
• \.. .d •

c

A GRAPHICS-ORiENTED OPERATING SYSTEM

\

o ,

,
,...

.. .. ~f-~ 1'.

..t ••

.. \

, .

\

A GRAPInCS-ORIENTED OPERATING SYSTEM -
FOR A SMALL COMPUTER

1

.,

Kenneth Cr aig Cam pbe 11. B. Eng.

..

A thesis submitted to the Faculty of Graduate
Studies and Resea-rch in partial fuUillment of
the requirements Tor the degree of Master of
Engineering.

Department of Electrical Engineering
McGill University
Montreal. Quebec

August. 1974

1 @ Kenneth Cr.l~ Cpopbel1 1975 1

1 •

/

• -i-

ABSTRACT

This thesis describes an implementation of Bell Telephone

Laboratories' BELLGRÀPH operating system on McGill's

McGraph f~cilities. The special considerations and proqlems

encountered in modifying an advanced system designed/o drive

a core-refreshed display unit such that a disc-refreshed di~lay . .
unit could be used are des cribed. , The resulting changes in

oper'ating concepts are outlined .. and guidelines are presented for
.

possible' future development.

~r,

\

!
,,'

•

\
t li

, r di

- ii-

RESUME

Cette thèse présente une réalization sur le systLme

McGraph ~ l'Université McGill du système d'opération

BELL GRAPH qU'ont développé les laboratoires du Bell Téléphone.

L es considérations spéciales et les problèmes rencontrés én

transfoudant un système adva~cé ~onçu pour un système graphique

régénération par :la mémoire cent/ale pour un système régéné'I"ation

par disque sont présentés. Des changements rés~ant dans les

idé,s d'opération sont esquissfjs. et des lignes de guide sont pr~sentéés.

peut-@tre pour un dévelopment futur.

\
\

" .,

/
/

o • i-
l

..

<

m--

/1
.'

1\
- iii - <'

..
1 wish to expred my SlOcere thanks to the many people

who contributed to the :-suceess of thls thesis.
(

First, the paUence and guid;tnce of Dr. A. Malowany,

my thesis advi50r, wàs much appreciated',

Thanks are due to Juhan Leemet, who not only wrote
1

the PDP-8 software and software and maintained the graphies

hardware, but a150 supplied me with many useiul ideas.

1 am gteatlv indebted to Bell Telephone Laboratories

for generous(y making the BELLGRAPH software available.

1 would a1so like to thank Mrs. Diane Morley who typed

this thesis.

And finally, l' d like ta thank a Friend who kept up

my spirits in the darkest daya of thesis-wri~ing. o
,

~ This research was supported by the National Researeh

Council.

(

l'

\

- iv-

(,
TABLE OF CONTENTS

ABSTRACT : i

ACKNOWLEDGEM ENTS . • • • • • . • • • . . • • . ii

TABLE OF CONTENTS. . . . • • . . • . . • • • • . . . • • . • . . • . • • . iv

SECTION A

CHAPTER 1

r. 1

1.2

1.3

1.4

CHAPTER TI

2. 1

2.2

2.3

2.4-

CHAPTER nI

SECTION B

CHAPT ER IV

4. 1

1 4• 2

4.3

4.4

4~ 5

INTRODUCTION AND BACKGROUND

INTRODUCTION• ~

Interactive Graphies

ExPeriences with Graphi cs Systems•...•.

Graphies Peripheral Deviees .•......... ' ...••.

Development of Interactive Graphies
at MeGill . '•...

INTRODUCTION TO GRIN2

The Graphie Data Structure•....•..•••

The GRIN2 Language•..••.

Subroutine Blocks•....•......•••

A Short GRIN2 Pro gram ' '0' •••

i ~
~

McGRAPH FACILITIES •.• ','••

THE McGRAPH OPERA TING SYSTEM

THE McGRAPH EXECUTIVE PROGRAM

The Real-Time Subsystern•...•..•.••

.Deviee Translation Subsystem ..•••••.••••••••.

Memory Managern.ent
ù

Display Management

Th-: PDP-8 Slave Prograrn .••••••••••••• , •••••

\
1

-,

1

2

4

7

9

10

15

17

18

21

26

29

31

32

35

36

..

. ,

/ ... '.
~\ ',.,

,
. CHAPTER V

5. 1

5.2

CHAPTER VI

, 6. 1

6.2 ,

6.'3

6.4

CHAPTER VII

7. 1

7~

7.3

. SECTION ~

CHAPTER vru
8. 1

8.Z

.8. 3
,

8.4

8. 5

-v-

SUBROUTINE BLOCKS

McGraph, Obje ct C<lde\•.....•..•.•..... . '
\ \ ~ li

GRIN2 Language Staterbent Implem.entation

. \
The Object Code•... ' •...•.•....•.......

Load{l\g'and Initializing th~ \McGraph System ..
, ç.

Building the Data Structure Blocks•......

Real-Time 1/0 ..•.............•..•... :-...••

ASSOCIA TED PROCESSES

The GRIN2 As sernbly System ...••.•.•.•••..•

The Lihrary Editor G2LIBE ' ..••...••...

Debug Packages

CONCLUSIONS

38

43.

45

50

55

59

63

65

66

EVALUATION OF THE McGRAPH~YSTEM67

pro,,{r'arnming in GRIN2•..•. :•..•

The 'aRIN2 As sernbly System ..•........•••..

Run- Time Characte ris tics•. M' ••••••••

De bugging•...•.......•........ ,
Run- Tirne Flexibility •............•.........

67

69

70

72

74

CHAPTER IX SYSTEM EXTENSION AND MODIFICATION75

9. 1 The Device Translation Subsystem. . • • . • . • • . . . 76

9.2

9.3

9.4

9.5

,
Modifications to the Real-Time Subsystem ...•

The PDP-8 Slave Prograrn ..•••••.•••••••..•

Extension to Other Graphics DeviCf-
Odds a.rld Ends ~ lit ••••••••••••••

~ , '
'-,

1 \. -:

~ \, " ;" ..
,

79

80

81

82

-

- ~---

e

~
.. '. .-.

CHAPTER X

APPENOtx A

APPENOIX B
"

--vi- •
, , ..

CONCLUSIONS ••••••...••...••.••.. '. 84

THE GRIN2 ASSEMBLY SYSTE~ . • • . • • 85

GENÉRA TION OF GRIN2 P'APER T APtS 89 •
BIBLIOGRAPm _1_ <4 93

(

•

r
./

\
".

•

\
\

\

\

•

\

••

1

. ~,-,

/
) ((.toI

-'

..

\

•

...

o

-1-

J

SECTION A INTRODUCTION .AND BACKGROUND

CHAP ER I INTRODUCTION

Com'puter graphics as proven to be one of the m.ost intriguing
-....,-

researc'h topics in computer cience in recent years. Since Hs

drarnatic popul~u:ization by Sut erland (S. 3) in the èarly 1960',s many

successful applièations of compu~,r graphics have beén reported.
\

. These include, forays into such varied fields as computer-aid~ design
(F.3, G.2) f . (G.l)

, weather orecashng , and computer-aided instruction
(M. 3)

Over the course of the years, indeed, rnany gr aphics -oriented
. (C.l) (S.3)

lan~uages have been deV1sed-GRrn2 'f,:. Se chpad , Grapple
(W. Z) (T. ~ d / (U.l) , ' , PICADE , an PL OT71 t name but a few - along

with nurnerous packages of graphics subroutines written in existing

1 . hm' 1 :"1It FO (D. 2, O. 1, T. 1) G h a gorlt IC anguages suc", as RTRAN . rap ics

peripherals are becoming significantly cheaper and more readily '"

available. Indeed, the day i5 within sight when every rnediwn-size ..
computer inst-allation will have one or more graphies terminaIs as

part of its normal equ~ent. Existing operating systems 'must change

in order to meet these popular demands. This thesis docwnents the

é~~Pleme~tation of a graphies -oriented pperating system within the .

G h (M. l, M.2). d k . . , c. rap . envlronment, an ma es suggeshons concernlng

its further dev~lopment. ..

o

J 1
1 ----~

(

c

2 -

1. 1 Interactive Graphies

Why have ~ many eOJ11puter installations invested heavily

in graphies peripherals, especiaUy interactive graphies terminals?

No doubt each installation has its own reaso.ns for doing so, but two

ideas underlie aH of them. Evcry exponent of computer graphies
il

tacitly believes in the power of symbolic thought, the ability to, as

Herzog (H. 1) puts H, "convey ideas in terms of forms ". Sirnilarly,

everyfcIisciple of interactive comptlting believes that a user ean do
;

more useful work if he is allowed to interact with the computer, ,
and influence its course of action. These are the twin bases upon

whieh interachve graphies re~ts. Together. they may be said to

aymbolize an attempt to upgrade the man/machine interface, and to
~ ~'

rn.ak~ the computer more responsive to the user's, demands . ..
On the ether hand, interactive graphies terminaIs have

consistently proven to be a di!.(icult tooi toi harness successfully.

While it has always been easy te visualize applicati~ns of graphies

terminaIs, Penney points out that it has been uniformly f'difiicult

to generate useful software of fairly general applicability".
(P.l)

rlley extends this by mentioning that it is difiicult to write high­

quality graphies programs at aU. and by indieating that " ... the

clarity and vividness of computer graphie communica.tion is not iU1

. . (·F.2)
automahc consequence of the mere use of drawtngs" ". It has

~ ..
long ,bee~ reeognized that interactive prograrns on a ~ime-sharing

system must be carefully written, with hUl1lan factors taken into
. (5. l, W. 1) Th

account, li they are to be truly e ~chve • e sarne la now

b . . di' . h' . (F. 2) lth h fi" emg saI 0 lnteractlve grap lCS programs; a oug, 0 course,

aU the difficulties have been 'magnified. r Visuai processes are

inherently complex, and an interactive graphies terminal may well

•

o
\

:.
~

f e

- 3 -

!J

be one of the most eomplicated peripherals to he interfaeed to any
f

computer. If, as Penney eontends. graphies ~upport' software is

Il . d (P.l) hl' .. hl fi . genera y Ina equate , t e eone USIon.IS Ines eapa e; e eehve

graphies prograrnming ean he à rea;\ eh.orè. The result is that

until now "the most sueeessfuL applications of computer graphies
o (P. 1)

have been the silnple ones ". 0
• e

Efforts are conHnuing to provide graph~cs terminal users

with an adequate Level of software support. The operating system'

des eribed in this thesis wa.s hroy.ght into existe,nee at BTL in 1961,

. and ~eported on" in i ~6~' (C. 1). Sinee thën it has' been continually
, (M 4) 0 -

updated . • an~ now trausp1anted i~o a new environrnent. Although

many similar paekages have heen deseribed in'the literature
(V. 1, N. 1, M. 4) h d f . . 1 f , no m~t 0 0 generat~ng gen1ra -purpose so tware

~ ,
o

.? h~s be~n agreed upon. As ~ nbw it is still a matter for researeh.

" •

. ~

-f •

t
,

"
" jIo~".

..

.: ,1 ,. ,
• ,

c, ,

. . .
" ,,~

,1 ','

(*) .

..

~

f ,

\ .' !
,~

",
1

"
"

't'

..

\

- 4 -

1. Z Experiene,es with Graphies Systems

It might be instructive to superficially examine a Iew

existing systems to gain a feel for what is required in a

gr aphios -oriented oper ating system. First, one must be clear

on what a "graphies -oriented" system really is. To many.

it is simply ~ system capable oI driving sorne form oI graphies

terminal. II this definition is accepted as forming a lower
1

bound, many commercial1y-avai1abl~stems immediately

become graphies systems. XEROX,...(D. ;;n, Tektronix (MAN-11)
() -

and other terTninal manufacturers oiler software support for

their equipment, in the form o~ FORTRAN subroutine packages.

These perrT1Pt the user to undertake a 'certain amount of interactive

\ ,graphies prograrnming with (app~_ently) minimum developrnent

'and training costs. And in many applications, such an approach
, (MAN-11)

is entirely valid, as ,witness the Tektronix sales literatute •

In" sorne cases 1 a more advanced system can be provided (at added ,
•
~ '.

development cost) by irnpletnenting a high-order graphies • ~ {,
(0.1. P.2'['

language on an existing commercial operating system .

This has sorne advantages, such as programmer eonvenience,

but does not address itself to many of the fundamental problems
o r 'J

computer graphies.

Consider for a moment the other extreme -the mil~tary . .
envirorunent. Highly speiealized software must be devel~ped ~n

a customized envirorunent. ln tactical or ,strategie operations

high data rates are the n';]'i"m. These lead naturally to computers

with multiple bus structures, multi'ple general-purpose registers, e " and 80 on. The displays must present accurate, real-time

-
"

.1

, !

- 5 -

information under extremely adver.se conditions. Few, if any.

commercial systems could rneet military performance standards.

On the other hand, high order languages are nice, but quite

.râispensable in milit~ry systems, where .efficient systems are

everything.

" ,Commercial graphies systems operate in a far mOJ;e

favourable envirornnent, but many problems are similar. Useful

h · ' f .' . Il 1 (P. 1) grap 1CS programs, or 1nstance, are typlca y arge .

Data rates are frequently high, partially becatfSe graphies dis playa

require a great deal of refresh ,activity, and partially because .
the dis play is oLten use,r;l to contro 1 a concurrently-running process.

Few commercial systems, traditionally oriented towards data­

processing or computàtional tasks can cope with these requiremeflts

at least not in real Ume.

,
The result is that a number of graphies oriented systems -

~

in the....sense that this term will be used in the balance of the thesis

have beeo developed to meet these requirements. Many oI these,

especially the nonrnilitary ones, provide the capability of

programming in a high-order graphies language. Representative

oi these systems is GRAPPLE, developed by Bell-Northern

Research, and BELLGRAPH. developed by Bell Telephone Labs.

A Iew such systems have ~en been ofiered by systems houses

such as ADAGE (Y. 1). These systems support true graphies

capabilities, rather than treating a graphies terminal much like

a tast teletype.

The remainder oI the thesis will be spent diseussing one

of these systems, the McGRAPH system. This is actually an t/

.. 6 -

implementatio.n on the McGraph facilities, of the BELLGàA.pH

" .y~tem. This system supports programs written in the high-
--J

order graphies language GRlNZ. Further. it provides rapid

memory manag~ment, allowing large applications prograrns

to be run.interattively in real time. As such. it i~ a rather
•

interesting system.

....

,

,.

1

..

e,

- 7 - ---4

1.3 Graphies Peripherar Deviees

A staggering nll!'l1ber of graphies peripherals have bE:en plaeed '

on the ll1.arket within re..tent years •• giving a system designer
1)

unpreeedented flexibility in hardware selection. A short review of

the more prominent types of peripherals is inehided here to give

the reader an in~ighf into the various tasks a graphies -oriented

operating system must fuHil.

The slow, hardcopy device such as microfilm printers and

flat-bed plotters are usually run in an off-Hne mode. The operating

system is really only responsible for formatting magnetic tape used

to drive these devices, a relative~ simple task.

Consider next the modest, CR T-based alphanurneric terll1.inals.

Normally these allow only a limited degree of interaction with the

user. Alphanumerie charaeters can be displayed, sometimes only

in fixed positions on the 5 creent though frequently in programmable

~()'nes and 'Çceassionally in various fonts. These terminaIs are USUtlly

,tbased on' dj"rect~'~iëw, sto~age CRT's (TEKTRONIX) or upon cheap,

:~video-scan TV moni~tor scopes (DATAMEDIA 1500). Some of the

more advanced of, these terminaIs (TEK - 4002) are equipped with

veetor-gener~tors, enabling 1imit.~d, relatively low-cost graphies.

m'gh-performance. "intelligent" terminaIs permit more

flexible graphie operation. These generally allow extensive operator

-'...,.interaction through the use of such devices as the light pen. joy stick,

mouse. tracking baIl, RAND tablet, and so on. To per~it real-tUne

manipulations and selections these units are usually based on
1)

refreshed CRT's. The refresh can corne from mass storage (MeGraph)

or from core, on the DMA (GRAPHICZ). TheBe terminaIs generally

, '

8 -

\ ,

involve caligraphic display processors: the display is "painted" on
.

the [&creen by the motion of the bearn. Raster-scan unlts are very

rare. due to the storage and elaborate controllers required.

Several types of "flat-screen" displays are being developed ,
to eliminate sorne of the bulk of the CRT displays. The most

promising of these, at the moment, are the plasma displays. lndeed,
,

there is at least one -commercial plasma display unit. the DIGIVUE.

These have many potentially attractive characteristics (size, rear

projection of film. selective eràsur,e, and direct electrical read-out

of display points), but are relatively slow, with curnbersome
(M.3)

electronics . At best they l'equire a good deal more developrnent

before they can serious ly cha llenge CR T displays.

,

, .
'\ j ..

Interaction devices are aiso multlplying. Besides the usual,.;\
'~I

devices already mentioned (light pen,;' etc.), work i5 proceeding ort t-p.'
'". ;

touch-sensItive membranes (LEK 114 CRT), and current-sensing

panels (G. 4). AH this should cause the system programmer to

seriously think about future developments before committing himself

to a software program. Any operating system must be fl'exible enough

to support many of these devices, and, hopefully, sorne not yet
1-

deyeloped.

- 9 -

1. 4 Development of Interactive Graphics at McGili

Interest in interactive computer graphies began at McGill

in the fall of 1968 when it was decided to develop a graphies faciÎity

within the Department of Electrical Engineering. At that lime the

Department possessed a PDP-8 interfaced to an FDP-l6 Data Dise

and an IBM 360/75. A survey of eommercially available systems
"

(IBM. ADAGE. DEC) showed units with interactive graphies.

eapabilitles to be prohibitively expensive, despite the fact that they

were supported by varying amounts of software. In an attempt to

reduce the costs of computer graphies it was decided to tailor a

system to complement the existing faeilities. A special purpose

disc-refreshed unit was designed, constructed and debugged within

the departrnent (F. 1) and placed in service by the spring of 1971.

During the course of1this proJect a PDP-15 was aequired and

interfaced to the PDP-8. The initial applications programs for the

graphie system (T. l, N.4) were written i.n FORTRAN on'the PDP-l5,

with only a primitive set of handlers residing in the PDP-B. This
.

proved unacceptable, and existing graphies systems were re-exam-ined
"".:.

for ideas on improved software support

Late in 1911 Bell Telephone Labs released a copy of their

Bellgraph Operating System (C. 1), supporting the GRINl language,

to MeGill. In 1972 work was begun to modify the system to function

on the McGratsh facilities. Finally, in early 1974 the first application

program in GR~l was written at McGill, and rWl under the guidance

of the MeGra.{>h operating system.)

\

l,

- 1 0 -

(~

CHAPTER II INTRODUCTION Ta GRIN2

2. 1 The Gr aphic Data Structure

Display units, and associated graphical devices, are found

.,-'" to differ drastically at the hardware level from manufacturer to
, 1

" . manufacturer, and to use different command formats to aenerate
l' /'-.

\
l pictures. Accordingly, when one operating system must support

several different types of display units, it is usually found necessary

to represent graphical information in a 'device independent forme ,.

Irnmediately before the information is to be transtnitted to a specifie

device, a set of programs is invoked to translate the data from

standard form into the command set used by the device. The standard

method of des cribing graphical information in th~ McGraph system

is known as the Graphie Data Structure. This structure is as "
d 'b d b Ch ' (C. l, MAN-l), h' l' f h Grl.n..T· e8cn e y nstensen ln 18 out Ine 0 t e ~r'f 2

language, and will be reviewed here for the sake of completenes's.

The graphie data structure cortsists of Hie four types of blocks

shown in Fig. 2-1: node blocks, branch blocks, leaf blocks and

nondisplay pata blocks. Each of these blocks consists of a contiguous

set of memory locations with a distinctive header word. Node and

braneh blocks are of fixed length; the others are of indefinite length.

ln McGraph, a picture can be represented by a directed graph

with no c10sed loops. In this formalism each node represents a

particular sub-picture, and each branch represents a spe~ifie instance
"

of the node it points at. Some terminal nodes, called lea~s, have'

special significance; 9nly these blocks can contain di8pla~ instructions.

Nodes and branches, on the other hand, 'serve to impart structure to

r

~, !

? 11

Flg.2.1 •

(Graphie Dat a Strllc~ure Blocks

LE A F BRANCH

000011 BODV LENGT H
N+1

0001'1 BRANCH FOAMAi
PTA

DATA BLOCK DATA SLOCK PlR
POINTER

r BO DY

, NEXT BAANCH RING
PTR

/lX
..

~

l
(SCOPE CODES)

,

1\ AV
PARAMETERS

DOWN BlOCK PolA

7 7 7 7 7 7g
.-, SYSTEM DATA BLOC K

PTR

\

NOD!: DATA

0001 01 NODE FORMAT
PTR

ln, - rBloC 1(lENGTH
!VOl 00 1 (n+1I

DATA SlOCK
P.OINTER

NEXT BRANCH RING
PTR

(
1 (DATA)

'~-----I

BODY

. .

r •

,
(

1
J

N c

--r---
N+8
9

"L
.J --.. --.

Fig.?2

.'

, r

\
BODY

1

.---.------- -4-_ ~- lo-

Descriptor ,Bits

._-----'---- ---- - "---
00 RELOCA fABLE

01 BLOCK PTR

1 0 ABSOLU TE

1 1 l~d WORD 1 TM WIJRD ADDR

~

• 1 2

..
'> . -

- l 3 -

the display.

An arbitrary number of branches can enter a node and an

arbitrary nurnber leave it. Rather than require the node block to

contain pointers to each of the branches, a ring structure is used.

The 'ilOde block contains a pointer to the first of the "out-branches ",

which points to th~ next, and so on down the line. Each hranch is

and so must have two rings passing

gh it. One ring is specified as above. Another word in the

ranch block points to the node head.lng the "out-branch" ring.

Leaves contain the information defining t he vIsible portion of

a picture. When a leaf block is initially generated it has zero body

length, and data is "grown" into it at exe cution time. Text and

line-drawing information can be stored (in device -dependent form) in

a lea! block.

Non-display data blocks allow the programmer to associate

non-dis play information with the data structure. These blocks are

defined and allocated under progra.rn control and may be of an arbitrary

eize. The blocks maybe attached to nodes, leaves or branches in the

display, as can be seen from Fig. 2-1.

Consider the picture shown in Fig. 2 .. 3 (a). A group of lines

can represent a resistor only if the user grants it "that interpretatioh.
..

To an electrical engineer, there are c1early three graphic elements ,
(leaves) in the picture: th! capacitor, r'esistor and short circuit

symbols. Upon reflection it can be seen that Fig. 2 -3 (b) and .
Fig. 2 -3 (c) represent two equally vaUd structures for the picture.

Undoubtedly, in a circuit analysis application non-display data blocks

would be associated with the structure, denoting element types and

~

for
values. Indeed, the structure chosen~the representation of the circuit

may weIl depend upon the method of analysis being appliéd.

•

..

/
1

. \

LEGEND:

1
1

\

\

\ ~ IG. 2.3

A S I~~E C IRCU IT
'\ . \,GRAPH le

., \
,.--- - - -......

(b)

..

o

- WITH TWO POSSIBLE

STRUCTURES

l T
(a)

(c)

. /

) o
nodes branche. leaves

..

subpicture
leve l

14

; (,,'

,

·'

- l 5 .-

Z.Z The GRINZ Language

The GRINZ (Graphies Interaction) language ie a high-level

general-purpose graphical prograrnming language which permits

the generation and manipulation of the graphical data structure. and

provides statements for controlling real-time man-machine
. . (C. 1)
Interachon GRIN2 statelpents can be classified into five

main categories:

(1) Real-time man-machine interaction

(Z) Structure generation

(3) Display data generation

(4) Structure editillg

(5) Displa~control

..

The GRIN2 language provides statement~ which query the

operator 'seated at the interactive console. The operator can answer

through keyboard or lightpen action, causing control to be passed to

other statements. which might use his action to define the course of

future processing. One of these fundamental question,s provided in

GRIN2 is posed by the WHICH state;nent. which gives the .operator

the privilege of choosing one of the objects on the screen with the

light pen. The resulting action depends upon which obJe\t is chosen,
~

but in general a sele ctive transfer of control i8 involved.

Another basic real-time question is posed by the WHERE

statèment. A tracking cross appears on the screen and may be

positioned using a light pen. When the centre of the cross is correctIy

positioned. the operator can gen.erate a distinctive jnterrupt to signal

bis satisfaction, and processing continùes.

,; ;-
, . .

\

A cha~acteristic of the GRlk Ireal-time staternents is that
(1 " ,

they ~Ql"ce the applicat40n progratnmèt: to obey Wasserman's First
) , \

Principle (W. l) for "idiot-proofing'\interactive prograrns. ~
definite, anti~ipatable response results f,\r every conceivable user

input. sim~ly because the application prog~~rner mu,t, under

GRIN2 synta.>c. s pecify what action to take fo~ any input. Typing a
\

\

message when a light-pen bit is anticipated will not, then, bomb the
1 \

system.
\

A graphie data structure can be built using \~e three commands

LEAF, BRANCH and NODE. as described in the BeÙ~raph Programmer's
\

Manual. \
\

Display data in leaves are the scope commands ~hich
\

produce the picture. Statements such as TEXT, VECTOR'~d PARAM
,

store a series of scope codes in the last Ieaf specified. Str~ture

editting is possible thro'ugh such staternent as DETACH which -ç,daches
,

branches from the structure, or ATTACH which can attafh new \

branches to it.

The structure to be displayed is attached to a privileged nod

the display node-through the DSPNOD commando Branches can be

added to the dis play node without dish~rbing the existing structure

by usi~g .the ADDDSP statement, or rernoved by using the SUBDSP

statemént:- An entirely different node becomes the disp~y node

when the NEWDSP command is used. AU branches pr~~ipus ly
J~ -~

attached to the display node are detach~. ~

\
\

f

z. 3

,
.'

, " .

o

Subroutine Blocks

- l 7 -

<

On~:oth.er sort of block alsQ appears in the McGraph system:
o

the subroutine block, shown in Fig. 2-2. Subroqtine blocks contain

the PDP .. lS object code derived {rom the assèmbly of GRIN2

program blocks, and con~ist of three parts: a header word, the

body, and a descriptor section. The header word declares the

nurnber of octal words in the block. The body contain~ th) <?bject

code proper. And the des cript:or section provides relocation <J,
in!orm'ation about each word in the block. That. is, because a

8ubroutine blo~~ must occasionally be relocated ~ore, ea~h wprd

must be tagged a~ be\ng a~solute, reloc:;.atable, a'-ck-pointer, or

part of a two-word address. (These notions will be fully explained .
in Chapter 6). When a block ia moved, then, a11 code within it,

, ~ (,

and aU references to it, may'be updated, if neceasary.

1

• '. .

..
9

...
,,!

"'
,

(

"

"

" o

- 1 8 -

Z.4 A Short GRIN? Pr~grarn

Consider the following trivial problem. A user wishes to

display a triangle and a square on the s,creen. then have the privilege

of using the light pen to select one qf them. 'Ilhe chosen one m.ust
,

disappear while the other remains visible. Subsequently, selecting

the visible object with the light pen must t,ause it to disappear and '

the invisibl~ one to reappœr.
" ,

This} problem, can be representecl graphically as in Fig. 2-4.
o l' J - ~

Three display trees are 'defijed, ,corresponding to the three desired
'\ ,

1,d.isplays. As\Shown in Fig. 2.4 (a). ~he node DNODI is the root of
•

the tree which consists of branches to the leaf which defines the

triangle and the leaf which defines the square. Similarly DNOD2
o

and bNOD3 are. the roots of the other two trees. If DNODI were

att~ed td\he dis play node, the triangle and ~uare would be visible, '

and so on. (
\

A GRIN2 prograrn solving tpis user's prohlem appears in
') , "', 1

Fig. 2. 5. The graphic data structure is first défined (by the .
R

sequence of NODE, BRANCH and LEAF statementè) and the display
,

d~ta generated (by VECTDR and INVECT statem.ents). The node-

DNÙDI is then attached to the display node, and the dis play turtt,ed
o

on ând the light pen enabled by the WHICH statement. Each branch

to the square and triangle in the graphic data structure is defined as "

a ,light button. That is, selecting either leaf causes a logical transfer

to take place. The dis play node is ·appropriate-6y redefined, a new

picture generated and the light~ pen re -enabled.
,

Pictures of this process are shown in Chapter 6,
"

where this

program will be studied in far great~r det"ail •

..

(>

)

•

• FIG.2.4

A SIMPcLE GRIN2 PROGRAM,.

nNOD 2 DNODl

• 1
1

DNOD3

D
(a) Graphie Data Stru~ture

, .

Define Display

Tri

q

(b) Flowchart
• 1

, .. -
J

Square

" 1 19

Of .

1 1>

!

'~

"\1

.J

.1
!

". \
~-

-1 ,
1
~

-.

o

20

Fig.2.S
5 inlpJe GRIN2 Progranl

s p.' T <;('~RCE <;TflTO'fNT

-;
'1

1 7 '-1
l 0 (

l P C;

l(H
?O<;

1 l r
? l f.J

? l "
14")
744
2C);
1ft..
?Q(

1 P l
?fl<;

? CJ { \
2qr .
7g<;
'3 1 (.
317
11 /,
~1'J

~ 43 LCr,P
')4 ~
~ 1) l
')<;2 . 1; S; 4 S f- 1 X
1Cit-

/ 1 t. 5
1l::[
16P TFtX
17(
~1C;

1-n C

~~" w
3P~

~R7

1 C TL
prn ~ T
r,?Ir,
LFJ\F

C LP V[

CtP vE

r~F F

~ r,fl f

f\COE

PRl\r-.CH

PRh~C~

I;SPNrc

"H 1 C.l

COTe

I\fWrSp

GeTe

f\EWGSP

cnTC

f QlJ

<':ENn
ENf"

,1, /q,lt
• r--(()f!t\

'ic'l
T R (r,
; ((Ccrl
((~,C), (-~,rJ), ((),-'to,) 1
.,* c(cr~<;
~r.L~PE

, CCCQI~
((w,CI,IC,\\l,(-\\,C) .!r,-~»
.,* (rCC17 . ~

P t\ r r ? , , (, (1 0 0 , 4 C ()) , TRI C , , <; r 1 x) , (t (fl CC, l, r:: rI, (', (L ,., :~ r , , l rIt)

.r

, (C(rN
'Ir t • eccc"?
, cccrl,l
f' 1\ ('l' l ~->
, ((C C ~/.
('NrC~

, (CCCf~
fi R C ~Il ,C f\ rel , (2 cc, 1. C (1', T IJ 1 r: , , S F (X

f,* CCCCl4
rp(~(,C~rCl,(POO,4CC),<;(LAPF"rFI~

, CCCC7~
rNcr?
",*
, • rI
., *
Lcrp
,
(RRr.~C)

.,*
LCCP
,
(rpCHL)
,
lcrp
.,*
t-?

CCCICf

CCC1ICS

CCC172

CCClll')

CCC133

crC114

CCCl44

~

l!t

..

.................. ---------------------------
- Z 1 -

CltAPTER 3 McGRAPH FACILITIES

It will prove useful at this point ta review the Bellgraph and .
McGraph facilities. and see how the difierences between the~_

affected the development of the McGraph operating system.

The McGrapl1 facility, previously ,des eribed by Malowany (M. 1).

is shawn in Fig. 3. 1. As can be seen, the heart of the'-s'ystem is a
•

PDP-lSjZO with 24K words of ~ore, a tape drive and two disks.

While the bulk of the system code resides on this machine, aIl graphie

peripherals are interfaced to the neighbouring PDP-8. The two " .
computers are in turn interfaced by means of a high-speed data

buffer, generally called "th~ link". Only a minimal set of handle~s
/

for the peripherals reside on the PDP-8.

The Bellgraph faeility des eribed by Christens en is shawn in

Fig. 3. Z. It consists of a large central computer with many graphie

peripherals, inc1uding several GRAPI-UC2 terminaIs (C.l). These

terminaIs (Fig. 3.3) are actually intelligent satellites with

extensive interactive graphie capabilities, not unlike' the MeGraph

facilit'y. Indeed, it is that section of the Bellgraph operating system

which resides in these tertninals that McGill feU heir ta, and which

has been deve loped into the MeGraph operating system. It might
',-

be noted that PDP-9 abject code is actually a subs-et of PDP-15 abject

code, sa much of the Bellgraph system would run without modification.

Thankfully as well, standard DEC peripherals were _~sed extensively in

both systems (paper tape readerjpunch, ~nso1e keyboard, DEC-DISK.

etc.). In short, theJ:e was a strong enough resemblance between

the systems ta make it seern. worthwhile ta adopt the Bellgraph system
""

wholesale, and save on development work.

•
•

(

{HE MCGRAPH FACILITY

2 RFl5
, OIS K S

q

t---------IHSR 1 HS P

"'r----:----i PDP1S/20

DATA

UfHR

(LI N K)

POP8

FIG.3.l

"

Fig. 3.2

Bellgraph FacJllt Y, Hoi mdel, 1970

Central
Compute r

1 BM 360/50

FIG.3.3

Graphl c- 2 Organl zat IOn

Gard Reader

(Optlonal)

f

1
L_

Oi!lk or drum
AUXI "ary
~torage

(oplional)

\' ~C:-:-A :-l ":::'"c ":::'"O'7.M:"::P---'
565

PLOTTER

- - ---,

A1vhanumer 1 C

Keyboard and
Pushbuttons

\

To L­
Central
Comput er

- Z 4 -

~\
The many and fundarnental diHerences between the systems

prec-luded aU pas sibility of a quick and easy im plementation, ,

however. Sorne diHerences were easily overcome, once recognized;
,

others proved to be recurring nightmares. For instance, neither

,Automatic Priority Interrupt nor a real-time clock eXIst on the

PDP-15 at McGill, while th~y are standard features on the GRAPHIC2

units. Upon investigation, it was found that the real-time clock was

no longer necessary wIth the' curr-ent refresh philosophy, while

API could by easily circumvented through the use of a skip chain-

of course, with an attendant 10~ of speed in interrupt servicing.

Further. when the system was first loaded a subtle difference 10

addressing schemes was noted. In standard indi re~t-addressing a

.' b' dd . d 1 d d f d (MAN - 5) 81Xteen- 1t a ress 15 eve ope an ~ erence . In

dd·t· t th' . t 1 . dj dd (MAN -1) . '1 bl a 1 Ion 0 lS, ln erna ln Ir ct a resslng lS aval a e

on the GRAPHICZ unit but not on the PDP-15 at M cGill. ln this

scheme, a thirteen-bit address, capable of referencing words

within the current bank, is developed. This method was, unfortunately.

used extensively 10 Bellgraph since it is somewhat faster than

ordinary indirect addressing, and since the GRAPHIC2 units had

only BK of core. gnce recognized. this problem was solved by an
. (M.4)

approprlate software patch .

More seriously, the display units in the two systems are

very different. Not only do they have different control and s cope

codes, but the GRAPHICZ unit is re'freshed through the use of a .
DMA channel. while the McGraph unit is disc-refreshed. This has

far-reaching consequences. The point may be made that any general

operating system must be able to support new devices with a minimum

oi pain. Bellgraph is a general purpose operating system; that part

of it which resides in the GRAPffiCZ units i8 manifestly not. It wa8

- Z 5 -

designed with a given, high-performance piece of hardware in mind,

and optitnized accordingly. It was not meant to be transplanted,ànd

to a degree refùsed to be.

Many functions as sociated with GRAPHlCZ hardware are

performed very differently by McGraph hardware and software.

Files cannot-be blinked in McGraph, for instan~e. Clipping and

windowing must be perforrned by software rather than hardware.

Physical pushbuttons are sim ply unavailabl~, and there is no

keyboard directly associated with the McGraph display unit. Finally,

ind possibly rnost important, upon a light-pen int,errupt the

information available frorn the McGraph unit is entirely different

from that available from the GRAPHIC2 unit. The GRAPHIC2 returns

the beam co-ordinate 5 at interrupt time; the McGraph unit returns

a,filename ID, associated ~h a block of data written on the DATA

DISC.

The grâvest problems can be traced to differences in

hardware organization, which forced changes in software philosophy.

The GRAPillC? terminal is entirely interrupt-driven. In McGraph,

on the other hand, aIl graphie peripherals are interfaced to the

PDP-8 rather than the PDP-15. This', coupled wi!h the difficulties

previous ly mentioned, for ced a corn pIete restructuring of the

real-Ume philosophy. This will be pursued in more deta\l in
"

Chapter 4.

•

, ~

1

- Z 6 -

1
SECTION B THE McGRAPH OPERATING SYSTEM

CHAPTER '* THE McGRAPH EXECUTIVE PROGRAM

The McGraph operating system has been developed from

the Bellgraph operating system, and sa po~sesses the same

basic structure. , Of course the demands of a new environment

had to be met, but this required more of a change in system

content than of philosophy. The structure of the McGraph

operating system is shawn in Fig. 4-1. The executive

prograrn can be considered ta be~omposed of a set of core-re:;ident

routines. and ce rtain members of a disk-resident libr ary.

Associated packages include a library editor, the GRIN2 language

assembly system, and a set aI on-line ,de bug l'outines. The'

executive program will be considered in this chapter. and the

associated packages in Chapter 7.

The executive program may be broken down as s hown ln

Fig. 4-2. In this division the real-time subsystem hàndles a11

1/0 activity; the memory-tnanagement subsystem controis

picture generation; and the device translation subsystern

generates device-dependent code from GRIN2 obj'~ct code.
"

Each of these systems will be described in turn.
\

f

t

e,

'.

e MCGraph Operating System

..

MCGraph

Executive
r

Pro g._ra_m---r----J

Co re-resldent

Routines

DI sk-resldent
llbrary

J'

Associated
Processes

t

Library
Edltor

GRIN2
Assembler

Dtabug

, Pack élges

< FIG.4.1

~7

,

t ,
1

,
1

1. ,

)

INTERACTION

.,

"

ThE. MeGr dph Executive

----- ----

ME MORY
MANAGE

MENT

... J ,,-

EXECUT E'

PPOGRA,MS

OISPLAY
MANAGE­

MENT

•

28

FIG.4.2 '\

--- -~ ----~ -----,--------

DEVieE

TRANSLA­
TION

'-

SLAVE

SYSTEM

/

.-""""",-­
--,...--

./

,) ,

- 29-

4. 1 The Real- Thne Subsystern

The heart of~-~n:V~-program is a set of r/o ---.. ---

_----inte-rfilprhandlers. Because McGraph is a graphics-oriented

operating system, service routines must exist not only lor

the standard devices but also for the graphies peripher aIs;

notably the light-pen. joystick and display urlit. The true extent

of the difCerence between the McGraph facility and the GRAPHIC-2

can only be appreciated aiter having exan1Ïned the changes made

within the real-time subsystem.

Sorne changes were relatively straight-forward. The

API facility, for instance, would have been aesthetically

pleasing, and might have sirnplified sorne of the prograrnming.

It was not essential. It was aiso discovered that the real-time

clock had been used only to test tor central computer Urne-outs,

and to signal the start of a new dis play trace. Sin ce neither

01 these operations were meaningful in McGraph, the real-time

clock could be saLeIy deleted.

Bellgraph was an interrupt -driven system. AU operator

interactions, light-pen hits, keyboard strikes, etc. - were

detected by means of inter~upts, as were alarm conditions such

as display edge violation and the end of a Iea!. Upon an interrupt,

control- "Was handed to the subroutine associated with the interrupt.
l

TJlis as sociation was changeable from outside the handler,
./

,/ allowlng prograrns to specify the reaction to any input.

The McCraph archite cture for ced a re -evaluation oI this

philosophy. First, the hardware does not trap edge violation. or

- 30 -

ends of leaves. II it is considered that these are still worth flagging

aown, this must be accon'l plis hed through software. As such,

these operations can no longer be eonsidered to be part of the

real-time sub-system, but of the display management system.

Second, all graphies peripherals are eurren'tl)interfaeed

to the PDP-8 rather than the PDP-IS. There can, then, only

be one eommon interrupt from aU the graphieal deviee.s., This
•

turned out to have far-reaching consequences. •
t

At the beginnmg of the proJect it was decid~d that it was

more important to get sorne system working than it was to

design an efficient one. Efficieney c?uld always be im,proved at

a later date. Accordingty it was deeided that, the best approach

would be the one which required the fewest changes to the

Bellgraph coding. A package was developed which simulated

the operation of the GRAPffiC-2 unit. Each lOT issued was
>

simulated by this package, and each scope command was translated

into appropriate McGraph c~ding.

After a short period of tirne it was found that, using

this app~oach, it was impractidffLto run McGraph in an interrupt-
G

driven form. Fortunately, it was later seen to be

unnecessary. UP9n close scrutiny of the listings it was seell that

aU graphical 1/0 tr ansfer s could occur at <?ne place wit hin the

prograrn, with no 108S in generaLity. Aiter one full display pass

a light-pen bit or teletype interrupt must oècur before processing

can resurne. One does not really have to wait foI;. an interrupt.

Rather, the teletype and P DP-8 link .flags can be C'lcontinuously

s..canned. This is the approach which was ultimately irnplemented

and shown to work •.

-31-~

4.2 Device Translation Subsystern

The Bellgrapll device translation subsyste~ was mostly

lemented in th~ form of GRIN2 language library subroutines.

generat~d GRAPHIC2 code pn-Jine and placed it in the

as they were grown. It was these ro~nes which

convert d the dev\ce -independent GRINl picture des cription
" into exphcit scope codes. Ther~ore. by changing this se,t of

subroutine one could theoretically generalize Bellgraph to ;

run with any display unit.

\ - .
is ~as not c1ear until the .!j;roje ct was wefl under way;

the h~zard of the approach became evident even later. In-

any case, it s decided (M. 4) that the best approach for a

pre liminary would be not to rnodify these subroutines,

but rather to re-interpret the content of the leaves (and system

messages) as the,y were sept to the display unit. The subprograrn

which trans lates GRAPHICl scope code into McGraph code is
~

~
wn as GlTRAN (Fig. 4.4). The extent of the inefficiency . \

_ inherent Ïl. this approach was not really appre ciated until the

system was run. But the approach remains valid, in that it

definitely reduceçl debug time. ~hen using l'outines which had
Jo;--

been run successfully on a GRAPHIC2 unit, one knew that any

pecu.liari~ies in the displays had to be due to the operation of the

McGraph system. This greatly 8~?lified the system debug

procedures. Now that McGraph has, essentially been debugged

G2TRAN is expendable. A method of eliminating it will be

presented in Chapter 8.

D

-,

t

\

\

e-

3 Z
1

_1

4.3 Memory Management

Although McGraph is constrained to run in BK of core on

the PQ?-lS, the memory mat;}agernent programs giv.~ it a very

large virtual memory. using an RFlS disk as seco~ry storage. - ,

To make this possible the user's progra....-n and data are broken

into blacks of various sizes. Each subroutine block is 1 given a
" '

unique 17-bit ID beLore it is loaded into core, and aU interbloc~

communication i5 in terms of these IP's and an offset within a
o -

block. To fa-cilitate interbloc~ addressing, a Block Table i5

developed in core (.F}g. 4-4). Each block loaded into core requii'es

another two-word' entry in the block table: the block ID and

starting address. Now, of course, a correspondence between

black ID and core position is established. When a block is re located ~- '
Q

in core, only the core address in iP's block table entry need be
(

updated. If a referenced ID is not the block table, the block is

not in core, and must be loaded from disk or paper tape. When
t

a block is deleted from core its èntry in the .. block table is pur ged. , ,

The hole created by removing a b11ck is added to the free space
• i

(Fig. 4-4) by relocating aU blocks iabove it. There are never any

gaps between blacks. l'
• 1

1
, 1

Very fortunately, the mem+ry management section of
j ~

Bellgraph was easily adaptable to ~he McGraph environrnent.
\

tact, the difference of any importattce is that t~e~e is no link
l , ,

to a host corliputer in'the McGraphlsystem. ALter carefu1l1 '
1

deleting all ref~rences to dual-procl:essing and making the disk
, !

handler permahently core-resident. the Bellgraph memory

m~agement sy'stem ran perfectly ih Hs new environment.

, (

In,

D

"

33

Disk "1ap Fig.4.3
1

LIBRARY G2SYS

OIRECTORY' G2SYS
600000

.r . - ~

400000

LlBRARY G2LI,Bf

OI"ECTORY. G2UBe
100000

1 .. - .,.~.... ~ .
G2S'1S

o
f

CoreMap FigA.4,

.

BANK2
A

oeaUG
40000

0

, , BANK1 CHAR GEN

TRANSLATQR
---~-

• 0 20000
SfMULATOR ,

... ~

17000
OISK HANDLER

BANKO L~

"
4200

0
G2SYS

'*' '.
,

e' --

•

- 34-

A core map for the McGraph system is shown in

Fig. 4-. 4. Note, the disk handler appears at the top of the lowest

BK memory bank. In Bellgraph it was continually swapped

with the character-generator table, but the construction of

GlTRAN obviates this action. The disk handler could,

then become core-resident.

A disk rnap is shown in Fig. 4.3. Basically, two storage

regions are defined by addresses within the control of the system

programmer: the scratch region and the prograrn library. First,

the scratch area contains prograrn blocks which are loaded from

an external source during a run by C2SYSi and second, the

dynamically-created blocks in the graphie data structure which

had to be rernoved from core. The prograrn library contains'

the CRIN language statement subroutines, sorne utility programs.

and a few application routines. This section may be updated

hy the utility program G2LIBE. of which more will be said in

Chapter 7. Note that the program library can be write#­

protected during a rune ,

- 3 5 -

4. 4 Display Management

The semi-inter,pretive ,display program of Bellgraph has

been maintain~.q, with several notable changes. First the display­

trap functions, previously part of the real-tim~ subsystem, must

now be considered to be part of the dis play management subsystem.

Since such conditions as edge violations and ends of leaves can

no longel" cause an interrupt on the PDP.-l5, thèse events must

be recognized and deaH with by the simulator package as they

arise. Accordingly, the position of each-vector or pqint must

now be calculated before the s cape command is sent to the

display unit to prevent edge violations.

The rernainder of t he dis play management system is the

sarne, with one exception. Only one dis play pass is made to

_refresh the display unit. And the command which had been used

to start the DMA data transfer was interpretted as the command

. t6 start the trans lator and send the output ta the PDP-8. This

system is found ta be quite adequate.

) ,

o

- 3 6 -

4. 5 PDP-8 Slave Prograrn

The slave system on the PDP-8 was written a: d

maintained by Juhan Leemet. Since it has been change quite

drasticaUy since last reported on (M. 4) # a, sho~t des cripb n

of it will be given here. The present monitor is capable

of performing the following tasks, on demand from the

PDP-15:

1. Receive gr aphics instructions, buffer them and

write the buffer onto the DATA DISe when the buffer overflows,

or upon receipt of an end-of-Ieaf fiag.

2. Accept light pen hits and output the light pen flag

and the current filenarne ID.

3. Display and manage the tracking cross.

-
No longer can files be ~linked; it has been decided that

this is not an appropriate rnethod of drawing attention to a file

in the curren't implementation. Similarly, it was decided

that it was a waste of effort to sirnulate the GRAPHlC2 console

keyboard; the PDP-15 keyboard i8 8ufficient f.c1r the operation

of the system. Simulation of the back-lighted pushbuttons was

also abandoned f.or the same reason; they added no unique

capabilities to the McGraph system.

The result of a11 these changes was ·a smoother-running,

more eLIicient system. By eliminating side -issues, the real­

time system response was greatly.improved. The greatest

change of a11, however, was that the PDP- 8 was made to scan the

"

1 /

1

)
- 3 7 -

digital interface and link flags continl;lously, rather than eheeking

the link at track origin and the interface the rest of the tirne.

Response time for a light-pen hit is S lightly increased, but

transmission tirne for graphie files is greatly deereaseg.

The net result of aU these changes is a slave system which

permits graphie interactions to proeeed alznost an order oi

magnitude more rapidly than previously.

\ n

..

- 3 8 -

CHAPTER 5 SUBROUTINE BLOCKS

5.1 McGraph ObJect Code

As was rnentioned in Section 2. 3, subroutine blocks contain

McGraph obJect code for the prograrn blocks. It can be seen from

Fig. 5. 1 that·the header word always contains the block length. The

body of the block, following the header, contains the object code,

while the final section contains des cri ptor bits reporting the nature

oI each command in the body. Words can be designated as being

absolute, relocatable, a block-pointer, or the second word of a

two-word external reference. Two bits must be reserved in the

descriptor section, then, for each word in the body of the block

(Fig. 5.1). When a GRIN2 program is post-processed part of the

printed output consists of an octal durnp of the subroutine block

just generated. To increa ~ legibility, however, the descriptor

section is replaced by letters following each word in the body of the

subroutine, designating the word type. That is:

B = block pointer

R = relocatable; an address relative to the beginning of the

block

C = second word of a two-word external reference

II no letter follows the word, it is asswned to be absolute.

Ta a point, of course, McGraph object code can be simply

be considered to be PDP-15 object code. An. appreciation of the

. e~ecutive prograrn i8, however, necessary in order to understand

a ÇiRINl prograrnodump. A short table of PDP-15 instructions is -

... 3 9 -

shown in Fig. 5-2. In McGraph, the direct CAL instruction i5

interpretted as denoting a trap to the error handler, while an indirect

CAL instruction denotes an exte rnal reference (i. e. a reference to

information contained in sorne other subroutine block).

Fig. 5.3 (a) shows a reference to a GRIN2 library subroutine

whose ID is 165. The entry point is to relative address one within

the subroutine block. Fig.~. 3 (b) sho~s a reference to 'the s ame

8ubroutine, but with an entry to relative addresos four.

A recurring structure which may be observed in most

GRIN2 dum ps consists of a caU to an external subroutine, followed

by an argument list (Fig. 5. 3 (c». Arguments are expressed in

terms of JMP instructions (6XXXXX), and take the form of pointers

to information. This ex;ample shows a call to the GRIN2 library

8ubroutine with IDl06 (BRANCH), followed by seven arguments.

These are, in order: (1) a branch pointer, (2) a pointer ta the

node the branch originates at, (3) a pointer to a two-word vector

giving branch dis placement, (4) a pointer to the node the branch

ends at, (5) a pointer to a data block, if it exists, (6) a system

pointer if the branch is a "light button ", and (7) a pointer ta a

para.rneter ward. Com'pare this, for structure, with the branch

black of Fig. 2. l.

This i8 the general {orm into which GRINl stëttements are

expanded.

•

,.

•

..

Fig.5.1

00000 1 Total Block length ---
BODY

..

N

'"

----~----------------------------~ 1
N+8
9
~

Descriptor Bits

'00 RElOCA TABLE

o 1 BLaCK PT~

10 ABSOlUTE

1 1 l'ICI WORD, TYtO WORD ADDR
"

40 -

\
.",.

MNEM

CAL

DAC

JMS

DZM

LAC

XOR

ADD

TAO

XCT

ISZ

AND

SAD

JUMP

EAE CLASS

lOT'S

OP. CLASS

- 41 -

FIGURE 5.2

THE PDP-lS INSTRUCTION SET

CODE

00

04

10

14

lO

24

30

34

40

44

50

54

60

64

i...0
\

14

OPERATION

Subr .. Jump to Absolute 20

Deposit AC in Memory

Jurn p to Subroutine

Deposit Zero in Memory

Load Accurnulator From Memory

Exclusive -OR.

One's Complement Addition

Two's Cornpl~ment êp.dition
' ..

Exe cute Location

Increment &. Skip if Zero
!

Logical-And

Skip if Accumulator = Memory

Jwnp. Unconditional

Extended Arithmetic Element Op's

U Bit 5 is set, indire~t addréssing is requeste,4.

'.

- 4 Z -

" .

"FIGURE 5.3 ..
..

McGRAPH OBJECT CODE

030001 030001

000,,165 C 000106 C

(a) Externa1 Ref. : RA = 1 600200

• 600174 R

600177 R

030004 600155 R_

000 L65 C 600024

600134 R

(b) Externat Ref. : RA = 4 600024

(c) Subroutine Call

With Argwnent List

(

- 43-

5. Z GRINZ Language Statement Implementation

GRlN2 language statements are implemented in the uniform

fashion suggested in the previous section. First, the assembler

resident on the IBM 360 is invoked ta tr ans late each statement into

the form of Fig. 5. 4. Registers (AC, MQ) may be set to transfer

sorne limited information, such as the number of vectors ta be

generated in one call to VECTOR. Next, a call ta the (external)

language subroutine is issued. These subroutines are generally

part of the disk-resident library which is maintained by the utility

• G2LIBE, and which must be loaded prior to each terminal session.

Following th~ external reference is a Hst of arguments, pointing

to information requi,red by the language statement subroutine

(Fig. 5.3 (c»). AU these stages exist in every language-statement

implementatiQn

Needless to say, the language-statement subroutine called

does the real work of implementing the GRI~2 statement. The

GRIN2 object code, on the other hand, can be seen to be graphic-
-device independent. Theoretically, aH device dependency due to

language considerations s hould be introduced at the language .
subroutine level. This considerably simplifies the task of

rnodifying the software to me et changing hardware requirements.

, -

F ig.5.4

Subroutine Cali
-

CLA!CLL
"

CMA
030001
000165

.. 6xxxxx
6 x xx x x

-- -

-
--

1 -
0

-
-
-

~ ~ -•

. 6·zz zzz
..

e_ :

- .

~~

.

.
.

'-..

' ..
~

-... -_. ,

44

Set
Reglsters

EX T ERNAl

REFE RENeE

,1

PASS -ARGUMENTS

,-

,
"

•

\'~~

•
- 4 5 -

. CHAPTER 6 A SIM:PLE PROGRAM ..

In this chapter the simple GRIN2 program written in

Chapter 2 will be used to illustrate the functioning of the M'cGraph

operating syste~. The object code will be analyzed, and one will

see how graphic data structure blocks are built and manipulated.

6.1 The ObJect Code

If the program written in Chapter 2 (Fig. 6.1) is subrnitted

to the GRIN2 assembly system (Chapter 7). part of the printed

output consists of an o",ctal dwnp of the s~broutine block prodllced.

This is shown in Fig. 6.2. According to the format of subroutine

blacks (Fig. 2.2), the first word of the:jliock should containe the
..::.

word count for the block. inc1uding instruction and relocation

words. In the exarnple there are 222 (octal) words. of which the

203 (octal) instruction words ar~exp1icitely dumped. As explained

in Chapter 5. the relocation words are translated into alphabetiè

s\lffixes to the appropriate instruction words. In Fig. 6.2, the

eight right -most cohunns give the contents of eight adjacent

meinory 10 cations in the subr,outine block, with the starting addres s
. ,r f "

given by the Live -digit octal a.d~~ess in the se cond ,column from the

~ le ft': , That is. the contents of location 70 (octal) of the subroutine ,
block is 600176.

Examine Fig. 6. l'and Fig. 6. 2 more carefully, recalling

that a11 GRIN2 language statemetits are implemented by calls to

library subroutines. in the format shown in Fig. 5. 3 (c).,: A collection

of library sUbroutine ID munbers and entry points is shown in Fig,;, l:..~,
'- .

6. 3. Now, one can i~entify words one to .four of the durnp as a caU -'

,.

\,

- 46-

C>

to the GRIN2 library subroutine with 10101, foUowed by two

arguments. FrolTl Fig. 6. 3, ~ne can see that this is the LEAF

library subroutine. COlTlparing this to the source listing of the

program (~g. 6.1), it may be seen that the first executable

instruction was the LEAF de claration; this is very comf~rting~

Continuing ln the SaIne vein. consider the next executable
"" \

'\instruction in the program. The CURVE statement can be

used to d~ine a figure consisting of a nurnber of successive, head­

\to-tail visible vectors -i~ this case the triangle. The statelTlent

~ implelTlented by calling the library su~routine VECTOR, and
\ '

ir\forming it of what sort of vectors' lTlust be drawn. Examining

W~dS five to eleven of the dump, one sees that the two's CO~PlelTlent
of the nurnber of vectprs required is loaded into th'e ,accumu\ator,

tnen VECTOR, IDl03, is caUed. Entry is through relative address l,

~

the ,entry point for visible vectors ~ Fi~. 6.2). The three argurrients

following the caU define t'he vectors to be drawn. For instance,

the first pointer is to locatiop 147 relative, the start of a two -word' .
vector corttainin,g the x- and y-deflections ,ôf the first vet'tor to

be drawn. Since 147 containft 62 (decimal) and 15~ contains ~, the
,",;1

first vector is {o 'Qe drawn for 62 units in a horizontal direction . . ;

This iS,o of course, exactly what "Yas specified in t~~ source ,listing

(Fig. 6. 1)1.

Subsequent LEAF and CURVE statements defining the square

are treated in an identical manner. NODE and BRANCH statements

are tran/tated into calls to the NODE and BRANCH library

8ubroytines (ID 105 and 106, respectively), while the TREE statement ~
(Fig! 6. 1) is resolved into a caU to the NODE subroutine (ID 105)

and two caUs to the BRANCH library subroutine (I.Dnr6). In this ,
~

manller, aU the GRIN2 statements are expaooed into' executable McGraph

object code.

!

('7g
IOl
1 p <;

1':)(

70C;

lU
? l'J
7 ft,
7 I~ :1

744
2C,2
Uf
?qr
2 A 1
?p<;

7<1C
2Qt.:
?fJ<-;

1\ (.
-:l 1 7
11 /,
~V)

3'.? LCCP
~4'::

~ 5 1
3E:;2
3')', SF-{X
lC,t-
1f,5
~6 t
16P TFIX
l?C
:l7e;
l RoC
lP, W
3P?
lA?

leTL
P~I~T

r.?rc
LFI\F

(t;P V E

T R r F

L;SPNrc

wHtCH

CCH C

r-..Ewrsp

cere

t\EWCSP

cnTe

FOIl
c.;E~'r

ENf'

Simple GRIN2 Prograrl

1,1'4,16·
r-- r (, F ~
'"le \
T R r r,.
, Crcrrl
((h,C),(-hd.Jl",(I),-hll

, crrr(~

.... , * C' C. C (~ \ l
(jw,Cl ,(C,h) ,(-V. ,C), Ir ,-\-) l
, (((C\7

,
,

.j

l'
47

Fig.6.1

\

\

. ,'"n

P ~ e r~ ? , , (, (2 0 0 , '4 C ()) , T Q 1 C , , ~ r 1 x) , (, (pre , l, r; r) , <; r. L r:. ,~ r , , T r [
, CCCC'?f
~,*

,
p, rI' 1
,

,c~cr:~

(C(.c '1?
CCC CI, ")

, CCC cre
p R 0.1 l , C ~ r r, l , (2 cc, IrC (l , T P 1 r: , , S FIX
t,~ CCCCl4
r R C t4 Cl, C ~ (C 3 , (Po 00 ,1. CO) , <; r: L f, [> F , ,- r r tt
>CI,* ecce 7~ - , 7'
r.Nr:r7 ~ '. '
, CCClU
, • P 1
, CCC115
Lcrp
, CCCI??
(RRCHe)
, CCCl?~
U:CP
>Ir,* CCCl11
(P.PCHL)
, CCC114
l crp
, CCC14 /t
67

~ l ~ l

"

..J ..J
if c-: <
, z...:?

~ ~ t L

\'. ~ ~'~' 1 0, 2 3 4 5 6 7 L _ L'

~ \

>- LI' CeCr'J \..~i~'"'--;) rCl('''l Cl~"l'-'l('·r~";l''''.l I-r,~"'?4 77777~ .~CI/("l (('~l~.,r o ..., ~~~ ... ~ ~~ - \'-' -...... v'Ji J \. .. \..J\. _ ~

r
-;...- 1 CCC l C (,: ~ .. 7 .) f- :.. --.: l '- l 0 f:. C f' l ~ J ~ r CI CCC l (C (l c: 1 r; î C -= l 'j ') I~ f C '\ G 24 1 1 7 7 "7 l,

:- ccc') (; :: ~ r: = '~ r ~ (' 1:. '] r L' '. '1 ç, 1: .J f:: r. r l (. C.) ... C ':. 1 é 2 ;;l t- C (_ l f: 4 ~ C CI CCC -1 r crI ," ;; ~
" -: -./ ; (C C ':1 C ':.:: ' l 1: ...) ~ c: r: ::. ? l, C "3 r ,- CIe ':: ~ l ~ ':: -:: ~-:: ,:: ? " '"; l, n ~ l 1- 2 l ': c: :: 11: 7' ~ C ,_ l ',f: ?

J
~ ~ ::: cr CCC 4 G '- l. : : ? " 1- cr! 2' ']:) t C ~ C ;1 4 L CI C ': ,'1 .. CC': l .") _ f, .~ C ? C C {. C (; ! 1- ~ f) f Î -; l '1 ','
.. L < 4, CCC 5 C ~::: j 1 5 r:; :;' f.. C·; ~? l, te" ! Cl t.:) f: CCC "/ l, C '] ccc. l 1: CC: l(Sr: f cel "7"l::> f CCC.? l,

1 :d ~..r :; -.,.: ! ~ CCC f: C c: ~ .: ~ ~ 1 ~ C ~ l -= :: (f:: C C' 1 ï 4 ~ tee C ? 4 (~ c (; ,~ l cc C i ,~., r f.::: C l 7 5 ~ 1; C '! 1 7 CI ')

. - v 7 ccc 7 etc ;j' 1 1 f; ::> tee l L.) t. (C C 2 4 t C f~ l 2 ":\? f Î, CC? 4 c: "t CCC l CC::: let:' f CCL cr'
U ~ ~ ~ ~ 1 0 C C 1C C f:: C ~ l 7 I~) 1- (C ; C 1 ~ f:: C ~ 1 5 5 q é C c: r: 1 4 ~ ~ 1) l "3 4 '1 (, CC') ? '1 /C è l é f Q l 2 C ~ " l
u.. . ~ c..':;: 1 11 COl leI ? 'j ?) ~ l 2 ~ ~ :: .) L. 4 CCC cel r: l C 7' C" C l 2 f, l 2.,;" C l' 1 ~ C l 3 1. l? 0 l ':Il

~ L-~ S. ~ 1 Cel? C 1-, r: ~ le:; f: C ,.., 11. ') t: C () Ils ~ i c, ccc l 1 (' r: C 1 7 f C f.. CCI 2 n 7 7 7 '1 '1 1 C ~ ((.' Il
::: ~ ~"",- 1 ~ ~ Cel ~ ccc CIe" C t (c 2 (C q !: e c \ ? é : J., cel l 5 PI}", r: C f) 1 .J 0, ,:; l 7 1-: r (.. cel 2 f: 1 7 7 ï 7 7

1- LeI") 1 4 0 :-' :3 CC,' 1er: C 1 (4 C te cel 7 sot cel ? '-J f.- CCI l .., '~ .; c c () (' ,", C (' cc::: ~ 'J (' C C ~ 7 t:
~ c: :; ~, 4 COI ': ccc c .: c: ') 7 7 7 7 ::, / C C (\ C 7 6 ccc c r:: C 7 7 7 7 C ? ccc CCC il 1 (C C C; 7 f ((-(ccc

~ ~ ~ ;; ~ ;
5

C C lt r. ccc c (c cr: C (7 f.; 7 7 '1 7 e 2. C CCC ccc ccc c (' 77 7 7 r; '1 C : (' C ::: ,,~ ('c C : l ,..,
-"1~ C017,1 CCJf?C;' CCI L 4C eC"(;2C CCCCCOQ CCCCC~Q OCCCCC P CCC"ll,)-lcc-::r;"Jf

UJ cr V' -J ,

.L u.. ,- <.L 20 celee ((CCCc P CCILt·C CC'"'6?C
~ c:.. ::::..'

~ . ~ ~ ~ ~

~ : ~ ~,~ ~
~ u... u..' 1
...; c:... CL
c....: u.. ~ ~

.L. ..:J ...;
<l ~ .::. ..::.

/'

~

______ '-.. e~. J. ---.--.~ r~_ .. , .. -- -.. ---. ,..:....:;.. ~
~~~~-.~~ .. ~~~~~;.~P.~.:~~ 



, 

- 49 -' 

FIGURE 6.3 

.. 
PARTIAL LIST OF SUBROUTINE LIBRARY 

ID NAME ENTRY POINTS 

101 LEAF LEAF 

103 VECTOR INVECT. POINT. VECTO 

104 ATTACH ATTACH 

105- NODE NODE 

106 BRANCH BRANCH 
1 , 
110 DETACH DETACH 

176 ' CLRING CLRING 

ZZO :, WHICH WHICH 
1 

i 
1 

1 

ENTRY NAME ID R. A. 

ATTACH 104 
,l 1 

BRANCH 106 1 

CLRING 176 1 

DETACH " 110 1 f 

INVECT 103 Z 

LEAF, LEAF 101 1 
p 

NODE NODE 105 1 

POINT POrnT 103 4 . 
VECTOR \ VECTOR 103 1 , 

WHICl;i WHICH ZZO 1 



'\ 

- 5 0 -

6. Z Loading and Initializing the McGraph System 

Once a GRIN2 binary, loadable paper tape has been 

generated by rneans of the assembly system the program may be 

run on McGraph. First, though, the operating system must be 

loaded and initialized. Even before this can be done, however, the 

library must be loaded onto the auxiliary storage device. This can, 

of course, be done with the aid of the utility program G2LIBE 

(Section 7.2) but this is generally a long, tedious task. It is 

generally sufficient to do this once, and then to durnp the contents 

of the disk onto a DEC-tape. At the beginning of each graphies 

session, no changes are required, the disk need only be loaded 

from DEC-tape. Ii the library needs editting, G2LIBE must be 
1 

used in any event. 

On,ce the progr am library has befn loaded, and that part of 

the disk write protected, the executive programs must be loaded 

in from paper tape. Work is going on to rnake these loadable 

from DEC-tél;pe, b~t this is not yet possible. Once the PDP-l5 

prograrns are loaded, the PDP-8 slave prograrn must be loaded 

and initialized and a dis play track chosen. When the PDP-8 

initialization is complete, the display shown in Fig. 6.4 (a) appears 

on the s creen. 'The nurnber s s hown are the sirnulated back ... lighted 

pushbuttons, while the group of squares is the tracking cross. 

Although the pushbutton are eifectively no longer part of the 

GRAPHIC2 simulation this initial displayJ has not yet been changed 

to reIle ct this facto ALter initialization the PDP-8 enters a slave 

mode of operation, ,continually s canning the link to the PDP-15 

for further instructions, and watching the graphie peripherals for 



t 

1 

.. 

Flg.6.4 
System Olsplays 

lb) load PrOIl"m T,pI 

.51 

( 



52 

> 
'Ftg.6.4 (Coot.) -

(cl M,s~,ng pror.ram !l'Iock 



- 53-

any change in status. At this point system loading i8 complete, and 

the PDP-lS corè- map is s hown in Fig. 6. 5. 

To initialize the system it is necessary to execute the 

system bootstrap. This causes the interrupt system to be initialized, 

the displ!l-Y screen cleared and a clean J.irectory to be copied into 

the system scratch area of the disk. A system message then ~ars 
on the display screen requesting that' a program tape be lo~ded int~ 

the paper -tape reader (Fig. 6. 4 (~. At this point the initialization 

phase is now completed and the system is prepared to start reading 
4 

The core map at this point is shown 

in Fig. 6. 6. 

and executing a user prograrn. 

'r 

J 

• 

'" 



/ 

• • 
• 

1 7740 

1 7 700 

15000 

4200 

o 

17740 

17 700 

-f--

L 

4'200 

o 

54 

CORE MAPS 
Fig .6.5 LOAD (IME 

TAPE BOaT 

DI SK HA NOlER 

-- - '- --SYSTEM BOaT 

EXECUTIVE 
~ 

1 

,--- V 

FIG.66 INITIALIZATION 

. 
SYSHM 800T 

• 1 

DI ~K HANDlER 

FREE 

SPACE 

-

EXECUTIVE 
. 



- 5 5 -

6. 3 Building The Data Structure Blocks 

Once a program tape is loaded into the paper tape reader the 

user can ask the system to read the tape and start executing the 
js 

program by making a light pen strike on the d;tplay screen. The 

tape is then read in and the subroutine block loaded in core, an 

entry placed in the block table, and a copy of the subroutine copied 

into the scratch area oI' disk. Execution of the prograrn can then 

begin. .. 
As was mentioned in Section 6.1, the first executable GRIN2 

statement in th.e program is the LEAF declarati"on. This is 

translated
l 
into a caU to the library subroutine LEAF, which generates 

an empty lea! block, as shown in Fig. 6.7 (a). gives this block 

the ID number 0, and places a reference to it in the block table. 

Next, the CURVE statement is to be executed. This has been 

translated (Section 6.1) lnto a call to the VECTOR library subroutine, 

followed by a series of arguments. The~ECTOR--SUbroutine has 

- the eHect of placing display information, ln the form of GRAPHIC2 

acapé code, into the last lea! block re!erenced, as in Fig. 6. 7 (b). 

Similarly, 'calls to the NODE subroutine (ID 105) cause node 

blocks to be created, with content specified by the argument list. 

Calls to the BRANCH subroutine cause branch blocks to be created, 

linking previous ly defined node blocks, and so on. Each time a 

graphie data structure block is created and given a distinctive ID, 
, 

a new entry in the block table must also be generatêd. If, during an 

external reference, the desired black proves to be neither in core 

nor on disk, the picture shawn in Fig. 6. 3 (c) is displayed, and the 

, 



.. 
- 56 -

FIGURE 6.7 

LEAFBLOCKSTRUCTURE 

HEADER 

DATA POINTER 

~ 

EOL TRAP 

DATA POINTER 

BODY -GRAPIDCZ CODmG 

EOL TRAP 

(b) Leal Block, Coritaining .Data 



- 5 7 -

f~ 

1 
, <) 

block must be read in by tneans of the paper tape reader. In this 

case the WHICH routine, ID 220, had been omitted. When aU . 
necessary blocks have been generated in the current exatnple, the 

core dump is as shown in ~ig. 6. 8. 

... 

) 

) 

1 



1 

1 1 

, 
1 

* 

l' 

, 
1 

" " i 1 1 

1 

1 
. 
1 

1 
1 

• t. 

! 
l' 
l' 

e " 

J -
t , 

1 
., " 

" , , 
, 

, ' . . .' 1 - . 

t • 

" 1 \1 d 

J : v i;n J, L .. : 

, , 

, '1 
, J j ., 

'" 
l ' 

/ .'. ,J 

, 

'1 ~ 
1 

J 1 
1 

1: '" " , 1 
77 - .. 1 

l , , , . 
1 , 1 
-r:~ - J 

1 

l' J 
1 1 

l , ' ; 

! 1 
, 

1 1 " 
1 1 

l 'i 
l' i " 

'1 1 
l' 

1 1 

1: 
l: -"/-f 

" 

1 '. , , , , 

1:- . 
" 
lit L --. 1 
, 1 

'.'1 

1 L 

1 

... " 
r ' 

l' 

j' 

, 

1 
P 
1 : 

" 

'( 

1 

1 

1 
1. 

/ 

1 ~ 

1. 

1 

" 

J i 
) 

1. 
11. 

" 

/ " 

~1 ~} 

1 1 

77 
1 1 

.J 

, 
1 " --\1 

,-
1 · .' 

. , 1 

1 : 
, 

,1,1 

1'"' -· , , 

1 1 
,1 : 
J' 

( i' l, 

7 ' ~ 

1 
, -

· .' 
r, , 

, , , l, 

" , 
' " ,1 

, "1 :, 
. ,-,. 

d { 

/1 1 
1· ' ' " 
1: r - l' ( 1 .. 'j .... '( 

1 l', 
, , , . 

l , ~,7 7 
• 1 ',' • 1 ( : 

" /7>/, 
J ( 

7,7777 

l, • 

:~ : , r , . 
~ , 

r 

L 

1 , 
( , c r-r ( 

" , 
l . 1 
J . "', 1 
J; .., 

1 

1 l, 

~ 1 1 . r -... .' , . , . 1: , ,> :), J 1 
1 J '1 :' 

1 
, , , .. 

l ' 

J: 
l 

1/: l, 7 'ri 
1 1 

777777 
1 (,.'1 ,~, 

1. " -1 
" 

1 ~ L ' l 
:-1:~ ~ l : ~: 
~.,.L ! 

Fig.68 

1 / ' 

1: 

11 

J 

. , 
1 

l' 
7' 
l' 

, , 
1 1 J 1 
1 " 

1 ' 
" 
~, 

1 { 

'l' 

'1 J ( 7 , 

: . , 

1 
. 
1 

1 

r 

, 

1 . 

1 

" ' 
') (77 

' " . , 
, >o{ " 

1 
1 ~ l ' 

1 .. 
l 

," " -..::...J •. , 

58 

l ' 

" 

, " . ~ 
1 

l, 

" r 
') 

1 
'1 i l : . , , 

-
" f, . -

1 
1 

1 
. 0 ! 

..., 
l' l' 

1 
, 

" 1 i. 

,. l l " 
1 

i' 

'r , 

,- .. .1. 



" 

- 5 9 -

6.~4 Real-Time 1/0 

o 

No dis play information is sent to the PDP-8 until a GRIN2 

1/0 statement is executed. This c1as s of statements include , 
W.l:lERE, WAIT, TYPOUT and, as in the case of this prograrn, 

WHICH. 'rhese commands go through a data structure trace, 

sending display iniormation to the PDP·8 as it lS developed. The 

graphical devices are, enabled, and sorne user interaction is 

éxpected. 

In tlte sam pIe pro gram the use r is required to èhoose 

between the triangle and the square. The branches to each leaf 

have been declared to be light buttons. No matter which leaf is 

selected. then, command is transferred to an appropriate part of 

the program, de peQ,dent upon the choice. 

Considet the data structure trace. One node is designated 

as the display node and is considered to be the root of the display. 

AlI information below it is displayed, any above it ignored. The 

system of pointers is followed until a leaf is encountered, at 

which point control is relinquished to the translation routine G2TRAN. 

The GRAPHIC2 scope code in the lea\res is then translated into 

McGraph code and sent to the PDP-~ for dis play. Upon an end­

of-leaf trap, control is returned to the structure tracing routine. 

This process continues until the entire display is visible. Note that 

each time a leaf appears, its contents must be translated into valid 

McGraph code. This ie tremendously inefficient but ~t worka. 

which was the initial prUne consideration. In this progranl the 

pr'oblem is never encountered due to the simplicity of the dis play, . 
but in larger ~ystems it can be·a definite draw-back • 

. ~ 



- 6 0 -

, . 
Photos showing a sequence oI events appear in Fig. 6. 9. 

~ 
·In the"first Irame, both the triangle- and square are visible. After 

the user makes a light pen hit on the square, Ife is left with the 
, . 

si!uat,ion s how.fi in Fig. 6. 9 (b): only the triangle remains visible. 

A subseqùent light pen hit r the t~iangle caus,es it 1;.0 disoappear 

and the 'square to reap~, as in Fig. 6.9 (e). These last two 

displays alternate indefinitely, upon light pen hits, until the.(sys\em , 
is stopped and reinitialized by the operator. 

,CleaOrly this is a trivial example. but it displays, hopelully. 

in a simple maYa how the system operates. One dis play 

generated during an interactive run is s hown in Fig. 6. 10. 

It stems from a test program. known as CITY. This prograrn 

is US ed to test the WHICH subroutine and the graphie structure 

building routines. Output from it is shown s'inee there was no 

time to wri~e ,and ~ebul anything more than test programs of one 

sort or" another. 

-1 
1 

" 

., 

\ ' 

( 



Fig. 6.9 

Sequence of Displays 

/ 

(a) Lhsplay 1 

('0) DISpl,I)2 

" . 

• l, '0 

......... ---_ ... --

61 

,-

" 

/ 

, . 

1 .. ~ 
'} 

. 
\ 

) 
--..,...".,.·'-..-;1..:.-....-· 



Fig.6.9( Con t.J 

) 

Fig.6.l0 

ù 

• (1' 

. ' 

62 

b 

i 
1 

1 
1 

1 

1 
,1 

1 

1 
1 

f 



\ 

\ 

• 

- 63-

CHAPTER 7 ASSOCIATED PROCESSES 

7. 1 The GRIN2 Assembly System 
.. 

There is more to the McGraph operating system than the 

executive programs and subroutine library. Most notable among 

the associated systems are the GRIN2 assem~ly system, the 

libryy editor G2LIBE, and a set of d~bug routines. 

The GRIN2 assembly syst~m is as described by McNeil (M. 4); 

no major changes were made to it during this project. In essence 

the GRIN2 language is \deiined by a set of macros in the IBM OS­

Assembler language, so that the process of assembling a GRIN2 

prograrn reduces to that of expanding and interpretting the 

prograrn in terms of these macros. Two macro packages exist: 

one for absolute PDP-9 assemblies (i. e. the system generation 

package A. EE25. P9 MACROS and the other for relocatable GRIN2 

prograrns (A. EE25. GRIN2). The output of this <,I.ssembler is 

recorded on punch cards. A post-processor program is then 

invoked to trans late the information stored on punchecl cards into 

correct PDP-9 loadable block format, and to dump this information 

onto magnetic tape. 

The output stored on this tape is proces sed into loadable 

paper tapes required by the McGraph operating system. as described 

in Appendix B. 

This process is depicted in Fig. 7-1. 

1 



64 

GRIN2 Assembly Sy~tem 
.. 

START Fig.7.1 

1 -. l-

ASSEMBLE I 

uSine Macro Ilbr'àrltS 

-
, 

POST- PROCESS 

" 
onto lape 

, 

1-

-

DUMP TAPE onlo . 
OISK . 

• -
-

0 -

-
Ou~p on Oump 01 ~~ 

on 

. 
~ 

Tn POP-II) punel) 
, 

\ 

, 

" . 
Proc eu to 

. 
< 

, Olnary paper v 

Upu 

. 1 

ÉND , 

... 



\ 

" 
.. 65"" 

7.2 The Library, Editor G2LIBE 

The library edi,tor G2LIBE is a utility program inherited 

frorn the Bellgraph system. This is not a real~time program, nor 

does it require the operation of. any graphical devices. Accordingly. 

very Iew changes were ,required to make it work. 

The editor ean be used for many purposes. First, G2LIBE 

ean be used to load GRIN2 program blocks Iro~ paper tape onto 

auxiliary storage. Thes.e disk files ean then be cj.umped ont a a 

teletype, octal patehed. retilamed, or purged altogether Irom mass 

storage. 

The editor is not an essential part of the McGraph operating 

system. It can, however, facilitate the running and debugging of 

graphies programs. and a~ sueb has a definite value. 

\ -----------

\ 

( 

o 



- 6 6 -

.. 
7. 3 Debug Packages 

Two debug packages are 'associated with McGraph: the 

prirniti~e Octal Debug Packâge, a~d the more elaborate utility, 

G2BUG. These are designed for two separate applications. 

The utility G2BUG is actually a well-debugged GRINZ 

program, which is used to help debug other GRIN2 programs. 

An entire ra11ge of advanced ope rations is p0S sible with Ql BUG, 

includlflg imbedding break-points in the program. single-stepping, 

and so on. This utility has nnt yet been worked on at McGill, 

since it can only be used in the debug~ing of a?plication programs. 

lt assumes a working opcrating system, and 50 is oi limited 

use in debugging the operating system. 

Th~ Octal Debugging Package, on the ather hand is used 

in the debugging of the operating system. It assumes nothmg 

and does very little1 It can be used to obtajn core dumps. on the 

TTY patch parts of core, patch the registers, sta.rt execution at 
/ ' 

a given place in core, or make a subroutine jump to a given core 

location. 

This rather limited instruction set puts a real load on the 

user, who must be totally familiar with the machine's instruction 

" set in arder to use il. It is, however, a great improvement over 

manually toggling in changes. 

o 

J 



• 

- 6 7 -

SECTION C CONCLUSIONS 

< 

CHAPTER 8 EVALUATION OF THE McGRAPH SYSTEM 

A computer system can best be judged by how well it meets 

user requirements, and by how easily it can b~ adapted to meet 

chang,ng demands. In this chapter the McGraph operating system 

will be evaluated on the basis of programming and debuggmg 

ease, run-time flexibility, and its real-tirne characteristics. A 

discuss,ion of the techniques used in system modification and 

expansion will be postponed until the next chapter. 

8. 1 Programming in GRIN2 

Experience with the GRIN2 language has been quite positive, 

both at McGill and at BTL (C.l). The e?,istence of a graphical 

data structure enables complicated, iterative designs to be 

express a compact, logical and readable f,orm. And, of 

course, le programs are maintainable programs. GRIN2 • 
y easily be ,segmented into linked blocks of the 

type recomm nded by disciples of the structured programming 
(M. 5 h" " concept , a rat er nlce slde-effect. 

Over the course of the years the re have been many proponents 

and detractors of fixed data structures in graphies applications. It 
" 

is clear that a graphie data structure is not essential to an effective 
, . 

language; it does faeilitate operations such as duplication of 

8ubpictures, associating data with graphie information, and moving 

pictures or subpictures wholesale. It also has the added effect of 

-



\ 

- 68-

forcing the user to think abo~ the existence of structure in 

his display, frequ"'ently a useful task. It is no accident, therefore. 

that the GRIN2 experiment has left " ... in-ho'{se users apparently 

"" satisfied and sorne outsiders dis satisfied, with such features ., 

as a fixed (ring) data structure, an unwieldy programming -

1 hl 1 t 
,,(V.I) 

anguage, not enoug oca core, e c. . 

AU GRIN2 prograrns also have the added benefit of being, 

to a large degree,~ "idiot-pr.o0f" (W,·l). The user cannot easily 

bomb the system by making an incorrect respons e at any point, 

because the language forces the programmer to think of these 

possibilities. Left to their own devices, "application programmer's 

almost neve r consider the consequences of a system failure 

in the middle of pro cessing their programs Il (Y. 2), or indeed" 

anything out of the ordinary happening" (W.l). GRIN2 forces 

thought about these things, and permits recovery in case of 
1 

error. It has, then, sorne of the characteristics of a good interactive 

language, and a good operating system. 

On the other hand, most modern graphical languages have 

provisions for interfacing to a high-level algorithn1Ïc language, 

a provision sadly lacking in GRIN2. For applications requiring 

on-line s cientiiic computation. the pres ent implementation is 

entirely inadequate. 

1 -



- 6 9 -

\ 

8.2 GRIN2 Assembly System r 
The c'urrent assembly system (M.4) is unacceptably slow . 

and costly. It ha's been shown that the GRIN2 assembler could reside 
. (MAN -1). .' ., . 

on rnass storage on the PDP-15 m a much slmphft,ed forme 

Indeed. the GRAPHIC2 terminaIs have now progressed further 

around the "wheel of reincarnation 1 and have aIl been given disks. 

t ·, h 'd bl (v. 1) Th' f h con amlng t e reS1 ent assem er . e 1nter ace to t e-

main computer has been abë:j,ndoned and the BTL system, like the 

McGraph system, is functioning entirely in stand-alone mode. 

Il GRINZ is ever ta be used to full advantage at McGill the 

same proJect must be undertaken. The assembler program is really 

just another GRIN2 program, functioning under the McGraph monitor, 

which accepts symbolic input from a disk file, àssembles it and 

places obJect code on a named file on d1Sk. This program 

was also donated to McGill by BTL, but could not, oft"Course, 

be rUQ until the operating system was working. The time has 

now come when it can be tested. 



--~--------------------........... ........ 

• 

- 7 0 -

8.3 Run-Time Characteristics 

At present the graphies hardware is operating at sornewhat 

less than peak efficiency. chiefly due t,lthe numerous patches 

required i1n order to make McGraph opel'ative. As was noted 

earlier, the GRA~C2 lOT simulator and scope-code translator 

(M.4) is enormously inefficient. The PDP-8 slave system 

ia similarly burdened with simulation tasks, and 50 further slows 

down the response time. The result is that the system has rather 

sluggish characteristics for a high-powered system. Sorne 

solutions to this problem will be proposed in the succeeding chapter. 

A light-pen interrupt is immediately serviced-the PDP-15 

is informed of the situation within 5lJ.sec. The link is then sealcd 

out for half a second to prevent multiple hits (the PDP-8 cannot 

be run in the interrupt mode duc to DISe interface problems). 

Meanwhile, processing continues on the PDP-15, ~nd wlthin a 

second of the interrupt, activity Can be seen on the screen. Each 

Iea! ï"s sent individually from the PDP-l5 to the PDP-8, and 

written on the DISC. Clearly, then, only one Iea! can be written 

at each rotation (l/30 second). Complex pictures can easily 

take five or six seconds to display, then. Work can obviously be 

done '\:0 speed this process up. 

'1 

; J With a few notable exceptions, aIl the run-time operations . 
available under the Bellgraph operating system have been 

maintained. First, since it was not essential to the operation oI 

the system, the GRAPIDC2 console keyboard has not been simulated 

(McNeil). AH typed operator r-esponses must be tnade via the 

PDP-fS console keyboard. Second, the backlighted pushbuttons have 

}' 



J 

- 7 1 -

ceas'ed to be simulated, although they still appear, at system load 

time, as a set of nurnbers on the face of the display. 

Finally, the class of "real-time" prograrns has becolTle 

obsolete. In these progratns it was asswned that core-based 
1 

refresh was taking place, and that, therefore, one could change 

the display in real-time by changing str tegic core locations. 

A disc-refreshed system efiectively eH 

'make the entire strategy obsolete. 

Apart from these changes the Bellgraph Prograxnmer's 

Manual can be applied directly. 

, 

" 

and 

" 



\ 
~., , 

- 7 2 -

• 
8.4 Debugging 

Although much of this project reduced to executive 
'J 

pl'.9gram debugging, 'very ,.little experience with applications 

pro.gram debugging was obtained. These processes are, of course, 
, 

very different. It was immediately found thatJlebugging in 

large systems was no easy metter. Standard approaches such 

as using the Dynamic, Debugging Technique (DDT), a DEC-

supplied utihty could not be applied, since these progr~s competed 

with the executive program for control of the sarne core locations. 

Nor could one use the Bellgraph utility G2BUG, since it ran under 

the operating system which was to be examined. Eventually 

it was found that the only available package which could be applied 

to the. p.roblem was the primibve Octal Debugging Package, 

described in Chapter 7. 

Octal debugging is demanding, and the user must have a 

good grasp of his machine and of the process he wishes ta 

examine. This package cannat produce corrected paper tape, but 

merely patch core. From this cornes the restriction that the , 

~ modified code must not write over other, valid, code. Deletions 
t . +!' 
~ are simple; additions can be rather ~omplex. 

Sorne debugging information has bcen built into McGraph. 

WheIJ a program error is encountered the computer rings the hell 
... ' 

on tti~ teletype and traps to an error-hand~ing .routine. The user 

is then provided wIth the error number, the location wher,e it 

was trapped, the ID number of the block ~n which it was dete cted, 

and' Hs relative address l'ithin' he block. 

together with a block-table dump, n \lS 

. nfornr~.tionJ takEYn 
J'l, 1 

user to 

", 

1 



~ .. ------------------~----• 

, , 

e 
}r 

detect his error. 

The utility program G2BUG is a 'GRIN2 prograrn, which 

"should run under McÇ8raph. This program can be used to aid the 

debugging of application prograrns through a séries of high-level~ 

commands. This has not yet been tested at McGiLl, but will becorn.e 
-, -

c 
necessary if this system is pursued. 

.,[ 

'1 

-~--- -----

. , 

, 

'" , 

• 

~ . 
1 , 

..­., 
, 

. ' 

!' 



e, 

1 

l ' 

, ' 

tf • 

- J 4 -

'. 8. 5 Run-Time Fle,ibility 

A' strong point of the MeGraph system is its run-time 

flexibility. Beeause of the graphie data i;tructure. '~ub-pictures 

c~n' easily be~uplicated. shifted. ;otated. s~aled'or deleted. 
. . 

Struct~res cat; be built and tested on-Une in a natural way. 

Applicat'ion pro~rams cao even be written permitting 
~ \ 

o • 

to '&e built o'n-line fram user-supplied .inîormatian. 

leaves 

" 
The true strength of GRIN2'lies in the ease with which 

r' 
cornplicated structures can be handled. Used wisely. the 

~I 
system can be made ta enhance rather than canstrain human 

t1 :- p 

cre~ti'}"flty. ,Run-time errats will nat normally bomb the 
f 

system', Nor will a system failure tause the loss of all the ., ., '\, , 

data base, built up; copies of most of the files oexist on dÎsk , 
as well as in core. The user, thën. is given a great deal of 

Ireedam, in return for some additianal sweat by the application 

prograrnrpe rs. 

• o 

<1 

o 

\ 
1/ 

D \1 

.' 
.. <:) 

" 

.. .) 

\ 
• 0 

, 

- '". 

, . 



e' 

• > 

- 7-5 -

. . 
CHAPTERl,9 SYSTEM EXTENSION AND MODiFICATION 

The current McGraph operating system cannot be re~arded 

as a finished product. A flexible, system has been provided 

which is capable of supporting applications programs written in , 
., " 

a high-level, graphics-oricnted lëi~gua~e. GRINl. It would, 

however, be unrealis~~c ta daim that the McGraph paripherals are 

~ operating in an efficient manner. Much still re.rnains 

to be done in order to achieve dptimal system performan~e. 

This' chapter outlines sorne possible improvements which could 

be im plemented. 

Consider what must be done. First, the GRAPHICl .. 
simulator must be eliminated from the McGraph software. 

Second, the system should be extended ta incl\,lde other graphical 

deyices available at McGill. Third, the GRml assembler could 
\ 

be ma,!1e ta reside 01)" tQè PDP-15. and, ,if necessary, an 

.interface to a ~igh-Ievel, algorithrnic la~guage (i. e. FORTRAN) 
• 

could be established. These goals will be studied, in that order. 

" 

r­
I 

/ 

'Î 

" 

, 



- 7 6 -

Translation Subsystem 

Logically, the GRAPI-ITC2 simulator consists -of two 

One part, the lOT simulator. translates 

GRAPHIC2 lOT commands into McGraph lOT's and McGraph 

scope code. The 'other part, the scope code translator changes 

'GRAPHlC2 scop~ code into appropriate sequences of McGraph 

scope code. Each part of the simulator can be changed (or. 

eliminated) lndependently of the other. One can, then, speak 

of modifying the device trans lat ion subsystern, the PDP-8 

slave subsystern and the real-time subsystern (which, of course, 

includes the lOT slmulator), rather than of eliminating the 

o GRAPHlC2 simulation. 

1 

• Consider Lirst the device translation subsystem. Until) , 

no effect has been made to make this system efficient 50 it now, 

is, naturally, rnassively inefficient. Display infonnation can' 

exist in several forms in the system. First. alpharrumeric 

infor~ation can exist as part of a leaf, or as a system message. 

Se cond, br anch blocks contain lnitia1iz~tion information about 

a leaf (Fig. 2.1): a current parame,ter w~rGl. and a pair of 
~ 

defle chan words. And third. visible dis play information is 

stored in lea! blacks in' the form of CRAPHIC2 s cq,~e coding. 

, " 
This thir d clas s of information is most ea.ily dealt with. 

AU the CRIN language statements which generate visible display 

inevitably rely upon the VECTOR or PARAM library 

By rewriting these routines tor each displ~y unit 

used it is possible ta take a giant step towards gen~ralizing the 
, 

device translator subsyst,em. One minor point shoul,d be noted heJ;,e: • 

;, 

. 



, 
" 

- 77-

it is pos~lble to, pack two 8-bit McGraph words into one PDP-l5 

word in order to save on stor age. 

Branch blacks contain sorne display initializafion informati'on, 

as shown in Flg. 2.1. This is exammed and transLated into 
~ 

display codc by the core-resident executlVe program DSPLAY. 

Under this phllosophy, thcn, DSPLAY must be rewritten and 

the executive systcm regenerated for each devlce used. 

Alternatively, sorne part of the external GRAPHIC2 simulator 

must bc maintalned to handlc. t hes e· blocks, and must 1)c rewritten 

for each device used. 

'\ 

Alphanurnenc information causes more problems in 

McGraph. It was assum~d, in Bellgraph. that an expl1cü 

""characte r -gene r ator 5 cope code was avai lable: ThIS assum plion, 

although deeply Imbedded in the op~rating system. is invalid in· 

the McGraph envirorunent. No hardware character-generator is 

available here. To maintaw current text-handling routines 

and still elimwate a scope code translator requîres a change in 

• Lile transmiSSlOn methods. There would be two distinct classes 

of information in a lea!: display unit instructions, pack~d tW? 

to a PDP-15 wor d, and charader information, stored as two 

seven-bit ASCII codes ta a PDP-l5 wo'rd. By appropriateLy markwg 
\ 

the higher-order bits of these words one can difierentiate between 

them (Fig. 9.1). Then. as the words are transmitted to the PDP-15 

they can be analyzed and the character words expanded mto McGraph , 

scope code. 

l' 



-- . 

• 

FIC.91 

Craphic31 

ASCII TEXT 

LfAF TEXT AND 

SYS MESSAGE 

7 BIT 7 'JBIT 

0000 i ,<ISo. .~ A'SCII 

8 B 
0000 MC GRAPH 

DATA 

• 

" .' 

1/0 Requirements 

, 
LEAF 

INIT 

D91.AY 

BRANCH 
<SLOCK 

FO~M 

• 

.. 1 · 

REFORMAT 
FOR 

PDPe 

~IJ 

78 

G; -O lEAF 

GRAPHIC 

C.ONTENT 

PARAM AND 
VECTOR ' 

COMMANDS 

BIT BIT 
01 SCOPE SCOPE 

CODe CODE 
~~-7 .. - -

q. 

BIT 
COMMAND 

1 

i 

li' 

~ 



• 

... 

- 79-

J 
/ 

9.2 Modifications to the Real-Tirr1e Subsystem 

The real-time subsystem' could be signical1tly more 

efficient by eli-minating the ,GRAPHICS2-IOT simulation 

package. One way that this could be done is to redefine the 

macros associated with these lOTis. Comm.ands refering to 
\ 

, 

equiprnent no longer used (e. g. pushbuttons) would tease to 1· 

generate PDP-9 code, while the useful lOTis would be 

trans lated into meaningful PDP-15 code. The immedlate 

result would be to straighten long, windlhg subroubne paths into 

a sequence of commands directly imbedded into the program 

ILow. This would <:mt executlOn time, probablyat the cost of 

increased storage requirements in the Ürst bank 01 core . 

. 
Similarly, the real-time subrouhnes WHICH and WHERE 

could be rcwritte~ to takc advantage of McGraph ~acilities. 

This would have süAilar advantages and penalties associated 
, ' 

with it. Each of these steps lS a partial answçr to the problem 

of deve loping a s hor~ erre aponse tim~. E~ch is inde pendent. _ 

And neither, alone, would totally climinate the body of coding 

which i$ currently known as the GRAPHICSZ lOT simulator, 

G2SIM. 
, , 

,I 

\ -

" 



. J \' 

- B 0 

9.3 The PDP-8 Slave Program 

An eHott has already been made to simplify the PÙP-B 

slave program, as shown in Chapter 5. The GRAPHIC2 
, 

keyboard, the pushbuttons, and the blink option aU hav.e been 

dropped from the slave program. On1y display code buffering, 

light-pc?n handLing and tracklOg-cross,manipulation remain as 

tasks to be done on the PDP-8. Of these, the tracking-cross 

, 1 t' t', (lvi,4) 't b ' d t l' . t manlpu a Ion rou lOe mus e Im?TOVe 0 e Imlna e 

jumping, an.d the buffering -technique could be improved to speed 

dis play generation. 

Briefly, graphies commands are transmitted to, and 

buffered at, the PDP-B as they are gencrated. The buffer is dumped 

onto the disk when it is full, or at the end of a lea!. Response 

time could be sigmiicantly shortened if the bufier was dumped 

when full. or at the end of a picture. In actual lact, this demands 
\ , 

more oi a change ta the di splay routine DSPLAY than it does ta 

the PDP-8 s lave pro gram • 

, ~ 

., 

,\ 



, 

- 8 l -

9. 4 Extension to Other Deviees 

The McGraph oper~tlng system will ultimately prove to be 

of value only if it is (easily) extensible to other graphies devices. 

A few remarks should. then, be made about this point. 

First, sorne devices are more easily integrated into the 

system than others. Currently, a dis play unit with the following 

characteristics would be favoured: 

(1) It is directly interfaced to, and capable of interrupting, 

the PDP-l5 

(2) It useS lB-bit words. or less 

(3) It has a hardware character generator 

(4) It has single -word pararneter comrnands 

(5) It i5 capaple of returning X and Y co-ordinates upon a 

display interrupt (light pen or JOY stick) 

Probably the next device to be used in McGraph would be S 

,r-J the TEKTRONIX 4002 dis play s cope, already inte rfaced tà the 

PDP-IS. Extension to this device should be relatively easy. since 

il fulfils most of the conditions listed above. It i5, however. a 

ètorage unit. 50 the real-t· e interrupt routines would have to be , 

rethought. g will be necessary t~a:n for interfaci.ng 

the original M cGraph di5pl 

( , 

l, 

) 



) 
- 8 2 -

cf' 

9. 5 Odds and Ends 

Further goals, which~could be set if demand is suificient, 

must include transf~rring the CRIN assembler to the PDP-l5. 

This could greatly simplify the current assembly process. 
, . 

Bell Telephone Labs included the appropriate software to do this 

in the package donated to M cCill. n, however, presuppos ed 
'-1' 

a working operatmg system, and s,a could flOt be tested until pow. 

Assembling this prograrn ôn the IBM 360 and placing it in the 

subroutinc library should nat be too dlfficuit a proJect, and could 

provide a major improvement in service. 

Another l;?0sslbility that could be investigated is that 

of interfacing the McGraph operating system to standard DEC 
l , 

systems. The most promising arrangement is shawn in Fig. 9-2. 
1t" 

Here, an 8K version of V 5A has been generated,. using one disk 

and residing in the lower 8K of core. McGraph can be modified 

to sit in the top 8K, and claims the other dlSk. Now each , 

8yst~m controis independent peripherals and stàys in entirely 

different banks of core. By allowing communication between 

bank,s to take place only t hrough the use of a given as sembler 
J -

routine contro lled comm unication could be set up between the 

systems. The computational power of FORT.RAN would then be 

âvailable to the G
1

kIN2 programmer. This i5 clear a nontrivial, 

if worthy, proJect. 

! 
* Digital Equipment Corporation Operating System cor tl~e 

ri n PDP - 15 computer. 
8 

'" 

... 

' . . ,~ 



83 

FIG. 9.2 

PROPOSED INTERFACE BETWEEN McGRAPH b< VSA 

- 24k 

c M Graph 
Disk l 

Daplay Per1pherals 
Disk 1 

H igh Speed Punch/ 
Rcader 

c M Graph 
Teletype 

Tektronix Console TTY 

n 16k 

,----, .. 
~ 

. 
• ~ " 

Patch Core 

. ' 

8 k • 

,1 

8K V5A 

~ ~ Disk 0 
Disk 0 

Teletype 
Line Printd-

, 
8& V5A 

1 
) 

DEC-tape Drives 

-

1 
\ . 

0 

\ o 

( 

\ 

, 
1 
1. 



• 

- 84-

o CHAPTER 10 CONCLUSIONS 

This project was a continuation of the effort (M. 4) to 

provide a graphies language for .h~ users of the McGraph dis­

oriented graphies displây faellity (M-I, F. l~ In order ta " 

achieve this goal. an existing, graphics-oriented operating system 
(C. 1) 

had to be signifieantly modified and debugged. Most of 

the meaningful differeoces between McGraph and its predeces sor, 

Bellgraph, lie in thetr respective real-time subsystems. 

Since the structure of the McGraph facllity lS far diHerent from 

that of the GRAPHIC2 terminal. much of the real-time 

interaction philosophy had ta be rethought. Due to Ume and 

manpower limitations. McGraph does not work as eIficiently 

'as possible, qt this h~e. Further~system work. in the area 

indicated, should rnake McGraph a very respectable system. 

It ~an be honèstly said now that GRIN2 is runI)ing on 

the McGraph facility. Application packag_es can be written ta 

[ully test the strengths and weaknesses of the system, while 

modifications can be made with confidence to the operatihg system . ... 
( 

There is nothing to lose any more; there exists a working 
, 

system to faU baek upon~------In, thls manner, thèn, McGraph can " 

b.e developed and adapted to fit the special needs <fi users at 
\ 

McGill. 

" 

.. 

It, 

t 

___ --A __________ _ 



/ 

~I e 

, t 

- 85-

APPENDIX A - THE GRIN2 ASSEMBLY SYSTEM 
1 4 1 • , 

A. 1. Preprocessing A GRIN2 Program (or PDP-9 Program) 

This job must be run in 300K of"core on the IBM 360/75. 

The input sourcedeck may contai'"n any number of indlvidual 

GRIN or PDP-9 programs. Output will be on punched cards. 

/1 PRE PRO 

/1 STEPLIB 

/1 SYSPRINT 

/1 SYSPUNCH 

/1 PREIN 

/1 ASMIN 

/1 SYSIN 

/* 
/1 

EXEC 

DD 

DD 

DD 

Dp 

DD 

DO 

PGM ::: PRE, PARM = 'DECK' 

DSNAME. = A. EE25. PREPRO, DISP :: 

(OLD, KEEP) , 

SYSOUT = A 

SYSOUT ::: B, DCB :: (RECFM ::: FB, 

LRECL = 80, BLKSIZE = 3200) 

UNIT::: ONLN, SPACE ::: (7280, (35,4», 

DISP ::: (NEW, DELETE), DCn ::: ", 
(RECFM = FB, LRF,:CL::: 80. BLKSIZE::: 

7280) 

UNIT:: ONLN, SPACE :: (7280, (35,4), 

DISP :: (NEW, PASS)~ DCB ::: (RE.CFM '::: 

FB, LRECL :: 80, BLKSIZE = 7280) 

* 

. GRINl SOURCE pECK 

J 



\ 

.. 

.. 

1 0 

A.2 

- 86-

Assembling A GRIN2 Program 
~ 

This job may be run in lOOK.oI core in most cases. 

Output will be punched object decks. The input source deck 

may contain any number of programs, sinee they are run in 

batch mode . 

. '. 1 

\, 
Il ASM EXEC ASMGC, PARM. ASM = 'NOLOAD, 

DECK, BATCH' 

Il ASM. SYSLIB 

4" 
n • 

'II 

/* 

Il 

SYSIN 

b 
.\. 

DD DSNAME = A. EE25. GRINl, DISP = 

OLD 

DO * 

GIUNl SObRCE DECKS 

A PDP-9 program can be assembled in the sar.ne manner if the 

library card is changed to 

1 ASM. SYSLIB DD', 

.. 

DSNAME = A. EE25. P9MACROS, 

DISP = OLD 

. ' 

\, 

• 1 



Go. 

.. 8 7 .. 

( 
A. ~ ost- Proces sin PDP9' Pro J;"ams 

Input is assumed to be tn the farm of punc~ed object decks, 

while the resulting output appears on 9-track, 800 BPI magne~ic 

tape. The input stream may consist of any number ~f individual 

GRINl,programs, followed by any number of PDP-9 program 
" 

, 

blocks. The post-processor generates one block for each GRIN2 
':. 

program and a load-module containing aU the PDP-9 'prograr:r~. ~ 

Il 

Il POST e 
Il STEPLIB 

Il SYSPRINT 

!MTAPE 

• 
EXEC 

EXEC 

DD 

DD 

DD 

! PUNCH PD 

! SYSIN DD 

'\ . 

.. 

SETUP, PARM ::: 'T8 ::: PDP9 (RING 

IN, NL, SLOT E;43) 

PGM ::: POST, PARM ::: ' options, às below' 
" .-

. DSNAME = j\. EEl5. GlP~T, DISP:: \ 

(OLD, KEEP) 

"'SYSOUT ::: A· 

VOL = SER :: PDP9, LABEL = (., NL), 

UNIT = TAPE'e, DCB::: (RECFM = F, 

13LKSI2E ::: 300, LRj:CL::: 30'0, ~EN:: Z) 

SYSOUT'= B, DCa = (RECFM = F, 

BLKSIZE ::: 1600. LRECL = 80) , 

* 

.) 

.. 
, , 



• 

< 
e 

• 

• 

• . l - 8 8 - ,fI' ~ , 

1 .-
0 

OPTIONS: 

ORO = nnnn specUies octal starting addres8 of absolute load 

modules. Ignored on input of GRIN' progràms. 

LIST produces a listing 0'[ PDP-9 mnemonics and contents of 
..) 

each word. 

NODUMP suppresses the printing of each word in the program. 

The d~p cannot be suppres8ed' on PDP-9 absolute load modules. 

-.' 

, J 

• 

\' 

f' 'II' l' 

• 

, 
1 

l 

• 

0' f'-

1 1 . 



i' 

.. , ....... , 

- 89 .. 

APPENDIX B .. GENERATION OF GRINZ PAPER TAPES 
3 

. The output of the GRlNZ post-processor consists in part of 

blocks of ASCII code, dumped on a 9-track, 800BPI magnetic tape. 

The McGraph facility. howeve~, lacks a magnetic tape drive, or, 

indeed, any other OS- compatible meqium. The solution currently 
1 . ' 

being used isShown in Fig. B.·l. 

First. the mag-tape is dumped onto a MUSIC permanent 

disk file. This file can subsequently be dumped onto pa per tape 

f/orn a teletype or from the PpP-lS. Either w~y an ASCII tape is 

produced. This can finally he pro~essed on the PDP-lS, resulting 

in a loadable hinary tape. 

The exact procedure required ie shown below . 

• 

( 

r 



l', 

e 

III 

l' 

• 

• 

DUIVIP ON 

TTY 

~ 

. 'f 

..... 

F I~. 8.1 

ê APE 

MUSIC 
PERMANENT 

FILE 

PROCESS 
,\ 

TAPE 

81NARY 

PAPER 
TAPE 

OUMP CbN 
POP 15 

HSP 

.. 9 

Q 

l' 

( 

lb 

'" 

(1 

L---

\ 

. l 

) 

è-' • 



- 9 l -

.Y 
B. 1 ,Dulnping Tape Onto Music File 

This must be run as a oatcll joly on the MUSIC system. 

File consista of blocks of 5 records. Each r'eC"Ord 

consista of 60 characters (10 PDP .. 15 words). 

/ ID 

/ PAUSE 

/ FILE 

/ FILE 

/ INCLUDE 

$ OUTPUT = ,1 

$ INPUT = Z 

/ ENDRUN 

T APEJOB, VOL = PDP9, SLOT = E43 

DISK = 0, ,EE25 POST), VOL = RAX006, 
~ 

DISP = OLD ... 

TAPE = (l, BLK = 300), .RSIZ = 60, VOL = 

PDP9, DISP = SHR 

UTIL 

B. Z Dumping Disk from Teletype 

SIGN ONTO MUSIC SYSTEM, THEN 

/ INPUT 
• l , , 

/ FlLE DISK = (l, EEl5 POST), VOL = R.fLX006 

, INCLUDE U'TIL 

$ INPUT = l 

/ENDRUN 

_AT WHlCH POINT THE USER MUST TURN ON THE TTY PAPER 

PUNCH 
<, 

.. 

- ,f 



, 

, . 

! 

• -. j 

, 
! 

1 

1 

/ 

- 9 2 -

., 

B. 3 .. ", Developing Binary GRIN2 Tapes 

1. 

2. 

3. 

Load ASCn tape, output from the previou8 stage in PDp-1S 

high speed reader, at start oI Lirat GRIN/PDP9 b1,!ck.I' 

Execute Program 'PROGl' on PDP-:15 (Tape 162) , 

/) 
AScn tape will read in and punch start; System will pause 

1 

aIter Lirst block. Make sure tape is clear on reader, and 

'type fP on te letype. Process repeata until tape i8 compléted. 

,-

" 

.. 

.,(. 

\ 

.. 



.. 

e 

7 

.1 

~ 

- 9 3 

6 

d 

o BIBLIOGRAPHY 

C. 1 Christensen, Cil and t. N. Pinson, "Mu,lti-Function 

Graphies for a large Computer System ", Proc. AFtpS 

FaU Joint Computer Cdnf., Vol. 31, pp .. 697 -771, 1967~ 
,--

C.2 Cuttle, G. and P. B. Robinson (ed.), "Executive Programs 

D. 1 

aAd Operating Systems ",> Ame.rieaSl Elsevier Inc .• New 
- ,_ 
York, .... N. Y., 1971. 

,f<;> 

Dawdy, G. M:, "An 1-0 prograJ:1ming -.system lor Smalt , 

Comoputers,::, Proe. of the Canad)an €orpp,uter ,ConI. " 

pp. 32l30t-321~13, 1972. 

" 

D.2 .DUdleYl T.!<., ''Xerox Computer Graphies ", Proc. of the 

Third Man-Com p"ter 'Communications Seminar, Ottawa, , . 
~ pp. 13. 1-,13. 5, 1973. 

• 
o 

D. 3 " Dunn,c R. M., "Graphies" Prol;>lem Solving and Virtual 

Sy8te~s", Froc.' !,FI~nal Comp~ter Conf .• Vol. 42 • 

• pp. 23 -30, 1973. 
" , '-~'~ 

F. 1 Fabi. R. J .• "The Design and Construction of a Disk-Oriented 

Graphics System ", Dept. of Elect. Eng •• McGill Univ •• 1971 •. 

F. oZ 
" 

Foley. J. D. and V. L. tallace~ "The Art of Natural Man-

Machine Conver8ation"~ Proc. of the IEES. Vol. 62. pp. 
1...- ' 

462-~71. April. 1974. 

~ ---------

t -- \--~- ,,--------
.> -'" 

Î_ 
~ . !-~ 

---- ~'-

" 

" 

-----%\ 



" 

\ 
" 

· , 

1\ _ 9 4 -

F.3 Franklin,. J. a#d E. B. Dean. ''Interactive Graphics 

f01i" Compute,r Aided Network Design, " Proc. AFIPS 
1 

National Computer.. Conf .• Vol. ';2. pp. 677-683, 19-73. 

G. 1 Garnrnill. ,'R.. C., "Graphics and Interactive Systems -

Design COi'lsiderations (J'f a Software System,r, Proc • 

0.2 

.A. 
AFIPS 'National Computer Conf., Vol. 42, pp. 657-663, 

1973. 

1 

George, 1. R. L., "Software and Data Strudur~s for 
/, 

Graphical C. A. D. , "Proc. Qi the International Con!. on 
," 

~omputer Aided Design, Southarn pton, U. K., 1969. 

G.3 Gronet, G. F., "Display TerminaIs Can f:(e1j? People Use 

Computers", Proc. AFIPS National Computer Conf., Vol. 

42, pp. M39-M42, 1973. 

o 
0.4 Gwynn, J. W., "CRT Terminal Access Ftom High Leve 1 

Languages If, SID Digest of Technica1 Papers, pp. 46-47, 1972. 

L. 1 Lecarme, O., "A System for Interactive Graphic Prograrnming", 

Proc. IFIP Congress, Vol. l, pp. 440-444, 1971. 

L.2 Link, R. W. and S. S. Yau, liA Simplified Data Structure for 

Interactive Graphics on a Small Corn.puter ", Proc. Canadian 

Computer Con!. , Montr~a1, pp. 413401-413422, 1972. 

M.1 Ma1owany, A., M.D. Levine, et al., liA Di8c .. Orie~ted Gr~phie8 
DisB1ay System ", .'Proc. Second Man-Computer Communications 

Seminal', Ottawa, 1968. 



M.2 

.. 95-

(J 

Malowanv, A., K. C. C,arnpbell, T. MeNeil, "The MeGraph 

System ", Proc. Third Man-Computer Communications 

Seminar, Ottawa, ;~. 30. 1-36. 5~ ~ 1973. 

M.3 McLean, R.S. and W. P. Olivier, "Initial Use of a Plasma 

Display Panel", Proc. Third Man-Computer Communications 

Seminar, Ottawa, pp. 33.1-33.7. 1973. 

M.4 MeNeil, T. O'B,. ,.~"A General-Purpose Graphics System for 

a Small Computor", M. Eng. Thesis, Dept. of Eleet. Eng., 

MeGill Univ., 1974. 

~.5 

N. 1 

.. ' 

"--" 
" 

MOYle~. J., "Graphical Support Software GTA for PDP-9- . 

339 Syst~ ", TR-EE-71-6, Purdue Univ., 1971. 
,,\ 1 

" 
Needham, R:~ and D. F. 'Harttey,' "Theory and practiee 

in Operating/System Design ", Proc. Se cond Symposium on 

Op~rating S~tem Princi.ples, A. C. M., Princeton, N. J., 1969 • 
, , 

N.2 Newman,.. W. M. and R. F. Sproull. "An Approach to Graphies 

System Design", Proc. of the IEEE, Vol. 62, pp. 471-483, 

April, 1974. 

O. 1 

t' 

O'Brien C. 4., "Implementation oI the ICPL Graphics Language 
'. . • on the PDP-15 Computer", Proc. Third Man-Computer 

Communications Seminar. Ot~awa, pp" 9. 1 .. 9. 8, 1973. 
. , . ' 



f) 

.... 

- 9 6 -

r 

P. 1 Penney, J. P.and G. F. P. Deecker, "On General Purpose 

Software for Interactive Graphics, " Proc. Fifth 
" ,.; 

Australian Computer Conf., Brisbane, 1972. 

" '\! 
P.2 Pieke, B. ~d G. Schrack, "Implementation oI an Interactive 

Graphies Language", Proc. Third Man-Computer , 
Communications ConI., Ottawa" pp. 7~ 1-7.9, 1973. 

4 • 

P.3 Poole, P. co' and W. M. Waite, ''Machine Independent . 
Software ", Proc. Second Symposium on Operating Systems 

Principles, A. ç. M., Ptmaeton, N. J., 1969. 

S. 1 Sack!nan, H., "Sorne Exploratory Éxl.perience with Easy 
.... 

Computer Systems ", J;?roc. AFIPS National Computer 

ConI., Vol. 42, pp. M30-M33, 1973. 

r l 

S. Z Stockenberg, J. E. et al. ".Operating System Design 

S.3 

CO'Qsiderations fM Microprogrammed Minic9mputer ' 

Satellit~ Systems", Proc. AFIPS Nation~omputer Conf. , 

Vol. 42, pp. 555-562, 1973. 

Sut 1. E., "Sketchpad: A Man-Machine Graphical 

Cornmuin at 'ns Sy.tem ", Proc. AFIPS. Spring Joint 

Com?uter Conf. , Vol. 23, pp. 329-346, 1963, 

J 
T. 1 Thibault, P. C., ':A Disc ... Oriented Graphies Syetein Applied 

to lnteraètive Regression Analysis", M~ Eng. Thesil, 

De pt. 01 Elect. Eng.; McGill Univ., 1972. 
, . 

( 



1 • 

• 

- 9 7 -

T.2 Tinker, R. W. and 1. L. Avrunin, "The COMRADE Executive 

System ", Proc. AFIPS National Computer Coni., Vol. 4Z, 

pp. 33h,33J, 1973. 

T. 3 Trivett, R., "PICADE - Ptompt Interactive Creation of 

Active Display Ele'ments ", Proc'. Third Computer 

u. 1 

. 
Communications Serninar, Ottawa, pp. 15. 1-15. 8, 1973. 

uz~ .. et al, "PL/OT 71: An Interactive Machine 

Inde pende nt Graphies Language", SID Digest of Tec'hnical 

Papers, pp. 48-49, 1972. 

V. 1 Van Dam, A. and G. M. St~bler, "Inte lligent Satellites 

[or Interactive Graphies "," Proc. of IJ;::EE, Vol. 62, 

W. 1 

f 

No. 4, pp. 483-492, April 1974. 

Wasserman, A. L, "The Design ol 'Idiot-Proop Interactive 

Programs ", Proc. AFIPS National' Computer éoru. , 

Vot 42, pp. M34-M38, 1973. 

'W,.2 • Williams, D. L., "GRAP~LE - Graphies App1i~ations 

Programming Language", Proc. Third Man-Co:r:nputer 

Communications Seminar, Ottawa, pp.' 5. 1-5. 9, 1973. 

W.3 Williams, R., liA Survey oï Data Structures for Computer 

Graphies Systems ", Computing Surveys of the A. C. M. , 
1 

Vol. 3, No. l, pp. 1-21, March 1971 • 

, " 

',1 1 

j 

op 



'. 

Y. 1 

98 

Yan, O •• "Implementation of Design Aids for Electrot!Ïcs 

in A Nuclear Research and Development Eatablislunent", 
• Proc. Thbrd Man-Computer Communications Seminar, 

Ottawa, pp. 29.1-29.8, 1973. 

Y.11 Yourdon, E., "Design of On-L~~mputer Systems ", 

Eng1ewood Cliff~: Prentice. Hall, 1972. 

',1 

• 

, , 
" 

o 



, .. . 
/ . 

LIST OF MANUALS, REFERENCE BOOKS, ETC. USED: 

"' MAN-1 

MAN-2 

MAN-3 

1 

MAN-4 

MAN-S 

MAN-6 

MAN-7 

MAN-8 

MAN-9 

~AN-IO 

MAN-ll 

Bellgraph Comput~r System Programmer's Ma~ual, 

BTL, Murray Hill, N. J., 1970. 

D$C-9A-MRZB-D PDP-9 Background/Foreground 

Monitor Reference Manual 

DEC-15-GWSA-D Graphic-15 Reference Manual 

. 
DEC-15-ZFSA"'D Graphic-15 Pr"ograri'iming Manual 

DEC-15-BRZC-D .PDP-15 Syste'tns Reference Manual 

DEC-15-AMZA-D Macro-15 Assembler Programmer's 

Referenc:;,e Manual 

GC28-65l4-8 IBM OS Assembler Language 

C28-6646-0 IBM System/360 Operating System, 

Supervisor &t Data Management Services 

Music User's Guide, McGill Univ. Computing Centre, 

1972. 
, . 

'" Computer Display Review, GML Corp., Léxington, 

Mass, 1974, Vol. 1-4. 

Tekgraphics, April 74, Numbt!'l" 9 

, . 

, , . / 

.1 

• 


