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Abstract

The resurgence of airships has created a need for dynamics models and simulation

capabilities of these lighter-than-air vehicles. The focus of this thesis is a theoretical

framework that integrates the flight dynamics, structural dynamics, aerostatics and

aerodynamics of flexible airships.

The study begins with a dynamics model based on a rigid-body assumption. A

comprehensive computation of aerodynamic effects is presented, where the aerody-

namic forces and moments are categorized into various terms based on different phys-

ical effects. A series of prediction approaches for different aerodynamic effects are

unified and applied to airships. The numerical results of aerodynamic derivatives and

the simulated responses to control surface deflection inputs are verified by comparing

to existing wind-tunnel and flight test data.

With the validated aerodynamics and rigid-body modeling, the equations of mo-

tion of an elastic airship are derived by the Lagrangian formulation. The airship is

modeled as a free-free Euler-Bernoulli beam and the bending deformations are repre-

sented by shape functions chosen as the free-free normal modes. In order to capture

the coupling between the aerodynamic forces and the structural elasticity, local ve-

locity on the deformed vehicle is used in the computation of aerodynamic forces.

Finally, with the inertial, gravity, aerostatic and control forces incorporated, the dy-

namics model of a flexible airship is represented by a single set of nonlinear ordinary

differential equations.

The proposed model is implemented as a dynamics simulation program to ana-
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lyze the dynamics characteristics of the Skyship-500 airship. Simulation results are

presented to demonstrate the influence of structural deformation on the aerodynamic

forces and the dynamics behavior of the airship. The nonlinear equations of mo-

tion are linearized numerically for the purpose of frequency domain analysis and for

aeroelastic stability analysis. The results from the latter for the Skyship-500 airship

indicate that this vehicle is not susceptible to aeroelastic instability in its operating

range. However, these problems may arise for modern airship designs with thin film

materials.

ii



Résumé

L’intérêt renouvelé envers les dirigeables a créé un besoin de modèles dynamique et

de simulations de ces véhicules plus légers que l’air. Cette thèse traite d’un cadre

théorique qui intègre la dynamique de vol, la dynamique structurale, l’aérostatique et

l’aérodynamique des dirigeables flexibles.

La recherche débute par une étude d’un modèle dynamique fondé sur l’hypothèse

d’un corps rigide. Une approche de calcul d’aérodynamique complète est présentée,

où les forces et les moments aérodynamiques sont classés par catégories basées sur

différents effets physiques. Une série d’approches de prédiction des différents effets

aérodynamiques est unifiée et appliqué aux dirigeables. Les résultats numériques

des dérivés aérodynamiques et des réponses simulées à des commandes spécifiés sont

comparés à des résultats d’essais provenant d’autre œuvres.

Une fois l’aérodynamique et le modèle de corps rigide validés, les équations de

mouvement d’un dirigeable élastique sont dérivées avec une formulation Lagrangienne.

Le dirigeable est modélisé comme poutre Euler-Bernoulli et les déformations sont

représentées par des fonctions de forme choisies. Afin de prendre en considération

la dépendance entre les forces aérodynamiques et l’élasticité structurale, la vitesse

locale sur le véhicule déformé est employée dans le calcul des forces aérodynamiques.

En conclusion, avec les forces d’inertie, de gravité, d’aérodynamique et de commande

incorporées, le modèle dynamique d’un dirigeable flexible est exprimé sous la forme

d’un ensemble d’équations différentielles ordinaires non-linéaires.

Le modèle proposé est mis en pratique sous forme de simulation dynamique afin
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d’analyser les caractéristiques dynamiques du dirigeable Skyship-500. Des résultats

de simulation sont présentés pour démontrer l’influence de la déformation structurale

sur les forces aérodynamiques et le comportement dynamique du dirigeable. Les

équations non-linéaires de mouvement sont linéarisées numériquement pour permet-

tre une analyse dans le domaine de fréquences, ainsi qu’une analyse de la stabilité

aéroélastique. Les résultats indiquent que le véhicule n’est pas susceptible d’être

instable aéroélastiquement dans ses conditions d’opérations normales. Cependant,

ces problèmes peuvent surgir dans le cas de dirigeables modernes construits avec

matériaux plus minces.
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Claim of Originality

Following is a summary of the main contributions of this thesis:

• A clear and physically justified development and implementation of the dynam-

ics model of flexible airships. This is the first work to present an integrated

treatment of the flight dynamics, aerostatics, aerodynamics and structural dy-

namics for LTA aircraft.

• A comprehensive aerodynamics computational method for flexible airships. A

series of prediction approaches for various aerodynamic effects are unified and

applied to airships. Particularly, a formulation of the potential-flow aerodynamic

forces and moments are provided for flexible maneuvering airships. The influence

of structural deformation of the airship hull has been incorporated. The method

is effective and can be used in a dynamics simulation program.

• A validation of the aerodynamics and dynamics models by using existing flight

test results.

• Generation of simulation results that demonstrate the impact of aerodynamics

on the structural vibration and the effects of flexibility on the aerodynamics and

transient response of elastic airships.

• A prediction method of the aeroelastic instability condition of flexible airships.

This is the first theoretical work on the aeroelastic stability analysis of airships.
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ū0 equilibrium forward speed

u elastic displacement

ũ0, w̃0 desired velocities in a path-following flight

u(c/4) axial velocity component at the center of 1/4-chord

uG elastic displacement of the C.G.

uunstable speed at which aeroelastic instability occurs

uV elastic displacement of the C.V.

uV , vV , wV velocity components at the position εV

V airspeed

v velocity distribution over the flexible airship

vvv = [vT
0
,ωT]T rigid-body generalized velocity vector

v0 = [u0, v0, w0]
T linear velocity

VB airship volume

xviii



vd local velocity on the deformed airship expressed in the local centerline

frame

V elastic potential energy of the flexible vehicle

vf fluid velocity vector

vn(c/4) velocity component perpendicular to the fin surface at the center of

1/4-chord

vt(c/4) velocity component tangent to the fin surface at the center of 1/4-

chord

wdF downwash due to the fins

X,∆X equilibrium state vector and disturbance in state vector

xF s, xF e x-coordinates of the start and end positions of the fins

X, Y, Z coordinates of body-frame origin in the inertial frame

x, y, z coordinates of a point in the body frame

αF , αe geometric and effective angles of attack of the fins

δE,δR elevator and rudder deflection, respectively

δT displacement of throttle crank

ε longitudinal distance from the nose

εV longitudinal position at which the flow ceases to be potential

η efficiency factor for the cross-flow drag due to finite length

ηd correction factor for the flap effectiveness factor

η
f

efficiency factor for the fin added mass due to 3-D effect

γ angle between centerline and velocity vector

λ1,2 = σ ± jωd eigenvalues

ω = [p, q, r]T angular velocity

Φi the ith shape function

φ, θ, ψ Euler angles

xix



ΦF angle from the oxz plane to the fin surface plane

Φi, ωi the ith free-free normal mode and natural frequency

Ψ total velocity potential

Ψq velocity potential vector associated with deflection rate

Ψr velocity potential vector associated with rigid-body motion

Ψs velocity potential vector associated with bending slope

ρ air density

τ forces and moments

τ theoretical flap effectiveness factor

∆Cpα ∂∆Cp/∂α, where ∆Cp is the pressure coefficient of the airfoil

ζ, µ, ϑ ellipsoidal coordinates

Subscripts: (of various terms τ , F, M, Q, f and I)

A added-mass

AD aerodynamics

A, non nonlinear potential-flow aerodynamic terms

AS aerostatics

Axial axial drag

C control

F aerodynamic force acting on the fins

G gravity

H(F ) aerodynamic force acting on the hull due to the fins

I inertial

T thrust

V viscous effect on the hull

δ aerodynamic force due to control surface deflection

xx



Chapter 1

Introduction

1.1 Background

Airships were the first aircraft that realized human’s dream of controlled, powered

flight. In 1784, Jean-Baptiste Meusnier proposed a design for an airship of ellipsoid

form with a rudder, an elevator and three large airscrews, but he lacked a lightweight,

powerful engine. Henri Giffard was the first person to apply steam-engine technology

successfully to airships. He flew his airship 17 miles in 1852, with a single propeller

driven by a three horsepower engine [1]. The golden age of airships began with the

launch of the Luftschiff Zeppelin LZ1 in 1900. The Zeppelin airships became the most

famous aircraft of that time and some of these airships were used as bombers during

World War I by the German Army. The United States and the Britain built several

airships, such as the R-33, R-34 British airships and the American USS Shenandoah

(ZR-1), in the 1920s and 1930s, mostly imitating the original Zeppelin design. Initially,

airships obtained some degree of great success and an impressive safety record. For

example, the German Graf Zeppelin flew over one million miles without a single

passenger injury. But the use of airships had declined over time as the development

and application of airplanes and a series of airship accidents, including the burning
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of the Hindenburg, the largest aircraft ever built, in 1937. Although the golden

age of airships has ended for decades, in the past few years, the development of

modern techniques, such as composite materials, optimal design, computational fluid

dynamics (CFD), thermal modeling, automatic control, all brought a resurgence of

these aircraft. A wide range of applications have recently been proposed for airships,

such as advertising, surveillance, environmental monitoring, planetary exploration and

stratospheric observation [2–7].

An airship is a lighter-than-air (LTA) aircraft having propulsion and steering sys-

tems [8]. Unlike conventional heavier-than-air (HTA) vehicles such as airplanes and

helicopters whose lift is aerodynamically generated by moving an airfoil through the

air, airships stay aloft using a light lifting gas. This distinguishing feature can provide

them long endurance, high payload-to-weight ratio and low fuel consumption.

Airships fall into three main structural categories, namely, rigid airships, non-rigid

airships, and semi-rigid airships. Rigid airships have rigid frames containing multiple,

non-pressurized gas cells or balloons to provide lift. Non-rigid airships (blimps) use

a pressure level in excess of the surrounding air pressure in order to retain their

shape. Semi-rigid airships, like blimps, require internal pressure to maintain their

shape, but have a rigid keel along the bottom of the envelope to distribute suspension

loads into the envelope and allow lower internal pressure. Non-rigid airships are the

most common form nowadays. A typical non-rigid airship, shown in Fig. 1.1, has

a hull that is filled with light gas, actuated by thrusters and controllable tail fins.

The thrusters are usually installed on the gondola; sometimes another one will be

installed on the downward vertical fin to provide additional yaw control. At the same

time, in order to maintain the aerodynamic shape of the hull, there must be sufficient

pressure difference between the surrounding air and the internal lifting gas across the

hull envelope. It is necessary to keep this pressure difference despite the influences

of varying temperature and altitude; this is achieved through inflating or deflating
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Figure 1.1: Schematic of a non-rigid airship

ballonets, which are air bags contained inside the hull.

The study of modern airships is an interdisciplinary area that involves different

theories and technologies. In this thesis, we focus our interests on the dynamics

modeling and simulation, which are important tools to analyze their flight behavior

and design their control systems. In particular, we focus on a theoretical frame work

that can integrate the airships’ flight dynamics, structural dynamics, aerostatics and

aerodynamics. A review of the research related to airship dynamics and structural

analysis is given in the next section.

1.2 Literature Review

1.2.1 Dynamics models of airships

In most dynamics models of aircraft, the vehicles are modeled as a rigid body with

three translational and three rotational degrees of freedom (DOF). These dynamics

models can be represented by six differential equations, which have been derived in

several textbooks for conventional aircraft, such as those by Etkin [9] and Pamadi [10].

However, the large differences between HTA and LTA aircraft imply that models

specific to airships must be developed. For example, certain solid-fluid interaction

forces and moments can be neglected for HTA aircraft but become important for
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Figure 1.2: Hybrid heavy lift airship in [13]

LTA aircraft, such as buoyancy and those related to the inertia of the surrounding

air. The latter ones are usually called the added-mass force and moment, which can

be considered as the pressure-induced fluid-structure interaction terms based on a

potential flow assumption [11]. A number of airship dynamics models have been

presented in the literature in which the airships were also modeled as a rigid-body

vehicle.

National Aeronautics and Space Administration (NASA) and Systems Technology,

Inc. performed a feasibility study of a hybrid heavy-lift airship, a combination of LTA

and rotary wing aircraft. The vehicle consists of a helium-filled envelope mounted

on a platform that has a helicopter at each corner, as shown in Fig. 1.2. Tischler et

al. [12] derived the nonlinear 6-DOF equations of motion and developed the simulation

program HLASIM to evaluate this airship’s dynamics characteristics, with a particular

focus on the influence of high incidence [13] and atmospheric turbulence [14] on the

dynamics model.

The dynamics of other conventional airships were also analyzed. Amann [15] fol-

lowed the aerodynamics prediction method of Jones and DeLaurier [16] and developed

a dynamic simulation program to predict the time responses due to different control

inputs for the non-rigid Skyship-500 airship, shown in Fig. 1.3. Jex and Gelhausen [17]
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Figure 1.3: The Skyship-500 airship

adapted the HLASIM simulation program to the Skyship-500 to study its flight be-

havior, and then used a frequency-domain fitting technique to improve the estimates

of the aerodynamic derivatives from flight test data.

As with LTA aircraft, an airship’s flight characteristics can be strongly affected

by atmospheric turbulence. Thomasson [18], Azinheira et al. [19] and Yamasaki and

Goto [20] discussed the incorporation of the wind effects (wind speed, acceleration

and spatial gradients) into the nonlinear equations of motion of airships, with a spe-

cial focus on formulating the coupling between the wind effects and the added-mass

aerodynamic terms.

Analytical linear dynamics models using aerodynamic derivatives have been ap-

plied to study the flight behavior of old rigid airships. For example, Jones and

Bell [21, 22] used a simplified linear model to investigate the steady turn characteris-

tics for the R-29 and R-101 British rigid airships, with the aerodynamic derivatives

measured from wind-tunnel experiments. Linear dynamics models are still used for

airships nowadays due to their simplicity and the fact that the models can be read-

ily improved by updating the aerodynamic derivatives obtained from wind-tunnel or

flight tests. Cook et al. [23] formulated the linearized equations of motion for a non-

rigid airship and investigated its flight stability at various speeds. Schmidt [7] applied

a 3-DOF linear model for the control design of a large high-altitude airship.
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1.2.1.1 Aerodynamics of airships

In the above airship models, the computation of aerodynamic force and moment is

a key issue. Many theoretical works on the aerodynamics of old airships are based

on potential flow theory. Munk [24] applied a slender body assumption to derive the

aerodynamic force distribution over an airship hull. The effects of hull’s finite length

was corrected using the added-mass factors of ellipsoids derived by Lamb [25]. Munk’s

results showed that the hull experiences an unstable pitch moment at nonzero angles

of attack. Von Karman [26] applied the method of sources and sinks to investigate

the pressure on the model of USS Los Angeles (ZR-3) airship. Upson and Klikoff [27]

extended Munk’s work to formulate the force distribution for an airship hull in curvi-

linear flight.

However, a prediction based on potential flow cannot represent the real aerody-

namics of the hull because of the effects of viscosity, especially at the rear of the body.

Allen and Perkins [28, 29] added a term related to the cross-flow drag to correct the

effects of viscosity for an inclined body of revolution. Hopkins [30] proposed a similar

method by assuming that the transverse aerodynamic force on a forward portion of

the body could be calculated using the potential flow assumption while the force on

the remaining portion was obtained by the cross-flow drag. The position at which the

potential flow ceases was then estimated from wind-tunnel test results.

Wind tunnel tests have shown that strong aerodynamic interaction effects exist

between the hull and the fins of airships. Several approaches can be found in the

literature to compute the aerodynamics of wing-body combination for airplanes and

missiles, such as those by Lawrence and Flax [31] and Pitts et al. [32]. Jones and

DeLaurier [16] wrote an important paper to address the hull-fin interaction problem

for airships and aerostats. They proposed a semi-experimental approach to predict

the steady-state aerodynamics, using efficiency factors to account for the interaction

between the hull and the fins. These factors were estimated from wind-tunnel test
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results. Then they extended the steady-state model for an airship in general rigid-

body motion by discretizing it into slices.

Recently, CFD techniques have been applied to analyze the aerodynamic char-

acteristics of airships. Wong et al. [33] used source panels to model the hull and

vortex-lattice panels for the fins. Lutz et al. developed a number of CFD packages

to investigate the aerodynamic characteristics of the Lotte airship [34–38], including

its steady-state aerodynamic coefficients, added mass and moment of inertia, bound-

ary layer of the hull, and propeller influence. Many of their results were summarized

in [39]. In addition, CFD techniques have also been used in airship design. For ex-

ample, different panel approaches were developed to optimize the hull shape in order

to reduce the drag [40–42].

1.2.1.2 Wind-tunnel and flight tests

Wind-tunnel and flight tests have been an important means to establish and evaluate

the airship dynamics. First, the aerodynamic characteristics can be obtained in the

experiments, and then be used in the dynamics model. On the other hand, the pub-

lished airship experimental data can be applied to verify the theoretical aerodynamics

or dynamics model.

Two important review papers on airship experiments were published. Jones [43]

summarized the aerodynamic characteristics of several British airships deduced from

experiments in the 1910s and 1920s, and used these results to analyze the flight sta-

bility in the horizontal plane. In 1976, Curtiss [44] gave a review of LTA aerodynamic

experiments up to that date, especially those by the Aeronautical Research Council

(ARC) in Britain and the National Advisory Committee for Aeronautics (NACA) in

the United States.

A great amount of wind-tunnel results for old airships are collected in the reports

of NACA and ARC, especially for the scale models of the American airships Akron
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(ZRS-4) [45–49], Shenandoah [50], the British airships R-29 [51], R-101 [52], and the

German airship L33 [53]. Wind-tunnel tests were also used for the design of modern

airships and other LTA vehicle, such as the Lotte airship [54] and the TCOM 250

aerostat [16]. In most of these experiments, researchers measured the steady-state

aerodynamic force and moment (drag, lift and pitch moment) at angles of attack, as

well as the pressure distribution in some cases such as the Akron [47], R-101 [52] and

Lotte [54] models. In addition, the rotational stability derivatives such as yaw rate

derivatives and pitch rate derivatives could be measured in a wind tunnel by means

of oscillation test [50] or using whirling arms [16].

Flight test results on full-scale airships were also presented in the literature, for

example, for the British rigid airships R-26 [55], R-29 [56] and R-33 [57]. In par-

ticular, research focused on the turn trials to determine the turn radius at various

rudder inputs, because it was difficult to predict the aerodynamic force and moment

for airships in curvilinear flight at that time. In addition, the pressure distribution and

flight trajectories were recorded for the USS Los Angeles airship in flight tests [58–60].

However, these experimental works were published decades ago and the accuracy of

the results was limited by the instrumentation and measurement techniques at that

time. More advanced instrumentation has been used in the flight tests of modern

airships. In the Patrol Airship Concept Evaluation (PACE) program [61] in 1980s,

flight tests were performed for the non-rigid Skyship-500 airship. The time and fre-

quency responses to inputs of elevator, rudder and throttle were measured during the

tests. Some of these results were published by Jex and Gelhausen [17, 62]. Recently,

Kornienko [63] designed an experimental setup to measure the responses of the Lotte

airship in maneuvers and applied a system identification approach to determine the

aerodynamic derivatives and dynamics characteristics from the flight test data.
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1.2.2 Structural analysis of airships and related inflated struc-

tures

Real airships experience deformations and their structural flexibility has been an im-

portant consideration in the history of airship development. The structural problems

in the rigid airship construction were discussed in the review works by Burgess et

al. [64] and Ebner [65]. Herrera [66] and Evans [67] applied different approaches to

compute the force distribution due to aerostatic, aerodynamic and inertial forces for

the R-38 and Shenandoah rigid airships respectively. Their results demonstrated the

possibilities of a catastrophic failure due to the structural bending moment for these

rigid airships.

To avoid the structural vulnerability, rigid airships are seldom used nowadays and

most modern airships are non-rigid airships. The deflection behavior of non-rigid

airships was investigated by using a bending beam model [2] and experiments showed

that such a model could provide reasonable accuracy [68, 69].

With more recent advances in computational capabilities, Finite Element Analy-

sis (FEA) has been used for the preliminary structural analysis of modern airships

and other LTA aircraft. Hunt [70, 71] and Witherow [72] performed static struc-

tural analysis of aerostats to obtain the deformed shape and stress distribution, using

FEA packages NASTRAN and LD3DX respectively. In addition, CFD packages have

been combined with FEA models to compute the aerodynamics of flexible airships.

Amiryants et al. [73] investigated the static elastic deformation and natural modes

of a 260-meter semi-rigid airship using FEA packages NASTRAN and ABAQUS and

computed the static aerodynamic coefficients with the CFD package ARGON. Their

results showed that the first two modes could be described as beam-bending modes

and that the structural elasticity could considerably influence the static aerodynamic

force and moment. Bessert and Frederich [74] analyzed the effects of deformation on

the lift coefficients at angles of attack for the flexible CL-160 non-rigid airship using
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FEA package ABAQUS and CFD solver VSAERO. Their analysis displayed strong

effects of the geometric and material nonlinearities of the hull on the aerodynamic

derivatives. Omari et al. [75] developed a numerical structure-fluid interaction solver

based on a mixed element volume discretization and used this program to obtain the

deformation, natural modes and aerodynamic derivatives of a flexible ellipsoid in an

inviscid flow at different angles of attack. The computed first and third modes were

beam-bending modes and the second mode was a membrane mode. They found that

influence of elastic displacement on the aerodynamic coefficients was small.

In general, the majority of the above cited FEA and CFD works on flexible airships

focused on the computation of their static deformation, stress, aerodynamic forces

and natural modes. However, few studies investigated the influence of flexibility on

the dynamics characteristics, and it would be difficult to incorporate the above FEA

and CFD models into an airship dynamics simulation program because of the high

computational cost. Bennaceur et al. [76] investigated the equations of motion of a

flexible airship with a particular focus on the effects of deformation on the inertial

force. However, their formulation was limited by assuming the air to be a potential

fluid. Furthermore, little discussion was given on the interaction between the flexibility

and the aerodynamic forces.

In addition, the structural characteristics of LTA aircraft depend on their envelope

materials. Various composite materials have been employed in modern airships, such

as polyamides (Nylon) and polyesters (Dacron and Terylene) [2]. Recently, very thin

(about 0.048 mm) films have been proposed for high-altitude airships, for example, the

High Platform II shown in Fig.1.4, the first stratospheric airship (at 23,165 m) in the

world [77]. These materials were first developed as part of the NASA’s Ultra Long

Duration Balloon project [77]. Although they are very light and provide sufficient

strength, these films have lower elastic moduli than conventional airship envelope

materials such as Nylon and Dacron. Accordingly, particular attention should be
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Figure 1.4: The High Platform II airship

focused on the structural-fluid interaction in the airships made of these unconventional

composite materials.

1.2.2.1 Structural analysis of other inflated structures

The largest component of a typical modern airship, the hull, is actually an inflated

membrane structure. Although research on structural analysis of flexible airships and

aerostats is limited, many works can be found on other inflated structures, such as

inflated cylinders, inflated toroidal shells and parachutes, based on theoretical models

or using commercial FEA packages. Many of these studies have been reviewed in a

number of papers [78–81]. Because of the shape of the hull, we focus our discussion

here on works on inflated circular cylinders.

A beam model has been applied to model the structural characteristics of inflated

cylinders, with the advantage of very easy implementation, although the membrane

characteristics are neglected. Main et al. [82] wrote an important paper in 1994

on the load-deflection behavior of cantilevered inflated cylinders. They modeled the

cylinders as Euler-Bernoulli beams if the internal pressure was high enough so that

no wrinkling occurred, and then their beam assumption was extended to perform the

modal analysis [83]. By comparing to experimental results, the beam assumption was
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found to lead to reasonable prediction of the elastic deflection and vibration mode

shapes of the first two modes. Similarly, Rybski et al. [84] used the Timoshenko beam

model to calculate the natural frequencies of a cantilevered inflatable beam; Suhey et

al. [85] used the Euler-Bernoulli beam equation to obtain the deflection of a simply-

supported inflated cylinder and their computation results matched the FEA results

in ANSYS.

Researchers have also developed more complicated theoretical membrane models

to analyze the structural characteristics of inflated structures. For example, Young

et al. [86] established a theoretical model for the dynamics of thin-film membranes,

and applied their model to obtain the vibration modes of an inflated circular cylin-

der membrane tube, and then verified their model by comparing the computed and

experimental results. In the modal results of their inflated cylinder, the first, second

and fifth modes are beam bending modes and the third, fourth and sixth modes are

membrane modes.

1.2.3 Dynamics of flexible HTA aircraft

Although few prior works exist on the influence of flexibility on aerodynamics and dy-

namics models of LTA aircraft, there is a large amount of research on the structure-

fluid interaction of HTA aircraft, especially on the issue of aeroelastic instabilities

(divergence and flutter). Aeroelasticity is the study of the interaction between the de-

formation of an elastic structure in the air and the resulting aerodynamic forces [87].

A common model in conventional aeroelasticity is an elastic beam mounted at its

root [87–90]. That is, conventional aeroelasticity is mainly concerned with the struc-

tural instability of a wing due to the aerodynamic forces. On the other hand, the

elasticity also affects the fight dynamics behavior. For example, Etkin [9] included

some aeroelastic derivatives in the aerodynamic force computation for the aircraft’s

dynamics model. Collar suggested that aeroelasticity could be described as forming a
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Figure 1.5: Schematic of aeroelasticity [89]

triangle of disciplines, shown in Fig. 1.5 [89], which indicated that the aerodynamics,

structural dynamics and flight dynamics could affect each other.

There has been an increasing interest in the modeling of the interaction of flex-

ibility, aerodynamics and flight dynamics of a maneuvering HTA aircraft, especially

since powerful computers are available to solve such complicated problems. For exam-

ple, Bisplinghoff [90], Waszak [91] and Schmidt [92] derived the equations of motion

for flexible aircraft in a reference frame moving relative to the undeformed body so

that the linear and angular momentum vectors due to elastic deformations vanished.

Meirovitch and Tuscu [93,94] presented a procedure to unify the analysis of flight dy-

namics, structural dynamics, aerodynamics and control system for a flexible airplane,

with the body frame established on the undeformed body and the fuselage, wings

and tails modeled as several beams. They also provided a review of the works on

the flight dynamics and simulation of elastic HTA aircraft. Bolender and Doman [95]

followed Meirovitch’s method to derive the equations of motion for the longitudinal

motion of a hypersonic aircraft. Platus [96] applied a similar approach to analyze

the aeroelastic stability of a spinning missile. The coupling between flight dynamics

and structural deformation has also been investigated for other HTA aircraft with

unconventional configuration. Patil and Hodges [97] derived the dynamics model for

a pair of highly flexible flying wings (without fuselage) and then studied the effects of

deformation on the phugoid and short-period modes. Cesnik and Su [98] investigated
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the aeroelasticity of a fully flexible joined-wing vehicle and the effects of flexibility on

the time response of its rigid-body motion.

1.2.4 Vibration of ships

The coupling between the structural flexibility and fluid-solid interaction forces has

also been studied for the other vehicles moving through a heavy fluid. The most

well-known instance of this is the hydrodynamic influence on the vibration of ships.

Since ships have no wings and move in a heavy fluid, their hydrodynamics modeling

is quite different from the aerodynamics of airplanes, and, similar to LTA aircraft, the

hydrodynamic terms related to added mass become crucial.

An important paper on ship vibration was written by Lewis [99] in 1929. He mod-

eled a ship as a beam with the shape function chosen as a quadratic function of the

longitudinal position, and then investigated the natural frequency of its vertical vi-

bration. He found that that the surrounding water could produce an effect equivalent

to a very considerable increase in the mass and decrease in the natural frequency. He

first predicted the generalized added mass distribution using strip theory and then

developed approximate correction factors for the vibrating ellipsoids to account for

the 3-D effects on the generalized added mass distribution.

Macagno and Landweber [100] extended Lewis’s work to evaluate the correction

factors for other possible vibration mode shapes for an ellipsoid of revolution, based

on the analytical solution of the Laplace equation.

Armand and Orsero [101] and Vorus and Hylarides [102] developed different nu-

merical approaches to evaluate the hydrodynamic generalized added-mass matrix for

ship vibrations by solving the Laplace equation numerically. In particular, Armand

and Orsero [101] showed that, in the dynamics equations of motion for a flexible ship,

the generalized added-mass matrix should be included.
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1.3 Thesis Objectives and Organization

The overall purpose of this thesis is to improve the understanding of the dynamic be-

havior of airships, with a particular emphasis on flexible airships. Referring to Collar’s

diagram in Fig. 1.5, the existing airship dynamics models focus on the interaction of

inertial and aerodynamic forces, while the effects of structural flexibility are seldom

discussed. The dynamics modeling techniques of flexible airships have lagged behind

those for HTA aircraft and this research aims to fill this gap.

For this purpose, a dynamics model is first proposed for airships based on a rigid-

body assumption in Chapter 2, with a particular focus on a comprehensive approach

to compute the aerodynamic forces and moments and on the model validation. The

aerodynamic forces are categorized into various terms based on different physical

effects: the added-mass force, the viscous effect on the hull, the force on the fins, the

force on the hull due to the fins, and the axial drag. Computational methods are

provided for each aerodynamic term and incorporated into the nonlinear dynamics

model. The simulation results are then verified by comparing to existing wind-tunnel

and flight test data.

Chapters 3 to 6 are devoted to the theory of modeling the dynamics of flexible

airships and the corresponding simulation results.

Chapter 3 gives the kinematic description and equations of motion for a flexible

airship. The airship is modeled as a free-free Euler-Bernoulli beam and the bending

deformations are written using the natural vibration modes as shape functions and

the generalized coordinates. Once the velocity distribution of the elastic airship is

obtained, Lagrange’s equations are applied to derive the dynamics model that describe

the linear elastic deformation and the rigid-body motion of the airship. Then the

inertial, gravity, aerostatic and thrust forces are incorporated, including the effects of

structural flexibility. As a result, the dynamics model is represented by a single set

of ordinary differential equations that unifies the airship’s flight dynamics, structural
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dynamics, aerostatics and aerodynamics.

To complete the dynamics model, the aerodynamics model verified in Chapter 2

is extended for the flexible airships in Chapter 4. In order to capture the coupling

between aerodynamic forces and structural elasticity, the local velocity distribution on

the deformed aircraft is used in the computation of aerodynamic forces and moments.

The dynamics model is implemented for an elastic airship in Chapter 5. The

simulation results of shape functions, shape function integrals, time and frequency

responses to different control surface deflection inputs are presented.

The possibility of aeroelastic instability is investigated for an airship in Chapter 6.

The aeroelastic instability is associated with the interaction of the rigid-body motion,

the elastic deformation and the aerodynamic forces.

In Chapter 7, the conclusions drawn in the previous chapters are revisited and

recommendations for future research are given.

1.4 Note on Notation

As much as possible, the author tried to follow conventional notations used in the

different fields pertaining to this thesis. This, however, resulted in a number of nota-

tional conflicts – the same symbol used to denote different physical variables. Where

deemed not too detrimental to the presentation, some of the original conventions were

changed, but several conflicts still remain. For example, q usually denotes a general-

ized coordinate in the context of structural analysis, a pitch rate in flight dynamics

and dynamic pressure in aerodynamics.
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Chapter 2

Dynamics Model Based on a

Rigid-Body Assumption

Before addressing the dynamics of flexible airships, it is useful to first study the

modeling based on a rigid-body assumption. As mentioned in Section 1.2.1, a number

of such nonlinear [12, 15, 17] and linear [21–23] airship models have been presented

in the literature. The analytical linear dynamics models with aerodynamic stability

derivatives have the advantage that they can be readily improved by updating the

aerodynamic derivatives obtained from wind-tunnel or flight tests. On the other hand,

in case such experimental tests are not possible, an effective aerodynamic prediction

approach can be very useful. An important limitation of the airship dynamics models

presented by other authors is that relatively little detail is given on the aerodynamic

force prediction. Furthermore, most of these models have not been validated against

the actual flight test results.

In this chapter, a modeling approach is proposed to assemble the nonlinear equa-

tions of motion based on a rigid-body assumption for the airships, with a particular

focus on a comprehensive formulation of the interaction forces between the aircraft

and the air, and on the model validation. For this purpose, the derivation begins
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from the equations of motion of a rigid-body vehicle moving in vacuum in Section 2.1.

Then the relevant solid-fluid interaction forces, both aerostatic and aerodynamic, are

incorporated into the equations in Section 2.2 and 2.3. A linearization procedure

is discussed in Section 2.4 to obtain the linear equations of motion. In Section 2.5,

the nonlinear dynamics model is used to simulate the Skyship-500 airship and the

simulation results are compared to flight test results available in the open literature.

Furthermore, the linearized model is applied to investigate the stability of the Skyship-

500. Finally, a simplified 2-DOF dynamics model is presented to predict the flight

behavior for an airship in a steady turn.

With the trust gained from validation, the dynamics model and simulation pro-

gram in this chapter can be applied to other airships, and the computational method

for aerodynamics can be further extended to flexible airships.

2.1 Equations of Motion for Airship in Vacuum

The modeling begins from the simplest case of a rigid-body airship moving in vacuum.

A local body-fixed frame {oxyz} and an inertial frame {OXY Z} are established

respectively, as shown in Fig. 2.1. The airship’s position is described by coordinates

of the origin of body-fixed frame in the inertial frame, (X, Y, Z); its orientation is

represented by Euler (roll φ, pitch θ and yaw ψ) angles. These Euler angles are

defined by the following sequence of rotations to obtain the axes {xyz} from axes

{XY Z}: first rotate the axes {XY Z} an angle ψ about the Z direction to axes

{x1y1z1}, then rotate the {x1y1z1} an angle θ about y1 direction to axes {x2y2z2}

and finally rotate the {x2y2z2} an angle φ about x2 to the axes {xyz}. The resulting
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Figure 2.1: Body frame

rotation matrix from the inertial frame to the body frame is [9]

R =













cosψ cos θ sinψ cos θ − sin θ

cosψ sin θ sinφ− sinψ cosφ sinψ sin θ sinφ+ cosψ cosφ cos θ sinφ

cosψ sin θ cosφ+ sinψ sinφ sinψ sin θ cosφ− cosψ sin φ cos θ cosφ













(2.1)

For convenience, the equations of motion for a 6-DOF vehicle are usually derived in

the body frame. Usually, the body-fixed frame is located at the center of gravity (C.G.)

for an airplane so that the centrifugal terms are eliminated and the translation and

rotation are dynamically decoupled, while in this work, we establish the body frame

at the center of volume (C.V.) for an airship, with the x axis along the centerline

and pointing to the nose, the z axis positively downward, and the positive y axis

determined by the right hand rule. The selection of the airship’s body-fixed frame

location results from three facts: first, the actual C.G. location shifts during the

flight due to the motion and inflation/deflation of the ballonets; second, the use of

a body frame at the C.V. can simplify the added-mass matrix, as discussed later in

Section 2.3.1.3; third, the translation and rotation remain coupled for an elastic airship

even if the body frame is established at the C.G., as discussed later in Section 3.3.

For a body moving in vacuum, the equations of motion have been derived in

standard textbooks [9,11] using the Newton-Euler approach, and can be summarized
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in matrix form as

Mrigidv̇vv = τ I + τ G + τ C (2.2)

where vvv = [vT
0
,ωT]T and v0 = [u0, v0, w0]

T, ω = [p, q, r]T denote the linear and angular

velocity vectors expressed in the body frame respectively; Mrigid is the 6 × 6 mass

matrix of the rigid body and can be written as

Mrigid =







mI3×3 −mr×
G

mr×
G

J






(2.3)

where m is the total mass, including the hull, gas, gondola, fins, ballonets, etc; J

is the second moment of inertia and rG is the position vector of the C.G. from the

origin o. Note that J and rG are both expressed in the body frame. The superscript ×

denotes the skew-symmetric matrix form of a vector (corresponding to a cross-product

operation).

The right hand side of Eq. (2.2) consists of the external forces and moments. The

subscripts I, G and C denote the terms associated with inertia, gravity and control

respectively. The inertial and gravity forces and moments are calculated as

τ I =







−mω
×v0 +mω

×r×
G
ω

−mr×
G
ω

×v0 − ω
×Jω






, τ G =







FG

r×
G
FG






(2.4)

where the gravitational force is

FG = mgĝ (2.5)

in which g is the acceleration of gravity. The unit vector ĝ in the body-fixed frame is

in the direction of gravity, ĝ = [− sin θ, cos θ sin φ, cos θ cosφ]T.

The control force and moment in τ C are due to the thrusters, the deflection of

control surfaces, and the inflation or deflation of ballonets, and are generated by

the automatic control system or the pilot’s commands. Some of these forces are
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generated aerodynamically, such as those from the control surface deflection, and will

be investigated in Section 2.3. The thrust force depends on the airship’s engine and

propeller and will be discussed in Section 2.5.2.1 for the simulated Skyship-500 airship.

2.2 Interaction Forces and Moments Between Air-

ship and Air: Aerostatics

We can now start to incorporate the interaction forces and moments between the

vehicle and the air, which include two components: aerostatics and aerodynamics.

The former is due to the static air pressure and is independent of the motion of the

vehicle while the latter is related to its motion.

The aerostatic force and moment expressed in the body frame are

τ AS =







FAS

r×
V
FAS






(2.6)

where the aerostatic force is

FAS = −ρgVBĝ (2.7)

in which VB is the volume of the airship, while ρ is the air density. Since the body frame

is established at the C.V., the position vector of the C.V. relative to the body-fixed

frame origin rV = 0 and the aerostatic moment is zero. To incorporate the aerostatics

into the equations of motion, τ AS is added to the right hand side of Eq. (2.2).
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2.3 Interaction Forces and Moments Between Air-

ship and Air: Aerodynamics

Unlike an airplane, the largest component of an airship is the hull rather than the

planar lifting surfaces (e.g. wing, fins). Moreover, the hull-fin interaction plays an

important role on the aerodynamics of the airship. Most significantly, the aerodynamic

effects related to the inertia of the surrounding air must be considered for an airship

due to the light lifting gas. The large differences between an airship and a conventional

airplane imply that aerodynamic computation methods specific to airships must be

developed. The aerodynamic characteristics of airships were initially investigated

during the golden age of airships. For example, Munk [24] first used potential flow

theory to compute the aerodynamic force on airship hull, and the viscous effects were

then incorporated to improve the estimation accuracy [28–30]. However, the hull-

fin interaction was still difficult to predict at that time, and therefore wind-tunnel

tests became the most important means to obtain the aerodynamic coefficients of an

airship. Prediction methods for the hull-fin interaction were later investigated in the

fields of missiles and airplanes, such as by Lawrence and Flax [31] and Pitts et al. [32].

However, they were not applied to airships because the development of airships had

declined by that time. Therefore, existing analytical aerodynamic models of an airship

are incomplete.

In this thesis, a comprehensive aerodynamic computational approach is proposed.

First the aerodynamic forces are categorized into various terms based on different

physical effects. Then, computational methods for each of these terms are unified and

applied to airships. These methods represent the state-of-the-art techniques available

in the literature on airship aerodynamics.
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2.3.1 Added-mass force and moment

2.3.1.1 Force and moment computation from the added-mass matrix

The added-mass force and moment can be considered as the pressure-induced fluid-

structure interaction terms based on the potential flow assumption with the boundary

condition that the fluid attaches on the body surface [11]. For a rigid body completely

submerged in an unbounded fluid, the added-mass terms can be derived via an energy

approach in terms of Kirchhoff’s equations [11,25] or alternatively by using Bernoulli’s

equation to find the pressure distribution over the body [103]. Here we will not present

detailed derivations but only review the results. Thus, we can define a 6×6 symmetric

added-mass matrix for a rigid body as

MA,rigid =







M11 M12

M21 M22






(2.8)

The matrices M11, M12, M21, M22 are 3 × 3 submatrices, whose elements can be

estimated using the methods to be discussed in Section 2.3.1.2. The corresponding

added-mass force and moment are then written in vector form as

τ A = −







M11 M12

M21 M22













v̇0

ω̇






−







ω
× (M11v0 + M12ω)

v×

0
(M11v0 + M12ω) + ω

× (M21v0 + M22ω)






(2.9)

Thus, τ A includes two terms: one related to the time rates of change of the linear and

angular velocities of the airship, the other related to the coupling of the linear and

angular velocities. Note that for an airship in steady translation, only the moment

term −v×

0
(M11v0) appears in Eq. (2.9), which is known as Munk moment [24]; these

moments tends to destabilize the pitch and yaw rotations. To incorporate the added-

mass force and moment into the dynamics model, the first term in Eq. (2.9) is written

on the left hand side of Eq. (2.2) so that the mass matrix Mrigid is replaced by
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Figure 2.2: Added-mass factors [11]

Mrigid + MA,rigid; while the second term is added to the right hand side of Eq. (2.2).

2.3.1.2 Estimation of the added-mass matrix

The added-mass matrix of a rigid-body airship includes the contributions of both the

hull and the fins, i.e.,

MA,rigid = MAH + MAF (2.10)

In practice, a simple approach to obtain the added mass and moment of inertia of

the hull, MAH , is to approximate the hull as an ellipsoid of revolution. With a body

frame defined as discussed in Section 2.1, all the off-diagonal terms in the added-mass

matrix of the hull are zero and the diagonal terms are given by

mH11 = k1m
′, mH22 = mH33 = k2m

′, mH44 = 0, mH55 = mH66 = k′I ′ (2.11)

where m′ is the mass of air displaced by the hull and I ′ is the moment of inertia of

the displaced air. The added-mass factors k1, k2 and k′ [11] are plotted in Fig. 2.2

as functions of the fineness ratio L/D, where L is the length of the hull and D is its

maximum diameter.
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The added mass and moment of inertia of the fins can be computed by integrating

the 2-D added mass of the cross section over the fin region. For example, for the cross

section with cruciform fins shown in Fig. 2.3, the 2-D transverse added mass in the y

and z directions, and the added moment of inertia about the x axis can be computed

using potential flow theory as discussed by Nielsen [104]. The contribution of the fins

to these 2-D added mass terms can be written as

m̄F,22 = m̄F,33 = ρπ

(

b− R2

b

)2

, m̄F,44 =
2

π
k44ρb

4 (2.12)

where R is the hull’s cross-sectional radius and b is the fin semi span. The factor k44

is plotted in Fig. 2.4 as a function of R/b. The 2-D added mass of cross sections with

other fin arrangements was also investigated by Nielsen [104].

The non-zero elements in the added-mass matrix of the fins, MAF , are obtained

from the following integrals of the 2-D added mass terms in Eq. (2.12)

mF22 = mF33 = ηf

∫ xF e

xF s

m̄F,22dx, mF35 = −ηf

∫ xF e

xF s

m̄F,22xdx, mF26 = −mF35,

mF44 = ηf

∫ xF e

xF s

m̄F,44dx, mF55 = mF66 = ηf

∫ xF e

xF s

m̄F,22x
2dx

(2.13)
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where xF s and xF e are the x coordinates of the start and end positions of the fins.

An efficiency factor ηf (plotted in Fig. 2.5) is included to account for 3-D effects; it

is calculated from potential flow theory for the added mass of a thin plate [105, 106]

and determined based on the aspect ratio (2be)
2/SFE, in which SFE is the exposed

fin area, as shown in Fig. 2.6, and be is the corresponding semi fin span.
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2.3.1.3 Added-mass matrix transformation

In the estimation approach for the hull, the body frame is located at the C.V. and

oriented along the hull’s principal axes. In order to obtain alternative formulations

of the equations of motion, with a body frame located at a different position or with

different orientation, it is relevant to be able to transform the added-mass matrix

between different body frames.

Consider two body frames {oxyz} and {o′x′y′z′}, with the position vector of o′ in

the frame {oxyz} being ro′ while the rotation matrix from frame {o′x′y′z′} to {oxyz}

is denoted as Ro′o. If the added-mass matrix written in the frame {oxyz} is MA,rigid,

then it can be written in {o′x′y′z′} using the following equation

M′

A,rigid = UT
o′oMA,rigidUo′o where Uo′o =







Ro′o 0

0 Ro′o













I3×3

(

RT
o′oro′

)

×

0 I3×3







(2.14)

Equation (2.14) can be obtained from the invariance of the kinetic energy of the fluid.

If the body frame is established the C.G., the corresponding added-mass matrix can

be obtained using Eq. (2.14), and this matrix will have many more non-zero elements

than that computed based on a body frame at the C.V. As a result, the body frame
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of a LTA vehicle is usually defined at the C.V.

2.3.2 Viscous effect on the hull, normal to the centerline

Wind tunnel tests on the aerodynamics of bodies of revolution at non-zero angles of

attack have shown that a prediction based on a potential flow assumption can cause

considerable error because of the effects of viscosity, especially at the rear of the body.

A semi-empirical estimation approach is given in [30] and [107] for the aerodynamics

of bodies of revolution; in this approach, the force normal to the centerline due to

viscous effects can be computed as

FV N = −q0 sin 2γ · (k2 − k1)

∫ L

εV

dS

dε
dε+ q0ηCDC sin2 γ ·

∫ L

εV

2Rdε (2.15)

where CDC is the cross-flow drag coefficient of an infinite-length circular cylinder, η is

an efficiency factor accounting for the finite length of the body and determined from

its fineness ratio (shown in Fig. 2.7), R and S are the local cross-sectional radius and

area, ε denotes the longitudinal position from the nose and εV , the location at which

the flow ceases to be potential, is empirically determined as [30]:

εV = 0.378L+ 0.527ε1

where ε1 denotes the position at which dS/dε has a maximum negative value. The

dynamic pressure q0 and the angle between centerline and velocity vector γ (shown in

Fig. 2.8) is computed from the local velocity (uV , vV , wV ) at the position εV , i.e.,

γ = tan−1

(

√

v2
V

+ w2
V

uV

)

(2.16)

The first term in Eq. (2.15) effectively removes the inviscid flow contribution down-

stream of εV while the second term replaces it with a viscous flow contribution. The
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Figure 2.7: Efficiency factor η

force vector FV can be written as

FV = FV N

[

0,
−vV

√

v2
V

+ w2
V

,
−wV

√

v2
V

+ w2
V

]T

(2.17)

The corresponding moment about the origin of the body frame is computed as

MV N = −q0 sin 2γ · (k2 − k1)

∫ L

εV

dS

dε
(εm − ε) dε+ q0ηCDC sin2 γ ·

∫ L

εV

2R (εm − ε) dε

(2.18)

where εm is the position of the origin of body frame from the nose. The moment

vector is then obtained from MV N as

MV = MV N

[

0,
wV

√

v2
V

+ w2
V

,
−vV

√

v2
V

+ w2
V

]T

(2.19)

Equations (2.17) and (2.19) are applied to compute the normal forces due to viscosity

on the hull and the corresponding moments. These forces and moments are then

added to the right hand side of Eq. (2.2).

2.3.3 Force acting on the fins, normal to the centerline

We now turn our attention to the force produced by the fins, normal to the airship

centerline. This is obtained by estimating the force distribution and integrating it
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over the fin area. If we consider a point P on the fin planform (shown in Fig. 2.6),

with longitudinal position x and spanwise position s, the normal force at an area

element is predicted as

dFFN = q0∆Cpα (x, s)αe (x, s) dxds (2.20)

where ∆Cpα ≡ ∂∆Cp/∂α, and ∆Cp is the pressure coefficient of the airfoil; ∆Cpα is

determined by the local chordwise position and can be obtained from experiments or

from CFD results of the pressure distribution of the airfoil. The effective angle of

attack αe is computed as

αe =
CLα

Clα

(

1 +
R2

s2

)

αF (2.21)

where CLα/Clα is a correction factor for 3-D effects and can be obtained from finite

wing theories, such as those in [108]. The factor (1 +R2/s2) accounts for the influence

of the hull on the fins [32]. The geometric angle of attack αF employed in Eq. (2.21)

is computed from the local velocity at the center of the 1/4-chord line (see Fig. 2.6).

Figure 2.9 shows a fin located in the plane inclined at an angle ΦF from the oxz

plane. The velocity component in the x direction at the center of the 1/4-chord is

u(c/4) and the transverse velocity is decomposed into vn(c/4) perpendicular to the

fin surface and vt(c/4) parallel to the surface. Then the geometric angle of attack is
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computed as

αF = tan−1

[

vn(c/4)

u(c/4)

]

(2.22)

If αF is beyond the angle αstall at which the stall occurs, we use αstall to calculate

the effective angle of attack in Eq. (2.21). The value of αstall can be predicted by the

methods in [107].

The total normal force on the fin is obtained by integrating the force distribution,

from Eq. (2.20), over the exposed fin area, i.e.,

FF = FFN [0, cos ΦF ,− sin ΦF ]T (2.23)

where

FFN = q0

CLα

Clα
αF

∫ xF e

xF s

∫ b

R

∆Cpα (x, s)

(

1 +
R2

s2

)

dsdx

The corresponding rolling, pitching and yawing moments on the fin are obtained as

MF = [MFx,MFN sin ΦF ,MFN cos ΦF ]T (2.24)
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where

MFx = −q0

CLα

Clα

αF

∫ xF e

xF s

∫ b

R

s∆Cpα (x, s)

(

1 +
R2

s2

)

dsdx,

MFN = q0

CLα

Clα
αF

∫ xF e

xF s

∫ b

R

x∆Cpα (x, s)

(

1 +
R2

s2

)

dsdx,

(2.25)

Equations. (2.23) and (2.24) can be applied to compute the normal forces and cor-

responding moments on each fin, which are then added to the right hand side of

Eq. (2.2).

2.3.4 Force acting on the hull due to the fins, normal to the

centerline

Based on the results from wind-tunnel tests on the aerodynamics of model airships,

such as the Akron [45,47], it has been found that the presence of the fins can lead to an

additional normal force on the hull, due to the fin-induced downwash over the airflow

near the hull. The extra normal force per unit length on the hull can be obtained

as [31]:

fH(F ) = πρR2V
dwdF

dx
(2.26)

where V is the air speed, wdF is the local fin-induced downwash. The variation of the

downwash along the centerline can be computed from the force distribution on the

fins [109], as given by Eq. (2.20), and we have

wdF (x) = V
CLα

Clα
αF

∫ xF e

xF s

∫ b

R

[8πdF (dF − x+ xF )]−1 ∆Cpα (xF , s)

(

1 +
R2

s2

)

dsdxF

(2.27)

where dF =
√

(x− xF )2 + s2 is the distance from a point on a fin to a point on the

centerline. Thus, Eqs. (2.26) with (2.27) can be applied to calculate the fin-induced

normal force on the hull and the corresponding pitching and yawing moments, which

are then added to the right hand side of Eq. (2.2).
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2.3.5 Axial drag

The axial force consists of two components, the contributions from the hull and the

fins, respectively. At low angles of attack, these forces can be obtained as

FAxial,H =
[

−q0CDH0SH cos2 α, 0, 0
]T
, FAxial,F =

[

−q0CDF0SF cos2 αF , 0, 0
]T

(2.28)

where the angle of attack of the hull α is computed from the local velocity at the

C.V., CDH0 and CDF0 are the zero-angle axial drag coefficients of the hull and the

fins respectively, and SH and SF are the corresponding reference areas. For example,

these drag coefficients can be obtained from [108]. To incorporate the axial drag, the

forces from Eq. (2.28) are added to the right hand side of Eq. (2.2).

2.3.6 Force and moment due to control surface deflection

The force and moment due to the control surface deflections also need to be predicted.

A prediction method for the effects of flap deflection on the aerodynamics of a 2-D

airfoil section is given in [108], and this is now extended to 3-D fins. That is, the lift

coefficient from the deflection of control surface can be computed as

∆CL = CLατηdk3Dδ (2.29)

where δ is the deflection angle of the control surface and CLα is the 3-D lift curve slope.

The theoretical effectiveness factor τ is derived from potential flow theory as [108]

τ = 1 − θf − sin θf

π
(2.30)

where θf = cos−1 (2cf/c− 1), in which cf and c are the flap chord and airfoil chord

respectively. The correction factor ηd is based on experiments and given as a function

of δ for plain flap, as plotted in Fig. 2.10. An efficiency factor k3D is used to account
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for 3-D effects and is a function of τ and aspect ratio [107]; for example, Fig. 2.11

shows k3D for the case where τ = 0.5.

The increment in the drag coefficient, ∆CD, due to the flap deflection is given

approximately for plain flaps as [108]

∆CD = 1.7
(cf

c

)1.38
(

Sf

SFE

)

sin2 δ (2.31)

where Sf is the fin flap area. The influence of flap deflection on the pitching moment

coefficient can be estimated from thin airfoil theory, i.e., the ratio of ∆CM1/4 to ∆CL
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is written as [108]

∆CM1/4

∆CL
= − 2 sin θf − sin 2θf

8 (π − θf + sin θf)
(2.32)

where ∆CM1/4 is the pitch moment coefficient about the 1/4-chord.

The forces and moments due to the rudder and elevator deflections can be predicted

using Eqs. (2.29), (2.31), and (2.32), and then added to the right hand side of Eq. (2.2).

2.4 Linearized Model

A linear dynamics model is now formulated to allow a quantitative assessment of the

flight stability and the frequency responses to control inputs of the airship. Although

analytical linear dynamics models have been used to study airship stability, such

as [23], the aerodynamic loads in these models are usually written in terms of aero-

dynamic derivatives. However, the aerodynamic forces and moments in the present

work are expressed nonlinearly in terms of the linear and angular velocities, and it is

intractable to obtain an analytical linear formulation for these forces and moments.

Therefore, we use a numerical technique to linearize the airship’s dynamics equations

of motion. This method has been applied to other nonlinear dynamics models for

control design [110], and particularly, it has been previously employed to investigate

the stability of a tethered aerostat [111].

The nonlinear dynamics model developed in Sections 2.1 to 2.3 can be written as

a set of first-order ordinary differential equations as

Ẋ = F (X,U) (2.33)

where X is the state vector defined as X = [u0, w0, q, θ, v0, p, r, φ]T, recalling that θ

and ψ are the pitch and yaw angle respectively. The first four states describe the

longitudinal motion and the last four describe the lateral motion. U is the control
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input vector, such as that resulting from the elevator and rudder deflections. Equa-

tion (2.33) represents eight nonlinear equations, or, F = [f1, f2, · · · , f8]
T. The time

rates of change of the linear and angular velocities contained in Ẋ are obtained from

Eq. (2.2), with the aerostatics and aerodynamics models incorporated. In addition,

the rates φ̇ and θ̇ can be computed as follows [9]

φ̇ = p+ q sinφ tan θ + r cos φ tan θ, θ̇ = q cosφ− r sin φ (2.34)

To derive the linear dynamics model, the first step is to introduce a reference

equilibrium state X, about which the system will be linearized, and the correspond-

ing control U. If the airship is in steady level flight at equilibrium, then X =

[ū0, 0, 0, 0, 0, 0, 0, 0]T, where ū0 is an equilibrium speed. The second step is to write

the equations for the small disturbance from equilibrium as

∆Ẋ = F
(

X + ∆X,U + ∆U
)

≈ A · ∆X + B · ∆U (2.35)

where A = ∂F
/

∂X is the state matrix, or the Jacobian of F with respect to X, with a

similar definition of the control input matrix B = ∂F
/

∂U. The matrices A and B can

be evaluated numerically at X and U by finite difference of the nonlinear differential

equations.

Once the matrix A is obtained, the airship’s stability is characterized by the eigen-

values and eigenvectors of A. The eigenvalues can be either distinct and real, repre-

senting non-oscillatory modes, or complex conjugates as λ1,2 = σ ± jωd, representing

oscillatory modes. For an oscillatory mode, the natural frequency and damping ratio

can be evaluated from σ and ωd. For a stable airship, the real parts of all the eigen-

values must be negative. The eigenvector represents the relationship of the elements

of the state variables in the corresponding mode. Each element of an eigenvector de-

notes the magnitude and phase of the response of a particular state variable relative
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to other states.

2.5 Numerical Simulation

The numerical simulation results presented in this section include three parts. First,

the added-mass terms and steady-state aerodynamic force estimates are obtained and

compared to CFD calculations or wind-tunnel test results. Next, the nonlinear dy-

namics simulation results for the Skyship-500 airship are shown and the time responses

due to control surface deflections are analyzed. These simulated results show a good

match to the flight test data of the Skyship-500, even though the correction and effi-

ciency factors employed in Eqs. (2.15) and (2.29) are obtained from the experiments

on older airships or other aircraft. Third, the linear dynamics model of the Skyship-

500 airship is analyzed to evaluate the flight stability and the control responses in the

frequency domain.

2.5.1 Validation of the aerodynamics model

2.5.1.1 Added mass and moment of inertia of the Lotte airship

CFD packages have been developed to compute the aerodynamics of 3-D bodies in

potential flow and these have been applied to the added mass calculation for airships.

For example, in [39], a CFD package was applied to compute the added mass and mo-

ment of inertia of the Lotte airship, shown in Fig. 2.12(a). This CFD method utilizes

a distribution of source density on the body surface and solves for the distribution

necessary to meet the boundary conditions. We now use these results to evaluate the

prediction method given in Section 2.3.1.2.

The CFD results for the added mass and moment of inertia are listed in Table 2.1

and compared to our estimation results. We can observe that the estimation method
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Figure 2.12: Profiles of the airships in simulation examples

presented here leads to a reasonable approximation for the added mass of the bare

hull and the hull-fin combination. As well, we note that the fins have a considerable

effect on the added moment of inertia.

2.5.1.2 Steady-state aerodynamics of the Akron airship model

A great deal of experimental wind tunnel results on the steady-state aerodynamics can

be found in the literature for old rigid airships. In this section, the experimental results

for the 1/40-scale Akron airship model [45] (drawn in Fig. 2.12(b)) are used to test our

aerodynamics computation. The measured normal force and pitching moment (about

the C.V.) coefficients at low angles of attack are compared to our prediction results

in Figs. 2.13(a) and 2.13(b), for both bare hull and hull-fin combination. We can see
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Table 2.1: Added-mass results

Bare hull Hull-fin combination

Added-mass terms CFD [39] Prediction CFD [39] Prediction

m11 (kg) 13 11 12.7 11
m22 (kg) 112 114 129 125

m55 (kg×m2) 759 793 1379 1279

that the estimates from Section 2.3 can provide a good match to the experimental

results.

2.5.2 Nonlinear dynamics simulation for the Skyship-500 air-

ship

A dynamic simulation program has been developed in the MATLAB environment

to implement the nonlinear dynamics model discussed in Section 2.1 to 2.3. In the

numerical simulation, the Skyship-500 airship, shown in Fig. 2.12(c), is used as an

example, because the dimensional and inertial parameters, and flight test data are

available for this airship [17, 62]. This subsection contains the simulation results for

the transient responses due to elevator or rudder deflection and compares them to

flight test results.

The inertial parameters of the Skyship-500 are listed in Table 2.2. To obtain an

aerostatic force equal to the gravitational force (neutral buoyancy), the air density

must be ρ = 1.158 kg/m2, which implies that the airship flies at an altitude of about

575 m. The operating speed of this airship is usually below 30 m/s [17, 62].

2.5.2.1 Thrust force

A thrust force model is needed in order to perform the nonlinear dynamics simulation.

Two Porsche six-cylinder internal combustion engines and two Hoffman fine-blade
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Figure 2.13: Steady-state aerodynamics results of the Akron model

Table 2.2: Mass, position of C.G. and moments of inertia (about the C.V.) of
the Skyship-500 [17]

m (kg) xG (m) zG (m) Ixx (kg×m2) Iyy (kg×m2) Izz (kg×m2)

5942 0 5.1816 200658 850900 649699
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propellers are used in the thrusters of the Skyship-500 [61]. The thrust force FT can

be written as a proportional function of the input to the engine:

FT = kT δT (2.36)

where δT is the displacement of throttle crank, a mechanism that regulates the amount

of air entering the engine. The factor kT is obtained from the acceleration test results

in [61]. In this test, the airship was hovering initially and started to accelerate once

the throttle crank input was given. The airspeed of the airship was measured during

the flight.

This acceleration maneuver was simulated using a 1-DOF simplified dynamics

model of the airship in forward flight. The value of kT was obtained by trial and error

to achieve a match between the simulated airspeed, resulting in kT = −90, 000 N/m.

The input of the throttle crank and the airspeed results are displayed in Fig. 2.14.

We observe that the proportional thrust force model in Eq. (2.36) leads to reasonable

estimates of the airspeed in the acceleration test. It is also noted that a dynamic

model for FT was attempted (first- and second-order) with no improvement in the

match of the experimental results.

The moment due to each thruster is then obtained as

MT = r×
T
FT (2.37)

where FT = [FT , 0, 0]T and rT is the position vector from the body-frame origin to

the point at which the thruster is mounted.

2.5.2.2 Responses due to elevator deflection

In order to predict the responses from the dynamic simulation program, a control

force and a control moment are first applied in the simulation so that the airship
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Figure 2.14: Throttle crank input and airspeed in the acceleration test

begins its flight in a trim condition at a constant airspeed of 12.86 m/s (25 knots).

In this example, the elevator deflection input δE (positive trailing edge downward),

shown in Fig. 2.15(a), is obtained from the flight test [17]. The resulting time his-

tories of the pitch rate from the simulation and the flight test [17] are compared in

Fig. 2.15(b), where we find that the simulated response is very close to the flight test

data.

2.5.2.3 Responses due to rudder deflection

In this example, the step-like rudder input δR (positive trailing edge left) is plotted

in Fig. 2.16(a), and the response results of yaw rate are compared to the flight test

data [17] in Fig. 2.16(b). A proportional controller is applied to the thrust input so

that the airship maintains a constant airspeed. We can see that the predicted steady-

state yaw rate is higher than the test data by about 20%, but generally speaking,

the dynamic simulation program provides a reasonable match to the major trends

observed in the flight test.
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Figure 2.15: Elevator input and response results at 12.86 m/s

2.5.2.4 Yaw rate in steady turn

A steady rudder deflection leads to a steady turn flight for the airship. In this example,

the yaw rates in steady turns are computed for various rudder deflection angles (from

-30 to 30 deg) at 12.86 m/s. The simulated results are plotted and compared to

the flight test results [62] in Fig. 2.17. We can see that the turn rate is a nonlinear

function of the rudder deflection predicted by the dynamics simulation program.
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2.5.3 Linearized model and stability analysis for the Skyship-

500 airship

2.5.3.1 Frequency domain response

The nonlinear dynamics model is linearized for the Skyship-500 airship using the ap-

proach described in Section 2.4. It is found that the state matrix A can be partitioned

into four distinct submatrices as

A =







Along O(0)

0 Alat






(2.38)

where all elements in the lower left submatrix are zero, while some in the upper right

submatrix are not exactly zero but of much smaller magnitude than the elements in

the 4× 4 matrices Along and Alat. Therefore the longitudinal and lateral motions are

essentially decoupled.

Once the matrices A and B in Eq. (2.35) are obtained, the control responses in the

frequency domain can be computed. The responses due to elevator and rudder inputs

are displayed in Bode plots in Figs. 2.18 and 2.19 for forward speeds ū0 of 12.86 m/s

(25 knots) and 20.58 m/s (40 knots), respectively. The responses predicted herein

are compared to the flight test results. We can see that the linear model presented

herein provides a good match to the major trends in the flight test. In addition,

the simulated responses are compared to those predicted by Jex and Gelhausen [17].

The aerodynamic forces and moments in [17] were calculated using the HLASIM

simulation program and this program was first applied to a hybrid heavy-lift airship.

The comparison in Figs. 2.18 and 2.19 shows that the linear model proposed in this

work leads to more accurate predictions than Jex’s model results for the yaw rate

phase angle response at low frequencies.
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Figure 2.18: Control response in the frequency domain at 12.86 m/s
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Figure 2.19: Control response in the frequency domain at 20.58 m/s
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2.5.3.2 Stability and natural modes

The eigenvalues and eigenvectors of Along and Alat for the Skyship-500 airship are

investigated in Figs. 2.20 to 2.27 as they change with variations in the equilibrium

speed from 0 to 30 m/s.

The first two longitudinal modes have negative real eigenvalues, whose magnitude

increases with speed (i.e., they become more stable) as shown in Fig. 2.20(a). The

eigenvalues of the third longitudinal mode are a complex conjugate pair and the cor-

responding natural frequency and damping ratio are plotted in Fig. 2.20(b). The

eigenvectors are then studied in order to obtain the relative values (magnitude and

phase) between the different state variables of each mode, using the following steps.

First, we nondimensionalize each component of the eigenvector, i.e., each linear veloc-

ity component (∆u0,∆v0,∆w0) is divided by the equilibrium speed ū0, each angular

velocity component (∆p,∆q,∆r) is divided by ū0/ (VB)1/3 where VB is the volume of

the airship and (VB)1/3 is a reference length, and the rotation components, ∆θ and

∆φ, are not modified. Second, we select a reference state variable and factor the

eigenvector to make this state equal to unity. Third, all the real and imaginary parts

of each component are plotted in an Argand diagram. For eigenvalues that form a

complex conjugate pair λ1,2 = σ± jωd, only the eigenvector corresponding to σ+jωd is

plotted. For example, the vector diagrams of the longitudinal modes at 1 m/s, 15 m/s

and 30 m/s are shown in Figs. 2.21 to 2.23 respectively.

From the above, we conclude that all longitudinal modes are stable. It is noted that

the mode shapes change dramatically with forward speed because the aerodynamic

force and moment are negligible at a very low speed but become more important as

the speed increases. The particular motion characteristics of each mode at different

speeds have similar trends to the modal results of other airships considered by Cook

et al. [23] and Kornienko [63]. They can be described as follows:

1) The first longitudinal mode is a surge subsidence mode caused by the axial
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Figure 2.20: Longitudinal modes
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Figure 2.23: Vector diagram of longitudinal modes at 30 m/s

aerodynamic drag, and can be considered as a 1-DOF motion in forward velocity

∆u0. The modes are neutrally stable at zero speed and become more stable as the

speed increases.

2) The second longitudinal mode is a heave-pitch subsidence mode caused by the

transverse aerodynamic drag. The dominant motion is ∆w0 near zero speed, coupling

with some ∆θ, ∆q and ∆u0 as the speed increases to about 12 m/s. The pitch

rate generates additional aerodynamic damping moment, thus further stabilizing this

mode.

3) The third longitudinal mode is a pitch-incidence oscillatory mode. Near zero

speed, the dominant motion is the pitch rate ∆q, combined with some ∆u0. As the

speed increases to about 14 m/s, ∆w0 becomes apparent and the incidence causes a

Munk moment, which tends to destabilize the system, thereby leading to a decrease
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in the damping ratio at speeds from 14 m/s to 30 m/s.

The lateral stability modes can be studied using a similar approach. The first two

lateral modes have negative real eigenvalues as shown in Fig. 2.24(a). The eigenvalues

of the third lateral mode are a complex conjugate pair and the corresponding natural

frequency and damping ratio are plotted in Fig. 2.24(b). The corresponding vector

diagrams of the lateral modes at 1 m/s, 15 m/s and 30 m/s are shown in Figs. 2.25

to 2.27 respectively. Again, the lateral modal results are similar to those of the airships

in [23] and [63]. All modes are stable, and the motion characteristics of each mode

can be described as follows:

1) The first lateral mode is a sideslip-yaw subsidence mode. Near zero speed,

the most apparent motion is ∆v0 and yaw rate ∆r. As the speed increases, the roll

rotation ∆φ becomes apparent because of the centrifugal force.

2) The second lateral mode is a yaw-roll subsidence mode. The yaw rate ∆r

couples with ∆v0 at near-zero speed. This mode becomes slightly less stable as the

speed increases from 25 m/s to 30 m/s. This is likely due to the unstable effect of the

Munk moment, as in the longitudinal modal analysis.

3) The third lateral mode is a roll oscillatory mode, coupling with ∆v0, and with

∆r at high speed. The damping ratio curve shows that the aerodynamic damping

becomes more significant as the speed increases.

2.6 2-DOF Model for Steady Turns

The 6-DOF dynamics simulation model in the above sections can be applied to ana-

lyze the dynamic flight behavior of airships, as well as their steady state behavior such

as the steady turn rates discussed in Section 2.5.2.4. To perform this analysis, the ge-

ometric dimensions and inertial properties (mass, position of C.G. and inertia tensor)

must be provided. However, some of these parameters, such as the second moment
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Figure 2.24: Lateral modes
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of inertia, are not usually provided as part of airship design and are difficult to esti-

mate and may not be needed to evaluate the airship’s steady state performance. This

section presents a 2-DOF simplified model to predict the steady turn characteristics,

which requires much less information than the above 6-DOF model.

2.6.1 Simplified model

An airship in a steady turn is shown in Fig. 2.28, with constant linear velocity u0

in the x direction and v0 in the y direction and a constant yaw rate r. In order to

perform this steady turn, two control inputs must be specified: a thrust input to

maintain the constant airspeed V , and a constant rudder deflection to generate the

yaw rotation. The procedure of generating a steady turn from a steady straight flight
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is as follows. The airship with forward speed u0 is given a positive rudder deflection δR,

thus generating a control force Fδ,y, acting at a position xδ, and leading to a negative

yaw moment and a velocity v0 in the y direction. This lateral velocity leads to two

kinds of aerodynamic effects: (1) an unstable negative added-mass aerodynamic yaw

moment MA,z (Munk moment), and (2) three aerodynamic normal forces as discussed

in Sections 2.3.2 to 2.3.4, i.e., the viscous effect on the hull FV,y, the force on the

vertical fins FF,y, and the force on the hull due to the fins FH(F ),y. These latter three

forces act at the rear of the airship and result in three positive stable yaw moments

MV,z, MF,z and MH(F ),z. Initially, the sum of the Munk moment and the control

moment are greater than the sum of the moments due to the other three normal forces,

so the airship starts to turn with a yaw rate r < 0. The negative yaw rate increases

the three aerodynamic forces at the rear and thus increases the resulting positive yaw

moments. Once the moment from the rudder, the negative Munk moment and the

other three positive aerodynamic moments are in balance, the magnitude of the yaw

rate stops increasing and the airship is in a steady turn.

A simplified dynamics model can be obtained for a steady turn in a horizontal

plane from the following assumptions:

• V ≈ u0.

• All accelerations are assumed to be zero.

• The roll rotation can be neglected.

Thus, collecting the terms related to u0, v0 and r in the lateral motion equations

yields:

F1 = −ρVBu0r + FAD,y(u0, v0, r) + Fδ,y(u0, v0, r) = 0

F2 = −ρVBxGu0r +MAD,z(u0, v0, r) +Mδ,z(u0, v0, r) = 0

(2.39)

where ρVB represents the mass of a neutrally buoyant airship, the subscripts AD and
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Figure 2.28: An airship in steady turn

δ denote force or moment from the aerodynamics and rudder deflection respectively.

Equation (2.39) is a simplified dynamics model for a steady turn and the turn char-

acteristics can be obtained by solving for r and v0, given the particular airspeed. The

control input Fδ,y and Mδ,z can be calculated from Section 2.3.6 given a particular

rudder deflection. We are now interested in evaluating the possible approximations

that can be made in the computation of the aerodynamic force and moment, FAD,y

and MAD,z. Two computational methods are respectively applied to these terms. The

first one (denoted as the full aerodynamics model) uses the approach in Sections 2.3.1

to 2.3.4 with all aerodynamic effects incorporated. The second method (denoted as

the linear aerodynamics model) uses the linear formulation

FAD,y =
∂FAD,y

∂v0
v0 +

∂FAD,y

∂r
r, MAD,z =

∂MAD,z

∂v0
v0 +

∂MAD,z

∂r
r (2.40)

where the derivatives are constant and evaluated at v0 = 0 and r = 0 for the given

u0.

2.6.2 Comparison to the 6-DOF model

The steady turn characteristics of the Skyship-500 are now investigated using the

simplified 2-DOF dynamics model with the two aerodynamics computation methods,
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and compared to the simulated results from the 6-DOF dynamics model. Figure 2.29

shows the resulting yaw rates from the different models. The 2-DOF dynamics model

with linear aerodynamics computation leads to large errors, because Eq. (2.40) cannot

represent the real aerodynamic effects in a turn. However, the 2-DOF model with full

aerodynamics computation can accurately predict the steady turn rate, especially at

low rudder deflections. The results from the 2-DOF model are slightly different from

the 6-DOF dynamics model at high rudder deflections (δR > 20o). This is likely due

to the effects of roll rotation.

The comparisons show that steady turn characteristics from the 2-DOF model with

full aerodynamics computation are close to those from the 6-DOF nonlinear dynamics

simulation; while simplifications made in the linear aerodynamics computation in

Eq. (2.40) cause large error. Furthermore, the implementation of the simplified 2-

DOF dynamics model in Eq. (2.39) requires only the dimensional information about

the airship and the x coordinate of the C.G. It does not require the z coordinate of

the C.G. nor the second moment of inertia. This provides an accurate, effective and

easy means to evaluate the turn performance of an airship.
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Figure 2.29: Turn rate results (at 12.86 m/s) from 2-DOF and 6-DOF models
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Chapter 3

Dynamics Model of Flexible

Airships: Equations of Motion

In the existing airship dynamics models, such as those presented in [12, 15, 17, 19],

the aircraft was modeled as a rigid body and the structural flexibility was ignored.

However, real airships experience deformations and their structural flexibility can

influence the aerodynamic forces and moments and the resulting flight behavior. To

improve the understanding of the airship dynamics, a theoretical framework is now

presented to seamlessly unify its flight dynamics, structural dynamics, aerostatics

and aerodynamics, and then the theoretical model is applied to perform the dynamics

simulation and aeroelastic stability analysis for an airship. The presented dynamics

model and the corresponding simulation program provide a useful tool to analyze the

flight behavior and can serve as a platform to evaluate a control system design.

This chapter first assembles the equations of motion for a flexible airship with

linear elastic deformation. The corresponding aerodynamics model is investigated in

detail in Chapter 4, by extending the aerodynamic computational approach proposed

in Chapter 2. The dynamics simulation results for a flexible airship are then presented

in Chapter 5, and the possibility of aeroelastic instability is discussed in Chapter 6.
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3.1 Kinematic Description

We first review the fundamental kinematic description for an unconstrained flexible

vehicle. Similar to the dynamics model derived in Chapter 2, the equations of motion

of an elastic aircraft are also usually derived in a body-fixed frame. As discussed by

Meirovitch and Tuzcu [93], there are two commonly used body reference frames. The

first one is fixed on the undeformed body; while the second one is moving relative

to the undeformed body, by setting its reference axes as the mean axes. The mean

axes represent a body frame satisfying six constraints such that the kinetic energy

associated with the deformation stays at a minimum [112]; as a result, the linear

and angular momentum vectors due to elastic deformation vanish. That is, a proper

use of the mean axes for flexible bodies in vacuum can lead to inertial decoupling.

However, Meirovitch et al. [93] demonstrated that, the benefits of using the mean

axes are questionable for a flexible aircraft, because the equations of motion remain

coupled through the aerodynamic terms. Hence, Meirovitch et al. used the first kind

of the body frame for the dynamics model of a flexible airplane.

Following the lead in [93], we write the equations of motion of a flexible airship

in a body frame {oxyz} fixed on the undeformed airship (as shown in Fig. 3.1),

similar to Chapter 2, with its origin o at the C.V., the x axis along the hull centerline

and pointing toward the nose, the z axis vertically downward and the positive y

axis determined by the right hand rule. The motion of the vehicle is described as

the translation and rotation of this body frame with respect to the inertial frame

{OXY Z}, plus the deformation of the material points on the body relative to the

body frame. Note that the deformed centerline (see Fig. 3.1) will be used to define

local centerline frames for the aerodynamics calculation in Chapter 4.

With the aforementioned frame assignment, the elastic displacement u of a mate-

rial point on the airship is written as a summation of the shape functions according
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Figure 3.1: Body frame on the undeformed body

to

u =
∑

qi(t)Φi(r) (3.1)

where qi are the time-dependent generalized coordinates, Φi = [Φxi,Φyi,Φzi]
T are the

time-independent shape functions, and r is the position vector of the material point

from the origin o on the undeformed body and expressed in the body-fixed frame.

Then the velocity distribution over the elastic body is expressed as:

v = v0 + ω
×r + ω

×u + u̇ (3.2)

where the first two terms are associated with the rigid-body translation and rotation

respectively, the last two terms represent the influence of the flexibility on the local

velocity. The vector u̇ is the velocity at this point due to the deformation observed

in the body-fixed frame {oxyz}. The term ω
×u results from the coupling between

rotation and deformation.

3.1.1 Shape functions

The shape functions can be chosen as functions that satisfy the geometric boundary

conditions of the airship structure. The present document represents the first theo-

retical work on the aeroelastic analysis of LTA vehicles. As such, in this thesis, the

airship is modeled as a free-free Euler-Bernoulli beam undergoing bending deforma-
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tion only. There are three principal reasons for using this simplified model to describe

flexibility of the airship. First, from published FEA results of modal analysis of an

airship with a fineness ratio of 4 [73] and an ellipsoidal shell with a fineness ratio of

6 [75], the fundamental mode shape of an airship usually describes the hull bending

if the internal pressure is high enough to prevent wrinkling. Second, the deflection

characteristics of non-rigid airships have been investigated using an Euler-Bernoulli

beam model [2] and experiments on airship models (with fineness ratios of 4, 6.9 and

8.5) have shown that such a model could provide reasonable accuracy [68,69]. Third,

experimental and theoretical studies have shown that Euler-Bernoulli beam models

can be successfully employed to analyze the deflection behavior of inflated cylinders

with fineness ratios from 6 to 18 without wrinkling [82, 83, 85], and that the first two

vibration modes of an inflated circular cylinder are adequately described by beam

bending modes [86]. A Timoshenko beam model [84] or a FEM-based method by Mc-

Tavish [113] can be applied to incorporate the shear deformation and the deformation

of the cross section, but would require more complicated modeling.

The shape functions in this work are chosen as the natural vibration mode shapes

of the beam, because the mode shapes reflect the mass and stiffness distribution of

the airship and also satisfy the orthogonality conditions; the latter can simplify the

equations of motion and can be used to check the dynamics simulation program. We

employ 2N shape functions to describe the airship’s deflection. The first N shape

functions are chosen as Φi = [0,Φi, 0]T, i = 1, 2, . . . , N , describing the bending in

the oxy plane, and the other N shape functions are written as ΦN+i = [0, 0,Φi]
T,

i = 1, 2, . . . , N , describing the bending in the oxz plane, where Φi is the ith natural

mode shape of the free-free beam. That is, Φi satisfies the following spatial differential

equation

d2

dx2

[

EI(x)
d2

dx2
Φi(x)

]

= ω2
i m̄(x)Φi(x) (3.3)
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and the boundary conditions

d

dx

[

EI(x)
d2

dx2
Φi

]

= 0 and EI(x)
d2

dx2
Φi = 0 at both ends

where EI(x) is the bending stiffness, m̄ denotes the mass per unit length and ωi is

the natural frequency of the ith mode. In addition, the normal modes of a free-free

Euler-Bernoulli beam satisfy the following orthogonality conditions

∫

L

ΦiΦjm̄dx =















0 if i 6= j

1 if i = j

,

∫

L

Φim̄dx = 0,

∫

L

xΦim̄dx = 0 (3.4)

where L represents the centerline length. The first condition in Eq. (3.4) represents

the orthogonality between two elastic modes, and the other two represent the or-

thogonality conditions between the elastic modes and rigid-body modes of a free-free

beam.

3.2 Equations of Motion

Given the velocity distributions in Eq. (3.2), the kinetic energy of the flexible vehicle

is written as

T =
1

2

∫

m

vTvdm (3.5)

Under a linear elasticity assumption, the elastic potential energy of the flexible airship

can be obtained as

V =
1

2
qTKq (3.6)

where q = [q1, q2, . . . , q2N ]T, K is a stiffness matrix. With the shape functions from

Section 3.1, the non-zero elements of the stiffness matrix K can be computed as

Ki,j =

∫

L

EI(x)Φ′′

i Φ
′′

jdx, KN+i,N+j =

∫

L

EI(x)Φ′′

i Φ
′′

jdx, i, j = 1, 2, . . . , N (3.7)
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The equations of motion for a flexible vehicle can be derived from the kinetic and

potential energies by Lagrange’s equations in terms of generalized coordinates and

quasi coordinates [93, 94]. That is

d

dt

∂T
∂v0

+ ω
×
∂T
∂v0

= F (3.8)

d

dt

∂T
∂ω

+ v×

0

∂T
∂v0

+ ω
×
∂T
∂ω

= M (3.9)

d

dt

∂T
∂q̇

− ∂T
∂q

+
∂V
∂q

= Q (3.10)

where F and M are the external force and moment respectively, Q is the generalized

elastic force with its components computed as Qi =
∫

L
fTΦidx, i = 1, 2, . . . , 2N , in

which f is the external force per unit length. The resulting equations of motion have

the following matrix form:













M11 M12 M13

M21 M22 M23

M31 M32 M33

























v̇0

ω̇

q̈













= −













0

0

SE













+













FI

MI

QI













+













FG

MG

QG













+













FAS

MAS

QAS













+













FAD

MAD

QAD













+













FC

MC

QC













(3.11)

where

Msys =













M11 M12 M13

M21 M22 M23

M31 M32 M33













(3.12)

is the symmetric mass matrix of the flexible airship, SE is the internal elastic force

vector and represents the stiffness term as

SE = Kq (3.13)

The subscripts I, G, AS, AD and C denote the forces and moments due to inertia,

gravity, aerostatics, aerodynamics, and control, respectively. The computation of the

forces, moments and generalized forces due to aerodynamics will be investigated in
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detail in Chapter 4. The other force and moment terms are discussed below.

3.3 Inertial Terms

3.3.1 Linear and angular momenta

In order to introduce the definitions of the shape integrals used in the mass matrix,

and to interpret the corresponding integral results to be presented in Section 5.3.2.1,

we proceed to write the linear and angular momenta for a flexible vehicle.

The linear momentum of the airship is defined as
∫

m
vdm. Substituting v from

Eq. (3.2) yields

∫

m

vdm = mv0 + ω
×rG + ω

×

2N
∑

i=1

qipi +

2N
∑

i=1

q̇ipi (3.14)

where rG =
∫

m
rdm/m is the position vector of the C.G. of the undeformed body, and

the linear momentum coefficients

pi =

∫

m

Φidm, i = 1, 2, . . . , 2N (3.15)

represent the influence of the ith mode shape on the position of the C.G.

The angular momentum of a flexible vehicle about the origin of the body-fixed

frame o is obtained as
∫

m
(r + u)× vdm. Substituting u from Eq. (3.1) and v from

Eq. (3.2) leads to

∫

m

(

r× + u×
)

vdm = Jtotalω+mr×
G
v0 +

2N
∑

i=1

qip
×

i v0 +

2N
∑

i=1

q̇ihi +

2N
∑

i=1

2N
∑

i=1

qiq̇jh
′

ij (3.16)
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The matrix Jtotal in Eq. (3.16) is the total second moment of inertia computed as

Jtotal = −
∫

m

(r + u)× (r + u)× dm = J + Jru + Jur + Juu (3.17)

where J = −
∫

m
r×r×dm is the second moment of inertia of the undeformed vehicle.

The other three terms denote the effect of the elastic displacement on the second

moment of inertia. The matrices Jru and Jur are the rigid/flexible coupling parts of

the second moment of inertia and Jur = JT
ru, in which Jru is obtained as

Jru = −
∫

m

r×u×dm =
2N
∑

i=1

qiJ
′

ru,i where J′

ru,i = −
∫

m

r×Φ×

i dm (3.18)

The matrix Juu is the flexible part of the second moment of inertia determined with

Juu = −
∫

m

u×u×dm =

2N
∑

i=1

2N
∑

j=1

qiqjJ
′′

uu,ij where J′′

uu,ij = −
∫

m

Φ×

i Φ×

j dm (3.19)

The third term in Eq. (3.16) represents the influence of the elastic displacement of the

C.G. on the angular momentum. The angular momentum coefficients and the flexible

angular momentum coefficients are defined as

hi =

∫

m

r×Φidm, h′

ij =

∫

m

Φ×

i Φjdm, i, j = 1, 2, . . . , 2N (3.20)

The fourth and fifth terms in Eq. (3.16) denote the effects of the generalized velocities

on the angular momentum.

3.3.2 Mass matrix and inertial force

The expressions for the symmetric mass matrix Msys and the inertial terms FI , MI

and QI of an elastic body have been derived for robotic manipulators [114] and con-

ventional aircraft [113] and are no different for the elastic airships. Therefore we do
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not repeat their derivations but only summarize the results in this section.

The submatrices in the mass matrix in Eq. (3.12) can be written as [113, 114]

M11 = mI3×3, M12 = −c×total, M13 = P (3.21)

M21 = c×total, M22 = Jtotal, M23 = Htotal (3.22)

M31 = PT, M32 = HT
total, M33 = Me (3.23)

The 3× 2N linear momentum coefficient matrix P is associated with the influence of

deformation on the linear momentum and is defined as:

P = [p1,p2, . . . ,p2N ] (3.24)

The total first moment of inertia ctotal is obtained as

ctotal =

∫

m

(r + u) dm = mrG + Pq (3.25)

where the Pq term represents the change of the first moment because of elastic defor-

mation. In general, Pq is not zero, in which case the translation and rotation remain

coupled for a flexible vehicle even if the body frame is established at the C.G. of the

undeformed body. This also shows that the advantages of using a body-fixed frame

at the C.G. is questionable for an elastic airship.

The 3 × 2N matrix Htotal represents the influence of elastic deformation on the

angular momentum of a flexible vehicle and it consists of two components, i.e.,

Htotal = H + Hu (3.26)

in which H is the angular momentum coefficient matrix defined as

H = [h1,h2, . . . ,h2N ] (3.27)

66



and the flexible angular momentum coefficient matrix Hu is given as

Hu =

2N
∑

i=1

qiH
′

u,i where H′

u,i = [h′

i1,h
′

i2, . . . ,h
′

i,2N ] (3.28)

Lastly, the components of the elastic generalized mass matrix Me are defined as

Me,ij =

∫

m

ΦT
i Φjdm (3.29)

From the first orthogonality condition in Eq. (3.4), the elastic generalized mass matrix

Me is a 2N×2N identity matrix. This completes the formulation of the mass matrix of

a flexible airship. In summary, the submatrices M11, M13, M31 and M33 are constant,

while other submatrices depend on the generalized coordinates. Consequently, the

total mass matrix is an implicit function of time.

The inertial force and moment terms on the right hand side of Eq. (3.11) are given

by [113, 114]:













FI

MI

QI













= −













mω
× −ω

×c×total 2Pq̇

c×totalω
×

ω
×Jtotal 2Hq̇,total

−PT
q̇ −HT

q̇,total 2Meq̇

























v0

ω

q̇













(3.30)

in which the effects of elastic deformation on the centrifugal terms are included in

the total first moment of inertia ctotal. Again, the centrifugal force and moment are

not zero even if the body frame is at the C.G. of the undeformed vehicle. The effects

of flexibility on the Coriolis terms are accounted for by the matrices Pq̇, Hq̇,total and

Meq̇. The definitions of these matrices are given as follows.

The 3×2N flexible linear Coriolis matrix is Pq̇ = ω
×P and the force term −2Pq̇q̇

represents the Coriolis force because of the deformation. The 3× 2N flexible angular
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Coriolis matrix Hq̇,total is computed as Hq̇,total = Hq̇ + Hq̇u, in which

Hq̇ =
[

J′

ru,1ω,J
′

ru,2ω, . . . ,J
′

ru,2Nω

]

(3.31)

and

Hq̇u =

[

2N
∑

j=1

qjJ
′′

uu,1jω,

2N
∑

j=1

qjJ
′′

uu,2jω, . . . ,

2N
∑

j=1

qjJ
′′

uu,2Njω

]

(3.32)

The 2N × 2N flexible Coriolis matrix is defined as

Meq̇ =
[

ω
×H′

u,1,ω
×H′

u,2, . . . ,ω
×H′

u,2N

]

(3.33)

We can see that the centrifugal and Coriolis terms are nonlinear functions of the

rigid-body velocities (v0 and ω) and the elastic deformation (q and q̇).

Equations (3.21) to (3.23), and Eq. (3.30) provide the complete formulations of the

total mass matrix and the inertial forces and moments for an unconstrained flexible

vehicle. These were derived from the exact kinetic energy expression, i.e., Eq. (3.5)

with the exact velocity distribution of Eq. (3.2) and therefore they include all inertial

elastic nonlinearities.

3.4 Gravity, Aerostatic and Thrust Forces

The airship flexibility does not affect the magnitude of the gravitational force, so that

the force vector FG can be calculated using the method for a rigid-body model, i.e.,

with Eq. (2.5). However, the gravitational moment is affected by the deformation be-

cause of the elastic displacement of the C.G., which is computed as uG =
∫

m
udm/m.

Substituting Eq. (3.1) for u leads to

uG =
1

m

2N
∑

i=1

qi(t)pi (3.34)
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The external moment due to gravity is then computed as

MG = r×
G
FG +

1

m

2N
∑

i=1

qi(t)p
×

i FG (3.35)

The second term on the right hand side of Eq. (3.35) represents the influence of

flexibility on the gravitational moment. The gravitational generalized force is obtained

as QGi =
∫

m
gĝTΦidm or using the linear momentum coefficients of Eq. (3.15), we

have

QGi = gĝTpi, i = 1, 2, . . . , 2N (3.36)

The aerostatic force FAS can be computed using Eq. (2.7), since it is reasonable

to assume that the flexibility does not affect the body volume. The elastic displace-

ment of the C.V. is computed as uV =
∫

V
udV/VB. Then, substituting Eq. (3.1) to

determine uV , the external moment due to aerostatics can be written as

MAS =

2N
∑

i=1

qiI
×

AS,iFAS (3.37)

where we define an aerostatic shape function integral IAS,i for the ith mode as

IAS,i =
1

VB

∫

V

ΦidV =
1

VB

∫

L

ΦiS(x)dx (3.38)

The aerostatic generalized force is computed as QAS,i = −
∫

L
ρĝTΦiSdx, or, using the

shape function of Eq. (3.38), we have:

QAS,i = FT
ASIAS,i, i = 1, 2, . . . , 2N (3.39)

The aerodynamically-induced control forces due to flap deflection will be inves-

tigated in Chapter 4, but the thrust forces are discussed in this section. Unlike the

distributed gravity and aerostatic forces, the thrust forces are concentrated forces.
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The corresponding external force FT can be computed using the method described in

Section 2.5.2.1. The thruster moment is obtained as MT = r×
T
FT + u×

T
FT in which

uT denotes the elastic displacement at the position rT where a thruster is mounted.

Again, using Eq. (3.1), we obtain:

MT = r×
T
FT +

2N
∑

i=1

qi(t)Φi (rT )× FT (3.40)

in which Φi (rT ) denotes the shape function evaluated at the thruster position. The

corresponding generalized force is given as

QT i = FT
T Φi (rT ) (3.41)

We can see that the influence of flexibility on the thruster model is incorporated in

the moment calculation by accounting for the elastic displacement at the thruster

position.
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Chapter 4

Dynamics Model of Flexible

Airships: Aerodynamics

To complete the dynamics model presented in Chapter 3, the aerodynamic force, mo-

ment and generalized force should be incorporated into Eq. (3.11). For this purpose,

we now extend the aerodynamic computational method in Chapter 2 to flexible air-

ships. With the aerodynamic terms categorized in the same way as in Section 2.3,

the aerodynamic formulation can be summarized as follows













FAD

MAD

QAD













=













FA

MA

QA













+













FV

MV

QV













+













FF

MF

QF













+













FH(F )

MH(F )

QH(F )













+













FAxial

MAxial

QAxial













(4.1)

where the first term is the potential-flow aerodynamic force, which is related to the

added mass, the second term is due to the viscous effect on the hull, the third term

is the force acting on the fins, the fourth term is the force on the hull due to the fins,

and the last term is associated with the axial drag. The computation of each term

will be discussed in the following sections but first we revisit the velocity distribution

of a flexible airship employed in these computations.
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4.1 Velocity Computation for Aerodynamics

To consider the effects of flexibility on the aerodynamic computation, the local velocity

components defined in a local centerline frame {Pxpypzp} (shown in Fig. 4.1) are

used in the aerodynamics computation for a flexible airship. This centerline frame is

established along the centerline at a point P , with its xp axis tangent to the centerline.

For a rigid airship, the xp axis is parallel to the x axis of the body-fixed frame {oxyz};

for a flexible airship, the orientation of the frame {Pxpypzp} is related to the bending

slopes. For small elastic displacements and infinitesimal rotations, we use the first-

order approximation to compute the rotation matrix from the body frame to the local

centerline frame Rp [114], i.e.,

Rp =













1 R12 R13

−R12 1 0

−R13 0 1













where R12 =
2N
∑

i=1

qiΦ
′

yi, R13 =
2N
∑

i=1

qiΦ
′

zi (4.2)

The velocity distribution of a flexible airship, i.e., v from Eq. (3.2), is now rewritten

in the local centerline frame {Pxpypzp} as

vd = Rpv (4.3)

where the subscript d denotes a vector written in a local centerline frame on the

deformed body. Substituting Rp from Eq. (4.2) and v from Eq. (3.2) into Eq. (4.3),

and neglecting the products of the following terms of small orders of magnitude:

(p, q, r,Φi,Φ
′

i), we have

vd ≈ v0 + ω
×r +

2N
∑

i=1

q̇iΦi − u0

2N
∑

i=1

qiΦ
′

i (4.4)

where the first two terms represent the velocity distribution on a rigid-body vehicle;
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Figure 4.1: Local centerline frame

the last two terms represent the influence of deformation: one related to the deflection

rate and the other related to the bending slope. To incorporate the effects of flexibility,

vd = {ud, vd, wd} calculated as Eq. (4.4) is used in the aerodynamics computations

in this chapter. A similar velocity calculation was used to compute the local angle of

attack of an elastic missile in [96].

4.2 Potential-flow aerodynamic force

For a rigid-body vehicle completely submerged in an unbounded potential fluid, the

fluid kinetic energy can be written in terms of a 6 × 6 added-mass matrix and the

aerodynamic forces and moments are given by the added-mass terms in Eq. (2.9). For a

flexible vehicle, with its deformation described by 2N shape functions, the added-mass

matrix representing the fluid kinetic energy should be a (6 + 2N)× (6 + 2N) matrix.

To the author’s knowledge, no works have been published on a complete formulation

of the added-mass matrix and the corresponding aerodynamic forces and moments for

an elastic vehicle maneuvering in a heavy fluid. In this subsection, the derivation of

this added-mass matrix and the computation of the corresponding forces and moments

are presented from first principles. For this purpose, the boundary condition of the

Laplace equation is first given for an elastic vehicle moving in an unbounded potential

fluid, then the total added-mass matrix and the corresponding aerodynamic forces,

moments and generalized forces are derived from the fluid’s kinetic energy. Finally,

the airship is approximated as an ellipsoid of revolution and the added-mass matrix
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is evaluated using the analytical solution of the Laplace equation for an ellipsoid.

4.2.1 Boundary condition of the Laplace equation

For a potential fluid, the velocity vector of the fluid can be represented by the gradient

of a scalar potential Ψ [25], i.e., ∇Ψ = vf , where vf = [uf , vf , wf ]
T denotes the

velocity vector of the fluid. The continuity equation for the fluid can be written as

the Laplace equation [25]

∇2Ψ = 0 (4.5)

In the case of a vehicle in an unbounded fluid, no fluid particles can flow through the

boundary surface into the body, so at a point on the boundary surface, the normal

component of the fluid velocity must be equal to the normal velocity of that point on

the body, as shown in Fig. 4.2, i.e.,

vT
f n = vT

d n, over SB (4.6)

where n = [n1, n2, n3]
T is the unit normal vector of the boundary surface, with its

positive direction defined outside the body and SB denotes the boundary surface of

the body. Substituting vd from Eq. (4.4) into Eq. (4.6), we have

vT
f n = vT

0
n + ω

T
(

r×n
)

+
2N
∑

i=1

q̇iΦ
T
i n − u0

2N
∑

i=1

qiΦ
′T
i n, over SB (4.7)

Equation (4.7) represents the boundary conditions of the Laplace equation for a flex-

ible body moving through an unbounded potential fluid.

In order to separate the variables according to the boundary conditions, we write

the velocity potential as a superposition of various velocity potential components as

Ψ = vvvTΨr + q̇TΨq + u0q
TΨs (4.8)
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Figure 4.2: Boundary condition of the Laplace equation

Recall that vvv = [vT
0
,ωT]T and v0 = [u0, v0, w0]

T, ω = [p, q, r]T denote the linear and

angular velocity vectors. The vector Ψr = [Ψr1,Ψr2, . . . ,Ψr6]
T represents the veloc-

ity potentials associated with the rigid-body motion, in which Ψr1 = [Ψr1,Ψr2,Ψr3]
T

contains the potential components related to the translational motion and Ψr2 =

[Ψr4,Ψr5,Ψr6]
T contains the components related to the rotational motion. The po-

tentials Ψri are functions of position only and satisfy the Laplace equation ∇2Ψri = 0

(i = 1, 2, . . . , 6). The components related to translation and rotation satisfy the fol-

lowing boundary conditions respectively,

∂Ψr1

∂n
= n,

∂Ψr2

∂n
= r×n (4.9)

where ∂Ψr1/∂n = [∂Ψr1/∂n, . . . , ∂Ψr3/∂n]T, ∂Ψr2/∂n = [∂Ψr4/∂n, . . . , ∂Ψr6/∂n]T,

and ∂Ψr1/∂n ≡ (∇Ψr1)
T
n, etc.

The second term on the right hand side of Eq. (4.8) is associated with the deflec-

tion rate. The vector Ψq = [Ψq1,Ψq2, . . . ,Ψq,2N ]T contains the potential components

related to the mode shapes. That is, Ψqi is independent of time and satisfies the

Laplace equation with the corresponding boundary condition as

∇2Ψqi = 0,
∂Ψqi

∂n
= ΦT

i n, i = 1, 2, . . . , 2N (4.10)

The third term on the right hand side of Eq. (4.8) relates to the bending slope.

The vector Ψs = [Ψs1,Ψs2, . . . ,Ψs,2N ]T contains the potential components associated

with the slopes of the shape functions. Similarly, Ψsi is independent of time and
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satisfies the Laplace equation with the corresponding boundary condition as

∇2Ψsi = 0,
∂Ψsi

∂n
= −Φ′T

i n, i = 1, 2, . . . , 2N (4.11)

Under the conditions of Eqs. (4.9) to (4.11), we can check that the velocity poten-

tial in Eq. (4.8) is a solution of the Laplace equation with the boundary conditions

of a flexible vehicle in Eq. (4.7). Once all the components Ψri (i = 1, 2, . . . , 6), Ψqi

(i = 1, 2, . . . , 2N) and Ψsi (i = 1, 2, . . . , 2N) are known, we can solve the Laplace

equation for Ψ.

4.2.2 Fluid kinetic energy and added-mass matrix

The fluid kinetic energy of a volume element dV is 1/2ρ
(

vT
f vf

)

dV . Expressing the

velocity in terms of the velocity potential and integrating over the region of the fluid,

we have the total kinetic energy of the fluid as Tf = 1
2
ρ
∫∫∫

Vf
(∇Ψ)T (∇Ψ) dV , in

which Vf denotes the fluid volume. Using Green’s theorem, the kinetic energy of the

fluid is written as

Tf = −1

2
ρ

∫∫

SB

Ψ
∂Ψ

∂n
dS

With the velocity potential written as the superposition of Ψri, Ψqi and Ψsi from

Eq. (4.8), we have

Tf =
1

2
vvvTMrrvvv +

1

2
vvvTMrqq̇ +

1

2
q̇TMqrvvv +

1

2
u0q

TMsrvvv +
1

2
u0vvv

TMrsq

+
1

2
q̇TMqqq̇ +

1

2
u0q

TMsqq̇ +
1

2
u0q̇

TMqsq +
1

2
u2

0q
TMssq

(4.12)

where the added-mass matrices Mrr, Mrq, , Mqr, Mqq, Mrs, Msr, Msq, Mqs and

Mss are constructed from the i, j-entries in Table 4.1, and all these matrices are time

independent. We can see that Mrr is a 6 × 6 rigid-body added-mass matrix and the

first term in Eq. (4.12) represents the contribution of rigid-body motion terms to the
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Table 4.1: Added-mass matrix entities

Matrix Entities

Mrr Mrr,ij = −ρ
∫∫

SB
Ψri

∂Ψrj

∂n
dS, i = 1, 2, . . . , 6, j = 1, 2, . . . , 6

Mrq Mrq,ij = −ρ
∫∫

SB
Ψri

∂Ψqj

∂n
dS, i = 1, 2, . . . , 6, j = 1, 2, . . . , 2N

Mqr Mqr,ij = −ρ
∫∫

SB
Ψqi

∂Ψrj

∂n
dS, i = 1, 2, . . . , 2N , j = 1, 2, . . . , 6

Mqq Mqq,ij = −ρ
∫∫

SB
Ψqi

∂Ψqj

∂n
dS, i = 1, 2, . . . , 2N , j = 1, 2, . . . , 2N

Mrs Mrs,ij = −ρ
∫∫

SB
Ψri

∂Ψsj

∂n
dS, i = 1, 2, . . . , 6, j = 1, 2, . . . , 2N

Msr Msr,ij = −ρ
∫∫

SB
Ψsi

∂Ψrj

∂n
dS, i = 1, 2, . . . , 2N , j = 1, 2, . . . , 6

Mqs Mqs,ij = −ρ
∫∫

SB
Ψqi

∂Ψsj

∂n
dS, i = 1, 2, . . . , 2N , j = 1, 2, . . . , 2N

Msq Msq,ij = −ρ
∫∫

SB
Ψsi

∂Ψqj

∂n
dS, i = 1, 2, . . . , 2N , j = 1, 2, . . . , 2N

Mss Mss,ij = −ρ
∫∫

SB
Ψsi

∂Ψsj

∂n
dS, i = 1, 2, . . . , 2N , j = 1, 2, . . . , 2N

fluid kinetic energy. The matrices Mrq, Mqr and Mrs, Msr are the coupling added-

mass matrices between the rigid-body and flexible velocity potentials, Mrq and Mrs

are 6 × 2N matrices and Mqr = MT
rq, Msr = MT

rs. The matrices Mqq, Msq, Mqs and

Mss are the 2N × 2N flexible added-mass matrices, and Msq = MT
sq.

Before proceeding to develop the added-mass matrix, we explain the nature of the

terms in the kinetic energy Tf . If the deformation is zero, q̇ = q = 0, and the fluid’s

kinetic energy reduces to the first term Tf = 1
2
vvvTMrrvvv. This is the kinetic energy

of a potential fluid in which a rigid-body vehicle is maneuvering. The second line in

Eq. (4.12) effectively represents the energy of a 2N -DOF spring-mass-damping system

associated with the elastic deformation, with a generalized added-mass matrix Mqq,

a damping matrix (u0Msq − u0Mqs) and a stiffness matrix u2
0Mss. In particular, it

has been demonstrated that the generalized added-mass matrix Mqq can significantly

reduce the natural vibration frequencies of a vehicle moving a heavy fluid [99–102].
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The other terms in Eq. (4.12) denote the kinetic energy due to the coupling between

the rigid-body motion and elastic deformation.

Furthermore, the fluid kinetic energy can be concisely written as

Tf =
1

2

[

vvvT, q̇T
]

MAT

[

vvvT, q̇T
]T

(4.13)

where the total added-mass matrix MAT can be written as the summation of four

matrices as

MAT = MA1 + MA2 + MA3 + MA4 (4.14)

in which

MA1 =







Mrr Mrq

Mqr Mqq






, MA2 =







Mrsq 0 · · · 0

Mqsq 0 · · · 0






,

MA3 =



















qTMsr qTMsq

0 0

...
...

0 0



















, MA4 =



















qTMssq 0 · · · 0

0 0 · · · 0

...
...

...
...

0 0 · · · 0



















where qTMsr and qTMsq are a 1 × 6 and a 1 × 2N row vectors respectively, Mrsq

and Mqsq are a 6× 1 and a 2N × 1 vectors respectively, and qTMssq is a scalar. The

total added-mass matrix MAT is a (6 + 2N)× (6 + 2N) symmetric matrix dependent

on the elastic generalized coordinates q.

4.2.3 Potential-flow aerodynamic force expressions

The potential-flow aerodynamic forces and moments can be derived from Kirchhoff’s

equation, or, Lagrange’s equation in terms of quasi coordinates. The corresponding

elastic generalized force can be derived from Lagrange’s equation in terms of general-
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ized coordinates, i.e.,

d

dt

∂Tf

∂v0

+ ω
×
∂Tf

∂v0

= −FA (4.15)

d

dt

∂Tf

∂ω
+ v×

0

∂Tf

∂v0

+ ω
×
∂Tf

∂ω
= −MA (4.16)

d

dt

∂Tf

∂q̇
− ∂Tf

∂q
= −QA (4.17)

where FA, MA and QA are the aerodynamic forces, moments and generalized forces

on the vehicle from the potential fluid respectively. They can be derived by substi-

tuting the fluid energy from Eq. (4.13) into Eqs. (4.15) to (4.17), and the results are

summarized as follows.

In order to obtain a concise formulation for the aerodynamic force, moment, and

generalized force, the (6 + 2N) × (6 + 2N) total added-mass matrix MAT computed

from Eq. (4.14), is written in block matrix form as follows

MAT =













MA11 MA12 MA13

MA21 MA22 MA23

MA31 MA32 MA33













where MA11, MA12, MA21 and MA22 are 3 × 3 matrices, MA13 and MA23 are 3 × 2N

matrices, MA31 and MA32 are 2N × 3 matrices, MA33 is a 2N × 2N matrix. Similar

to the mass matrix, the total added-mass matrix also depends on the generalized

coordinates; thus, it is an implicit function of time. Furthermore, the 6 × 6 rigid-

body added-mass matrix Mrr and the 6× (6+2N) rigid-flexible coupling added-mass

matrices Mrq and Mrs are written as

Mrr =







Mrr11 Mrr12

Mrr21 Mrr22






, Mrq =







Mrq1

Mrq2






, Mrs =







Mrs1

Mrs2






(4.18)

where the matrices Mrr11, Mrr12, Mrr21 and Mrr22 are 3×3 matrices and Mrq1, Mrq2,

79



Mrs1 and Mrs2 are 3 × 2N matrices.

With the above definitions, the potential-flow aerodynamic forces and moments

can be obtained as













FA

MA

QA













= −













MA11 MA12 MA13

MA21 MA22 MA23

MA31 MA32 MA33

























v̇0

ω̇

q̈













+













FA,non(v0,ω,q, q̇)

MA,non(v0,ω,q, q̇)

QA,non(v0,ω,q, q̇)













(4.19)

where the first term is related to the linear acceleration v̇0, angular acceleration ω̇

and the elastic generalized acceleration q̈, while the second term contains nonlinear

functions of the rigid-body motion velocities v0, ω, the generalized coordinate q, and

the generalized velocity q̇. To incorporate the potential-flow aerodynamics, the first

term is added to the left hand side of the equations of motion (3.11) so that the

mass matrix Msys is replaced with Msys + MAT ; while FA,non, MA,non and QA,non

are incorporated into the right hand side of the equations of motion. These force and

moment terms are given as follows

FA,non = − ω
× (Mrr11v0 + Mrr12ω)

− ω
×Mrq1q̇

− u0ω
×Mrs1q − u0Mrs1q̇ −

[

vvvTMrsq̇ + q̇TMsqq̇ + 2u0q̇
TMssq, 0, 0

]T

− ω
×
[

vvvTMrsq + qTMsqq̇ + u0q
TMssq, 0, 0

]T

(4.20)

MA,non = − v×

0
(Mrr11v0 + Mrr12ω) − ω

× (Mrr21v0 + Mrr22ω)

− v×

0
Mrq1q̇ − ω

×Mrq2q̇

− u0Mrs2q̇ − u0ω
×Mrs2q

− v×

0

(

u0Mrs1q +
[

vvvTMrsq + qTMsqq̇ + u0q
TMssq, 0, 0

]T
)

(4.21)

QA,non = − u0Mqsq̇ + u0Msqq̇ + u2
0Mssq + u0Msrvvv (4.22)
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The first lines in the expressions of FA,non and MA,non contain the force and mo-

ment terms due to the rigid-body motion; the second lines contain the terms due to

the coupling between the deflection rates and rigid-body motion; and the third and

fourth lines include the terms related to the bending slopes. If the elastic generalized

coordinates and velocities are zero, the external forces and moments are reduced to

those of a rigid-body vehicle in Eq. (2.9).

The first two terms in QA,non denote the aerodynamic damping effects on the

elastic deformation; the term u2
0Mssq is an effective aerodynamic stiffness term; the

last term represents the influence of the rigid-body motion on the deformation.

4.2.4 Computation of the added-mass matrix

In order to compute the total added-mass matrix MAT , the matrices defined in Ta-

ble 4.1 must be evaluated. In fact, the added-mass matrix related to the pure rigid-

body motion, Mrr, can be computed with the approach discussed in Section 2.3.1.2,

including the contributions of the hull and the fins. For the other added-mass matri-

ces, Mrq, Mqr, Mqq, Mrs, Msr, Mqs, Msq and Mss, the Laplace equations must be

solved to obtain Ψri, Ψqi and Ψsi; then the elements of each added-mass matrix can

be evaluated by the integrals defined in Table 4.1. For a body of irregular shape, the

Laplace equation can be solved with numerical approaches. In this work, the analyt-

ical solution of the Laplace equation for an ellipsoid of revolution is applied to obtain

Ψri, Ψqi and Ψsi. The main steps of this solution are presented in the following.

Lamb [25] derived Ψri for an ellipsoid of revolution, in terms of the ellipsoidal coor-

dinates, Legendre function and associated Legendre function, and estimated the hull

contribution to the added-mass matrix of a rigid-body airship, i.e., MAH in Eq. (2.10).

Macagno and Landweber [100] extended Lamb’s results to solve the Laplace equation

in order to predict the natural frequencies of the ship vibration in water. They found

that the velocity potential for an ellipsoid with arbitrary boundary conditions can be
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written as

Ψki =

∞
∑

n=0

n
∑

p=0

[Bp
n sin(pϑ) + Cp

n cos(pϑ)]P p
n(µ)Qp

n(ζ), k = r, q, s (4.23)

where P p
n(µ) and Qp

n(ζ) are respectively the Legendre function and associated Leg-

endre function, of degree n and order p. The coefficients Bp
n and Cp

n are determined

from the boundary conditions and will be discussed later. The ellipsoidal coordinates

(ζ, µ, ϑ) can be converted to Cartesian coordinates as below with parameters a and e

as the semi major axis and the eccentricity of the ellipsoid

x = aeµζ 1 ≤ ζ ≤ ∞ (4.24)

y = ae
√

1 − µ2
√

ζ2 − 1 cosϑ −1 ≤ µ ≤ 1 (4.25)

z = ae
√

1 − µ2
√

ζ2 − 1 sin ϑ 0 ≤ ϑ ≤ 2π (4.26)

An ellipsoidal coordinate system is composed of three families of orthogonal surfaces:

the ellipsoid surfaces and their associated hyperboloids and planes. The surfaces

ζ = constant are ellipsoids of revolution, the surfaces µ = constant are hyperboloids

and both ellipsoid and hyperboloid families have common foci at (±ae, 0, 0). The

surfaces ϑ = constant are planes through the x axis that are orthogonal to the first

two families. Particularly, ζ = 1/e denotes an ellipsoid of a semi major axis a and an

eccentricity e, and the boundary condition of the velocity potentials Ψri, Ψqi and Ψsi

will be converted to ellipsoidal coordinates over the surface of this ellipsoid.

The coefficients Bp
n and Cp

n in Eq. (4.23) can be computed by Macagno and

Landweber’s formula [100]. For this purpose, the boundary conditions of the ve-

locity potentials Ψri, Ψqi and Ψsi presented in Eqs. (4.9) to (4.11) are rewritten in

ellipsoidal coordinates as follows

∂Ψki

∂ζ
= aeF (µ, ϑ) = ub,ki

∂x

∂ζ
+ vb,ki

∂y

∂ζ
+ wb,ki

∂z

∂ζ
, on ζ =

1

e
, k = r, q, s (4.27)
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Table 4.2: Velocity distribution corresponding to boundary conditions

Velocity potential ub,ki vb,ki wb,ki

Ψr1 1 0 0
Ψr2 0 1 0
Ψr3 0 0 1
Ψr4 0 −z y
Ψr5 z 0 −x
Ψr6 −y x 0
Ψqi Φxi Φyi Φzi

Ψsi −Φ′

xi −Φ′

yi −Φ′

zi

where ub,ki, vb,ki and wb,ki represent the velocity distribution corresponding to the

boundary condition of velocity potential Ψki, as listed in 4.2. Substituting x, y and z

from Eqs. (4.24) to (4.26) leads to

F (µ, ϑ) = ub,kiµ+

√

1 − µ2

√
1 − e2

(vb,ki cos ϑ+ wb,ki sinϑ) , on ζ =
1

e
, k = r, q, s (4.28)

Then Bp
n and Cp

n can be computed as [100]

Bp
n =















0 if p = 0

2n+1
2π

(n−p)!
(n+p)!

ae
∂Qp

n/∂ζ

∫ 2π

0

∫

−1

1
F (µ, ϑ)P p

n(µ) sin(pϑ)dµdϑ if p ≥ 1

(4.29)

Cp
n =















2n+1
4π

ae
∂Qp

n/∂ζ

∫ 2π

0

∫

−1

1
F (µ, ϑ)P p

n(µ)dµdϑ if p = 0

2n+1
2π

(n−p)!
(n+p)!

ae
∂Qp

n/∂ζ

∫ 2π

0

∫

−1

1
F (µ, ϑ)P p

n(µ) cos(pϑ)dµdϑ if p ≥ 1

(4.30)

Equation (4.23) gives the velocity potential at any point of the fluid and the

coefficients Bp
n and Cp

n are independent of ζ since they are computed on a specific

ellipsoid surface ζ = 1
e
.

Macagno and Landweber [100] also gave the expression for the fluid kinetic energy

using ellipsoidal coordinates and this can be extended to compute the entities in the
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added-mass matrices. That is, the added-mass entities defined in Table 4.1 can be

rewritten in ellipsoidal coordinates as follows

mkIkII,ij = −ρae
(

1

e2
− 1

)
∫ 2π

0

∫ 1

−1

[

ΨkI,i
∂ΨkII,j

∂ζ

]∣

∣

∣

∣

ζ= 1

e

dµdϑ, kI, kII = r, q, s (4.31)

where ∂ΨkII,j/∂ζ is obtained from Eq. (4.23) as

∂ΨkII,j

∂ζ
=

∞
∑

n=0

n
∑

p=0

[Bp
n sin(pϑ) + Cp

n cos(pϑ)]P p
n(µ)

∂Qp
n(ζ)

∂ζ
, kII = r, q, s (4.32)

Following Macagno and Landweber’s method to solve Ψri, Ψqi and Ψsi, the proce-

dure to evaluate the added-mass matrices Mrq, Mqr, Mqq, Mrs, Msr, Mqs, Msq and

Mss is summarized as follows:

1. Rewrite the corresponding boundary conditions in Eqs. (4.9) to (4.11) in terms

of ellipsoidal coordinates, using Eq. (4.27).

2. Compute Bp
n and Cp

n according to the boundary condition, using Macagno and

Landweber’s formula in Eqs. (4.29) and (4.30).

3. Obtain Ψri (i = 1, 2, . . . , 6), Ψqi (i = 1, 2, . . . , 2N), Ψsi (i = 1, 2, . . . , 2N)

and ∂Ψrj/∂ζ , ∂Ψqj/∂ζ , ∂Ψsj/∂ζ from Eqs. (4.23) and (4.32), over the ellipsoid

surface, by evaluating them at ζ = 1/e.

4. Evaluate the components of the matrices Mrq, Mqr, Mqq, Mrs, Msr, Mqs, Msq

and Mss, according to Eq. (4.31).

Once the added-mass matrices are computed, the potential-flow aerodynamic forces

and moments can be obtained from Eqs. (4.19) to (4.22).
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4.3 Viscous Effect on the Hull

As discussed in Section 2.3.2, the viscous effect on the hull starts from a position εV

and was calculated previously for an airship modeled as a rigid body. To extend this

method for an elastic airship, the corresponding aerodynamic normal force distribution

along the centerline is first predicted by using the local velocity of a deformed airship,

i.e.,

fV = fV N



0,
−vV ,d

√

v2
V ,d + w2

V ,d

,
−wV ,d

√

v2
V ,d + w2

V ,d





T

, from εV to the end (4.33)

where

fV N = −q0 sin 2γ · (k2 − k1)
dS

dε
+ q0ηCDC sin2 γ · 2R (4.34)

and recalling k1, k2, η, CDC , S and R from Section 2.3.2, uV ,d, vV ,d and wV ,d denoting

the local velocity at the position εV on a deformed airship computed using Eq. (4.4).

These velocity components are also used to compute the dynamic pressure q0 and the

angle between centerline and velocity vector γ for a flexible airship, i.e.,

γ = tan−1





√

v2
V ,d + w2

V ,d

uV ,d



 (4.35)

The total external force can be readily computed by integrating fV from εV to the

end of the hull as

FV = FV N



0,
−vV ,d

√

v2
V ,d + w2

V ,d

,
−wV ,d

√

v2
V ,d + w2

V ,d





T

(4.36)

in which FV N can be computed using Eq. (2.15), because only dS/dε and 2R in

fV N depend on the location. The external moment is now computed by integrating
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(r + u)×fV from εV to the end. After some algebra, we obtain

MV =



MV x,MV N
wV ,d

√

v2
V ,d + w2

V ,d

,MV N
−vV ,d

√

v2
V ,d + w2

V ,d





T

(4.37)

where MV N can be computed using Eq. (2.18) and

MV x = − q0 sin 2γ · (k2 − k1)

2N
∑

i=1

qiI
T
V 1,i



0,
−wV ,d

√

v2
V ,d + w2

V ,d

,
vV ,d

√

v2
V ,d + w2

V ,d





T

+ q0ηCDC sin2 γ ·
2N
∑

i=1

qiI
T
V 2,i



0,
−wV ,d

√

v2
V ,d + w2

V ,d

,
vV ,d

√

v2
V ,d + w2

V ,d





T
(4.38)

Two new shape function integrals are employed in Eq. (4.38) as

IV 1,i =

∫ L

εV

dS

dε
Φidε, IV 2,i =

∫ L

εV

2RΦidε, i = 1, 2, . . . , 2N (4.39)

The roll moment MV x results from the term u×fV . This moment arm u reflects the

deflection of the centerline from the x axis of the undeformed airship, as shown in

Fig. 4.1.

The elastic generalized force of the ith shape function is computed as QV i =
∫ L

εV
fT
V Φdε. Substituting fV from Eq. (4.34), we have

QV i = − q0 sin 2γ · (k2 − k1) · qiIT
V 1,i



0,
−vV ,d

√

v2
V ,d + w2

V ,d

,
−wV ,d

√

v2
V ,d + w2

V ,d





T

+ q0ηCDC sin2 γ · qiIT
V 2,i



0,
−vV ,d

√

v2
V ,d + w2

V ,d

,
−wV ,d

√

v2
V ,d + w2

V ,d





T
(4.40)

We can see that the influence of the flexibility on the viscous effect is incorporated

through the local velocity vV ,d in the computation of the dynamic pressure and the

angle γ, as well as by adding a roll moment related to the centerline deflection.
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4.4 Force Acting on the Fins

The distribution of the force acting on the fins can be predicted using Eq. (2.20), then

the force per unit length can be written as

fF = fFN [0, cosφF ,− sinφF ]T , (4.41)

where

fFN = q0

CLα

Clα
αF

∫ b

R

∆Cpα (x, s)

(

1 +
R2

s2

)

ds

and CLα/Clα and ∆Cpα are defined as before in Section 2.3.3. For a flexible airship,

the geometric angle of attack αF used in the evaluation of fFN is computed with the

velocity components ud(c/4) and vnd(c/4) at the center of the 1/4-chord (plotted in

Fig. 2.9), where the subscript d denotes the local velocity components on a deformed

airship computed from Eq. (4.4). That is

αF = tan−1

[

vnd(c/4)

ud(c/4)

]

(4.42)

The total normal force on the fin can then be obtained using Eq. (2.23) with αF

from Eq. (4.42). The corresponding moment is computed by integrating (r + u)×fF

over the exposed fin area as follows

MF = [MFx,MFN sin ΦF ,MFN cos ΦF ]T (4.43)

where MFN is calculated using Eq. (2.25) and ΦF is the angle from the oxz plane to

the fin plane (see Fig. 2.9). The roll moment MFx results from the term u×fF and is
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obtained as

MFx = − q0

CLα

Clα

αF

∫ xF e

xF s

∫ b

R

s∆Cpα (x, s)

(

1 +
R2

s2

)

dsdx

− q0

CLα

Clα

αF

2N
∑

i=1

qiI
T
F i [0, cosφF , sinφF ]T

(4.44)

The shape function integrals IF i required in Eq. (4.44) are defined as

IF i =

∫ xF e

xF s

∫ b

R

∆Cpα (x, s)

(

1 +
R2

s2

)

Φidsdx, i = 1, 2, . . . , 2N (4.45)

The elastic generalized force is computed as QF i =
∫ xF e

xF s
fT
F Φdx, or,

QF i = −q0

CLα

Clα

αFIT
F i [0, cosφF , sin φF ]T , i = 1, 2, . . . , 2N (4.46)

We can see that the influence of the flexibility on the fin forces is incorporated

through the local velocity components vnd(c/4) and ud(c/4) at the center of 1/4-chord

for the computation of the geometric angle of attack αF , as well as an additional

roll moment as the second term in Eq. (4.44). This roll moment is because of the

deflection of the centerline from the x axis of the undeformed airship

4.5 Force Acting on the Hull due to the Fins

The extra normal force per unit length on the hull due to the fins fH(F ) can be

predicted using Eq. (2.26). For a flexible airship, the fin-induced downwash should

be computed with the geometric angle of attack αF from Eq. (4.42).

The external force on the hull due to the fins is obtained by integrating fH(F ) over

the hull length, or,

FH(F ) = FH(F ) [0, cos ΦF ,− sin ΦF ]T (4.47)
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where FH(F ) = 2q0αF

∫

L
πR2CH(F )dx and

CH(F ) =
CLα

Clα

d

dx

∫ xF e

xF s

∫ b

R

[8πdF (dF − x+ xF )]−1 ∆Cpα

(

1 +
R2

s2

)

dsdxF

Recall that dF =
√

(x− xF )2 + s2. The corresponding external moment is computed

by integrating (r + u)×fH(F ) over the hull, i.e.,

MH(F ) =
[

MH(F )x,MH(F )N sin ΦF ,MH(F )N cos ΦF

]T
(4.48)

where

MH(F )x = −2q0αF

2N
∑

i=1

qiI
T
H(F ),i [0, cosφF , sinφF ]T (4.49)

MH(F )N = 2q0αF

∫

L

πR2CH(F )xdx (4.50)

The roll moment in Eq. (4.49) is obtained from the term u×fH(F ). The new shape

function integrals IH(F ),i employed in Eq. (4.49) are defined as

IH(F ),i =

∫

L

πR2CH(F )Φidx, i = 1, 2, . . . , 2N (4.51)

Lastly, the corresponding elastic generalized force is computed as

QH(F ),i = 2q0αFI
T
H(F ),i [0, cosφF , sinφF ]T , i = 1, 2, . . . , 2N (4.52)

Similar to the fin forces, the influence of the flexibility on FH(F ) and MH(F ) is in-

corporated through the local velocity in the computation of the geometric angle of

attack, as well as an additional roll moment due to the deflection of the centerline.
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4.6 Axial Drag

The axial drag force acting on the hull and on a fin are modeled as concentrated

forces at the C.V. and at the centers of the fin’s 1/4-chord respectively. The external

axial drag forces, FAxial,H and FAxial,F , can be computed using Eq. (2.28), with the

dynamic pressure and the angles of attack α and αF calculated from the velocity

components in Eq. (4.4). In addition, the elastic displacement should be considered

in the moment computation. Recall from Section 3.4 that the elastic displacement of

the C.V. is computed as uV =
∑2N

i=1 qi(t)IAS,i with IAS,i defined in Eq. (3.38), so that

the moment due to the axial drag on the hull is

MAxial,H = u×

V
FAxial,H =

2N
∑

i=1

qi(t)I
×

AS,iFAxial,H (4.53)

Similarly, the moment due to the axial drag on a fin is calculated as

MAxial,F = r(c/4)×FAxial,F +

2N
∑

i=1

qiΦi(c/4)×FAxial,F (4.54)

where r(c/4) denotes the position vector of the center of 1/4-chord from the body-

frame origin and Φi(c/4) is the ith shape function at this point. The second term

reflects the fact that the elastic deflection at r(c/4) should be included in the moment

arm in the moment calculation. Since the axial drag is along the x axis, while the

modeled flexibility is due to bending only, the corresponding elastic forces are zero,

i.e., QAxial,Hi = QAxial,F i = 0.
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4.7 Force and Moment due to Control Surface De-

flection

The force due to the control surface deflection is modeled as a concentrated force acting

at a position rδ on the undeformed body. The external force Fδ and the position rδ

can be computed using Eqs. (2.29), (2.31), and (2.32), as well as a dynamic pressure

calculated from the local velocity on a deformed airship from Eq. (4.4). The external

moment is calculated as

Mδ = r×δ Fδ +

2N
∑

i=1

qi(t)Φi(rδ)
×Fδ (4.55)

where Φi(rδ) is the ith shape function at rδ. The second term reflects the fact that the

elastic deflection at rδ should be incorporated in the moment arm when computing

the external moment. The elastic force due to the control surface deflection is then

obtained as

Qδi = FT
δ Φi(rδ) (4.56)

Finally, the rudder and elevator forces and moments Fδ, Mδ and Qδ are included in

FC , MC and QC respectively in the equations of motion (3.11).
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Chapter 5

Dynamics Model of Flexible

Airships: Implementation and

Simulation

Chapters 3 and 4 present a theoretical framework for the dynamics modeling of flexible

airships, with regard to the equations of motion and aerodynamics computation, re-

spectively. This model is implemented in the present chapter to simulate the dynamics

of the elastic Skyship-500 airship. The chapter is organized as follows. The imple-

mentation of the dynamics model is first explained and the physical parameters of the

simulated airship are given. Then, the following simulation results are presented: the

normal mode shapes of the airship, selected shape function integrals involved in the

calculation of inertial and aerodynamic forces, the airship’s time responses to eleva-

tor/rudder input with and without control, and the frequency responses to the control

surface deflections based on the linearized model.

The SI units (length [m], time [s], mass [kg]) are employed in the presentation of

all simulation results.
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5.1 Implementation

5.1.1 Summary of the dynamics model

Before presenting the simulation results, we give a summary of the theoretical model

in Chapters 3 and 4. The dynamics model of a flexible airship is represented by a

single set of nonlinear ordinary differential equations (3.11). The mass matrix and the

inertial, gravity and aerostatic forces are investigated in Sections 3.3 and 3.4; various

aerodynamic effects are discussed in Sections 4.2 to 4.7. Tables 5.1 and 5.2 provide a

summary of the computational formulations of each term, the involved shape function

integrals and the information required to calculate these integrals. Note that these

shape function integrals are all independent of time and can be evaluated before we

solve the dynamics equations of motion.

Table 5.1: Summary of mass matrix and inertial, gravity and aerostatic forces

Term Formulation
Shape function

integrals
Required

information

Mass matrix
Msys

(3.21) to (3.23)
pi,J

′

ru,i,J
′′

uu,ij

H,H′

u,i,Me
m̄

Elastic force
SE

(3.13) K EI

Inertial force
(FI ,MI ,QI)

(3.30)
pi,J

′

ru,i,J
′′

uu,ij

H,H′

u,i

m̄

Gravity force
(FG,MG,QG)

(2.5), (3.35), (3.36) pi m̄

Aerostatic force
(FAS ,MAS ,QAS)

(2.7), (3.37), (3.39) IAS,i S
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Table 5.2: Summary of aerodynamic forces

Term Formulation
Shape function

integrals
Required

information

Potential-flow aerodynamic force
FA (4.19), (4.20) Mrq,Mrs,Msq,Mss Φri,Φqi,Φsi

MA (4.19), (4.21) Mrq,Mrs,Msq,Mss Φri,Φqi,Φsi

QA (4.19), (4.22) Mqs,Msr,Mrq, Φri,Φqi,Φsi

Mqq,Mss

Viscous effect on the hull
FV (4.35), (2.15), (4.36)
MV (4.35), (2.18), IV 1,i, IV 2,i dS/dε, R

(4.37), (4.38)
QV (4.35), (4.40) IV 1,i, IV 2,i dS/dε, R

Force acting on fins
FF (4.42), (2.23)

MF (4.42), (4.43), IF i ∆Cpα

(

1 + R2

s2

)

(2.25), (4.44)

QF (4.42), (4.46) IF i ∆Cpα

(

1 + R2

s2

)

Force on the hull due to the fins
FH(F ) (4.42), (4.47),
MH(F ) (4.42), (4.48), IH(F ),i πR2CH(F )

(4.49), (4.50)
QH(F ) (4.42), (4.52) IH(F ),i πR2CH(F )

Axial drag
FAxial,H ,FAxial,F (2.28)
MAxial,H ,MAxial,F (4.53), (4.54) IAS,i,Φi(1/4c) S
QAxial,H ,QAxial,F 0

Force due to control surface deflection
Fδ (2.29), (2.31), (2.32)
Mδ (4.55) Φi(rδ)
Qδ (4.56) Φi(rδ)
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5.1.2 Implementation

A dynamics simulation program was developed in the MATLAB environment to im-

plement the nonlinear dynamics model of a flexible airship according to the following

steps. First, the normal mode shapes are calculated to be used as the shape functions.

In this work, the eigen problem for the free-free beam vibration is solved numerically

using a finite element model with Euler-Bernoulli beam elements. Second, we eval-

uate the shape function integrals listed in Tabs. 5.1 and 5.2. Since the numerical

mode shapes are used as shape functions, the shape function integrals are obtained

by numerical quadrature using Simpson’s rule. Third, the nonlinear dynamics equa-

tions of motion (3.11) are solved numerically in MATLAB using one of the algorithms

from the MATLAB ODE suite, ode15s, which is based on the numerical differential

formulas [115].

This dynamics simulation program seamlessly integrates the flight dynamics, struc-

tural dynamics, aerostatics and aerodynamics of a flexible airship. The elastic defor-

mation is represented by time-dependent generalized coordinates and time-independent

shape functions. Accordingly, the effects of flexibility on various forces (inertial, grav-

itational, control, aerostatic and aerodynamic) are expressed in terms of generalized

coordinates, generalized velocities, and shape function integrals. In addition, the sim-

ulation program is developed in a modular way. Various force terms are computed in

different modules, and the algorithm for each term can be replaced by an alternative

computational approach if desired.

5.1.3 Validation

Considering the complexity of the dynamics model and the simulation program, sev-

eral steps were taken to check the validity of the results.

1. The free-free beam mode shape solver is used to perform modal analysis for a
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uniform beam and a double conical beam, because analytical results for natural

frequencies and mode shapes are available for these beams [87, 116]. We find

that the numerical mode shapes are nearly identical to the analytical results. In

addition, for a free-free Euler-Bernoulli beam, the shape function integrals must

satisfy the equalities
∫

L
Φim̄dx =

∫

L
xΦim̄dx = 0, according to the orthogonality

conditions. These integral results are also used to check the numerical mode

shape results.

2. The added-mass matrix computation module is based on the procedure dis-

cussed in Section 4.2.4. It is used to calculate the added mass and moment of

inertia for a rigid ellipsoid (Mrr) and the generalized added mass (Mqq) for an

elastic ellipsoid, because the corresponding analytical results can be found in

the literature [25,100]. We find that the added-mass matrix results obtained in

the present procedure perfectly match the published analytical results.

3. The simulation program is also validated by checking the energy balance of the

system. The kinetic energy and the elastic potential energy of the system (the

airship and the surrounding fluid) are obtained as

Tall =
1

2

[

vvvT, q̇T
]

Msys

[

vvvT, q̇T
]T

+
1

2

[

vvvT, q̇T
]

MAT

[

vvvT, q̇T
]T

(5.1)

V =
1

2
qTKq (5.2)

The work W is equal to the integral of the power input by the gravity, aerostatic,

aerodynamic (excluding the potential-flow terms) and control forces over the

elapsed time, i.e.,

W =

∫ t

0

(

PG + PAS + PC + PV + PF + PH(F ) + PAxial

)

dt (5.3)

Recall that the subscripts G, AS, C, V , F , H(F ) and Axial denote gravity,

aerostatic, control, viscous effect on the hull, force on the fin, force on the hull
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due to the fins, and axial drag respectively. It has been verified that at any step

in the simulation, the corresponding energy change of the system ∆Tall + ∆V is

approximately equal to the work of external forces W. The discrepancy between

∆Tall + ∆V and W occurs because of the computational error in the numerical

integration and diminishes as the integration tolerance used in the numerical

integration algorithm is reduced.

5.2 Simulated Airship

The solution of the equations of motion for a flexible airship requires its geometry,

mass per unit length and bending stiffness distribution. In the numerical simulation,

the Skyship-500 non-rigid airship (shown in Figs. 1.3 and 2.12(c)), is used as an

example, because its geometric and inertial parameters (presented in Table 2.2) are

available in [17]. Recall that for a neutral buoyancy for the Skyship-500, the air

density and the altitude are ρ = 1.158 kg/m2 and ZI = 575 m respectively, and the

operating flight speed is usually below 30 m/s.

The variation of mass per unit length m̄ along the centerline is estimated from

a CAD model based on the inertial information from [17] and is plotted in Fig. 5.1.

The bending stiffness EI is assumed to be identical in the y and z directions and it

can be calculated as

EI = πR3ET (5.4)

where E is the elastic modulus of the hull envelope and T is its thickness. However, the

envelope material properties were not provided for the Skyship-500 in [17], and thus

the bending stiffness used in the simulation is computed from the material properties

of the fabric in [70], in particular, ET = 433, 440N/m. The latter value was measured

by biaxial stress cylinder tests for the envelopes of two aerostats [70].
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Figure 5.1: Mass per unit length of the Skyship-500

5.3 Shape Functions and Some Shape Function In-

tegrals

This section presents the shape functions computed by solving for the normal modes

of a free-free Euler-Bernoulli beam and selected shape function integrals that reflect

the influence of elastic deformation on the inertial and aerodynamic forces.

5.3.1 Shape functions

In this work, two shape functions are applied to describe the deflections in each of the

y and z directions, i.e., N = 2 and then the generalized coordinate vector is written as

q = [q1, q2, q3, q4]
T, where q1 and q2 denote the bending deformation in the y direction

while q3 and q4 denote that in the z direction. Correspondingly, the first and second

shape functions can be written as Φ1 = [0,Φ1, 0]T, Φ2 = [0,Φ2, 0]T, and the third and

fourth ones are Φ3 = [0, 0,Φ1]
T, Φ4 = [0, 0,Φ2]

T.

The two mode shapes Φ1 and Φ2 are plotted in Fig. 5.2 and the corresponding

natural frequencies are: ωn1 = 22.8 rad/s, ωn2 = 64.2 rad/s. We can observe that the

deflection in the middle is smaller than those at both ends of the airship, because the

bending stiffness in the middle is larger than those at the ends.
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Figure 5.2: The first two normal mode shapes

5.3.2 Shape function integrals

Many shape function integrals as listed in Tables 5.1 and 5.2 are included in the

equations of motion to incorporate the effects of elastic deformation. Some results of

these integrals are given in this section, in order to demonstrate the coupling between

flexibility and inertial or aerodynamic forces.

5.3.2.1 Effects of deformation on the linear and angular momenta

According to the second orthogonality condition in Eq. (3.4), we have
∫

L
Φim̄dx = 0;

thus, the linear momentum matrix defined in Eq. (3.24) is P = 0. In other words,

by using the normal modes to express the elastic deformation, the deflection does not

affect the position of the C.G., the first moment of inertia computed in Eq. (3.25) and

the linear momentum of the flexible airship in Eq. (3.14).
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The angular momentum coefficient matrix defined in Eq. (3.27) is obtained as

H =













178.1 50.7 0 0

0 0 0 0

0 0 0 0













Recall that the ith column of the matrix H is defined as hi =
∫

L
r×Φim̄dx and

represents the influence of the ith deflection rate q̇i on the angular momentum of

the flexible airship. The non-zero elements in the first row of H reflect the strong

coupling between the first two deflection rates (corresponding to the deflection in the

y direction) and the x component of the angular momentum (corresponding to the

roll rotation). This coupling results from the fact that the C.G. of the airship is below

the centerline. The elements in the second and third rows of H reduce to zero due to

the orthogonality condition between the elastic and rigid-body modes of a free-free

Euler-Bernoulli beam as discussed in Eq. (3.4).

5.3.2.2 Added-mass matrices

The influence of the flexibility on the added-mass matrices is now shown for the

Skyship-500 airship. First, we investigate the effects of different potential-flow terms

on the aerodynamic force and moment, from Eqs. (4.19) to (4.22). For a rigid body, the

most important effect is the Munk moment [24], which tends to destabilize the pitch

and yaw rotations as discussed in Chapter 2. The contributions of structural flexibility

to the external forces and moments are given in the second to fourth lines in Eqs. (4.20)

and (4.21). From the magnitudes of the elements in the added-mass matrices Mrq,

Mrs, Mqq, Msq, Mss, and the magnitudes of v0, ω, q and q̇, we find that, among the

nonlinear flexible potential-flow terms, −u0Mrs1q̇ has the largest contribution to the

aerodynamic force FA,non, and −u0Mrs2q̇ has the largest contribution to the moment

MA,non. To demonstrate the coupling between the rigid-body motion and deformation
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in these nonlinear terms, the matrices Mrs1 and Mrs2 are listed for the Skyship-500

airship as

Mrs1 =













0 0 0 0

−1.2 −4.3 0 0

0 0 −1.2 −4.3













, Mrs2 =













0 0 0 0

0 0 92.7 −30.9

−92.7 30.9 0 0













The non-zero elements in the second and third rows in Mrs1 denote the effects of the

deflection rate q̇ on the forces in the y and z directions, respectively. Similarly, those

non-zero elements in Mrs2 represent the coupling between the deflection rate q̇ and

the pitch and yaw moments.

We now investigate the influence of potential-flow aerodynamic force on the vibra-

tion of the hull. It has been demonstrated that the generalized added-mass matrix

can significantly reduce the natural frequencies of a vehicle moving in a heavy fluid,

such as a ship [99–102]. The generalized added-mass matrix Mqq of the Skyship-500

is calculated as

Mqq =



















0.75 −0.14 0 0

−0.14 0.96 0 0

0 0 0.75 −0.14

0 0 −0.14 0.96



















Compared to the elastic generalized mass matrix Me, which is identity from Sec-

tion 3.3.2, we can see that the diagonal components in Mqq will considerably decrease

the natural frequencies of the free vibrations. The new natural frequencies of the

Skyship-500 in the air are ωn1 = 17.2 rad/s and ωn2 = 46.0 rad/s, approximately

25-30% lower than those in vacuum as given in Section 5.3.1.
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5.4 Time Responses

We begin by presenting the time responses to simple step-like inputs from the elevator

and rudder. Then we design a simple controller for the thruster and control surface

to simulate a more complicated path-following maneuver. The response results for

a flexible airship are compared to those from the dynamics model for a rigid-body

vehicle as described in Chapter 2.

To perform the nonlinear dynamics simulation for a flexible airship, we first define

the initial values of the motion states and control input. As an initial condition, the

airship is in a steady level flight, that is, we define a steady-state forward speed ū0.

The airship experiences some static deformation q̄ due to the gravity and aerostatic

forces. All the other steady velocity components, w̄0 v̄0, ω̄ and ˙̄q are defined as zero

at the initial time t = 0. Substituting the initial motion states into the equations of

motion (3.11) and setting the right hand side of the equations to zero, we can obtain

the initial control input F̄C , M̄C and Q̄C needed to maintain the steady level flight

condition.

5.4.1 Case I: Response to elevator input

In this example, the initial steady level flight speeds are ū0 = 30 m/s and w̄0 = 0. This

forward speed is a high operating speed for the Skyship-500. The elevator deflection

input (positive trailing edge downward) consists of a step input of 10o, as plotted

in Fig. 5.3. The time histories of the rigid-body linear and angular velocities in the

longitudinal plane (u0, w0, q) and the corresponding aerodynamic forces and moment

(FAD,x, FAD,z, MAD,y) computed from Eq. (4.1) are displayed in Fig. 5.4. Furthermore,

these simulation results are compared to those from a model based on a rigid-body

assumption. The time responses of the generalized coordinates and velocities of the

third and fourth modes (representing the deformation in the z direction) are drawn in
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Figure 5.3: Elevator and rudder input in Cases I and II

Fig. 5.5. We can observe small effects of structural flexibility on the rigid-body motion

and aerodynamic forces and moment in this maneuver. The oscillation frequencies of

q̇3 and q̇4 is in agreement with the natural frequencies of the airship in air obtained

in Section 5.3.2.2. These deflection rates are damped out in about 10 seconds.

5.4.2 Case II: Response to rudder input

In the second example, we specify a step rudder input as δR = 10o (positive trailing

edge left). A proportional controller is applied to the thrust input so that the airship

maintains a constant airspeed. The rigid-body velocities (v0, p, r) and aerodynamic

force and moments (FAD,y, MAD,x, MAD,z) in the lateral plane are shown in Fig. 5.6.

The elastic generalized coordinates and velocities are plotted in Fig. 5.7.

The effects of flexibility on the time histories of rigid-body velocities are minor in

this example. Small difference between the flexible and rigid-body dynamics models

can be observed in the yaw moment results. The speed in the y direction v0 in this case

is larger than the speed in the z direction w0 in Case I, and causes more aerodynamic

damping effects on the elastic motion. Therefore the elastic generalized velocities are

damped faster than those in Case I. The oscillation frequencies observed in the q̇1, q̇2
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Figure 5.4: Time histories of rigid-body velocities, aerodynamic force and mo-
ment, Case I, at 30 m/s
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Figure 5.5: Time histories of generalized coordinates and velocities (Case I)

plots are slightly different from those in the q̇3, q̇4 plots in Case I. This is due to the

coupling between the elastic deformation in the y direction and the roll rotation, as

discussed in Section 5.3.2.1.

5.4.3 Case III: Path-following flights

In this subsection, we investigate simulation examples where the airship performs a

path-following flight in a horizontal plane at two constant forward speeds. The airship

is desired to follow a ”∞”-shaped path as plotted in Fig. 5.8 (top view) with a radius

R̃ = 220 m. The corresponding desired yaw angle ψ̃ and angular velocity r̃ =
˙̃
ψ are

drawn in Fig. 5.9.

In order to complete this flight task, a simple automatic control system is designed

to control the thruster, the elevator and the rudder, discussed as follows.

• Proportional control is applied for the throttle crank input to maintain the
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Figure 5.6: Time histories of rigid-body velocities, aerodynamic force and mo-
ment, Case II, at 30 m/s
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Figure 5.7: Time histories of generalized coordinates and velocities (Case II)

desired forward speed ũ0 as

δT = KT (ũ0 − u0)

• Proportional-integral control is employed for the elevator deflection to maintain

the desired velocity w̃0 in the z direction, i.e.,

δE = KE1

(

Z̃ − Z
)

+KE2 (w̃0 − w0)

where Z̃ is the desired altitude in the inertial frame. In this case, Z̃ = 575 m

and w̃0 = 0.

• Proportional-integral control is used for the rudder deflection to maintain the

desired angular velocity r̃ as

δR = KR1

(

ψ̃ − ψ
)

+KR2 (r̃ − r)
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For a real airship, the forward speed u0, the velocity in the z direction w0, the alti-

tude Z, the angular velocity r and the yaw angle ψ are measured by sensors; in the

numerical simulation, these motion states are computed in the course of the dynamics

simulation. The control gains KT , KE1, KE2, KR1, KR2 are obtained by trial and

error and they should be chosen according to the forward speed, for example, the

values used at 15 m/s and 30 m/s for the Skyship-500 are listed in Table 5.3.

The responses of the Skyship-500 at two desired forward speeds (15 m/s and

30 m/s) are obtained by the simulation program. The simulation results of rigid-

108



Table 5.3: Control parameters at different speeds

Forward speed (m/s) KT KE1 KE2 KR1 KR2

15 -0.044 0.65 -8 -50 -150
30 -0.044 0.03 -2 -60 -120

body velocities are plotted in Figs. 5.10 and 5.11 for the airship at 15 m/s and 30 m/s,

respectively. The flight path in the OXY plane and the elevator and rudder inputs

are displayed in Fig. 5.12. The higher speed with the above automatic control system

leads to larger position errors in the flight path than at the lower speed. The effects

of deformation are not important for the rigid-body motion and the control inputs at

15 m/s; small differences in the elevator input can be observed between the results

from flexible and rigid-body models at 30 m/s. These simulation examples show that

the dynamics simulation program can serve as an evaluation tool for automatic control

system design.

5.5 Frequency Response

A linear dynamics model is now formulated to investigate the frequency responses to

control inputs. The linearization procedure employed is similar to that described in

Section 2.4, i.e., the state and control matrices are evaluated numerically by using

finite difference of the nonlinear equations of motion. For an elastic airship, the

dynamics model is represented by 8 + 4N nonlinear ordinary differential equations.

Correspondingly, a state vector X with 8 + 4N state variables is defined as follows

X = [u0, w0, q, θ, q̇N+1, qN+1, . . . , q̇2N , q2N , v0, p, r, φ, q̇1, q1, . . . , q̇N , qN ]T (5.5)

The first 4 + 2N states relate to the longitudinal (rigid-body and elastic) motion and

the last 4 + 2N states relate to the lateral motion.
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Figure 5.10: Time histories of rigid-body velocities, Case III, at 15 m/s

110



0 20 40 60 80 100
27.5

28

28.5

29

29.5

30

30.5

 u
0
  

 (
m

/s
)

time (s)

rigid−body model
flexible model

0 20 40 60 80 100
−5

−4

−3

−2

−1

0

1

2

3

4

5

 v
0
  
 (

m
/s

)

time (s)

rigid−body model
flexible model

0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 w
0
  

 (
m

/s
)

time (s)

rigid−body model
flexible model

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

 p
  
 (

d
e

g
/s

)

time (s)

rigid−body model
flexible model

0 20 40 60 80 100
−1

0

1

2

3

4

5

6

 q
  

 (
d

e
g

/s
)

time (s)

rigid−body model
flexible model

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

 r
  

 (
d

e
g

/s
)

time (s)

rigid−body model
flexible model

Figure 5.11: Time histories of rigid-body velocities, Case III, at 30 m/s
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(c) Elevator deflection at 15 m/s
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(d) Elevator deflection at 30 m/s
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(e) Rudder deflection at 15 m/s
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Figure 5.12: Flight path and control input, Case III
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Once the state and control matrices are obtained, the responses in the frequency

domain can be computed. The frequency responses of pitch and yaw rates due to

elevator and rudder inputs at 15 and 30 m/s are displayed in Bode plots in Figs. 5.13

and 5.14, respectively. In addition, the response results from the flexible airship model

are compared to those obtained from the rigid-body dynamics model.

We can observe that 1) the flexible and rigid-body models lead to similar results at

low frequencies for both longitudinal and lateral motions. 2) The differences between

the rigid-body and flexible models occurs at the natural frequencies of the airship in

the air. But even if excited at natural frequencies, there is small amplification of the

response due to high damping. 3) The influence of flexibility on the yaw rate r is

stronger than that on the pitch rate q at both speeds. 4) The natural frequencies

observed in the yaw-rate plots are slightly different from those in the pitch-rate plots,

because the elastic deflection in the y direction has strong coupling with the roll

rotation, as discussed in Section 5.3.2.1, through the angular momentum coefficient

matrix.
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Figure 5.13: Control response in the frequency domain at 15 m/s
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Figure 5.14: Control response in the frequency domain at 30 m/s
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Chapter 6

Dynamics Model of Flexible

Airships: Aeroelastic Stability

The most important issue in the study of aeroelasticity of conventional HTA aircraft

is to determine the conditions at which aeroelastic instability can occur. Although

LTA aircraft fly at relatively low speeds, it is still important to investigate the possi-

bility of aeroelastic instability because such instability could have disastrous results.

Additional motivation comes from the recently proposed airship designs which make

use of very thin films for the vehicle’s envelope construction. For example, in [77],

a high-altitude airship was designed with the envelope thickness of about 0.048 mm.

These envelopes are extremely light in weight, but also provide much lower bending

stiffness than the more conventional airship envelopes, because in addition to being

very thin, the materials used have lower elastic moduli.

6.1 Aeroelastic Instability

In the conventional aeroelasticity of an airplane, the wing is usually modeled as a

cantilevered beam mounted at the root. The aerodynamic moment on the wing can
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equivalently lead to a negative aerodynamic torsional stiffness. The static aeroelastic

instability (divergence) of a wing is associated with the interaction of aerodynamic

force in a steady fluid and the resulting static elastic deformation [87]. Once the

airspeed increases to the point where this aerodynamic stiffness exceeds the struc-

tural torsional stiffness, divergence occurs. On the other hand, dynamic aeroelastic

analysis involves inertial, elastic and aerodynamic forces. The structural dynamics

of a wing is represented by a set of linear ordinary differential equations, with the

aerodynamic loads linearly expressed in terms of generalized coordinates q, velocities

q̇ and accelerations q̈. The dynamic aeroelastic instability results from the influence

of aerodynamic generalized force on the structural inertia, damping and stiffness ma-

trices. For example, the flutter of a wing, the most frequently encountered dynamic

aeroelastic instability of an airplane, is caused by an asymmetric aerodynamic stiffness

matrix which couples the bending and torsional deformations.

We now investigate the possibility of whether the structural deformation of an

airship can lead to instability of the rigid-body or elastic motion. The aeroelastic

instability discussed here is different from the divergence or flutter of a cantilevered

wing in the following respects. First, the analysis is based on the bending deformation

of the hull of an airship and not its fins, because the hull is the largest flexible compo-

nent of a modern airship, and also because the most important aerodynamic effect, the

Munk moment, acts on the hull. Second, the rigid-body translational and rotational

motions are included in the aeroelastic analysis here, for example, the inertia matrix

considered is not the 2N × 2N structural inertia matrix but the (6 + 2N)× (6 + 2N)

total inertia matrix of the whole flexible airship. Third, we demonstrate that the

instability of the airship is due to the coupling between the rigid-body motion and

elastic deformation. Specifically, the elastic airship can become unstable because the

bending deflection reduces the effectiveness of the fins. In addition, as we have seen

in Chapters 3 and 4, the dynamics model of an elastic airship is represented by a set

of nonlinear ordinary differential equations and it is intractable to obtain an analyti-
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cal linear model. For the purpose of stability analysis conducted here, the nonlinear

model is linearized numerically as discussed previously in Section 5.5.

The aeroelastic unstable phenomenon of an elastic airship is found to be similar to

the aeroelastic stability of a slender missile, because it reflects the interaction of the

vehicle’s aerodynamics, elasticity and flight dynamics. It has been found, in [96], that

the instability of a missile was associated with the interaction between its bending,

aerodynamic force and rigid-body motion (especially the roll rotation).

6.1.1 Instability speed

A linearized dynamic model of the Skyship-500 has already been employed to investi-

gate the influence of deformation on the frequency response. Using this linear model,

we investigate the variation of eigenvalues of the state matrix with airship forward

speed. Once the real part of any eigenvalue becomes positive, aeroelastic instability

occurs. A similar approach was used to obtain the instability condition of a slender

missile [96], and it is implemented in the following steps:

1. Define a forward speed range to be evaluated.

2. Use each speed as an equilibrium speed and then formulate the corresponding

linear equations of motion.

3. Plot the eigenvalues λ1,2 = σ ± jωd of the state matrix for each speed. If the

real part of any eigenvalue is positive, instability occurs.

The eigenvalues are represented with plots of σ and ωd for the longitudinal and

lateral modes respectively in Figs. 6.1 and 6.2. In order to observe the effects of

structural flexibility, the eigenvalue results based on the rigid-body dynamics model

are revisited in Figs. 6.3 and 6.4, from which we can see that the longitudinal and

lateral modes based on the rigid-body assumption are all stable from 0 to 130 m/s.
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Recall that in the longitudinal plane, the first rigid-body mode is associated with the

surge motion caused by aerodynamic axial drag; the second rigid-body mode is due to

the coupling between the heave; and pitch motion and the third is a pitch-incidence

oscillation mode. In the lateral plane, the first and second lateral rigid-body modes

are associated with the coupling sideslip-yaw and yaw-roll motion respectively, and

the third is a roll oscillation mode.

From Fig. 6.1, we observe that the aeroelastic instability occurs at approximately

uunstable = 88 m/s, and we find that the third longitudinal rigid-body mode, related to

pitch-incidence oscillation, becomes oscillatory unstable (σ > 0 and ωd > 0) at this

speed. The elements of the eigenvector of the corresponding unstable eigenvalue are

dominated by a positive velocity ∆w0 in the z direction (downward) and a negative

third generalized coordinate ∆q3 (hull deflecting upward at both ends). That is,

the third rigid-body mode becomes a pitch/bending coupling mode for an elastic

airship. The cause of the aeroelastic instability is illustrated in Fig. 6.5. The vertical

downward velocity ∆w0 leads to a nose-up unstable Munk moment and also generates

three upward forces FV,z, FF,z, FH(F ),z at the rear of the airship. Recall that the latter

three aerodynamic forces result from the hull viscous effect, the force on the fins and

the force on the hull due to the fins respectively, and they produce nose-down pitching

moments which tend to stabilize the airship. However, the upward deflection at the

rear causes a decrease in the local angles of attack, which effectively produces three

downward forces ∆FV,z, ∆FF,z, ∆FH(F ),z. In other words, the deformation reduces the

stable aerodynamic effects of viscosity and fin force. As the forward speed increases to

uunstable = 88 m/s, ∆FV,z, ∆FF,z, ∆FH(F ),z become more significant, so that the viscous

effect and the fin force cannot provide enough negative pitch moment to stabilize the

airship. The positive imaginary part ωd of the eigenvalue represents this is an under

damped oscillation system at this speed. As the speed increases to 123 m/s, the

deformation further reduces the stable aerodynamic effects, so that the real part of

the eigenvalue σ becomes more positive and the imaginary part ωd becomes zero for
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Figure 6.1: Eigenvalues of longitudinal modes from flexible-body dynamics
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Figure 6.2: Eigenvalues of lateral modes from flexible-body dynamics
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Figure 6.3: Eigenvalues of longitudinal modes from rigid-body dynamics
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Figure 6.4: Eigenvalues of lateral modes from rigid-body dynamics
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this mode, representing that pitch/bending divergent instability occurs.

From Fig. 6.2, the first lateral rigid-body mode, related to sideslip-yaw motion,

becomes divergent at about 106 m/s. It can be observed from the eigenvector that this

rigid-body mode becomes a yaw/bending coupling mode for an elastic airship. This

instability is caused by the yaw Munk moment and by the decrease of the aerodynamic

damping effects due to the bending deflection in the lateral plane. Note that there

are no oscillatory instabilities that can be observed in the lateral motion, because the

deformation has only small influence on the third rigid-body mode that is related to

the roll oscillation.

The aeroelastic instability discussed here reflects the interaction between the aero-

dynamics, deformation and rigid-body motion of the airship. The generation of this

instability results from the existence of the unstable aerodynamic Munk moment and

from the fact that the deformation reduces the other aerodynamic effects that stabilize

the airship. This instability may significantly impact the airship’s flight behavior and

even cause a catastrophic failure. For the Skyship-500, the operating flight speed is

usually less than one half of the lowest aeroelastic instability speed uunstable determined

here.
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6.1.2 Time response at high speeds

To validate the previous analysis and to demonstrate that the flexibility can cause

instability at the speed uunstable determined from a linearized model, a nonlinear sim-

ulation is performed for the Skyship-500 at high speeds. Similar to the examples

discussed in Section 5.4, control inputs are provided so that the airship is in a steady

level flight with a forward speed u0 at the initial condition. Then, a disturbance to

the vertical speed of ∆w0 = 1 m/s is given and the transient response is computed by

the nonlinear dynamics simulation program.

The time histories of vertical speed w0, pitch angle θ and aerodynamic pitch mo-

ment MAD,y are displayed in Figs. 6.6 and 6.7 at forward speeds of 86 m/s, 90 m/s,

105 m/s and 125 m/s respectively. The simulated results are compared to those ob-

tained from the rigid-body dynamics model. We can observe the significant impact

of the structural flexibility on the rigid-body motion at these speeds. In particu-

lar, Fig. 6.6(a) shows that the vertical speed disturbance, the pitch angle and the

aerodynamic moment are damped out for the speed of 86 m/s, while the response

in Fig. 6.6(b) shows an oscillatory instability at 90 m/s. Due to the instability at

105 m/s, the pitch angle can be as high as −90o in about 56 seconds. As the speed

increases to 125 m/s, the longitudinal motion tends to be divergently unstable, and

the pitch angle increases be 90o in only 8 seconds. It is noted that the angle of attack

of the airship remains less than 12o in the above simulation cases at high speeds.

The above simulation results confirm that the stability analysis conducted with

the linearized equations of motion can accurately predict the instability condition of

the nonlinear model.
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Figure 6.6: Time histories of vertical speed, pitch angle and aerodynamic pitch
moment at 86 m/s and 90 m/s, given a disturbance of ∆w0 = 1 m/s
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Figure 6.7: Time histories of vertical speed, pitch angle and aerodynamic pitch
moment at 105 m/s and 125 m/s, given a disturbance of ∆w0 = 1 m/s
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6.2 Influence of ET on uunstable

The structural characteristics of airships depend on their envelope material, in addi-

tion to the geometry. Recently, very thin films have been proposed for stratospheric

airships [77]. These materials were originally developed as part of NASA’s Ultra

Long Duration Balloon project [77,117]. It is possible to use such thin films for high-

altitude LTA vehicles because the air density and wind speed, and the corresponding

aerodynamic loads are relatively low in the stratosphere. Since these films provide

much lower values of ET , we investigate the impact of ET on an airship’s aeroelastic

stability. For this purpose, the elastic modulus E and thickness T of the envelope of

the Skyship-500 in Eq. (5.4) are changed to the following values:

E = 2.14 × 108 Pa, T = 0.048 × 10−3m (6.1)

These material properties are of a thin film employed for ultra long-duration balloons

given in [117]. The resulting bending stiffness EI is approximately 1/40 of that used

in the simulation examples presented in Sections 5.3.1 to 6.1.

Using the material properties in Eq. (6.1), the eigenvalues of the longitudinal and

lateral modes are displayed in Figs. 6.8 and 6.9 respectively. The aeroelastic instability

occurs at uunstable = 16.6 m/s, however, now in the lateral motion and is associated

with the first lateral rigid-body mode. This instability in the lateral motion is caused

by the yaw Munk moment and by the decrease of the viscous effect and vertical fin

force due to the bending deflection. The instability first occurs in the lateral plane

but not in the longitudinal plane like was the case in Section 6.1, because the first

lateral rigid-body mode is less stable than the third longitudinal rigid-body mode at

the speed of 16.6 m/s.
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Figure 6.8: Eigenvalues of longitudinal modes from flexible-body dynamics, with
material in Eq. (6.1)
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6.3 Summary of the Aeroelastic Stability Analysis

For fixed-wing aircraft, the divergence of a wing is caused by the negative aerodynamic

stiffness, and flutter is generated from the coupling between bending and torsional

deformations. However, the aeroelastic instability of an airship discussed here is due

to the interaction between the aerodynamics, deformation and rigid-body motion. The

instability results from the fact that the bending deflection reduces the aerodynamic

effects that stabilize the airship against the Munk moment.

The aeroelastic stability also depends on the elastic modulus and thickness of the

envelope. Using conventional materials, the aeroelastic instability will not occur for

the Skyship-500. However, our analysis indicates that thin film materials discussed

in Section 6.2 are not suitable for a 50-meter airship operating at low altitudes.
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Chapter 7

Conclusions

This thesis is devoted to the dynamics modeling and simulation of flexible airships,

with a particular focus on a theoretical framework that unifies the flight dynamics,

structural dynamics, aerostatics and aerodynamics.

The study began with a dynamics model of airships based on a rigid-body assump-

tion. A comprehensive aerodynamic computational model was proposed, in which the

aerodynamic effects were categorized into various terms based on different physical

effects: the added-mass force, the viscous effect, the force on the fins, the force on

the hull due to the fins, and the axial drag. A series of prediction methods were

used for each of these aerodynamic terms. The most significant aerodynamic effect

on an airship, the Munk moment in the added-mass terms, tends to destabilize the

pitch and yaw rotations, while other aerodynamic forces normal to the centerline sta-

bilize the airship. The numerical results of the added mass and moment of inertia,

the steady-state aerodynamic force and moment, the time and frequency responses

to control surface inputs, and the steady turn rates were compared to existing CFD,

wind-tunnel and flight test data. The comparison showed that the present aerody-

namic computational model can lead to reasonable prediction of the aerodynamic and

dynamic characteristics of an airship. A linearized model was computed numerically
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to analyze the flight stability of the Skyship-500 airship. We found that all modes

were stable based on a rigid-body model. Furthermore, a simplified 2-DOF dynamics

model was developed to predict the steady turn rates, providing an accurate, effective

and easy means to evaluate the turn performance of an airship.

With a thorough understanding of the aerodynamic effects on airships and the

trust from validation based on the rigid-body model, we proceeded to formulate the

dynamics model of flexible airships. The airship was modeled as a free-free Euler-

Bernoulli beam and the bending deformations were represented by time-dependent

generalized coordinates and time-independent shape functions. Once the velocity dis-

tribution of the flexible airship was obtained, the Lagrangian formulation was applied

to derive the dynamics model that describes the elastic deformation and the rigid-

body motion of the airship. The inertial, gravity, aerostatic and thrust forces were

then incorporated, including the effects of structural flexibility. In order to capture

the coupling between the aerodynamic forces and structural elasticity, the local ve-

locity distribution on the deformed vehicle was used in the computation of various

aerodynamic forces. Finally, the dynamics model of an elastic airship was represented

by a single set of nonlinear ordinary differential equations, where the effects of flexibil-

ity on different forces were expressed in terms of generalized coordinates, generalized

velocities, and shape function integrals.

A dynamics simulation program was developed in Matlab and used to analyze

the dynamics characteristics of the Skyship-500 and the following simulation results

were presented: the normal free-free mode shapes, shape function integrals, time and

frequency responses to elevator and rudder inputs. From the simulation results, we

observed that strong coupling exists between the roll rotation and the bending de-

flection in the lateral plane through the angular momentum coefficient matrix. The

natural frequencies of the airship in the air are greatly affected by the generalized

added-mass matrix, and are about 25-30% lower than the natural frequencies in vac-
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uum. The effects of deformation become more obvious as the flight speed increases.

However, generally speaking, the influence of flexibility on the rigid-body motion is

relatively small for the Skyship-500 at its operating speeds.

The possibility of aeroelastic instability was investigated using the linearized dy-

namics model. The aeroelastic instability of an airship is associated with the interac-

tion between the aerodynamics, deformation and rigid-body motion, because of the

fact that the bending deflection reduces the aerodynamic effects that stabilize the

airship against the Munk moment. As a result, some rigid-body modes can become

unstable as the flight speed increases. The numerical results obtained from the sta-

bility analysis showed that the aeroelastic instability speeds are more than twice the

operating speeds of the Skyship-500. The effects of the envelope’s elastic modulus and

thickness on the aeroelastic instability conditions were analyzed in order to investi-

gate the possibility of employing a very thin film for the Skyship-500. The simulation

results showed that the instability speed could be as low as 16.6 m/s. This indicated

that such thin films cannot be used for the Skyship-500 at low altitude.

The present dynamics model provides insights into the interaction between the

rigid-body motion, elastic deformation and aerodynamic forces of an airship. It can

be extended to other airships to evaluate their dynamics behavior and their control

systems. The results in this work have demonstrated that the structural deformation

has small effects on the dynamics properties of the Skyship-500 airship. However, in

order to reduce the weight of the envelope, very thin films have been proposed for

airships. Since these films lead to much lower bending stiffness than the conventional

airship envelopes, the effects of flexibility on these designs should be considered.

134



7.1 Recommendations for Future Research

Several directions are suggested for future research based on the study presented in

this dissertation:

• Although the Euler-Bernoulli beam model has been employed successfully to

analyze the deflection behavior of inflated cylinders and also has been verified

through experiments for several non-rigid airships, the structural deformation

model should be further refined for flexible airships. Efforts should be made

to model the effects of shear and torsional deformations of the hull, and the

deformation in the cross section related to the membrane modes of the envelope.

• The wrinkling of the hull envelope has not been investigated in this work, but it

has been demonstrated that the wrinkling can considerably influence the bend-

ing stiffness of inflated cylinders [82]. Prediction methods should be developed

for the conditions under which wrinkling can occur on an airship, and the effects

of wrinkling on the dynamics model should be investigated.

• Since the atmospheric turbulence can introduce high frequency disturbance to

the system, it may excite structural vibration and cause considerable flexibility

effects on the airship’s dynamics. However, wind disturbances have not been

considered in this work. To overcome this limitation, an accurate wind model

should be incorporated into the dynamics model and simulation.

• The aeroelastic instability in Section 6.1 is associated with the rigid-body mo-

tion. Automatic control systems may be designed to improve the aeroelastic

stability. To the author’s knowledge, existing control systems for airships are

based on a rigid-body dynamics model. To obtain better flight performance of

very flexible airships such as those made of thin films mentioned in Section 6.2,

one should develop new control techniques by considering the structural flexi-

bility.
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• Simulation results in Section 6.2 have clearly shown that the thin films cannot

be used for the Skyship-500 at low altitude. Efforts should be made to inves-

tigate the flexibility effects on the dynamics characteristics and the aeroelastic

instability conditions of high-altitude airships made of these films.

• The comprehensive aerodynamics model in this work provides an effective way

to predict the aerodynamic force and force distribution along the hull. However,

for better understanding of the aerodynamics characteristics such as the pres-

sure distribution over the hull surface, more complicated numerical approaches

should be investigated in the aerodynamics computation.

• The thrust force calculation in this work is based on a simple proportional

model, which produces reasonable airspeed results for the Skyship-500 in an

acceleration test. However, the dynamics of the thruster may be an important

issue for the dynamics analysis of smaller airships. A more detailed thruster

model for airships is recommended.

• The actual C.G. location of an airship shifts during the flight due to the mo-

tion and inflation/deflation of the ballonets. The effects of ballonets should be

incorporated into the dynamics model.
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