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Abstract 

Suicide is a major public health concern and a leading cause of death in most societies. Suicidal 
behaviour is complex and heterogeneous, likely resulting from several causes. It associates with multiple 
factors, including psychopathology, personality traits, early-life adversity and stressful life events, among 
others. Over the last decades, studies in fields ranging from neuroanatomy, genetics, and molecular 
psychiatry have led to a model whereby behavioural dysregulation, including suicidal behaviour, 
develops as a function of biological adaptations in key brain systems. More recently, the unravelling of 
the unique epigenetic processes that occur in the brain has opened promising avenues in suicide 
research. The present review explores the various facets of the current knowledge on suicidality, and 
discusses how the rapidly evolving field of neurobehavioural epigenetics may fuel our ability to 
understand, and potentially prevent, suicidal behaviour. 
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General model of suicide risk 

The last decade has seen intensified research on suicide and suicidal behaviours (SB). Despite an 
increased understanding of the factors at play, suicide continues to place a great burden on all societies. 
Global prevalence of suicide continues to be high, with an annual global age-standardized suicide rate of 
11.4 per 100,000 people, which translates to approximately 800,000 people dying by suicide every year.1 
This number does not take into account the other forms of suicidality, such as suicide attempts (SA) and 
suicidal ideation (SI) (12-month prevalence approximately 25 and 175 times the prevalence of suicide 
fatalities, respectively2). While the extent and characteristics of the relationship between these 
phenotypes and suicide are not entirely established, they also represent a burden and public health 
concern in their own right. Up to one third of individuals with SI have a SA within one year; individuals 
who have had a SA have a 16.3% risk of repeated SA and 1.6% risk of suicide within the year.3 Anxiety 
disorders, impulse-control disorders, mood disorders, and alcohol abuse or dependence may partially 
facilitate the transition from SI to SA,4,5 and axis I psychiatric disorders are present in the vast majority of 
suicide fatalities at the moment of death, as determined by medical records and/or psychological 
autopsy reports.6,7 Psychiatric disorders are thus key proximal factors in building suicide risk,5 with 
various disease characteristics being associated with increased risk, but particularly depressed mood. 
For example, in patients with schizophrenia (SCZ), suicide risk is associated with depressive features and 
insight.8 In bipolar disorder (BD), risk of suicide is heightened during mixed episodes and major 
depressive episodes, as well as during the early stages of illness,9 while in the case of major depressive 
disorder (MDD), the number, duration, and intensity of major depressive episodes are determinants of 
suicide risk.10-12 Depression therefore represents a major confounder in all suicide studies, particularly in 
biological analyses of SBs, where discrete disease-related contributions to suicide risk have not been 
clearly identified, and the majority of studies include samples derived from individuals with depression 
and SB, often without non-depressed suicide controls. 

The recent call to action by the World Health Organization1 has given additional momentum to the field 
of suicide research, and multiple models have been proposed to describe the events leading to a suicide. 
The relative contributions of distal versus proximal factors, as well as the strength of association of 
individual factors, such as early-life adversity (ELA),13,14 and mediating factors, such as anxious or 
impulsive personality traits,15,16 are described differently depending on the model favoured.17-21 Despite 
their differences, these models have many commonalities, highlighting the complex, multifactorial 
nature of suicide and SB.5,21 (Figure 1) A key consideration in explaining the impact of psychological traits 
and experience on suicidality is that biological changes underpin behavioural changes.22 Efforts to 
understand the biological factors that contribute to suicide focus on describing the processes involved in 
eliciting behavioural change and identifying potential targets to alter unhealthy behaviours. An 
important research avenue has been the search for clinically-applicable biomarkers for suicide, as these 
would allow healthcare practitioners to specifically address SB in those most at risk.23 New techniques 
and more accessible services have driven neurobiological research in suicide in fields ranging from 
neuroanatomical changes linked to suicide or heightened suicide risk to genetic bases for suicide, and 
genomic and protein interactions contributing to SB. 
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Genetic contributors to suicide risk 

Most accepted models of suicide risk distinguish between predisposing (distal, or diathesis) factors and 
precipitating (proximal, or stress) factors.21 The idea that individuals may be predisposed to suicide 
stems in part from the observation of familial aggregation of SB, which has been documented since the 
1980s,24 and which has been observed in a number of large cohorts including a Swedish national 
registry-based study (83,951 probands)25 and twin and adoption studies pointing to a heritability of SB 
between 30–50 %.26-28 Offspring of probands having attempted suicide are also at a nearly 5-fold higher 
risk of attempting suicide themselves.29 Although many other psychiatric conditions associated with SB 
are also heritable, severe SBs (suicide and SAs) appear to be transmitted independently of Axis I and Axis 
II disease.15,16,30,31 When heritability is corrected for transmission of psychiatric disorders, specific 
heritability is between 17–36%.26 Such evidence for family clustering of SB, even after correction for 
transmission of other psychiatric conditions, suggests there is a genetic predisposition to SB and has 
fuelled research into genes associated with SB. 

Identifying one or several genes or gene variants that may increase predisposition to SBs has been a 
challenging task. Over 200 genes have been reported as being associated with SA or suicide death, with 
the rate of discovery of new SB candidate genes increasing exponentially in the last decade.32 Pre-
existing knowledge of biological systems likely to be associated with SBs, such as rate of serotonin 
synthesis, decreased serotonergic neurotransmission, and neurotrophic factors, have driven extensive 
candidate-gene studies.33-36 Results from these studies have generally not been consistent, leading to 
decreased enthusiasm for genetic variation studies focusing on single genes over the last decade in 
favour of genome-wide association studies (GWAS), which use a less-biased, gene-discovery based 
approach.37 Despite major technical developments in our capacity to effectively and quickly investigate 
the genome, a major challenge in GWAS is the tremendous number of samples required to detect 
genetic variants that account for a very small proportion of the total phenotypic variance. As a result, 
genome-wide significance of GWAS studies of SB has remained elusive. The existing GWAS studies that 
have directly or indirectly examined SB38-49 have nonetheless pointed to a number of variants that, while 
not achieving genome-wide significance, may be interesting targets for future studies of SB. 
(Supplementary Table 1) 

Due to the relative rarity of death by suicide, suicide was not often used as a phenotype in GWAS 
studies of SB. The first of two studies using suicide as a primary phenotype38 compared single nucleotide 
polymorphisms (SNPs) in 68 suicides vs. 31 psychiatrically healthy controls, and identified suggestive 
evidence for SNPs in or around 19 genes. Seven of these genes were differentially expressed in brain 
tissue of a partially overlapping sample of 18 suicides and 21 controls.38 The second study investigated 
SNPs in a larger sample comprising both completed suicides and live subjects with SA (N = 577) 
compared with psychiatric or healthy controls without a history of SA (N = 1,233).39 Although no result 
reached genome-wide significance, seven of the nine suggestive SNPs observed in the analysis 
comparing suicides versus individuals without SB (N = 317 Cases vs. 1,233 Controls) mapped to the 
TBX20 gene, which among other functions is a transcription factor with identified roles in the CNS.39,50 
Among the other GWAS studies published, SAs and/or SI were used as phenotypes. Among the 
numerous SNPs identified through these studies, 15 SNPs have shown evidence of at least a trend 
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toward significance between case and control groups (P-values<10-6; see shaded cells in Supplementary 
Table 1). Of note, only SNPs in or near three genes appear to have reached genome-wide significance, 
one located near the ACP1 gene,45 one located within ABI3BP,41 and one located within PAPLN,40 and all 
of these have been described to regulate the extracellular matrix and collagen-binding. Among the other 
hits that did not reach genome-wide significance, genes had ascribed functions in cellular assembly and 
organization, nervous system development and function, cell death and survival, immunological disease, 
infectious disease, and inflammatory response.39  

An outstanding concern regarding the results from GWAS studies is the lack of reproducibility of results. 
To a large degree this may be explained by the generally small samples investigated by GWAS studies of 
SB. Recently, attempts have been made to describe polygene effects,46,48 and a recent study identified 
750 genes linked to neurodevelopment that appeared to selectively drive SBs, independently from 
schizophrenia or MDD diagnosis.48 Analysis of genes associated with psychopathologies and SB 
identified several pathways of interest (cell adhesion/migration, small GTPase and receptor tyrosine 
kinase signalling) and identified genes that have been independently associated with SBs, such as BDNF 
and NTRK2, among others. If replicated, these results could support using polygenic analyses to bridge 
results from GWAS studies with other studies that have already provided suggestive evidence of genetic 
associations with SBs.  

Collectively, GWAS studies show that despite a great deal of enthusiasm and the potential to uncover 
novel genetic contributors to SBs, as observed for other psychiatric phenotypes, individual gene variants 
are likely to account only for a very small proportion of the total phenotypic variability. Other factors, 
such as the environment, behavioural traits, life trajectories, and coping mechanisms, are essential 
regulators of suicide risk, and likely to account for more sizeable effects.5  

 

Functional genomics of biological circuits implicated in suicide 

Our understanding of how the genome is regulated, in particular through a variety of epigenetic 
mechanisms, has contributed to one of the most meaningful changes to the neuroscience landscape in 
the past 15 years.51 The investigation of biological processes underlying SB has greatly benefitted from 
the study of these mechanisms (Figure 2), which allow for a fine-tuning of biological responses, and offer 
an intuitive explanation for the impact of experiences into altered behavioural phenotypes. Adjusting 
physiological and behavioural responses to environmental cues is essential for adaptation, but in cases 
of childhood maltreatment or abuse, such adaptations can have detrimental effects.52,53 Early-life 
adversity (ELA), defined as neglect or physical or sexual abuse during childhood, has profound and long-
lasting effects on the development of psychological and cognitive traits associated with increased risk of 
suicidality.54,55 Further, a significant proportion of individuals exhibiting SB have a history of ELA.52,56-58 
Biological mechanisms for the translation of such traumatic experiences into behaviour have been 
proposed to be principally regulated by altered DNA methylation and histone modifications.59 Such 
regulation of expression and function of molecules has the potential to drive pathological processes, 
partly because they change over the life course. Global study of methylation in brain tissues indicates 
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that suicide is associated with widespread changes in methylation patterns of neurotrophic and 
neuroprotective factors in the hippocampus and prefrontal cortex.60,61 Continued technological 
improvements have made sequencing approaches more affordable and are bringing high-resolution 
whole-methylome analysis within reach.62 

Mechanisms that affect the architecture and expression of the genome as a function of life 
experiences differ among brain regions and cell types. Accordingly, understanding suicide neurobiology 
requires integrating brain region- and cell type-specific processes into global patterns of brain activity 
dysregulation. Structural and functional alterations affecting depressed patients mainly derive from 
neuroimaging studies, and histological investigations of postmortem brain samples. These studies have 
provided evidence that some brain cells and circuits are selectively associated with suicide. In the 
following sections, we aim at articulating changes in genomic and epigenomic functions within brain 
regions most consistently implicated in mood disorders and suicide, most notably: brainstem 
monoaminergic systems, the prefrontal cortex (PFC), the anterior cingulate cortex (ACC), the 
amygdala, and the hippocampus (Figure 3). 

 

Neurotransmitters and neuromodulators 

New findings on monoaminergic systems, hippocampal function and suicide 

The entire brain receives monoaminergic innervation from 5-HT and noradrenergic neurons located in 
raphe nuclei and the locus coeruleus (LC), respectively. 5-HT neurons have long been implicated in 
depressive disorders and suicide,63 with substantial evidence suggesting impaired serotonergic 
function,64-66 as summarized in recent exhaustive reviews.23,35,67,68 Among other findings, studies found 
that depressed suicide completers show in dorsal raphe nucleus decreased levels of the serotonin 
metabolite, 5-HIAA,35 as well as more 5-HT neurons19,69 and increased mRNA expression and protein 
levels of tryptophan hydroxylase (TPH, the rate-limiting enzyme in the synthesis of 5-HT70-73). 
Upregulation of TPH activity and increased numbers of 5-HT neurons, have been interpreted as 
mechanisms compensating for an overall reduction in 5-HT transmission, a finding that has been 
supported by imaging studies.74,75 In addition to brain tissue, several studies have shown that low 
levels of 5-HIAA can also be observed in the CSF in the context of SB.76  

Due to their high rate of co-occurrence, a major obstacle has been isolating factors specifically 
responsible for SB, rather than depression.13 Some studies have successfully distinguished changes 
associated with depression from those associated with suicide, identifying small changes in serotonin 
transporter (SERT) and receptor expression (5-HT1A), as well as indications of serotonin genotypes and 
expression patterns that may be specifically linked to suicidality.13,74,77,78 The characterization of 
personality traits linked to suicide has shown that impulsive/aggressive phonotypes may be associated 
with altered serotonin levels, especially in the context of ELA.79 Recently, studies have pointed towards 
epitranscriptomic dysregulation of serotonin signaling in suicide and SB (see below, and 80,81). In the 
future, researchers will face the challenge of exploring the psychopathological significance of complex 
interactions between multiple serotonin and other monoamine receptor types (e.g. 5-HT4, 5-HT1B, 5-
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HT2B), and associated adaptor proteins (p11, S100α), that are currently emerging from animal 
research.82-86 

Deficits in noradrenergic transmission have similarly been recognized in depression for decades87. In 
analogy with aforementioned findings regarding 5-HT neurochemistry, increased expression of 
tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of catecholamines, including 
noradrenaline, has been measured in postmortem LC samples from depressed patients88,89 (see also 
90). Although one report has indicated significant reductions in the total number and average density of 
pigmented LC neurons in the left side of the brainstem in suicide completers,91 most morphological 
studies of the LC have found no differences between MDD and control subjects.90,92,93 Recent studies 
using laser capture microdissection to analyze cell-specific patterns of expression in depressed suicides 
showed decreased expression of glutamate transporters by LC astrocytes,94 as well as upregulated 
expression of NMDA receptor subunits by LC neurons. As proposed by the authors, this increased 
glutamatergic activity in the LC may account for the fast-acting antidepressant properties of NMDA 
antagonists.95 

At the neuroanatomical level, the role of monoamines in depression and suicide has been largely 
investigated in the context of its relationship to hippocampal neurogenesis, a major substrate of mood 
regulation and antidepressants mode of action. Stockmeier et al.96 have reported increases in the 
mean densities of pyramidal neurons and glial cells in cornu ammonis (CA) regions and in the DG 
granule cell layer, with accompanying reductions in the mean soma size of these cells in samples from 
MDD subjects versus controls. In MDD patients, hippocampal volume is reduced,97 and this 
phenomenon can be partly counteracted by antidepressant treatment.98 Hippocampal shrinkage has 
been hypothesized to result in part from decreased adult neurogenesis in the dentate gyrus (DG). 
Abundant preclinical research has shown that adult animals exposed to chronic stress and displaying 
depressive-like behaviours have decreased hippocampal neurogenesis.99 Inversely, ECS,100 a model of 
ECT, or conventional antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs), 
potently increase neurogenesis in the DG.101 In turn, this improves stress regulation102 and is sufficient 
to reduce anxiety- and depressive-like behaviours in mice.103 Postmortem studies have also suggested 
that progenitor proliferation is increased by antidepressant treatment, while the expression of 
proliferative markers in DG samples was similar between untreated depressed patients and 
controls.104,105 The same group reported significant reductions in DG granule cell numbers in anterior 
(but not posterior) hippocampal samples of untreated MDD patients compared to matched controls.106 
In the absence of changes in numbers of progenitor cells, these results suggest depression-associated 
impairments in granule cell neuron maturation or survival, and support the notion that decreased 
adult hippocampal neurogenesis contributes to hippocampal volume loss in depression.  

 

The GABAergic and glutamatergic systems 

Transcriptomic studies designed to identify dysregulated genes in individuals who died by suicide have 
repeatedly pointed towards disrupted glutamatergic and GABA-ergic pathways in several brain 
regions,62,107-113 particularly in the PFC and the ACC. These two brain regions have been consistently 
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implicated in MDD by spectroscopic,114-116 structural,117-119 and functional studies.120-122 The PFC is 
essential for executive function,123,124 while the ACC plays important roles in stress responses 125 and 
the integration of cognitive activity with affective experience. Ultimately, changes affecting excitatory 
and inhibitory transmission in these structures are thought to underlie abnormalities documented in 
neuroimaging (e.g. hypoactivity126-128 and loss of grey matter volume129 in the PFC), and 
neuroanatomical (e.g. reduction in third-order branching of basilar dendrites of layer VI pyramidal 
neurons in dACC130) studies. 

In microarray studies, GABA type A [GABA(A)]receptors were globally found to be upregulated in 
suicides with depression, but not those without depression.111,112 However, a study comparing 
GABA(A) across multiple brain regions from MDD suicides, found decreased GABA(A) α and δ subunits 
in the majority of brain areas investigated,131 and a recent study identified a transcript for the GABA(A) 
receptor γ2 subunit (GABRG2) that was downregulated in postmortem MDD-suicide PFC tissue.132 Of 
interest, GABA(A) receptor expression may be differentially regulated through altered DNA 
methylation levels and downregulated DNA methyltransferase (DNMT) in the frontopolar cortex of 
suicide brains.133 Follow-up studies focusing on these receptors are required to better interpret their 
relationship with SB.  

In the glutamate pathway, a number of proteins are found to be associated with suicidal events, 
including the NMDA receptor GRIN2B subunit, which was found to be associated with SA in a GWAS,48 
the AMPA receptor GRIA3 and the kainate receptor GRIK2 subunits, which were associated with 
treatment-emergent suicidal ideation (TESI) in a GWAS,40 the glutamate transporters SLC1A2 and 
SLC1A3, and the glutamate-ammonia ligase (GLUL), which were associated with MDD-suicide in 
postmortem analyses of dorsolateral PFC and ACC tissue.111,112 In studies distinguishing between MDD 
and MDD-suicide, GRIN2B, GRIK3 and GRM2 were specifically upregulated in the dorsolateral PFC of 
suicides,134 while astrocytic components of the glutamate pathway in this same brain region, including 
GLUL, were downregulated.135 In the ACC, neuronal components of the glutamate pathway were 
upregulated.135 

A drug targeting the glutamate pathway, ketamine, has recently drawn attention for its ability to rapidly 
treat depressive symptoms.136-138 It also holds great promise as a potential anti-suicidal drug, rapidly 
decreasing SI among patients with treatment-resistant depression and SI.139-141 Ketamine acts rapidly 
(within a few hours) and has potentially long-lasting effects (up to 3 months post-infusion).141 However, 
its mechanism of action is still unclear, with suggestions that it may inhibit astrocyte secretion of 
BDNF,142 upregulate insulin-like growth factor 2 in the hippocampus,143 or contribute to maintaining 
healthy levels AMPA and NMDA receptor expression.144 Although ketamine is an NMDA antagonist, 
recent studies in rodents show that its antidepressant-like effects appear to be mediated by an 
activation of AMPA signalling.145 Activation of AMPA receptors by ketamine may occur through 
inhibition of glycogen synthase kinase-3 (GSK3),146 which could be partially mediated by the ketamine-
induced upregulation of mouse microRNA clusters miR448-3p and miR764-5p, miR1264-3p, miR1298-5p 
and miR1912-3p, all of which are linked to the serotonergic (5HT)-2C receptor (5HTR2C).147 Ketamine 
may therefore act in part through microRNA modulation, but the impact of such an effect on SB remains 
to be determined.  
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Finally, it is worth noting that overall modifications of the excitatory/inhibition imbalance in the context 
of depression and suicide may also stem from changes in cellular phenotypes, a form of cellular 
plasticity that has been recently documented in the amygdala. The amygdala is important in emotional 
processing and is involved in regulating many behaviours, such as fear and aggression.148 Neuroimaging 
studies have associated MDD with increases in amygdalar blood flow and glucose metabolism,126 as well 
as altered volume.149,150 Postmortem studies have reported a greater basolateral amygdala (BLA) volume 
associated with an increase in neurovascular cells in MDD.151 Maheu and colleagues also published 
evidence that amygdalar neuroplasticity appears to occur in depression, but not in suicide.152 Proteins 
associated with neuroplasticity, such as doublecortin (DCX) and PSA-NCAM, were upregulated in BLA 
samples from depressed patients having died naturally or of accidental causes, but not in depressed 
suicides.152 The inability to upregulate amygdalar plasticity may therefore contribute to suicide. In 
agreement with this, numbers of somatostatin neurons are decreased in the amygdala of women with 
MDD, possibly attributable to a change in phenotype rather than to cell loss.153 

 

Glial and immunological contributors to suicide risk 

While glial cells account for the majority of cells in the human brain, their potential association with 
suicide has been investigated relatively recently. Overall, findings point towards reductions in macroglial 
cell (mainly astrocytes and oligodendrocytes) densities109,154,155 or soma size,156 while microglial cells 
appear to show enhanced activation and recruitment.157 In the subgenual ACC and in the amygdala, an 
overall glia reduction was initially documented.158 Comparable findings in the dorsal ACC (dACC) were 
subsequently made by some investigators but not by others.159 The latter study found similar glial 
densities between samples from depressed suicides and controls, but significantly increased density in 
samples from individuals with co-morbid alcohol dependence.159  

In the amygdala, reductions in overall glial cell densities have been found160 (see also 151), an observation 
subsequently attributed to lower numbers of oligodendrocytes.161 It is tempting to speculate that this 
phenomenon is related to the altered glial cell line-derived neurotrophic factor (GDNF) signalling 
recently evidenced in the BLA of depressed suicides,162 as this neurotrophic factor has been shown to be 
expressed by mature oligodendrocytes.163 

Astrocytes are polyfunctional glial cells whose roles include supporting neurons, regulating the supply of 
nutrients, metabolites and growth factors, and availability of neurotransmitters and ions, as well as 
maintaining the blood-brain barrier and playing a key role in immunity.164,165 In studies using animal 
models of mood disorders, astrocyte and glial functions are disrupted, particularly in relation to 
glutamatergic signalling.166,167 Further to this, in suicide, astrocyte morphology and function appear to be 
altered in discrete brain regions of depressed suicides. In the PFC168,169 and dACC white matter, 
hypertrophic astrocytes,170 as well as increased proportions of priming and perivascular macrophages,168 
have been described, all suggestive of low-level neuroinflammation in these regions (reviewed in 
171).170,172,173 A microarray expression study conducted in postmortem suicide brains identified decreased 
mRNA expression of the astrocyte connexins (Cx) 30 and 43,173 which are key factors in maintaining the 
blood-brain barrier.174 Subsequent analysis of histone methylation profiles of astrocyte-related genes 
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confirmed that Cx30 and Cx43 are downregulated and provided evidence of epigenetic control of 
connexin genes.134 Some recent evidence suggests that the permeability of the blood-brain barrier may 
be increased in individuals having recently attempted suicide,175 which also suggests that inflammatory 
processes occur in the brains of suicide attempters. Transcriptomic analyses of the PFC of depressed 
suicides revealed that a number of astrocytic genes are downregulated compared to healthy controls, 
with the most significant alterations in aldehyde dehydrogenase 1 family member L1 (ALDH1L1) and glial 
fibrillary acidic protein (GFAP).62 Similar downregulation of GFAP expression has also been identified in 
the PFC in animal models (mRNA)166 and in several subcortical regions of depressed suicides (mRNA and 
protein).94,172 Finally, decreased density of glial fibrillary acidic protein (GFAP)-immunolabelled 
astrocytes was reported in the DG of women, but not men, with depression.176 Of note, the same 
parameter measured in CA2/3 was reported to be inversely correlated with the duration of depression 
in suicides.177 

Evidence has been accumulating to support a relationship between inflammation and depressive 
states.178-180 High levels of comorbidity are observed in the clinic between inflammatory autoimmune 
diseases and depression,181,182 and a substantial proportion of patients receiving cytokine therapy 
develop depression.183,184 Conversely, depressive states associate with increased levels of pro-
inflammatory cytokines, including tumour necrosis factor, interleukin‑6 (IL‑6),185 IL-2, IL-8,186 and IL-
1β.187,188 Available evidence further suggests a specific association between those inflammatory markers 
and SB, with results showing increased levels of IL‑6 and decreased levels of IL‑2 in patients with SB,189 
as well as decreased levels of vascular endothelial growth factor (VEGF)190 and changes in levels of 
quinolinic acid or kynurenic acid.181,191,192  

A related line of evidence comes from the proposed role of the brain-tropic parasite, Toxoplasma gondii, 
in raising suicide risk.193,194 In a sample of 45,745 women systematically tested for this parasite, 
seropositivity increased risk of all forms of self-directed violence, and the increased risk of SA and 
suicide was correlated with concentrations of anti-toxoplasma antibodies.193 Toxoplasma seropositivity 
may also be linked to gender-specific alterations in personality traits associated with SB, specifically 
increased aggression in women and increased impulsivity in young seropositive men.195 These intriguing 
associations may result in part from the immune response to T. gondii, particularly the inflammatory 
response in the brain, and the modulation of tryptophan availability, which, in addition to slowing 
parasitic replication, decreases serotonin production and increases levels of the NMDA antagonist, 
kynurenic acid.196 A potential link between increased kyurenic acid, T. gondii infection, and SB has also 
been reported in cohorts of patients with schizophrenia,197 but the overall contribution of T. gondii to SB 
is not universally accepted.198 

Although most studies investigating inflammatory markers in SB have used blood samples, studies 
carried out in CSF191,199 or postmortem brain tissue,157,168,200,201 have led to the suggestion that suicide 
might be associated with the recruitment of immune cells and low-grade inflammation in the brain. At 
the pathophysiological level, it has been proposed that low-grade brain inflammation might modulate 
glutamatergic neurotransmission. Accordingly, inflammation-induced changes in levels of kynurenic and 
quinolenic acid (which act as antagonist and agonist at glutamatergic NMDA receptors, respectively) 
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may ultimately alter the net stimulation of NMDA receptors, in line with recent report about the 
antidepressant and anti-suicidal effects of the glutamatergic NMDA receptor antagonist ketamine. 
 

The opioid system – promising avenues 

The peptidergic opioid system is composed of a family of opioid peptides and four opioid receptor types 
(mu, delta, and kappa, as well as the non-canonical N/OFQ receptor) that critically controls pain,202 
reward,203 and mood processes.204 Post-mortem studies have examined the µ-opioid receptor (MOR) 
binding in suicide victims who were mainly diagnosed with depression. Compared with controls, MOR 
density was increased in frontal and temporal cortices,205-207 as well as in caudate nuclei.206 Furthermore, 
positron emission tomography (PET) studies with a MOR selective radiotracer showed that the induction 
of a sadness state in healthy individuals,208 as well as depressed mood in clinical cohorts,209 associated 
with adaptations in MOR neurotransmission across several brain regions. The dynorphin-kappa opioid 
receptor signaling pathway has also been linked to suicide, with increased210 and decreased211 
expression reported in the caudate nucleus and amygdala, respectively. Interestingly, one the first PET 
studies on the kappa opioid receptor recently conducted in a dimensional Research Domain Criteria 
approach found significant relationships between trauma-related psychopathology and bioavailability of 
this receptor,212 with potential implications in the context of ELA and suicide. Finally, a recent report 
found decreased expression of the N/OFQ receptor in the ACC of suicides.213 

An emerging line of investigation suggests that the opioid system may be involved in the regulation of 
emotional pain and social attachment,204,214 particularly in relation to SB.215 Accordingly, patients 
typically report that self-injurious behaviors decrease their emotional pain, and this has been proposed 
to be related to endogenous opioid signaling.216-218 In addition, a recent study reported that 
buprenorphine, an opiate classically used for maintenance therapies in addicted individuals, may 
decrease severe SI in patients without substance use disorder.219 Future studies will be required to 
explore the relative contributions of distinct opioid receptors and peptides in these effects, as opioid 
modulatory therapies gain momentum in the management of depressive conditions.220 

 

Neurotrophic pathways 

Neurotrophins 

In important studies examining the expression of the key brain-derived neurotrophic factor (BDNF) in 
postmortem suicide brains, mRNA expression of both BDNF and its receptor, tyrosine kinase B (TrKB), 
were shown to be decreased, with concomitant decreases in BDNF and TrkB full-length protein 
expression.221,222 The link between BDNF expression and suicide has since been extensively explored, 
and despite some conflicting reports regarding serum BDNF levels in suicide attempters,223-225 BDNF 
expression is generally altered in the suicide brain. Some insight into this association has come in part 
from evidence of increased BDNF promoter/exon 4 DNA methylation in suicide brains,226 a finding that is 
consistent with those observed in depressed patients with a history of SA, or with SI during treatment,227 
and with evidence of hypermethylation of BDNF exons 4 and 9 induced by ELA in an animal model,228 



Lutz Neuropathology of suicide 2017-05-21 

11 

 

which further supports the biological impact of ELA on suicide risk. Finally, there is evidence that 
treatment of MDD patients with antidepressants relieves epigenetic repression of BDNF,229 pointing to 
its role in mediating depressive phenotypes, and potentially SB. The main receptor of BDNF, TrkB, is also 
regulated through epigenetic changes that appear to have an impact on suicide risk. In brain tissue from 
individuals who died by suicide, mRNA expression of the astrocyte-enriched TrkB truncated variant, 
TrkB-T1, is significantly decreased in association with increased methylation at the TrkB-T1 promoter, 
and appears to be regulated by the microRNA miR-185.230-232  

Efforts to describe the impact of BDNF on suicide risk have also focused on a gene polymorphism that 
produces a Val instead of a Met in codon 66 (Val66Met). Many publications have shown evidence that 
the BDNF-Met variant is associated with a heightened risk of SB (reviewed in 37), with its effect on 
suicide risk mediated in part by experiences of child abuse.233,234 Importantly, differences between study 
results have highlighted the importance of considering the particular contributions of sex,235 psychiatric 
diagnosis,236,237 and type of SB236,238,239 when interpreting the degree of regulation of SB by a single 
polymorphism. 

Lipid metabolism 

Following strong initial evidence of an association between low peripheral cholesterol levels and 
suicidality, cholesterol has been investigated as a potential biomarker of SB (reviewed in 240). Evidence 
that low cholesterol may contribute to suicide and SBs includes low cholesterol levels in the brain of 
suicides241 and in CSF of suicide attempters,242  and high rates of suicide and SA in individuals with 
disrupted cholesterol synthesis and metabolism.243,244 However, certain studies provide conflicting 
evidence as to the relationship between cholesterol and SB. 245-247 An important consideration is that 
different forms of cholesterol (LDL vs. HDL) may have differing roles in brain function and suicidality, and 
a number of other important confounders, such as age, sex, and nutritional status, may also have 
significant contributions to suicide risk. Nevertheless, cholesterol represents a potentially important 
player in brain function as nearly one quarter of the body’s cholesterol is located in the CNS,248 where it 
is a key component of lipid rafts, acts as a precursor for neurosteroids, is regulated by BDNF, and 
regulates neural plasticity.240,249 Additional evidence suggests that cholesterol may have important 
implications in neurotransmitter signalling.240 

Beyond cholesterol, there is evidence that triglyceride levels250,251 and regulators of fatty acid 
composition may also influence suicide risk, particularly in the case of violent SA and suicides.252 Of 
interest, a recent report indicates a potential role for epigenetic regulation of polyunsaturated fatty acid 
(PUFA) biosynthesis through differential DNA methylation of elongation of very long-chain fatty acids 
protein 5 (Elovl5) in subjects with MDD with or without a history SA.253 The effect of this differential 
methylation is unclear, however, since the levels of circulating PUFA were not significantly different 
between groups.253 This is also consistent with a previous study reporting no change in fatty acid 
composition of postmortem brain tissue of suicides with or without MDD, as compared to healthy 
controls.254 Such evidence of the role of lipids in suicide has led to speculation as to the potential for 
modulating lipid profiles in patients deemed “at-risk”,255 but the evidence to support such interventions 
is still insufficient. 
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Stress response systems 

The polyamine stress response system 

In addition to the HPA stress response system, the polyamine system, another stress response pathway, 
has been extensively characterized in relation to suicide risk. Polyamines, aliphatic compounds with 
multiple amine groups, have been implicated in a host of cellular functions, including the regulation of 
gene expression at transcriptional and post-transcriptional levels, most notably regulating the function 
of several neuromodulators (primarily glutamate receptors, but also nicotinic receptors and ion 
channels), and acting as neurotransmitters themselves.256 In particular, there is evidence that the 
polyamines agmatine, spermine, and spermidine are released at synapses on depolarization.257-259 In 
conditions of physical, hormonal, or emotional stress, the polyamine stress response is activated, with 
increased expression of putrescine and agmatine in both central and peripheral tissues.260,261 Growing 
evidence suggests that elevated levels of these two polyamines in the brain have antidepressant and 
anxiolytic effects, potentially through regulation of inflammation.262-264 Additionally, agmatine may 
mediate the activity of pharmacological antidepressants, in part through binding to NMDA receptors.265-

267  

Polyamines may play a particular role in the context of suicide, as studies investigating postmortem 
suicide brains show that expression levels of gene products associated with the polyamine stress 
response system are dysregulated.268-273 Expression of the rate-limiting enzyme spermine N1-
acetyltransferase (SAT1), as well as of several other polyamine-associated enzymes (SMOX, ODC, SMS, 
AMC-1), are altered in the cortex of postmortem suicides.270,273,274 Individual isoforms of SAT1 may 
partially explain the decreased SAT1 expression in brain tissue of suicides,268,270,275,276 and there is some 
evidence that microRNAs can target polyamine transcripts including SAT1.277 Another important 
contributor to SAT1 downregulation is through epigenetic control, with studies identifying promoter 
DNA methylation of SAT1 that inversely correlated with SAT1 expression, and evidence for histone 
modifications affecting key enzymes in polyamine synthesis.278-280 SAT1 has emerged as a potential 
biomarker for suicide, topping the lists of candidates in several studies.281-283 

 

Early-life adversity and the HPA stress axis 

One of the best investigated examples of epigenetic changes in response to ELA is that of the 
hypothalamic–pituitary–adrenal (HPA) axis, a key regulator of cortisol release and stress response.284 
Animal models of ELA have long shown that stressful events during early life disrupted glucocorticoid 
function and altered behavioural responses to stress challenges.285 Glucocorticoid release, triggered by 
stress, is regulated by a negative feedback loop in which secreted steroids activate glucocorticoid 
receptors (GR) in the hypothalamus, thereby shutting off further production. Ground-breaking studies 
conducted in rats showed that GR exon 17 expression in pups is epigenetically regulated by the early-life 
environment. 286-288 In a subsequent postmortem brain study from individuals who had died by suicide 
and were severely abused during childhood, compared with individuals without a history of child abuse 
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(suicide or healthy control), the GR exon 1F variant (human homolog to the rodent exon 17) was also 
epigenetically regulated in humans by their early-life environment.289 As in rodents, the methylation of 
exon 1F was associated with the quality of care in early life,289 and its methylation status seems to 
regulate the binding of the NGFI-A transcription factor associated with GR expression.288,289 These 
findings have since been confirmed in the context of ELA and of parental emotional stress, with 
increased GR 1F/GR17 methylation in both central nervous system and peripheral tissues.290 In contrast, 
results of studies examining other GR exons or examining adult psychopathology have yielded mixed 
results.290 In addition to this direct decrease of GR expression, there is evidence that GR function may 
also be altered through the FK506-binding protein (FKBP5), which downregulates GR signalling. 
Particular sequence variants of FKBP5 have been associated with increased suicidality,291-295 particularly 
in individuals with a history of ELA.296-299 Disrupted GR function results in inadequate control of the HPA 
axis in these individuals, possibly leaving them with hyperactive cortisol secretion, and the development 
of anxiety traits. In turn, anxiety mediates the relationship between ELA and SB.21,55 

An exciting new candidate in the relationship between cortisol regulation and suicide is the spindle and 
kinetochore associated protein 2 (SKA2), a gene that has been implicated in GR signalling.300 Recent 
reports have converged on identifying differential methylation of SKA2 at the level of a single CpG.301,302 
Increased SKA2 3’UTR methylation, and concomitantly decreased SKA2 mRNA, was detected in suicide 
brain samples, as well as in peripheral blood samples of individuals with both SI and SA, compared to 
controls.302 Peripheral samples that were available at time points preceding the onset of SI also 
displayed altered SKA2 methylation, pointing to a predictive effect of this marker. A second study 
confirmed these findings in saliva and blood samples, showing that increased methylation of the SKA2 
site correlated with impaired cortisol suppression.301 Additionally, combining SKA2 methylation status 
with history of childhood abuse allowed for a stronger prediction of SA. 

 

Future directions and current challenges for functional genomic research in SB 

Accumulating evidence indicates that epigenetic processes present unique properties in the brain 
compared to other organs of the human body, as revealed by a unique pattern of non-CG 
methylation,303 high levels of hydroxymethylation,304 or the complexity of non-coding RNAs,305 among 
others (Table 1). Brain epigenetics is therefore a distinct field that requires the development of specific 
analytical tools to address unique experimental challenges. 

We can speculate that the brain may have evolved as the most sensitive organ to process changes in 
environmental conditions to improve adaptation to the environment. Accordingly, over evolutionary 
time this functional specialization may have required particular, potentially more complex, molecular 
and epigenetic processes mediating the interplay of the environment and the genome. In addition, 
because epigenetic changes can be long-lasting (potentially over generations, although this is 
debated306), they represent a form of genomic plasticity that could help explain psychiatric phenotypes, 
such as depressive illness and SB, that associate with distal environmental stressors such as exposure to 
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early-life adversity.307 We detail below immediate and long-term research opportunities for brain 
functional genomic studies investigating SB. 

 

DNA CH methylation 

While DNA methylation is largely restricted to sequences composed of cytosines followed by guanines 
(known as CG dinucleotides), recent results have identified a non-canonical form of DNA methylation in 
non-CG, or CH, contexts (where H stands for A, C or T). While high levels of CH methylation (mCH) were 
first identified in embryonic stem cells (ESCs),308 recent findings have revealed that the highest levels of 
mCH across mammalian tissues are in the brain.303,309 Results also showed that mCH accumulation is 
much more pronounced in neurons than in glial cells,303,310 and that mCH levels measured at the whole 
tissue level (below 5%) are considerably lower than for the CG context (70-80%). Nevertheless, the large 
number of cytosines in CH, compared to CG, contexts, has led to estimates that mCH may ultimately 
account for as much as a quarter of all methylated cytosines.309,310 

Similar to mCG, mCH tends to negatively associate with transcriptional activity. It is therefore possible 
that differences in gene expression associated with suicide might partly result from differential mCH 
levels, particularly for genes that are dysregulated in cells with high mCH levels (i.e., neurons rather than 
glial or other cell types). Importantly, mCH may be particularly relevant to so-called ‘sensitive periods’, 
defined as time-windows in brain development during which critical processes must take place to 
achieve proper maturation of essential physiological functions. This concept, which was primarily 
investigated for sensory-motor functions311 and more recently in relation to emotional regulation,312 
may partly explain the relationship between ELA and suicide.313 As mentioned above, ELA is an 
important predictor of SB, and its effects are thought to be mediated partly through DNA methylation. 
Considering that mCH progressively accumulates in neurons during the first few years of life in 
human,310 it is tempting to speculate that this newly identified epigenetic mark may be particularly 
sensitive to ELA.  

Compared with DNA methylation in the canonical CG context, mCH transcription regulation is only 
starting to be explored.314 Recent reports have established an intriguing link between the length of 
genes along the DNA sequence and levels of CA DNA methylation.315,316 A proposed model317 suggests 
that expression of long genes, as a population, is enriched in the brain and is tightly regulated by 
enhanced MeCP2 binding due to high mCA levels. While these results were obtained in relationship to 
Rett syndrome, a neurodevelopmental disorder due to mutations in the MeCP2 gene, they uncover a 
specific epigenetic function of mCH that may be relevant to psychopathology and suicide. 

 

Hydroxymethylcytosine 

While methylcytosine is sometimes described as the fifth DNA base, a sixth base has been recently 
identified304,318 that corresponds to a further oxidation step (mediated by Tet-translocation enzymes, 
Tet1, 2 and 3) from methyl- (5mC) to hydroxymethylcytosine (5hmC). This new epigenetic mark appears 
to be stable in vivo319 and to occur in CG – but not CH – contexts, indicating that mCG is uniquely 
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susceptible to Tet-mediated oxidation. Similarly to mCH, 5hmC predominantly accumulates in neuronal 
cells, and its levels are higher in the brain than in any other human tissue.304,320 Most techniques used to 
measure levels of DNA methylation (including the popular bisulfite conversion) do not distinguish 
between 5mC and 5hmC, although several methodologies have now been developed to address this 
(including oxBS-Seq,321 TAB-Seq322 or Aba-Seq323,324). 5mC and 5hmC seem to have opposite relationships 
with transcriptional activity, with 5mC negatively correlating with gene expression,325 and 5hmC 
positively correlating with expression in rodent326 and human324 brains. A similar positive relationship 
was observed for dendritic cells of the immune system,327 while gene bodies and enhancer regions in 
ESCs display a more subtle dual pattern.328 There is currently some debate about the specific proteins 
that dictate this divergent transcriptional regulation.316,329 Such complexity again emphasizes the 
importance of tissue-, or even cell type-specific epigenetic regulatory processes. While 5hmC has begun 
to be investigated in neurodegenerative disorders such as Alzheimer’s and Huntington’s diseases,330,331 
its potential implication in the understanding of SB remains unknown. 

 

Histone marks 

Histones are essential protein complexes that control chromatin structure and activity and are regulated 
by post-translational modifications of their N-terminal tails. Distinct histone modifications associate with 
genomic features, for example, active promoters and enhancer regions are associated with histone 3 
lysine 4 (H3K4) trimethylation and H3K27 acetylation, respectively, whereas repressed promoters are 
associated with H3K9 and H3K27 dimethylation and trimethylation. While histone modification 
represents a ubiquitous mechanism for regulating gene transcription, specific contributions of histone 
modification to the emergence of suicide-related phenotypes have only been explored at the level of 
candidate genes,230,280 and genome-wide approaches should be conducted. 

 

RNA modifications and non-coding RNA 

Transcription, translation and degradation of RNA molecules are well-controlled processes that are 
regulated by RNA modifications (RNA methylation and pseudouridine), RNA editing, and RNA structure 
(see 305,332 for recent reviews). These mechanisms result in complex relationships between RNA and 
protein levels in the brain as, for example, it has been suggested that only 40% of the variance in protein 
levels could be attributed to RNA abundance.333 In the mouse brain, RNA methylation primarily 
corresponds to N6-methyladenosine (6mA), frequently referred to as an epitranscriptomic mark, which 
affects messenger and non-coding RNAs and is dynamically regulated during brain development.334 It 
has been shown to regulate RNA degradation kinetics and to accumulate in the prefrontal cortex during 
learning and memory processes at specific loci associated with synaptic function.335 In humans, SNPs in 
two RNA demethylases, FTO and ALKBH5, which are responsible for 6mA processing, have been 
associated with MDD.336,337 This suggests that N6-methyladenosine may contribute to the control of 
mood and emotional responses, and potentially to suicide pathophysiology.  
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Another RNA modification is pseudouridine (Ψ), which has been shown to affect hundreds of messenger 
RNAs.338,339 While changes in levels of pseudouridine have been described across tissues and following 
cellular stress, its potential role in transcriptomic regulation and in brain function remains unexplored. 

Conversion of adenosine to inosine residues by deamination (RNA A-to-I editing) relies on an enzymatic 
pathway340 to promote RNA functional diversity (by modulating alternative splicing and microRNA 
targeting), thereby leading to qualitatively different proteins and potentially fine-tuning genomic 
responses to rapidly changing environmental demands.341 Recently, an association between suicide and 
a SNP in the adenosine deaminase ADARB1 was reported.342 In suicide, dysregulated RNA editing has 
been reported for the serotonin 5-HT2C receptor, with evidence that increased 5-HT2C editing in 
suicide80,343 could lead to decreased receptor signalling. In rodent models, ELA has also been associated 
with increased 5-HT2C editing.344 

Another promising type of epigenetic regulation of gene expression is the role of non-coding RNAs. A 
large proportion of the transcriptome is composed of regulatory RNAs that do not encode proteins but 
regulate mRNA transcription, function and availability, and interact directly with DNA regulatory 
proteins and enzymes.345 Among non-coding RNA species, long non-coding RNAs are of particular 
interest as they are enriched for brain expression346 and developmentally regulated,347 but less 
evolutionarily conserved than other RNA species. While preclinical studies start to unravel how lncRNAs 
may contribute to emotional control,348 their role in SB is currently unknown. On the other hand, 
microRNAs, which are small non-coding RNA molecules between 19-24 nucleotides long, have been 
implicated in the pathophysiology of mental illness, including MDD. The specific dysregulation of miR 
function in suicide is just beginning to be appreciated, as reviewed recently.349 

Cell-type specificity  
Several distinct cell-types are physically intermingled in the brain, and large-scale single-cell RNA-
sequencing studies have recently started to uncover the transcriptomic underpinnings of cellular 
diversity.350,351 A similar diversity also emerges at the epigenetic level: while all neurons share common 
genetic material, their distinct gene-expression patterns are regulated by epigenetic processes.352 The 
heterogeneity of neuronal cell types and their physical entanglement represent experimental challenges 
that severely hamper the detection of potentially subtle cell-type specific adaptations driving complex 
emotional responses.353 Recent rodent studies have demonstrated that depressive-like behaviours354 
and behavioural responses to antidepressants83 may result from molecular adaptations in a minority 
population of neuronal and non-neuronal cells in a given brain region. Such discrete adaptations are 
likely missed by studies performed with tissue homogenates, therefore cell-type specific strategies are 
needed in suicide research. FACS-sorting of nuclei from postmortem tissue recently enabled the study of 
cell-type specific epigenetic mechanisms of ELA and suicide, and recent technological achievements 
suggest that similar studies are now feasible at the level of gene expression using either FACS (followed 
by analyses of nuclear messenger RNAs355) or laser microdissection.356 
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Brain imaging of epigenetic processes 

PET-scan ligands allowing for the visualization of epigenetic enzymes in the human brain have recently 
been developed.357,358 Although the spatial resolution of such approaches will be inherently limited, they 
should enable longitudinal studies (e.g., of SB) of human brain epigenetic processes that are not feasible 
with existing biochemical approaches which by definition only capture single epigenetic postmortem 
‘snapshots’. 

Therapeutic perspectives 

Tools are currently being developed to enable potent and specific manipulation of the epigenome with 
long-term therapeutic potential in the field of molecular psychiatry. Experimental manipulations of the 
human DNA sequence have been revolutionized over the last few years by the discovery of the Cas9 
system.359 The power of Cas9, and other gene targeting strategies, is now being harnessed to 
manipulate the epigenome. Accordingly, recent reports have shown that enzymes responsible for the 
methylation of the human DNA (DNMT3a) can be directed to specific loci in vitro360,361 in order to modify 
site-specific DNA methylation patterns. Very recently, similar approaches have been used in vivo362 to 
mediate targeted epigenetic reprogramming in the brain,363 with the potential for inheritance.364 
Importantly, the first experimental approach to take advantage of these recent technologies 
demonstrated in rodent models that targeted epigenetic modulation of histone methylation (H3K9me2) 
controlled drug- and stress-induced transcriptional and behavioural responses.362 Such tools may 
eventually allow for epigenetic interventions in psychiatric patients, but a series of major obstacles and 
challenges remain that are notably related to specificity, safety and efficiency, similar to those that have 
been encountered historically for gene therapies in other medical fields.365 

  

Current challenges in suicide research 

Our understanding of the factors and pathways involved in mediating suicide risk has greatly benefitted 
from the advances in the last decade. As we improve our ability to investigate more discrete changes, it 
becomes increasingly important to disentangle the relative contributions of psychopathology from 
changes specific to suicide. The high rate of co-occurrence of MDD and suicide constitutes a major 
challenge in identifying selective determinants of suicide and SB. Recent work examining the 
transmission of violent behaviours and SA also show substantial overlap between these phenotypes,366 
which may be partly explained by the co-transmission of impulsive-aggressive and SB.10,16 Such 
confounding factors suggest that distinguishing between the etiological factors of distinct 
psychopathologies and SB may be more complex than was originally anticipated. A further complication 
stems from the emergence of SI during antidepressant treatment, which has been reported in a small 
proportion of patients receiving SSRIs.367 Although some studies have investigated genetic correlates of 
treatment-emergent SI,40,368 we have yet to adequately describe the clinical and biological features 
associated with treatment-emergent or treatment-worsening SI. 

The wide range of phenotypes that may be considered in studies investigating suicide or suicidal 
behaviour further complicates identification of clear markers for suicide and SB. SI and SA may at times 
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be studied concurrently, and even within these accepted categories, phenotypes may be distinguished 
on the basis of passive or active engagement, on the presence or absence of planning (SI), and according 
to the potential lethality, intent and violence (SA).5 These phenotypes are often considered to exist on a 
spectrum and as a result are frequently studied and reported on together. However, reports have also 
shown specific differences between non-violent and violent SA,185,235,241 and similar questions may be 
asked about the biological similarities between SI, SA and suicide. Given the relatively high prevalence of 
SI, compared to SA and suicide,5 reliable indicators of progression to SA or suicide would be of clear 
clinical benefit. Psychological constructs have been proposed to aid in our understanding of these 
transitions,369 and strengthening this understanding with clearly defined biological mechanisms will 
provide a crucial opportunity to act before suicide occurs. 
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Figure legends 

Figure 1. Modelling suicide risk 

Several models have been proposed to describe suicide risk. These models seek to describe the factors 
that lead individuals to transition from non-suicidal self-injury or SI to other forms of SB, including death. 
Estimated global prevalence rates are indicated in each circle. The Biopsychosocial Model for Suicide 
Risk describes the various elements that cause clear biological changes that act as distal, mediating, or 
proximal factors to increase suicide risk. The Motivational-Volitional Model includes the 
premotivational, motivational, and volitional phases and describes de psychological changes that occur 
when an individual transitions from non-lethal behaviours to potentially lethal SB. The Acquired 
Capability Model proposes psychological changes that can lower an individual’s aversion to self-harming 
behaviour and psychologically prepare them to carry out lethal SB. 
 

Figure 2. Biological pathways leading to suicidal behaviour 

Many biological factors have been proposed as contributors to suicide risk. ELA, a key contributor to SB, 
affects stress response systems (HPA axis and polyamine system), which may affect behaviour (anxiety, 
impulsivity, cognitive ability, social integration, and depressed mood). Changes have also been reported 
in neurotransmitter and neurotrophic signalling pathways as well as in neuroinflammation and lipid 
metabolism. These individual factors, as well as their many interactions and overlapping phenotypes 
(not shown in diagram) work together to modulate the likelihood of engaging in SB. 

 

Figure 3. Brain regions implicated in depression and suicidal behaviour 

Several brain regions have been implicated in MDD and SB. Changes to the prefrontal cortex, anterior 
cingulate cortex, amygdala, hippocampus, raphe nuclei, and locus coeruleus include changes to volume, 
cellular morphology and density, potential inflammation, altered function, and changes to mRNA and 
protein expression levels. 
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Tables 

Table 1. Main features of epigenetic plasticity: current knowledge and gaps  
Molecular 
substrate 

Mark Enrichment 
in brain 

Enrichment in a 
specific cell-type  

Developmental pattern Behavioural 
experience-
dependent 
plasticity 

Implication in 
depression & 
suicide 

Epigenetic 

(DNA) 

 

5mCG No No No Yes Yes

5mCH Yes 309 Yes

neurons >> glia 310 

Yes

Strong accumulation 
during early life 310 

? ?

5hmCG Yes 304 Yes

mature neurons > 
progenitors 370; varies 
also across neuronal 
types 326,371 

Yes

Genomic pattern formed 
in utero 310, with 
postnatal dynamics 372 

Yes 373 ?

Epitranscriptomic 
(RNA) 

 

6mA No 334 ? Yes 334 Yes 335 ?

Pseudouridine 
(Ψ ) 

No 338 ? ? Yes 

Cellular stress 338 

?

A-to-I editing No 374 ? ? Yes 344 Yes 80,343,375

 

Supplementary Table 1. Summary of key findings from GWAS Studies 

Supplementary Table 1 includes SNP reference sequence ID, official gene name and functional 
annotation for SNPs identified in GWAS studies with P-values below 10-5. Shaded cells indicate P-values 
below 10-6.
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Associated gene Functional annotation 
(determined using https://david.ncifcrf.gov/home.jsp unless otherwise 
indicated) 

Top SNPs 
identified by 
authors 

Genome-
wide 
significance 

Reported 
P-value 

Comments

A1CF APOBEC1 complementation factor(A1CF)
mRNA processing, mRNA localization resulting in posttranscriptional 
regulation of gene expression, cytidine to uridine editing, mRNA 
modification, protein stabilization 
nucleoplasm, cytoplasm, endoplasmic reticulum, apolipoprotein B mRNA 
editing enzyme complex 
nucleotide binding, RNA binding, double-stranded RNA binding, single-
stranded RNA binding, protein binding 

rs7278704948 No 1.1×10-6 SA, observed in imputed and genotyped SNPs

ABI3BP ABI family member 3 binding protein
positive regulation of cell-substrate adhesion, extracellular matrix 
organization  
interstitial matrix, extracellular space, extracellular matrix 
collagen binding, heparin binding, 

rs257637741 Yes 2.55×10-8 SA in MDD (Discovery cohort)

ADAMTS14 ADAM metallopeptidase with thrombospondin type 1 motif 14
Inflammatory response39 
proteolysis, collagen fibril organization, collagen catabolic process 
extracellular region, proteinaceous extracellular matrix 
metalloendopeptidase activity, zinc ion binding, 

rs648046339 No 1.70×10-6 SA/Suicide vs. Non-attempter live/non-suicide 
postmortem 

APOO 
 

Apolipoprotein O 
lipid transport, cristae formation 
Golgi membrane, extracellular region, extracellular space, mitochondrion, 
endoplasmic reticulum membrane, integral component of mitochondrial 
inner membrane, very-low-density lipoprotein particle, low-density 
lipoprotein particle, high-density lipoprotein particle, MICOS complex 
protein binding 

rs252023744 No 9.57×10-6 TWSI; genotype × drug interaction
rs270715944 No 4.50×10-6

 
TWSI; genotype × drug interaction

rs270715944 No 7.58×10-6

in 
females; 
n.s. in 
males 

TWSI; genotype × drug interaction; potential gender-
dependent effect 

ATL2 (ARL6IP2)* Atlastin GTPase 2  
ER to Golgi vesicle-mediated transport, endoplasmic reticulum 
organization, Golgi organization, protein homooligomerization 
endoplasmic reticulum, endoplasmic reticulum membrane, membrane, 
integral component of membrane 
GTPase activity, protein binding, GTP binding, identical protein binding 

rs673716941 No 8.86×10-6 SA in MDD (Discovery cohort)

BRINP3 (FAM5C) BMP/retinoic acid inducible neural specific 3
Inflammatory disease39 
cell cycle arrest, positive regulation of neuron differentiation, negative 
regulation of mitotic cell cycle, cellular response to retinoic acid 
extracellular region, mitochondrion, endoplasmic reticulum, dendrite, 
neuronal cell body 

rs1737510839 No 2.66×10-6 SI in depressed subjects

C8orf74 Chromosome 8 open reading frame 74
protein binding (?) 

rs701119239 No 3.9×10-6 Suicide vs. non-SB

CAPN13 Calpain 13 
proteolysis 
intracellular, cytoplasm 

rs654803641 No 7.37×10-6 SA in BD (Discovery cohort)
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calcium-dependent cysteine-type endopeptidase activity, calcium ion 
binding 

CCDC7* 
 

Coiled-coil domain containing 7 
Unknown function 

rs1074085547 No 7.66×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs1082706947 No 6.52×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs1235956847 No 7.41×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs183177147 No 7.48×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs183177447 No 6.97×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs294708047 No 6.89×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs299098047 No 7.18×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs299098447 No 6.78×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs299098647 No 7.10×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs300671347 No 5.22×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs300672647 No 8.14×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs707555347 No 4.45×10-6 Suicide behaviour severity; meta-analysis of three 
sample sets 

rs709000747 No 9.42×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs791027547 No 7.04×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs933870947 No 8.12×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs94482347 No 6.52×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs141397747 No 4.58×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs183204847 No 4.34×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs183204847 No 4.34×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs218448647 No 4.49×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs294705947 No 5.17×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs299207947 No 6.92×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 
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rs474974447 No 5.91×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs707846947 No 2.43×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs707904147 No 2.35×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs708988747 No 5.31×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs789943347 No 4.15×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs789944247 No 4.31×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs789968047 No 4.18×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs790082547 No 3.69×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs790532847 No 6.37×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs791450247 No 2.89×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs966314347 No 6.36×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs98011747 No 4.44×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs133322247 No 7.34×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

DPP10 
 

Dipeptidyl peptidase like 10  
Associated with asthma39 
proteolysis, protein localization to plasma membrane, positive regulation 
of establishment of protein localization to plasma membrane, regulation of 
potassium ion transmembrane transport 
plasma membrane, membrane, integral component of membrane 
serine-type peptidase activity, dipeptidyl-peptidase activity, potassium 
channel regulator activity 

rs137426839 No 5.69×10-6 Live SA vs. Depressed non-SA
rs430812839 No 3.67×10-6 Live SA vs. Depressed non-SA

EPB41L4A Erythrocyte membrane protein band 4.1 like 4A 
actomyosin structure organization 
cytoplasm, cytoskeleton, extrinsic component of membrane 
structural constituent of cytoskeleton, cytoskeletal protein binding 

rs1335890439 No 4.96×10-6 SI in depressed subjects

FBXL18 F-box and leucine rich repeat protein 18
F-box domain, cyclin-like 
Alternative splicing, Complete proteome, Leucine-rich repeat, 
Polymorphism, Proteomics identification, Reference proteome, Repeat, Ubl 
conjugation pathway 

rs472470143 No 2.00×10-6 TESI vs. non-TESI; Best empiric associations calculated 
with Fisher Product Method over both allelic and 
genotypic tests 

GDA Guanine deaminase  
Guanine catabolic process – zinc ion binding – guanine deaminase activity – 
hydrolase activity‡ 

rs1114323044 No 8.28×10-7 TWSI; whole sample; potential effect on females 
treated with escitalopram 
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nucleobase-containing compound metabolic process, guanine catabolic 
process, purine nucleotide catabolic process, nervous system development, 
guanine metabolic process 
intracellular, cytosol, extracellular exosome 
zinc ion binding, guanine deaminase activity 

GFRA1 GDNF family receptor alpha 1 
MAPK cascade, cell surface receptor signaling pathway, nervous system 
development, glial cell-derived neurotrophic factor receptor signaling 
pathway, positive regulation of GTPase activity 
intracellular, plasma membrane, extrinsic component of membrane, 
anchored component of membrane, extracellular exosome 
Ras guanyl-nucleotide exchange factor activity, receptor binding, glial cell-
derived neurotrophic factor receptor activity 

rs475195542 No 7.75×10-7; 
RADIANT 
analysis 

MDD; quantitative trait analysis (SCAN Suicidality 
used to determine SI and SA) ; P=2.84×10-5 in meta-
analysis  

IL28RA (IFNLR1) 
 

Interferon lambda receptor 1 
regulation of immune effector process, regulation of response to biotic 
stimulus, negative regulation of cell proliferation, regulation of cell 
proliferation, regulation of multi-organism process, regulation of defense 
response to virus, regulation of defense response to virus by host 
plasma membrane, integral to plasma membrane, integral to membrane, 
intrinsic to membrane, intrinsic to plasma membrane, interleukin-28 
receptor complex, receptor complex, plasma membrane part 
cytokine receptor activity, cytokine binding 

rs1090303440 No 3.02×10-6 TESI
rs141683440 No 3.6×10-6 TESI

Intergenic Unknown function rs1004309344 No 7.59×10-6 TWSI; whole sample
Intergenic Unknown function rs1185298439 No 1.52×10-6 SA/Suicide vs. Non-attempter live/non-suicide 

postmortem 
Intergenic Unknown function rs121961547 No 6.51×10-6 Suicide behaviour severity in BD; meta-analysis of 

three sample sets 
Intergenic* Unknown function rs1275130242 No 1.61×10-6; 

RADIANT 
analysis 

MDD; discrete trait: SA; P=1.16×10-4 in meta-analysis

Intergenic Unknown function rs136860744 No 1.76×10-6 TWSI; genotype × drug interactions; potential gender 
effects 

Intergenic Unknown function rs141881139 No 1.32×10-6 SI in depressed subjects
Intergenic Unknown function rs143341244 No 2.22×10-6 TWSI; genotype × drug interactions; potential gender 

effects 
Intergenic* Unknown function rs14337110047 No 6.19×10-6 Suicide behaviour severity in BD; meta-analysis of 

three sample sets 
Intergenic* Unknown function rs145119547 No 6.19×10-6 Suicide behaviour severity in BD; meta-analysis of 

three sample sets 
Intergenic Unknown function rs147399544 No 7.37×10-6 TWSI; whole sample
Intergenic Unknown function rs1779043048 No 2.5×10-6 SA, observed in imputed and genotyped SNPs
Intergenic Unknown function rs187939044 No 6.93×10-6 TWSI; escitalopram-treated subjects
Intergenic Unknown function rs241937439 No 9.76×10-7 SI in depressed subjects
Intergenic Unknown function rs284668544 No 4.71×10-6 TWSI; genotype × drug interactions; potential gender 

effects 
Intergenic Unknown function rs290534644 No 9.47×10-6 TWSI; genotype × drug interactions
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Intergenic Unknown function rs32046139 No 3.7×10-6 Suicide vs. non-SB
Intergenic Unknown function rs385115047 No 4.60×10-6; 

meta-
analysis of 
3 studies 

Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

Intergenic Unknown function rs425443244 No 7.09×10-6 TWSI; genotype × drug interactions
Intergenic Unknown function rs681284144 No 7.70×10-6 TWSI; nortriptyline-treated subjects
Intergenic Unknown function rs701977144 No 3.81×10-6 TWSI; genotype × gender interaction
Intergenic* Unknown function rs72090347 No 4.37×10-6 Suicide behaviour severity in BD; meta-analysis of 

three sample sets 
Intergenic; 
closest genes 
ACP1, FAM110C, 
SH3YL1* 

ACP1: Acid phosphatase 1, soluble
Tyrosine phosphatase that influences Wnt signalling; Lithium-sensitive45 
protein amino acid dephosphorylation, phosphorus metabolic process, 
phosphate metabolic process, dephosphorylation 
cell fraction, soluble fraction 
acid phosphatase activity, phosphoprotein phosphatase activity, protein 
tyrosine phosphatase activity, phosphatase activity, identical protein 
binding 
 
FAM110C 
positive regulation of cell migration, positive regulation of protein kinase B 
signaling, regulation of cell projection assembly 
spindle pole, nucleoplasm, cytoplasm, microtubule organizing center, 
microtubule, cell cortex 
protein binding, alpha-tubulin binding 
 
SH3YL1: SH3 and SYLF domain containing 1§ 
phosphatidylinositol biosynthetic process 
regulation of ruffle assembly 
ruffle membrane 

rs30077445 Threshold 5.07×10-8; 
(combined 
analysis of 
2 
datasets) 

SA; Bipolar disorder subjects; P-value (combined 
analysis of 2 datasets) at threshold of GW 
significance; P-value primary dataset = 1.09×10−6 

Intergenic; 
closest gene 
ANKRD7 (476kb) 

Ankyrin repeat domain 7 
male gonad development 

rs646667548 No 3.0×10-6 SA, observed in SNP-by-SNP GWAS

Intergenic; 
closest genes  
ANXA2 (129kb), 
FOXB1 (212kb)* 

Annexin A2 
cellular growth and signal transduction43,§ 

skeletal system development, angiogenesis, blood vessel development, 
vasculature development, body fluid secretion, regulation of blood 
coagulation, negative regulation of blood coagulation, extracellular matrix 
organization, collagen fibril organization, regulation of response to external 
stimulus, fibrinolysis, extracellular structure organization, secretion, blood 
vessel morphogenesis, regulation of coagulation, negative regulation of 
coagulation, regulation of body fluid levels, negative regulation of 
multicellular organismal process 
cell fraction, extracellular region, proteinaceous extracellular matrix, 
basement membrane, soluble fraction, endosome, early endosome, plasma 
membrane, cytoplasmic membrane-bounded vesicle, extracellular matrix, 

rs163053543 No 1.3×10-7 TESI vs. non-TESI; Best empiric associations calculated 
with Fisher Product Method over both allelic and 
genotypic tests 
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cytoplasmic vesicle, vesicle, membrane-bounded vesicle, sarcolemma, 
melanosome, extracellular matrix part, extracellular region part, 
perinuclear region of cytoplasm, pigment granule 
enzyme inhibitor activity, phospholipase inhibitor activity, small GTPase 
regulator activity, calcium ion binding, phospholipid binding, calcium-
dependent phospholipid binding, phosphatidylinositol-4,5-bisphosphate 
binding, cytoskeletal protein binding, lipid binding, Ras GTPase binding, Rab 
GTPase binding, enzyme binding, GTPase regulator activity, small GTPase 
binding, phosphoinositide binding, ion binding, cation binding, metal ion 
binding, GTPase binding, lipase inhibitor activity, nucleoside-triphosphatase 
regulator activity 

Intergenic; 
closest gene 
AVPR1A (22kb), 
PPM1H (189kb) 

AVPR1A: Arginine vasopressin receptor 1A
regulation of systemic arterial blood pressure by vasopressin, maternal 
aggressive behavior, positive regulation of systemic arterial blood pressure, 
generation of precursor metabolites and energy, G-protein coupled 
receptor signaling pathway, activation of phospholipase C activity, positive 
regulation of cytosolic calcium ion concentration, negative regulation of 
female receptivity, grooming behavior, blood circulation, positive 
regulation of cell proliferation, positive regulation of heart rate, positive 
regulation of glutamate secretion, myotube differentiation, calcium-
mediated signaling, telencephalon development, positive regulation of cell 
growth, positive regulation of prostaglandin biosynthetic process, positive 
regulation of cellular pH reduction, cellular response to hormone stimulus, 
social behavior, positive regulation of renal sodium excretion, cellular 
response to water deprivation, maternal behavior, sperm ejaculation, 
penile erection, positive regulation of vasoconstriction, response to 
corticosterone, negative regulation of transmission of nerve impulse, 
response to peptide 
endosome, plasma membrane, integral component of plasma membrane, 
integral component of membrane, cytoplasmic vesicle 
vasopressin receptor activity, protein kinase C binding, protein binding, 
peptide hormone binding, V1A vasopressin receptor binding, peptide 
binding 
 
PRM1H: Protein phosphatase, Mg2+/Mn2+ dependent 1H 
protein dephosphorylation 
nucleus, cytoplasm 
phosphoprotein phosphatase activity, protein serine/threonine 
phosphatase activity 

rs1074797848 No 6.2×10-6 SA, observed in SNP-by-SNP GWAS

Intergenic; 
closest genes 
B3GALT5, 
C21orf88* 

Beta-1,3-galactosyltransferase 5
protein amino acid glycosylation, glycoprotein metabolic process, 
glycoprotein biosynthetic process, biopolymer glycosylation, glycosylation 
endoplasmic reticulum, Golgi apparatus, integral to membrane, intrinsic to 
membrane 
galactosyltransferase activity, UDP-galactose:beta-N-acetylglucosamine 
beta-1,3-galactosyltransferase activity, UDP-galactosyltransferase activity, 
beta-1,3-galactosyltransferase activity 

rs1085439841 No 6.06×10-6 SA in all mood disorders (random-effects meta-
analysis) 

rs813277041 No 7.15×10-6 SA in all mood disorders (random-effects meta-
analysis) 
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C21orf88/B3GALT5 antisense RNA 1 
Unknown function 

Intergenic, 
closest ELP3 

Elongator acetyltransferase complex subunit 3
neuron migration, tRNA wobble uridine modification, regulation of 
transcription from RNA polymerase II promoter, transcription elongation 
from RNA polymerase II promoter, central nervous system development, 
positive regulation of cell migration, histone H3 acetylation, histone H4 
acetylation, regulation of protein kinase activity 
histone acetyltransferase complex, nucleolus, cytoplasm, transcription 
elongation factor complex, Elongator holoenzyme complex 
RNA polymerase II core binding, protein binding, N-acetyltransferase 
activity, phosphorylase kinase regulator activity, H3 histone 
acetyltransferase activity, H4 histone acetyltransferase activity, metal ion 
binding, iron-sulfur cluster binding 

rs473281244

(intergenic) 
No 3.35×10-6 TWSI; escitalopram-treated subjects; potential 

gender-dependent effects in escitalopram-treated 
subjects 

Intergenic; 
closest genes 
MIR3977 
(243kb), 
ATP6AP1L 
(FLJ41309; 
279kb)* 

MIR3977 microRNA 3977 
Unknown function 
 
FLJ41309/ ATP6AP1L ATPase H+ transporting accessory protein 1 like 
ATP hydrolysis coupled proton transport 
integral component of membrane, proton-transporting V-type ATPase, V1 
domain 
proton-transporting ATP synthase activity, rotational mechanism, proton-
transporting ATPase activity, rotational mechanism 
 

rs772086148 No 6.1×10-6 SA, observed in SNP-by-SNP GWAS

Intergenic, 
closest genes 
FLJ42117 
(C3orf67; 
322kb), FHIT 
(377kb)* 

Chromosome 3 open reading frame 67
Unknown function 
 
FHIT 
See above 
 

rs1113070341 No 9.37×10-6 SA in BD (Discovery cohort)

Intergenic; 
closest genes 
IL7, STMN2 

Interleukin 7 
B and T cell development 
T cell lineage commitment, immune response, humoral immune 
response, cell-cell signalling, positive regulation of cell proliferation, organ 
morphogenesis, regulation of gene expression, positive regulation of B cell 
proliferation, negative regulation of apoptotic process, negative regulation 
of catalytic activity, bone resorption, positive regulation of T cell 
differentiation, positive regulation of organ growth, homeostasis of 
number of cells within a tissue, negative regulation of extrinsic apoptotic 
signalling pathway in absence of ligand 
extracellular region, extracellular space 
 
STMN2: Stathmin 2 
intracellular signaling cascade, neuron differentiation 
cell fraction, membrane fraction, soluble fraction, insoluble fraction, 
plasma membrane, internal side of plasma membrane, axon, growth cone, 

rs1044804247 No 3.65×10-6; 
meta-
analysis of 
3 studies 

SA in BD; meta-analysis of three sample sets

rs1044804447 No 2.81×10-6; 
meta-
analysis of 
3 studies 

Suicide behaviour severity in BD; meta-analysis of 
three sample sets 



Lutz Neuropathology of suicide 2017-05-21 

64 

 

site of polarized growth, cell projection, neuron projection, plasma 
membrane part, perinuclear region of cytoplasm 

Intergenic, 
closest genes 
IRX2, IRX4* 

Iroquois homeobox 2 
regulation of transcription, DNA-templated, specification of loop of Henle 
identity, proximal/distal pattern formation involved in metanephric 
nephron development 
nucleus 
sequence-specific DNA binding 
 
Iroquois homeobox 4 
regulation of transcription, DNA-templated, heart development, 
establishment of organ orientation 
nucleus 
DNA binding, sequence-specific DNA binding 

rs92413441 No 6.12×10-6 SA in BD (Discovery cohort)

Intergenic; 
closest genes 
KIAA1462, 
MTPAP* 

KIAA1462 
Unknown function 
 
MTPAP: mitochondrial poly(A) polymerase 
transcription, RNA processing, mRNA processing, mRNA metabolic process 
mitochondrion 
nucleotide binding, nucleoside binding, purine nucleoside binding, RNA 
binding, polynucleotide adenylyltransferase activity, ATP binding, 
nucleotidyltransferase activity, purine nucleotide binding, adenyl 
nucleotide binding, ribonucleotide binding, purine ribonucleotide binding, 
adenyl ribonucleotide binding, adenylyltransferase activity 

rs246202141 No 8.30×10-6 SA in all mood disorders (random-effects meta-
analysis) 

rs136055041 No 8.95×10-6 SA in all mood disorders (random-effects meta-
analysis) 

Intergenic; 
closest genes 
LOC100507632/ 
LINC00968, 
IMPAD1* 

LINC00968: long intergenic non-protein coding RNA 968
Unknown function 
 
IMPAD1: Inositol monophosphatase domain containing 1 
integral to membrane, intrinsic to membrane 
magnesium ion binding, inositol or phosphatidylinositol phosphatase 
activity, inositol-1(or 4)-monophosphatase activity, phosphatase activity, 
ion binding, cation binding, metal ion binding 

rs260999047 No 7.61×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs258238447 No 8.76×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

rs261002547 No 4.61×10-6 Suicide behaviour severity in BD; meta-analysis of 
three sample sets 

Intergenic, 
closest gene 
LRRIQ3 (LRRC44, 
73kb) 

LRRC44/LRRIQ3 leucine rich repeats and IQ motif containing 3
protein binding 

rs141725941 No 3.17×10-6 SA in MDD (Discovery cohort)

Intergenic; 
closest genes 
SFRP2 (113kb), 
DCHS2 (331kb)* 

SFRP2: Secreted frizzled related protein 2
patterning of blood vessels, chondrocyte development, outflow tract 
morphogenesis, cardiac left ventricle morphogenesis, apoptotic process, G-
protein coupled receptor signaling pathway, cell-cell signaling, multicellular 
organism development, response to nutrient, positive regulation of cell 
proliferation, negative regulation of cell proliferation, male gonad 
development, negative regulation of gene expression, negative regulation 
of cardiac muscle cell apoptotic process, negative regulation of epithelial to 
mesenchymal transition, positive regulation of endopeptidase activity, 
regulation of neuron projection development, Wnt signaling pathway, 

rs199342348 No 3.6×10-6 SA, observed in SNP-by-SNP GWAS
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negative regulation of Wnt signaling pathway, collagen fibril organization, 
positive regulation of cell growth, negative regulation of cell growth, 
negative regulation of cell migration, negative regulation of BMP signaling 
pathway, cellular response to extracellular stimulus, positive regulation of 
peptidyl-serine phosphorylation, positive regulation of cell adhesion 
mediated by integrin, positive regulation of catenin import into nucleus, 
non-canonical Wnt signaling pathway, post-anal tail morphogenesis, 
response to drug, negative regulation of mesodermal cell fate specification, 
embryonic digit morphogenesis, positive regulation of apoptotic process, 
negative regulation of cysteine-type endopeptidase activity involved in 
apoptotic process, negative regulation of JUN kinase activity, positive 
regulation of fat cell differentiation, positive regulation of osteoblast 
differentiation, positive regulation of angiogenesis, negative regulation of 
transcription, DNA-templated, positive regulation of transcription from 
RNA polymerase II promoter, digestive tract morphogenesis, negative 
regulation of epithelial cell proliferation, negative regulation of peptidyl-
tyrosine phosphorylation, convergent extension involved in axis elongation, 
bone morphogenesis, sclerotome development, negative regulation of 
dermatome development, hematopoietic stem cell proliferation, cellular 
response to X-ray, negative regulation of canonical Wnt signaling pathway, 
planar cell polarity pathway involved in neural tube closure, Wnt signaling 
pathway involved in somitogenesis, positive regulation of canonical Wnt 
signaling pathway, negative regulation of extrinsic apoptotic signaling 
pathway via death domain receptors, negative regulation of intrinsic 
apoptotic signaling pathway in response to DNA damage, regulation of 
midbrain dopaminergic neuron differentiation, regulation of stem cell 
division, negative regulation of planar cell polarity pathway involved in axis 
elongation 
extracellular region, extracellular space, integral component of membrane, 
extracellular matrix 
fibronectin binding, G-protein coupled receptor activity, integrin binding, 
Wnt-protein binding, Wnt-activated receptor activity, receptor agonist 
activity, endopeptidase activator activity 
 
DCHS2: Dachsous cadherin-related 2 
homophilic cell adhesion via plasma membrane adhesion molecules 
plasma membrane, integral component of membrane 
calcium ion binding 

Intergenic, 
closest gene 
TBX20* 

T-box 20 
See below 

rs1253868439 No 6.9×10-6 Suicide vs. Non-suicide postmortem
rs99063339 No 5.6×10-6 Suicide vs. Non-suicide postmortem

Intergenic, 
closest gene 
TMX3 (126kb)* 
 

TMX3 
Calcium ion binding and protein disulfide isomerase activity; association 
with ADHD and neural development platelet degranulation, protein 
folding, peptidyl-cysteine oxidation, response to endoplasmic reticulum 
stress, cell redox homeostasis 
cell, endoplasmic reticulum membrane, plasma membrane, cell 

rs724426147 No 4.10×10-6; 
meta-
analysis of 
3 studies 

Suicide behaviour severity in BD; meta-analysis of 
three sample sets 
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surface, integral component of membrane, platelet alpha granule 
membrane 

Intergenic, 
closest gene 
ZFAT (ZNF406, 
390kb) 

ZNF406/ZFAT:  zinc finger and AT-hook domain containing
hematopoietic progenitor cell differentiation, transcription from RNA 
polymerase II promoter, multicellular organism development, positive 
regulation of transcription from RNA polymerase II promoter, 
spongiotrophoblast layer development 
nucleus, cytosol 
RNA polymerase II regulatory region sequence-specific DNA binding, 
transcriptional activator activity, RNA polymerase II core promoter 
proximal region sequence-specific binding, nucleic acid binding, 
transcription factor activity, sequence-specific DNA binding, metal ion 
binding 

rs145746341 No 8.45×10-6 SA in BD (Discovery cohort)

KCNIP4 Potassium voltage-gated channel interacting protein 4
cardiac conduction, potassium ion transmembrane transport, protein 
localization to plasma membrane, regulation of potassium ion 
transmembrane transport 
cytoplasm, endoplasmic reticulum, cytosol, plasma membrane, voltage-
gated potassium channel complex 
voltage-gated ion channel activity, potassium channel activity, calcium ion 
binding, potassium channel regulator activity 

rs35859244 No 2.5×10-6 TWSI; escitalopram-treated subjects; potential 
gender-dependent effect 

KIAA1244  
(ARFGEF3) 

ARFGEF family member 3 
negative regulation of phosphatase activity, regulation of ARF protein 
signal transduction, positive regulation of GTPase activity 
integral component of membrane, transport vesicle membrane 
ARF guanyl-nucleotide exchange factor activity 

rs20313642 No 1.74×10-7; 
RADIANT 
analysis 

MDD; discrete trait: SA; P=6.24×10-5 in meta-analysis

KIAA1549L 
(C11orf41) 

KIAA1549 like 
integral component of membrane 

rs1043762945 No 3.77×10−6; 
(combined 
analysis of 
2 
datasets) 

SA; Bipolar disorder subjects; P-value primary dataset 
= 8.56×10-5 

MIR548AA1 
MIR548D1* 
 

microRNA 548aa-1 
Unknown function 
microRNA 548d-1  
Unknown function 

rs667727248 No 8.6×10-7 SA, observed in imputed and genotyped SNPs
rs667994348 No 8.6×10-7 SA, observed in SNP-by-SNP GWAS

NCAM1 Neural cell adhesion molecule 1 
MAPK cascade, cell adhesion, axon guidance, neuron projection 
development, positive regulation of GTPase activity, viral entry into host 
cell, regulation of synaptic plasticity, interferon-gamma-mediated signaling 
pathway 
Golgi membrane, cytoplasm, plasma membrane, external side of plasma 
membrane, cell surface, membrane, integral component of membrane, 
anchored component of membrane, extracellular exosome 
virus receptor activity, Ras guanyl-nucleotide exchange factor activity 

rs378187846 No 1.98×10-6 SA, Meta-Analysis of RADIANT, GSK-Munich, and 
BACCs 

NEBL Nebulette 
cardiac muscle thin filament assembly 
stress fiber, Z disc, I band, extracellular exosome 

rs70308842 No 9.01×10-6; 
RADIANT 
analysis 

MDD; discrete trait: SA; P=5.37×10-4 in meta-analysis
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protein binding, tropomyosin binding, cytoskeletal protein binding, zinc ion 
binding, structural constituent of muscle, filamin binding, actin filament 
binding 

PAPLN Papilin, proteoglycan like sulfated glycoprotein
proteolysis, negative regulation of endopeptidase activity 
proteinaceous extracellular matrix 
metalloendopeptidase activity, serine-type endopeptidase inhibitor 
activity, peptidase activity, zinc ion binding 

rs1162871340 Experiment-
wide 

6.2×10-7 TESI

PLCB1 Phospholipase C beta 1 
Social and communication difficulties in childhood and adolescents39 
G2/M transition of mitotic cell cycle, signal transduction, G-protein coupled 
acetylcholine receptor signaling pathway, glutamate receptor signaling 
pathway, Wnt signaling pathway, calcium modulating pathway, brain 
development, memory, regulation of G-protein coupled receptor protein 
signaling pathway, lipid catabolic process, cerebral cortex development, 
positive regulation of interleukin-12 production, intracellular signal 
transduction, interleukin-12-mediated signaling pathway, interleukin-15-
mediated signaling pathway, positive regulation of embryonic 
development, positive regulation of GTPase activity, inositol phosphate 
metabolic process, fat cell differentiation, positive regulation of myoblast 
differentiation, negative regulation of transcription, DNA-templated, 
positive regulation of transcription, DNA-templated, positive regulation of 
JNK cascade, phosphatidylinositol metabolic process, insulin-like growth 
factor receptor signaling pathway, positive regulation of developmental 
growth, regulation of cell cycle, activation of meiosis involved in egg 
activation, interleukin-1-mediated signaling pathway, regulation of 
fertilization, positive regulation of G1/S transition of mitotic cell cycle, 
positive regulation of acrosome reaction, negative regulation of monocyte 
extravasation, positive regulation of CD24 biosynthetic process 
nuclear chromatin, nucleus, cytoplasm, cytosol, nuclear speck, nuclear 
membrane, myelin sheath, extracellular exosome 
phosphatidylinositol phospholipase C activity, signal transducer activity, 
GTPase activator activity, calcium ion binding, protein binding, calmodulin 
binding, lamin binding, phosphatidylinositol-4,5-bisphosphate binding, 
enzyme binding, protein homodimerization activity 

rs605568539 No 8.31×10-7 SI in depressed subjects

PRKCE Protein kinase C epsilon  
macrophage activation involved in immune response, protein 
phosphorylation, apoptotic process, cell cycle, cell adhesion, signal 
transduction, activation of phospholipase C activity, positive regulation of 
epithelial cell migration, positive regulation of fibroblast migration, positive 
regulation of cell-substrate adhesion, peptidyl-serine phosphorylation, 
platelet activation, positive regulation of actin filament polymerization, 
negative regulation of protein ubiquitination, lipopolysaccharide-mediated 
signaling pathway, positive regulation of insulin secretion, positive 
regulation of synaptic transmission, GABAergic, positive regulation of 
cytokinesis, intracellular signal transduction, locomotory exploration 
behavior, TRAM-dependent toll-like receptor 4 signaling pathway, Fc-

rs1237380541 No 9.20×10-6 SA in all mood disorders (random-effects meta-
analysis) 

rs495324942 No 7.30×10-6; 
RADIANT 
analysis 

MDD; discrete trait: SA; P=7.15×10-3 in meta-analysis
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gamma receptor signaling pathway involved in phagocytosis, positive 
regulation of I-kappaB kinase/NF-kappaB signaling, response to morphine, 
positive regulation of MAPK cascade, regulation of peptidyl-tyrosine 
phosphorylation, positive regulation of lipid catabolic process, release of 
sequestered calcium ion into cytosol, regulation of release of sequestered 
calcium ion into cytosol, cell division, regulation of insulin secretion 
involved in cellular response to glucose stimulus, positive regulation of 
mucus secretion, cellular response to ethanol, cellular response to 
prostaglandin E stimulus, cellular response to hypoxia, positive regulation 
of wound healing, positive regulation of receptor activity, negative 
regulation of sodium ion transmembrane transporter activity, positive 
regulation of cellular glucuronidation 
nucleus, cytoplasm, mitochondrion, endoplasmic reticulum, Golgi 
apparatus, cytosol, cytoskeleton, plasma membrane, perinuclear region of 
cytoplasm, cell periphery 
actin monomer binding, protein kinase activity, protein serine/threonine 
kinase activity, protein kinase C activity, calcium-independent protein 
kinase C activity, signal transducer activity, protein binding, ATP binding, 
enzyme activator activity, enzyme binding, receptor activator activity, 
ethanol binding, metal ion binding, 14-3-3 protein binding 

PROM1 Prominin 1 
retina layer formation, photoreceptor cell maintenance, retina 
morphogenesis in camera-type eye, camera-type eye photoreceptor cell 
differentiation, glomerular visceral epithelial cell differentiation, 
glomerular parietal epithelial cell differentiation, positive regulation of 
nephron tubule epithelial cell differentiation 
photoreceptor outer segment, extracellular space, endoplasmic reticulum, 
endoplasmic reticulum-Golgi intermediate compartment, plasma 
membrane, integral component of plasma membrane, cell surface, integral 
component of membrane, apical plasma membrane, microvillus 
membrane, vesicle, photoreceptor outer segment membrane, intracellular 
membrane-bounded organelle, extracellular exosome 
protein binding, actinin binding, cadherin binding 

rs1738710046 No 7.98×10-7 SA, Meta-Analysis of RADIANT, GSK-Munich, and 
BACCs 

rs1738710042 No 9.53×10-6; 
RADIANT 
analysis 

MDD; discrete trait: SA; P=4.52×10-3 in meta-analysis

PSME2/RNF31 PSME2: proteasome activator subunit 2
Immunological Disease, inflammatory response39 
MAPK cascade, protein polyubiquitination, stimulatory C-type lectin 
receptor signalling pathway, antigen processing and presentation of 
exogenous peptide antigen via MHC class I, TAP-dependent, regulation of 
cellular amino acid metabolic process, positive regulation of endopeptidase 
activity, anaphase-promoting complex-dependent catabolic process, tumor 
necrosis factor-mediated signalling pathway,NIK/NF-kappaB signalling, Fc-
epsilon receptor signalling pathway, proteasome-mediated ubiquitin-
dependent protein catabolic process,regulation of mRNA stability, T cell 
receptor signalling pathway, negative regulation of ubiquitin-protein ligase 
activity involved in mitotic cell cycle, positive regulation of ubiquitin-
protein ligase activity involved in regulation of mitotic cell cycle 
transition, Wnt signalling pathway, planar cell polarity pathway, regulation 

rs457539 No 7.49×10-6 SA/Suicide vs. Non-attempter live/non-suicide 
postmortem 
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of proteasomal protein catabolic process, negative regulation of canonical 
Wnt signalling pathway, positive regulation of canonical Wnt signalling 
pathway, regulation of G1/S transition of mitotic cell cycle 
proteasome complex, nucleoplasm, cytoplasm, cytosol, proteasome 
activator complex, membrane, extracellular exosome 
protein binding, identical protein binding, endopeptidase activator activity 
 
RNF31: Ring finger protein 31 
protein polyubiquitination, I-kappaB kinase/NF-kappaB 
signalling, regulation of tumor necrosis factor-mediated signalling 
pathway, CD40 signalling pathway, positive regulation of I-kappaB 
kinase/NF-kappaB signalling, T cell receptor signalling pathway, positive 
regulation of NF-kappaB transcription factor activity, protein linear 
polyubiquitination, positive regulation of protein targeting to 
mitochondrion 
cytosol, cytoplasmic side of plasma membrane, CD40 receptor 
complex, LUBAC complex 
ubiquitin-protein transferase activity, protein binding, zinc ion binding, 
ligase activity, ubiquitin protein ligase binding, ubiquitin binding, metal ion 
binding 

RARRES2 Retinoic acid receptor responder 2
retinoid metabolic process, in utero embryonic development, positive 
regulation of protein phosphorylation, platelet degranulation, chemotaxis, 
inflammatory response, positive regulation of macrophage chemotaxis, 
positive regulation of fat cell differentiation, embryonic digestive tract 
development, brown fat cell differentiation, positive regulation of 
chemotaxis, regulation of lipid catabolic process, positive regulation of 
glucose import in response to insulin stimulus 
extracellular region, extracellular matrix, platelet dense granule lumen, 
extracellular exosome 
receptor binding, protein binding 

rs1717360846 No 2.41×10-7 SA, Meta-Analysis of RADIANT, GSK-Munich, and 
BACCs 

SLC19A2 Solute carrier family 19 member 2
transport, folic acid transport, thiamine transport, thiamine-containing 
compound metabolic process, thiamine transmembrane transport 
plasma membrane, integral component of plasma membrane, integral 
component of membrane 
protein binding, folic acid transporter activity, thiamine transmembrane 
transporter activity, thiamine uptake transmembrane transporter activity 

rs207275748 No 2.2×10-6 SA, observed in imputed and genotyped SNPs

SLC4A4 Solute carrier family 4 member 4
ion transport, integral component of membrane, transporter activity‡ 

transport, sodium ion transport, inorganic anion transport, bicarbonate 
transport, sodium ion transmembrane transport, regulation of intracellular 
pH, anion transmembrane transport 
plasma membrane, integral component of plasma membrane, integral 
component of membrane, basolateral plasma membrane, extracellular 
exosome 
inorganic anion exchanger activity, protein binding, sodium:bicarbonate 

rs260209841 No 8.80×10-7 SA in MDD (Discovery cohort)
rs765566841 No 4.16×10-6 SA in MDD (Discovery cohort)
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symporter activity 
SORBS1 
 

Sorbin and SH3 domain containing 1
muscle contraction, actin filament organization, cell adhesion, cell-matrix 
adhesion, insulin receptor signaling pathway, positive regulation of signal 
transduction, glucose transport, cellular response to insulin stimulus, stress 
fiber assembly, positive regulation of glycogen biosynthetic process, 
positive regulation of glucose import, positive regulation of lipid 
biosynthetic process, focal adhesion assembly, positive regulation of 
establishment of protein localization to plasma membrane 
stress fiber, nucleus, nucleoplasm, cytoplasm, centrosome, cytosol, plasma 
membrane, insulin receptor complex, cell-cell adherens junction, zonula 
adherens, cell-substrate adherens junction, focal adhesion, nuclear matrix, 
membrane raft 
actin binding, SH3/SH2 adaptor activity, insulin receptor binding, protein 
binding, cytoskeletal protein binding 

rs491891841 No 3.28×10-6 SA in all mood disorders (random-effects meta-
analysis) 

rs707688841 No 8.62×10-6 SA in all mood disorders (random-effects meta-
analysis) 

rs707929341 No 6.19×10-6 SA in all mood disorders (random-effects meta-
analysis) 

rs790009541 No 5.58×10-6 SA in all mood disorders (random-effects meta-
analysis) 

rs95576041 No 4.87×10-6 SA in all mood disorders (random-effects meta-
analysis) 

SPACA6* Sperm acrosome associated 6 
fusion of sperm to egg plasma membrane 
integral component of membrane 
protein binding 

rs1246267341 No 8.85×10-6 SA in MDD (Discovery cohort)

STK3 Serine/threonine kinase 3  
Neuronal cell death39 
neural tube formation, endocardium development, protein 
phosphorylation, apoptotic process, signal transduction, central nervous 
system development, negative regulation of cell proliferation, signal 
transduction by protein phosphorylation, positive regulation of protein 
binding, hippo signaling, intracellular signal transduction, positive 
regulation of apoptotic process, positive regulation of fat cell 
differentiation, positive regulation of JNK cascade, negative regulation of 
organ growth, protein stabilization, positive regulation of sequence-specific 
DNA binding transcription factor activity, positive regulation of protein 
kinase B signaling, primitive hemopoiesis, cell differentiation involved in 
embryonic placenta development, regulation of cell differentiation 
involved in embryonic placenta development, positive regulation of protein 
serine/threonine kinase activity, negative regulation of canonical Wnt 
signaling pathway, hepatocyte apoptotic process, positive regulation of 
extrinsic apoptotic signaling pathway via death domain receptors 
nucleus, cytoplasm, cytosol, protein complex 
magnesium ion binding, protein kinase activity, protein serine/threonine 
kinase activity, receptor signaling protein serine/threonine kinase activity, 
protein binding, ATP binding, protein serine/threonine kinase activator 
activity, protein dimerization activity 

rs301928639 No 8.24×10-6 SA/Suicide vs. Non-attempter live/non-suicide 
postmortem 

TBL1XR1 Transducin beta like 1 X-linked receptor 1
negative regulation of transcription from RNA polymerase II promoter, 
response to dietary excess, transcription, DNA-templated, lipid catabolic 
process, histone deacetylation, regulation of cAMP metabolic process, 
multicellular organism growth, proteasome-mediated ubiquitin-dependent 
protein catabolic process, cellular lipid metabolic process, positive 

rs146684641 No 1.98×10-6 SA in BD (Discovery cohort)
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*SNPs were mapped back to their corresponding genes using GWAS Central: http://www.gwascentral.org/markers  
‡Functional annotation from http://www.ebi.ac.uk/QuickGO/ 
§Functional annotation from https://www.ncbi.nlm.nih.gov/gene/ 
Note: Reference 41 included multiple tables of SNPs associated with SB that were too voluminous to be included here but can be consulted online at: 
http://ajp.psychiatryonline.org/doi/suppl/10.1176/appi.ajp.2010.10040541 

regulation of transcription, DNA-templated, positive regulation of 
transcription from RNA polymerase II promoter, white fat cell 
differentiation, canonical Wnt signaling pathway, fat pad development, 
regulation of triglyceride metabolic process 
histone deacetylase complex, nucleus, nucleoplasm, spindle microtubule, 
integral component of membrane, transcriptional repressor complex 
transcription corepressor activity, protein binding, beta-catenin binding, 
histone binding, transcription regulatory region DNA binding, protein N-
terminus binding 

TBX20 T-box 20 
Brainstem motor neuron development39 
Cell Death and Survival39 
negative regulation of transcription from RNA polymerase II promoter, 
patterning of blood vessels, endoderm formation, neuron migration, heart 
looping, embryonic heart tube morphogenesis, outflow tract septum 
morphogenesis, tricuspid valve development, aortic valve morphogenesis, 
pulmonary valve formation, endocardial cushion morphogenesis, cardiac 
chamber formation, cardiac right ventricle morphogenesis, endocardial 
cushion formation, cardiac septum development, pericardium 
morphogenesis, transcription from RNA polymerase II promoter, muscle 
contraction, blood circulation, cell proliferation, dorsal/ventral pattern 
formation, negative regulation of SMAD protein complex assembly, visceral 
motor neuron differentiation, foramen ovale closure, embryonic heart tube 
elongation, negative regulation of transcription, DNA-templated, positive 
regulation of transcription from RNA polymerase II promoter, lateral 
mesoderm formation, cardiac muscle tissue morphogenesis, positive 
regulation of cardiac muscle cell proliferation, atrial septum 
morphogenesis, pulmonary vein morphogenesis 
nucleus, cytoplasm, 
RNA polymerase II regulatory region sequence-specific DNA binding, RNA 
polymerase II core promoter proximal region sequence-specific DNA 
binding, transcriptional activator activity, RNA polymerase II core promoter 
proximal region sequence-specific binding, RNA polymerase II transcription 
factor binding, RNA polymerase II activating transcription factor binding, 
RNA polymerase II transcription coactivator activity, transcription factor 
activity, sequence-specific DNA binding 

rs1767513139 No 1.2×10-6 Suicide vs. Non-suicide postmortem
rs210909039 No 2.8×10-6 Suicide vs. Non-suicide postmortem
rs224099439 No 1.0×10-6 Suicide vs. Non-suicide postmortem
rs33628439 No 7.56×10-6 SA/Suicide vs. Non-attempter live/non-suicide 

postmortem 
rs33628439 No 2.00×10-7 Suicide vs. Non-suicide postmortem
rs472340239 No 2.7×10-6 Suicide vs. Non-suicide postmortem

TMEM132C Transmembrane protein 132C 
integral component of membrane 
 

rs729626245 No 1.09×10−6; 
(combined 
analysis of 
2 
datasets) 

SA; Bipolar disorder subjects; P-value primary dataset 
= 9.08×10−6 
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Lutz,	
  Figure	
  2.	
  Biological	
  pathways	
  to	
  suicidal	
  behaviour

ELA/Stress

SB

Neurotransmission
Serotonin,	
  

glutamate,	
  GABA Altered	
  glutamate	
  
signalling

Altered	
  cortisol	
  
response

Neuroinflammation
Astrocytic	
  function,	
  
cytokine	
  signalling

­ Anxiety
­ Impulsivity

¯ Cognitive	
  ability
¯ Social	
  integration

¯ Mood

Neurotrophic	
  
signalling
BDNF,	
  TrkB

Lipid	
  metabolism
Cholesterol	
  and	
  fatty	
  

acid	
  levels

? ?



Lutz,	
  Figure	
  3.	
  Brain	
  regions	
  implicated	
  in	
  depression	
  and	
  suicidal	
  behaviour
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