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ABSTRACT

In recent years, multi-tier architectures have become the standard computing environment for web-
and enterprise applications. The application server tier is often the heart of the system embedding
the business logic. Adaptability, in particular the capability to adjust to the load submitted to the
system and to handle the failure of individual components, are of outmost importance in order
to provide 7/24 access and high performance. Replication is a common means to achieve these
reliability and scalability requirements. With replication, the application server tier consists of
several server replicas. Thus, if one replica fails, others can take over. Furthermore, the load can be
distributed across the available replicas. Although many replication solutions have been proposed
so far, most of them have been either developed for fault-tolerance or for scalability. Furthermore,
only few have considered that the application server tier is only one tier in a multi-tier architecture,
that this tier maintains state, and that execution in this environment can follow complex patterns.

Thus, existing solutions often do not provide correctness beyond some basic application scenarios.

In this thesis we tackle the issue of replication of the application server tier from ground off
and develop a unified solution that provides both fault-tolerance and scalability. We first describe
a set of execution patterns that describe how requests are typically executed in multi-tier architec-
tures. They consider the flow of execution across client tier, application server tier, and database
tier. In particular, the execution patterns describe how requests are associated with transactions,
the fundamental execution units at application server and database tiers. Having these execution
patterns in mind, we providéra formal definition of what it means to provide a correct execution

across all tiers, even in case failures occur and the application server tier is replicated. Informally, a
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replicated system is correct if it behaves exactly as a non-replicated that never fails. From there, we
propose a set of replication algorithms for fault-tolerance that provide correctness for the execution
patterns that we have identified. The main principle is to let a primary AS replica to execute all
client requests, and to propagate any state changes performed by a transaction to backup replicas
at transaction commit time. The challenges occur as requests can be associated in different ways
with transactions. Then, we extend our fault-tolerance solution and develop a unified solution that
provides both fault-tolerance and load-balancing. In this extended solution, each application server
replica is able to execute client requests as a primary and at the same time serves as backup for
other replicas. The framework provides a transparent, truly distributed and lightweight load distri-
bution mechanism which takes advantage of the fault-tolerance infrastructure. Our replication tool
is implemented as a plug-in of JBoss application server and the performance is carefully evaluated,
comparing with JBoss’ own replication solutions. The evaluation shows that our protocols have

very good performance and compare favorably with existing solutions.



ABREGE

Au cours des derniéres années, I’architecture multi-tiers est devenue la norme pour le développement
d’applications Web et d’entreprise. Dans cette architecture, le serveur d’applications représente
souvent le ceeur du systéme encapsulant la logique de traitement. La capacité d’un tel systéme a
s’adapter a la charge soumise et a gérer les défaillances des composantes individuelles sont d’une
importance capitale afin de fournir un accés permanent et performant a I’application.

La réplication est un moyen trés utilisé pour atteindre la fiabilité et I’extensibilité requises. Avec
la réplication, le serveur d’applications dispose de plusieurs copies. Ainsi, si une copie ne parvient
pas a répondre a une requéte, les autres peuvent prendre la releve. En outre, la charge peut &étre
répartie entre les copies disponibles. Bien que de nombreuses solutions de réplication aient été
proposées, la plupart d’entre elles ont €té congues soit pour résoudre le probléme de tolérance aux
fautes, soit pour résoudre le probléme d’extensibilité. En plus, seules quelques unes ont considéré le
fait que le serveur ne représente qu’un seul niveau dans 1’architecture multi-tiers et que ’exécution
dans cet environnement peut suivre des patrons complexes. Ainsi, souvent les solutions existantes
ne prévoient pas I’exactitude au-dela de quelques scénarios de base.

Dans cette thése, nous abordons la question de la réplication du serveur d’applications ainsi que
le développement d’une approche de réplication qui unifie la tolérance aux fautes et 1’extensibilité
du systéme. Pour adresser ce point, nous avons d’abord identifié un ensemble de patrons d’exécution
qui décrivent comment les requétes sont généralement exécutées dans les différents niveaux de
I"architecture. Ces patrons considérent le flux d’exécution a travers le client, le serveur, et la base
de données. En particulier, ils décrivent comment les requétes sont liées & des transactions et des

unités d’exécution fondamentales au serveur d’applications et aux bases de données.



Ayant ces patrons, nous fournissons une définition formelle de I’exécution correcte dans tous
les niveaux de I’architecture, méme dans le cas ot des défaillances se produisent et le serveur
d’applications est répliqué. Officieusement, une réplication d’un serveur est correcte si elle se com-
porte exactement comme si le serveur n’a jamais fait face a des défaillances. De 13, nous proposons
une série d’algorithmes de réplication pour la tolérance aux fautes qui assurent I’exactitude des
patrons d’exécution que nous avons identifiés. L’idée principale est de laisser une copie primaire
exécuter toutes les requétes des clients, et de propager tout changement d’état aux copies de sauve-
garde quand la transaction est validée. Les défis résident dans le fait que les requétes peuvent étre
associées aux transactions de différentes maniéres. Ensuite, nous étendons notre solution pour pren-
dre en considération la tolérance aux fautes et I’équilibrage de charge entre les serveurs. Dans cette
solution, chaque copie du serveur d’applications est en mesure d’exécuter les requétes des clients
comme une copie primaire et en méme temps elle sert comme sauvegarde pour les autres copies.
Cette plate-forme offre un mécanisme de répartition de la charge qui est transparent, distribué, 1éger
et qui profite de I’infrastructure de la tolérance aux fautes. Notre outil de réplication est implémenté
comme un plug-in du serveur d’applications JBoss. Les performances ont été évaluées avec soin,
en les comparant avec les solutions de réplication JBoss. L’évaluation montre que nos protocoles

ont de trés bonnes performances et qu’elles dépassent celles des solutions existantes.
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Chapter 1

Introduction

1.1 Motivation

In recent years, with the rapid growth of the Internet, more and more enterprise applications are
established using web technology. Typical web-based applications are using a 4-tier architecture,
which consists of client tier, web server tier (WS), application server tier (AS), and backend database
tier. In such an architecture, clients first send requests to a WS, which processes presentation logic,
such as generating web pages. Then, the request is passed to an AS, which processes business
logic (e.g., maintaining a shopping cart, executing a purchase operation, etc.) and accesses database
systems to manage persistent data. WS and AS together are also called the middle tier.

Clients of the WS are usually the real clients of the application and are connected via the In-
ternet. The client of the AS is the WS, and the AS is the client of the backend database. Both WS
and AS can contain volatile state that can exist beyond the execution of individual requests. We say
such systems are stateful. Figure 1.1 shows a typical example of a web based application, where a
client buys a book online. The client submits the purchasing request through the web page of an
online book store like Amazon. The request is first parsed on the WS and then passed to the AS. The
AS processes the purchase that includes adding the book to the client’s shopping cart and executing
the payment. The records about the purchase and the payment are stored at the backend database.

The request execution on the AS including the accesses to the database are typically transactional
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r Middle tier
A shopping -
_..Online shopping  { | ¢ LLAbuye: cart
(Abuysbook ) | obage of ¥(E) Database
Client A Web Server Application Server

Figure 1.1: Online shopping: an example of a web based application

in order to provide durability for the persistent data, isolation from concurrent transactions, and
atomicity. Nowadays, web-based applications, such as online stores, online banking, online games,
and online communities, are growing very fast, involving people all over the world, and influencing
almost all areas of our life.

The AS is the heart of the typical 4-tier architecture executing the kernel logic. The use of
AS technology is growing very fast along with the increasing market of web-based applications.
With 400 million web sites already in existence and growing, the need for AS is growing. As
reported in [105], the AS market at $1.5 billion in 2003, is expected to reach $5.2 biilion by 2009.
In many web-based applications, the AS executes crucial and heavy loaded tasks, demanding to
be accessible on a 7/24 basis and to provide short response time to users. Both AS’s fast growing
market and AS’s vital positivoh' in web-based applications strongly require the AS tiers to be highly
adaptable, in particular, to provide high reliability, availability, and scalability. Special challenges
exist for the adaptability of ‘sta_lteful AS due to the difficulties of managing the volatile state at the
AS. o

Motivated by these requirements, this dissertation focuses on using replication to implement
adaptable stateful AS. This dissertation studies fault tolerance to address reliability and availability,
and studies load balancing to address scalability. Replication is used to provide extra resources to

both tolerate failures and to distribute load.

1.1.1 Replication for Fault Tolerance

Replication is an essential mechanism to tolerate failures by allowing a system to have more replicas

to backup data or actions. It can be used in every tier of a multi-tier architecture. The basic idea is
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to let a tier have several replicas. When one replica of the tier fails, other replicas can take over and
continue the work assigned to the failed replica. Replication can be either active or passive. In an
active scheme, a request is sent to and executed at all replicas. When a replica fails, other replicas
continue execution. In a passive scheme, only the primary replica executes the request, and other
replicas backup the data changes executed at the primary replica. If the primary fails, one of the
backups becomes the new primary to take over request execution.

Replication of the database tier has been well studied, e.g., [17, 104, 2, 24, 64]. Most DBMSs
(database management system) already use replication to tolerate failures, such as Oracle Real Ap-
plication Clusters (RAC), Microsoft SQL Server 2000 Failover Clustering, and IBM’s DB2 repli-
cation solution. Replication is also widely used for middle tier systems, as proposed in, e.g.,
[29, 72, 73, 74, 46, 41, 114, 113, 11, 10, 62]. Both the prevailing WS products (e.g., Apache,
Tomcat, and Microsoft 1IS) and AS products (e.g., BEA WebLogic, IBM WebSphere, JBoss and
Microsoft .NET) have their own replication solutions. Most middle tier systems use passive replica-
tion since it requires less resources and less management overhead, and allows for non-deterministic
execution.

Nevertheless, replication of the middle tier still has many open questions. A crucial problem is
how to guarantee correctness in a replicated middle tier system. To solve this problem, we have to
clarify what correctness means for such a system. Informally speaking, correctness of a replication
algorithm requires the replicated system to act in the same way as a non-faulty non-replicated sys-
tem. However, the standard behavior of such a middle tier system is not clearly defined yet. Most
of the existing solutions only assume quite simple semantics for request execution across the tiers.
When an application does not follow the basic execution model, corresponding replicated systems
might expose incorrect behavior. So far, however, only few approaches (e.g., [11, 114]) consider
the more complex execution models that often occur in real systems.

This problem is very severe for the AS tier. The business logic processed at the AS might be
very complex. A particular challenge is that the execution of client requests at AS and database can
be associated with transactions in different ways. The simplest association is that each client request
executes within an individual transaction. That is, all read and write operations on data residing on

the AS and/or the database take place in a single transaction. For example, as shown in figure 1.1,
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when a WS receives a request to buy a book from a web client, it submits only one request to the
AS to be executed within a single transaction. Most of the existing solutions assume this simple
association. In practice, however, execution can be more complex. At the one extreme, the AS’s
client, namely the WS, can start a transaction, and then submit several requests in the context of this
transaction before committing it. For instance, within a purchase transaction, the WS might submit
several requests to the AS to retrieve the book and make the payment. At the other extreme, a
client request might create several independent transactions. For example, application programmers
often chop the execution of a request into a set of small transactions to avoid lock contention at the
database. Existing solutions will simply not work correctly if an application follows such advanced
execution models. As a result, there is a large gap: the AS required to be replicated is usually
used in critical environments with heavy load and high possibility of failures, but existing solutions
cannot guarantee correct fault tolerance for the AS under such circumstances. In order to bridge
this gap, this dissertation analyzes execution patterns that are used in practice to associate requests
and transactions and proposes a set of replication algorithms, each of which provides the correct
replication semantics for a different pattern. Our algorithms follow the passive scheme, i.e., a
primary executes requests, backups can take over in the failure case.

Another major challenge is how to prove the correctness of these algorithms. So far, much of the
research on correctness of replication of middle tier systems looks at specific aspects by considering
specific replication abstractions (e.g., relation between replication and failure types [22], total order
broadcast of requests [88], or consensus [25, 31]), but falls short of considering the global picture
(different replicated systems, different application semantics, interaction with other tiers, etc.). Only
a few approaches (e.g. [44] and [33]) present a formal correctness criteria for replication of middle
tier systems. However, these criteria are usually built on some specific assumptions or for some
spe(;iﬁc environments. Hence, another effort of this dissertation is to define a suite of correctness
criteria for AS replication, and use it to prove the correctness of our replication algorithms.

Except for correctness, our replication algorithms also address two usability requirements. First,
the replication of the AS tier should not }equire any special support from other tiers. Ideally, the
other tiers are not even aware of the fact that the AS tier is replicated. In this way, the replicated

AS will be general enough to connect with different kinds of WS and backend DBMSs without
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changing the standard interaction models defined in the corresponding specifications. Thus, no
changes to the other tiers are needed. Secondly, since different execution patterns might be mixed
in an application, different replication algorithms need to be supported concurrently to automatically

adapt to the different execution patterns at runtime.

1.1.2 Replication for Load Balancing

Replication is also the major approach to implement load balancing. It increases the scalability of
a system by distributing the load across the replicas of the system. Typical load balancing solutions
for AS (or WS) use a centralized load balancer (also called scheduler) to manage the load dispatch.
A task is first sent to the load balancer. Then, the load balancer uses a content-blind policy or a
content-aware policy [4] to choose replicas to dispatch loads. In content-blind policies, such as
Random or Round Robin, the load balancer does not know the load on each site. These policies
can be easily implemented and hence, are widely used in practice, especially in most AS products,
such as BEA WebLogic, IBM WebSphere, and JBoss. However, they cannot work well when the
workload is diverse, or the system is heterogenous. A content-aware policy means the load balancer
has knowledge about the lo'ad:o'nv each replica, e.g., the CPU and memory resource utilization or
the response times. The load balancer can use the knowledge to optimize the load distribution and
orchestrate resources of all replicas.

Load balancing strategies are pervasively used in many enterprise applications, especially in
critical environments, where heavy load has to be processed. However, a crucial problem is that a
replication architecture should not only support load balancing, but also fault tolerance, since such a
critical environment is usually failure prone as well. In particular, this is a vital requirement for the
AS tier, since the core business 16gic is processed at the AS. In order to fulfill this requirement, an
intuitive way is to build a combined replication architecture that supports both load balancing and
fault tolerance. However, while réblication has been separately studied and applied widely for both
issues for a long time, only little research has been performed on providing a combined replication
solution to handle both in a single architecture.

This dissertation proposes’—a unified replication architecture, where a cluster of AS replicas is

used to balance load and tolerate failures. The main challenge to implement such a combined
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replication architecture is that the mechanisms to use replication respectively for scalability and
fault-tolerance are different and even conflicting, although both have a cluster of AS replicas. In
order to achieve scalability, load balancing algorithms use AS replicas as resources to execute client
requests. Ideally, the more replicas the cluster has, the higher the maximum throughput it can
achieve. In contrast, fault-tolerance algorithms use AS replicas as redundant resources that can
mask the failures of individual replicas. In both the passive and the active scheme, different replicas
have the same data or execute the same tasks. Apparently, the redundancy decreases the scalability.
Fortunately, the failure probability of an individual replica is low, and hence having two or three
running replicas are enough for most applications. In a passive schema, since tasks performed by
a backup typically require much less resources than executing requests itself, resources at backups
might often be wasted. Our approach does not waste resources as it lets each replica be a primary
for some clients executing requests and be a backup for some other servers at the same time.

A further challenge of load balancing strategies is the tradeoff between a precise load distri-
bution and the overhead of implementation, maintenance and management of the load balancing
strategy. As mentioned before, a content-aware policy can p;ovide precise load distribution using
the knowledge of the load at different re‘plicas. However, the exchange and the maintenance of load
knowledge among different replicas normally requires a significant overhead. The more precise
the load distribution is, the higher overhead the system needs to pay. Moreover, a centralized load
balancer is a stateful single point of failure and requires extra replication overhead for fault toler-
ance. A distributed load balancer is rarely used for AS because it is too complex to be implemented.
This dissertation addresses this issue by building an effective yet simple distributed load balancing

algorithm.

1.2 About This Work

The work of this thesis is part of the “ADAPT” (Middleware Technologies for Adaptive and Com-
posable Distributed Components) project, which is interested in developing support for the creation
of adaptable web services. Partners involved in this project are Universita di Bologna, Universita

di Trieste, Universidad Politécnica de Madrid, ETH Zurich, Universita di Trieste, University of
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Newecastle, HP Arjuna Labs, and McGill University.
In this context, my thesis focuses on replication solutions for AS, addressing fault tolerance and

load balancing. The following sections provide a detailed overview of the contributions.

1.2.1 Modeling Execution Patterns in a Multi-Tier Architecture

Informally speaking, a correct replication algorithm should guarantee that the replicated system,
despite the possibility of failures, works in the same way as a non-faulty non-replicated system.
Hence, to define the correctness criteria to be supported by the AS replication algorithm, we need to
model the behavior of a non-faulty non-replicated AS in a multi-tier architecture as the standard for
correctness. We use execution patterns to model the relationship between requests and transactions.
Due to the multi-tier architecture, the failure and the replication of the AS might not only affect the
AS itself, but also affect the client tier of the AS and the database tier linked to the AS. Hence, the
analysis has to take the client tier and the database tier into account.

The simplest execution pattern, referred as “1-1” pattern, indicates that each client request exe-
cutes within its own individual transaction. The N-1 pattern associates a transaction with more than
one client request, and the 1-N pattern associates a client request with more than one transaction.
For each execution pattern, we analyze different transaction termination behaviors. Then, we model
a failure of an AS by analyzing the side effect of the failure. To simplify the problem, the thesis
currently only focuses on crash failures.

Finally, we model the replicated AS, and formally define correctness criteria for AS replication.
Considering most practical AS products use passive replication schemes, our correctness criteria
currently only focuses on paééiVe replication schemes for simplification. However, we believe that

similar mechanisms can be used to describe other schemes, such as active replication.

1.2.2 Development of a Replication Tool for Fault Tolerance

Although there exist some research usmg actiQé replication (e.g., [69, 7, 35, 72]), and some consid-
ering a combination of active and passnve rephcatlon (e.g., [31, 32]), most practical solutions for

middle tier replication (e.g. [SI 45 43 41 73 11, 62}), especially those of commercial systems,
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use passive replication. Our replication tool also uses the passive approach.

In our solution, called ADAPT-SIB, a server replica is the primary executing client requests,
and other replicas are backups. The primary propagates state changes to the backups whenever
a transaction commits. [f the primary fails, a backup replica fails over, reconstructs the state of
the old primary, and continues the client connections. Requests that were active at the time the
primary crashed are automatically restarted at the new primary. The resubmission of requests is
automatically done by a special stub at the client side that is implicitly downloaded from the server
side without affecting the original client program. When requests are reexecuted after a crash, their
sub-requests to the database are required to be coordinated with original transactions before the
crash. To do so, we use a special agreement protocol using a marker mechanism similar to [43].
Unlike other coordination mechanisms, which either require additional support from the database
like [11] or change the interface between AS and database like [114], our coordination mechanism
does not require any additional support from the database, and uses the most common interface to
access the database. It also differs from traditional agreement protocols like 2-phase-commit [65]
since it has a highly reduced logging cost and does not require all participants to have executed the
request before terminating. As a result, our replication solution guarantees independence to other
tiers. We first design the réplication algorithm for the simplest 1-1 pattern (published in [109]).
Then, we extend the algorithm to support all execution patterns (published in [106]) and different
transaction termination behaviors.

Besides above main issues, the work of the thesis also includes miscellaneous technologies
associated with replication, such as designing and implementing a recovery strategy to allow failed
nodes to recover and rejoin the system.

Moreover, when dééighiﬁg the algorithm, we always keep performance in mind. In particular,
we address strategies to-speedup failover. Our performance analysis shows that the approach com-

pares favorably with other fault-tolerant solutions during normal processing, and has a fast failover.

1.2.3 Extension of the Replication Tool to Support Load Balancing

Based on the above ADAPT-SIB replication tool, we build an innovative AS replication solution

to provide load balancing ’Aaﬁd fault tolerance in a unified architecture called ADAPT-LB. Unlike
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ADAPT-SIB that just needs two or three replicas to support fault tolerance, ADAPT-LB can contain
a large number of replicas. The entire cluster of replicas constructs a single load distribution group
(LDG), where each member is a primary replica for some clients, executing the requests of this
subset of clients. At the same time, each replica is backup for some other replicas. We refer to the
group of one primary replica (executing requests) and the replicas that are backups of this primary
as fault tolerance group (FTG). Thus, each replica is the primary of a small FTG and is backup in
few other FTGs. As backup activity requires only few resources, the main capacity of each server
is used for request execution.

The system uses a truly distributed, lightweight load-distribution algorithm that takes advantage
of the existence of FTG groups. It does not require the maintenance of load information and keeps
communication overhead for load-balancing purposes low. When a replica joins the system, it joins
the LDG and creates a new FTG for which it is primary. When a replica fails or is removed from
the system, a backup replica takes over its tasks. As part of any join or leave operation, the FTG
configuration is adjusted to guarantee that all FTGs have a sufficient number of replicas and no
replica is overburdened with backup tasks.

The load distribution algorith'm' combines the content-blind and content-aware policies. This
way, the load balancing strategy can automatically adapt to the simple and low-overhead content-
blind policy in a homogeneous environment, and switch to the content-aware policy to achieve
precise load distribution in a heterogeneous environment., Furthermore, the load-balancing module

will quickly remove any load imbalance that might occur during reconfiguration.

1.2.4 Implementation of a Replicated Application Server

To make our replicaﬁbn tool practical, we have implemented our replication tool within the context
of a concrete AS arcﬁitecture, namely J2EE [94] and integrated it into the open-source AS JBoss
[49]. We choose the'j 2EE architecture because it is used very widely and it has many open-source
products. We believé, ’hbwever, that the principle ideas can be applied to other kinds of AS architec-
tures (e.g., CORBA; .NET), and hence, we keep the algorithmic description as general as possible.

The implementatidﬁ .c‘onsists of several parts. The implementation of the suite of ADAPT-SIB

replication algorithrhs is within a single replication package. The proper replication algorithm is
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dynamically chosen at runtime according to the execution pattern used. The replication package is
not directly linked to the JBoss environment. Instead, it is built on top of the ADAPT replication
framework [6], whose implementation was a joint effort of our partners from Universita di Bologna
and Universita di Trieste and us.

The ADAPT framework is an extension of a J2EE server, allowing replication algorithms to be
plugged in. On the upper side, the framework defines a set of APIs for the replication algorithm
to get state information and get control over requests and transactions. The replication algorithm
can be implemented using these APIs without considering the architecture of a certain AS. Under-
neath the API, the framework has to implement the provided functionality. The implementation is
highly compatible with underlying AS. In our implementation, the framework is based on the JBoss
environment, the Java transaction APIs, and JDBC 2.0. Hence, our replication tool can be easily
integrated into JBoss through the ADAPT J2EE replication framework.

To use ADAPT-SIB and ADAPT-LB for other J2EE products, we just need to change the

ADAPT framework without any change to our replication algorithm itself.

1.2.5 Contribution of this Thesis

In summary, this thesis makes three main contributions.

e Modeling: The thesis defines a formal model to describe the behavior of a non-faulty non-
replicated AS in a mu]ti-_fiet architecture. The model helps to analyze the correctness of an

AS replication algorithm, takin_g execution patterns into account.

e Performance: The thesis proposes replication protocols to support fault tolerance with good
performance, i.e.,-about 15%-extra-overhead compared to a non-replicated AS. The load bal-
ancing strategy proposed in this thesis significantly increases the scalability of the replicated

AS for both homogeneous-and heterogeneous environments.

e Practicability: The thesis pfdf)bsé‘sb replication tool as a pluggable module that can be easily
deployed and managed on different AS bproducts without affecting clients (WS) and databases.
The load ba]anci'ng' strateg‘y"ﬁsve‘sr‘au.tn:lly distributed, lightweight load-distribution algorithm

that can be easily implemented and managed.
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1.3 Structure of the Thesis

The structure of the thesis is as follows. Chapter 2 introduces some background in regard to AS
replication, including the structure of application server, the execution patterns, failures, generic
replication approaches, and the communication tool used for this thesis. Chapter 3 discusses re-
lated work. Chapter 4 describes the behavior of AS using execution pattemns and defines the general
correctness criteria for AS replication based on these patterns. Chapter 5, 6 and 7 present the
replication tool for fault tolerance, called ADAPT-SIB. Chapter 5 presents the basic replication al-
gorithm for the 1-1 pattern and discusses the correctness. Chapter 6 presents advanced replication
algorithms for advanced execution patterns. Chapter 7 presents special features and extensions.
Chapter 8 presents the extended unified replication framework called ADAPT-LB that supports both
load balancing and fault tolerance. Chapter 9 presents the implementation of the replication tool for
the JBoss Application server. Chapter 10 presents a thorough evaluation of the replication tool for
both fault tolerance and load balancing. Chapter 11 concludes the thesis and discusses future work.

The replication algorithms proposed in Chapters 5, 6 and 7 have been previously published
in [109, 106]. The correctness criteria of replication proposed in Chapter 4 was guided by our
paper [107] that describes a formal model for reasoning about correctness of replication in 3-tier
architectures. The ADAPT framework is described in [6]. A demo of the system was given in [108].

The unified replication framework proposed in Chapter 8 has been submitted for publication.
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Background

This chapter provides an overview of all basic concepts and terminology that will be used throughout
the thesis. It introduces the concepts of multi-tier architecture, failure, replication, and a very useful

communication mechanism to do replication, namely group communication.

2.1 Overview of Multi-tier Architecture

The multi-tier architecture is an extension of the traditional client-server computing model. The
client resides outside the server, and only sees the service interface. It is the front tier, which usually
directly interacts with end users and does not receive requests from other tiers. On the server side,
the all-in-one server is split into multiple tiers. The backend tier is usually a database, which only
receives requests from other tiers, but does not submit further requests to other tiers. Between these
two tiers, there could be one or more middle tiers. When a middle tier receives a request from a
preceding tier, the preceding tier is its client. Reversely, when the tier makes calls to another tier, it
becomes the client of the called tier. A middle tier might be a client to more than one tier, and also
be a server to more than one client. A multi-tier architecture separates an application into a set of
building blocks. Each tier can be implemented as a self-contained component and deployed onto a
separated machine.

An important benefit of a multi-tier-architecture is that each tier can be designed and main-

tained separately without affecting the functionality of other tiers. It decreases the development and

12
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maintenance cost of applications. Another advantage is that the overall overhead of an application
is distributed across different tiers deployed on different machines. Although the corresponding
communication overhead increases, the much heavier overhead to process application logic is dis-
tributed, and hence the overall performance can become better. Moreover, the 'performance at each

tier can be fine-tuned separately, and hence better performance can be reached much easier.

2.2 Overview of Application Server Tier

Web based applications are typical use cases of the multi-tier architecture. The most prevalent mid-
dle tier systems used in these applications are WS and AS. In industry, there are three mainstream
specifications to build the AS tier: J2EE [94], CORBA [77], and .NET [70]. Usually, in an AS,
the business logic is modularized into different components that can call each other. Components
can have state. All components of the AS are running within the same environment. Clients of the
AS are usually the WS tier but also normal client programs. Backend servers of AS are usually
databases. In some large enterprise applications, e.g. B2B applications, web services provided by
different companies can be integrated into composite services according to some protocols such as
UDDI, SOAP, and WSDL. In these applications, the AS also could call other WS or AS. But this is

out of the scope of this thesis. - - -

2.2.1 Execution Flow

Clients trigger business logic of the AS by submitting requests to the AS. When a client submits a
request to the AS, the request typically calls a component method with input parameters. During
the execution of the request, it may change the state of the component, and/or submit sub-requests
to other components in the same AS or to the backend database. Each sub-request also may change
the state of the componeﬁt or the database, and/or submit further sub-requests. At the end of the ex-
ecution of the request, the client will receive a response from the AS. The communication between
clients and AS is usually based on existing protocols, like JAVA RMI, CORBA ORB, or Microsoft
COM/DCOM. The comﬁiunicatibn between AS and database is usually based on database connec-

tion drivers provided by different DBMS products.
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Figure 2.1: Application server architecture

Within the runtime environment, the AS also provides a set of services like transactions, persis-
tence, security, messages, and database connection to support business logic. Most AS architectures
provide two ways to access such services. Either components explicitly make service calls from pro-
grams or such service calls are made automatically by the runtime environment whenever a method
of a component is activated. In the later case, the runtime environment can call the services before
or after requests are executed. Figure 2.1 shows the execution flow of a client request within the AS

with a transaction service being called.

2.2.2 Calling Schemes

When a client submits a request- to an AS, the execution on the client is usually blocked until the
response of the request is returned. This calling scheme is called blocking scheme. This is in contrast
to the non-blocking scheme, which usually applies message queues. In here, after submitting a
request, the client continues its execution without waiting for the response. In the AS, client requests
are queued and processed in turn. The caller usually uses a listener to intercept the response, which
triggers corresponding actions then. In this thesis we focus on the blocking calling scheme, because
this is the typical model tha"t“;;é /ﬁséd by many communication protocols between clients and AS,

e.g., JAVA RMI and CORBA ORB.
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2.2.3 Server State

The state of an AS is the union of the states of all components of the AS. The state of an AS usually
remains volatile in memory. Some AS products provide persistence mechanism for component
state by temporally storing it on their local disk. This persistence is usually used to extend the
main memory of the machine of an AS during runtime, but does not guarantee the durability in the
same way a database would do. If the AS stops or crashes, the state stored on the local machine is
discarded and no more available, even after the AS resumes work. Hence, in any case, we can think
of the state of the AS as volatile.

In many cases, especially for the blocking scheme, when an AS receives requests from its
clients, each client will build an individual session with the AS. In this case, much of the volatile
state of an AS is session-related. Session-related state is only available for a certain client session,
and is not shared by different sessions or different clients. Hence, no concurrency issues occur on
session-oriented state, since concurrent requests of different clients access different state informa-
tion.

However, there is state called shared state that can be concurrently accessed by different clients
and different requests. The AS requires some concurrency control mechanism to reconcile poten-
tially conflicting access to shared state. Different isolation levels are possible. Details are discussed

in Section 2.4.3.

2.2.4 Determinism

Here, determinism means that if an AS runs two identical requests based on the same initial state, the
responses and the state changes genera”ted‘ by the two requests are same. In particular, determinism
is hard to achieve, even if we do not allow any non-deterministic programming model, e.g., multiple
threads or time évents are forbidden’; T hl;S is because a very common cause for non-determinism are
exceptions. An ex:c'eption might be caused by many reasons, e.g., memory leak, system overload,
program defect, 6f>v‘a‘f>.plication semantics. If an exception in the backend database is not specially
handled, it might be refurned to the AS to cause non-determinism at the AS, and then be passed to

the client. Accordingly, non-determinism can be passed from tier to tier. Hence, in this thesis, we
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always keep non-determinism in mind.

2.3 J2EE Application Server

In recent years, J2EE has become the most popular specification to implement application servers.
This section looks in detail how a J2EE based AS works. Taking a J2EE based AS as an example

will help us to understand the practical issues relevant to AS replication.

2.3.1 Enterprise JavaBean

In a J2EE application server, components that implement business logics are special Java objects
called Enterprise JavaBeans (EJB) [100]. We distinguish two categories: session beans (SB) and
entity beans (EB)!. A session bean is a non-persistent object that represents the actions associated
with a caller session. There are two subtypes. Stateless session beans (SLSB) do not maintain
any internal state across method calls. Stateful session beans (SFSB) maintain internal state for
the lifetime of a caller session. Obviously, SFSBs are components that have volatile state, and the
state of a SFSB is the typical séssion-related state. The J2EE specification provides a passivation
mechanism to transfer the in-memory volatile state of an SFSB instance to the storage managed by
the AS, allowing the SFSB instance to be garbage-collected or reused. As we mentioned before,
although this mechanism makes the state of an SFSB instance persistent, it is not designed for fault
tolerance purposes, since whenthe AS crashes the persistent storage is not accessible either.

In contrast, an entitﬁ mbea‘r;'(AEB) is an object that represents persistent data in persistent storage
(mostly a database syste‘n/i'). The state of an EB is the typical example of a shared state since different
requests from different .c‘z_lﬂl‘l_grw §e§sions can access the same EB. Also, the state of an EB represents
cached data from the datébase. An EB synchronizes its state with the data in the database (i.e., read
from or write to the database) within the boundaries of transactions. Thus, the concurrency control
mechanism of the database can be used to manage the concurrent access of EBs in the cache. Further

details in regard to the shared staté folfow in Section 2.4.3.

'Message beans are a third kind of EJ BsThey are outside the scope of this dissertation.
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Figure 2.2: Execution flow in J2EE architecture

2.3.2 Execution Flow

At the client side, a client accesses EJB objects using the Java remote invocation (RMI) protocol. In
order to access an EJB object, the client needs to first create a connection session to the AS. From
this connection session, the client gets a remote reference (called stub) of an EJB object. Then, the
client takes advantage of the stub to send requests to the server side EJB. The implementation detail
of this procedure is described in Section 9.1.1.

At the server side, the mntim/g‘énvironment where EJBs are running in a J2EE AS is called
EJB container. Whenever an outside client or an inside EJB makes a request to another EJB, the
request will first be intercepted by the container, and then be dispatched to the destination EJB. The
container is a wrapper of EJBs, which connects EJBs with services provided by the AS. It implicitly
calls services according to ’the cdﬁﬁguration, thus eliminating the need to code them within the
application programs. To do so, the container intercepts requests to EJBs and calls certain services
before requests are really executed, or after requests are executed but before the corresponding
responses are returned to the caller. Figure 2.2 shows how an outside client submits two requests to
an SFSB and an SLSB and how the container intercepts the two requests to call certain services.

Often, more than one service is required to be called in regard to a request. Hence, an EJB
container usually consists of séveral interceptors, each of which is responsible for calling a certain
service. All these intercébf&ré* form an interceptor chain (more on this in Section 9.1.2). Regarding
the execution of a client rédﬁESt; the most relevant interceptor is the transaction interceptor that

associates transactions with request executions.
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2.4 Transaction Management

Transaction management is a key service for both AS and database. In an AS, requests are usually
executed within the scope of a transaction. There also exists the possibility that a client request
is executed without the context of a transaction in case there is no database access. However, for
the sake of generality, we assume that all client requests have to be executed within the contexts of
transactions. For a request that is not assigned to a transaction, we assume that a pseudo transaction
covers its execution.

A transaction is a logical unit of read and write operations on component and database state.
The well-known transactional properties are atomicity, consistency, isolation, and durability. In an
AS, the transaction management is implemented by a transaction manager (TM). Figure 2.1 shows
a typical way to call the transaction service. In the example, when the client request r; is passing
the container, the container calls the TM to immediately trigger the start of a transaction ¢y, then all
execution related to r; happens within the boundaries of this transaction. That is, both the accesses
to the three components in the AS and the access to the database triggered by r; are executed within
the transaction ¢;. Typically, each transaction is associated with a single thread in the AS and the

execution of operations of the transaction is serial.

2.4.1 Lifespan of a Transaction

Typically, a transaction spans both execuﬁon on the AS and on the database. In practice, during
runtime, such a global transaction consists of two parts: a transaction on the AS (called A4S trans-
action) and a transaction on the databaéé (called DB transaction), since the AS and the database
are two different systems and have their own transaction management systems. Usually a global
transaction identifier is used to identify t“}ia'tv‘an AS transaction and a database transaction belong to

the same global transaction.

Start of a global transaction

We can consider the lifespan of a global tré_msaction as follows. Immediately after the TM executes

a transaction begin request, a global transaction is started, and the corresponding AS transaction is
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started at this time point. The corresponding DB transaction is only started when a sub-request is
submitted to access the database during the AS transaction. If no sub-request accesses the database,
the global transaction only contains the AS transaction but does not contain a DB transaction. After a
global transaction is started, all state changes on AS and database triggered by the thread associated

with the global transaction belong to this transaction (unless the transaction is suspended).

Termination of a global transaction

When a global transaction wants to commit, the TM executes a transaction commit request. During
the execution, the TM submits a commit sub-request to the database. Only after the database suc-
cessfully executes the commit request and returns the response to the AS, the AS can successfully
finish the commit process. At this time point, the global transaction has committed on both the
AS and the database, meaning both the corresponding AS transaction and the corresponding DB
transaction have successfully committed.

A global transaction could be aborted. If an abort is triggered on the AS, the process is similar to
the commit. That is, the TM executes the corresponding transaction abort request, sending an abort
sub-request to the database However an abort can also be triggered by the database (e.g., deadlock,
integration constraint v1olat10n) ln this case, the database directly aborts the corresponding DB
transaction, and then notifies the AS After the AS receives the notification, the TM executes the

abort request without sendmg an abort sub-request to the database.

A e

Clearly, in all cases, a global transaction is first started on the AS as an AS transaction. Then,
when persistent data is accessed, the corresponding DB transaction is started. No matter whether
a global transaction eventually commits or aborts, its DB transaction always terminates before the

termination of the corresponding AS transaction.

Accessing more than one database

In some applications, a transaction accesses more than one database. In this case, a 2-phase commit

protocol (2PC) is necessary at c\omm_i_t,‘time for atomicity [18]. The TM of the AS is the coordinator.
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It first sends a prepare request to all participating databases which return either with a prepared
message or their decision to abort. If all databases have successfully prepared, the TM sends a com-
mit decision to all databases, otherwise (at least one aborted) an abort confirmation. The databases

terminate the transaction accordingly.

2.4.2 State Consistency

The behavior of a DB transaction is élearly defined by the transaction properties. If a DB transaction
commiits, the state changes performed by the transaction on the database are made persistent. If the
transaction aborts, any changes performed so far on the database are undone by the database system.
In contrast, at the AS, the behavior depends often on whether it is shared or session state. Shared
state is usually transactional by making it persistent. That is, at commit time the latest in-memory
shared state is written to the database. In case of abort, changes are either undone or discarded and
the state is reloaded from the database. In the following, we assume that shared state is always
synchronized in this way with the database.

Most AS products do not provide durability for session-related state. Instead, changes on
session-related state remaih volatile. Moreover, some AS products do not provide atomicity for
session-related state. That is, the abort of an AS transaction does not automatically trigger that
changes on session-related state are undone. However, programmers can provide rollback methods
to undo these state changes to guaraﬁtee atomicity. For example, in J2EE, programmers can define
rollback methods for stateful EJBs. These methods are automatically called by the J2EE server in
the abort case. We say the AS server provides full state consistency if mechanisms exist to abort
changes on session-related state, otherwise it provides relaxed state consistency. When a global
transaction aborts in case of relaxed state consistency, the AS might keep some state changes that
have already been done so far or make some further changes before request execution finishes, while
the database always aborts state changes of the corresponding DB transaction and is correctly rolled

back in the abort case.
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2.4.3 Concurrent Transactions

The AS might execute requests from different clients concurrently, leading to concurrent transac-
tions, since requests from different clients have to run within different transactions. Accordingly,
there can be concurrent AS and DB transactions.

On the database, a DBMS normally has well-established concurrency control mechanisms that
can guarantee the isolation of concurrent transactions. In this dissertation, we assume that the DB
provides serializability, which means that the execution of a set of transactions is equivalent to some
serial execution of these transactions.

On the AS, as mentioned in Section 2.2.3, no concurrency control mechanism is required for
session-related state since they are naturally isolated. However, a concurrency control mechanism
has to be used to isolate accesses of concurrent transactions to shared state. There are two main
alternatives. One option is that the AS has its own concurrency control mechanism; traditional
approaches such as optimistic or pessimistic concurrency control could be used. Alternatively, the
AS relies on the concurrency control mechanism of the database system. In our model, all shared
state can be considered cached database state. Thus, the following approach can be taken. When an
AS transaction wants to read a certain shared object for the first time it loads it from the database.
Assuming locking, the corresponding DB fransaction has a shared lock on this data item in the
database. If now a concurrent transaction wants to write the data item, it also goes to the database
and will be blocked in the database since the requested write lock conflicts with the existing read
lock. The level of isolation is then the one provided by the DBMS. While having concurrency
control at the AS level allows caching across transaction boundaries, relying on the DBMS for
isolation only allows for intra-transaction 'éaching. Whenever a transaction accesses a data item for
the first time it has to go to the database. Clearly, the first approach is likely to be more efficient,
and thus, more desirable as it allows for inter-transaction caching.

When we now consider the replicated case, in a purely fault-tolerant architecture where one pri-
mary AS replica executes all client requests, both concurrency control options are feasible, because
then the concurrency control ‘mechanism at the primary AS will serialize all transactions. How-

ever, in the case of load-balancing, several AS replicas execute client requests concurrently. In this
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case the concurrency control modules of the different AS would need to coordinate. In contrast, if
all the concurrency control is delegated to the DBMS it remains centralized at the DBMS and no
extensions to the isolation infrastructure are needed.

As our solution aims at both fault-tolerance and load-balancing, we assume from now on that
all shared state is synchronized with the database and concurrency control is only performed at the
DBMS level. However, if our approach is used only for fault-tolerance, then the AS concurrency
control method can be used without interfering with our replication mechanism.

In practice, most J2EE application servers offer the option to leave isolation of EBs to the
DBMS. Each EB maps to a data record in the database. A transaction reads the up-to-date state
of an EB from the database the first time it accesses the EB. Changes to the EB are written to the

database and synchronized at commit time.

2.4.4 Relation between Requests and Transactions

In an AS, requests can be associated in different ways with transactions. Execution patterns are used
to describe the association. We classify execution patterns by the number of client requests involved
in a transaction and the numl;éf of ti;énsactions generated by a request. In the simplest execution
pattern, a client requést execﬁtés‘ w1thm its own individual transaction. All further sub-requests that
are triggered by the client request i&éccess other components in the AS and to access the database
are also executed within tﬂ'eff‘ra}lé.ei;:tion. This basic execution pattern is called “/-1” pattern (1-
request/1-transaction). But éﬂ)'(‘ecﬁ-tioﬂn‘pattems could be more complex. In particular, J2EE allows a
wide range of associ.at'i.bn ofrequests with transactions.

Transaction management at AS™"

In a J2EE AS, a transagtioﬁ_qou}d be Container-Managed or Bean-Managed. In the container
managed transaction (CMT) s<_:hem¢_, the EJB container has a transaction interceptor that intercepts
each request and decides how to kassociate the execution with a transaction. Figure 2.3 shows a
sample code snippet of the CMT scheme. In the CMT scheme, if a request is required to be executed

within a new transaction, the transaction interceptor sends a transaction request to the TM to start a

~
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Sample EJB object{

TransactionlInterceptor( void sampleMethod () {
Response invoke (Request req, fﬁ‘begin()-
Component comp){ cail an EJé method;
update the database;

if (condition-2)

: TM.commit () ;
comp. invoke (req) ;

: else {
} TM. commit () ; TM.abort () ;

roll back changes;

if (condition-1){
TM.begin() ;

Figure 2.3: Code snippet of CMT Figure 2.4: Code snippet of BMT

transaction. If the execution successfully completes, the transaction interceptor sends a transaction
commit request to the TM to commit the transaction, and only then returns the response. J2EE
provides a set of options to decide where and when transactions are started. Each method of an EJB
has a transaction attribute with the possible values: Required, RequiresNew, Mandatory,
Supports, Not Supported, and Never. The most useful and popular attributes are Required
and RequiresNew. The Required attribute means that an EJB method should be executed
within a transaction. If a transaction is already associated with the current execution thread the
method is executed within the existing transaction, otherwise a new transaction has to be started for
the execution. The RequiresNew attribute means that an EJB method should be executed within
a new transaction no matter whether a transaction already exists or not.

In the bean managed transaction (BMT) scheme, the code of a session bean? explicitly marks the
boundaries of a transaction within an EJB method as shown in Figure 2.4. In this case, a transaction
is only started during the execution of a request. Furthermore, during the execution, more than one
transaction can be started one after another. According to the assumption that each request should
be executed within the context of a transaction, we can assume a pseudo top-level transaction to
cover the execution of each client request in the BMT scheme. Thus, each real transaction triggered

within the method execution is kind of nested within the pseudo transaction.

2An Entity Bean cannot have Bean-Mariaged transaction according to the EJB specification [99]

s
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UserTransaction.begin();
call EJBl.methodl ();
call EJBl.method2();
call EJB2.methodl () ;

if (condition-3){
UserTransaction.commit () ;
else
UserTransaction.abort();

}

Figure 2.5: Code snippet of user transaction

User Transaction

Additionally to the CMT and BMT schemes, both controlling transactions at the AS, the J2EE
AS also provides an approach called User Transaction to control transactions from the client side.
Using the user transaction object, the client program can explicitly mark the boundaries of a trans-
action. Figure 2.5 provides a sample code showing how a client program uses the user transaction
to associate client requests with transactions. The begin method of the user transaction object will
trigger the TM of the AS to start a new transaction. Within the transaction, the client can send one or
more requests to one or more EJB objeéts. Finally, the commit/abort method of the user transaction

object lets the TM commit/abort the transaction.

Execution patterns

In a J2EE AS, CMT, BMT and user transactions can be used independently or together within a
single application. Thus, different ways to use these approaches can lead to a variety of associations
between client requests and ;;ahsac{i’(;ns, i.., to many different execution patterns. According to our
analysis shown later, we find that the variety will cause different side effects when a crash occurs,
and thus affect the design of the replication algorithm.

Although there é;ﬁld be man); ~d‘iﬂ"erent execution patterns, only some of them make sense in
practice. Hence, this dissertation fé)::liSCS on those patterns that are usually applied in practical ap-
plications. In fact, the 1-1 pattern 1s the most common pattern, that can be implemented very easily

using the default caﬁhguration of the CMT scheme. In the CMT scheme, the default transaction

..... ~
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attribute of each EJB method is Required. Hence, when a client request is submitted to the EJB
object, a new transaction is created for the execution of the client request since yet no transaction
is associated with the execution thread. If during the execution, sub-requests are submitted to other
methods of the EJB, all these executions will be within the same transaction since the transaction is
already associated with the execution thread. This way, the association between the client request
and the transaction is the 1-1 pattern. Chapter 4 will discuss in detail not only the 1-1 pattern, but
also other patterns, and show how they can occur in J2EE through a combination of CMT, BMT,

and user transactions.

Transaction Abort

When a global transaction is aborted, the full state consistency requires the AS to rollback state
changes performed by the corresponding AS transaction. In the BMT scheme, the rollback opera-
tion can be included in the code of the EJB method as shown in Figure 2.4. However, in the CMT
scheme, the case is different, since the abort operation is not explicitly controlled by the transaction
interceptor. J2EE addresses this issue by providing a SessionSynchronization interface to
let an EJB instance be notiﬁéa.bf the 'bcv‘mn'd'aries of a transaction by the container. The interface has
a method called af terC.omﬁiét ion(boolean committed). An EJB class that implements
the SessionSynchroni zation interface has to implement the afterCompletion method.
The rollback operations can ‘bﬂehi‘mplemented in this method under the condition that committed
is false. Then, when a trans;c.ti-on that accessed an EJB instance of this class is aborted, the TM
calls the afterComplet}io.ri method to do rollback operations. Thus, state changes performed
by the transaction on the object can be automatically aborted, and full state consistency is guaran-
teed. The rollback action implemented in the afterCompletion method should not access the
database since the DB transaction has aborted. They should also not access other components to
prevent disseminating the abort to other objects. If more than one object is involved in an aborted
transaction, each of them runis its own afterCompletion method without interfering with each

PP

other.
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2.5 Overview of Failures

A failure of a system means the observation of deviation of the system from its specification [86].
Before a failure is observed, the deviation is called error, i.e., an abnormal state of the system.
Error is caused by some defect in the system. Almost all systems have defects, and hence error is
almost inevitable for any system. The goal of fault-tolerance is to prevent deviation being observed
when an error occurs in the system, i.e., to make the observed behavior of the system look like a

non-faulty system. This is also the base line to evaluate the correctness of a fault-tolerant algorithm.

2.5.1 Failure Types

A system might have different kinds of failures. Different failures have different side effects, and
the corresponding fault-tolerance algorithm has to address the differences. Failures can be classified
as following [28]:
e A crash failure occurs when the system stops working completely. If the clients of the system
can eventually detect the failure, the failure is called fail stop. Otherwise, it is called fail silent.
The typical reasons for a crash can be categorized into: (1) programming error (e.g., deadlock,
or stack overflow), (2) OS error (e.g., OS crash), and (3) catastrophic error (e.g., power cut).
e An omission failure occurs when the system does not respond to a request when it is expected
to do so. When the omission failure takes place, the system might still keep working. A typical

reason for a omission failure is a network partition between the client and the system.

e A timing failure can occur in real time systems if the system fails to respond within the specified
time slice. Both early and late response might be considered as timing failures. Late timing
failures are typically causéd by some bottleneck in the system or in the network.

o A Byzantine failure occurs if the failure makes the system behave arbitrarily.

This thesis focuses on »c\{z}s}}‘ failure and assumes no omission and Byzantine failures occur.
We assume reliable, asynchtgilqus communication and no network partitions because we believe
that assuming no network baftl:tions is reasonable for a LAN environment. Timing failures are not
considered because we do not '].oic_)\k at timing requirements. With this, ifa non-replicated system does

not crash, clients of the system eventually receive correct responses for all requests. Furthermore,
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we do not consider programming errors. How to tolerate programming error is an important topic,

but it is out of the scope of our research.

2.5.2 Crash of an Application Server

When an AS crashes, we think it is not accessible any longer, and all connections between the

crashed AS and its clients and the backend database are lost. The crashed AS might be recovered

later as a new instance. Before designing a correct replication algorithm to tolerate crash, it is very

important to understand the side effects of a crash of a non-replicated AS.

i.

iii.

The crash causes the crashed AS to lose its state, since the state is volatile in memory. Some
AS systems have built-in persistence mechanisms that can make its state persistent locally.
However, as mentioned before, the persistent state is not accessible until the system is restarted.
If the AS system logs its state in a database or a file on another machine and the persistent state
can survive crash, we consider this logging mechanism as a special form of replication (please

see Section 2.6.1).

i. For any request executmg on the AS system, if the crash takes place before the response of

the request is retumed the crash causes the client not to receive the normal response. [nstead,
in practice, the chent usually receives an exception to show the disconnection to the server or
time out. That means, the client can detect the crash. Hence, in this thesis, we assume that the
crash failure is fai'l stop. Our solution achieves that the crash exception is invisible to the client
program to guarantee transparent ‘fault tolerance.

The crash can also affect databases that were called by the crashed AS. Assume an AS trans-
action had submrtted a set of requests to a database before it crashed. On the database, the
corresponding DB transactron is still active at the time of crash. According to the specification
of transaction services in JZEE and CORBA [76], the AS transaction has one connection to the
database, and the association of the AS transaction and the DB transaction is through this con-
nection. When\t'he AS crashes,:‘t'he connection to the database breaks, and the DB transaction
is aborted. Tbe.abo‘rt undoes all state changes done so far on the database. In summary, when

an AS crashes all active DB transactions that had a corresponding AS transaction at the AS are
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aborted.

One of the worst cases is that the AS crashes in the middie of the 2PC of a transaction, where
some databases have returned the prepared message but have not received the commit/abort
decision yet. In this case, these databases will keep the state changes made by the transac-
tion, keep locks on those changed data, and always wait for the final decision. Nevertheless,
as DBMS are the most prevalent backend tier, we only consider standard DBMS behaviors.
However, if the system called by the crashed AS is not a database, or the request to the data-
base is executed according to some other specification, the callee system might have a different
reaction, e.g., stop where it is, continue to execute the request, etc.. In this thesis, we assume
that the database will undo all state changes made by the transactions that are active at the time
of crash except those in the prepared state (in case of 2PC) which will remain active until the

database receives a commit/abort decision.

2.6 Tolerate Failures through Replication

Replication is an efficient mechanism to tolerate crash failure. Replication can be active or pas-
sive [104]. In the active sclieme [89, 7, 35, 72], a request is sent to and executed at all replicas.
The crash of a replica will not affect execution on other replicas. The client receives a response
as long as one replica is available-(duplicate suppression must be in place). In passive replica-
tion [22, 51, 44, 73, 41, 11,-62]; -only the primary replica executes the request, and propagates
updated state to the backup replicas. If the primary fails, failover takes place, and one of the back-
ups becomes the new primary, installs the up-to-date sate, and continues working. Requests that are
active on the primary at the time of crash should reexecute on the new primary. The new primary
has different ways to know which requests are required to be reexecuted. A first option is that reex-
ecution relies on resubmission-after crash. In this way, after the crash, clients resubmits all active
requests whose responses-were not returned before the crash, to the new primary. This is the typical
way used in most commercial products, such as JBoss [60] and WebLogic [14]. A second option
is that reexecution relies on the multicast of requests. This way, each client request is multicast to

all replicas during normal processing and is recorded at each backup. Thus, after failover, the new
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primary already knows the requests required to be reexecuted. The Eternal system [73] uses this
way to do passive replication. A third option is that reexecution relies on a request log. Each client
request is logged during normal processing. After failover, the new primary reexecutes interrupted
requests by reading them from the Ibg. The Phoenix system [9] uses this option. For replayed
requests that are interrupted by the crash, the resubmission mechanism has a longer delay than the
other two, since requests have to be resubmitted by the client tier. Whereas, it saves time during
normal processing since it does not require additional time to multicast or log requests. To get better
performance during normal processing, we use the resubmission mechanism in our solution.
Active replication requires deterministic behavior (otherwise, complex consensus mechanisms
such as are required), and induces heavy load, since all replicas have to execute all requests. A
new approach called Midas, proposed in [92], lets active replication live with non-deterministic
behaviors by running compensation code that is generated by statically analyzing application source
code to eliminate inconsistent states caused by non-determinism. Passive replication allows for non-
determinism. Although primarily designed for fault-tolerance, it has some potential for scalability,
since applying changes sent from the primary is usually less time consuming than executing the
requests themselves. The spared resources can be used to perform other tasks. Furthermore, in
our solution, each replica is a primary for a subset of requests, and backup for the others. On the
negative site, passive replication requires complex state propagation and failover. There also exist
some research considering a'combination of active and passive scheme (e.g., [31, 32]) and some

replication tools support both active and passive replication (e.g., [74, 114]).

2.6.1 Passive Replication Category

When looking at commercial AS products, almost all rely on passive replication (e.g., Phoenix/.Net [9],
WebLogic [14], WebSphere [103], JBoss [49], Sun AS [96], Oracle9i [78], IONA E2A [56], Pra-
mati [85], Orion AS [57]). l;égéi;/;réplication can be categorized by two parameters:
i. The primary can replicétéléiété changes to the backups in different ways. Using cold replica-
tion, the primary stores the state information on a persistent storage which can be accessed at
failover by the new pnmary This mechanism is also known as logging or checkpointing. In

this case, the new primary needs only to be initiated when needed after a crash. Using warm
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Eager Lazy
Warm JBoss/Oracle9i WebLogic
Cold | IONA E2A/Pramati/Sun AS/Phoenix | Orion AS/Phoenix

Table 2.1: Classification of passive replication of commercial products

replication, the primary sends state changes to the backups directly, e.g., via messages. This
alleviates the load on the persistent storage but introduces message overhead. Backup instances
must exist to receive replicated state. During normal processing, the time to do replication de-
pends on the communication time between the primary and backups for warm replication, and
depends on the communication time between the primary and the persistent storage for cold
replication. In Section 10.1.1, the performance evaluation shows that the replication time of
warm replication is faster than that of cold replication. Moreover, failover of warm replication
is also faster than that of cold replication, since in warm replication the backup has already
the state in memory, while in cold replication it needs to read the replicated state from the
persistent storage first.

ii. The propagation time defines when state propagation takes place. The propagation time is
demarcated by the boundary of transactions. If state changes are propagated before the related
transaction commits, we say it is eager propagation. Otherwise, if state changes are replicated
at some time after, we say it is Jazy propagation. When using eager replication, at the time a DB
transaction commits, all AS replicas have the state changes of the associated AS transaction.
This makes it pogéihle to guarahtée in case of primary crash that the state of the new AS primary
and the DB is éb}léistent. In contrast, in lazy replication, the AS might lose state changes as
the old primar'y‘ﬁ;iight crash before propagating changes of an AS transaction for which the
corresponding DB transaction has committed. As a tradeoff, eager replication increases user
response time by adding the time to do synchronous replication, but lazy replication provides
fast response time. i

Table 2.1 shows a classification of the schemes used by commercial products. Most of them use
eager replication to gﬁhféntee consistency. Phoenix uses a lazy approach for deterministic requests,

but uses an eager approach for non-deterministic requests. The products using warm replication
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usually initiate a server cluster at system start-up and then choose one as the primary. The products
using cold replication usually only start a single server and start the new primary only after the old
primary crashes. As one of the main focuses of this thesis are consistency and correctness, we use
eager replication. Moreover, our experiments show that warm replication has better performance

than lazy replication. Hence, we pay more attention to warm replication.

2.6.2 Correctness of Replication

In regard to correctness, an ideal replication algorithm should make the replicated system behave
in the failure case in the same way as a non-replicated system behaves when no failure occurs.
Informally, it means exactly once execution of each client request and consistent state changes at
the AS and the database. On the client side, exactly-once execution means each client request
receives only one response that is not a crash exception. This guarantees transparent fault tolerance
from the client viewpoint. On the AS, exactly-once execution means each client request changes
the state of the AS and/or the database exactly once. Consistent state changes on the AS and the
database means correct and is “all or nothing” on both AS and the database in case of full state
consistency or “all or nothing” dﬁijth’e ‘database in case of relaxed state consistency. A replication
algorithm is required to providé this form of correctness for a replicated AS even in the event of

failures. We will discuss in more detail and more formally what correctness means in Chapter 4,

2.7 Communication Mechanism for Replication

When using replica{if(;n'to-.£6lé;éie. féilures, failure detection and message propagation among repli-
cas (for warm replication) are two-important issues. How to detect failures in a distributed environ-
ment, and how to deal with-possible message-loss during communication are non-trivial problems.
Fortunately, Group-Communication Systeins (GCS) [52, 26, 102, 39, 21, 19, 25] provide us powerful
functionality. Examples of group communication systems include Spread [1], JGroups [50], ISIS
[58], Horus [102], Ensemble [38], Transis [34], and Totem [71].

Figure 2.6 depicts the basic architecture of a group communication system. A set of applications

build the group. Each application is a member of the group. When an application sends a message
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Figure 2.6: Group communication system

to all members, it first sends the message to the underlying GCS layer. The layer typically uses
consecutive point-to-point communication or physical broadcast like UDP to send the message to
all machines that have members of the grcup. At each site, the GCS layer first receives the message,
then delivers the message to the member applications, at which time the application receives the
message. When a GCS layer receives a set of messages, they may not be in the correct order.
Thus, the GCS layer will reorder these messages before delivering them to the application. In this
dissertation, according to the requirement of the algorithm, a set of AS replicas compose such a
group, where each replica is. a grcun member and uses GCS to manage the communication among
all replicas in the same group. An AS replica can join one or more groups. Typically, a GCS

provides two primitives: group membership maintenance and multicast.

2.7.1 Group Membersh'ip'M‘aintenance

The membership service majntai‘ns,_a listing of the currently active and connected members and
handles group operations such as joihing and leaving a group. The output of the membership is
called a view. At each site, the GCS contains a view V that contains the list of members with which
communication is possible. An apphcatlon might join or leave a group. This changes the view of the
group. When a v1ew change takes place the GCS delivers a view change message to all members
of the new view mdlcatmg that the new view is V', The typical property for group membership
is virtual synchrony [20, 26] llf members p and q receive the same new view V' while having the

same previous view V, any message dehvered to p, which is a member of V| is also delivered to ¢

in V. This protocol guarantees that the GCS delivers exactly the same messages at all non-failed
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members of the view V. Hence, the applications on the different sites perceive view change events
at the same virtual time.

Since it is well known that accurately detecting failure in asynchronous environments is im-
possible [27], the membership service often uses an inaccurate failure detector, typically based on
timeout: when the GCS does not receive any message from a member p beyond a time limitation,
the GCS suspects p to be faulty, then excludes p from the current view [68]. In this case, p might
have really crashed, or be partitioned from the network, or just be delayed by a slow connection.
If the GCS excludes a correct member, we require that the affected replica shuts down itself and

attempts to rejoin the group.

2.7.2 Multicast

The multicast sends a message from a member to all members in the current view. A GCS provides
various multicast primitives with various degrees of reliability and ordering [52]. The possible

reliability semantics are:
unreliable delivery no guarantee that a message will be delivered at all members,

reliable delivery when a message is delivered to member p, and if p dose not fail for sufficiently
long time, the message will be delivered to all other members of the current view unless they

fail,

uniform reliable delivery when a message is delivered to a member p, even if p fails immediately

after the delivery, the message will be delivered to all other members unless they fail.

The difference between the uniform reliable delivery and the reliable delivery is on messages that
might be delivered at failed members. With uniform reliable delivery, whenever a message is deliv-
ered at any member, no matter whether the member fails or remains available, all other non-failed
member will receive the same message. Hence, the set of messages delivered to a failed member is
a subset of messages delivered to surviving members. In contrast, with reliable delivery, a message
might be delivered to a member that fails immediately after that, but the message is not delivered

to other non-failed members. As a result, with uniform reliable delivery, when a member receives
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a message sent by itself, it is guaranteed that all other non-failed members also receives the same
message. Whereas, with reliable delivery, the sender of a message cannot know whether the mes-
sage is delivered to other members by just testing if it has received the message itself. We will use
uniform reliable delivery when the replication algorithm should not proceed before it is assured that
all non-faulty AS replicas will receive a state change message.

The ordering primitive is very important when different messages might depend on each other.

The offered ordering semantics are:

FIFO ordering If a member sends a message m before it sends message m/, all members in the

view receive m before m/,

Causal ordering If a member sends a message 1/ after it receives message m, all other members

in the view receive m before m’,

Total ordering If.a member receives a message m before it receives m' in a view, all members in

the view receive m before m/.

In our context we will use FIFO and-total ordering. The FIFO ordering guarantees that alt members
receive messages sent by a member in-sending order. The total ordering guarantees that all members

receive all messages in the same order. -



Chapter 3

Traditional Application Server
Replication Solutions and Correctness

Criteria

This chapter reviews existing AS replication solutions. Most of them do not consider the effects
caused by different execution patterns and relaxed state consistency, and only provide solutions for
the simplest 1-1 pattern. Although some of these solutions might also be applicable for a certain
advanced execution pattern, they do not clearly discuss this option. Most solutions either consider
fault-tolerance or Toad-balancing, but not both. This chapter also reviews traditional correctness
criteria for replication. These criteria normally only consider one tier, and do not distinguish the

effects of different execution patterns.

3.1 Overview of Existing Replication Solutions for Fault Tolerance

-

In this section, we review existing replication solutions for three prevalent AS specifications, namely

J2EE, CORBA and .NET, and investigate which execution patterns are assumed for them.
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3.1.1 Replication for J2EE Architecture

Most J2EE products use passive replication based on the resubmission mechanism. A typical ex-
ample is JBoss’s clustering solution [60]. It uses passive, warm, and eager replication. Each replica
can act as a primary for a client session. If a client request triggers execution on several stateful
components, state transfer takes place individually for each component once execution on this com-
ponent has terminated. Problems occur if replication on some components was successful but the
primary crashes before the corresponding database transaction commits. In this case the backups
have a partially replicated state while the database transaction aborted. Obviously, the state of the
new primary is inconsistent with the étate of the database. Hence, this replication solution does not
work correctly even for the 1-1 pattern.

Some commercial products, like Oracle 9i [78] and IONA E2A [56], do replication at the end
of each client request. Pasin et al. [83] propose a High-Available EJB server architecture where
the state changes are replicated at commit time. For the 1-1 pattern, these mechanisms are similar
to ours since the end of each client request is the commit time of the transaction associated with
the client request. However, there always exists a time difference between the time to do state
propagation and the time to do commit. Thus, like the JBoss solution, state inconsistency occurs
if the primary crashes after state has been successfully propagated but before the corresponding
database transaction commits. In this case the backups have the state changes while the database
transaction aborted. Although there exist some mechanisms to coordinate between the AS and the
DB, they are not clearly described. Moreover, above solutions do not consider advanced patterns.
Kistijantoro et al. [62] also propose.to do replication at time of commit. The solution checkpoints
the state changes on AS into the database within the context of the transaction, and hence the
state changes on the AS and on the database are consistent. As a result, this solution works for
the 1-1 pattern. Pramati [85] uses a similar solution to persist states at the time of commit and
hence guarantees consistency for the 1-1 pattern. However, both solutions do not consider advanced
patterns and relaxed state consistency.

One of the leading products of AS, WebLogic [14], uses passive, warm, and lazy replication.

Each EJB instance has a single primary server, which processes requests to the EJB instance, and

e
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propagates the state of the instance soon after returning the response to keep replicas as consistent as
possible. Due to lazy replication, inconsistencies arise when the primary crashes after the database
has committed a transaction, but before the corresponding state changes on the AS are replicated.
Orion AS [57], which also uses lazy replication, has a similar problem. Another famous AS product,
WebSphere [103], does not replicate the state of the AS, and hence, its clustering only works for
stateless applications.

Existing replication solutions for J2EE AS products usually have their main emphasis on ease
of implementation, as they are mostly industry solutions. Most of them do not change the interfaces
between AS and clients, and between AS and database, and do not require any additional support
from other tiers. As a tradeofT, these solutions sacrifice consistency. Until now, we are not aware of
any commercial J2EE product, that clearly provides even for the 1-1 pattern a replication solution

that guarantees full state consistency.

3.1.2 Replication for CORBA Architecture

Although there are less AS products based on CORBA than on J2EE, there exists more research
on replication in CORBA thanm J2EE. While most existing J2EE solutions are quite simple, many
CORBA solutions have an‘ 'a‘ldl\.';hced fra:ﬁework supporting both active and passive replication, such
as [29, 30, 72, 65, 40, 74, 7] "Some solutions combine active and passive replication as semi-passive
solutions ( [31, 32, 15]). These Vr-esearchvprojects consider the internal architecture of CORBA, and
the replication solution lstlghtly bound to CORBA. For active replication, the solutions have to
make sure that all replicas receive the same fequests in the same order, e.g. by using the total
order delivery of group C(\)fﬁh{ﬁ‘r{icétion systems ({30, 40, 47, 72, 42]). For instance, Marchetti et
al. [69] propose to build a s&qn.{eﬁ’cef service based on the total order delivery between clients and
server replicas to guarante'e»:"tﬁ:a-tlél’l sérver replicas execute client requests in the same order while
messages of requests mlght be arbltrarlly delayed or timeout between clients and server replicas.
For passive replication, elther warm or cold replication is used to replicate state changes. When
using warm replication, to guarantee' that all replicas receive the same changes, some solutions use
a group communication system to reliably broadcast state changes ([29, 74]). Other solutions use a

2PC protocol, where the baékups are the participants of the 2PC ([65]).
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In here we look at the Eternal system [73, 74] in more detail as an example in CORBA. Eternal is
based on the FT CORBA architecture [75]. It supports both warm and cold passive replication. The
primary replicates the state to backups periodically in form of checkpoints. Between two check-
points, all messages from clients and the database are logged. At crash of the primary, the new
primary first restores the state of the last checkpoint, and then replays logged requests. At recovery
of a replica, the primary transfers the last checkpoint state to the recovering replica. Zhao et al.
[114, 115] extend the Eternal system [74] so that CORBA components can access a backend data-
base. A special replicated out-bound gateway is used to manage the transaction context between the
application server and the database. Database connections are protected by the outbound gateway.
A response from the database will be replicated to all backups. The replay mechanism assumes de-
terministic execution at the AS. If a new primary has to reexecute requests at failover time, duplicate
database access can be avoided by directly taking the replicated response without reexecution. Al-
though the solution does not look at different execution patterns, we think it can support them with
some extensions. HoWever, if non-determinism exists, the solution cannot guarantee correctness
even for the 1-1 pattern, since reexecution might generate responses or database accesses that are
different from the lbgéed information. This will lead to executions that do not follow the original
execution path. MdrééVer, the solution is not based on the common interface between the AS and
the database. lnstead,"" it depends on a special transaction manager that does not directly connect to
the resources but multicasts the transaction requests to the out-bound gateway.

Two other solutions proposed by Felber and Narasimhan [41] and by Frelund and Guerraoui
[43] use a much sirﬁﬁler marker mechanism to coordinate state changes on the AS and on the
database. The former solution acts similar to the J2EE replication solution of [62, 85], checkpointing
the state changes on the AS of a given AS transaction into the database within the context of the
corresponding DB transaction. Then, at failover time, the new primary checks the database. If the
transaction aborted, neither DB nor AS changés exist. Otherwise, the new primary can get the AS
state changes from the database. The latter solution propagates the state changes of the AS to the
backups immediately before the commit and then inserts a marker into the database as part of the
DB transaction. At failover time, the new primary checks the marker for each transaction. If a maker

exists in the database, it means that the databasé has already committed the DB transaction and has

e
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the state changes related to the persistent data. Thus, the new primary installs the corresponding
state changes of the AS components. Otherwise, the database had aborted the DB transaction and
the new primary discards the AS changes. Although the details of these two solutions are different,
both solutions are taking advantage of the transaction’s property to coordinate the state changes
of the AS and the database. This mechanism works well for the 1-1 pattern and does not require
additional support from the database. We use the same idea in our algorithm. However, these
two solutions do not consider advanced execution patterns and relaxed state consistency. In fact,
although there are many CORBA-based replication solutions, only a few of therﬁ regard a CORBA-
based AS as the middle tier of a multi-tier system. Furthermore, although several solutions can
correctly handle the 1-1 pattern, so far, none can correctly handle advanced patterns and relaxed

state consistency.

3.1.3 Replication for .NET Architecture

For Microsoft’s AS platform .NET, the main replication solution has been developed in the Phoenix
project ([11, 9, 10, 8]). It has similarities to the Eternal system. State is replicated periodically,
and requests between two checkpoints are logged. Failover starts from the last checkpoint and
applies logged requests assuming piecéwise deterministic behavior [37]. It requires the database
to be able to identify duplicate reque(s‘t's and log replies. This would be possible, if a persistent
queue exists between AS and.dz;tébase; ‘ Unlike the Eternal system, it distinguishes non-deterministic
events from deterministic events. For ﬁbn—detenninistic events, it uses eager replication (namely
immediately logging the result of these evénts before returning) to guarantee consistency. Although
the papers present a formal ‘diﬂscﬁ‘ssio.h‘ of éorrectness, the transactional properties are not clear.
Although eagerly replicating r;:s{xlts of ﬁbh-deterministic events enables the algorithm to support
non-determinism in some caseé, it is not sufficient. A problem is the database access. When the
primary crashes, active transacfioﬁs will v‘a‘b“ort at the database. Then, during reexecution of these
transactions, the replayed database accesses might get logged replies without real reexecution on

the database. As a result the database might miss the state changes of these replayed transactions.
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3.2 Traditional Correctness Criteria for Replication

Traditional correctness criteria normally only focus on one aspect or on one tier, ignoring the global
picture of the entire system. These criteria often dig into depth into one aspect, e.g., concurrent data
access, or the ordering of messages, but do not consider the relationship between different tiers and
different execution patterns.

In this section, we look at three well-known traditional correctness criteria for replication mech-

anisms: one-copy-serializability, state machine replication, and X-ability.

3.2.1 One Copy Serializability

One copy serializability (1CSR) [16] has been developed for replicated databases. It addresses
correctness in regard to two aspects: multiple copies of a data object must appear as a single log-
ical copy (1-copy-equivalence) and the effect of the concurrent execution of transactions must be
equivalent to a serial ‘execution (serializability).

To achieve 1-copy-equivalence, read and write operations on logical data items have to be trans-
lated to serial operations on the physical data copies. When using eager replication, a simple ap-
proach to do so is read-one/write-all (ROWA) [17, 16], which requires write operations to access
all copies while rea.d‘(;peréri.ons are done locally at one copy. Alternatively, quorum protocols
[101, 48, 59, 82] require i;c')th read énd write operations to access a quorum of copies. As long as
a quorum of copies agr'ees. onexecutmg the operation, the operation can succeed. When using lazy
replication together wrth pnmary copy, 1-copy-equivalence can be guaranteed only in the primary
copy, backup copies are only ensured to be eventually equivalent.

To guarantee serlahzabllny, concurrency control mechanisms are required. A typical example
is locking, e.g., 2-ph,a§e-lf(__)c15§_ngv_ (2PL). If updates are always first executed on a primary replica,
local concurrency control on the prirnary is enough. Whereas, if updates can be done concurrently
on different copies, dlstnbuferilocklngrs required. When proving a replication algorithm provides
1CSR, one has to show that all éxecutions that are possible under the given concurrency control
and propagation approécnes;"ére eciu};}élent to some serial execution on a single logical copy of the

database. For passive'renlicaticn'W'i't'h"a single primary replica, 1CSR is not difficult to achieve,
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since local concurrency control on the primary is sufficient to guarantee serializability, and eager
replication can easily guarantee 1-copy-equivalence.

However 1CSR has been designed for database replication, and thus is not appropriate to check
correctness for AS replication, since it does not consider the interaction between the replicated AS
and a backend tier. For instance, it cannot check duplicate or missed requests to the database.

Linearizability [53, 5] is another well-known criteria to evaluate correctness of concurrent ex-
ecutions. While serializability is addressing the internal sequence of concurrent transactions on a
shared object, linearizability considers the external observed sequence of concurrent operations on
a shared object. It does not address transactions. Instead, it considers the sequence of requests and
responses. For instance, given two concurrent requests 71 and 72 on the same object, if 1 ’s response
is perceived before ry is invoked, the linearizable execution sequence of r; and r» must guarantee
that 71 ’s execution is before 79’s execution. Although linearizability could be a useful criteria for the
replicated AS to check if the ordering of requests and corresponding responses is preserved linearly
in case of resubmiésfon, it is not a sufficient correctness criteria for replicated AS yet, since it does

not consider the interaction between the replicated AS and a backend tier.

3.2.2 State Machine Replication

State machine replicaﬁon [88] is a very well-known formalism for active replication. The replicated
system is modeled as a state machine, and each replica has a replica of the state machine. A request
triggers actions on all state machine replicas to transfer the state machine from the same initial state
to the same final state. The correctness criteria addressed by the state machine replication is that
all replicas receive and process the same sequence of requests. It has two requirements: (1) every
correct replica receives every request (Agreement), and (2) every correct replica processes requests
it receives in the same relative order (Order). Then, based on the assumption of determinism, all
replicas executing the same sequence of requests based on the same initial state will reach the same
final state. Using a group communication system to multicast requests to all replicas can easily fulfill
the agreement requirement via uniform reliable delivery, and the order requirement mechanism via
the total ordering mechanism. For example, in [112], the state machine replication is used to build

a fault tolerance framework for web services and the total ordering of requests is guaranteed by a

Cmem e
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consensus-based algorithm.

However, when considering that an execution might submit sub-requests to other tiers, e.g., the
database, more problems arise. For example, connections to the database are a problem. Typically,
there are three possibilities. The first option is that each replica has an individual connection to the
database, and the database needs to detect and suppress duplicate requests and needs to guarantee
that the crash of a replica will not affect connections from other replicas. The second option is
that only one replica builds a connection to the database, and the replica needs to pass responses
to all other replicas afterwards. If the replica crashes, the original connection is lost, and another
replica must be chosen to connect to the database. In this case, problems about missed requests and
duplicate requests might arise. The third option is that all replicas connect to a specific gateway,
and the gateway filters duplicate requests and builds a connection to the database; however the
gateway itself might need to tolerate failures using replication, and hence, similar problems arise
again. The Eternal system [73, 74] uses the gateway approach. All of these problems might arise
even for deterministic execution, but so far we are not aware of any correctness criteria based on
state machine replication that would address them.

As an alternative to group communication, consensus mechanisms [25, 31] are widely discussed
for active replication to guaréntee all replicas agree on the sub-requests and the responses despite
non-determinism or Byzanfiﬁe failures. However, consensus mechanisms do not consider issues
such as duplicate requests, missed requests, and state consistency between tiers. Hence, we still

need a correctness criteria to consider these problems.

323  X-ability

The X-ability framework [44] aIloWs réésbning about correctness in a multi-tier replicated system
based on execution histories. It takes into account that the replicated tier can call other tier in the
system. X-ability assumes that in the n{;h-faulty non-replicated case, many different execution se-
quences are possible for a gi\)éﬁ set of révciuests. Such a sequence is called a failure free execution
history. If the tier is replica‘té.d and some replicas might crash, the execution sequences for these
requests will be more compl;x', since some requests will be interrupted by the crash and reexecute

on other replicas. A sequence in a repl'iéated system with failures is called a real execution history.



Chapter 3. Traditionéi Applicatioﬁ Server Replication Solutions and Correctness Criteria 43

X-ability proves that a replication algorithm is correct for a tier by checking if all real execution
histories on the tier, which are possible under the given replication algorithm, can be reduced to
failure free histories. The rule of reduction is that if an interrupted execution of a request and the
corresponding reexecution have the same side-effect as that of a possible failure free execution of
the request, then the interrupted execution and the reexecution can be reduced to the failure free
execution. X-ability considers an execution to possibly change the state and invoke servers of other
tiers. This reduction mechanism implicitly checks missed requests and duplicate requests for the
replicated tier. X-ability assumes a request to another tier is either idempotent or undoable. If a
request is idempotent, no matter how many times the request reexecutes, the sum of these execu-
tions has the same effect asb the idempotent failure free single execution. If a request is undoable,
before the request reexecutes, the side effect of its last execution can be undone, and hence the last
successful reexecution can be considered as a failure free execution.

X-ability allows reasoning about the correctness of a composite system very easily by assuming
that each tier provides’ X-ébility. As such, proof of correctness can be done independently for
each tier. For instance, at failover, a replication algorithm for a tier might restart any execution
that was active on a crashed replica at time of failover. If the original execution on the crashed
replica had submitted a sub-request to another tier, the reexecution might resubmit the very same
request. This, howeve;, is niof proble'métﬂic since such request is assumed to be idempotent, hence,
a resubmission does ot lead to any inconsistency. However, things are more complicated if a
called component dde-s'“hbt"h'r'GVide X-ability. For instance, a backend database system usually does
not provide X-ability, Sincé it does not provide idempotent operations or the possibility to undo
committed transactions. A replication aigorithm for an AS has to take this into account. In this
case, proof of correctness cannot be done independently on the replicated AS; both the client tier
and the database tier are required to be ‘considered. In this thesis, we model execution that goes

beyond an individual tier in order to reason about such cases.
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3.3 Load Balancing and Combined Approaches

Load balancing and fault-tolerance have traditionally been handled as orthogonal issues, and re-
search on one topic usually does not attempt to solve the other. Section 3.1 has pointed out that
the primary-backup approach is used in many AS replication solutions for fault tolerance purposes.
The main differences between these solutions are when to do replication and whether or how to
guarantee state consistency after failover. Most solutions we discussed in Section 3.1 only use the
primary replica to execute all the load, and do not aim at scalability.

However, for load balancing purposes, we need more replicas to be able to execute requests
to share the load. Typical load balancing solutions of application servers (or web servers) use a
centralized load balancer (also called scheduler) to manage to distribute the load to different repli-
cas. In content-blind policies [4], such as Random or Round Robin, the load balancer does not
know the load on each site. As content-blind policies can be easily implemented, they are widely
used in practice. However, they do not work well in heterogeneous environments. Content-aware
policies require some knowledge about the environment. There exist many strategies, e.g. sending
requests to the least loaded replica [87, 79], distributing requests according to data size [111], or
locality of requests [81, 3, 36]. Feedback-control and resource consumption predictions are other
mechanisms [110, 66]. Such strategies can dispatch load more precisely, but either need a central
scheduler with global knowledge or require frequent exchange of load information. Central sched-
ulers present a single point of failure. Replicating them is possible but has its own overhead. In
contrast, our content-blind approach with request forwarding is purely distributed with little over-
head, and is easy to implement.

Several commercial solutions (e.g., used in JBoss [60], Weblogic {14] and Sun Application
Server [96]) use component replication for both fault-tolerance and load-distribution. In the basic
approach, all C6ﬁ1ponents are replicated on all servers and requests are balanced across all replicas
in the clusters. 1f feplica fails, any replica can take over. However, as was discussed in Section 3.1,
many of the cormercial replication solutions do not work correctly in the presence of failure. Fur-

thermore, the approach does not provide enough scalability since replicas spend too much time on



Chapter 3. Traditional Application Server Replication Solutions and Correctness Criteria 45

backup activity when the cluster size increases. The scalability problem can be overcome by par-
titioning a cluster into sub-clusters and let a component be only deployed and replicated in a sub-
cluster. Therefore, updates only need to be propagated in the sub-cluster leading to less overhead.
However, requests to this component can also only be distributed to this sub-cluster. Furthermore,
the approach requires to artificially define a sub-cluster for each component which makes reconfig-
uration complex. In our approach, a component is deployed on all replicas. However, at run time,
component instances are only replicated on a fixed number of replicas which is independent of the
size of the entire cluster.

Only a few approaches in the research literature consider both load distribution and fault-
tolerance. Singh et al [91] propose a system that merges the Eternal [74] fault tolerance architecture
and the TAO’s load balancer {87]. All servers in a cluster are partitioned to several disjoint FTG
groups. A similar architecture is used in {80]. However, only the primary server in each replica
group is used for load balancing while backups do not contribute to load distribution. Moreover,
these solutions do not address recon‘ﬁéuvratilon problems. Long et al [67] propose a solution in which
each server acts as both a primary and a backup. However, their solution is specific for a cluster with
only 2 machines. In [84] allvébhipdhéﬁts are replicated on all replicas leading to limited scalability.
Other combined solutions do not consider stateful AS. For example, Ho and Leong [54] propose to
replicate event channels and share the load among replicas using the replicated channel. However

the approach only replicates stateless event channels.

cmy
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Execution Patterns for Application

Server

In Section 2.6.2, we discussed informally what it means for a replication algorithm to show correct
behavior. Informally, the execution despite possible failures of individual components should be
equivalent to the execution in a non-faulty non-replicated system. The challenge in defining cor-
rectness lies in the many different ways client requests and their execution at the AS and database
tiers can be coupled with the notion of transactions that require atomicity, durability and isolation.

This chapter addresses this issue by formally modeling a set of execution patterns that reflect
the most common way in which client requests and transactions are associated with each other in a
3-tier architecture. In order to do so, we first model request executions. Then, transaction execution
is modeled using the concept of execution patterns. We then model state changes performed by
transactions. At last, we derive a set of correctness properties for the execution in a non-faulty
non-replicated 3-tier system.

The model is then extended to include the behavior in case of a crash and typical actions of a
passive replication algorithm. Based on this extended model, a set of correctness criteria is presented

that a replicated system should fulfill in order to emulate a non-faulty non-replicated system.



Chapter 4. Execution Patterns for Application Server 47

4.1 Request Execution

We refer to Requests as the set of all requests. Actions is the set of all possible actions triggered
by requests at the AS and database and Responses is the set of all possible responses. We assume
each client C; first establishes a session with the AS and all requests of this client are executed
within this session. We denote the session of the client C; from the first request establishing the
connection to the last response before disconnection as a special Action CA;. Furthermore, we
assume that each client submits requests in a single thread based on the blocking scheme. That is,
a client only submits the next request when it has received a response to the previous request. Each
r € Requests submitted to the AS by C A4; triggers an g € Actions on the AS. We refer to this as
an AS action. The action performs read and write operations on the state of the AS and performs
calculations. Please note, we assume that the client never accesses the database directly.

Additionally, an AS action a might make further calls to the database or to other components on
the AS again based on the blocking scheme. A call to the database is typically an SQL statement. We
refer to this as arequest r € Requests and it triggers an action a € Actions on the database referred
to as a DB action, which executes the SQL statement. This includes read and write operations on
the data of the DB. After the completion of an AS or a DB action, a response rp € Responses
is returned to the caller. When an AS action a makes calls within the AS, in some cases, the calls
are also requests, triggering new (nested) actions on the AS. Sometimes, the execution of the call is
considered part of the action a. We will discuss this later, when we introduce transactions.

Thus, an action refers to a set of operations on one tier. It has a unique corresponding request
and one response. The function R(a) represents the request leading to the action a, and RP(a)
represents the response proVi‘ded by a. The signature function SIGRP (rp) indicates the action that
returned the response 7p (i.c., a = SIGRP(RP(a)). Due to non-determinism, a request might
cause different actions (difféféht set of read and write operations), depending, for example, on the
previous state of the AS/DB. "The function A(r) represents the set of actions that might be triggered
by the request. o

Figure 4.1 denotes a ééfhple execution of all requests within the client session CA;. In the

figure, the first line represents time at the client, the second represents time at the AS, and the
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Figure 4.1: Sample scenario of request execution

third represents time at the database. The boundaries of an action are denoted with [ and ]. In the
execution, request 7y, triggers action ay, which returns response rp. The client submits requests 7
and r3. AS action a; submits request 75 to the database triggering action ay. AS action a3 submits
request r4 to the database, triggering DB action a4, and then submits request 75 within the AS,

triggering the nested AS action as.

4.1.1 Histories of Request Execution

As execution is single-threaded, we can specify a strict ordering of requests, responses, and actions
related to one client. We denote as _Ehcf request history RH, of action a the sequence of requests
submitted by a. For instance, in Figure 4.1, RHc 4, = 7173, and RH;, = ryrs. Similarly, we
denote as response history RPH, of action a the sequence of responses that @ receives for the
requests it submits. We Vdériote the number of requests in the request history RH, with |[RH,|
POS;{}, H, is used for the éérdinality of a response history RPH, and the position of a response
RP in the history RPH,. Due to our model of blocking calls, it is always true that either |[RH,| =
\RPH,| or |RH,| = |RPH,| + 1.

An important probertﬂyw(;fmz; lcli);'réct execution is that the request and response histories must

match.

Definition 4.1.1. Let a-be.an.action. We say RH, and RPH, match (denoted as RH, < RPH,)
if the following holds:
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I. V¥r € RH,: eventually 3rp € RPH,, POShy = POS’;{’PHG.
2. ¥rp € RPH,: 3r € RH,, POSgy = POSE’},Ha A SIGRP(rp) € A(r).

The above indicates that each request in the request history triggers one of the possible ac-
tions for this request and this action returns the appropriate response. For a client action C A;, the

matching is denoted as RH¢ 4, >} RPHc 4,.

4.2 Transactions and Execution Patterns

Per our assumption in Section 2.4, all execution (read and write operations on data) have to be per-
formed in the context of transactions. As outlined before, transactions can be triggered in various
ways — either implicitly by the container, explicitly by the client or explicitly by the application pro-
grammer within the code executed by the AS. We now derive a set of execution patterns, which are
denoted as 1-1, N-1, 1-N, or N-N to indicate the number of client requests involved in a transaction
and the number of transactions generated by a request.

Recall that we split a global transaction in an AS transaction, which is denoted as AST(t),
and a DB transaction, which is denoted as DBT'(¢). Accordingly, for an AS or DB transaction ¢/,
GTX (') indicates its global transaction. For the global transaction ¢, both AST(t) and DBT(t)
must terminate in the same way. Namely, if DBT(t) commits (aborts), then AST(t) has to com-
mit (abort), and vise versa. Please note, every global transaction must have a corresponding AS
transaction since transactions are always started at the AS. However, a global transaction might not
contain a DB transaction since AS actions involved in the transaction might not access the database.
Furthermore, for a transaction ¢, we denote the client of the transaction as C'L(t).

We now discuss our execution patterns in more detail. We first describe them informally, then

discuss their use in practice and then define them formally.

4.2.1 1-1Pattern™-

The I-1 pattern (1 request - 1 transaction) means the execution related to a single client request is

encapsulated in one global transaction which spans operations at the AS and possibly operations
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Figure 4.2: 1-1 pattern

at the database. As introduced in Section 2.4.4, it is the default execution pattern in J2EE when
EJB objects use the CMT scheme. Therefore many applications use exclusively the 1-1 pattern.
Figure 4.2 illustrates a sample 1-1 pattern. When the AS receives client request r;, the TM starts a
transaction ¢; on the AS. Then, r is executed within ¢; as an AS action a,. During a;, a sub-request
r9 i submitted to access thé dét'abase. At this moment, the DB transaction of ¢; is started at the
database. The next sub-request r3 is executed within the same DB transaction. At the end of the
execution, the TM submits the commit request ¢;.commit to commit ¢;’s DB transaction. Then,
t1’s AS transaction commits atthe AS. At Iast; r1’s response rp; is returned the client. In the figure,
we use +¢; and —¢; to indicate the begin and end of transaction ¢, at the AS and the database. As
each request triggers exactly one transaction, there is a single AS transaction per client request that
coincides with the boundaries of the AS action triggered by the request.

From the above example, we can find that in the 1-1 pattern an AS action can submit several
requests to the database that are all executed within the same DB transaction. The DB transaction
starts with the first action on the DB and vterminates with the last. Typically, the last request to
the database is the commit request. However, the AS action could also request an abort so that
both AS and DB transaction abort. Furthermore, any database action might result in an abort (e.g.,
because of integrity violation) that then returns an abort notification as response to the AS action. In
case of commit, the AS action and transaction usually terminate directly after receiving the commit
response from the DB. In case of abort, an abort operation is required to rollback state changes

performed by the transaction on the AS for full state consistency. Referring to Section 2.4.4, an
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abort operation at the AS could be part of the original method execution in the BMT scheme, or
be done by a specific abort method, e.g., executing the afterCompletion method in the CMT
scheme. The response of an abort operation is an abort response. In both cases, we consider the
abort activity as part of the original AS action. In case of an abort, the client typically receives a
special abort response, which is denoted as rp,p, .

In summary, the 1-1 pattern has the following relationships. Each client request/response pair is
associated with exactly one AS transaction. Thus, there is exactly one AS action per AS transaction.
There is at most one DB transaction per AS transaction. Several request/response pairs between AS
and DB can belong to this DB transaction. Thus, many DB actions can belong to one DB transaction.
It also might be that a client request only triggers operations at the AS. In this case, there is only an

AS transaction but no DB transaction.

4.2.2 N-1 Pattern

R

The N-1 pattern (N requésts - I transaction) means several client/response pairs of a client are
encapsulated within one global transaction. It is often used when a web-server (WS) runs between
the real client and the AS In ihis caASé, the real client makes a request to a component in the WS
(e.g., a servlet) which makes in turn several calls to the AS. In order to guarantee all-or-nothing for
the external client reqlhxe~st, all calls to the AS should be embedded within the same transaction. In
order to do so, the A/Sb'fhas' tb export"fﬁe begin/commit/abort methods of the TM to the client. In
an J2EE AS, it is theuser v\transact.i"(\)j'ni that enables the N-1 pattern. As shown in Figure 2.5, the
client program can cgli the :bégin method of a user transaction object to start a transaction on the
AS and call the comfﬁit‘“on‘: abort method of the user transaction to commit or abort the transaction
on the AS. Between é begm and a termination request, several client requests can be submitted to
one or more EJB objecfsl lf each EJ iBy-method called within the transaction is in the CMT scheme
and has the Requi red éifriﬁﬁfe, allAtI;ese requests are executed within the same transaction. In this
case, more than one 'cli>evnt‘”1:ec'1‘l'1‘es‘t is associated with a transaction. This behavior follows the N-1
pattern. Controlling gransactions from outside the AS has also become important in the context of
web-services.

Figure 4.3 illustratés a sample N-1 pattern. In this pattern, the client explicitly controls the

(SR PR
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Figure 4.3: N-1 pattern

demarcation of transactions. The first client request starts the transaction on the AS, i.e., ¢; in the
figure. Each following client request on behalf of ¢; triggers a new AS action. Each AS action
can submit several requests to the DB, triggering several DB actions. Finally, the client submits a
commit request ¢;.commit that commits £; at the DB and the AS. At any time an AS or DB action
can trigger an abort, resulting in an abort of the entire global transaction that triggers an abort at the

AS and the DB and an abort response to the client.

4.2.3 1-N Pattern

The 1-N pattern (1 request - N transactions) means the execution of a single client request is as-
sociated with more than one transaction. Although this seems unusual at first, it is widely used
in practice when a long execution needs to be chopped into small transactions in order to increase
concurrency and decrease blocking within the database [90, 63]. It is then up to programmers to
guarantee that the effect of executing a suite of transactions is the same as if there were only one
big transaction. In particular, if not all of the transactions commit the effects of already committed
transactions must be undone by executing corresponding compensating transactions provided by the
programmer. Despite the added corﬁi;l;kity, for applications where such compensation is easy, the
advantage can be high. o

In an J2EE AS, the 1-N patterﬁ 'ca;n be easily implemented in the CMT scheme using the
RequiresNew attribute. When a éiiént request calls a method of an EJB object configured as

Required or RequiresNew, a transaction is started for the execution as in the 1-1 pattern. If
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some EJB methods are configured as RequiresNew, when sub-requests are submitted to these
methods during the execution of the client request, new transactions are created within the context
of the existing transaction. In this case, the client request triggers more than one transactions at the
AS. This association follows the 1-N pattern.

Figure 4.4 illustrates a sample 1-N pattern. Client request r; triggers transaction £; on the AS
and then starts an AS action a; within ¢;. £ starts and terminates with action a;. t; starts on
the database when a; submits the first sub-request 2 to access the database. At the end of o,
t1.commit is submitted to commit £; on the database and then commits ¢; on the AS. Transaction
t; can have nested transactions, which are called child transactions, while t; is called a parent
transaction. For instance, a; might make a call to an AS method that requires the start of a new
transaction, e.g., calling a method marked as RequiresNew. This is the case where we use nested
actions within the AS. An Aéia.étion makes a request leading to a nested action within the AS when
the nested action is associated with a different transaction than the parent action. In the figure, action
a1 makes a request 74 triggering action a4 which is associated with a child transaction ¢, of £;. The
nested transaction can again be a global transaction spanning both AS and DB.

Thus, in the 1-N patterr;,"éach client request/response pair is associated with a set of nested
transactions. The transaction that is directly triggered by a client request and involves the action
associated with the client recjﬁéSt is called an outer transaction. For example, ¢; is the outer trans-

action directly triggered by’ré'ciuest r1. A nested transaction that is a child transaction of an outer
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transaction is called an inner transaction. For example, ¢s is an inner transaction. An inner trans-
action is associated with a nested action while its parent transaction is associated with the corre-
sponding parent action. A child transaction always terminates before its parent transaction; i.e., that
is true nesting. An outer transaction can trigger a sequence of inner transactions. We can consider
these inner transactions siblings as they have the same parent. Sibling transactions cannot be active
concurrently, since each of them is triggered by a sub-request submitted by the action associated
with the outer transaction and request execution is blocking. That is, one inner transaction has to
complete before its sibling can start. An inner transaction itself can have child transactions which
are also inner transactions. This leads to multiple levels of nesting where an inner transaction has
not only a direct parent but can have a whole set of ancestor transactions. The outer transaction is
ancestor of all inner transactions. An inner transaction is concurrent to all its ancestor transactions
but while the inner transaction is executing, the ancestor transactions are suspended. A suspended
transaction can only continue after all its descendants have terminated.

Please note, although many As products allow the existence of nested transactions, most of them
do not clearly define the rule for the relationship between parent transaction and nested transactions.
J2EE regards a parent transaction and its nested transaction as two independent transactions, and
the commit/abort of the parent transaction and the nested transaction will not affect each other. That
is, the nested transactioft can commit while the parent transaction aborts and vice versa. This is
different to the traditional closed nesting model assumed in database systems. If this closed nesting
model were applied, then all inner transactions and the outer transaction would commit at the same
time at the very end. In order fo somehow address this, we only consider relaxed state consistency.
If a child transaction commits but the parent fails, it allows the parent transaction to adjust its state
to reflect this fact. ‘

Whether the parent transaction can see changes a child transaction performs on the shared state
depends on the isolation Tevel of the database system. The database system usually sees the differ-
ent transactions as independent. -For example, in case of serializability, the parent transaction can
see changes of the child transaction after the child transaction commits. So can following sibling
transactions. If any rule is required by an application, application developers should manage it at

the application level. -
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Figure 4.5: N-N pattern

Session state has usually no concurrency control applied. In principle, all transactions involved
in a client request can access the same session state. As there are never two transactions executing
at the same time, this appears fine. However, things become complex in case of abort. A transaction
t; can change some session state and then trigger an inner transaction ¢, that reads these changes,
performs further changes and then commlts If now ¢; aborts what is the semantics as 5 has already
read the “dirty” data and commntted" As this is a very undesirable behavior, which should be
avoided, we assume that nested transactions access disjoint session state. For instance, in J2EE, we
only consider applications, where an inner transaction is executed on an SFSB that is not accessed
by any of its ancestor transactions. Two sibling transactions, however, can access the same state as

they execute serially.

4.2.4 N-N Pattern S

The N-N pattern (N requests - N transactions) means that more than one client request can be
executed within an outer transaction, and the eiecution can also trigger inner transactions. Typically,
it is the mix of the N-1 pattern and the 1-N pattern. In an J2EE AS, if the user transaction and
CMT is used tdgéiher, and some EJB meth(;ds are configured as RequiresNew, then several
client requests can be executed within one outer transaction, but sub-requests to methods with the
RequiresNew attﬁbutes are executed wifhiﬁ new inner transactions. Thus, the scenario follows
the N-N pattem.“Figure 4.5 illustrates such an N-N pattern. The client action CA; first begins
a transaction %1, vand then client requests %'2 and rs are executed as actions ag and as within £;.

Additionally, as tri"ggevrs a transaction t2. On the AS, 5 is started by request rg that triggers action
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ag. The consecutive request r7 leads ¢ to be started at the database. ¢3 eventually commits at the
end of ag. ag is a nested action of as, and ¢o is a child transaction ¢;. Finally, the client action C A;
submits the commit request ¢;.commit to commit transaction ¢; on both the AS and the database.

The N-N pattern also could have nested N-1 patterns. For example, when several client requests
are executed within an outer transaction according to the N-1 pattern, the action associated with
one of these requests starts an inner transaction and then submits several sub-requests within this
inner transaction. It can happen in a J2EE AS when using the user transaction and BMT together.
The user transaction provides the N-1 pattern for client requests. The BMT scheme allows an inner
transaction to span more than one sub-request.

Due to the complexity of the N-N pattern, it is very difficult to correctly apply this pattern in
a real application even without considering failure and replication. In practice, most of the time,
the N-N pattern does not make sense. Applications who use it, probably are not aware of the im-
plication of using such a complex pattern. If an application allows a client to explicitly bundle
several requests into one transaction, it .seen"ls counter-intuitive that then one of these requests ac-
tively triggers several transactions. Hence, in this dissertation, we do not discuss the N-N pattern

any further.

4.3 State Changes

We have seen all state changes at DB and AS are performed in the context of transactions. We now
describe what it means that the state changes at AS and DB are consistent. If an AS/DB action
changes the state of the AS/database, the action is called an update action. If a transaction involves
one or more update actions, it"is called an update transaction, otherwise a read-only transaction.
Whether a DB action is-an-update action can be detected by analyzing the corresponding SQL
statement. The state changed by an update DB transaction is the aggregation of state changes of all
update DB actions involved inthe DB transaction. At the AS, however, every AS action is assumed
to be an update action, since updates-are generally difficult to detect. This implies that every global
transaction is assumed to be-an-updatetransaction in our model.

We consider two types of-state-at the AS: session-related state and shared state at the AS. As
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we assume that shared state is cached data from the database, any change on the shared state at
the AS is also reflected as changes of a DB action at the database. The change on the AS and the
corresponding changes at the DB must belong to the same global transaction. Therefore, access
to shared data at the AS is not considered part of an AS action but only considered part of a DB
action. This means, we consider as state changed by an AS action only the changes performed on
session-related objects. The state changed by an AS transaction is the aggregation of state changes

of all AS actions involved in the transaction.

4.3.1 Transaction Histories to Reflect the Order of State Changes

In traditional serializability theory transactions are represented as a sequence of read and write oper-
ations. Serializability means that the interleaved execution of the operations of a set of transactions
needs to be equivalent to a serial execution of the same set of transactions. Traditional concurrency
control mechanisms such as strict 2-phase-locking and optimistic concurrency control furthermore
have the property that if in the concﬁrrént execution ¢; commits before ¢9 then there exist an equiv-
alent serial execution where ¢; also commits before 5. Furthermore, no transaction ever reads
uncommitted data (‘ex‘cept of its own v.writes). Assuming that the DB provides such form of commit-
order preserving sefializability and given that the AS only changes session-related state where there
are no concurrency-i‘s’;\‘xéé, we can describe the order in which state changes occur at the AS and the
DB through the ordér':iﬁ which transactions commit.

At the AS (datal;ééei;\ATH (DTH) indicates the transaction history, i.e., the order in which
AS (DB) update tréﬁsécfig)ﬁé comnﬁi’tj At initialization time, both the AS and the database are in
the initial state; 'a>nld both ATH ar-l‘(qiwaH are empty. After a transaction terminates, if it leaves
state changes at the AS and/or the database, it is a successful update transaction. A DB update
transaction is successful only when it ‘commits, and an AS transaction is successful if it commits
or, in case of relaxed state’ consistency, also if it aborts. A successful AS (DB) update transaction
is appended to AT H (DT H) after it terminates. At any time, the visible state of the AS (database)
is the aggregation of staté changes made by all successful AS update transactions (successful DB

update transactions) so far
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4.3.2 Matching State Changes at Application Server and Database

For a global transaction ¢, if state changes made by its DB transaction successfully commit, state
changes made by its AS transaction must successfully commit as well. This relationship implies that
each DB transaction in DT H must have a corresponding AS transaction in AT H. We assume that
the DB and AS transactions of a global transaction have the same unique identifier, which allows
them to be identified as being part of the same global transaction.

The ordering of transactions in AT H and DT H defines the ordering of state changes performed
at the AS and the database. The ordering of transactions in DT H represents a serial order that is
equivalent to the origiﬁal concurrent execution of these transactions. Transactions can belong to
different clients. The ordering of such transactions in AT H does not matter since changes made
by them are performed on different session data and have no dependency. However, the ordering
of transactions of the same client at the AS is important since it reflects possible dependencies.
Furthermore, this order must be consistent with the order of the corresponding DB transactions. That
means, given two global transactions ¢; and 2 of the same client that both have AS and DB update
transactions, if AST'(t;) < AST(tz) in ATH (< representing the partial order in the history),
then DBT(t,) < DBT(t2) in DT H. There are two cases to consider. Given two transactions t;
and ¢y of the same clierit: if t; and to are not nested transactions, ¢; has to be completely executed
either before £y or after #; since we assume there are no concurrent transactions triggered by the
same client except for nested transactions. Otherwise, one transaction is the parent transaction of
the other, and then the child transaction has to terminate before the parent transaction. We define

the relationship between ATH and DT H in form of a matching property:

Definition 4.3.1. We say _'ATH and DT H match (denoted as ATH > DTH) if the following
holds: ‘

1. Vt € DTH: eventually AST(GT X (t)) ¢ ATH.
2.Vt ATHand

(a) t commits: if DBT(GT X (t)) is an update transaction, DBT(GT X (t)) € DTH.

(b) t aborts (possible in case of relaxed state consistency): DBT(GT X (t)) ¢ DTH.
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3. Given t,ty € DTH and CL(GTX(t;)) = CL(GTX(t3)): DBT(t;) < DBT(t2) in
DTH < AST(GTX(t1)) < AST(GT X (t)) in ATH.

Definition 4.3.1 expresses the requirement that transactions and request executions at the AS

and the DB must match and are executed in a consistent order at both tiers.

4.3.3 Matching State Changes at Application Server and Client Request Execution

Definition 4.1.1 has indicated how requests must be properly associated with actions and corre-
sponding responses. Definition 4.3.1 relates the state at the AS and DB tier via transactions. As
a final property, we relate the requests at the client tier with the proper state at the AS and thus,
indirectly with the proper state at the DB. The state changes performed by AS transactions should
be consistent with client requests associated with these transactions. In our model, this consis-
tency is expressed by a matching between ATH and RHc 4,/RPHc 4, of client session C A; and
is denoted as ATH 1< RHcAi /RPHc,,. Matching not only means the content of ATH and
RHca,/RPHca, match, namely each request/response in RHc 4,/RPHg 4, has at least one as-
sociated transaction, but also means the ordering of ATH and RHc 4,/RPHc 4, match, namely
transactions must be ordered according to request execution.

Since the association between client requests and transactions are different for different execu-
tion patterns, the definition of the tﬁatching rules depends on the execution pattern. Let’s have a

look at each of them individu-éivly,

1-1 Pattern

Each client request r; and the ffiégered action @ € A(r;) is associated with exactly one transaction.
This means that, on the one hz;r'\d; for each successful update transaction t € AT H, the only action
a involved in t should have ‘i'ismcuorresponding request R(a) € RHca, of a client C; and have its
corresponding response RP-(d)F.E RPHcAi of the same client session C'A;. On the other hand,
for each request r € RH( Alof a client session CA;, ATH must eventually contain exactly one
transaction ¢ that is associated w1th an action @ € A(r), unless the request has an abort response in

RPHc,, in case of full state éoﬁ'Sistency. In case of full state consistency and an abort response,
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AT H must not contain the transaction. For any two requests in RH, their ordering in RH should
be the same as the ordering of the corresponding AS transactions in AT H. We can formalize this
as follows.

Given AS transaction ¢, at(t) indicates the AS action involved in ¢t. The matching property

between ATH and RHga,/RPHc 4, of client C; is called I-1 matching property.
Definition 4.3.2. AT H < RH¢ 4,/ RPHc 4, if the following holds:
1. Yt € ATHACL(GTX(t)) = C;: eventually R(at(t)) € RHca, ANRP(at(t)) € RPHe4,.

(a) In case of full state consistency, RP(at(t)) # rDap,.

(b) In case of relaxed state consistency, t aborts < RP(at(t)) = rPap,-
2. Vre RHCA,--'

(@) In case of full state consistency, either eventually 3t,t € ATH Ar = R(at(t)), or
eventually 3rp € RPHc,, POSgy,, = POS;szHCA. ATD = TDgp,.

(b) In case of relaxed state consistency, eventually 3t,t € ATH N\ r = R(at(t)).

3. Giventy,t € ATH ACL{GTX(t1)) = CL{GT X(t9)): t1 < tain ATH & R(at(ty)) <
R(at(ty)) in RHca,.

Condition 1 céb‘t‘\‘fres that each successful update transaction has a matching request and re-
sponse. Condition '2.-;ia-lptures that each client request of client C; has a matching successful update
transaction on the AS unless it is aborted in case of full state consistency, in which case the client
receives an abort response. Condition 3 captures that transactions must be ordered in AT H ac-
cording to the ordering'of their corf;spdnding requests. It actually also guarantees that neither two
transactions are associated with the same request nor two requests are associated with the same

transaction.

N-1 Pattern

In this pattern, serval ciiehﬁ&juésté" and their actions are associated with a transaction. On the one

hand, for each transaction te ATH; ‘each’ action a involved in ¢ should have its corresponding
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request in RHc 4, of a client session C'4; and have its corresponding responses in RPH¢ 4, of the
same client session. Furthermore, the requests (responses) of actions associated with a transaction ¢
should build a consecutive sequence in one RHca, (RPHc4,). Additionally, for two transactions
t; and to of the same client session C'A;, if t; < t3 in AT H, then all requests (responses) of
actions associated with ¢; are before all requests (responses) of actions associated with t3 in RHc 4,
(RPHc4;). On the other hand, in RHc 4, of a client session C'A;, if a sequence of requests belongs
to the same transaction, the transaction must be eventually contained in AT H exactly once, unless
the last request in this sequence has a corresponding abort response in RPH¢ 4, in case of full state
consistency, in which case AT H should have no transaction associated with these requests.

To formalize this, we need some further notation. Given an AS transaction £, the function AT (t)
represents the sequence of AS actions that are associated with transaction ¢£. Due to the blocking
scheme, the actions are in a sequential order. For example, if ¢ contains actions a; to a,, then
AT(t) = aja...an. AT(t) represents the ith action in the sequence.

We now apply ﬁmctioné R and RP to an action sequence to represent the request sequence that
triggers the action sequence and the response sequence generated by the action sequence. Thus,
R(AT(t)) = R(a1)R(az2)...R(a,) represents the sequence of client requests associated with trans-
action £ and RP(AT'(t)) = RP(a1)RP(a3)..RP(ay) represents the sequence of responses gener-
ated within transaction {. These two sequences must respectively be sub-sequences of the request
history and the response history of the client CL(GT X (t)) that triggers the transaction for the
matching between AT H and RH/RPH of the client.

In order to formally express the relationship of sequences, we define the following notations for

sequences.
e |s| indicates the size of sequence s,
e s* (1 < k < |s]) indicates the kthifem of sequence s.

o s’ « s indicates that sequence s’ is a sub-sequence of sequence s.

e s; < sp indicates that the last item of sequence s; precedes the first item of sequence ss.
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With this, the fundamental property of AT H and RH/RPH to match is that for a given AS trans-
action t, R(AT(t)) ox RHc ) and RP(AT(t) o RPHepy).-
Formally for the N-1 pattern, the matching property between ATH and RHc4,/RPHca, of

client Cj is called N-/ matching property, and is defined as follows.
Definition 4.3.3. ATH < RHc 4,/ RPHc 4, if the following holds:

1.Vt € ATH A CL(GTX(t)) = C;: eventually R(AT(t)) x RHca, AN RP(AT(t))
RPHc,

(a) In case of full state co‘nsistency, RP(ATE(t)) # rpas, (1 < k < |AT(t))).

(b) In case of relaxed state consistency, t aborts <& RP(AT*(t)) # rpa, for 1 < k <
|AT (t)|, and RP(AT*(t)) = rpas, for k = |AT(t)|.

2. Vre RHCAi-'

(@) In case of full state consistency, either eventually 3t,t € ATH Ar € R(AT(t)), or

sl"‘s[

eventually 3rs < RHca,, v € s ANPOSRy = POS;{},HCA' ATD = TPgs,-

(b) In case of relaxed state consistency, eventually 3t,t € ATH Ar € R(AT(t)).

3. Giventy,t € ATHACL(GTX (1)) = CL(GT X (t2)): t1 < tz in ATH & R(AT(t,)) <
R(AT(t;)) in RHca,

Condition 1 captures that €ach successful update transaction has a sequence of matching re-
quests and responses. Condition 2 captures that a client request has a matching successful update
transaction on the AS unless the transaction is aborted in case of full state consistency, in which case
the last client request associated with the transaction has an abort response. Condition 3 captures
that transactions must be orde;edln AT H according to the ordering of request sequences associated
with these transactions. Ih-’faét; it also guarantees that two transactions are not associated with the

same request. S
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1-N Pattern

In this pattern, the execution of a client request might be associated with more than one transaction.
The relationship between a client request, its action and the corresponding outer transaction is the
same as the 1-1 pattern. For each inner transaction in AT H, there is exactly one outer transaction
in AT H that is the ancestor of the inner transaction. We assume there is always an outer transaction
as we only consider relaxed state consistency (see Section 4.2.3). The ordering of two requests
in RHc 4, of a client session C'A; should be the same as the ordering of the corresponding outer
transactions in AT H if applicable, just as in the 1-1 pattern. An inner transaction must always
precede the parent transaction i>n AT H since the child transaction always terminates before its
parent transaction. Transitively, any inner transaction must precede its outer transaction in AT H.
As it is more complex to define these properties formally, we make a formal description only in

Section 6.2.

4.4 Correct Request Execution

In conclusion, the standard behavior of a non-replicated non-faulty AS can be described by three

matching properties. -~

Definition 4.4.1. Given an executioh't"n a 3-tier system with client sessions CA;, 1 < i < n. Let
ATH be the tran.§action history ai the AS, and DT H be the transaction history at the database.

The standard behavior ofa non-reﬂiédted non-faulty AS has the following three properties:
1. Vi,1 <i<n:RHgy, < Rf?HCAi,
2. Vi1 <i<n: ATH = RHe4,/RPHGa,,
3. ATH DTH )

The first propeity captures the exactly once execution of client requests as perceived by clients.
The second property captures the exactly once execution of client requests as it really happens on

the AS. The proper association between requests, responses and transactions is made. The third
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property captures the consistency of state changes on the AS and the database at a per transaction
basis.

Compared with the traditional correctness criteria introduced in Section 3.2, our correctness
criteria consider the global picture of a multi-tier architecture, focusing on the relationship between
different tiers and how execution proceeds across these tiers. This is motivated by the fact that a
crash of one tier not only affects the crashed tier itself but also affects other tiers linking to the

crashed tier. For each tier,we define the behavior that makes sense:
1. Clients receive proper responses.

2. State changes at the AS and their relative order reflect the order in which requests are submit-

ted and how requests are associated with transactions.
3. State changes at the database and the AS are consistent.

What we ignore so far is the issue of serializability or potentially other isolation levels. We assume
the database to provide serializability and the AS not to require concurrency control as access to

shared data is synchronized via the central database.

4.5 How a Crash Affects Correctness

A failure on the AS has two _ifrnplicatiqns. Firstly, AT H becomes A, namely empty, indicating that
the crashed AS loses its stat-e.wAs Aa;l,jcsult ATH and DTH do not match anymore. While ATH
is now empty, DT H still con.tvai.qspv all committed update DB transactions, since persistent data is
not affected by the‘crash and‘oﬁly éll ongoing DB transactions are automatically aborted at the
database. Furthermore, AT H does not match any more with RH/RPH of ongoing client sessions,
since these RH/RPH remain.as before the crash while AT'H is empty. The second implication of
a failure is that all outstanding client.requests do not receive their expected responses. This violates

the matching requirement of RHc 4, and RPHg 4, of a client session C A;.
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4.6 Correctness of Passive Replication

In passive replication, a primary replica accepts and executes the client requests and propagates state
changes to the backup replicas where they are applied. Depending on the replication strategy, state
propagation can take place at different time points. When the primary crashes, a backup takes over
as new primary and continues execution. The correctness criteria summarized in Definition 4.4.1 can
be easily extended to reflect a replicated system using passive replication by requiring any change
in primary not to be visible at the client, and the current primary replica to fulfill the consistency

requirements.

Definition 4.6.1. Given an execution in a 3-tier system with client sessions CA;, 1 < i < n. Let AS
= {AS;},1 < j < m} be the set of AS replicas in the middle-tier, AT H; be the transaction history

at AS replica AS;, and DT H be the transaction history at the database. The execution is correct if
1. Vi,1 <i < n: RHca,; > RPHcy;

2. Let ASj,1 < j < m be the current primary: ¥i,1 < i <n, ATH;j<x RHca,/RPHc,

3. Let AS;,1 < j < m be the current primary: DTH < ATH;.

The challenge of provndmg a correct feplication algorithm lies in the fact that the different tiers
and the replicas communic'a’té via asynchronous messages and histories get updated at different time
points. For instance, in the -1 pattern, a client receives the response after the transaction AS trans-
action terminates. The DB transactlon always terminates before its corresponding AS transaction.
The primary replicates the changes performed by a transaction either before the transaction commits
or after the transaction commlts A crash can occur at any time, and thus, this asynchrony between
events can leave the system in an inconsistent state that has to be resolved before execution can

continue at the new primary.-



Chapter 5

ADAPT-SIB Replication Algorithm for
1-1 Pattern

In the next two chapters we present the replication tool ADAPT-SIB which implements replication
algorithms for the various execution patterns. ADAPT-SIB focuses on fault-tolerance, but, as it uses
passive replication, and thus avoids redundant computation, it has the potential to be integrated into
an architecture where replicas are also used for scalability and load-balancing (which will be the
topic of Chapter 8).

ADAPT-SIB uses eager and warm replication for session-related state, propagating state changes
performed by a transaction from the primary to the backup replicas before the transaction terminates.
Shared state is synchronized via the database. In order to provide a generic and practical solution,
ADAPT-SIB does not require any special support from clients or the database.

As mentioned. in the last chapter, the behavior of the AS can be categorized by different ex-
ecution patterns, Wﬂich associate client requests and transactions in different ways. This chapter

presents a replication algorithm for the 1-1 pattern and proves its correctness.

66
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| RM | I RM [] F1G]

Backup Backup

Figure 5.1: Architecture of ADAPT-SIB
S.1 Structure of ADAPT-SIB

Figure 5.1 shows the architecture of ADAPT-SIB. ADAPT-SIB assumes that a cluster of AS replicas
consists of one primary replica and several backup replicas. Each AS replica has a replication
manager (RM). The RM uses fﬁe Jgroﬁ‘p.membership primitive of the GCS to maintain a fault
tolerance group (called FTG). The RM also uses the multicast primitive of the GCS to send messages
within the FTG. The replication algorithm has client, primary, backup and failover parts. The
primary algorithm is executed af, the RM of the current primary AS. We assume the replication
tool obtains control before a r‘equestb is sent to the TM (transaction manager) or a component, and
after the call returns. The backup .algorithm is executed at the RM of each backup replica, and the
failover algorithm is executed at ;h:evRM of the backup that is selected as the new primary after the
crash of an old primary. At the client, there is a client replication manager (CRM) that runs the
client part of the replication algo}ifhm. It intercepts each client request and response at the client
side. For web clients, CRM actually resides in the web server. As mentioned in Section 2.3.2, in
J2EE the client needs to create ’a”con.nection sessmn with the AS to get the stub of a targeting EIB
object. In our implementati_p’n solution, the CRM object is created when the connection session is
built, and is downloaded to the client side together with the stub of the EJB object from the server
side. B

Here is the basic idea of the algorithm. Assuming the fault tolerance group contains m replicas.

A client request r is executed at the current primary. Changes on session-related data performed
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within a transaction ¢ is recorded. If the current primary does not crash, at the commit time of the
transaction ¢, recorded state changes and the response to the client are propagated to backups, and
only then the transaction is committed. No changes on shared data are sent since they are written
to the shared database. Backups only apply the state changes after they know that transaction ¢
has actually committed. If the current primary crashes before the client receives r’s response rpy,
the CRM sends outstanding r to the new primary which is chosen from the remaining available
backups. The actions of the new primary at the time of failover depend on the state changes it has
received, and the set of transactions that successfully committed at the database.

Recall the correctness criteria proposed in Theorem 4.6.1. Let’s analyze the most common
situations after the old primary crashes, the AS replica AS; is selected as the new primary and the
new primary AS; receives the resubmitted request r. If AS; has already received the state changes
of the transaction associated with the request 7 and the database transaction also committed, it does
not reexecute the request. Instead it applies the state changes and returns the response. With this, the
request has one matching response (Deﬁniﬁon 4.1.1 (1)) and one matching transaction at the current
primary AS (Definition 4.3.2 (2)), which has one matching transaction at the DB (Definition 4.3.1
(2)). If AS; has received the state changes but the database transaction did not terminate properly
before the crash (note that this can be bossible because the primary sends the changes eagerly),
then it may not apply the AS state changes. If it did, AT H; would no more match DT'H (due
to 4.3.1 (2a)). Instead, it discards the state changes and starts request execution from scratch to
have exactly-once execution across all tiers. If it hasn’t received the state changes, it knows that
the database transaction has not committed. Thus, neither AT H; nor DT'H contain a transaction
associated with the request. Thus, it also starts request execution from scratch. This behavior
guarantees that neither the AS transaction nor the DB transaction is executed twice or that one or
both of the transactions are missing. -

The main data structures used in the pseudo code of all algorithms of ADAPT-SIB are as follows.
Request, Response, and Componient are encapsulated in corresponding objects. A transaction is
identified by a unique identifier tzid of type TID. The server maintains an EU object for each
currently activé transaction (one per client). EU keeps track of transaction identifier tzid, the set

of components COM P thaf have been accessed so far, the pair of the client request req and its
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Response invoke (Request req, Component comp)
1. Generate req.rid;
2. while (true)
3. Response resp = primary.invoke(req, comp, nil);
4. if (B failure Exception) return resp;
5. else find a new primary;
(a) client replication algorithm
TID begin ()
1. new EU eu;
2. eu.txid = TM.begin();
3. return eu.txid;
(b) primary: intercept begin transaction request to TM

Response invoke (Request req, Component comp, TID txid)
if (3 (req.rid, resp) € RR)
TM.abort(txid);
return resp ;
if (req is a client request) eu.req = req;
eu.COMP U = {comp};
. Response resp = comp.invoke(reg);
if (req is a client request)
eu.resp = resp;
RR U = {(req.rid, eu.resp)};
10.  if (resp ==.abort exception) abort_proc();
11. returnresp; = - C
(c) primary: intercept request to component

VN LA W~

void abort_proc ()

1. eu.COMP = {;

2. new aborted Message m3;

3. m3.content = {eu};

4. multicast m3 by reliable delivery,
(d) primary: abort procedure

void commit (TID txid)
. for each comp € eu.COMP
set comp.state to current state of
corresponding component;
3. new committing Message ml;
4. mli.content = {eu};
3. if (the current transaction updated the database)
6. eu.db = true;
7. multicast m1 by uniform reliable delivery,
8. if (eu.db == true) insert eu.txid into database;
9. wait until receive ml;
10. TM.commit(txid);
11. if (3 abort Exception and eu.db == true)
12
13
14
15
16.

N~

new committed Message m2;
m2.content = {eu.txid};
. multicast m2 by reliable delivery;
. else if (3 abort Exception)
eu.resp = abort exception;
17.  abort_proc();
(e) primary: intercept commit transaction
request to TM

~ Figure 5.2: 1-1 Algorithm at the client and primary

response resp, and the flag db to mark whether or not the transaction updates the database. The

Message object repréégnts messages between replicas. The content of a Message object depends

on the type of messagé. Further data structures will be introduced later.

52 1-1 Repligation Algorithm for Full State Consistency

The algorithm for the 1-1 pattern supportiﬁg full state consistency is from [109]. Some of the ideas

are based on [43, 41].

Figure 5.2 (a) shows that the client réplication algorithm intercepts each request submitted from

the client to the server. It attaches a unique id, and forwards the request to the current primary (lines

1 and 3). Upon a_failu'ré: exception, it resends the request with the same id to the new primary. This

repeats until it receives a correct response (lines 2, 4, and 5).
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At the server site, each replica maintains a set RR of past request/response pairs which is needed
to avoid duplicate request execution. The execution associated with a client request happens within
a single execution thread. We assume the replication algorithm intercepts a client request and any
further requests made to components. Furthermore, it intercepts begin and commit requests made
to the TM. For simplicity of description, we assume that transactions are server managed (CMT in
J2EE terminology), i.e., the container starts a transaction upon a client request before any compo-
nent method is called, and commits the transaction after all component execution has finished. Other
types of transaction management are conceptually the same, but would require a different notation
in description. Using container managed transactions, the begin transaction command submitted to
the TM is the first call intercepted by the replication algorithm for a client request r, and the commit
call is the last one. Upon intercepting a begin transaction request (Figure 5.2 (b)), an eu object is
created and associated with the thread before the begin is forwarded to the TM. Upon intercepting a
request to a component (Figure 5.2 (c)), the algorithm first checks whether the request was already
successfully executed. ThlS can haplpen when the old primary executed the request successfully,
informed the backups and committed the transaction but crashed before returning the response. In
this case, the client algorithm resubmits the request to the new primary. The new primary, however,
has the response for this request stored in RR, and no new execution is triggered. The transaction
that has been associated with the thread is aborted, and the response immediately returned (lines
1-3). Otherwise, if the request is a new client request, it is recorded in eu (line 4). Furthermore the
component to be accessed is recorded in eu before the request is forwarded to the corresponding
component (lines 5-6). Recall that there can be nested calls to different components, all within the
same transactional context. Each of them is intercepted, and the component information added to
the corresponding eu. If an abort takes place during execution of any request (client request or
nested sub-reqﬁésts), an abort exception will be returned as response. In the case of an abort within
a nested reque;t, this abort exceptio'ﬁ'i‘s simply forwarded upwards along the calling hierarchy until
it reaches the client request. Note also that each component rolls back its state changes associated
server first records the response in ey and records the pair of request and response (it is an abort

exception in case of abort) in RR (lines 8-9). In case an abort occurred during execution, an abort
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procedure (Figure 5.2 (d)) is called (line 10) which informs the backups about the abort. Since full
state consistency is assumed, no state changes need to be transferred within this aborted message.
Finally, the response is returned (line 11). Upon intercepting the commit transaction request (Figure
5.2 (e)), a committing message is multicast using uniform reliable delivery. The message includes
the final state for each accessed component and the pair of the client request and its response (line
1-4). While waiting for its uniform reliable delivery, the tzid is inserted into the database if this is
a DB update transaction (lines 8). This will help backups to determine whether a transaction has
actually committed at the database or not if in-doubt. After the primary receives its own committing
message, it commits the database transaction (line 10). As uniform reliable delivery is used, re-
ceiving the own committing message is equivalent to receiving from all backups a confirmation that
they have received the message. Once commit was successful, the primary multicasts a committed
message (lines 12-14) if the transaction updated the database, and the commit procedure completes.
The committed message makes the backups be aware of the commit of the transaction. Note that, in
theory, the database might aboﬁ the transaction upon receiving the commit request. However, when
only one database system is accessed, this usually does not happen (it might happen if the data-
base uses optimistic concurréﬁcy control, but this is not the case for current relational databases).
This special abort case can be handled sending an abort message as if abort occurs during normal
processing (line 16-17). - '

All messages the primary sends to the backups use FIFO ordering. The backups, during normal
processing, store all received ‘r'ﬁessages in a FIFO queue. Furthermore, if clients connect to them
while they are not primary (th"é'CCS has not delivered a view change message and thus they have not
determined that they are the new primary), tﬁéy respond to the client that they are not the primary. If

the GCS delivers a view change message iri&f(:atin‘g that the primary was excluded from the group,

one of the backups is selected as the new primary. This could be decided by a pre-defined priority list
or by an election procedure [59]. Any messagé ffom the now crashed primary, that the GCS delivers
after the view change, is ignored by all surviving replicas. The new primary now starts failover
(Figure 5.3). Committing messages are procéssed in FIFO order to track the latest state of each
component (lines 2-3). The procedure first checks whether the corresponding database transaction

committed or aborted (lines 4-5) if it is a DB update transaction. The DB transaction committed for
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void failover ()
1. new Eu eu, new set COMP;
2. in order of reception process euch committing message m
3. eu =m.content;
4. if (eu.db == true and } committed message m’ with m’.content.txid == eu.txid and eu.txid
does not exist in database)
ignore committing message
else // transaction committed
Jfor each comp € eun.COMP
if (Ac € COMP and ¢ == comp)
. c.state = comp.state;
10. else COMP = COMP U {comp};
11. RR= RRVU {(eu.req.rid, eu.resp)};
12. for each aborted message m
13. eu = m.content
14. RR = RRU {(eu.req.rid, eu.resp)};
15. for each comp € COMP
16.  create corresponding component;
17.  set component’s state to comp.state;

© G0 NP

Figure 5.3: 1-1 failover

sure if the new primary received the committed message but also if the tzid marker can be found in
the database, as only commiited markers remain in the database. In the case of abort, the committing
message is ignored (line 6). Otherwise, the procedure determines the affected components, and
records the pair of the client request associated with the transaction and its response in RR (lines 8-
12). This is then used to déiect duplfcate requests. For each aborted message, we record the pair of
the client request aﬁci‘v"tl{eiééﬁrespondin-g abort response in RR (lines 14-15). Finally, all necessary
components are recfeaf'éd ( l 6;1 8)'. Tn Section 7.1 , we discuss alternative failover strategies in more
detail. Note that fo;,'éléi"ity,‘ fhe~angfifﬁm does not contain obvious garbage collection actions, such
as keeping for each"cflriredt' only thelast request/response pair as it will, if at all, only resubmit the

last outstanding request. o -

53 Correctnérslsf j' o ’

This section formally proves the correctness of the proposed algorithm for full state consistency by

showing that the algorithm fulfills all matching properties described in Theorem 4.2.1.



Chapter 5. ADAPT-SIB Replication Algorithm for 1-1 Pattern 73

5.3.1 Successfully Completed Requests

Assume that at the start of the system, AS, is primary. As long as there is no crash it is obvious that
all properties are fulfilled since they have been defined to model a non-faulty environment. Given
client session C’Ai, suppose the client has submitted so far x — 1 requests and received z — 1 re-
sponses. Thus, RHca, = r172...73—1, RPHpa; = rp1rp2 ... Tpz—1. As the client is blocking,
if it has received rp,_, it is guaranteed to have received all rp; ... rpy—2. Each request r, started
a transaction tj but as some might abort, the projection of AT H, on transactions of client session
CA;is ATH: = (AST(t1)V L)(AST(ta) VL) ... (AST(tg-1) V L) where L refers to the ATH
having no entry for that specific transactfon as itaborted. Similarly, the projection of DT H on trans-
actions of client session CA; is DTH® = (DBT(t;) V L)(DBT(ts) vV L1)...(DBT(ty—1) V L1).
For each AST (ty) ¢ ATH,, DBT(t;) ¢ DTH but there might be DBT'(t;) ¢ DTH where
AST(t,) € ATH, as some committed transactions might not have a database transaction or
the database transaction is read-only and is not registered in DTH. As we assume the client to
be blocking and the database to provide prefix-committed serializability, the order of requests in
RHc 4, their corresponding responses in RPHe 4,, and their corresponding committed transac-
tions in AT H, and DT H is the same.

The backup AS; receives committing messages in FIFO order and puts them in a queue MQ);.
Projected on client C; the queue eventually contains for each committed transaction ¢ the message
committing;. The uniform reliable delivery and the FIFO order guarantee that both the content
and the ordering of transactions in M @); match those of AT H,, (denoted as M Q; 1 AT H,). Note
that according to the discussion above it is guaranteed that when the client receives a response for a
committed transaction, M (); contains the corresponding committing message.

Now assume AS, crashes after"\rpx_ 1 was returned. After the crash the new primary AS;
installs state changes of cbmmitting‘"}ﬁéssages in MQ); according to the ordering. For each of the
committing messages'"(i)/”there is et{};er no DB update transaction and the changes are installed,
(i a committed'mes'sag/e ‘was recei;éaf and the changes are installed, (iii) an aborted message was
received and the changes discarded; or no committed/aborted message is received and AS; checks

in the database for the transaction identifier. If it determines the database transaction committed it
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Figure 5.4: Possible crash intervals of the 1-1 algorithm in case of a commit

applies the changes, otherwise it discards them. In any of the three cases above, changes are exactly
then installed and with it the AS transaction appended to AT H; if the corresponding AS transaction
at the old primary was appended to AT H, before the crash. That is, in regard to client session C 4;,
AT Hj has now the same sequence of transactions as AT H,, had before the crash. Thus, correctness

up to request 71 is given.

5.3.2 Crash during Request Execution

Now we look when AS, crashes just around the time at which the client session C A; submits request
r5. Assume AS; becomes the new primary. Our approach to analyze the behavior is to enumerate
different “crash intervals”, i.e., time intervals in which a crash requires different actions from the
system in order to gua’raniee correctness. As the order of certain events might be different from
execution to execution, our.sequence of crash intervals is only an approximation to help structure

the proof.

Commit case Figure 5.4 extends the execution in case of a commit for the 1-1 pattern shown
in Figure 4.2. It shows client C;, the primary AS,, the backup AS;, and the DB. Furthermore,
it has an axis depicting different crash intervals at which the failover needs to perform different

actions. In the figure, the client submits request r;. When receiving the request, the primary AS,
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starts action a; and at the same time global transaction ¢;. It sends two sub-requests, r;; and
Tz to the database, which are executed within the same transaction t,. Just before the commit,
it multicasts the committing message with state updates and the response to the backups. Only
when it has received its own message, the database transaction, if it exists, commits (and after
having written the transaction identifier into the database if it was an update transaction). Then,
the AS primary commits the AS transaction and sends the commit message (if there was an update
database transaction), before returning the answer to the client.

For depicting the crash intervals, we assume that when a message is sent, it will also be received.
If the primary sends a message, but the message is lost and the primary crashes before the GCS at
the primary resends it, we consider this a crash before message send. The first crash interval (CI1)
ends just before the primary sends the committing message as the backups have no knowledge
about the transaction before receiving the committing message. In the figure we have modeled
the uniform reliable delivery as a message/acknowledgement pair between primary and backup.
In principle, using ﬁniform“fel{able delivery, the primary can receive its own committing message
before or after it is received at the backups. However, the GCS guarantees that if the primary
receives the message, then the backups will not only also receive the message but, in case of a crash
of the primary, they will also receive it before they receive the view change message excluding the
primary from the group. Furthermore, ‘either they all receive it before the view change, or none
receives it, or they all receive it after the view change. The latter messages are ignored by all. Thus,
from a logical perspective, this uniform reliable delivery is equivalent to an acknowledge-based
propagation: the primary sends the committing message, the backups send confirmations and only
when the primary has received all these confirmations, it continues with the commit. The figure
depicts this logical ordering of messages. The second crash interval (CI2) starts after the primary
has sent the committing message (potentially allow the backups to add the transaction to their AT H)
and ends just before the commit of the database transaction (which adds this transaction to DT H).
The third crash interval (CI3) starts with the database commit (which adds this transaction to DT H)
and ends just before the primary sends the response to the client. The fourth interval (C14) starts
after the response is sent (which allows the client to add it to RPH).

Let’s now discuss what Kappens if the primary AS, crashes while being in one of these crash
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intervals.

CIl:

CI2:

ClI3:

The CRM receives a failure exception. ASj has not received the committing message and
has no knowledge about the request or the associated transaction. The database transaction, if
it exists, is aborted upon the crash of AS,. Thus, AST(t;) ¢ ATH; and DBT(t;) ¢ DTH.
The CRM resubmits the request to AS; where it is executed as a completely new request
leading to exactly one execution within the transaction ¢, eventually returning rp, as the last
response so far in RP Hc 4,, and possibly adding AST(¢},) to AT H; and DBT(t},) to DTH

as the last transactions for client session C A; so far. All matching requirements are fulfilled.

The CRM receives a failure exception. The database transaction, if it exists, aborts upon the
crash. Thus DBT'(t;) ¢ DTH. AS; has already received the committing message for t;.
There are two cases to consider. First, if eu.db = false, then AS; adds AST(t;) to ATH;
at failover. When CRM resubmits the request, AS; immediately returns the response. Cor-
rectness is given, as request, respdnée and AT H match. DT H does not contain a transaction
but this is fine, as the original execution at AS, was completed and did not involve database
updates. In the second case, i.c., eu.db = true, AS; checks the database for the transaction
identifier at failover. It can’t find it since the database transaction did not commit. However,
AS; knows that an update DB transaction was involved. If it appended AST(t;) to AT Hj, a
mismatch would occur (according to Definition 4.3.1 (2a)). Thus, AS; discards the content of
the committing message. Therefore, neither AT H; nor DT H have transactions related to 7.
When the CRM resubmits the request, AS; executes it as a completely new request leading

to exactly one execution and one response as discussed in C'I1.

The CRM receives a failure exception and DBT(t,) € DTH. At AS;, the committing
message was received. At failover, AS; detects that D BT (t;) has committed because it either
has already received the committed message or it has looked for and found the transaction
identifier in the datab_ase. Thus, AST(tm) is added to ATH. Thus, AT H; already matches
the request history and DTH. When the CRM resubmits r;, AS; immediately returns the

response, completing the matching requirements.
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Figure 5.5: Possible crash intervals of the 1-1 algorithm in case of an abort during execution

C14: From the perspective of AS; this is the same as CI3 and AST (¢;) is added to ATH. The
only difference is that the clignt receives the response from the old primary. Thus, there is no

resubmission.

Aborts Now let’s have a look at the abort case. There are three cases to consider. First, the
AS initiates the abort for some reason. Second, the database triggers an abort some time during
execution. Third, the database aborts when the AS submits the commit request. The first two are
handled in the same way in our nai'l’gorithm as the AS only sends the abort message after the database
aborts. Figure 5.5 shows the situation where a.o leads to the abort at the database. In this case, the
first crash interval ends just before the database transaction aborts. As the situation is exactly as for
crash interval CI1 of the commit’féase, we do not discuss it further. Then, the AS receives an abort
response from the database, anvd_‘ ~the AS transaction also aborts. After the state is rolled back, an
aborted message is sent to the backups and then the abort response is returned to the client. As the
abort message is only sent with reliable delivery, the reception of the message at the backups (if at
all) and the respoﬁse to fhe client can be in any order. If there is a crash, it could be that both the
abort response to- theclient-and the abort message to the backups were received, none was received,
or only one of them-was recéived. In regard to crash intervals, we consider crash interval CI5 to

end just before the-old primary sends the response to the client, and CI6 after sending this message.
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Let’s now consider the actions upon a crash during these crash intervals:

C15: The CRM receives a failure execution. As the DB transaction aborts, DBT(¢;) ¢ DTH.

For new primary AS; we can consider two cases.

(a) AS;j has not received the aborted message before the crash. When CRM resubmits 7,
AS; will reexecute as if it were a new request as AS; does not know anything about
tz. Although there are now two executions this is correct as the first execution did not
leave any entries in either AT H; or DT'H and no response to the client. The second
execution might again lead to an abort, with no transaction in ATH; or DTH and
an abort response, or execution might succeed with a commit and the corresponding

response. At this time, all histories do match.

(b) ASj has received the aborted message. In this case, when C RM resubmits r,, the abort
response rp, is immediately returned. Request, response, AT H and DT H histories

match with bdth AS and DB transactions aborted.

CI6: DBT(t;) ¢ DTH as the DB transaction aborts. AST(t;) ¢ AT Hj, either because AS; has
received the aborted message or because it hasn’t received any message at all. In the first case
ASj; adds the request/responsé pair to RR, otherwise not. But this difference has no effect,
as the C RM will not resubmit the request since it already received the abort response. All

histories match.

Finally, Figure 5.6 shows what happens if the database transaction aborts upon the commit
request submitted by the AS. As in the commit case, crash interval CI1 ends just before the primary
AS, sends the committing message, and CI2 ends just before the database transaction terminates.
CI7 now ends just before the primary AS, sends the client response, and C'I8 starts after sending

this message.

CI7: The CRM receives a failtire eXcepiion. The database transaction has aborted because of

application semantics; thus, DBT(t;) ¢ DT H. At the AS; there are two cases as before.

(a) AS; has not received the aborted message. As it has received the committing message

it will check in the database for the transaction identifier. It cannot find the transaction

[ASN
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Figure 5.6: Possible crash intervals of the 1-1 algorithm in case of an abort at commit

identifier and then discard the changes. Thus, AST(t;) ¢ ATH;. When CRM re-
submits rz, AS; will reexecute as if it were a new request. As in case C'I5 having two

executions is correct as the first did not leave any effects in ATH;, DTH and RPHc 4,

(b) AS; has received the aborted message. Thus, it has discarded the changes of the previ-
ously received committing message and not added AST(¢;) to AT H;. From there, the

reasoning is the same as in case CI5b.

CI8: Due to application semantics, DBT(t;) ¢ DTH. As above AS; might have received the
aborted message or checked for the database identifier in the database. In both cases, it does

not append AST(t;) to AT Hj. All histories match.

5.4 1-1 Replication Algorithm for Relaxed State Consistency

In case a transaction commits, relaxed state consistency requires the same actions as full state con-
sistency. Hence, we only consider the abort of a transaction in the following. With relaxed state
consistency, even if a transaction aborts due to application semantics, it might change the state of
the AS, but not the state of the da}ébra’\sgf Therefore, we have to replicate state changes performed
by an AS transaction even in th;:'abgr_t;case. As we have seen in the discussion above, abort is

often database induced. In these cases the AS only is informed about the abort after it has taken



Chapter 5. ADAPT-SIB Replication Algorithm for 1-1 Pattern 80

void failover ()
1. new Eu eu, new set COMP;
2. in order of reception process each
committing and aborted message m
eu = m.content;
if (m is committing message)
process eu as in the 1-1 algorithm;
// see fig. 5.3 lines 4-12
6.  if (m is aborted message)
7. for each comp € eu.COMP
8. if (3¢ € COMP and ¢ == comp)
. c.state = comp.state
10. else COMP = COMP U {comp};
11 RRU = {(eu.req.rid, eu.resp)};
12. for each comp € COMP
13.  create corresponding component;
14.  set component’s state to comp.state;
(b) failover

void abort_proc ()

1. for each comp € eu.COMP

2. set comp.state to Current state

of corresponding component;

. new aborted Message m3;
. m3.content = {eu};
. multicast ml using uniform reliable delivery;
. wait until receive m3;
(a) primary: handle abort

L AW

[~ B Y

Figure 5.7: “1-1-relaxed” algorithm to support relaxed state consistency

place in the database, i.e., after the fact. Different to the commit case, this implies that state change
propagation cannot-always be performed before the transaction actually aborts but only afterwards.

Figure 5.7 shows the changes to the 1-1 algorithm of Figure 5.2 to support relaxed state consis-
tency. When a transaction is.aborted, the abort routine (Figure 5.7 (a)) sends an aborted message
including the final state for each accessed component and the pair of the client request and the abort
response. The aborted message is sent with uniform reliable delivery, and execution only contin-
ues when the pnmary receives its own aborted message. This means, that the user only receives
the abort responsé 'whEn it is sﬁcﬂ_féd that the backups know about the abort and the corresponding
state changes at'tﬁ'e,'AS. The backup stores each aborted message in the FIFO queue together with
other messages. Figure 5.7 (b) shows the modified failover. Both committing messages and aborted
messages are processed in FIFO order to track the latest state of each component (lines 2-3). For a
committing message, it will be processed as was the case for the full state consistency (lines 4-5).
For an aborted message, all components affected will be recorded with its latest state and the pair of
the client request.and the corresponding abort response will be recorded in RR (lines 6-11). Finally,

all necessary components are recreated (12-14).
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Figure 5.8: Possible crash intervals of the relaxed state consistency algorithm in case of an abort
during execution

5.5 Correctness of Relaxed State Consistency Algorithm

The main difference compared tovthe full cbnsistency algorithm is that the aborted message contains
the state changes and is sent with uniform reliable delivery. Figure 5.8 shows an abort during
execution. The only difference.to.the execution for full state consistency, shown in Figure 5.5, is
that the abort message is guaranteed to have arrived at the backups before the abort response is
returned to the client. Crash interval CI1 remains as before and is not further discussed. CI9 now
starts with the abort at the dataf;é.se and ends just before the abort message is sent to the backups.
C110 starts with sending thi;;essage and ends just before sending the client abort response, and

CI11 starts after sending this abort response.

C19: The CRM receives a failure execution. As the DB transaction aborts, DBT'(t;) ¢ DTH.
ASj does not receive the abort message. The behavior and the reasoning for correctness is
the same as CI5a. When CRM resubmits 7z, AS; will reexecute as if it were a new request
as ASj; does not know‘ énything about £;. Although there are now two executions this is
correct as the first exgggtipn did not leave any entries in AT H; or DT H and no response to

the client. The second éxecution might again lead to an abort or to a commit. At this time, all

histories match. o
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Figure 5.9: Possible crash intervals of the relaxed state consistency algorithm in case of an abort at
commit

CH10: AS; receives the aborted message. In this case, AS; applies the changes contained in the
abort message at failover, i.e., AST(t;) € ATH. With this ATH and DT H match. AS;
also puts the request/response pair into RR. When CRM resubmits 7, the abort response
TPy 1S immediatély returned. Now request and response histories match with each other and

with ATH.

CI11: Request and response histories already match because the client has already received the
response. AS; is guaranteed to have received the aborted message and appended AST () to
ATH. Thus, request/response histories match with AT H. Finally, DT H and AT H match

because it reflects the execution at the old primary.

Figure 5.9 shows the abort at commit time. CI1 and CI2 are as in the commit case. C'T12 starts
with the abort of the database transaction and ends before the backups receive the aborted message.
The behavior in case the backups receive the aborted message is the same as before and discussed

in CI10 and CI11.

C12: The behavior and reasoning is the same as CI7a. As AS; has received the committing mes-
sage it will check in the database but not find the transaction. Thus, upon resubmission of the
request, a second execution occurs. This is correct, as the first execution at the old primary

hasn’t left gny,,stgt_é changes in the system nor a response was returned.



Chapter 6

Advanced Algorithms for Advanced

Execution Patterns

In this chapter, we describe advanced algorithms that are extended from the 1-1 algorithm for ad-

vanced patterns, namely the N-1 pattern and the 1-N pattern.

6.1 N-1 Pattern

In the N-1 algorithm, several client requests are associated with a single transaction. The basic idea
of the N-1 algorithm is similar to the 1-1 algorithm. The primary AS propagates all state changes
on session-related data performed by a transaction to backups at the commit time of the transaction.
A backup only applies the state changes after it knows that the transaction has actually committed.
Using this approach allows the new primary AS; to match AT H; and DT H after the old primary
AS, crashes. Howevéf, for the N-l pattern, matching AT H; and RHc 4,/ RPHc 4, and matching
RHca, and RPHcy, of a client session C A; are more complex than for the 1-1 pattern.

The main problem occurs if a élient has already submitted a sequence of requests r ... 7y all
belonging to a transaction t and has already received responses for 7y ...7,—; when the primary
crashes. As the transaction was still active, no transaction exists in DT'H and the new primary

AS; also does not have any state changes. Thus, AT H; does not match with RHc 4, and RPc 4, .

PR A
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As a solution, we resubmit all requests 71 ...7; to AS; and not only the last request 4, to AS;
and execute them within a new transaction ¢’. The challenge is that the reexecution of vy to 71
should generate the same responses as their original execution at the old primary. Furthermore,
these responses should not be seen by the client, as it has already received them during the original
execution at the old primary. Receiving them twice would mean that RHc 4, and RPHc 4, don’t
match anymore.

If each response rp; ... rpg_y generated during the reexecution is the same as the correspond-
ing response during the original execution, AT H; eventually matches RHc 4, and RPHcy,. If
reexecution of one of the requests does not lead to the same response, we abort the transaction and
return an abort as response to rpg. Although the abort is not due to application semantics but due
to the failure of the old primary, this guarantees that all matching requirements are fulfilled. We
present two algorithms. The N-/-best-effort algorithm is simple and fast, but many transactions
might be aborted because th{e;ir reexecutions produce different responses. The N-/-ordered alter-
native achieves better transparency aﬁd a lower rate of aborted transactions at the price of higher
overhead during normal processing.

Note that our algorithm is different from many implementations in current systems [78, 60, 56]
that propagate state changes every time a response is returned to the client. In the above example,
that would mean, state changes are propagated before rp; is returned, before rp, is returned etc.
If the old primary now crashes before returning the response for 73, AS; would have the state
changes triggered by r; .. .7",9._‘1:' and possibly also those of r. However, the database transaction
still aborts completely. If AS; applied these state changes and only the outstanding request r would
be reexecuted, DT H would not match AT H;.

In the following we first discuss full state consistency, and then discuss the changes needed to

support relaxed state consistency, -

6.1.1 N-1-best-effort - =~

As mentioned in Section 4..2"..2, the main difference between the N-1 pattern and the 1-1 pattern is

that the client side controls the demarcation of transactions in the N-1 pattern. Hence, the main
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changes compared to the 1-1 algorithm are at the client side. The client replication algorithm inter-
cepts all requests, including begin, commit and abort requests. For each transaction, it keeps track
of all component requests made so far and the corresponding responses. Only at commit time the
server replication algorithm sends the primary state changes to the backups, not for each individual
request. If the primary crashes while a transaction was active, the client algorithm resubmits all
requests associated with the transaction to the new primary where they are executed within a new
transaction. If reexecution leads to the same responses as the original execution, the new primary
has equivalent actions to the actions performed at the old primary. Hence, reexecution was success-
ful and failover is completely transparent. If it leads to different results, the replay was unsuccessful
and the reexecuted transaction is aborted. The real client, having seen the old non-repeatable re-
sponses, is informed with a failure exception.

Our detailed algorithm description uses similar notations as the 1-1 algorithm. In the N-1-
best effort algorithm, a single CEU object ceu at the CRM keeps track of the execution within
the current transaction. it contains the transaction identifier tzid and all requests executed so far
together with their responses (RR). The server maintains an EU object for each currently active
transaction but does not need to keep track of request/response pairs. Additionally, the server use a
set AT to record each aborted transaction.

The CRM (Figure 6.1) intercepts begin, invoke, commit and abort requests. For simplicity of
description, we assume that the client submits requests in the correct order (begin/invoke/invoke.../commit).
If a request to a component results in-an abort, we expect the client to not continue with the trans-
action but submit a new begin transaction as next request.

Upon intercepting the begin requéét (Figure 6.1 (a)), the ceu object is initialized and the request
is forwarded to the current primary until it is successfully executed. Upon a component request
(Figure 6.1 (b)), thé response from the primary is captured (lines 3-9). If the primary crashes before
a response is recéived, we have to’ consider two cases. Firstly, the primary might have been in
the middle of execuiting the request. Secoridly, the request might have led to an application induced
abort. The abort might have completed on the primary and the primary already informed the backups
about this abort, but the primary crashed before returning the response to the client. In this case,

the new primary is aware of this (unsuccessful transaction). Therefore, when the CRM receives
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void begin ()
1. while (true)
2. ceu.initialize(),
3. ceu.txid = primary.begin();
4. if (B failure Exception) return;
5. else find a new primary;
(a) intercept transaction begin

Response invoke (Request req, Component comp)
1. Generate req.rid;
2. while (true)
3. Response resp =

4 primary.invoke(req, comp, ceu.txid);

5. if (resp == abort Exception)

6. throw abort Exception;

7. if (Q failure Exception)

8 ceu.RR U = {(req, comp, resp)};

9. return resp;

10. else

11 while (3 failure Exception)

12. find a new primary; ‘

13. if (primary.is_aborted(ceu.txid))
14. ceu.initialize();

15. throw abort Exception;

16. else

17. replay(ceu); -

18. if (3 replay failure)

19. ceu.initialize();

20. throw replay failure;

(b) intercept component request

void commit ()
1. while (true)
2. primary.commit(ceu.txid);

3. if B failure Exception)
4. ceu.initialize();
3. return;
6. else
7. while (3 failure Exception)
8 find a new primary;
9. if (primary.is_committed(ceu.txid)) or
(primary.is_aborted(ceu.txid))
10. ceu.initialize();
11. return;
12. else
13. replay(ceu);
14. if (3 replay failure)
15. ceu.initialize();
16. throw replay failure;

(c¢) intercept transaction commit

void abort ()
1. primary.abort(ceu.txid);
2. throw abort Exception;
(d) intercept transaction abort

void replay (CEU ceu)
1. ceu.txid = primary.begin(),
2. if (3 failure Exception) throw failure Exception
3. else
4. for each (oreq, ocomp, oresp) € cen.RR
5 Response nresp = primary.invoke (oreq,
ocomp, ceu.txid);

6. if (3 failure exception) throw failure Exception
7. else if (3 abort exception) throw replay failure
8. elseif (nresp != oresp)
9. primary.abort(ceu.txid);
10. throw replay failure;
(e) replay

Figure 6.1: N-1-best-effort at the client side

a failure exception (line ll), it checks at the new primary if the corresponding transaction had

regularly aborted. If yes, the client algorithm simply returns the abort response, which is an abort

exception (lines 13-15). Otherwise, a replay is initiated at the new primary (lines 17-20). Upon a

commit request (Figure 6.1 (c)), if no crash happens, the termination is successful and returned to

the user (line 2-5). If a crash occurred before the server returns from the commit, the transaction

might have committed before the crash, aborted at commit time or aborted upon the crash. The

CRM checks this at the new primary (lines 7-8). If the transaction committed or aborted at the
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Response invoke (Request req, Component comp, TID txid) Bool is_committed (TID txid)
1. eu.COMP U = {comp}; 1. iftxid can be found in database return true
2. Response resp = comp.invoke(rep) 2. else return false;

3. if (req is a client request and resp == abort exception)
4. abort_proc(eu);

3. return resp; Bool is_aborted (TID txid)
(a) intercept request to component 1. if 3 txid € AT) return true;

(d) check commit of transaction

void abort_proc (EU eu) 2. else return false;
1. ATU = {eu.rxid}; (e) check abort of transaction
2. new aborted Message m3;
3. m3.content = {eu.txid}; void failover ()
4. multicast m3 by reliable delivery; I. ... // see Fig. 5.3 lines 1-12
(b) abort procedure 2. for each aborted message m with
void abort (TID txid) m.content == t'xid
1. TM.abort Transaction(txid); 3. ATU = {tzid};
2. abort_proc(ew); : : 4. ... //see Fig. 5.3 lines 16-18
(c) intercepts abort request /) failover at the new primary

Figure 6.2: N-1-best-effort at primary

time of commit, the request returns accordingly (lines 9-11). Otherwise, the transaction is replayed
at the new primary (lines.13-16). When the client submits an abort request, it is simply forwarded
and considered successful independently of whether a crash occurred or not (Figure 6.1 (d)). The
replay (Figure 6,_1____(;:_)_), starts a new transaction at the new primary and resubmits each request of
the old execution _(liné_s I-S). If one of these requests receives a different response than the original
execution, the reéxecviltéd traﬁsaction is aborted throwing a replay failure exception (lines 7-10). Itis
now up to the cli_ént to act upon this. Otherwise, reexecution has been successful and the algorithm
continues with the request fﬁat was active at the time of the crash. Note that after the reexecution
the state of th'é,ln’_ew' pr_i,mary_‘.(_or the database) might not be exactly the same as the state of the old
primary after the f_ii"s{_exe‘cution. This does not really matter because only responses but not server
state is visible _t’ol'the client. Throughout the algorithm additional AS crashes reset the algorithm to
the appropriate place;s' ceey

the transaction begin and commit methods since they are the same as in the 1-1 algorithm. For a
regular request (Figure 6.2 (a)), we only keep track of each component accessed by a request, but
do not record the réquest/response pait as this is now done by the CRM. If the transaction aborts

during request execution, ari abort exception is thrown to the client as the response. Before that,

-
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however, the abort procedure is called (Figure 6.2 (b)) which informs the backups about the abort,
and stores the transaction identifier in the list of aborted transactions AT. The same procedure is
called when the client requests an abort (Figure 6.2 (c)). The commit is the same as in the 1-1
case multicasting a committing message and a committed message. When the CRM checks if a
transaction is committed, the is_committed routine (Figure 6.2 (d)) looks in the database for the txid
and returns the answer. Correspondingly, the is_aborted routine (Figure 6.2 (e)) looks in the set AT
for the txid and returns the answer. The failover at the new primary (Figure 6.2 (f)) is also similar
to the 1-1 failover algorithm of Figure 5.3. However, instead of maintaining RR, AT must now be

updated.

6.1.2 Correctness of N-1-best-effort

Correctness reasoning is similar to the proof of correctness of the 1-1 algorithm (see Section 5.3.1)
for successfully completed transactions where the result was returned to the client without crash.
The challenge lies in the case when the prihaw AS, crashes while a client session C'A; has an
active transaction t,, i.e., the client has not yet received a commit or abort confirmation for ¢,.
Assume t; invol;}é§ -Ic"+ 1 client requests rx ;;rz+k. The primary AS, might crash at any time point

during the execution. We again discuss correctness by enumerating different crash intervals.

Commit case Figure 6.3 extends the execution in case of a commit for the N-1 pattern shown in
Figure 4.3. In the figure, the client session C'A; submits a sequence of requests 7 to 74 Within the
transaction t, on the replicated AS. Tn this example, the sub-request ry1 submitted by the request
rz+1 and the sub-request 7 submitted by ‘the request 7., update the database, which make ¢, be
a DB update transaction. After thé crash, we assume AS; takes over as new primary and is up for
sufficiently long to answer any outstanding requests and transactions. To prove the correctness, we
check critical time points one by one. The first crash interval (CI1) ends just before the primary
sends the response of the first request rl, whlch is the transaction begin request in the N-1 pattern.
If the primary crashes within CI1; the CRM: resubmits the request r; to the new primary AS;, and
then sends all following requests to'A:S;. This case is similar to the CI1 case of the 1-1 algorithm,

where all requests are completely reexecuted on the new primary AS;. We omit the discussion for
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Figure 6.3: Possible crash intervals of the N-1 algorithm in case of a commit

this case. The second crash interval (CI2) starts when the response of the first request is sent to
the client and ends just before the response of the request r,,;_;, that is the last request before
the commit request, is sent. The third crash interval (CI3) starts when the response of the request
rz+k—1 1S sent and ends just before the primary sends the committing message. That is, some time
during interval CI3, the c"llié‘ﬁ't submits th'é"E:'(')mmit request 7;4%. As mentioned in Section 5.3.2,
the uniform reliable deliverﬁs modeled és a message/acknowledgement pair between primary and
backup. The primary commits the transaction ¢ only after it receives the logical confirmation that
backups have already received the committing message of t,. The fourth crash interval (CI4) starts
after the primary has sent the committing message (i.e., the backups have the state changes) and
ends just before the commit of the database transaction. The fifth crash interval (CI5) starts with
the database commit (which adds this transaction to DT H) and ends just before the primary sends
the response to the client. The sixth interval (C16) starts after the response is sent (which allows the
client to add it to RPH). o

Let’s now discuss what hai)i)ens if the pﬁmary AS, crashes while being in one of these crash

intervals.

CI2: Without losing generality, we assume that the crash occurs during processing the request 74,

(0 £ h < k). At this moment, the client session C'A4; already received a sequence of responses
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TPg..

I'Py+h—1, Which are contained by RPHc 4,. The CRM receives a failure exception for

the outstanding request r;4p5. AS; has not received the commirting message and has no

knowledge about the transaction t;. The database transaction, if it exists, is aborted upon

the crash of AS,. Thus, AST(¢t;) ¢ ATH; and DBT(t;) ¢ DTH. The CRM resubmits

requests from r; to 7z p to AS;, where each request is executed as a completely new request

within a new transaction 7. The CRM checks whether or not each new response generated

during the reexecution is the same as the corresponding original response of the same request.

There are two situations:

(a)

(b)

Ifall responses TPz . - . TPz+h—1 generated during the reexecution of v to 75451 are the
same as the corresponding original responses, the CRM suppresses all of these dupli-
cate responses. Then the response rp/,_ , is returned as the response to the outstanding
request r;4p. Then, AS; continues executing requests from r; 1,1 to 75, returning
responses rpl, ., to 7p), . to the client. Finally, RPHcx, contains 7py . .. TPz 1h—1
TD}ip - - - TPy, that match requests 7y . .. 754 contained by RPHc 4. If transaction
t}, eventually commits, AST(t.,) is added to AT H}, and DBT(t},) is added to DT H
if t’% isa bB update transaction. Hence, all matching requirements are fulfilled. The ¢},
also might be aborted due to application semantics. In this case, the last request associ-
ated with,vt;C will have an abort response, AST(¢,) ¢ ATH; and DBT(t},) ¢ DTH.

[

All matching requirements are fulfilled again.

If any response generated during the reexecution is different from the corresponding
original response, e.g., the response 7p, . (1 < g < z + h — 1) of the request 7544
is not equivalent to the original response rp; g4, then the reexecution is stopped and
the transaction ¢/, is aborted. The abort response TPab,, is returned as the response for
the outstandmg request Tgz+h- As aresult, RHc 4, contains 14 ...754p and RPHey,
contains r;;z rpz+h 17Pab,, » and RHgy, > RPHcga,. AST(t,) ¢ ATH; and
DBT(t’ ) ¢ DTH It is obvious that RHc 4, > RPHca, and ATH; v« DTH. The

last request rz+h has an abort response of ¢, which fulfills Condition 2a of the N-1

matchmg property (Definition 4.3.3). Thus AT H; < RHca,/RPHc 4,. However, the
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abort of ¢/, is not caused by application semantics, but caused by an failure, and hence,

fault-tolerance is not transparent.

CI3: This case is similar to the above case CI2, where AST(t,) ¢ AT H; and DBT(t;) ¢ DTH.
The CRM already received the responses for requests rz to 7,4 -1, and receives a failure
exception for the last request r;k, Which is the commit request of the transaction. As in

C1I2, the CRM has to start the resubmission from request 7.

Cl4: The CRM already received the responses for requests r; to 54k, and receives a failure
exception for the outstanding commit request r5 ;. AS; has already received the committing
message for t;. If eu.db = false, then AS; adds AST(t;) to ATH; at failover. When
CRM resubmits the request r; 4, AS; immediately returns the successful commit response.
Correctness is given, as request, response and AT H match. If eu.db = true, AS; knows that
a DB update transaction was involved but aborted, since it cannot find the transaction identifier
in the database. Thus, AS]dlscards the content of the committing message. Therefore, neither
AT Hj nor DT H have the transaction ;. Then, the C RM resubmits the request starting from

rg as discussed in CI2. "~

CI5: The CRM receives a failure exception for the last request r,,, and DBT(t,) € DTH.
At ASj, the committing message was received. At failover, AS; detects that DBT'(t;) has
committed because it eithet has already received the commit message or it has looked for
and found the transaction identifier in the database. Thus, AST'(t;) is added to AT H}, and
ATH; < DTH, and ATHj'Da RH¢ ;- When the CRM resubmits 7, AS; immediately

returns the successful commit response, and AT H;; < RPHca, and RHg 4, < RPHc ;.

CI6: The client receives the resporise fiom the old primary, RHc 4, >t RPH( 4, and there is no
resubmission. From the perspective of AS; this is the same as CI5 and AST (t,) is added to
ATH. ke

Aborts In the N-1 pattern, the transaction ¢, can be aborted in three different cases. The first abort

case is that an abort is caused during execution by the AS or the database. Figure 6.4 (a) shows an
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(c) Abort at the commit time

Figure 6.4: l;ﬁééibl'e crash intervals of the N-1 algorithm in case of a commit

example of the first case, where the database access action ayo leads to an abort at the database.

In this case, the first two crash intervals are exactly the same as the situation of the crash intervals
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C1I1 and CI2 of the commit case, and hence we omit the discussion. CI7 starts when the database
aborts ;. As in the 1-1 algorithm, the AS receives an abort response, aborts the AS transaction,
sends an aborted message to backups using reliable delivery, and finally sends the abort response to
the client. Crash interval CI7 ends just before the old primary sends the response to the client, and

CI8 after sending this response.

CI7: The CRM receives a failure execution. As the DB transaction aborts, DBT'(t;) ¢ DTH.

For AS; we can consider two cases.

(a) AS; has not received the aborted message before the crash. In this case, AS; has no
knowledge of the abort, and hence AST(t;) ¢ AT H;. The CRM receives the failure
exception and then begins the replay from r;. This is the same as the situation of the

crash interval C'I2 of the commit case.

(b) AS; has received the aborted message, AST'(t;) ¢ ATHj. In this case, when CRM
checks With the new primary AS; if the transaction ¢ is aborted or not, the answer
is yes. Then, the CRM directly returns the abort response of ¢, to the client as the
respbnse of the outstanding request r;4p without resubmission. Request, response,

ATH and DT H histories match with both AS and DB transactions aborted.

Ci8: DBT(t;) ¢ DT H as the DB transaction aborts. AST(t;) ¢ AT Hj, either because AS; has
received the aborted message or because it hasn’t received any message at all. The CRM
will not resubmit the outstanding request 51, since it already received the abort response.

All histories match.

The second abort case is that an abort is caused by the application at the end of the execution.
Figure 6.4 (b) éhows‘éh ekample of this case, where the client session submits an abort request as
the last request r;,.x at the end of the execution. As before, the first two crash intervals are the same
as the situation of the crash interval CI1 and CI2 of the commit case, and hence we ignore the
discussion. Then, the client session submits the abort request to the AS. The AS receives the abort
request, aborts the trafisaction ty, at the database first and then at the AS, sends an aborted message

to backups using reliable delivery, and finally sends the abort response to the client. In regard to
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crash intervals, we consider crash interval CI9 to start when the response to ry 1 is returned and

to end before the database receives the abort request, C 110 to end before the old primary sends the

abort response to the client, and CI11 after sending this response.

C19:

CI10:

CIi1:

Although the database did not receive the abort request, the DB transaction is aborted due to
the crash, and hence DBT (t) ¢ DT H. The AS; has no knowledge about the transaction,
and hence AST(t,) ¢ AT H;. The CRM receives a failure execution, but it will not resubmit
the request. Instead, the CRM directly returns an abort response to the client as the response

of the abort request. All histories match.

The DB transaction is aborted because it received the abort request and executed it, and hence
DBT(t;) ¢ DTH. Atthe AS, there are two cases as before: AS; either has already received
the aborted message or not. In either case, AST(ty) ¢ ATH;. The CRM receives a
failure execution rand then directly returns an abort response to the abort request without
resubmission. All hlstones matchr B

DBT(t;) ¢ DTH as the DB transaction aborts. AST(t;) ¢ AT Hj;, either because AS; has
received the aborted rﬁessage ()rlbeéause it hasn’t received any message at all. The CRM
will not resubmit the outsta.ndi_nrg;eighest rz4+n Since it already received the abort response.

All histories match.

The last abort case is that the dat@baéf;_\t‘rgnsaction aborts upon the commit request submitted by

the AS as shown in Figure 6_“.'4‘(c). Cf_@sh'i:gfgwals CI1, CI2, CI3, and CI4 are the same as in the

commit case. CI12 starts w‘ith the abo_rt at"lthe database and ends just before the primary AS, sends

the abort response, and CI 13 staﬁs éftér sénding this message.

Cz2:

The database transaction has aborted because of application semantics, thus, DBT'(t;) ¢

DTH. The AS has two 'case‘sﬁ.A ',

(a) AS; did not-receive the adborted-message. As it has received the committing message
it will check-in the database for-the transaction identifier. It will not find the identifier

and discard the ‘changes.  Thus, AST(t;) ¢ ATH;. The CRM receives the failure
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exception and then begins the replay from r;. This is the same as the situation of the

crash interval CI2 of the commit case.

(b) ASj has received the aborted message. Thus, it has discarded the changes of the previ-
ously received committing message and not added AST'(¢;) to AT H;. From there, the

reasoning is the same as in case CI7b.

CI13: Due to application semantics, DBT (t;) ¢ DTH. As above AS; might have received the
aborted message or checked for the database identifier in the database. In both cases, it does
not append AST(t,) to AT H;. The last commit request 7, receives the abort response.

All histories match.

In summary, in all of above cases, all three matching properties are fulfilled, and hence the replica-

tion algorithm works correctly.

6.1.3 Relaxed Sté’fe 'Consistency

The relaxed state consistency algorithm is a simple adjustment to the full state consistency algo-
rithm. We only éljlmmariz)e the changes that have to be made to the N-1-best effort algorithm. At
the server side, thé rﬂﬁlficast in the abort procedure (Figure 6.2 (b)) has to send the final state of
all changed comﬁdnehfi '.—Filrthermore, it must use uniform reliable delivery. Finally, the procedure
only returns once the pr;mary has received its own aborted message. For the client replication al-
gorithm, also the abort éﬁgﬁges (Figuré 6.1 (d)). It has to implement similar steps as the commit
(Figure 6.1 (c)). -If it receives a failure exception upon an abort request, it has to contact the next
primary. There it first checks whether the abort (including the relevant state changes at the AS) was
successfully reported to the new primary. If yes, the abort was successful. Otherwise, we try to
replay the transaction. If replay succeeds the transaction aborts due to application semantics as it
did on the old primary. Also, the failover procedure at the new primary has to be slightly changed. It
has to apply the state c’hané‘e;_slant in aborted messages similar to the 1-1 algorithm for relaxed state
consistency. If réblay doeé not succeed, namely a duplicate response is not equal to the correspond-

ing original response, we force the replay transaction to abort due to crash, and a corresponding
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abort exception is returned to the client. We do not install the state changes performed by this ab-
normally aborted transaction in the current primary as is done for a normally aborted transaction in
case of relaxed state consistency. We also do not propagate the state changes to backups. That is,
this transaction is not contained in AT H. In fact, this violates Condition 2b of the N-1 matching
property (Definition 4.3.3) that requires that for each request there is a corresponding t € AT H.
Instead this replayed transaction follows the rule of full state consistency. However, if we keep
all changes of the replayed transaction, we would violate Condition 1 as it requires the response
generated by this replayed transaction to be part of RPHg,4,. But RPHc 4, already contains the
different response of the original transaction.

The other correctness reasoning is similar to the proof for relaxed state consistency of the 1-1
algorithm. Sending the aborted message with uniform reliable delivery guarantees that the client re-
ceives an abort response only when backups can have state changes performed by the corresponding
aborted transaction. This, together with replaying transactions whose abort request was interrupted
by a crash, makes éuré that the §tate éhanges of aborted transaction are not lost, unless replay was

unsuccessful.

6.1.4 Increasing the Chances for Exactly-Once

Reexecution might not succeed if ﬁdh:deteminism occurs which can happen because of database
access. For example, assume befbre '(t‘;le" brimary crash, T7 reads and updates x in the database, and
returns a response to the client. Théh“t«lll'e'vprimary crashes before T} commits. At the new primary
assume a transaction T, reads andﬁu'p-v(.iéies z before T resubmits its request. Hence, T7’s replay
reads a different value of x than durirvlfguthé 6riginal execution. This might lead to a different response
if the value of z affects the respoﬁéé; To évoid such behavior, we propose an alternative algorithm
N-1I-ordered that works for databééé sysfems that guarantee serializability through strict 2-phase
locking. With N-1-ordered, the re.éxé'cutio.n of all database access is performed in the same order as
during the original execution. Dufing normal processing, each database access is assigned a unique
increasing identifier. Before the respbnse for the request is returned, an ordering message with the

identifiers of all access triggered by the request is multicast to the backups. If the request did not

trigger any database access then no message needs to be sent. At failover, the new primary discards
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an ordering message it received if the corresponding transaction committed before the crash, since
client requests involved in this transaction will not be reexecuted. Otherwise, the request and the
database access identifiers are recorded. When clients now resubmit their requests and reexecution
starts at the new primary, each replayed database access must be executed according to its original
order and new requests may not start until all resubmissions have completed. In the example above,
when T5’s request is submitted before T} resubmits its request, it has to wait until 77’s request is
reexecuted to guarantee that T} again reads the same data as in the original execution. In order to
handle clients that do not replay (e.g., they crashed by themselves), there is a timeout of how long a
request is blocked. If T} does not resubmit its request within a certain time, 75’s request (and other

waiting requests) will execute to guarantee termination.

6.2 1-N Pattern

In the 1-N pattern, a client r‘edﬁést“trigge"r‘é an AS action which is associated with an outer transac-
tion. During the execution of this action sub-requests can trigger one or more nested inner trans-
actions, e.g., in J2EE, if the -method called is marked with the RequiresNew attribute. Inner
transactions can have further nested inner transactions. As we mentioned before, we only consider
relaxed state consistency given that-outer and inner transactions might access the same session state.

In our model, for each- AS transaction there is exactly one request that triggers the transaction
and the one AS action assoeiated with-the request is the only AS action that is part of the AS
transaction. In the following, given an AS transaction t, at(t) indicates the action associated with

the transaction, and R(at(¢) is the request that triggered that action at(t).

6.2.1 Sub-requests an_d,_,Ngstéd _fI‘[,éns_actions

Let’s have a closer look at an &xample execution and derive some terminology using this exam-
ple. The example ignores the database transactions. Of course, every AS transaction can have a
corresponding database transaction. In Figure 6.5, client request r; triggers action a; within outer
AS transactlon t;. a; submits ro trlggermg action ap and inner transaction to, etc. The request

order is 7y . .77 Denved from Flgure 6 5 ‘we can model the execution of client request r; as a
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transaction tree T'tree(r;) as depicted in Figure 6.6 (a). The root of the tree is the outer transac-
tion ¢;. The children are the child transactions that are triggered by sub-requests submitted by the
action a; associated with a;. These child transactions can have further child transactions if they
trigger transactions themselves. A child transaction always terminates before its parent transaction.
Therefore, we obtain the termination order of transactions if we perform a post-order traversal of
the transaction tree and denote this as T'Seq. In our example, T'Seq(r;) = t4, t3, t2, ts, t7, t5, 1.

In general, given a tree Ttree(r;) of client request r; and rooted at outer transaction t;, for any
two transactions ¢; and ¢}, in the tree, ¢; is parent of ¢, if there is an edge from ¢; to ty, and ¢; is

ancestor of ¢y, if there is a path from ¢; to t;. We refer to ANCS(t;) as the set of all ancestors of
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t;. Furthermore, for any transaction ¢; being non-root node in Ttree(r;), t; is inner transaction.
Generally, a transaction t; terminates before #y, if ¢, is an ancestor of ¢; (e.g., t4 before t3), or if
both are siblings and R(at(t;)) waé submitted before R(at(ty)) (e.g., tg before t7), or they have a
common ancestor with at least two children, and ¢; is in the sub-tree rooted at the left child, and #;
is in the sub-tree rooted at the right child (e.g., t3 before £g). Note also that the client associated with
root transaction t;, i.e., CL(GT X (¢;)), is indirectly client of each other transaction t; in T'tree(r;),
thus, CL(GT X (t;)) = CL(GT X (¢;)). Finally, for any transaction ¢; in T'tree(r;) we denote as
cr(t;) = ry, i.e., the client request that triggered the entire execution.

Complementary to T'tree(r;), we can build the request tree Riree(r;) with client request 7;
as root, and the sub-requests that triggered new transactions as descendants. Each node in this
tree reflects the request that triggered the transaction at the same position in Ttree(r;). We de-
fine as RPost(r;) the post-order traversal of Rtree(r;) reflecting the order in which responses
for the requests are returned. This is the same order as the termination order of the correspond-
ing transactions. Furthermore, We d'e'ﬁn‘e' as RPre(r;) the pre-order traversal of Rtree(r;) which
reflects the order in which requests are submitted. Finally, given a request r; (client request or
sub-request) of Rtree(r;), we denote as cr(rj) = ry, that is the client request that eventually
led to ;. Figure 6.6 (b) shows Rtree(r;) of our example. Then RPre(r;) = r1,79,...77 and
RPost(ry) = T4,T3, 72,76, 77,5, T1

With this, we define the 7-N matching property for a client C; as follows:
Definition 6.2.1. ATH <3 RHca,/RPHca, if the following holds:
1. YVt € ATH ACL(GTX(t)) = Cy:

(a) iftisan Qu{giﬁ Iransaction, Q\}entually R(at(t)) € RHca, N RP(at(t)) € RPHca,.

Furthermore, t aborts o RP(at(t)) = T'Dgp,-

(b) ift is an inner transaction, eventually Nt' € ANCS(t),t' € ATH.
2. Vr € RHc,: eventually 3t € ATH Ar = R(at(t)).

3. Giventy,ty € ATH A CL(GTX (1)) = CL(GTX (tz)):
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(a) ifcr(t)) # cr(te): t1 < t2 in ATH & cr(ty) < cr(t2) in RHca,.

(b) ifcr(ty) = cr(ty) = ri: there exists one Rtree(r;) andt) < tain ATH & R(at(t;)) <
R(at(t)) in RPost(r;).

In the 1-N pattern, the relationship between client requests, responses and outer transaction is
almost the same as in the 1-1 pattern. It differs from the 1-1 pattern in inner transactions. Condi-
tion 1a captures that each outer transaction in AT H has a matching client request and response, and
generates an abort response only if it aborts. Condition 1b indicates that for each inner transaction,
all ancestors must also be included in AT'H as we assume relaxed state consistency. Condition 2
captures that each client request of client C; has a matching outer transaction in AT H. Condition 3
captures the ordering property of transactions associated to a client C;. Condition 3a indicates that
transactions triggered by different client requests should be ordered in AT H in the same way the re-
quests were submitted. Condition 3b indicates that if two transactions are associated with the same
client request, then the requests that triggered these transactions must belong to the same request
tree and the order of the two transactions in AT H reflects the nesting structure of the tree. Note that

in the notation, any of ¢; or £3.could be the outer transaction ¢;.

622 1-N Algorithm Overview

The 1-N algorithm extends the 1-1 algorithm in order to handle outer and inner transactions and the
relationship between them. For each individual transaction, the replication algorithm is the same
as the 1-1 algorlthm where the pnmary propagates the state changes of the transaction to back-
ups immediately before commlttmg the database transaction using uniform reliable delivery and a
backup only applles the state changes aﬁer lt knows that the transaction has actually committed.
Whereas, for the 1 -N pattem matchmg ATH and RHca,/RPHca, is more complex than for

the 1-1 because of the inner transactlons We want to outline the main issues along three simple
examples only con51dermg commlt cases

Assume ﬁrst a cllent request r1 tnggers an outer transaction ¢; and during its execution a sub-
request o starts an inner transactlon t2 if no crashes occur, then the primary first propagates the

state changes of tz at commlt tlme of t2, and then the state changes of ¢, at commit time of £;. When
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the primary crashes there are now three main cases. If both ¢; and ¢2 were still active then the new
primary will not install state changes of any of the two transactions and no transactions related to ry
are in DT H or AT H;. Resubmission means complete reexecution. If both had committed, then no
reexecution takes place and AS; immediately returns the response. These cases are similar to the 1-
1 pattern. The tricky case occurs if inner transaction £, has already committed but outer transaction
t; was still active. In this case, the new primary can install the changes for ¢2 but not for ¢;. Both
DTH and AS; contain only partial changes for 1. Request r; is resubmitted and the new primary
has to reexecute starting a new transaction t}. If the execution is deterministic, ¢; will submit the
very same request ro that initiated t; on the old primary. AS; should not reexecute the request
since t3’s state changes are already contained in the AS and the database. Thus, the new primary
has to keep the request/response pair for ¢ which it received in the committing message. Then it
can simply return the answer. After ¢} has completed, we can consider ¢} to be the parent of ¢,
and the matching conditions are fulfilled. However, if execution is non-deterministic, the execution
of ¢| might not trigger r2 and then ry = R(at(ig) and r; = R(at(t})) belong to two different
Rtree(ry) which is a violation of the matching property. We consider ¢3 a ghost transaction as it
does not match the current execution. In this case, we abort the outer transaction ) providing a
corresponding message to thé application. Correctness is not provided. It is up to the application to
handle ghost transaction ¢o.-If could do so with some compensating methods, it might apply when
inner transactions commit and the outer transaction aborts during the standard execution.

The second example is'a simple extension of the first to discuss sibling transactions. Assume
that the execution of transaction #; does not only submit a sub-request 7 to execute 5 but after
t, terminates, a further sub-request r3 triggers transaction ¢3. Crash situations where none or all
of the transactions terminate; or where only 5 terminates have already been covered with the first
example. The additional case here is that both ¢, and t3 committed while ¢; was still active. In this
case, the reexecution of ry in transaction ¢} needs to resubmit both ro and r3 and also in this proper
order. Only then reexecution can be successful, and we have single request and transaction trees.
If any of the two sub-requests are not regenerated or they are generated in different order, then the
matching orders are violated. We abort t}.

The third example extends the first exambié’io further discuss nesting transactions. Assume that
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client request r; executes within outer transaction ¢;. During execution, a sub-request rq triggers
transaction £. During execution of ¢ a further sub-request r4 triggers transaction ¢4 which is now
a child transaction of ¢5. Crash situations where none or all of the transactions terminate are the
same as in the first example. Now assume only ¢4 committed before the crash but ¢, and ¢ were
still active. Then AT H; and DT H only contain ¢4. During reexecution of r; in a new transaction
t}, only if a request 4 is resubmitted and the corresponding transaction is the first to be committed,
the further execution of ¢} can lead to a matching. In this case r4 should not be reexecuted but the
response of t4 immediately returned as response to sub-request r4. [fboth £4 and ¢; were committed,
during reexecution of r; in transaction ¢}, if ¢} resubmits request 2, the response of transaction ¢y
should be immediately returned. As ¢, is nested within 5, t] is not expected to resubmit request 4.
The resubmission of ro implicitly includes the execution of ¢ and ¢4. If ¢} does not resubmit rg,

then both t2 and t4 become ghost transactions. Matching properties are violated, and we abort ¢} .

6.2.3 1-N Algorithm Details

In order to correctly reexecute an outer transaction that had already triggered inner transactions, we
have to distinguish between "clvient requests and sub-requests that trigger inner transactions, we need
to know for an inner travn‘sﬂaetvio'n which was the client request that triggered its outer transaction,
and we need to know the reQuest and transaction execution trees in order to know in which order
requests were submittedAz;ngl iﬁ which order tréihéactions committed. For that, each request r; has
an attribute r;.cr pointing to request cr(r,) and an attribute r;.parent to indicate its parent request
(if the parent request is not the chent request ltse]f) This information is part of the committing
message. ‘ T

Figure 6.7 shows thek I-N algorlthm We ighore the client part of the algorithm and the commit
method and abort method of the algorlthm since they are the same as those of the 1-1 algorithm for
relaxed state conSIStency (see Flgure 5 7)

Let’s first have a look at fallover in Flgure 6.7 (c). The new primary analyzes the committing
messages of all committed inner transaction trlggered by the same client request in their receiving

order and puts the requests leading to these inner transactions in a sequence queue (denoted as

RSeq in the algorithm). The receiving order of the inner transactions and the outer transaction of
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TID begin (Request req)
1. new EU eu;
2. eu.txid = TM.begin_Transaction();
3. eu.req = req;
4. return eu.txid;
(a) intercepts a transaction’s begin at primary

void failover ()
1. new Eu eu, new set COMP;
2. in order of reception process each
committing and aborted message m
eu = mm.content;
if m is a committing message and eu.db == true
and # committed message m’ with m'.content ==
eu.txid and eu.txid does not exist in database)
ignore committing message

AW

5.

6. else
7. Jfor each comp € en. COMP

8 if (3¢ € COMP and ¢ == comp)
. c.state = comp.state

10. else COMP U = {comp};

11. RRU = {(eu.req.rid, eu.resp)},-.
12.  find RSeq of ew.req.cr; )
13. if (not found)

14. if (eu.req is a sub-request)

15. create RSeq for eureq.cr;
16. append (eu.req, txid) to RSeq;
17. else

18. find the first item ereq in RSeq with
ereq.parent == eu.req

19. if (found)

20. Jor each item dreq in RSeq from ereq to
the end;

21. remove dreq from RSeq;

22. remove (dreq.rid, resp) from RR;

23. if (eu.req is a sub-request)

24. append (eu.req, txid) to the end of RSeq;

25. else

26. delete RSeq for eu.req

27. for each comp € COMP

28.  create corresponding component;

29.  set component s state to comp.state;
(c) failover at the new primary

Response invoke (Request req, Component comp, TID txid)
1. New TID otid = null;
2. if (req is a client request)

3. if (3 (req.rid, resp) € RR)
4. return resp ;
3. else if (req is a sub-request and a new transaction is
required)
6. find RSeq of req.cr;
7. if (found)
8. get the first item oreq from RSeq;
9. if (req == oreq)
10. find (oreq.rid, resp) from RR
11. remove the first item from RSeq;
12. return resp;
13. else if (isAncestor(req, oreq) == false)
4. throw abort exception for ghost transaction;
15.  otid = txid;

16.  TM.suspend_Transaction(txid);

17.  txid = begin(reg);

18. find eu corresponding to txid;

19. eu.COMP ) = {comp};

20. Response resp = comp.invoke(req);

21. if (req == eu.reg)

22.  ew.resp = resp;

23.  if (resp == abort exception) abort(eu.txid);

24.  else

25. if (RSeq # A)

26. get the first item oreq from RSeq;

27. if (req is a client request and RSeq # A)
or (req is a sub-request and isAncestor(req, oreq))

28. resp = abort exception for ghost transactions,
29. abort(eu.txid);

30. break;

31 else

32, RR U = {(req.rid, eu.resp)};

33.  if (otid # null) TM.resume_Transaction(otid);
34. if (3 abort exception for ghost transactions)
35.  throw abort exception for ghost transactions;
36. else return resp;

(b) intercepts a request at primary

Bool isAncestor (Request reql, Request req2)
1. Request treq = req2;
2. do
3. if(reql == treq.parent) return true;
4. else treq = treq.parent;
5. while (treq is a client request),
6. return false;
(d) check the ancestor request of a request

Figure 6.7: “1-N” algorithm

a client request r,ls the post-order traversal of Ttree(r;). When we receive for a client request the

first inner transaction ¢; triggered by sub-request r;, RSeq for this client request is created and r;
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is added (lines 14-16). When we receive inner transaction ¢; triggered by sub-request r; and RSeq
already exists, we first check whether t; had any nested child transactions (line 18). These nested
transactions terminated before ¢;, and thus, the sub-requests leading to them have aiready been added
to RSeq. If such requests exist, they are removed from RSeq and RR (lines 20-22). This is correct
as the transaction associated with their parent request has committed, and any potential replay will
directly get the response for the parent request and they will not be further replayed. Then r; itself
is added to RSeq because at replay time this request should be checked (lines 23-24). If the same
request is not made in proper order during replay, ghost transactions occur. If r; is a client request,
RSeq for r; can be deleted since all transactions related to r; have now successfully terminated
(lines 25-26). After this process, in RSeq, the sequence of sub-requests triggered by the original
execution of the client request is sorted according to the order in which requests were submitted
originally. However, the sequence might not be complete. If two transactions are siblings and both
committed, their requests are included in RSeq according to the commit order. If a transaction is
included in RSeq then n(;ﬁe of its descendant transactions is included in RSeq. For instance, in
the nesting example of the previous section 6.2.2, if t; and t4 committed but not ¢, then only ¢5 is
included in RSeq. H'o»;/w'e“'}éf, it might be that a transaction is included but its parent transaction is
not included. In our é)iéhible in the previous section where we had the nesting of 1, ¢5 and tg4, this
occurs if 4 committed but not ¢ and ¢;. Then, only 74 is included in RSeq.

Figure 6.7 (b) shows the algorithm on the pri'ﬁary. For a client request, we process it as the
1-1 algorithm (lines 2-3). If it is a duplicated requeést, its response is returned immediately without
reexecution. For a sub-request, if it is detected that a new transaction will be triggered, we first
check if the sub-request is triggered by a replayed client request (line 6). If yes, its client request
should have RSeq that is created at the time of failover. If RSeq is found, the sub-request is
compared with the current first réquest in RSeq (lines 7-9). If they are the same request, namely,
both requests calling the same method with same parameter values, the sub-request is regarded as
the request that triggered the inner transaction that already committed at the old primary. In this
case, the execution of the sub-request is suppressed, the current first item is pushed out from RSeq,
and the replicated response is directly returned (lines 10-12). If they are not the same, we should

check if the sub-request is an ancestor request of the current first request in RSegq (it is checked by
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the function isAncestor defined in Figure 6.7 (d)). If not, the corresponding inner transaction
is regarded as a ghost transaction and an abort exception is thrown (lines 13-14). Otherwise, it is
the case that an inner transaction is included in RSeq but its parent transaction is not included. In
this case, we can safely reexecute the sub-request, waiting for the possible resubmission of the first
request in RSeq during the reexecution of the sub-request. If RSeq is not found, it means that
the sub-request is not triggered by a replayed request and can be safely executed. In both cases,
the sub-request can safely create a new inner transaction, suspending the parent transaction (lines
16-18). Then the sub-request is processed as in the 1-1 algorithm (lines 19-21). When execution of
a leading request of a transaction is finished (it might be a client request or a sub-request and hence
the transaction might be an outer or inner transaction) (line 22), RSeq has to be checked again since
there exists the possibility that the replay of the current request does not replay all sub-requests of
all committed inner transactions of its original execution. Ghost transactions exist in two cases: (1)
for a replayed client request,_RSeq is not empty, (2) for a replayed sub-request, it still has children
requests in RSeq.. In both cases the current transaction has to be aborted (lines 25-30). Otherwise,
RR keeps request/response pairs for each committed transaction (lines 32). Then, if there is a
suspended parent transaction, it will be resumed to be executed (line 33). In this case, TM holds the
current transaction in a queue"'v'i/'aitihg for the termination command. Finally, if the current request
gets an abort exception, the abort is thrown to its caller without returning the real response (lines
34-35). This guarantees in case that ghost transaction exists, the outer transactions will eventually
be aborted. Otherwise, the real response will be returned. When the TM is notified that the request

is returned successfully, it commits the corresponding transaction.

6.2.4 Correctness Discussion -

Correctness reasoning of the ,l\;Nelgorithm is similar to the proof of correctness of the 1-1 and
N-1 algorithm (see Section 5 3. l) “The major challenge is to check the situation where the primary
crashes when some inner transactlons have become successful update transactions. For the sake
of simplification and avmdmg long-wmded repetmon, the section uses two examples to show how
the 1-N algoriihm guarahfe“es ‘theﬂe(f)‘r'rectnesvs for an outer transaction that has two sibling inner

transactions and an outer transaction that has nested inner transactions. Other cases can be derived
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Figure 6.8: Possible crash intervals of the 1-N algorithm for sibling inner transactions in case of a
commit

from there. »

Figure 6.8 shows an example where an ohi‘ transaction has two sibling inner transactions. In the
figure, client action C'A; submits request r; to the primary AS,. If no crash occurs, r; is executed
as the action a; within.the transaction ;. The sub-request 7o is a database update request. The
sub-request r3 of a; triggers an inner transaction t5. Within ¢, a further sub-request ¢4 updates the
database. and then t; commits. Then, r3’s response is returned to a;, and ¢; resumes. Then, a3
submits a sibling sub-request rj triggering transaction ¢3. Finally t3 and then t; eventually commits
and the response rp; is returned. In this scenario, the first crash interval CI1 ends before the
inner transaction t2 ecommits at the database. "The second crash interval C'I2 starts after the inner
transaction ¢, commits at the database, and ends just before sending the sub-request 5. Then, the
third crash interval C’I 3 ends before the second inner transaction £3 commits at the database. The
fourth crash interval C'T4 ends before the primary sends the committing message of transaction ¢;
to backups. The fifth crash interval CI5 ends before ¢, commits at the database. Then the sixth
crash interval CI 6 \envds: just before sending fhe response rp; to the client request ;. Finally the
seventh crash interval CI7 ends after sending the response. Again, let’s analyze all crash intervals

one after another.
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CIl:

CI2:

No matter whether AS; received the state changes of the transaction 3, AS; knows that ¢3 has
aborted at the database. Hence, AST(t3) ¢ AT H. It matches that DBT (tp) ¢ DTH. The
CRM receives a failure exception for the outstanding request 7y, and then resubmits r; to
ASj. AS; does not have RSeq for the client request r;. AS; executes r; as a completely new
request. Finally, if AS; can be up for sufficiently long to handle r{’s execution, all matching

requirements will be fulfilled as a normal execution.

The CRM receives a failure exception. t; has aborted due to the crash and hence DBT (t;) ¢
DTH. ty has committed and hence DBT(t3) € DT H. At ASj;, the committing message of
to was received. At failover, AS; can detect the commit of DBT(t2), and thus AST'(t2) is
added to AT H;. AS; has the RSeq for the client request ;. The RSeq contains only the
sub-request r3 that triggers the committed inner transaction ¢3. Then, the C RM resubmits 7,
to AS;. AS; executes 71 in a new transaction ¢}. The first sub-request ' of the reexecution

that will trigger a new transaction has to be compared with r3, which is the first item in RSeq.

(a) If v is equal to r3, v’ is suppressed, and the response rps of 3 that is contained by the
committing message is'returned as the response of /. Then, the remaining part of the
reexecution of r; continues as the execution of a new request. When ¢] terminates, there
are AST(t}) € ATHj and possibly DBT(t|) € DT H. There are also AST(ty) €
ATH; and DBT(t2) € DTH. We can consider that ¢] and ¢, are part of the same
Ttree(r:) and AST(t7) <*AST(t}) in AT Hj. There is also only one Rtree(r;) and
r’ < 7y in RPost(r1)- All matching properties are fulfilled.

(b) If 7' is not equal to 73, t2 becomes a ghost transaction. Then, t{ is aborted and the
aborted response "Paby is returned to the client as the response of 1. As aresult, ATH;
contains AST'(t3) and DT H contains DBT (t2), and AT Hj also contains AST'(t)).
However, t] and t2 do not belong to the same Ttree(r;) and there is more than one
Riree(ry). Conditions 1b and 3-of the 1-N matching property are violated. The request
T1 € RHca, has a maiching response "Pab, € RPHcy,,. This could be regarded as

the satisfaction of Conditions la.and 2 of the 1-N matching property.

(c) if the reexecution does not submit any sub-request to trigger an inner transaction, ty
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CI3:

Cl4:

CIl5;

Cl6:

CI17:

becomes a ghost transaction. It will be detected by our algorithm at the end of the
reexecution of r; since RSeq is not empty but still contains r3. Then ¢} is aborted and

the abort response is returned to the client side. The same violations occur as above.

The CRM receives a failure exception for the outstanding request ry. AST(t1) ¢ ATH;
and DBT(t,) ¢ DT H due to the crash. Since the crash occurs before the inner transaction
t3 eventually commits at the database, both AT'H; and DT H do not contain ¢3. However,
both of them contain t5 since ¢3 has committed at this moment. When the CRM resubmits

r1 to ASj, the reexecution is the same as CI2.

In this case, AT H; and DT H eventually contain both ¢z and ¢3, since AS; knows that both
tz and t3 already committed at the database. AS; has the RSeq for the client request r;.
The RSeq contains two sub-requests r3rs that are leading request for ¢; and ¢t3. The CRM
receives a failure exception and resubmits r; to AS;. When replaying r; in a new transaction
t,, the ﬁréf VtWo éub-récil—lgsfs thai ffiéger new transactions have to be compared with r3 and r5
in the proper order. If both are equal, both sub-requests are suppressed, correctness reasoning
is as in C'I2a. Otherwisg; ¢ and/or t3 becomes ghost transactions, and correctness reasoning

is similar to the case of C'I2b.

AS; received the committing message of ¢, but can detect that ¢; did not commit at the
database. Hence, AST(t1) ¢ ATH; and DBT(t;) ¢ DTH. From there, this case is the

same as C'I4.

AS; received the cor’nﬁ_n;iit_ting message of £;, and can detect that ¢; already committed at the
database. :I:lence, AST(tl) € ATHj; and DBT(t,) € DTH. Also, AST(t2), AST(t3) €
ATH; ar;d'DBT(tzu):, bBT(tg) € DTH. Since the outer transaction ¢; is already commit-
ted, RSeq for the client request r; is deleted at failover. Then, when the C RM resubmits
1 to ASj, the original tesponse of r; that is contained by the committing message of ¢; is

directly returned without reexecution. As a result, all histories match.

From the perspecthe of AS; this is the same as CI6. The only difference is that the client

receives the response from the old primary. Thus, there is no resubmission.



Chapter 6. Advanced Algoﬁthms for Advanced Execution Patterns 109

Client
r & a I'pabt
AS, 1 3,
fs

Crash

CA

1
) ) \f P/ "Ps I
] é r @ %{ L @li t,.gommpt

I\

Time

committigg t, .congmit : ofnmitting |t,.commit 1y cotnmifting abortgd
) con‘r}(te? ’ cor;‘ itje:
=‘ \! || Y aport
SUE. NN VU Sy SOUIIN JINyL- NI NE NS My SpNIN DUV SEAEGS 2 R N - [
! ! e
N N R N B
L N i \*Bll TR/ H w ] H
! i ! i oo
i ; i : . I
ci i oce ! ci3 i Cl4 ° CI5 :iCI8: Cl9 GHO

Figure 6.9: Possible crash intervals in case of an abort of an outer transaction

Figure 6.9 shows an example of an abort case, where the database transaction aborts upon the

commit request. In this.case, the first five crash intervals are the same as CI1 to CI5 of the commit

case, and the different intervals are C'I8, which starts after the database aborts the transaction ¢; and

ends before the aborted message is received by AS;, CI9, which ends before the abort response is

returned to the client, and C'I10, which ends after the abort response is returned.

CIS8:

C19;

CI10:

This case is similar to CI5. AS; received the committing message of £;, but can detect that
t; already aborted‘avt,t_he database. The difference between CI5 and C18 is that in the former
case the abort is caused by the crash and in the latter case the abort is caused by the application

semantics. However, the new primary cannot distinguish. Correctness reasoning is as in CI5.

The AS; received the aborted message of ¢1, and can apply the state changes of ¢;. Then, t,,
t3 are contained by both ATH; and DT H, and ¢, is only contained by AT H;. AS; deletes
RSeq for thé ;l;ent requestr1 since it received the aborted message of t;. When the CRM
resubmits the_ request.7; to AS;, the abort response of ¢; is returned as the response. All

matching requirements are fulfilled.

This case is similar to CI 9 except that the abort response of ¢; is already returned. Hence,

the CRM will not reéubmit 1 to AS;. Instead, it directly returns the abort response to the
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Figure 6.10: Possible crash intervals in case of an abort of an inner transaction
client.

The primary might aléd crash at other time points, the correctness reasoning is similar to the
above case. Generally, if the new primary AS; has already received the aborted message of the
outer transaction, it will apply the state changes of the aborted outer transaction, and return the
abort response to the client upon resubmission. Otherwise, the reexecution is similar to the commit
case.

An inner transactiolﬁ,«might be aborted, too. Figure 6.10 shows an example of the abort of
the inner transaction t3 in case of relaxed state consistency. Since each individual transaction can
independently commit or abort, the outer tr_énsaction t; can commit after the abort of the inner
transaction £3. Most crash intervals in thris case are similar to the commit case. The different crash
intervals are CI11, which starts after the transaction t3 is aborted at the database and ends before

ASj receives the aborted message, and C112; which starts after the aborted message is received by

AS; and ends before the committing message of ¢; is propagated.

CI11: AS; did not receive any information about ¢3. After the crash, AST(t;) € ATH; and
DBT(t;)} € DTH. Then, the reexecution of 7; is similar to C'I2 of the commit case.

CI12: The AS; received the aborted fiiéssage of ¢3, and can apply the state changes of t3. Then,

e e

ey e e
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Figure 6.11: Possible crash mtervals of the 1-N algorithm for nested inner transactions in case of a
commit

AST(t;) € ATH, and DBT(t;) € DTH and AST(ts) € ATH;. Both t, and t5 are
successful update transactions. RSeq of r; contains rgrs for 5 and t3. When the CRM re-
submits the request ry to ASj, the reexecution should check if ¢ and ¢3 are ghost transactions

and take the corresponding actions as CI4.

When an inner transaction is aborted, the outer transaction might be aborted as well. Correctness
reasoning for this case is omitted since it is similar to previous cases.

Figure 6.11 shows an example whefe an out transaction has two nested transactions. In the
figure, client action C'A; submits requesi'rl to the primary AS,. The client request r; is executing
as an action ay within the transaction 7. The action a; submits the sub-request r3 to trigger an
inner transaction to. Within ¢o, a further,isub-request 6 triggers a nested inner transaction ¢4. The
commiitting order of these transactlons is t4t2t1 In this scenario, the first crash interval CI1 ends
before the inner transactlon t4 commlts at the database. The second crash interval CI13 starts
after the inner transaction ¢4 commits at the database, and ends just before the inner transaction ¢,
commits at the database. The third crash interval C'I14 starts after the inner transaction ¢ commits,
and ends before the outer trarnsaction_v_til commits at the database. Then the crash intervals CI6 and

CIT7 occur after the commit of the outer transaction. CI, C6 and C7 are the same as the similar
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crash intervals of Figure 6.8. Hence, we only look at CI13 and C14.

CI13: The CRM receives a failure exception. ¢; and ¢ have aborted due to the crash. ¢4 has com-

mitted and hence DBT'(t4) € DTH. At ASj, the committing message of t4 was received.
At failover, AS; can detect the commit of DBT'(t4), and thus AST'(¢4) is added to AT H;.

AS; has the RSeq for the client request r1. The RSeq contains only the sub-request ¢ that

triggers the committed inner transaction t4. Then, the CRM resubmits r; to AS;. AS; exe-

cutes ry in a new transaction ¢]. The first sub-request 7’ of the reexecution that will trigger a

new transaction has to be compared with rg, which is the first item in RSeq.

(@

(b)

If v’ is equal to g, ' is suppressed, and the response rpg of rg that is contained by the
committing message of the transaction 4 is returned as the response of /. Then, the
remaining part of the reexecution of | continues as the execution of a new request. In
this case, the reexecution of 7y is in fact different from the original execution, since in
the reexecution, r is the direct sub-request of r; but in the original execution rg is a
sub-request of the sub-request r3, which is skipped in the reexecution. However, this
is still a correct execution since ' is generéted by the normal execution of 7 and the
response of rg should be the same as the response of 7/ since ' is equal to 76. We can
consider one Riree(r;) that so far has pre-order RPre(ry) = r17g with corresponding
transactions;t’1 and t4. The remaining execution completes the tree and all matching is

provided.

If r' is not equal to 76, we check if 7/ is an ancestor request of rg, namely check if
is equal to r3. If.yes, ' is executed triggering a new transaction t. If the execution
of 7' submits a.subtr,eq_u:est r” that will trigger a new nested inner transaction, r is
compared with re again. If r" is equal to rg, then 7" is suppressed and the response
TPg IS returned ;@tﬂe;e"s‘b—(ﬂ)ﬂse of . Then, the remaining part of the execution of 7/

continues. We have now one Rtree(r;) that so far has pre-order RPre(ry) = rir'rg
with corresponding transactions ¢} t5t4. The remaining execution completes the tree and
matéhing is‘proVi’ded. If 7 is not equal to g, or the execution of v’ does not submit

", or 7 is not equal to r3, t4 becomes a ghost transaction. Then, t} is aborted and
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the abort response TDab,, is returned to the client as the response of r;. As a result,
l .
AST(t4) € ATH; and DBT(t4) € DTH and AST(t}) € AT Hj. The request 1 has

a matching response 7pgp,, . The main violation lies in Conditions 1b and 3.
1

(c) if the reexecution does not submit any sub-request to trigger an inner transaction, 4
becomes a ghost transaction. It will be detected by our algorithm at the end of the
reexecution of r; since RSeq is not empty but still contains rg. Then ¢} is aborted and

the abort response is returned to the client side. Violations are as above.

ClI14: The CRM receives a failure exception. t; has aborted due to the crash. to and ¢, have
committed and hence DBT(t4), DBT (t2) € DTH. At AS;, the committing messages of 4
and ¢, was received. At failover, AS; can detect the commit of DBT(t4) and DBT (t), and
thus AST'(t4), AST(t2) € ATH;. AS; has the RSeq for the client request 7. The RSeq
contains the only sub-request r3 that triggers the committed inner transaction ¢5. The sub-
request 7g is already femoved from R.S'éqmsincc its parent transaction has committed. Then,
the CRM resubmits 71 to AS;. AS; executes r1 in a new transaction t;. The first sub-request
7’ of the reexecution that will trigger a new transaction has to be compared with r3, which is

the first item in RSeq. This comparison is similar to CI2.

In summary, the 1-N algorithm guarantees correctness in some but not all cases. The problems
are ghost transactions that do not match any proper tree perceived by the client. Since we only
consider relaxed state consistency, the abort case for nested inner transactions is similar to the

commit case and omitted here.

6.2.5 Undo Ghost Transactions

An alternative solution could be used if compensating transactions exist. Recall that if the 1-N pat-
tern is used to chop a long execution into small pieces, compensating transactions are often provided
by programmers. In this case, in the example above, when the discrepancy between an old request
and a new request is detected, AS; first executes the compensating transaction for the ghost transac-

tion, and then continues execution with the new request. Please note that compensation transactions
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have to be called in the reverse order of their commits. Compensating transactions lead to com-
mitting/committed messages as any other transactions. The effect is that a compensated transaction
appears as if it had never been executed. However, if there exist some transactions that read data
changed by the compensated transaction on the database, these transactions have to be undone as
well, leading to “cascading compensation”. The cascading compensation disseminates the ghost
transaction problem from one client to other clients, and hence has to be handled carefully. This
same problem already occurs during normal processing when committed transactions are undone by
using compensating transactions. However, such mechanism appears complex. In particular at the
implementation level it requires the replication algorithm have access to compensating transactions,

which is often not feasible.



Chapter 7

Miscellaneous Extensions of ADAPT-SIB

In this chapter, we discuss miscellaneous extensions to our ADAPT-SIB replication tool. These
extensions do not change the algorithm itself, but propose a couple of ways to make ADAPT-
SIB adaptable to wider use cases where our assumptions for the algorithm might not hold, or the
system has a more complicated architecture. These extensions handle different failover strategies,
recovery of crashed replicas, request execution without transaction boundary, access of more than

one database using 2PC, and crash of clients or the backend database.

7.1 Different Failover Strategies

An important parameter of fault tolerance is failover time, i.e., the period from the time point the
backup detects the primary’s crash to the completion of failover. In general, the new primary has
to have the latest state of each component before any call to this component can be made. In the
algorithmic descriptions of the last ;gétions, the new primary creates all necessary components at
the time of failover and installs for each the latest successful change. We call this strategy Install-
When-Failover. However, creating components and setting their states can be very time consuming.
Since the components are not accessible until failover is completed, clients might be blocked for a
long time. Hence, although the crash exception is not exposed to clients, transparency might be lost

since the system might seem to be frozen to the client.

115
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To solve this problem, we propbse two further restore strategies. In the Install-Immediately strat-
egy, each backup creates a component when it receives the first message related to this component,
and it knows that the corresponding transaction succeeded. The state of the component is refreshed
immediately each time the backup receives a committing/committed message pair (or abort mes-
sage in case of weak consistency) that refers to this component. With this strategy, each backup
has a considerably higher load during normal processing when no crash occurs since not only the
last state change but all state changes on a component are restored. However, during failover, the
new primary only needs to consider components for which it had received a committing but no
commit/abort message before the crash. For those, it has to check in the database whether the state
changes recorded in the committing message should be installed. With this, failover can be very fast.
While the Install-Immediately strategy speeds up failover by doing the necessary updates before a
crash occurs, our Jast strategy improves on the failover time by delaying the necessary updates to
when they are actually pg:e_d__ed. We refer to it as Install-After-Failover. During normal processing,
a backup simply queues éil messages ﬁdm the primary as with Install-When-Failover. At the time
of failover, the new primary parses through the messages and only checks which components need
to be restored (created and a final state installed). Then, it immediately allows client requests. Now,
when a client submits a request to a specific component, if the component needs to be restored, the
new primary recreates the component and installs the up-to-date state as found in the last relevant
message. This Stfatééy slows down only those requests that are the first to access a component that
needs to be restored. However, the failover time during which all client requests are blocked, is very
short. Additionally, when the system runs for a long time, it might occur that many components
that were replicated are actually never reused again. Using the Install-After-Failover strategy, these
components will never be Created at the new primary but only those components are recreated that
are really needed. T

Note that the AS components we consider have usually a limited life-time and are then deleted,
because we méih’ly consider components that maintain all relevant information in regard to a user
session. The Install-Immediately strategy will create and delete such components on the backups
basically in real-time. In contrast, the other two strategies only create components at or after failover.

In order to avoid creating components at or after failover that were deleted, the replication algorithm
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during normal processing can be slightly changed. The primary simply informs backups about
deleted components by piggybacking such information on regular messages. The backups then

discard any information in regard to these components.

7.2 Recovery

Recovery is an important aspect of fault tolerance. In here, recovery means that a failed replica
recovers or a new replica joins. It is important that recovery occurs online, i.e., while processing
goes on in the rest of the system. When recovery takes place the recovered replica has to first receive
the current state, and then will become a backup. Our solution is that one of the existing replicas,
referred to as the peer, sends its current state to the joining replica. Either the current primary
or any existing backup can serve as peer. For a backup, its current state is the current content in
COMP and RR. Hence, if chdosing a backup as peer, we just need to send COM P and RR to
the recovered repl‘iﬁcg.ﬂ‘isc-)r a prfmary, its current state.includes the state on each component. It is
not trivial to collect the state of a component during runtime. For a component, we have to collect
its state when no execution is active on it. If two components are involved in the execution of
the same client request, we have to-collect both states after the execution is finished to guarantee
consistency between them. Further-requests to a component will be blocked until the collection is
finished. Hence, choosing a primary as peer not only adds extra load to the primary but also might
block normal processing. Its procedure is more complicated than if a backup is the peer. Whereas,
choosing a backup as peer requires the system always has at least one backup.

Thus, it is preferable to choosé a backup as the peer for simplicity and better performance. If
there is more than one backup availza-lilév, we need to choose one of them as peer. In our algorithm, the
new replica first joins the FTG (fault tolérance group). All replicas receive the view change message
and the new replica receives all méssages delivered after the view change messages. Each backup
who is willing to become the peer multicasts a willing message to all replicas using uniform-reliable
delivery (to guarantee all or nothing) and total order delivery. The backup whose willing message is
the first to be delivered Will become the peer. When a backup receives the first willing message and

it is the sender, it delayé the proceSsi'hg of any new messages coming from the primary. It generates
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a recovery message contaiﬁing the content of COM P and RR and sends it to the joining replica
using point-to-point commuﬁication. While waiting for the recovery message, the joining replica
might have already received messages from the primary (it starts receiving messages when the GCS
delivers the view change). It enqueue them in a queue (). Once the joining site receives the recovery
message, it initializes its data structures accordingly. The recovery message might already contain
the state of some of the messages in (). Hence, these messages must be removed from @) before the
backup algorithm can start processing messages from Q. In order to determine which messages to
remove, we timestamp all messages.

In practice, there also exist conditions that require the primary to send the recovery message,
e.g., only one replica keeps working while others crash. To adapt to these conditions, we propose a
solution to allow the primary be the peer. Recall that we use uniform reliable delivery to multicast
committing messages. This delivery mechanism requires that committing messages will also be
delivered to the sender. Hence, we get the current state of all components by parsing committing
messages on the primar&r. VAlfhough this solution requires the primary to use extra overhead to store
and process committing messages, it avoids state collection at recovery time and does not block
normal processing. In summary, if a replica joins and there is no other backup that could serve as

peer, the primary sends a recovery message to the replica without sending a willing message.

7.3 Nonr-“‘transaﬂétﬂi‘(’)ilal Client Requests

In some applications, execution of a client request might not happen within the boundaries of a
transaction. For example, in a J2EE environment, a method might have the transaction attribute
Supports, NotSupported, or Never. This is mainly used for simple executions that never
access the database, and hence, no transaction-is required to be associated with the execution. Using
the BMT scheme, the start/commit/abort commands have to be written into the method code. If this
is not done, a client request-calling the methed is also not associated with a transaction. In another
scenario, a transaction mighit only be started béfore the first database access and be terminated after
the last database access but before the execution at the AS has finished. In the extreme case, the

application does not set-any transaction-boundaries. In this case, the database executes each request
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to the database within an individual transaction (when using JDBC, this is achieved by setting the
autocommit flag to on). We can handle such a non-transactional client request r by assuming its
action a is embedded within a pseudo transaction pt. pt is assumed to begin at the time the action
a is started at the primary, and to commit when the action a completes but before the response
to the client is returned. If r does not access the database, r’s execution is transformed to the 1-1
pattern with pt being the only transaction. The state changes of the pseudo transaction are replicated
immediately before returning the response. If the execution of » actually triggers one or more “real”
transactions (which embed all database accesses), 7’s execution is transformed to the 1-N pattern,
with pt being the outer transaction. Again, state changes of the pseudo transaction are replicated

immediately before returning the response.

7.4 Accessing more than one Database

In our previous d‘iscussi'o‘n',lv.vé assumed that an application only accesses one database. In practice,
an application can access more than one database and then use the 2-phase commit protocol (2PC).
In order to handle 2PC, we take an idea proposed in the e-Transaction system [46] that provides
replication for stateless AS and adjust it to work with stateful AS. For that, we have to slightly
change the commit handling of-our algorithms (see Figure 5.2 (c)). The primary intercepts the first
prepare request sent by the TM to a database and multicasts a preparing message to the backups
using uniform reliable delivery.-before forwarding the request to the database. Then it intercepts
the first decision (commit/abort)-that the TM sends to one of the databases. In case of commit, it
sends the committing message with uniform reliable delivery as in our previous algorithms before
forwarding the commit to the database. After the transaction has terminated at all databases, the
response is returned to-the-client and a corresponding commit/abort message is multicast to the
backups (reliable delivery):.-No transaction id needs to be inserted into the database.

At the time the old primary crashes, the new primary might have received for a given trans-
action (1) not yet any message, (2) the preparing message, (3) the committing message, (4) the
abort [commit meséage. In the first case, our failure assumptions guarantee an abort of the corre-

sponding transaction at all databases. In casé (2), some might have aborted the transaction, others
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might be blocked in the prepared state. The new primary can now force all databases to abort the
transaction if they have not yet done so. In case (3), some databases might have committed the
transaction, others might be blocked, and the backup has received the component state changes.
The new primary can now ask all databases to commit the transaction if they have not yet done so.
In the last case, nothing needs to be done because all databases and the new primary have the correct
state after transaction execution.

We can easily integrate the above solution into the 1-1/N-1/1-N algorithms. Since 2PC does not
affect execution patterns, integration is not difficult. For each algorithm, we need to add the part to
process preparing messages during normal processing. At failover time, instead of checking the

marker, we have to consider the four phases described above.

7.5 Client and Database Crashes

So far, we have assumed that both clients and database are reliable. However, in practice, both of

them might crash as well.

7.5.1 Database Crash

If a database crashes, the AS receives failure exceptions when it submits operations. It has now to
wait until the database recovers. Upofi recovery, the database aborts transactions that were active at
the time of the crash. o

From the perspective of the AS, this means that transactions for which it has not yet submitted
the commit request, are aborted. “Trafisactions for which the prepared request returned a failure
exception might be aborted or in the prepared state. And transactions for which the commit re-
quest returned a failure exception miight be aborted (if there was no 2PC), in the prepared state or
committed. ' '

The AS can determine the state of each transaction after recovery by looking for the tzid in
aborted transaction, the AS primary can easily replay the transaction in the 1-1 and 1-N patterns. In

the N-1 case it has to forward the abort exception to the client replication algorithm with a request
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to initiate the replay of the transaction. In the prepared case, the transaction can be terminated just

as would be done during normal processing.

7.5.2 Client Crash

If a client crashes, a 1-1 or 1-N execution can simply finish the execution. A N-1 execution should
abort the transaction if the client had not yet submitted the commit request because the AS server

only has partial information about the transaction.

7.5.3 Replicated Database and Replicated Clients

Replicated Database Database replication has been widely used for fault-tolerance and perfor-
mance. In many solutions, replications is mostly transparent to the application, i.e., the application
is not aware of the fact that there are several database instances, each of them having a copy of the
database. The degree of transparency and the level of consistency provided by the different solutions
differ greatly. If the multi-tier architecture uses a replicated database layer, the AS layer must know
the exact semantics provided by the database layer and be adjusted to work with the new semantics.

In [61] the authors Vt;a_lﬂcg_ADAPT-SlB at the AS layer, and a simplified version of the database
replication solution propoééd in [64] and show to what degree ADAPT-SIB has to be adjusted to
work properly with the replicated database. In this case, the database replication solution is very
powerful. It appears to the application nearly with the same semantics as a non-replicated database.
The main difference 1s that a transaction might abort with a failure exception. This is the case
when the database re;')vl>iu(':a. on which the transaction executes fails before the transaction commits.
However, the AS vpriméf&,“being the client of the database, is automatically connected to a new
database replica. When the AS receives such an abort message due to failure, it can abort the
corresponding transaction at the AS. Then, in case of the 1-1 or 1-N pattern, it can simply replay
the transaction as is done in case of failover. In the N-1 pattern, it has to ask the client replication
algorithm to initiate the replay.

Furthermore, in certain crash scenarios (e.g., both AS primary and the database replica the AS

primary is connected to crash), inconsistencies could occur if certain failover operations at the AS



CHAPTER 7. MISCELLANEOUS EXTENSIONS OF ADAPT-SIB 122

and the DB happen concurrently. In[108], we gave a demo of our ADAPT-SIB system working

with the replicated database system presented in [64].

Replicated Clients [n many cases, the client of the AS layer is actually a web-server (WS). In a
well-designed system, the WS only calls the AS layer but not the database directly. The WS can
also have state. The WS might start the transaction itself but it might also send simple requests to
the AS, as we have discussed before. In order to provide fault-tolerance and load-balancing, also
the WS-tier can be replicated [13]. The challenge now is to provide exactly-once execution across
all three tiers: WS, AS and database. One problem is that request execution at the WS is often not
embedded in a transaction, making it hard to reason about correctness.

Clara Huizink has looked into WS replication and its integration with ADAPT-SIB in her M.Sc.
thesis [55].



Chapter 8

ADAPT-LB: Load Balancing
Architecture based on ADAPT-SIB

The ADAPT-SIB replication tool only considers fault-tolerance. All replicas are members of a sin-
gle fault-tolerance group (FTG). There is one primary executing all requests, and all other replicas
are backups. This addresses availability and reliability, but does not provide scalability compared
to a single-node system. Since backup tasks typically require much less resources than executing
the requests at the primary, the resources at the backups are wasted. In contrast, when replication is
used for scalability, a load balancing algorithm uses server replicas as resources to execute differ-
ent client requests. Ideally, the more replicas, the higher the maximum throughput the cluster can
achieve. We can consider a group of replicas all executing requests as load balancing group (LDG).

Considering that both fault-tolerance and scalability are important aspects of adaptability, this
chapter proposes a unified-architecture that provides both.

One major challen'gé Of a unified replication architecture is to use replicas so that they serve
both as resources for load-balancing and redundancy. That is, the question is how to build load
distribution and fault-tdi;r;ﬁcé groupé sucL that all resources in the system are exploited and enough
redundancy is provided for fault-tolerance.

In this section, we present ADAPT-LB, a replication framework with both load-balancing and
fault-tolerance modules. Each module réliés on features of the other module to fulfill its tasks. The

s
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main idea is that each replica is primary for the requests of some clients and is used as backup for

other replicas. The solution has the following properties.
e Load distribution Each replica is member of a single large LDG and executes client requests.

o Fault-tolerant execution Each replica is primary of a small FTG and is backup in few other
FTGs. As backup activity requires only few resources, the main capacity of each server is

used for request execution.

o Load-balancing The system uses a truly distributed, lightweight load-distribution algorithm
that takes advantage of the existence of FTG groups. It does not require the maintenance of

load information and keeps communication overhead for load-balancing purposes low.

o Dynamic reconfiguration The system provides dynamic reconfiguration. When a replica
joins the system, it joins the LDG and creates a new FTG for which it is primary. When a
replica fails or is remd\lléudvfrom the systém, a backup replica takes over its tasks. As part of
any join or leave operation, the FTG configuration is adjusted to guarantee that all FTGs have
sufficient number of replicas and no replica is overburdened with backup tasks. Furthermore,
the load-balancing module will quickly remove any load imbalance that might occur during

reconfiguration.

As a summary, our unified solution distributes load across all replicas, handles failures trans-
parently, and can easily grow and shrink with the demands, providing an ideal framework for self-

provisioning.

8.1 Algorithm Overview

Assume the entire cluster consists of n (0 < n) replicas. In the ADAPT-LB architecture, the number
of FTGs in the cluster is equal to the number of replicas in the cluster, because each replica is the
primary in exac.tli}\cﬂ)ne FTG, referred to as its primary FTG. Typically, it is enough for each FTG to
have one or tvs)o”ba'ckup repl_iéas to tolerate the failure of a replica. Therefore, we let each replica

join in one or two other FTGs as the backup. Each of these FTGs is called a backup FTG on the
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Figure 8.1: Unified architecture of ADAPT-LB

replica. Generally, each replica is backup in m (0 < m < n) FTGs, and hence each FTG has m
backups. We refer to this as the m/m property. This property allows for a simple, yet powerful
automatic reconﬁg_uration me_chanism, and alsg helps in load distribution. Figure 8.1 sketches the
unified architecture cﬁ‘ADAf’T—ISBZ "S‘:Ve‘ctic‘)nv 8.2 explains the components on the figure and describes
the algorithm to initialize this setting.

Each replica processes client requests, using the ADAPT-SIB primary algorithm and sending
replication messages (i.c., commitﬁng, committed, aborted messages) to the backups in its primary
FTG. Additionally, it receives and processes replication messages from the primaries of its backup
FTGs. The replica keeps the contexts of its FTG completely separated to avoid any interference.

When a client connects to the system, a session on one primary replica will be created, and all
requests within this session will be handled_-jby this replica. This guarantees that each request sees
the current session state. Usually, sessions are randomly assigned to replicas. However, in case the
current load of a replica is above a qertain thr_eshold, it can forward the request to its backups. If one
backup is not overloaded it will accept the ;;ew client. Otherwise the request is forwarded to other
FTGs recursively. Section 8.3 describes load-balancing in detail.

When a replica crashes, it leaves all its FTGs. For its primary FTG, the crash causes the failover
process on backup replicas within the same FTG. According to the ADAPT-SIB protocol, one of
the backups is chosen as the new primary of the FTG. However, since only one primary FTG is

allowed on a replica and the chosen backup replica already has its own primary FTG, the chosen
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replica has to merge the context of the backup FTG with the context of its own primary FTG. Then,
the replica processes all incoming requests, no matter whether they are originally designated to the
replica or they are resubmitted due to the crash, in the context of the primary FTG. Similarly, as the
crashed replica also had backup FTGs, these have to be reconfigured. When a new replica joins or
a failed replica recovers during runtime, it first initializes its primary FTG, and joins in other FTGs
as backups. The primary FTG on the new replica automatically finds backup replicas in the cluster.

Section 8.4 describes the algorithms to reconfigure the cluster when replicas fail or recover.

8.2 Cluster Initialization

Assume that the cluster starts up with a total of n (n > 0) replicas (note that the cluster size may
change later dynamically). Each replica uses its address as a unique identifer. Each replica runs a
Load Balancing Manager (LBM). When a replica starts up, its LBM first joins the LDG. Once all
n replicas have joined, each LBM multicasts its replica identifier using total-order, uniform-reliable
delivery. Each LBM receives the messages in the same order and stores the identifiers in an ordered
list RL according to the delivery order. -Each replica in the system is assigned an order number ¢,
1 < i < n, which:is the position of the replica in RL. We refer to the replica with order number
i as r;. Note that-while the identifier of-a-replica does not change during its lifetime, the order
number might change; as we see later. Once r; has determined its order number i, it joins FTG;
as primary. If ¢ >-m, it furthermore joins FTG;_,, to FTG;_; as backup. A replica with order
t < m joins FTGp-my; to FTG, and FTGy to FTG;_, as backup. For instance if m = 2,
then r3 joins FTGy and FTG2, 1y joings FTG, and FTGy, and 1y joins FTG,—; and FTG,.
Figure 8.2 depicts this circular setup of FTGs. Figure 8.1 shows the entire architecture. At each
replica, PRM refers tov’the RM of the primary FTG, BRM S refers to the array of RMs for the
backup FTGs.
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Figure 8.2: Initial setting with m = 2

8.3 Load Balancing Algorithm

After the initialization is completed, the workloads, namely client requests, are distributed on all
replicas using the load balancing algorithm. While the algorithm uses generally a simply load

distribution technique, it adjusts to variances whenever necessary.

8.3.1 Simple Load Distribution

Load balancing is performed when a client wants to create a new session. At this time, the client
has to be assigned to a replica in the LDG. This replica becomes the primary replica for the client
session, and all requests within this session are handled by this replica. This guarantees that each

defined replica list CL (ideﬁtiﬁé_i“]ist) that contains the replicas the client can potentially connect
to. For correctness, only one?éfpgii.ca on the list must actually be available. But a more accurate list
has a positive impact on load distfibution.

Our load distribution algorithm does not require extra message overhead. Instead, it is executed
when the client creates the connection session with the AS, which is the standard procedure of the

non-replicated AS to link a client with the AS (see Section 2.3.2). When the client wants to create a
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connection session with the AS, it sends the request to any replica on C'L. If it times out, it resends
it to another replica until it succeeds. An available replica r; receiving such a request becomes the
load-balancer for this request. The LBM of r; will decide on a replica r; to create the session and
serve the client by simply selecting a replica randomly from its RL list. The LBM of r; returns the
CRM code to the client. The message piggybacks an ordered list containing the identifiers of all
replicas that are members of F'I'G; (derived from RL) and indicates that r; is the primary. The
ordered list (called F'L) on the CRM is used for fault tolerance, and is described in more detail in
Section 8.4.3. In the second phase, when the client sends the first request, the newly installed CRM
builds the physical connection session with 7; and r; accepts the request within this session. Then,
the CRM relays further client requests to r; within the session. As seen in Fig. 8.1, the LBM of
r; intercepts all requests and dispatches them to the PRM. The message overhead for the session
setup is the same as for standard J2EE involving one message round for the connection request (with
7;), and one for session creation (with ;).

There exist many ldéd-balancing algorifhins that are more sophisticated than random, such as
load or weight-based algorithms, or algorithms that take locality into account. These algorithms,
however, require to ekchange considerable information and maintain extra load information at each
node. Most use a central load-balancer which we want to avoid. Additionally, random has shown to
perform just as good as these load-balancing algorithms while having considerable less overhead.
Since most enterprise clusters tend to over-provision to some degree, random will be good enough
for most executions. Additionally, the random algorithm can be implemented locally at each replica.
Furthermore, clients can be configured more easily since their C'L do not need to be accurate. If
CLs are stale, connection requests might not be equally distributed among replicas. However, the

sessions themselves will always be distributed across all replicas since this is done at the server side.

8.3.2 Load Forwarding

Random replica assignment, however, does not work well if request execution times are not uniform
since random assignment does not prevent that saturated replicas receive further clients leading to
degradation of their performance.

We address this issue with a simple but effective first-local-then-forward (FLTF) mechanism.



Chapter 8. ADAPT-LB: Load Balancing Architecture based on ADAPT-SIB 129

i j+1 +2  j+3 j+4 +5

LDG

FTG_j ‘ FTG_j+3

Figure 8.3: Forwarding a request

When the load of a replica is above a given threshold it will not accept any further client sessions
but searches for another replica. Load could be measured as memory usage, CPU usage, response
time, or the number of connected clients. We refer to a replica with a load below the threshold as a
valid replica.

When the LBM of replica r; receives a client session request and its load is below the threshold,
ie., r; is a valid replica, it ééwé; the client dlrectly and establishes the session as described above.
Otherwise, r; multicasts a load query message lgm to all replicas in F'T'G; in order to find a valid
replica. When a backup replica in FT'G; receives the lgm message it checks its local load and sends
an answer message back to ry; Which is positive if the load is below the threshold, otherwise it is
negative. r; chooses the 7y, tha/t}was the first with a positive answer to serve the client. It returns to
the CRM the list of replicaé%elonging to FTGy. The CRM of the client refreshes its local FL,
and sends a session request to rk In case of isolated overloads, contacting m other nodes will likely
find a node that can accept new clients.

However, if there is no positive banswer among the backups, r; sends a forward message to the
replica with the smallest order number larger than any order number in FT'Gj, i.€., 7(j4m41)%n-
T (j+m+1)%n NOW repeats the process, sending a new lgm message in its own primary FTG(j1m+1)%n-
Figure 8.3 shows this scenario of a forward. If a valid replica is found, T(j+m+1)%n returns the in-
formation to r; so that it can forward the relevant replica list to the client. If no replica is found,
T(j+m+1)%n could iterate the process by sending a forward message to 7 om2)%n. We limit the
number of iterations to"a maximum 7. if after T iterations no valid replica is found, a negative

message is sent to the’Griginator ; which either accepts the client or refuses the connection. If T is
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set 0, then no forward message is sent at all. Setting T' low makes sense because if all nodes in ;s
neighborhood are saturated, then it is likely that the entire system is close to saturation and further

forwarding will not help.

8.3.3 Discussion

A main benefit of our load distribution algorithm is that it is purely distributed without any central
controller and can be easily implemented. It does not affect the fault-tolerance algorithm but takes
advantage of the FTG infrastructure. Furthermore, load is checked in real time, and replicas can
individually decide to take on further load or not. The main disadvantage is the overhead of the
forward process.

One question is how often one has to forward to find a lightly loaded replica. The probability to
find a valid replica within the m backup replicas of the local FTG is equal to the probability to find
a valid replica within any.m replicas in the cluster. If there are & valid replicas randomly distributed

in the cluster, the probability p to find one of the k& valid replicas within the m backup replicas is:

.,p>:1——(n—7:—1‘>/<n;1). 1)

Since each forward searches m + 1 replicas (a new FTG), the probability p to find one of & valid

replicas within the m backups of the initiator and 7" further forwards is:

pzl__(n——m—l;T‘*(m+1))/<n;1>- 62

Assume the cluster has 100 replicas and m = 2. With 50 valid replicas and T' = 1 we find a valid
replica with more than 97% probability. With only 20 valid replicas, setting T" to 3, the probability is
still 92.8%. And even if .th’ere ere only 10 available replicas, setting 7" to 5 will give us a probability
of 86.3% to find a vahd rephca Thus, this snmple mechanisms provides a high success rate even
for highly loaded clusters vs;hlle keepmg the message overhead low. Furthermore, there is no need
to keep load or other mformatmn from other rephcas

Sa e e

Note, when all chent requests tngger 51mllar overhead and all replicas have similar resource
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configuration, the random algorithm works fine. In this case, when one replica is overloaded, others
are too, and forwarding only introduces unnecessary messages. But forwarding is useful if individ-

ual replicas are saturated for limited periods of time.

8.4 Reconfiguration

In Chapters 5 and 6, we discussed how the ADAPT-SIB algorithm performs failover and how
new teplicas can join an FTG as backups. Now we adjust these aigorithms to fit with our overall
architecture with the m /m property. When a replica fails or leaves, m existing FTGs now have only
m — 1 backups. Furthermore, when a new replica joins it needs m backups for its own primary FTG
and it should join m existing FTGs as backup. We want to have a mechanism that automatically

reconfigures the system back to an m/m configuration without any external intervention.

8.4.1 Server Crash

For simplicity of notation the following discussion assumes that a replica r; fails where ¢ > m and
i+ m < n. When a replica r; fails it leaves FT'G;, and a new primary has to be found for r;’s
clients. Furthermore r; is removed as a backup from FTG;_,, to FTG,_;. Thus, these FTGs need
new backups. Figure 8.4 illustrates the required changes. It shows the range of replicas around
the failed replica r; and the span of the FTGs. The bold lines are extensions, the dotted lines are
removals.

The failover process at the server side is slightly different from the original ADAPT-SIB pro-
tocol. No new primary can be built for FT'G;, since ;41 to 74, already have their own primary
FTGs. Instead, the clients associated with FT'G; will be migrated to FTG;41, and FTG; is re-

moved. The main reconfiguration steps are as follows.

1. 7341, which is a backup in FTG;, becomes the new primary for r;’s clients. It first blocks
client requests. r;+q then performs the failover on the components registered in FT'G; as
described in the failover part of ADAPT-SIB. Then, it migrates these components into the
context of FT'G;y1. Finally, r;41 leaves FT'G; because this FTG ceases to exist. [t now

starts processing the blocked client requests.
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2. Titg tO T4, are backups for FT'G; and FTG;11. They simply migrate the backup informa-
tion they store for FTGi to the context of FTG;y; and leave FTG;.

3. Ti+m41 is only backup of FT'G, ;. It has to receive the backup information for the clients

that migrated from FTG; to FTG;41. r;+1 sends this information to 7;4m+1.

4. Since replicas r;1+1 to r;y# have left FT'G;, they are now backups for only m — 1 FTGs.
Furthermore, FTG;_,, to FTG;_; only have m — 1 backups since r; was removed from
these groups. To resolve this, r;41 joins FT'G;_p, as backup, riyg joins FT'G;_m41, €tc.

They use the normal recovefy protocol of ADAPT-SIB.

Finally, each LBM -.-removes_ r; from its replica list RL, and decreases the order numbers of
replicas ;41 to rp, by one. Each replica can do this independently when it is informed by the view

change protocol that r; was removed from the LDG group.

8.4.2 Server Recovery - - -

When a failed replica recovers or a new replica-joins in a cluster of size n, it first joins the LDG,
and all replicas are notified about this event. Each replica adds the new replica with order number

n + 1 to is replica list RL and considers it in its load-balancing task. ,, receives the replica list

e
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RL from a peer replica. According to our setting, r,+1 must have a primary FTG and m backup

FTGs. The reconfiguration changes are depicted in Figure 8.5.
1. rp41 creates a new FT'Gp4q and joins it as the first member.

2. rpy1joins FTGpomq to FT'Gy, as backups. It uses the recovery process of ADAPT-SIB as
detailed in Section 7.2, These FTGs have now m + 1 backups.

3. Now, 1) to rp, leave FTGp_pm+1 to FTGy, respectively. The FTGs are now back to having

m backups.

4. Finally, r; to r, join the new FTG,4+1. They have again m backup FTGs and FTG,,4 has
m backups. The recovery is fast, since this group is new and no backup information has to be

transferred. The reconfiguration is complete and r, 4 starts accepting client requests.

8.4.3 Reconfiguration Effects on Client:

Reconfigurations are completely transparent to the clients since the CRM takes care of reconnecting
to a new replica if the primary it is connected to crashes. As mentioned before, when a client creates
a session, the CRM receives an ordered list FL with the identifiers of replicas 7y, 7441, - Ti+m
with r; being marked as the primary. For the CRM this is a simple list and it does not need to be
aware that these servers constitute a FTG. If a backup leaves F'T'G; or a new replica joins F'T'G;, the
client is not directiy affected because the pﬁinéry r; is still available. Nevertheless, r; piggybacks
the new member list on the first response to the CRM after such a reconfiguration so keep the
information at the C RM up-to-date. If the primary r; crashes, the CRM chooses the next replica
ri+1 on its FL to continue the session. When r;;1 receives the request, it processes it in its own
primary FTG;4; as discussed above. In the first response to the client, the new member list of
FTGiy (e, n+1, vri+2,...) is returned to the client. Thus, the F'L is always kept as accurate as

possible.
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Implementation

This chapter describes our imp]ementétion of ADAPT-SIB and ADAPT-LB in an existing J2EE
server. Our choice was on J2EE as it is more widely used than CORBA, and has more open source
products than .NET. Our ifnplementation has been integrated into JBoss AS [49], which is one of
the most widely used open source J2EE products.

ADAPT-SIB and ADAPT-LB used the abstract concept of a component with volatile state,
and assume that the replication tool can intercept requests. In order to prove the practicability
of ADAPT-SIB and ADAPT-LB, the abstract components used so far have to be mapped to real
components in a working system, and the replication tool has to be able to obtain control during the
runtime of the system, in particular, before and after requests are executed. In the following, we first
describe the J2EE architecture in more detail and then show how the replication tool can be plugged
into the J2EE architecture. The implementation shows that the replication tool can be implemented

with little changes at the client- and the database- tiers and without complex changes at the AS-tier.

o~

9.1 J2EE Architecture

The general architecture of an-"AS-and‘in particular of a J2EE based AS have been introduced
in Chapter 2. This section describes three important parts of the J2EE architecture in more detail,
namely, how a client sends-requests to-an EJB object, how the interceptor chain of the EJB container

works, and how client requests are associated with transactions at runtime.

134
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Figure 9.1: Lookup EJB from the client side

9.1.1 EJB Lookup

A client accesses:/ EJB objects using the corresponding EJB stub. Figure 9.1 shows how a client
gets the EJB stub. ‘We have discussed this concept at a high level in Section 2.3.2 and then again in
Section 8.3.1. Each EJB class has a corresponding home interface. It manages the life cycle of the
EJB. When an EJB:élass is deployed on the AS, the home interface of the EJB class is registered
with the name of the EJB class using the Java naming service (JNDI). When an outside client wants
to access an EJB object, it connects to the JNDI service and looks up the EJB’s name. If the name is
found, the stub of the home interface for the EJB class is returned to the client via Java RMI (remote
method invocation) [95]. The home interface provides remote methods to create a new EJB instance
on the AS. A create method can return a remote stub of the EJB to the client side. The stub is the
remote reference of-the EJB object acting as the local proxy. Now, the client can send requests to
the EJB object via the local EJB stub.

Although both ’session beans and entity beans can be accessed directly by the client using this
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approach, the J2EE specification [94] suggests not to directly access entity beans from outside
clients to guarantee correctness and better performance. Hence, we assume clients only access
session beans. When a new session bean is created by a remote call from a client, a remote stub of
the session bean is returned to the client, and thus a.new session is created between the client and
the AS. If the session bean is a SFSB, the state of this bean instance is bound to the session and is
only accessible to the client.. Our assumption that no concurrency issues occur on session state is

based on this characteristic.

9.1.2 Interceptor Chain

As mentioned in Section 2.3.2, the EJB container consists of an interceptor chain, within which
each interceptor is responsible for calling a certain service. Figure 9.2 shows how a request passes
through the interceptor chain: A request passes through all interceptors in the chain before it reaches
the destination EJB, and its response passes again through all such interceptors before it returns to
the client. In JBoss, important interceptors in the interceptor chain of the EIB container are the
communication interceptor that translates a request message sent from a client back into a method

invocation to an EJB, the component resolution interceptor that finds the target EJB instance on
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which the method will be invoked, and the fransaction interceptor that associates the request exe-
cution with a transaction.

Taking advantage of the interceptor chain, we can easily manage to begin a service before the
request is executed and to stop the service after the execution is finished but before it is returned.
Considering the replication tool as a service, we can use a replication interceptor so that the repli-
cation tool can obtain control before and after a request is processed.

There could also be an interceptor chain at the client side. When downloading a remote stub of
an EJB object, an interceptor chain is downloaded as well that can intercept client requests to the
EJB object and the corresponding responses to the client side. The client side interceptor chain can

help us to deploy the client part of the replication algorithms.

9.1.3 Associating Transactions with Requests

The transaction service is a service that is typically called on the EJB container via the transaction
interceptor. The interéeptor is responsible for associating a request with a transaction. Section 2.4.4
already introduced how the transaction interceptor associates requests with transactions for the CMT
and BMT schemes. T;he‘l transactlon ‘rﬁ;ﬁ;éefﬁent is implemented in the transaction manager (TM),
while the business Iogié'is implemented in EJB objects. At runtime the TM and the EJB object
must exchange informé;i;).ﬁl: 'Fo% inéfanéé, the TM needs to know which database is required to be
accessed by the busines'sh;)l')jgcﬁt, and theEJ B method needs to know if a transaction has committed
or not. In this case, the‘;ré\l;s;(‘::tnion iﬁté:réé;;fOr is used to help the TM and the EJB objects exchange
information. .

If the client wants to de&éﬁ;ﬁine tf\é B&ﬁﬁdaries of the transaction, the client needs to download a
remote stub of a user trahsa;:’t.i“o/r; 6bjeét that fepresents the TM, and then explicitly start/commit/abort
a transaction using the Iremo.t\e{'ﬁiethbd invocation.

When a transaction is stéftéd, it first only executes at the AS. Only when the execution accesses
the database, a DB tran§ac‘ti9n’§tans: That is, the TM starts the DB transaction with the first oper-
ation to the database and then terminates both at the AS and the database. If there is no database

access, there is no DB transaction at all. Database access usually is controlled via a JDBC driver,

which is provided by the database but runs at the AS. Hence, to obtain control over transactions, the
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replication tool needs to intercept transaction commands to the TM (start/commit/abort) and JDBC

commands sent to the database.

9.2 Implementation based on the Adapt Framework

Inspired by the interceptor mechanism, our partners at the Universita di Bologna, Italy, with our
help, implemented a pluggable module, called ADAPT framework [6] !. The ADAPT framework is
an extension of a J2EE server, allowing replication algorithms to be plugged in. Towards the upper
layer, the framework defines a set of APIs for the replication algorithm. The replication algorithm
can be implemented using these APIs without considering the architecture of a certain AS. Below
these interfaces, the framework for a specific J2EE AS implements a set of interceptors that gets
control of the system during runtime without affecting the original functions of the server.

When an EJB is invoked at runtime, the framework transfers control to the replication algorithm
implemented within the replication manager (RM). Through the APIs, the RM sees an abstract view
of EJBs, invocations, and other elements of the server. The RM may perform any actions, such as
setting component state or communicating with other replicas, before continuing the invocation.
The main advantage of using the ADAPT framework, rather than modifying the server directly, is
that it simplifies replication programming. The custom API isolates the replication algorithm from
the details of the server implementation. Further, the algorithm is centralized in just a few classes,
rather than scattered throughout the server system. Figure 9.3 shows how the framework separates
the J2EE server from the replication algorithm implemented within the replication manager. Within
the replication framework, RCS (remote component stub) and CH (component handle) represent ab-
stract views of components on the client side and the server side. In general, the ADAPT framework
has been designed to be used by various replication algorithms.

In order to implément ADAPT-SIB and ADAPT-LB, the replication framework should provide
APIs to see EJBs and their states, to see invocations on EJBs, to see transactions, and to see database
operations. In the following sub-sections, we introduce how this information is provided by the

replication framework.

'Our major contributions are described in Section 9.2.4 and Section 9.2.5

PR
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Figure 9.3: ADAPT framework separates replication algorithm from J2EE server

9.2.1 Components and States

The ADAPT framework API classifies components into three levels:

ComponentKind is the broadest classification. There are just a few kinds, fixed by the framework

implementation: entity-beans, stateful and stateless session beans.

ComponentType is a kind plus a-name, specifying a particular “class” within the kind. The number

of types depends on the applications deployed on the server.

ComponentHandle refers to a specific EJB instance. [t consists of a ComponentType plus an
instance identifier specific to that type. With an entity bean, the identifier is the primary key;
with a stateful session bean, it is the session ID. The number of distinct handles depends on

the number of EJBs invoked by the application.

All these classes may be transmitted between replicas. The classes also support comparison: two
ComponentHandles, for example, test equal if and only if they refer to the same component instance.

An EJB instance is created by a call to one of the create methods of its home interface. The
create method is intercepted by the ADAPT framework. After an EJB instance is created, the
framework creates the ComponentHandle to represent the EJB instance. Then, in the framework,

the information about the EJB instance can be received through the ComponentHandle.
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The ComponentHandle provides methods to test whether a EJB instance has state and to get
the state. The state of an EJB instance is an opaque serializable object, which can be sent between
replicas. To get the state of an SFSB, we use the passivation mechanism, saving the state to an array
in memory instead of persistent storage. The state value is simply the serialized form of the object
itself. The ComponentHandle can be replicated together with the array of the state value to backups.
The replication of SFSB states is implemented in this way.

The ComponentHandle provides create methods that can re-create the EJB instance. It also
provides a method to set the state value on the re-created EJB instance. Moreover, it provides the

call method:
Response call (Request reguest).

This method can be used to eventually execute the intercepted request on the EJB instance repre-

sented by the ComponentHandle.

9.2.2 Invocation Interception

The ADAPT framework gets control of éh execution by intercepting an EJB invocation at three
points as shown in Fi’gure 9.4. At each‘p(")int, the replication algorithm may intervene, performing
any computation or communication before or after continuing. The first point is within the client-
side stubs. The intefééptor at the first pb’iﬁt is called the client replication interceptor. 1t is the entry
point for the client-side replication élg6rithm, passing the control to the CRM (client replication
manager). For exa.ﬁ{};le, when the interceptor intercepts a failure exception of the primary AS, it

notifies the CRM t"(.)'(re-direct requests to the new primary. Both the second and the third points
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are within the interceptor chain on the server side. The second point comes immediately after the
invocation reaches the server, before the target EJB reference has been resolved. Intercepting here
allows the replication algorithm to first re-create the EJB instance itself and set the state of the EJB
instance, if necessafy. This is used, e.g., by the Install-After-Failover strategy on the new primary.
The interceptor at the second point is called the early replication interceptor. The third interceptor
point comes just before the invocation passes to the target EJB instance; i.e., after the reference has
been resolved, and all the EJB properties, such as security and transactions, have been set up. The
interceptor at this point is called the replication interceptor. At this point, the control is passed to
the RM (replication manager). Then, the RM can get the request and the corresponding response,

get the EJB’s state, get the current transaction, etc.

9.2.3 Requests and Responses

The replication interceptor transfers the control of a method invocation to the RM by triggering the

invoke method of the RM as follows:
Response invoke(Request request, ComponentHandle component).

Within this method, the RM can get the state of the target EJB instance using the ComponentHandle
parameter and get information about the request using the Request parameter. To invoke the target
EJB instance, the RM calls the éofresponding call method of the ComponentHandle described in
Section 9.2.1. After the éa'li métﬁod of the ComponentHandle returns the response, the RM can
process the response (e.g., pﬁt it in the RR list), before the invoked method returns.

Generally, Request and Respﬁhse are opéqlie to the replication algorithm. However, in a Re-
quest, the RM is allowed to féa"d_ fhe name and the list of parameters of the method that is being
invoked. This permits the -}é‘fo‘l‘icvz;t'ibn algorithm”fo check whether two requests are identical. When
the invocation completeé"'r{é'nﬁéllyé,wthe Response encapsulates the return value. In this case, the
replication algorithm cannot examine the content. However, when the invocation throws an excep-
tion, this is wrapped in a s;;;cia-l ﬁésponse which provides the details of the exception and identifies

its source.
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Application exception The exception was thrown by the component, i.e., by the application code.
In this case, the replication algorithm should not examine the exception details, but should

simply pass the Response back, where it will be handled by the calling component.

System exception Thrown by the system or framework, for example when the server crashes. The
client-side replication can catch this and fail over to another server before returning to the

caller.

Replication exception Thrown by the replication algorithm, presumably from some other point in
the chain of invocation. In this case, the replication algorithm is free to examine the exception

details and handle them as it chooses.

Both Request and Response can be tagged with headers. These are arbitrary key-value pairs,
which are transmitted along with the content of the message. They are visible only to the replication
algorithm. The key must be a string; the value may be of any class that can be serialized in the
invocation. A comnﬁon use for headers is to tag each request with a unique ID. This is to guarantee
that each request will be executed exactly once, despite retransmissions and communication failures.
For example, an ID can be set by the client-side stub in the client replication interceptor, before the

request is sent the first time.

9.24 Transaction Interception

As mentioned in Section 9.1.2, there is a transaction interceptor in the interceptor chain to associate
a request to a transaction. The transaction interceptor accesses the TM (transaction manager) of the
AS using the JNDI service. It gets the reference to the TM by looking up “TransactionManager” in
the naming service of the AS. In order to intercept transaction commands to the TM, the ADAPT
framework provides the TM wrapper that wraps the TM by providing methods to intercept typical
transaction comfnands, i.e., transaction begin, commit, and abort, as shown in the right side of
Figure 9.5. Within these methods, the TM wrapper passes transaction commands to the TM by
calling corresponding methodé 6f the TM.

When the AS is started, tlieh;TM wrapper is started after the TM is started. Without changing

the TM, the ™ Q}éﬁper get-bs”tlié reference to the TM by looking up “TransactionManager” in the
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Figure 9.5: ADAPT framework wraps transaction manager and client-side user transaction

naming service. Then, the TM wrapper removes the binding of the TM and the name “Transac-
tionManager” from the naming service. Instead, it binds itself with “TransactionManager” in the
naming service. At runtime, when the transaction interceptor looks up “TransactionManager”, it
gets the reference to the TM wrapper but not the direct reference to the TM. This way, the TM
wrapper intercepts all transaction commands that are sent from the outside, including the trans-
action interceptor. The TM wrapper has the reference to the RM, and hence can pass control of
transactions to the replication algorithm before or after passing transaction commands to the TM.
Thus, according to our replication algorithm, state propagation can be executed when a commit
command is intercepted by the TM wrapper but before it is passed to the TM.

In the N-1 pattern, a t_ransactio‘ﬁ"can be explicitly started, committed and aborted by the client.
To do so, the client requires a remd_te stub referring to the TM. The remote stub is called Client
User Transaction, Wthh is bmdmg to the nammg service with the name “UserTransaction”. The
ADAPT framework prov1des the Cltent Tx Wrapper (CTW) to wrap the client user transaction, and
binds it with “UserTransactlon in the nammg service to replace the client user transaction. When
a client is looking up “UserTransaction”, the CTW containing the client user transaction is returned
to the client as shown in the left side of Figure 9.5. Thus, the CTW can get control of transactions
at the client side, and hence the client part of the N-1 algorithms gets control of transactions.

The wrapper approiiéh, replacing original services in the naming service with wrappers is an
easy way to plug our replication code into the system without modifying the original logic and code

of the affected services.
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9.2.5 JDBC Interception

According to our replication algorithm, a marker is inserted into the database before the commit to
let the new primary check if a transaction eventually committed at the database or not. This insert
only needs to be done if the transaction is an update transaction, i.e., database access involved in
the transaction contains insert, update, or delete operations. In order to analyze database operations
the ADAPT framework uses a JDBC wrapper to wrap the JDBC driver of the database. The JDBC
wrapper implements the JDBC API defined in the JDBC 2.0 specification {97], and passes SQL
statements to the real JDBC driver after analyzing them. The JDBC wrapper has the reference to
the real JDBC driver by looking up the database source name in the naming service. Then, the
wrapper replaces the entry of the JDBC driver in the naming service with itself. Thus, when EJB
is accessing the database, it always gets the reference to the wrapper, and sends SQL statements
to the wrapper. The wrapper checks each SQL statement whether it is an update operation, and
if yes, marks the-corresponding transaction as an update transaction. Then, the wrapper redirects
each SQL statement to the real JDBC driver to trigger a database operation. Thus the replication

algorithm can detect update transactions and insert a marker in the database accordingly.

9.2.6 Overall Architecture

Figure 9.6 shows the integration of the repiiéation tool into JBoss using the ADAPT framework.
The white boxes in the figure show the default JBoss components, the default client and the default
database. The gray boxes show the building blocks provided by the ADAPT framework. The black
boxes show the building blocks where the réplication algorithm is implemented. Apparently, the
client side replication algoritﬂm is implemented within the CRM, and the server side replication
algorithm is implemented within the RM.

The ADAPT framework‘ gets the state of EJB instances and gets controls of requests and trans-
actions in the standard J2EE éﬁQironment. Using the ADAPT framework, the implementation of our
replication tool just needs to focus on the implementation of the proposed algorithms. To plug the
ADAPT framework into the“.‘l Boss abplication server, we have to implement the underlying APIs

of the framework using API‘s«i;r(')"\(;id‘éd by JBoss. Two parts of the framework have to use APIs
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Figure 9.6: The implementation architecture of the ADAPT framework in JBoss

provided by JBoss. Firstly, all of the three interceptors, namely the client replication interceptor, the
early replication interceptor, and the replication interceptor have to be extended from the abstract
client intercebtor and the abstract server interceptor of the JBoss implementation. Then, these in-
terceptors are configured in the JBoss configuration file and are automatically loaded at runtime as
other interceptors of JBoss. Secondly, the implementations related with the ComponentHandle, the
Request and the Response have to use APIs provided by the JBoss container to get information about
EJB instances and information about invocations to the JBoss container. All of these implementa-
tions concerned with the JBoss container are called JBoss Container Support. Our implementation
of the JBoss container su?port is based or;J'Boss 3:2:3.

The transaction wraf)pé_rs do not reqiﬁfe the special support from the JBoss container since
they implement the standard APIs defined in the Java fransaction API specification {98]. The IDBC
wrapper is based on the standard JDBC “s“;v)'e-:ciﬁcation,ydnd hence, does not require the special support

from the JBoss container.

9.3 Implementation Issues

The client-side and server-side replication algorithms are implemented in the CRM and the RM

respectively. The group communication system used for communication is based on Spread [1].
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Our partners from Universita di Trieste enhanced Spread and provided a set of Java interfaces, called
JBora [12]. Hence, we use JBora for all inter-replica communication. In the ADAPT-SIB algorithm,
each replica joins a single FTG group using the join method provided by JBora. In the ADAPT-LB
algorithm, each replica joins a single LDG group, and also joins a set of FTGs depending on the
configuration of the number of replicas required by a FTG.

The major issues relevant to the implementation are (i) how to extend the naming service for
client applications to support a replicated AS, (ii) how to decide on the primary, and (iii) how the

RM processes requests and transactions.

9.3.1 Extended Naming Service for the Replicated Application Server

As mentioned in Section 9.1.1, a client connects to the AS by looking up the home interface of an
EJB. In order to do so, the client has a JNDI configuration with the destination address and port
number of the AS. The standard JNDI service only supports the lookup on a singie AS. In our
implementation, we extend the JNDI lookup to support multiple AS replicas. On the client side,
the JNDI configuration is now able to provide a list of AS replicas. When the client performs a
lookup, the extended JNDI clie;t“ f;;domly chooses a replica to send the lookup request to. If a
failure exception occurs it cﬁodéé; ahoiher replica from the list. Every AS replica, whether primary
or only backup, has the same d'e;r)'lby.r'nent of EJBs, and hence can generate the home interface of the
target EJB and send the stub to the ciieht side. At the same time, the CRM instance is generated on
the server side. It contains the hstof addresses of all available replicas with a flag on the address of
the real primary that should be‘ éssfénéd to the client. Then, the CRM is downloaded to the client
together with the sﬁ;b of the home interface. When the client makes a request to the remote stub
of the target EJB -i-ﬁéiance via ihé héhie interface, the CRM intercepts the request, and redirects
the request to the r_egl primary, /Thu’g,ﬁthe client communicates from now on with the real primary
independently of who provided the EJB stub and the CRM object.

By taking advantage of the JNDI lookup, the ADAPT-SIB framework does not need any extra
communication overhead to download the client part of our replication algorithm. The same holds
for the ADAPT-LB framework. After the Cfient submits the lookup request to an available AS

replica, this replica decides randomly which AS replica will be the primary for the client, and

v
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includes the relevant information with the CRM that is downloaded with the home stub to the
client. Then, when the client creates the EJB object and calls EJB methods, the C RM automatically
forwards these requests to the AS primary. This means, there is no extra communication overhead

between a client and the server cluster.

9.3.2 Deciding on the Primary

The ADAPT-SIB algorithm has to decide on the primary AS when the system is started and after the
current primary crashed. There are many ways to decide on a primary. We have not implemented
anything special and assume all machines have the same power, i.e., there is no preference who
is primary. At startup, a certain number of replicas is started, all joining the FTG group. Then,
each multicasts a voting message to the FTG using total order. Due to the total order property,
each replica receives the voting message in the same order. The replica, whose voting message is
the first one received, is selected as primary. This way, every replica can make the same decision
based on the voting messages. Lookup requests occurring during the select period are blocked until
the primary is selected. After the primary is selected the lookup request return the CRM with the
address of the primary. If other replicas join into the system after the primary is selected they will
become backups. When a rér;lica crashes, all other feplicas are notified via the membership service
of the GCS. If the crasheci rsplica was the primary, the same voting mechanism is used as at system
start-up. o

The ADAPT-LB framework does not use this approach to decide the primary since each AS
replica is a primary. At the beginning of the system the LDG and FTGs are initialized using the

algorithm described in Section 8.2.

9.3.3 Processing Requests and Transactions

On the server side, the rephcatlon algorlthm is lmplemented in the RM as described in Chapter 5
and 6. The RM provides beg in, commlt and abort methods to process transactions, whereby
the control was obtained froni'the‘ TM Wrapper It also provides the invoke method to process

requests, whereby the control was obtamed from the replication interceptor. Moreover, it provides

e
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the enlistDBResources method to record the database configured for a specific application.

In our algorithm description in Chapter 5, we use transaction ids to associate requests and their
transactions in the replication algorithm. In the real implementation, we do not need to transfer
transaction ids through transaction handling methods or request handling methods. Instead, we bind
the transaction id with the thread that executes the transaction. Since requests have to be executed
in the same thread as the transactions associated with the request, the RM can get the transaction
id from the current thread. When intercepting a commit request of a transaction, the RM gets the
state of all involved components using their componentHandles, and multicasts the state using the
mutticast API provided by JBora.

In order to insert the update marker into the database, the RM creates a special marker table
in the recorded database when the system starts up. Then, when the replication algorithm needs to
insert an update marker, the RM uses a standard SQL statement to insert the marker, which typically
is the corresponding transaction id, into the marker table. After a crash and the selection of the new

primary, failover executes simply as described in Section 5.2.

9.4 Summary

Our implementation of the replication tool does not depend on the JBoss implementation due to the
use of the ADAPT framework. When changing to another J2EE AS, only the ADAPT framework

has to be adjusted. Our implementation-also does not require modifications to clients or database.



Chapter 10

Experiments and Evaluation

This chapter uses several suites of experiments to evaluate the performance of the ADAPT-SIB and
ADAPT-LB frameworks. The evaluation of ADAPT-SIB focuses on the extra overhead caused by
ADAPT-SIB. The evaluation of ADAPT-LB focuses on the scalability achievements. The repli-
cation algorithm and the load balancing algorithm provided by JBoss Cluster [60] are used as the
reference system to evaluate performance of ADAPT-SIB and ADAPT-LB respectively. All repli-
cation algorithms are implemented based on JBoss 3.2.3. The backend database is DB2. As GCS,
we use Spread [1] plus JBora [12].

10.1 Evaluation of ADAPT-SIB

This section uses four suite of experiments to evaluate ADAPT-SIB, our fault-tolerance framework.
First, we use a micro benchmark to compare the performance of warm replication and cold replica-
tion. Then, we use the micro benchmark to show the impact of replication for different components
and database access patterns. Then, we use the ECperf benchmark [93] to evaluate the performance
of ADAPT-SIB replication tool on a more realistic application and compare it with JBoss’s existing
replication technique. - The last experiment evaluates failover. We only use two AS replicas since
the overhead at both the primary and the-backup remains the same no matter whether there are two
or more backups.-Only the GCS mighttake longer for message delivery if there are more replicas.

But the overhead between two, three;-or four replicas is usually neglectable. All machines are 3.0
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Figure 10.1: Performance comparison between warm and cold replication

GHz Pentium 4 with 1 GB of RAM running RedHat Linux. The configuration in all experiments
consists of one machine emulating clients, one machine running the web server (if needed), two
machines running JBoss application server 3.2.3 instances, and one machine running DB2 as our

database system.

10.1.1 Performance “Co'mparison between warm and cold Replication

In our first experiment suite, we use a simple test to compare the performance of warm replication
and cold replication. Recall in warm replication, state changes are propagated to a running backup
replica, while they are written to stable storage with cold replication, in our implementation to a
DB2 database. We only consider SFSB, since we always use cold replication for EB. In the test,
a client request triggers the execution of a single method of an SFSB within a transaction and the
1-1 algorith'm applies. Thé main conﬁguratian variable is the number of clients. Each client is
configured to submit 10 requests per second. However, since a client does not submit a new request
before it receives the response for the previous request, if the execution time is longer than 100 ms,
the real injection rate is smaller than 10/sec.

We compare the peffoﬁﬁance in regard to t;Jvo aspects. First, we look at the average response
time for each client requé‘;. Response time in this test includes the ordinary time to execute the

request in the JBoss AS, the time to do state propagation at the end of each transaction (namely
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each client request due to the 1-1 pattern), and the additional time to pass the ADAPT-framework.
Hence, the response time implies the additional overhead induced by replication during normal
processing. Figure 10.1 (a) shows the results. Response times increase slowly with increasing
number of clients for both the warm replication and cold replication, and then increase sharply after
saturation, As the time to execute the request is the same for both runs and both go through the
same steps of the replication framework, the difference in the response times reflects the difference
in costs between cold and warm replication. The main overhead of warm replication are serializing
the state of the SFSB and propagating it to backups. The main overhead of cold replication are
serializing the SFSB state and writing it into the database. The figure shows that warm replication
has considerably better performance than cold replication. Before saturation, the response time
with cold replication is typically double the response time with warm replication. At 15 clients, the
response time with cold replication increases sharply due to CPU saturation, and the final saturation
is after 24 clients. Warm replication reaches the saturation point later at around 30 clients,

The second vpvefformance aépéct is failover time. In Section 7.1, we proposed three failover
strategies. Cold replication can use the Install-When-Failover and the Install-After-Failover strate-
gies. In here, we take the Install-When-Failover strategy since it shows better the costs of the
failover steps as they all occur at once. We crash the primary after the system is running around
100 ms. Figure 10.1 ‘(b) shows the corresponding failover time for both warm and cold replication
when there was a certain number of clients connected to the old primary. The main overhead during
failover for warm reﬁl'ication is to reconstruct all EJBs and restore the update-to-date state of each
SFSB. Cold replica’t’i‘(‘)h has to do the same but also requires additional time to read the logged state
of each SFSB from the database. Both failover times increase slowly with increasing number of
clients, because the number of SFSBS required to be reconstructed is increasing with the number
of clients. The difference in failover times between cold and warm replication reflects the addi-
tional time to read tlﬁé”]ogged states of SFSBs from the database. This time gradually increases
with the increasing number of clienté;' since as more clients exist more SFSBs are stored in the
database. Please note that in this test the failover time is independent of the running time, because
each client always accesses the same SFSB, and hence no new SFSBs will be accessed after all

clients begin to submit requests. However, in a real application, a client might access more and
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more EJBs during runtime. In this case, the failover time of the Install-When-Failover strategy will
be affected by the running time. Our later experiments focusing on failover will show the effect.
Although Install-After-Failover can shorten the failover time for both warm and cold replication,
the additional overhead for cold replication to read from the database remains the same.

We conclude that warm replication has better performance than cold replication during both
normal processing and failover. Hence, in the following experiments, we only focus on warm

replication.

10.1.2 Component Analysis

In our second experiment suite, we evaluate the overhead of replication for different components
and component combinations. This experiment suite is implemented as 1-1 pattern. We evaluate
the performance by comparing ADAPT-SIB with a non-replicated JBoss.

We consider the following.cases.. Test /: No database access takes place. Test 2: Database
access (update) takes place but no conflicts occur at the database. That is, different clients access
different tuples. Test 3: Database access takes place and all transactions conflict. That is, all requests
access the same tuple. In T’est. I‘, é”ré‘c‘luest tfig-gerg the execution of a single method of an SFSB. Test
2 and 3 have two different veréiéné. In the ﬁrsf, a request executes only on one SFSB which makes
the database call. In the seéohd, a request calls a SFSB, which calls an EB to access the database.
Each client submits 10 request pér second, and the main configuration variable is the number of
clients. Again, if the execution ti;ﬁé is longer than 100 ms, the real injection rate is smaller than

10/sec.

Test 1: No database access Figure 10.2 shows (a) the average response time and (b) the throughput
achievable with increasing number of clients. Response times increase slowly for both the replicated
and non-replicated system Below the saturation point, ADAPT-SIB (including the framework) has
an overhead of around 4 ms ThlS is very low in total numbers, but means an overhead of around
100% for medium number of chents since response times are generally very small. This is the
worst case scenario fqr' .our'algonthm since it contains only SFSBs which all must be replicated.

At 27 clients, response times increase sharply due to CPU saturation, and the final saturation is
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after 33 clients. The non-replicated system does only saturate at around 66 clients again due to
CPU overhead. Since the system is CPU bound, and the non-replicated system takes half the time
to execute one request compared to the replicated system, it can execute double as many requests
before saturation.

There are two solutions to improve the results of the replicated system. The first is to improve
the implementation of the algorithm (e.g., data structures, access paths). This, however, can only
succeed to a certain point. After that, alternative replication strategies have to be found, e.g., lazy

replication.

Test 2: Conflict-free database access Figure 10.3 shows the results of test 2, in which transactions
access the database but concurrent transactions never conflict. The figure contains graphs both for
the SFSB only and SFSB/EB combinations. Let’s first have a look at the SFSB only case. Compared
to Figure 10.2 (a) for no database access, response times increase more steeply, and are generally
higher. This is due to the database access. When the number of clients is smaller than 15, the
overhead of ADAPT-SIB is stable at around 15 ms. The total time spent in ADAPT-SIB is higher
than with no database access (4 ms) because _the marker has to be inserted into the database (if a
transaction does not update the database, no mérker is inserted). In this scenario, 15 ms only mean
an overhead of 20% for medium client numbers since transaction execution is generally long. With
more than 15 clients, the time spent in the replication algorithm increases linearly with the number
of clients and the throughput increases only very slowly 10.3 (b). At 15 clients, the CPU overhead
is around 85%. After that, it does not incrééée fast because the system always waits for operations
at the database to complete. The saturation point is at 22 clients, The non-replicated server reaches
saturation with 33 clients. o

When database access is filtered through EBs, response times both for the non-replicated and
the replicated system are generally higher due to the EB overhead (see, e.g., [23], for a comparison
of SFSB and EB). However, the relative performance is similar to the SFSB only case.

The conclusion is the éasy observation that if the original system has high execution times, than
the overhead of the replicafion algorithm has not such a big relative effect than with small execution

times.
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Test 3: Conflicting database access Figure 10.4 shows the results when all transactions conflict at
the database. We only present the SFSB only case, since the effect of using EBs is similar to test 2.
Generally, response times (Figure 10.4 (a)) are much larger than in test 2 due to the long blocking
times at the database. They increase sharply with the number of clients for both replicated and
non-replicated case. The difference between replicated and non-replicated system is bigger than in
test 2 and also increases faster than in test 2. The reason is that ADAPT-SIB generally increases
the execution time for each transaction. Assume transaction T1 holds a lock, and T2 and T3 wait
for the lock. The time T1 needs longer to finish due to replication is also added to T2’s and T3’s
execution time. Additionally, the longer execution time of T2 is added to T3’s execution time. This
means, waiting times are cumulative. We can also see that the maximum throughput (Figure 10.4
(b)) is only around 1/4 of the one in test 2 for both the replicated and non-replicated system due to
the blocking.

As a conclusion, although the CPU is not saturated, the CPU overhead of replication limits its
performance. Althéugh the responsé tirﬁe increase is due to longer waiting times at the database, it

is caused by the computation overhead.

10.1.3 Evaluation of Different Execution Patterns

The previous experirﬁénts seemed to show that ADAPT-SIB had quite bad performance. However,
the experiments were designed to show extreme cases, enabling us to understand the implications
and influence of repliéation. In this section, we evaluate the performance of ADAPT-SIB on a more
realistic application.' We also péy attention to different execution patterns. ADAPT-SIB detects the
execution pattern de;&ending on the requests it intercepts, and automatically applies the correspond-
ing algorithm. - o

To simulate a real épplicéiiéﬁ, we use the ECperf benchmark [93]. ECperf emulates businesses
involved in manufaciﬁfing, supply chain and order/inventory management. The application is split
into customer, manufécturir{f‘;,‘; ;ﬁpplier and corporate domains. The benchmark is quite database-
heavy, i.e., the database is accessed frequently. The transaction injection rate (IR) is an indicator of
the load submitted to the system (transactions pef second). Results show the average response time

of order entry transactions of the customer domain in milliseconds. Results are only measured over
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the steady state phase (10 minutes) of each test run.

Our evaluation compares (1) a regular, non-replicated JBoss server as baseline for comparison;
(2) two JBoss server replicas using ADAPT-SIB; (3) two JBoss server replicas using JBoss’s own
replication solution called JBoss clustering. For both (2) and (3) one server was primary for all
clients. JBoss has to basic configurations. In a fault-tolerance configuration, one machine in the
cluster is primary and all others are backups. In this configuration, no load balancing property
is provided. In a load-balancing configuration, all machines are able to process client requests.
We discuss the load balancing configuration in more detail in Section 10.2. In this experiment,
we configure JBoss clustering in the primary-backup model. As mentioned before in Section 3.1.1,
JBoss clustering propagates state to backups on a component basis just before the component returns
from a method call. Hence, if several components are called within one client request, several
messages are sent. Moreover, please note that JBoss clustering cannot guarantee correctness even
for the 1-1 pattern. o

We look at the 1-1, N-1, and 1 -N‘ patterns individually to understand the impact of the particular
mechanisms. The patterns are all used with accessing one database. At the end of the section, we
have a test case with two databases that require 2PC.
1-1 algorithm

In the original ECPerf benchmafk”implementation we used, all execution follows the 1-1 pat-
tern. Figure 10.5 (a) shows the average response times of order entry transactions at increasing IR
for the 1-1 execution pattern. The gab between the curve of ADAPT-SIB and the non-replicated
system is the overhead of replication. ‘At low load, the 1-1 algorithm adds 15 ms (15% overhead).
As a comparison, [72] also indicates around 15% overhead for FT-CORBA (primary-backup) com-
pared to non-replicated CORBA. JBoss clustering adds around 120 ms (120% overhead). The high
overhead is due because it sends state after each method invocation while our approach sends one
message per transaction. Response times for all setups increase steadily with increasing load until
saturation points which is around 27 IR for the non-replicated JBoss, 23 for JBoss clustering and
the 1-1 algorithm. More information about the saturation point can be found in Figure 10.5 (b)
which shows maximum achievable throughput of the system with increasing [R. All systems satu-

rate due to CPU overhead. Both the 1-1 algorithm and JBoss clustering saturate at 23 IR, while the
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non-replicated JBoss saturates at 27 [R. As a summary, we believe the overhead of our approach is
acceptable considering its strong correctness properties.

N-1 algorithm Figure 10.6 (a) shows the response times for the N-1 execution pattern. We
modified the ECperf implementation so that each order entry transaction contains on average 5
order requests. The figure does not show results for JBoss clustering since response times are five
times as high as in the 1-1 model. Response times are generally higher than for the 1-1 model
shown in Figure 10.5 (a) since several client requests are included in one transaction. Compared
to no replication, the N-1-best-effort algorithm adds again about 15% overhead while N-1-ordered
adds 30%. The latter has higher overhead since it propagates the order in which database access
takes place at the end of each client request. Considering that these are five additional messages,
the overhead is quite small. This is true because the messages are small and only sent with reliable
delivery. In regard to throughput shown in Figure 10.6 (b), all configurations saturate much earlier
due to CPU overhead. N-1-ordered saturates at 8 IR, N-1-best-effort at 9 IR, and the non-replicated
JBoss at 10 IR. I '

We would like to note that in ECperf many updates are on client related data with only few

conflicts. Hence, even the N-1-best-effort algorithm provides exactly-once in most cases for this
particular application.
1-N algorithm Figure 10.7 (a) shows the response times for the 1-N execution pattern. We
changed the ECperf implementation such that each order entry request triggers an outer transaction
which on average contains three inner transactions. Again, response times are generally higher than
for the 1-1 execution pattern since now each order entry request includes several transactions. In
absolute times, the 1-N algorithm takes more additional time than the 1-1 algorithm in Figure 10.5
(a) since we now have to send an additional uniform-reliable message for each inside transaction.
In contrast, JBoss clustering adds the same time (120 ms) as in the 1-1 pattern since the replication
mechanism is not related to transactions. In terms of throughput shown in Figure 10.7 (b), the 1-N
algorithm saturates at 21 IR, JBoss clustering saturates at 23 IR, and the non-replicated JBoss satu-
rates at 25 IR. The [-N al gorithms saturates earlier than JBoss because of the increased bookkeeping
to guarantee all properties.

1-1 with 2PC  Now, let’s evaluate the extended algorithm which supports a transaction to access
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Model Algorithm Response | Tx numbers
Time (ms) | (per second)
one database | Non-replicated JBoss 349 30
ADAPT-SIB 403 26
more than one | Non-replicated JBoss 103.5 10
database ADAPT-SIB 111.8 9

Table 10.1: 1-1 execution accessing one or more than one database

more than one database. Please recall that the extended algorithm is independent of the execu-
tion pattern. Hence, we can use the 1-1 algorithm as a sample pattern for the evaluation. For this
experiment, we have not used the ECPerf but a simpler evaluation. A client submits one request
to a SFSB which performs two database updates that either access the same database (no 2PC)
or different databases (requiring a 2PC). Table 10.1 shows the average response time at a load of
10 transactions per second, and the maximum achievable throughput. Accessing one database, the
ADAPT-SIB adds 5.4 ms to the response time of the non-replicated JBoss reflecting a 15% increase,
while with a 2PC, ADAPT-SIB has an overhead of 8.3 ms (it has to send an additional preparing
message) but this reflects an increase of only 8%. The maximum throughput for ADAPT-SIB com-
pared to the non-replicated case is around 90% with a 2PC and 86% when one database is accessed.
ADAPT-SIB performs, in relative terms, better with a 2PC than without because the total response
times with a 2PC is so muc‘ﬁ“l;igher than if no 2PC is necessary.

In summary, these expe‘ﬁiﬁeﬁts show that our solutions in general incur little overhead for all
typical execution patterns 6n a realistic, i.e., quite diverse, workload. Our ADAPT-SIB replication
tool clearly outperforms JBoss’s clustering mechanism in all cases in terms of response time, and is

similar in terms of saturation point. -

10.1.4 Evaluation of Failover

In this section, we evaluate the overhead during failover, and compare the effects of different re-
store strategies. In this experiment, we only test warm replication as we have already shown in
Section 10.1.1 that it has better pérformance than cold replication. We run ECPerf with an IR of

S and crash the primary after '—dil;i.’f-é\r;nt running times. Figure 10.8 (a) shows the time needed for
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failover (i.e., the time client requests are blocked and not executed). The failover time of /nstall-
When-Failover is magnitudes longer than that needed by the other two strategies, and increases
with the time the application server was running before the crash. When the primary was running
for 10 minutes, failover takes around 2 minutes, when it was running 240 minutes, failover takes
20 minutes. This is because this strategy restores all components replicated at the time of failover,
and the number of such components increases with the execution time. In JBoss, session beans are
not automatically deleted when a user disconnects from the system. Instead the programmer needs
to explicitly implement such methods, which was not done in the ECPerf implementation we have
used. Hence, as tirmye goes on, more and more such beans are in the system, are replicated, but are
never removed. If beans were deleted at the primary, our algorithm would delete them at backups
as well. In any case, the long failover time is clearly not acceptable since client requests that were
submitted just before the crash or during the failover time are delayed during the entire failover
period. For the other two strategies, failover time is always below 100 ms and is independent of
the running time before the crash. This is because these two strategies do not restore components
at the time of failover. For these two strategies, the main factor that impacts the failover time is
the number of transactions for which the new primary received a committing message but no com-
mit/abort message. For those transactions the new primary has to query the database at failover
time. This number is independent of the running time and is usually very small because it reflects

the number of transactions that weré in the commit phase at the time of the crash. In regard to the
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response time experienced by clients that submitted their request around the time of the crash, in
the Install-Immediately strategy, these requests are delayed more or less by the failover time. Once
failover has completed, client requests experience the same response time as before the crash. When
using the Install-After-Failover strategy, response times for some requests are delayed beyond the
plain failover time. These are the requests that access a component that needs to be restored. In our
tests, such requests took around 1200 milliseconds compared to 110 milliseconds for consecutive
requests on this component. This means, for each client connected to the system at the time of the
crash, the first request to a component after failover takes long, but then execution is again fast.

In summary, although the discussion might simply be about an engineering problem, the large
differences in performance show how important it is to consider an efficient implementation.

Figure 10.8 (b) shows the overhead on the backups during normal processing. The memory
usage (simply measured using the UNIX top command) increases with the running time for all
strategies as more and more components reside in the system (recall that beans are not removed
when clients disconnect).' In.vfallQIihrﬁ"ediately needs more memory than the others because it has
all components created and installed. The other two strategies, in contrast, only store the serialized
state information. The CPU overhead of Install-Immediately is around 20% CPU — needed to restore
components, while the other two strategies only use on average 3% CPU to store the replicated
information. With this, the backups can be used to do other work, as we do with ADAPT-SIB.

As a summary, we believe that Install-After-Failover is the best strategy. It has a much shorter
failover time than Install-When-Failover and much smaller overhead at the backups during nor-
mal processing than Install-Immediately. Therefore, we use Install-After-Failover in the remaining
experiments.

Figure 10.9 shows the failover time for the 1-1, 1-N, and N-1 algorithms after different running
times of the ECPerf with an IR of 5. Additionally, the figure indicates the number of transactions for
which the new primary needed to check in the database whether they committed. Since this number
is small and independent of the rixﬁning time, the failover time is always short. Comparing the
failover times for the different algoﬁt-hms, we can observe that 1-1 and 1-N have similar times, while
failover in N-1 takes a bit longer. This is because the committing messages in the N-1 algorithm

contain more information and herice need more time to be parsed during failover.
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Algorithm Running Time (minutes) 30| 60 | 120 | 240

i1 Number of committing transactions | 2 | 1 3 2
failover time (ms) 44 | 38 [ 58 | 52

I-N Number of committing transactions | 1 | 2 1 2
failover time (ms) 35 (48| 36 | 54

N-1 Number of committing transactions | 2 | 3 1 4
failover time (ms) 58176 46 | 94

Figure 10.9: Failover time for different running time of ECPerf at 5 IR

Failover is impacted by the throughput at the primary. The more transactions are running at
the same time, the more transactions might be committing at the time of the crash. We conducted
a second experiment where we run ECPerf with increasing IR and crashed the primary after 30
minutes. The failover time increased from 20 ms at 1 IR to 380 ms at 21 IR for the 1-1 and 1-N
algorithm and from 20 ms at | IR to 280 ms at 9 IR for the N-1 algorithm. Once the primary
saturates, message propagation becomes bursty. As a result, just before the crash, the backup might
have received many messages which must be processed first. In this case, failover time becomes

much longer. Nevertheless, they remain short in absolute numbers.

10.2 Evaluation of ADAPT-LB

This section evaluates our unified framework ADAPT-LB, providing fault-tolerance and load-balancing.
We use two benchmarks. We first uéé.‘éi"-rﬁicro benchmark to test the effects of ADAPT-LB on the
AS, without considering the replication ¢ffects on the database. In the micro benchmark each client
request performs operations on stateful session beans associated with the client but the database is
not accessed. Clients connect to the system-and then run for 10 seconds continuously submitting
requests before they disconnect. All requests. trigger transactions with similar load. We also use
the ECPerf benchmark, which involves significant access to the database. Unless otherwise stated,
experiments were performed on a cluster of 64-bit Xeon machines (3.0 GHz and 2G RAM) running
RedHat Linux. In all our settings, each FTG consists of one primary and two backups. In this suite
of experiments, we also use JBoss Clustering as the comparison framework. However, in this case,

we use a load-balancing configuration.- In our configuration, every machine in the cluster of JBoss
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Figure 10.10: Performance improvement

Clustering can process client requests, but no bean instances are replicated, i.e., fault-tolerance is
not provided. JBoss clustering can be configured to integrate fault tolerance and load balancing
together. Then, each machme w11| rephcate its state to all other machines. But as we have seen in
the previous section, the fault- tolerance mechanism of JBoss is very inefficient and does not provide

correctness. Hence, we switch it off in this experiment.

10.2.1 Experiment 1: Basic Performance

In this experiment we have a first look at the performance of our unified architecture when no
replicas leave or join the system In Figure 10.10, JBoss refers to a standard single-node non-
replicated JBoss apphcatlon server without fault-tolerance. All other configurations use three ma-
chines. ADAPT-SIB refersto a system running the ADAPT-SIB algorithm but no load-distribution,
i.e., there is one FTG but no LDG. ADAPT - LB refers to the unified architecture with one LDG using
our load-balancing approach and several FTGs running ADAPT-SIB. JC/RoundRobin refers to a
replicated cluster that uses the Round-Robin request distribution of the load balancing configuration
of JBoss Clustering. )

The figure shows respeﬁ;e times in figure (a) and the throughput in figure (b) with increasing
number of clients injected i in the system per second. In the legend, throughput results are prefixed
with TP and response times with RP. The non-replicated JBoss and ADAPT-SIB saturate when 6

clients are injected per seeofid after which the throughput decreases. The maximum throughput
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Figure 10.11: Scale-up homogenous setup ~ Figure 10.12: Scale-up heterogeneous hardware

for the non-replicated JBoss is 195 txn/sec and 130 txn/sec for ADAPT-SIB. As we have seen
in the previous section, fault-tolerance adds overhead, and the maximum achievable throughput
is smaller for ADAPT-SIB. The backups do not contribute to work distribution. The proposed
ADAPT-LB is able to increasé the throughput up to 12 clients with a peak of 380 txn/sec. JBoss’
round-robing clustering can increase the throughput up to 15 clients with a peak of 480 txn/sec
(TP/JC/RoundRobin). It outperforms ADAPT-LB since ADAPT-LB performs additional fault-
tolerance measureé., -

Response times show similar results. For the non-replicated JBoss and ADAPT-SIB clients com-
pete soon for resources. Response times increase early and deteriorate quickly after the saturation
point. ADAPT-SIB has higherl rééﬁqnse times than a non-replicated JBoss, since the primary has
to perform the staté..change collection and propagation. As we discussed before, ADAPT-SIB has
similar response time behavior as other fault-tolerance algorithms [72]. In contrast, ADAPT-LB and
JC/RoundRobin have low response times for all client numbers due to load distribution. Thus, each
node is less loaded and.can provide faster service. While ADAPT-LB has higher response times than
JC/RoundRobin the difference is smaller than between ADAPT-SIB and the non-replicated JBoss,
because ADAPT-LE s able to distribute the fault-tolerance overhead across all replicas. That is,

our approach truly Serves both fault-folerance and scalability.

AT e
Y
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10.2.2 Experiment 2: Scalability

In this experiment we analyze whether our unified approach allows for sufficient scalability by
running the micro benchmark on an increasing number of replicas. For each configuration we deter-
mine the maximum achievable throughput by adjusting the number of clients injected in the system
per second. Figure 10.11 shows how the throughput increases when we increase the number of
machines from 3 to 20. One graph shows the “ideal” throughput as the product of the number of
machines and the maximum achievable throughput on a machine using the ADAPT-SIB primary al-
gorithm (i.e, the machine is not backup at the same time). The two other graphs show our framework
solution (ADAPT-LB) and JBoss’ round-robin balancer (JC/RoundRobin). In both cases, through-
put increases linearly with the number of replicas. Due to fault-tolerance activity on each node,
ADAPT-LB achieves generally less throughput than JC/RoundRobin. But even JC/RoundRobin
does not provide ideal throughput since the integration of load-balancing has its own overhead. In

summary, our solution provides good scalability and at the same time provides fault-tolerance.

10.2.3 Experiment 3: Heterogeneity

Heterogeneity is a challenge for load-balancing techniques. We fist analyze the impact of het-
erogeneous hardware by replacmg half of the machines with PIII machines (850 MHz and 256M
RAM). As the forwardmg mechamsm described in Section 8.3.2 extends the simple random mech-
anism exactly for the purpose of handling heterogeneous environments, we analyze two different
versions of the ADAPT—LB system We use ADAPT-LB with only random load-balancing with-
out forwarding, denoted as ADAPT LP/Random, and ADAPT-LB with forwarding, denoted as
ADAPT-LB/FLTF. We again compare with JBoss’ round-robin load-balancer (JC/RoundRobin).
Figure 10.12 shows the maximum achievable throughput when we increase machines from 3 to 20.
In general, the throughput is l&&ér than in the homogeneous environment (Fig. 10.11), since half
of the machines are now wealcerw ADAPT-LB/Random is the worst because random assignment
ignores heterogeneity and fault tolerance adds overhead. ADAPT-LB/FLTF and JC/RoundRobin
have similar performance desplte the fact that ADAPT-LB has the fault-tolerance overhead.

A more detailed throughput analysrs helips to explain the results. Figure 10.13 shows the
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Figure 10.13: Throughput distribution Figure 10.14: Response time distribution

throughput on each machine when the cluster contains 20 machines. Machines 1 to 10 represent
the weak nodes. The figure shows that, compared to JC/RoundRobin, ADAPT-LB/FLFT has lower
throughput on the weak and higher throughput on the strong nodes. This is because with ADAPT-
LB/FLFT weak nodes forward requests that are then executed by the strong nodes. Thus, ADAPT-
LB/FLTF compensates the overhead of fault-tolerance by a smarter load-balancing strategy which
assigns more tasks to the stronger nodes.

Figure 10.14 shows the corresponding response time distribution. ADAPT-LB/Random has very
high response times for weak nodes since they are saturated. Using JC/RoundRobin, weak nodes
show worse response times than with ADAPT-LB/FLFT, which puts less load on the weak nodes.
Strong nodes have low response times for all solutions because the bottleneck in the heterogeneous
environment are the weak nodes. Since ADAPT-LB/FLFT puts more load on the strong nodes, it
has slightly higher response times than the other two on these nodes.

In the second heterogeneity test, all machines are back to being the same but we add an addi-
tional very heavy client transaction.to the micro benchmark with an average response time of around
2000 ms. We only compare ADAPT-LB/FLTF with JC/RoundRobin. At the beginning of this test,
a cluster consisting of 6 machinés runs the micro benchmark for about 30 seconds. Then we arti-
ficially inject the héavy transaction into the system. We refer to the machine executing the heavy
transaction as HC. The other machines are denoted as LC. Figure 10.15 (a) has as x-axis time slots

of 100 ms and as y-axis the average response times within a time slot. The heavy transaction starts at



Chapter 10. Experiments and Evaluation 167

10000 @ LC/JC/RoundRobin | LC/ADAPT-LB/FLTF
@ HC/JC/RoundRobin o HC/ADAPT-LB/FLTF

—x~—HC/JG/RoundRobin
et LC/JC/ROUNARObIN
‘@ - HC/ADAPT-LBFLTF o X
—ar— LC/ADPT-LB/FLYF | ! A

1000

Average Response Time (ms)

T T T T T O T Y T T I TV TV VP YT T IT T Y T VY v T Y YT oyT

1 6 11 16 21 26 31 36 41 46 During normal time During processing heavy

Transaaction Number (per 100 ms)

transactions
Time Slot
(a) Average response time (b) Average throughput

Figure 10.15: Heterogeneous workloads

time slot 5. Before injecting the heavy transaction, HC and LC have the same response times which
are higher for ADAPT-LB/FLTF because of the fault-tolerance overhead. Using JC/RoundRobin,
the HC response times increase to around 400 ms after the injection of the heavy transaction be-
cause the HC machine becomes saturated. The response times on the LC group remain the same
because they are not affected. Using ADAPT-LB/FLTF, response times on the HC machine in-
crease for the ﬁrsf 5 time slc;i;.a‘f‘ter fhe heavy transaction is injected. This represents transactions
of clients that were already assigned to HC when the long transaction arrived. Then there is a long
gap, since HC does not accept any further clients anymore according to the forwarding strategy.
At time slot 27 the long transaction finishes (with a long response time). After that HC again ac-
cepts clients providing staﬁ(ié;d“reép;)“rr\se times for them. While the heavy transaction is running on
HC we observe longer response times at the LC' machines because HC redirects clients to them,

and thus they are more loaded. In total, response times are less affected using ADAPT-LB/FLTF
compared to JC/RbundRob{ﬁ- .Qﬁiéﬁ_l;;;macceptable high response times for some of the clients.
Figure 10.15 (b) shows the throughput distribution during normal processing and while the
heavy transaction is running. Without heavy transaction, ADAPT-LB and JC/RoundRobin have the
same throughput on HC and LC machines. JC/RoundRobin has higher throughput because there is
no fault-tolerance overhead. Hdwévér; ‘during processing the heavy transaction, the average through-

put on the LC group of ADAPT-LB/FLTF is higher than the throughput of JC/RoundRobin, since
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the FLTF algorithm forwards more transactions on the LC group. For the same reason, the through-
put on the HC machine of ADAPT-LB/FLTF is less than the throughput of JC/RoundRobin on the
HC machine. In absolute numbers, ADAPT-LB has 5*2 transactions / 100 ms more on LC and 3
transactions / 100 ms less on HC. Thus, in total, it has a higher throughput than JC/RoundRobin

when the heavy transaction is injected.

In summary, our load-balancer can easily handle heterogeneous configurations and workloads
being able to dynamically distribute the load according to the conditions on individual replicas even
if inequalities only exist for shdrt periods of timev. It can achieve this without maintaining any
global knowledge or knowing about the application semantics. Instead, it adds a simple forwarding

mechanism exploiting the existing FTG groups.

10.2.4 Experiment 4: ECperf Benchmark

In this experiment, we conducted similar scalability experiments based on the ECperf benchmark
in both the homogeneous environment and the heterogeneous environment (with two kinds of ma-
chines). In the ECperf benchmark, the throughput is measured by the business operations (BBops)
processed per minute. Figure 10.16 shows the maximum achievable throughput for the ECperf
benchmark for ADAPT-LB (here again only using the standard FLTF Strategy) and JC/RoundRobin.
Generally, scalability is worse than with the micro benchmark and throughput even decreases with
large number of machines. The reason is that ECperf contains considerable database access and
the database becomes the bottleneck. One would need a stronger machine for the database server
or database replié‘é'fion would be needed. ln t>)\0t‘h homogenous and heterogeneous environments,
JC/RoundRobin has ;Iightly better throughpu{ than ADAPT-LB with a small number of machines
but behaves similar with mahy machines as ADA#T—LB can distribute the fault-tolerance overhead
better with increasingﬁr'\{linr'lb.er of machines. For heterogenous environments, the saturation point is
later than in the horﬁbgéﬁééus environment. The reason is that the throughput is generally lower,
and thus, the database becomes the bottleneck later.

This experiment confirms our previous results. We are able to combine fault-tolerance with load
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distribution achieving scalability as long as the AS is the main bottleneck. The advantage of hav-
ing the forwarding strategy compai_’cd to a simple round-robin strategy compensates the additional

overhead for fault-tolerance.

10.2.5 Experiment 5: Reconfiguration

In this experiment, we show the-detailed behavior of the ADAPT-LB system during and after re-
configuration. We first analyze the.behavior of the system itself at the time of failover and recovery.
Then, we compare the behavior of the ADAPT-LB system with the behavior of a typical alternative
solution. o

One goal of ADAPT-LB is td._facilitate smooth and fast reconfigurations in order to be able to
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provision the system dynamically if the need arises. The following experiments show the behavior
of ADAPT-LB during and after reconfiguration. We use the micro-benchmark and a homogeneous
environment.

We first look at node failures. We have a cluster of 6 replicas (ry,...,7¢) running the micro
benchmark for about 30 seconds when replica r3 crashes. We distinguish three types of replicas.
NP (new primary) indicates the replica r4 that takes over the clients of the failed replica r3. B
indicates replicas that have to reconfigure their backups (r5 and 7). NI indicates all other replicas
on which the failure has no impact (r; and r2). Figure 10.17 has as x-axis time slots of 100 ms, and
as y-axis the average response time within a time slot. The crash occurs at time slot 5.

Before the crash, the average response time is similar in each group. After the crash, the re-
sponse time on N P drastically increases because it requires considerable resources to perform the
failover. This process takes about 300-400 ms. After that, the average response time is still higher
than on the other groups because NP has now double the clients. The response time in B also
increases (it shorﬁy d})ublves) because the state transfer that takes place to include the new backups
takes some of the resources. The recovery process to become a backup takes less than 100 ms.
However, the response fime on B remains higher and actually also increases on N1. The reason is
that there is now one less replica in the system to execute requests. Furthermore, since N P is still
higher loaded, the replicas in B and NI accept more of the newly injected clients. Eventually, once
N P has stabilized, the'system becomes balanced again. The average response time on all remaining
replicas converges eventually to the same value (although not shown in the figure). However, this
value is now higher because there is one less replica in the system to serve requests.

Figure 10.18 shows how the join of a new (recovered) replica affects the response time of the
client transactions. ‘At the beginning, the cluster has again 6 replicas. A new replica r7 joins the
system at the 5th slot (the timie is counted when the server begins the LBM, and does not include the
time to start the server from scratch). We distinguish between the new replica N R (i.e., r7), replicas
B (i.e., 71 and ) that have to change FTG's and replicas NI with no direct impact. For B we see
that the response time doubles for a short period of time, similar to the failure case. The response
time on the NI replicas is lightly affected due to sending recovery data to NR. N R starts accepting

client requests at the niext time slot after recovery. Shortly after recovery, the response time is not
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Figure 10.19: Comparison of failover operations

stable since some initialization process on the machine might not be completed yet. Eventually, all
replicas converge to the same average response time. It is lower than before the join since there is
now one more machine allowing for better load distribution.

As a final expérimem, we éompare ADAPT-LB with an alternative solution. Using JBoss’
round-robin architecture without fault-tolerance, when a replica crashes, each client originally con-
nected to the failed replica connects to any of the correct replicas and resubmits all requests from the
beginning of the session. We call this solution the re-execution solution. Note that this only works
correctly if the requests do not-trigger-changes on permanent components because these changes
are already in the database and should not be applied again. Thus, the solution is not applicable for
ECPerf but can be used for the micro-benchmark.

We again use 6 machines and crash one replica at time slot 5. This time, we group response
times by client type. FC clients Wefé origiﬁally connected to the crashed replica, and NFC are all
other clients. Figufe 10.19 shows the averagrc; response time over time. In ADAPT-LB, one replica
takes all F’'C' clients (and has additionally VF'C clients). As long as this new primary performs
failover, the F'C are blocked. Therefore, there is a gap for F'C clients where no response times are
measured. Once exécution resumes there is a peak in average response times as failover time is part
of the response time. NFC clients on the new primary and also on other replicas are also affected,
but much less (as discussed before). Response times for both FC and NFC quickly go back to

normal levels. FC have still higher average response times than NFC clients since their primary
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serves more clients in total. However, as new clients are prone to be distributed to other replicas due
to the forwarding strategy, the response times of NEFC and FC converge.

In the re-execution solution, F'C clients are distributed over all replicas, which have to execute
historical requests for them. This is a heavy task. For FC, the replay takes at least 10 time slots
where no response is created. In general, response times stay high for all clients for a long time and
only go down gradually because the machines are overloaded with the replay process. A peak in
the graph of the F'C clients occurs when one of these clients finishes the failover process, pushing
the average response time for these clients up for this time slot. This shows that if replicas should
be used for both load distribution and fault-tolerance then it is paramount to have a fast failover
procedure as provided by ADAPT-SIB in order to keep the system responsive during failover times.
A replay solution seems too expensive.

In Figure 10.19 (b), we repeat the same test for a cluster with 20 replicas. Two replicas are
crashed at time slot 5 (namely the cras_h rate is about 10%). In this figure, the result of the proposed
framework is similar to that of the previous test. However, the result for the re-execution solution is
better than for the previous test. This is because the crash rate now is lower, and hence, each replica
will be assigned with Iéss FC clients.

This experiment has shown if replicas should be used for both fault tolerance and load distrib-
ution, then it is paramount to have a fast failover procedure in order to keep the system responsive

during failure time. A replay solution will be expensive if it cannot be distributed well.

In summary, our approach can handle failures and recovery transparently and dynamically. Re-
configuration aﬁ‘gc_:ﬁ_s the client response times only shortly, and is relatively localized to few ma-

chines.
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Conclusions and Future Work

11.1 Summary

With application servers (AS) being a fundamental building block for web based applications, re-
liability, availability, and scalability are highly required guaranteeing 7/24 access and high perfor-
mance. Replication is a common means to provide fault tolerance and facilitate load balancing.
This dissertation presents novel AS replication solutions that are able to handle various execution

patterns, that provide good performance, and that can be easily integrated into existing AS products.

11.1.1 Correct Replication for Different Execution Patterns

AS is a typical middleware that links clients and the backend database. As failure and AS replication
do not only affect the AS tier itself but also the client tier and the database tier. Hence, it is necessary
for an AS replication algorithm to consider correctness from the viewpoint of the entire system
including the client tier, thé AS tier, and the database tier. However, in pfactice, many AS replication
solutions do not address this issue, and hence do not guarantee that the replicated AS behaves
as a non-replicated non-faulty AS. We address this issue and identify a set of execution patterns
that describe the behavior of an AS and its interaction between clients and the backend database.
We observe that the crash of the AS affects clients because it interrupts the execution of client

requests, while it affects the database because it interrupts the execution of transactions. Hence, we

173
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define execution patterns in terms of differént associations between client requests and transactions
correlating clients, AS, and the backend database and thus, the entire system.

We formally describe the correctness requirements for AS replication based on different execu-
tion patterns, and accordingly propose a suite of replication algorithms in ADAPT-SIB framework.
The general base of all algorithms in ADAPT-SIB is that one primary executes client requests and
replicates state changes performed by a transaction to backups at commit time. We guarantee that
consistency is maintained if the AS crashes at any time during execution. For most algorithms we

provide a full proof of correctness.

11.1.2 Performance

Replication means extra overhead which is the price for fault tolerance. We carefully tune the per-
formance of ADAPT-SIB algorithms and only add 15% extra overhead for JBoss AS, outperforming
the JBoss Cluster replication algorithm. Furthermore, we provide a quick failover guaranteeing high
availability. |

In order to provide high scalability, we build ADAPT-LB load balancing solution based on
ADAPT-SIB framework to offer an }ntegrétéd solution providing both fault-tolerance and load bal-
ancing. In ADAPT-LB, each sewéf"gcts as a.primary to serve some of the client requests and at the
same time stores state changes oééil‘-flring on some other servers for fault-tolerance. It dynamically
and transparently takes advantagé of all resources in the cluster. It uses an effective, fully distrib-
uted load-balancing strategy that ﬁts well with the completely distributed fault-tolerance solution.
Our J2EE based implementation shows that we can in ‘fact take advantage of the full power of all
machines to provide fast response"tNir‘n‘és,rhilgﬁ throughput and high reliability, even in heterogenous

environment .

11.1.3 Practicability

When developing our solution we always had a real system in mind. On the one hand, this led us
to identify the advanced execution pafter"li;.: On the other hand this required to develop a solution

that can also be implemented and integraféd into a real system. Thus, our ADAPT-SIB replication
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tool provides a suite of replication algorithms that can handle realistic execution patterns, without
affecting the implementation on the client tier and the database tier. Furthermore, ADAPT-SIB tool
is implemented as a pluggable module for the JBoss AS that does not affect the original implemen-
tation of the JBoss system and could be easily migrated to other AS systems.

Furthermore, ADAPT-LB solution provides a truly distributed load distribution algorithm. It is
as simple and lightweight as content-blind approaches as it follows random distribution in underload
situations but automatically switches to a content-aware approach when the load level of a replica
reaches a critical threshold. Moreover, the content-aware mode takes advantage of the fault toler-
ance framework to distribute the load and does not introduce a complex or centralized distribution
component. Hence, it can be easily implemented and deployed on an AS system that already uses

ADAPT-SIB framework for fault tolerance.

11.2  Future Work .

One major future work is to apply ADAPT-SIB and ADAPT-LB tool to other middleware systems.
Nowadays, the multi-tire architecture is used everywhere. While the multi-tier architecture likely
continues to dominate web-based applications, it is changing in structure, moving away from the
traditional 4-tier architecture and consisting of multiple fine-grained or coarse-grained tiers. For ex-
ample, on the micro level, a traditional AS might be deployed as a multi-tier distributed system, in
which communication/message management, security management, service management and data
management are deployed -as different tiers. Each of these fine grained tiers manages a specific
functionality, providing good resource distribution and easy maintenance. On the macro level, fol-
lowing the new trend of service composition based on service oriented architectures, new enterprise
applications might be built-upon composite multi-tier architectures, each tier of which is a normal
4-tier architecture. In both cases, we can see the trend that more and more middle tiers will be po-
sitioned in future applications-and many of them are stateful. One of the most obvious flaws of this
trend is that the more tiers a system has, the bigger the challenge to provide reliability, availability,
and scalability. Hence; an jnteresting future work is to analyze how to apply ADAPT-SIB and the

ADAPT-LB replication tools to these advanced middle-tiers architectures.
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In different middle tiers, the content to be replicated and the right time point for state exchange
might be different from the ADAPT-SIB. However, the general idea to take interaction between
tiers into account and to analyze the correctness in terms of the effects on different tiers are still
valid, considering that the request/response model is still widely used for many middle tier systems.
Although there might not exist transactions, the non-transactional extension described in Section 7.3
could be applied to these systems and then be adapted according to the properties of their backend

systems.

11.2.1 Enhancement to Handle Shared Data

In ADAPT-SIB replication tool, we don’t consider the replication of shared data since it is assumed
to be synchronized with the database. The correctness criteria developed in this thesis do not take
the state changes on shared data into account. However, with this, caching cannot be exploited very
well. The major relevant problem is how to handle concurrent accesses on the shared data. When
all accesses are supposed to be executed on a single primary, replication of shared data can be easily
handled. However, if accesses could occur on different replicas, e.g., in the load balancing approach,
distributed conéurrénéy control mééﬁanisms have to be adopted while replicating shared data [84].
As well, the correctness criteria have to be adjusted to refiect the requirements of concurrency

control.

11.2.2 Replication across a WAN

In ADAPT-SIB and ADAPT-LB tool, all AS replicas are assumed to be located within the same
LAN. This makes sense for a typical 4-tier architecture since AS is the center server in such a sys-
tem. However, when considering serviee_.composition, different middle tier systems of a composite
architecture are normally distributed across a WAN. This might lead to replication across the WAN
to achieve fast local access and high a\;élléf)lllty However, coordination across a WAN is more
expensive and using a GCS or having eager rephcatlon might not be feasible. Also, load-balancing
might not be as important as provndmg cllents services close to where they are. ADAPT-SIB and

ADAPT-LB need to be revisited to see whether they can be adjusted for WAN purposes.



Chapter 11. Conclusions and Future Work 177

11.2.3 Extension of ADAPT-LB

The general load-balancing mechanism of ADAPT-LB can be applied to any middle tier which re-
quires both fault tolerance and load balancing. If the replicated middle tier has a single backend
database, this backend will quickly become the bottleneck while the middle-tier, using ADAPT-LB,
can adjust to the load. In order to solve this problem, the backend has to apply a load balancing ap-
proach as well. There are two typical potential solutions. One solution is to use a replicated backend
that has its own independent replication solution which is transparent to the middle-tier [64]. An-
other solution is to let each replica of the replicated middle tier have its own separate backend [84].

We are planning to investigate both solutions and their integration with ADAPT-LB.
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