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Abstract

In this thesis we study the feasibility of realizing scale-separated compactifications of

type IIB string theory to four-dimensional Anti-de Sitter or de Sitter space, the latter in

particular being important for string theoretic approaches to cosmology, while maintaining

a controlled effective theory description. We start by presenting the necessary elements of

string theory and reviewing the existing proposals for constructing such compactifications

as well as the challenges they face. We then present an approach to determining the regime

of validity of an effective field theory description, using notions from asymptotic analysis.

Combined with string theory’s lack of dimensionless parameters, this approach allows us

to establish whether the set of quantum corrections required to yield a particular type of

solution leads to a breakdown of the effective field theory description. Applying this approach

to scale-separated anti-de Sitter type IIB compactifications, we find no obstacle to having

such solutions once suitable non-perturbative corrections are introduced, which are precisely

the type used in existing proposals. We also find that for a similar ansatz describing de

Sitter compactifications, the equations of motion can not be satisfied without leaving the

effective theory regime. We then study various modifications to the initial ansatz and find

that the problem persists unless one allows for additional low-energy effects combined with

time-dependent internal field strengths.
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Abrégé

Dans cette thèse on étudie la possibilité de réaliser des compactification de la théorie

des cordes de type II à un espace Anti-de Sitter ou de Sitter avec séparation d’échelle,

ce dernier étant important pour des approches de théorie des cordes à la cosmologie, en

maintenant une description de théorie effective contrôlée. On commence par la présentation

des éléments nécessaires de la théorie des cordes et une révision des constructions éxistantes

de telles compactifications, ainsi que les défis auxquels elles font face. On présente ensuite

une approche pour déterminer le régime de validité d’une description de théorie effective

de champs, en utilisant des notions provenant de l’analyse asymptotique. En combinaison

avec l’absence de paramètres sans dimensions dans la théorie des cordes, cette approche

nous permet à établir si un ensemble de corrections quantiques nécessaires pour rendre une

solution de type particulier mènent à un échec de la description de théorie effective de

champs. En appliquant cette approche aux compactifications de type II avec séparation

d’échelle à l’espace Anti-de Sitter, nous ne trouvons aucun obstacle pour ces solutions dès

que des corrections non-perturbatives appropriées sont introduites, qui sont précisément du

même type que celles qui sont utilisées dans les propositions existantes. Nous trouvons

aussi que pour un ansatz similaire décrivant les compactifications à l’espace de Sitter, les

équations de mouvement ne peuvent pas être satisfaites sans quitter le régime de validité de

la théorie effective. Nous étudions ensuite des différentes modifications à l’ansatz initial et

trouvons que le problème persiste, sauf si on permet des effets additionnels à basse énergie

en combinaison avec des champs dépendants du temps.
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Preface

This monograph thesis contains the results of a research program that I took part in

over the past two years as part of my doctoral studies, related to the problem of realizing

de Sitter compactifications in string theory. The ideas, calculations and results presented

here have appeared in a series of papers, [1, 2, 3, 4], co-authored with Keshav Dasgupta

(my research advisor), Evan McDonough, Mir Mehedi Faruk and Radu Tatar, as well as a

single-author paper [5]. Throughout these research projects, I have taken full participation

in the discussions, performed and/or verified all the calculations, contributed the figures to

[3], wrote parts of the manuscript for [1, 2], and edited the rest. The single-author paper [5]

is entirely my own work.

This thesis aims at presenting the ideas, calculations and results appearing in these

papers in a streamlined manner that I find most clearly explains our approach and its

implications and reflects my most current understanding of the topic. For this reason, all

the calculations have been presented in the notation and formalism resembling [5], which

differs from that of the earlier papers in appearance, but not in substance. There are also

minor differences in starting assumptions among the aforementioned papers, as these have

evolved over the course of the research project. This leads to slight variations in some

calculations and their interpretations, without significantly changing the general approach

or the overall conclusions. To the extent that one must choose between these variations, the

assumptions used in this thesis are those of [5], in order to maximally reflect my own views

on the subject.
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Chapter 1

Introduction

Cosmological observations indicate that the late-time behavior of our universe will one of

accelerated expansion [6, 7, 8]. Furthermore, the dominant paradigm for explaining observed

features of the early universe, known as inflation [9, 10, 11, 12, 13], also involves a phase

of even more drastic accelerated expansion. These facts motivate the search for solutions

that exhibit such expansion within string theory, which is currently the most promising

approach to quantum gravity as well as a unifying framework for all the known the types of

interactions.

As string theory is naturally defined in 10 dimensions, we must compactify 6 of them to

obtain a four-dimensional spacetime description. Furthermore, for spacetimes with non-zero

curvature, we would usually like to require that the length scale of the compactification

is small compared to the natural length scale of the four-dimensional spacetime, a feature

known as scale-separation.

The maximally symmetric spacetime that exhibits accelerated expansion is de Sitter

space, so one may be naturally inclined to look for compactifications of string theory to this

spacetime. Unfortunately, explicit top-down constructions in string theory present many

technical challenges at the present time. The existing proposals for constructing de Sit-

ter space, or even scale-separated Anti-de Sitter space (the maximally symmetric negative

curvature spacetime), rely on a subtle patchwork of ten-dimensional and four-dimensional

phenomena arising from an interplay of classical and quantum effects [14, 15, 16, 17]. In

particular, the inclusion of quantum effects is crucial in avoiding no-go results that arise at

the classical level [18, 19]. How and whether the necessary ingredients combine in the correct



1 Introduction 4

way to produce the desired result remains a matter of some debate [20].

In parallel to this work on the application of string theory to cosmology, there is an

active effort to establish the restrictions that string theory places on the possible low-energy

effective theories that arise from it, known as the swampland program [21, 22, 23]. The

study of string compactifications has revealed a vast “landscape” of solutions, leading one

to believe that any desired low-energy behavior may be obtained, provided various effective

theory consistency conditions are satisfied. The swampland program posits that this is not

the case and that the “landscape” of legitimate string theory compactifications is surrounded

by a “swampland” of seemingly consistent effective theories which do not have an embedding

into string theory.

The technical challenges in constructing a full top-down de Sitter compactification has

led to the idea that de Sitter compactifications may be part of this swampland, which

would suggest that cosmological models in string theory may need to invoke alternative

early universe scenarios (e.g. string gas cosmology [24, 25, 26]) and quintessence models [27]

for the late-time behavior of the universe. This view has been formalized in a series of “de

Sitter swampland conjectures” [28, 29, 30, 31, 32] which propose constraints on valid string

theory models, which are in direct conflict with prolonged phases of accelerated expansion.

The swampland conjectures themselves, however, are generally based on what is known

about effective theories in regimes of string theory where explicit top-down calculations are

possible. They might therefore be missing out on some important and intricate effects, such

as the quantum effects used in the proposed de sitter constructions, thus coming back full

circle.

A systematic investigation of the possible quantum corrections that arise in string theory

is therefore necessary in order to make progress on this question. The study of quantum

corrections in string theory is complicated by the fact that explicit high order calculations

in string theory are generally at least as difficult as those in field theory. Among the known

quantum corrections, only some are the result of direct calculation of scattering processes,

with most others then being inferred via constraints such as supersymmetry or anomaly

cancellation. Thus even at the next-to-leading order, we do not have complete knowledge of

the signs and coefficients of the corrections.

This incomplete knowledge of the quantum corrections even at a given order in pertur-

bation theory means that for any proposed model or no-go result relying on an effective

description based on a finite set of known ingredients, it’s hard to rule out that some un-
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known ingredient may in fact be important and spoils the conclusion.

Thus, in this thesis, rather than working with a set of known corrections and look for

solutions or principles prohibiting them, we will instead build on the approach of [19], where

we start with an ansatz for a solution that fails to satisfy the classical equations of motion,

and ask what properties the quantum corrections would have to have in order to make it into

a solution. We may not know the exact corrections, but what we can know, is their general

form, i.e. the degrees of freedom that these corrections are built out of, when working in an

effective theory framework.

Naturally, once we find these properties it isn’t guaranteed that the corrections appearing

in string theory will have them, so finding a consistent set of criteria should not be viewed

as proof that solutions of a given type exist. What we may find, however is that the set of

corrections required to make the ansatz into a solution is inconsistent with the existence of

the effective theory description that we started with. Thus while we may not completely rule

out certain solutions, we can rule out their existence within certain regimes. Note that this

approach is naturally better suited for finding no-go results, rather than proving existence

of solutions. The advantage of the approach is that it does not require the full knowledge

of the exact coefficients and index structures that appear in the corrections, only the fields

that they are built out of.

The thesis is organized as follows: Chapter 2 is dedicated to a review of the relevant

aspects of string theory, from its perturbative definition to the proposed construction of

scale-separated anti-de Sitter and de Sitter solutions, as well as the technical challenges they

face and recent conjectures that appear to exclude their existence.

The first half of the chapter 3 reviews important notions from perturbation theory and

asymptotic analysis. The second half of that chapter connects these mathematical tools

to the notion of effective theories and establishes an organizing principle for the possible

corrections to an effective theory description, as well as a criterion for when a solution fails

to exist within the regime of validity of that effective theory, which serves as the basis for

the rest of our approach.

The next two chapters apply the notions described in chapter 3 to scale-separated com-

pactifications with non-zero spacetime curvature. Chapter 4 examines a simple ansatz de-

scribing scale-separated compactifications with non-zero external spacetime curvature and

finds that certain non-local effects, most naturally interpreted as non-perturbative correc-

tions, allow for this ansatz to be made into a stable solution to the equations of motion,
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but only when the curvature is negative. Attempting to introduce additional corrections to

change the sign of the curvature leads to a violation of the criteria laid out in the second

chapter, indicating a breakdown of an effective theory description.

In chapter 5 we investigave the consistency of various modifications to the initial ansatz

in an attempt to avoid this effective theory breakdown. We do so by introducing additional

flux components as well as allowing for additional dependence of the internal fields on the co-

ordinate that corresponds to time in the de Sitter ansatz. We find that these new ingredients

can satisfy certain consistency conditions, which means they can consistently be added to

the ansatz. However, they alone do not solve the problem of the effective theory breakdown.

Finally we consider the option of interpreting the non-local effects not as non-perturbative

effects but as effects that dominate the low-energy limit of the theory. When combined with

suitable corrections, which involve the new time-dependent ingredients, we find that we get

better control over the sign of the external curvature opening the way for de Sitter solutions.

We conclude the thesis in chapter 6 with a summary and discussion of our results and

their relation to other work surrounding the issues of de Sitter compactification and scale-

separation.
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Chapter 2

Preliminaries

String theory is a framework for unifying the various types of interactions known in

physics, including gravity. Originally proposed as an approach to understanding the strong

nuclear force (before the development of QCD), it was eventually re-purposed as theory of

quantum gravity, due to the inevitable presence of spin-2 states in its spectrum. The most

rigorous definitions of string theory are only available perturbatively, however a patchwork of

rigorous calculations, arguments, perspective shifts and consistency checks strongly suggest

that string theory is a much richer theory than what the perturbative definition alone might

suggest.

This chapter is dedicated to a brief overview of string theory, starting from the pertur-

bative definition of string theory, and working our way to constructions of spacetimes with

non-zero cosmological constant and parametric scale-separation, which is the main topic of

this thesis. We will also discuss some of the technical challenges they face as well as the more

principled objections that have been advanced against such constructions in recent years,

within the scope of the swampland program.

Most of the contents of this chapter, with the exception of the end of section 2.4 and

section 2.5, is standard material, which can be found in textbooks such as [33, 34, 35, 36,

37].
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2.1 Perturbative String Theory: Worldsheet and Spacetime

Physics

2.1.1 Bosonic String

The conceptual starting point for the perturbative definition is the action for a string

propagating in an ambient spacetime, proportional to the worldsheet area of the string:

SNG = − 1

2πα′

∫
d2σ
√

det gMN(X)∂aXM∂bXN , (2.1.1)

known as the “Nambu-Goto action”. The coordinates σa, a = 1, 2 parametrize the string

worldsheet and the determinant is taken with respect to these indices. We are therefore

considering a two-dimensional field theory, where the “fields” XM represent coordinates

of the string in the ambient “target space” with metric gMN , which depends on X. The

prefactor 1/2πα′ is the tension of the string and defines a length scale called the string

length, given by ls =
√
α′. The strings can a priori be closed, with periodic boundary

conditions, or open, with Dirichlet or Neumann boundary conditions specified separately at

each end point. For the moment we shall focus on the closed string.

The functional form of the action (2.1.1) presents technical problems for quantization, so

instead one considers a different, but classically equivalent action:

SP = − 1

2πα′

∫
d2σ
√
hhabgMN(X)∂aX

M∂bX
N . (2.1.2)

This action introduces a non-dynamical worldsheet metric hab, which one ought to be free

to choose arbitrarily without changing the physics. Due to this freedom, combined with

the parametrization invariance of the worldsheet, the action has diffeomorphism and Weyl

symmetry in two dimensions, which is equivalent to conformal symmetry. Consistency of

the theory requires that this symmetry is preserved upon quantization, which leads to non-

trivial constraints. We are thus dealing with a two-dimensional quantum conformal field

theory (CFT) consisting of D scalar fields, where D is the dimension of the target space.

The action can further be extended to include other parametrization invariant terms,
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producing the “Polyakov action”

S = − 1

2πα′

∫
d2σ
√
h
(
habgMN(X)∂aX

M∂bX
N + εabBMN(X)∂aX

M∂bX
N + α′R(2)(X)φ(X)

)
,

(2.1.3)

where BMN is an anti-symmetric tensor and φ is a scalar called the “dilaton”, both functions

of the target space coordinates X, and R(2) is the worldsheet Ricci scalar. This is the

action that serves as the definition of perturbative (bosonic) string theory. The final term

is not Weyl-invariant but it is also higher order in α′, and therefore only contributes to the

consistency conditions at higher order.

The consistency conditions for conformal invariance at the quantum level impose certain

conditions, organized order by order in α′, on the target space of the theory (see [38] for a

review). The leading order condition fixes the central charge of the conformal field theory,

which in turn requires the target-space dimensions to be D = 26.

On the one hand, a prediction of the dimensionality of space is a very interesting feature,

absent in QFT. On the other hand, the required dimension does not match the observed

dimensionality of the universe. This, however is not an immediately disqualifying outcome,

as there are well-established ways to effectively hide the excess dimensions from view. This

is the issue of compactification, which we will return to later in the chapter.

The next order condition for preserving conformal invariance on the worldsheet is more

exciting. This condition is the vanishing of the one-loop β-function coefficients

βMN(G) = α′
(
RMN + 2∇M∇Nφ−

1

4
HMPQH

PQ
N

)
(2.1.4)

βMN(B) = α′
(
−1

2
∇PHPMN +∇PφHPMN

)
(2.1.5)

β(φ) = α′
(
−1

2
∇2φ+∇Pφ∇Pφ− 1

24
HMNPH

MNP

)
, (2.1.6)

which is equivalent to the equation of motion for a scalar field φ, the natural generalization

for Maxwell’s equations for the anti-symmetric tensor field strength H3 = dB2 and Einstein’s

equations for the target-space metric in the presence of these fields.

Moreover, computing the β-functions to higher order in α′, one can systematically ob-
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tain higher derivative corrections to these equations. In other words, the requirement of

worldsheet conformal invariance at the quantum level, not only correctly reproduces general

relativity, but also provides a way to compute the higher derivative corrections to it!

Having quantized the worldsheet theory, we can study the spectrum of the theory and

the properties of the various states of the string as viewed from the spacetime perspective.

Specifically one can compute the mass and spin of these states. The calculation is the same

as standard QFT. One expands the fields in modes and defines creation and annihilation

operators for each mode, with the ground state being annihilated by all the annihilation

operators. The rest of the states are built by acting on the ground state with various

combinations of creation operators.

The ground state of the closed string is tachyonic! This is a problem, since it indicates

that although the backgrounds satisfying (2.1.4) ensure the consistency of the worldsheet

theory, they are nonetheless unstable toward creating condensates of closed strings in their

ground states. The end-point of this instability is unknown and the tachyonic nature of the

ground state is generally viewed as a fatal problem for the bosonic string.

If we press on, however, and look at the next excited states, obtained by acting with the

lowest mode creation operators for the left-moving and right-moving modes, we find that

they are massless1 and carry two target-space indices (one from each creation operator).

|ψ〉 = α̃†Mα
†
N |0〉, (2.1.7)

where α† is the creation operator for the left-moving sector, while α̃† is the creation operator

for the right-moving sector. The fact that we must match excitation levels between these

sectors is known as “level-matching” and is a consequence of worldsheet parametrization

invariance.

This state decomposes into a trace, a traceless symmetric and an antisymmetric part,

in perfect correspondence with what one expects from excitations of the dilaton, the metric

and the antisymmetric tensor respectively.

Furthermore, one can compute the scattering amplitudes of these excitations. This is

done using standard conformal field theory techniques, where conformal invariance allows

1This only holds when the dimension of the target space is the same as what is required by conformal
invariance, as described previously.
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one to replace asymptotic states on the worldsheet, by appropriate local operator inser-

tions at isolated points and computing their correlation function. The results reproduce the

scattering amplitudes expected from quantizing linearized gravity, providing a non-trivial

consistency check.

It is worth stressing however, that the scattering amplitude computations can only be

truly rigorously performed and compared for small excitations about flat space, while the

equations coming from the β-functions allow for curved target-space backgrounds.

Note that string theory does not provide us with a spacetime action. Instead it provides

us with a set of equations of motion, with corrections organized in a perturbative expansion,

and a set of scattering amplitudes. A spacetime action can only be inferred, by essentially

guessing and checking that it reproduces the results. The action that produces matching

equations of motion and tree-level scattering amplitudes to those obtained from worldsheet

computations, is referred to as the low-energy effective action for that string theory.

2.1.2 Fermions and the Superstring

The next step in the development of string theory is to include fermionic worldsheet

degrees of freedom. This introduces fermionic creation and annihilation operators which sat-

isfy anti-commutation relations and carry worldsheet spinor indices, but Lorentz spacetime

indices. While it seems like an ad hoc addition, it actually provides several interesting fea-

tures. The first is that the worldsheet theory becomes supersymmetric. Another is that the

condition on the dimensionality of the ambient spacetime changes, from D = 26, to D = 10.

For closed strings, fermions can obey periodic or anti-periodic boundary conditions, re-

ferred to as “Ramond” or “Neveu-Schwarz” conditions, respectively. These can be chosen

separately for the left- and right-moving modes, leading to a total of 4 different sectors, typ-

ically denoted by R-R, NS-NS, NS-R and R-NS. The states in the R-R and NS-NS sectors

behave as spacetime bosons. In particular, the NS-NS sector houses the familiar massless

excitations of the metric, dilaton and antisymmetric tensor fields as the bosonic string. The

massless part of the R-R sector consists of excitations of antisymmetric p-form fields. The

NS-R and R-NS sectors behave as spacetime fermions, since the different boundary condi-

tions imply that a global rotation flips the total sign of the state. In particular they contain a

massless spin-3/2 state, which implies that the theory must have spacetime supersymmetry!

This feature plays a crucial role in restricting the form of the low-energy effective action.
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The NS-NS ground state is still tachyonic, and moreover, does not have a supersymmetric

partner, i.e. a fermionic state of the same mass. This seems to exacerbate a problem that

was bad enough in the bosonic string. Fortunately, there is a small miracle that occurs: by

studying the operator algebra, we find that the spectrum actually splits into non-interacting

subsets, classified by the fermion number in each sector! This allows us to project away

some of the states without affecting the consistency of the theory. We are thus free (in

fact, obliged) to remove completely the subset that contains the tachyon, which, fortunately

enough, resides in a different subset from the NS-NS massless states. This procedure is

known as the “GSO projection” [39]. Its precise details are again not entirely relevant for

our purposes, except that there are several consistent ways to carry out this projection,

resulting in several different consistent theories.

The construction outlined above leads to to the “type IIA” and “type IIB” string the-

ories, which will be the main setting in future chapters. These theories both have N = 2

spacetime supersymmetry and their massless spectra contain the same metric, dilaton and

anti-symmetric tensor that is present in the bosonic string. The massless fermion spectrum

contains the spin-3/2 gavitino and consists of both left-handed and right-handed fermions

for the type IIA case and only left-handed fermions for the type IIB case. In fact, the entire

massless spectrum of both type II theories can be assembled into one extended supergrav-

ity multiplet whose two-derivative action is fixed by supersymmetry and gives “type IIA/B

supergravity”. The β-function calculations proceed in very much the same way as for the

bosonic string and reproduce the equations of motion for the NS-NS fields, as well as pro-

vide higher-derivative corrections. The R-R fields, however do not appear in the worldsheet

action, and so their equations of motion can only be deduced from the spacetime supersym-

metry constraints in this approach.2

2.1.3 Type IIA/B Effective Action

Here we write down some basic facts about the type IIA/B field content and two-

derivative effective action for future reference and to establish notation. The NS-NS fields

are denoted

2There is a second approach to quantizing strings, known as the Green-Schwarz superstring [33, 34], which
has spacetime supersymmetry built in from the beginning. In this approach, the R-R fields can be coupled
to the string through a fermion bilinear term and the equations of motion can be found from physical state
constraints in the worldsheet theory. In either approach, spacetime supersymmetry is an essential ingredient
to determining the action for the R-R fields
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φ, g, B2, (2.1.8)

for the dilaton, the metric and the anti-symmetric 2-form, respectively. The NS-NS 3-form

field strength is

H3 = dB2. (2.1.9)

The R-R p-form potentials are denoted Cp and their field strengths are

Fp+1 = dCp. (2.1.10)

Due to the different GSO projections, the type IIA/B theory only contains odd/even

rank potentials and therefore even/odd rank field strengths, respectively.

The antisymmetric fields transform under a gauge symmetry Cp → Cp + dΛp−1 and

B2 → B2 + dA1 where the A1 gauge parameters is not independent of the Λp. The gauge-

invariant field combinations are

F̃4 = F4 + C1 ∧H3 (2.1.11)

in type IIA and

F̃5 = F5 +
1

2
B2 ∧ F3 +

1

2
H3 ∧ C2

F̃3 = F3 + C0H3 (2.1.12)

in type IIB.

Both theories have the same kinetic action for the NS-NS sector
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SNS =
1

2κ2

∫
d10xe−2φ

(
R + 4∂Mφ∂

Mφ− 1

12
HMNPH

MNP

)
, (2.1.13)

where κ2 = 1
4π

(2πls)
8.

This is supplemented by the action for the R-R fields, which consists of the kinetic terms

for each p-form field

SR = − 1

4κ2

∑
p

∫
F̃p ∧ ?F̃p , (2.1.14)

where the F̃ are the gauge invariant combinations described above3. There is also a topo-

logical interaction referred to as the “Chern-Simons” action, which takes the form

SCS = − 1

4κ2

∫
B2 ∧ F4 ∧ F4 (2.1.15)

for type IIA and

SCS = − 1

4κ2

∫
C4 ∧H3 ∧ F3 (2.1.16)

for type IIB.

As a final remark for this discussion, we note that a similar story to what we described in

the previous two subsections holds for strings, which only have fermionic degrees of freedom

in the left-moving part of the spectrum. This gives rise to two more consistent string theories,

known as E8 × E8-heterotic and SO(32)-heterotic theories, commonly denoted by HE and

HO, respectively, whose low energy limits are N = 1 gauged supergravity theories with the

corresponding gauge group. We will not be making use of these theories in our work.

2.1.4 Open strings and D-branes

So far we have discussed closed strings, which produce 10-dimensional supergravity the-

ories as their low-energy limits. A similar discussion holds for open strings, however since

3F2 and F1 are already gauge invariant, so they simply have their canonical kinetic term
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there is no longer a separate left- and right-moving sector, there is only one set of creation

and annihilation operators for the bosonic degrees of freedom. We do, however, now have

to fix the boundary conditions at the end points of the open string. We can choose between

Dirichlet and Neumann boundary conditions for the bosonic fields, while for the worldsheet

fermions, we must choose some relative signs between the boundary terms for each helic-

ity at each endpoint. These produce what are again called “Ramond” or “Neveu-Schwarz”

boundary conditions, depending on whether the relative sign choices are the same or different

between the endpoints.

The rest of the story proceeds in similar fashion to the closed string. For purely Neumann

boundary conditions, the ground state once again comes out tachyonic, while the first excited

states are massless and in particular contain the state

|ψ〉 = α†M |0〉, (2.1.17)

which behaves as a spacetime gauge boson. We can once again project out the ground state

via GSO projection and are left with a theory whose lowest states behave as massless gauge

bosons. Thus, instead of producing a gravity theory, open strings with Neumann boundary

conditions produce a gauge theory in the low energy limit.

If we instead choose Dirichlet boundary conditions for some of the bosonic fields, this

corresponds to fixing the ends of the string on some hypersurfaces. Such hypersurfaces are

called Dp-branes, where p denotes the number of spatial dimensions of the brane. The oscil-

lation modes of the string that are longitudinal to the D-brane still produce a gauge theory

just as before, only in lower dimensions, while the transverse oscillations can be interpreted

as excitations of the D-brane itself. Indeed, the calculation involving a vertex operator in the

worldsheet CFT that describes a coherent state of these transverse string modes is exactly

the same as a calculation in which the D-brane profile itself is deformed. Thus from the

spacetime perspective, the D-branes themselves can be thought of as dynamical objects.

In the same way that the closed string β-functions yield the spacetime equations of motion

for the metric, dilaton and NS-NS 2-form, a similar similar open string calculation yields the

equations of motion for the D-brane [40, 41]. The resulting equations of motion are those

obtained from the Dirac-Born-Infeld action:
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SDBI = −TDp
∫
dp+1σe−φ

√
det(gab +Bab + 2πα′Fab), (2.1.18)

where gab, Bab are the pullbacks of the spacetime metric and antisymmetric tensor to the

brane worldvolume and Fab is the worldvolume gauge field strength F = dA.

A further very important property of D-branes is that they couple to the p-form fields

coming from the closed string R-R sector [42]. Type IIA/B theories contain odd/even p-form

potentials and thus even/odd p-form fluxes, respectively, as part of their massless spectrum.

The superstring worldsheet action does not contain terms that couple to these potentials,

which means that although there are string states corresponding to excitations of these fields,

the strings do not act as sources for them. This is in contrast to the NS-NS antisymmetric

2-form, which appears explicitly in the worldsheet action (2.1.3). D-branes however contain

an additional term in their effective action

SCS = µp

∫
Cp+1 + (B + 2πα′F ) ∧ Cp−1 + (B + 2πα′F ) ∧ (B + 2πα′F ) ∧ Cp−3 + ... ,

(2.1.19)

which allows them to couple directly to the p-form potentials. One way to realize that

this coupling occurs is by considering worldsheets with boundaries. The boundary state

can be represented by an appropriate vertex operator and one can compute a non-vanishing

amplitude to produce a Ramond-Ramond state. Another is to notice that D-branes are BPS

states that preserve half of the supersymmetries of the type II theory. Such states always

carry a conserved charge, and their RR charges are precisely that. The absence of such a

coupling would be inconsistent with supersymmetry.

Aside from D-branes, there are also objects called orientifold planes, or O-planes. These

objects arise when the target spacetime is an orbifold, i.e. a smooth spacetime “modded

out” by a discreet group. The fixed points of this action are called orbifold planes, and if one

combines the orbifold action with worldsheet parity, they are called orientifold planes. From

the worldsheet perspective they are described by “cross-cap” states, i.e. boundaries where

points are identified with their antipode. These objects also turn out to source R-R fields,

since the amplitudes involving R-R states and the cross-cap states are also non-vanishing,
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but have no further dynamics of their own4, since there are no open strings living on them,

whose collective excitations could describe the motion of the O-plane. These O-planes play

an important role in compactifications, as they can help ensure global charge cancellation.

As a final comment, let us mention the fifth consistent string theory, knows as the “Type

I” superstring. It can be obtained from Type IIB strings by including D9-branes filling the

entire spacetime and orientifolding, i.e. projecting out all worldsheet parity-violating states

of the strings. This, in particular, removes the NS-NS 2-form from the spectrum as well as

the R-R 0-form and 4-form potentials, but keeps the dilaton, metric, the R-R 2-form, and

introduces the gauge field coming from the D9-branes. This theory contains both closed and

open strings.

2.2 String Dualities and M-theory

The procedure outlined in the previous sections results in the construction of several

consistent, but different-looking theories, each with its own low-energy limit, in the form of a

consistent 10D supergravity theory supplemented by higher derivative corrections. However,

a series of developments known as the ”second superstring revolution” has revealed that

these theories are in fact all connected by a web of relations known as dualities.

Duality is a general phenomenon in theoretical physics, in which two possibly very dif-

ferent looking theories, turn out to in fact be alternate descriptions of the same physical

system. That is, despite appearing to be defined in terms of different degrees of freedom

with different actions, their physical observables are in one-to-one correspondence with each

other. The two sides of the duality typically involve taking the underlying system to different

limiting regimes, (e.g. strong vs weak coupling) and the different appearance of the theories

can be attributed to different effects being dominant in these regimes.

The two kinds of dualities relating different string theories are referred to as T-duality

and S-duality, which we now briefly describe.

2.2.1 S-duality

S-duality is arguably the more similar one to the dualities one finds in QFT. All five

string theories contain a scalar degree of freedom, the dilaton φ, which appears in the third

4At least none that can be seen at the level of perturbative string theory
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term of the action (2.1.3).

S ⊃ − 1

2π

∫
d2σ
√
h φR . (2.2.20)

For constant φ, this term is proportional to the Euler characteristic of the worldsheet

and therefore depends purely on the topology of the worldsheet and factors out of the path

integral over worldsheets with fixed genus. The computation of scattering amplitudes in

string theory involves a sum over all worldsheet topologies, so the contributions coming from

higher genus worldsheets appear with higher powers of eφ. In this sense, the expectation

value of eφ behaves like a perturbative expansion parameter and is called the string coupling,

denoted by gs.

In type IIB supergravity we can combine the 0-form potential and the dilaton combine

to form a complex scalar τ = C0 + ie−φ. The action of IIB supergravity is then invariant

under,

τ → aτ + b

cτ + d(
C2

B2

)
→

(
a b

c d

)(
C2

B2

)
(2.2.21)

For any real a, b, c, d, with ad− bc = 1. In full string theory, the charges and fluxes must

be quantized, so the symmetry gets reduced to SL(2,Z). S-duality is the particular case

when

(
a b

c d

)
=

(
0 1

−1 0

)
(2.2.22)

which relates type IIB at weak string coupling to type IIB at strong string coupling. Since the

perturbative string calculations are only valid at weak coupling, this duality is remarkable, in

that it allows us to get a handle on the strong coupling regime as well. Of course this requires

S-duality to continue to be a symmetry once corrections to the two-derivative supergravity

action are introduced, including non-perturbative corrections.
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One compelling piece of evidence that the duality continues to hold at the non-perturbative

level comes from looking at the tensions of various extended objects in the theory. Besides

strings, the theory contains D1-branes, which couple naturally to C2, while the string cou-

ples to B2. Since the duality interchanges these two-forms, we expect it to interchange their

sources as well. Both the fundamental string and the D1-brane are BPS objects, so the

expressions for their tension are protected from corrections by supersymmetry.

The string tension is proportional to 1/α′, while the D1-brane tension is given by 1/(gsα
′).

The Planck length is related to the string tension by

l2p = g1/2
s α′, (2.2.23)

so when measured in Planck units, we see that the D1 and the string tension get interchanged.

This means that as we move to strong coupling, the string tension exceeds the Planck scale,

but the D1-branes become lighter and take on the role of fundamental strings! In a similar

vein, the D3 tensions remains invariant, in line with the invariance of F5, while the D5 brane

changes places with the NS5-brane, a different kind of extended object in string theory that

is magnetically charged under B2. Other SL(2,Z) transformations produce new objects

called (p, q)-strings or -branes, which carry combinations of NS-NS and R-R charges.

The S-duality transformation (2.2.22) also maps the type I supergravity action to the

heterotic SO(32) supergravity action. Note that the B2 and C2 fields are only present in one

of the two theories and map to each other, with similar non-perturbative checks involving

the tensions of BPS objects suggesting that the duality holds at the non-perturbative level

as well.

2.2.2 T-duality

While some field theories can also exhibit S-duality, in the sense that taking their coupling

to its inverse produces a weakly coupled dual theory, which may even be itself, as is the case

with N = 4 super Yang-Mills, T-duality is an inherently stringy duality, which appears from

a symmetry relating string momentum and winding modes.5

Consider a string theory where one of the spacetime directions is compactified on a circle

5Note, however that upon compactification and dimensional reduction, both dualities can be cast in a
similar form from the lower-dimensional perspective.
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of size R, as measured in string units. A closed string can wind around this circle and its

Hilbert space will contain winding states. The energies of these states are proportional to

nR where n is the “winding number”, i.e. the number of times the string is wound around

the circle. On the other hand, the values of the momentum of the string along the circle also

become quantized, and the momentum states have energies proportional to m/R, where m

is the momentum. There are also oscillator modes of the string, which are insensitive to the

size of the circle.

The first piece if evidence for T-duality is the observation that the spectrum of the

closed string remains invariant under R → 1/R. Moreover, if X is the worldsheet field

corresponding to this compact direction, then one can define a new worldsheet field Y ,

which has all the same OPE coefficients as X with other fields, but has periodicity 1/R.

These fields are related to each other by

∂αX = εαβ∂
βY, (2.2.24)

where α, β are worlsheet indices. This relationship imples the following transformation rules

for the NS-NS fields

g̃Y Y =
1

gXX
, g̃YM =

BXM

gXX
, g̃MN = gMN +

BXMBXN − gXMgXN
gXX

,

B̃YM =
gXM
gXX

, B̃MN = BMN +
gXMBXN −BXMgXN

gXX
, (2.2.25)

known as “Buscher’s rules” [43], where X and Y denote the circle coordinate before and

after duality and tildes denote the dual quantities. These rules can also be derived from the

closed string path integral [44].

For the open string, (2.2.24) implies that Dirichlet boundary conditions become Neumann

and vice-versa. This means that a Dp-brane becomes a D(p∓1)-brane, depending on whether

the original brane was wrapped around the circle or not. This in turn means that the R-R

fields that couple to these branes must also transform into each other as
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CXMN...dX ∧ dxM ∧ dxN ∧ ... → CMN...dx
M ∧ dxN ∧ ... (2.2.26)

CMN...dx
M ∧ dxN ∧ ... → CYMN...dY ∧ dxM ∧ dxN ∧ ... (2.2.27)

More rigorous derivations of these rules for the R-R from various perspectives can be found in

[45, 46, 47, 48, 49]. Note that it is important for the application of these rules that the circle

coordinate has the correct periodicity, otherwise numerical coefficients will appear. Since

T-duality maps even p-forms to odd p-forms, it must map type IIA string theory to type IIB

and vice versa. It also connects the two heterotic theories, which do not have R-R fields,

but with some additional subtleties relating to how their respective gauge groups transform

into each other.

Note that both (2.2.25) and (2.2.26) preserve the isometry along y. On the other hand,

the rule for open strings seems to suggest that when D-branes lose a dimension they must

localize to some point on the circle and break the isometry. Furthermore T-duality is known

to relate KK-monopoles (geometries where the circle radius is non-trivially fibered over the

transverse manifold and smoothly vanishes at a point) to NS5-branes, which are the magnetic

sources for the NS-NS 2-form [50].

Applying Buscher’s rules in both these scenarios only yields smeared branes. While this

is acceptable from a supergravity perspective, in the same sense that continuous charge

distributions are fine in classical electrodynamics, from a string theory perspective this is

unsatisfactory. The mechanism responsible for breaking the translation symmetry and lo-

calizing the NS5-brane dual to a KK-monopole was given in [51] and via S-duality can be

mapped to the case of D-branes. Thus, in the presence of branes, Buscher’s rules must

be used with caution. Furthermore, these rules are only valid to leading order and receive

additional corrections, suppressed by powers of the string length [52, 53, 54].

As a quick aside, although we presented type I strings as an orientifold of type IIB strings

in the presence of D9-branes, historically the development was in the opposite direction.

Type I string theory was first known as one of the five consistent string theories, and D-

branes were discovered as the result of applying T-duality to the type I string [42].
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2.2.3 M-theory and F-theory

We have seen that the five string theories are not all separate theories, but are related by

S- or T-duality as well as orientifold projections. Yet another very important piece of this

duality web is the observation that the HE and IIA string theories can both realized as the

dimensional reduction of an 11-dimensional theory [55]. There is a unique 11-dimensional

supergravity theory whose bosonic field content consists only of the metric, an antisymmetric

3-form potential, accompanied by their superpartner, the gravitino. At the two-derivative

level, its bosonic action can be written as

S = M9
p

(∫
d11x
√
gR−

∫
G4 ∧ ?G4 −

1

6

∫
C3 ∧G4 ∧G4

)
, (2.2.28)

where G4 = dC3, and Mp is the 11-dimensional Planck mass.

Type IIA supergravity can then be obtained by dimensionally reducing this theory on

a circle, while the E8 × E8 heteoritic theory is obtained by dimensionally reducing on an

interval, where each E8 gauge group factor can then be viewed as living on the end-point of

the interval.

Let us spell out the dimensional reduction of the bosonic sector to IIA in more detail.

Compactifying on a circle parametrized by y, the 11-dimensional metric gMN decomposes

into a 10-dimensional metric gmn, a scalar field, coming from the gyy metric component, and

a U(1) gauge field Am = gmy. Let us write this decomposition in the following way:

ds2
M = e−2φ/3gmndx

mdxn + e4φ/3(dy + Cmdx
m)2 . (2.2.29)

This choice of parametrization will result in the correct normalization after dimensional

reduction. Furthermore, the C3 potential decomposes into several components as well de-

pending on whether it has a y index or not. This results in Bmn = Cymn and Cmnp remains as

is. Carrying out the dimensional reduction gives precisely the type IIA supergravity action

given in section 2.1.3,
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S =
1

2κ2

∫
d10x
√
ge−2φ

(
R + 4(∇φ)2 − 1

2
|H3|2

)
+

− 1

4κ2

∫
F2 ∧ ?F2 −

1

4κ2

∫
F4 ∧ ?F4 −

1

4κ2

∫
B2 ∧ F4 ∧ F4 , (2.2.30)

where F2 = dC1, F4 = dC3 and H3 = dB2, and we have κ−2 ∝ M8
p e

φ/3, which means

M−1
p = eφ/3ls.

Note that eφ appears precisely as the type IIA string coupling and becomes small when

the y-circle becomes small, so the 11-dimensional theory really describes the strong-coupling

regime of type IIA supergravity.

Of course, this exercise only establishes the relation between 11-D supergravity and 10-

D type IIA supergravity. The important claim is that this correspondence extends to the

full type IIA string theory. The 11-dimensional theory that describes the strong coupling

regime of type IIA strings should then be some theory that reduces to 11D supergravity at

low energies. This theory is referred to as M-theory, and at the present time, no complete

top-down formulation of this theory is known.

Much like with the other dualities, the evidence that the relation holds at the string theory

level comes from comparing extended BPS objects in the theory. Since 11-D supergravity

contains the C3 field, there should be objects that couple to it electrically and magnetically.

These objects are known as M2- and M5-branes. Although their complete actions are not

known, the minimal action of the M2 brane ought to contain terms of the form

∫
d3σ
√
h
(
gMN∂αX

M∂αXN + CMNP ε
αβγ∂αX

M∂βX
N∂γX

P
)
, (2.2.31)

where h is an auxiliary worldvolume metric, plus its supersymmetric completion. This action

can also be dimensionally reduced, when one of the directions wraps the y circle, and yields

precisely the Polyakov action for the string. Thus the fundamental strings of type IIA can

be identified with M2-branes wrapping the extra dimension of 11-d supergravity.

Similarly, if the M2-brane is not wrapped around the y-circle, it should be identified with

the D2-brane of type IIA. A fully non-perturbative correspondence is hard to establish since

for neither objects the complete action is known, but it can be checked to leading order and
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supersymmetry pretty much requires this to be the case, since they are both BPS objects

that couple to their respective p-form fluxes, which are related by the dimensional reduction.

In a similar vein, the M5-brane can be argued to correspond to either a D4-brane or an

NS5-brane depending on whether it wraps the circle direction or not.

Any theory of gravity compactified on a circle will give rise to two-more kinds of objects

in the lower-dimensional theory. The first simply arises from Kaluza-Klein modes of the

metric along the circle directions, which we truncated when obtaining (2.2.30). Keeping

them in, results in a 10D term that describes a particle with electric coupling to the vector

field Am. These are identified with the D0-branes of type IIA theory.

The second kind of object arises when the y-circle has a non-trivial fibration over the

10-dimensional base manifold. In particular, there are solutions that are asymptotically of

the form R1,6 ×R3 × S1, where the S1 has a non-trivial fibration over the R3 manifold. The

R3 × S1 part of the manifold has a metric described by a “gravitational instanton” metric

[56, 57].

These solutions can have the the y-circle degenerates at one of multiple points creating

coordinate singularities, which describe various 6 + 1-dimensional objects in the type IIA

theory, depending on the exact nature of the singularity. The non-trivial fibration of the y-

circle induces off-diagonal components of the metric, which upon reduction to 10-D produce

exactly the gauge-field due to a magnetic source.

Two important examples of these solutions are the Taub-NUT solution, which corre-

sponds to a single D6 brane in 10-dimensions, and the Atiyah-Hitchin metric [58], whose

asymptotic behavior is actually (R3×S1)/Z2, which describes the O6-plane. These relation-

ships can be checked by the matching of the ADM masses and magnetic charges of these

objects. Note that the magnetic charges of these objects appear as topological charges from

the 11-dimensional perspective.

In curved and/or compact space, the exact uplifts of D6 and O6 planes are generally not

known, but since both these objects carry charges coming from the topological properties

of their uplifts, it is safe to assume that their geometries will maintain their general form,

differing only by various warpings and deformations. We will return to these objects in

chapter 4, since as we will see, they host an important set of quantum corrections to M-

theory.

Thus we have completed the dictionary between the basic objects present in type IIA

theory and M-theory. We can also use T-duality to relate type IIB theory to M-theory.
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Recall that type IIB strings have an SL(2,Z) symmetry, which acts on the axio-dilaton as if

it were the modular parameter of a torus. There is a way to make this torus appear explicitly

by considering type IIB compactified on a circle, with string frame metric.

ds2
B = eφ/2R̃(x)2dz2

1 + gmndx
mdxn, (2.2.32)

where the metric gmn is independent of z1. We will also assume a string coupling eφ, which

may also depend on x. Since z1 is an isometry, we can T-dualize this metric to obtain

ds2
A = e−φ/2R2(x)dz2

1 + gmndx
mdxn, (2.2.33)

with R(x) = 1/R̃(x) and the type IIA string coupling is given by Re−φ (we set the string

length to 1). Lifting this to M-theory, we obtain

ds2
M = R4/3(e−φdz2

1 + eφdz2
2) +R−2/3gmndx

mdxn, (2.2.34)

and thus eφ appears as the modular parameter of the z1, z2 torus. Furthermore, if we had a

non-vanishing C0 potential on the IIB side, it would become a C1 = C0dz1 on the IIA side

and produce off-diagonal terms in the torus metric. Thus it is the whole axio-dilaton that

gives the modular parameter of the torus. The SL(2,Z) symmetry of type IIB manifests

itself as the modular symmetry of this torus.

One can further check that the transformation rules for the 3-form fluxes in type IIB

also map to analogous transformations for the G4 fluxes of M-theory, with one leg along the

torus directions. SL(2,Z) transformations then alter which leg it is, converting between H3

and F3 exactly reproducing (2.2.21).

Note that this M-theory description of the type IIB geometry does not require the type

IIB string coupling to be large or small. However to obtain the non-compact IIB limit, the

total volume of the torus needs to shrink to zero. This M-theory description of this class of

IIB geometries is called F-theory and offers a powerful handle on the strong coupling limit of

type IIB strings. In particular, we will be using precisely this duality chain when examining

scale-separated compactifications in chapters 4 and 5, where we will discuss more details.
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2.3 Compactification

In order to obtain a 4-dimensional theory from the 10-dimensional string theories, one

must compactify them on a 6-dimensional manifold and integrate out the massive Kaluza-

Klein modes. The task of determining which compactifications are allowed and what the

resulting 4-dimensional effective theory is complicated in full generality and carries a trade-off

between tractability and phenomenological viability. Requiring that some supersymmetry is

preserved after compactification leads to important constraints which simplify the analysis.

2.3.1 Calabi-Yau compactifications

For supersymmetry to be preserved, it must be the case that the variation of the gravitino

under the corresponding supercharges vanishes.

δεΨM = (∇M + FM)ε = 0, (2.3.35)

where FM is an expression built out of the various p-form fluxes and gamma matrices that

depends on the type of string theory we are working in. In the absense of internal fluxes,

this amounts to requiring that the spinor ε is covariantly constant.

The existence of such a spinor requires that both the 4-dimensional and 6-dimensional

submanifolds are Ricci-flat. Furthermore, bilinears constructed out of this spinor provide

the internal manifold with a complex structure, making it a Kahler manifold, and a global

3-form that is holomorphic with respect to this complex structure. This in turn implies that

the Ricci 2-form is exact (commonly stated as the vanishing of the first Chern class) and

the manifold therefore has no non-trivial 1-cycles. Manifolds satisfying these properties are

called Calabi-Yau manifolds, and an important theorem [59, 60] guarantees the existence and

uniqueness of a Ricci-flat metric on these manifolds, despite it not being known explicitly in

the general case.

A Calabi-Yau manifold can be characterized by its overall volume, which fixes the purely

holomorphic 3-form, as well as the sizes of its various 2-cycles and 3-cycles. These are

referred to as the Kahler moduli and complex structure moduli respectively. The unbroken

supersymmetry contrains the 4-dimensional effective theory to be 4-dimensional supergravity

coupled to a set of supermultiplets, whose lowest components correspond to these moduli.

The type of superfield describing each of the modulus depends on the type of string theory.
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In type IIB CY compactifications, which will be the most relevant case for our purposes, and

which preserve N = 2 SUSY in 4 dimensions, the complex structure moduli are described

by (the lowest component of) the vector multiplets, while Kahler moduli are described by

hypermultiplets.

The two-derivative action is then also completely constrained by supersymmetry as is the

form of possible corrections to it (provided we demand SUSY is preserved). Thus simply by

compactifying on a SUSY preserving manifold, we can obtain the low energy 4-dimensional

theory without doing the dimensional reduction explicitly. An important detail is that the

fields describing the CY moduli remain massless to all orders in perturbation theory.

This is a double edged sword. On the one hand, it means that we are free to work in

a regime where we have control over stringy corrections to the SUSY conditions, which can

change some of the analysis. On the other hand, this generates a large number of (per-

turbatively) massless fields in the lower-dimensional theory, which poses phenomenological

problems. What we would like is for these moduli to be stabilized dynamically, but in such

a way that we maintain control over the possible corrections to the effective theory. This is

known as the problem of moduli stabilization.

2.3.2 Flux Compactifications

The way that partial moduli stabilization can be achieved is through compactifications

that involve fluxes along the internal dimensions. At the pure supergravity level, without

localized sources such as branes, there is a well-known no-go result that forbids non-trivial

fluxes [61]. The way around this is to consider a warped product manifold, where the metric

of the non-compact directions comes with a conformal factor that depends on the internal

coordinates, combined with the addition of higher derivative corrections to the flux equa-

tions of motion,. Indeed, these corrections will generically make non-trivial fluxes not only

possible, but necessary. For a comprehensive review of the topic see [62].

An illustrative example, and one that is similar in many ways to the spacetimes that we

will be studying in later chapters, is a warped compactification of M-theory to 3-dimensional

Minkowski space [63]. We will write an ansatz of the form

ds2 =
1

h(y)2/3
ηijdx

idxj + h(y)1/3gmn(y)dymdyn, (2.3.36)
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where xi parametrize R2,1, while ym parametrize an 8-dimensional manifold. The choice of

powers on the warp factor h(y) is for later comparison with type IIB compactifications.

Poincare invariance requires that fluxes with legs along the non-compact directions are

proportional to the volume element of the non-compact space,

Gijkm = εijkfm(y), (2.3.37)

where fm(y) is a set of functions of the internal coordinates only. The other flux components

must be entirely along the internal directions. The two-derivative equation of motion is

d ? G = G ∧G, (2.3.38)

and we see that if the left hand side has the external flux, then the right hand side must

contain the wedge product of the internal fluxes. If we integrate both sides of the equation

over the 8-manifold, the left hand side vanishes, and we are seemingly forced into setting the

internal fluxes to zero. However, there is a higher-derivative topological contribution to the

Chern-Simons action of the form

δSCS = −M9
p

∫
C3 ∧X8, (2.3.39)

where

X8 =
1

192
(p1(R)2 − 4p2(R)2) =

1

(2π)4

(
1

192
trR4 − 1

768
(trR2)2

)
(2.3.40)

is a topological invariant built out of the first and second Pontryagin classes (denoted p1

and p2) of the tangent bundle of the 8-manifold. For a (conformally) Calabi-Yau manifold

the integral of X8 gives the Euler characteristic of the manifold. This term is required in

the action in order to ensure cancellations of gravitational anomalies in the presence of M5-

branes [64, 65, 66], and thus represents an effect that is beyond supergravity alone. The

integrated equation of motion then has the schematic form



2 Preliminaries 29

∫
G ∧G+

∫
X8 = 0, (2.3.41)

and is referred to as the “tadpole cancellation” condition. In the presence of explicit M2-

brane sources their total number would appear in the equation as well. Essentially, this

condition is a Gauss-law type constraint, requiring that the total electric charge sourcing

C3 must vanish. Note that in the absence of M2-brane sources, non-trivial fluxes now are

possible only when the internal manifold has non-zero
∫
X8.

It is worth noting that X8 is in fact the only topologically invariant correction to the flux

equations of motion one could add. There can be other higher-derivative terms involving

curvatures and fluxes, but they will be non-topological and therefore expressed in terms of

the field strength G4, rather than the potential C3. This in turn means that these terms will

only contribute total-derivatives to the flux equation of motion and thus not contribute to

the tadpole cancellation.

A further set of constraints can be obtained by requiring supersymmetry, via the condition

(2.3.35), now with a non-zero flux term. The constraints one obtains from it are that the

external flux needs to be related to the warp factor as

fm(y) = −∂mh(y)−1, (2.3.42)

or in other words, Cijk = h−1εijk. With this form of the external flux, both the Einstein’s

equations and the flux equation of motion involve 2h and can be combined to show that the

internal flux must be self-dual.

G = ?G. (2.3.43)

Furthermore if the internal manifold is conformally Calabi-Yau, the supersymmetry condi-

tions further require that the internal fluxes are (2, 2) with respect to its complex structure

(recall that CY-manifolds are Kahler and therefore complex) and primitive, meaning

J ∧G = 0, (2.3.44)

where J is the complex structure.
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A somewhat similar story happens for flux compactifications of type IIB to R3,1. Here,

the standard ansatz is

ds2 =
1√
h(y)

ηijdx
idxj +

√
h(y)gmndy

mdyn, (2.3.45)

where now xi parametrizes R3,1 and the internal manifold is 6-dimensional. Once again,

Poincaré symmetry requires that the only non-zero flux with external legs comes is

F0123m = fm(y), (2.3.46)

while the internal fluxes come from the 3-forms F3 and H3, which one typically combines

into G3 = F3 − τH3, where τ = C0 + ie−φ is the axio-dilaton.

A particular class of solutions once appears if we assume that the external 4-form potential

is the warped volume element.

C0123 =
1

h(y)
, F0123m = ∂m

1

h(y)
. (2.3.47)

A combination of Einstein’s equations and the flux EOM leads to the 3-form flux G3

being imaginary self-dual:

?G3 = iG3 . (2.3.48)

Requiring supersymmetry further constrains the fluxes to be (2, 1) and primitive with

respect to the complex structure (assuming the internal manifold is conformally Calabi-

Yau). This in principle leaves open the possibility of having non-supersymmetric solutions,

by including a (3, 0) component of the flux, which is also imaginary self-dual, but breaks

supersymmetry.

As in the M-theory case, there is a tadpole condition that needs to be obeyed on a

compact manifold. In this case, the two-derivative flux equations in the absense of sources

of motion read

d ? F5 = G3 ∧G3 , (2.3.49)
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and as before, the left hand side vanishes when integrated over the compact manifold. As in

the M-theory case, we need to turn to higher derivative effects, which in this case come from

the inclusion of D7-branes in the background. As we saw, the worldvolume action of a D7

brane consists of the DBI action (2.1.18) and the Chern-Simons action coupling it to various

p-forms (2.1.19). The DBI action is exact to all orders in α′, while the Chern-Simons action

is only the leading order term and takes an α′ correction from worldvolume curvature of the

form

δSCS =

∫
C4 ∧ tr(R ∧R), (2.3.50)

where R is the curvature 2-form of the 4-cycle wrapped by the D7-branes. This term modifies

the tadpole condition to

∫
G3 ∧G3 +

∑
Σi

∫
ω2(y⊥)tr(R ∧R) = 0, (2.3.51)

where the second term is the sum over all 4-cycles wrapped by branes with ω2(y⊥) being a

2-form that is delta-function localized at the position of the branes.

An important feature of these solutions is that the addition of fluxes stabilizes some

of the moduli [67, 68]. Recall that the dimensional reduction on a Calabi-Yau (including

orientifolds) resulted in a set of massless scalar fields parametrizing the sizes of the cycles.

The complex structure moduli parametrize the sizes of the 3-cycles, while the Kahler mod-

uli parametrize the size of the 4-cycles. These scalars were the lowest components of their

respective supermultiplets, and so it is convenient to describe their dynamics in supersym-

metric language, in terms of a Kahler potential K, which determines the kinetic terms for

the scalars and a superpotential W , which gives the scalar potential via

V = eK
(
Kab̄DaW ¯DbW − 3|W |2

)
, (2.3.52)

with Da = ∂a + (∂aK), the indices a, b labelling the various chiral multiplets in the theory.

Solutions to the equations of motion can be obtained by solving DaW = 0.
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The presence of the flux G3 induces a superpotential in the 4-dimensional theory [69]

W =

∫
Ω ∧G3 , (2.3.53)

which induces a scalar potential for the complex structure moduli and dynamically fixes

them! The axio-dilaton also gets fixed since it appears in the definition of G3. Thus flux

compactifications provide partial moduli stabilization. The Kahler moduli, usually denoted

ρ, remain unfixed at this level. The superpotential is independent of these moduli and their

Kahler potential, to leading order, is of a “no-scale” structure: K = −3 log(ρ − ρ̄), which

results in a flat scalar potential. We will discuss their stabilization in the next section.

Finally, let us point out that there is a direct relationship between this type IIB scenario

and the M-theory scenario. Performing the duality chain described in section 2.2.3 between

type IIB and M-theory, the ingredients of both of these scenarios map to each other. The

external F5 flux maps to the external G4 flux by losing a leg to T-duality. The internal

fluxes F3 and H3 each gain a leg, the former by T-duality, the latter from the uplift to

11 dimensions, and become the internal G4 flux. The D7 branes, get replaced by warped

Taub-NUT solutions, as discussed in section 2.2.3, which contribute a nontrivial topological

charge. Indeed, the
∫
R ∧ R term on the D7-worldvolume can be seen as coming from the∫

X8 term after doing the integral over the directions transverse to the Taub-NUT solution.

A particularly interesting case that we will make use of in future chapters is the “constant

coupling” scenario [70, 71], where the axio-dilaton charge of the D7 branes is cancelled in a

local fashion, by placing them on top of O7-planes in a 4-to-1 ratio. This cancels the global

D7 charge of the background, but also ensures that the axio-dilaton is constant everywhere

except the D7/O7 loci. This means that apart from those loci, the M-theory dual has the

internal manifold given by M6 × T 2, with the T 2 having constant modular parameter. All

the non-trivial topology of the torus fibration is localized at the duals to the D7/O7 stacks,

which become D-type ADE singularities. We will return to discussing the properties of this

scenario in future chapters.
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2.4 De Sitter Space in String Theory

The compactifications we have discussed so far have all been to flat space, partly as a

result of relying on supersymmetry conditions to obtain solutions. Meanwhile, cosmological

observations indicate that the eventual fate of our universe is one of accelerated expansion

[6, 7, 8]. Furthermore, the dominant paradigm for explaining the origins of various features

of the cosmic microwave background involves a phase of very rapid accelerated expansion

known as “inflation” [9, 10, 11, 12, 13]. While alternative early-universe scenarios exist that

do not involve such accelerated expansion (see [72, 73] for a review) the late-time accelerated

expansion appears somewhat more certain. If the history of our universe really contains

epochs of sustained accelerated expansion and string theory is to be a theory of nature, it

must be able to produce cosmological solutions exhibiting such accelerated expansion.

The maximally symmetric spacetime exhibiting accelerated expansion is de Sitter space,

and realizations of it in string theory have been the subject of a lot of recent debate. In this

section we will review the main proposal for realizing four-dimensional de Sitter space in

string theory, known as the KKLT scenario [14]. In the next section we will discuss some of

the uncertainties surrounding this construction and various conjectures that in fact prohibit

de Sitter space from being realized in string theory.

The starting point for the KKLT scenario is in fact the type IIB flux compactifications

we have discussed in the previous section with the complex structure moduli stabilized. As

we mentioned earlier, the Kahler potential for the Kahler moduli ρ appears as

K = −3 log(ρ+ ρ̄). (2.4.54)

Here we are assuming a single Kahler modulus for simplicity, but the story is similar when

there are more.

In supersymmetric compactifications, the total superpotential vanishes and one obtains a

flat potential for the Kahler moduli. As we mentioned in the previous section, introducing a

(3, 0) part of the 3-form flux breaks supersymmetry and results in a non-zero contribution to

the superpotential. This superpotential is still independent of ρ so upon fixing the complex

structure moduli we simply have.
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W = W0. (2.4.55)

Supersymmetry protects the superpotential W from receiving any perturbative corrections

in ρ, but allows for non-perturbative corrections of the form

WNP = Ae−aρ. (2.4.56)

The physical origin of such a correction would come from Euclidean D-branes wrapping the

4-cycle whose volume is given by ρ. Such effects are called D-brane instantons. Alternatively,

a similar term can arise from the gauge theory living on a stack of D7 branes wrapping that

cycle, specifically gaugino condensation, which also induces a non-zero instanton density on

the brane-worldvolume. In either case, including such a term to the superpotential results

in a scalar potential of the form

V (ρ) =
ae−2aρ

6ρ2

(
A2(3 + aρ) + 3AeaρW0

)
, (2.4.57)

which has a minimum at which DW = 0

W0 = −Ae−aρ(1 +
2

3
aρ), (2.4.58)

giving a supersymmetric solution! This is despite the fact that we have broken the super-

symmetry with the W0 term. The potential at this solution is equal to

Vc = −a
2A2

ρc
e−2aρc , (2.4.59)

and thus we have an anti-de Sitter vacuum, in which the ρ modulus is fixed and supersym-

metry is restored. Note that the value of the potential is exponentially small for large ρ so

the “cosmological constant” of the AdS space is parametrically separated from the compact-

ification length scale, which is governed by ρ. Such solutions are called “scale-separated”.

A similar scenario known as the “large volume scenario” (LVS) [16], includes the leading



2 Preliminaries 35

α′ corrections to the Kahler potential leads to a similar behavior for the potential, effectively

dressing the non-perturbative terms with additional powers of ρ. This has the benefit of

making the scale separation even more pronounced, while simultaneously relaxing the re-

quirements on the value of W0. In the KKLT scenario, W0 needs to be of order 10−4, while

LVS allows for Kahler moduli stabilization for more typical values of W0. These vacua, how-

ever are no longer supersymmetric. In both scenarios, the main physics is the same: Kahler

moduli stabilization is obtained through a balance of perturbative and non-perturbative

terms in the effective potential, leading to an AdS minimum.

To obtain de Sitter space, KKLT proposes to include one additional ingredient: an anti-

D3-brane. The expected effect of this ingredient is to introduce an additive term to the total

potential

δV =
D

(ρ+ ρ̄)3
, (2.4.60)

which then lifts the AdS minimum to positive energy producing a de Sitter space. Originally,

this change to the potential was argued for by noting that if we include a D3 brane instead,

the energy shift would vanish, due to a cancellation between terms coming from its DBI and

Chern-Simons action. Since an anti-D3 has the opposite sign for the Chern-Simons term it

was argued that the contribution should double instead of cancelling, producing (2.4.60).

Later, this uplift term was realized as the contribution of a nilpotent supermultiplet [74].

Such supermultiplets arise in theories with spontaneously broken supersymmetry. Introduc-

ing this multiplet modifies the Kahler potential and superpotential to

K = −3 log(ρ+ ρ̄) + SS̄,

W = W0 + Ae−aρ + bS, (2.4.61)

where S is the nilpotent multiplet satisfying S2 = 0, so that no non-linear terms can appear

in W . Computing the scalar potential and imposing the nilpotency leads to

δV =
b2

(ρ+ ρ̄)3
, (2.4.62)
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i.e. precisely reproduces the uplift term, but now in a manifestly supersymmetric effec-

tive theory, with spontaneously broken supersymmetry, which is what one expects from an

anti-brane. The existence of such nilpotent multiplets were eventually also derived from a

top-down approach, showing that fermionic terms on the worldvolume of an anti-brane do

indeed produce the necessary massless fermions, [75, 76, 77, 78, 79, 80, 81, 82], supporting

the plausibility of (2.4.61) as the correct low-energy 4-d theory to describe the particular

combination of ingredients that are used. It should be noted that several variations of this

scenario exist, for example changing the number of non-perturbative contributions [83], or

replacing the anti-brane by supersymmetry-breaking worldvolume fluxes on the 7-branes

that are present in the flux-compactification [15]. However the general spirit of all these con-

structions are the same in that they consist of a flux-compactification with non-perturbative

effects and a supersymmetry breaking “uplift” ingredient.

De Sitter space constructions, and KKLT specifically, have been under considerable

scrutiny in recent years and we summarize some of the recent work in this direction in

the remainder of this section.

Questions regarding de Sitter solutions in string theory begin with an important no-go

theorem forbidding de Sitter compactifications [61, 18] at the supergravity level. This can

be further extended to apply to compactifications with arbitrary fluxes and branes and even

orientifold planes [19]. For all except the latter, the no-go theorem essentially amounts to

these ingredients failing to violate the strong energy condition T µµ > Tmm , where µ and m are

the external and internal spacetime indices respectively. Orientifold planes on their own do

violate the SEC, but they also necessarily source additional flux, which eliminates the total

SEC violation. Thus it seems that in order to obtain de Sitter solutions, one is forced to

make use of the quantum corrections to the string theory equations of motion.

This is not immediately incompatible with the validity of KKLT-type constructions, since

they do make use of non-perturbative effects. However the non-perturbative contribution

is used for the Kahler moduli stabilization,while the positive cosmological constant is sup-

posedly generated by an antibrane or similar ingredient, which would appear to fall under

the no-go theorem conditions. Thus it is not clear from the formulation of the scenario as

it currently stands, how exactly it evades the no-go result. To determine this a top-down

approach is called for.

Various top-down analyses of the KKLT construction have been performed in recent

years presenting objections to the steps in the KKLT construction. One concern is that of
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obtaining a small W0. Since the origin of W0 is from internal fluxes, which are constrained

by the tadpole cancellation and flux quantization conditions, constructing small W0 is a

challenge (however see [84] for an example). This is a relatively minor point, since small W0

is only required in KKLT, and scenarios like the large volume scenario work well with more

typical values of W0. Thus it could very well be that even if small W0 were not achievable,

the general spirit of the KKLT approach is correct.

A second set of potential problems relates to the validity of the effective theory description

for the Kahler modulus. A series of investigations were prompted by [85, 86], which looked at

the effects of the anti-brane backreaction on the non-perturbative term generated by gaugino

condensate on D7 branes wrapping the 4-cycle governed by the Kahler modulus, and argued

that the uplift of the AdS minimum is accompanied by a flattening of the potential to the

point that no de Sitter minimum was possible. The main argument was presented from a

10-dimensional perspective, but the authors also provided a 4-dimensional interpretation.

The 4-dimensional interpretation is that the coefficient A of the non-perturbative term in

(2.4.61), should also contain some dependence on the nilpotent multiplet S. The nilpotency

means that the dependence can only be linear and computing the resulting potential gives

the advertized flattening effect. This argument resulted in a series of papers [87, 86, 88, 89,

90] arguing for or against the validity of this new coupling.

The 10-dimesional version of the argument prompted a deeper investigation of the stress

tensor generated by the non-perturbative effect, specifically gaugino condensation on D7-

branes, from the 10-dimensional perspective. Following initial proposals of a new four-

fermion coupling on the D7-brane worldvolume [91, 92], which was necessary to properly

describe the effects of gaugino condensation in the 10-dimensional description, three simul-

taneous papers appeared [93, 94, 95], one finding disagreement with the KKLT effective

theory [95], one finding agreement with it [93]. The difference in their results stems from

a difference in how they treat the dependence of the gaugino condensate on the Kahler

modulus. The third simultaneous paper [94] found agreement with KKLT in the absense of

an uplift ingredient, but also revealed potential problems with the uplift procedure. Later

works have also investigated this question in the absense of uplift [96], and by considering the

non-perturbative and uplift ingredients separately [97], finding agreement with the KKLT

effective theory.

Finally there is a separate argument, which casts doubt on the compatibility of a non-

zero W0 with the no-scale Kahler potential [98]. The argument claims that since tadpole
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cancellation involves higher derivative terms in the 10-dimensional theory, one must also

include the effects of all other derivative corrections of the same order, which correct the

Kahler potential, causing a runaway of the Kahler modulus and possibly undermining the

calculation of non-perturbative effects, which one usually performs around static classical

solutions.

Yet a third, slightly older but still relevant set of concerns has to do with the properties

of the anti-brane responsible for the uplift. Before one even worries about the possibility

of the flattening effects described above, there are potential problems with the stability of

the anti-brane itself, explored in [99, 100, 101, 102, 103, 104, 105, 106]. The main takeaway

from these investigations is that the anti-brane interacts with the surrounding flux and in

particular gets polarized into various 5-branes via the Myers effect [107]. At least one such

polarization channel is well understood in the non-compact case [108] and produces a meta-

stable state, which is generally thought to be identified with the KKLT de Sitter vacuum

upon compactification. However there are other polarization channels, whose eventual fate

is not so clear, and may represent runaway instabilities.

Furthermore, [109, 110] also found that the introduction of an anti-brane can disrupt

complex structure moduli stabilization, which is generally assumed to have been taken care

of before one even begins the KKLT construction.

Thus, while KKLT-like constructions represent a very clever and reasonably motivated

effective theory approach to arguing for de Sitter vacua, pretty much every step combination

of steps has potential pitfalls and caveats when analyzed in full string theory. It is probably

safe to say that at the current moment the ultimate fate of de Sitter space constructions in

string theory remains uncertain.

2.5 The Landscape and the Swampland

The multitude of choices for the compactification manifold, combined with the various

choices of flux one can put on them and the KKLT-style Kahler moduli stabilization leads to a

picture of string theory, where there is a vast number of (meta-)stable solutions, with various

particle spectra and even different values of the cosmological constant. This multitude of

solutions is known as the “string landscape”.

In arriving at these scenarios, however, we have done a lot of description-hopping. In

particular, by the time we reach flux compactifications we are very far from the original
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perturbative definition of string theory. This is in large part due to the fact that the ef-

fective action of the RR fields does not appear directly from the worldsheet description,

but is inferred by supersymmetry. In fact, while string compactifications without flux can

be explicitly realized as solutions to the two-dimensional worldsheet sigma model, no such

realization is known for flux compactifications. Our confidence in the existence of these

solutions arises because they solve the effective 10-D spacetime equations of motion, which

are themselves partly inferred from spacetime supersymmetry constraints. The Kahler mod-

uli stabilization of KKLT is even further removed from perturbative string theory due to

its reliance on non-perturbative effects and because it uses 4-dimensional effective theory

arguments.

The vastness of the string landscape might lead one to believe that just about any low-

energy theory can be concocted with a clever enough arrangement of ingredients, and thus

justify such effective theory approaches. On the other hand, the solutions must obey many

consistency conditions that are absent in the effective theory perspective, and thus one must

be careful when making genericity arguments in an effective field theory framework. A simple

example that we already discussed is the tree-level superpotential W0, in the KKLT scenario.

In effective theory, taking small W0 is not a problem, since W0 appears as a free parameter.

However, as it arises from the energies of the internal fluxes, one must do extra work to

verify whether compactifications with small W0 are even possible.

The fact that string theory is more restrictive than field theory, means that not every

consistent-looking low-energy effective theory can arise as a solution to string theory. An-

other way of saying this, is that not all consistent effective theories remain consistent once

coupled to quantum gravity. The set of effective theories that do not have a string theory

realization has been called the “swampland” [21], and there is an extensive research program

dedicated to establishing the criteria that an effective theory needs to satisfy to be in the

string landscape rather than the swampland (see [22, 23] for reviews). These proposed cri-

teria are known as the swampland criteria, or swampland conjectures and are inspired by a

variety of considerations, from the common features of known explicit stringy solutions, to

general properties of black hole physics and cosmological spacetimes, as well as properties

of conformal field theories via gauge/gravity duality.

A very important swampland conjecture is known as the distance conjecture, which

states that as a field in some effective field theory takes large expectation values (in Planck

units), the effective field theory description should break down, due to a tower of light states
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entering the dynamics of the system. When this happens, one may be able to switch to a

dual description in terms of these light fields.

As an example consider string theory compactified on a circle of radius R, in string units.

Since this radius is controlled by one of the metric components, it is in fact a dynamical

variable. The canonically normalized degree of freedom is the logarithm of the circle size

φ = logR. If we start with a string-scale circle, corresponding to φ = 0 we can work in

an effective theory in one lower dimension. As φ deviates far from zero, the circle becomes

large or small, and either Kaluza-Klein or string winding modes enter the system. We can

always work switch to a duality frame where the circle becomes large, and thus the original

effective theory breaks down and transforms into a higher-dimensional theory as the circle

decompactifies.

One can also look at it in the reverse way. If one starts with a large circle, and makes

it smaller, the winding modes enter the theory and one is forced to perform a T-duality to

again obtain an effective theory description. The same thing happens with the expectation

value of the dilaton and S-duality.

This restriction on the maximal value of field expectation values in a given effective

theory means that one must be wary of solutions to a given effective theory which require

large values or excursions in a field’s expectation value. The distance conjecture implies that

once embedded into string theory, these large expectation values will result in new degrees

of freedom entering the dynamics and likely destroying the solution.

Another set of swampland conjectures directly concerns the feasibility of de Sitter space

solutions. Motivated by the absense of explicit top-down de Sitter constructions and the

properties of other known explicit top-down solutions, the following conjecture about the

shape of the effective potential has been proposed [28, 29]:

|∇V | ≥ cV or min∇2V ≤ −aV, (2.5.63)

where c and a are constants of order one, and min∇2V means the minimal eigenvalue

of the Hessian of V, with the derivatives being with respect to the fields in the theory.

These conditions explicitly forbid stable de Sitter solutions. These conjectures can be shown

to follow from the distance conjecture [30] at least in certain regimes. Further physical

motivation for these conjectures was given by proposing principles such as forbidding eternal
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inflation [31] or elevating the Transplanckian Problem of inflation [111] to the level of the

Transplanckian Censorship Conjecture (TCC) [32], which states that there should be no

solutions in string theory which would allow a subplanckian mode to grow to super-Hubble

scales. The TCC is slightly weaker than (2.5.63), in that it allows for meta-stable de Sitter

minima in the potential, provided the tunnelling time is sufficiently short.

Regardless, the overall common point of the de Sitter Swampland conjectures is that there

can be no extended periods of accelerated expansion. This is, of course, in conflict with the

inflationary picture of the early universe, which requires many e-folds of expansion. The

late-time expansion of our universe would also have to be explained not by a cosmological

constant but by a quintessence model. Current observations may be borderline compatible

with a quintessence model obeying (2.5.63), largely depending on how generous one is with

the definition of “order one constant” [112, 113, 114, 115].

In either case, KKLT-type constructions are certainly in conflict with the de Sitter swamp-

land criteria in any of their forms, so something has to give. One option is that de Sitter

space truly does not exist in string theory and in particular the KKLT construction does

fall prey either to one of the existing caveats or perhaps a new problem altogether. Another

possibility is that something like the KKLT construction can be realized and would then

serve as a counterexample to the swampland criteria. In either case, studying KKLT-type

constructions can provide valuable insight into the deeper questions of string theory and

quantum gravity, either by understanding how it evades the swampland criteria in case of

success, or by better understanding the physical origins of the swampland criteria in case of

failure.

Finally, there are also conjectures related to the existence of compactifications to AdS as

well. Specifically there is a swampland conjecture forbidding large scale separation between

the AdS curvature and the size of the internal manifold [116]. This conjecture is motivated

by the fact that the explicit constructions of AdS always involve a compact space which is

of the same size as the AdS scale. It can also be related for using the distance conjecture,

since the AdS scale is also a dynamical variable and making it large should bring in a tower

of massless states, which in the known cases are the Kaluza-Klein modes of the compact

manifold.
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2.6 Chapter Summary and Discussion

In this chapter, we have presented and overview of some aspects of string theory, starting

from its perturbative definition, effective theory limits and duality structure, working our

way up to compactifications with and without flux and ending with an overview of propos-

als for constructing solutions with fully stabilized moduli, scale-separation and a non-zero

cosmological constant. We have also mentioned the challenges these proposals face and dis-

cussed some ideas relating to the string swampland research program, which among other

things suggest that these solutions should in fact not exist.

In the rest of this thesis, we will also tackle the problem of scale-separated AdS and dS

solutions in string theory, using a slightly different approach from what we have discussed

so far. Any dS or scale-separated AdS solution must avoid the corresponding classical no-go

theorems [18, 117], which requires the use of quantum corrections. Rather than attempting

to include some of the known corrections and search for solutions in the resulting EFT,

we will instead first choose the ansatz for the solution and ask what properties must the

quantum corrections, when evaluated on this ansatz, have in order for the ansatz to satisfy

the resulting equations of motion.

In particular, our interest will be whether these solutions can be realized in a well-

controlled regime of string theory, where an effective theory description is possible. Note

that any EFT-based constructions of these solutions implicitly assume that the answer to

this question is yes. In order to do verify this, we must have an organizing principle for

classifying the possible corrections that appear in string theory, establish a clear criterion

for what it means to have an EFT description and when it breaks down, then evaluate the

quantum-corrected equations of motion on our desired ansatz and see whether the necessary

quantum corrections are compatible with an EFT description. These are the topics we will

tackle in the upcoming chapters.
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Chapter 3

Transseries, Truncations and Effective

Theories

In this chapter, we review some important mathematical properties of asymptotic se-

ries, which arise in perturbation theory, their extensions into objects known as resurgent

transseries, which captures non-perturbative information. We will then use these notions to

offer a definition of an effective theory as finite truncations of such transseries, and introduce

the general method by which we may determine whether a particular ansatz may be realized

within the regime of validity of any EFT limit of a larger theory, and particularly within a

theory that lacks free dimensionless parameters, such as string theory. This will pave the

way for us to apply this approach in chapters 4 and 5 to the study of scale-separated AdS

and dS compactifications.

3.1 Asymptotic Series, Borel Summation and Resurgent

Transseries

Many difficult problems in physics and mathematics can be tackled via perturbation

theory, by introducing or identifying a parameter, say ε, and expressing the solution as a

function of this parameter in some limit, say ε → 0 (see [118] for an extensive review of

perturbation theory and related techniques). The result typically involves a divergent series

in powers of the perturbative parameter. The divergent nature of the series indicates that the

obtained result should not be regarded as being equal to the solution but rather asymptotic
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to it in our chosen limit, i.e.

lim
ε→0

f(ε)− fN(ε)

aN+1εN+1
= 1, (3.1.1)

where f(ε) is the true answer to our problem, an are the coefficients in the perturbative

series and fN(ε) is the N -th partial sum of the perturbative series. The divergence of

the perturbative series is due to a rapid growth of the coefficients an, typically a factorial

growth. In the context of quantum field theory, this growth can be understood in terms

of the combinatorial growth of the number of higher order Feynman diagrams. Thus the

typical behavior for an asymptotic series is that its terms start off decreasing, due to the

higher powers of ε, but for some n = Ñ , which depends on ε, the combinatorial growth of

the coefficients takes over and the terms grow.

Since aN+1ε
N+1 measures the error between f and fN , we see that taking larger N > Ñ

is counterproductive, as the error on those partial sums will actually be larger. Thus fÑ(ε)

represents the best approximation to f , for that value of ε. This is known as the optimal

truncation of the asymptotic series.

As we take the limit ε → 0, Ñ also grows and the error on the optimal truncation

decreases, typically as e−1/εp , for some power p.

Suppose we wish to do better than that. We can then augment our asymptotic approxi-

mation by a non-perturbative term, to obtain an expression of the form

f(ε) ∼ fÑ(ε) + e−s1/ε
p

g(ε), (3.1.2)

where fÑ is the optimal truncation of the perturbative series and s1 is an ε-independent

quantity, which we can determine. g(ε) is an unknown function of ε, which we can solve for

perturbatively. This produces yet another asymptotic series for g, which we can optimally

truncate again and receive an error of order e−s2/ε
p
, with s2 > s1, which we can append to

our asymptotic approximation again, dressed by a function h(ε), and so on. This approach

is known as hyper-asymptotics [119].

Note however that since the optimal truncations depend on the value of ε, each optimal

truncation has a different number of terms for different values of ε. We can represent the
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general asymptotic approximation to our function by a formal series

fK(ε) =
K∑
k

Ñ(ε)∑
n

ak,ne
−sk/εp , (3.1.3)

where K is the maximal non-perturbative contribution we keep, the ak,n are the perturbative

coefficients in the k-th asymptotic series, and the sum over n is always taken to be the optimal

truncation for that value of ε. The error on this approximation is then of order e−sK+1/ε
p
.1

As we move away from the ε → 0 limit, however, we see that Ñ decreases for all the

asymptotic series in our expression, until the leading term is the optimal truncation, at

which point perturbation theory breaks down. To make progress beyond that point we need

to find a way to extract the true function f(ε) from the information contained in the various

asymptotic series. For a convergent series, we would simply sum the series and analytically

continue it beyond its radius of convergence. For a divergent series, we must make use of

resummation techniques.

A technique that is well suited to the combinatorial growth in perturbative series is Borel

summation. Consider a divergent series

f(ε) =
∑
n

anε
n, (3.1.4)

where an grow as n!. We can then define a new convergent series, which we will call the

Borel transform of the series

B[f ](s) =
∑
n

an
n!
sn. (3.1.5)

This convergent series can be summed up and we define the Borel sum of f as

S[f ](ε) =

∫ ∞
0

dse−sB[f ](εs). (3.1.6)

1More generally, there may be further non-perturbative exponential terms with different powers of ε
appearing in the exponent.
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Note that doing the integral term by term on the Borel transform would reproduce the n!

factors in the original series. More generally, the Borel transform can be defined by dividing

by enough factorials to render (3.1.5) convergent. This allows it to handle more general

types of combinatorial growth of coefficients.

When the integral in (3.1.6) exists, the original series is said to be Borel summable and

this essentially solves the problem. We have found the function f(ε) and are free to push

ε beyond the perturbative regime. More often than not, however, the Borel transform has

singularities on the real axis. We can therefore define a directional Borel transform

Sθ[f ](ε) =

∫ eiθ∞

0

dse−sB[f ](εs), (3.1.7)

which avoids these singularities. Approaching the real axis from above or below, we obtain

imaginary ambiguities coming from the singularities, whose size is, again, of order e−1/εp for

some power p.

The location of the Borel singularities is closely related to the asymptotic growth rate of

the perturbative coefficients. A marvelous feature that is observed in pretty much every case

where the calculation can be carried out explicitly is that the Borel singularities lie precisely

the right places so that the ambiguity it generates is e−sk/ε
p
, where the sk are the same as

those generated by hyper-asymptotics.

Thus, although it may seem like any perturbative terms beyond the optimal truncation

are useless, they in fact contain information about the non-perturbative effects in our prob-

lem. This is rather famously how the existence of objects with tension proportional to 1/gs,

rather than 1/g2
s was predicted in string theory, due to the faster (2n)! growth of the world-

sheet genus expansion compared to the n! growth of Feynman diagrams in field theory, years

before the actual discovery of D-branes, which have that tension [120].

The appearance of quantities of order e−1/εp is rather unsurprising to a physicists eye. In-

deed, such terms appear in many contexts and represent corrections due to non-perturbative

effects, such as instantons. The locations of the Borel singularities is then exactly in one-to-

one correspondence with the actions of instanton saddles that contribute to the observable

in question. The reason for this can be understood roughly by imagining performing the

path-integral by level sets. The integral expression for the Borel sum (3.1.6) then becomes

precisely equivalent to the integral over the action and the singularities correspond to dis-
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continuities in the level sets, i.e. when new saddles appear.

Asymptotic approximations that include non-perturbative exponentials have an interest-

ing property known as the Stokes’ phenomenon, where changing the phase of the perturba-

tive parameter leads to sudden discontinuities in the coefficients of these exponentials, even

though the function itself is smooth. The iconic example of this is the Airy function, where

the asymptotic approximation in the x→ +∞ limit involves a single decaying exponential,

while the x→ −∞ limit is asymptotic to a sum of two complex exponentials, resulting in os-

cillatory behavior. The jumps in the coefficients happen at arg(x) = ±2π/3. The lines along

which the coefficients of the non-perturbative exponentials in an asymptotic approximation

have discontinuities are referred to as Stokes lines.2

In the case of the Airy function, the leading order solution already has a non-perturbative

exponential. In quantum field theory applications, where we typically divide out the lead-

ing exponent, we obtain first a purely perturbative power series, possibly in the form of a

Frobenius series where the leading power is shifted, followed by non-perturbative instanton-

like corrections. The miracle that can occur is that the phases of ε, for which the Borel

singularities lie on the real axis and therefore introduce the ambiguity in the Borel sum

of the series, are precisely the Stokes lines, where the coefficients of the non-perturbative

corrections are also ambiguous, and the two ambiguities cancel out! This phenomenon is

indeed observed and well-established in a wide variety of contexts, from non-linear differen-

tial equations and 0 + 1-dimensional quantum mechanics, where it can be shown rigorously

[121, 122, 123], to some more limited but compelling signs of it in quantum field theory

[124, 125, 126], topological strings [127, 128] and the theory of superconductors [129]. The

aforementioned prediction of D-branes from the asymptotic growth of the genus expansion

can also be regarded as evidence that this structure persists in string theory.

This phenomenon continues to higher non-perturbative orders as well. The first non-

perturbative correction is also dressed with a divergent series of perturbative corrections,

which again have Borel ambiguities, which cancel against the Stokes’ ambiguity of the next

non-perturbative correction and so on ad infinitum. We are thus left with the following

expression

2In some conventions they are referred to as Anti-Stokes lines, while Stokes lines are the lines, along
which one exponential contribution is most dominant.
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∑
k

Ak(ε)e
−sk/εp

(
1 +

∑
n

ak,nε
n

)
, (3.1.8)

where each sum over n is to be understood as needing to be Borel summed, and any Borel

ambiguities in it are cancelled by the Stokes ambiguity coming from terms at higher k. The

expression (3.1.8) is an example of a transseries. This procedure of converting the asymptotic

series to a transseries by including the necessary non-perturbative terms to cancel Borel

ambiguities and then resumming the whole thing is called Borel-Écalle summation. The

cancellations that occur place enough constraints on the coefficients Ak and ak,n that simply

knowing any one of the sums over n is enough to reconstruct the rest of the transseries.

This phenomenon is called resurgence and the transseries where it occurs are referred to

as resurgent transseries, originally studied in [130, 131], while the functions they represent

are called resurgent functions. We refer the reader to [132, 133, 134] for an overview of the

mathematical properties of these objects, and to [121, 135, 136, 137] for discussions of their

relevance in physical contexts.

As a final aside, the most general form of a transseries involves logarithmic terms, which

also occur frequently in physical contexts typically from quasi-zero modes, as well as allows

for nesting of exponentials and logarithms. With this general form, the set of transseries

is in fact closed under all the operations one typically encounters in a physical context,

including but not limited to arithmetic operations, differentiation, integration, composition

and functional inversion. The set of functions that can be represented by a transseries are

known as analyzable functions, which is the closure of analytic functions under the same

operations [132]. We will restrict our attention to transseries consisting of only powers and

non-perturbative exponential terms for the remainder of this thesis.

3.2 Effective Theories as Truncated Transseries

Having presented an overview of transseries and their relationship to perturbation theory,

we will now present a transseries based view of effective theories and dualities, and how one

may use transseries as an organizing principle for classifying corrections in string theory. Let

us first consider a theory that is defined in terms of some action S.

An important distinction to keep in mind when discussing the effective action is between
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the Wilsonian effective action and the 1PI quantum effective action,. The Wilsonian effective

action, Sµ, is obtained by integrating out higher energy modes. It is defined by∫
DφLe−Sµ[φL] =

∫
DφHDφLe−S[φL,φH ], (3.2.9)

where S is the original UV-complete action of the theory, µ is some energy scale and φL and

φH are the modes below and above that scale respectively.3

The 1PI effective action Γeff on the other hand is defined by

Γeff = W [J ]−
∫
dDxJφ (3.2.10)

e−W [J ] =

∫
Dφe−S[φ]+Jφ. (3.2.11)

Note that in this case the path integral has been performed and all the quantum effects have

been incorporated. This effective action has the property that

δΓeff
δφ

∣∣∣∣
J=0

= 0 (3.2.12)

and thus provides an equation of motion for the fully quantum behavior of the field expec-

tation values, also known as the Schwinger-Dyson equations.

In practice, of course, computing the full Γeff is hard and one typically computes a

perturbative expansion for it, by expanding S[φ] in powers of a small parameter, such as a

coupling, which then typically produces an asymptotic series for Γeff . Note that nothing

like Γeff , even to a finite order is known for string theory.4 Some corrections are known of

course [65, 66, 141, 142, 143], but the list is incomplete even for the leading order.

We can combine these two notions of effective actions, by considering the quantum effec-

tive action one obtains from a Wilsonian action at some scale µ. Let us define,

3We should also assume a low-energy cutoff to remove any IR divergences. This cutoff is the same on
both sides of (3.2.9).

4The distinction between the Wilsonian and the 1PI effective actions and the lack of the latter in string
theory is emphasized, for example in [138, 139, 140], as part of an argument against the existence of a string
landscape altogether. While we do not adopt this view here, we do agree with the necessity to be careful
with this distinction. It is also possible that ideas related to resurgent transseries can help in circumventing
the arguments of those papers.
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S(µ, g, φ) = − log

(∫
Dφe−Sµ[φL]

)
−
∫
dDxJφ , (3.2.13)

where g is the set of couplings that appear in the theory. We will refer to this quantity as the

quantum effective action from now on, while Γeff will be called the UV quantum effective

action. S is an action whose equations of motion govern the expectation values of the light

fields in the theory. As µ→∞ this should approach the UV quantum effective action.

The Wilsonian action can be expanded in powers of µ/M where M is some physical

mass scale of the theory, such as a heavy particle mass. This translates into an asymptotic

expansion for the in powers of µ/M on top of any other weak coupling asymptotic expansion

we may have used. Thus for low energies and weak couplings we can have an asymptotic

expansion for our quantum effective action

S(µ, g, φ) ∼
∑
m,n

am,ng
m(

µ

M
)n

µ

M
→ 0, g → 0. (3.2.14)

Note that at this point we have completely eliminated the mathematical distinction between

the low-energy limit and the weak-coupling limits, despite their different physical origin.

Furthermore, rather than expanding in some arbitrary coupling parameters, we can also

expand the action in powers of the expectation values of fields, and thus obtain asymptotic

expansions in 〈φ〉 as well. This is particularly important in string theory, since it has no

coupling “constants”, but all the expansion parameters come from VEVs of the fields. We

will therefore include any VEVs in the set of g’s, while the fields φ should be thought of as

fluctuations around these VEVs.

The object S should be well-defined for all values of µ, g and φ, even though the asymp-

totic expansion in (3.2.14) only serves as a good approximation in a certain limit.

At this point we make the leap of faith and conjecture that S is an analyzable function

of µ, g and φ and can therefore be completed to a resurgent transseries in these parameters,

as described in the previous chapter. This transseries is then well-defined for all values of

the parameters and is an exact representation of S for all energies and couplings.

The same can be said about the variation of S with respect to the degrees of freedom.



3 Transseries, Truncations and Effective Theories 51

Cφ =
δS
δφ
, (3.2.15)

i.e. its quantum corrected equation of motion. This equation is the Schwinger-Dyson equa-

tion which governs the expectation values of the fields φ, having accounted for all the quan-

tum mechanical effects. These also take the form of a transseries.

Note that the quantum equations of motion are enough to derive all the on-shell ob-

servables of the theory, without the need to formulate it in terms of an action. This might

be important in the case of string theory, since the worldsheet description provides us with

spacetime equations of motion, rather than an action. In general, given a set of EOMs, it is

not always possible to construct an action from which they are derived. Thus although we

will often be talking in terms of a quantum effective action, it should be understood that

it really need not exist and that the quantum equations of motion that are the important

objects. As long as the quantum EOM exist the theory should be well-defined.

We will then define an effective theory that describes the dynamics in our asymptotic

regime, as any finite truncation of that transseries, whose error is below some desired pre-

cision. Note that as we leave the asymptotic regime, our ability to truncate the transseries

gets compromised, even though the full transseries remains well-defined! This is what we will

refer to as the breakdown of EFT. This notion of effective theories and their regimes of valid-

ity resonates very strongly with the spirit of the Swampland distance conjecture, although

it’s not clear that the non-truncation of the transseries needs to always be interpreted as the

introduction of an infinite tower of massless states.

3.3 Breakdown of EFT in String Theory

A special feature of string theory is that it has no dimensionless free parameters. Instead

every expansion parameter that appears in any of the controlled limits of string theory arise

from expectation values of some degree of freedom. There is of course also a derivative

expansion, which can be expressed in powers of an inverse mass scale, such as the Planck

mass Mp. We now apply the reasoning presented in the previous subsection to the EFT’s

that appear in such theories.

Rather than being expressed in a transseries in some fixed coupling constants, the equa-
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tions of motion in string theory should be expressed as a transseries in the expectation values

of the various low-energy fields, combined with a transseries expansion in 1/Mp to account

for any higher derivative corrections arising from integrating out the high-energy modes.

This is not unusual even in field theory, where couplings and masses can arise from the VEV

of a scalar field. In string theory, the genus expansion is also of this type, since the string

coupling is dynamical.

The asymptotic regimes of string theory are then defined by a combination of the low-

energy limit and a limit for the expectation values of some fields. For example the non-

compact 10D flat space limit in which serves as the perturbative definition of string theory,

can be regarded as the limit of fully compactified string theory as the compactification size

goes to infinity. The expansion parameters of the transseries are then the (inverse) metric

components that govern the size of the compactification. Note that since we are interested

in the 10D equations of motion, the expansion must really be in the local value of the metric,

point by point, rather than the total size of the cycle. The latter would then naturally

emerge as an expansion parameter if we decided to switch to a lower-dimensional effective

description and integrated over the compact space. In the higher-dimensional description,

volumes of cycles should only appear in the effective action as a result of non-local effects,

as we will see in the next chapter.

Thus, suppose we wish to study string theory in a regime where the some of degrees of

freedom φi, with , have expectation values near a certain limit. This limit can be defined by

choosing a set of expansion parameters ga → 0, a = 1, 2, ..., N , and specifying some asymp-

totic behavior for 〈φi〉 as a function of the gi. Note that a priori we do not need to choose

as many expansion parameters as we have fields. Having the number of parameters equal to

the number of fields specifies the behavior of each field individually and essentially amounts

to a field redefinition. If we choose to have fewer expansion parameters, this amounts either

to specifying some relation between the fields in our asymptotic limit, (i.e. restricting our

attention to a set of configuration ansatzes) or simply leaving the asymptotic behavior of

some fields unspecified, which we can further restrict later if needed.

Let us define
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µ

Mp

= eα0

ga = eαa , (3.3.16)

where µ is the energy scale at which we are studying the theory, and let us denote the set

of αa by ~α. The effects of all the heavy degrees of freedom will then be captured by the

expansion in M−1
p . We are interested in the equations of motion that govern the expectation

values of φi, i.e. the Schwinger-Dyson equations. These can usually be seen as arising from

a quantum effective action, which we can write as the following transseries expanded around

our asymptotic limit.

S = G

∑
~m,k

exp(−sk/e~α·~nk) e~α·~m S(k,~m)

 (3.3.17)

where ~m,~nk are N -dimensional vectors, ~m labels the various combinations of the expansion

parameters that apperas in the perturbative series, k labels the non-perturbative contribu-

tions, with k = 0 corresponding to the perturbative sector and ~nk denotes the particular

combination of expansion parameters that appears in the exponent of that non-perturbative

term, which may be the same for several non-perturbative contributions.5, sk and Sk,~m) are

all functionals of the light fields in the theory, including the fluctuations of φi around their

expectation values.

With an appropriate choice of expansion parameters, we can choose the components of

~n and ~m to be integers, and we can furthermore ensure that they are positive by factoring

out the dominant asymptotic behavior into the prefactor G. Let us denote the dominant

asymptotic contribution to the action as S0 = G S(0,0).

Note that simply specifying a set of expansion parameters and their limiting behavior

does not specify what the behavior of S0 is. Determining this requires additional information

about the physical properties of the system in that limit. By determining the behavior of S0,

we are also establishing the separation between perturbative and non-perturbative effects,

5For example, all the multi-instanton saddles in a Yang-Mills theory carry an e−sk/g
2
Y M prefactor. The

sk are different, but the power of gYM is the same.
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which is very important for properly organizing the various corrections and determining the

regime of validity of any EFT truncation of the theory.

Let us now look at the equation of motion arising from S, which takes the form

∑
k,~m

C
(k,~m)
i = 0

C
(k,~m)
i = e−sk/e

~α·~nk e~α·~m
(
δS(k,~m)

δφi
− e−~α·~n δsk

δφi

)
. (3.3.18)

Here φi need no longer be only the fields that define our asymptotic limit, but the full

set of light degrees of freedom that are dynamical at our energy scale. The main focus

of the upcoming chapters will be to determine whether particular kinds of solutions are

possible within a given asymptotic regime of string theory. The fact that all the expansion

parameters in string theory are always related to the expectation values of fields means that

when we choose a solution ansatz, we simultaneously specify a set of expansion parameters,

and every combination of fields in the theory will have a definite scaling with respect to the

expansion parameters. The same goes for their scaling with respect to the Planck mass,

which is simply dictated by the mass dimension of the fields. We thus end up with precisely

a set of equations of the form, with every term having a definite scaling with respect to all

expansion parameters.

Let us suppose we chose an ansatz parametrized by fewer parameters than there are

degrees of freedom. It is possible that some combinations of these degrees of freedom, which

we will refer to “operators”, despite working in a field formalism,6 may remain independent

of our expansion parameters, i.e. they scale as g0
a with respect to all the parameters. Here

one of two things can happen, depending whether the number of such operators is finite or

infinite.

When operators have zero scaling with respect to ga, combining other operators with this

finite set simply produces more operators with the same scaling, which generates additional

terms in the EOM at the same order in ga. If the set of such operators is finite, which

can happen for example is a symmetry prevents higher powers of an operator from existing,

6By “combinations” we mean any form of product, contraction, or even non-local terms involving integrals,
built out of some set of fields. We will also use the term “powers of operators”, to refer to any possible
cross-contraction of several copies of the constituent fields, rather than simple repeated multiplication.
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then we simply have more terms in the EOM than we may have originally anticipated. In

particular the leading order EOM might change and lead to new solutions.

If the set of such operators is infinite then this generates an infinite set of new terms in the

EOM and would therefore not admit a finite truncation. However, since these operators are

disctinct, they must differ by powers of some degrees of freedom. In this case, we may include

the expectation values of these degrees of freedom as an additional expansion parameter. In

other words, the presence of an infinite family of non-scaling operators is an indication that

the original set of expansion parameters is not sufficient to define a single EFT limit. One

we include the new expansion parameter, our ability to truncate depends on its expectation

value. For example, let us denote a set of non-scaling operators,

Oi ∼ ψ∆
i , (3.3.19)

where ψ is some field whose powers can be used to distinguish between these operators. Then

〈ψ〉 can be used as a new expansion parameter. For 〈ψ〉 � 1 this generates a suppression for

terms containing higher powers of ψ and allow for a truncation of the EOM and thus define

an effective theory. However as 〈ψ〉 = O(1), we see that all the terms creep back into the

EOM and the EFT description breaks down.

The case that we will be interested in is the case when a particular type of solution

ansatz violates the EOM when 〈ψ〉 = 0, but including O1 into the EOM would allow for

solutions of this type. Turning on O1 at the EOM level means turning on an expectation for

ψ, which in turn turns on all the other operators Oi. Whether the EFT description survives

then depends on whether the solutions to the EOM require 〈ψ〉 to be O(1) or not. If so,

then although the solution may still exist, it is no longer within the regime of validity of

the original EFT. Note that this notion of the breakdown of EFT is very much in the spirit

of the swampland distance conjecture, although it’s not clear that the family of corrections

that enters the EOM in our case can always be recast as a massive tower of states becoming

light. In the case when the family of corrections consists of higher derivative corrections,

however, we expect there to be a direct relationship between our approach and the distance

conjecture, which would be interesting to flesh out.

We conclude this chapter by considering an alternative representation of perturbative

and non-perturbative corrections. The presence of dualities in string theory, particularly
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ones where an expansion parameter gets sent to its inverse might tempt us to leave non-

perturbative corrections as simply additive terms with inverse powers of some expansion

parameter. If there were finitely many such “polar” terms, this simply provides a new

dominant behavior to the series and is simply an indication that we chose G wrong. Typically,

however there are infinitely many such corrections in ever increasing inverse powers of the

expansion parameter, and we may be temped to look for a representation in the form of a

two-sided Laurent series.

To illustrate why this gets us into trouble when dealing with the asymptotic regimes

where string theory is well-understood, let’s consider a toy action described by one-parameter

transseries, with parameter g.

S
G

=
∑
m

S(0,m)gm +
∑
k

e−sk/g
nk
∑
m

S(n,m)gm. (3.3.20)

In this representation, it’s clear that S(0,0) dominates in the asymptotic limit g → 0,

followed by subdominant perturbative corrections, which in turn dominate over the non-

perturbative corrections, which are themselves hierarchically organized. However, the non-

perturbative exponentials can be expanded in a Taylor series7 to transform the transseries

into a two-sided Laurent series. We have

e−sk/g
nk =

∑
p

(−sk/gnk)p

p!
, (3.3.21)

so that we can, at least formally, rewrite it as a two-sided Laurent series:

S
G

=
∞∑

m=−∞

cmg
m (3.3.22)

cm =
∞∑
k=0

∞∑
p=0

S(k,m+pnk) (−sk)p

p!
. (3.3.23)

7The Taylor series for the exponential has infinite radius of convergence, so this expansion is valid even
as 1/g becomes large.
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To make sense of this object, we remark that for negative m, 1/p! typically wins over the

growth of the S(k,m+pnk), so the coefficients should be finite, and in fact factorially suppressed

for large and negative m. Thus, at least the negative power side of the Laurent series (3.3.22)

seems well-behaved. For positive m, as p becomes large, the combinatorial growth of the

S(k,m+pnk) will overpower the 1/p! so even a single coefficient appears to be divergent and in

need of a summation prescription. We also see that S(0,0) plays a special role in the series,

serving as the boundary between terms with finite coefficients and formally divergent ones.

However, this feature is simply a remnant of the fact that we started from a transseries

representation, with a definite asymptotic behavior. If there is a suitable summation pre-

scription for the cm with positive m, and we were handed the final answers, then we’d simply

be faced with a two-sided Laurent series with finite coefficients and no way to tell where the

“zeroth” order is (recall that we have an overall unknown shift in the powers of g coming from

G). Furthermore, even if we were also told where the “zeroth” term is, the physical meaning

of the cm is still rather obscure, since it is related to the usual perturbative coefficients by

(3.3.23) and thus isn’t related to the result of any single perturbative calculation, such as

a worldsheet scattering amplitude at fixed genus, in any straightforward manner. Thus,

although a two-sided Laurent series representation may be possible and sensible, its coeffi-

cients can not be easily inferred from what we know about string theory in any asymptotic

regime.

It is worth pointing out, however that the two-sided Laurent series representation seems

particularly well suited for dealing with dualities, as it puts terms g and 1/g on similar

footing. Thus the relation (3.3.23) may be useful for investigations of potential interplay

between the resurgent transseries structure in both the small and large g regimes, combined

with a duality relation between these regimes. We do not pursue this question here.

3.4 Chapter Summary

In this chapter we have reviewed certain features of perturbation theory and asymptotic

expansions and argued that the resurgent transseries are not only a natural way to organize

corrections around an asymptotic regime, but also continues to make sense outside of that

regime. We then defined effective theories as finite truncations of this transseries, which

provides a criterion for the regime of validity of an EFT and whether or not a particular

solution ansatz resides within that regime.
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In the following chapters we will use apply this approach to the problem of scale-separated

AdS or dS compactifications. We will adopt a metric ansatz for such a compactification and

ask what kinds of corrections to the supergravity equations of motion would allow for such a

solution. This will involve determining the scalings of all combinations of curvature and flux

components, which will naturally organize into a transseries structure. Upon determining the

scalings we will assess whether our ansatzes fall within the regime of validity of low-energy

large volume type IIB compactifications.
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Chapter 4

Scale-Separation and Effective Field

Theory

4.1 The Ansatz

4.1.1 Metric, Fluxes and Duality Chain

The primary object of our study will be a type IIB metric ansatz of the form

ds2
(IIB) = − eφB/2√

h(y)

1

Λx̃2

(
dx̃2 + dx2

1 + dx2
2 + dz2

1

)
+ eφB/2

√
h(y) g̃mndy

mdyn, (4.1.1)

which describes a warped compactification to a Euclidean continuation of either de Sitter

or anti-de Sitter space, depending on the sign of Λ, in string frame (hence the factor of

eφB/2). The portion of the full spacetime covered by the coordinates we’ve used corresponds

to either the so-called “flat slicing” of dS (which is most commonly used in cosmology),

or the “Poincaré patch” of AdS, (which notably appears in the description of near-horizon

geometries of extremal black holes/branes). Note that in the case of de Sitter space, x̃

corresponds to a time coordinate, while in the AdS case, this role is played by either x1 or

x2, while x̃ becomes a “radial” coordinate, such that x̃ = 0 is the conformal boundary of

AdS.

As is usual for warped compactifications, we wish for the internal metric g̃mn to be such

that
∫
d6y
√
g̃ = 1. Of course we expect that supporting this geometry, if at all possible,
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will require some non-trivial configuration of fluxes and branes, similar to those appearing

in compactifications to Minkowski space.

In particular we expect there to be a spacetime filling 4-form potential

C4 =
c

hΛ2x̃4
dx̃ ∧ dx1 ∧ dx2 ∧ dz1 , (4.1.2)

as well as 3-form fluxes H3, F3 wrapping various 3-cycles of the internal space. These internal

fluxes will generically act as sources for the spacetime-filling C4 field and compactification

requires that the total charge vanishes. This means that just like in Minkowski compactifi-

cations, we generically expect to have some anti-D3 charge present in the compactification,

which can arise from actual anti-branes, provided we can stabilize them, or from induced anti-

brane charge on D7 branes coming from worldvolume fluxes or topological higher-curvature

terms. We will return to these contributions later.

We will wish to work in the M-theory description of this metric, using the duality chain

described in section 2.2.3. This means we must compactify one of the “spatial” directions,

specifically we will choose the z1 direction. Note that this means that the size of the z1 circle

becomes small for large values of x̃. In this limit corrections coming from string winding

modes become important and the natural description for the system becomes in terms of

type IIA fields. At small x̃ however, the dynamics are well described by type IIB SUGRA

plus corrections, and it is this limit that we will be interested in.

The full theory, however, does not care which duality frame we use to describe it, and

we will therefore proceed with the M-theory uplift, first using Buscher’s rules (2.2.25), to

obtain the following type IIA metric.

ds2
(IIA) = − eφB/2

H(y)2

1

λ2

(
dx̃2 + dx2

1 + dx2
2

)
+ e−φB/2H2λ2dz2

1 + eφB/2H(y)2 g̃mndy
mdyn,

(4.1.3)

where we have defined λ =
√
−Λx̃ and H(y) = h1/4, which then lifts to the following

M-theory metric
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ds2
(M) = H−8/3λ−8/3

(
dx̃2 + dx2

1 + dx2
2

)
+H4/3λ−2/3g̃mndy

mdyn +H4/3λ4/3δabdz
adzb.

(4.1.4)

Our conventions for the coordinate names and indices will be that the 0 index, refers to

the x̃ direction, xi, xj are the other two spacetime directions, ym, yn, ... are the 6-manifold

directions. and za, zb refer to the torus directions.

Duality chasing the fluxes, we obtain a spacetime-filling flux

C3 =
c

H4λ4
dx̃ ∧ dx1 ∧ dx2, (4.1.5)

and the internal fluxes dualize to G4 fluxes wrapping 3-cycles of the internal 6-manifold and

a one-cycle of the z1, z2 torus.

Any D3-branes present in the ansatz dualize to M2-branes located at the same point on

the internal 6-manifold. The remaining ingredient to describe are any D7 branes or O7 planes

that may be present. As mentioned in our discussion of compactifications to Minkowski

space, D7 branes will generically be present in order to satisfy tadpole cancellation on a

compact manifold, if we wish to turn on any non-trivial internal fluxes. We will therefore

also allow for these objects in our ansatz. In fact, the scenario we will consider will be similar

to the “constant coupling” scenario [70], where the 7-branes for stacks consisting of an O7-

plane and four D7-branes. These stacks have no net charge and allow for the axio-dilaton

to remain constant.

Going from IIB to IIA, we need to T-dualize the D7 branes into D6 branes. At this

point, as discussed in chapter 2 simply applying Buscher’s rules transforms the D7-branes

into smeared D6-branes. Non-perturbatively, however, we expect the D6 branes to localize

to a some point along the z1 direction. This expectation is further reinforced by the fact

that smeared O6 planes are physically nonsensical beyond the supergravity approximation,

where they can simply be treated as sources.

The M-theory description of D6-branes and O6-planes are in terms of localized solutions,

which we will henceforth refer to as “lumps”, whose transverse metric is similar to an ALE

or ALF space, with appropriate topological properties, that glues smoothly onto the rest of
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the manifold.

This means that the type IIA dual of our ansatz as well as its uplift to M-theory must

be modified to

ds2
(M) = = H−8/3λ−8/3

(
dx̃2 + dx2

1 + dx2
2

)
+H4/3λ−2/3gmndy

mdyn

+ H4/3λ1/3hmady
mdza +H4/3λ4/3gabdz

adzb, (4.1.6)

with

gmn = g̃mn(y) + hmn(y, z)

gab = δab + hab(y, z), (4.1.7)

where hmn, hab, hma are the components describing the lump deformations of the metric dual

to the D7/O7 stacks in the IIB picture. In the constant coupling scenario, these deformations

are localized to a point, forming a D-type ADE singularity, which obscures their physics. We

will therefore really be considering a slight deformation from the constant coupling scenario

in which the corrections to the metric can have some spatial extent, but fall off rapidly, so

that on most of the compactification manifold the metric is still essentially given by (4.1.4).

We will revisit these lump objects when considering the equations of motion for our ansatz.

Before that, however we will make some remarks about the various expansion parameters

that we have introduced by choosing our ansatz and the exact limits of these expansion

parameters that we are considering.

4.1.2 Limits, Energy Scales and Expansion Parameters

In choosing our ansatz we have introduced several parameters that can serve as expansion

parameters and organize the various corrections that may appear. Specifically, we have

introduced the functions λ and H, which are related to the curvature along the spacetime

directions and the volume of the compactification manifold respectively. The limit that

interests us is the limit of small cosmological constant and large compactification volume,

so it is natural to organize the corrections to the equations of motion as a trans-series in

λ and H−1. Note however that these parameters are coordinate dependent and it is not
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guaranteed that they are everywhere small. For a truncated series this would be a problem,

since it would invalidate the truncation, however as discussed in chapter 3 the full trans-

series continues to exist and make sense for all values of the parameters. Moreoever, the

equations of motion will still need to hold term-by-term in the trans-series expansion, as well

as point-by-point in space. This fact is what will allow us to determine that some variants

of our ansatz are not realizable, despite not knowing the presice form of the corrections.

Besides these two parameters, there is a third parameter which is always present, which

is the energy scale µ, at which we are studying our theory. The limit we wish to take is such

that the energy scale is always below the Kaluza-Klein scale of the IIB compactification.

µ

mp

→ 0

µ

MKK

→ 0, (4.1.8)

where mp is the four-dimensional Planck mass and MKK is the mass of the lightest Kaluza-

Klein states. Note that strictly speaking this limit needs to precede the H−1 → 0 limit, as

taking H−1 → 0 will eventually bring down the Planck and KK scale below any fixed energy

scale we choose. Of course physically it is H that will be stabilized at some presumably large

value, and we must choose the energy scale to be below the 4D Planck and KK scales.

Since we will be working with the M-theory description, it would be convenient to express

all the mass scales in terms of the 11-dimensional Planck mass, which we’ll denote by Mp.

This is related to the type IIB Planck mass by

ms = (λH)1/3Mp (4.1.9)

MB = e−φB/4ms = e−φB/4(λH)1/3Mp, (4.1.10)

where ms is the inverse string length and MB is the 10-d Planck mass in the type IIB

descriptions.

The above relations appear to mix the energy expansion with the λ and H expansion

when moving from the M-theory description to the IIB description, due to the (λH)1/3 that

appears when passing from Mp to ms. However, we must remember that the dimensionless

expansion parameter is not the Planck mass per se, but its ratio to the energy scale at which
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we are studying the theory. The metric coefficients on the time coordinate in the IIB picture

and the M-theory picture are different, which means that local observers in the different

duality frames have a different notion of energy scale, since they have a different notion of

proper time. The proper times are related by

dτM = (λH)1/3dτB, (4.1.11)

where τM and τB are the proper time coordinates for the M-theory and type IIB metrics

respectively. This defines a relation between the natural notions of energy scales for observers

in each duality frame. The corresponding energy scales in these frames are related by

µM = (λH)−1/3µB, (4.1.12)

in the sense that a mode of energy µB in the type IIB description is dual to a mode of energy

µM in the M-theory description. From this relation we see that

µM
Mp

=
µB
MB

eφB/4. (4.1.13)

In this way, the expansion in µB/MIIB is identical to the expansion in µM/Mp. Since we

will always be working in the M-theory frame, we will set µM to one, and our expansion

parameter will then simply be M−1
p with the low-energy limit corresponding to Mp →∞.

So at the end of the day, we expect the full quantum equations of motion to be represented

by a trans-series in the following three parameters

λ, H−1, M−1
p . (4.1.14)

An EFT description of our ansatz is then possible if these equations of motion, evaluated on

our ansatz, can be successfully truncated in the sense described in chapter 3.
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4.2 Classical Equations of Motion

We now return to the analysis of the equations of motion evaluated on our ansatz. At

the two-derivative level we will see that the introduction of a non-zero spacetime curvature

immediately results in a problem with the Einstein’s equations that is absent in compactifi-

cations to flat space, namely that one of the terms has a different H-scaling from any of the

other terms.

Setting eφ = 1 for convenience, the Einstein tensor for the metric (4.1.4) is given by [19]

Gij = −δij
λ2

(
R̃

2H4
+

4g̃pq∂pH∂qH

H6
− 2H4

H8
+ 3Λ

)
(4.2.15)

Gmn = G̃mn −
8∂mH∂nH

H2
+ g̃mn

(
4(∂H)2

H2
− 6ΛH4

)
(4.2.16)

Gab = δabλ
2

(
−R̃

2
− 9ΛH4 +

4g̃pq∂pH∂qH

H2

)
, (4.2.17)

where G̃mn is the unwarped Einstein tensor for the internal space. Meanwhile the stress

tensor for the fluxes is

Tij = −δij
λ2

(
4(∂H)2

H6
+
G̃mnpaG̃

mnpa

4!H8

)
(4.2.18)

Tmn =
4g̃mn(∂H)2

H2
− 8∂mH∂nH

H2
+

1

4H4

(
G̃mpqaG

pqa
n − 1

6
g̃mnG̃pqraG̃

pqra

)
(4.2.19)

Tab =
λ2

12H4

(
G̃mnpaG̃

mnp
b −

1

2
δabG̃mnpcG̃

mnpc

)
, (4.2.20)

where G̃mnpa has its indices raised with the unwarped metric. We also included the 0 index in

the i, j components of the above expressions. The exact coefficients and tensor contractions

are in fact not very important for our main point. What is important is the scalings of each

term with respect to λ,H and Mp. The latter is, of course, the same everywhere, since these

are the two-derivative equations of motion, so all the terms scale as M−2
p .

For the other scalings, more care is required, since we have not yet specified whether the

functional forms of the fluxes Gmnpa contain any factors of λ or H. These are not arbitrary,
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but are constrained by the flux equation of motion, which is

d ? G = G ∧G+X8 (4.2.21)

where X8 is, as discussed in chapter 2, a topological quantity constructed out of the first and

second Pontryagin classes of the 8-manifold. For the metric (4.1.4), it can be shown to vanish

identically, due to the presence of the torus factor. The only non-vanishing contributions

appear from the corrections to the metric in the vicinity of the lumps corresponding to

the D7/O7 stacks in the IIB description. This is expected and is precisely what is needed

to cancel the total charge over the compact manifold. Indeed, if we integrate over the

8-manifold, d ? G integrates to zero and we require∫
G ∧G+

∫
X8 = 0 (4.2.22)

It is imperative that both terms in this equation have the same λ-scaling for the tadpole

cancellation to hold at all values of x̃ and we will see in the next section that this is indeed

the case.1 That being said, since X8 only has support near the lumps it must be the case

that everywhere else on the manifold we essentially have

d ? G = G ∧G (4.2.23)

Note that in order for this equation to actually provide a constraint, we need the left-hand

side to not vanish. This happens when 2H 6= 0, i.e. the geometry contains warped throats

with non-trivial warping supported by fluxes [144]. This is in contrast to compactifications

where the only source of warping is M2-branes and 2H vanishes everywhere except the M2-

loci. Since warped throats are useful features to have for phenomenological purposes and

are fairly generic, we will assume that d ? G(ext) does not identically vanish.

1One can also write down higher derivative non-topological terms contributing to the flux EOM, but
their non-topological nature means they will only contribute total derivatives to (4.2.21) and therefore not
contribute to tadpole cancellation. We will investigate such terms in more detail in the next chapter.
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Denoting

G(1) = G0ijm dx0 ∧ dx1 ∧ dx2 ∧ dym

G(2) = Gmnpa dy
m ∧ dyn ∧ dyp ∧ dza (4.2.24)

G(3) = Gqrsb dy
q ∧ dyr ∧ dys ∧ dzb

we can determine their scalings as follows. Assuming the fluxes have generic scalings 2

G(i) ∼ λaiHbi i = 1, 2, 3 (4.2.25)

(4.2.26)

We have

G(i) ∧G(j) ∼ λai+ajHbi+bj (4.2.27)

d ? G1 ∼ λa1+4Hb1+8 (4.2.28)

d ? G2 ∼ λa2−4Hb2−4. (4.2.29)

The leading order flux equations of motion then read

d ? G(1) = G(2) ∧G(3)

d ? G(2) = G(1) ∧G(3), (4.2.30)

which imposes the conditions

a3 = 0 b3 = 2

a2 = a1 + 4 (4.2.31)

b2 = b1 + 6

2Note that the scalings here should in principle be regarded as the leading order scalings in an expansion
in λ and H−1. For now we assume that the fluxes have a unique scaling behavior, and we will insist that
this is always the case for the external flux G0ijm throughout the rest of our analysis, since that is part of
our ansatz. For the other flux components, however, we will consider the full expansion in the next chapter
where we include additional time-dependences to all the ingredients.
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and since a1 = b1 = −4, we have

G(2),(3) ∼ λ0H2. (4.2.32)

Looking back at the stress tensor we can see that for each individual component all the

terms scale the same way once we take these scalings into account. Furthermore, we can see

that the corresponding components of the Einstein tensor contain mostly terms that scale in

the same way as well and so can therefore successfully cancel with the right choice of internal

metric.

For example we see that Tmn scales overall as λ0H0, as do most terms in Gmn. However

there is one term in Gmn which carries an additional power of H4 and can therefore not be

cancelled by the available two-derivative stress tensor. This term is proportional to Λ and

is absent in Minkowski compactifications. This is the reason Minkowski compactifications

can be achieved almost at the two-derivative level, modulo global constraints coming from

tadpole cancellation.

The appearance of this extra term, however, forces us to look for new terms that could

cancel it. This requires an investigation of the scalings of the various possible quantum terms

in the equations of motion, which is the topic of the next section.

4.3 Scaling Analysis

In this section, we perform a systematic analysis of the possible corrections to the 11-

dimensional equations of motion, and specifically of the scalings these terms have with re-

spect to λ,H and Mp when evaluated on our ansatz. We will start by revisiting the classical

two-derivative terms to introduce some machinery and short-hand notation. Then we will

consider higher-derivative corrections built out of bulk curvatures, fluxes and their deriva-

tives, and show that they do not have the correct scalings to make our ansatz viable. We

will then turn our attention to the localized curvatures and fluxes coming from the lump

regions, where we will find a new set of terms with different scalings, including an infinite

family of terms which all have the same λ scaling. In particular we will verify the scaling of

the X8 term that we mentioned in the previous section. Unfortunately these terms will also

not be of immediate use, both due to their scalings and their localized nature. Finally we
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will study non-local terms, which take the form of integrals of fields at separate points joined

by some non-locality functions. We will see that a suitable choice of non-local correction can

give us precisely the scaling we require to cancel the spacetime curvature term in the EOM.

These corrections will have a natural interpretation as coming from M5-instantons wrapping

a four-cycle of the internal manifold as well as the torus.

4.3.1 Bulk Classical and Perturbative Terms

Although we have already written down the two-derivative Einstein’s equations explic-

itly, let us calculate their scalings again to illustrate some generalities and introduce some

shorthand notation that will be used through the rest of this chapter. We will only inves-

tigate the “bulk” equations of motion here, in the regions away from the localized objects,

where the metric is given by (4.1.4). We will return to the corrections coming from localized

objects further below.

The terms in Einstein’s equations are obtained by taking completely contracted curva-

tures and fluxes and varying with respect to the metric. Due to the warped product structure

of our ansatz, there are separate equation of motion components for each subspace with the

other components vanishing identically. The resulting scaling is that of the corresponding

term in the action, divided by the scaling of the metric component that is varied. Since the

different subspaces have different scaling metrics, it is convenient to consider the equations

of motion with one index raised back up, to cancel the scaling from this metric component.

GM
N − TMN =

1

2
√
g
gMP δS

δgPN
= 0 (4.3.33)

This way, the scalings of the terms in the EOM are the same as the scalings of the

corresponding fully contracted terms in the action from which they are derived. This means

that for every flux or curvature component we simply need to calculate what its scaling will

be after all its indices are contracted, either among themselves or with another field.

Let us introduce some notation to keep track of the different kinds of components we

will encounter. For the fluxes, we have the spacetime-filling flux, as well as internal fluxes

wrapping 3-cycles of the 6-manifold and a 1-cycle along the torus. We will use standard

index notation when we wish to refer to the uncontracted components. In this way we have
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G0ijm ∼ λ−4H−4M−1
p (4.3.34)

Gmnpa ∼ λ0H2M−1
p (4.3.35)

If we wish to refer to these components when they appear inside fully contracted com-

binations, or as part of the Einstein’s equations in the form (4.3.33), we will denote them

by G(ext) and G(int) respectively. To calculate the contribution of any flux component to the

total scaling of any fully contracted term, we simply need to multiply by the square root of

the inverse metric scaling for each of its indices, i.e. by the inverse vielbein scaling. Doing

so, yields

G(ext) ∼ λ1/3H−2/3M−1
p (4.3.36)

G(int) ∼ λ1/3H−2/3M−1
p (4.3.37)

For the curvatures, the analysis is a little bit more subtle. The general schematic form

for the Riemann tensor with two upper indices is

R = g−1∂g−1∂g + g−1(g−1∂g)2. (4.3.38)

The warped product structure of our ansatz guarantees that at the two-derivative level

the curvature components that contribute to the EOM will have indices on the derivatives

that belong to the same subspace, otherwise the indices to not fully contract. At higher

derivatives, when the Riemann tensor can contract with other factors we will also have

contributions from components with mixed derivatives. We will denote these three types of

curvature components by

R(00), R(yy), R(0y), (4.3.39)

respectively. The subscripts in parentheses only denote the directions along which the deriva-

tives act and are not to be confused with free indices of any curvature tensor.
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Since the metrics have both x̃ and y dependence, we need to determine how the derivatives

affect their scalings.

First note that all the x̃ dependences in our ansatz are power laws. For any quantity X

that depends polynomially on x̃, we have

∂0X ∝
1

x̃
X =

√
−Λ λ−1X (4.3.40)

The 0 index will eventually be contracted by an inverse metric, so the overall effect of each

derivative on the scaling is to introduce a factor of
√
−Λλ1/3H4/3M−1

p . This gives,

R(00) ∼ −Λλ2/3H8/3M−2
p . (4.3.41)

For the y dependence, some of it appears in the unwarped 6d metric, and outside of that,

all other y-dependence is encoded in the H-dependence, which is also always polynomial.

This means we have

∂mgMN ∝
∂mH

H
gMN + ... (4.3.42)

where “...” denotes terms where the derivative hits the unwarped metric and thus doesn’t

alter the H scaling. By diffeomorphism invariance, we expect that the combinations of

derivatives hitting the metric to assemble into powers of 2H or |∇H|2 and other covariant

combinations. So the overall effect of these derivatives will be to give additional factors of

2H

H
or
|∇H|2

H2
etc. (4.3.43)

These quantities can be big or small in different locations on the internal manifold, even

if H is always large, and the equations of motion will imply additional conditions on the

y-dependence of the flux terms or on the functional form of H(y) itself. This is similar

to the conditions that relate the external flux in terms of the warp factor for Minkowski

compactifications. Factoring out these quantities, the remaining H-scaling is the same as

that of the term inside the derivative. Upon contraction, the derivative will pick up a factor
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of the inverse vielbein scaling, so the overall scaling contribution of y-derivatives is λ1/3H−2/3

Thus, up to a factor of some function f(∇H
H
, 2H
H
, ...), the curvatures with ym derivatives

scale as

R(yy) ∼ λ2/3H−4/3M−2
p . (4.3.44)

Thus, the overall scaling contribution from the curvature terms ends up simply being

that of the inverse metric for the subspace along which the derivatives act. This remains the

case for terms with mixed derivatives, from which we obtain

R(0y) ∼ λ2/3H2/3M−2
p , (4.3.45)

although as we pointed out, this curvature component does not contribute to the equations

of motion at the two-derivative level.

Here we can once again clearly see the problem that arises due to non-zero Λ, which we

described earlier. R(yy) has the same scaling as G2
(int) and G2

(ext), which in principle allows

them to cancel against each other, while the R(00) term is non-vanishing and has a different

H scaling, meaning it has nothing to cancel against. This forces us to go beyond the two-

derivative equations of motion and look for corrections which can cancel R(00), while still

allowing the series of corrections to be truncated.

Perturbative corrections will be composed of various contractions of the fluxes and cur-

vatures as well as their derivatives, i.e. they will be of the form.

gMN 1

2
√
g

δ

δgMN

(√
g(g−1)(p1+p2)/2+2m+2n(∇)p1(G)m(∇)p2(R)n

)
, (4.3.46)

where the factors (G) and (R) can represent any of the fluxes and curvatures present in the

ansatz, the derivatives are meant to be distributed among the factors in some fashion and

the inverse metrics contract all the indices. The total scaling of any such term will simply

be the product of all the scalings of the individual factors, since the scalings are insensitive

to how the indices are contracted, and the scalings of
√
g before and after the variational

derivative cancel out. We have done all the work required to compute the scaling of any
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higher derivative correction to the equations of motion.

We summarize the scalings of all the ingredients that make up the perturbative terms in

table 4.1.

Field scaling

R(00) −Λ λ2/3 H8/3 M−2
p

R(0y)

√
−Λλ2/3 H2/3 M−2

p

R(yy) λ2/3 H−4/3 M−2
p

G(ext) λ1/3 H−2/3 M−1
p

G(int) λ1/3 H−2/3 M−1
p

∇m λ1/3 H−2/3 M−1
p

∇0 λ1/3 H4/3 M−1
p

Table 4.1 Scaling contributions from bulk fields after complete contraction.

One very important observation here is that all the λ scaling contributions are positive.

This means that global higher derivative terms, when evaluated on our ansatz, are always

accompanied by additional powers of λ and can therefore never cancel R(00) in the equations

of motion. Moreover, since we are looking at the λ → 0 limit, all of these higher order

corrections will become small. We are thus forced to look to the other corrections that may

be present, or to modify the ansatz, in the hope that additional λ dependences in the metric

or fluxes can produce terms with the correct scaling. We will explore the latter option in

the next chapter. For now we turn to the study of the other corrections that are present in

our ansatz.

4.3.2 Localized Terms

So far we were only concerned with the global curvatures and fluxes, that are present in

the regions where the metric is well approximated by (4.1.4). In this section we turn to the

curvatures and fluxes which are only present in the vicinity of the lumps that are dual to the

D7/O7 stacks in the IIB compactification. In the strict “constant coupling” scenario, these

lump solutions degenerate into a D-type ADE singularity. To get a handle on the physics

we will deform slightly away from this strict limit 3, which resolves the singularity and gives

us the lump solution that corrects the metric (4.1.4) into (4.1.6). We will denote the strict

3in general we expect quantum fluctuations to do this for us anyway
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constant coupling scenario manifold by M̃ and the manifold with the singularities resolved

by M.

The uplifts of separate D6 and O6 branes in asymptotically flat space are known. The

transverse metrics are described by gravitational solitons, specifically the Taub-NUT and

the Atiyah-Hitchin metric, for the D6 and O6 respectively. A metric for a D6/O6 stack in

flat space can then be obtained via harmonic superposition. In our ansatz, the transverse

space is not asymptotically flat, so the exact metric of the lump solutions will be deformed.

Furthermore, the space is compact, so we will require that the characteristic size of the

lumps is much smaller than the size of the transverse manifold4, so that the corrections to

the metric (4.1.4) fall off fast enough that most of the manifold is well-described by the

uncorrected metric.

If we take the manifold M̃, we can introduce a radial coordinate near the lumps. A

natural choice would be the proper distance from the orbifold point in the strict orbifold

limit, as computed by the metric on M̃, which we will call ρ, given by

ρ = Mp

∫
γ

w, (4.3.47)

where w is the vielbein tangent to the geodesic γ connecting our point to the orbifold point.

Far from the orbifold points, the metrics on M̃ andM agree, and the radial coordinate is

still a good coordinate. The resolution of the singularity has a characteristic size, which we

can call ρ0 where the the non-trivial fibration of the torus over the base manifold becomes

convoluted and strongly dependent on the exact details of the singularity resolution, and

ρ stops being a good coordinate. For ρ > ρ0, however, we can reasonably expect that the

difference between the metric on M̃ and M is described at leading order by a power law

dependence in 1/ρ, by analogy with the asymptotically flat solutions.

The radial direction is related to our usual coordinates on M̃ by

dρ = λ−1/3H2/3Mpdy5,6, θ = π/2, (4.3.48)

dρ = λ2/3H2/3Mpdz1, θ = 0, (4.3.49)

4This, in particular, requires small type IIB string coupling.
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where y5,6 represents the two y-coordinates transverse to the D6/O6 stack, while θ is the

latitude coordinate on the S2 surrounding the orbifold points in y⊥, z1 space, given by

θ = arctan
z1√
y2

5 + y2
6

. (4.3.50)

The z2 circle is the M-theory circle, which becomes non-trivially fibered as we approach the

stack and pinches off at the locations of the D6-branes in a smooth fashion.

Note that for power-law functions f(ρ), we have

∂mf(ρ) =
∂ρ

∂ym
df

dρ
, (4.3.51)

and the extra scalings appearing in (4.3.48) cancel out, so the ym derivatives acting on the

localized functions behave the same way as on bulk fields, i.e. their scaling contribution comes

only from contracting their indices. The new feature is the appearance of za derivatives,

whose contribution also only comes from from their index contraction, but since the torus

metric has a different scaling, we end up with a new set of contributions to the curvature

tensor:

R(zz) ∼ λ−4/3H−4/3M−2
p (4.3.52)

R(yz) ∼ λ−1/3H−4/3M−2
p , (4.3.53)

where the subscripts, once again, denote the subspaces along which the derivatives act. Note

that the scalings of these curvature terms are different from all other two-derivative terms,

which means that their contributions to the two-derivative EOM must vanish independently.

This is simply the statement that the lump geometry must be a solution to the equations

of motion in its own right. Provided that is the case, only different contractions of these

curvature components can appear within higher derivative corrections. Of particular interest

are the combinations
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R(zz)R(yy)R(yy) ∼ λ0H−4M−6
p R(yz)R(yz)R(yy) ∼ λ0H−4M−6

p , (4.3.54)

which are λ-independent and thus do not vanish in the IIB limit of λ → 0. Thus, these

combinations of curvatures are precisely examples of the “non-scaling operators” that were

discussed in chapter 3. We can combine them with any of the other curvature terms that

are present at the two-derivative level, and obtain terms with the desired λ2/3 scaling. The

same goes for including higher powers of these terms. Unfortunately, in terms of the other

expansion parameters, we face the disappointing observation that these terms still have

negative H-scaling, while the R(00) we are trying to cancel requires an overall positive H-

scaling. Nonetheless, we will keep these terms in mind, as we will see that they can be used

to dress up other terms.

A further set of λ-independent terms can be obtained from transverse derivatives acting

on localized fluxes. In addition to the localized metric corrections, the lumps admit localized

2-forms ωma which can be used to construct localized fluxes of the form:

G(loc)
mnpa = Fmn ∧ ωpa (4.3.55)

where the ym, yn coordinates are parallel to the D6/O6 worldvolume, and yp and za are

transverse to it.

The intrinsic scalings of these localized fluxes are constrained by the same equation of

motion as the bulk fluxes and thus have the same H2 scaling before contraction.5

The exact form of ω once again depends on the exact details of the singularity resolution.

However, by looking at the known form of their asymptotically flat cousins [145], we can

once again expect that it vanishes away from the lumps in a power-law fashion, so transverse

za derivatives acting on it also provide new scalings.

In particular the combination

(∇(z)G(loc))
2 ∼ λ0H−4/3M−2

p (4.3.56)

5Although note that the functional dependence must now match only along the brane worldvolume. The
transverse dependence of the localized fluxes is encoded in f(ρ).
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scales the same way as R(zz). So we can replace any R(zz) with (∇(z)G(loc))
2 without changing

the scalings of the corrections. Similarly we can replace R(yz) by ∇(y)G(loc)∇(z)G(loc).

Let us remark that the terms that we have described here do not seem related to the

expansion of the DBI action. Their distinct nature can be seen by observing that the

terms in the DBI action are related to the derivative expansion along the worldvolume

directions, whereas the terms we have described contain orthogonal derivatives. The presence

of derivatives along the orthogonal directions in these terms appears to probe the effective

thickness of the branes, which is related to the string coupling, leading us to interpret these

corrections as loop corrections to the effective brane action.

At this point, we can complete the analysis of the tadpole cancellation conditions (4.2.22)

by finding the scaling of X8 in the vicinity of the brane stacks. The non-trivial fibration of

the M-theory circle results in a vielbein for the form

w = f(dz2 + gdyn), (4.3.57)

where f, g are functions of z1, y5,6. The non-vanishing of X8 can be traced back to the fact

that

dw = df ∧ (dz2 + gdyn) + f(dg ∧ dyn), (4.3.58)

which contains wedge products that don’t include the z2 coordinate. So the non-vanishing

part of X8 contains exactly the curvature terms coming from the transverse derivatives,

and in particular must contain either one factor of R(zz) or two factors of R(yz) to form a

non-vanishing wedge product.

The scaling of X8 can then be computed by taking the fully contracted scalings of

R3
(yy)R(zz), or R2

(yy)R
2
(yz) and “uncontracting” 8 indices, by multiplying by the vielbein scaling

for each metric component. This gives

(X8)mnpqrsab ∼M−8
p

(
(λ2/3H−4/3)3λ−4/3H−4/3

) (
λ−2/3H16/3

)
= λ0H4M−8

p , (4.3.59)

where the first parenthesis is the fully contracted scaling, and the second is the scaling of
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√
g8. The result is in perfect accordance with the λ0H2 scaling of the bulk and localized

Gmnpa fluxes. The discrepancy in the powers of Mp corresponds to the fact that it is a

higher derivative correction, and the magnitude of the resulting fluxes themselves must be

suppressed by a factor of M−3
p . This is in accordance with the flux-quantization condition,

which requires

1

2π

∫
G =

1

2π
M4

p

∫
d3ydz

√
g4ε

mnpaGmnpa = n+
p1(R)

2
n ∈ Z, (4.3.60)

where p1(R) is the first Pontryagin class of the 4-cycle. We see that the scaling of the

components of G as M−3
p combined with its intrinsic M−1

p scaling cancels precisely the

factor of M4
p coming from the integration measure, which allows the integral to take order

one values.

4.3.3 Non-local Terms and the Transseries Structure

We now turn to the most exotic type of corrections that we will consider in this chapter,

namely non-local corrections. Although we are interested in corrections at the EOM level,

let us start by considering corrections to the effective action of the form

S(nloc) = M22
p

∫
d11xd11x′

√
g(x) g(x′)O(x)G(x, x′)O′(x′), (4.3.61)

where O and O′ are some completely contracted products of fields and G(x, x′) is some

appropriate non-locality function, which depends on the physical nature of the correction.

The exact form of the allowed operators O and functions G will of course be constrained

by the various symmetries of the theory, as is the case with the local corrections. We can

further generalize this construction, by allowing the operators O,O′ to themselves be further

non-local resulting in corrections of ever-increasing degree of non-locality, involving nested

integrals of chains of operators connected by non-locality functions.

Taking G to be a normalized delta function, we recover the local term (OO′)(x), provided

the operators O,O′ are local themselves. If instead G is completely delocalized along certain

directions, we obtain contributions that can be interpreted as configurations of extended

objects, including spacelike configurations, such as brane-instantons. Note that the integral
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contributes positive powers of Mp, and unless the operators O,O′ contain enough derivatives,

the overall power of Mp in the non-local corrections will be positive. This would imply that

these terms should dominate in the low energy limit. Moreover, the corrections with higher

degrees of non-locality would appear to dominate over corrections with lower degrees of non-

locality resulting in an infinite family of corrections entering in the far IR limit and thus fail

to reproduce 11-dimensional supergravity as the low-energy limit of M-theory.

The way out of this conundrum is to demand that the positive powers of Mp should

actually resum into the non-perturbative exponentials that appear in the action as

S(nloc) = M11
p

∫
d11x

√
g(x) O(x)

(
a1e
−I(x) + a2e

−2I(x) + ...
)

(4.3.62)

I(x) =

∫
d11x′

√
g(x′)G(x, x′)O′(x′).

This has the desired behavior as Mp → ∞ and results in the action having exactly the

transseries structure described in chapter 3. One can view this requirement as a mathe-

matical trick to obtain the desired behavior in our asymptotic regime, but it also has the

usual physical interpretation as arising from a dilute gas of brane-instantons or other non-

perturbative effects. Note that the exponential terms can be evaluated at any point, which

is a reflection of the fact that despite the brane-instantons being partially localized, we must

also perform the path integral over all its transverse positions, so their effect can be felt

everywhere in the internal manifold, properly weighed by the amplitude of the extended

object to appear in that location.

Note that in principle, we might wonder if we can allow for some of the non-local terms

to remain un-exponentiated, which would correspond to some deep IR corrections to 11-

dimensional supergravity. Provided we only leave finitely many such terms, or find some

way to suppress or remove the higher degrees of non-locality, this may be allowed, and

would result in a theory whose deep IR behavior can differ from 11-d SUGRA. For now we

will assume that 11-d SUGRA is all there to M-theory at low energies, but we will return to

this possibility in the next chapter.

The stress tensor coming from the leading non-perturbative contribution in (4.3.62) is
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TMN(x) = gMP

((
δO(x)

δgPN(x)
− gPNO(x)

)
e−I(x) −

∫
d11x′

√
g O(x′)

δI(x′)

δgPN(x)
e−I(x′)

)
.

(4.3.63)

We see that the first term is simply a small non-perturbative shift to the perturbative

stress tensor coming from O(x), while the second term is new and has the same scaling as

O(x)I(x), which is lower order in M−1
p due to the positive scaling of I(x), which makes it

the dominant non-perturbative contribution. The overall scaling of this new term depends

on the scalings of the operators and non-locality functions that appear in I(x).

Thus we have determined the contributions from non-local corrections to the equations

of motion. Requiring that the low-energy limit reduces to the supergravity equations, makes

these corrections take on the trans-series structure above. We will now consider a particular

example of such a correction and show that it is precisely the type of correction that we need

to satisfy the equations of motion to get a scale-separated solution with non-zero Λ.

4.3.4 M5-instantons, de Sitter Uplift and EFT Breakdown

A particularly simple example of a non-local correction of the sort described above is:

I(x′) = M11
p

∫
d4y‖d

2z
√
g6

∫
d3xd2y⊥

√
g3g2δ

(3)(x− x′)δ(2)(y⊥ − y′⊥), (4.3.64)

which can be obtained from (4.3.62) by choosing O′ = 1 and the function G to be extended

along a 4-cycle of the internal manifold and the torus, parametrized by y‖ and z respectively,

and localized in the other directions. This correction is related to the worldvolume term

in the action of an M5 instanton, which is dual to the D3 instantons used to generate

the non-perturbative contributions in KKLT and similar scenarios. If instead of the torus,

the function G extends along the non-trivial 2-cycles appearing in the multi-centered lump

solutions describing our localized brane stacks, they become stuck at the lump locus and

correspond to a worldvolume instanton density related to worldvolume gauge theory effects

like gaugino condensation.

The reason for considering this correction is motivated by the observation that it scales

as
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I(x′) ∼ λ0H4M6
p , (4.3.65)

making it non-vanishing in the λ→ 0 limit. If we take fewer torus directions or more of any

other direction, the resulting non-local term would have negative λ scaling and the resulting

non-perturbative exponential would vanish in that limit. As an aside, the only other non-

local term with O′ = 1 that scales as λ0 comes from wrapping one torus direction and two

internal directions. We can recognize this as describing an M2-instanton, which is dual to

type IIB worldsheet or D1-instantons wrapping 2-cycles of the internal manifold.

For the case at hand, however, we can now also consider corrections of the form

∫
d11x
√
gO(x)e−I(x), (4.3.66)

where O(x) is any of the two-derivative terms in the action other than R(00). For this term,

the interesting contribution to the stress tensor (i.e. the second term in (4.3.63)) will be

T
(nloc)M

N(x) = gMN(x)

∫
d11x′

√
g6O(x′)e−I(x′), (4.3.67)

whose scaling contribution is

T
(nloc)M

N(x) ∼ λ2/3H8/3M−2
p × (M6

p e
−H4M6

p ). (4.3.68)

The factor in parentheses is an exponentially small λ-independent term, while the pre-factor

has exactly the correct H and λ scaling as R(00), provided

Λ = −M6
p e
−〈H4〉M6

p . (4.3.69)

Note the overall negative sign, which arises as a combination of the negative sign in the

exponential and the sign of the prefactor of the non-perturbative action. The latter is not
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fixed a priori, but a requirement that the solution is stable with respect to H fixes its sign

to be positive in the action, resulting in negative Λ. This also aligns well with the general

expectation that instanton corrections lower ground state energies.

The above expression for Λ can also be rewritten as

Λ〈H4〉 ∼ −
(

mp

MIIB

)2

e
−
(

mp
MIIB

)2

, (4.3.70)

where we omitted numerical coeffcients in the pre-factor and the exponent. Recall that Λ〈H4〉
is precisely the parameter that measures the scale-separation in our ansatz, and our result

indicates that it is indeed exponentially small for large compactification volumes, indicating

a large scale separation hierarchy.

Thus it appears that non-local terms, corresponding to the non-perturbative effects of

M5-instantons are exactly the effects one needs to obtain a scale separated type IIB AdS

solution. We recognize this as essentially the same as the AdS vacuum in KKLT and similar

constructions. What our approach additionally shows, however, is that these effects were

really the only option from the very beginning. No other terms have the correct H-scaling

to cancel the EOM-violating terms coming from the external curvature.

Note that the large scale-separation ultimately stems from the non-perturbative nature of

the correction responsible for it and the fact that it exponentiates due to the standard dilute

gas argument. It is noteworthy that our motivation to exponentiate the non-perturbative

terms comes from requiring the correct behavior as Mp →∞. The fact that these terms are

also non-perturbative in H−1 and are related to the Kahler moduli of the internal manifold

appears as a happy coincidence. However, we could have also guessed that this might be the

case by recognizing that to obtain the scaling of R(00) from the other terms, we needed to

contract them with something that had positive H scaling. Since our EFT regime is defined

by expanding in inverse powers of H, the necessary factor would have to be non-perturbative

in H as well and we might have decided to exponentiate it on those grounds.

The fact that these factors also end up λ-independent is a further non-trivial feature.

Note that corrections coming from M2-instantons, while also λ-independent, would not give

the required H4 scaling. We have therefore identified M5-instantons (and therefore D3-

instantons, or their fractional versions in the form of worldvolume gaugino condensation on

the IIB side) as essentially the unique type of correction that allows for non-zero curvature
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in the external directions, while maintaining scale-separation.

Unfortunately, it appears that for the correction (4.3.66), the stable solutions always have

Λ < 0. We wish to know whether it is possible to obtain a de Sitter solution with Λ > 0. The

negative sign of the leading contribution stems from an interplay of the negative sign inside

the non-perturbative exponential, which can’t be changed, and the overall positive sign of

the contribution in the action, which is determined by demanding the stability of the solution

with respect to H, so it appears our only hope is to introduce additional corrections where

we dress the non-perturbative term with an appropriate operator O(x). To preserve the

λ-scaling of the term, we must dress the original contribution with one of the λ-independent

localized terms described in section 4.3.2. This is not a priori ruled out. These terms are

made up of combinations of brane worldvolume curvatures and fluxes and it is conceivable

that an appropriate choice of worldvolume flux, for example, might give an overall positive

contribution to Λ. This approach would be in the spirit of [15], which is similar to KKLT

except that the anti-brane is replaced by D7-brane worldvolume fluxes.

However, since the original non-dressed contribution is still present, the dressing fac-

tors would have to be of order one just to cancel the original negative contribution to the

cosmological constant. In other words, the equation of motion would contain a part that

schematically looks like

δ

δgMN

√
g
(
R(00) +Oc(x)e−I(x) +OqOc(x)e−I(x)

)
= 0, (4.3.71)

where Oc are the bulk classical 2-derivative terms, and Oq are the localized λ-neutral factors.

Recall that these terms had additional suppression by powers of H−4M−6
p , so in order for

these corrections to successfully flip the overall sign of Λ, the curvatures and/or fluxes on the

brane worldvolumes would have to be large enough that this suppression is no longer present6,

which switches on the entire family of λ-independent terms in the EOM and destroys the

EFT description. Thus it appears that while scale-separated AdS solutions are possible,

lifting them to dS solutions requires the introduction of corrections that destroy the EFT

6In fact, if the 4-cycle wrapped by the 7-branes has non-constant warp factor, the curvatures or fluxes
would need to have a functional dependence that matches the missing factors of H(y) along the 4-cycle
directions. This is not necessary along the orthogonal directions, however, so the new “dressed” term still
formally has a different H-scaling, which may have helped maintain the stability of the solution after the
uplift, if it didn’t lead to a breakdown of the EFT.
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description, meaning that if classically stable dS solutions exist, they are not within the

regime of validity of the EFT defined by our original asymptotic limit.

4.4 Chapter Summary

In this chapter we have systematically studied the corrections to M-theory evaluated

on an ansatz dual to a type IIB compactification with non-zero external curvature. Our

analysis of the two-derivative equations revealed that the external curvature term has a

distinct scaling with respect to the warp factor H(y), compared to all the other curvature or

flux terms, meaning that it could not cancel from the equations of motion. Higher derivative

corrections in the bulk have the wrong scaling as well, while corrections associated to localized

objects dual to D7/O7 stacks, can yield the correct λ-scaling, but require large curvatures

or worldvolume fluxes to have the right H scaling, which would destroy the EFT.

We then turned out attention to non-local corrections, and showed that one type of

correction, which is naturally interpreted as coming from M5-instantons, has precisely the

right scaling in order to cancel the spacetime curvature term and yield a scale-separated AdS

solution.

As for de Sitter compactifications, we found that reversing the sign of the spacetime

curvature is only possible by once again turning to the localized corrections and asking for

large worldvolume fluxes or curvatures, which destroys the EFT description. This result

does not necessarily invalidate the existence of time-independent de Sitter vacua per se, but

does, however, put into question whether it is appropriate to view de Sitter vacua as states

within the same EFT as the SUSY compactifications that serve as starting points for dS

constructions.
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Chapter 5

Generalizations and Additional

Ingredients

In the previous chapter, we have studied scale-separated compactifications to Anti-de

Sitter space and de Sitter space within the regime of large-volume, weakly-coupled type IIB

theory. We found that non-perturbative corrections seem to allow for AdS solutions, but not

dS. The problem ultimately stems from the necessity to flip the sign of the non-perturbative

term, which requires dressing it with perturbative corrections of order one, thus breaking

the effective theory description.

Since the scalings of all the terms in the equations of motion are determined by our

ansatz, it may be possible that a suitable modification to the ansatz may help avert our

result. In particular, modifying the ansatz can introduce additional suppression parameters,

that will prevent the infinite series of corrections from appearing. In this chapter, we will

make two modifications to the original ansatz: the introduction of isometry-violating flux

components and a time-dependent internal manifold. We will show that while some forms of

these modifications are consistent, they are not enough to eliminate the EFT breakdown for

de Sitter space. However, their failure will pave the way towards the final possibility that we

will consider, involving the introduction of dominant IR effects. This requires shifting our

expectations of the low-energy behavior of M-theory, which will in turn shift the behavior

of our trans-series of corrections in the appropriate way to potentially allow for de Sitter

solutions.
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5.1 Isometry-violating Fluxes

One modification that we can make to the ansatz from the previous chapter is to allow for

additional flux components, specifically for Gmnpq and Gmnab. At first glance these fluxes do

not respect the dS isometries upon duality chasing back to IIB, but become either a Wilson

line or a winding mode condensate along z2. Note that we have already singled out the z2

direction by periodically identifying it, so the appearance of objects threading should not

be a disqualifying feature at this point. However, as we will soon see, further consistency

conditions will reveal that these fluxes must in fact be localized, rather than global.

The presence of a different set of indices means that higher derivative corrections con-

taining these fluxes has a chance of producing different scaling terms. For example, if Gmnab

were time-independent, for example, then upon index contraction, its contribution to the

scaling would be λ−2/3H−8/3M−1
p , a scaling which does not appear from the fields in the

original ansatz.

Here we must tread carefully, however, since the fluxes will also have intrinsic scaling

determined by the flux equation of motion. As before, we have

d ? G = G ∧G+X8, (5.1.1)

where X8 vanishes identically except near the lumps describing the uplift of the D6/O6

stacks. As before, if there is any warped throats in the internal geometry, where 2H doesn’t

vanish, we will have a set of equations analogous to (4.2.27) governing the leading-order

scaling of the internal fluxes.

We have two options for which flux shares a leg with G0ijm. Let’s first consider

G(1) = G0ijm dx0 ∧ dx1 ∧ dx2 ∧ dym (5.1.2)

G(2) = Gmnab dy
m ∧ dyn ∧ dza ∧ dzb (5.1.3)

G(3) = Gpqrs dy
p ∧ dyq ∧ dyr ∧ dys, (5.1.4)

where as before we have
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G(i) ∼ λaiHbi i = 1, 2, 3 (5.1.5)

G(i) ∧G(j) ∼ λai+ajHbi+bj (5.1.6)

d ? G(1) ∼ λa1+4Hb1+8 (5.1.7)

d ? G(2) ∼ λa2−4Hb2−4, (5.1.8)

and away from the lumps we neglect X8 as before so the flux EOM read

d ? G(1) = G(2) ∧G(3) (5.1.9)

d ? G(2) = G(1) ∧G(3). (5.1.10)

Taking a1 = b1 = −4 we obtain a solution of the form.

Gmnab ∼ λ−1H2M−1
p (5.1.11)

Gpqrs ∼ λ1H2M−1
p . (5.1.12)

In the second case, if we take

G(1) = G0ijm dx0 ∧ dx1 ∧ dx2 ∧ dym (5.1.13)

G(2) = Gmnpq dy
m ∧ dyn ∧ dyp ∧ dyq (5.1.14)

G(3) = Grsab dy
r ∧ dys ∧ dza ∧ dzb, (5.1.15)

we obtain through a similar manipulation

Gmnpq ∼ λ−1H2M−1
p (5.1.16)

Grsab ∼ λ1H2M−1
p . (5.1.17)

These intrinsic scalings of the fluxes imply that after full index contraction, their scalings
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are

Gmnpq ∼ λ1/3H−2/3M−1
p , Gmnab ∼ λ1/3H−2/3M−1

p . (5.1.18)

These scalings are, of course, exactly the same as the scalings of G(int) from the original

ansatz. This means that even if the isometry violating fluxes can be consistently added to

the AdS ansatz, they do not help in restoring the EFT description for the de Sitter case.

The question of whether these fluxes can consistently included is interesting in its own

right, however. Note that in both cases G2∧G3 ∼ λ0 which allows its integral to successfully

cancel against the time-independent part of X8, to satisfy the tadpole condition, just as in

the original ansatz.

Individually, however each flux now has λ-dependence, which presents a potential conun-

drum for flux quantization and the Bianchi identity, since these fluxes appear to no longer be

closed. In order to resolve this issue we need to look at potential higher derivative corrections

to the Bianchi identity.

Recall that the Bianchi identity can be viewed as the equation of motion for the Hodge

dual of the flux. In other words, defining

G7 = ?G4, (5.1.19)

which we can also locally write as G7 = dC6. We can write the sum of all higher the terms

in the action involving contractions of G4 as

SG =

∫
G7 ∧ (G4 + Y4), (5.1.20)

(5.1.21)

where the first term is the usual kinetic term for the fluxes, while the second term captures

all the other higher-derivative corrections containing G4. There can also be corrections of the

form C6 ∧Y5, where Y5 is not closed (otherwise it can be recast as a G7 wedgeY4 coupling),

although this would require a non-trivial 5-cycle in the internal space. These can come from
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explicit M5-sources in the geometry or from higher derivative couplings such as those studied

in [146]. In the following we will assume that there is no such 5-cycle in the geometry.

In the absence of the higher derivative corrections, the equation of motion for C6 simply

gives

dG4 = 0, (5.1.22)

which is the usual Bianchi identity, which upon integration over a 5-dimensional manifold

with boundary gives the flux quantization condition. In the presence of Y4 the Bianchi

identity gets modified to

d(G4 + Y4) = 0. (5.1.23)

One contribution to Y4 consists of topologicalR∧R terms of the sort we have already seen.

These terms integrate to a constant and are responsible for a shift of the flux quantization

condition. If the resulting shift in the quantization condition is not integral, then the lack

of a constant term in G4 would render the system inconsistent, so we will assume this is not

the case.1

It is then the other contributions to Y4 that are responsible for cancelling the terms

coming from the λ-dependence of G4. In order for this to be possible their λ-scalings must

match. To check this we must compute the λ-scaling of Y4. We can start with a generic fully

contracted higher-derivative correction involving the G4 flux, “uncontract” the flux indices

and divide by the intrinsic scaling of the flux itself.

For example, consider a correction involving Gmnab, which has a total scaling of λa. Then

we have

1For the cycle wrapped by Gmnab the topological shift vanishes identically, so the cycles wrapped by
Gmnpq are the only one we must be careful with.
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GmnabYmnab ∼ λa (5.1.24)

GmnabYpqcd ∼ λa+4/3 (5.1.25)

Ypqcd ∼ λa+1/3, (5.1.26)

and in order to match the scaling of Gmnab we need a = 2/3. The same result is obtained by

considering GmnpqYmnpq.

The scaling λ2/3 is precisely the scaling of the two-derivative terms in the action. Any

higher-derivative terms built out of the global curvatures and fluxes will have additional

powers of λ and can therefore induce higher order terms in the flux, but won’t cancel the

leading order piece.

This is not necessarily the case for localized fluxes however. Recall that localized curva-

tures and fluxes can produce λ-independent factors, and since they are localized, they do not

need to match the full functional form of the H-scaling, but only need to have the correct

magnitude to match the correct power of H locally. For example a term in the action of the

form

G
(loc)
mnabG

(loc) ab
pq (R

(loc)
(zz)R

(loc)
(yy)R

(loc)
(yy) )mnpq (5.1.27)

built out of the localized curvature corrections that we described in the previous chapter,

can produce a correction with the right λ-dependence to satisfy the leading order Bianchi

identity for Gmnab. It is not clear however, that this can be done without forcing the (R(loc))3

factor to be of order one, which would lead to a breakdown of the EFT description.

Note that the localized fluxes that we have studied in the previous chapter do not have

the isometry violating index structure, because of the normalizable 2-forms near the D6/O6

locus having only one torus leg. There are however additional two-forms associated to various

2-cycles present inside the lump solution, which vanish in the constant-coupling limit and

are associated to the non-abelian dynamics of the brane stack [147], which can provide the

correct index structure. Thus it appears that the would-be isometry-violating fluxes should

be interpreted as localized fluxes dual to the non-abelian gauge fields on the brane stacks.

Once we’ve matched the leading order terms in the Bianchi identity, we can allow for a
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more general form for the fluxes, involving an expansion in higher powers of λ. These will

then also appear in the Bianchi identity, but will have exactly the right scaling to be cancelled

by even higher order derivative-corrections. In the next section we consider a scenario where

the fluxes have this general time-dependence as well as consider a time-dependent manifold.

5.2 Time-dependent Internal Manifold

Although the intrinsic scalings of the fluxes are determined by the flux equations of

motion, the scaling after contraction also depends on the scalings of the internal metric.

Moreover, the dependence on the metric also appears in the Hodge dual operation.

With this in mind, the next modification to try is introducing a time-dependence for

the internal manifold. It is well known that even in supergravity, one can obtain transient

phases of accelerated expansion when the total volume of the internal manifold changes.

This essentially produces a class of quintessence models with a time-varying 4-dimensional

Newton’s constant. What we would like to explore, however, are models where the 4D

Newton’s constant remains time-independent, but different cycles in the internal manifold

can vary with time.

An example of such an ansatz would be a IIB metric of the form

ds2
IIB = − eφB/2

H(y)2

1

Λx2
0

(
dx2

0 + dx2
1 + dx2

2 + dz2
1

)
+ eφB/2H(y)2

(
F1(λ)g̃mndy

mdyn + F2(λ)g̃αβdy
αdyβ

)
,

(5.2.28)

where we require that F 2
1F2 = 1, so that the overall volume of the internal manifold remains

constant.

This metric dualizes to

ds2
M = H−8/3λ−8/3

(
dx2

0 + dx2
1 + dx2

2

)
+H4/3λ−2/3

(
F1(λ)gmndy

mdyn + F2(λ)gαβdy
αdyβ

)
+ H4/3λ4/3

(
e−φBdz2

1 + eφBdz2
2 + habdz

adzb
)

(5.2.29)

on the M-theory side, where as usual the difference between g̃ and g as well as hab is localized
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on a set of lumps dual to the D7/O7-stacks on the IIB side.

Let us consider a Frobenius series ansatz for the Fi

F1 = λ−2γ(1 +
∑
n

Cnλ
n∆), F2 = λ4γ(1 +

∑
n

C̃nλ
n∆), (5.2.30)

where ∆ is a rational number, so that n is an integer, and the condition F 2
1F2 = 1 allows us

to express all the C̃n in terms of Cn, the first few of which are

C̃1 = −2C1 (5.2.31)

C̃2 = 3C2
1 − 2C2, (5.2.32)

and so on. The rational number ∆ is chosen so that the power of λ in the expansion of the

curvature changes by the same amount as between the different order curvature corrections,

so that the EOM provide meaningful constraints on them. Since the higher derivative terms

differ by powers of G2, R,∇2 or ∇G, which all scale as λ2/3, the prudent choice for ∆ might

seem to be 2/3. However, judging by the fact that the first two sets of higher derivative

corrections differ by powers of R3 or equivalently scaling combinations, we should not be

surprised to find that the appropriate choice is in fact ∆ = 2, or at least that the first

non-zero coefficient appears at order λ2 relative to the leading term.

Introducing these functions into the metric changes the scalings of the Hodge dual op-

erator and so the constraints coming from the flux EOM need to be reconsidered. G(ext)

now splits into two types of components, G(ext,m) and G(ext,α), where the additional m or α

subscript denotes the subspace of the internal leg. The scalings of their hodge duals can be

written as

d ? G(ext,m) ∼ F1(λ)−1H4M−2
p (5.2.33)

d ? G(ext,α) ∼ F2(λ)−1H4M−2
p , (5.2.34)

where we assume that the intrinsic scaling of G(ext) is λ−4H−4M−1
p , as in the original ansatz.

If we modify this scaling to be λa, both expressions above will pick up an extra factor of

λa+4.
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Note that the H and Mp scalings remain unchanged from the time-independent case, so

we will stop keeping track of them from now on.

Since the intrinsic scaling of the internal fluxes are determined by the scaling of d?G(ext),

they must now also become λ-dependent. Furthermore, since Fi consist of many terms with

different λ-scalings, the internal fluxes will also now take the form of Frobenius series of the

form:

GMNPQ = λa

(
1 +

∑
n

G(n)
MNPQλ

n∆

)
, (5.2.35)

where again, we chose ∆ = 2/3 for the power in the expansion parameter in order to get

interesting interplay with the higher derivative corrections.

Note that the leading order scaling λa, is only sensitive to the leading order scaling of

the Fi, which means it’s depends only on γ and not the Ci in (5.2.30).

Thus to determine the leading order flux scalings, and therefore the dominant asymptotic

behavior in the λ → 0 limit of the fluxes, we can simply take F1 ∼ λ−2γ and F2 ∼ λ4γ and

solve the constraints coming from the two-derivative flux EOM. For example, taking

G(1) = G0ijm dx0 ∧ dx1 ∧ dx2 ∧ dym (5.2.36)

G(2) = Gmnpa dy
m ∧ dyn ∧ dyp ∧ dza (5.2.37)

G(3) = Gαβqb dy
α ∧ dyβ ∧ dyq ∧ dzb (5.2.38)

where as usual we have G(i)MNPQ ∼ λai to leading order, and

d ? G(1) ∼ λa1+4+2γ (5.2.39)

d ? G(2) ∼ λa2−4+6γ. (5.2.40)

The flux EOM imply

a3 = 4γ (5.2.41)

a2 = a1 + 4− 2γ. (5.2.42)
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The scalings of these fluxes after contraction are then

G(2) ∼ λ1/3+γ+(a1+4) (5.2.43)

G(3) ∼ λ1/3+γ. (5.2.44)

As a sanity check, we note that this reproduces the original time-independent scalings for

γ = 0.

We can now proceed to repeat this computation for all the flux components, including the

isometry-violating components introduced in the previous section. The results are tabulated

in tables 5.1 and 5.2. Note that in the last column of each table we have set a1 = −4 so that

the external flux is still proportional to the spacetime volume element. Interestingly, upon

full contraction, all the flux scalings assemble into only two families, one with scaling λ1/3+γ

and another with λ1/3−2γ.

Table 5.1 Isometry preserving Flux Scalings
G(ext) d ? G(ext) G(int) Intrinsic Contracted

component λ-scaling component G(int) λ-scaling G(int) λ-scaling

G0ijm a1 + 4 + 2γ

Gmnpa a1 + 4− 2γ

1
3

+ γ

Gqαβb 4γ
Gmnαa a1 + 4 + γ
Gpqβb γ
Gmαβa a1 + 4 + 4γ
Gnpqb −2γ

G0ijα a1 + 4− 4γ

Gαmna a1 + 4− 2γ

1
3
− 2γ

Gpqβb −2γ
Gαβma a1 + 4 + γ
Gnpqb −5γ

The different scalings of the metric along the two submanifolds of the 6-manifold also

affects the scalings of the Riemann tensors. The rule for computing their scalings remains the

same: the scalings of a fully contracted Riemann tensor component is given by the inverse

vielbeins corresponding to the directions, along which the derivatives act. All the other

metric scalings will cancel out due to the warped product structure of the metric. With the

new ansatz, we now have more combinations of derivatives, whose scalings are tabulated in
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Table 5.2 Isometry violating Flux Scalings
G(ext) d ? G(ext) G(int) Intrinsic Contracted

component λ-scaling component G(int) λ-scaling G(int) λ-scaling

G0ijm a1 + 4 + 2γ

Gmnab a1 + 5− γ

1
3

+ γ

Gpqαβ −1 + 3γ
Gmαab a1 + 5 + 2γ
Gnpqβ −1
Gmnpq a1 + 3− 3γ
Gαβab 1 + 5γ
Gmnpα a1 + 3
Gqβab 1 + 2γ
Gmnαβ a1 + 3 + 3γ
Gpqab 1− γ

G0ijα a1 + 4− 4γ

Gαmab a1 + 5− γ

1
3
− 2γ

Gβnpq −1− 3γ
Gαβab a1 + 5 + 2γ
Gmnpq −1− 6γ
Gαmnp a1 + 3− 3γ
Gβqab 1− γ
Gαβmn a1 + 3
Gpqab 1− 4γ

table 5.3.

Table 5.3 Leading order curvatures scalings, time-dependent case.
Curvature component Contracted scaling

R(00) −Λ λ2/3 H8/3 M−2
p

R(mn) λ2/3+2γ H−4/3 M−2
p

R(αβ) λ2/3−4γ H−4/3 M−2
p

R(mα) λ2/3−γ H−4/3 M−2
p

R(0m)

√
−Λ λ2/3+γ H2/3 M−2

p

R(0α)

√
−Λ λ2/3−2γ H2/3 M−2

p

We see once again, the same basic pattern that arose in the time-independent case.

Curvatures with purely internal derivative indices have precisely the kind of scaling that

can cancel against the terms quadratic in G. Curvatures with two x̃ derivatives once again

have the unique H-scaling, which will require the introduction of non-perturbative effects to
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cancel them. Note that this curvature scaling is completely insensitive to γ, so the problem

of generating a non-zero Λ is insensitive to the time-dependence of the internal manifold.

The curvature terms with mixed derivatives seem to provide a new feature. Their λ

scalings are completely distinct from the other terms. This would generate a new set of

higher-derivative corrections, with a different set of scalings, and vastly complicate the anal-

ysis. As we will see shortly, however, tadpole cancellation will require us to take γ = 0, so

these corrections will once again fall in line with the rest in terms of their scalings.

There is, however, a more important complication. Unlike the time-independent case,

the Einstein tensor arising from these curvatures no longer vanishes, but rather gives:

G0n = −2

(
Ḟ1

F1

+
Ḟ2

F2

)
∂nH

H
, G0α = −4

(
Ḟ1

F1

)
∂αH

H
(5.2.45)

and would need to get cancelled by some appropriate quantum terms, since they don’t

have the same H-scaling as any of the other two-derivative terms. Note that they differ by a

positive power of H from the purely internal curvature and flux terms. When we encountered

this positive relative power of H for the external curvature term in the previous chapter,

we had to turn to non-local corrections. However, this was because we had the additional

constraint that there must be no relative power of λ arising from the correction, which is

not the case here.

The non-zero Einstein tensor comes from a subleading part of the R(0M) Riemann tensor,

which has a different λ-scaling as well. Indeed, taking γ = 0, we can readily see that

Ḟ

F
∼ λ∆−1, (5.2.46)

which, if we multiply by the inverse vielbein scalings, gives a “contracted” scaling of λ∆+2/3,

rather than the leading order λ2/3 scaling of the full Riemann tensor. Thus we need not

worry about acquiring additional powers of λ and can simply cancel this term against a

higher derivative term. In fact, the λ-scaling of the higher derivative term will dictate the

value of ∆.

The lowest order term that has the appropriate H-scaling has the form
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R(0M)R
2
(MN)R(00) ∼ λ8/3H2/3M−8

p , (5.2.47)

where M,N can be either m or α, or any similar term with curvature factors replaced by

equivalently scaling factors of G2, ∇G or ∇2. Note the extra powers of M−1
p , relative to

the two-derivative term, indicate that the first non-zero coefficients C1, C̃1 must be small in

magnitude, similar to how the tadpole condition suppresses the magnitudes of the fluxes.

The fact that this term differs by a power of λ2 from the leading scaling of R(0M) means that

we ought to take ∆ = 2, as anticipated.2

Of course, Ḟi/Fi has a further expansion in powers of λ∆, and those terms need to be

cancelled as well. However, once a leading correction is obtained, the rest of the series can

easily be generated by balancing them against further higher derivative corrections that have

the appropriate scaling. Thus, once a single Ci can be made non-zero, the mixed derivative

equations of motion provide a relationship between the higher order coefficients and the

higher derivative corrections.

Similarly, if we expand the rest of the two-derivative terms in the equations of motion, i.e.

include all the Cn and the G(n) dependent pieces, we will also obtain a series in λ∆. These

new higher order terms must then successfully cancel either among themselves or against

the higher derivative terms with the matching λ scaling.

Thus the quantum-corrected Einstein’s equations form a complicated system of equations

order by order in λ∆, where each new λ-dependent piece is determined by the lower order

pieces combined with higher-derivative corrections. Note, however that at each order, we

have a new Cn variable appearing from the expansion of the Fi functions, as well as an

additional rank-4 antisymmetric tensor’s worth of components G(n)
MNPQ. Thus the number

of variables vastly exceeds the number of equations to any finite order, and generically we

should expect there to be non-trivial solutions.

Let us now revisit the localized features of the metric and the tadpole cancellation con-

dition and see how it leads us to impose the condition γ = 0 in the ansatz for Fi.

Just as in the time-independent case, there are additional non-zero curvature components

in the vicinity of the localized lumps, containing derivatives along the za directions. These

2Alternatively, we can keep ∆ = 2/3, but the lack of necessary quantum terms in the EOM will then
imply that only the C3n will be non-vanishing.
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are unaffected by the Fi and so their scalings remain unchanged. Recall that the time-

independent part of X8 came exclusively from these localized regions. In the time-dependent

case, we now have the following contributions to X8:

R2
(mn)R(αβ)R(ab) ∼ λ2/3 (5.2.48)

R2
(mα)R(mn)R(ab) ∼ λ2/3 (5.2.49)

when fully contracted, with all other combinations being higher order in λ. Upon “uncon-

tracting” one of each 8-manifold indices, we still get

X8 ∼ λ0 (5.2.50)

at leading order. This is, of course, by no means surprising.
∫
X8 is a topological invariant

of the 8-manifold, and therefore can not vary continuously with λ. This means that any

λ-dependent part of X8 must integrate to zero, although it need not vanish locally, while the

part that enters the tadpole cancellation, should be insensitive to any additional λ-dependent

warpings of the metric we may introduce as long as these do not alter the topology of the

fixed λ slices.

On the other hand, the internal fluxes are sensitive to the additional λ-dependence.

Looking at table 5.1 and 5.2, we see that G(2) ∧ G(3) ∼ λ(−1±3)γ are the only scalings that

appear, both of which are sensitive to γ. More precisely, if we keep the λ-scaling of G(ext)

unspecified, as λa± , with the ± options depending on whether the internal leg is m or α, we

have

G(int) ∧G(int) ∼ λa± + 4 + (−1± 3)γ (5.2.51)

Thus, in order to satisfy the tadpole cancellation, we require a± = (1 ± 3)γ − 4. If we

insist on having a± = −4, i.e that the external flux be proportional to the type IIB external

spacetime volume, we are forced to take γ = 0.

Of course we could also have vanishing
∫
X8, which would mean removing the D7/O7

stacks from the type IIB ansatz. This would bring us to a much less exciting family of
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ansatzes, corresponding to type IIB compactifications with the only sources of warping and

F5-flux being D3 and anti-D3 branes, which suffer from various stability issues even in the

λ-independent case, so we will not pursue them here.

This is not the only reason for taking γ = 0. Recall that the non-perturbative term

that we have identified as the contribution from M5-instantons involved an integral over the

z-torus and a 4-cycle of the internal manifold. For non-zero γ, we see that there are no

γ-independent 4-cycles, so the non-perturbative term would fail to cancel R(00) in the EOM.

This is yet another reason to take γ = 0.

Another consequence of taking γ 6= 0 is a heavy constraint on the types of fluxes that are

allowed. Note that many of the same flux components appear in both halves of the tables

5.1 and 5.2. However the flux equations of motion then impose different scalings for these

fluxes. There are several ways out of this problem. One is to demand that at most one

of G0ijm or G0ijα has non-vanishing divergence. This would effectively remove half of the

conditions on the fluxes, resolving the problem. This in turn implies that the warp-factor

H has non-trivial dependence on only one of the two sub-manifolds. Another option would

be to make all the flux components that appear twice in the tables vanish identically. This

would still leave a limited set of components that could be present. Finally, the solution that

leaves all the fluxes intact is, once again, to take γ = 0.

The condition γ = 0 has a straightforward physical interpretation. It simply means that

our solution, if it exists, asymptotes to the solution with λ-independent internal manifold.

In the AdS case, this means as we approach the conformal boundary, our solutions become

the same, and the λ-dependent solutions can be interpreted as the result of some relevant

operators in the dual CFT. In the de Sitter case, the λ-dependent contributions Cn and G(n)

can be seen as perturbations in the far past, which get diluted by the accelerating expansion.

However, we now see that since the λ → 0 limit of this scenario asymptotes to the

original ansatz of the previous chapter, the problem with generating Λ > 0 that appeared

in the λ-independent case still persists. Indeed, all the new terms in the EOM coming from

switching on Cn and G(n) only contribute at higher order in λ, which implies some non-trivial

conditions on them, but does not affect the leading order part of the EOM. This means that

while they do not ruin the EFT description in the AdS case, they also do not manage to

cure the problem in the dS case.
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5.3 Shifting the Transseries, Brane Instantons vs IR Effects

The reason for the failure of the time-dependent corrections to cure the de Sitter EFT

problem is rather obvious in retrospect. The functions Fi did not introduce any fundamen-

tally new ingredient, but simply dressed existing ingredients with additional powers of λ.

In this sense, their role in the asymptotic expansion of the EOM is the same as that of the

global higher derivative terms. Recall that the EFT problem came about from a need to

include λ-independent terms with O(1) coefficients, whose higher powers also had this prop-

erty. Turning on λ-dependence while maintaining the same λ→ 0 behavior of the solution,

the best that additional λ dependence could have done was re-suppress these corrections,

which would in turn eliminate their ability to flip the sign of the non-perturbative term.

We can describe this problem more generally from the transseries perspective of chapter

3. Recall that in order to define an EFT regime, we need to specify a set of expansion

parameters, which we can take as approaching zero, as well as the expected asymptotic

behavior of our theory in that limit. This latter condition determines which powers of the

expansion parameters appear as the leading order term in the transseries. Any operators

that have lower powers of the expansion parameters will appear inside non-perturbative

exponentials. If they do not, then they will take over as the dominant part of the action.

Since our interest is in ansatzes that only satisfy the leading order EOM after some set

of corrections is included, any sub-leading alterations to the ansatz will have no effect on

which corrections to the leading order EOM are required to make our ansatz into a solution,

or whether they preserve of break the EFT description.

Recall that the difference between the AdS and dS case ultimately stems from the fact

that the M5-instanton correction results in a negative contribution to the external spacetime

curvature. This sign ultimately stems from the sign inside the non-perturbative exponentials

combined with the sign of the “one-loop determinant” that can be fixed by requiring a stable

solution. An important detail is that the term that generates the curvature isn’t dressed with

any further perturbative terms. If it were, we could conceivably have much greater control

over the sign of the perturbative dressing, through a judicious choice of internal fluxes and

internal curvatures, and therefore of the correction as a whole.

With this in mind, consider a non-local term of the form (4.3.61), which we repeat here



5 Generalizations and Additional Ingredients 101

for convenience

S(nloc) = M22
p

∫
d11xd11x′

√
g(x) g(x′)O(x)G(x− x(1))O

′(x′) (5.3.52)

= M11
p

∫
d11x

√
g(x)O(x)I(x), (5.3.53)

where we now take the non-locality function is to be localized along x and z, but delocalized

along all six y directions. The scaling contribution of the integral measure is then

M6
p

∫
d6y
√
g6 ∼ λ−2H4M6

p . (5.3.54)

If we take O or O′ to be a term that scales as λ8/3H−4/3M−8
p then the scaling of the term

(5.3.52) will have the right as that of the external curvature and it seems like such a term

could be our ticket to controlling the sign of the external curvature. We need to simply find

an O or O′ with the right sign.

Examples of operators that have this scaling are

R(00)R
3
(mn), R2

(0m)R
2
(mn), (∇0Gmnab)

2R2
(mn) (G(1))mnpa(G(1))mnpaetc. (5.3.55)

In the last example, G(1)
mnpa denotes the first time-dependent correction to Gmnpa, which as

we saw scales as λ2H2.

Here we must proceed with caution. The term with such an operator insertion is actually

subleading to a lower order non-local contribution with O = O′ = 1. Let us denote the x′

integral I appearing in this leading correction by I0. If instead we take O′ to be one of the

above operators, we will denote the corresponding integral by I1. Their scalings are

I0 ∼ λ−2H4M6
p I1 ∼ λ2/3H8/3M−2

p (5.3.56)

Note that I1 has exactly the scaling of R(00) and may be used to balance it in the EOM.

I0, on the other hand, dominates over the two-derivative terms in the low-energy limit as

well as the small λ limit, so we must be careful with its physical interpretation.
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Here we have several options. One is to insist that the low-energy limit of M-theory

is 11-dimensional supergravity and the contribution of I0 must not manifest itself in the

Mp → ∞ limit. This is the approach we took so far, which led us to exponentiate the

contributions of the non-local integrals of the form e−I0 . In this form, it is most natural to

interpret that exponential as capturing the contribution of a non-perturbative saddle in the

path integral. In this case, the expression would correspond to an M5-instanton wrapped

around the 6-manifold. This reduces to an NS5-instanton in type IIA, also known as the

BBS instanton [148] and dualizes to an interesting Euclidean solution with a Taub-NUT core

where the z1 circle is nontrivially fibered. The actions of all of these configurations diverge

as λ→ 0, which is why we couldn’t make use of them.

Now we must deal with I1 and its physical interpretation. The most straightforward

interpretation is that I1 is in fact a perturbative correction to the instanton action. This

means that rather than viewing I0 and I1 as describing unrelated physical effects, we should

view the physical contribution as coming from the sum of all such effects

∫
d6yO(y)I(y) I = I0 + I1 + I2 + ... (5.3.57)

Upon exponentiation, the entire series ends up in the exponent and the subleading terms

can then be Taylor expanded as

∫
d6yO(y)e−(I0+I1+...) =

∫
d6yO(y)e−I0(1 + ...) (5.3.58)

This, unsurprisingly, has the form of a piece of a transseries, describing a single non-

perturbative effect with all its perturbative corrections. This would appear to be the most

natural physical interpretation of this family of corrections, as it is entirely consistent with

the usual behavior of instanton corrections. Unfortunately, this means that their contribution

vanishes in the λ→ 0 limit, and thus can’t help us with our de Sitter EFT problem.

We may of course be tempted to only exponentiate the I0 piece and leave I1 and higher

order terms on par with the other two-derivative terms and higher derivative corrections. As

we argued at the end of chapter 3, this would be a mistake. The result such a computation

would yield, would be related to a two-sided Laurent series representation of the action,
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not a transseries representation, which is ill suited to determining the existence of an EFT

description.

A final option that we have so far ignored is to simply leave I as is in the action and

accept that 11-dimensional supergravity is not the leading order term in the low-energy

limit of M-theory. In that case, rather than being a non-perturbative effect, the expression

(5.3.52) would represent some far IR effect that dominates over the supergravity action.

Note that this does not preclude us from also having the instanton contributions on top of

this. Instead, this simply amounts to shifting the G factor of our transseries expansion, to

use the language of (3.3.17), by a factor of λ−2H4M6
p . The instanton effects described above

can then easily contribute on top of this.

The possibility of IR modifications to gravity is not a new idea. In fact there has been

interesting work examining the cosmological consequences of IR terms in gravity [149]. This

idea also has some resonance, although is not identical, with views expressed in, for example,

[150], where the cosmological constant should be regarded as an IR boundary condition.

If such a contribution does exist, then it must satisfy the equations of motion on its own,

since none of the familiar perturbative or even nonperturbative terms appear at this order.

The physical nature of this effect must also be such that it can not combine with itself, as

this would lead to another shift in the dominant IR behavior and so on ad infinitum.

Assuming such an effect exists, the contribution I1 would actually provide us with a

somewhat tunable correction to the two-derivative equation of motion. Note, however, that

when these corrections contain R(00) or R(0m) themselves, they also naturally come with

powers of Λ as per table 4.1 and thus the additional curvature factors would have to be of

order one to satisfy the EOM, leading again to an EFT breakdown.

To avoid this we should instead use one of the terms containing the x̃-dependent fluxes

Gmnab, whose magnitude is not directly tied to Λ. This means that the time-dependent

fluxes are no longer optional. Whether the x̃-dependent fluxes that give the desired sign of

Λ can be achieved, while satisfying all the other constraints that we presented earlier in this

chapter depends on all the exact details, and particularly signs, of the IR term as well as the

flux-containing higher derivative corrections that can appear in M-theory, neither of which

are known.
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5.4 Chapter Summary

In this chapter we explored various modifications to the ansatz of the previous chapter.

First we considered turning on additional flux components, whose index structure appears

to violate the de Sitter isometries. Using a similar approach to the previous chapter we

determined the leading order intrinsic scalings of these fluxes and showed that they are

consistent with tadpole cancellation. On the other hand, satisfying the Bianchi identity

required the use of localized quantum terms, indicating that rather than being isometry-

violating these fluxes are in fact localized and are dual to the non-abelian fluxes on the

D7/O7 stacks in the type IIB description.

We then considered a more general ansatz with a x̃-dependent, but volume preserving

internal manifold and general x̃-dependent fluxes. Once again we can find flux scalings

that are consistent with tadpole cancellation and the Bianchi identity, provided the internal

manifold asymptotes to that of the original ansatz as x̃ → 0. The equations of motion for

both the flux and the metric split into a consistent set of equations order by order in λ, with

more variables than equations, suggesting that non-trivial solutions should be possible.

For both modifications, however, the new ingredients only affect the sub-leading parts

of the equations of motion and do not help resolve the problem of maintaining an EFT

description for a de Sitter ansatz. To get around this problem we explored the possibility

of additional non-local effects. We discussed the distinction between brane-instanton correc-

tions and non-local IR effects, which may both involve integrals over subspaces, but appear

in different places in the transseries expansion. Finally we suggested that a possible way to

get the desired type of corrections is to posit an IR contribution to the action that is lower

order in M−1
p than the supergravity action. Dressing this IR effect by higher derivative

corrections would generate terms that enter at the same order as the supergravity equations

of motion and with the right choice of “dressing” may allow for positive curvature along the

type IIB spacetime directions. The time-dependent fluxes described earlier appear to play a

crucial role in providing suitable dressing operators.



105

Chapter 6

Discussion and Conclusion

The problem of constructing scale-separated compactifications to spacetimes with non-

vanishing spacetime curvature is a fascinating problem both in light of its relevance to

cosmological model building as well as on purely conceptual level, as we try to understand

the rich structure of string theory and its relationship to low energy effective field theories

in light of the swampland program.

The classical no-go theorems related to such compactifications [61, 18, 117] indicate

that if these solutions exist, they must involve quantum corrections. In this thesis, we

approached the question of constructing these spacetimes, by positing an ansatz for such a

compactification and asking what the requisite quantum corrections should be in order to

make it into a solution. This approach has the benefit of not requiring the precise form of

their corrections, but only the powers of the fields that appear within them. Our organizing

principle for the corrections involves expressing the equations of motion by a transseries,

which we argued is the correct mathematical object to use when dealing with asymptotic

regimes. We then defined effective theories as truncations of the equations of motion, thus

relating the existence of an EFT to our ability to truncate the transseries.

By choosing an ansatz with non-zero spacetime curvature, and working in its M-theory

description, we were able to classify all the local and non-local corrections in the limit cor-

responding to low-energy large-volume type IIB compactifications. We found that upon

including appropriate corrections, most naturally interpreted as M5-instantons, the equa-

tions of motion seem to allow for scale-separated AdS solutions, while maintaining the EFT

description intact. Interestingly, these instanton corrections are precisely dual to those com-
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monly used in the existing mechanisms of moduli stabilization.

This result appears to be in conflict with the proposed AdS swampland conjectures,

which state that AdS compactifications can not have large scale separation. It is worth

remembering that these conjectures are motivated by studying the flat space limit of non-

scale-separated Freund-Rubin type AdS solutions, which solve the 2-derivative EOM. The

solutions we studied here do not belong to this family, and indeed do not even solve the

2-derivative EOM, but require non-perturbative effects to be included.

The more careful statement should perhaps be that scale-separated and non-scale-separated

AdS solutions lie far from each other in configuration space and are not part of the same

EFT, in the sense of the distance conjecture. Thus if one starts in the Freund-Rubin-like

regime, one can not reach the scale-separated solutions without leaving the regime of va-

lidity of that EFT. Similarly, if we start in our scale-separated regime, we could not reach

the the non-scale-separated regime either. Moving between the two-regimes, should then be

described by a duality transformation, rather than a motion within the field space of a single

EFT. However, once we are in the scale-separated regime, our approach does not seem to

find any fundamental obstacles to having AdS solutions and indeed shows us precisely which

ingredients are required to make it work.

Note that our use of non-perturbative effects circumvents the no-go theorem of [117],

which is formulated at the two-derivative level. On the other hand, although the examples

we consider contain orientifold planes, which also circumvent the no-go theorem, it isn’t

clear if we if our arguments make any use of their specific properties in constructing the AdS

solutions. Thus it is possible that scale-separated AdS compactifications are realizable if not

in the absence of orientifolds (given the other functions they perform in flux compactifications

in general), then at least without them being crucial to generating the non-zero spacetime

curvature.

For positive spacetime curvature the situation turns out to be more complicated, since

achieving it appears only possible by flipping the sign of the non-perturbative contribution.

This requires dressing it with order one perturbative corrections, which destroys our ability

to truncate the transseries expansion and signifies a breakdown of the EFT description. This

behavior is in agreement with the swampland distance conjecture.

Relating the results in our example to de Sitter constructions more broadly and KKLT

specifically, it is worth separating out two questions: i) does the uplift procedure actually

uplift past zero curvature to de Sitter space and ii) does it ruin the EFT description in
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doing so? Our present analysis doesn’t have much to say about the first question, as the

answer depends on the specific dynamics within the any given scenario. The latter question,

however, boils down to the whether introducing anti-branes or similar uplift ingredients

(worldvolume curvatures and fluxes, in our example) to an AdS compactification can be

regarded as a motion in field space of the original AdS EFT, without ever leaving its regime

of validity. Our results indicate that the answer to the above question is in the negative and

that the uplift procedure generically takes us outside the regime of the effective theory where

the AdS vacuum resides. Thus, if time-independent de Sitter compactifications exist, the

dynamics around these states would be described by some other EFT that is only related

to the EFTs around SUSY compactifications by the introduction of new degrees of freedom

and a duality transformation, rather than a simple shift in the EFT field-space.

This is also consistent with the more recent formulations of the KKLT construction in the

presence of anti-branes in terms of “de Sitter supergravity” with constrained superfields [76,

77]. As there is compelling evidence that the necessary ingredients to realize such a theory

are present in string theory [74, 79, 80, 81, 75, 78, 82], it is possible that one should regard

the usual 4D supergravity regime that governs supersymmetric Minkowski compactifications

and “de Sitter supergravity” as two different asymptotic regimes of string theory related by

a duality transformation.

Finally, we also considered the possibility of shifting the asymptotic behavior of our

effective theory, by including non-local effects that would manifest in the deep infra-red.

We found that combining this IR effect with the higher derivative corrections can produce

additional terms at the approriate order in the equations of motion, which may be tuned

to give a spacetime curvature of either sign. Interestingly this approach appears to require

time-dependent fluxes to provide the necessary corrections.

IR effects in gravity and their effects on cosmology have been considered in the literature

with interesting implications [149], so perhaps their existence in string theory is not out

of the question. If these IR effects exist, then AdS and dS compactifications may indeed

be realized within the same EFT regime of string theory. Note however, that this EFT is

by construction not the same as the type IIB supergravity regime that serves as the usual

starting point for the usual de Sitter constructions, although it might contain it as a further

sub-regime.

Outside of its application to the particular solutions we studied here, our approach based

on scaling analysis and transseries expansions is rather powerful in the absense of explicit
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knowledge of the quantum corrections and can provides a useful map of the regimes of validity

of various EFT limits of string theory. It would be interesting to explore further the interplay

between these asymptotic expansions and the duality structure of string theory. We have

also made no use of supersymmetry in our investigations, despite it having a very intricate

interplay with the resurgent structure of asymptotic expansions [123, 122]. It would be

interesting to see if this formalism may be adapted to keep track of supersymmetry breaking

and its effects on the existence of effective field theory descriptions.
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gence in Quantum Field Theory: Nonperturbative Effects in the Principal Chiral

Model”. In: Phys. Rev. Lett. 112 (2014), p. 021601. doi: 10.1103/PhysRevLett.

112.021601. arXiv: 1308.0127 [hep-th].

[125] Aleksey Cherman, Peter Koroteev, and Mithat Ünsal. “Resurgence and Holomorphy:
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