crash, at the commit time of the 

transaction t, recorded state changes and the response to the client are propagated to backups, and 

only then the transaction is committed. No changes on shared data are sent since they are written 

to the shared database. Backups only apply the state changes after they know that transaction t 

has actually committed. If the current primary crashes before the client receives r's response rpr, 

the CRM sends outstanding r to the new primary which is chosen from the remaining available 

backups. The actions of the new primary at the time of failover depend on the state changes it has 

received, and the set of transactions that successfully committed at the database. 

Recall the correctness criteria proposed in Theorem 4.6.1. Let's analyze the most common 

situations after the old primary crashes, the AS replica ASj is selected as the new primary and the 

new primary ASj receives the resubmitted request r. If ASj has already received the state changes 

of the transaction associated with the request r and the database transaction also committed, it does 

not reexecute the request. Instead it applies the state changes and returns the response. With this, the 

request has one matching response (Definition 4.1.1 (1)) and one matching transaction at the current 

primary AS (Definition 4.3.2 (2)), which has one matching transaction at the DB (Definition 4.3.1 

(2)). If ASj has received the state changes but the database transaction did not terminate properly 

before the crash (note that this can be possible because the primary sends the changes eagerly), 

then it may not apply the AS state changes. If it did, ATHj would no more match DTH (due 

to 4.3.1 (2a)). Instead, it discards the state changes and starts request execution from scratch to 

have exactly-once execution across all tiers. If it hasn't received the state changes, it knows that 

the database transaction has not committed. Thus, neither ATHj nor DTH contain a transaction 

associated with the request. Thus, it also starts request execution from scratch. This behavior 

guarantees that neither the AS transaction nor the DB transaction is executed twice or that one or 

both of the transactions are missing. 

The main data structures uSed in the pseudo code of all algorithms of ADAPT-SIB are as follows. 

Request, Response, and Component are encapsulated in corresponding objects. A transaction is 

identified by a unique identifier txid of type TID. The server maintains an EU object for each 

currently active transaction (one per client). EU keeps track of transaction identifier txid, the set 

of components COMP that have been accessed so far, the pair of the client request req and its 
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Response invoke (Request req. Component comp) 
1. Generate req.rid; 
2. while (true) 
3. Response resp = primary.invoke(req, comp, nil); 
4. if (p failure Exception) return resp; 
5. else find a new primary; 

(a) client replication algorithm 

TID begin () 
1. new EU eu; 
2. eu.txid = TM.beginQ; 
3. return eu.txid; 

(b) primary: intercept begin transaction request to TM 

Response invoke (Request req, Component comp, TID txid) 
1. if (3 (req.rid, resp) e RR) 
2. TM.abort(txid); 
3. return resp; 
4. if (req is a client request) eu.req = req; 
5. eu.COMP\J = {comp}; 
6. Response resp = comp.invoke(req); 
7. if (req is a client request) 
8. eu.resp = resp; 
9. RRU — {(req.rid, eu.resp)}; 

10. if (resp == abort exception) abort.proc(); 
11. return resp; 

(c) primary: intercept request to component 

void abort-proc () 
1. eu.COMP = d; 
2. new aborted Message m3; 
3. m3.content = {eu}; 
4. multicast m3 by reliable delivery; 

(d) primary: abort procedure 

void commit (TID txid) 
1. for each comp 6 eu. COMP 
2. set comp.state to current state of 

corresponding component; 
3. new committing Message ml; 
4. ml.content = {eu}; 
5. if (the current transaction updated the database) 
6. eu.db = true; 
7. multicast ml by uniform reliable delivery; 
8. if (eu.db == true) insert eu.txid into database; 
9. wait until receive ml; 

10. TM.commit(txid); 
11. if($ abort Exception and eu.db == true) 
12. new committed Message m2; 
13. m2.content = {eu.txid}; 
14. multicast m2 by reliable delivery; 
15. else if(B abort Exception) 
16. eu.resp - abort exception; 
17. abort^procQ; 

(e) primary: intercept commit transaction 
request to TM 

Figure 5.2: 1-1 Algorithm at the client and primary 

response resp, and the flag db to mark whether or not the transaction updates the database. The 

Message object represents messages between replicas. The content of a Message object depends 

on the type of message. Further data structures will be introduced later. 

5.2 1-1 Replication Algorithm for Full State Consistency 

The algorithm for the 1-1 pattern supporting full state consistency is from [109]. Some of the ideas 

are based on [43,41]. 

Figure 5.2 (a) shows that the client replication algorithm intercepts each request submitted from 

the client to the server. It attaches a unique id, and forwards the request to the current primary (lines 

1 and 3). Upon a failure exception, it resends the request with the same id to the new primary. This 

repeats until it receives a correct response (lines 2,4, and 5). 
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At the server site, each replica maintains a set RR. of past request/response pairs which is needed 

to avoid duplicate request execution. The execution associated with a client request happens within 

a single execution thread. We assume the replication algorithm intercepts a client request and any 

further requests made to components. Furthermore, it intercepts begin and commit requests made 

to the TM. For simplicity of description, we assume that transactions are server managed (CMT in 

J2EE terminology), i.e., the container starts a transaction upon a client request before any compo­

nent method is called, and commits the transaction after all component execution has finished. Other 

types of transaction management are conceptually the same, but would require a different notation 

in description. Using container managed transactions, the begin transaction command submitted to 

the TM is the first call intercepted by the replication algorithm for a client request r, and the commit 

call is the last one. Upon intercepting a begin transaction request (Figure 5.2 (b)), an eu object is 

created and associated with the thread before the begin is forwarded to the TM. Upon intercepting a 

request to a component (Figure 5.2 (c)), the algorithm first checks whether the request was already 

successfully executed. This can happen when the old primary executed the request successfully, 

informed the backups and committed the transaction but crashed before returning the response. In 

this case, the client algorithm resubmits the request to the new primary. The new primary, however, 

has the response for this request stored in RR, and no new execution is triggered. The transaction 

that has been associated with the thread is aborted, and the response immediately returned (lines 

1 -3). Otherwise, if the request is a new client request, it is recorded in eu (line 4). Furthermore the 

component to be accessed is recorded in eu before the request is forwarded to the corresponding 

component (lines 5-6). Recall that there can be nested calls to different components, all within the 

same transactional context. Each of them is intercepted, and the component information added to 

the corresponding eu. If an abort takes place during execution of any request (client request or 

nested sub-requests), an abort exception will be returned as response. In the case of an abort within 

a nested request, this abort exception is simply forwarded upwards along the calling hierarchy until 

it reaches the client request. Note also that each component rolls back its state changes associated 

with the transaction (full state consistency). When the execution of the client request completes, the 

server first records the response in eu and records the pair of request and response (it is an abort 

exception in case of abort) in RR. (lines 8-9). In case an abort occurred during execution, an abort 



Chapter 5. ADAPT-SIB Replication Algorithm for l-l Pattern 71 

procedure (Figure 5.2 (d)) is called (line 10) which informs the backups about the abort. Since full 

state consistency is assumed, no state changes need to be transferred within this aborted message. 

Finally, the response is returned (line 11). Upon intercepting the commit transaction request (Figure 

5.2 (e)), a committing message is multicast using uniform reliable delivery. The message includes 

the final state for each accessed component and the pair of the client request and its response (line 

1-4). While waiting for its uniform reliable delivery, the txid is inserted into the database if this is 

a DB update transaction (lines 8). This will help backups to determine whether a transaction has 

actually committed at the database or not if in-doubt. After the primary receives its own committing 

message, it commits the database transaction (line 10). As uniform reliable delivery is used, re­

ceiving the own committing message is equivalent to receiving from all backups a confirmation that 

they have received the message. Once commit was successful, the primary multicasts a committed 

message (lines 12-14) if the transaction updated the database, and the commit procedure completes. 

The committed message makes the backups be aware of the commit of the transaction. Note that, in 

theory, the database might abort the transaction upon receiving the commit request. However, when 

only one database system is accessed, this usually does not happen (it might happen if the data­

base uses optimistic concurrency control, but this is not the case for current relational databases). 

This special abort case can be handled sending an abort message as if abort occurs during normal 

processing (line 16-17). 

All messages the primary sends to the backups use FIFO ordering. The backups, during normal 

processing, store all received messages in a FIFO queue. Furthermore, if clients connect to them 

while they are not primary (the GCS has not delivered a view change message and thus they have not 

determined that they are the new primary), they respond to the client that they are not the primary. If 

the GCS delivers a view change message indicating that the primary was excluded from the group, 

one of the backups is selected as the new primary. This could be decided by a pre-defined priority list 

or by an election procedure [59]. Any message from the now crashed primary, that the GCS delivers 

after the view change, is ignored by all surviving replicas. The new primary now starts failover 

(Figure 5.3). Committing messages are processed in FIFO order to track the latest state of each 

component (lines 2-3). The procedure first checks whether the corresponding database transaction 

committed or aborted (lines 4-5) if it is a DB update transaction. The DB transaction committed for 
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voidfailover () 
I. new En eu, new set CO MP; 
2. in order of reception process each committing message m 
3. eu = m.content; 
4. if(eu. db== true and $ committed message m' with m'. content, txid -

does not exist in database) 
5. ignore committing message 
6. else // transaction committed 
7. for each comp 6 eu.COMP 
8. if (3 c 6 COMP andc== comp) 
9. estate = comp.state; 

10. else COMP = COMP U {comp}; 
11. RR — RR U {(eu.req.rid, eu.resp)}; 
12. for each aborted message m 
13. eu = m.content 
14. RR = RR U {(eu.req.rid, eu.resp)}; 
15. for each comp € COMP 
16. create corresponding component; 
17. set component's state to comp.state; 

= eu.txid and eu.txid 

Figure 5.3: 1-1 failover 

sure if the new primary received the committed message but also if the txid marker can be found in 

the database, as only committed markers remain in the database. In the case of abort, the committing 

message is ignored (line 6). Otherwise, the procedure determines the affected components, and 

records the pair of the cllenFrequest associated with the transaction and its response in RR (lines 8-

12). This is then used to detect duplicate requests. For each aborted message, we record the pair of 

the client request and the corresponding abort response in RR (lines 14-15). Finally, all necessary 

components are recreated (16-18). In Section 7.1, we discuss alternative failover strategies in more 

detail. Note that for clarity, the algorithm does not contain obvious garbage collection actions, such 

as keeping for each client only the last request/response pair as it will, if at all, only resubmit the 

last outstanding request. . . . • • . . • 

5.3 Correctness 

This section formally proves the correctness of the proposed algorithm for full state consistency by 

showing that the algorithm fulfills all matching properties described in Theorem 4.2.1. 
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5.3.1 Successfully Completed Requests 

Assume that at the start of the system, AS0 is primary. As long as there is no crash it is obvious that 

all properties are fulfilled since they have been defined to model a non-faulty environment. Given 

client session CAi, suppose the client has submitted so far x — 1 requests and received x — 1 re­

sponses. Thus, RHcAi = r\r2 • • • rx-i, RPHcAt = rp\rp2 ... rpx_i. As the client is blocking, 

if it has received rpx-i it is guaranteed to have received all rp\... rpx_2- Each request rh started 

a transaction th but as some might abort, the projection of ATH0 on transactions of client session 

CAi is ATHl = (AST(ti) V ±)(AST(i2) V I ) . . . (AST(tx-i) V1) where _L refers to the ATE 

having no entry for that specific transaction as it aborted. Similarly, the projection of DTH on trans­

actions of client session CAi is DTJtT = (DBT(h) V ±)(DBT(t2) V _L)... {DBT(tx-i) V X). 

For each AST(tk) $. ATH0, DBT(tk) $ DTH but there might be DBT(tk) $ DTH where 

AST(tk) G ATH0 as some committed transactions might not have a database transaction or 

the database transaction is read-only and is not registered in DTH. As we assume the client to 

be blocking and the database to provide prefix-committed serializability, the order of requests in 

RHcAi, their corresponding responses in RPHcAi, and their corresponding committed transac­

tions in ATH0 and DTH is the same. 

The backup ASj receives committing messages in FIFO order and puts them in a queue MQj. 

Projected on client d the queue eventually contains for each committed transaction t the message 

committingt- The uniform reliable delivery and the FIFO order guarantee that both the content 

and the ordering of transactions in MQj match those of ATH0 (denoted as MQj tx ATH0). Note 

that according to the discussion above it is guaranteed that when the client receives a response for a 

committed transaction, MQj contains the corresponding committing message. 

Now assume AS0 crashes after rp x _i was returned. After the crash the new primary ASj 

installs state changes of committing messages in MQj according to the ordering. For each of the 

committing messages (i) there is either no DB update transaction and the changes are installed, 

(ii) a committed message was received'and the changes are installed, (iii) an aborted message was 

received and the changes discarded, or no committed/aborted message is received and ASj checks 

in the database for the transaction identifier. If it determines the database transaction committed it 



Chapter 5. ADAPT-SIB Replication Algorithm for I-J Pattern 74 

Crash 
Time 

Figure 5.4: Possible crash intervals of the 1-1 algorithm in case of a commit 

applies the changes, otherwise it discards them. In any of the three cases above, changes are exactly 

then installed and with it the AS transaction appended to ATHj if the corresponding AS transaction 

at the old primary was appended to ATH0 before the crash. That is, in regard to client session CAi, 

ATHj has now the same sequence of transactions as ATH0 had before the crash. Thus, correctness 

up to request rx-\ is given. 

5.3.2 Crash during Request Execution 

Now we look when AS0 crashes just around the time at which the client session CAi submits request 

rx. Assume ASj becomes the hew primary. Our approach to analyze the behavior is to enumerate 

different "crash intervals", i.e., time intervals in which a crash requires different actions from the 

system in order to guarantee correctness. As the order of certain events might be different from 

execution to execution, our sequence of crash intervals is only an approximation to help structure 

the proof. 

Commit case Figure 5.4 extends the execution in case of a commit for the 1-1 pattern shown 

in Figure 4.2. It shows client d, the primary AS0, the backup ASj, and the DB. Furthermore, 

it has an axis depicting different crash intervals at which the failover needs to perform different 

actions. In the figure, the client submits request rx. When receiving the request, the primary AS0 



Chapter 5. ADAPT-SIB Replication Algorithm for I-I Pattern 75 

starts action ax and at the same time global transaction tx. It sends two sub-requests, rx\ and 

rX2 to the database, which are executed within the same transaction tx. Just before the commit, 

it multicasts the committing message with state updates and the response to the backups. Only 

when it has received its own message, the database transaction, if it exists, commits (and after 

having written the transaction identifier into the database if it was an update transaction). Then, 

the AS primary commits the AS transaction and sends the commit message (if there was an update 

database transaction), before returning the answer to the client. 

For depicting the crash intervals, we assume that when a message is sent, it will also be received. 

If the primary sends a message, but the message is lost and the primary crashes before the GCS at 

the primary resends it, we consider this a crash before message send. The first crash interval (CI1) 

ends just before the primary sends the committing message as the backups have no knowledge 

about the transaction before receiving the committing message. In the figure we have modeled 

the uniform reliable delivery as a message/acknowledgement pair between primary and backup. 

In principle, using uniform reliable delivery, the primary can receive its own committing message 

before or after it is received at the backups. However, the GCS guarantees that if the primary 

receives the message, then the backups will not only also receive the message but, in case of a crash 

of the primary, they will also receive if before they receive the view change message excluding the 

primary from the group. Furthermore, either they all receive it before the view change, or none 

receives it, or they all receive it after the view change. The latter messages are ignored by all. Thus, 

from a logical perspective, this uniform reliable delivery is equivalent to an acknowledge-based 

propagation: the primary sends the committing message, the backups send confirmations and only 

when the primary has received all these confirmations, it continues with the commit. The figure 

depicts this logical ordering of messages. The second crash interval (CI2) starts after the primary 

has sent the committing message (potentially allow the backups to add the transaction to their ATH) 

and ends just before the commit of the database transaction (which adds this transaction to DTH). 

The third crash interval (CI3) starts with the database commit (which adds this transaction to DTH) 

and ends just before the primarysends the response to the client. The fourth interval (CI4) starts 

after the response is sent (which allows the client to add it to RPH). 

Let's now discuss what happens if the primary AS0 crashes while being in one of these crash 
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intervals. 

CU: The CRM receives a failure exception. ASj has not received the committing message and 

has no knowledge about the request or the associated transaction. The database transaction, if 

it exists, is aborted upon the crash of AS0. Thus, AST(tx) $ ATHj and DBT(tx) £ DTH. 

The CRM resubmits the request to ASj where it is executed as a completely new request 

leading to exactly one execution within the transaction t'x, eventually returning rpx as the last 

response so far in RPHcAt, and possibly adding AST(t'x) to ATHj and DBT{t'x) to DTH 

as the last transactions for client session CAi so far. All matching requirements are fulfilled. 

CI2: The CRM receives a failure exception. The database transaction, if it exists, aborts upon the 

crash. Thus DBT(tx) £ DTH. ASj has already received the committing message for tx. 

There are two cases to consider. First, if eu.db — false, then ASj adds AST(tx) to ATHj 

at failover. When CRM resubmits the request, ASj immediately returns the response. Cor­

rectness is given, as request, response and ATH match. DTH does not contain a transaction 

but this is fine, as the original execution at AS0 was completed and did not involve database 

updates. In the second case, i.e., eu.db = true, ASj checks the database for the transaction 

identifier at failover. It can't find it since the database transaction did not commit. However, 

ASj knows that an update DB transaction was involved. If it appended AST(tx) to ATHj, a 

mismatch would occur (according to Definition 4.3.1 (2a)). Thus, ASj discards the content of 

the committing message. Therefore, neither ATHj nor DTH have transactions related to rx. 

When the CRM resubmits the request, ASj executes it as a completely new request leading 

to exactly one execution and one response as discussed in CI1. 

CI3: The CRM receives a failure exception and DBT(tx) e DTH. At ASj, the committing 

message was received. At failover, ASj detects that DBT(tx) has committed because it either 

has already received the committed message or it has looked for and found the transaction 

identifier in the database. Thus, AST(tx) is added to ATH. Thus, ATHj already matches 

the request history and DTH. When the CRM resubmits rx, ASj immediately returns the 

response, completing the matching requirements. 
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Figure 5.5: Possible crash intervals of the 1-1 algorithm in case of an abort during execution 

CI4: From the perspective of ASj this is the same as CIZ and AST{tx) is added to ATH. The 

only difference is that the client receives the response from the old primary. Thus, there is no 

resubmission. 

Aborts Now let's have a look at the abort case. There are three cases to consider. First, the 

AS initiates the abort for some reason. Second, the database triggers an abort some time during 

execution. Third, the database aborts when the AS submits the commit request. The first two are 

handled in the same way in our algorithm as the AS only sends the abort message after the database 

aborts. Figure 5.5 shows the situation where aX2 leads to the abort at the database. In this case, the 

first crash interval ends just before the database transaction aborts. As the situation is exactly as for 

crash interval CI\ of the commit case, we do not discuss it further. Then, the AS receives an abort 

response from the database, and the AS transaction also aborts. After the state is rolled back, an 

aborted message is sent to the backups and then the abort response is returned to the client. As the 

abort message is only sent with reliable delivery, the reception of the message at the backups (if at 

all) and the response to the client can be in any order. If there is a crash, it could be that both the 

abort response tothexlientrand the abort message to the backups were received, none was received, 

or only one of them -was received. In regard to crash intervals, we consider crash interval CIS to 

end just before the old primary sends the response to the client, and CI6 after sending this message. 
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Let's now consider the actions upon a crash during these crash intervals: 

CI5: The CRM receives a failure execution. As the DB transaction aborts, DBT(tx) & DTH. 

For new primary ASj we can consider two cases. 

(a) ASj has not received the aborted message before the crash. When CRM resubmits rx, 

ASj will reexecute as if it were a new request as ASj does not know anything about 

tx. Although there are now two executions this is correct as the first execution did not 

leave any entries in either ATHj or DTH and no response to the client. The second 

execution might again lead to an abort, with no transaction in ATHj or DTH and 

an abort response, or execution might succeed with a commit and the corresponding 

response. At this time, all histories do match. 

(b) ASj has received the aborted message. In this case, when CRM resubmits rx, the abort 

response rpx is immediately returned. Request, response, ATH and DTH histories 

match with both AS and DB transactions aborted. 

CI6: DBT(tx) $ DTH as the DB transaction aborts. AST(tx) $. ATHj, either because ASj has 

received the aborted message or because it hasn't received any message at all. In the first case 

ASj adds the request/response pair to RR, otherwise not. But this difference has no effect, 

as the CRM will not resubmit the request since it already received the abort response. All 

histories match. 

Finally, Figure 5.6 shows what happens if the database transaction aborts upon the commit 

request submitted by the AS. As in the commit case, crash interval CI1 ends just before the primary 

AS0 sends the committing message, and CI2 ends just before the database transaction terminates. 

CI7 now ends just before the primary AS0 sends the client response, and CI8 starts after sending 

this message. . 

CI7: The CRM receives a failure exception. The database transaction has aborted because of 

application semantics; thus, DBT(tx) $. DTH. At the ASj there are two cases as before. 

(a) ASj has not received the aborted message. As it has received the committing message 

it will check in the database for the transaction identifier. It cannot find the transaction 
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Figure 5.6: Possible crash intervals of the 1-1 algorithm in case of an abort at commit 

identifier and then discard the changes. Thus, AST(tx) g ATHj. When CRM re­

submits rx, ASj will reexecute as if it were a new request. As in case CI5 having two 

executions is correct as the first did not leave any effects in ATHj, DTH and RPHcAi-

(b) ASj has received the aborted message. Thus, it has discarded the changes of the previ­

ously received committing message and not added AST(tx) to ATHj. From there, the 

reasoning is the same as in case CI5b. 

CI8: Due to application semantics, DBT(tx) & DTH. As above ASj might have received the 

aborted message or checked for the database identifier in the database. In both cases, it does 

not append AST(tx) to ATHj. All histories match. 

5.4 1-1 Replication Algorithm for Relaxed State Consistency 

In case a transaction commits, relaxed state consistency requires the same actions as full state con­

sistency. Hence, we only consider the abort of a transaction in the following. With relaxed state 

consistency, even if a transaction aborts due to application semantics, it might change the state of 

the AS, but not the state of the database. Therefore, we have to replicate state changes performed 

by an AS transaction even in the abort case. As we have seen in the discussion above, abort is 

often database induced. In these cases the AS only is informed about the abort after it has taken 
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voidfailover Q 
1. new Eu eu, new set COMP; 
2. in order of reception process each 

committing and aborted message m 
void abort j>roc () 3- eu = /".content; 

1. for each comp eeu.COMP f V(m & commit,ing ",ef f 1 -L 

i . . . . . . . -5. process eu as in the 1-1 algorithm; 
2. set comp. state to current state y s • 

/• .. . IIsee fig. 5.3 lines 4-12 
of corresponding component; , . , , . , , . , , , , , . , 6. it (m is aborted message) 3. new aborted Message m3; ' ' , * , ' , „ . , , . r i 7. for each comp £ eu.COMP 4. m3.content = {eu}; J .,.„ ^ . m . , , ,.. . . . r ,. •• . i. 8. if (3 c e COMP and c == comp) 5. multicast ml using uniform reliable delivery; „ J y ^' , . , . . , . , y. estate - comp.state 6. wait until receive m3; / f t g f a e C O A / p = £QMp y 

(a) primary: handle abort , , RRj = {(eU.req.rid,eu.resp)}; 
12. for each comp e COMP 
13. create corresponding component; 
14. set component's state to comp.state; 

(b) failover 

Figure 5.7: "1-1-relaxed" algorithm to support relaxed state consistency 

place in the database, i.e., after the fact. Different to the commit case, this implies that state change 

propagation cannot always be performed before the transaction actually aborts but only afterwards. 

Figure 5.7 shows the changes to the 1-1 algorithm of Figure 5.2 to support relaxed state consis­

tency. When a transaction is aborted, the.abort routine (Figure 5.7 (a)) sends an aborted message 

including the final state for each accessed component and the pair of the client request and the abort 

response. The aborted message is sent with uniform reliable delivery, and execution only contin­

ues when the primary receives its own aborted message. This means, that the user only receives 

the abort response when it is secured that the backups know about the abort and the corresponding 

state changes at the AS. The backup stores each aborted message in the FIFO queue together with 

other messages. Figure 5.7 (b) shows the modified failover. Both committing messages and aborted 

messages are processed in FIFO order to track the latest state of each component (lines 2-3). For a 

committing message, it will be processed as was the case for the full state consistency (lines 4-5). 

For an aborted message, all components affected will be recorded with its latest state and the pair of 

the client request and the corresponding abort response will be recorded in RR (lines 6-11). Finally, 

all necessary components are recreated (12-14). 
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Figure 5.8: Possible crash intervals of the relaxed state consistency algorithm in case of an abort 
during execution 

5.5 Correctness of Relaxed State Consistency Algorithm 

The main difference compared to the full consistency algorithm is that the aborted message contains 

the state changes and is sent with uniform reliable delivery. Figure 5.8 shows an abort during 

execution. The only difference-to the execution for full state consistency, shown in Figure 5.5, is 

that the abort message is guaranteed to have arrived at the backups before the abort response is 

returned to the client. Crash interval CI\ remains as before and is not further discussed. CI9 now 

starts with the abort at the database and ends just before the abort message is sent to the backups. 

CI10 starts with sending this message and ends just before sending the client abort response, and 

CI11 starts after sending this abort response. 

CI9: The CRM receives a failure execution. As the DB transaction aborts, DBT(tx) g DTH. 

ASj does not receive the abort message. The behavior and the reasoning for correctness is 

the same as Clba. When CRM resubmits rx, ASj will reexecute as if it were a new request 

as ASj does not know anything about tx. Although there are now two executions this is 

correct as the first execution did not leave any entries in ATHj or DTH and no response to 

the client. The second execution might again lead to an abort or to a commit. At this time, all 

histories match. 
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CI2 i CI12 • CI10 : CI11 

Figure 5.9: Possible crash intervals of the relaxed state consistency algorithm in case of an abort at 
commit 

CI 10: ASj receives the aborted message. In this case, ASj applies the changes contained in the 

abort message at failover, i.e., AST(tx) € ATH. With this ATH and DTH match. ASj 

also puts the request/response pair into RR. When CRM resubmits rx, the abort response 

rpx is immediately returned. Now request and response histories match with each other and 

with ATH. 

O i l : Request and response histories already match because the client has already received the 

response. ASj is guaranteed to have received the aborted message and appended AST(tx) to 

ATH. Thus, request/response histories match with ATH. Finally, DTH and ATH match 

because it reflects the execution at the old primary. 

Figure 5.9 shows the abort at commit time. CI1 and CI2 are as in the commit case. CIY1 starts 

with the abort of the database transaction and ends before the backups receive the aborted message. 

The behavior in case the backups receive the aborted message is the same as before and discussed 

in CJ10 and CJ11. 

C12: The behavior and reasoning is the same as CI7a. As ASj has received the committing mes­

sage it will check in the database but not find the transaction. Thus, upon resubmission of the 

request, a second execution occurs. This is correct, as the first execution at the old primary 

hasn't left any state changes in the system nor a response was returned. 



Chapter 6 

Advanced Algorithms for Advanced 

Execution Patterns 

In this chapter, we describe advanced algorithms that are extended from the 1-1 algorithm for ad­

vanced patterns, namely the N-l pattern and the 1-N pattern. 

6.1 N-l Pattern 

In the N-l algorithm, several client requests are associated with a single transaction. The basic idea 

of the N-l algorithm is similar to the 1-1 algorithm. The primary AS propagates all state changes 

on session-related data performed by a transaction to backups at the commit time of the transaction. 

A backup only applies the state changes after it knows that the transaction has actually committed. 

Using this approach allows the new primary ASj to match ATHj and DTH after the old primary 

AS0 crashes. However, for the N-l pattern, matching ATHj and RHcAi/RPHcAi and matching 

RHcAt and RPHcAt of a client session CA\ are more complex than for the 1-1 pattern. 

The main problem occurs if a client has already submitted a sequence of requests T\ ... r^ all 

belonging to a transaction t and has already received responses for r\... rk-i when the primary 

crashes. As the transaction was still active, no transaction exists in DTH and the new primary 

ASj also does not have any state changes. Thus, ATHj does not match with RHCA, and RPCA, • 

83 
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As a solution, we resubmit all requests r\... rk to ASj and not only the last request r\. to ASj 

and execute them within a new transaction t'. The challenge is that the reexecution of ri to r^_i 

should generate the same responses as their original execution at the old primary. Furthermore, 

these responses should not be seen by the client, as it has already received them during the original 

execution at the old primary. Receiving them twice would mean that RHcAt and RPHcAt don't 

match anymore. 

If each response rp\... rpk-i generated during the reexecution is the same as the correspond­

ing response during the original execution, ATHj eventually matches RHcAi and RPHCA, • If 

reexecution of one of the requests does not lead to the same response, we abort the transaction and 

return an abort as response to rpk- Although the abort is not due to application semantics but due 

to the failure of the old primary, this guarantees that all matching requirements are fulfilled. We 

present two algorithms. The N-1-best-effort algorithm is simple and fast, but many transactions 

might be aborted because their reexecutions produce different responses. The N-1-ordered alter­

native achieves better transparency and a lower rate of aborted transactions at the price of higher 

overhead during normal processing. 

Note that our algorithm is different from many implementations in current systems [78, 60, 56] 

that propagate state changes every time a response is returned to the client. In the above example, 

that would mean, state changes are propagated before rp\ is returned, before rp2 is returned etc. 

If the old primary now crashes before returning the response for rk, ASj would have the state 

changes triggered by r\... rfc_1? and possibly also those of rfc. However, the database transaction 

still aborts completely. If ASj applied these state changes and only the outstanding request rk would 

be reexecuted, DTH would riot match ATHj. 

In the following we first discuss full state consistency, and then discuss the changes needed to 

support relaxed state consistency. 

6.1.1 N-l-best-effort 

As mentioned in Section 4.2.2, the main difference between the N-l pattern and the 1-1 pattern is 

that the client side controls the demarcation of transactions in the N-l pattern. Hence, the main 
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changes compared to the 1-1 algorithm are at the client side. The client replication algorithm inter­

cepts all requests, including begin, commit and abort requests. For each transaction, it keeps track 

of all component requests made so far and the corresponding responses. Only at commit time the 

server replication algorithm sends the primary state changes to the backups, not for each individual 

request. If the primary crashes while a transaction was active, the client algorithm resubmits all 

requests associated with the transaction to the new primary where they are executed within a new 

transaction. If reexecution leads to the same responses as the original execution, the new primary 

has equivalent actions to the actions performed at the old primary. Hence, reexecution was success­

ful and failover is completely transparent. If it leads to different results, the replay was unsuccessful 

and the reexecuted transaction is aborted. The real client, having seen the old non-repeatable re­

sponses, is informed with a failure exception. 

Our detailed algorithm description uses similar notations as the 1-1 algorithm. In the N-l-

best effort algorithm, a single CEU object ceu at the CRM keeps track of the execution within 

the current transaction. It contains the transaction identifier txid and all requests executed so far 

together with their responses (RR). The server maintains an EU object for each currently active 

transaction but does not need to keep track of request/response pairs. Additionally, the server use a 

set AT to record each aborted transaction. 

The CRM (Figure 6.1) intercepts begin, invoke, commit and abort requests. For simplicity of 

description, we assume that the client submits requests in the correct order (begin/invoke/invoke.../commit). 

If a request to a component results in an abort, we expect the client to not continue with the trans­

action but submit a new begin transaction as next request. 

Upon intercepting the begin request (Figure 6.1 (a)), the ceu object is initialized and the request 

is forwarded to the current primary until it is successfully executed. Upon a component request 

(Figure 6.1 (b)), the response from the primary is captured (lines 3-9). If the primary crashes before 

a response is received, we have to consider two cases. Firstly, the primary might have been in 

the middle of executing the request. Secondly, the request might have led to an application induced 

abort. The abort might have completed on the primary and the primary already informed the backups 

about this abort, but the primary crashed before returning the response to the client. In this case, 

the new primary is aware of this (unsuccessful transaction). Therefore, when the CRM receives 
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void bemn 0 
1. 
2. 
3. 
4. 
5. 

while (true) 
ceu.initializeQ; 
ceu.txid = primary.beginQ; 
if ($ failure Exception) return; 
else find a new primary; 

(a) intercept transaction begin 

Response invoke (Request req. Component comp) 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

Generate req. rid; 
while (true) 

Response resp = 
primary.invokefreq, comp, ceu.txid); 

if (resp == abort Exception) 
throw abort Exception; 

if ($ failure Exception) 
ceu.RR U = {(req, comp, resp)}; 
return resp; 

else 
while (3 failure Exception) 

find a new primary; 
if (primary. isjxborted(ceu. txid)) 
ceu.initializeQ; 
throw abort Exception; 

else 
replay(ceu); 
if (3 replay failure) 
ceu.initializeQ; 
throw replay failure; 

(b) intercept component request 

void commit () 
I. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

11. 
12. 
13. 
14. 
15. 
16. 

while (true) 
primary. commit(ceu. txid); 
if ($ failure Exception) 

ceu.initializeQ; 
return; 

else 
while (3 failure Exception) 

find a new primary; 
if (primary. isxommitted(ceu. txid)) or 

(primary. is-aborted(ceu. txid)) 
ceu.initializeQ; 

return; 
else 

replay (ceu); 
if (3 replay failure) 
ceu.initializeQ; 
throw replay failure; 

(c) intercept transaction commit 

void abort () 

I. 
2. 

primary.abort(ceu.txid); 
throw abort Exception; 

(d) intercept transaction abort 

void replay (CEU ceu) 
1. 
2. 
3. 
4. 
5. 

6. 
7. 
8. 
9. 

10. 

ceu. txid = primary. beginQ; 
if(3 failure Exception) throw failure Exception 
else 

for each (oreq, ocomp, oresp) 6 ceu.RR 
Response nresp = primary, invoke (oreq. 

ocomp, ceu.txid); 
if(3 failure exception) throw failure Exception 
else if (3 abort exception) throw replay failure 
else if (nresp != oresp) 

primary.abort(ceu.txid); 
throw replay failure; 

(e) replay 

Figure 6.1: N-l-best-effort at the client side 

a failure exception (line 11), it checks at the new primary if the corresponding transaction had 

regularly aborted. If yes, the client algorithm simply returns the abort response, which is an abort 

exception (lines 13-15). Otherwise, a replay is initiated at the new primary (lines 17-20). Upon a 

commit request (Figure 6.1 (c)), if no crash happens, the termination is successful and returned to 

the user (line 2-5). If a crash occurred before the server returns from the commit, the transaction 

might have committed before the crash, aborted at commit time or aborted upon the crash. The 

CRM checks this at the new primary (lines 7-8). If the transaction committed or aborted at the 
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Response invoke (Request req, Component 
1. eu.COMP V) = {comp}; 
2. Response resp = comp.invoke(rep) 
i. if (req is a client request and resp == 
4. abort-proc(eu): 
5. return resp; 

(a) intercept request to component 

void abort-proc (EU eu) 
1. ATI) = {eu.txid}; 
2. new aborted Message mi; 
3. mi.content = {eu.txid}; 
4. multicast mi by reliable delivery; 

(b) abort procedure 

void abort (TID txid) 
1. TM.abortSransaction(txid); 
2. abortjproc(eu); 

(c) intercepts abort request 

comp, TID txid) 

- abort exception) 

Bool isjcommitted (TID txid) 
1. if txid can be found in database return true 
2. else return false; 

(d) check commit of transaction 

Bool isjiborted (TID txid) 
1. if (3 txid £AT) return true; 
2. else return false; 

(e) check abort of transaction 

void failover () 
1. ... 1/see Fig. 5.i lines 1-12 
2. for each aborted message m with 

m.contenl == txid 
3. ATU = {txid}; 
4. ... //see Fig. 5.i lines 16-18 

f) failover at the new primary 

Figure 6.2: N-l-best-effort at primary 

time of commit, the request returns accordingly (lines 9-11). Otherwise, the transaction is replayed 

at the new primary .(lines.13-1.6). When the client submits an abort request, it is simply forwarded 

and considered successful independently of whether a crash occurred or not (Figure 6.1 (d)). The 

replay (Figure 6.1 _(e)) starts a new transaction at the new primary and resubmits each request of 

the old execution (lines 1-5). If one of these requests receives a different response than the original 

execution, the reexecuted transaction is aborted throwing a replay failure exception (lines 7-10). It is 

now up to the client to act upon this. Otherwise, reexecution has been successful and the algorithm 

continues with the request that was active at the time of the crash. Note that after the reexecution 

the state of the new primary (or the database) might not be exactly the same as the state of the old 

primary after trie first execution. This does not really matter because only responses but not server 

state is visible io the client. Throughout the algorithm additional AS crashes reset the algorithm to 

the appropriate place. -

At the server side, the N-l -best-effort algorithm is very similar to the 1-1 algorithm. We ignore 

the transaction begin and commit methods since they are the same as in the 1-1 algorithm. For a 

regular request (Figure 6.2 (a)), we only keep track of each component accessed by a request, but 

do not record the request/response pair as this is now done by the CRM. If the transaction aborts 

during request execution, an abort exception is thrown to the client as the response. Before that, 
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however, the abort procedure is called (Figure 6.2 (b)) which informs the backups about the abort, 

and stores the transaction identifier in the list of aborted transactions AT. The same procedure is 

called when the client requests an abort (Figure 6.2 (c)). The commit is the same as in the 1-1 

case multicasting a committing message and a committed message. When the CRM checks if a 

transaction is committed, the is committed routine (Figure 6.2 (d)) looks in the database for the txid 

and returns the answer. Correspondingly, the is.aborted routine (Figure 6.2 (e)) looks in the set AT 

for the txid and returns the answer. The failover at the new primary (Figure 6.2 (f)) is also similar 

to the 1-1 failover algorithm of Figure 5.3. However, instead of maintaining RR, AT must now be 

updated. 

6.1.2 Correctness of N-l-best-effort 

Correctness reasoning is similar to the proof of correctness of the 1-1 algorithm (see Section 5.3.1) 

for successfully completed transactions where the result was returned to the client without crash. 

The challenge lies in the case when the primary AS0 crashes while a client session CAi has an 

active transaction tx, i.e., the client has not yet received a commit or abort confirmation for tx. 

Assume tx involves k + 1 client requests rx...rx+k. The primary AS0 might crash at any time point 

during the execution. We again discuss correctness by enumerating different crash intervals. 

Commit case Figure 6.3 extends the execution in case of a commit for the N-l pattern shown in 

Figure 4.3. In the figure, the client session CA\ submits a sequence of requests rx to rx+k within the 

transaction tx on the replicated AS. In this example, the sub-request ry\ submitted by the request 

rx+i and the sub-request rvi submitted by the request rx+h update the database, which make tx be 

a DB update transaction. After the crash, we assume ASj takes over as new primary and is up for 

sufficiently long to answer any outstanding requests and transactions. To prove the correctness, we 

check critical time points one by one. The first crash interval (CI1) ends just before the primary 

sends the response of the first request n, which is the transaction begin request in the N-l pattern. 

If the primary crashes within CI1, the C/?M resubmits the request r\ to the new primary ASj, and 

then sends all following requests to ASj. This case is similar to the CIl case of the 1-1 algorithm, 

where all requests are completely reexecuted on the new primary ASj. We omit the discussion for 
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Figure 6.3: Possible crash intervals of the N-l algorithm in case of a commit 

this case. The second crash interval (CI2) starts when the response of the first request is sent to 

the client and ends just before the response of the request rx+k-i, that is the last request before 

the commit request, is sent. The third crash interval (CI3) starts when the response of the request 

rx+k-i is sent and ends just before the primary sends the committing message. That is, some time 

during interval CIS, the client submits the commit request rx+k. As mentioned in Section 5.3.2, 

the uniform reliable delivery is modeled as a message/acknowledgement pair between primary and 

backup. The primary commits the transaction tx only after it receives the logical confirmation that 

backups have already received the committing message of tx. The fourth crash interval (CI4) starts 

after the primary has sent the committing message (i.e., the backups have the state changes) and 

ends just before the commit of the database transaction. The fifth crash interval (CI5) starts with 

the database commit (which adds this transaction to DTH) and ends just before the primary sends 

the response to the client. The sixth interval (CI6) starts after the response is sent (which allows the 

client to add it to B.PH). 

Let's now discuss what happens if the primary AS0 crashes while being in one of these crash 

intervals. 

CI2: Without losing generality, we assume that the crash occurs during processing the request rx+h 

(0 < h < k). At this moment, the client session CAj already received a sequence of responses 
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rpx...rpx+h-i, which are contained by RPHcAf The CRM receives a failure exception for 

the outstanding request rx+h- ASj has not received the committing message and has no 

knowledge about the transaction tx. The database transaction, if it exists, is aborted upon 

the crash of AS0. Thus, AST(tx) <£ ATHj and DBT(tx) £ DTH. The CRM resubmits 

requests from rx to rx+h to ASj, where each request is executed as a completely new request 

within a new transaction t'x. The CRM checks whether or not each new response generated 

during the reexecution is the same as the corresponding original response of the same request. 

There are two situations: 

(a) If all responses rpx ... rpx+h-\ generated during the reexecution of rx to rx+h-i are the 

same as the corresponding original responses, the CRM suppresses all of these dupli­

cate responses. Then the response rp'x+h is returned as the response to the outstanding 

request rx+h. Then, ASj continues executing requests from rx+h+\ to rx+k, returning 

responses rp'x+h+1 to rp'x+k to the client. Finally, RPHCAi contains rpx ... rpx+h-i 

rPx+h • • • rPx+fc t n a t m a t c n requests rx... rx+k contained by RPHQAV If transaction 

t'k eventually commits, AST{t'x) is added to ATHj, and DBT{tfx) is added to DTH 

\ft!x is a DB update transaction. Hence, all matching requirements are fulfilled. The t'x 

also might be aborted due to application semantics. In this case, the last request associ­

ated withj'fc will have an abort response, AST{lfx) $ ATHj and DBT{t'x) £ DTH. 

All matching requirements are fulfilled again. 

(b) If any response generated during the reexecution is different from the corresponding 

original response, e.g., the response rp'x+g (1 < g < x + h — 1) of the request rx+g 

is not equivalent to the original response rpx+g, then the reexecution is stopped and 

the transaction t' is aborted. The abort response rpab, is returned as the response for 

the outstanding request rx+h- As a result, RHcAt contains rx ... rx+h and RPHcAi 

contains rpx . . .rpx+h^rp^, and RHCAi to RPHCAV AST{t'x) £ ATHj and 

DBT(t'x) i DTH. It is obvious that RHCAi ^ RPHCA{ and ATHj txi DTH. The 

last request rx+h, has an abort response of t'x, which fulfills Condition 2a of the N-l 

matching property (Definition 4.3.3). Thus ATHj ixi RHcAi/RPHcA,- However, the 
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abort of t'x is not caused by application semantics, but caused by an failure, and hence, 

fault-tolerance is not transparent. 

CI3: This case is similar to the above case CI2, where AST(tx) i ATHj and DBT(tx) £ DTH. 

The CRM already received the responses for requests rx to rx+k-\, and receives a failure 

exception for the last request rx+k> which is the commit request of the transaction. As in 

CI2, the CRM has to start the resubmission from request rx. 

CI4: The CRM already received the responses for requests rx to rx+k, and receives a failure 

exception for the outstanding commit request rx+k- ASj has already received the committing 

message for tx. If eu.db — false, then ASj adds AST(tx) to ATHj at failover. When 

CRM resubmits the request rx+k, ASj immediately returns the successful commit response. 

Correctness is given, as request, response and ATH match. If eu.db = true, ASj knows that 

a DB update transaction was involved but aborted, since it cannot find the transaction identifier 

in the database. Thus, ASj discards the content of the committing message. Therefore, neither 

ATHj nor DTH have the transaction tx. Then, the CRM resubmits the request starting from 

rx as discussed in CI2. 

CI5: The CRM receives a failure exception for the last request rx+k and DBT(tx) e DTH. 

At ASj, the committing message was received. At failover, ASj detects that DBT{tx) has 

committed because it either has already received the commit message or it has looked for 

and found the transaction identifier in the database. Thus, AST(tx) is added to ATHj, and 

ATHj [X DTH, and ATHj&iRHcAi- When the CRM resubmits rx+k, ASj immediately 

returns the successful commit response, and ATHj ixi RPHcAt and RHcAt »« RPHcAt-

CI6: The client receives the response ffdrh the old primary, RHcAi ix> RPHcAi and there is no 

resubmission. From the perspective of ASj this is the same as CJ5 and AST{tx) is added to 

ATH. 

Aborts In the N-l pattern, the transaction tx can be aborted in three different cases. The first abort 

case is that an abort is caused during execution by the AS or the database. Figure 6.4 (a) shows an 
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Figure 6!4: Possible crash intervals of the N-l algorithm in case of a commit 

example of the first case, where the database access action aV2 leads to an abort at the database. 

In this case, the first two crash intervals are exactly the same as the situation of the crash intervals 
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CI\ and CI2 of the commit case, and hence we omit the discussion. CI1 starts when the database 

aborts tx. As in the 1-1 algorithm, the AS receives an abort response, aborts the AS transaction, 

sends an aborted message to backups using reliable delivery, and finally sends the abort response to 

the client. Crash interval CI1 ends just before the old primary sends the response to the client, and 

CIS after sending this response. 

CI7: The CRM receives a failure execution. As the DB transaction aborts, DBT{tx) £ DTH. 

For .45, we can consider two cases. 

(a) ASj has not received the aborted message before the crash. In this case, ASj has no 

knowledge of the abort, and hence AST(tx) £ ATHj. The CRM receives the failure 

exception and then begins the replay from rx. This is the same as the situation of the 

crash interval CI2 of the commit case. 

(b) ASj has received the aborted message, AST(tx) $ ATHj. In this case, when CRM 

checks with the new primary ASj if the transaction tx is aborted or not, the answer 

is yes. Then, the CRM directly returns the abort response of tx to the client as the 

response of the outstanding request rx+h without resubmission. Request, response, 

ATH and DTH histories match with both AS and DB transactions aborted. 

CI8: DBT(tx) <£ DTH as the DB transaction aborts. AST(tx) $ ATHj, either because ASj has 

received the aborted message or because it hasn't received any message at all. The CRM 

will not resubmit the outstanding request rx+h since it already received the abort response. 

All histories match. 

The second abort case is that an abort is caused by the application at the end of the execution. 

Figure 6.4 (b) shows an example of this case, where the client session submits an abort request as 

the last request rx+k at the end of the execution. As before, the first two crash intervals are the same 

as the situation of the crash interval CI\ and CI1 of the commit case, and hence we ignore the 

discussion. Then, the client session submits the abort request to the AS. The AS receives the abort 

request, aborts the transaction % at the database first and then at the AS, sends an aborted message 

to backups using reliable delivery, and finally sends the abort response to the client. In regard to 
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crash intervals, we consider crash interval CI9 to start when the response to rx+k-i is returned and 

to end before the database receives the abort request, CIIO to end before the old primary sends the 

abort response to the client, and CJ11 after sending this response. 

CI9: Although the database did not receive the abort request, the DB transaction is aborted due to 

the crash, and hence DBT{tk) # DTH. The ASj has no knowledge about the transaction, 

and hence AST(tk) £ ATHj. The CRM receives a failure execution, but it will not resubmit 

the request. Instead, the CRM directly returns an abort response to the client as the response 

of the abort request. All histories match. 

CIIO: The DB transaction is aborted because it received the abort request and executed it, and hence 

DBT{tk) £ DTH. At the AS, there are two cases as before: ASj either has already received 

the aborted message or not. In either case, AST(tk) £ ATHj. The CRM receives a 

failure execution and then directly returns an abort response to the abort request without 

resubmission. All histories match. 

O i l : DBT(tx) £ DTH as the DB transaction aborts. AST(tx) £ ATHj, either because ASj has 

received the aborted message or because it hasn't received any message at all. The CRM 

will not resubmit the outstanding request rx+n since it already received the abort response. 

All histories match. 

The last abort case is that the database transaction aborts upon the commit request submitted by 

the AS as shown in Figure 6.4 (c). Crash intervals CI1, CI2, CIS, and CIA are the same as in the 

commit case. CI\2 starts with the abort at the database and ends just before the primary AS0 sends 

the abort response, and CI13 starts after sending this message. 

CI 12: The database transaction has aborted because of application semantics, thus, DBT(tx) ^ 

DTH. The AS has two cases^ 

(a) ASj did not receive the aborted message. As it has received the committing message 

it will check in the database for the transaction identifier. It will not find the identifier 

and discard the changes. Thus, AST(tx) £ ATHj. The CRM receives the failure 
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exception and then begins the replay from rx. This is the same as the situation of the 

crash interval CI2 of the commit case. 

(b) ASj has received the aborted message. Thus, it has discarded the changes of the previ­

ously received committing message and not added AST(tx) to ATHj. From there, the 

reasoning is the same as in case Cllb. 

CI13: Due to application semantics, DBT(tx) £ DTH. As above ASj might have received the 

aborted message or checked for the database identifier in the database. In both cases, it does 

not append AST(tx) to ATHj. The last commit request rx+n receives the abort response. 

All histories match. 

In summary, in all of above cases, all three matching properties are fulfilled, and hence the replica­

tion algorithm works correctly. 

6.1.3 Relaxed State Consistency 

The relaxed state consistency algorithm is a simple adjustment to the full state consistency algo­

rithm. We only summarize the changes that have to be made to the N-l-best effort algorithm. At 

the server side, the multicast in the abort procedure (Figure 6.2 (b)) has to send the final state of 

all changed components. Furthermore, it must use uniform reliable delivery. Finally, the procedure 

only returns once the primary has received its own aborted message. For the client replication al­

gorithm, also the abort changes (Figure 6.1 (d)). It has to implement similar steps as the commit 

(Figure 6.1 (c)). If it receives a failure exception upon an abort request, it has to contact the next 

primary. There it first checkswhether the abort (including the relevant state changes at the AS) was 

successfully reported to the new primary. If yes, the abort was successful. Otherwise, we try to 

replay the transaction. Jf replay succeeds the transaction aborts due to application semantics as it 

did on the old primary. Also, the failover procedure at the new primary has to be slightly changed. It 

has to apply the state changes sent in aborted messages similar to the 1 -1 algorithm for relaxed state 

consistency. If replay does not succeed, namely a duplicate response is not equal to the correspond­

ing original response, we force the replay transaction to abort due to crash, and a corresponding 
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abort exception is returned to the client. We do not install the state changes performed by this ab­

normally aborted transaction in the current primary as is done for a normally aborted transaction in 

case of relaxed state consistency. We also do not propagate the state changes to backups. That is, 

this transaction is not contained in ATH. In fact, this violates Condition 2b of the N-l matching 

property (Definition 4.3.3) that requires that for each request there is a corresponding t € ATH. 

Instead this replayed transaction follows the rule of full state consistency. However, if we keep 

all changes of the replayed transaction, we would violate Condition 1 as it requires the response 

generated by this replayed transaction to be part of RPHcAi- But RPHcAi already contains the 

different response of the original transaction. 

The other correctness reasoning is similar to the proof for relaxed state consistency of the 1-1 

algorithm. Sending the aborted message with uniform reliable delivery guarantees that the client re­

ceives an abort response only when backups can have state changes performed by the corresponding 

aborted transaction. This, together with replaying transactions whose abort request was interrupted 

by a crash, makes sure that the state changes of aborted transaction are not lost, unless replay was 

unsuccessful. 

6.1.4 Increasing the Chances for Exactly-Once 

Reexecution might not succeed if non-determinism occurs which can happen because of database 

access. For example, assume before the primary crash, T\ reads and updates x in the database, and 

returns a response to the client. Then the primary crashes before T\ commits. At the new primary 

assume a transaction Ti reads and updates x before Ti resubmits its request. Hence, T\ 's replay 

reads a different value of a; than during the original execution. This might lead to a different response 

if the value of x affects the response. To avoid such behavior, we propose an alternative algorithm 

N-1-ordered that works for database systems that guarantee serializability through strict 2-phase 

locking. With N-l-ordered, the reexecution of all database access is performed in the same order as 

during the original execution. During normal processing, each database access is assigned a unique 

increasing identifier. Before the response for the request is returned, an ordering message with the 

identifiers of all access triggered by the request is multicast to the backups. If the request did not 

trigger any database access then no message needs to be sent. At failover, the new primary discards 
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an ordering message it received if the corresponding transaction committed before the crash, since 

client requests involved in this transaction will not be reexecuted. Otherwise, the request and the 

database access identifiers are recorded. When clients now resubmit their requests and reexecution 

starts at the new primary, each replayed database access must be executed according to its original 

order and new requests may not start until all resubmissions have completed. In the example above, 

when T2's request is submitted before Ti resubmits its request, it has to wait until Ti's request is 

reexecuted to guarantee that T\ again reads the same data as in the original execution. In order to 

handle clients that do not replay (e.g., they crashed by themselves), there is a timeout of how long a 

request is blocked. If T\ does not resubmit its request within a certain time, T2's request (and other 

waiting requests) will execute to guarantee termination. 

6.2 1-N Pattern 

In the 1 -N pattern, a client request triggers an AS action which is associated with an outer transac­

tion. During the execution of this action sub-requests can trigger one or more nested inner trans­

actions, e.g., in J2EE, if the method called is marked with the RequiresNew attribute. Inner 

transactions can have further nested inner transactions. As we mentioned before, we only consider 

relaxed state consistency given that outer and inner transactions might access the same session state. 

In our model, for each AS transaction there is exactly one request that triggers the transaction 

and the one AS action associated with the request is the only AS action that is part of the AS 

transaction. In the following, given an AS transaction t, at(t) indicates the action associated with 

the transaction, and R(at(t) is the request that triggered that action at(t). 

6.2.1 Sub-requests and Nested Transactions 

Let's have a closer look at ah example execution and derive some terminology using this exam­

ple. The example ignores the database transactions. Of course, every AS transaction can have a 

corresponding database transaction. In Figure 6.5, client request r\ triggers action a\ within outer 

AS transaction t\. ai submits ri triggering action a-i and inner transaction t<i, etc. The request 

order is r\... r-j. Derived from Figure 6.5, we can model the execution of client request r\ as a 
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Figure 6.5: An example execution of the 1-N pattern 

A 
r6 r7 

(a) Ttree of t\ (b) Rtree of r\ 

Figure 6.6: Ttree and Rtree 

transaction tree Ttree(r{) as depicted in Figure 6.6 (a). The root of the tree is the outer transac­

tion t\. The children are the child transactions that are triggered by sub-requests submitted by the 

action ai associated with a\. These child transactions can have further child transactions if they 

trigger transactions themselves. A child transaction always terminates before its parent transaction. 

Therefore, we obtain the termination order of transactions if we perform a post-order traversal of 

the transaction tree and denote this as TSeq. In our example, TSeq(r\) = £4, £3, £2, *6, £7, h, *i-

In general, given a tree Ttree(r,) of client request n and rooted at outer transaction t,, for any 

two transactions tj and tk in the tree, tj is parent of t^ if there is an edge from tj to tk, and t, is 

ancestor of tf. if there is a path from tj to t^ We refer to ANCS(tj) as the set of all ancestors of 



Chapter 6. Advanced Algorithms for Advanced Execution Patterns 99 

tj. Furthermore, for any transaction tj being non-root node in Ttree{ri), tj is inner transaction. 

Generally, a transaction tj terminates before tk if tk is an ancestor of tj (e.g., t^ before ti), or if 

both are siblings and R(at(tj)) was submitted before R(at(tk)) (e.g., t§ before £7), or they have a 

common ancestor with at least two children, and tj is in the sub-tree rooted at the left child, and tk 

is in the sub-tree rooted at the right child (e.g., £3 before t§). Note also that the client associated with 

root transaction tj, i.e., CL(GTX(ti)), is indirectly client of each other transaction tj in Ttree(rt), 

thus, CL(GTX(tj)) = CL(GTX(U)). Finally, for any transaction tj in Ttree(n) we denote as 

cr(tj) = ri, i.e., the client request that triggered the entire execution. 

Complementary to Ttreefa), we can build the request tree Rtree(ri) with client request n 

as root, and the sub-requests that triggered new transactions as descendants. Each node in this 

tree reflects the request that triggered the transaction at the same position in Ttree(ri). We de­

fine as RPost(ri) the post-order traversal of Rtree(rt) reflecting the order in which responses 

for the requests are returned. This is the same order as the termination order of the correspond­

ing transactions. Furthermore, we define as RPre(rt) the pre-order traversal of Rtree(ri) which 

reflects the order in which requests are submitted. Finally, given a request Tj (client request or 

sub-request) of Rtree(ri), we denote as cr(rj) — r,, that is the client request that eventually 

led to Tj. Figure 6.6 (b) shows Rtree(r\) of our example. Then RPre{r\) = r\, r2, • • • ri and 

RPost(ri) = r4, r3, r2, r6, r7, r5,n 

With this, we define the I-N matching property for a client C* as follows: 

Definition 6.2.1. ATH M RHcAi/RPHcAi if the following holds: 

1. Vt € ATH A CL(GTX(t)) = d: 

(a) ift is an outer transaction, eventually R(at(t)) € RHcAt A RP(at(t)) G RPHcAr 

Furthermore, t aborts -^ RP(at(t)) = rpa(,t. 

(b) ift is an inner transaction, eventually W 6 ANCS(t), t' e ATH. 

2. Vr e RHcAi' eventually 3t eATH Ar = R(at(t)). 

3. Given h,t2 e ATH A CL(GTX(ti)) = CL(GTX(t2)): 



Chapter 6. Advanced Algorithms for Advanced Execution Patterns 100 

(a) ifcr(ti) ^ cr(t2): h -< t2 in ATH <=> cr(ti) -< cr(t2) in RHCAV 

(b) ifcr{t\) = cr(t2) = 7V thereexistsoneRtreefa) andt\ -< t2 in ATH4=>R{at{t\)) -< 

R(at(t2)) in RPostin). 

In the 1-N pattern, the relationship between client requests, responses and outer transaction is 

almost the same as in the 1-1 pattern. It differs from the 1-1 pattern in inner transactions. Condi­

tion 1 a captures that each outer transaction in ATH has a matching client request and response, and 

generates an abort response only if it aborts. Condition lb indicates that for each inner transaction, 

all ancestors must also be included in ATH as we assume relaxed state consistency. Condition 2 

captures that each client request of client Cj has a matching outer transaction in ATH. Condition 3 

captures the ordering property of transactions associated to a client Cj. Condition 3a indicates that 

transactions triggered by different client requests should be ordered in ATH in the same way the re­

quests were submitted. Condition 3b indicates that if two transactions are associated with the same 

client request, then the requests that triggered these transactions must belong to the same request 

tree and the order of the two transactions in ATH reflects the nesting structure of the tree. Note that 

in the notation, any of ii or t2 could be the outer transaction ti. 

6.2.2 1-N Algorithm Overview 

The 1-N algorithm extends the 1-1 algorithm in order to handle outer and inner transactions and the 

relationship between them. For each individual transaction, the replication algorithm is the same 

as the 1-1 algorithm, where the primary propagates the state changes of the transaction to back­

ups immediately before committing the database transaction using uniform reliable delivery and a 

backup only applies the state changes after it knows that the transaction has actually committed. 

Whereas, for the 1-N pattern, matching ATH and RHcAi/RPHcAi is more complex than for 

the 1-1 because of the inner transactions. We want to outline the main issues along three simple 

examples only considering commit cases. 

Assume first a client request r\ triggers an outer transaction t\ and during its execution a sub-

request r2 starts an inner transaction t2. if no crashes occur, then the primary first propagates the 

state changes of t2 at commit time of t2, and then the state changes of t\ at commit time of t\. When 
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the primary crashes there are now three main cases. If both ti and ti were still active then the new 

primary will not install state changes of any of the two transactions and no transactions related to r\ 

are in DTH or ATHj. Resubmission means complete reexecution. If both had committed, then no 

reexecution takes place and ASj immediately returns the response. These cases are similar to the 1 -

1 pattern. The tricky case occurs if inner transaction ti has already committed but outer transaction 

t\ was still active. In this case, the new primary can install the changes for ti but not for t\. Both 

DTH and ASj contain only partial changes for n . Request n is resubmitted and the new primary 

has to reexecute starting a new transaction t\. If the execution is deterministic, t[ will submit the 

very same request r-i that initiated ti on the old primary. ASj should not reexecute the request 

since i2's state changes are already contained in the AS and the database. Thus, the new primary 

has to keep the request/response pair for ti which it received in the committing message. Then it 

can simply return the answer. After t!x has completed, we can consider t\ to be the parent of i2 

and the matching conditions are fulfilled. However, if execution is non-deterministic, the execution 

of t'x might not trigger ri and then ri — R{at{ti) and r t = R(at(t[)) belong to two different 

Rtree(r\) which is a violation of the matching property. We consider £2 a ghost transaction as it 

does not match the current execution. In this case, we abort the outer transaction tj providing a 

corresponding message to the application. Correctness is not provided. It is up to the application to 

handle ghost transaction £2- If could do so with some compensating methods, it might apply when 

inner transactions commit and the outer transaction aborts during the standard execution. 

The second example is a simple extension of the first to discuss sibling transactions. Assume 

that the execution of transaction ti does not only submit a sub-request ri to execute £2 but after 

ti terminates, a further sub-request r?, triggers transaction £3. Crash situations where none or all 

of the transactions terminate, or where only ti terminates have already been covered with the first 

example. The additional case here is that both ti and £3 committed while t\ was still active. In this 

case, the reexecution of r\ in transaction t\ needs to resubmit both ri and r% and also in this proper 

order. Only then reexecution can be successful, and we have single request and transaction trees. 

If any of the two sub-requests are not regenerated or they are generated in different order, then the 

matching orders are violated. We abort t[. 

The third example extends the first example to further discuss nesting transactions. Assume that 
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client request r\ executes within outer transaction t\. During execution, a sub-request ri triggers 

transaction t%. During execution of *2 a further sub-request r$ triggers transaction tn which is now 

a child transaction of ti- Crash situations where none or all of the transactions terminate are the 

same as in the first example. Now assume only £4 committed before the crash but t\ and £2 were 

still active. Then ATHj and DTH only contain t j . During reexecution of ri in a new transaction 

ifx, only if a request r^ is resubmitted and the corresponding transaction is the first to be committed, 

the further execution of t\ can lead to a matching. In this case r± should not be reexecuted but the 

response of £4 immediately returned as response to sub-request r^. If both £4 and £2 were committed, 

during reexecution of r i in transaction t[, \ft[ resubmits request T2, the response of transaction £2 

should be immediately returned. As £4 is nested within <2> *i is not expected to resubmit request r$. 

The resubmission of r-i implicitly includes the execution of £2 and £4. If t[ does not resubmit ri, 

then both ti and U become ghost transactions. Matching properties are violated, and we abort t[. 

6.2.3 1 -N Algorithm Details 

In order to correctly reexecute an outer transaction that had already triggered inner transactions, we 

have to distinguish between client requests and sub-requests that trigger inner transactions, we need 

to know for an inner transaction which was the client request that triggered its outer transaction, 

and we need to know the request and transaction execution trees in order to know in which order 

requests were submitted and in which order transactions committed. For that, each request r^ has 

an attribute Ti.cr pointing to request crfa) and an attribute ri.parent to indicate its parent request 

(if the parent request is not the client request itself). This information is part of the committing 

message. 

Figure 6.7 shows the 1-N algorithm. We ignore the client part of the algorithm and the commit 

method and abort method of the algorithm since they are the same as those of the 1-1 algorithm for 

relaxed state consistency (see Figure 5.7). 

Let's first have a look at failover in Figure 6.7 (c). The new primary analyzes the committing 

messages of all committed inner transaction triggered by the same client request in their receiving 

order and puts the requests leading to these inner transactions in a sequence queue (denoted as 

RSeq in the algorithm). The receiving order of the inner transactions and the outer transaction of 
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TID begin (Request req) 
I. new EU eu; 
2. eti.txid = TM.beginSransaction(); 
3. eu.req = req; 
4. return eu.txid; 

(a) intercepts a transaction's begin at primary 

voidfailover () 
1. new Eu eu. new set CO MP; 
2. in order of reception process each 

committing and aborted message m 
3. eu = m.content; 
4. ifm is a committing message andeu.db == true 

and $ committed message m' with m '.content = = 
eu. txid and eu. txid does not exist in database) 

5. ignore committing message 
6. else 
7. for each comp € eu.COMP 
8. ' if(3ce COMP andc== comp) 
9. estate = comp.state 

10. else COMP U = {comp}; 
11. RRL) = {(eu.req.rid, eu.resp)}; 
12. find RSeq of eu.req.cr: 
13. if (not found) 
14. if (eu.req is a sub-request) 
15. create RSeq for eu.req.cr; 
16. append (eu.req, txid) to RSeq; 
17. else 
18. find the first item ereq in RSeq with 

ereq.parent == eu.req 
19. if (found) 
20. for each item dreq in RSeq from ereq to 

the end; 
21. remove dreq from RSeq; 
22. remove (dreq.rid, resp) from RR; 
23. if (eu.req is a sub-request) 
24. append (eu. req, txid) to the end of RSeq; 
25. else 
26. delete RSeq for eu.req 
27. for each comp € COMP 
28. create corresponding component; 
29. set component s state to comp.state; 

(c) failover at the new primary 

Response invoke (Request req, Component comp, TID txid) 
1. 
2. 
3. 
4. 
5. 

6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 

28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 

New TID otid = null; 
if (req is a client request) 

if (3 (req.rid, resp) 6 RR) 
return resp; 

else if (req is a sub-request and a new transaction is 
required) 

find RSeq ofreq.cr; 
if (found) 

get the first item oreq from RSeq; 
if (req == oreq) 

find (oreq.rid, resp) from RR 
remove the first item from RSeq; 
return resp; 

else if (isAncestor(req, oreq) ==false) 
throw abort exception for ghost transaction; 

otid = txid; 
TM.suspend.Transaction(txid); 
txid = begin(req); 

find eu corresponding to txid; 
eu.COMP U = {comp}; 
Response resp = comp.invoke(req); 
if (req == eu.req) 

eu.resp = resp; 
if (resp == abort exception) abort(eu.txid); 
else 

if (RSeq ^ A) 
get the first item oreq from RSeq; 

if (req is a client request and RSeq ^ A.) 
or (req is a sub-request and isAncestor(req, oreq)) 

resp = abort exception for ghost transactions; 
abort(eu.txid); 
break; 

else 
RR U = {(req.rid, eu.resp)}; 

if (otid=£ null) TM.resumeJTransaction(otid); 
if(3 abort exception for ghost transactions) 

throw abort exception for ghost transactions; 
else return resp; 

(b) intercepts a request at primary 

Bool isAnceslor (Request reql, Request req2) 
1. 
2. 

3. 
4. 
5. 
6. 

Request treq = req2; 
do 

if (reql == treq.parent) return true; 
else treq = treq.parent; 

while (treq is a client request); 
return false; 

(d) check the ancestor request of a request 

Figure 6.7: "1-N" algorithm 

a client request rj is the post-order traversal of Ttree(rj). When we receive for a client request the 

first inner transaction U triggered by sub-request ri, RSeq for this client request is created and r. 
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is added (lines 14-16). When we receive inner transaction U triggered by sub-request r-j and RSeq 

already exists, we first check whether £j had any nested child transactions (line 18). These nested 

transactions terminated before £,, and thus, the sub-requests leading to them have already been added 

to RSeq. If such requests exist, they are removed from RSeq and RR (lines 20-22). This is correct 

as the transaction associated with their parent request has committed, and any potential replay will 

directly get the response for the parent request and they will not be further replayed. Then rt itself 

is added to RSeq because at replay time this request should be checked (lines 23-24). If the same 

request is not made in proper order during replay, ghost transactions occur. If r, is a client request, 

RSeq for r* can be deleted since all transactions related to r̂  have now successfully terminated 

(lines 25-26). After this process, in RSeq, the sequence of sub-requests triggered by the original 

execution of the client request is sorted according to the order in which requests were submitted 

originally. However, the sequence might not be complete. If two transactions are siblings and both 

committed, their requests are included in RSeq according to the commit order. If a transaction is 

included in RSeq then none of its descendant transactions is included in RSeq. For instance, in 

the nesting example of the previous section 6.2.2, if £2 and £4 committed but not t\, then only £2 is 

included in RSeq. However, it might be that a transaction is included but its parent transaction is 

not included. In our example in the previous section where we had the nesting of t\, £2 and £4, this 

occurs if £4 committed but not £2 and t\. Then, only r± is included in RSeq. 

Figure 6.7 (b) shows the algorithm on the primary. For a client request, we process it as the 

1-1 algorithm (lines 2-4). If it is a duplicated request, its response is returned immediately without 

reexecution. For a sub-request, if it is detected that a new transaction will be triggered, we first 

check if the sub-request is triggered by a replayed client request (line 6). If yes, its client request 

should have RSeq that is created at the time of failover. If RSeq is found, the sub-request is 

compared with the current first request in RSeq (lines 7-9). If they are the same request, namely, 

both requests calling the same method with same parameter values, the sub-request is regarded as 

the request that triggered the inner transaction that already committed at the old primary. In this 

case, the execution of the sub-request is suppressed, the current first item is pushed out from RSeq, 

and the replicated response is directly returned (lines 10-12). If they are not the same, we should 

check if the sub-request is an ancestor request of the current first request in RSeq (it is checked by 
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the function i s A n c e s t o r defined in Figure 6.7 (d)). If not, the corresponding inner transaction 

is regarded as a ghost transaction and an abort exception is thrown (lines 13-14). Otherwise, it is 

the case that an inner transaction is included in RSeq but its parent transaction is not included. In 

this case, we can safely reexecute the sub-request, waiting for the possible resubmission of the first 

request in RSeq during the reexecution of the sub-request. If RSeq is not found, it means that 

the sub-request is not triggered by a replayed request and can be safely executed. In both cases, 

the sub-request can safely create a new inner transaction, suspending the parent transaction (lines 

16-18). Then the sub-request is processed as in the 1-1 algorithm (lines 19-21). When execution of 

a leading request of a transaction is finished (it might be a client request or a sub-request and hence 

the transaction might be an outer or inner transaction) (line 22), RSeq has to be checked again since 

there exists the possibility that the replay of the current request does not replay all sub-requests of 

all committed inner transactions of its original execution. Ghost transactions exist in two cases: (1) 

for a replayed client request, RSeq is not empty, (2) for a replayed sub-request, it still has children 

requests in RSeq. In both cases the current transaction has to be aborted (lines 25-30). Otherwise, 

RR keeps request/response pairs for each committed transaction (lines 32). Then, if there is a 

suspended parent transaction, it will be resumed to be executed (line 33). In this case, TM holds the 

current transaction in a queue waiting for the termination command. Finally, if the current request 

gets an abort exception, the abort is thrown to its caller without returning the real response (lines 

34-35). This guarantees in case that ghost transaction exists, the outer transactions will eventually 

be aborted. Otherwise, the real response will be returned. When the TM is notified that the request 

is returned successfully, it commits the corresponding transaction. 

6.2.4 Correctness Discussion 

Correctness reasoning of the 1-N algorithm is similar to the proof of correctness of the 1-1 and 

N-l algorithm (see Section 5.3.1). The major challenge is to check the situation where the primary 

crashes when some inner transactions have become successful update transactions. For the sake 

of simplification and avoiding long-winded repetition, the section uses two examples to show how 

the 1-N algorithm guarantees the correctness for an outer transaction that has two sibling inner 

transactions and an outer transaction that has nested inner transactions. Other cases can be derived 
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Figure 6.8: Possible crash intervals of the 1-N algorithm for sibling inner transactions in case of a 
commit 

from there. 

Figure 6.8 shows an example where an out transaction has two sibling inner transactions. In the 

figure, client action CAi submits request r\ to the primary AS0- If no crash occurs, r\ is executed 

as the action a\ withjnthe transaction t\. The sub-request r2 is a database update request. The 

sub-request r3 of ai triggers an inner transaction t2- Within ti, a further sub-request i4 updates the 

database, and then t2 commits. Then, r^s response is returned to a\, and t\ resumes. Then, a\ 

submits a sibling sub-request rs triggering transaction f3. Finally £3 and then t\ eventually commits 

and the response rp\ is returned. In this scenario, the first crash interval CI1 ends before the 

inner transaction t2 commits at the database. The second crash interval CI2 starts after the inner 

transaction t% commits at the database, and ends just before sending the sub-request r$. Then, the 

third crash interval CIZ ends before the second inner transaction £3 commits at the database. The 

fourth crash interval CIA ends before the primary sends the committing message of transaction t\ 

to backups. The fifth crash interval CIS ends before t\ commits at the database. Then the sixth 

crash interval CI6 ends just before sending the response rp\ to the client request r\. Finally the 

seventh crash interval CI1 ends after sending the response. Again, let's analyze all crash intervals 

one after another. 
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CI1: No matter whether ASj received the state changes of the transaction t2, ASj knows that t2 has 

aborted at the database. Hence, AST{t2) $ ATHj. It matches that DBT{t2) i DTH. The 

CRM receives a failure exception for the outstanding request r%, and then resubmits r\ to 

ASj. ASj does not have RSeq for the client request r\. ASj executes r\ as a completely new 

request. Finally, if ASj can be up for sufficiently long to handle ri 's execution, all matching 

requirements will be fulfilled as a normal execution. 

CI2: The CRM receives a failure exception. t\ has aborted due to the crash and hence DBT{t\) £ 

DTH. t2 has committed and hence DBT(t2) G DTH. At ASj, the committing message of 

t2 was received. At failover, ASj can detect the commit of DBT(t2), and thus AST fa) is 

added to ATHj. ASj has the RSeq for the client request r\. The RSeq contains only the 

sub-request r^ that triggers the committed inner transaction t2. Then, the CRM resubmits r\ 

to ASj. ASj executes r\ in a new transaction t[. The first sub-request r ' of the reexecution 

that will trigger a new transaction has to be compared with 7-3, which is the first item in RSeq. 

(a) If r ' is equal to r$, r' is suppressed, and the response rpz of 7*3 that is contained by the 

committing message isreturned as the response of r'. Then, the remaining part of the 

reexecution of r\ continues as the execution of a new request. When t[ terminates, there 

are AST(t\) G ATHyat\d possibly DBT{t\) € DTH. There are also AST(t2) G 

ATHj and DBT(t2) € DTH. We can consider that t[ and t2 are part of the same 

Ttree{r{) and AST(t2) ^ AST(t[) in ATHj. There is also only one Rtree(n) and 

r' -< r\ in RPost(r\)v All matching properties are fulfilled. 

(b) If r' is not equal to r3 r t2 becomes a ghost transaction. Then, t[ is aborted and the 

aborted response rpab, is returned to the client as the response of r\. As a result, ATHj 

contains AST(t2) and DTH contains DBT(t2), and ATHj also contains AST(*i). 

However, t[ and t2 do not belong to the same Ttree(ri) and there is more than one 

Rtree{r\). Conditions lband.3ofthe 1-N matching property are violated. The request 

n G RHCAI has a matching response rpai,, G RPHCAV This could be regarded as 
*i 

the satisfaction of Conditions la and 2 of the 1-N matching property. 

(c) if the reexecution does not submit any sub-request to trigger an inner transaction, t2 
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becomes a ghost transaction. It will be detected by our algorithm at the end of the 

reexecution of r\ since RSeq is not empty but still contains r3. Then t[ is aborted and 

the abort response is returned to the client side. The same violations occur as above. 

CI3: The CRM receives a failure exception for the outstanding request r\. AST(ti) £ ATHj 

and DBT(ti) ^ DTH due to the crash. Since the crash occurs before the inner transaction 

£3 eventually commits at the database, both ATHj and DTH do not contain £3. However, 

both of them contain £2 since £2 has committed at this moment. When the CRM resubmits 

r i to ASj, the reexecution is the same as CI2. 

CI4: In this case, ATHj and DTH eventually contain both £2 and £3, since ASj knows that both 

£2 and £3 already committed at the database. ASj has the RSeq for the client request r%. 

The RSeq contains two sub-requests ^ 5 that are leading request for £2 and £3. The CRM 

receives a failure exception and resubmits r\ to .45,. When replaying r\ in a new transaction 

t[, the first two sub-requests that trigger new transactions have to be compared with r3 and r5 

in the proper order. If both are equal, both sub-requests are suppressed, correctness reasoning 

is as in CI2a. Otherwise, £2 and/or £3 becomes ghost transactions, and correctness reasoning 

is similar to the case of CI2b. 

CI5: ASj received the committing message of £1, but can detect that £1 did not commit at the 

database. Hence, AST\i{) <$. ATHj and DBT{ti) $ DTH. From there, this case is the 

same as CIA. 

CI6: ASj received the committing message of t\, and can detect that £1 already committed at the 

database. Hence, AST(ti) € ATHj and DBT(tx) e DTH. Also, AST(t2), AST(t3) e 

ATHj and DBT(t2), DBT(t3) £ DTH. Since the outer transaction £1 is already commit­

ted, RSeqfor the client request r\ is deleted at failover. Then, when the CRM resubmits 

r\ to ASj, the original response of ri that is contained by the committing message of £1 is 

directly returned without reexecution. As a result, all histories match. 

CI7: From the perspective of ASj this is the same as CJ6. The only difference is that the client 

receives the response from the old primary. Thus, there is no resubmission. 
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Figure 6.9: Possible crash intervals in case of an abort of an outer transaction 

Figure 6.9 shows an example of an abort case, where the database transaction aborts upon the 

commit request. In this case, the first five crash intervals are the same as CI\ to CI5 of the commit 

case, and the different intervals are CIS, which starts after the database aborts the transaction t\ and 

ends before the aborted message is received by ASj, CI9, which ends before the abort response is 

returned to the client, and €710, which ends after the abort response is returned. 

CI8: This case is similar to CIS. ASj received the committing message of t\, but can detect that 

11 already aborted^ the database. The difference between Clh and CIS is that in the former 

case the abort is caused by the crash and in the latter case the abort is caused by the application 

semantics. However, the new primary cannot distinguish. Correctness reasoning is as in Clh. 

CI9: The ASj received the aborted message of h, and can apply the state changes of t\. Then, ti, 

£3 are contained by both ATHj and DTE, and £1 is only contained by ATHj. ASj deletes 

RSeq for the client request r i since it received the aborted message of t\. When the CRM 

resubmits the request r^ to ASj, the abort response of t\ is returned as the response. All 

matching requirements are fulfilled. 

CI10: This case is similar to CI9 except that the abort response of ti is already returned. Hence, 

the CRM will not resubmit r\ to -AS,. Instead, it directly returns the abort response to the 
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Figure 6.10: Possible crash intervals in case of an abort of an inner transaction 

client. 

The primary might also crash at other time points, the correctness reasoning is similar to the 

above case. Generally, if the new primary ASj has already received the aborted message of the 

outer transaction, it will apply the state changes of the aborted outer transaction, and return the 

abort response to the client upon resubmission. Otherwise, the reexecution is similar to the commit 

case. 

An inner transaction might be aborted, too. Figure 6.10 shows an example of the abort of 

the inner transaction £3 in case of relaxed state consistency. Since each individual transaction can 

independently commit ox abort, the outer transaction t t can commit after the abort of the inner 

transaction £3. Most crash intervals in this case are similar to the commit case. The different crash 

intervals are CIll, which starts after the transaction £3 is aborted at the database and ends before 

ASj receives the aborted message, and CI12-, which starts after the aborted message is received by 

ASj and ends before the committing message of t\ is propagated. 

CIll: ASj did not receive any information about £3. After the crash, ASTfo) G ATHj and 

DBTfa) € DTH. Then, the reexecution of r i is similar to CI2 of the commit case. 

CI 12: The ASj received the aborted friessage Of £3, and can apply the state changes of £3. Then, 
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Figure 6.11: Possible crash intervals of the 1 -N algorithm for nested inner transactions in case of a 
commit 

AST(t2) € ATHj and DBT(t2) e DTH and AST(t3) G ^ T ^ . Both *2 and *3 are 

successful update transactions. RSeq of ri contains r$r$ for *2 and *3. When the CRM re­

submits the request r\ to ASj, the reexecution should check if t2 and *3 are ghost transactions 

and take the corresponding actions as CIA. 

When an inner transaction is aborted, the outer transaction might be aborted as well. Correctness 

reasoning for this case is omitted since it is similar to previous cases. 

Figure 6.11 shows an example where an out transaction has two nested transactions. In the 

figure, client action CA\ submits request T\ to the primary AS0- The client request r\ is executing 

as an action ai within the transaction *T. The action a\ submits the sub-request r3 to trigger an 

inner transaction *2. Within *2, a further.sub-request r$ triggers a nested inner transaction t4. The 

committing order of these transactions is £4*2*1 • In this scenario, the first crash interval CI\ ends 

before the inner transaction £4 commits at the database. The second crash interval CJ13 starts 

after the inner transaction *4 commits at the database, and ends just before the inner transaction *2 

commits at the database. The third crash interval CJ14 starts after the inner transaction *2 commits, 

and ends before the outer transaction*! commits at the database. Then the crash intervals CI6 and 

CI7 occur after the commit of the outer transaction. CI, C6 and CI are the same as the similar 
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crash intervals of Figure 6.8. Hence, we only look at C/13 and C14. 

CI13: The CRM receives a failure exception. t\ and t-i have aborted due to the crash. i4 has com­

mitted and hence DBT{ti) € DTH. At ASj, the committing message of U was received. 

At failover, ASj can detect the commit of DBT{U), and thus AST{U) is added to ATHj. 

ASj has the RSeq for the client request r\. The RSeq contains only the sub-request re that 

triggers the committed inner transaction f4. Then, the CRM resubmits r\ to ASj. ASj exe­

cutes r-j in a new transaction t[. The first sub-request r' of the reexecution that will trigger a 

new transaction has to be compared with re, which is the first item in RSeq. 

(a) If r' is equal to re, r' is suppressed, and the response rpe of r$ that is contained by the 

committing message of the transaction i4 is returned as the response of r'. Then, the 

remaining part of the reexecution of r\ continues as the execution of a new request. In 

this case, the reexecution of r\ is in fact different from the original execution, since in 

the reexecution, r' is the direct sub-request of r\ but in the original execution re is a 

sub-request of the sub-request r^, which is skipped in the reexecution. However, this 

is still a correct execution since r' is generated by the normal execution of r\ and the 

response of re should be the same as the response of r' since r' is equal to re- We can 

consider one Rtree(r\) that so far has pre-order RPre(r\) = r\r§ with corresponding 

transactions t[ and £4. The remaining execution completes the tree and all matching is 

provided. 

(b) If r' is not equal to re, we check if r' is an ancestor request of re, namely check if r' 

is equal to r$. Ifyes,r ' is executed triggering a new transaction t'2. If the execution 

of r' submits a sub-request r" that will trigger a new nested inner transaction, r" is 

compared with re again. If r" is equal to re, then r" is suppressed and the response 

rpe is returned as the response of r". Then, the remaining part of the execution of r' 

continues. We have now one Rtree(r\) that so far has pre-order RPre(r\) = ryr're 

with corresponding transactions i ^ ^ . The remaining execution completes the tree and 

matching is provided. If r" is not equal to re, or the execution of r' does not submit 

r", or r ' is not equal to r^, £4 becomes a ghost transaction. Then, t[ is aborted and 
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the abort response rpaj,, is returned to the client as the response of r\. As a result, 
h 

AST{U) G ATHj and DBT(U) G DTH and AST{t\) G ATHj. The request n has 

a matching response rpa(,,. The main violation lies in Conditions lb and 3. 

(c) if the reexecution does not submit any sub-request to trigger an inner transaction, i4 

becomes a ghost transaction. It will be detected by our algorithm at the end of the 

reexecution of r\ since RSeq is not empty but still contains re. Then t[ is aborted and 

the abort response is returned to the client side. Violations are as above. 

CI 14: The CRM receives a failure exception, ti has aborted due to the crash. i2 and i4 have 

committed and hence DBT(U), DBTfo) G DTH. At ASj, the committing messages of t4 

and £2 was received. At failover, ASj can detect the commit of DBT(ti) and DBTfo), and 

thus AST(t4),AST(t2) G ATHj. ASj has the RSeq for the client request rx. The RSeq 

contains the only sub-request r-a that triggers the committed inner transaction t^. The sub-

request re is already removed from RSeq since its parent transaction has committed. Then, 

the CRM resubmits n to ASj. ASj executes r\ in a new transaction t[. The first sub-request 

r' of the reexecution that will trigger a new transaction has to be compared with r%, which is 

the first item in RSeq. This comparison is similar to CI2. 

In summary, the 1 -N algorithm guarantees correctness in some but not all cases. The problems 

are ghost transactions that do not match any proper tree perceived by the client. Since we only 

consider relaxed state consistency, the abort case for nested inner transactions is similar to the 

commit case and omitted here. 

6.2.5 Undo Ghost Transactions 

An alternative solution could be used if compensating transactions exist. Recall that if the 1-N pat­

tern is used to chop a long execution into small pieces, compensating transactions are often provided 

by programmers. In this case, in the example above, when the discrepancy between an old request 

and a new request is detected, ASj first executes the compensating transaction for the ghost transac­

tion, and then continues execution with the flew request. Please note that compensation transactions 
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have to be called in the reverse order of their commits. Compensating transactions lead to com­

mitting/committed messages as any other transactions. The effect is that a compensated transaction 

appears as if it had never been executed. However, if there exist some transactions that read data 

changed by the compensated transaction on the database, these transactions have to be undone as 

well, leading to "cascading compensation". The cascading compensation disseminates the ghost 

transaction problem from one client to other clients, and hence has to be handled carefully. This 

same problem already occurs during normal processing when committed transactions are undone by 

using compensating transactions. However, such mechanism appears complex. In particular at the 

implementation level it requires the replication algorithm have access to compensating transactions, 

which is often not feasible. 



Chapter 7 

Miscellaneous Extensions of ADAPT-SIB 

In this chapter, we discuss miscellaneous extensions to our ADAPT-SIB replication tool. These 

extensions do not change the algorithm itself, but propose a couple of ways to make ADAPT-

SIB adaptable to wider use cases where our assumptions for the algorithm might not hold, or the 

system has a more complicated architecture. These extensions handle different failover strategies, 

recovery of crashed replicas, request execution without transaction boundary, access of more than 

one database using 2PC, and crash of clients or the backend database. 

7.1 Different Failover Strategies 

An important parameter of fault tolerance is failover time, i.e., the period from the time point the 

backup detects the primary's crash to the completion of failover. In general, the new primary has 

to have the latest state of each component before any call to this component can be made. In the 

algorithmic descriptions of the last sections, the new primary creates all necessary components at 

the time of failover and installs for each the latest successful change. We call this strategy Install-

When-Failover. However, creating components and setting their states can be very time consuming. 

Since the components are not accessible until failover is completed, clients might be blocked for a 

long time. Hence, although the crash exception is not exposed to clients, transparency might be lost 

since the system might seem to be frozen to the client. 

115 
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To solve this problem, we propose two further restore strategies. In the Install-Immediately strat­

egy, each backup creates a component when it receives the first message related to this component, 

and it knows that the corresponding transaction succeeded. The state of the component is refreshed 

immediately each time the backup receives a committing/committed message pair (or abort mes­

sage in case of weak consistency) that refers to this component. With this strategy, each backup 

has a considerably higher load during normal processing when no crash occurs since not only the 

last state change but all state changes on a component are restored. However, during failover, the 

new primary only needs to consider components for which it had received a committing but no 

commit/abort message before the crash. For those, it has to check in the database whether the state 

changes recorded in the committing message should be installed. With this, failover can be very fast. 

While the Install-Immediately strategy speeds up failover by doing the necessary updates before a 

crash occurs, our last strategy improves on the failover time by delaying the necessary updates to 

when they are actually needed. We refer to it as Install-After-Failover. During normal processing, 

a backup simply queues all messages from the primary as with Install-When-Failover. At the time 

of failover, the new primary parses through the messages and only checks which components need 

to be restored (created and a final state installed). Then, it immediately allows client requests. Now, 

when a client submits a request to a specific component, if the component needs to be restored, the 

new primary recreates the component and installs the up-to-date state as found in the last relevant 

message. This strategy slows down only those requests that are the first to access a component that 

needs to be restored. However, the failover time during which all client requests are blocked, is very 

short. Additionally, when the system runs for a long time, it might occur that many components 

that were replicated are actually never reused again. Using the Install-After-Failover strategy, these 

components will never be created at the new primary but only those components are recreated that 

are really needed. 

Note that the AS components we consider have usually a limited life-time and are then deleted, 

because we mainly consider components that maintain all relevant information in regard to a user 

session. The Install-Immediately strategy will create and delete such components on the backups 

basically in real-time. In contrast, the other two strategies only create components at or after failover. 

In order to avoid creating components at or after failover that were deleted, the replication algorithm 
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during normal processing can be slightly changed. The primary simply informs backups about 

deleted components by piggybacking such information on regular messages. The backups then 

discard any information in regard to these components. 

7.2 Recovery 

Recovery is an important aspect of fault tolerance. In here, recovery means that a failed replica 

recovers or a new replica joins. It is important that recovery occurs online, i.e., while processing 

goes on in the rest of the system. When recovery takes place the recovered replica has to first receive 

the current state, and then will become a backup. Our solution is that one of the existing replicas, 

referred to as the peer, sends its current state to the joining replica. Either the current primary 

or any existing backup can serve as peer. For a backup, its current state is the current content in 

CO MP and RR. Hence, if choosing a backup as peer, we just need to send COMP and RR to 

the recovered replica. For a primary, its current state includes the state on each component. It is 

not trivial to collect the state of a component during runtime. For a component, we have to collect 

its state when no execution is active on it. If two components are involved in the execution of 

the same client request, we have to collect both states after the execution is finished to guarantee 

consistency between them. Further requests to a component will be blocked until the collection is 

finished. Hence, choosing a primary as peer not only adds extra load to the primary but also might 

block normal processing. Its procedure is more complicated than if a backup is the peer. Whereas, 

choosing a backup as peer requires the system always has at least one backup. 

Thus, it is preferable to choose a backup as the peer for simplicity and better performance. If 

there is more than one backup available, we need to choose one of them as peer. In our algorithm, the 

new replica first joins the FTG (fault tolerance group). All replicas receive the view change message 

and the new replica receives all messages delivered after the view change messages. Each backup 

who is willing to become the peer multicasts a willing message to all replicas using uniform-reliable 

delivery (to guarantee all or nothing) and total order delivery. The backup whose willing message is 

the first to be delivered will become the peer. When a backup receives the first willing message and 

it is the sender, it delays the processing of any new messages coming from the primary. It generates 
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a recovery message containing the content of COMP and RR and sends it to the joining replica 

using point-to-point communication. While waiting for the recovery message, the joining replica 

might have already received messages from the primary (it starts receiving messages when the GCS 

delivers the view change). It enqueue them in a queue Q. Once the joining site receives the recovery 

message, it initializes its data structures accordingly. The recovery message might already contain 

the state of some of the messages in Q. Hence, these messages must be removed from Q before the 

backup algorithm can start processing messages from Q. In order to determine which messages to 

remove, we timestamp all messages. 

In practice, there also exist conditions that require the primary to send the recovery message, 

e.g., only one replica keeps working while others crash. To adapt to these conditions, we propose a 

solution to allow the primary be the peer. Recall that we use uniform reliable delivery to multicast 

committing messages. This delivery mechanism requires that committing messages will also be 

delivered to the sender. Hence, we get the current state of all components by parsing committing 

messages on the primary. Although this solution requires the primary to use extra overhead to store 

and process committing messages, it avoids state collection at recovery time and does not block 

normal processing. In summary, if a replica joins and there is no other backup that could serve as 

peer, the primary sends a recovery message to the replica without sending a willing message. 

7.3 Non-transactional Client Requests 

In some applications, execution of a client request might not happen within the boundaries of a 

transaction. For example, in a J2EE environment, a method might have the transaction attribute 

S u p p o r t s , NotSuppor ted , or Never. This is mainly used for simple executions that never 

access the database, and hence, no transaction is required to be associated with the execution. Using 

the BMT scheme, the start/commit/abort commands have to be written into the method code. If this 

is not done, a client request calling the method is also not associated with a transaction. In another 

scenario, a transaction might only be started before the first database access and be terminated after 

the last database access but before the execution at the AS has finished. In the extreme case, the 

application does not set any transaction boundaries. In this case, the database executes each request 
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to the database within an individual transaction (when using JDBC, this is achieved by setting the 

autocommit flag to on). We can handle such a non-transactional client request r by assuming its 

action a is embedded within a pseudo transaction pt. pt is assumed to begin at the time the action 

a is started at the primary, and to commit when the action a completes but before the response 

to the client is returned. If r does not access the database, r's execution is transformed to the 1-1 

pattern with pt being the only transaction. The state changes of the pseudo transaction are replicated 

immediately before returning the response. If the execution of r actually triggers one or more "real" 

transactions (which embed all database accesses), r 's execution is transformed to the 1-N pattern, 

with pt being the outer transaction. Again, state changes of the pseudo transaction are replicated 

immediately before returning the response. 

7.4 Accessing more than one Database 

In our previous discussion, we assumed that an application only accesses one database. In practice, 

an application can access more than one database and then use the 2-phase commit protocol (2PC). 

In order to handle 2PC, we take an idea proposed in the e-Transaction system [46] that provides 

replication for stateless AS and adjust it to work with stateful AS. For that, we have to slightly 

change the commit handling of our algorithms (see Figure 5.2 (c)). The primary intercepts the first 

prepare request sent by the TM to a database and multicasts a preparing message to the backups 

using uniform reliable delivery before forwarding the request to the database. Then it intercepts 

the first decision (commit/abort) -that the TM sends to one of the databases. In case of commit, it 

sends the committing message with uniform reliable delivery as in our previous algorithms before 

forwarding the commit to the database. After the transaction has terminated at all databases, the 

response is returned to the client and a corresponding commit /abort message is multicast to the 

backups (reliable delivery). No transaction id needs to be inserted into the database. 

At the time the old primary crashes, the new primary might have received for a given trans­

action (1) not yet any message, (2) the preparing message, (3) the committing message, (4) the 

abort/commit message. In the first case, our failure assumptions guarantee an abort of the corre­

sponding transaction at all databases. In case (2), some might have aborted the transaction, others 
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might be blocked in the prepared state. The new primary can now force all databases to abort the 

transaction if they have not yet done so. In case (3), some databases might have committed the 

transaction, others might be blocked, and the backup has received the component state changes. 

The new primary can now ask all databases to commit the transaction if they have not yet done so. 

In the last case, nothing needs to be done because all databases and the new primary have the correct 

state after transaction execution. 

We can easily integrate the above solution into the 1-1/N-l/l -N algorithms. Since 2PC does not 

affect execution patterns, integration is not difficult. For each algorithm, we need to add the part to 

process preparing messages during normal processing. At failover time, instead of checking the 

marker, we have to consider the four phases described above. 

7.5 Client and Database Crashes 

So far, we have assumed that both clients and database are reliable. However, in practice, both of 

them might crash as well. 

7.5.1 Database Crash 

If a database crashes, the AS receives failure exceptions when it submits operations. It has now to 

wait until the database recovers. Upon recovery, the database aborts transactions that were active at 

the time of the crash. 

From the perspective of the AS, this means that transactions for which it has not yet submitted 

the commit request, are aborted. Transactions for which the prepared request returned a failure 

exception might be aborted or in the prepared state. And transactions for which the commit re­

quest returned a failure exception might be aborted (if there was no 2PC), in the prepared state or 

committed. 

The AS can determine the state of each transaction after recovery by looking for the txid in 

the database or by asking the database whether a given transaction is in the prepared state. For an 

aborted transaction, the AS primary can easily replay the transaction in the 1-1 and 1-N patterns. In 

the N-l case it has to forward the abort exception to the client replication algorithm with a request 
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to initiate the replay of the transaction. In the prepared case, the transaction can be terminated just 

as would be done during normal processing. 

7.5.2 Client Crash 

If a client crashes, a 1-1 or 1-N execution can simply finish the execution. A N-l execution should 

abort the transaction if the client had not yet submitted the commit request because the AS server 

only has partial information about the transaction. 

7.5.3 Replicated Database and Replicated Clients 

Replicated Database Database replication has been widely used for fault-tolerance and perfor­

mance. In many solutions, replications is mostly transparent to the application, i.e., the application 

is not aware of the fact that there are several database instances, each of them having a copy of the 

database. The degree of transparency and the level of consistency provided by the different solutions 

differ greatly. If the multi-tier architecture uses a replicated database layer, the AS layer must know 

the exact semantics provided by the database layer and be adjusted to work with the new semantics. 

In [61] the authors take ADAPT-SIB at the AS layer, and a simplified version of the database 

replication solution proposed in [64] and show to what degree ADAPT-SIB has to be adjusted to 

work properly with the replicated database. In this case, the database replication solution is very 

powerful. It appears to the application nearly with the same semantics as a non-replicated database. 

The main difference is that a transaction might abort with a failure exception. This is the case 

when the database replica on which the transaction executes fails before the transaction commits. 

However, the AS primary, being the client of the database, is automatically connected to a new 

database replica. When the AS receives such an abort message due to failure, it can abort the 

corresponding transaction at the AS. Then, in case of the 1-1 or 1-N pattern, it can simply replay 

the transaction as is done in case of failover. In the N-l pattern, it has to ask the client replication 

algorithm to initiate the replay. 

Furthermore, in certain crash scenarios (e.g., both AS primary and the database replica the AS 

primary is connected to crash), inconsistencies could occur if certain failover operations at the AS 
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and the DB happen concurrently. In [108], we gave a demo of our ADAPT-SIB system working 

with the replicated database system presented in [64]. 

Replicated Clients In many cases, the client of the AS layer is actually a web-server (WS). In a 

well-designed system, the WS only calls the AS layer but not the database directly. The WS can 

also have state. The WS might start the transaction itself but it might also send simple requests to 

the AS, as we have discussed before. In order to provide fault-tolerance and load-balancing, also 

the WS-tier can be replicated [13]. The challenge now is to provide exactly-once execution across 

all three tiers: WS, AS and database. One problem is that request execution at the WS is often not 

embedded in a transaction, making it hard to reason about correctness. 

Clara Huizink has looked into WS replication and its integration with ADAPT-SIB in her M.Sc. 

thesis [55]. 



Chapter 8 

ADAPT-LB: Load Balancing 

Architecture based on ADAPT-SIB 

The ADAPT-SIB replication tool only considers fault-tolerance. All replicas are members of a sin-

gle fault-tolerance group (FTG). There is one primary executing all requests, and all other replicas 

are backups. This addresses availability and reliability, but does not provide scalability compared 

to a single-node system. Since backup tasks typically require much less resources than executing 

the requests at the primary, the resources at the backups are wasted. In contrast, when replication is 

used for scalability, a load balancing algorithm uses server replicas as resources to execute differ­

ent client requests. Ideally, the more replicas, the higher the maximum throughput the cluster can 

achieve. We can consider a group of replicas all executing requests as load balancing group (LDG). 

Considering that both fault-tolerance and scalability are important aspects of adaptability, this 

chapter proposes a unified architecture that provides both. 

One major challenge of a unified replication architecture is to use replicas so that they serve 

both as resources for load-balancing and redundancy. That is, the question is how to build load 

distribution and fault-tolerance groups such that all resources in the system are exploited and enough 

redundancy is provided for fault-tolerance. 

In this section, we present ADAPT-LB, a replication framework with both load-balancing and 

fault-tolerance modules. Each module relies on features of the other module to fulfill its tasks. The 
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main idea is that each replica is primary for the requests of some clients and is used as backup for 

other replicas. The solution has the following properties. 

• Load distribution Each replica is member of a single large LDG and executes client requests. 

• Fault-tolerant execution Each replica is primary of a small FTG and is backup in few other 

FTGs. As backup activity requires only few resources, the main capacity of each server is 

used for request execution. 

• Load-balancing The system uses a truly distributed, lightweight load-distribution algorithm 

that takes advantage of the existence of FTG groups. It does not require the maintenance of 

load information and keeps communication overhead for load-balancing purposes low. 

• Dynamic reconfiguration The system provides dynamic reconfiguration. When a replica 

joins the system, it joins the LDG and creates a new FTG for which it is primary. When a 

replica fails or is removed from the system, a backup replica takes over its tasks. As part of 

any join or leave operation, the FTG configuration is adjusted to guarantee that all FTGs have 

sufficient number of replicas and no replica is overburdened with backup tasks. Furthermore, 

the load-balancing module will quickly remove any load imbalance that might occur during 

reconfiguration. 

As a summary, our unified solution distributes load across all replicas, handles failures trans­

parently, and can easily grow and shrink with the demands, providing an ideal framework for self-

provisioning. 

8.1 Algorithm Overview 

Assume the entire cluster consists of n (0 < n) replicas. In the ADAPT-LB architecture, the number 

of FTGs in the cluster is equal to the number of replicas in the cluster, because each replica is the 

primary in exactly one FTG, referred to as its primary FTG. Typically, it is enough for each FTG to 

have one or two backup replicas to tolerate the failure of a replica. Therefore, we let each replica 

join in one or two other FTGs as the backup. Each of these FTGs is called a backup FTG on the 
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Figure 8.1: Unified architecture of ADAPT-LB 

replica. Generally, each replica is backup in m (0 < m < n) FTGs, and hence each FTG has m 

backups. We refer to this as the m/m property. This property allows for a simple, yet powerful 

automatic reconfiguration mechanism, and also helps in load distribution. Figure 8.1 sketches the 

unified architecture of ADAPT-LB. Section 8.2 explains the components on the figure and describes 

the algorithm to initialize this setting. 

Each replica processes client requests, using the ADAPT-SIB primary algorithm and sending 

replication messages (i.e., committing, committed, aborted messages) to the backups in its primary 

FTG. Additionally, it receives and processes replication messages from the primaries of its backup 

FTGs. The replica keeps the contexts of its FTG completely separated to avoid any interference. 

When a client connects to the system, a session on one primary replica will be created, and all 

requests within this session will be handled by this replica. This guarantees that each request sees 

the current session state. Usually, sessions are randomly assigned to replicas. However, in case the 

current load of a replica is above a certain threshold, it can forward the request to its backups. If one 

backup is not overloaded it will accept the new client. Otherwise the request is forwarded to other 

FTGs recursively. Section 8.3 describes load-balancing in detail. 

When a replica crashes, it leaves all its FTGs. For its primary FTG, the crash causes the failover 

process on backup replicas within the same FTG. According to the ADAPT-SIB protocol, one of 

the backups is chosen as the new primary of the FTG. However, since only one primary FTG is 

allowed on a replica and the chosen backup replica already has its own primary FTG, the chosen 
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replica has to merge the context of the backup FTG with the context of its own primary FTG. Then, 

the replica processes all incoming requests, no matter whether they are originally designated to the 

replica or they are resubmitted due to the crash, in the context of the primary FTG. Similarly, as the 

crashed replica also had backup FTGs, these have to be reconfigured. When a new replica joins or 

a failed replica recovers during runtime, it first initializes its primary FTG, and joins in other FTGs 

as backups. The primary FTG on the new replica automatically finds backup replicas in the cluster. 

Section 8.4 describes the algorithms to reconfigure the cluster when replicas fail or recover. 

8.2 Cluster Initialization 

Assume that the cluster starts up with a total of n (n > 0) replicas (note that the cluster size may 

change later dynamically). Each replica uses its address as a unique identifer. Each replica runs a 

Load Balancing Manager (LBM). When a replica starts up, its LBM first joins the LDG. Once all 

n replicas have joined, each LBM multicasts its replica identifier using total-order, uniform-reliable 

delivery. Each LBM receives the messages in the same order and stores the identifiers in an ordered 

list RL according to the delivery order. Each replica in the system is assigned an order number i, 

1 < i < n, which is the position of the replica in RL. We refer to the replica with order number 

i as r,. Note that while the identifier of a replica does not change during its lifetime, the order 

number might change, as we see later. Once ri has determined its order number i, it joins FTGi 

as primary. If i > m, it furthermore joins FTGi-m to FTG,_i as backup. A replica with order 

i < m joins FTGn-m+i to FTGn and FTG\ to FTGi-i as backup. For instance if m = 2, 

then r3 joins FTGx and FTG2, r2 joins FTGn and FTGU and n joins FTGn-i and FTGn. 

Figure 8.2 depicts this circular setup of FTGs. Figure 8.1 shows the entire architecture. At each 

replica, PRM refers to the RM of the primary FTG, BRMS refers to the array of RMs for the 

backup FTGs. 
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Figure 8.2: Initial setting with m = 2 

8.3 Load Balancing Algorithm 

After the initialization is completed, the workloads, namely client requests, are distributed on all 

replicas using the load balancing algorithm. While the algorithm uses generally a simply load 

distribution technique, it adjusts to variances whenever necessary. 

8.3.1 Simple Load Distribution 

Load balancing is performed when a client wants to create a new session. At this time, the client 

has to be assigned to a replica in the LDG. This replica becomes the primary replica for the client 

session, and all requests within this session are handled by this replica. This guarantees that each 

request sees the current sessibrfstate. Load-balancing goes through two phases. The client has a pre­

defined replica list CL (identi'fieTiist) that contains the replicas the client can potentially connect 

to. For correctness, only one replica on the list must actually be available. But a more accurate list 

has a positive impact on load distribution. 

Our load distribution algorithm does not require extra message overhead. Instead, it is executed 

when the client creates the connection session with the AS, which is the standard procedure of the 

non-replicated AS to link a client with the AS (see Section 2.3.2). When the client wants to create a 
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connection session with the AS, it sends the request to any replica on CL. If it times out, it resends 

it to another replica until it succeeds. An available replica r* receiving such a request becomes the 

load-balancer for this request. The LBM of r, will decide on a replica rj to create the session and 

serve the client by simply selecting a replica randomly from its RL list. The LBM of rj returns the 

CRM code to the client. The message piggybacks an ordered list containing the identifiers of all 

replicas that are members of FTGj (derived from RL) and indicates that rj is the primary. The 

ordered list (called FL) on the CRM is used for fault tolerance, and is described in more detail in 

Section 8.4.3. In the second phase, when the client sends the first request, the newly installed CRM 

builds the physical connection session with tj and Tj accepts the request within this session. Then, 

the CRM relays further client requests to rj within the session. As seen in Fig. 8.1, the LBM of 

rj intercepts all requests and dispatches them to the PRM. The message overhead for the session 

setup is the same as for standard J2EE involving one message round for the connection request (with 

ri), and one for session creation (with 7j). 

There exist many load-balancing algorithms that are more sophisticated than random, such as 

load or weight-based algorithms, or algorithms that take locality into account. These algorithms, 

however, require to exchange considerable information and maintain extra load information at each 

node. Most use a central load-balancer which we want to avoid. Additionally, random has shown to 

perform just as good as these load-balancing algorithms while having considerable less overhead. 

Since most enterprise clusters tend to over-provision to some degree, random will be good enough 

for most executions. Additionally, the random algorithm can be implemented locally at each replica. 

Furthermore, clients can be configured more easily since their CL do not need to be accurate. If 

CLs are stale, connection requests might not be equally distributed among replicas. However, the 

sessions themselves will always be distributed across all replicas since this is done at the server side. 

8.3.2 Load Forwarding 

Random replica assignment, however, does not work well if request execution times are not uniform 

since random assignment does not prevent that saturated replicas receive further clients leading to 

degradation of their performance. 

We address this issue with a simple but effective first-local-then-forward (FLTF) mechanism. 
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Figure 8.3: Forwarding a request 

When the load of a replica is above a given threshold it will not accept any further client sessions 

but searches for another replica. Load could be measured as memory usage, CPU usage, response 

time, or the number of connected clients. We refer to a replica with a load below the threshold as a 

valid replica. 

When the LBM of replica rj receives a client session request and its load is below the threshold, 

i.e., rj is a valid replica, it serves the client directly and establishes the session as described above. 

Otherwise, rj multicasts a load query message Iqm to all replicas in FTGj in order to find a valid 

replica. When a backup replica in FTGj receives the Iqm message it checks its local load and sends 

an answer message back to ryT'which is positive if the load is below the threshold, otherwise it is 

negative, rj chooses the r*, that was the first with a positive answer to serve the client. It returns to 

the CRM the list of replicas belonging to FTGk- The CRM of the client refreshes its local FL, 

and sends a session request to r^. In case of isolated overloads, contacting m other nodes will likely 

find a node that can accept new clients. 

However, if there is no positive answer among the backups, rj sends a forward message to the 

replica with the smallest order number larger than any order number in FTGj, i.e., r(j+m+1)%„. 

ry+TO+1)%„ now repeats the process, sending a new Iqm message in its own primary FTG^+m+i)%n 

Figure 8.3 shows this scenario of a forward. If a valid replica is found, ry + m + 1 )% n returns the in­

formation to rj so that it can forward the relevant replica list to the client. If no replica is found, 

r-(j+m+1)%„ could iterate the process by sending a forward message to ry+2m+2)%n- We limit the 

number of iterations to a maximum T. If after T iterations no valid replica is found, a negative 

message is sent to the originator rj which either accepts the client or refuses the connection. If T is 
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set 0, then no forward message is sent at all. Setting T low makes sense because if all nodes in r / s 

neighborhood are saturated, then it is likely that the entire system is close to saturation and further 

forwarding will not help. 

8.3.3 Discussion 

A main benefit of our load distribution algorithm is that it is purely distributed without any central 

controller and can be easily implemented. It does not affect the fault-tolerance algorithm but takes 

advantage of the FTG infrastructure. Furthermore, load is checked in real time, and replicas can 

individually decide to take on further load or not. The main disadvantage is the overhead of the 

forward process. 

One question is how often one has to forward to find a lightly loaded replica. The probability to 

find a valid replica within the m backup replicas of the local FTG is equal to the probability to find 

a valid replica within any m replicas in the cluster. If there are k valid replicas randomly distributed 

in the cluster, the probability p to find one of the k valid replicas within the m backup replicas is: 

••'-'-(""r'Kr)-
Since each forward searches ra + 1 replicas (a new FTG), the probability p to find one of k valid 

replicas within the m backups of the initiator and T further forwards is: 

P = l - ( B - m - 1 - r * ( n i + 1 ) ) / ( n - 1 ) . (8.2) 

Assume the cluster has 100 replicas and m — 2. With 50 valid replicas and T = 1 we find a valid 

replica with more than 97% probability. With only 20 valid replicas, setting T to 3, the probability is 

still 92.8%. And even if there are only 10 available replicas, setting T to 5 will give us a probability 

of 86.3% to find a valid replica. Thus, this simple mechanisms provides a high success rate even 

for highly loaded clusters while keeping the message overhead low. Furthermore, there is no need 

to keep load or other information from other replicas. 

Note, when all client requests trigger similar overhead and all replicas have similar resource 
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configuration, the random algorithm works fine. In this case, when one replica is overloaded, others 

are too, and forwarding only introduces unnecessary messages. But forwarding is useful if individ­

ual replicas are saturated for limited periods of time. 

8.4 Reconfiguration 

In Chapters 5 and 6, we discussed how the ADAPT-SIB algorithm performs failover and how 

new replicas can join an FTG as backups. Now we adjust these algorithms to fit with our overall 

architecture with the m/m property. When a replica fails or leaves, m existing FTGs now have only 

m — 1 backups. Furthermore, when a new replica joins it needs m backups for its own primary FTG 

and it should join m existing FTGs as backup. We want to have a mechanism that automatically 

reconfigures the system back to an mJm configuration without any external intervention. 

8.4.1 Server Crash 

For simplicity of notation the following discussion assumes that a replica ri fails where i > m and 

i + m < n. When a replica r* fails it leaves FTGi, and a new primary has to be found for r-j's 

clients. Furthermore r, is removed as a backup from FTGi-m to FTG%-i. Thus, these FTGs need 

new backups. Figure 8.4 illustrates the required changes. It shows the range of replicas around 

the failed replica r̂  and the span of the FTGs. The bold lines are extensions, the dotted lines are 

removals. 

The failover process at the server side is slightly different from the original ADAPT-SIB pro­

tocol. No new primary can be built for FTGi, since r^+i to r j + m already have their own primary 

FTGs. Instead, the clients associated with FTGi will be migrated to FTGi+\, and FTGi is re­

moved. The main reconfiguration steps are as follows. 

1. r-j+i, which is a backup in FTGi, becomes the new primary for r-j's clients. It first blocks 

client requests. r,+i then performs the failover on the components registered in FTGi a s 

described in the failover part of ADAPT-SIB. Then, it migrates these components into the 

context of FTGi+\. Finally, r,+i leaves FTGi because this FTG ceases to exist. It now 

starts processing the blocked client requests. 



Chapter 8. ADAPT-LB: Load Balancing Architecture based on ADAPT-SIB 132 

f1 r2 rn-2 rn-1 rn rn+1 

<C^p3> 

Figure 8.4: Crash scenario 
Figure 8.5: Recovery scenario 

2. n+2 to n+m are backups for FTGi and FTGi+\. They simply migrate the backup informa­

tion they store for FTGi to the context of FTGi+i and leave FTGi. 

3. ri+m+i is only backup of FTGi+\. It has to receive the backup information for the clients 

that migrated from FTGi to FTGi+\. rj+i sends this information to rj+ m+i. 

4. Since replicas r , + i to rj+m have left FTGi, they are now backups for only m — 1 FTGs. 

Furthermore, FTGi-m to FTGi-i only have m — 1 backups since r« was removed from 

these groups. To resolve this, r-j+i joins FTGi-m as backup, rj+2 joins FTGi-m+i, etc. 

They use the normal recovery protocol of ADAPT-SIB. 

Finally, each LBM removes rj from its replica list RL, and decreases the order numbers of 

replicas ri+\ to rn by one. Each replica can do this independently when it is informed by the view 

change protocol that r* was removed from the LDG group. 

8.4.2 Server Recovery 

When a failed replica recovers or a new replica joins in a cluster of size n, it first joins the LDG, 

and all replicas are notified-about this event. Each replica adds the new replica with order number 

n + 1 to is replica list RL and considers it in its load-balancing task. rn+i receives the replica list 
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RL from a peer replica. According to our setting, rn+\ must have a primary FTG and m backup 

FTGs. The reconfiguration changes are depicted in Figure 8.5. 

1. r„+i creates a new FTGn+i and joins it as the first member. 

2. rn+\ joins FTGn-m+i to FTGn as backups. It uses the recovery process of ADAPT-SIB as 

detailed in Section 7.2. These FTGs have now m + 1 backups. 

3. Now, r\ to rm leave FTGn-m+i to FTGn respectively. The FTGs are now back to having 

m backups. 

4. Finally, r\ to rm join the new FTGn+\. They have again m backup FTGs and FTGn+i has 

m backups. The recovery is fast, since this group is new and no backup information has to be 

transferred. The reconfiguration is complete and rn+\ starts accepting client requests. 

8.4.3 Reconfiguration Effects on Client 

Reconfigurations are completely transparent to the clients since the CRM takes care of reconnecting 

to a new replica if the primary it is connected to crashes. As mentioned before, when a client creates 

a session, the CRM receives an ordered list FL with the identifiers of replicas r^, rj+i, ... ri+m 

with r-j being marked as the primary. For the CRM this is a simple list and it does not need to be 

aware that these servers constitute a FTG. If a backup leaves FTGi or a new replica joins FTGi, the 

client is not directly affected because the primary r% is still available. Nevertheless, r\ piggybacks 

the new member list on the first response to the CRM after such a reconfiguration so keep the 

information at the CRM up-to-date. If the primary r, crashes, the CRM chooses the next replica 

rj+i on its FL to continue the session. When r,+i receives the request, it processes it in its own 

primary FTGi+i as discussed above. In the first response to the client, the new member list of 

FTGi+i (i.e., rj+i, r-j+2,...) is returned to the client. Thus, the FL is always kept as accurate as 

possible. 



Chapter 9 

Implementation 

This chapter describes our implementation of ADAPT-SIB and ADAPT-LB in an existing J2EE 

server. Our choice was on J2EE as it is more widely used than CORBA, and has more open source 

products than .NET. Our implementation has been integrated into JBoss AS [49], which is one of 

the most widely used open source J2EE products. 

ADAPT-SIB and ADAPT-LB used the abstract concept of a component with volatile state, 

and assume that the replication tool can intercept requests. In order to prove the practicability 

of ADAPT-SIB and ADAPT-LB, the abstract components used so far have to be mapped to real 

components in a working system, and the replication tool has to be able to obtain control during the 

runtime of the system, in particular, before and after requests are executed. In the following, we first 

describe the J2EE architecture in more detail and then show how the replication tool can be plugged 

into the J2EE architecture. The implementation shows that the replication tool can be implemented 

with little changes at the client- and the database- tiers and without complex changes at the AS-tier. 

9.1 J2EE Architecture 

The general architecture of an AS and in particular of a J2EE based AS have been introduced 

in Chapter 2. This section,describes three important parts of the J2EE architecture in more detail, 

namely, how a client sends requests to an EJB object, how the interceptor chain of the EJB container 

works, and how client requests are associated with transactions at runtime. 

134 
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Figure 9.1: Lookup EJB from the client side 

9.1.1 EJB Lookup 

A client accesses EJB objects using the corresponding EJB stub. Figure 9.1 shows how a client 

gets the EJB stub. We have discussed this concept at a high level in Section 2.3.2 and then again in 

Section 8.3.1. Each EJB class has a corresponding home interface. It manages the life cycle of the 

EJB. When an EJB class is deployed on the AS, the home interface of the EJB class is registered 

with the name of the EJB class using the Java naming service (JNDI). When an outside client wants 

to access an EJB object, it connects to the JNDI service and looks up the EJB's name. If the name is 

found, the stub of the home interface for the EJB class is returned to the client via Java RMI (remote 

method invocation) [95]. The home interface provides remote methods to create a new EJB instance 

on the AS. A create method can return a remote stub of the EJB to the client side. The stub is the 

remote reference of-the EJB object acting as the local proxy. Now, the client can send requests to 

the EJB object viaihe local EJB stub. 

Although both session beans and entity beans can be accessed directly by the client using this 
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Figure 9.2: Interceptor chain 

approach, the J2EE specification [94] suggests not to directly access entity beans from outside 

clients to guarantee correctness and better performance. Hence, we assume clients only access 

session beans. When a new session bean is created by a remote call from a client, a remote stub of 

the session bean is returned to the client, and thus a new session is created between the client and 

the AS. If the session bean is a SFSB, the state of this bean instance is bound to the session and is 

only accessible to the client. Our assumption that no concurrency issues occur on session state is 

based on this characteristic. 

9.1.2 Interceptor Chain 

As mentioned in Section 2.3.2, the EJB container consists of an interceptor chain, within which 

each interceptor is responsible for calling a certain service. Figure 9.2 shows how a request passes 

through the interceptor chain. A request passes through all interceptors in the chain before it reaches 

the destination EJB, and its response passes again through all such interceptors before it returns to 

the client. In JBoss, important interceptors in the interceptor chain of the EJB container are the 

communication interceptor that translates a request message sent from a client back into a method 

invocation to an EJB, the component resolution interceptor that finds the target EJB instance on 
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which the method will be invoked, and the transaction interceptor that associates the request exe­

cution with a transaction. 

Taking advantage of the interceptor chain, we can easily manage to begin a service before the 

request is executed and to stop the service after the execution is finished but before it is returned. 

Considering the replication tool as a service, we can use a replication interceptor so that the repli­

cation tool can obtain control before and after a request is processed. 

There could also be an interceptor chain at the client side. When downloading a remote stub of 

an EJB object, an interceptor chain is downloaded as well that can intercept client requests to the 

EJB object and the corresponding responses to the client side. The client side interceptor chain can 

help us to deploy the client part of the replication algorithms. 

9.1.3 Associating Transactions with Requests 

The transaction service is a service that is typically called on the EJB container via the transaction 

interceptor. The interceptor is responsible for associating a request with a transaction. Section 2.4.4 

already introduced how the transaction interceptor associates requests with transactions for the CMT 

and BMT schemes. The transaction management is implemented in the transaction manager (TM), 

while the business logic is implemented in EJB objects. At runtime the TM and the EJB object 

must exchange information. For instance, the TM needs to know which database is required to be 

accessed by the business object, and the EJB method needs to know if a transaction has committed 

or not. In this case, the transaction interceptor is used to help the TM and the EJB objects exchange 

information. 

If the client wants to determine the boundaries of the transaction, the client needs to download a 

remote stub of a user transaction object that represents the TM, and then explicitly start/commit/abort 

a transaction using the remote method invocation. 

When a transaction is started, it first only executes at the AS. Only when the execution accesses 

the database, a DB transaction starts. That is, the TM starts the DB transaction with the first oper­

ation to the database and then terminates both at the AS and the database. If there is no database 

access, there is no DB transaction at all. Database access usually is controlled via a JDBC driver, 

which is provided by the database but runs at the AS. Hence, to obtain control over transactions, the 
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replication tool needs to intercept transaction commands to the TM (start/commit/abort) and JDBC 

commands sent to the database. 

9.2 Implementation based on the Adapt Framework 

Inspired by the interceptor mechanism, our partners at the Universita di Bologna, Italy, with our 

help, implemented a pluggable module, called ADAPT framework [6] l. The ADAPT framework is 

an extension of a J2EE server, allowing replication algorithms to be plugged in. Towards the upper 

layer, the framework defines a set of APIs for the replication algorithm. The replication algorithm 

can be implemented using these APIs without considering the architecture of a certain AS. Below 

these interfaces, the framework for a specific J2EE AS implements a set of interceptors that gets 

control of the system during runtime without affecting the original functions of the server. 

When an EJB is invoked at runtime, the framework transfers control to the replication algorithm 

implemented within the replication manager (RM). Through the APIs, the RM sees an abstract view 

of EJBs, invocations, and other elements of the server. The RM may perform any actions, such as 

setting component state or communicating with other replicas, before continuing the invocation. 

The main advantage of using the ADAPT framework, rather than modifying the server directly, is 

that it simplifies replication programming. The custom API isolates the replication algorithm from 

the details of the server implementation. Further, the algorithm is centralized in just a few classes, 

rather than scattered throughout the server system. Figure 9.3 shows how the framework separates 

the J2EE server from the replication algorithm implemented within the replication manager. Within 

the replication framework, RCS (remote component stub) and CH (component handle) represent ab­

stract views of components on the client side and the server side. In general, the ADAPT framework 

has been designed to be used by various replication algorithms. 

In order to implement ADAPT-SIB and ADAPT-LB, the replication framework should provide 

APIs to see EJBs and their states, to see invocations on EJBs, to see transactions, and to see database 

operations. In the following sub-sections, we introduce how this information is provided by the 

replication framework. 

'Our major contributions are described in Section 9.2.4 and Section 9.2.5 
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Figure 9.3: ADAPT framework separates replication algorithm from J2EE server 

9.2.1 Components and States 

The ADAPT framework API classifies components into three levels: 

ComponentKind is the broadest classification. There are just a few kinds, fixed by the framework 

implementation: entity beans, stateful and stateless session beans. 

ComponentType is a kind plus.a name, specifying a particular "class" within the kind. The number 

of types depends on the applications deployed on the server. 

ComponentHandle refers to a specific EJB instance. It consists of a ComponentType plus an 

instance identifier specific to that type. With an entity bean, the identifier is the primary key; 

with a stateful session bean, it is the session ID. The number of distinct handles depends on 

the number of EJBs invoked by the application. 

All these classes may be transmitted between replicas. The classes also support comparison: two 

ComponentHandles, for example, test equal if and only if they refer to the same component instance. 

An EJB instance is created by a call to one of the create methods of its home interface. The 

create method is intercepted by the ADAPT framework. After an EJB instance is created, the 

framework creates the ComponentHandle to represent the EJB instance. Then, in the framework, 

the information about the EJB instance can be received through the ComponentHandle. 
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Figure 9.4: ADAPT framework intercepts the execution flow at three points 

The ComponentHandle provides methods to test whether a EJB instance has state and to get 

the state. The state of an EJB instance is an opaque serializable object, which can be sent between 

replicas. To get the state of an SFSB, we use the passivation mechanism, saving the state to an array 

in memory instead of persistent storage. The state value is simply the serialized form of the object 

itself. The ComponentHandle can be replicated together with the array of the state value to backups. 

The replication of SFSB states is implemented in this way. 

The ComponentHandle provides create methods that can re-create the EJB instance. It also 

provides a method to set the state value on the re-created EJB instance. Moreover, it provides the 

call method: 

Response call(Request request). 

This method can be used to eventually execute the intercepted request on the EJB instance repre­

sented by the ComponentHandle. 

9.2.2 Invocation Interception 

The ADAPT framework gets control of an execution by intercepting an EJB invocation at three 

points as shown in Figure 9.4. At each point, the replication algorithm may intervene, performing 

any computation or communication before or after continuing. The first point is within the client-

side stubs. The interceptor at the first point is called the client replication interceptor. It is the entry 

point for the client-side replication algorithm, passing the control to the CRM (client replication 

manager). For example, when the interceptor intercepts a failure exception of the primary AS, it 

notifies the CRM to re-direct requests to the new primary. Both the second and the third points 

file:///jgrogramy~
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are within the interceptor chain on the server side. The second point comes immediately after the 

invocation reaches the server, before the target EJB reference has been resolved. Intercepting here 

allows the replication algorithm to first re-create the EJB instance itself and set the state of the EJB 

instance, if necessary. This is used, e.g., by the Install-After-Failover strategy on the new primary. 

The interceptor at the second point is called the early replication interceptor. The third interceptor 

point comes just before the invocation passes to the target EJB instance; i.e., after the reference has 

been resolved, and all the EJB properties, such as security and transactions, have been set up. The 

interceptor at this point is called the replication interceptor. At this point, the control is passed to 

the RM (replication manager). Then, the RM can get the request and the corresponding response, 

get the EJB's state, get the current transaction, etc. 

9.2.3 Requests and Responses 

The replication interceptor transfers the control of a method invocation to the RM by triggering the 

invoke method of the RM as follows: 

Response invoke(Request request, ComponentHandle component). 

Within this method, the RM can get the state of the target EJB instance using the ComponentHandle 

parameter and get information about the request using the Request parameter. To invoke the target 

EJB instance, the RM calls the corresponding call method of the ComponentHandle described in 

Section 9.2.1. After the call method of the ComponentHandle returns the response, the RM can 

process the response (e.g., put it in the RR list), before the invoked method returns. 

Generally, Request and Response are opaque to the replication algorithm. However, in a Re­

quest, the RM is allowed to read the name and the list of parameters of the method that is being 

invoked. This permits the replication algorithm to check whether two requests are identical. When 

the invocation completes normally, the Response encapsulates the return value. In this case, the 

replication algorithm cannot examine the content. However, when the invocation throws an excep­

tion, this is wrapped in a special Response which provides the details of the exception and identifies 

its source. ••„••••-.• -•••••- --..- ,-.,-.~<-.. 
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Application exception The exception was thrown by the component, i.e., by the application code. 

In this case, the replication algorithm should not examine the exception details, but should 

simply pass the Response back, where it will be handled by the calling component. 

System exception Thrown by the system or framework, for example when the server crashes. The 

client-side replication can catch this and fail over to another server before returning to the 

caller. 

Replication exception Thrown by the replication algorithm, presumably from some other point in 

the chain of invocation. In this case, the replication algorithm is free to examine the exception 

details and handle them as it chooses. 

Both Request and Response can be tagged with headers. These are arbitrary key-value pairs, 

which are transmitted along with the content of the message. They are visible only to the replication 

algorithm. The key must be a string; the value may be of any class that can be serialized in the 

invocation. A common use for headers is to tag each request with a unique ID. This is to guarantee 

that each request will be executed exactly once, despite retransmissions and communication failures. 

For example, an ID can be set by the client-side stub in the client replication interceptor, before the 

request is sent the first time. 

9.2.4 Transaction Interception 

As mentioned in Section 9.1.2, there is a transaction interceptor in the interceptor chain to associate 

a request to a transaction. The transaction interceptor accesses the TM (transaction manager) of the 

AS using the JNDI service. It gets the reference to the TM by looking up "TransactionManager" in 

the naming service of the AS. In order to intercept transaction commands to the TM, the ADAPT 

framework provides the TM wrapper that wraps the TM by providing methods to intercept typical 

transaction commands, i.e., transaction begin, commit, and abort, as shown in the right side of 

Figure 9.5. Within these methods, the TM wrapper passes transaction commands to the TM by 

calling corresponding methods of the TM. 

When the AS is started, the TM wrapper is started after the TM is started. Without changing 

the TM, the TM wrapper gets the reference to the TM by looking up "TransactionManager" in the 
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Figure 9.5: ADAPT framework wraps transaction manager and client-side user transaction 

naming service. Then, the TM wrapper removes the binding of the TM and the name "Transac-

tionManager" from the naming service. Instead, it binds itself with "TransactionManager" in the 

naming service. At runtime, when the transaction interceptor looks up "TransactionManager", it 

gets the reference to the TM wrapper but not the direct reference to the TM. This way, the TM 

wrapper intercepts all transaction commands that are sent from the outside, including the trans­

action interceptor. The TM wrapper has the reference to the RM, and hence can pass control of 

transactions to the replication algorithm before or after passing transaction commands to the TM. 

Thus, according to our replication algorithm, state propagation can be executed when a commit 

command is intercepted by the TM wrapper but before it is passed to the TM. 

In the N-l pattern, a transactionxan be explicitly started, committed and aborted by the client. 

To do so, the client requires a remote stub referring to the TM. The remote stub is called Client 

User Transaction, which is binding to the naming service with the name "UserTransaction". The 

ADAPT framework provides the Client Tx Wrapper (CTW) to wrap the client user transaction, and 

binds it with "UserTransaction" in the naming service to replace the client user transaction. When 

a client is looking up "UserTransaction", the CTW containing the client user transaction is returned 

to the client as shown in the left side of Figure 9.5. Thus, the CTW can get control of transactions 

at the client side, and hence the client part of the N-l algorithms gets control of transactions. 

The wrapper approach, replacing original services in the naming service with wrappers is an 

easy way to plug our replication code into the system without modifying the original logic and code 

of the affected services. 
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9.2.5 JDBC Interception 

According to our replication algorithm, a marker is inserted into the database before the commit to 

let the new primary check if a transaction eventually committed at the database or not. This insert 

only needs to be done if the transaction is an update transaction, i.e., database access involved in 

the transaction contains insert, update, or delete operations. In order to analyze database operations 

the ADAPT framework uses a JDBC wrapper to wrap the JDBC driver of the database. The JDBC 

wrapper implements the JDBC API defined in the JDBC 2.0 specification [97], and passes SQL 

statements to the real JDBC driver after analyzing them. The JDBC wrapper has the reference to 

the real JDBC driver by looking up the database source name in the naming service. Then, the 

wrapper replaces the entry of the JDBC driver in the naming service with itself. Thus, when EJB 

is accessing the database, it always gets the reference to the wrapper, and sends SQL statements 

to the wrapper. The wrapper checks each SQL statement whether it is an update operation, and 

if yes, marks the corresponding transaction as an update transaction. Then, the wrapper redirects 

each SQL statement to the real JDBC driver to trigger a database operation. Thus the replication 

algorithm can detect update transactions and insert a marker in the database accordingly. 

9.2.6 Overall Architecture 

Figure 9.6 shows the integration of the replication tool into JBoss using the ADAPT framework. 

The white boxes in the figure show the default JBoss components, the default client and the default 

database. The gray boxes show the building blocks provided by the ADAPT framework. The black 

boxes show the building blocks where the replication algorithm is implemented. Apparently, the 

client side replication algorithm is implemented within the CRM, and the server side replication 

algorithm is implemented within the RM. 

The ADAPT framework gets the state of EJB instances and gets controls of requests and trans­

actions in the standard J2EE environment. Using the ADAPT framework, the implementation of our 

replication tool just needs to focus on the implementation of the proposed algorithms. To plug the 

ADAPT framework into the JBoss application server, we have to implement the underlying APIs 

of the framework using APIs provided by JBoss. Two parts of the framework have to use APIs 
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Other Replicas 

Figure 9.6: The implementation architecture of the ADAPT framework in JBoss 

provided by JBoss. Firstly, all of the three interceptors, namely the client replication interceptor, the 

early replication interceptor, and the replication interceptor have to be extended from the abstract 

client interceptor and the abstract server interceptor of the JBoss implementation. Then, these in­

terceptors are configured in the JBoss configuration file and are automatically loaded at runtime as 

other interceptors of JBoss. Secondly, the implementations related with the ComponentHandle, the 

Request and the Response have to use APIs provided by the JBoss container to get information about 

EJB instances and information about invocations to the JBoss container. All of these implementa­

tions concerned with the JBoss container are called JBoss Container Support. Our implementation 

of the JBoss container support is based on JBoss 3.2.3. 

The transaction wrappers do not require the special support from the JBoss container since 

they implement the standard APIs defined in the Java transaction API specification [98]. The JDBC 

wrapper is based on the standard JDBC specification, and hence, does not require the special support 

from the JBoss container. 

9.3 Implementation Issues 

The client-side and server-side replication algorithms are implemented in the CRM and the RM 

respectively. The group communication system used for communication is based on Spread [1]. 
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Our partners from Universita di Trieste enhanced Spread and provided a set of Java interfaces, called 

JBora [12]. Hence, we use JBora for all inter-replica communication. In the ADAPT-SIB algorithm, 

each replica joins a single FTG group using the join method provided by JBora. In the ADAPT-LB 

algorithm, each replica joins a single LDG group, and also joins a set of FTGs depending on the 

configuration of the number of replicas required by a FTG. 

The major issues relevant to the implementation are (i) how to extend the naming service for 

client applications to support a replicated AS, (ii) how to decide on the primary, and (iii) how the 

RM processes requests and transactions. 

9.3.1 Extended Naming Service for the Replicated Application Server 

As mentioned in Section 9.1.1, a client connects to the AS by looking up the home interface of an 

EJB. In order to do so, the client has a JNDI configuration with the destination address and port 

number of the AS. The standard JNDI service only supports the lookup on a single AS. In our 

implementation, we extend the JNDI lookup to support multiple AS replicas. On the client side, 

the JNDI configuration is now able to provide a list of AS replicas. When the client performs a 

lookup, the extended JNDI client randomly chooses a replica to send the lookup request to. If a 

failure exception occurs it chooses another replica from the list. Every AS replica, whether primary 

or only backup, has the same deployment of EJBs, and hence can generate the home interface of the 

target EJB and send the stub to the client side. At the same time, the CRM instance is generated on 

the server side. It contains the list of addresses of all available replicas with a flag on the address of 

the real primary that should be assigned to the client. Then, the CRM is downloaded to the client 

together with the stub of the home interface. When the client makes a request to the remote stub 

of the target EJB instance via the home interface, the CRM intercepts the request, and redirects 

the request to the rea) primary. Thus, the client communicates from now on with the real primary 

independently of who provided the EJB stub and the CRM object. 

By taking advantage of the JNDI lookup, the ADAPT-SIB framework does not need any extra 

communication overhead to download the client part of our replication algorithm. The same holds 

for the ADAPT-LB framework. After the client submits the lookup request to an available AS 

replica, this replica decides randomly which AS replica will be the primary for the client, and 
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includes the relevant information with the CRM that is downloaded with the home stub to the 

client. Then, when the client creates the EJB object and calls EJB methods, the CRM automatically 

forwards these requests to the AS primary. This means, there is no extra communication overhead 

between a client and the server cluster. 

9.3.2 Deciding on the Primary 

The ADAPT-SIB algorithm has to decide on the primary AS when the system is started and after the 

current primary crashed. There are many ways to decide on a primary. We have not implemented 

anything special and assume all machines have the same power, i.e., there is no preference who 

is primary. At startup, a certain number of replicas is started, all joining the FTG group. Then, 

each multicasts a voting message to the FTG using total order. Due to the total order property, 

each replica receives the voting message in the same order. The replica, whose voting message is 

the first one received, is selected as primary. This way, every replica can make the same decision 

based on the voting messages. Lookup requests occurring during the select period are blocked until 

the primary is selected. After the primary is selected the lookup request return the CRM with the 

address of the primary. If other replicas join into the system after the primary is selected they will 

become backups. When a replica crashes, all other replicas are notified via the membership service 

of the GCS. If the crashed replica was the primary, the same voting mechanism is used as at system 

start-up. 

The ADAPT-LB framework does not use this approach to decide the primary since each AS 

replica is a primary. At the beginning of the system, the LDG and FTGs are initialized using the 

algorithm described in Section 8.2. 

9.3.3 Processing Requests and Transactions 

On the server side, the replication algorithm is implemented in the RM as described in Chapter 5 

and 6. The RM provides beg in , commit, and a b o r t methods to process transactions, whereby 

the control was obtained from the TM Wrapper. It also provides the i nvoke method to process 

requests, whereby the control was obtained from the replication interceptor. Moreover, it provides 
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the e n l i s t D B R e s o u r c e s method to record the database configured for a specific application. 

Fn our algorithm description in Chapter 5, we use transaction ids to associate requests and their 

transactions in the replication algorithm. In the real implementation, we do not need to transfer 

transaction ids through transaction handling methods or request handling methods. Instead, we bind 

the transaction id with the thread that executes the transaction. Since requests have to be executed 

in the same thread as the transactions associated with the request, the RM can get the transaction 

id from the current thread. When intercepting a commit request of a transaction, the RM gets the 

state of all involved components using their componentHandles, and multicasts the state using the 

multicast API provided by JBora. 

In order to insert the update marker into the database, the RM creates a special marker table 

in the recorded database when the system starts up. Then, when the replication algorithm needs to 

insert an update marker, the RM uses a standard SQL statement to insert the marker, which typically 

is the corresponding transaction id, into the marker table. After a crash and the selection of the new 

primary, failover executes simply as described in Section 5.2. 

9.4 Summary 

Our implementation of the replication tool does not depend on the JBoss implementation due to the 

use of the ADAPT framework. When changing to another J2EE AS, only the ADAPT framework 

has to be adjusted. Our implementation also does not require modifications to clients or database. 



Chapter 10 

Experiments and Evaluation 

This chapter uses several suites of experiments to evaluate the performance of the ADAPT-SIB and 

ADAPT-LB frameworks. The evaluation of ADAPT-SIB focuses on the extra overhead caused by 

ADAPT-SIB. The evaluation of ADAPT-LB focuses on the scalability achievements. The repli­

cation algorithm and the load balancing algorithm provided by JBoss Cluster [60] are used as the 

reference system to evaluate performance of ADAPT-SIB and ADAPT-LB respectively. All repli­

cation algorithms are implemented based on JBoss 3.2.3. The backend database is DB2. As GCS, 

we use Spread [1] plus JBora [12]. 

10.1 Evaluation of ADAPT-SIB 

This section uses four suite of experiments to evaluate ADAPT-SIB, our fault-tolerance framework. 

First, we use a micro benchmark to compare the performance of warm replication and cold replica­

tion. Then, we use the micro benchmark to show the impact of replication for different components 

and database access patterns. Then, we use the ECperf benchmark [93] to evaluate the performance 

of ADAPT-SIB replication tool on a more realistic application and compare it with JBoss's existing 

replication technique. The last experiment evaluates failover. We only use two AS replicas since 

the overhead at both the primary and the backup remains the same no matter whether there are two 

or more backups.; Only the GCS mighttake longer for message delivery if there are more replicas. 

But the overhead between two, three, or four replicas is usually neglectable. All machines are 3.0 
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Figure 10.1: Performance comparison between warm and cold replication 

GHz Pentium 4 with 1 GB of RAM running RedHat Linux. The configuration in all experiments 

consists of one machine emulating clients, one machine running the web server (if needed), two 

machines running JBoss application server 3.2.3 instances, and one machine running DB2 as our 

database system. 

10.1.1 Performance Comparison between warm and cold Replication 

In our first experiment suite, we use a simple test to compare the performance of warm replication 

and cold replication. Recall in warm replication, state changes are propagated to a running backup 

replica, while they are written to stable storage with cold replication, in our implementation to a 

DB2 database. We only consider SFSB, since we always use cold replication for EB. In the test, 

a client request triggers the execution of a single method of an SFSB within a transaction and the 

1-1 algorithm applies. The main configuration variable is the number of clients. Each client is 

configured to submit 10 requests per second. However, since a client does not submit a new request 

before it receives the response for the previous request, if the execution time is longer than 100 ms, 

the real injection rate is smaller than 10/sec. 

We compare the performance in regard to two aspects. First, we look at the average response 

time for each client request. Response time in this test includes the ordinary time to execute the 

request in the JBoss AS, the time to do state propagation at the end of each transaction (namely 
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each client request due to the 1-1 pattern), and the additional time to pass the ADAPT-framework. 

Hence, the response time implies the additional overhead induced by replication during normal 

processing. Figure 10.1 (a) shows the results. Response times increase slowly with increasing 

number of clients for both the warm replication and cold replication, and then increase sharply after 

saturation. As the time to execute the request is the same for both runs and both go through the 

same steps of the replication framework, the difference in the response times reflects the difference 

in costs between cold and warm replication. The main overhead of warm replication are serializing 

the state of the SFSB and propagating it to backups. The main overhead of cold replication are 

serializing the SFSB state and writing it into the database. The figure shows that warm replication 

has considerably better performance than cold replication. Before saturation, the response time 

with cold replication is typically double the response time with warm replication. At 15 clients, the 

response time with cold replication increases sharply due to CPU saturation, and the final saturation 

is after 24 clients. Warm replication reaches the saturation point later at around 30 clients. 

The second performance aspect is failover time. In Section 7.1, we proposed three failover 

strategies. Cold replication can use the Install-When-Failover and the Install-After-Failover strate­

gies. In here, we take the Install-When-Failover strategy since it shows better the costs of the 

failover steps as they all occur at once. We crash the primary after the system is running around 

100 ms. Figure 10.1 (b) shows the corresponding failover time for both warm and cold replication 

when there was a certain number of clients connected to the old primary. The main overhead during 

failover for warm replication is to reconstruct all EJBs and restore the update-to-date state of each 

SFSB. Cold replication has to do the same but also requires additional time to read the logged state 

of each SFSB from the database. Both failover times increase slowly with increasing number of 

clients, because the number of SFSBs required to be reconstructed is increasing with the number 

of clients. The difference in failover times between cold and warm replication reflects the addi­

tional time to read the logged states of SFSBs from the database. This time gradually increases 

with the increasing number of clients, since as more clients exist more SFSBs are stored in the 

database. Please note that in this test the failover time is independent of the running time, because 

each client always accesses the same SFSB, and hence no new SFSBs will be accessed after all 

clients begin to submit requests. However, in a real application, a client might access more and 
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more EJBs during runtime. In this case, the failover time of the Install-When-Failover strategy will 

be affected by the running time. Our later experiments focusing on failover will show the effect. 

Although Install-After-Failover can shorten the failover time for both warm and cold replication, 

the additional overhead for cold replication to read from the database remains the same. 

We conclude that warm replication has better performance than cold replication during both 

normal processing and failover. Hence, in the following experiments, we only focus on warm 

replication. 

10.1.2 Component Analysis 

In our second experiment suite, we evaluate the overhead of replication for different components 

and component combinations. This experiment suite is implemented as 1-1 pattern. We evaluate 

the performance by comparing ADAPT-SIB with a non-replicated JBoss. 

We consider the following- cases. Test 1: No database access takes place. Test 2: Database 

access (update) takes place but no conflicts occur at the database. That is, different clients access 

different tuples. Test 3: Database access takes place and all transactions conflict. That is, all requests 

access the same tuple. In Test 1, a request triggers the execution of a single method of an SFSB. Test 

2 and 3 have two different versions. In the first, a request executes only on one SFSB which makes 

the database call. In the second, a request calls a SFSB, which calls an EB to access the database. 

Each client submits 10 request per second, and the main configuration variable is the number of 

clients. Again, if the execution time is longer than 100 ms, the real injection rate is smaller than 

10/sec. 

Test 1: No database access Figure 10.2 shows (a) the average response time and (b) the throughput 

achievable with increasing number of clients. Response times increase slowly for both the replicated 

and non-replicated system. Below the saturation point, ADAPT-SIB (including the framework) has 

an overhead of around 4 ms. This is very low in total numbers, but means an overhead of around 

100% for medium number of clients since response times are generally very small. This is the 

worst case scenario for our algorithm since it contains only SFSBs which all must be replicated. 

At 27 clients, response times increase sharply due to CPU saturation, and the final saturation is 
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after 33 clients. The non-replicated system does only saturate at around 66 clients again due to 

CPU overhead. Since the system is CPU bound, and the non-replicated system takes half the time 

to execute one request compared to the replicated system, it can execute double as many requests 

before saturation. 

There are two solutions to improve the results of the replicated system. The first is to improve 

the implementation of the algorithm (e.g., data structures, access paths). This, however, can only 

succeed to a certain point. After that, alternative replication strategies have to be found, e.g., lazy 

replication. 

Test 2: Conflict-free database access Figure 10.3 shows the results of test 2, in which transactions 

access the database but concurrent transactions never conflict. The figure contains graphs both for 

the SFSB only and SFSB/EB combinations. Let's first have a look at the SFSB only case. Compared 

to Figure 10.2 (a) for no database access, response times increase more steeply, and are generally 

higher. This is due to the database access. When the number of clients is smaller than 15, the 

overhead of ADAPT-SIB is stable at around 15 ms. The total time spent in ADAPT-SIB is higher 

than with no database access (4 ms) because the marker has to be inserted into the database (if a 

transaction does not update the database, no marker is inserted). In this scenario, 15 ms only mean 

an overhead of 20% for medium client numbers since transaction execution is generally long. With 

more than 15 clients, the time spent in the replication algorithm increases linearly with the number 

of clients and the throughput increases only very slowly 10.3 (b). At 15 clients, the CPU overhead 

is around 85%. After that, it does not increase fast because the system always waits for operations 

at the database to complete. The saturation point is at 22 clients. The non-replicated server reaches 

saturation with 33 clients. 

When database access is filtered through EBs, response times both for the non-replicated and 

the replicated system are generally higher due to the EB overhead (see, e.g., [23], for a comparison 

of SFSB and EB). However, the relative performance is similar to the SFSB only case. 

The conclusion is the easy observation that if the original system has high execution times, than 

the overhead of the replication algorithm has not such a big relative effect than with small execution 

times. 



Chapter 10. Experiments and Evaluation 155 

Test 3: Conflicting database access Figure 10.4 shows the results when all transactions conflict at 

the database. We only present the SFSB only case, since the effect of using EBs is similar to test 2. 

Generally, response times (Figure 10.4 (a)) are much larger than in test 2 due to the long blocking 

times at the database. They increase sharply with the number of clients for both replicated and 

non-replicated case. The difference between replicated and non-replicated system is bigger than in 

test 2 and also increases faster than in test 2. The reason is that ADAPT-SIB generally increases 

the execution time for each transaction. Assume transaction Tl holds a lock, and T2 and T3 wait 

for the lock. The time Tl needs longer to finish due to replication is also added to T2's and T3's 

execution time. Additionally, the longer execution time of T2 is added to T3's execution time. This 

means, waiting times are cumulative. We can also see that the maximum throughput (Figure 10.4 

(b)) is only around 1/4 of the one in test 2 for both the replicated and non-replicated system due to 

the blocking. 

As a conclusion, although the CPU is not saturated, the CPU overhead of replication limits its 

performance. Although the response time increase is due to longer waiting times at the database, it 

is caused by the computation overhead. 

10.1.3 Evaluation of Different Execution Patterns 

The previous experiments seemed to show that ADAPT-SIB had quite bad performance. However, 

the experiments were designed to show extreme cases, enabling us to understand the implications 

and influence of replication. In this section, we evaluate the performance of ADAPT-SIB on a more 

realistic application. We also pay attention to different execution patterns. ADAPT-SIB detects the 

execution pattern depending on the requests it intercepts, and automatically applies the correspond­

ing algorithm. 

To simulate a real application, we use the ECperf benchmark [93]. ECperf emulates businesses 

involved in manufacturing, supply chain and order/inventory management. The application is split 

into customer, manufacturing, supplier and corporate domains. The benchmark is quite database-

heavy, i.e., the database is accessed frequently. The transaction injection rate (IR) is an indicator of 

the load submitted to the system (transactions per second). Results show the average response time 

of order entry transactions of the customer domain in milliseconds. Results are only measured over 
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the steady state phase (10 minutes) of each test run. 

Our evaluation compares (1) a regular, non-replicated JBoss server as baseline for comparison; 

(2) two JBoss server replicas using ADAPT-SIB; (3) two JBoss server replicas using JBoss's own 

replication solution called JBoss clustering. For both (2) and (3) one server was primary for all 

clients. JBoss has to basic configurations. In a fault-tolerance configuration, one machine in the 

cluster is primary and all others are backups. In this configuration, no load balancing property 

is provided. In a load-balancing configuration, all machines are able to process client requests. 

We discuss the load balancing configuration in more detail in Section 10.2. In this experiment, 

we configure JBoss clustering in the primary-backup model. As mentioned before in Section 3.1.1, 

JBoss clustering propagates state to backups on a component basis just before the component returns 

from a method call. Hence, if several components are called within one client request, several 

messages are sent. Moreover, please note that JBoss clustering cannot guarantee correctness even 

for the 1-1 pattern. 

We look at the 1-1, N-l, and 1 -N patterns individually to understand the impact of the particular 

mechanisms. The patterns are all used with accessing one database. At the end of the section, we 

have a test case with two databases that require 2PC. 

1-1 algorithm 

In the original ECPerf benchmark implementation we used, all execution follows the 1-1 pat­

tern. Figure 10.5 (a) shows the average response times of order entry transactions at increasing IR 

for the 1-1 execution pattern. The gap between the curve of ADAPT-SIB and the non-replicated 

system is the overhead of replication. At low load, the 1-1 algorithm adds 15 ms (15% overhead). 

As a comparison, [72] also indicates around 15% overhead for FT-CORBA (primary-backup) com­

pared to non-replicated CORBA. JBoss clustering adds around 120 ms (120% overhead). The high 

overhead is due because it sends state after each method invocation while our approach sends one 

message per transaction. Response times for all setups increase steadily with increasing load until 

saturation points which is around 27 IR for the non-replicated JBoss, 23 for JBoss clustering and 

the 1-1 algorithm. More information about the saturation point can be found in Figure 10.5 (b) 

which shows maximum achievable throughput of the system with increasing IR. All systems satu­

rate due to CPU overhead. Both the 1 -1 algorithm and JBoss clustering saturate at 23 IR, while the 
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non-replicated JBoss saturates at 27 IR. As a summary, we believe the overhead of our approach is 

acceptable considering its strong correctness properties. 

N-l algorithm Figure 10.6 (a) shows the response times for the N-l execution pattern. We 

modified the ECperf implementation so that each order entry transaction contains on average 5 

order requests. The figure does not show results for JBoss clustering since response times are five 

times as high as in the 1-1 model. Response times are generally higher than for the 1-1 model 

shown in Figure 10.5 (a) since several client requests are included in one transaction. Compared 

to no replication, the N-1-best-effort algorithm adds again about 15% overhead while N-l-ordered 

adds 30%. The latter has higher overhead since it propagates the order in which database access 

takes place at the end of each client request. Considering that these are five additional messages, 

the overhead is quite small. This is true because the messages are small and only sent with reliable 

delivery. In regard to throughput shown in Figure 10.6 (b), all configurations saturate much earlier 

due to CPU overhead. N-1-ordered saturates at 8 IR, N-l-best-effort at 9 IR, and the non-replicated 

JBoss at 10 IR. 

We would like to note that in ECperf many updates are on client related data with only few 

conflicts. Hence, even the N-l-best-effort algorithm provides exactly-once in most cases for this 

particular application. 

1-N algorithm Figure 10.7 (a) shows the response times for the 1-N execution pattern. We 

changed the ECperf implementation such that each order entry request triggers an outer transaction 

which on average contains three inner transactions. Again, response times are generally higher than 

for the 1-1 execution pattern since now each order entry request includes several transactions. In 

absolute times, the 1-N algorithm takes more additional time than the 1-1 algorithm in Figure 10.5 

(a) since we now have to send an additional uniform-reliable message for each inside transaction. 

In contrast, JBoss clustering adds the same time (120 ms) as in the 1-1 pattern since the replication 

mechanism is not related to transactions. In terms of throughput shown in Figure 10.7 (b), the 1-N 

algorithm saturates at 21 IR, JBoss clustering saturates at 23 IR, and the non-replicated JBoss satu­

rates at 25 IR. The 1-N algorithms saturates earlier than JBoss because of the increased bookkeeping 

to guarantee all properties. 

1-1 with 2PC Now, let's evaluate the extended algorithm which supports a transaction to access 



Chapter 10. Experiments and Evaluation 159 

Model 

one database 

more than one 
database 

Algorithm 

Non-replicated JBoss 
ADAPT-SIB 

Non-replicated JBoss 
ADAPT-SIB 

Response 
Time (ms) 

34.9 
40.3 
103.5 
111.8 

Tx numbers 
(per second) 

30 
26 
10 
9 

Table 10.1: 1-1 execution accessing one or more than one database 

more than one database. Please recall that the extended algorithm is independent of the execu­

tion pattern. Hence, we can use the 1-1 algorithm as a sample pattern for the evaluation. For this 

experiment, we have not used the ECPerf but a simpler evaluation. A client submits one request 

to a SFSB which performs two database updates that either access the same database (no 2PC) 

or different databases (requiring a 2PC). Table 10.1 shows the average response time at a load of 

10 transactions per second, and the maximum achievable throughput. Accessing one database, the 

ADAPT-SIB adds 5.4 ms to the response time of the non-replicated JBoss reflecting a 15% increase, 

while with a 2PC, ADAPT-SIB has an overhead of 8.3 ms (it has to send an additional preparing 

message) but this reflects an increase of only 8%. The maximum throughput for ADAPT-SIB com­

pared to the non-replicated case is around 90% with a 2PC and 86% when one database is accessed. 

ADAPT-SIB performs, in relative terms, better with a 2PC than without because the total response 

times with a 2PC is so much higher than if no 2PC is necessary. 

In summary, these experiments show that our solutions in general incur little overhead for all 

typical execution patterns on a realistic, i.e., quite diverse, workload. Our ADAPT-SIB replication 

tool clearly outperforms JBoss's clustering mechanism in all cases in terms of response time, and is 

similar in terms of saturation point. 

10.1.4 Evaluation of Failover 

In this section, we evaluate the overhead during failover, and compare the effects of different re­

store strategies. In this experiment, we only test warm replication as we have already shown in 

Section 10.1.1 that it has better performance than cold replication. We run ECPerf with an IR of 

5 and crash the primary after different running times. Figure 10.8 (a) shows the time needed for 
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(a) Failover Time (b) Backup Overhead 

Figure 10.8: Restore strategies comparison 

failover (i.e., the time client requests are blocked and not executed). The failover time of Install-

When-Failover is magnitudes longer than that needed by the other two strategies, and increases 

with the time the application server was running before the crash. When the primary was running 

for 10 minutes, failover takes around 2 minutes, when it was running 240 minutes, failover takes 

20 minutes. This is because this strategy restores all components replicated at the time of failover, 

and the number of such components increases with the execution time. In JBoss, session beans are 

not automatically deleted when a user disconnects from the system. Instead the programmer needs 

to explicitly implement such methods, which was not done in the ECPerf implementation we have 

used. Hence, as time goes on, more and more such beans are in the system, are replicated, but are 

never removed. If beans were deleted at the primary, our algorithm would delete them at backups 

as well. In any case, the long failover time is clearly not acceptable since client requests that were 

submitted just before the crash or during the failover time are delayed during the entire failover 

period. For the other two strategies, failover time is always below 100 ms and is independent of 

the running time before the crash. This is because these two strategies do not restore components 

at the time of failover. For these two strategies, the main factor that impacts the failover time is 

the number of transactions for which the new primary received a committing message but no com­

mit/abort message. For those transactions the new primary has to query the database at failover 

time. This number is independent of the running time and is usually very small because it reflects 

the number of transactions that were in the commit phase at the time of the crash. In regard to the 
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response time experienced by clients that submitted their request around the time of the crash, in 

the Install-Immediately strategy, these requests are delayed more or less by the failover time. Once 

failover has completed, client requests experience the same response time as before the crash. When 

using the Install-After-Failover strategy, response times for some requests are delayed beyond the 

plain failover time. These are the requests that access a component that needs to be restored. In our 

tests, such requests took around 1200 milliseconds compared to 110 milliseconds for consecutive 

requests on this component. This means, for each client connected to the system at the time of the 

crash, the first request to a component after failover takes long, but then execution is again fast. 

In summary, although the discussion might simply be about an engineering problem, the large 

differences in performance show how important it is to consider an efficient implementation. 

Figure 10.8 (b) shows the overhead on the backups during normal processing. The memory 

usage (simply measured using the UNIX top command) increases with the running time for all 

strategies as more and more components reside in the system (recall that beans are not removed 

when clients disconnect). Install-Immediately needs more memory than the others because it has 

all components created and installed. The other two strategies, in contrast, only store the serialized 

state information. The CPU overhead of Install-Immediately is around 20% CPU - needed to restore 

components, while the other two strategies only use on average 3% CPU to store the replicated 

information. With this, the backups can be used to do other work, as we do with ADAPT-SIB. 

As a summary, we believe that Install-After-Failover is the best strategy. It has a much shorter 

failover time than Install-When-Failover and much smaller overhead at the backups during nor­

mal processing than Install-Immediately. Therefore, we use Install-After-Failover in the remaining 

experiments. 

Figure 10.9 shows the failover time for the 1 -1,1 -N, and N-1 algorithms after different running 

times of the ECPerf with an IR of 5. Additionally, the figure indicates the number of transactions for 

which the new primary needed to check in the database whether they committed. Since this number 

is small and independent of the running time, the failover time is always short. Comparing the 

failover times for the different algorithms, we can observe that 1-1 and 1 -N have similar times, while 

failover in N-l takes a bit longer. This is because the committing messages in the N-l algorithm 

contain more information and hence need more time to be parsed during failover. 
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Algorithm 

1-1 

1-N 

N-1 

Running Time (minutes) 
Number of committing transactions 

failover time (ms) 
Number of committing transactions 

failover time (ms) 
Number of committing transactions 

failover time (ms) 

30 
2 

44 
1 

35 
2 
58 

60 
1 

38 
2 
48 
3 
76 

120 
3 
58 
1 

36 
1 

46 

240 
2 
52 
2 
54 
4 
94 

Figure 10.9: Failover time for different running time of ECPerf at 5 IR 

Failover is impacted by the throughput at the primary. The more transactions are running at 

the same time, the more transactions might be committing at the time of the crash. We conducted 

a second experiment where we run ECPerf with increasing IR and crashed the primary after 30 

minutes. The failover time increased from 20 ms at 1 IR to 380 ms at 21 IR for the 1-1 and 1-N 

algorithm and from 20 ms at 1 IR to 280 ms at 9 IR for the N-1 algorithm. Once the primary 

saturates, message propagation becomes bursty. As a result, just before the crash, the backup might 

have received many messages which must be processed first. In this case, failover time becomes 

much longer. Nevertheless, they remain short in absolute numbers. 

10.2 Evaluation of ADAPT-LB 

This section evaluates our unified Framework ADAPT-LB, providing fault-tolerance and load-balancing. 

We use two benchmarks. We first usea micro benchmark to test the effects of ADAPT-LB on the 

AS, without considering the replication effects on the database. In the micro benchmark each client 

request performs operations on stateful session beans associated with the client but the database is 

not accessed. Clients connect to the.system and then run for 10 seconds continuously submitting 

requests before they disconnect. All requests trigger transactions with similar load. We also use 

the ECPerf benchmark, which involves significant access to the database. Unless otherwise stated, 

experiments were performed on a cluster of 64-bit Xeon machines (3.0 GHz and 2G RAM) running 

RedHat Linux. In all our settings, each FTG consists of one primary and two backups. In this suite 

of experiments, we also use JBoss Clustering as the comparison framework. However, in this case, 

we use a load-balancing configuration. In our configuration, every machine in the cluster of JBoss 



Chapter 10. Experiments and Evaluation 163 

600 

500 

400 

300 

200 

100 

0 

• --a---RP/JBoss 

—*—RP/ADAPT-SIB 

. RP/ADAPT-LB 

- • x- • RP/JC/RoundRobin 

A „ 

J^ xr' 

1 2 3 4 5 6 7 8 9 10 (1 12 13 14 15 16 

Number of clients starting (per second) 

•g 500 
o 

2 400 

% 
S 300 
E 

3 

l 2°° 
S 
S too 
E 
H 

0 

. . - o . TP/JB0SS 

t TP/ADAPT-SIB 

- • » . - TP/ADAPT-LB 

- X - - TP/JC/RoundRobin 
x . x - x - x 

. x " 

- 1 • * ' 

x^ •^i-*—*-jr IQ-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Number of clients starting (per second) 

(a) Response Time (b) Throughput 

Figure 10.10: Performance improvement 

Clustering can process client requests, but no bean instances are replicated, i.e., fault-tolerance is 

not provided. JBoss clustering can be configured to integrate fault tolerance and load balancing 

together. Then, each machine will replicate its state to all other machines. But as we have seen in 

the previous section, the fault-tolerance mechanism of JBoss is very inefficient and does not provide 

correctness. Hence, we switch it off in this experiment. 

10.2.1 Experiment 1: Basic Performance 

In this experiment we have a first look at the performance of our unified architecture when no 

replicas leave or join thesystem. In Figure 10.10, JBoss refers to a standard single-node non-

replicated JBoss application server without fault-tolerance. All other configurations use three ma­

chines. ADAPT-SIB refers to a system running the ADAPT-SIB algorithm but no load-distribution, 

i.e., there is one FTG but no LDG. ADAPT-LB refers to the unified architecture with one LDG using 

our load-balancing approach and several FTGs running ADAPT-SIB. JC/RoundRobin refers to a 

replicated cluster that uses the Round-Robin request distribution of the load balancing configuration 

of JBoss Clustering. 

The figure shows response times in figure (a) and the throughput in figure (b) with increasing 

number of clients injected in the system per second. In the legend, throughput results are prefixed 

with TP and response times with RP. The non-replicated JBoss and ADAPT-SIB saturate when 6 

clients are injected per second after which the throughput decreases. The maximum throughput 
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Figure 10.11: Scale-up homogenous setup Figure 10.12: Scale-up heterogeneous hardware 

for the non-replicated JBoss is 195 txn/sec and 130 txn/sec for ADAPT-SIB. As we have seen 

in the previous section, fault-tolerance adds overhead, and the maximum achievable throughput 

is smaller for ADAPT-SIB. The backups do not contribute to work distribution. The proposed 

ADAPT-LB is able to increase the throughput up to 12 clients with a peak of 380 txn/sec. JBoss' 

round-robing clustering can increase the throughput up to 15 clients with a peak of 480 txn/sec 

(TP/JC/RoundRobin). It outperforms ADAPT-LB since ADAPT-LB performs additional fault-

tolerance measures. 

Response times show similar results. For the non-replicated JBoss and ADAPT-SIB clients com­

pete soon for resources. Response times increase early and deteriorate quickly after the saturation 

point. ADAPT-SIB has higher response times than a non-replicated JBoss, since the primary has 

to perform the state change collection and propagation. As we discussed before, ADAPT-SIB has 

similar response time behavior as other fault-tolerance algorithms [72]. In contrast, ADAPT-LB and 

JC/RoundRobin have low response Jimes for all client numbers due to load distribution. Thus, each 

node is less loaded and can provide faster service. While ADAPT-LB has higher response times than 

JC/RoundRobin the difference is smaller than between ADAPT-SIB and the non-replicated JBoss, 

because ADAPT-LB is able to distribute the fault-tolerance overhead across all replicas. That is, 

our approach truly serves both fault-tolerance and scalability. 
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10.2.2 Experiment 2: Scalability 

In this experiment we analyze whether our unified approach allows for sufficient scalability by 

running the micro benchmark on an increasing number of replicas. For each configuration we deter­

mine the maximum achievable throughput by adjusting the number of clients injected in the system 

per second. Figure 10.11 shows how the throughput increases when we increase the number of 

machines from 3 to 20. One graph shows the "ideal" throughput as the product of the number of 

machines and the maximum achievable throughput on a machine using the ADAPT-SIB primary al­

gorithm (i.e, the machine is not backup at the same time). The two other graphs show our framework 

solution (ADAPT-LB) and JBoss' round-robin balancer (JC/RoundRobin). In both cases, through­

put increases linearly with the number of replicas. Due to fault-tolerance activity on each node, 

ADAPT-LB achieves generally less throughput than JC/RoundRobin. But even JC/RoundRobin 

does not provide ideal throughput since the integration of load-balancing has its own overhead. In 

summary, our solution provides good scalability and at the same time provides fault-tolerance. 

10.2.3 Experiment3: Heterogeneity 

Heterogeneity is a challenge for load-balancing techniques. We fist analyze the impact of het­

erogeneous hardware by replacing half of the machines with PHI machines (850 MHz and 256M 

RAM). As the forwarding mechanism described in Section 8.3.2 extends the simple random mech­

anism exactly for the purpose of handling heterogeneous environments, we analyze two different 

versions of the ADAPT-LB system. We use ADAPT-LB with only random load-balancing with­

out forwarding, denoted as ADAPT-LP/Random, and ADAPT-LB with forwarding, denoted as 

ADAPT-LB/FLTF. We again compare with JBoss' round-robin load-balancer (JC/RoundRobin). 

Figure 10.12 shows the maximum achievable throughput when we increase machines from 3 to 20. 

In general, the throughput is lower than in the homogeneous environment (Fig. 10.11), since half 

of the machines are now weaker. ADAPT-LB/Random is the worst because random assignment 

ignores heterogeneity and fault-tolerance adds overhead. ADAPT-LB/FLTF and JC/RoundRobin 

have similar performance despite the fact that ADAPT-LB has the fault-tolerance overhead. 

A more detailed throughput analysis helps to explain the results. Figure 10.13 shows the 
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Figure 10.13: Throughput distribution Figure 10.14: Response time distribution 

throughput on each machine when the cluster contains 20 machines. Machines 1 to 10 represent 

the weak nodes. The figure shows that, compared to JC/RoundRobin, ADAPT-LB/FLFT has lower 

throughput on the weak and higher throughput on the strong nodes. This is because with ADAPT-

LB/FLFT weak nodes forward requests that are then executed by the strong nodes. Thus, ADAPT-

LB/FLTF compensates the overhead of fault-tolerance by a smarter load-balancing strategy which 

assigns more tasks to the stronger nodes. 

Figure 10.14 shows the corresponding response time distribution. ADAPT-LB/Random has very 

high response times for weak nodes since they are saturated. Using JC/RoundRobin, weak nodes 

show worse response times than with ADAPT-LB/FLFT, which puts less load on the weak nodes. 

Strong nodes have low response times for all solutions because the bottleneck in the heterogeneous 

environment are the weak nodes. Since ADAPT-LB/FLFT puts more load on the strong nodes, it 

has slightly higher response times than the other two on these nodes. 

In the second heterogeneity tesjl, all machines are back to being the same but we add an addi­

tional very heavy client transaction to the micro benchmark with an average response time of around 

2000 ms. We only compare ADAPT-LB/FLTF with JC/RoundRobin. At the beginning of this test, 

a cluster consisting of 6 machines runs the micro benchmark for about 30 seconds. Then we arti­

ficially inject the heavy transaction into the system. We refer to the machine executing the heavy 

transaction as HC. The other machines are denoted as LC. Figure 10.15 (a) has as x-axis time slots 

of 100 ms and as y-axis the average response times within a time slot. The heavy transaction starts at 
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Figure 10.15: Heterogeneous workloads 

time slot 5. Before injecting the heavy transaction, HC and LC have the same response times which 

are higher for ADAPT-LB/FLTF because of the fault-tolerance overhead. Using JC/RoundRobin, 

the HC response times increase to around 400 ms after the injection of the heavy transaction be­

cause the HC machine becomes saturated. The response times on the LC group remain the same 

because they are not affected. Using ADAPT-LB/FLTF, response times on the HC machine in­

crease for the first 5 time slots after the heavy transaction is injected. This represents transactions 

of clients that were already assigned to HC when the long transaction arrived. Then there is a long 

gap, since HC does not accept any further clients anymore according to the forwarding strategy. 

At time slot 27 the long transaction finishes (with a long response time). After that HC again ac­

cepts clients providing standard response times for them. While the heavy transaction is running on 

HC we observe longer response times at the LC machines because HC redirects clients to them, 

and thus they are more loaded. In total, response times are less affected using ADAPT-LB/FLTF 

compared to JC/RoundRobin which has unacceptable high response times for some of the clients. 

Figure 10.15 (b) shows the throughput distribution during normal processing and while the 

heavy transaction is running. Without heavy transaction, ADAPT-LB and JC/RoundRobin have the 

same throughput on HC and LC machines. JC/RoundRobin has higher throughput because there is 

no fault-tolerance overhead. However, during processing the heavy transaction, the average through­

put on the LC group of ADAPT-LB/FLTF is higher than the throughput of JC/RoundRobin, since 
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the FLTF algorithm forwards more transactions on the LC group. For the same reason, the through­

put on the HC machine of ADAPT-LB/FLTF is less than the throughput of JC/RoundRobin on the 

HC machine. In absolute numbers, ADAPT-LB has 5*2 transactions / 100 ms more on LC and 3 

transactions / 100 ms less on HC. Thus, in total, it has a higher throughput than JC/RoundRobin 

when the heavy transaction is injected. 

In summary, our load-balancer can easily handle heterogeneous configurations and workloads 

being able to dynamically distribute the load according to the conditions on individual replicas even 

if inequalities only exist for short periods of time. It can achieve this without maintaining any 

global knowledge or knowing about the application semantics. Instead, it adds a simple forwarding 

mechanism exploiting the existing FTG groups. 

10.2.4 Experiment 4: ECperf Benchmark 

In this experiment, we conducted similar scalability experiments based on the ECperf benchmark 

in both the homogeneous environment and the heterogeneous environment (with two kinds of ma­

chines). In the ECperf benchmark, the throughput is measured by the business operations (BBops) 

processed per minute. Figure 10.16 shows the maximum achievable throughput for the ECperf 

benchmark for ADAPT-LB (here again only using the standard FLTF Strategy) and JC/RoundRobin. 

Generally, scalability is worse than with the micro benchmark and throughput even decreases with 

large number of machines. The reason is that ECperf contains considerable database access and 

the database becomes the bottleneck. One would need a stronger machine for the database server 

or database replication would be needed. In both homogenous and heterogeneous environments, 

JC/RoundRobin has slightly better throughput than ADAPT-LB with a small number of machines 

but behaves similar with many machines as ADAPT-LB can distribute the fault-tolerance overhead 

better with increasing number of machines. For heterogenous environments, the saturation point is 

later than in the homogeneous environment. The reason is that the throughput is generally lower, 

and thus, the database becomes the bottleneck later. 

This experiment confirms our previous results. We are able to combine fault-tolerance with load 
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Figure 10.17: Reconfiguration: Failover Figure 10.18: Reconfiguration: Recovery 

distribution achieving scalability as long as the AS is the main bottleneck. The advantage of hav­

ing the forwarding strategy compared to a simple round-robin strategy compensates the additional 

overhead for fault-tolerance. 

10.2.5 Experiment5: Reconfiguration 

In this experiment, we show the-detailed behavior of the ADAPT-LB system during and after re­

configuration. We first analyze thebehavior of the system itself at the time of failover and recovery. 

Then, we compare the behavior of the ADAPT-LB system with the behavior of a typical alternative 

solution. 

One goal of ADAPT-LB is to facilitate smooth and fast reconfigurations in order to be able to 
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provision the system dynamically if the need arises. The following experiments show the behavior 

of ADAPT-LB during and after reconfiguration. We use the micro-benchmark and a homogeneous 

environment. 

We first look at node failures. We have a cluster of 6 replicas (r\,..., r$) running the micro 

benchmark for about 30 seconds when replica rs crashes. We distinguish three types of replicas. 

NP (new primary) indicates the replica r± that takes over the clients of the failed replica r$. B 

indicates replicas that have to reconfigure their backups (rs and r§). NI indicates all other replicas 

on which the failure has no impact (r\ and r2). Figure 10.17 has as x-axis time slots of 100 ms, and 

as y-axis the average response time within a time slot. The crash occurs at time slot 5. 

Before the crash, the average response time is similar in each group. After the crash, the re­

sponse time on NP drastically increases because it requires considerable resources to perform the 

failover. This process takes about 300-400 ms. After that, the average response time is still higher 

than on the other groups because NP has now double the clients. The response time in B also 

increases (it shortly doubles) because the state transfer that takes place to include the new backups 

takes some of the resources. The recovery process to become a backup takes less than 100 ms. 

However, the response time on B remains higher and actually also increases on NI. The reason is 

that there is now one less replica in the system to execute requests. Furthermore, since NP is still 

higher loaded, the replicas in B and NI accept more of the newly injected clients. Eventually, once 

NP has stabilized, the system becomes balanced again. The average response time on all remaining 

replicas converges eventually to the same value (although not shown in the figure). However, this 

value is now higher because there is one less replica in the system to serve requests. 

Figure 10.18 shows how the join of a new (recovered) replica affects the response time of the 

client transactions. At the beginning, the cluster has again 6 replicas. A new replica rj joins the 

system at the 5th slot (the time is counted when the server begins the LBM, and does not include the 

time to start the server from scratch). We distinguish between the new replica NR (i.e., 7-7), replicas 

B (i.e., ri and r2) that have to change FTGs and replicas NI with no direct impact. For B we see 

that the response time doubles for a short period of time, similar to the failure case. The response 

time on the NI replicas is lightly affected due to sending recovery data to NR. NR starts accepting 

client requests at the next time slot after recovery. Shortly after recovery, the response time is not 
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Figure 10.19: Comparison of failover operations 

stable since some initialization process on the machine might not be completed yet. Eventually, all 

replicas converge to the same average response time. It is lower than before the join since there is 

now one more machine allowing for better load distribution. 

As a final experiment, we compare ADAPT-LB with an alternative solution. Using JBoss' 

round-robin architecture without fault-tolerance, when a replica crashes, each client originally con­

nected to the failed replica connects to any of the correct replicas and resubmits all requests from the 

beginning of the session. We call this solution the re-execution solution. Note that this only works 

correctly if the requests do not trigger changes on permanent components because these changes 

are already in the database and should not be applied again. Thus, the solution is not applicable for 

ECPerf but can be used for the micro-benchmark. 

We again use 6 machines and crash one replica at time slot 5. This time, we group response 

times by client type. FC clients were originally connected to the crashed replica, and NFC are all 

other clients. Figure 10.19 shows the average response time over time. In ADAPT-LB, one replica 

takes all FC clients (and has additionally NFC clients). As long as this new primary performs 

failover, the FC are blocked. Therefore, there is a gap for FC clients where no response times are 

measured. Once execution resumes there is a peak in average response times as failover time is part 

of the response time. NFC clients on the new primary and also on other replicas are also affected, 

but much less (as discussed before). Response times for both FC and NFC quickly go back to 

normal levels. FC have still higher average response times than NFC clients since their primary 
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serves more clients in total. However, as new clients are prone to be distributed to other replicas due 

to the forwarding strategy, the response times of NFC and FC converge. 

In the re-execution solution, FC clients are distributed over all replicas, which have to execute 

historical requests for them. This is a heavy task. For FC, the replay takes at least 10 time slots 

where no response is created. In general, response times stay high for all clients for a long time and 

only go down gradually because the machines are overloaded with the replay process. A peak in 

the graph of the FC clients occurs when one of these clients finishes the failover process, pushing 

the average response time for these clients up for this time slot. This shows that if replicas should 

be used for both load distribution and fault-tolerance then it is paramount to have a fast failover 

procedure as provided by ADAPT-SIB in order to keep the system responsive during failover times. 

A replay solution seems too expensive. 

In Figure 10.19 (b), we repeat the same test for a cluster with 20 replicas. Two replicas are 

crashed at time slot 5 (namely the crash rate is about 10%). In this figure, the result of the proposed 

framework is similar to that of the previous test. However, the result for the re-execution solution is 

better than for the previous test. This is because the crash rate now is lower, and hence, each replica 

will be assigned with less FC clients. 

This experiment has shown if replicas should be used for both fault tolerance and load distrib­

ution, then it is paramount to have a fast failover procedure in order to keep the system responsive 

during failure time. A replay solution will be expensive if it cannot be distributed well. 

In summary, our approach can handle failures and recovery transparently and dynamically. Re­

configuration affects the client response times only shortly, and is relatively localized to few ma­

chines. 



Chapter 11 

Conclusions and Future Work 

11.1 Summary 

With application servers (AS) being a fundamental building block for web based applications, re­

liability, availability, and scalability are highly required guaranteeing 7/24 access and high perfor­

mance. Replication is a common means to provide fault tolerance and facilitate load balancing. 

This dissertation presents novel AS replication solutions that are able to handle various execution 

patterns, that provide good performance, and that can be easily integrated into existing AS products. 

11.1.1 Correct Replication for Different Execution Patterns 

AS is a typical middleware that links clients and the backend database. As failure and AS replication 

do not only affect the AS tier itself but also the client tier and the database tier. Hence, it is necessary 

for an AS replication algorithm to consider correctness from the viewpoint of the entire system 

including the client tier, the AS tier, and the database tier. However, in practice, many AS replication 

solutions do not address this issue, and hence do not guarantee that the replicated AS behaves 

as a non-replicated non-faulty AS. We address this issue and identify a set of execution patterns 

that describe the behavior of an AS and its interaction between clients and the backend database. 

We observe that the crash of the AS affects clients because it interrupts the execution of client 

requests, while it affects the database because it interrupts the execution of transactions. Hence, we 
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define execution patterns in terms of different associations between client requests and transactions 

correlating clients, AS, and the backend database and thus, the entire system. 

We formally describe the correctness requirements for AS replication based on different execu­

tion patterns, and accordingly propose a suite of replication algorithms in ADAPT-SIB framework. 

The general base of all algorithms in ADAPT-SIB is that one primary executes client requests and 

replicates state changes performed by a transaction to backups at commit time. We guarantee that 

consistency is maintained if the AS crashes at any time during execution. For most algorithms we 

provide a full proof of correctness. 

11.1.2 Performance 

Replication means extra overhead which is the price for fault tolerance. We carefully tune the per­

formance of ADAPT-SIB algorithms and only add 15% extra overhead for JBoss AS, outperforming 

the JBoss Cluster replication algorithm. Furthermore, we provide a quick failover guaranteeing high 

availability. 

In order to provide high scalability, we build ADAPT-LB load balancing solution based on 

ADAPT-SIB framework to offer an integrated solution providing both fault-tolerance and load bal­

ancing. In ADAPT-LB, each server acts as a primary to serve some of the client requests and at the 

same time stores state changes occurring on some other servers for fault-tolerance. It dynamically 

and transparently takes advantage of all resources in the cluster. It uses an effective, fully distrib­

uted load-balancing strategy that fits well with the completely distributed fault-tolerance solution. 

Our J2EE based implementation shows that we can in fact take advantage of the full power of all 

machines to provide fast response times, high throughput and high reliability, even in heterogenous 

environment. 

11.1.3 Practicability 

When developing our solution we always had a real system in mind. On the one hand, this led us 

to identify the advanced execution patterns. On the other hand this required to develop a solution 

that can also be implemented and integrated into a real system. Thus, our ADAPT-SIB replication 
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tool provides a suite of replication algorithms that can handle realistic execution patterns, without 

affecting the implementation on the client tier and the database tier. Furthermore, ADAPT-SIB tool 

is implemented as a pluggable module for the JBoss AS that does not affect the original implemen­

tation of the JBoss system and could be easily migrated to other AS systems. 

Furthermore, ADAPT-LB solution provides a truly distributed load distribution algorithm. It is 

as simple and lightweight as content-blind approaches as it follows random distribution in underload 

situations but automatically switches to a content-aware approach when the load level of a replica 

reaches a critical threshold. Moreover, the content-aware mode takes advantage of the fault toler­

ance framework to distribute the load and does not introduce a complex or centralized distribution 

component. Hence, it can be easily implemented and deployed on an AS system that already uses 

ADAPT-SIB framework for fault tolerance. 

11.2 Future Work 

One major future work is to apply ADAPT-SIB and ADAPT-LB tool to other middleware systems. 

Nowadays, the multi-tire architecture is used everywhere. While the multi-tier architecture likely 

continues to dominate web-based applications, it is changing in structure, moving away from the 

traditional 4-tier architecture and consisting of multiple fine-grained or coarse-grained tiers. For ex­

ample, on the micro level, a traditional AS might be deployed as a multi-tier distributed system, in 

which communication/message management, security management, service management and data 

management are deployed as different tiers. Each of these fine grained tiers manages a specific 

functionality, providing good resource distribution and easy maintenance. On the macro level, fol­

lowing the new trend of service composition based on service oriented architectures, new enterprise 

applications might be built upon composite multi-tier architectures, each tier of which is a normal 

4-tier architecture. In both cases, we can see the trend that more and more middle tiers will be po­

sitioned in future applications; and many of them are stateful. One of the most obvious flaws of this 

trend is that the more tiers a system has, the bigger the challenge to provide reliability, availability, 

and scalability. Hence, an interesting future work is to analyze how to apply ADAPT-SIB and the 

ADAPT-LB replication tools to these advanced middle-tiers architectures. 
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In different middle tiers, the content to be replicated and the right time point for state exchange 

might be different from the ADAPT-SIB. However, the general idea to take interaction between 

tiers into account and to analyze the correctness in terms of the effects on different tiers are still 

valid, considering that the request/response model is still widely used for many middle tier systems. 

Although there might not exist transactions, the non-transactional extension described in Section 7.3 

could be applied to these systems and then be adapted according to the properties of their backend 

systems. 

11.2.1 Enhancement to Handle Shared Data 

In ADAPT-SIB replication tool, we don't consider the replication of shared data since it is assumed 

to be synchronized with the database. The correctness criteria developed in this thesis do not take 

the state changes on shared data into account. However, with this, caching cannot be exploited very 

well. The major relevant problem is how to handle concurrent accesses on the shared data. When 

all accesses are supposed to be executed on a single primary, replication of shared data can be easily 

handled. However, if accesses could occur on different replicas, e.g., in the load balancing approach, 

distributed concurrency control mechanisms have to be adopted while replicating shared data [84]. 

As well, the correctness criteria have to be adjusted to reflect the requirements of concurrency 

control. 

11.2.2 Replication across a WAN 

In ADAPT-SIB and ADAPT-LB tool, all AS replicas are assumed to be located within the same 

LAN. This makes sense for a typical 4-tier architecture since AS is the center server in such a sys­

tem. However, when considering service composition, different middle tier systems of a composite 

architecture are normally distributed across a WAN. This might lead to replication across the WAN 

to achieve fast local access and high availability. However, coordination across a WAN is more 

expensive and using a GCS or having eager replication might not be feasible. Also, load-balancing 

might not be as important as providing clients services close to where they are. ADAPT-SIB and 

ADAPT-LB need to be revisited to see whether they can be adjusted for WAN purposes. 
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11.2.3 Extension of ADAPT-LB 

The general load-balancing mechanism of ADAPT-LB can be applied to any middle tier which re­

quires both fault tolerance and load balancing. If the replicated middle tier has a single backend 

database, this backend will quickly become the bottleneck while the middle-tier, using ADAPT-LB, 

can adjust to the load. In order to solve this problem, the backend has to apply a load balancing ap­

proach as well. There are two typical potential solutions. One solution is to use a replicated backend 

that has its own independent replication solution which is transparent to the middle-tier [64]. An­

other solution is to let each replica of the replicated middle tier have its own separate backend [84]. 

We are planning to investigate both solutions and their integration with ADAPT-LB. 
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