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Abstract 

Crop yield prediction and mapping are essential for crop management and decision-

making. Advances in remote sensing (RS) and machine vision have significantly facilitated the 

development of non-destructive crop mapping in precision agriculture. In recent years, 

lightweight unmanned aerial vehicles (UAVs) have been widely used for the acquisition of high-

resolution imagery for monitoring and evaluating crop growth and development. In this study, a 

cost-effective yield mapping workflow was designed and implemented in a commercial setting. 

Two UAVs were deployed to rapidly obtain RGB and multispectral images of many spinach 

fields in multiple stages of growth to assess spinach physiological attributes in the field 

environment. Based on the imagery, we proposed an image processing workflow for farm field 

orthoimage rotation and segmentation. Then, twelve vegetation indices (VIs) were extracted 

from the processed images, and the most robust VIs were selected by comparing the correlations 

among the VIs and yields, regression tree and stepwise multiple linear regressions. Excess Green 

Index (ExG) and Normalized Difference Vegetation Index (NDVI) were identified as two of the 

most robust VIs for predicting spinach yield at various stages of growth. A linear regression 

model was built with 45 calibrated plots and achieved a coefficient of determination (R2) of 

0.977. The optimal root mean squared error (RMSE) achieved on an external validation dataset 

was 0.192 kg/m with a mean absolute percentage error (MAPE) of 9.0%. The produced yield 

maps provided a basis for farm harvesting decision-making and crop management.   
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Résumé 

La prévision et la cartographie du rendement des cultures sont essentielles pour la gestion 

des cultures et la prise de décision. Les progrès de la télédétection et de la vision artificielle ont 

considérablement facilité le développement de la cartographie non destructive des cultures dans 

le cadre de l'agriculture de précision. Ces dernières années, les drones légers ont été largement 

utilisés pour l'acquisition d'images à haute résolution afin de surveiller et d'évaluer la croissance 

et le développement des cultures. Dans cette étude, nous avons conçu et mis en œuvre un 

processus rentable de cartographie des rendements dans un contexte commercial. Deux drones 

ont été déployés pour obtenir rapidement des images RVB et multispectrales de nombreux 

champs d'épinards à différents stades de croissance afin d'évaluer les attributs physiologiques des 

épinards dans l'environnement du champ. Sur la base de l'imagerie, nous avons proposé un 

processus de traitement d'image pour la rotation et la segmentation de l'ortho-image des champs 

agricoles. Ensuite, douze indices de végétation (VI) ont été extraits des images traitées, et les VI 

les plus robustes ont été sélectionnés en comparant les corrélations entre les VI et les 

rendements, l'arbre de régression et les régressions linéaires multiples par étapes. L'Excess Green 

Index (ExG) et le Normalized Difference Vegetation Index (NDVI) ont été identifiés comme 

deux des VI les plus robustes pour prédire le rendement des épinards à différents stades de 

croissance. Un modèle de régression linéaire a été construit avec 45 parcelles calibrées et a 

atteint un coefficient de détermination (R2) de 0,977. L'erreur quadratique moyenne optimale 

(RMSE) obtenue sur un ensemble de données de validation externe est de 0,192 kg/m avec un 

pourcentage d'erreur absolue moyenne (MAPE) de 9,0 %. Les cartes de rendement produites ont 

servi de base à la prise de décision en matière de récolte agricole et de gestion des cultures.   
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Chapter 1. Introduction 

1.1 Background 

 The world is facing food challenges due to the rapidly growing global food demand, 

environmental degradation, and extreme weather disasters [1-3]. Food security requires the 

sustainability of agricultural resources, tracking agriculture production processing and timely 

adjustments reflected in the policies related to food security [4]. Precision Agriculture (PA) 

provides solutions using a variety of techniques including sensors, machine vision, and spatial 

analysis to conduct effective assessments of crop conditions and to advise on site-specific crop 

management while maintaining environment quality. Notwithstanding the success of numerous 

PA applications since the mid-1980s, obstacles remain in adapting PA techniques for use in 

commercial agriculture [5]. In a commercial setting, it is preferred to have yield prediction as 

early as possible to arrange harvesting activities with limited resources including labor, 

protection and storage, and supply chain [6-8]. However, the uncertainties and variations in real-

world farming pose a challenge to develop accurate and rapid yield prediction. 

 The traditional measurement of the physiological characteristics of plants is typically 

conducted manually in the field. Such measurement is time-consuming, labor-intensive, and 

destructive. The advancements in remote sensing (RS) have expanded the scope and capabilities 

of sensors, enabling retrieving plant phenotypes with exceptional spatial, spectral, and temporal 

resolution without destruction [9, 10]. With imagery obtained from RS, accurate and precise 

measurements and evaluation of crop traits can be obtained in a short time, significantly 

improving site-specific crop management. The quality and quantity of RS data collection are 
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influenced by the setup of the equipment and operations. Instead of counting on rough estimates 

or approximations, it is crucial to conduct extensive testing to develop a thorough protocol for 

data collection and processing.  

Yield mapping is a crucial PA tool for crop management. Early prediction of yield can 

rank the priority of harvesting activities and guide subsequent production processes. Yield 

prediction models are primarily constructed using two categories of algorithms; these are 

machine-learning (ML)-based algorithms and linear regression [11]. ML-based algorithms are 

powerful tools to extract high-dimensional patterns but typically require a sustainable amount of 

data for training. Acquisition of many calibrated samples in commercial farm fields to create the 

training dataset is expensive and destructive. In contrast, statistical regression models can 

effectively describe the relationship between the observations and the dependent variables with 

limited data and computational resources. While previous studies with statistical regression 

models have achieved desirable results in yield prediction tasks, little has been written on yield 

prediction of leafy vegetables with extremely dense canopies. 

 

1.2 Objectives 

The main objective of this study is to investigate the feasibility of conducting fast and 

cost-effective yield mapping of spinach, which is a quintessential leafy vegetable with an 

extremely dense canopy. The proposed yield prediction can be conducted using a multiple linear 

regression model calibrated with a limited number of representative samples. In this study, we 

also aim to explore the representative power of the multispectral UAV imagery scanned from 
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different flight altitudes and to determine the optimal flight height that balances the information 

loss and scanning time. 

This thesis is organized into five chapters, providing a systematic exploration of the 

research objectives. In Chapter 2, we reviewed the background and previous work of RS, yield 

mapping, and statistical considerations related to the development of the yield prediction model. 

In Chapter 3, we introduced the methodology of our experiments, including the protocol applied 

during data collection, the estimation of vegetation indices of the crop canopy traits and 

statistical analyses of the calibrated data. Chapter 4 is devoted to the discussion of the results and 

challenges encountered during the study with proposed solutions. We also discussed the potential 

future work which is an extension of our current study. Chapter 5 summarizes this study and 

provides a conclusion of our experiments and findings. 
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Chapter 2. Literature Review 

2.1 Remote Sensing 

The field of remote sensing (RS) has experienced significant advancements with the 

progression of sensor capabilities, data processing, and information infrastructure. Advanced RS 

techniques have been widely applied for the acquisition of high spatial and temporal solution 

imagery in many application areas. Compared to traditional data collection methods which are 

usually labor-intensive, RS provides a cost-effective and rapid solution to precision agriculture 

(PA) objectives and high-throughput plant phenotyping [12]. There are mainly three kinds of 

platforms used in remote sensing techniques: spaceborne, airborne, and ground-based [13]. 

Spaceborne includes satellites which provide large-scale spatial coverage but at relatively low 

resolution. For example, the spatial resolution of a Moderate Resolution Imaging 

Spectroradiometer (MODIS) image ranges from 250 m to 1000 m. The ground sample distance 

(GSD) of a Landsat satellite image is typically more than 10 m. In addition, the revisitation time 

of a typical satellite RS is 16 days on average, which is not compatible with the short life cycles 

of some crops [14]. Ground-based RS, although suitable for small-scale monitoring, is limited by 

its poor mobility [15]. The capability of Ground-based RS is also restrained by its long scanning 

time and small coverage. Airborne platforms, such as UAVs, provide non-destructive 

assessments with great flexibility [15]. The flexible revisitation period of UAVs and the low 

flight altitude of UAVs enable the acquisition of high spatial and temporal solution imagery. In 

addition, UAVs enable variable customization of flight setups at low operating costs.  
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 In recent years, UAVs have come into prominence for the image acquisition of PA 

applications to assess the above-ground canopy traits of crops. The ground sample distance 

(GSD) of RGB UAV imagery is usually below 5 cm/pixel, providing ultra-high resolution 

imagery for PA applications such as crop growth monitoring, anomaly detection, and plant 

counting [16]. However, one of the limitations of UAVs is their relatively low power capacity, 

less than 2 hours per flight. In studies that require detailed images of crop canopies, the flight 

altitudes employed are usually around 20 m to 30 m [17-19]. However, low-altitude flights 

require a prolonged scanning time and multiple battery recharges that interrupt data acquisition. 

In the outdoor scenario, varied environmental conditions including changes in weather, 

illumination levels and shadows appear and introduce variations in the UAV imagery, resulting 

in decreased quality of the resulting UAV imagery [20]. Thus, employing a higher flight altitude 

while leveraging the information loss and scanning time is crucial to UAV imagery collection.  

 

2.2 Vegetation Index 

Existing studies promote vegetation indices as metrics to track the physiological 

dynamics of key traits of crops such as biomass, leaf area index (LAI), and nitrogen levels. 

Various optical VIs have been developed for qualitative and quantitative assessment of 

vegetative covers by obtaining electromagnetic wave reflectance information from canopies 

using passive sensors [14]. Typically, VIs are calculated by combining optical spectral bands in 

linear, or nonlinear operations. Their design aims to maximize sensitivity to vegetation 

characteristics while minimizing confounding factors such as soil background reflectance and 

atmospheric effects [21, 22]. Besides the RGB bands, other common multispectral bands include 

near infrared (NIR) and red edge (RE). For vegetation, the reflectance in both R and B bands are 
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low while high in the G band. The reflectance from the NIR band is significantly higher than the 

visible bands. However, the resolution of multispectral UAV images is generally lower than 

RGB images. For some models of multispectral sensors, a thermal band is also included to 

capture thermal infrared (TIR) images.  

Normalized Difference Vegetation Index (NDVI) is one of the earliest proposed VIs and 

has been widely used in discriminating vegetation areas from bare soil and water [23, 24]. 

Previous studies determined NDVI to be the most stable VI for LAI estimation [25, 26]. For 

example, [27] demonstrated a strong positive correlation between the NDVI values derived from 

multispectral UAV imagery across the wheat growth cycle and grain yield. Their study examined 

the capability of NDVI to reflect the yield variation resulting from irrigation treatments and 

genotypes. However, many researchers have discussed the limitation of NDVI in terms of its low 

saturation threshold when applied to dense crop canopies [28, 29]. Thus, more sensitive 

multispectral VIs such as Green Normalized Difference Vegetation Index (GNDVI) and RE-

based VIs such as Normalized Difference Red Edge (NDRE), and Chlorophyll Index - Red Edge 

(CI-RE) were used for yield prediction. For example, [30] evaluated the correlations between 

maize yield and 10 VIs and determined CI-RE and NDRE as the most promising VIs for maize 

yield prediction. [31] identified the G-B VI as the most robust VI for barley leaves across four 

growth stages. It demonstrated that specific VIs work effectively at certain growth stages of 

crops but are inadequate at other stages. When applied to different vegetation cultivars and 

environments to perform certain tasks, the specific VIs for evaluation and measurement should 

be tailored. In fact, the most robust VIs throughout the target life stages need to be determined. 
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2.3 Crop Yield Prediction and Mapping 

Crop yield prediction is crucial to address global food issues. Effective yield prediction 

can assist crop management and decision-making. It is a complex question that must combine the 

effects from multitudinous factors to determine yield [32]. Many yield predictions focus on the 

effect of genotype, environment, and management [32-34]. In recent years, yield prediction with 

VIs and calibrated yield samples has become popular with the advancements that have been 

made in RS. Most studies collect multitemporal yield data across multiple growth stages and 

possibly even years.  

Based on meta-analyses of crop yield prediction studies, machine-learning (ML)-based 

algorithms and linear regression are the two most frequently used approaches [11]. ML-based 

algorithms such as Neural networks (NN), Random Forest (RF), and Support Vector Machines 

(SVM) have proven their predictive power on crop yield and are leading the trend in recent 

decades [34-36]. Notwithstanding the capability of ML models on high-dimensional 

relationships and patterns, a sustainable amount of data is typically required to train ML models. 

Acquisition of this level of calibrated sample plots in commercial farm fields is expensive and 

destructive. In contrast, statistical regression models offer more cost-effective solutions to 

conduct yield prediction tasks. With a limited amount of data and computational resources, 

regression models explicitly examine the main effects and interactions between independent 

variables on the dependent variable. Previous studies with statistical regression models have 

achieved desirable results in yield prediction for red fescue, corn, soybean, and barley leaves [31, 

32, 37].  

Crop yield maps are important PA tools for site-specific crop management and crop 

monitoring [38]. The yield variation from systematic, image processing and random errors 
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reflected in yield maps can be applied to optimize the processing workflow of yield mapping and 

production. A general workflow of yield mapping includes preprocessing and interpolation of 

raw data, specific processing operations and statistical evaluation of the results [39].  

 

2.4 Statistical Consideration 

2.4.1. Multiple Linear Regression 

Linear regression equations are usually approximations of the true relationship between 

several independent variables and one dependent variable. In multiple linear regression, the 

model has multiple regressors to describe the linear relationship between the regressors and the 

dependent variable. A general equation for a linear regression model is presented in (1). We 

consider the standard linear regression model: 

𝑦𝑦 =  𝑋𝑋𝑋𝑋 + 𝜖𝜖, (1) 

where 𝛽𝛽 is a 𝑞𝑞 × 1 vector for regression coefficients; 𝑋𝑋 is an 𝑛𝑛 × 𝑞𝑞 matrix with the first column 

filled with ones; 𝜖𝜖 is an 𝑥𝑥 × 1 vector of unobserved random errors following 𝑁𝑁(0,𝜎𝜎2). 

There are four assumptions of linear regression that should be examined before making 

inferences and predictions using the linear regression model [40, 41]. The assumptions are listed 

as follows: 

1. Normality: The residuals of the model are normally distributed.  

2. Homoscedasticity: The variance of the error term, 𝑉𝑉𝑉𝑉𝑉𝑉(𝜖𝜖), remains the same among the 

independent variables.  

3. No autocorrelation: The residuals are independent of each other.  
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4. Multicollinearity: No pair of variables are highly multicollinear with each other.  

These assumptions can be verified using residual diagnostic plots after fitting a linear regression 

model. Transforming variables can be applied to correct assumption failures. For example, if the 

normality assumption is violated, a potential solution is to apply the Box-Cox transformation 

[42]. The Box-Cox transformation considers an optimal exponent λ selected based on the 

observations to transform the dependent variables into close to normally distributed.  

 

2.4.2 Variable Selection 

The criteria for variable selection include the significance criteria, information criteria, 

penalized likelihood, change-in-estimate criterion, and background knowledge [43]. Significance 

criteria are usually applied to decide the inclusion of independent variables. Hypothesis tests are 

the most popular significance criteria tool. The information criteria are mainly designed to 

measure model performance among a set of candidate models. For example, the Akaike 

information criterion (AIC) and the Bayesian information criterion (BIC) apply a penalization 

term on the model performance in proportion to the number of parameters included. Both AIC 

and BIC are maximum likelihood estimate-driven methods to evaluate the goodness-of-fit. For 

penalized likelihood, the least angle selection and shrinkage operator (LASSO), is used for high-

dimensional model selection. Similarly, elastic net regularization and ridge regression are also 

not suitable to be applied to datasets of small sample sizes.  

For correlation and multicollinearity among independent variables, correlation matrix 

plots provide explicit visualization of the degree of correlation. Variance inflation factor (VIF) 
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and condition index can be applied to determine the degree of multicollinearity to avoid the 

reduction in the significance of the independent variables.  

Stepwise linear regression iteratively constructs a regression model by adding and 

removing independent variables and testing the significance by each iteration. However, 

stepwise linear regression has been criticized in multiple studies due to its proneness to 

overfitting, poor interpretability as well as biased and unreliable results [44, 45]. However, 

stepwise linear regression remains a popular tool for variable selection. Under some 

circumstances, a regression tree (RT) is considered an alternative to stepwise linear regression 

but more powerful in terms of combining interactions between independent variables. However, 

RT is also prone to overfitting and is not interpretable when the splits become very large.  

 

2.4.3. Prediction Performance Evaluation 

In this section, we discuss the evaluation of a fitted model from two aspects, goodness-of-

fit, and predictive performance. While goodness-of-fit shows how the fitted model met the 

assumptions and performed on the same fitting dataset, the predive performance is used for 

internal and external validation [46, 47]. The most common performance measurement is the 

coefficient of determination (R2) which measures the proportion of variation in the dependent 

variable that is explained by the regressors. However, R2 is sensitive to the number of 

independent variables included in the model. The adjusted R2 penalizes the number of regressors. 

Depending on the objectives and dataset, goodness-of-fit tests such the Pearson’s Chi-Square 

test, G test and Kolmogorov-Smirnov tests can be applied.  
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 Internal and external validation is used for verification of the predictive power of the 

fitted model. With limited data, internal validation based on resampling methods conducts model 

validation on the data from the same population fitting. Cross validation exemplifies the 

resampling process where the original dataset is randomly split into the training dataset and 

validation dataset. External validation, on the other hand, is conducted with another dataset, 

which might be different from the training dataset and thus, tests the robustness and 

generalization of the fitted model. It is suggested that a model with poor performance in internal 

validation is likely to fail in external validation [48, 49]. Thus, the order of validation is usually 

internal to external to avoid wasting resources on a poor model.  

The metrics of model performance include root mean square error (RMSE), main 

absolute error (MAE) and mean absolute percentage error (MAPE). A survey on crop yield 

prediction identifies RMSE as the most used metric [11]. 

 

2.4.4. Influential Observations and Outliers 

Influential points are defined as observations that change the slope of the line and have a 

significant influence on the fit of the model. These influential points can have a considerable 

impact on the regression solution and their inclusion needs to be considered carefully. Based on 

the diagnosis of regression, we consider three influential detection approaches, DFFITS, 

DFBETA and Cook’s distance, which is based on deletion of one observation at a time [50]. 

DFFITS measures the changes in the predicted value for each observation, DFBETA 

measures the changes in the coefficients with one observation deleted at a time and Cook’s 
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distance measures the overall changes in the fitted values. The formulas for the three 

measurements are as follows: 

We consider the estimated regression model: 

𝑌𝑌� =  𝑋𝑋𝛽̂𝛽, (2)  

where 𝛽̂𝛽 denotes the estimated coefficient vector 𝛽𝛽, 𝑋𝑋 denotes an 𝑛𝑛 × 𝑝𝑝 matrix of 

explanatory variables. 

DFFITS =  
�𝑦𝑦�𝑖𝑖 − 𝑦𝑦�𝑖𝑖(𝑖𝑖)�

�𝑠𝑠(𝑖𝑖)2ℎ𝑖𝑖𝑖𝑖
, (3) 

DFBETAS𝑖𝑖𝑖𝑖 =
𝛽̂𝛽𝑗𝑗 − 𝛽̂𝛽𝑗𝑗(𝑖𝑖)

�𝑀𝑀𝑀𝑀𝐸𝐸𝑖𝑖(1 − ℎ𝑖𝑖𝑖𝑖)
 , (4) 

Cook′s Distance =  
∑  �𝑦𝑦�𝑗𝑗 − 𝑦𝑦�𝑗𝑗(𝑖𝑖)�

2𝑛𝑛
𝑗𝑗=1

𝑝𝑝 × 𝑀𝑀𝑀𝑀𝑀𝑀
, (5) 

where 𝑠𝑠(𝑖𝑖)2 denotes the estimated error standard variance when the 𝑖𝑖𝑡𝑡ℎ row of 𝑋𝑋 and 𝑦𝑦 have 

been deleted, 𝑝𝑝 denotes the number of regression parameters, ℎ𝑖𝑖𝑖𝑖 denotes the 𝑖𝑖𝑡𝑡ℎdiagonal entry of 

the hat matrix, 𝐻𝐻 = 𝑋𝑋(𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇, 𝑀𝑀𝑀𝑀𝑀𝑀 denotes the mean squared error, 𝑝𝑝 denotes the number 

of regression coefficients, 𝛽̂𝛽𝑗𝑗 and 𝛽̂𝛽𝑗𝑗(𝑖𝑖) denote the 𝑗𝑗𝑡𝑡ℎ estimated regression coefficient with and 

without the 𝑖𝑖𝑡𝑡ℎ observation being included in the regression model, respectively, and 𝑦𝑦�𝑖𝑖  and 𝑦𝑦�𝑖𝑖(𝑖𝑖) 

denotes the predicted value of 𝑖𝑖𝑡𝑡ℎ observation of with and without the 𝑖𝑖𝑡𝑡ℎ observation being 

included in the regression model, respectively.  
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Chapter 3. Materials and Methods 

3.1 Data Collection 

Field experiments were conducted in four spinach fields in 2021 and 2022 at VegPro 

International Inc., a commercial farm in Sherrington, Quebec, Canada. The overall data 

collection and processing procedure is described in Figure 1.  

 

Figure 1. The data collection and processing protocol during the 2021 and 2022 growing seasons 

(a) The MicaSense ALTUM-PT multispectral sensor was calibrated with a MicaSense Calibrated 

Reflectance Panel (b) One of the GCPs placed in Field CA303. The white flags marked the GCP to 

prevent potential farm activity damage. (c) The RGB composite of the multispectral orthoimage obtained 

on July 15, 2022 (d) Three representative sampling areas with low, intermediate, and high biomasses that 

were manually harvested on July 22, 2022. 
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A DJI Phantom 4 Pro Drone with a 1-inch 20MP CMOS sensor (DJI Phantom 4 Pro 

Drone, SZ DJI Technology Co., Ltd., Shenzhen, China) was used to capture RGB photos, and a 

12MP MicaSense Altum-PT sensor (MicaSense Altum-PT Sensor, MicaSense Inc., Seattle, 

USA) was attached to a DJI Matrice M600 Pro (DJI Matrice M600 Pro Drone, SZ DJI 

Technology Co., Ltd., Shenzhen, China) for multispectral image acquisition. The multispectral 

sensor has six bands (red, green, blue, near-infrared, red edge, and thermal) and was calibrated 

using a MicaSense Calibrated Reflectance Panel before the image collection. Figure 1(a) 

illustrates the calibration device and operation for the multispectral sensor before the flights. Six 

ground control points (GCPs) were placed across the field for georeferencing of the UAV 

images. Figure 1(b) illustrates an example of a GCP placed in the field. Two handheld global 

navigation satellite system (GNSS) receivers (Garmin eTrex 20x, Garmin Ltd., Olathe, USA) 

were used to record the geographic coordinates of the GCPs. The accuracy of the GNSS 

receivers was below 2 m.  

Table 1 summarizes the information from the datasets collected over the two years. 

Throughout this period, a total of three rounds of image data collection were conducted, with one 

round in 2021 and two rounds in 2022. The spinach beds in all the tested fields were straight and 

parallel.   

Table 1. Dataset Summary 

Field Seeding Date UAV Imagery Collection Date Harvesting Date 

CA200 -- 2021-Jul-15, 2021-Jul-19, 2021-Jul-21 -- 

CA303 2022-Jun-27 2022-Jul-15 2022-Jul-20 (Manual) 

CA304 2022-Jul-04 2022-Jul-15 2022-Jul-22 (Manual) 

CA221 2022-Aug-22 2022-Sep-12 2022-Sep-15 (Machine) 
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The first round of data collection in 2021 produced a testing dataset of RGB and 

multispectral imagery of a spinach field in its early, middle, and late stages. The time duration of 

each stage was less than one week. Figure 2 illustrates 6 orthomosaic maps constructed from the 

three stages. The testing dataset collected in 2021 employed a flight height of 70 m for the RGB 

sensor (ground sample distance (GSD) =1.92 cm/pixel) and 100 m for the multispectral sensor 

(GSD = 4.32 cm/pixel for the multispectral bands and GSD = 67.80 cm/pixel for the thermal 

band). As shown in Figure 2, both the RGB and multispectral images did not have sufficient 

details for canopy feature extraction, especially when describing canopy density levels. 

Additionally, the radii of sparse parts and unvegetated hollows observed in the spinach beds 

usually vary from 2 cm to 5 cm. Thus, the GSD should be equal to or smaller than the radii to 

accurately capture these unvegetated areas. Due to the higher resolution of the RGB sensor as 

compared to the multispectral sensor, a flight altitude of 70 m was also deemed impractical for 

the multispectral sensor. Thus, we adjusted the flight height to 50 m for both the RGB sensor 

(1.37 cm/pixel) and the multispectral sensor (2.16 cm/ pixel and 33.90 cm/ pixel) to balance 

UAV imagery collection time and canopy details in the imagery. With overlaps ranging from 

75% to 80%, the average time used for scanning the two adjacent fields with 20 beds was 

approximately 0.5 hours. 
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Figure 2. The first round of data collection in 2021 produced a testing dataset of RGB and multispectral 

imagery of a spinach field in its early, middle, and late stages of growth.  

 

The second round of data conducted on July 15, 2022, contained RGB and multispectral 

imagery of two adjacent spinach fields, CA303 and CA304. This dataset was used as the training 

dataset for our multiple linear regression model. Figure 3 shows the crop growth conditions of 

CA303 and CA304 on the same day of the second round of UAV imagery collection. The 

spinach in CA303 had reached its late growth stage and was ready for net installation, which was 

used to protect spinach before harvesting. The spinach in CA304 was in its middle growth stage 

with small leaf sizes. While the canopy in CA303 was dense and covered most parts of the beds, 

the soil in CA304 was not fully covered by the spinach canopy. Based on testing results on the 

first dataset, two VIs, GNDVI and CI-RE, were used as references to process pre-arrival sample 

selections of CA303 and CA304, respectively. Details of the VIs calculation are introduced in 

Section 2.3. The 24 target beds covered in the UAV imagery were partitioned into unit cell sizes 
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with the width for each bed and length of 0.5 m. Additionally, we manually harvested 50 

samples as the ground truth data to calibrate the yield prediction model. The harvested dataset 

consists of a similar number of samples with low, intermediate, and high biomass. Figure 1(d) 

illustrates three representative samples that were measured to have different levels of biomass on 

July 22, 2022. Before the manual harvest, the weeds within the sampling areas were removed, 

and the areas with observable anomalies were excluded from the collected dataset. The actual 

harvested locations of each preselected GNSS sampling area and the corresponding bed indices 

were recorded. The third dataset was collected in September 2022 for external validation for the 

developed prediction model. This dataset contains RGB and multispectral imagery of another 

spinach field, CA221, which was in its late growth stage. This dataset containing 30 sampling 

areas in CA221 was harvested by machine. To imitate the harvesting style of tractors, the farm 

beds were partitioned into unit cells with lengths of 0.5 m and widths matching the respective 

bed (approximately 1.6 m). 
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Figure 3. Fields CA303 and CA304 on the day of UAV imagery collection, July 15, 2022. Field CA303 

was at the late growth stage while CA304 was at the middle growth stage. 
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3.2 Image Processing 

After the image acquisition, photo stitching and orthomosaic generation were conducted 

using Agisoft Metashape (Agisoft Metashape 2.0 professional edition, Acuvec Geospatial, 

Calgary, Canada). The geographic locations of the six GCPs were used to georectify the 

orthoimages. 

 

3.2.1 Orthomosaic Rotation 

The rectangular shape of raised beds offers an advantage in partitioning vertical 

orthomosaic maps. Using bounding boxes to annotate the boundaries of each bed in the field, 

annotation maps can significantly improve image processing, computation, and analysis. 

Leveraging this shape advantage, we propose an orthomosaic map rotation algorithm. First, a 

rectangular box perpendicular to the image's horizontal boundary is identified as the region of 

interest (ROI) for the rotation algorithm, primarily consisting of beds and walkways. The 

position of this ROI remains immutable during rotation. Since rotating large orthomosaic images 

consumes substantial computational resources, we divide the rotation process into an initial 

coarse rotation followed by more precise rotations. In the coarse rotation, we set the rotation 

degree range from 1 to 180 degrees. Afterward, we refine the rotation degree by moving the 

decimal point one place at a time during each iteration. For instance, if 45 degrees is determined 

as the coarse degree for rotation, the following iterations will test from 44.1 to 45.9 degrees, with 

an increment of 0.1 degrees per iteration. Using this approach, the image will only undergo 200 

rotations. Figure 4 illustrates the algorithm finding the optimal rotation degree for an image with 

a specific ROI. It iteratively refines the rotation degree and minimizes the mean column 
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differences within the ROI. The getColumnDiff function calculates the difference between the 

maximum and minimum ExG values within a buffer created around each column in the rotated 

image's ROI. The size of the buffer is set to be approximately the same as the bed in the ROI. 

The algorithm returns the rotation degree that yields the smallest mean column difference. 

Figure 5 illustrates examples of ExG transition within a ROI with accurate and inaccurate 

rotation. As shown in the mean ExG intensity plot of Figure 5, the mean of differences between 

the maximum and minimum mean values of ExG within buffers will only be maximized with the 

optimal rotation degree. As an example, the correctly rotated image shown in the orange plot 

gives an average difference much higher than the inaccurately rotated image shown in blue plot. 
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Figure 4. The algorithm to conduct the orthomosaic map rotation. The algorithm first estimates a coarse 

degree of image rotation in a range of 1 to 180 degrees, then the precise rotation degree is decided with 

the same function.    
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Figure 5. An example area selected as the ROI in the UAV orthomosaic of a spinach field in its early 

growth stage in July 2021 to determine the angle of rotation. A representative ROI of a relatively small 

size can significantly reduce the computation time of the rotation algorithm and reduce the portion of 

objectives unrelated to the rotation, such as the drive roads. 

 

3.2.2 Bed Boundary Detection 

Image thresholding and binarization were applied on the rotated images to distinguish 

raised beds and walkways between beds. The ExG-composite was used as the grayscale image 

for image binarization. A threshold was determined based on rough testing to classify the target 

orthomosaic image into the foreground with green canopy and the background that consists of 

soil and other objects. Following binarization, small objects with a limited number of connected 

components were eliminated since these are likely to be misclassified non-vegetated objects or 

weeds on the walkways. In this study, the threshold was determined by the 25th percentiles of 

the number of connected pixels of all objects included in the binarized image.   
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The subsequent bed boundary identification was carried out on the obtained binary 

image. In field environments, crops and weed often grow outside of delimited planting beds, 

which can complicate the identification of plant rows. To address this issue, we zeroed out all 

pixels present in a column with less than 80% vegetated pixels. This approach improved the 

accuracy of plant row identification by removing the noises. The delineation of vertical 

boundaries for each bed was conducted by iteratively looping through a selected range of rows to 

search for the transition points between zeros (background) and ones (foreground). The selected 

rows should all cross the same number of beds to obtain an equal number of transition points. If 

noise or small objects remain on the walkways of the binarized image, the row will be identified 

and skipped. The horizontal lines that contain the top and bottom nonzero pixels that fall within 

the vertical boundaries of each bed are marked as the corresponding horizontal boundaries. 

Figure 6 illustrates the corresponding pseudocode to identify the vertical boundaries of the beds. 

Since the lengths of beds within a field can be different and discrete, the ROI for boundary 

detection, 𝑅𝑅𝐵𝐵, should include all the targets beds. Otherwise, beds will be skipped during the 

iteration. If the same number of beds is encountered, the algorithm updates the boundaries 

accordingly. The algorithm skips rows with noise on the walkways and returns the final left and 

right boundaries of the beds. 
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Figure 6. The algorithm to conduct vertical boundary delineation. 

 

 In this study, beds were partitioned into uniform-sized cells with annotated boundaries. 

Offset buffers were created for each harvested sample to compensate for the inaccuracy in the 

GNSS coordinates measurements. Figure 7 illustrates an example of the buffered offset created 

for a harvested sample. Due to the GNSS bias, the actual sampling cell might be shifted from the 

preselected sampling area and the measured location. Thus, the two adjacent cells above and 

below the sampling area were used to construct the offset buffer. The statistical metrics of a 

sampling area, including mean, median, and VI computation, were obtained from all pixels 

within its corresponding buffer. 
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Figure 7. The buffer created for a manually harvested sampling area for the training dataset. The buffer 

(annotated by the blue bounding box) covered the three adjacent cells (annotated in white bounding 

boxes, respectively), which were created during the bed partitioning introduced in Section 3.1. The actual 

harvested area (annotated in the green bounding box) for this sample is shifted from its corresponding 

position selected before sample collection (annotated in the red bounding box) due to the bias of GNSS 

receiver. 

 

3.3 Estimation of Vegetation Indices 

A total of 12 multispectral-derived VIs that are related to crop yield and crop health 

conditions are selected as potential variables for the prediction model development. Table 2 lists 

the 12 selected VIs and the corresponding references. Non-zero values for VIs like ExG were 

observed in areas with zero biomass due to the color of the soil and other materials. We define an 

indicator named vegetation fraction (VF) to distinguish vegetated pixels from non-vegetated 

pixels. Specifically, we applied an NDVI threshold of 0.6 to differentiate the spinach pixels and 



36 
 

set the VI values of pixels below this threshold to zero. To decide this NDVI threshold, the 

approximate range of the threshold was first estimated via Otsu’s method [51], followed by 

precise testing on the assessment ability of VF. As a result, VF was defined as the ratio of the 

number of pixels with NDVI > 0.6 to the total number of pixels within the target unit area. 

 

Table 2. Potential VIs for spinach yield prediction 

 

Vegetation Index Computation Formula Reference 

Chlorophyll Index – Red Edge (CI-RE) 
𝑁𝑁𝑁𝑁𝑁𝑁
𝑅𝑅𝑅𝑅

− 1 [52] 

Chlorophyll Vegetation Index (CVI) 
𝑁𝑁𝑁𝑁𝑁𝑁 ⋅ 𝑅𝑅
𝐺𝐺2

 [53] 

Color Index of Vegetation (CIVE) 
0.441𝑅𝑅 − 0.881𝐺𝐺 + 0.385𝐵𝐵

+ 18.78745 
[54] 

Enhanced Vegetation Index (EVI) 2.5 ×
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁 + 6 × 𝑅𝑅 − 7.5 × 𝐵𝐵 + 1
 [28] 

Excess Green Index (ExG) 2𝐺𝐺 − 𝑅𝑅 − 𝐵𝐵 [55] 

Green Leaf Index (GLI) 
2𝐺𝐺 − 𝑅𝑅 − 𝐵𝐵
2𝐺𝐺 + 𝑅𝑅 + 𝐵𝐵

 [56] 

Green Normalized Difference Vegetation Index (GNDVI) 
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺

 [57] 

Modified Green Red Vegetation Index (MGRVI) 𝐺𝐺2 − 𝑅𝑅2

𝐺𝐺2 + 𝑅𝑅2
 [58] 

Nonlinear Vegetation Index (NLI) 𝑁𝑁𝑁𝑁𝑅𝑅2 − 𝑅𝑅
𝑁𝑁𝑁𝑁𝑅𝑅2 + 𝑅𝑅

 [59] 

Normalized Difference Red Edge Index (NDRE) 
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅

 [24] 

Normalized Difference Vegetation Index (NDVI) 
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅

 [23] 

Optimized Soil Adjusted Vegetation Index (OSAVI) (1 + 0.16) ×
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅

𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅 + 0.16
 [60] 
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3.4 Choice of Variables and Sample Size 

The total number of samples in the training dataset was 50, of which two samples were 

non-vegetated areas with zero biomass, and a sample deliberately collected from an area with 

observed anomalies. It was suggested that 10 samples for each variable in a linear regression 

model are the minimum requirement for accurate prediction and inference [45]. Thus, the 

number of variables in our multiple linear regression model was restricted to less than four. We 

first evaluated the empirical correlation matrix to find the VIs with the highest pairwise 

correlation among biomass, VF, canopy temperature and the 12 selected VIs, and avoided 

multicollinearity. Variance inflation factor (VIF) was also applied to assess the collinearity. 

Subsequently, RT and stepwise multiple linear regression methods were then utilized to rank the 

importance of VIs in accounting for the variation in biomass.  

 

3.5 Model Selection and Validation 

We consider a multiple linear regression model as follows: 

𝑌𝑌𝑖𝑖 =  �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖

𝑘𝑘

𝑖𝑖=1

+ 𝜖𝜖𝑖𝑖, (7) 

where 𝛽𝛽𝑖𝑖 are coefficients, 𝑥𝑥𝑖𝑖 denotes the selected VI, 𝜖𝜖𝑖𝑖 denotes the error term and 𝑌𝑌𝑖𝑖 denotes the 

yield. In several cases, the model was fitted without intercept 𝛽𝛽𝑜𝑜 since the yield will be zero 

when the VI and VF are both zero. After fitting, the assumptions of linear models were verified 

by the graphic assessment of residuals. The Box-Cox transformation will be applied to the 

dependent variable, i.e., the yield of the sampling area, if the normality assumption is violated. 

The best model was selected according to the adjusted coefficient of determination (R2), Akaike 
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information criterion (AIC) and Bayesian information criterion (BIC). The optimal model should 

have the lowest values for AIC and BIC with the highest adjusted R2, as this combination 

indicates better model fit and parsimony. After the optimal model was selected, influential 

observation diagnosis was conducted, which was important for our training dataset concerning 

its small sample size [50]. Specifically, we investigated potential outliers and influential 

observations that can distort the regression relationship and violate the assumptions using Cook’s 

distance [61], DFFITS, and DFBETA [50].  

The performance of the model was evaluated by the root-mean-square error (RMSE) and 

mean absolute percentage error (MAPE). A model with low RMSE and low MAPE on the 

validation dataset suggests good predictive power. The evaluation metrics were calculated as 

follows: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
, (8) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑁𝑁

 ��
𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖 
𝑦𝑦𝑖𝑖

�
𝑁𝑁

𝑖𝑖=1

 , (9) 

where 𝑦𝑦𝑖𝑖 represents the measured ground truth yield of the target area, 𝑦𝑦�𝑖𝑖 denotes the predicted 

yield of the target area, and 𝑁𝑁 represents the total number of sampling areas. 

Bootstrapping validation and leave-one-out cross-validation (LOOCV) were conducted to 

evaluate the prediction power of the fitted model on datasets that are of a similar condition as the 

training dataset. We followed the internal-external validation procedure and first conducted 

internal validation for the proposed prediction models. Since poor performance in internal 

validation can foresee the failure of external validation [48, 49], models with inadequate results 
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in the internal validation phase would not be moved on to the external validation phase. For 

models with promising internal validation results, external validation was conducted with the 

third dataset from September 2022 to evaluate the generalizability of the proposed models. 
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Chapter 4. Results and Discussion 

4.1 Image Processing 

Figure 8 illustrates the representative results of each step for the orthoimage processing 

workflow. The original orthoimage in Figure 8(a) was stitched by the Agisoft software. As the 

first step, it was rotated to make all the beds strictly vertical, as shown in Figure 8(b). Figure 8(c) 

shows the resulted image from an optional subsequent step following rotation to add padding to 

the rotated image to eliminate blank spaces generated by the rotation operations. Then, we tested 

and chose an ExG threshold to binarize the rotated orthoimage. As Figure 8(d) shows, small 

objects such as weeds on the walkways were included in the mask. Thus, the next step removed 

objects with less than 100000 pixels in the mask, which was determined by the 25th percentage 

of the number of pixels for all connected objects. After this step, we still observed unclear 

boundaries with the presence of noises on the walkways and unremoved incompletely scanned 

bed in Figure 8(e). We then zeroed out all the columns with less than 80% valid pixels and 

obtained the results in Figure 8(f). The cleared mask was applied on the rotated orthoimage as 

the resulted image shown in Figure 8(g). 
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Figure 8. Representative results derived using the proposed image processing workflow 

 

4.2 Correlations and Model Fitting 

The correlation matrices of the VIs calculated from the 50 harvested samples in CA303 

and CA304 are illustrated in Figure 9. Certain VIs were observed to significantly outperform 

other VIs during specific growth stages, such as the strong correlation between CI-RE, NDRE 

and late-stage biomass shown in Figure 9(a). However, Figure 9(b) shows that CI-RE and NDRE 

were weakly correlated with biomass during the mid-stage. Therefore, these two VIs were not 

robust enough to be applied for evaluating the relationship between biomass and canopy traits 

from mixed growth stages.  
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The results of all the tests conducted, including the correlation matrices in Figure 9, RT 

and stepwise multiple linear regression, consistently suggested that ExG was the most robust VI 

in determining the variation in spinach yield from the mixed growth stages. VF and MGRVI 

were ranked as the second and third most important variables. After comparing several 

combinations of variables and their interaction terms, the following multiple linear regression 

model was built.  

𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 = 11.5859 × 𝐸𝐸𝐸𝐸𝐸𝐸 − 3.4680 × (𝐸𝐸𝐸𝐸𝐸𝐸:𝑉𝑉𝑉𝑉), (10) 

where 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 denotes the yield harvested from a sampling area, 𝐸𝐸𝐸𝐸𝐸𝐸 denotes the median value of 

ExG of vegetated pixels in this sampling area, 𝑉𝑉𝑉𝑉 denotes the vegetation fraction of the sampling 

area, and 𝐸𝐸𝐸𝐸𝐸𝐸:𝑉𝑉𝑉𝑉 denotes the interaction term between 𝑉𝑉𝑉𝑉 and 𝐸𝐸𝐸𝐸𝐸𝐸. There was no evidence of 

collinearity between ExG and VF in this model based on the VIF assessment. According to the 

adjusted R2, AIC, and BIC in Table 3 and the ANOVA table comparison of the models in Table 

4, the model M1, which provided the lowest AIC and BIC as well as a relatively high adjusted R2 

was determined as the best models in terms of parsimony and fitting results. With M1 selected as 

the optimal model, we conducted the influential points diagnosis with the training dataset. Five 

data samples were identified as influential points using Cook’s Distance, DFBETA, and 

DFFITS. The size of the resulting training dataset without the influential points was 45. The 

fitted model satisfied the assumptions of the linear regression model and gave an adjusted R2 of 

0.977. 
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Table 3. Comparison of candidate models 

* Due to the different scales of the Box-Cox transformed model, the AIC and BIC values of M5 and M6 
should not be compared with other untransformed models. However, we rejected the transformation in 

M5 and M6 since the linear assumption was not significantly improved by applying the Box-Cox 
transformation. 

 

 

Table 4. Comparison of the ANOVA tables for the candidate models 

Similarly, M5 and M6 were not included in this comparison due to the scale difference. 

Index Model Adjusted 

 

AIC BIC 

M1 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 =  𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸𝐸𝐸:𝑉𝑉𝑉𝑉 0.9647 593.72 599.33 

M2 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 =  𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑉𝑉𝑉𝑉 + 𝐸𝐸𝐸𝐸𝐸𝐸:𝑉𝑉𝑉𝑉 0.9643 595.29 602.77 

M3 
𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 =  𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐸𝐸𝐸𝐸𝐸𝐸:𝑉𝑉𝑉𝑉 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀:𝐸𝐸𝐸𝐸𝐸𝐸

+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀:𝑉𝑉𝑉𝑉 
0.9657 595.19 606.42 

M4 
𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 =  𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑉𝑉𝑉𝑉 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐸𝐸𝐸𝐸𝐸𝐸:𝑉𝑉𝑉𝑉 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀:𝐸𝐸𝐸𝐸𝐸𝐸

+ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀:𝑉𝑉𝑉𝑉 
0.9649 597.09 610.18 

M5 
𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑑𝑑𝜆𝜆1 =  𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸𝐸𝐸:𝑉𝑉𝑉𝑉, 

𝜆𝜆1 was derived from the Box-Cox Power Transformation 
0.8736 1587.53* 1593.14* 

M6 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑑𝑑𝜆𝜆2 =  𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑉𝑉𝑉𝑉 + 𝐸𝐸𝐸𝐸𝐸𝐸:𝑉𝑉𝑉𝑉, 

𝜆𝜆2 was derived from the Box-Cox Power Transformation 
0.8565 1552.39* 1559.88* 

Index 
Residual Degrees of 

Freedom 

Residual Sum 

of Squares 

Degrees of 

Freedom 

Sum of 

Squares 
F-statistic Pr(>F) 

M1 46 583883     

M2 45 578640 1 5243 0.4154 0.5228 

M3 43 531311 2 47330 1.8748 0.1660 

M4 42 530159 3 1151 0.0912 0.7642 
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Figure 9. The correlation matrices between manually harvested biomass, canopy temperature and the 12 

selected VIs of the training dataset. The magnitude of correlations is indicated by the color intensity of the 

cell. Red cells represent strong positive correlations while blue cells suggest negative correlations (a) 

Correlation matrix of the 15 data points from CA303, in which UAV imagery was collected 5 days before 

harvesting. (b) Correlation matrix of the 30 data points from CA304, in which UAV imagery was 

collected 7 days before harvesting (c) Correlation matrix of all the 50 data points from both CA303 and 

CA304. 
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4.3 Assumption Validation 

We used the graphical assessment of the residuals to examine the assumptions. Figures 

10 and 11 illustrate the graphical assessment obtained from R. Figures 10(a) and 11(a) show the 

residuals against the fitted values. The inward-opening funnel pattern in Figure 10(a) indicates 

that the 𝑉𝑉𝑉𝑉𝑉𝑉(𝜖𝜖) increases as 𝑌𝑌 decreases. We observed the mitigation of the pattern in Figure 

11(b) when the model is fitted without potential outliers. Figures 10(b) and 11(b) are the normal 

probability plot that examines the normality assumption. Both the left and right tails fall off the 

diagonal lines in Figure 10(b), while this violation is solved in Figure 11(b) with the influential 

observations excluded from the model fitting. The scale-location plots shown in Figures 10(c) 

and 11(c) also check the homoscedasticity assumption of the fitted models. Again, the pattern 

observed in Figure 10(c) becomes less obvious in Figure 11(c). Overall, we conclude the 

assumptions are better satisfied without the 5 identified influential points.  
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Figure 10. Assumptions verification of the model fitted with all observations.  
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Figure 11. Assumptions verification of the model fitted without the 5 identified influential observations. 
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4.4 Model Validation 

In our study, internal validation was first conducted using bootstrapping methods and 

Leave-One-Out Cross-Validation (LOOCV). An adjusted R2 of 0.977 (95% confidence interval: 

[0.973, 0.987]) was obtained from 1000 bootstrap datasets, suggesting the stability of the model. 

A LOOCV conducted results in an R2 of 1, with the RMSE equal to 0.305 kg/m. 

Encouraged by the good performance in the internal validation, we conducted external 

validation with the dataset collected in September 2022 to examine the predictive power and 

robustness of the model. The validation dataset, however, was obtained from a later-stage 

spinach field compared to CA303 and CA304. In addition, the field was harvested by machine. 

Figure 12 illustrated two areas that were harvested manually and by machine. We noticed a 

heterogeneity introduced by different harvesting methods. Thus, a scaling factor of 1.198 was 

applied to the predicted results to account for this difference. The scaling factor was calculated 

by fitting a linear regression model with zero intercepting using prediction results versus the 

measured yield. Figure 13 and Table 5 illustrate the validation results. An MAPE of 20.9% was 

obtained over full validation samples. A subset of samples with medium-level of yields provided 

an RMSE of 0.192 kg/m with a MAPE of 9.0%, while the low-yield sample subset and high-

yield sample subset only achieved an RMSE of 0.544 kg/m and 0.501 kg/m with MAPE of 

39.2% and 19.4%, respectively.  
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Figure 12. Comparing the leftovers from manual-harvested and machine-harvested spinach bed (a) A 

sampling area manually harvested in CA304 (b) A section of machine-harvested spinach bed 

 

 

Figure 13. The ground truth yields versus the scaled predicted yield. The model gave a relatively low 

MAPE and RMSE for medium-level yields. 
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Table 5. External validation results from the September 2022 dataset 

 

Figure 14 demonstrates the difference in the x-space between the training and external 

validation datasets. In the external validation dataset, most of the samples had higher ExG and 

VF values than samples in the training dataset. This difference between the training and 

validation datasets undermined an extrapolation issue in the model when applying it to 

unobserved data. 

Ground Truth Yield Range RMSE MAPE 

all validation data points 0.427 kg/m 20.9% 

Yield < 1.49kg/m 0.544 kg/m 39.2% 

1.49 kg/m ≤ Yield ≤ 2.20kg/m 0.192 kg/m 9.0% 

Yield > 2.20kg/m 0.501 kg/m 19.4% 
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Figure 14. VF and ExG of the training dataset and the validation dataset. The validation dataset was from 

a later growth stage than both fields in the training dataset, which resulted in higher ExG and VF values. 

 

4.5 Yield Mapping 

Yield maps were generated as references for potential areas of interest. These maps 

offered overall visualization of field conditions and provided guidance for harvest priority 

ranking and site-specific crop management. In our experiments, the farm beds were partitioned 

into cell areas with a length of 0.5 m or 1 m depending on the areas to be covered in a single cell 

for machine harvest consideration. Such partition style imitated the harvesting style of machines. 

Figure 15 illustrates a map of the predicted yields of the CA303 and CA304 with a cell length of 

1 m. The green colored cells in the map suggested high yields that should be assigned high 

priority during harvest. The red and yellow cells indicate low yields in these areas and potential 

anomalies such as water stress and disease. The map generated a spatial yield distribution that is 
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consistent with ground observations during the study and is suitable for use during the decision-

making process. 

 

 

Figure 15. Predicted yield map for unit areas in fields CA303 and CA304 (unit area length = 1 m) 
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4.6 Discussion 

In this study, UAV imagery was shown to be an effective tool to provide a quality 

representation of the spatial distribution of vegetation quantity and quality across the fields. 

While recent PA techniques are becoming more feasible in commercial agriculture settings, the 

adoption of PA techniques in commercial agriculture still faces barriers, such as the willingness 

of farmers to apply PA techniques [5]. In our study, we encountered multiple limitations in terms 

of the use of UAV imagery in an intensive crop production setting, including the conflicts 

encountered during the data collection steps. For example, due to essential protection operations 

from the weather and farm activities, spinach is normally covered with a net for the second half 

of vegetation and the net is removed shortly before harvesting. Thus, the UAV imagery 

collection took place at least 3 to 5 days before the netting and was used to predict the harvested 

crop. The time gap between the UAV imagery scanning and actual harvest time introduced 

unobserved variance, unquantifiable uncertainty, and confounders. Although relatively low 

vegetation coverage provided moderately uncertain predictions, most of the validation results 

indicated an ability to predict crop biomass to be harvested under 40%. Certainly, later imagery 

data will further reduce the uncertainty.  

We proposed an image processing workflow for effective multispectral UAV imagery 

given the organized rectangular structure of the spinach beds in our study. This workflow is not 

suitable in studies for very sparsely distributed plants without clear plant rows or individual-level 

crop identification with low flight altitudes, as it relies heavily on the presence of well-defined 

rows and structured plant arrangements. Alternatively, NN can be employed to conduct semantic 

segmentation in this scenario [62]. In our dataset, we did not apply any image enhancement 

techniques due to the high color contrast between spinach and soil in the field. In cases where 
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vegetation pixels exhibit small differences from the background pixels, for example, images of 

crops in their early stages, image enhancement algorithms can be applied as additional image 

preprocessing steps to improve the visibility of plant features and structures. Candidate 

algorithms to increase the color contrast include the Retinex-based algorithm [63, 64], histogram 

equalization [65] and gamma correction [66].  

In addition to the timing of image acquisition, contemporary harvest processes provided a 

limited number of harvested crop weight measurements with uncertainties in the location of the 

start and end of each cut. Only 50 samples of 50 × 50 cm were manually harvested for 

calibration to avoid severe destruction on the fields that would result in financial loss to the farm. 

We have also noted that cutting height was operator-defined and varied according to the crop 

conditions. As discussed in Section 4.4, image data calibration using manual harvesting may not 

be representative of machine harvesting. At the same time, machine harvesting did not always 

provide harvested biomass weight per well-defined area.   

Overall, our prediction model fitted well on the training set and produced accurate 

prediction results on internal validation and the medium-level yield external validation samples. 

For the low-yield and high-yield samples in the external validation set, the model failed to 

produce close prediction potentially due to unmatched x-space. Restricted by the production 

plans and activities of the farm, the samples collected for external validation were at a later 

growth stage than the training set sample. Potential factors relating to the heterogeneity in yield, 

such as water stress, fertilization intensity, and diseases, might be unmeasured. These 

confounders related to environment, genotype and their interactions can be estimated from 

further measurement and evaluation [67, 68]. The empirical relationships derived from the data-

driven models greatly depend on the calibrated experimental observations. The predictive power 
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of the model is constrained by the thoroughness of the training dataset and is at risk of 

extrapolation when applied to prediction. In our experiment, two handheld GNSS receivers were 

used to obtain the geographical locations of the samples. While cost-effective, the 2-meter bias 

of these receivers introduces errors in georeferencing. Buffer zones for each sample were 

employed to mitigate such errors. An alternative approach is to apply a real-time kinematic 

positioning (RTK) system to obtain more accurate and precise measurements with a bias of less 

than 3 cm [69]. 

Another source of errors came from the sensitivity of VIs when applying them on such 

extremely dense spinach canopies (i.e., high biomass area). For example, the effectiveness of 

NDVI in describing the vigor of spinach saturates as soon as it came to the middle to late stages 

of spinach growth. On the contrary, RE-derived VIs such as CIRE and NDRE that measure the 

chlorophyll content in the canopy are applicable for the mid-to-late stages of crops but have 

weak performance in the early stages [70, 71]. Thus, the saturation thresholds of VIs require 

further identification to establish their practical effective ranges of yield prediction of different 

crops, especially when mixed growth stages are involved in a dataset. Besides common VIs that 

have been proposed for general assessment, plant-specific and even cultivar-specific VIs can be 

defined using data mining and band fusion algorithms. [72] proposed a generalized vegetation 

index which has learnable weights for R, G, B and NIR bands. However, a substantial amount of 

data is required to train a convolutional neural network to construct the generalized VI.  

During our data collection, we observed that the outdoor conditions in fields, including 

changes in the weather, illumination conditions, and cloud shade, had a significant influence on 

the quality of data collected. In many PA tasks, the dataset usually contains data from multiple 

growth stages and thus consists of multiple UAV images collected from different time slices. 
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Although we can mitigate the variance among images collected during a single flight of data 

collection via output normalization, the variance between data collected on different dates is 

more complicated. To address this issue, future studies might consider collecting data in a 

longitudinal format and analyzing the dataset by a linear mixed effect model. By adopting this 

approach, we increase the accuracy of prediction by accounting for the potential confounding 

factors during data collection and estimation of the variability between different flights, which 

will enable more accurate predictions.    

In this work, we investigated the effectiveness of multispectral UAVs applied to assess 

high-level spinach canopy characteristics and subsequently applied these traits for VI estimations 

and yield prediction. During our testing, we tried to reconstruct the field surface with our UAV 

images. However, the small sizes and the dense canopy of spinach restricted us from achieving a 

precise 3D representation of the field. A potential aspect of future work would be to obtain more 

detailed crop physiological attributes such as plant heights and leaf sizes. This may be achieved 

by applying photogrammetry techniques and LiDARs mounted on tractors [73]. However, such 

ground-based RS is usually much more time-consuming and expensive compared to UAV 

imaging collection, which requires consideration of trade-offs between the coverage area, plant 

phenotyping quality and resource consumption.   

In our study, we also see a significant imbalance between the number of UAV images 

and calibrated yield data. For example, we obtained more than 12000 unit-sized cells from a 

single UAV flight that completed 0.5 hours while having only 50 of these cells calibrated via 

manual harvesting in 2 hours. A prospective strategy to utilize the uncalibrated UAV images is to 

qualitatively assess the condition of the canopies via unsupervised learning techniques or semi-

supervised learning [74]. Unsupervised learning techniques, such as clustering, can be utilized to 
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group similar UAV images together and detect patterns or anomalies. Although lack of accurate 

quantification of the objectives, these techniques can assist in pinpointing areas within the field 

that may need additional attention and prioritize high-yield areas [75, 76]. 

  



58 
 

Chapter 5. Summary and Conclusions 

 In this study, we assessed the potential of conducting spinach yield predictions with VIs 

derived from multispectral UAV imagery acquired from a flight height of 50 m. This study first 

introduced a UAV orthomosaic image processing workflow which can significantly improve the 

efficiency of subsequent tasks. Based on a dataset collected from two adjacent spinach fields in 

their middle and late growth stages, ExG and NDVI-derived VF extracted from the multispectral 

UAV images were determined to be the most robust VIs for multiple growth stages of spinach. 

Compared to some previous studies, the relatively high flight altitude utilized in this study 

greatly shortened the UAV imagery collection time to reduce the possible variance and 

uncertainty induced by outdoor condition while leveraging the information loss due to the lower 

resolution. This study then developed a multiple linear regression model for spinach yield 

prediction using the estimated VIs. Despite using a small dataset with only 50 calibrated 

samples, the model fitted well on the training dataset and produced accurate prediction results on 

the medium-level yield validation samples, which achieved an RMSE of 0.192 kg/m and an 

MAPE of 9.0%. Currently, the predictive power of the model is restricted by the representative 

and accuracy of the calibrated samples. A potential strategy for further improvement is to 

minimize errors and uncertainty induced by the calibrated sample points while increasing the x-

space coverage for the dataset. This can be achieved by collecting data from more growth stages. 

The challenge also lies in quantifying the confounding factors and unknown variables that occur 

between the collection of UAV imagery and harvest activities.  
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