. » |
AL ‘
o
. - ~ N
A GRAPHICS~ORIENTED OPERATING SYSTEM
. I\
. 3
[3
\ 1]
‘ O
&
L
/
, §
oo
AY ° \’ —_
' . P2 ”
2 '
- N
’ {) '*g. ‘{‘—__——— — R
i N y |

A GRAPHICS-ORIENTED OPERATING SYSTEM -
FOR A SMALL COMPUTER

Kenneth Craig Campbell, B. Eng.

A thesis submitted to the Faculty of Graduate
Studies and Research in partial fulfillment of
the requirements for the degree of Master of

Engineering.

Department of Electrical Engineering
McGill University
Montreal, Quebec
August, 1974

é @ Kénneth Craig Campbell 1975 i

ABSTRACT

.

This thesis‘ describes an implementation of Bell Telephone °
Laboratories' BELLGRAPH operating system on McGill's
McGraph facilities. The special co‘ns-iderations and problems
encountered in modifying an advanced system designed fo drive
a core-refr;eshed display unit such that a disc-refreshed Qis,play
unit could be u§ed ar.e described. . The resulting changes in
operating concepts are outlined, and guidelines are presented for

possible’ future develc;pment.

<

-ii - .

RESUME

Cette th¥se présente une réalization sur le systime |
McGraph a 1'Université McGill du systdme d'opération
BELL GRAPH qu'ont développé les laboratoires du Bell Téléphone.
L es considérations spéciales et les probldmes rencontrés én _’
transforadant un syst&éme advax;cé congu pour un systéme graphique
régénération par la mémoire centfale pour un systdme régénération
par disque sont présentés. Des changements résultant dans les
idé?s d'opération sont esquiss§s, et des lignes de guide sont présentéés,

peut-etre pour un dévelopment futur,

-iji- =

“i
N
*

¢ »
ACAKNOWLE DGEMENTS

/

!

1 wish to express my s.mcere thanks to the many people
who contributed to the success of this thesis.
/ﬁ
First, the patience and guiddnce of Dr. A. Malowany,

my thesis advisor, wa’s much appreciated,

Thanks are due to Juhan Leemet, who not only wrote
’
the PDP-8 software and software and maintained the graphics

hardware, but also supplied me with many useful ideas.

\

I am greatly indebted to Bell Telephone Laboratories
for‘generousl/‘y making the BELLGRAPH software available.

I would also like to thank Mrs. Diane Morley who typed

this thesis.

And finally, I'd like to thank a Friend who kept up
my spirits in the darkest days of thesis-writing. ” v

1}
)

This research was supported by the National Research

Council.

=<

]

>
-iv -
¢ «
TABLE OF CONTENTS
Page
ABSTRACT . it iiiitiiietinieeenenencnnenns et i
ACKNOWLEDGEMENTS - .nvereennnn... e i
TABLE OF CONTENTSttt eetasossnesssassaosonans iv
SECTION A INTRODUCTION AND BACKGROUND
CHAPTER 1 INTRODUCTION ...t tetienieananns s 1
1.1 Interactive Graphicscoiviiiinna., 2
1.2 Experiences with Graphics Systems 4
1.3 Graphics Peripheral Devices eeeee 7
. 1. 4 Development of Interactive Graphics
: cat MceGill L. i e it et c e 9
CHAPTER I INTRODUCTION TO GRINZ
) 2.1 The Graphic Data Structurec.ccveuen.s 10
2.2 The GRINZ Languageccuovueeenncnacaons 15
2.3 Subroutine Blocksttt nnnnas 17
2.4- A Short GRIN2 Program e ee e .-.. 18
?]
CHAPTER III MCcGRAPH FACILITIES .., n e einennnns 21
SECTION B THE McGRAPH OPERATING SYSTEM |
CHAPTER IV THE McGRAPH EXECUTIVE PROGRAM 26
4.1 The Real-Time Subsystemcc0c00... .. 29
#4.2 Device Translation Subsystemcc0evensn 31
4.3 Memory Managementcoevveocencesnsacs 32
4.4 DisplayManagement..........j............... 35
4°5 . The PDP-8 Slave Program ceeipececs 36

[= L4
. .
. a . +

-

* CHAPTER V
5. 1
5.2

CHAPTER VI
. 6.1
6.2 ,
6.3
6.4

&HAPTER v
7.1
1.2~
7.3

' SECTION C#*

CHAPTER VIII

-™

8.1
8.2
.8.3
* 8.4
8.5

CHAPTER IX
9.1
9.2
9.3
9.4
9.5

-v- -

N ’-\ Page
SUBROUTINE BLOCKS D
McGraph Object Code...... Ceeeeeenn SRR 38

GRINZ Language Staternent Implementation’. .o 43 .

‘A SIMPLE-PROCGRAM
The Object Code \ e eteseaceonnennnen 45
Load{ing and Initializing thg\McGraph System » 50
Building the Data Structure Blocks 55
Real-Time I/Ocviiriiiiineennnnnns 59

ASSOCIATED PROCESSES
The GRINZ2 Assembly System0cvveeu... 63

The Library Editor G2ZLIBE eee s ceeen 65
Debug Packages Ceeeenn 66

CONCLUSIONS

EVALUATION OF THE McGRAPH,SYSTEM67
Proéamming inGRINZ ...ttt iiiennenannas 67
The GRINZ Assembly System coes 69
Run-Time Characteristics ... ceceiesen. e 70
Debuggingt RERERRPRR 72
Run-Time Flexibility ceere e 74

SYSTEM EXTENSION AND MOI?-IFICATION?S
The Device Translation Subsystem 76
Modifications to the Real-Time Subsystem 19
The PDP-SSlaveProgram.‘................. 80

Extension to Other Graphics Devic% 81
Odds and Endsccivievenaeennccnseannns 82
L . <

-] * '\

(\ i T Tmyi- * i
®
CHAPTER X " CONCLUSIONS +vvverrnnnnnnnn.. o
APPENDIX A ' THE GRIN2 ASSEMBLY SYSTEM
APPENDIX B GENI'-:RATIQN OF GRIN2 PAPER TAPES
BIBLIOGRAPHY e e
[4
[}
’
\ []
(-
‘ L
{
e
| \ ©
3 .
' .
/ \ q
£ ' 4.
s N
7 ey
\ i /

84

85
89

.93

SECTION A

INTRODUCTION AND BACKGROUND
CHAPTER I INTRODUCTION
as proven to be one of the most intriguing

Computer graphics

haaa
research topics in computer ‘gcience in recent years. Since its

(5. 3) in the early 1960's many

dramatic popularization by Sutherland
successful applications of compu\t\e\r graphics have be€n reported.

. \
— "These include forays into such varied fields as computer-aidejl design
(F.3, G.2) (G. 1)

(M. 3)

» weather forecasting , and computer-aided instruction

. Over the course of the years, indeed, many graphics -oriented

(C. l). Sketchpad (8. 3)

(U. 1)t

languages have been devised-GRIN2

(W.Z)' PICADE (T'B‘)f, and PL/OT71

» Grapple
name but a few ~ along
with numerous packages of graphics subroutines written in existing

.2, 0.1, T. .
(D o.1 1). Graphics

algorithmic languages suc'\ as FORTRAN
peripherals are becoming significantly cheaper and more readily *
available. Indeed, the day is within sight when every medium-size
computer installation will Jhave one or more graphics terminals as

part of its normal equiipment. Existing operating systems ‘must change
in order to meet these popular demands. This thesis documents the
fmplementation of a graphics-oriented pperating system within the .

cGraph (M. 1, M. 2) environment, and makes suggestions concerning

its further development.

-

o

L. 1 Interactive Graphics

2

Why have {0 many computer installations invested heavily
in graphics peripherals, especially interactive graphics terminals '?
No doubt each installation has its own reaéo.ns for doing so, but two
ideas underlie all of themn. Every exponent of computer graphics
tacitly believes in the‘ power of symbolic thought, the ability to, as
Herzog (H.1) puts it, ''convey ideas in terms of forms'. Similarly,
ezery"fiisciple of interactive computing believes that a user can do
more ‘useful work if he is allowed to interact with the computer,
and influence its c0ur§e of action. These are the twin bases upon
which interactive graphics rests. Together, they may be said to
symbolize an attempt to upgrade the man/machine interface, andto

~

S
make the computer more responsive to the user's demands.

On the other hand, interactive graphics terminals have
consistently proven t‘o be a difficult tool to' harness successfully.
While it has always been easy tc visualize appficatic?ns of graphics
terminals, Penney points out that it has been unjformly ''difficult
to generate useful software of fairly general applicability'. (P.1)
Fgley extends this by mentioning that it is difficult to write high-
quality graphics programs at all, and by indicating that '... the
clarity and vividness of computer grdphic communication is not an

F.2
automatic consequence of the mere use of drawings" (E..). It has

»»
long been recognized that interactive programs on a time-sharing

system must be carefully written, with human factors taken into

- . » w.
account, if they are to be truly effective (5.1 1). The same is now

being said of interactive graphics programs; (F.2)
all the difficulties have been magnified. ' Visual processes are

inherently complex, and an interactive graphics terminal may well

IR

|
although, of course, "’

Y

generally inadequate

.and reported on in 1‘26%

¢

!)
]

be one of the most cgmplicated peripherals to be interfaced to any
¥ .

comimter. If, as Penney contends, graphics support software is , .

(P.1)

» the conclusion.is inescapable: effective
: -
graphics programming can be a r’eagchore. The result is that

until now ""the most successful applications of computer graphics
(P.1)

4

have been the simple ones'!

Efforts are continuing to provide graphjcs terminal users
with an adequate level of software support. The operating system
described in this thesis' was broyght into existence at BTL in 1967,
~ (C. l). Since then it has been continually

(M. 4) °

updated » and now transplanted igfo a new environment. ’Although)

many similar packages have been described in‘the literature
(V.1 N.1, M. 4), no method of generatjn-g gengral-purpose software

o ® “\

has been agreed upon. As of now it is still a matter for research.

Y 9

i
/
&

1.2 Experiences with Graphics Systems

e
It might be instructive to superficially examine a few

existing systems to gain a feel for what is requiredin a

graphics-oriented operating system. First, one must be clear

on what a ''graphics-oriented' system really is. To many,

it is simply a system capable of driving some form of graphics

terminal. If this definition is accepted as forming a lower
’

bound, many commercially-available~systems immediately

X‘(D' 2) (MAN-11)

become graphics systems. XERO , Tektronix

o .
and other terminal manufacturers offer software support for

their equipment, in the form of FORTRAN subroutine packages.
These pernfft the user to undertake a ‘certain amount of interactive
‘ ‘graphics programming with (app&rently) minimum development

. ‘and training costs. And in many applications, such an approach
. (MAN-11)
is entirely valid, as witness the Tektronix sales literature .

In‘some cases, a more advanced system can be provided (at added
+
A

development cost) by implementing a high-order graphics /,
(0.1, P.2y

«

language on an existing commercial operating system

F)

"This has some advantages, such as programmer convenience,
but does not address itself to many of the fundamental problems

«

computer graphics.

Consider for a moment the other extreme-the military -
environment, Highly speicalized software must be develoapedlin
a customized environment. In tactical or 'strat;gic operations
high data rates are the ngrm. These lead naturally to computers
with multiple bus structures, multiple general-purpose registers,
. . and go on. The displays must present accurate, real-time

a o

‘ £
Al

+

<~

oo

information under extremely adverse conditions. Few, if any,
commercial systems could meet military performance standards.
On the other hand, high order languages are nice, but quite
*dispensable in military systems, where.efficient systems are
everything.

[¢]

Commercial graphics systems operate in a far more

favourable environment, but many problems are similar. Useful
graphics programs, for instance, are typically large (P l).

Data rates aré freq\}ently high, partially beca&se graphics displays
require a great deal of refresh activity, and partially because

the display is often— used to control a concurrently-running précess.
Few commercial systems, traditionally oriented towards data- ‘

processing or computational tasks can cope with these requirements

at least not in real time.

The result is that a number of graphics oriented systems -
in the.sense that this term will be uzed i’n the balance of the thesis —
have been developed to meet these requirements. Many of these,
especially the nonmilitary ones, provide the capability of
programming in a high-order graphics language. Representative
of these systems is GRAPPLE, developed by Bell-Northern
I'{esearc'h. and BELLGRAPH, developed by Bell Telephone Labs.

A few such systems have e¥en been offered by systems houses
such as ADAGE (Y. 1). These systems support true graphics

capabilities, rather than treating a graphics terminal much like

a fast teletype.

The Temainder of the thesis will be spent discussing one

of these systems, the McGRAPH systern. This is actually an «

implementation on the McGraph facilities, of the BELLGRAPH
syétem. This system supports programs written in the high-
order graphics language GRIN2. Further, it provides rapid
memory management, allox;aing large applications programs
to be run interattively in real time. As such, it is a rather

interesting system.

17 \

PP

1.3 Graphics Peripheral Devices

A staggering number of graphics peripherals have been placed "
on the market within re£ent years, giving a sysiem designer
unprecedented flexibility in hardwabre selection. A short review of
the more prominent types of peripherals is included here to give
the reader an insight into the various tasks a graphics-oriented

operating system must fulfil.

The slow, hardcopy device such as microfilm printers and
flat-bed plotters are usually run in an off-line mode. The operating
system is really only responsible for formatting magnetic tape used

“to drive these devices, a relatively simple task,

Consider néxt the modest, CRT-based alphanumeric terminals.
Normally these allow only a limited degree of interaction with the
user., Alphanumeric characters can be displayed, sometimes only
in fixed positions on the screen, though frequently in programmable
tdﬁ;s and gccassionally in various fonts. These terminals are usu?lly
’;b’ased on di're'cf\-\-';/"iéw. storage CRT's {TEKTRONIX) or upon cheap,
~(;Jvideo--sca.n TV monitor scopes (DATAMEDIA 1500). Some ;f the

more advanced of these terminals (TEK - 4002) are equipped with

vector-generators, enabling limited, relatively low-cost graphics.

High-performance, 'intelligent' terminals permit more
flexible graphic operation. These generally allow extensive operator
“winteraction through the use of such devices as the light pen, joy stick,
mouse, tracking ball, RAND tablet, and so on. To permit real-time
manipulations and selections these units are usually based on
n

refreshed CRT's. The refresh can come from mass storage (McGraph)

or from core, on the DMA (GRAPHICZ2). These terminals generally

~

-8 -
\‘ - 3

involve caligraphic display processors: the display is "painted' on
the jgcreen by the motion of the beam. Raster-scan units are very

rare, due to the storage and elaborate controllers required.

Several‘types of "flat-screen'' displays are being developed
to eliminate some of the bulk of the CRT displays. The most
promising of these, at the moment, are the plasma displays. Indeed,
there is at least one commercial plasr‘na display unit, the DIC‘}IVUE.
These have man); potentially attractive characteristics (size, rear
projection of film, selective erasure, and direct electrical read-out
of display points), but are relatively slow, with cumbersome

(M. 3)

electronics At best they require a good deal more development

before they can seriously challenge CRT displays.
f a
Ao.
Interaction devices are also multiplying. Besides the usua};\

!
5t
A"'

A

devices already mentioned (light pen,L etc.), work is proceeding ort

touch-sensitive membranes (LEK 114 CRT), and current-sensing

(G. 4). All this should cause the system programmer to

panels
seriously think about future developments before committing himself
to a software program. Any operating system must be flexible enough
to support many of these devices, and, hopefully, some not yet

a
developed.

1.4 Development of Interactive Graphics at McGill

Interest in interactive computer graphics began at McGill
in the fall of 1968 when it was decided to develop a graphics facility
within the Department of Electrical Engineering. At that time the
Departrﬁent possessed a PDP-8 interfaced to an FDP-16 Data Disc
and an |[BM 360/75. A survey of commercially available systems
(IBM, ADAGE, DEC) showed units with interactive graphics.

capabilities to be prohibitively expensive, despite the fact that they

were supported by varying amounts of software. In an attempt to

*

reduce the costs of computer graphics it was decided to tailor a
system to complement the existing facilities. A special purpose
disc-refreshed unit was designed, constructed and debugged within «

(F. 1)

the department and placed in service by the spring of 1971,

During the course of this project a PDP-15 was acquired and
interfaced to the PDP-8. The initial applications programs for the

(T.1, N. 4) were written in FORTRAN on'the PDP-15,

graphic system
with only a primitive set of handlers residing in the PDP-8. This
proved unacceptable, and exi‘\gtihg graphics systems were re-examined
for ideas on improved softwa;é support

Late in 1971 Bell Telephone Labs released a copy of their

Bellgraph Operating System (€.

, supporting the GRINZ language,

to McGill. In 1972 work was begun to modify the system to function N
on the McGragh facilities, Finally, in early 1974 the first application
program in GRINZ was written at McGill, and run under the guidance

of the McGraph operating system.:

H

-10 -

”»

CHAPTER II INTRODUCTION TO GRIN2

2.1 The Graphic Data Structure

Display units, and associated graphical devices, are found

“:to differ drastically at the hardware level from manufacturer to

I
-

3

manufacturer, andto use different command formats to generate
pictures. Accordingly, when one operating system must support

several different types of display units, it is usually found necessary

to represent graphical information in a device independent form. »

Immediately before the information is to be transmitted to a specific
device, a set of programs is invoked to translate the data from
standard form into the command set used by the device. The standard
method of describing graphical information in the McGraph system

is known as the Graphic Data Structure. This structure is as |,
(C.1, MAN-1)

]

described by Christensen in his outline of the GHIN2

language, and will be reviewed here for the sake of completeness.

The graphic data structure consists of the four types of blocks
shown in Fig. 2-1: node blocks, branch blocks, leaf blocks and
nondisplay data blocks. Each of these blocks consists of a contiguous
set of memory locations with a distinctive header)word. Node and

branch blocks are of fixed length; the others are of indefinite length.

In McGraph, a picture can be represented by a directed graph
with no closed loops. In this formalism each node represents a

particular sub-picture, and each branch represents a specific instance

instructions.

of the node it points at. Some terminal nodes, called leaVes, have’
special significance; only these blocks can contain displa

Nodes and branches, on the other hand, serve to impart structure to

\ \

g

Graphic Dat a Structure Blocks

LEAF

00001/ BODY LENGTH
N:1

DATA BLOCK
POINTER

BODY

-

(SCOPE CODES)

~ \

77177717,

o=

NODt

NODE FORMAY

00010 PR

DATA BLOCK
POINTER

NEXT BRANCH RING
PTR

BRANCH

[\

BRANCH FORMAT

ooomn PIR

DATA BLOCK PTR

. NEXT BRANCH RING
PTR

-

AX

DY

PARAMETERS

DOWN BLOCK PRIR

SYSTEM DATA BLOC K
PTR _

DATA

Blecx LENGTH
00100 {n+1)

BODY
(DATA)

1"

A Bown el s

b
Fig.2.2
00000 I Total Block [ength
— T \T— T =T T |
BODY
N -
—_— _ N
Descriptor . Bits
N+8
9
. L;-\“—) +
00 RELOCATABLE
01 BLOCK PIR :
10 ABSOLUTE
11 2" \yoro,Tw0 WORD ADDR
%
t

~—

.12

N

-13 -

the display.

An arbitrary number of branches can enter a node and an
arbitrary number leave it. Rather than require the node block to
contain pointers to each of the branches, a ring structure is used.
The pode block contains a pointer to the first of the '"out-branches',
which points to the next, and so on down the line. Each branch is
ajZgociated with two nodes, and so must have two rings passing
throigh it. One riﬁg is specified as above. Another word in the

ranch block points to the node heading the ''out-branch'' ring.

Leaves contain the information defining the visible portion of
a picture. When a leaf block is initially generated it has zero body
length, and data is "'grown'' into it at execution time. Text and
line-drawing information can be stored (in device -dependent form) in

a leaf block.

Non-display data blocks allow the programmer to associate
non-display information with the data structure. These blocks are
defined and allocated under program control and may be of an arbitrary
size. The blocks maybe attached to nodes, leaves or branches in the

display, as can be seen from Fig. 2-1

Consider the picture shown in Fig. 2-3 (a). A group of lines
can represent a resistor only if the user grants it that interpretation.ﬂ
To an electrical e;lgineex:, there are clearly three graphic elements
(leaves) in the picture: the capacitor, resistor and short circuit'
symbols. Upon reflection it can bfa seen that Fig. 2-3 (b) and
Fig. 2-3 (c) represent two equally valid structures for the picture.
Undoubtedly, in a circuit analysis application non-display data blocks
would be associated with the structure, denoting element types and
values. Indeed, the structure chosen:{he representation of the circuit

may well depend upon the method of analysis being applied.

14

\\ o
\ I. 2.3 .
A Slﬁk\E CIRCUIT - WITH TWO POSSIBLE

: \\\GRAPH IC STRUCTURES

,/ ‘\\
Vel ‘* h A
NS
/ N
f L - 1
| T T
. /
\ ~
rd (&) !
Se— w—"

. (c)

- 0

LEGEND: nodes branches leaves

T

B

»r

2.2 The GRINZ Language : }/ @

The GRINZ (Graphics Interaction) language is a high-level
general-purpose graphical programming language which permits
the generation and manipulation of the graphical data structure, and
provides statements for controlling real-time man-machine

(C.1) A

interaction GRINZ statements can be classified into five

main categories:

(1) Real-time man-machine interaction
(2) Structure generation
(3) Display data generation
(4) Structure editiné

(5)‘ Display control

The GRINZ language provides statements which query the
oper;tor seated at the interactive console. The operator can answer
through keyboard or lightpen action, causing control to be passed to
other statements, which might use his action to define the course of
future processing. One of these fundamental questions provided in
GRINZ is posed by the WHICH statement, which gives the operator
the privilege of choosing one of the objects on the screen with the
light pen. The resulting action dfpends upon which ob_]eﬁt is chosen,

but in general a selective transfer of control is involved.

Another basic real-time question is posed by the WHERE
statement. A tracking cross appears on the screen and may be
positioned using a light pen. When the centre of the cross is correctly
positioned, the operator can generate a distinctive interrupt to signal

his satisfaction, and processing continues.

v =16 -

- L}

A

AY
! » . 9 (’ N .
A characteristic of the GRIRZ real-time statements is that

s N .
they force the applicatjon programmer to obey Wasserman's First
(W.1)

N

for "'idiot-proofing' interactive programs. A

4

Princi'f;le
definite, antiéipatable response results fb\r every conceivable user
inpit, simply because the application prog}g.rnmer mugt, under
GRIN2 synéa;x, specify what action to take foi\\any input. Typing a
message when a light-pen hit is anticipated wii‘l\not, then, bomb the

=

system. o
\

A graphic data structure can be built using \t\he three commands
LEAF, BRANCH and NODE, as described in the Beli\graph Programmer's
Manual. \‘\

\,

Display data in leaves are the scope commands w\hich
produce thg picture. Statements such as TEXT, VECTOR\\?.nd PARAM
store a series of scope codes in the last leaf specified. Str\}\ﬁture
editting is possible thrdugh such statement as DETACH which detaches
R

branches from the structure, or ATTACH which can attach new\\

branches to it.

The structure to be displayed is attached to a privileged node ~ |
the display node-through the DSPNOD command. Branches can be
added to the display node without disturbing the existing structure
by using the ADDDSP statement, or removed by using the SUBDSP \
statemé‘nft:” An entirely different node becomes the display node ‘ ‘
when the‘NEWDSP command is used. All branches ﬁre;r‘i_gusly \ N

3

attached to the display node are detached. ”

BRYA

4 «17 -

2.3 Subroutine Blocks ‘

7

-

Ong other sort of block aisa appears in the McGraph systern:
the subroutine block, shown in Fig. 2:2. Subroutine blocks contain
the PDP-15 object code derived from the assémbly of GRIN2 |
program blocks, and consist of three parts: a header word, the
body, and a descriptor section. The header word declares the
number of octal words in the block. The body containg the object
code proper. And the descriptor sef:tion provides relocation
information about each word in the block. That is, because a
subroutine block must'occasionally be relocated in core, eaqh word
must be tagged“ as being a¥solute, relocatable, a@ck—pointer, or
part of a two-word address. (These notions will be fully explained

in Chapter 6). JVhen a block is moved, then, all code within it,

and all references to it, may 'be updated, if necessary.

W g -

?

-18 -

2.4

r

» “
i 4
.

Consider the following trivial problem. A user wishes to
display a triangle and a square on the screen, then have the privilege
of using the light pen to select one of them. The chosen one must
disappear while the other remains visible. Subsequently, selecting
the visible object with the light pen must cause it to \disappear and

the invisible one to reappear.

oTh_ig} problem can be represented graphically as in Fig. 2-4.
Three d’iSpI:’:\y trees are~defi)lned, .corlresponding to the three desired
wdisplays. As kshown\in Fig. 2.4 (a), the node DNODI is the root of
’the tree which consists of branches to the leaf which defines the
triangle and the leaf which defines the square. Similarly DNOD2
and Dlt:IOD3 are.the roots of the other two trees. If DNODI were

atta.&k:ed to the display node, the triangle and square would be visible,

and so on. o 4

A GRINZ2 program solving this user's problem appears in
Fig. 2.5. The éraphic data structure is first 'dt%filned (by the
sequence of NODE, BRANCH and LEAF statementé‘j and the display
da}a generated (by VECTOR and INVECT sta%ements). The node
DNOﬁl is then attached to the display node, and the display turned
on and the light pen enablzd by the WHICH statement. Each branch
tc>~ the square and triangle in the graphic data structure is defined as ™

a light button. That is, selecting either leaf causes a logical transfer

(3}

to take place. The display node is -appropriatedy redefined, a new

picture generated and the light- pen re-enabled.

Pictures of this process are shown in Chapter 6, where this

program will be studied in far greater detail, ¢

A Short GRIN2 Pregram ‘ bl

ia

» FIG.2.4

. 3 ’
» ’ o

A SIMPLE GRINZ PROGRAM.

DNOD 2 DNOD1 DNOD3

* o}
(a) Graphic Data Structure

Define Square

Y

. | Define Trig |

o N
1 Define Display

"

Trees

T cavear e RE e e . ——————

<@ V
= E_
Dspnod=DNOD1

Y
A

<
R

Tri

’

Yy

‘—————{DspnodiDNOD3|°
. Y . .

(b) Flowchart

20

| Fig.2.5
Simple GRIN2 Program i
STM™T SCULRCE STATEMENT
! ICTL Jde 19,16 >
p PRINT = ACGEN
2. 6210 5C 1 -
176 LEAF TRIG
1°9¢ % ceceenry
lpq CLpr ((\AyC’o(‘hyW)y‘Ov"k’)
15¢C : * % . cceeces
206 LEAF. SULARE "
21C oy cecor? ‘
21w CLRVE CEWeC)a lCyn) 3 l=hyC) (0 y=-W))
215 %y ‘ CeCcc?
242 IRFF DACT?2 35 (5 (200,4C0) y TRIC, 4 SFIX)9y (RCC ARCY, SOLART, ,TF12)"
244 %y % cCceeoe
257 Ak ccee?
2¢¢ % o % CCCCo4n .
2ac NCOE AT o>
271 %y w ' ccccea .
2n6 NCNE CNCE? . N
7q<\\ * g ’ CCCCHO
298 N RRANCH RRCHL,CANCCLy(2CC4CC)Y,TRIC,,,SFIX
29 % CCCCexq -
3¢ BRANCH RRCHEC G CANCC3,(PO0,4CC)SAULAPE,, TFIX
3117 * g% cccers
134 LSPNCC ONCP? ®
134 %y % CCC1CE
242 LCOP WHICH o P1
14 ¢ *y® ccct1s
25| corc LOCP
252 . L ’ CCC122 .
254 SFIX NEWESP (RRCKHC)
156 L ccc12n ,
365 GCYC LCcce ’ .
16 ¢ . kX cCC133 ‘
368 TFLIX NEWDSP (RRCHL)
37¢ n, ok CCC174
276 GNTIC LCrP
_IC *, % €CCl44a
IR? W EQU &2 i
ip2 CEND ’ . ' 4
187 END N .
—————
.

i
H

-21-

CHAPTER 3 McGRAPH FACILITIES

It will prove useful at this point to review the Bellgraph and
McGraph facilities, and see how the differences between then}m
affected the development of the McGraph operating system.

The McGraph facility, previously described by Malowany (M. 1),

is shown in Fig. 3.1. As can be seen, the heart of the-system is a
PbP-lS/ZO with 24K words of core, a tape drive and two disks.

While the bulk of the system code resides on this machine, all graphic
peripherals are intcerfaced to the neighbouring PDP-8. The two
computers are in turn interfaced by means of a high-speed data.
buffer, generally called "the link'. Only a minimal set of handlegs

for the peripherals reside on the PDP-8.

The Bellgraph facility described by Christensen is shown in
Fig. 3.2. It consists of a large central computer with many graphic
peripherals, including several GRAPHICZ terminals (c. l). These
terminals (Fig. 3. 3) are actually intelligent satellites with
‘extensive interactive graphic capabilities, not unlike the McGraph
facility. Indeed, it is that section of the Bellgraph operating system
which resides in these terminals that McGill fell heir to, and which
has been developed into the McGraph operating system. It might
be noted that PDP-9 object code is actually a sxﬁas‘et of PDP-15 object
code, so much of the Bellgraph system would run without modification.
Thankfully as well, standard DEC peripherals were used extensively in
both systems (paper tape reader/punch, console keyboard, DEC-DISK,
etc.). Inshort, there was a strong enough resemblance between
the systems to make it seem worthwhile to adopt the Bellgraph system

wholesale, and save on development work.

ZHE MCCRAPH FACILITY

3 , g

2 RFIS
"DISKS

HSR / HSP

(T-19 PDP15/20 :7 '

TEK |[Music
4002 f{LINK
” DATA
BUF FER
(LINK)

[vors ——f
ATA
DisC
OIGITAL
D/A INY
GG '
bEN oPU
FIG. 3.1

Fig.3.2
& ‘TCALCOMP
565
PLOTTER
Bellgraph Facility,Holmdel, 1970 |
GRAPHIC-2 |

(o)
—.EJ
%\
O ~
—

/@/ﬁwm |
20

804060 Microfitm

Central Recorder
s Computer - [— S —
. - e~ Catcomp 718
Y IBM 360750 - Magnetu ,,__,__—-{‘ Plotter J 7
Tape T
Calcompr28
. | Plotter

FIG3.3

Graphic-2 QOrganization

I High-speed High)
\ - Paper-tape speed !
Card Reader | Reade neh f
(Optionat) y
! |
! Y PDP9 | !
-] Keyboard [/~ n Central
i

Computer

Disk ordrum Alghanumeric

Auxihary Keyboard and
Storage Pushtuttons
(optional) - Display

- Umt

-2 4 -

L

The rn.a.ny and fundamental differences between the syétem;
precluded all p(/)ssibility of a quick and easy implementation,
however. Some differences were easily overcome, once recognized;
others proved to be recurring nightmares. For instance, neither
Automatic Priority Inte.rrupt nor a real-time clock exist on the
PDP-15 at McGill, while th'ey are standard features on the GRAPHICZ2
units. Upon investigation, it was found that the real-time clock was
no longer necessary with the current refresh philosophy, while
API could by easily circumvented through the use of a skip chain-
of course, with an attendant lo#s of speed in interrupt servicing.
Further, when the system was first loaded a subtle difference 1n
addressing schemes was noted. In standard indi reét-addressing a

. MAN-5
sixteen-bit address is developed and r\eferenced (N). In

(MAN-1) is available

addition to this, internal indiréct addressing
on the GRAPHICZ unit but notjon the PDP-15 at M cGill. In this
scheme, a thirteen-bit addr;ass, capable of referencing words

within the current bank, is developed. This method was, unfortunately,
used extensively in Bellgraph since it is somewhat faster than

ordinary indirect addressing, and since the GRAPHICZ units had

only 8K of core. Once recognized, this problem was solved by an

(M. 4)

appropriate software patch

More seriously, the display units in the two systems are
very different. Not only do they have different control and scope
codes, but the GRAPI}ICZ unit is refreshed through the use of a
DMA channel, while the McGraph unit is disc-refreshed. This has
far-reaching consequences. The point may be made that any general
operating system must be able to support new devices with a minimum
of pain. Bellgraph is a general purpose operating system; that part

of it which resides in the GRAPHIC2 units is manifestly not. It was

-25 -

designed with a given, high-performance piece of hardware in mind,
and optimized accordingly. It was not meant to be transplanted and

to a degree refused to be.

Many functions associated with GRAPHICZ2 hardware are
performed very differently by McGraph hardware and software.
Files cannot'be blinked in McGraph, for instance. Clipping and
windowing must be performed by software rgther than hardware.
Physical pushbuttons are simply unavailable, and there is no
keyboard directly associated with the McGraph display unit. Finally,
a"nd possibly most irhportant, upon a light-pen interrupt the
information available from the McGraph unit is entirely different
from that available from the GRAPHICZ2 unit. The GRAPHICZ returns
the beam co-ordinates at interrupt time; the McGraph unit returns
a filename 1D, associated wi\th a block of data written on the DATA
DISC.

The gravest problems can be traced to differences in
hardware organization, which forced changes in software philosophy.
The GRAPHICZ terminal is entirely interrupt-driven. In McGraph,
on the other hand, all graphic peripherals are ix:xterfaced to the
PDP-8 rather than the PDP-15. This, coupled with the difficulties
p;'eviously mentioned, forced a complete restructuring of the

real-time philosophy. This will be pursued in more detajl in

Chapter 4.

SECTION B THE McGRAPH OPERATING SYSTEM

CHAPTER 4 THE McGRAPH EXECUTIVE PROGRAM

The McGraph operating system has been developed from
the Bellgraph operating system, and so poLsesses the same
basic str‘ucture. , Of course the demands of a new environment
had to be met, but this required more of a change in system
content than of philosophy. The structure of the McGraph
operating system is shown in Fig. 4-1. The executive
program can be considered to begomposed of a set of core-resident
routines, and certain members of a disk-resident library.
Associated packages include a library editor, the GRINZ language
assembly system, and a set of on-line debug routines. The’
executive program will be considered in this chapter, and the

associated packages in Chapter 7.

The executive program may be broken down as shown in
Fig. 4-2. In this division the real-time subsystem handles all
I/0 activity; the memory-management subsystem controls
picture generation; and the device translation subsystem
gene}'ates devicﬁe-dependent code from GRINZ object code.

Each of these systems will be described in turn.

e MCGraph Operating System

-

MCGraph

e

Executive
Program

Caore-resident
Routines

s = v e am ——e oy

Associated
Processes

27

Library Y[crn
Editor Assembler

Diskresident
Library

Debug

' Packages

< FIG.4.1

e v+

Y

28

L o FIG4.2 -

The MCGraph Executive

EXECUTIVE
PROGRAMS -
REAL TIME , POPS
INTERACTION SLAVE
SYSTEM
MEMORY ~ DEVICE
MAN@:T . TRANSLA‘-
TION
DISPLAY
MANAGE —

MENT

*

I

4. 1 The Real-Time Subsystem /

The heart gfflggy,mﬁ/\;;i’)rogra:n is a set of I/0

,iaeerrﬁ”ﬁfuﬁa‘;dlers. Because McGraph is a graphics-oriented

operating system, service routines must exist not only for

the standard devices but also for the graphics peripherals:
notably the light-pen, joystick and display unit. The true extent
of the differende between the McGraph facility and the GRAPHIC-2
can only be appreciated after having examined the changes made

within the real-time subsystem.

Some changes were relatively straight-forward. The
API facility, for instance, would have been aesthetically
pleasing, and might have simplified some of the prograrmming.
It was not essential. It was also discovered that the real-time
clock had been used only to test for central computer time-outs,

0
and to signal the start of a new display trace. Since neither

of these operations were meaningful in McGraph, the real-time

clock could be safely deleted.

/

Bellgraph was an interrupt-driven system. All operator
interactions, light-pen hits, keyboard strikes, etc. — were
detected by means of interrupts, as were alarm conditions such
as display edge violation and the end of a leaf. Upon an interrupt,
control-‘w\as handed to the subroutine associated with the interrupt.

T/h/is,association was changeable from outside the handler,

,//allowing programs to specify the reaction to any input.

The McGraph architecture forced a re-evaluation of this

philosophy. First, the hardware does not trap edge violations or

ends of leaves. If it is considered that these are still worth flagging

down, this must be accomplished through software. As such,
these operations can no longer be considered to be part of the

real-time sub-system, but of the display management system.

Second, all graphics peripherals are currently)interfaced
to the PDP-8 rather than the PDP-15. There can, then, only
be one common interrupt from all the graphical devices.. This

turned out to have far-reaching consequences. pR

At the beginning of the project it was decided that it was
more important to get some systermn working than it was to
design an efficient one. Efficiency could always be improved at
a later date. Accordingly it was decided that the best approach
would be the one which required the fewest changes to the
Bellgraph coding. A package was developed which simulated
the operation of the GRAPHIC-2 unit. Each IOT issued was
simulated by this package, and each scEJpe command was translated

into appropriate McGraph coding.

After a short period of time it was found that, using
this approach, it was impractic#’'to run McGraph in an interrupt-
driven form. Foxn'tunately, it was later seen to be
unnecessary. Upon close scrutiny of the listings it was seen that
all graphical I/O transfers could occur at one place within the
program, with no loss in generality. After one full display pass
a light-pen hit or teletype interrupt must occur before pi'ocessing
can resume. One does not really have to wait for an interrupt.
Rather, the teletype and PDP-8 link flags can be c)continuously
scanned. This is the approach which was ultimately implemented

and shown to work,

o

‘ 31+ \

4.2 Device Translation Subsystem

The Bellgraph device translation subsysteﬂ was mostly

These generated GRAPHICZ2 code on-line and placed it in the
léaves as they were grown. It was these rou\ines which
converted the device-independent GRINZ picture description
subroutines one conld theoretically generalize Bellgraph to ;

run with an)\f display unit,

\
-

is was not clear until the l'proje ct was well under way;

any case, it s decided (M. 4) that the best approach for a
preliminary sys would be not to modify these subroutines,

but rather to re-interpret the content of the leaves {and system
messages) as they were sent to the display unit. The subprogram

which translates GRAPHIC2 scope code into McGraph code is

f\;n as G2TRAN (Fig. 4.4). The extent of the inefficiency

- inherent ii. this aﬂppkroach was not really appreciated until the
system was run. But the approach remains valid, in that it
definitely reduced debug time. ':"When using routines which had
been run successfully on a GRAisHICZ unit, one knew that any
peculiarities {n the displays had to be due to the operation of the
McGraph system. This greatly simplified the system debug
procedures. Now that McGraph has, essentially been debugged
G2TRAN is expendable. A method of eliminating it will be |
presented in Chapter 8.

o)

‘;1"‘"‘1
-
|

- a

4.3 Memory Mahagement 0

i

Although McGraph is constrained to run in 8K of core on

the PDP-15, the memory management programs give it a very

“

large virtual memory, using an RF15 disk as segond{ary storage.

To make this possible the user's program and data are broken

into blocks of various sizes. Each subroutine block is given a
unique 17-bit ID before it is loaded into core, and all inteﬂr‘t;lo clg
communoication is in terms of these IN's and an offset within. a

block. To facilitate interblock addressing, a Bl:ock Table is
developed in core (Fig. 4-4). Each block loaded into core requires -

iy
3
another two-word entry in the block table: the block ID and ?f
R

starting address. Now, of course, a correspondence between

N

block ID and core position is established. When a block is relocated ™’
]
in core, only the core address in it's block table entry need be
¢

updated. If a referenced ID is not the block table, the block is

not in core, and must be loaded from disk or paper tape. When
. I

a block is deleted from core its éntry in the-block table is purged.
The hole created by removing a blgck is added to the free space
|

(Fig. 4-4) by relocat:Img all blocks §above it. There are never ;ny

|\
v
i

o
Very fortunately, the mem(%»ry management section of

gaps between blocks.

Bellgraph was easily adaptable to ﬁhe McGraph environment. In
fact, the difference of any importa:hce is that there is no link

to a host confputer in'the McGraphilsystem. After carefully' ,
deleting all references to dual-prot¢essing and making the disk
haundler perma.'rtxently core-residenti the Bellgraph memory

management system ran perfectly ih its new environment.

~ e
Pt N

~

o
- Disk Map Fig4.3
' LIBRARY G2SYS
, DIRECTORY - G2SYS
600000
400000
* LIBRARY G2LIBF
DIRECTORY, G2LIBE
100000 ===
G2SYS
o L}
.
BANK2
DEBUG
40000 ==
BANK1 CHAR GEN
TRANSLATOR
SIMULATOR
200 00 f=mmm
17000 DISK HANDLER
' BANKO <« g
4200 G2SYS ,
0
-

33

.34.

A core map for the McGraph system is shown in
Fig. 4. 4. Note, the disk handler appears at the top of the lowest
8K memory bank. In Bellgraph it was continually swapped
with the character-generator table, but the construction of
G2TRAN obviates this action. The disk handler could, ‘

then become core-resident,

A disk map is shown in Fig. 4. 3. Basically, two storage
regions are defined by addresses within the control of the system
programmer: the scratch region and the program library. First,
the scratch area contains program blocks which are loaded from
an external source during a run by G2SYS; and second, the
dynamically-created blocks in the graphic data structure which
had to be removed from core. The program library contains’
the GRIN language statement subroutines, some utility programs,
and a few application routines. This section may be updated
by the utility program GZ2LIBE, of which more will be said in
Chapter 7. Note that the program library can be write-

protected during a run.

. 1-35-

4. 4 Display Management

The semi-interpretive display program of Bellgraph has
been maintained, with several notable changes. First the display-
trap functions?previously part of the real-time subsystem, must
now be considered to be part of the display management subsystem.
Since such conditions as edge violations and ends of leaves can
no longer cause an interrupt on the PDR-15, these events must
be recognized and dealt with by the simulator package as they
arise. Accordingly, the position of each vector or pdint must
now be calculated before the scope command is sent to the
display unit to prevent edge violations.

}

.

The remainder of the display management system is the
same, with one exception. Only one display pass is made ta
refresh the display unit. And the command which had been used
to start the DMA d;ta transfer was interpretted as éhe command

. to start the translator and send the output to the PDP-8. This

systern is found to be quite adequate.

4.5 PDP-8 Slave Program

The slave system on the PDP-8 was written axd

maintained by Juhan L.eemet. Since it has been change

(M. 4)

drastically since last reported on s @ sho&t descriptiyn

quite

of it will be givenj here. The present monitor is capable
of performing the following tasks, on demand from the

PDP-15: !

1. Receive graphics instructions, buffer them and
write the buffer onto the DATA DISC when the buffer overflows,

a
)

or upon receipt of an end-of-leaf flag.

2. Accept light pen hits and output the light pen flag

and the current filename ID.
3. Display and manage the tracking cross.

No longer can files be blinked; it has been decided that
this is not an appropriate method of drawing attention to a file
in the current implementation. Similarly, it was decided
that it was a waste of effort to simulate the GRAPHICZ console
keyboard; the PDP-15 keyboard is sufficient for the operation
of the‘ system. Simulation of the back-lighted pushbuttons was
also abandoned for the same reason; they added no unique

capabilities to the McGraph system.

The result of all these changes was -a smoother-running,
more efficient system. By eliminating side-issues, the real-
time system response was greatly improved. The greatest

change of all, however, was that the PDP-8 was made to scan the

¢

-37-

digital interface and link flags continuously, rather than checkihg
the link at track origin and the interface the rest of the time.
Response time for a light-pen hit is slightly increased, but
transmission time for graphic files is greatly decreased.

The net result of all these changes is a slave system which
permits graphic interactions to proceed almost an order of

magnitude more rapidly than previously.

-38 -

CHAPTER 5 SUBROUTINE BLOCKS

5.1 McGraph Object Code

As was mentioned in Section 2. 3, subroutine blocks contain
McGraph object code for the program blocks. It can be seen from
Fig. 5.1 that'the header word always contains the block leng;h. The
body of the block, following the header, contains the object code,
while the final section contains descriptor bits reporting the nature
of each command in the body. Words can be designated as being
absolute, relocatable, a block-pointer, or the second word of a
two-word external reference. Two bits must be reserved in the
descriptor section, then, for each word in the body of the block
(Fig. 5.1). When a GRINZ program is post-processed part of the
printed output consists of an octal dump of the subroutine block
just generated. To increa : legibility, however, the descriptor
section is replaced by letters following each word in the body of the

subroutine, designating the word type. That is:

B = block pointer
R = relocatable; an address relative to the beginning of the
block

C = second word of a two-word external reference

N\~

To a point, of course, McGraph object code can be simply

If no letter follows the word, it is assumed to be absolute,

be considered to be PDP-15 object code. An appreciation of the
.executive program is, however, necessary in order to understand

a GRINZ program-sdump. A short table of PDP-15 instructions is

L\ X

-39 -

shown in Fig. 5-2. In McGraph, the direct CAL instruction is
interpretted as denoting a trap to the error handler, while an indirect
CAL instruction denotes an external reference (i.e. a reference to

information contained in some other subroutine block).

Fig. 5.3 (a) shows a reference to a GRIN2 library subroutine
whose ID is 165. The entry point is to relative address one within
the subroutine block. Fig. 5.3 (b) shows a reference to the same

subroutine, but with an entry to relative addres’s four.

A recurring structure which may be observed in most
GRINZ dumps consists of a call to an external subroutine, fo‘llowed
by an argument list (Fig. 5.3 (c)). Arguments are expressed in
terms of JMP instructions (’6XXXXX), and take the form of pointers
to information. This example shows a call to the GRINZ library
subroutine with ID106 (BRANCH), followed by seven arguments.
These are, in order: (1) a branch pointer, (2) a pointer to the
node the branch originates at, (3) a pointer to a two-word vector
giving branch displacement, (4) a pointer to the node the branch
ends at, (5) a pointer to a data block, if it exists, (6) a system
pointer if the branch is a '"light button', and (7) a pointer to a
parameter word. Com'pare this, for structure, with the branch

block of Fig. 2.1,

This is the general form into which GRINZ stdtements are

expanded. .

Fig5.1

00000

Total Block Length

BODY

Descriptor Bits

‘00 RELOCATABLE
01 BLOCK PTR

10 ABSOLUTE

1M WORD , TWO WORD ADDR

N

e

MNEM

CAL

DAC

IMS

DZM

LAC

XOR

ADD

TAD

XCT

ISZ

AND

SAD

JUMP

EAE CLASS
I0T'S

OP. CLASS

-41 -

FIGURE 5.2

THE PDP-15 INSTRUCTION SET

CODE

00
04
10
14
20
24
30
34
40
44
50
54
60
64
0
74

OPERATION

Subr, Jump to Absolute 20

. Deposit AC in Memory
Jump to Subroutine
Deposit Zero in Memory
Load Accumulator From Memory
Exclusive -OR
One's Complement Addition
Two's Complt_amex:xt égldition
Execute Liocation
Inc’rement & Skip if Zero
Logical-And
Skip if Accumulator = Memory
Jump, Unconditional

Extended Arithmetic Element Op's

If Bit 5is set, indirect addressing is requested.

LY

030001
000165 C
(a) External Ref. :

030004
000165 C

(b) External Ref. :

)

-42 -

"FIGURE 5, 3

-

McGRAPH OBJECT CODE -

RA = |
RA = 4
4,

-

030001
000106
600200
600174
600177
" 600155
600024
600134
600024

(c) Subroutine Call

With Argument List

C

R

-43.

\

5.2 GRINZ Language Statement Implementation

GRINZ language statements are implemented in the uniform
fashion suggested in the previous section. First, the assembler
resident on the IBM 360 is invoked to translate each statement into
the form of Fig. 5. 4. Registers (AC, MQ) may be set to transfer
some limited information, such as the number of vectors to be
generatéd in one call to VECTOR. Next, a call to the (external)
language subroutine is issued. These subroutines are generally
part of the disk-resident library which is maintained by the utility
G2LIBE, and which must be loaded prior to each terminal session.
Following the external reference is a list of arguments, pointing
to information required by the language statement subroutine
(Fig. 5.3 (c)). All these stages exist in every language-staiement

¥

implementation,

-~

Needless to say, the language-statement subroutine called
does the real work of implementing the GRINZ statement. The
GRINZ object code, on the other hand, can be seen to be graphic-
device independent. Theoretically, all device dependency due to
language considerations should be introduced at the language
subroutine level. This considerably simplifies the task of

modifying the software to meet changing hardware requirements.

;;
fe

Fig54

Subroutine gall

CLA!ICLL
CMA

0300071
000165

O X XXX X
b X XX XX

T

44

Set
Registers

EXT ERNAL
REFERENCE

I
PASS
ARGUMENTS

-« 45 -

L'l

"CHAPTER 6 A SIMPLE PROGRAM

In this chapter the simple GRIN2 program written in
Chapter 2 will be used to illustrate the functioning of the M cGraph
6perating system. The object code will be analyzed, and one will

see how graphic data structure blocks are built and manipulated.

6.1 The Object Code

If the program written in Chapter 2 (Fig.‘ 6.1) is submitted
to the GRINZ assembly system (Chapter 7), part of the printed
output consists of an actal dump of the spbroutine block produced.
This is shown in Fig. 6.2. According to the format of subroutine
blocks (Fig. 2.2), the first word of thetr;biock should containe the
word count for the block, including inst;uction and relocation
words. In the example there are 222 (octal) words, of which the
203 (octal) instruction words are explicitely dumped. As explained
in Chapter 5, the relocation words are translate-d into alphabetic
suffixes to the appropriate instruction words. In Fig. 6.2, the
eight right-most columns give the contents of eight ‘adjacent
memory locations in the subroutine block, with the starting address
given by the five -digit octal aﬁ:la;ess in the second column from the
left‘:\ That is, the contents of location 70 (octal) of the subroutine

block is 600176.

Examine Fig. 6.1 and Fig. 6.2 more carefully, recalling
that all GRIN2 language statemerits are implemented by calls to
library subroutines, in the format shown in Fig. 5.3 (c).;,: A collectjon
of library su“brou;:ine ID numbers and entry points is shown in Fig;;vj;‘,“

6.3. Now, one can identify words one to four of the dump as a call -

L4

-

‘ -46 -

®

o .
to the GRINZ library subroutine with IDIO], followed by two

-

arguments, From Fig. 6.3, one can see that this is the LEAF
"library subroutine. Comparing this to the source listing of the
° program (Big. 6.1), it may be seen that the first executable

instruction was the LEAF declaration; this is very comfdrting‘.

Continuing in the same vein, consider the next exe\cutable .
| instruction in the prografn. The CURVE statement can be

used to define a figure consisting of a number of successive head-
to-tail visible vectors -in this case the triangle. The statement
\1\3 implemented by calling the library subroutine VECTOR, and
i;forming it of what sort of vectors must be drawn. Examiriiing
words five to eleven of the dump, one sees that the two's cor[nplement
of the number of vectors required is loaded into the accumulator,
then VECTOR, IDI03, is called. Entry is through r;alatxve address 1,
the entry point for visible vectors [Fi%. 6.2). The three arguments
following the call define the vectors tou be ’drawn. Fo; instance,
the first pointer is to location 147 relative, the start'of a two-word’
vector cortaining the x- and y-deflections of the first vettor to
be drawn. Since 147 containg 62 (decimal) and 15@ contains ¢, the
first vector is ?o be drawn for 62 ufxits in aohorizontal direction.

This is, of course, exactly what was specified in the source listing)

(Fig. 6.1).

Subsequent LEAF and CURVE statements defining the square
are treated in an identical manner. NODE and BRANCH statements
are tranflated into calls to the NODE and BRANCH libra}y
subroyfines (ID 105 and 106, respectively), while the TREE s.tatement ?
(Figs 6.1) is resolved into a call to the NODE subroutine (ID 105)
. and two calls to the BRANCH library subroutine (Ihf)). In this
' : manner, all the GRIN2 statements are expamded into- executable McGraph

o . object code.

Fad
s‘ ")
o,
“ .
- /
‘ - \ a7
- i
o Fig.6.l
Simple GRIN2 Program . \
4
STMT SCLRCE, STATFVINT . .
t'u ‘z
| [crL 1,79, 1¢ - °
; PRINT ACGER
2 G210 scp \
74 LFAF TRIG .
19¢ g% _ ceeeny
1RS cLRVl ((k,C)v(‘k|W)"v(Oy"‘h))
15¢C gk \ ceceeces -
206 LEAF SLUARES k
21c 5oy cecenn
21~ CCURVE (S WaCh il Cym) yl=heC)y (Cy=w))
216 L R cece
247 TRFF OACE2 43 (4 (200,4C0) 3 TRIC, ySFIX)y {y (BCC AT) SCLART ,, TF]
244 "y % ‘ cceeoe .
257 "y ¥ LI ccce? .
2¢¢ oy oo : ceecen
2ar NCDE CACEL .
281 -’ % S o oY o oA
206 NGDE CNCE? _
29¢ kg CCCCeC ‘
29¢ BRANCH RRCHU ZCNCT L, (26C 44CC) , TREC, , SFIX
295 oy cceceas
3¢ BRANCH ﬂRCHCuCA(CB.(ﬁOO,hCO).SCLAﬂF.rIFff ‘
17 % ceeers - .y
114 | LSPNCC pNCP2 . R)
115 “ * 8 ceccuce
142 LCOP WHIGCH ,.P1 s
24¢ %y ' ccerls
151 corc Leee .
L, , oy K , CCC122
194 SEIX NEWPSP (RRCKHC)
156 g% ccc12?
16 GCTC Leee
16 ¢ * €cc133
168 TFIX NEWCSP (BRCHL) |
17¢ g% ’ CCC14
176 GOTE Lcop , N
I8 wew CCCl44 ,
387 W . EQu &2
2R3 CEND ' ’

187 END

FIG.6.2

X
STANU =ALUNE ASCENMDLY FOLLEOWS

L

ALMPFR FCR THIS

!

CUMP CF THE GR

<

THF

1

IS 7Ce-6

jrn

Ic

IvMALY)

[4
-

{oF

111

INSTRUCTION w2920 R0 ALC

NUMPER CF

(CECTVALY)

16

tALS

1y
v

F

NUFPER (F

HFL@(”T!FA W RS

CCCCH
ceetce
ceeoc
cceac
CCC&T
CCC=C
CCCER
cccic
ccicc
coite
ccrzc
cci12C
cN140
Col1=C
CCleC
Col1iv
ccace

0
ool=n
r’\: :m?ﬂ
Tt
~{ T 1R
EC2t24
577318582
cit~ 21
ECO1EA?
FCT1 142
127221
~C21C2
CCC1CaC
J2scy
ZCCCCh
{ceecee
lCle?n
cCcCcceen

£

.....

coclcsac
177152
CrcCre
Crieac
ccreac

ey o———

CCcryole
£CNYE R

CCOC1¢&
7777¢C2
ccoe2c
ccne2c

.

e

W

3

LYY, DS
VS e 0 oM

[e NN NN e S NN & I e L
YOOI MDY oD

]

XA

-
s

~CC115¢R

£CC125
ceeece
cceccce

-
p—
~
»
~J

4

“CCN24
ccccie
FCTY182R
L3777
CC210n.
c2Crcl
CACCo
£CCC24
AT01 340
CLCl2
CCC17¢C

ARTOROINE
£CCT1LHN

1717C?

cccee

ccceconr ¢ceeeee

>

T we

A

5

777(7%
~C2155R

FCLLE4R
AT 1ES 2

LoC2Ce

cCCicsr
CCoitnl
crLciy
GCTT24
2C4C T
CC1l2sh
NCSLTAC
JCccacy
CCCCCcer
17177102
pccceee

C2LC¢Y
£CC24
c2CCC
£CO1ET
(CC1esn
£CCL732
6201752
cCo1ced
PCC1ERR
120131,
171777
LCC126
cCcecee e
CCO1€

I}

ccecene

CCC’194

cenytor
1171774
CCr1r=”
AV R
AR
6CCC26
£Chyr
ecczcee
12C401
120121
c2CC0 1,
7171177
cCcCcr1é4
ccecece
crtcayn
ceoLoe

-49 -

FIGURE 6. 3

PARTIAL LIST OF SUBROUTINE LIBRARY

ID NAME ENTRY POINTS

101 LEAF LEAF

103 VECTOR INVECT, POINT, VECTO

104 ATTACH ATTACH

105- NODE NODE

106 BRANCH BRANCH

110 DETACH DETACH

176 CLRING CLRING

220 ?; WHICH WHICH

ENTRY NAME . ID R. A.

| |
ATTAGH ATTACH 104 1
BRANCH BRANCH 106 Z 1
CLRIN CLRING 176 1
DETAC DETACH «_ 110 1,
INVEC INVECT 103 . 2
LEAF LEAF 101 1
NODE * NODE 105 4 1
POINT POINT 103 4
VECTOR | VECTOR 103 1
1

WHICH WHICH 220

’
o

«-50 -

6.2 Loading and Initializing the McGraph System

Once a GRINZ binary, loadable paper tape has been -
generated by means of the assembly system the program may be
run on McGraph. First, though, the operating system must be
loaded and initialized. Even before this can be done, however, the
library must be loaded onto the auxiliary storage device. This can,
of course, be done with the aid of the utility program GZLIBE
(Section 7.2) but this is generally a long, tedious task. It is
generally sufficient to do this once, and then to dump the contents
of the disk onto a DEC-tape. At the beginning of each graphics
session, no changes are required, the disk need only be loaded
frorr'm DEC-tape. If the library needs editting, GZLIBE must be

used in any event. ,

]

Once the program library has be)én loaded, and that part of
the disk write protected, the executive programs must be loaded
in from paper tape. Work is going on to make these loadable
from DEC-tape, but this is not yet possible. Once the PDP-15
programs are loaded, the PDP-8 slave program must be loaded
and initialized and a display track chosen. When the PDP-8
initialization is complete, the display shown in Fig. 6.4 (a) appears
on the screen. 'The numbers shown are the simulated back-lighted
pushbuttons, while the group of squares is the tracking cross.
Although the pushbutton are effectively no longer part of the
GRAPHICZ simulation this initial display has not yet been changed
to reflect this fact. After initialization the PDP-8 enters a slave
mode of operation, (continually scanning the link to the PDP-15

for further instructions, and watching the graphic peripherals for

fig6.4

. System Displays

@) Iait1al Display

“n B<AL YO

{b)Load Program Tape

q

‘Fig.64(Cont.)

(c) Missing Program Hiock

52

-53.

any change in status. At this point system loading is complete, and

the PDP-15 core map is shown in Fig. 6.5.

To initialize the system it is necessary to execute the

system bootstrap. This causes the interrupt system to be initialized,
the display screen cleared and a clean directory to be copied into

the system scratch area of the disk. A system message then ears
on the display screen requesting that a program tape be loaded into
the paper-tape reader (Fig. 6.4 (¥)). At this point the initialization
phase is now completed and the system is prepared to start reading
and executing a user program. The coreumap at this point is shown

in Fig. 6. 6.

CORE MAPS
Fig .65 LOAD #IME

TAPE B0OT

17740

17700

DISK HANOLER

SYSTEM 8007

15000

4200
'y . _
(EXECUTIVE s,
0
FIC66 INITIALIZATION
SYSTEM 8007
17740 DISK HANDLER
177090 .
FREE
SPACE
L2090

EXECUTIVE

54

-~55 -

6.3 Building The Data Structure Blocks

Once a program tape is loaded into the paper tape reader the
user can ask the system to read the tape and start executing the
program by making a light pen strike on the dﬂ‘play screen, The
tape is then read in and the subroutine block loaded in core, an
entry placed in the block table, and a copy of the subroutine copied
into the scratch area of disk. Execution of the program can then

begin,
”
As was mentioned in Section 6.1, the first executable GRIN2

statement in the program is the LEAF declaration. This is
tra.nslatedlinto a call to the library subroutine LEAF, which generates
an empty leaf block, as shown in Fig. 6.7 (a), gives this block

the ID number &, and places a reference to it in the block table.
Next, the CURVE statement is to be executed. This has been
translated (Section 6. 1) into a call to the VECTOR library subroutine,
followed by a series of arguments. The y ECTOR-subroutine has

the effect of placing display information, 1in the form of GRAPHIC2
scope code, into the last leaf block referenced, as in Fig. 6.7 (b).

Similarly, calls to the NODE subroutine (ID 105) cause node
blocks to be created, with content specified by the argument list.
Calls to the BRANCH subroutine cause branch blocks to tge created,
linking previously defined_node blocks, and so on. Each time a
graphic data structure block is created a\.nd given a distinctive ID,

a new entry in the block table must also be generatéd. If, during an
externalbreference, the desired block proves to be neither in core

nor on disk, the picture shown in Fig. 6.3 (c) is displayed, and the

-56 -

FIGURE 6. 7

LEAF BLOCK STRUCTURE

020001 HEADER
000000 \ DATA POINTER
177777 EOL TRAP

™

(a) Null Leaf Block

" 020004 HQ«DER

000000 DATA POINTER
223700 BODY-GRAPHIC2 CODING
2277137
ZZOO@?
7 EOL TRAP

(b) Leaf Block, Containing Data '

L

block must be read in by means of the paper tape reader. In this
case the WHICH routine, ID 220, had been omitted. When all

.

necessary blocks have been generated in the current example, the
o,
core dump is as shown in Fig. 6. 8.

58

——

ol

/

VAV |

[’(

v
f

'

177

-

[

t~

{~

t

7
t

-7

o1,

7

’

Rkl

i

[

7

r~

-
Y

|-

~t
——y
[
- .
~
— —
—
-_—
-~
~
-
v
~
- .
— 0~
. U
-
o~
—
- -
—
.
.
——
.
-

AR

s A

1707

ARE IS |

o,

-

i~

[

I
-

-—

toy

(.
,

-59 -

6.4 Real-Time 1/O

L)

No display information is sent to the PDP-8 until a GRIN2
I/O statement is executed. This class of statements include
WHERE, WAIT, TYPOUT and, as in the case of this program,
WHICH. zl"hese commands go through a data structure trace,l
sending display information to the PDP-8 as it is developed. The
graphical devices are enabled, and some user interaction is

éexpected.

Q

In the sample program the user is required to choose
between the triangle and the square. The branches to each leaf
have been declared to be light buttons. No matter which leaf is
selected, then, command is transferred to an appropriate part of

the program, dependent upon the choice.

Consider the data structure trace. One node is designated
as the display node and is considered to be the root of the display.
All information below it is displayed, any above it ignored. The
system of pointers is followed until a leaf is encountered, at
which point control is relinquished to the translation routine GZTRAN.
The GRAPHICZ scope code in the leaves is then translated into
McGraph code and sent to the PDP-8 for display. Upon an end-
of-leaf trap, control is returned to the structure tracing routine.
This process continues until the entire display is visible. Note that
each time a leaf appears, its contents must be translated into valid
McGraph code. This is tremendously inefficient but it works,
which was the initial prime consideration. In this program the

problem is never encountered due to the simplicity of the display,

but in larger systems it can be-a definite draw-back.

A

. 60 -

F

s

Photos showing a se;;uence of events appear in Fig. 6. 9.
, ’*
‘In the’first frame, both the triangle-and square are visible. After
the user makes a light pen hit on the square, he is left with the

-4

situation shown in Fig. 6.9 (b): only the triangle remains visible.

A subsequent light pen hit on the triangle causes it 40 disappear
" and the 'square to reap&ellas in Fig. 6.9 (c)r. These last two

"displays alternate indefinitely, upon light pen hits, until the{sysl‘tem

' .
is stopped and reinitialized by the operator,

s
o

,Clearly this is a trivial example, but it displays, hopefully
in a simple sway, how the sys‘tem operates. One display M
generated during an interactive run is .éhown in Fig. 6.10.
It stems from a test program, known as CITY. This program
is used to test the WHICH subroutine and the graphic structure
building routines, Output from it(is shown since there was no |
time to write and giebug anything more than test programs of one

sort or another.

~~

»?

Sequence

(a) Displayl

{b) Display2

a2

Fig.6.9

of

Displays

61

g g

[i L R b

Fig.6.9(Cont.)

{¢) Display3

CITY Program

62

-63 -

’ CHAPTER 7 ASSOCIATED PROCESSES

7.1 The GRINZ Assernbly System

*

There is more to the McGraph operating system than the
executive programs and subroutine library. Most notable among
the associated systems are the GRINZ assembhly system, the
libryy editor GZLIBE, and a set of debug routines.

- M. 4
The GRINZ assembly system is as described by McNeil(),-

no mdjor changes were made to it during this project. In essence
the GRINZ language iS{deﬁned by a set of macros in the IBM OS-
Assembler language, so that the process of assembling a GRINZ
program reduces to that of expanding and interpretting the

program in terms of these macros. Two macro packages exist:
one for absolute PDP-9 assemblies (i. e. the system generation
package A. EE25. P9 MACROS and the other for relocatable GRINZ
programs (A. EEZ25. GRINZ2). The output of this assembler is
recorded on punch cards. A post-processor program is then
invoked to translate the information stored on punched cards into
correct PDP-9 loadable block format, and to dump this information

onto magnetic tape.

The output stored on this tape is processed into lo~a.dable
paper tapes required by the McGraph operating system, as described
in Appendix B.

This process is depicted in Fig. 7-1.

a‘

GRIN2 Assembly System

START

ASSEMBLE

using Macro 1ibRnes

POST - PROCESS

JUMO tape

DUMP TAPE onto

#

FigZl -

64

DISK
Dump Disk Bump on
on
Ty PDP-15 punch
\
Process to

Binary paper o
tapes

END

o ——

7.2 The Library. Editor G2ZLIBE

The library editor G2ZLIBE is a utility program inherited
fromn the Bellgraph system. This is not a real-time program, nor
does it require the operation of any graphical devices. Accordingly,

very few changes were required to make it work.

The editor can be used for many purposes. First, GZLIBE
can be used to load GRINZ program blocks froxq paper tape onto
auxiliary storage. These disk files can then be dumped onto a
teletype, octal patched, renamed, or purged altogether from mass

g
storage. . n

The editor is not an essential part of the McGraph operating

system. It can, however, facilitate the running and debugging of

graphics programs, and as such has a definite value.

-66 -

7.3 Debug Packages

Two debug packages are associated with McGraph: the
primioti‘_ie Octal Debug Package, and the more elaborate utility,

G2BUG. These are designed for two separate applications.

The utility G2BUG is actually a well-debugged GRINZ2
program, which is used to help debug other GRINZ programs.
An entire range of advanced operations is pnssible with GZBUG,
including imbedding break-points in the pregram, single-stepping,
and so on. This utility has not yet been worked on at McGill,
since it can only be used in the debugging of application programs.
It assumes a working operating system, and so is of limited
use in debugging the operating system. }A

The Octal Debuéging Package, on the other hand is \;sed
in the debugging of the operating system. It assumes nothing
and does very little! It can be used to obtajn core dumps, on the
TTY patch parts of core, patch the registers, start execution at
a given place in core, or make a subroutine jumpto a giv;n core

location.

This rather limited instruction set puts a real load on the
. user, who must be totally familiar with the machine's instruction
set in ordef to use it., It is, however, a great improvemenbt over

manually toggling in changes,

-67 -

SECTION C - CONCLUSIONS

CHAPTER 8 EVALUATION OF TI—iE McGRAPH SYSTEM

I

A computer system can best be judged by how well it meets
user requirements, and by how easily it can b2 adapted to meet
changing demands. In this chapter the McGraph operating system
will be evaluated on the basis of programming and debugging
ease, run-time flexibility, and its real-time characteristics. A °

discussion of the techniques used in system modification and

expansion will be postponed until the next chapter.

8.1 Programming in GRINZ

Experience with the GRINZ2 language has been quite positive,

(C. 1)

both at McGill and at BTL The existence of a graphical

data structure enables complicated, iterative designs to be

is a compact, logical and readable form. And, of
course, legible programs are maintainable programs. GRINZ
programs may easily be segmented into linked blocks of the
type recommégnded by disciples of the structured programming

M.5 "
concept (» a rather nice side-effect.

Over the course of the years there have been many proponents

- and detractors of fixed data structures in graphics applications. It

is clear that a graphic data structure is not essential to an effective
language; it does facilitate operations such as duplication of

subpictures, associating data with graphic information, and moving

pictures or subpictures wholesale. It also has the added effect of

-68 -

forcing the user to think aboyt the existence of structure in

his display, frequqently a useful task. It is no accident, therefore,
that the GRINZ experiment has left ... in-hclése users apparently
satisfied and some outsiders dissatisfied, with such features

as a fixed (ring) data structure, an unwieldy programming ~

language, not enough local core, etc." (v. 1).

All GRINZ2 programs also have the added benefit of being,
(W.1)

to a large degree,”""idiot-proof"

The user cannot easily
bomb the system by making an incorrect response at any point,
because the language forces the programmer to think of these
possibilities. Left to their own devices, 'application programmers

almost never consider the consequences of a system failure

in the middle of processing their programs" (Y.2)

(W.1)

, or indeed"
anything out of the ordinary happening" GRINZ forces

thought about these things, and permits recovery in case of

“error. It has, then, some of the characteristics of a good interactive

language, and a good operating system.

On the other hand, most modern graphical languages have
provisions for interfacing to a high-level algorithmic language,
a provision sadly lacking in GRINZ2. For applications requiring
on-line scientific computation, the present implernentation is

entirely inadequate.

-69 - X

b v
v . //

8.2 GRINZ Assembly System

R

(M. 4)

The current assembly system is unacceptably slow

and costly. It has been shown that the GRIN2 assembler could resid‘e
on mass storage on the PDP-15 (MAN-l)in a much sirznplifiaed form.
Indeed, the GRAPHICZ terminals have now progressed further
around the "wheel of reincarnation ' and have all been given disks,

(V. 1)

containing the resident assembler The interface to the -
main computer has been abandoned and the BTL system, like the

McGraph system, is functioning entirely in stand-alone mode.

If GRINZ2 is ever to be used to full advantage at McGill the
same project must be undertaken. The assemblerjprogram is really
just another GRINZ program, functioning under the McGraph monitor,
which accepts symbolic input from a disk file, assembles it and
places object code on a named file on disk. This program
was also donated to McGill by BTL, but could not, ofscourse,
be run until the operating system was working. The time has

now come when it can be tested,

-70 - *

8.3 Run-Time Characteristics

At present the graphics hardware is operating at somewhat
less than peak efficiency, chiefly due t# the numerous patches
required in order to make McGraph operative. As was noted R
earlier, the GRAI@CZ IOT simulator and scope-code translator
(M. 4) is enormously inefficient. The PDP-8 slave system
is similarly burdened with simulation tasks, and so further slows
down the response time, The result is that the system has rather

sluggish characteristics for a high-powered system. Some

solutions to this problem will be proposed in the succeeding chapter.

-

A light-pen interrupt is immediately serviced-the PDP-15
is informed of the situation within 5usec. The link is then sealed
out for half a second to prevent multiple hits (the PDP-8 cannot
be run in the interrupt mode due to DISC interface problems). ¥
Meanwhile, processing continues on the PDP-15, And within a
secopd of the interrupt, activity can be seen on the screen. Each
leaf is sent individually from the PDP-15 to the PDP-8, and
written on the DISC. Clearly, then, only one leaf can be written
at each rotation (1/30 second). Complex pictures can easily
take five or six seconds to display, then. Work can obviously be
done Yo speed this process up.

) With a few notable exceptionsr,.1 all the run-time operations
available under the Bellgraph operating system have been
maintained. First, since it was not essential to the operation of
the system, the GRAPHIC2 console keyboard has not been simulated
(McNeil). All typed operator responses must be made via the

PDP-15 console keyboard. Second, the backlighted pushbuttons have

st

S

<

-71-

ceased to be simulated, although they still appear, at system load

time, as a set of numbers on the face of the display.

Finally, the class of ''real-time' programs has become
obsolete. In these programs it was assumed that core-based
refresh was taking place, and that, therefore, one could change
the display in real-time by changing stritegic core locations.

A disc-refreshed system effectively elinhinates this possibility, and

make the entire strategy obsolete.

Apart from these changes the Bellgraph Programmer's

Manual can be applied directly.

-72 -

8.4 Debugging

Although much of this project reduced to executive
program debugging, :i/ery,’little, experience with applications
program debugging was obtained. These processes are, of course,
very different. It was immediately found that‘gdebudgging in
large systems was no easy metter., Standard approaches such
as using the Dynamic Debugging Technique (DDT), a DEC-
supplied utility could not be applied, since these programs competed
with the executive program for control of the same core locations.
Nor could one use the Bellgraph utility GZBUG, since it ran under ¢
the operating system which was to be examined. Eventually
it was found that the only available package which could be applied
to the. problem was the primitive Octal Debugging Package,

described in Chapter 7.

Octal debugging is demanding, and the user must have a
good grasp of his machine and of the process he wishes to
éxamine. This package cannot produce corrected paper tape, but
merely patch core. From this comes; the restriction that the
modified code must not write over other, valid, code. Deletions

Ty
are simple; additions can be rather ‘complex. .

Some debugging information has been built into McGraph.
Whe; a program error is encountered the computer rings the bell
on t}'f?e, teletype and traps to an error-handling routine. The user
is then provided with the error number, the location where it

was trapped, the ID number of the block in which it was detected,

and its relative addressgithin‘ helblock, Thij

together with a block-table dump, Jan usyally help the user to

» detect his error. . ~

o The utility ;;rogram G2BUG is a GRIN2 program, which
' ‘should run under McGraph. This program can be used to aid the
debugging of application programs through a séries of high-level.

commands. This has not yet been tested at Mcd_i_ll, but will become

] el - -
| : necessary if this system is pursued.
\ A ¢
\
|
4
)
" ~”
9 by ‘
3) R
PO 7
i
Ed
s .
¢ & '
"

8.5

Run-Time flgiibi lity \

.
.

°

4,

A strong point of the McGraph system is 1ts run-time

)

flex1b1hty Because of the graphic data %tructure, ‘sub-pictures

’

can easily be}iuphcated shifted, rotated scaled or deleted.
Structgres can be built and tested on-line in a natural way.

Application programs can even be written permitting leaves ,
A\ , o ' \ '
to Be built on-line from user-supplied -information.

!
4 t

The true strength of GRINZ lies in the ease with which .
complicated s;tructures can be handled. Used wisclyl:,the_
sys&m can be made to enhance rather than constrain human ‘
crez}tiyi;]ty. Run-time errors will not normally bomb the
system',(Nor will a system failure tause the loss of all the
data base“’builtoup,‘ copies of most c::f the files exist on disk

as well as in core. The user, thén, is given a great deal of

freedom, in return for some additional sweat by the application .
programrmers. ' , ’ ..
o ’
: .
! & 4
' ' o - M . 3
»
o e o ! N
R ° '
. i
Y —~— ”F
- t
* v
*]
. ! ‘
¢ o :
v \ -
(¢ . '
I3 . ¢ <
' '] . e
q . ‘ o
* L% & \ ») v

- 75 -

€

-

CHAPTER<9 SYSTEM EXTENSION AND MODI{FICATION

The current McGraph operating system cannot be regarded
as a finished product. A flexible system has been provided
which is capable of supporting applications programs written in ,
- a high-level graphics-oriented ldunﬁguage, GRIi\IZ. It would, s

however, be unrealistic to claim that the McGraph peripherals are

&

operating in an efficient manner. Much still remains
s

to be done in order to achieve dptimal system performance.

This7chapter outlines some possible improvements which could

~

<

be implemented.

Consider what must be done. First, th'e GRAPHICZ

simulator must be eliminated from the McGraph software.

Second, the system should be extended to include other grapi’xical
devices avail;ble at McGill. Third, the GRINZ assembler could
be made to reside oq"tl')e PDP-15, ’and. if necessary, an’ ~
interface to a high-level, algorithmic language (1 e. FORTRAN)

could be established. These goals will be studied, in that order.

.
. o

;“ ﬂ ’ i ' \

"\.

-76 -

e Device Translation Subsystem

Logically, the GRAPHICZ simulator consists of two
distinct parts. One part, the IOT simulator, translates
GRAPHIC2 IOT commands into McGraph IOT's and McGraph
scope code, The 'other part, the scope code translator changes
‘GRAPHICZ scopé code into appropriate sequences of McGraph
scope code. E;ch part of the simulator can be changed (or .
eliminated) mdlzpendently of the other. One can, then, speak
of mqodifying the device translation subsystem, the PDP-8

slave subsystem and the real-time subsystem (which, of course,

includes the IOT simulator), rather than of eliminating the

* GRAPHIC2 simulation. .

. Consider first the device translation subsystern. Until N
now, no effect has been made to make this system efficient so)it
is, naturally, massively inefficient. Display information can-
exist in several forms in the system. First, alpﬁan‘mneric
information can exist as part of a leaf, or as a system message.
Second, branch blocks contain 1nitialization information about
a leaf (Fig. 2.1): a current parameter word, and a pair of
deflection words. And third, visible display information is

¢

stored in leaf blocks in"the form of GRAPHICZ scqpe coding.

This third class of‘i;xformation is most easily dealt with,
All the GRIN
inevitably rely upon the VECTOR or PARAM library

language statements which generate visible display

subroutifes., By rewriting these routines for each display unit
used it'is possible to take a giant step towards generalizing the

device translator sub:syst,em. One minor point should be noted hege:

»

-’77-

N -
N

AN
it is posgible to pack two 8-bit McGraph words into one PDP-15

word in order to save on storage.

Branch blocks contain some display initializafion information,
as shown in Fig. 2.1. This is examined and translated intc;
display code by the core-!}resident executive program DSPLAY. v
Under this philosophy, then, DSPLAY must be rewritten and =
the executive systermn regenerated for each device used.

Alternatively, some part of the external GRAPHICZ simulator

must be maintained to handle these-blocks, and must e rewritten

for each device used.

Alphanumeric information causes more problems \in
McGraph. It was assumed, in Bellgraph, that arll explicit
'Jcharacter-gcnerator scope code was available. Thrs assumption,
although deeply 1imbedded in the operating system, is invalid in-
the McGraph environment. No hardware character-generator is
available here. To maintain current text-handling routines
and still eliminate a scope code translator requires a change in
file transmission methods. There would be two distinct classes
of information in a leaf: display unit instructions, packed two
to a PDP-15 word, and character information, stored as two
seven-bit ASCII codes to a PDP-15 word. By appropriately marking
‘the higher -order bits of these words one can differentiate between
them (Fig. 9.1). Then, as the words are transmitted to the PDP-15
they can be analyzed and the character words expanded into McGraph

Al

scope code,

FIG.9

e .,

Craphical /O Requirements

LEAF ‘
ASCIHl TEXT) INIT
. LEAF TEXT AND DsPLAY B
SYS MESSAGE , M‘]
7 eir |7 BT BRANCH
. c
0000 ASCH . |KscCli BLock
wh FORM
\ ¥
S———— _;_ —_— e e — ——— _
(e
REFORMAT
i FOR
POP8
' .
8 B
. 0000| MC GRAPH ' nn
DATA .ot

78

LEAF
GRAPHIC

CONTENT

PARAM AND.
VECTOR
COMMANDS

BIT BIT
01 [SCOPE SCOPE
CODE| CODE

—

3

/‘/

o 'L_.-/ .

BIT
COMMAND

= N

A

iy,

-79 -

) |

9.2 Modifications to the Real-Time Subsystem

<

The real-time subsystem could be signicantly more
efficient by eliminating the GRAPHICS2-IOT simulation
package. One way that this could be done is to redefine the
macros associated with these IOT's. Commands refering to
equipment no longer used (e. g. pushbuttons) would ¢ease to b
generate PDP-9 code, while the useful IOT's would be
translated into meaningful PDP-15 code. The immedate
result would be to straighten long, windihg subroutine paths into
a sequence of commands directly imbedded into the program
flow. This would cut execution time, probably at the cost of

increased storage requirements in the first bank o} core.

Similarly, the real-time subroutines WHICH and WHERE |
could be rewritten to take advantage of McGraph facilities.
'I:his would have s'ia{‘n)ilar advantages and penalties associated
with it. Each of these s'teps is a partial answer to the problem
of developing a shorter response time. Each is independent.
And neither, alone, would totally eliminate the body of coding
which is currently known as the GRAPHICS2 IOT simulator,
G2SIM. -

<

han 8

9.3 The PDP-8 Slave Program .

An effort has already been made to simplify the PDP-8
slave program, as shown in Chapter 5. The GRAPHIC2
keyboax:d, the pushbuttons, and the blink option all have been
dropped from the slave program. Only display code buffering,
light -pén handling and tracking-cross manipulation remain as
tasks to be done on the PDP-8. Of these, the tracking-cross
4)

manipulation routine (M. must be improved to eliminate
jumping, and the buffering-technique could be improved to speed

display generation. »

Briefly, graphics commands are transmitted to, and
buffered at, the PDP;B as they are g;enerated. The buffer is dumped
onto the disk when it is full, or at the end of a leaf. Response
time could be sigmficantly shortened if the buffer was dumped
when full, or at the end of\a picture: In actual fact, this demands
more of a change to the display routine DSPLAY than it does to

¥
.

the PDP-8 slave program. ‘

“a

-81-

9.4 Extension to Other Devices

The McGraph operating system will ultimately prove to be
of value only if it is (easily) extensible to other graphics devices.

A few remarks should, then, be made about this point,

First, some devices are more easily integrated into the
system than others. Currently, a display unit with the following

characteristics would be favoured:

(1) It is directly interfaced to, and capable of interrupting,

the PDPfIS
(2) It uses 1‘8-bit words, or less
(3) It has a hardware character generator
(4) It has single-word pirameter commands
(5) It is capable of returning X and Y co-ordinates upon a

display interrupt (light pen or joy stick)

&

Probably the next device to be used in McGraph would be

. the TEKTRONIX 4002 display scope, already interfaced to the

PDP-15. Extension to this device should be relatively easy, since

it fulfils most of the conditions listed above. 1t is, }}owever, a
storage unit, so the real-tifQe interrupt routilnes would have to be
rethought. But less rethinkirg will be decessary thiadn for interfacing

the original McGraph display unit.

9.5 6dds and Ends

: Further goals, which*could be set if demand is suff;cient,
must include transfgrring the GRIN assembler to the PDP-15.
This could greatly simplify the current assembly process.

Bell Telephone Labs included the appropriate sz)ftware to do this
in the package donated to McGill. It, however, presupposed

a working operating system, and so could not be tested until ;ow.
Assembling this program on the IBM 360 and placing it in the
subroutine library should not be too difficult a project, and could

provide a major improvement in service.

Another possability that could be investigated is that

of interfacing the McGraph o?erating system to standard DEC
systems. The most promising arrangement is shown in F:ig. 9-2.
Here, an 8K version of V5A has been generated,. using one disk
and residing in the lower 8K of core. McGraph can be modified
to sit in the top 8K, and claims the other disk. Now each -
system controls independent peripherals and stays in entirely
different banks of core. By allowing communication between
banks to take place only through the use of a given assembler
routine controlled communication could be set up between the
systems. The computational power of FORTRAN would then be

available to the GRIN2 programmer. This is clear a nontrivial,

/

if worthy, project.

*

Digital Equipment Corporation Cpercﬁng System for the PDP - I5 computer

-4

|
»

FIG.9.2

PROPOSED INTERFACE BETWEEN McGRAPH & V5A

M Graph

Display Peripherals
Disk 1
High Speed Punch/
Reader
Teletype
Tektronix Consolg¢ TTY

Patch Core

8K VS5A
Disk O
Teletype .
Line Print;}
DEC~tape Drives

4

24k

16k

8k,

83

-

-84 - \

o CHAPTER 10 CONCLUSIONS
This project was a continuation of the effort (M. 4} to
provide a graphics language for the users of the McGraph dis -

(M-1, F.1)

oriented graphics displdy facility In order to

achieve this goal, an existing graphics-oriented operating system
(€. 1) had to be significantly modified and debugged. Monst of
the ;'xxeaningful differences between McGraph ancli its predecessor,
Bellgraph, lie in their respective real-time subsystems.

Since the structure of the McGraph facility is far different from
that of the GRAPHICZ2 terminal, much of the real-time
interaction philosophy had to be rethought. Due to time and

manpower limitations, McGraph does not work as efficiently

-as possible, at this time. Furtherjsystem work, in the area

indicated, should make McGraph‘ a very respectable system.

It tan be honestly said now that GRIN2 is running on

the McGraph facility. Application packages can be written to

fully test the strengths and weaknesses of the system, while

modifications can be made with confidence to the operatihg system.

There is nothing to lose any more; there exists a working
system to fall back upon, —In this manner, then, McGraph can ,

be developed and adapted to fit the special needs & users at

McGill.

-85 -

APPENDIX A - THE GRINZ ASSEMBLY S¥YSTEM

1
A
o

A.1l. Preprocessing A GRINZ Program (or PDP-9 Prograx.n)

This job must be run in 300K of core on the IBM 360/75. |

The input sourcedeck may contain any number of individual

GRIN or PDP-9 programs. Output will be on punched cards.

/ PREPRO
/ STEPLIB

J SYSPRINT
J SYSPUNCH

/ PREIN

/ ASMIN

J SYSIN

7

EXEC PGM = PRE, PARM = 'DECK!

DD

DD
DD

DD

DD

DD

DSNAME. = A. EE25. PREPRO, DISP =
(OLD, KEEP) -

SYSOUT = A

SYSOUT = B, DCB = (RECFM = FB,
LRECL = 80, BLKSIZE = 3200)

1}

1t

UNIT = ONLN, SPACE = (7280, (35, 4)),
DISP = (NEW, DELETE), DCB =
(RECFM = FB, LR}}ZCC = 80, BLKSIZE =
7280)

UNIT = ONLN, SPACE = (7280, (35, 4)),
DISP = (NEW, PASS)¥ DCB = (RECFM =
FB, LRECL = 80, BLKSIZE = 7280)

*

- GRINZ2 SOURCE DECK

-86 -

A. .2 Assembling A GRINZ2 Program
[

This job may be run in 100K of ecore in most cases.

Output will be punched object decks. The input source deck -

may contain any number of programs, since they are run in

., batch mode.

"
]

\

J ASM EXEC ASMGC, PARM. ASM = 'NOLOAD,
N o DECK, BATCH' °

/ ASM.SYSLIB _ DD DSNAME = A. EE25. GRIN2, DISP =
- = OLD '
" J SYSIN DD *

Y <
GRIN2 SOURCE DECKS

/%

// o
\ A PDP-9 program can be assembled in the same manner if the

library card is changed to

/ ASM.SYSLIB DD . DSNAME = A. EE25. P9MACROS,

- ’)
- ’ . DISP = OLD
’ N

® o

({;

-87 -

i (.
A.3 &’ost-Processing GRIN2/PDP9 Programs
o

‘
! Input is assumed to be in the form of punched object decks,
while the resulting output appears on 9-track, 800 BPI magne({ic
tape. The input stream may consist of any number of individual
GRINZ2.programs, followed by any nurnber of PDP-9 program
blocks. The post-processor generates one block for each GRIN2
program and a load-module c0ntaininsg all the PDP-9 programs, —J
Y. EXEC SETUP, PARM = 'T8
"IN, NL, SLOT E43) .
J POST . EXEC PGM = POST, PARM = ' options, aspbl_ealow'
/ STEPLIB DD . DSNAME = A. EE25. G2POGT, DISP .
' (OLD, KEEP)
J/ SYSPRINT DD ' °SYSOUT = A
/ MTAPE DD VOL = SER = PDP9, LABEL = (, NL),
’ UNIT = TAPFES8, DCB = (RECFM = F,
BLKSIZE = 300, LRECL = 300, DEN = 2)

PDP9 (RING

<

1

’

J PUNCH DD SYSOUT = B, DCR = (RECFM = F,
. BLKSIZE = 1600, LRECL = 80))

/J SYSIN DD * -)

»

PDP-9 & GRINZ OBJECT DEJCKS

-—

a.

a o ot - 8 8 - é’ / e
» 4
, %
g
OPTIONS:
ORG = nnnn specifies octal starting address of absolute load
modules. Ignored on input of GRIN'programs. .
LIST produces a listing of PDP-9 mnemonics and contents of
-3
each word. .

. j
NODUMP suppresses the printing of each word in the program.
The dump cannot be suppressed on PDP-9 absolute load modules.

‘ ——
! ’ ! B
| e .
o
.) |
K
& N
+ ,‘
L s '
t \ y ;
- >~
’h
2 e “ .

-
¥
°
¢
I
A]
.
.
oo
-
.
P ;
oy
i
5.5
. ﬁ\ N f‘;“?
. w
PR Y]
‘h Vel . a3 ‘“.?;l\"x A
ke TEL T A L
o e dee TR

-89 -

~ /

APPENDIX B - GENERATION OF GRIN2 PAPER TAPES

]

" The output of the GRIN2 post-processor consists in part of
blocks of ASCII code, dumped on a 9-track, 800BPI magnetic tape,
The McGraph facility, however, lacks a magnetic tape drive, or,
indeed, any otheg OS- compatible medium, T%xe solution currentvly

being used isshown in Fig. B..l1. | :

First, the mag-tape is dumped onto a MUSIC permanent
disk file. This file can subsequently be dumped onto paper tape
from a teletype or from the PDP-15. Eitht;r wa;y an ASCII tape is
produced. This\ can finally be pro;:essed on the PDP-15, ;esulting :

in a loadable binary tape.

The exact procedure required is shown below, -

»

BN

FIG.BI

MAG
APE

MUSIC
PERMANENT
FILE &

-~

DUMP ON oump “ON
v TTY PDP 15
HSP

PROCESS
" TAPE

13@

. BINARY

PAPER
TAPE

A

i

-91 -

B.1 - Dumping Tape Onto Music File

This must be run as a batch joly on the MUSIC system.
File consists of blocks of 5 records. Each record

consists of 60 characters (10 PDP-15 words).

/1D

/ PAUSE TAPEJOB, VOL = PDP9, SLOT = E43

/ FILE DISK = (I, EE25 POST), VOL = RAXO0O6,
DISP = OLD - ~

/ FILE 'TAPE = (2, BLK = 300), RSIZ = 60, VOL =
PDP9, DISP = SHR -

/ INCLUDE UTIL ,

$ OUTPUT = | e

$ INPUT =2)

/ ENDRUN

B.2 Dumping Disk from Teletype

~

SIGN ONTO MUSIC SYSTEM, THEN

'/ INPUT

/ FILE DISK = (1, EE25 POST), VOL = RAX 006

4 INCLUDE UTIL

$ INPUT = 1

/ ENDRUN , .

~AT WHICH POINT THE USER MUST TURN ON THE TTY PAPER

PUNCH]

-92 -

B.3* Developing Binary GRIN2 Tapes

Load ASCII tape, output from the previous stage in PD/b-lS
high speed reader, at start of first GRIN/PDP9 block. ,

Execute Program 'PROG!' on PDP-15 (Tape 162) .

”~

ASCII tape will read in and punch start; Systemn will pause

after first block. Make sure tape is clear on reader, and

‘type tP on teletype. Process repeats until tape is completed.

SN N

e T

C.1

. pp. 23-30, 1973,

-93.-]

"BIBLIOGRAPHY .

e
/

Christensen, C; and E. N. Pinson, "Multi-Function
Graphics for a large Computer System", Proc. AFIPS
Fall Joint Computer Cdnf., Vol. 31, pp..697-771, 1967;

Cuttle, G. and P. B. Robinson (ed.), ""Executive Programs
and Operating Systems'', American Elsevier Inc., New

York, -N. Y., 1971

~

®

- ’ “ &

Dawdy, G M., "An I-O Progra.mmmg System for Small
Computers". Proc of the Canadjan Gomputer Conf.,
PP- 321301-321313, 1972,

]

Ll

-~

Dudley, T. K. , '"Xerox Comwter Graphics', Proc. of the
Third Man- Computer ’Communxcatlons Seminar, Ottawa.

5

, PP. 13 1-13. 5, 1973.) !

a : »

“Dunn,” R. M .’ "Graphics, Problem Solving and Virtual

Systems', Proc. AFI iqnal Computer Conf., Vol. 42,

: ‘ ‘\/ o
Fabi, R.J., "The Design and Construction of a Disk-Oriented
Graphics System', Dept. of Elect. Eng., McGill Univ., 1971 .

an

©

Foley, J.D. and V. L. Wallace. "The Art of Natural Man-

Machine Conversation', Proc. of the IEEE{?’ Vol. 62, pp.

462-471, April, 1974, _ -
e T
- - T
i . .
‘/If’_ o h T -

” _94_

hY

\
! I

Franklin, J. afid E. B. Dean, 'Interactive Graphics

for Computer Aided Network Design,' Proc. AFIPS
National Com'puten Conf., Vol. .42, pp. 677-683, 1973,
Gammill, R.C., "Grapiuics and Interactive Systems -
Design Colnsiderations St a Software System'', Proc.
AF1IPS National Computer Conf., Vol. 42, ‘:pp. 657-663,‘
1973. "

/

r

George, I. R. L., "Software and Data Structur;s for
Graph1cal C.A.D.," Proc. of the International Conf. on
Computer Aided Design, Southarnpton, U. K., 1969,

Groner, G, F., '"Display Terminals Can Help People Use
Computers', Proc. AFIPS National Computer Conf., Vol.
42, pp. M39-M42, 1973.

! v
Gwynn, J. W., "CRT Terminal Access From High Level
Languages'', SID Digest of Technical Papers, pp. 46-47, 1972.

Lecarme, O., "A System for Interactive Graphic Programming'',

Proc. IFIP Congress, Vol. 1, pp. 440-444, 197].

Link, R.W. and §.S. Yau, "A Simplified Data Structure for
Interactive Graphics on a Small Computer', Proc. Canadian

Computer Conf., Montreal, pp. 413401-413422, 1972,

Malowany, A., M.D. Levine, et al., "A Disc-Oriented Graphics
Disglay System', Proc. Second Man-Computer Communications

Seminar, Ottawa, 1968.

—

M.2

N. 1

-95 -

Malowany, A., K.C. Campbell, T. McNeil, "The McGraph
System', Proc, Tlnrd Man- Computer Communications

Seminar, Ottawa, pp. 30.1- 36 5,31973

McLean, R.S. and W, P. Olivier, "Initial Use of a Plasma
Display Panel"”, Proc. Third Man-Computer Communi cations *

Seminar, Ottawa, pp. 33.1-33.7, 1973.

McNeil, T. O'B,., "A General-Purpose Graphics System for
a Small Computor', M. Eng. Thesis, Dept. of Elect. Eng.,

McGill Univ., 1974, .
\

™~
Moyle,\F.J., "Graphical Support Software GTA for PDP-9-"
339 System", TR-EE-71-6, Purdue Univ., 197l

\ A f

Needham, R.'h& and D. F. ’Hartley, "Theory and Practice
in Operating System Design', Proc. Second Symposium on
Opérating S\)\stem Principles, A. C.M., Princeton, N.J., 1969.
Newman,. W. M. and R. F. Sproull, "An Approach to Graphics
System Design', Proc. of the IEEE, Vol. 62, pp. 471-483,
April, 1974,
O'Brien C. L},, "Implementatxon of the ICPL Graphics Language
on the PDP-15 Computer'), Proc. Th1rd Man-Computer

Communications Seminar, Ottawa, pp. 9.1-9.8, 1973,

P. 1

-96 -

| g
i
Penney, J.P.and G. ¥.P. Deecker, '"On General Purpose

Software for Interactive Graphics, "' Proc. Fi:fth

Australian Compute;Conf. , Brisbane, 1972.

)

Pieke, B. and G. Schrack, "Implementation of an Interactive
Graphics Langiuage”,c Proc, Third Man-Computer
Communications Conf., Ottawa, pp. 7.1-7.9, 1973.

-~

. ' . ¢
Poole, P.C.” and W.M. Waite, "Machine Independent

Software', Proc. Second Symposium on Operating Systems

Principles, A.C.M., Ptinceton, N.J., 1969.

Sackman, H., '"Some Exploratory Experience with Easy
Compute\r' Systemnis', Proc. AFIPS National Computer

~Conf., Vol. 42, pp. M30-M33, 1973.

Stockenberg, J.‘E. et al, "'Operat::g System Design
Copsiderations fex Microprogrammed Minicgmputer
Satellite: Systems', Proc. AFIPS NationgIComputer Conf.,
Vol. 42, pp. 555-562, 1973,

]

Sutherland, 1. E , "'Sketchpad: A Man-Machine Graphical

Cormnmunixatdons Syntem”,'Proc. AFIPS. Spring Joint

Computer Conf., Vol. 23, pp. 329-346, 1963,
V4

"

_Thibault, P.C., "A Disc-Oriented Graphics System Applied

to Interactive Regression Analysis', M. Eng. Thesis,
Dept. of Elect. Eng., McGill Univ., 1972. S

I

T.2

.

T.3

(\

-97-

»

Tinker, R.W. and I. L. Avrunin, "The COMRADE Executive
System', Proc. AFIPS National Computer Conf., Vol. 42,
pp. 331-337, 1973. 7

Trivett, R., "PICADE - Prompt Interactive Creation of
Active Display Elements', Proc. Third Computer

Communications Seminar, Ottawa, pp. 15.1-15.8, 1973,

’

U. 1 Uzga.h'o’,/R. et al, "PL/OT 71: An Interactive Machine

V.1

w. 1

W.2

w.3

’

Independent Graphics Language', SID Digest of Technical
Papers, pp. 48-49, 1972.

Van Dam, A. and G.M. Stabler, 'Intelligent Satellites
for Interactive Graphi’cs".’“Proc. of IEEE, Vol. 62,

1
No. 4, pp. 483-492, April 1974,

Wasserman, A. L, ""The Design of 'Idiot-Proof' Interactive

Program\s ", Proc. AFIPS National Computer Conf. .

' Vol. 42, pp.M34-M38, 1973,

Williams, D. L., "GRAPPLE - Graphics Applications
Programming Language', Proc. Third Man-Computer

Communications Seminar, Ottawa, pp., 5.1-5.9, 1973.

Williams, R., "A Survey of Data Structures for Computer
Graphics Systems'', Computing Surveys of the A.C. M.,
Vol. 3, No. 1, pp. 1-21, March 1971,

L

%

-98 -

Yan, G., '"Implementation of Design Aids for Electronics
in A Nuclear Research and Development Establishment",

Proc. Third Ma‘m-Computer Communications Seminar,

Ottawa, pp. 29.1-29,8, 1973,

Yourdon, E., "Design of On-Line Computer Systems',
Englewood Cliffs: Prentice Hall, 1972.

3

[y

T

’ s .
L LR S S Lo

<
MAN-1

MAN-2

MAN-3
MAN-4
MAN-5

MAN-6

MAN-7

MAN-8
MAN-9

MAN-10

MAN-U

) ¢
.LIST_ OF MANUALS, REFERENCE BOOKS, ETC. USED:

Bellgraph' Computér System Programmer's Manual,

BTL, Murray Hill, N.J., 1970.

DEC-9A-MRZB-D PDP-9 Background/Foreground
Monitor Reference Manual .
DEC-15-GWSA-D Graphic-15 Reference Manual

DEC-15-ZFSA«D Graphic-15 Programming Manual

DEC-15-BRZC-D PDP-15 Systems Reference Manual

DEC-15-AMZA-D Macro-15 Assembler Programmer's

Reference Manual .

GC28-6514-8 IBM OS Assembler Language

C28-6646-0 IBM System/360 Operating System,

Supervisor & Data Management Services

Music User's Guide, McGill Univ. Computing Centre,
19720

DCo’mimter Display Review, GML Corp., Lexington,
Mass, 1974, Vol. 1-4, B

Tekgraphics, April 74, Numbér 9

