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Abstract (English)

Background and hypothesis: Atherosclerosis is a disease involving the gradual buildup of
lipids, fibrotic material, and inflammatory cells in lesions lining the arterial wall, which
continually grow and can eventually block local circulation or rupture and form blood clots that
cut off circulation elsewhere, culminating in life-threatening diseases such as heart attacks and
stroke. Lifestyle modifications and statin drugs help to lower circulating lipids and mitigate these
outcomes, but they may still occur nevertheless. Adopting a more mechanistically focused
approach, our goal is to restore motility to the lipid-overloaded foam cells that become trapped
inside atherosclerotic plaques and contribute to inflammation and rupture. We hypothesize that
Sema3A, known to regulate cell motility in various contexts, can re-mobilize foam cells and
induce plaque regression.

Methods: In vivo, ApoE”~ mice on a high fat diet for nine weeks were returned to a chow diet
and electroporated with plasmids containing Sema3A or GFP (as a control) to overexpress these
proteins and then determine whether they affect plaque regression. In vitro, bone marrow- and
peritoneum-derived macrophages and foam cells were extracted to test whether Sema3A affects
their migration and expression of M1/M2 markers.

Results: Neither GFP nor Sema3A plasmid-treated mice had plaque regression. In vitro,
however, Sema3A boosts M2 macrophage and foam cell chemoattraction towards MCP-1
through RhoA GTPase-ROCK signaling.

Conclusion: Due to the lack of plaque regression in the control condition, no conclusions can be
made on the effect of Sema3A on plaque regression. However, Sema3A does increase M2
macrophage and foam cell motility, suggesting that it has the potential to boost foam cell egress

from atherosclerotic lesions and result in regression.



Résumé (francais)

Contexte et hypothése: L’athérosclérose est une maladie se caractérisant par 1’accumulation
progressive de lipides, de fibres, et de cellules inflammatoires dans la paroi vasculaire des
arteres, conduisant a la formation de plaques. Celles-ci se développent au cours des années,
peuvent obstruer le vaisseau, se rompre et provoquer ainsi la formation de caillots, qui peuvent
bloquer la circulation sanguine, menant a des manifestations cliniques telles que I’infarctus du
myocarde et les accidents vasculaires cérébraux. Les changements de mode de vie et les statines
aident a abaisser la cholestérolémie et par conséquent le taux de morbidité et de mortalité
associés aux évenements cardiovasculaires, mais ceux-ci peuvent encore se produire. En
employant une stratégie plus ciblée au niveau mécanique, notre objectif est de rétablir la motilité
des macrophages spumeux qui sont immobilisés dans la plaque aprés avoir accumulé un exces de
lipides, contribuant a I’inflammation et a la rupture des plaques. Nous proposons 1’hypothése que
Sema3A, qui est connu comme régulateur de la motilité cellulaire dans plusieurs contextes
divers, pourrait aider ces cellules spumeuses a quitter la plaque et par conséquent a entrainer la
régression des plaques athéromateuses.

Méthodes: Les souris ApoE " sont soumises & un régime gras pendant neuf semaines, puis a un
régime normal. Le plasmide contenant Sema3A ou GFP (comme contrdle) sont administrés par
¢lectroporation, dans le but de les surexprimer et déterminer s’ils peuvent provoquer la
régression de la plaque. In vitro, les macrophages et les cellules spumeuses sont récupérées a
partir de la moelle osseuse et du péritoine pour tester I’effet de Sema3A sur la migration et
I’expression des marqueurs macrophagiques M1/M2.

Résultats: Ni le plasmide GFP ni le plasmide Sema3A ont provoqué la régression de la plaque

chez les souris. Cependant, en culture Sema3A augmente la migration MCP-1-dépendante des



macrophages M2 et des cellules spumeuses, impliquant la voie de la signalisation GTPase RhoA-
ROCK.

Conclusion: D a I’absence de régression dans la condition contrdle, aucune conclusion n’a pu
étre tirée concernant I’effet de Sema3A sur la régression des plaques athéromateuses.
Néanmoins, Sema3A augmente la motilité des macrophages M2 et des cellules spumeuses,
suggérant que cela pourrait potentiellement aider les cellules spumeuses a sortir des plaques

athéromateuses et entrainer la régression.
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Introduction

One of the ultimate goals in the treatment of atherosclerotic cardiovascular diseases is the
stabilization and regression of lesions. Thus far, this has primarily been achieved through
lifestyle changes (e.g. diet and exercise) and through the use of lipid-lowering statins. Though
statins have resulted in significant reductions in cardiovascular morbidity and mortality, many
patients are still at risk for experiencing relapses in heart attacks and other events, particularly
those with a highly inflammatory profile. To address this, we have decided to focus on
macrophage foam cells, the phagocytes that are recruited to atherosclerotic plaques with the goal
of clearing the lipid contents, but instead get trapped inside due to impaired motility brought
about by excess lipid loading, and subsequently contribute to the perpetuation of plaque
inflammation and progression. Borrowing a well-characterized chemokine from the nervous
system that plays a major role in cell motility, Sema3A, we hypothesize that Sema3A could
result in plaque regression by helping to restore foam cell motility, thereby allowing these cells
to leave the atherosclerotic plaques in which they are trapped. Our objectives are 1. To test the
effect of Sema3A in vitro on macrophage and foam cell motility and phenotype, particularly with
regards to the pro-inflammatory, classically activated (M1) vs. alternatively activated, anti-
inflammatory (M2) paradigm; and 2. To determine whether the overexpression of Sema3A in a

murine model of atherosclerosis can induce plaque regression.
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P/S
PBS
PFA
qPCR
ROCK
ROS
Sema3A
SMC
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TBST
TNF-a

penicillin/streptomycin
phosphate-buffered saline
Paraformaldehyde

quantitative polymerase chain reaction
Rho-associated protein kinase

reactive oxygen species

Semaphorin 3A (also known as Collapsin-1)
smooth muscle cell

scavenger receptor

tris-buffered saline with Tween 20
tumor necrosis factor-alpha

12



1. Literature review

1.1. Atherosclerosis

1.1.1. Overview of atherosclerosis

Atherosclerosis is a chronic inflammatory disease in which the gradual accumulation of excess
circulating lipids and immune cells in the arterial wall produces lesions, called plaques, that
progressively narrow the arterial lumina. While these plaques can remain clinically silent
throughout the first several decades of life, their continual growth can eventually lead to the
partial or complete blockage of the affected arterial segments, impairing circulation to
downstream tissues. More importantly, they may become increasingly fragile and susceptible to
rupturing over time; when this occurs, the release of plaque contents into the circulation triggers
the rapid formation of blood clots, which can obstruct blood flow either immediately at the site
of formation or elsewhere in the circulation following their dislodgement. This results in tissue
death and is the main cause of life-threatening cardiovascular diseases such as heart attack and

stroke!?.

1.1.2. Biomechanical basis of atherosclerosis

Atherosclerotic lesions begin to develop in childhood and

Cross-section  Velocity profile Cross-section  Velocity profile

Il

have been detected in infants as early as 6 months’®. They

C Turbulent flow
Low/oscillatory WSS

tend to form specifically at vascular transition points such as

A Laminar flow
Physiological WSS

bifurcations, branch points, and curvatures, where the vessel

deviates from a straight line and imposes an abrupt change

B Disturbed laminar flow

the direction of blood flow” . As shown in Figure 1'®, the

.. . . . 18, . . .
flow divider experiences high levels of shear stress, the Figure 1: The disruption of regular, laminar
blood flow at vascular transition points serves

as the biomechanical basis for the initial
formation of atherosclerotic plaques.
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frictional force between the stationary arterial wall and the blood flowing over it. High shear

19,20

stress is associated with protection from atherosclerotic plaque development >, although
lesions can still form here in severe cases>' >*. On the opposite wall, blood flow separates

laterally from the main stream, forming regions of reversed flow and low shear stress, which is

associated with increased susceptibility to plaque development™.

How do biomechanical factors predispose certain regions of the arteries to atherosclerosis? As
the innermost cells in direct contact with blood flow, endothelial cells (ECs) are highly sensitive
to mechanical stimuli such as changes in shear stress***’, which they can detect through surface

28-30

mechanoreceptors and the cytoskeleton™ . These signals influence the gene expression of ECs,

3133 For example, cultured ECs

allowing them to adaptively respond to hemodynamic changes
exposed to low shear stress have increased surface expression of cell adhesion molecules
(CAMs)*>*?° which permit the attachment of leukocytes. CAMs are also known to be induced
under pro-inflammatory conditions**** such as during atherosclerosis. In vivo, the endothelium
in regions of low shear stress has increased permeability, lipoprotein accumulation and

44-49

oxidation, expression of CAMs, and recruitment of monocytes™ , all of which promote the

formation and progression of atherosclerotic lesions. Indeed, these are often the first places

where advanced plaques will eventually form>*>°.

1.1.3. Role of lipids and monocytes in the initial formation of atherosclerotic lesions
Early on in life, long before the onset of any pathological changes, the intima (the innermost
layer of arteries, which includes the endothelium along with the underlying extracellular matrix

[ECM] and smooth muscle cells [SMCs]) undergoes an adaptive thickening in the

14



aforementioned susceptible regions of low shear stress, as a result of the non-uniform
hemodynamic conditions that occur there’’. Physiologically, this helps to maintain vascular
homeostasis by stabilizing blood flow velocity and preserving structural integrity’>**’. These

thickened regions tend to collect low-density lipoprotein (LDL)*"¢!

, one of the main lipid
carriers in the systemic circulation and a major component of plaques. Although there are low

levels of LDL found in the healthy intima®, abundant lipoprotein accumulation is considered the

57,63-66 67-73

initiating event in atherogenesis . In addition to increased endothelial permeability” ",

these vulnerable areas have increased lipoprotein retention®>%*¢%"*

through ionic interactions
between the positively-charged apolipoprotein B (ApoB, the major protein scaffold component

of LDL) and the negatively-charged proteoglycans in the intimal ECM”°.

Contrary to previous pathophysiological models’®, it is now understood that the progression of
atherosclerosis does not simply involve a passive accumulation of lipids, but rather a complex
inflammatory response in which various immune cells, particularly monocytes, are recruited in
an attempt to remove LDL from the plaque. These phagocytes take up LDL via cell surface LDL
receptors (LDLR), a process that is regulated by negative feedback: increases in intracellular
cholesterol are detected by transcription factors called sterol regulatory element-binding proteins,

77-80
.In

which downregulate LDLR at the cell surface to help prevent excess LDL uptake
addition, high intracellular cholesterol levels upregulate ATP-binding cassette (ABC)
transporters, namely ABCA1 and ABCG1*"*2. These proteins load cholesterol into high-density

83-85

lipoprotein (HDL)™™, the “good cholesterol” carrier which recirculates excess cholesterol from

tissues back to the liver, where it can be eliminated through bile excretion®.

15



At first glance, these mechanisms of limiting intracellular
cholesterol accumulation seem to conflict with what is now
recognized as a defining histological feature of atherosclerosis,

the macrophage foam cell (FC), named after its characteristic

lipid droplets (Figure 2%") which store excess cholesterol taken

Figure 2%": Transmission electron
micrograph of foam cells, containing
characteristic lipid droplets.

up from their surroundings. Considering the negative feedback
on cholesterol uptake, it was believed that FC formation would require an alternative pathway of
LDL uptake that was independent of LDLR**¥ . Indeed, it is now known that LDL undergoes
modifications, especially oxidation (OXxLDL), in the intima®’, and is taken up through scavenger
receptors (SRs) such as SR-A and SR-B (CD36)°". Unlike LDLR, SR-mediated uptake of
modified LDL is not regulated by negative feedback, thereby permitting substantial intracellular

LDL accumulation and FC formation’ ">,

As with low shear stress, OxLDL accumulation also activates the endothelium to express cell
surface CAMs and chemokines involved in recruiting the circulating monocytes™ that will
eventually become FCs. First, monocytes begin rolling on the endothelial surface through
interactions between monocytic P-selectin glycoprotein ligand-1 and endothelial P- and E-

96-98

selectins™ . Rolling is followed by firm adhesion, in which the monocytic integrins very late

antigen-4 and lymphocyte function-associated antigen 1 bind endothelial vascular (VCAM-1)

and intercellular cell adhesion molecules (ICAM-1), respectively””'*

. Next, monocytes cross the
endothelial barrier into the underlying intimal space under the influence of chemokines such as

monocyte chemoattractant protein-1 (MCP-1, also known as CCL2), CX;CL1, and CCL5'"'%,

16



Finally, activated ECs release macrophage colony-stimulating factor (M-CSF), which promotes

monocyte differentiation into macrophages® that begin engulfing lipids.

1.1.4. Progression to advanced plaques

FCs initially manifest as small, isolated cells in early atherosclerotic lesions that are invisible to

51,106,107

the naked eye . Whereas leukocytes typically leave the affected tissue once inflammation

108-111

has been resolved, the movement of FCs is encumbered by excess cholesterol loading and

they have trouble exiting the plaque, instead accumulating inside the lesion and fueling chronic

inflammation. In addition, the presence of OXLDL and other lipids in the arterial wall stimulates

87,112-123

further monocyte recruitment and macrophage proliferation , gradually increasing the

number of FCs until they eventually form visible fatty streak lesions'"’.

High levels of intracellular OXLDL and cholesterol also promote macrophage apoptosis in

130-137

. 124-129 . . . :
atherosclerosis , for example by inducing endoplasmic reticulum stress . However, the

phagocytosis of these apoptotic cells (mostly by other macrophages) is highly efficient in early

138-140

lesions , so they do not accumulate to any significant degree. In fact, animal experiments

suggest that this early-stage apoptosis impedes the progression of atherosclerosis'**!*%!*"14¢_Tn
contrast, there is a much greater abundance of apoptotic macrophages found in later lesions.
While this can be attributed in part to increased cell death, impaired phagocytosis has also been
recognized to contribute to the accumulation of apoptotic cells in advanced plaques'*'*"'**,
Like OxLDL, apoptotic antigens are also recognized by the scavenger receptors SR-A and SR-B.

In this manner, the detection of apoptotic cells by phagocytic macrophages is limited by the

presence of OxLDL, which can act as a competitive ligand as well as triggering the production of

17



149-153

anti-OXxLDL antibodies that sequester the apoptotic antigens . Furthermore, OXLDL can

153,154

directly impair phagocytosis by altering actin polymerization or by causing cell membrane

stiffening, preventing the formation of pseudopodia that are necessary for this process'*’.

Eventually, the growing mass of lipids and apoptotic cells overwhelms the
macrophages’ phagocytotic capacity. These dying cells swell and burst
open, releasing stored cell debris and lipids, along with pro-inflammatory
cytokines that further perpetuate the recruitment of inflammatory cells'>>

197 At this point, the excess lipids begin to collect in extracellular pools

that can disrupt the vascular structure, particularly that of the smooth

muscle'””. Once they grow large enough, these lipid pools conglomerate

. 168 .
Figure 3°°°: Cross-section
of'an atheroma and its

into a necrotic core (Figure 3'®®). SMCs are recruited from the media by characteristic lipid core.

necrotic and pro-inflammatory signals, producing collagen and forming a fibrous cap overlying

169

the lipid core to contain and stabilize the lesion . Other common features of advanced plaques

include calcification; surface fissures and ulcers, which can release lipids from deep within the

plaque; hematomas and hemorrhages; and thrombotic deposits'?"'%®,

The most dangerous outcome for atherosclerotic plaques is for them to rupture and release their
pro-inflammatory and pro-thrombotic contents into the circulation. This forms a thrombus that
can cut off circulation either at the site of rupture or in smaller downstream arteries, such as the
coronary arteries supplying the myocardium or the cerebral microvasculature, resulting in tissue
death'. Vulnerable plaques tend to have a large necrotic core, high macrophage content, and a

168,170-172

thin fibrous cap with reduced collagen and SMC content . Plaques are most fragile at the

18



173,174

edges and particularly on the upstream side, a region of high shear stress. This suggests that

while low shear stress plays a pivotal role in initial lesion formation, high shear stress promotes

175178 Indeed, high shear stress upregulates matrix metalloproteinases (MMPs),

plaque rupture
which degrade the fibrous cap'”. Interestingly, the pro-inflammatory milieu also stimulates the
release of MMPs by macrophages'*. One of the ultimate goals in atherosclerosis research is to

discover ways to pre-emptively impede, and perhaps even reverse lesion progression, so that

these potentially life-threatening plaque ruptures can be avoided altogether.

1.1.5. The cholesterol hypothesis and atherosclerotic plaque regression
In the nineteenth century, Rudolf Virchow was one of the first to describe cholesterol and
leukocyte accumulation in the arterial walls of patients who had succumbed to fatal heart

attacks'®!

. The idea that hypercholesterolemia plays a prominent role in atherosclerosis,
commonly referred to as the cholesterol hypothesis, gained further support from experiments
done by Ignatowski and Anitschkov, who observed plaque development in rabbits fed a high-fat
diet (HFD)'®*'®. This went on to serve as an invaluable method for studying atherosclerosis in

186-188

other animal models . However, it was difficult to replicate this in mice, who mostly store

cholesterol in HDL, resulting in low serum cholesterol and a naturally conferred resistance to

1%9-191 ' ater, the advent of gene targeting technologies enabled the development

atherosclerosis
of LDLR”"*? and Apolipoprotein E knockout (ApoE_/_) mice'”>'"*, the two most frequently
used models today. These proteins are important in cellular lipid uptake, so their targeted

deletion, in combination with HFD, accelerates plaque formation in mice, and has allowed this

process to be studied within a much more reasonable time frame than in bigger animal models.

19



On the clinical side, large-scale longitudinal epidemiological studies such as the Framingham

19519 and the Seven Countries Study'’ further reinforced the association between

Heart Study
diets rich in saturated fats, the ensuing hypercholesterolemia, and coronary artery disease (CAD),
warranting further research into the biochemistry of cholesterol. Through their work in patients
with familial hypercholesterolemia (FH), American scientists Brown and Goldstein, who were
the first to isolate and characterize LDLR, discovered that LDLR was mutated in FH and that
this prevented cellular LDL uptake. The resulting drop in intracellular cholesterol promotes a
compensatory upregulation in the activity of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-
CoA) reductase, the rate-limiting enzyme in endogenous cholesterol biosynthesis. In
collaboration with Akira Endo in Japan, they next inhibited HMG-CoA reductase in normal
(non-FH) cells with the fungal compound Compactin, which conversely increased cell surface
LDLR and LDL uptake'**?"". In principle, then, targeting HMG-CoA reductase in vivo should

promote LDL uptake from the surroundings (i.e. circulation); this idea was the impetus for the

development of therapeutic HMG-CoA inhibitors, a class of drugs known today as statins.

Lipid lowering had previously been tested in animal models, which uncovered the phenomenon
of plaque regression: lowering blood cholesterol, using strategies such as switching animals from
a HFD to a chow diet over a prolonged period****", or by administering cholesterol-sequestering

205207 o1 phosphatidylcholine®”, decreases lesion size and macrophage/FC

agents such as HDL
content, and stabilizes the fibrous cap by increasing collagen and SMC content'****’. The hope

with statins was to achieve the same outcome in humans. Indeed, the REVERSAL*" &

ASTEROID*'" trials showed that intensive statin treatment results in plaque regression as
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assessed by intravascular ultrasound, while the Scandinavian Simvastatin Survival Study (4S)

found significantly reduced cardiovascular mortality after five years on Simvastatin®'?,

Despite the major impact that these drugs have had on cardiovascular medicine, statins are

associated with several adverse events such as myopathies, increased incidence of diabetes

214,215

mellitus, and liver toxicity*". This has contributed to low adherence rates , putting patients

216217 "Pyurthermore, the recurrence of heart

at risk for the recurrence of cardiovascular disease
attacks among patients on statins is especially prominent in those with high levels of the pro-
inflammatory marker C-reactive protein (CRP)*'®*"° and in the recent CANTOS trial, an
antibody-based immunotherapy targeting the pro-inflammatory cytokine IL-1 lowered
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recurrence and mortality rates in patients with elevated CRP*". Clearly, there is much to be

gained by addressing factors beyond hypercholesterolemia. For example, FC egress from lesions

: . . 188,221,222
is one of the first steps observed in plaque regression ~ "

, S0 one approach would be to
restore the impaired motility of these trapped FCs. Van Gils et al. found that neuronal guidance
cues regulate the chemotaxis of macrophages in atherosclerosis*>, and that these guidance cues
are differentially expressed between the endothelia lining the inner and outer curvatures of the

aortic arch®**, which as previously stated have increased and decreased susceptibility to plaque

formation, respectively. Among the signals they studied was one called Semaphorin 3A.
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1.2. Semaphorin 3A

1.2.1. Overview of Semaphorins

The Semaphorins are a family of signaling proteins generally involved in regulating cell motility.

Their functions have been thoroughly studied in the nervous system, particularly in the context

of directing axon growth. The first Semaphorin identified was Fasciclin IV (Sema-1a), an axon

guidance signal involved in the embryonic development of grasshoppers*>. Around the same

time, Collapsin-1 (Semaphorin 3A, Sema3A) was discovered in the developing chick brain®*. It

was named for its ability to induce the collapse of neurite growth cone structures, thereby

restricting axon expansion to a single pre-programmed path.

There have been eight classes of
Semaphorins identified thus far
(Figure 4**"): classes 1 and 2 in
invertebrates, classes 3-7 in
vertebrates, and class V in
viruses”****’. Semaphorins share
several domains: an N-terminal
export signal peptide, a highly
conserved 500 amino acid-long
Sema domain, an immunoglobulin-
like domain, and a C-terminal basic
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tail®”. While most Semaphorins

bind Plexin receptors, class 3

Semaphorin classes

Vertebrate

Invertebrate

C1

C2
Al A2 A3 A4 B1 B2 B3 C1 D1
Plexins
‘@ Sema Segmented  Ig-like W PDZ-binding site B PSI domain
domains GAP domain domain

@ Thrombospondin
domain

m [PT domain @ GTPase-binding <1 Convertase-cleavage site
domain

Figure 4”7 Interactions between the different classes of Semaphorins and
their Plexin receptors.
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Semaphorins require an additional family of co-receptors, the Neuropilins . For the most

part, their action in cell motility is mediated by the small Rho family of GTPases, which bind the

>’ Rho GTPases direct polarized cell

intracellular tail of Semaphorin-activated Plexin receptors
movement through cytoskeletal rearrangements, such as actin polymerization and actomyosin
contraction, in conjunction with extracellular adhesion and detachment at the leading and trailing

. 233,234
edges, respectively”™ """,

1.2.2. Action of Semaphorins in various systems

Semaphorins are best characterized for their role in the nervous system during embryonic
development. Examples include directing neural crest cell migration towards the peripheral
nervous system” > and repelling axon growth to prevent off-target synapsing®*’. Additionally, in

adults they limit neuronal plasticity and regenerative capacity following injury>®>**,

Semaphorins have been implicated in many neurological disorders such as epilepsy™ *,

s 245,246

. . 241244 i ) .
schizophrenia , Alzheimer’s , Parkinson’s disease®****

. - 249
, and multiple sclerosis™ .

Semaphorins have been studied in other systems as well. Much like the branching structure of
neural processes, proper vascular development also requires a delicate balance of signaling
molecules. Class 3 Semaphorins disrupt the adhesion between adjacent ECs, allowing them to
branch off from existing blood vessels®’. Similar to its role in axon repulsion, Sema3A was
found to direct vascular growth by stimulating ECs to secrete soluble flt1, a splice variant of
vascular endothelial growth factor receptor that sequesters the ligand and limits angiogenesis™'.
Semaphorins are also involved in cancer, generally as tumor suppressors>>>>>*>* Sema3B and

254,255

3F are deleted in small-cell lung and other cancers , and reconstitution of these deleted
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Semaphorins respectively induces cancer cell apoptosis and impaired metastasis an
example of cell movement. In bone remodeling, Sema3A suppresses bone-degrading
osteoclasts™ and promotes bone deposition by inducing osteoblast formation®***®' and sensory

innervation, which is known to affect bone homeostasis***%**.

However, most relevant to atherosclerosis is the role that Semaphorins play in the immune
system, particularly in immune cell migration. Sema3A blocks dendritic cell (DC) antigen
presentation to T cells. This has a delayed onset with respect to the initial cell-cell contact, so it
is thought to terminate DC-mediated T cell activation®*. Similarly, Sema3A disrupts interactions
between thymic ECs and thymocytes, allowing these precursor T cells to exit the thymus and to
complete their maturation®®. Sema3A-Plexin A1 signaling is required for DC transmigration into
the lymphatics by activating actomyosin contraction at the trailing edge (i.e. tail retraction), and
inhibition of Rho-associated protein kinase (ROCK) abrogates this effect®”’, further implicating
Rho GTPases as mediators of Sema-induced cell motility. T cells in patients with rheumatoid
arthritis have reduced Sema3A and increased Neuropilin-1 (Nrpl) expression, and conversely,
administering Sema3A suppresses inflammation in a mouse model of autoimmune arthritis*®®.
Sema3A is also required for the resolution of cardiac inflammation following myocardial
infarction, as Sema3 A-deficient mice have prolonged leukocyte retention in the inflamed

269

tissue™ . In general, Sema3A seems to have anti-inflammatory properties, suggesting that it

could have a protective effect against atherosclerosis.
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1.2.3. Semaphorins in atherosclerosis

Several Semaphorins have been studied in mouse models of atherosclerosis. Compared to
LDLR ™ mice on HFD, LDLR ™ Sema4D '~ mice have reduced dyslipidemia-induced platelet
hypersensitivity (e.g. adhesion to the endothelium, secretion of pro-inflammatory cytokines),
which is known to be pro-atherogenic, and consequently have diminished plaque growth®"".
ApoE”" Semad4D ™ mice also have less intimal neovascularization and plaque formation than
ApoE " mice, proposedly by limiting macrophage infiltration and the production of reactive

" ‘Macrophages isolated from an aortic transplant model of plaque

oxygen species (ROS)
regression®’>*” have reduced expression of Sema3E compared to macrophages from progressing
plaques, and in vitro migration experiments revealed that Sema3E blunts macrophage migration
towards the regression-associated chemoattractant CCL19, again through signaling pathways
involving Rho GTPases (Racl and Cdc42)*’*. ApoE” Sema7A~ mice have reduced plaque

formation compared to ApoE”~ mice, and Sema7A is more highly expressed on the vulnerable

inner curvature of the aortic arch than on the protected outer curvature®””.

However, not all Semaphorins are associated with increased atherosclerosis. The same group that
studied Sema7A*” also found that compared to the descending aorta, the relatively vulnerable
aortic arch has reduced expression of several other Semaphorins, namely Sema3A. In agreement
with this, Van Gils et al.*** looked at aortic arch EC expression of an array of common neuronal
guidance cues during early atherosclerosis, and found reduced expression of Sema3A in ECs
from the inner curvature compared to the outer curvature. This was further substantiated by in
vitro experiments in which ECs exposed to atherogenic oscillatory flow had reduced expression

of Sema3A compared to laminar flow. Functionally, they found that Sema3A impedes monocyte
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migration towards the pro-atherogenic chemokine CCL2 and disrupts monocyte adhesion to

human coronary ECs activated with tumor necrosis factor-alpha (TNF-a.).

Based on its anti-inflammatory properties and the above findings by Van Gils et al., Sema3A is

of great interest in the goal of remobilizing FCs trapped in atherosclerotic plaques and inducing

plaque regression.
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2. Hypothesis and aims
2.1. Hypothesis
Sema3A promotes the regression of established atherosclerotic plaques by remobilizing trapped

macrophage foam cells.

2.2. Research aims

1. To examine the effect of Sema3A on the degree of macrophage migration in vitro.

2. To examine the effects of HFD and cholesterol accumulation on the migratory function
and phenotype of primary macrophage foam cells, particularly with regards to M1/M2
polarization and expression of the Sema3A receptor Nrpl.

3. To determine whether treating mice susceptible to the development of atherosclerosis
with super-physiological levels of Sema3A can induce plaque regression, as measured by

changes in plaque size and contents.
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3. Summary of previous work on Semaphorin 3A in atherosclerosis

The current thesis work is the continuation of a project started by a former PhD student in our lab
on the effects of Sema3A on plaque progression in mice*’®. Many of the methodologies have
been carried over to the present project, and will be described in the next section in greater detail.
The following is a brief summary of the results, as well as an explanation of the rationale for

some of the chosen experiments.

At the onset of HFD and periodically thereafter, ApoE "~ mice were electroporated with a
plasmid containing an enhanced green fluorescent protein (eGFP)-Sema3A fusion construct
(obtained from de Wit et al.>”"). This involves injecting a muscle with a DNA plasmid and
immediately administering high voltage electrical pulses, which permeabilize the cell membrane
for plasmid uptake®’® as well as damaging the muscle to promote regeneration and increased
protein expression®’”. Previously, electroporation has been successfully applied to achieve
sustained increases in circulating levels of soluble plasmid-encoded proteins>*****. Unlike other
Semaphorins in vertebrates, class 3 Semaphorins are secreted as opposed to being membrane-
associated®”’, so plasmid electroporation should, in principle, increase circulating levels of

Sema3A and allow it to exert its effect (if any) at sites of atherosclerosis.

Immunofluorescence staining of both atherosclerotic lesions and their healthy vessel counterparts
revealed expression of several Sema3A receptors in ECs and macrophages, indicating that these
cell types could potentially respond to Sema3A. After confirming elevated Sema3A levels in the
plasma using a commercially available enzyme-linked immunosorbent assay (ELISA) kit, it was

found that, despite no differences in body weight or serum lipids between the Sema3A and
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control (GFP plasmid) conditions, mice that received Sema3A had reduced lesion size and
macrophage content, which was associated with a reduced circulating monocyte count.
Surprisingly, Sema3A had no effect on monocyte adhesion to VCAM-1 or ICAM-1 in vitro, nor
to ECs in an ex vivo perfused (flow-activated) mouse carotid artery. Sema3A also had no effect

on monocyte migration, whether in the absence or presence of MCP-1.

A substantial body of evidence suggests that pro-inflammatory, classically activated (M1)
macrophages are associated with the progression of atherosclerosis, whereas anti-inflammatory,
reparative, alternatively activated (M2) macrophages are associated with plaque regression™ =%
In light of this, cultured M2-polarized macrophages were found to have increased expression of
the Sema3A receptor Nrpl compared to uncommitted (M0) and M1-polarized macrophages. In
the presence of Sema3A, Nrpl expression decreased in the M2 macrophages, presumably by
negative feedback regulation; however, Nrpl expression was still significantly higher than in MO
or M1 macrophages, suggesting that M2 macrophages may be more responsive to Sema3A.
Furthermore, Sema3A was found to boost chemoattraction towards MCP-1 in M2- but not M1-

polarized macrophages. Altogether, these results suggest that Sema3A reduces atherosclerotic

plaque formation by promoting the egress of M2-polarized macrophages from lesions.

In the present study, the effects of Sema3A in atherosclerosis were tested in the context of plaque

regression; that is, in lesions that have already fully formed.
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4. Materials and methods
4.1. Plasmid information and bacterial preparation

1277 contains eGFP inserted between the signal

The Sema3A plasmid obtained from De Wit et a
peptide and the Sema domain, allowing direct visualization of the expressed protein. A plasmid
containing only GFP was used as a control. Bacteria were transformed with these plasmids,
selected for plasmid-specific antibiotic resistance, and grown in broth culture to amplify plasmid

copy number. Plasmids were isolated using a commercially available Maxiprep kit and measured

by spectrophotometry for concentration and purity.

4.2. Cell line culture, plasmid transfections, and sample collection

To verify the detectability of the eGFP-Sema3A fusion construct, NIH 3T3 cell lines were
transfected with the GFP and Sema3A plasmids using the calcium phosphate method*”’. Cells
were removed from liquid nitrogen storage, thawed at room temperature, and allowed to grow in
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum
(FBS) and 100U/ml penicillin/streptomycin (1% P/S) in 75 cm” flasks at 37 °C for 72 hours.
Cells were then trypsinized, counted, seeded on 6-well plates at a density of 0.4 x 10° cells per
well, and allowed to adhere and grow for an additional 24 hours. The culture medium was then
replaced and, after three hours, 200 ul of a mixture of plasmid, calcium chloride, and HEPES-
buffered saline was added to each well and left to incubate at 37 “C overnight. Culture medium
was replaced the following morning to eliminate cytotoxic precipitate. Cells were examined for

GFP signal by fluorescence microscopy at 24, 48, and 72 hours post-transfection.
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At these time points, 1 ml of conditioned medium was collected from each well, centrifuged at
1,500 rpm at 4 °C for 5 min, and the supernatant was collected and the pellet discarded. After
three washes with cold phosphate-buffered saline (PBS) to halt enzymatic activity, 80 ul of a cell
lysis buffer containing protease inhibitors was added to each well, and the cells were scraped,
collected, sonicated, centrifuged at 15,500 rpm at 4 °C for 15 min, and the supernatant was
collected and the pellet discarded. The conditioned medium and cell lysate extracts were stored
at -80 °C for analysis at a later date by Western blot (see section 4.10. for protocol) for the

presence of GFP or Sema3A protein.

4.3. Mouse handling, high fat diet regimen, and electroporation protocol

ApoE ™" mice of the C57BL/6 strain were obtained from The Jackson Laboratory and bred in the
animal facility at the Lady Davis Institute. All personnel involved in handling animals and
performing experiments have completed the necessary training modules required by the McGill
University Animal Care Committee. Furthermore, all experiments and methods of handling
conform to the guidelines set forth by the Animal Care Committee as well as to the protocol of

the present research project.

ApoE ™™ mice were weaned at four weeks old. At eight weeks old, baseline body weight was
obtained and mice were started on HFD (15% cocoa butter fat, 0.5% cholesterol) for nine weeks
to allow for sufficient atherosclerotic plaque growth. After re-measuring body weight, one group
of mice was euthanized for baseline plaque measurement while the rest were switched back to
chow diet and electroporated with either GFP or Sema3A plasmid. Under isoflurane anesthesia,

mice were pretreated one hour before administering the plasmid with a 30 pl injection of ~70
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pg/ml hyaluronidase in 0.9% NaCl in both quadriceps, which were then massaged to spread out
the injected volume. This breaks down the connective tissue surrounding the muscle which can
impede effective gene transfer, and has been shown to increase the spatial distribution and
overall efficiency of electroporation®”'. Mice were then re-anesthetized by isoflurane and
injected in both quadriceps with 50ul of 1pug/ul plasmid (GFP or Sema3A) in 0.9% NaCl and
massaged. Immediately following this, a conductive electrolyte gel was applied to the lateral and
medial surfaces of both quadriceps, and a series of eight consecutive electrical pulses (200V/cm,

10ms, 1Hz) was delivered through each leg with an electrode clamp.

4.4. Mouse euthanasia and sample collection

Four weeks after electroporation, mice were anesthetized by isoflurane and then euthanized by
CO; asphyxiation followed by cervical dislocation. Body weight was recorded and cardiac
puncture was performed to collect 0.5ml of whole blood in a heparin-coated tube, which was
centrifuged at 2,000 rpm at 4 °C for 20 min to collect the plasma. The quadriceps were exposed
to ultraviolet light to check for GFP signal, and a piece of GFP-positive muscle was collected,
immediately flash frozen in liquid nitrogen, and stored at -80 °C to be homogenized and analyzed
by Western blot for the presence of the plasmid-encoded proteins. The whole spleen was
weighed and a thin cross section was embedded in optimal cutting temperature (OCT) gel, frozen

at -20 °C, and stored at -80 °C to be sectioned at a later date.

The thoracic cage was opened and the heart was flushed with 2% heparin in PBS to rinse the

vasculature. Common sites of atherosclerotic plaque growth in mouse models, namely the aortic

292,293

root, the aortic arch, and the brachiocephalic artery (BCA) , were collected. After removing
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other overlying tissues from the exposed thoracic cavity (e.g. lungs, thymus, adipose tissue, vena
cava), the major branches of the aorta were cut, and the heart and thoracic aorta were detached
together from the posterior wall and intercostal arteries. The BCA was cut from the aortic arch,
while the base of the ascending aorta and the ventricles of the heart were cut to collect the aortic
root. Both were placed in a 30% sucrose solution at 4 °C for 24 hours to prevent the formation of

structurally disruptive water crystals, and then fixed in 4%

"::‘ ': BCA (collected separately)

paraformaldehyde (PFA) at 4 °C for 24 hours before embedding ;5\ i
in OCT gel. As shown in Figure 5, the aortic arch was cut along
the greater curvature across the main branches, while the lesser

curvature was cut along its entire length, leaving the descending
portion of the greater curvature intact. This allows the aortic arch W
to be folded open for en face staining. The aortic arch was plaque

directly fixed in PFA at room temperature for 24 hours and then

Figure 5: The aortic arch was folded
transferred to 4 °C storage. open laterally for en face staining.

4.5. Cryosectioning and tissue staining

OCT-embedded aortic root and BCA samples were serially sectioned into 7 pm slices at -23 °C
at tissue depths corresponding to the consistent location of plaques. Several microscope slides
were collected from each sample to stain for different markers. Slides were stored at -80 “C until
the day of staining and were allowed to thaw at room temperature for 30 min before proceeding.
To quantify plaque size, aortic root and BCA sections and PFA-fixed whole aortic arches were
stained for 30 min in Oil Red O (ORO) to colorize lipids. Representative light microscope

pictures were taken and analyzed by ImagelJ, using the polygon selection tool to contour the
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plaques. Absolute plaque area was measured using a conversion factor of 542.5 pixels/mm?® for
the aortic root and 108.5 pixels/mm? for the BCA. For each sample, a single area value was
averaged across all pictures. For en face aortic arches, a ratio of plaque area to total arch area

(excluding the major branches, down to the ostium of the first intercostal artery) was obtained.

To quantify plaque contents, slides were blocked with 5% bovine serum albumin (BSA) in PBS
for 30 min followed by immunofluorescence staining with antibodies targeting common plaque
markers (see Table 1 at the end of Materials and Methods), and
captured by fluorescence microscopy. Collagen-I and -I1I were
stained with Sirius Red for 90 min and captured by polarized

light microscopy. In ImagelJ, threshold analysis was performed

on the contoured plaque areas to obtain a percentage of signal-

. . . . Figure 6: Example of signal threshold analysis,
positive area (Figure 6). Once again, these were averaged into @ performed by selecting a threshold value such
that the signal-positive area within the plaque
approximately matches the original

smgle value per Sample' immunofluorescence image.

4.6. Extraction and culturing of primary bone marrow-derived monocyte-macrophages

Six to eight weeks old C57BL/6 mice were anesthetized by isoflurane and then euthanized by
CO, asphyxiation followed by cervical dislocation. Both legs were detached from the pelvis and
stripped of their muscle. Under a cell culture hood, the femurs and tibias were cut at both ends
and flushed with DMEM + 10% FBS + 1% P/S (using syringes) to collect the bone marrow
(BM). BM was pipetted up and down 15 times in a 2 ml glass pipette to physically break it up,
and the suspension was then filtered through a 100 um-pore cell strainer and centrifuged at 1,500

rpm for 5 min. The supernatant was aspirated and the remaining cell pellet was resuspended in
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fresh medium, distributed into two 10 cm dishes, and incubated at 37 °C for 1 hour 45 min to

d**. For the

allow monocytes to adhere, after which the other non-adherent cells were aspirate
remaining monocytes, DMEM was supplemented with 10% conditioned medium collected from
the L929 cell line, which contains M-CSF (among other factors) that promotes the differentiation

29429 By flow cytometry, L929 conditioned medium was found

of monocytes into macrophages
to generate a similar proportion of BM monocyte-derived macrophages as recombinant M-CSF
(85-90% CD11b" F4/80"; data not shown). L929-supplemented medium was changed every

three days, and after six days the medium was further supplemented with recombinant

interleukin-4 (IL-4, 10 ng/ml) for 48 hours to polarize macrophages towards M2*°.

4.7. Bone marrow-derived macrophage trans-well migration assay

M2-polarized BM macrophages were starved in low-serum medium (0.5% FBS) for at least four
hours prior to the experiment to stop proliferation. Cells were then scraped, counted, and seeded
at a density of 100 x 10° cells per 100 pl into 8 pm-pore trans-well inserts in contact with low-
serum medium + 100 ng/ml of recombinant MCP-1 as a chemoattractant in the bottom chamber.
Migration was tested under the following four conditions: 1. vehicle (0.1% BSA in PBS); 2.
recombinant Sema3A-Fc chimera (100 ng/ml; R&D Systems Cat. 5926-S3); 3. vehicle +
pl60ROCK inhibitor Y-27632 (10 uM; Tocris Cat. 1254); and 4. Sema3A-Fc + Y-27632.
Vehicle or Sema3A was loaded in the bottom well, whereas the inhibitor was loaded with cells in
the upper well. Trans-wells were incubated at 37 °C overnight (18 hours) and were checked the
following morning for cells that transmigrated across the porous membrane (i.e. attached on the
bottom side of the trans-well insert). The upper side of the porous membrane was thoroughly

wiped with cotton swabs to eliminate non-migrated cells, and then the trans-wells were fixed in
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2% PFA at 37 °C for 15 min. After several washes in PBS to eliminate the PFA, trans-wells were
stained in 4’°,6-diamidino-2-phenylindole (DAPI; 100 ng/ml) for 5 min to stain cell nuclei, and
then mounted with the cells facing down. Several fields were captured for each membrane by

fluorescence microscopy and cells were counted in Imagel.

4.8. Bone marrow-derived macrophage RhoA GTPase activation experiments

After six days in culture, primary BM-derived macrophages were immediately scraped, counted,
and seeded in 6-well plates with 10 ng/ml of IL-4 at a density of 800 x 10° cells per well for 48
hours to allow cells to re-adhere, proliferate, and polarize towards M2. After serum starving in
0.5% FBS medium for at least four hours, cells were ready for stimulation. In the time-course
experiment, cells were stimulated with 100 ng/ml of MCP-1 + 100 ng/ml of Sema3A-Fc for 0
(i.e. nothing added), 5, and 15 min at 37 °C. In a separate experiment, cells were treated with one
of four conditions for 5 min: 1. no treatment; 2. MCP-1; 3. Sema3A-Fc; or 4. both. To preserve
the active form of the GTPase (RhoA-GTP), cells were quickly processed immediately following
stimulation: 6-well plates were placed on ice, rinsed with ice cold PBS, scraped into 50-100 pl of
ice cold lysis buffer provided with the GTPase enzyme-linked immunosorbent assay (G-LISA)
kit (Cytoskeleton Cat. BK124), and centrifuged at 10,000 G at 4 °C for 1 min. 10 pl of
supernatant was set aside to measure concentration by spectrophotometry, while the rest was
flash frozen in liquid nitrogen and stored at -80 °C. G-LISA was performed according to the

protocol included with the kit.
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4.9. Peritoneal macrophage and foam cell extraction for migration assays and M1/M2
marker analysis

ApoE ™" mice on either chow diet or HFD for nine weeks received a 1.5 ml peritoneal injection
of aged 4% thioglycolate + 100 ng/ml of Sema3A-Fc or vehicle (total of four conditions) to elicit

the recruitment of macrophages®**’’

. In pro-atherogenic mice, these peritoneal macrophages
have previously been confirmed to be FCs based on lipid staining®”®. Four days later, mice were
euthanized and macrophages were collected by exposing the peritoneal cavity and injecting and
re-aspirating 10 ml of 2% FBS in PBS, taking care not to puncture organs to avoid erythrocyte

contamination. Cells were centrifuged at 1,500 rpm for 5 min, re-suspended, and counted before

proceeding with experiments.

For quantitative polymerase chain reaction (QPCR) and Western blot analysis of M1 and M2
markers, as well as for trans-well migration assays, peritoneal macrophages were purified by
incubating at 37 °C for 1 hour 45 min to allow them to adhere while other cell types would be
aspirated out™*. Protein was extracted as described for transfected cell lines (section 4.2.;
medium not collected) while RNA was extracted using a commercial kit. After measuring RNA
concentration and purity by spectrophotometry, genomic DNA was eliminated and the cellular
transcriptome was reverse transcribed. cDNA samples were loaded into 96-well PCR plates with
primers for M1 (IL-6, Nos2, TNF-a) and M2 markers (Argl, Retnla, Chil3) as well as for RPS16
as a loading control. Results are presented as fold change between vehicle and Sema3A
conditions. Trans-well migration assays were performed as described above (section 4.7), except
that these cells had already been stimulated with Sema3A during the thioglycolate injection, and

therefore did not require further stimulation with Sema3A directly in the trans-well.
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For flow cytometry, 1 x 10° cells were stained with a live/dead marker, blocked with Fc receptor,
mixed with antibodies (see Table 1), resuspended in a permeabilization-fixation solution for the
intracellular M2 marker Egr2, blocked again with mouse serum, and mixed with anti-Egr2.
Samples were centrifuged at 1,500 rpm at 4 °C for 5 min between each step (except between
blocking and antibody steps), and all steps up until intracellular blocking and antibody were done

on ice (the latter portion was done at room temperature).

4.10. Western blots

All samples were dosed on the day of the Western blot. Depending on the expected band sizes,
samples were run on 8, 10, or 15% polyacrylamide gels and then transferred to a nitrocellulose
membrane. After rinsing in tris-buffered saline with Tween 20 (TBST), membranes were
blocked in 5% skim milk in TBST, followed by the addition of primary antibody in milk (see
Table 1 for dilutions and durations). Membranes were again washed in TBST and incubated with
secondary antibody in milk. After washing, membranes were covered with an enhanced
chemiluminescence solution for 5 min in the dark, inserted into a plastic sleeve, and exposed
with a chemiluminescent imaging machine. If required, blotted antibodies were removed with a
stripping agent and the membrane was re-blocked and re-blotted with a new primary antibody.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or -actin was blotted as a loading

control. All rinsing, blocking, and antibody steps were performed on a rocking platform.

4.11. Statistical methods
In vivo data are presented as mean + standard error of mean. Given the variability between

experimental runs for in vitro experiments, these values are presented as a ratio of the
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experimental condition over the control or vehicle condition to allow pooling of results across
different samples and experiment days. Within each experiment, outlier testing was done using
the ROUT method (in Prism 6 software). An unpaired, two-tailed T-test was used for
experiments with exactly two conditions, whereas a one-way analysis of variance (ANOVA) was
used for experiments with more than two conditions. In both cases, the threshold of statistical
significance was chosen to be p < 0.05. For statistically significantly results by one-way
ANOVA, Tukey’s honestly significant difference post-hoc test was used to identify which pair(s)
of conditions were significantly different, again at a threshold of p < 0.05. Unless otherwise
stated, the post-hoc statistic is presented and not the initial one-way ANOVA statistic. No p-

values are presented for preliminary results.
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Table 1: List of antibodies used in experiments

Manufacturer Host + conjugate | Biological target | Application | Concentration
(Cat. #) (stock) + conditions
Santa Cruz Mouse GFP from Western blot | 1:1000
(s¢-9996) monoclonal Aequorea (primary) (200 pg/ml stock)
victoria Overnight at 4 °C
(jellyfish)
Santa Cruz Mouse Sema3A from Western blot | 1:1000
(sc-74554) monoclonal rat, mouse, (primary) (200 pg/ml stock)
human Overnight at 4 °C
Cell Signaling Rabbit Nrpl from rat, Western blot | 1:1000
Technology monoclonal mouse, human (primary) (stock concentration
(D62C6) not specified)
Overnight at 4 °C
Invitrogen Rabbit iINOS fromrat, | Western blot | 1:2000
(PA3-030A) polyclonal mouse, human (primary) (stock concentration
+ others not specified)
(M1 marker) Overnight at 4 "C
Santa Cruz Mouse Argl from rat, Western blot | 1:1000
(sc-271430) monoclonal mouse (primary) (200 pg/ml stock)
(M2 marker) Overnight at 4 °C
Santa Cruz Mouse GAPDH from Western blot | 1:1000
(sc-32233) monoclonal mouse, rat, (primary) (100 pg/ml stock)
human, rabbit 1 hour at room
(loading control) temperature
Santa Cruz Mouse B-actin from rat, | Western blot | 1:1000
(sc-47778) monoclonal mouse, human, | (primary) (200 pg/ml stock)
rabbit + others 1 hour at room
(loading control) temperature
Biorad Goat, HRP Mouse IgG Western blot | 1:2000
(170-6516) conjugated (secondary) | (stock concentration
not specified)
1 hour at room
temperature
Biorad Goat, HRP Rabbit IgG Western blot | 1:2000
(170-6515) conjugated (secondary) | (stock concentration
not specified)
1 hour at room
temperature
Santa Cruz Goat, HRP Rat IgG Western blot | 1:2000
(sc-2006) conjugated (secondary) | (400 pg/ml stock)
1 hour at room
temperature

40



Abcam Rat monoclonal | Mouse MOMA- | Immuno- 1:50
(ab33451) 2 fluorescence | (0.5 mg/ml stock)
(monocyte- (primary) 1 hour at room
macrophage temperature
marker)
Dako Rabbit CD3 from rat, Immuno- 1:100
(A0452) polyclonal mouse, human fluorescence | 1 hour at room
+ others (primary) temperature
(T cell marker)
BD Biosciences | Rat monoclonal, | Mouse CD68 Immuno- 1:100
(566387) PE conjugated (macrophage fluorescence | (0.2 mg/ml stock)
marker) (conjugated) | 1 hour at room
temperature
Sigma-Aldrich Mouse o-SMA from rat, | Immuno- 1:250
(F3777) monoclonal, mouse, human fluorescence | 1 hour at room
FITC conjugated | + others (conjugated) | temperature
(SMC marker)
Invitrogen Goat polyclonal, | Rat IgG Immuno- 1:400
(A-110006) AF488 fluorescence | (2 mg/ml stock)
conjugated (secondary) | I hour at room
temperature
Invitrogen Goat polyclonal, | Rabbit IgG Immuno- 1:400
(A-21428) AF555 fluorescence | (2 mg/ml stock)
conjugated (secondary) | I hour at room
temperature
BioLegend Rat monoclonal, | CD11b from Flow 1:50
(101227) PerCP/Cy5.5 mouse, human cytometry (0.2 mg/ml stock)
conjugated (myeloid lineage 30 min on ice
marker)
BioLegend Rat monoclonal, | Mouse CD115 Flow 1:50
(135531) APC/Cy7 (CD115" CD68 ™ | cytometry (0.2 mg/ml stock)
conjugated is a monocyte 30 min on ice
marker)
BioLegend Rat monoclonal, | Mouse Gr-1 Flow 1:50
(108417) AF488 (granulocytic cytometry (0.5 mg/ml stock)
conjugated marker) 30 min on ice
BD Biosciences | Rat monoclonal, | Mouse CD68 Flow 1:50
(566387) PE conjugated (macrophage cytometry (0.2 mg/ml stock)
marker) 30 min on ice
BioLegend Rat monoclonal, | Mouse CD38 Flow 1:150
(102732) BVv421 (M1 marker) cytometry (0.2 mg/ml stock)
conjugated 30 min on ice
Invitrogen Rat monoclonal, | Mouse EGR2 Flow 1:50
(17-6691-80) APC conjugated | (M2 marker) cytometry (0.2 mg/ml stock)

30 min on ice
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5. Results

5.1. Transfected cells show no differences between groups by Western blot.

NIH 3T3 fibroblasts were transfected with either control
(GFP) or eGFP-Sema3A plasmid and then examined by
fluorescence microscopy at 24, 48, and 72 hours.
Consistently across all time points, GFP-transfected cells
appeared green while eGFP-Sema3 A-transfected cells
produced no fluorescent signal. Western blots of the cell
lysate and medium extracts revealed distinct band
patterns for the anti-GFP and anti-Sema3A antibodies;
however, there were no differences between the GFP
and Sema3A plasmid conditions (Figure 7).
Nevertheless, these plasmids were used in the

electroporation experiments.
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Figure 7: Western blots of cell lysate and medium
extracts from NIH 3T3 cells transfected with GFP
(G1-3) or Sema3A (S1-3). Blotted with anti-GFP
(A, B) and anti-Sema3A antibody (C).

5.2. Electroporated quadriceps show distinct patterns between groups by Western blot.

In contrast to what was observed in the transfected cell lines, protein extracts from quadriceps

revealed distinct band patterns between the GFP and Sema3A plasmid conditions. Similar to a

GFP-positive control liver extract obtained from GFP knock-in mice, muscle extracts from mice

electroporated with the GFP plasmid showed marked overexpression at around 25kDa, which

corresponds to the expected band size for GFP (27 kDa). This band was far less expressed in

muscle extracts from mice electroporated with the Sema3A plasmid (Figure 8A). Conversely, a

much higher molecular weight band (>100 kDa) was uniquely detected in muscle extracts
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obtained from mice electroporated with
Sema3A, but not GFP plasmid, which
also corresponded approximately to a
Sema3A-positive control brain extract
obtained from C57BL/6 mice (Figure
8B). There was also a very slight but
consistent shift in band size between the
brain and the Sema3A-electroporated
quadriceps extracts, signifying that the
exogenously overexpressed, plasmid-
derived eGFP-Sema3A construct was
distinct from the endogenous protein.
This was especially evident when blotting
with anti-GFP, which revealed the same

high molecular weight band (>100 kDa)
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Figure 8: Western blots of protein extracts from quadriceps of
atherogenic mice electroporated with GFP or Sema3 A plasmid.
Blotted with anti-GFP (A) and anti-Sema3A antibody (B).
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only for eGFP-Sema-electroporated quadriceps, and neither for GFP-electroporated quadriceps

nor for the Sema3A-positive brain extract (Figure 8A). Among eGFP-Sema3A-electroporated

mice, only those whose quadriceps produced a fluorescent signal at the injection site (detected

using filtered goggles while exciting with ultraviolet light) were subsequently analyzed for

plaque size and content.
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5.3. Sema3A overexpression does not affect plaque size during regression, but appears to

impede a regression-induced increase in plaque collagen.

To see whether overexpressing
Sema3A would have an effect on
plaque regression, mice were
placed on HFD for 9 weeks, after
which one group of mice was
euthanized for baseline plaque
measurements, while the rest
returned to a chow diet and were
electroporated with either a GFP
or eGFP-Sema3A plasmid.
Electroporated mice were
euthanized four weeks later for

plaque analysis. There were no

significant differences observed in

plaque size between baseline,
GFP, and Sema3A conditions.
This was true for the aortic arch
(Figure 9A) and the aortic root

(Figure 9B), and for this reason
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Figure 9: Plaque size in the aortic arch (A) and aortic root (B), and % area
composition of macrophages (C), T-cells (D), SMCs (E), collagen-I/I1I (F), and
Nrpl™ cells (E) in aortic root plaques at baseline (9 weeks on HFD) and 4 weeks
later in mice electroporated with GFP or Sema3 A plasmid.

the BCA was not analyzed for plaque size.
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Aortic root plaques were further analyzed for their percent composition of common
atherosclerotic plaque components. While there was no significant difference in T-cell (Figure
9D) or SMC content (Figure 9E), there was a significant reduction in macrophage content
between baseline (Figure 9C; 20.969 + 2.288%, n = 5) and GFP-treated mice (8.706 £ 1.762%, n
=5; p=10.0007) and between baseline and Sema3A-treated mice (11.623 £+ 1.026%, n = 6;

p = 0.0044), though there was no significant difference between the GFP and Sema3A
conditions. In addition, there was a significant increase in plaque collagen-I/I1I deposition from
baseline (Figure 9F; 13.939 + 0.926%, n = 5) to four weeks later in GFP-treated mice

(17.746 £ 0.563%, n = 5; p = 0.0037), and this increase was absent in plaques from Sema3A-
treated mice (14.757 + 0.563%, n = 6; p = 0.0143 for GFP vs. Sema3A). Finally, there was no
significant difference in the expression of the Sema3A receptor, Nrpl (Figure 9G). Overall, these
results show that in this diet-dependent mouse model of plaque regression, Sema3A

overexpression hinders collagen deposition, but otherwise does not affect plaque size or content.

5.4. Sema3A-induced M2 macrophage chemotaxis is mediated by RhoA signaling

To follow up on our group’s previous finding of M2-polarized macrophages having enhanced
chemoattraction towards MCP-1 in the presence of Sema3A*’®, monocytes were extracted from
the bone marrow, differentiated into macrophages in the presence of M-CSF-containing medium,
polarized towards M2 with IL-4, starved, and tested in a trans-well MCP-1 chemoattraction
experiment with or without Y-27632, an inhibitor of ROCK which signals downstream of RhoA
GTPase. As shown previously’’’, Sema3A significantly increases chemoattraction towards
MCP-1 by 1.6-fold (Figure 10A; n = 8 for vehicle, n = 7 for Sema3A; p = 0.0348). When the

ROCK inhibitor was added on top of this (n = 8), there was no longer an increase in migration
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relative to vehicle (p = 0.0044 for Sema3A vs. Sema3A + Y-27632), suggesting that downstream
RhoA signaling is what mediates Sema3A-boosted M2 macrophage chemoattraction towards

MCP-1.

(A) Trans-well migration assay (B) RhoA activation time course  (C) RhoA activation (£ MCP-1 + Sema3A)

0
- . 3
4 N * % ég ]
- * *k g . - g
52 s £ 4 o o
55 . 3E 32 o . s v
S o 3d =
£ = RPN 3 PR S
£ 271 ge, gd = =
2 T s v §E7 == s¢d-EK . A
E'E Sgw Ao v '\g% ° [ ] AA 520 . A
se™ = o, 2° M = 2% °
-~ AA Yyv < Y <; o
v v T T [ ] -E T T L T
JENEN ¥ 2 b 0 min 5 min 15 min R R I R
¢ & & S8 — W W R R ar
~ Y& bt i Time after activation with MCP-1 + Sema3A S O O
2 RS P ~ K S Ny
X * ol 2 4 o 2
*p < 0.05
**p < 0.01

Figure 10: M2-polarized macrophages were tested in trans-well migration (A) and RhoA activation assays (B. time course;
C. conditions + MCP-1 + Sema3A). Data points represent values relative to vehicle for a given experiment.

To verify this, starved M2-polarized macrophages were stimulated with a combination of +
MCP-1 + Sema3A and then rapidly lysed and extracted to determine relative RhoA activity
under these various conditions, using a commercial G-LISA plate coated with an antibody that
specifically measures the active GTP-bound form (as opposed to the inactive RhoA-GDP).
Based on the RhoA activation literature (from a catalogue of various reported stimuli and
experimental conditions included with the kit) and a time course experiment involving
stimulation with MCP-1 + Sema3A, it was determined that peak activation was achieved at
approximately 5 minutes, reaching a 2.5-fold increase in active RhoA (Figure 10B; n = 6 for both
0 min and 5 min; p = 0.0011) and slightly tapering by 15 minutes (1.4-fold decrease vs. 5 min,

n = 6; p =0.0933). Using this time point for peak activity, we next tested for RhoA activation in
the four aforementioned conditions (= MCP-1 + Sema3A). Surprisingly, there was no significant

difference found between these conditions (Figure 10C).
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5.5. Sema3A promotes foam cell migration selectively in M2-like cells

As the cells that get trapped in lesions, FCs are more relevant to atherosclerosis than non-foamy

macrophages. To study the effects of Sema3A on FC phenotype and migration, ApoE "~ mice

were placed on either chow diet or HFD for 9 weeks, and then injected intraperitoneally with

thioglycolate +£ Sema3A to elicit the recruitment of macrophages/FCs, which were extracted four

days later. Among mice on HFD, the addition of Sema3A increased FC recruitment to the

peritoneal cavity by over two-fold (Figure 11A; n =4 for vehicle, n = 5 for Sema3A; p =

0.0049).
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Figure 11: ApoE™" mice on chow diet or HFD received a peritoneal injection of thioglycolate + vehicle or Sema3A, and then
macrophages/FCs were extracted. Conditions were compared in terms of peritoneal cell recruitment (A), trans-well migration
(B), and expression of M1 and M2 markers, assessed by qPCR (C), flow cytometry (D, E), and Western blot (F). Nrpl

expression was also compared between conditions by Western blot (G).

Furthermore, when tested in trans-well migration assays, it was found that the Sema3A pre-

treatment (in the peritoneal cavity) boosted FC chemoattraction towards MCP-1 by 2.4-fold
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compared to vehicle (Figure 11B; n = 6 for both conditions; p = 0.0330), which is in agreement

with the effect observed in BM-derived, M2-polarized macrophages (Figure 10A).

Given our previous finding that Sema3A affects chemotaxis exclusively in M2-polarized, but not
M 1-polarized or uncommitted macrophages®’®, peritoneal FCs were assessed by qPCR with a
panel of M1 and M2 marker genes to determine whether the Sema3 A pre-treatment was selecting
for the recruitment of a more M2-like population to the peritoneal cavity. While there was no
change in expression for most of the markers tested, Sema3A was found to decrease the
expression of the M1 marker TNF-a to 23% of the level found in FCs from mice on HFD alone
(Figure 11C, n = 6 for HFD alone, n = 7 for HFD + Sema3A; p = 0.0319). Furthermore,
preliminary flow cytometry data suggests that compared to chow diet, the relatively pro-
inflammatory conditions associated with HFD promote an increase in M1-like and a decrease in
M2-like cells (Figures 11D, E), and that these trends are attenuated in the presence of Sema3A,
which may favour the recruitment of M2-like FCs. Likewise, a preliminary Western blot showed
a decrease in expression of the M2 marker Argl in peritoneal macrophages/FCs from mice on
HFD compared to chow diet, and a significant boost in the presence of Sema3A (Figure 11F).
Finally, Western blot revealed a >10-fold boost in the expression of the Sema3 A receptor Nrpl
in FCs from mice on HFD compared to chow diet (Figure 11G; n = 6 for chow vehicle vs. n =3
for HFD vehicle; p = 0.0005), and was downregulated in the presence of Sema3A (n = 3, 4.8-
fold decrease vs. HFD vehicle; p = 0.0038). This is suggestive of a negative feedback
mechanism, as was found for Nrpl expression in BM-derived, M2-polarized macrophages in the
presence of Sema3A*’°. Altogether, these data suggest that in a lipid-rich environment, M2-like

macrophage FCs become sensitized to Sema3A stimulation, which boosts their motility.
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6. Discussion
Our group previously found that overexpressing Sema3A in pro-atherogenic mice slows the

2 The main difference between the previous work and the present

progression of atherosclerosis
one lies in the timing of plasmid electroporation. In the former, electroporation was concurrent
with the onset of HFD and was repeated periodically thereafter. In the latter regression study,
electroporation was not administered until after the HFD and plaque progression period. Initially,
we tested mice on a continued HFD even after receiving the plasmid, to verify whether Sema3A
could induce plaque regression on its own, independent of a return to chow diet. When this was
found to not be the case (data not shown), mice were returned to a chow diet at the time of

electroporation to see if Sema3A could boost diet-induced plaque regression (with respect to the

GFP plasmid).

While Sema3 A seemed to prevent an increase in collagen that was observed in the control GFP
condition (Figure 9F), in the absence of a similar trend for SMC content (Figure 9E) this should
not be interpreted as Sema3 A causing a thinning of the fibrous cap during plaque regression.
Otherwise, the results show that Sema3A did not affect plaque size (Figure 9A, B) or overall
contents (Figure 9C-G). However, it is important to note that even in the GFP condition, there
was no reduction in plaque size after switching to chow diet as would be expected. While many
established models of plaque regression do involve a switch from HFD to chow diet, this is
usually secondary to a more extreme lipid-lowering intervention, such as adenoviral delivery of

208

the human HDL-encoding apoA-I gene®”’, injection of liposome-forming phospholipids®”®, and

272,273

transplantation of lesion-afflicted aortic segments into normolipidemic mice . Before such

methods had been conceived, switching to a chow diet was the only way to reliably induce
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plaque regression; and even then, this required many months to years to achieve appreciable

. . . 184,185,187,299
reductions in plaque size """

. In the absence of plaque regression even in the control
condition (GFP plasmid), it is difficult to reach any definitive conclusions on the effect of
Sema3A overexpression on plaque regression in vivo. A true effect of Sema3A (or lack thereof)

on plaque regression would require a more rigorous lipid-lowering strategy as mentioned above,

or an extended post-HFD chow diet period.

Another concern was that the mode of delivery, plasmid electroporation, might have failed to
achieve the intended overexpression of Sema3A in the mice. While our previous work showed
that plasmid electroporation increased plasma Sema3A levels by 80% after one week”’®, the
plasmid was then re-administered every four weeks throughout the plaque development period,
so it is possible that circulating Sema3A rose to even greater levels during that time. In the
present experiment, only a single dose was administered at the end of the HFD period, so plasma
Sema3A levels may not have matched those observed in the former experiment. Furthermore,
while Sema3A was detected at the muscular injection site specifically in the Sema3A group and
not in the GFP condition (Figure 8), plasma samples could not be tested for Sema3A levels in the
present study, for lack of a satisfactory commercially available mouse Sema3A ELISA kit.
While we did have an anti-Sema3A antibody that worked for Western blot, attempting to use this
in an in-house (non-commercial) ELISA was not successful. Instead, descending thoracic aortas
were collected from a subset of electroporated mice to homogenize and detect Sema3A by
Western blot near the target site, but again there were no differences between the GFP and

Sema3A conditions (data not shown).
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Following this, a new mode of delivery was tested: an osmotic pump, which ensures constant
release of the loaded protein into the circulation, as opposed to an intravenous injection where
protein levels can fluctuate. Structural studies have identified a 15 amino acid-long peptide

300
1

within Sema3A that interacts with Nrp1™" and induces biological activity comparable to the full-

length Sema3A, such as neuronal apo tosis®! and inhibition of neurite outgrowth**?
g pop g

. The plan
was to load this peptide, in parallel with a scrambled sequence peptide as a negative control, into
the pumps, rather than the more expensive full-length recombinant protein. However, when the
peptide was first tested in trans-well migration assays, it was found to not boost M2 macrophage

chemoattraction towards MCP-1 as was the case for the full-length Sema3A (data not shown).

Therefore, the osmotic pump delivery method was discontinued.

Beyond the methodological issues encountered, it remains possible that Sema3 A only affects
plaque progression and not regression. Atherosclerotic plaques are known to contain more M2
macrophages early on, but progressively more M1 macrophages as the disease progresses™.
This, combined with our previous finding that Sema3A increases migration specifically in M2
macrophages’’®, could possibly explain the lack of an effect on regression: when Sema3A is
administered at the onset of atherosclerosis, there are more M2 macrophages present in the early
lesions that could immediately experience a boost in migration out of the plaque, which would
delay the buildup of lipids, cell debris, and other pro-inflammatory stimuli. In contrast, when the
Sema3A treatment is withheld until the plaques have fully formed, the already abundant M1
macrophages might be expected to not respond as well to Sema3A. However, we also found that
peritoneal macrophages from mice on HFD had increased expression of Nrpl compared to those

from mice on chow diet (Figure 11G). Therefore, without considering M1/M2 character, one
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would expect the same upregulation of Nrpl in macrophages from late lesions compared to early
ones, and that late lesion FCs should be especially responsive to Sema3A. Another finding to
consider is that regressing plaques continue to recruit monocytes>>*; in fact, the recruitment of
Ly6C™ monocytes is required for the enrichment of M2 macrophages in the plaque and for
regression’"". Therefore, Sema3A could potentially act not only on older plaque FCs, but also on
newly recruited (especially M2) macrophages. Again, however, the true effects of Sema3A need

to be clarified in a more prolonged or aggressive regression model.

As shown previously”’’, Sema3A boosts M2-polarized macrophage chemoattraction towards
MCP-1. Here, this effect was found to depend on RhoA GTPase and its downstream effector
pl60ROCK, as inhibiting ROCK abrogates this boost (Figure 10A). Using a commercial ELISA
kit specific for the active GTP-bound form of RhoA (G-LISA), it was next confirmed that the
combined stimulation of M2 macrophages with Sema3A and MCP-1 boosts RhoA activity,
peaking around five minutes (Figure 10B). It was therefore surprising that Sema3A was not
found to increase RhoA activity on top of MCP-1 alone (Figure 10C), which was expected based
on the trans-migration results. However, it is important to note that the boost seen in the time
course experiment (Figure 10B) between no stimulation (0 min) and MCP-1 + Sema3A was not
present between these same two conditions in the + MCP-1 + Sema3A experiment (Figure 10C),
indicating that the latter experiment may need to be repeated. Aside from the expected boost in
RhoA activity by Sema3A on top of MCP-1, one would also expect that in the absence of MCP-
1, Sema3A would not induce RhoA. This is based on the finding by our group®’® and

224,267,269,274

others that Semaphorins specifically affect chemokine-dependent migration, having

no effect on their own. Another possibility is that RhoA/ROCK signaling is necessary but not
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sufficient for the supplementary effects of Sema3 A on M2 macrophage migration when

administered in combination with MCP-1, and that other effectors could be at play.
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7. Conclusion

To summarize, the present in vivo experiment was not conclusive with regards to the additional
effect of Sema3A on atherosclerotic plaque regression, based on the fact that the plasmid
overexpression of Sema3A was not measurable in the plasma and that there was no detectable
plaque regression even in the control plasmid condition. Beyond these methodological
constraints, it remains unclear whether Sema3A could accelerate plaque regression, even in
principle alone. While our group previously showed that Sema3A slows down plaque
progression, administering Sema3A at the onset of atherogenesis could selectively act on the
more M2-like macrophages in the early plaque, which were found to be more sensitive to
Sema3A activation based on upregulated Nrpl receptor. In contrast, when Sema3A treatment is
initiated only after plaques have fully formed, the macrophages would be mostly M1-like and
would therefore be expected to experience only a minimal boost in migration, if any. Despite
this, it should also be considered that Sema3 A might act not only on FCs that have been trapped
in the plaque from an earlier lesional stage, but also on newly recruited macrophages, which
would still have fully intact motility (unencumbered by lipid accumulation) that could be further
boosted by Sema3A. Indeed, our in vitro data shows a lot of promise for Sema3A in its ability to
selectively recruit M2 macrophages and to boost their migration. Targeted therapies, such as
restoring FC motility as was tested in the present body of work, could potentially serve as an
effective complementary strategy to the current standard of lipid lowering by statins and lifestyle
modifications, with the ultimate end-goal of minimizing cardiovascular morbidity and mortality

resulting from atherosclerotic diseases.
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