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Parametric models for combined failure time data from an incident

cohort study and a prevalent cohort study with follow-up

Abstract:

A classical problem in survival analysis is to estimate the failure time distribution from right-

censored observations obtained from an incident cohort study. Frequently, however, failure time data

comprise two independent samples, one from an incident cohort study and the other from a prevalent

cohort study with follow-up, which is known to produce length-biased observed failure times. There

are drawbacks to each of these two types of study when viewed separately. We address two main

questions here: (i) Can our statistical inference be enhanced by combining data from an incident

cohort study with data from a prevalent cohort study with follow-up? (ii) What statistical methods

are appropriate for these combined data? The theory we develop to address these questions is based

on a parametrically defined failure time distribution and is supported by simulations. We apply our

methods to estimate the duration of hospital stays.
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1 Introduction
In a medical study, researchers may wish to estimate the distribution of the du-
ration of a disease or medical status. The data that are available depend on the
study design. For example, the French Pulmonary Arterial Hypertension Network
prospectively followed a cohort for three years for the occurrence of pulmonary
arterial hypertension (PAH) [10]. The times between diagnosed PAH and death
comprised the time-to-event data. Subjects who entered the study already diag-
nosed with PAH formed a prevalent cohort whereas those who had onset of PAH
during the study period formed an incident cohort. Thus, the study design resulted
in observed time-to-event data of two types. Similarly, the Nun Study of Aging and
Alzheimer’s Disease was a prospective observational study in which the enrolled
subjects were classified either as incident or prevalent cases [15]. Outside the field
of medical research, examples of combined incident and prevalent cohort data can
be found in the areas of finance, sports analysis and public policy [6, 8, 28].

Statistical procedures for data arising exclusively from either an incident or
prevalent cohort have been thoroughly examined in the survival analysis literature.
When failure time data are subject to random right-censoring, the Kaplan-Meier
estimator can be used to consistently estimate the unknown survivor function non-
parametrically [3, 13]. Alternatively, the parametric maximum likelihood proce-
dures outlined by Kalbfleisch and Prentice may also be used [12]. For data that are
generally left-truncated and right-censored, the survivor function may be estimated
non-parametrically using an altered form of the Kaplan-Meier estimator sometimes
called the Tsai, Jewell and Wang (TJW) estimator [22, 27, 33]. However, if the
initial dates of the failure times are assumed to arise independently from a station-
ary Poisson process resulting in uniform truncation times, sharper inference may
be made [4]. Under this assumption of stationarity, Asgharian et al. derived the
non-parametric maximum likelihood estimator (NPMLE) of the survivor function,
and established its asymptotic properties [4]. The asymptotic properties of the TJW
estimator, appropriate under arbitrary left-truncation, but less efficient than under
stationarity, are given in [22]. An alternative option is to assume a fully parametric
model for the survivor function, while allowing the truncation distribution to be ar-
bitrary or, if justifiable, to be uniform. The asymptotic properties of the MLEs in
either of these two settings follow from standard likelihood theory, with modifica-
tions for length-bias and censoring [5].

Frequently however, failure time data comprise two independent samples,
one from an incident cohort study and the other from a prevalent cohort study with
follow-up. There are drawbacks to each of these two types of study when viewed
separately. Briefly, pure incident cohort studies require lengthy follow-up, first to
capture a sufficient number of incident events and thereafter, to capture a sufficient



number of uncensored failure times. Often cost and logistical constraints preclude
extensive follow-up and consequently, the NPMLE of the survivor function is left
undefined for a large part of its support. Prevalent cohort studies with follow-up suf-
fer less from these drawbacks since failure intervals are by definition, intercepted
“midstream” at the start of follow-up. Moreover, even with restricted follow-up, in-
creasing the sample size of the initial cohort will lead to improved coverage of the
support of the targeted survivor function; there is improved coverage because there
is no constraint on the initiation dates of those entering the initial prevalent cohort.
On the other hand, since the subjects who comprise the prevalent cohort are deter-
mined by screening a larger cohort cross-sectionally, their observed failure times
are subject to left-truncation and biased. They are therefore, not representative of
the underlying survival distribution. Although the observed failure times from a
general prevalent cohort study with follow-up are biased, we reserve the expression
length-biased for the particular setting in which the underlying incidence process is
a stationary Poisson point process [4]. Under general left truncation, the TJW es-
timator, can sometimes yield visibly poor estimates of the survivor function, when
used for data collected in a pure prevalent cohort study with follow-up [18, 32]

Exploiting the respective advantages of these two types of study, Wolfson
et al. show that combining these data can have considerable benefit in the arbi-
trary truncation distribution model [32]. Importantly, the TJW estimator is the
NPMLE and its asymptotic properties may be established in this combined set-
ting [16]. However, when a uniform truncation distribution may be assumed (that
is, “under stationarity”) in the combined cohort setting, the NPMLE is not simply
the NPMLE obtained from a pure prevalent cohort study with follow-up by set-
ting some of the truncation times equal to zero. These zero-truncation times are
not consistent with their assumed uniformity. A non-parametric estimator of the
survivor function may nevertheless, be obtained [24, 25]. Unfortunately, there is
a major drawback to non-parametric estimation under stationarity in this setting;
the asymptotic properties of the NPMLE under random informative censoring are
unknown and remain an open problem (see [7], Problem 6.4).

In this article, under stationarity, we therefore propose the use of parametric
models for the survivor function with combined data. Although the use of para-
metric models means a loss of model robustness, we show in this article that this
drawback is offset by the availability of distributional properties for our parametric
estimators. This viewpoint is supported to some extent by Miller who compares
the performance of common failure time parametric survival models to the Kaplan-
Meier estimator [17]. We establish consistency and asymptotic Normality of the
MLEs. We note that the estimators are not functions of identically distributed ran-
dom variables since one set is length-biased (from the prevalent cohort) and the
other is not (from the incident cohort). Further, we do not impose any structure for



the onset process of the incident cases. Imposing a structure on the onset process for
the incident cases may be a restriction which we wish to avoid in a meta-analysis.
A further complication is that the failure times from the prevalent cohort are in-
formatively censored while those from the incident cohort are non-informatively
censored. Consequently, derivation of the asymptotics requires some care.

Several authors have considered scenarios that allow for a combination of
incident and prevalent cohort failure time data, under various stationarity assump-
tions. In the field of geology, Laslett proposed a procedure for estimating the bivari-
ate distribution function of lengths and angles of different types of cracks in an ob-
served rock face [14]. Subsequently, Wijers and van der Laan considered Laslett’s
estimator in the one-dimensional case and derived its associated asymptotic prop-
erties under the assumption of an underlying stationary Poisson onset process for
all initiating events, both inside and outside a window of observation [23, 29]. In
particular, the incident cases that arise in the observation window are assumed to be
generated by the same homogeneous Poisson process as to the left of the window.
We do not impose this restriction. Importantly, the setting of Wijers and van der
Laan permits only administrative censoring. This precludes the possibility of (ran-
dom) censoring due to the loss of follow-up, which is a hallmark of most medical
cohort studies. Vardi proposed an EM algorithm for non-parametric estimation of
the survivor function for combined data allowing for random censoring [24]. He
was unable to assert that his estimator is the NPMLE nor was he able to establish
the distributional properties of his estimator (see [7] reference cited above). Saarela
et al. considered a conditional likelihood method for making inferences about the
incidence rate using combined cohort data [19]. However, their goal was entirely
different from ours. They used simulations to compare their methods to analyses
based on prevalent cases only.

The remainder of the article is laid out as follows. In Section 2, we define
the notation for combined cohort failure time data. We give the joint likelihood
function in Section 3 and state the main theorem on the consistency and asymp-
totic Normality of the MLE under certain regularity conditions (a detailed proof is
given in the supplementary materials). Through simulations we examine how the
performance of the combined cohort MLE varies when the proportion of incident
and prevalent cohort subsample sizes change while the grand sample size remains
fixed, as well as when the chosen parametric model is misspecified. In Section 5,
we apply our methods to estimate the durations of stays in a Montreal area hospital.
Section 6 contains some concluding remarks.



2 Notation
To construct the combined likelihood function, we begin by defining the data that
arise from the contributing incident and prevalent cohorts separately. We assume
that all failure intervals of interest begin with initiation times (or dates), which for
simplicity of exposition we shall call onset times (dates). Failure intervals will then
be taken to be “disease” durations.

Let T denote the underlying failure time random variable with parametric
density function fU(·;θ) and parametric survivor function SU(·;θ). An incident
cohort comprises a cohort of subjects who are determined to be disease-free at
some time origin, and who are followed for a fixed period of time. In this time
period, some of the subjects (called incident cases) will experience disease onset
and by the end of the study, some of these incident cases will either yield fully
observed or randomly right-censored failure times. We shall assume that there is
no cohort effect so that the dates of disease onset play no role other than in the
determination of the fully observed or right-censored disease durations; thus, in
the incident cohort we shall allow the incidence process to be arbitrary. Let C
be the underlying incident cohort censoring random variable with non-parametric
probability density function and survivor function, fC(·) and SC(·), respectively.
Let n onsets occur in the study period and for i ∈ {1,2, ...,n}, let the observed data
consist of the pairs (Xi,δi) = (min(Ti,Ci),δi) where δi = 1 if Ti≤Ci and 0 otherwise
for i ∈ {1,2, ...,n}.

For the prevalent cohort, let Z j denote the onset date of subject j for j ∈
{1,2, ...,k}. We note, in advance, that only a subset of these k onset dates will
be observed, being the onset dates of those who comprise the prevalent cohort.
Without loss of generality, we assume the start date of follow-up of those with
prevalent disease is a fixed constant R. We call this prevalence day. This setup is
easily extended to one that allows for staggered entry of the prevalent cases. We
also assume that {Z j, j = 1,2, ...,k} arise from a stationary Poisson process. We
define the truncation times Ã j = R−Z j for j ∈ {1,2, ...,k}. The truncation times
are therefore independently and uniformly distributed on every fixed interval [a,R).
Let T ∗1 ,T

∗
2 , ...,T

∗
k be the i.i.d. failure times of all those with onset dates prior to

R. We assume that T ∗i ∼ fU(·;θ), E(T ∗i ) = µ(θ), and that subject i is recruited
into the prevalent cohort if T ∗i ≥ Ãi. We denote the left-truncation time of subject
i, who is recruited into the prevalent cohort, by Ai and the residual life time of this
subject by Bi for i ∈ {1,2, ...,m} where m ≤ k. The Ais and Bis are equivalent, re-
spectively, to the backward and forward recurrence times of renewal theory. Note
that the Ais are not uniformly distributed as they form a selected subset of the uni-
formly distributed Ãis. We further assume that each Bi, i ∈ {1,2, ...,m} is subject
to potential random right-censoring by the random variable C∗i with non-parametric



density function and survivor function, fC∗(·) and SC∗(·), respectively. Thus, the
observed prevalent cohort is comprised of m i.i.d. triples of random variables
(X∗j ,A j,δ

∗
j ) = (min(B j,C∗j ),A j,δ

∗
j ) where δ ∗j = 1 if B j ≤C∗j and 0 otherwise where

the observed failure/censoring times are given by Yj = X∗j +A j for j ∈ {1,2, ...,m}.
We denote the total sample size of the incident and prevalent cohorts by

l = n+m. Let γ j for j ∈ {1,2, ..., l} be the deterministic indicator function denoting
whether the observed jth failure/censoring time belongs to the incident or prevalent
cohort subsample. The combined cohort is thus comprised of l independent but not
identically distributed quadruples of observations (X jγ j +Yj(1− γ j),δ jγ j +δ ∗j (1−
γ j),A j(1− γ j),γ j) where γ j = 1 if observation j is from the incident cohort and 0
otherwise, for j ∈ {1,2, ..., l}. For a graphical representation of the observed cohort
data, see Figure 1.

3 Estimation
For n i.i.d. observations from an incident cohort alone, under the assumption of
non-informative random right-censoring, the likelihood function for θ is given by

LI(θ) ∝

n

∏
i=1

f δi
U (xi;θ)S1−δi

U (xi;θ) (1)

To ensure Equation (1) yields an MLE of θ contained in the parameter space Θ,
we assume that not all n observations are censored. Studies with short follow-up
may yield a high proportion of censored incident cases, which can be problematic
for inference based on purely incident cohort data. However, under stationarity, the
censoring mechanism is informative for a cohort of purely prevalent cohort data and
the censored observations provide direct information on the failure time distribution
beyond the information that failure would have occurred after them. Therefore,
allowing for the addition of prevalent cases in the observed sample helps alleviate
this problem. Under stationarity, for a pure prevalent cohort, the likelihood for θ is
given by

LP(θ) ∝

m

∏
j=1

f
δ ∗j
U (y j;θ)S

1−δ ∗j
U (y j;θ)

µ(θ)
(2)

where µ(θ) =
∫

∞

0 x fU(x;θ)dx [5].
It is worth noting that the likelihood given in Equation (2) does not require

knowledge of the individual backward/forward recurrence times unlike the case of
general left truncation [27], and estimation can be based solely on their sum. Under
the assumption of between-subject independence in the combined cohort, the joint



Figure 1: A graphical representation of a sample of combined incident and preva-
lent cohort right-censored failure time data. The filled circles represent the onset
dates, the open circles represent the calendar dates of censoring and the crosses
represent the calendar dates of failure. The incident cohort subsample consists of
failure/censoring times with onset after prevalence day. The prevalent cohort sub-
sample consists of failure/censoring times for which onset occurs prior to preva-
lence day where the associated failure time surpasses prevalence day.



likelihood function, LC, can be expressed as the product of the likelihoods given in
Equation (1) and Equation (2), yielding:

LC(θ) = LI(θ)×LP(θ)

∝

n

∏
i=1

f δi
U (xi;θ)S1−δi

U (xi;θ)
m

∏
j=1

f
δ ∗j
U (y j;θ)S

1−δ ∗j
U (y j;θ)

µ(θ)

(3)

We denote the MLEs, obtained through maximization of Equations (1)–(3) using
the incident, prevalent and combined cohort data, respectively, by θ̂ I , θ̂ P and θ̂C.
As the sample data in the incident and prevalent cohorts arise from different sam-
pling schemes, it follows immediately that the three proposed estimators are dis-
tinct. For pure incident and pure (identically distributed) prevalent cohort failure
time data, it has been shown that the respective MLEs for θ are both consistent and
asymptotically Normally distributed [5, 11, 12]. However, in the combined cohort,
the data do not arise from a single sampling scheme and are not identically dis-
tributed. We extend the “pure cohort asymptotic properties” of the parametric MLE
to the combined cohort case through Theorem 1.

Theorem 1. Let the underlying absolutely continuous failure time distribution func-
tion be given by F(·;θ 0) where θ 0 ∈Θ⊂Rk. Let θ̂C denote the MLE of θ 0 obtained
by maximization of Equation (3). Let Γ̄(θ 0) be some positive definite matrix. Then,
as n+m→ ∞

1. θ̂C
P−→ θ 0

2.
√

n+m(θ̂C−θ 0)
D−→N (0, Γ̄−1(θ 0))

Proof. Refer to the supplementary materials.

Remark: Following [9] and appealing to the law of large numbers,

Γ̄(θ 0) =−αE
(

d2

dθ
2
0
[δi log( fU(Xi;θ 0))+(1−δi) log(SU(Xi;θ 0))]

)
− (1−α)E

(
d2

dθ
2
0

[
δ
∗
j log( fU(Yj;θ 0))+(1−δ

∗
j ) log(SU(Yj;θ 0))

])
+(1−α)

(
d2

dθ
2
0

log(µ(θ 0))

)
.

(4)



where α is the limiting proportion of the number of incident cases to the total size of
the combined cohort. An empirical estimator for the asymptotic covariance matrix
(i.e. the observed Fisher information) is then given by

Γ̂(θ) =− α̂
1
n

n

∑
i=1

(
d2

dθ
2 [δi log( fU(Xi;θ))+(1−δi) log(SU(Xi;θ))]

∣∣∣∣
θ=θ̂C

)

− (1− α̂)
1
m

m

∑
j=1

(
d2

dθ
2

[
δ
∗
j log( fU(Yj;θ))+(1−δ

∗
j ) log(SU(Yj;θ))

]∣∣∣∣
θ=θ̂C

)

+(1− α̂)

(
d2

dθ
2 [log(µ(θ))]

∣∣∣∣
θ=θ̂C

)
.

(5)

where α̂ = n
n+m .

4 Simulations
We used simulated data sets to evaluate the performance of our parametric MLE,
controlling the sample sizes and parameter values. In each simulation, we sampled
n observations from an incident cohort and m observations from a prevalent cohort
allowing n and m to vary. For the incident cohort, we sampled n pairs of Weibull
distributed failure times and either constant or Exponentially distributed censoring
times to correspond to subjects that are either followed for a fixed period of time
after enrollment into the study or subjects that are lost to follow-up after enroll-
ment, respectively. In the simulation studies discussed below, we specify the type
of censoring that was assumed for the data generating procedure. For each pair,
we recorded the minimum of the sampled failure and censoring times and whether
the time was observed as a failure. For the prevalent cohort, we sampled a single
onset time from a Uniform distribution with support in the interval (0,100) and
then sampled a Weibull failure time which was added to the sampled onset time.
If the resulting sum was greater than 100, both the sampled onset time and failure
time were retained, otherwise, both were discarded. Weibull parameter values were
chosen such that the implicit right-truncation of the failure times at 100 was negli-
gible. This procedure was repeated until m pairs of (onset, failure time) data were
obtained. For each sampled pair, we censored the forward recurrence time indepe-
nently by either a fixed constant (corresponding to a fixed follow-up period) or by
a random Exponentially distributed censoring time (corresponding to potential loss
to follow-up). We recorded the triples made up of the onset time, the minimum of
the forward censoring and forward failure time and whether the observation was a



failure time. From the observed triples, the failure/censoring lengths were calcu-
lated by summing the backward recurrence times (i.e. 100− sampled onset times)
and the forward failure/censoring times. We obtained a simulated combined cohort
by concatenating the incident and prevalent cohort data sets as well as setting an
additional variable to indicate whether the datum entry was an incident or preva-
lent cohort observation. These simulations were used to highlight, empirically, the
following three assertions about the combined cohort parametric MLE:

1. In a meta-analysis, perhaps obviously, when individual subject level data are
available from two independent cohort studies of different types, the com-
bined cohort parametric MLE will have a smaller standard error than the in-
dividual cohort parametric MLEs.

2. In a combined cohort study with fixed total sample size and short follow-up,
resulting in one cohort being heavily censored and the other being lightly to
moderately censored, the standard error of the parametric MLE using data
from both types of cohort will be smaller than the standard error of the same
estimator when applied to data retrieved from only a single cohort of the same
sample size.

3. The combined cohort estimator may be robust against misspecification of the
parametric model.

We consider the simulation results pertaining to each of the above statements in
order.

Since there is no analytical method for comparing the relative magnitudes
of the asymptotic covariance matrices of the individual and combined cohort para-
metric estimators, we compared the efficiency of the MLEs empirically using sim-
ulated individual cohort failure time data with sample sizes of 250 and 500 over
1000 simulation runs. In the combined cohort case, for each sample size, we used
all available incident and prevalent cohort data (i.e. 250/250 or 500/500). We used
different Exponential censoring distributions to vary the censoring proportion be-
tween 30%, 50% and 70%. We estimated the Weibull distribution parameters for
each of the 1000 simulation runs and computed the sample covariance matrix of
the estimates. We then computed the determinant of the sample covariance ma-
trix to obtain the generalized variance of the parameter pair estimators [30]. We
allowed the failure time parameters to vary to allow for increasing or decreasing
hazard functions. We list the ratios of the generalized variances of the combined
cohort estimators to the generalized variances of the individual cohort estimators
in Table 1. Based on the ratios in Table 1, combining data from both the incident
and prevalent cohorts yields a clear improvement in the magnitude of the gener-
alized variance. Since in the incident cohort we make the standard assumption



Table 1: Ratios of the generalized variance for the maximum likelihood parameter
estimates of the combined cohort parametric estimators relative to the individual
cohort parametric estimators over 1000 simulation runs for varying sample sizes.
Failure times were generated from a Weibull distribution (increasing/decreasing
hazard) with random censoring times generated from an Exponential distribution.

Censoring Percentage
Failure Time Distribution Sample Sizes Cohort Ratio Type 30% 50% 70%

Weibull (2,2) 500/250 Combined/Incident 0.175 0.139 0.0883
(Increasing Hazard) Combined/Prevalent 0.209 0.223 0.253

1000/500 Combined/Incident 0.179 0.144 0.0952
Combined/Prevalent 0.234 0.238 0.251

Weibull (0.5, 1) 500/250 Combined/Incident 0.0596 0.0303 0.00995
(Decreasing Hazard) Combined/Prevalent 0.110 0.114 0.134

1000/500 Combined/Incident 0.0572 0.0336 0.0123
Combined/Prevalent 0.128 0.131 0.145

of non-informative censoring, we find that as the censoring percentage increases,
the ratio of generalized variances of the combined cohort parametric MLE to the
incident cohort parametric MLE decreases. In contrast, because censoring is infor-
mative in the prevalent cohort, we find that as the censoring percentage increases,
the ratio of the generalized variances of the combined cohort parametric MLE to the
prevalent cohort parametric MLE increases. These results show that the combined
cohort parametric estimator inherits the non-informative or informative censoring
properties of the incident or prevalent cohort cases, respectively. Similar results are
presented for the case when the censoring percentages are allowed to vary between
cohorts (see Tables 1 and 2 in the supplementary materials).

When it is feasible to include cases from both prevalent and incident cohort
studies with fixed follow-up periods, consideration must be given to the optimal
proportions of each cohort type. We set a fixed grand sample size of 500 obser-
vations and varied the prevalent/incident subsample sizes in increments of 50 ob-
servations each. We considered the setting in which all enrolled subjects had the
same follow-up period measured either from prevalence day or from the time of en-
rollment for the prevalent or incident cases, respectively. This assumption yielded
failure time data that were only administratively censored by the end date of the
follow-up period. The parameters of the failure time distribution were set to al-
low for either increasing or decreasing hazard functions, respectively. Under the
assumption of an increasing hazard function, approximately 70% of the incident
cases were censored. In contrast, the prevalent cases were only lightly to moder-



Figure 2: Ratios of the generalized variances of the maximum likelihood param-
eter estimates for combined cohort data relative to pure incident cohort data over
1000 simulation runs for varying individual cohort sample sizes. Failure times were
generated from a Weibull distribution (increasing/decreasing hazard) with adminis-
trative incident/forward censoring times for the individual cohorts, respectively.

ately censored. However, under the assumption of a decreasing hazard function,
approximately 70% of the prevalent cases were censored with incident cases be-
ing lightly to moderately censored. We computed the generalized variances of the
parameter estimates over 1000 simulation runs and plotted the ratios of the general-
ized variances of the MLE obtained from combined cohorts of size 500 relative to
the generalized variances obtained from a pure incident cohort of size 500 in Figure
2. From the convexity of the ratio plots, we find that when the incident cohort is
heavily censored (increasing hazard setting) or when the prevalent cohort is heavily
censored (decreasing hazard setting) there appears to be an optimal proportion of
incident to prevalent cohort cases. For example, in the increasing hazard setting,
the optimal proportion is roughly 100 incident cases to 400 prevalent cases. When
the follow-up periods for the individual cohorts are different, resulting in equal cen-
soring percentages, the optimal proportion of incident to prevalent cases appears to
be roughly one half (for further details, see Figure 1 of the supplementary materi-
als). Similarly shaped ratio curves were obtained when the censoring times were
randomly generated and not fixed constants. In general, the convexity of the ratio
curves show that there are improvements to the overall parametric estimation pro-
cedure, aside from the obvious increase in total sample size (as in Table 1), when
combining independent samples of incident and prevalent cohort failure time data.



Table 2: Mean supnorm distances of the estimated survival curves from the true
survival curves for combined cohort data using parametric maximum likelihood es-
timates over 1000 simulation runs. The individual cohort sample sizes were 500
each where the underlying failure times were i.i.d. according to a Weibull distribu-
tion with an Exponential censoring distribution. The three combined cohort models
assumed either Weibull (Comb.1), Gamma (Comb.2) or log-Normal (Comb.3) fail-
ure time distributions.

Censoring Percentage
Estimator Type 30% 50% 70%
Weibull Shape 2.0 Scale 2.0 (increasing hazard)

Comb.1 0.0104 0.0112 0.0125
Comb.2 0.0355 0.0370 0.0408
Comb.3 0.0820 0.0863 0.0963

Weibull Shape 0.5 Scale 1.0 (decreasing hazard)
Comb.1 0.0103 0.0108 0.0118
Comb.2 0.0803 0.0869 0.0993
Comb.3 0.145 0.156 0.179

Weibull Shape 1.0 Scale 2.0 (constant hazard)
Comb.1 0.0101 0.0107 0.0118
Comb.2 0.0101 0.0106 0.0114
Comb.3 0.104 0.110 0.126

To assess the impact of a misspecified parametric model, we generated com-
bined cohort samples of size 1000 (500/500 prevalent/incident cases) for which the
underlying failure times were distributed according to a Weibull distribution with
either increasing or decreasing hazard. We fit the combined cohort parametric MLE
assuming that the failure times arose from either Weibull, Gamma and log-Normal
distributions. For each of these parametric models, we computed the absolute max-
imum distance between the estimated survivor function and true survivor function
for which we averaged the computed distances over 1000 simulation runs, respec-
tively. The simulation results in Table 2 suggest that the MLE in the combined
cohort accommodates a misspecified Gamma model quite well but not so well for a
log-Normal model. In practice, as will be seen in Section 5, the parametric model
should be selected with care.



5 Application
Hospital stay durations may be used as a measure of a hospital’s efficiency in treat-
ing patients after accounting for ‘case-mix’ or variation in types and severity of
illnesses. Hence, they could be used to direct the future management decisions
of various hospital services by hospital administrators or policy makers [26]. We
drew on duration-of-stay records from a Montreal area hospital that provided data
under the Population Health Records platform project at McGill University [20].
This platform links data from administrative sources, clinical records as well as re-
sponses from surveys and then provides a system to access this data in an attempt
to monitor the health of a specific population. Our data consisted of a subset of
duration-of-stay records that had been collected over a period of approximately 17
years. For reasons of confidentiality, the hospital cannot be identified. For brevity,
we shall refer to the hospital as the “PopHR hospital”. The true admission/discharge
dates were anonymized on a day-length integer scale where even the start date of
the 17 year observation window was not divulged. Using a small subset of this
data, our goal was to estimate the distribution of the duration of stays in the PopHR
hospital. An individual’s duration was measured from the date of admission to the
date of discharge or death. Admissions to the hospital based on scheduled surgeries,
childbirth or between hospital/ward transfers were not included in the data. Admis-
sion and discharge dates that were less than 24 hours apart were also not included.
We considered two observation windows of approximately 15 days in length, mea-
sured from days 800-815 (165 incident / 69 prevalent cases) and 1165-1180 (151
incident / 84 prevalent cases), respectively. In the earlier window, approximately
40% and 44% of the incident and prevalent cohort subject failure times were cen-
sored, respectively. Similarly, in the later window, approximately 38% and 34% of
the incident and prevalent cohort subject failure times were censored, respectively.

Using the earlier window of observations as an independent training data
set, we fit Weibull, Gamma and log-Normal parametric models. As we observed the
admission dates for the entire 17 year observation window, we were able to check
for uniformity in the onset dates using graphical methods. We found no reason to
doubt the stationarity assumption of the onset dates. We remark that it is even possi-
ble to check for stationarity using prevalent cohort data, where the underlying onset
process is not fully observed (see [1, 2]). Using the separate incident and prevalent
cohort data, we compared the parametric survival function estimates based on the
Weibull, Gamma and log-Normal distributions, to their respective non-parametric
estimates by calculating the supnorm distances between them. We selected the log-
Normal parametric model as it yielded small supnorm distances for the separate co-
horts. Using the log-Normal distribution, we then found separate cohort estimates
from the data observed in the second observation window. The (parametrically and



Figure 3: Estimated survival functions of hospital stay durations measured from
admission to discharge for a PopHR hospital. The left panel displays the individ-
ual cohort non-parametric estimates (i.e. Kaplan-Meier and length-biased right-
censored NPMLE). The right-panel displays the estimated survivor curves using an
underlying log-Normal parametric distribution.

non-parametrically) estimated survivor functions from the individual cohorts are
displayed, along with the parametrically estimated survivor function obtained by
combining the separate cohort data, in Figure 3. Since the observation window
was restricted to 15 days, the Kaplan-Meier estimate in the left panel of Figure 3
is not defined past 15 days. In contrast, the NPMLE of the survival function using
only the prevalent cohort data is defined past the 15 day mark as the data consists of
longer time durations which were cross-sectionally sampled. Under the log-Normal
parametric model, we found that the median time from admission to discharge was
approximately 4-5 days using the incident cohort data, and approximately 5-7 days
using either the prevalent or combined cohort data. The parametrically estimated
survivor function using the combined cohort data appeared to incorporate the fea-
tures of the individual cohort estimates by fitting closely to the estimated incident
cohort survivor curve for shorter times (< 8 days) and then fitting closely to the esti-
mated prevalent cohort survivor curve for longer times (> 20 days). The combined
cohort estimated survivor curve tends to always be between the individual cohort
estimated survivor curves.



6 Discussion
We use a parametric model in the combined survival data setting of this article
because the asymptotic properties of the NPMLE of the survivor function remain
unestablished at this time. Moreover, we believe that a careful choice of parametric
model can provide a good practical alternative to non-parametric estimation. Com-
bining incident and prevalent cohort data can have benefits in at least four different
ways: (i) Even relatively few incident cases can considerably enhance the infer-
ence when added to a prevalent cohort that has been followed up (see Table 1). (ii)
Conversely, adding a few cases from a prevalent cohort study with follow-up can
considerably enhance the inference from a pure incident cohort, particularly when
study follow-up is short (see Figure 2). (iii) In recent years, many funding agencies
and journals have required researchers to make their subject-level data widely avail-
able. Consequently, individual participant data meta-analyses that are able to use
full study data are becoming more common [21]. Such meta analyses of survival
data could be based on the union of data from incident cohort studies and data from
prevalent cohort studies with follow-up. (iv) In a single study, although the original
intent may not have been to combine the two types of data, it is clear that increasing
the sample size by combining these data (if available) should increase the efficiency
of the parameter estimators. For a study in which both types of data were collected
and where no single unified analysis was carried out, see [31].

We were able to show empirically that, under certain parameter and censor-
ing combinations, the ratios of the generalized variances of the combined cohort
parametric estimator to the generalized variance derived from a pure incident co-
hort, was convex. This suggests that the optimal proportion of prevalent-to-incident
cases occurs at the minimum. However, this ratio depends on the very parameters
one is attempting to estimate. Therefore, one would need rough parameter esti-
mates when designing a future study with intent to use both prevalent and incident
cohorts.
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Parametric models for combined failure time data from
an incident cohort study and a prevalent cohort study
with follow-up - Supplementary Material

1 Proof of Theorem 1
To establish consistency and asymptotic Normality of θ̂C, we note that although the
observations from the combined cohorts are independent, they are not identically
distributed.

Let fLB(x;θ) = x fU (x;θ)
µ(θ) denote the density function of the length-biased fail-

ure times and let h(v;θ)=
∫

w≥v
fU (w;θ)

µ(θ) =
∫

w≥v
1
w fLB(w;θ)dw denote its correspond-

ing survival function (for additional details, see [1]). The required assumptions for
consistency are given in C1−C6:

C1: The parameter space Θ is open subset of Rk

C2: The functions fU(x;θ) and fLB(x;θ) are continuous functions of θ on Θ̄, the
closure of Θ, for almost all x ∈X , the sample space

C3: The functions fU(x;θ) and fLB(x;θ) are identifiable with respect to θ

C4: For any θ ∈ Θ̄, there exists ε1,ε2 > 0 such that∫
X

sup
||γ||<ε1

fU(x;θ + γ)dx < ∞ and
∫
X

sup
||γ||<ε1

fLB(x;θ + γ)dx < ∞

C5: As ||θ || → ∞, limθ fU(x;θ) = 0, limθ fLB(x;θ) = 0 and limθ h(x;θ) = 0 ex-
cept on a set of measure 0 which does not depend on the sequence θ n. For

c > 0,
∫
X

(
sup||θ ||>c f

1
2

U (x;θ)

)2

dx < ∞.

C6: For any θ ∈Θ,
∫

t S
1
2
U(t;θ) fC(t)dt < 1

Lemma 1. Suppose that C1-C4 hold, then

a) For all θ ∈Θ and all γ > 0,

inf
||θ−θ ′||>γ

r2
2, fU , fC(θ ,θ

′)= inf
||θ−θ ′||>γ

∫
c

(
f

1
2

U (c;θ)− f
1
2

U (c;θ
′)

)2

fC(c)dc= k fU
θ
(γ)> 0

inf
||θ−θ ′||>γ

r2
2, fLB,φ (θ ,θ

′)= inf
||θ−θ ′||>γ

∫
x

(
f

1
2

LB(x;θ)− f
1
2

LB(x;θ
′)

)2

φ(x)dx= k fLB
θ

(γ)> 0

where φ(x) = 1
x
∫ x

0 SC(w)dw = P(δ = 1|T +R = x)



b) For all θ ∈ Θ̄,(∫
t
SC(t) sup

||γ||≤ε

[
f

1
2

U (t;θ + γ)− f
1
2

U (t;θ)

]2

dt

) 1
2

= w fU
θ
(ε)→ 0 as ε → 0

(∫
x

sup
||γ||≤ε

[
f

1
2

LB(x;θ + γ)− f
1
2

LB(x;θ)

]2

φ(x)dx

) 1
2

= w fLB
θ

(ε)→ 0 as ε → 0

Proof. Under the assumption of C3, f
1
2

U (x;θ) and f
1
2

LB(x;θ) are identifiable with
respect to θ . Let

H( f ,g) =
(

1
2

∫
( f

1
2 (x)−g

1
2 (x))2dx

) 1
2

denote the Hellinger distance between two density functions f and g. As the
Hellinger distance is bounded between 0 and 1 inclusively, the lower bound is only
attainable when the functions are equal for all points x,c ∈R. By identifiability and
since θ and θ ′ are at least a distance γ > 0 apart, the resulting expressions in part
(a) must be greater than 0.

Under the assumption of C2, f
1
2

U (x;θ) and f
1
2

LB(x;θ) are continuous functions of
θ ∈Θ. This implies,

sup
||γ||≤ε

[
f

1
2

U (t;θ + γ)− f
1
2

U (t;θ)

]2

→ 0 as ε → 0, and

sup
||γ||≤ε

[
f

1
2

LB(t;θ + γ)− f
1
2

LB(t;θ)

]2

→ 0 as ε → 0

By the dominated convergence theorem, the integrands in (b) may be dominated,
respectively, by:

4

(
sup
||γ||<ε∗1

fU(t;θ + γ)

)

4

(
sup
||γ||<ε∗2

fLB(t;θ + γ)

)
for ε∗1 and ε∗2 small enough. This allows the limit operator to be interchanged with
the integral operator having the expressions in part (b) tend to 0 as ε → 0.

Lemma 2. Suppose that C1-C4 hold. Then C1-C3 also hold for the function SU
and C1-C4 hold for the function h.



Proof. Assumption C1 follows immediately. By C4, the integrand of SU(x;θ) may
be dominated by an integrable function for any convergent sequence θ n, estab-
lishing C2 by the dominated convergence theorem. Differentiating SU(x;θ) with
respect to x, establishes identifiability. Analogous conditions to C1-C4 for h, see
[2].

Lemma 3. Suppose that C1-C4 hold, then

a) For all θ ∈Θ and all γ > 0,

inf
||θ−θ ′||>γ

r2
2,SU , fC(θ ,θ

′)= inf
||θ−θ ′||>γ

∫
c

(
S

1
2
U(c;θ)−S

1
2
U(c;θ

′)

)2

fC(c)dc= kSU
θ
(γ)> 0

inf
||θ−θ ′||>γ

r2
2,h,FC

(θ ,θ ′)= inf
||θ−θ ′||>γ

∫
X
(h

1
2 (x;θ)−h

1
2 (x;θ

′))2FC(x)dx= kh
θ (γ)> 0

b) For all θ ∈ Θ̄,∫
t

fC(t) sup
||ρ||≤ε

∣∣∣∣S 1
2
U(t;θ +ρ)−S

1
2
U(t;θ)

∣∣∣∣dt = wSU
θ
(ε)→ 0 as ε → 0

(∫
X

sup
||γ||≤ε

[h
1
2 (x;θ + γ)−h

1
2 (x;θ)]2FC(x)dx

) 1
2

= wh
θ (ε)→ 0 as ε → 0

Proof. Part (a) follows immediately by applying Lemma 2 and the proof of Lemma
1. To establish (b), we can bound the first integrand by 2 fC(t). The second inte-
grand can be dominated using the result of Lemma 2 as applied in Lemma 1 for the
function h. By applying the dominated convergence theorem, both expressions in
part (b) tend to 0 as ε → 0.

Under the conditions C1-C6 and the conclusions of Lemmas 1-3, we estab-
lish the consistency result of Theorem 1.

Proof. Define the likelihood ratio

ZC,l(ψ) =
l

∏
i=1

LC,i(θ +ψ)

LC,i(θ)

where LC,i is the combined cohort likelihood contribution of the ith observation.
Let Γ be a sphere of radius ε situated in its entirety in the region ||ψ||> 1

2γ where
we suppose ψ0 is the center of Γ. Using Equation (3), we obtain

ZC,l(ψ) =
n

∏
i=1

LI,i(θ +ψ)

LI,i(θ)

m

∏
j=1

LP, j(θ +ψ)

LP,i(θ)
= ZI,n(ψ)ZP,m(ψ)



As Z·,†(ψ)≤ 1, we will bound the expectation of the supremum by the square root
of Z for ψ ∈ Γ. Using the expansion of [4], and the independence of the cohorts,
we have

Eθ

[
sup
ψ∈Γ

Z
1
2
I,n(ψ)Z

1
2
P,m(ψ)

]
= Eθ

[
sup
ψ∈Γ

Z
1
2
I,n(ψ)

]
Eθ

[
sup
ψ∈Γ

Z
1
2
P,m(ψ)

]
.

Each expectation can then be represented as:(
Eθ

[
L
− 1

2
·,† (θ)L

1
2
·,†(θ +ψ0)

]
+Eθ

[
L
− 1

2
·,† (θ) sup

||γ||≤ε

|L
1
2
·,†(θ +ψ0 + γ)−L

1
2
·,†(θ +ψ0)|

])†

for (·,†) ∈ {(I,n),(P,m)}. Thus, we are only required to bound the individual ex-
pectations. Expanding the above expectations, we have the following upper bound:

Eθ

[
sup
ψ∈Γ

Z
1
2
I,n(ψ)

]
Eθ

[
sup
ψ∈Γ

Z
1
2
P,n(ψ)

]
≤

exp
{
−n
(

1
2
[k fU

θ
(
γ

2
)+ kSU

θ
(
γ

2
)]−w fU

θ+ψ0
(ε)−wSU

θ+ψ0
(ε)

)}
×

exp
{
−m

(
1
2
[k fLB

θ
(
γ

2
)+ kh

θ (
γ

2
)]−w fLB

θ+ψ0
(ε)−wh

θ+ψ0
(ε)

)}
which as n,m→ ∞, tends to 0. The proof then follows from Theorem 4.3 of [4]
when Θ is a bounded open set in Rk. Allowing Θ to be unbounded, we use The-

orem 4.4 of [4], and show limc→∞Eθ sup||u||≥c Z
1
2
n (u) < 1. As above, we split the

expectation over the independent cohorts, expand the integral expressions and ap-
ply assumptions C5-C6 to obtain consistency when Θ is an arbitrary open set in
Rk.

To establish asymptotic Normality, let the log-likelihood function,

Φk(y;θ) = ln(gk(y;θ)),

where gk(y;θ) is equal to either f δk
U (yk;θ)S1−δk

U (yk;θ) for y=(yk,δk) or, f
δ∗k
U (y∗k ;θ)S

1−δ∗k
U (y∗k ;θ)

µ(θ)

for y = (y∗k ,δ
∗
k ). Denote the i-th component of the vector of first derivatives of the

log-likelihood as

Φ̇k,i(y;θ) =
∂

∂θ i
Φk(y;θ)

and the i,jth component of the second derivatives of the log-likelihood as

Φ̈k,i j(y;θ) =
∂ 2

∂θ i∂θ j
Φk(y;θ)

The assumptions for establishing asymptotic Normality are given below in N1-N9.



N1: The parameter space Θ is an open subset of Rk

N2: θ̂C
P−→ θ 0

N3: Φ̇(Yk;θ) and Φ̈k,i j(Yk;θ) exist, a.s. [P]
N4: Φ̈k,i j(Yk;θ) is a continuous function of θ , uniformly in k, a.s. [P], and is a

measurable function of Yk
N5: E[Φ̇k,i j(Yk;θ)|θ ] = 0, k = 1,2
N6: Γk(θ) = E[Φ̇k(Yk;θ)Φ̇k(Yk;θ)′|θ ] =−E[Φ̈k(Yk;θ)|θ ]
N7: Γk(θ)→ Γ̄(θ) and Γ̄(θ) is positive definite
N8: For some δ > 0, ∑kE|λ ′Φ̇k,i j(Yk;θ 0)|2+δ/(n+m)(2+δ )/2→ 0 for all λ ∈ Rk

N9: There exist ε > 0 and random variables Bk,i j(Yk) such that
1. sup{|Φ̈k,i j(Yk; t)| : ||t−θ 0|| ≤ ε} ≤ Bk,i j(Yk)

2. E|Bk,i j(Yk)|1+δ < ∞

Conditions N1-N7 are generally considered standard assumptions for establishing
asymptotic Normality for the parametric MLE in the i.i.d. case. Conditions N8
and N9 are specific to the proof of [3] which is based on deriving an expression
for
√

n(θ̂C− θ 0) using the function Φ̇k, applying a theorem for the convergence
of bounded measurable functions and then applying a multivariable form of Lia-
pounov’s CLT theorem (see Theorems A.5 and A.6 of [3]).

2 Additional Simulation Results

Table 1: Ratios of the generalized variances of the maximum likelihood parameter
estimators based on the combined cohort of size 500, relative to the generalized
variances obtained from incident and prevalent cohorts, respectively, of size 250
(listed as pairs combined/incident, combined/prevalent). Failure times were gener-
ated from a Weibull distribution (increasing hazard) with random censoring times
generated from an Exponential distribution to allow for different censoring percent-
ages for the individual cohorts. Simulations were each based on 1000 runs.

Prevalent Cohort
Censoring Percentages

30% 50% 70%
Incident Cohort 30% 0.175, 0.209 0.204, 0.172 0.260, 0.131
Censoring Percentages 50% 0.118, 0.270 0.139, 0.223 0.183, 0.176

70% 0.0532, 0.360 0.0642, 0.307 0.0883, 0.253



Table 2: Ratios of the generalized variances of the maximum likelihood parameter
estimators based on the combined cohort of size 500, relative to the generalized
variances obtained from incident and prevalent cohorts, respectively, of size 250
(listed as pairs combined/incident, combined/prevalent). Failure times were gener-
ated from a Weibull distribution (decreasing hazard) with random censoring times
generated from an Exponential distribution to allow for different censoring percent-
ages for the individual cohorts. Simulations were each based on 1000 runs.

Prevalent Cohort
Censoring Percentages

30% 50% 70%
Incident Cohort 30% 0.0596, 0.110 0.0649, 0.100 0.0706, 0.0928
Censoring Percentages 50% 0.0280, 0.126 0.0303, 0.114 0.0333, 0.107

70% 0.00832, 0.157 0.00899, 0.142 0.00995, 0.134



Figure 1: Ratios of the generalized variances of the maximum likelihood parame-
ter estimators for combined cohorts of size 500 relative to the generalized variance
computed from a pure incident cohort of size 500. The proportions of incident to
prevalent data were varied in the combined cohorts. Failure times were generated
from a Weibull distribution (increasing/decreasing hazard) with administrative in-
cident/forward censoring times to allow for equal percentages of censoring in both
cohorts, respectively. All simulations were based on 1000 runs.
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