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Força. Equilibri. Valor. Seny.
Strength. Balance. Courage. Common sense.

These four words are the motto of the castellers, who have been building Catalan human
towers for more than 300 years. The same adage can be applied to scientific research.

This thesis is dedicated to the castellers de Montréal. Gràcies per tot.
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Abstract

Electrical source imaging (ESI) and simultaneous electroencephalography and functional
magnetic resonance imaging (EEG-fMRI) are two imaging techniques that are useful for the
localization of the epileptogenic focus during the pre-surgical evaluation of patients with
drug-resistant epilepsy. Whereas ESI and EEG-fMRI are usually employed separately, EEG
recorded in the MRI scanner can, in theory, be used to perform ESI. The purpose of this
thesis was to assess the performance of joint ESI and EEG-fMRI analysis in the context of
epilepsy. The thesis is organized around three contributions, forming the three manuscripts
of this document.

The goal of the first study was to evaluate and compare the spatial resolution of four source
localization methods, based on high density EEG (hdEEG) or magnetoencephalography
(MEG) data. The intrinsic spatial properties of the methods were studied through the
analysis of their resolution matrices. Overall, the study showed that the method developed
by our group, entitled coherent maximum entropy on the mean (cMEM), exhibited excellent
performance in terms of localization error and spatial dispersion. Moreover, we obtained
similar levels of spatial accuracy on MEG and hdEEG, further confirmed by real data
EEG/MEG acquisitions of electrical median nerve stimulation. Our overall findings indicated
that cMEM was a reliable and robust source localization technique, and was therefore a
suitable candidate for the analysis of EEG inside the MRI scanner.

In the second study, we specifically evaluated the performance of the source reconstruction
of two ESI methods during a visual stimulation paradigm in two conditions: using hdEEG
data acquired inside and outside the MRI scanner. We found that, even if EEG signals were
distorted when acquired in the presence of a high magnetic field, ESI using cMEM performed
inside the scanner remained accurate, exhibiting similar performance to ESI applied on EEG
data acquired outside the scanner. This study demonstrated the feasibility of using ESI
jointly with EEG-fMRI analysis.

Finally, for the last study, we evaluated how ESI could be applied with simultaneous
EEG-fMRI to guide fMRI analysis. Considering eight patients with epilepsy who underwent
EEG-fMRI recordings, we used hdEEG reconstructions to automatically classify interictal
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epileptic discharges, to propose better regressors for fMRI statistical analyses. The classes
of epileptic discharges identified with the automatic clustering from ESI analysis were used
to build regressors for the fMRI analysis and compared to regressors obtained with the
manual classification of epileptic discharges. We found that ESI results were overall spatially
concordant with fMRI responses, and that the automatic classification of epileptic discharges
provided similar results to the manual classification. This result opens the door for less
operator-dependent approach for EEG-fMRI investigations in epilepsy.

To summarize, we demonstrated in this thesis that cMEM was a source imaging technique
exhibiting excellent spatial resolution, even in noisy environments such as EEG data acquired
in the MRI scanner. This technique was used on a visual protocol inside the scanner and
was proven to be robust to MR-related noise. Finally, when applied on epilepsy data, cMEM
exhibited an excellent concordance with the fMRI clusters and was able to classify epileptic
discharges in function of their source localization results, providing relevant information to
propose a more accurate regression model for fMRI analysis.
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Abrégé

L’imagerie de sources électriques (ISE) et l’acquisition simultanée de l’électroencéphalographie
et l’imagerie par résonance magnétique (EEG-IRMf) sont deux techniques d’imagerie utiles
à la localisation du foyer épileptogène pendant l’évaluation pré-chirurgicale des patients
présentant une épilepsie réfractaire aux médicaments. Bien que l’ISE et l’EEG-IRMf soient
généralement employées séparément, l’EEG enregistrée dans le scanner IRM peut en théorie
être utilisée pour effectuer l’ISE. L’objectif de cette thèse a été de tester la faisabilité et la
performance de l’analyse jointe de l’ISE et de l’EEG-IRMf dans le contexte de l’épilepsie.
Cette thèse s’organise autour de trois contributions, formant les trois manuscrits de ce
document.

Le but de la première étude a été d’évaluer et de comparer la résolution spatiale de quatre
méthodes de localisation de sources, basées sur des données d’EEG haute densité (EEGhd) ou
de magnétoencéphalographie (MEG). Les propriétés spatiales intrinsèques des méthodes ont
été étudiées à travers l’analyse de leurs matrices de résolution. Globalement, l’étude a montré
que la méthode développée par notre groupe, intitulée maximum d’entropie sur la moyenne
cohérent (MEMc), présentait d’excellentes performances en termes d’erreur de localisation
et de dispersion spatiale. Nos observations ont indiqué que MEMc était une technique de
localisation de sources fiable et robuste, et qu’il était ainsi un candidat adapté pour l’analyse
de l’EEG à l’intérieur du scanner IRM.

Dans la deuxième étude, nous avons évalué spécifiquement la performance de la recon-
struction de sources de deux méthodes d’ISE pendant une expérience de stimulation visuelle
dans deux conditions: en utilisant les données EEGhd à l’intérieur ou à l’extérieur du scanner
IRM. Nous avons trouvé que, même si les signaux EEG ont été déformés dans l’environnement
de haut champ magnétique, l’ISE utilisant MEMc effectuée à l’intérieur du scanner demeurait
précise, présentant des performances similaires à l’ISE appliquée à des données EEG à
l’extérieur du scanner. L’étude a démontré la faisabilité de l’utilisation de l’ISE conjointement
avec l’analyse EEG-IRMf.

Finalement, dans la dernière étude, nous avons évalué comment l’ISE pourrait être
appliquée avec l’EEGhd-IRMf pour guider l’analyse IRMf. En considérant huit patients
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atteints d’épilepsie qui ont réalisé des enregistrements EEG-IRMf, nous avons utilisé les
reconstructions ISE pour classifier automatiquement les décharges épileptiques interictales
dans le but de proposer de meilleurs régresseurs pour l’analyse statistique IRMf. Les classes
de décharges épileptiques identifiées avec le clustering automatique ont été utilisées pour con-
struire des régresseurs pour l’analyse IRMf et ont été comparées aux régresseurs obtenus avec
la classification manuelle des décharges épileptiques. Nous avons trouvé que les résultats ISE
étaient spatialement concordant avec les réponses IRMf, et que la classification automatique
des décharges épileptiques apportait des résultats similaires à la classification manuelle. Il
s’agit d’un résultat important permettant de considérer une approche moins dépendante de
l’opérateur pour les analyses EEG-IRMf en épilepsie.

Pour résumer, nous avons démontré dans cette thèse que le MEMc était une technique
d’imagerie de sources présentant une excellente résolution spatiale, même dans un environ-
nement bruité tel que les données EEG acquises dans le scanner IRM. Cette technique a
été utilisée avec un protocole de stimulation visuelle à l’intérieur du scanner et a démontré
sa robustesse au bruit lié aux forts champs magnétiques. Finalement, avec des données
d’épilepsie, MEMc a présenté une excellente concordance avec les clusters IRMf et a pu
classifier les décharges épileptiques en fonction de leurs résultats de localisation de sources,
apportant des informations pertinentes afin de proposer un modèle de régression plus précis
pour l’analyse IRMf.
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1
Introduction

Epilepsy is a neurological disorder characterized by the occurrence of repetitive, unexpected
and unpredictable seizures. For nearly 70 % of patients, medication is able to control the
seizures. However the remaining 30 % are refractory to any drugs; therefore other therapeutic
approaches should be investigated. In the case of focal epilepsy, i.e. when the onset of the
seizure is located in a small portion of the brain, brain surgery may be an option. Candidates
for epilepsy surgery undergo an extensive pre-surgical evaluation, which aims at localizing
the areas in the brain triggering the seizures called “the epileptogenic focus”. The evaluation
also helps to precisely identify important structures in the brain, so that epileptogenic focus
may be removed while avoiding significant loss of functional abilities.

During pre-surgical evaluation, a large number of techniques, such as seizure semiology,
electrophysiology monitoring, neuropsychology, or anatomical and functional imaging, provide
useful and complementary information to circumscribe the patient-specific epileptogenic
focus (Engel and Pedley, 2008). In the present PhD dissertation, we focused on pre-surgical
evaluation involving two noninvasive neuroimaging techniques: Electrical Source Imaging
(ESI) which localizes the brain generator of bioelectrical potentials recorded on the scalp using
Electroencephalography (EEG), and simultaneous EEG and functional Magnetic Resonance
Imaging (EEG-fMRI) which aims at detecting the changes in blood flow associated with a
pathological manifestation of epileptic discharges detected on scalp electrodes.

Both ESI and EEG-fMRI have typically been used as a way to localize brain regions
involved in the generation of Interictal Epileptic Discharges (IEDs). IEDs are abnormal
transient brain activities typical of epilepsy occurring between seizures with no clinical
manifestations, but are detectable on EEG. The localization of the brain generator of
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the IEDs, the so-called irritative zone, is therefore facilitated for neuroimaging techniques
for which immobility is required (e.g. EEG-fMRI), when compared to the localization of
seizures. To be distinguishable from EEG ongoing background activity, the irritative zone
should be synchronized over a spatially extended region of several square centimeters (von
Ellenrieder et al., 2014). The irritative zone is known to significantly overlap with the
presumed epileptogenic focus. Consequently, the source localization of IEDs is widely used as
a marker of epilepsy (Ebersole, 1997; Rampp et al., 2019; Mouthaan et al., 2019).

ESI is an imaging technique aiming at localizing the cortical generator of recorded
scalp EEG signals. EEG is mainly sensitive to the brain activity of the pyramidal cells
which are mainly located along the cerebral cortex. A traditional EEG system contains
19 to 64 electrodes. New high-density EEG (hdEEG) systems, with 128 or 256 electrodes,
have been recently proposed, thus increasing the spatial resolution of the modality (Lantz
et al., 2003a). ESI results provide useful and non-redundant information during pre-surgical
evaluation, especially when applied to hdEEG (Brodbeck et al., 2011). It is also possible to
record MagnetoEncephaloGraphy (MEG) which is sensitive to the magnetic fields elicited by
abnormal neuronal bioelectrical discharges. From MEG data, it is possible to apply Magnetic
Source Imaging (MSI) which provides complementary information to ESI.

ESI and MSI are challenging techniques since they both rely on the resolution of an
ill-posed inverse problem: the problem admits no unique solution unless prior knowledge is
added to guide the choice of a particular solution. Over the past decades, several models have
been proposed to solve ESI or MSI (Baillet et al., 2009; He et al., 2018; Michel and Brunet,
2019). Our laboratory developed the Maximum Entropy on the Mean (MEM) framework
which is a Bayesian strategy which solves ESI by estimating the solution exhibiting the largest
relative entropy (i.e. minimizing the added information, or the Kullback-Liebler divergence)
when compared to chosen prior information (Amblard et al., 2004; Grova et al., 2006b).
Within this framework, the coherent MEM (cMEM) technique was used in this manuscript.
cMEM uses a prior model based on the data-driven partition of the cortical surface. For each
parcel, spatial smoothness is applied and cMEM estimates a hidden parameter indicating
whether each parcel is active or not (Chowdhury et al., 2013). Our laboratory demonstrated
that cMEM was a source localization technique able to recover the spatial extent of the
underlying generators and was tested both using realistic simulations (Grova et al., 2006b;
Chowdhury et al., 2013) and clinical data (Heers et al., 2015; Chowdhury et al., 2016, 2018;
Pellegrino et al., 2018).

On the other hand, fMRI is an imaging technique which is sensitive to local fluctuations of
hemodynamic activity within the whole brain. In the context of epilepsy, fMRI is often recorded
simultaneously with EEG. The aim is to measure the hemodynamic changes associated with
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IED, detected on scalp EEG. Simultaneous EEG-fMRI investigation is therefore an efficient
imaging approach to localize the irritative zone. fMRI is sensitive to the Blood Oxygenation
Level Dependent (BOLD) response, which is inversely correlated with the local concentration
in deoxyhemoglobin in the brain. An increase in neuronal activity is often associated with an
increase of BOLD signal, mainly due to a large increase of regional blood flow elicited by
neuronal activity followed by the vasodilatation of local vessels (Shmuel, 2010).

Both ESI and EEG-fMRI have their weaknesses: ESI has relatively poor spatial resolution,
and is mainly able to localize superficial cortical sources. On the other hand, fMRI provides
an indirect measure of neuronal activity, through hemodynamic processes with a temporal
resolution of the order of 1 second. Consequently, EEG-fMRI is incapable of differentiating the
initial focus of epileptic activity from possible propagating regions. Moreover, the relationship
between neuronal firing and neurovascular activity is still not completely understood, especially
in pathological contexts (Wan et al., 2006). Recording EEG during an fMRI analysis is a
challenging task because the EEG signal is distorted by high magnetic field environments (De
Munck et al., 2013). However, MR-related artifacts can significantly be reduced using either
software-based (Allen et al., 1998; Vanderperren et al., 2010) or hardware-based solutions
(van der Meer et al., 2016b; Abbott et al., 2015).

Despite the inherent difficulty of recording good quality EEG in the MRI scanner, few
previous studies suggested that it was feasible to consider ESI along fMRI analysis (Vulliemoz
et al., 2010a; Centeno et al., 2017). However, little has been done to verify the validity of
ESI when applied to EEG data acquired in the MRI scanner.

The purpose of this PhD dissertation is to carefully validate the accuracy of
ESI using high-density EEG recording in the MRI scanner, and to propose a new
strategy combining ESI and simultaneous hdEEG-fMRI analyses to improve the
localization of the generator of epileptic activity.

We hypothesized that, by considering the most appropriate MR-related artifacts correction
methods and ESI techniques, it would be possible to consider ESI of IEDs detected on hdEEG
in the scanner to guide and improve the performance of fMRI analyses.

This thesis is organized in the following way. Chapters 2 to 4 provide the necessary
background information for this PhD thesis. Chapter 2 presents the fundamental mechanisms
of electrophysiology and introduces the technical and biological aspects of EEG and MEG
source localization. This chapter starts by reviewing the history of EEG and MEG and then
discusses the physiological generators of electromagnetic activities. The technical aspects of
EEG and MEG source localization are then presented, with a summary of the estimation
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of the solution of the forward problem and then the inverse problem. We present here the
different source localization methods, with an emphasis on the MEM framework, which is the
specificity of our group. Chapter 3 focuses on the EEG-fMRI recording. This chapter starts
by presenting the historical aspects of magnetic resonance imaging before introducing the
physical fundamentals of MRI. The particular sequence of fMRI is then described and the
technical difficulties of recording simultaneous EEG and fMRI are discussed. In Chapter 4,
the reader is introduced to the fundamental mechanisms underlying epilepsy and pre-surgical
evaluation of epilepsy. It consists in a brief introduction to epilepsy, including its different
types and its treatments. The concept of pre-surgical investigation, with specific interest on
the role of ESI and EEG-fMRI in this context, is also introduced. The three manuscripts
composing the core content of this PhD Thesis are presented in Chapters 5 to 7. Chapter 5
presents the first published manuscript (Hedrich et al., 2017), which compared the intrinsic
spatial resolution of source imaging techniques in high-density EEG and MEG using their
resolution matrices. The intrinisic spatial properties of different source localization methods
evaluated using noise free simulations were then further validated with real hdEEG and MEG
data on healthy subjects using an electrical median nerve stimulation protocol. In Chapter 6,
our second manuscript (Hedrich et al., Under Review) is presented. It assesses the quality
of electrical source imaging inside the MR scanner on healthy subjects using visual evoked
potentials. In this chapter, we compared the quality of EEG signal and ESI reconstruction
under two conditions: during an fMRI experiment, or outside the MR scanner. Chapter 7
presents our third manuscript (Hedrich et al., In Preparation) introducing an automatic
clustering techniques which aimed at classifying IEDs using ESI results in order to guide the
construction of the regressors used for the fMRI analysis. Finally, Chapter 8 concludes this
PhD thesis with a discussion of our main findings and contributions, possible limitations,
and the future perspectives of our proposed studies.

Notations

Throughout this thesis, all vectors and matrices are denoted in bold characters, vectors being
denoted with lower case (e.g. rrr or λλλ), and matrices with upper case (e.g.MMM or ΣΣΣ). The matrix
III stands for the identity matrix. The estimator of aaa is denoted âaa. The transpose of a matrix
AAA is indicated by AAAt. ∇ is the nabla operator: for a real function f , ∇f is the gradient of f ;
for a vector field AAA, ∇ ·AAA is the divergence of AAA, and ∇×AAA is the curl of AAA.
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2
Principles of electrophysiology and source

localization

This chapter will present the technical aspects of non-invasive EEG and MEG recordings
and will discuss the different approaches proposed to perform EEG/MEG source localization
and source imaging.

After a historical introduction of EEG and MEG, we will present the physiological aspects
describing the brain generators of EEG and MEG signals. Then we will briefly introduce
the physical principles describing the distribution of electrical potentials and magnetic
fields within the head, before introducing different methods to solve the EEG-MEG source
localization, with an emphasis on a source imaging framework developed in our laboratory:
the “maximum entropy on the mean” framework.

2.1 History of electroencephalography and

magnetoencephalography

2.1.1 Electroencephalography

Whereas first studies reporting electrophysiology recordings in animals were performed in
Italy by Dr. Luigi Galvani and Dr. Alessandro Volta, the first measurement of electroen-
cephalography performed on animals was reported by the British physiologist, Richard Caton,
in 1875 (Haas, 2003). In his works, Caton recorded electrical activity on the head surface or
on the cortical surface of monkeys and rabbits (Caton, 1875). He showed that the recorded
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electrical currents were sensitive to sleep, anoxia and anesthesia and were abolished by the
death of the animal. He also discovered current variations elicited by visual and sensory
stimulations. Caton’s study on brain electrophysiology was then extended by many others.
Among them, Adolf Beck described spontaneous and evoked electrical activity in the brain of
dogs and rabbits in 1890 (Coenen et al., 2014). In the meantime, the first electrical stimulation
of the human cortex was performed in 1870 by G. Fritsch and Julius Eduard Hitzig, showing
for the first time that brain regions were associated with different functions (Niedermeyer,
2005).

In 1924, the German neuropsychiatrist Hans Berger performed the first human elec-
troencephalography (EEG), coining the name (Berger, 1929), in an attempt to discover
the physiological basis of “psychic energy”. Instead, he recorded the electric propagation of
electric potentials elicited by neuronal activity (see Section 2.2). He was the first to recognize
the importance of brain oscillations in the interpretation of EEG recordings, and described
different physiological and pathological brain waves. He discovered what he then named alpha
and beta waves (Figure 2.1). His works also focussed on the nature of EEG alterations in
brain diseases such as epilepsy.

Figure 2.1: One of the first reports of the human EEG from Hans Berger’s first publication. Top:
top line represents beta wave activity (typically 12-30 Hz), related to normal waking consciousness;
the middle tracing is the electrocardiogram and the lowest tracing is a generated 10 Hz sine wave.
Bottom: top line shows what is known now as alpha rhythm (typically 8-12 Hz) which happens
when the subject’s eyes are closed. The lowest tracing is a generated 10 Hz sine wave. Taken from
Berger (1929)

Electroencephalography was first welcomed in the scientific community with high skepti-
cism, and Berger’s discovery was really accepted only a few years later when his study was
replicated in England by the physiologist Lord Adrian in 1934 (Adrian, 1934) and almost
at the same time in the United States by the group of Hallowell Davis (Davis, 1992). EEG
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then rapidly became an important tool for clinical and research purposes, especially in the
domain of epilepsy where EEG was progressively accepted as a diagnosis tool. Thus, the first
tracing of epileptic abnormality was shown by Berger in his early reports (Berger, 1933) and
was first carefully investigated in 1934 (Fischer and Lowenback, 1934). In 1935, the petit
mal seizures, now known as absence seizures and characterized by bursts of spike and wave
discharges, of 12 children were recorded (Figure 2.2) (Gibbs et al., 1935).

Figure 2.2: Examples of EEGs from petit mal (absence) seizure patients. Taken from Gibbs et al.
(1935)

Over the next decades EEG technique became largely popularized and the instrumentation
was improved and refined (Collura, 1993). In 1937 the electrophysiologist Herbert Jasper
joined the Montreal Neurological Institute (MNI), a neurological center founded in 1934 by
the neurosurgeon Wilder Penfield (Feindel, 1992), and developed EEG techniques in Montreal.
He notably introduced the international 10-20 system (Jasper, 1958) that was adopted as the
standard electrode placement method (see Section 2.3.1). Invasive human EEG recordings,
such as implanted intracerebral electrodes (Meyers et al., 1949) and microelectrodes, appeared
in the 1950s and allowed the measurement of the activity of a single neuron (Davis, 1992). In
the 1970s and 1980s, the invention of the computed tomography and magnetic resonance
imaging offered the possibility to have structural images of the brain, and opened the
development of EEG brain mapping (Duffy et al., 1979).
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2.1.2 Magnetoencephalography

The history of magnetoencephalography (MEG) is more recent. Indeed, the magnetic field
induced by the bioelectrical current of the neuronal activity is more difficult to measure
than the corresponding electrical potentials. The reason for this is that the magnetic fields
generated by human neuronal activity have very low amplitude (in the order of 10−15 to 10−12

T): much weaker than the Earth magnetic field (in the order of 10−5 T) or other magnetic
fields generated by electrical devices. The first recording of MEG signals was performed by
David Cohen, a physicist at the University of Illinois, in a magnetically shielded room using
a copper induction coil as the detector (Cohen, 1968). Later, Cohen improved his technique
with the help of James Zimmerman at the Massachusetts Institute of Technology with the
development of SQUIDs (Superconducting Quantum Interference Devices) detectors, which
are still used today. While first studies involved one or very few MEG sensors, the first whole
head MEG system was introduced in the 1990s (Ahonen et al., 1993; Vrba et al., 1993). Most
of today’s MEG devices consist of whole head systems equipped with around 300 SQUIDs
connected to sensor coils. However, recent works on MEG instrumentation seem to have
developed a promising new type of sensor: the optically-pumped magnetometers, which do not
require cryogenic conditions as opposed to SQUIDs (Boto et al., 2017). The new technology
offers the possibility to place MEG sensors directly on the subject scalp, thus increasing the
data sensitivity.

2.2 Generators of EEG and MEG signals

The signals recorded on EEG and MEG are mostly generated by neuronal activity located on
the cortical surface of the brain. There are about 50-100 billions neurons but not all neurons
contribute equally to the EEG/MEG signals. Neurons are brain cells that convey information
via electrical or chemical signals. As depicted in Figure 2.3, a neuron is typically composed
of dendrites which receive information from other neurons, the soma where the electrical
inputs are processed, and one or several axons which represent the output structure of the
cell. Very often, the axon is covered by a myelin sheath which facilitates the transmission of
the electrical signal.

The main contributors of those electrophysiological (EEG or MEG) signals are the
pyramidal cells (Buzsáki and Draguhn, 2004; Nunez and Srinivasan, 2006), which are neurons
located within the layer V of the cortical surface (i.e. a few millimeters from the cortical
surface), as well as in the hippocampus and in the amygdala. Pyramidal neurons are composed
of multiple dendrites and a single axon: both dendrites and axons branch extensively. They
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Figure 2.3: Components of a neuron. Taken from Stangor and Walinga (2017).

are typically excitatory, i.e. when activated they provoke a depolarization in efferent neurons.
Information transfer between neurons is ensured through the synapses. A synapse is a

junction between two neurons, most of the time from an axon to a dendrite. In the brain
there are roughly 100 trillion synaptic connections. The communication is unidirectional: the
information only flows from the so-called presynaptic neuron to the postsynaptic neuron. In
most cases, the transmission of information within a synapse is ensured by chemical messengers
called neurotransmitters. The principle of a synapse activation is explained in Figure 2.4.
A synapse is composed of a presynaptic terminal, the end of the axon of the presynaptic
neuron; the postsynaptic terminal, where the afferent neuron receives the neurotransmitters;
and a gap between the two, called the synaptic cleft. The neurotransmitters are stored in
the presynaptic terminal, in vesicles inside the cell, and are released when the presynaptic
terminal is depolarized. The change of polarity of the membrane cell causes the opening of
the voltage-gated calcium ion Ca2+ channels. This results in a movement of calcium ions into
the neuron. The Ca2+ inside the presynaptic terminal induces the fusion of the vesicles with
the neuron membrane – the neurotransmitters are then released into the synaptic cleft. These
chemical agents bind with the receptor molecules on the postsynaptic membrane, which
causes the opening and closing of different ion channels (mainly Na+, Cl− and K+ ions). This
process creates a displacement of charges: the so-called PostSynaptic Potential (PSP). A PSP
can be either excitatory or inhibitory, depending on whether the exchange of ions between
the cell and the extracellular medium creates a depolarization (for excitatory neurons) or
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a hyperpolarization (for inhibitory neurons) of the membrane cell. The neurotransmitters
which did not bind to the postsynaptic neuron are taken up by the presynaptic cell and
surrounding glial cells, and new vesicles are then created.

Figure 2.4: Functioning of a synapse. Taken from http://www.answers.com/topic/synapse.

PSPs generally last from tens to a few hundred milliseconds. For this reason, if several
PSPs are produced in a short period of time, they could sum up and produce a larger
depolarization or hyperpolarization. This phenomenon is reinforced by spatial summation, i.e.
a summation of PSPs from synapses that are spatially close, thus increasing overall excitation
or inhibition.

The resting membrane potential is -70 mV. If enough Excitatory PSPs (EPSPs) are
engaged, and the membrane potential reaches a threshold around -55 mV, an Action Potential
(AP) is created in the soma. An AP1 is an event of high amplitude lasting a few milliseconds
which moves along the axon. The propagation of an AP to the axon terminal causes a
depolarization of the local membrane, which induces the release of neurotransmitters in the

1Action potentials are sometimes called “spikes” but should not be confused with interictal epileptic
potentials, which could also be called spikes.
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synaptic cleft. Conversely, an Inhibitory PSP (IPSP) provokes a hyperpolarization of the
membrane below -70 mV, therefore hindering the production of action potentials.

The PSPs elicit a difference of electric potentials between the apical dendrite and the
soma of the cell. This induces a movement of ions within the dendrite trunk, and therefore a
current, which is called the primary current. To ensure the conservation of electric charges,
the primary current elicits the production of other currents which flow in the opposite
direction, in the conductive extracellular medium. Those are called secondary currents or
volume conduction currents. EEG electrodes are sensitive to the change of currents in the
extracellular medium, i.e. the secondary currents whereas MEG sensors are mainly sensitive
to the magnetic field induced by the primary current.

In order to be detected by non-invasive sensors placed on the scalp, the primary currents
(for MEG) and the volume conduction currents (for EEG) need to be large enough. This can
only be achieved when an sufficient number of neurons in the same region are active together,
i.e. by synchronization in time and in space of several PSPs. The particular geometry of
the pyramidal cells, which are all aligned perpendicularly to the cortical surface, allows the
summation of the currents produced by spatially synchronized neurons. EEG needs an active
source of at least 4 to 8 cm2 to be visually distinguishable from the ongoing background
activity (Tao et al., 2007; von Ellenrieder et al., 2014), whereas MEG only needs a source
size of 3 to 4 cm2 to result in a detectable signal (Oishi et al., 2002). To achieve detection,
all active neurons should be also synchronized in time. This is one of the reasons why action
potentials are usually not detectable on EEG or MEG as opposed to PSPs: the temporal
duration of action potential is too short to allow a good time synchronization with all the
active neural cells2.

2.3 EEG and MEG recordings

2.3.1 EEG recordings

EEG acquisition consists of placing electrodes on the scalp of the participant. The number
of used electrodes depends on the experimental design, ranging from a few sensors up to
512 electrodes. The electrodes are either glued directly on the scalp of the participant or
placed on the head with a special cap. In either case, special care is used to ensure a good
electrical conductivity between the skin and the electrodes by using abrasive gel to clean the

2Another reason why action potentials are difficult to detect from EEG/MEG scalp recordings is that they
behave as quadripoles. The electric potentials and magnetic fields of action potentials are more attenuated
when propagating to the scalp
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skin and by using a good conductive medium (conductive gel, or sponges imbibed with a
saline solution for systems from Philips Neuro).

Electrodes record small bioelectrical potentials which are amplified and converted to
digital signals in a device commonly called an amplifier. The output of the amplifier is then
stored in a computer. One important feature of the amplifier is the sampling frequency, which
is the number of samples recorded in one second. A high sampling frequency is crucial for the
detection of fast events (from 50 Hz to around 500 Hz) (Nariai et al., 2019). The active range
of the analog-to-digital converter is also a important feature because it is needed to obtain
the best resolution of EEG without taking the risk of saturation wherein the EEG data would
be unusable. During EEG acquisition simultaneously with fMRI data, special care is brought
to the dynamic range of the amplifier, as the MRI-related artifacts present in the EEG have
high amplitude leading to an increased risk of saturation of the EEG signal (Abreu et al.,
2018a). For the same reason, to allow accurate correction of MR-related artifacts, larger
frequency sampling, typically up to 5 kHz, is usually required.

It is worth noting that the amplification and analog-to-digital conversion could be done
at the level of the electrodes, on the head of the participant. This particular system, called
“active electrodes”, has the advantage of reducing the noise induced by the wires (Xu et al.,
2017).

A reference electrode, with which every difference of electrical potentials will be measured,
is always needed in an EEG experiment. The position of the reference electrode depends on
the location of the function of study. Electrodes close to the reference could suffer from a
decrease in resolution (Yao et al., 2019), therefore the reference electrode is usually placed far
from the region of interest. Classical positions for the reference electrode include, the vertex
of the head (Cz), the mastoids (either one of the mastoids or both of them using a linked
reference), the ears or the tip of the nose. Moreover, another electrode should be placed on
the patient: the ground electrode to perform common mode rejection.

The quality of contact between the electrodes and the skin is measured with the impedance.
High impedance can lead to distortions which can be difficult to clean from the signals.
Therefore it is important to make sure the impedance is as low as possible (typically below 5
kΩ) before starting an EEG experiment.

The electrode configuration is called a montage. Depending on the number of electrodes
and the region of interest in a EEG recording, montages can vary. To obtain a international
standard on the position on the electrode on the head, the 10-20 system was introduced
in 1958 by Dr Jasper at the Montreal Neurological Institute (Jasper, 1958). This system
established a universal set of EEG positions with respect to anatomical landmarks, namely
the nasion (the bridge between the nose and the forehead), the inion (the highest point
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of the external protuberance of the occipital bone at the back of the head), and the two
peri-auricular points (close to the ears, at the superior junction of the tragus). The distance
from the anatomical landmark to the electrode positions are set at 10 % of the total distance
between landmarks (nasion to inion, or left peri-auricular to right peri-auricular) whereas the
distance between electrodes is 20 % of the total distance between landmarks, as illustrated in
Figure 2.5(1.). Each electrode position is assigned a letter (or letters) related to the brain
areas underlying the position of the electrode (Frontopolar – Fp; Frontal – F; Temporal –
T; Central – C; Occipital – O; Parietal – P) and a number showing the position relative
to the midline (z for midline, even numbers for right hemisphere and odd numbers for left
hemisphere; the larger the number, the further the position is from the midline). The 10-20
montage is composed of 19 electrodes. When the number of electrodes used in an experiment
increased, new international montages with higher resolutions appeared, such as the 10-10
system (81 electrodes, interelectrode distance: 10 %) (Chatrian et al., 1985), or even 10-5
system (329 electrodes, interelectrode distance: 5 %) (Jurcak et al., 2007). In this manuscript,
we use a EEG system from Philips Neuro (Eugene, Oregon) which does not follow the
international standards. In Figure 2.5 the 10-20 system proposed by Dr. Jasper, the 10-5
system and the EGI 256-electrode montage are illustrated.

2.3.2 MEG recordings

The goal of MEG is to record magnetic signals coming from the brain at the order of 50-500
femto Tesla (10−15 T). This is challenging because all electronic devices produce a magnetic
field with higher strength than the brain magnetic signal; even the Earth produces a magnetic
field ranging from 22 to 67 micro Tesla (10−6 T) (Chilliat et al., 2015).

For these reasons, recording MEG data from brain activity requires the use of ultrasensitive
detectors; the superconducting quantum interference devices (SQUID). A SQUID consists of
two superconductors separated by thin insulating layers. Such a structure can be used to
convert magnetic flux into an electrical voltage (Josephson, 1962). To allow superconductivity,
the SQUIDs are immersed in liquid helium (at the temperature of 4 K = - 269 °C).

The simplest type of magnetic flux detector is the magnetometer, which consists of a single
coil located close to the head of the participant. Magnetometers are highly sensitive to the
brain magnetic flux, but they are also highly affected by environmental noise. Another type
of magnetic sensor is the gradiometer, which consist of two oppositely-wound coils. The coils
in gradiometers can either be one above the other radially to the head (axial gradiometers)
or next to each other tangentially to the head (planar gradiometers). The designs of the
magnetometer and both types of gradiometers are illustrated in Figure 2.6. Gradiometers
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Figure 2.5: Examples of EEG montages. 1. The international 10-20 system composed of 19
electrodes seen from (A) left and (B) above the head. A = Ear lobe, C = central, T = temporal, P
= parietal, F = frontal, Fp = frontopolar, O = occipital. Modified from Sharbrough et al. (1991) 2.
The 10-5 system composed of 329 electrodes proposed by Jurcak et al. (2007) 3. EEG montage for
the Philips neuro 256-electrode system

measure a local gradient of magnetic flux. Magnetic interferences from distant sources are
relatively uniform across the two coils, thus resulting in dampening of this disturbance.
Conversely, nearby cerebral sources produce different fields on the two coil sites and brain
signals are therefore preserved.

The MEG device should be placed in a magnetically shielded room to reduce the con-
tribution of environmental magnetic fields. The shielding is composed of several layers of
aluminum and mu-metal, a nickel-iron alloy, which distort incoming magnetic fields. However,
sources of interference are still present in the room, such as residual environmental noise,
instrumental noise and activity coming from the participant (for example, the heart produces
a magnetic field a thousand times stronger than the brain). To remove this noise, some MEG
devices are equipped with reference sensors composed of magnetometers and gradiometers
located far from the head of subject, in order to specifically measure noise. The signals of the
reference sensors are then used by the recording software to further clean MEG data.

Since SQUIDs need to be constantly immersed in liquid helium, MEG sensors are placed
inside a helmet which is not attached to the head of the participant. Consequently, each head
movement changes the relative position of the sensors to the head, and to the brain, which
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Figure 2.6: Common pick up coil geometries. (A) magnetometer, (B) planar gradiometer, (C) axial
gradiometer. Modified from (Hämäläinen et al., 1993).

can lead to spatial inaccuracy. For this reason, participants are asked not to move during
MEG recordings and head movements are tracked with head position coils which are fixed on
the scalp in known anatomical landmarks.

2.3.3 Coregistration with anatomy

In order to perform source imaging, the positions of the EEG or MEG sensors should be
coregistered with the source model, i.e. the segmentation of the subect’s cortical surface
modeled using anatomical T1-weighted MRI images. Coregistration is an essential step to
ensure accurate source localization (Gross et al., 2013). Several techniques exist and aim at
finding the position of the EEG and MEG sensors relatively to the fiducial points (nasion, left
and right peri-auricular point) using a digitalization device. Since the fiducial points can also
be marked on the MRI images, a coregistration using these three points can then be performed.
However, this approach is highly sensitive to errors associated with the identification of these
landmarks on each modality. To counter this, some studies sample the shape of the head using
a 3D digitalization device and coregister the points with the scalp segmentation derived from
the MRI images, which usually results in a more accurate and robust coregistration (Whalen
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et al., 2008). In this thesis, the EEG sensor digitalization was done using the Geodesic
Photogrammetry System developed by EGI, which consists of 11 cameras mounted in a
structure permitting simultaneous pictures of the EEG electrodes from different angles to
be taken. The location of the sensors was then determined using semi-automated software
with machine vision technology. For MEG, a 3D digitalization of the head was performed
conjointly with the position of the localization coils using the electromagnetic Polhemus
Fastrak 3D localizer (Colchester, NH). For both modalities, the sensors were coregistred with
the scalp segmentation from anatomical MRI using the iterative closest point algorithm (Besl
and McKay, 1992).

2.4 The EEG/MEG forward problem

2.4.1 Quasi-static approximation of Maxwell’s equations

To perform source localization, one should first solve the so-called forward problem, which
consists in describing the physical phenomena responsible for the propagation of the electric
potentials and magnetic fields within the head. The objective is to model all of the structure
inside the head to estimate the EEG or MEG response to a source that is produced by a
known configuration of generators.

The forward model is solved using Maxwell’s equations of the propagation of electro-
magnetic fields. Maxwell’s equation are a system of four differential equations which permit
calculating the electric field EEE, the magnetic field BBB with the charge density ρ, the current
density JJJ , and ε and µ which are respectively the electrical permittivity and the magnetic
permeability of the medium: 

∇·EEE = ρ
ε

∇×EEE = −∂BBB
∂t

∇·BBB = 0

∇×BBB = µ
(
JJJ + ε∂EEE

∂t

)
(2.1)

The useful frequency spectrum of MEG or EEG data is typically below 1 kHz, which
is slow compared to the propagation of the electromagnetic fields (electromagnetic waves
propagating roughly at the speed of light). For this reason, it is possible to simplify Maxwell’s
equations by considering the quasi-static approximation. In the quasi-static approximation,
the time derivatives can therefore be neglected. Moreover, the electric field EEE could be written
as the negative gradient of the electric potential V :
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EEE = −∇V ; (2.2)

One can also observe that the current generators JJJ can be written as the combination of
the primary current flow JJJp related to the actual neural activity and a volume current flow
JJJv (see Section 2.2):

JJJ = JJJp + JJJv = JJJp + σEEE = JJJp − σ∇V (2.3)

where σ is the conductivity of the medium. From the quasi-static approximation, one can
derive that ∇·JJJ = 0 (conservation of the charges), and therefore:

∇· (JJJp − σ∇V ) = 0 =⇒ ∇· (σ∇V ) = ∇·JJJp (2.4)

For the calculation of BBB, the derivation of the above equations leads to the Biot-Savart
law, the magnetic field at location rrr can be written:

BBB(rrr) =
µ

4π

∫
R3

JJJ(rrr′)× rrr − rrr′

‖rrr − rrr′‖3
drrr′ (2.5)

It is worth noting that, contrary to the conductivity σ, which is highly dependent on
the medium and on the frequency, the magnetic permeability µ does not vary between the
different head tissues.

2.4.2 Source and head models

The solution to the forward problem in EEG and MEG can be obtained by solving Equa-
tions (2.4) and (2.5) respectively. The computational load for the solving of these equations
depends on the chosen source and head models. Indeed, the model can be simplified if we
assume that either the current generator is only composed of one dipolar source (the single
dipole approach), that the geometry of the head can be modeled using spheres (spherical
head models), or that the different tissues in the head can be associated to homogeneous
conductivity values (boundary element method). Otherwise, the forward solution can also be
solved computationally by using a detailed discretization of the whole volume of the head
(finite element method).

2.4.2.1 Dipolar source model

We can assume that a local generator of EEG/MEG signals can be modeled by a current
dipole at a specific position rrr0. The primary current JJJp elicited by this dipole can then be
written:

17



CHAPTER 2. PRINCIPLES OF ELECTROPHYSIOLOGY AND SOURCE LOCALIZATION

JJJp(rrr) = qqqδ(rrr − rrr0) (2.6)

where δ is the Dirac distribution and qqq is the moment of the current dipole (in A.m).
Within a uniform medium characterized by the conductivity σ and the magnetic permeability
µ, Equations (2.4) and (2.5) can then be written as:

V (rrr) =
1

4πσ
qqq· rrr − rrr0

‖rrr − rrr0‖3
(2.7)

BBB(rrr) =
µ

4π
qqq × rrr − rrr0

‖rrr − rrr0‖3
(2.8)

2.4.2.2 Spherical head models

One of the simplest head models is the spherical model, which assumes that the head can
be represented as one or a series of homogeneous concentric spheres representing the major
structures of the head. This simple geometry allows one to find an analytic solution for the
electric potentials generated by a current dipole within the head (Rush and Driscoll, 1969).

The first spherical models considered only one sphere to represent the head for both EEG
and MEG (Frank, 1952). This model was greatly inaccurate especially when modeling the
EEG forward problem because it failed to take into account the drop in conductivity of
the skull compared to the surrounding tissues. In this thesis, a model consisting of three
concentric spheres representing the scalp, the skull and the brain, was introduced (de Munck
and Peters, 1993).

For MEG on the other hand, since we can assume that the magnetic permeability is
constant throughout all parts of the head and that the volume conduction current within
the skull has very little impact on the generation of the magnetic field BBB, a single sphere
model can usually be considered . This model was later improved to better reflect the actual
geometry of the human head. The overlapping spherical model, instead of using only one
sphere for all the sensors, uses the best fitting sphere to model the head for each individual
sensor (Huang et al., 1999).

2.4.2.3 Boundary element method (BEM)

In the Boundary Element Method (BEM), it is assumed that all different tissues of the
head (scalp, cerebrospinal fluid, brain) have homogeneous and isotropic conductivity values.
Consequently, only the surfaces representing the boundaries between the different tissues
need to be modeled to solve the forward problem. For the BEM model, the geometry of
those surfaces are discretized into surface elements using MRI segmentation. The solution
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of the forward solution is then solved iteratively for each surface element. Compared to
spherical head models, BEM is computationally costly but offers a more realistic model of
the generation of the electrical and magnetic fields (Mosher et al., 1999a).

However, BEM assumes that the boundary surfaces should be closed and non overlapping
in order to avoid numerical instabilities, which can be problematic for patients with holes in
their skull (von Ellenrieder et al., 2014). Moreover, the assumption of isotropy within the
medium does not hold in brain structure. Despite the limitations, BEM models are quite
accurate (Henson et al., 2009) and were used in the manuscripts of this thesis (Henson et al.,
2009). In this PhD thesis, we used the algorithm named “Symmetric BEM method” (Kybic
et al., 2006), implemented in OpenMEEG4 (http://openmeeg.github.io/) (Gramfort et al.,
2010) which has been shown to be the most accurate and robust to numerical instabilities
when compared to other implementations of BEM.

2.4.2.4 Finite element method (FEM)

Unlike BEM, finite element method aims at calculating the electrical potentials and magnetic
field inside the whole head volume, thus permitting to take into account the anisotropy and
non-homogeneity of the tissues (Wolters, 2007). It is therefore the most realistic solution to
the forward model but requires a large amount of computational power. FEM also offers the
possibility to incorporate a larger variety of tissues (such as soft and hard bones, grey matter
and white matter) (Vorwerk et al., 2014).

2.4.2.5 Estimation of electrical conductivities

As mentioned in Section 2.4.1, the magnetic permeability does not vary much in biological
tissues and can be approximated with the magnetic permeability of free space: µ(rrr) = µ0 ≈
12.57 . 10−7 H/m.

However, it is important to note that electrical conductivity does vary to some degree
with the nature of the tissue being measured, and uncertainties in assigning conductivity
values can lead to significant errors when solving the inverse problem (Vorwerk et al., 2019).

Because of this, estimating the exact value of conductivity values within head tissues is a
challenging task. Several studies have developed experiments to estimate those values, either
using electrical impedance tomography, comparing intracranial and scalp recordings, or using
post-mortem measurements. A literature review on the question has been made in Aydin
et al. (2014) and summarized in a table in Vorwerk et al. (2019), which is reproduced in
Table 2.1.
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Table 2.1: Tissue conductivity ranges [mS/m]. Taken from Vorwerk et al. (2019).

Tissue Min. Max. Standard References
Skin 280.0 870.0 430.0 (Haueisen et al., 1997; Ramon et al., 2004)

Skull 1.6 33.0 10.0 (Akhtari et al., 2002; Hoekema et al., 2003;
Dannhauer et al., 2011)

CSF 1769.6 1810.4 1790.0 (Baumann et al., 1997)

Grey matter 220.0 670.0 330.0 (Haueisen et al., 1997; Ramon et al., 2004)

White matter 90.0 290.0 140.0 (Haueisen et al., 1997; Ramon et al., 2004)

One important parameter to consider is the brain-to-skull conductivity ratio. It has been
estimated to be 1:80 in 1969 (Rush and Driscoll, 1969) and this value has been used as a
reference since then. However, most recent papers suggest that the ratio should rather range
between 1:10 and 1:50 (Lai et al., 2005). For the manuscripts presented in this thesis, the
conductivity values for scalp, skull and brain were set to 330.0 mS/m, 16.5 mS/m and 330.0
mS/m respectively, resulting in a brain-to-skull conductivity ratio of 1:20.

2.5 The EEG/MEG inverse problem

EEG and MEG source localization is an inverse problem because the goal is to infer from a set
of observations (MEG fields or EEG potentials measured on the scalp) the generators within
the brain that produced them. The problem is ill-posed, meaning that a unique solution
cannot be found unless further assumptions or constraints are added to the problem.

The first category of assumptions that can be made is to restrict the number of active
generators: this is the so-called localization approach. By assuming that the data can be
explained by one or a few active dipolar sources, the problem becomes well-posed and consists
of estimating the best positions, orientations and amplitude of a small set of dipolar sources.
This is the so-called Equivalent Current Dipole localization approach (ECD, see Section 2.5.1).
An extension of this approach consists of assessing on every position of a grid how likely an
ECD would be localized at this position: these are the so-called dipole scanning methods (see
Section 2.5.2). The alternative to the localization approach is the imaging approach. In such
models, brain activity is assumed to be generated from a spatially extended brain region,
where the source space is assumed to be a large set of dipolar sources for which the positions,
and sometimes the orientations, have been fixed. Solving the EEG/MEG inverse problem
then consists of estimating the amplitudes of the dipolar sources. These methods are denoted
distributed source imaging methods (see Section 2.5.3).
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2.5.1 Equivalent Current Dipoles (ECD)

In order to solve the inverse problem, the most straight-forward approach is to assume that
the data can be explained by a set of Ns dipolar sources whose positions and orientations
need to be estimated in the presence of additive noise:

mmm =
Ns∑
i=1

GGG(rrri)qqq(rrri) + eee (2.9)

where GGG is the gain matrix providing an estimate of the forward model assessing the
contribution on all the EEG or MEG sensors of a dipolar source located in rrri in a specific
orientation. rrri and qqq are respectively the vector of position, and the vector of amplitude
(therefore encoding the magnitude and the orientation) of the ith dipolar source to be
estimated, and eee is the additive noise.

Those parameters can be estimated using the least square solution. The cost function
that needs to be minimized is the square of the Frobenius norm of the residuals. The solution
to the least square solution is then given by:

{r̂̂r̂r, q̂̂q̂q} = arg min
{rrr,qqq}

∥∥∥∥∥mmm−
Ns∑
i=1

GGG(rrri)qqq(rrri)

∥∥∥∥∥
2

F

(2.10)

To solve this equation, one can observe that for any estimated r̂̂r̂r, the estimated amplitude
qqq that minimizes the cost function is always:

q̂̂q̂q = GGG+mmm (2.11)

where GGG+ is the pseudoinverse of GGG. If GGG is of full column rank, the pseudoinverse has an
explicit expression: GGG+ = (GGGtGGG)−1GGGtmmm. The cost function to minimize rrr then becomes:

r̂̂r̂r = arg min
rrr
‖mmm−GGGq̂̂q̂q‖2

F

= arg min
rrr

∥∥mmm−GGGGGG+mmm
∥∥2

F

= arg min
rrr

∥∥(III −GGGGGG+)mmm
∥∥2

F

= arg min
rrr

∥∥PPP⊥GGGmmm∥∥2

F

(2.12)

where PPP⊥GGG = (III −GGGGGG+) is the projection matrix onto the orthogonal sub-space of GGG.
Several iterative approach may be used to minimize this cost function. Gradient descent,
Gauss-Newton or Lavenberg-Marquardt approaches can be considered.
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This minimization can be performed for each time instant (using the equations shown
here), which is called the moving dipole approach (Cuffin, 1985), and the dipole can be fixed
over the whole time window (Wood, 1982).

The main limitations of the ECD localization approach are that the total number of
dipoles has to be fixed a priori. Choosing the right number of dipoles can be challenging and
can lead to overfitting the data. Moreover, the results of the dipole fitting approaches might
be inaccurate in low Signal-to-Noise Ratio (SNR) conditions or when the source generator is
spatially extended (Hara et al., 2007; Alarcon et al., 1994).

2.5.2 Dipole scanning models

Dipole scanning models have been proposed as an interesting alternative to handle the
difficult question of fixing a priori the number of ECD sources to be considered. Indeed,
the dipole scanning approach consists of assessing the relevance of fitting a dipolar source
sequentially to each position of a 3D grid inside the brain by estimating a statistical score
on how likely such a dipolar source could contribute to the recorded data. Different dipole
scanning approaches have been proposed, such as beamforming approaches or the Multiple
Signal Classification (MUSIC) approach and its variants: recursive, R-MUSIC, and recursively
applied and projected MUSIC, RAP-MUSIC.

2.5.2.1 Beamforming techniques

Beamforming techniques use a linear spatial filter of the data to estimate the contribution
coming from a particular position on a 3D grid, while reducing the influence of every other
possible location. A specific filter needs to be estimated for every position on a 3D grid,
satisfying the following constraints:

qqqrrr = WWW t
rrrmmm (2.13)

where qqqrrr is the moment’s amplitude of the source at location rrr andWWW rrr is the corresponding
spatial filter. The goal of the Beamforming techniques is to estimate the best spatial filter
WWW rrr. A widely used technique, called Linearly Constrained Minimum Variance (LCMV) (Van
Veen et al., 1997), estimates the spatial filter by minimizing the source variance ΣΣΣqqq:

ΣΣΣqqq(rrr) = E
[
qqqrrrqqq

t
rrr

]
= WWW t

rrrΣΣΣmmmWWW rrr (2.14)

where ΣΣΣmmm = E [mmmmmmt] is the data covariance matrix.
The estimated of the spatial filter can then be found as:
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WWW t
LCMV,rrr =

(
GGGt
rrrΣΣΣ
−1
mmm GGGrrr

)−1
GGGt
rrrΣΣΣ
−1
mmm (2.15)

where GGGrrr is the gain matrix at location rrr considering the three orientations.
The estimated strength of the source is usually normalized with the noise covariance

matrix ΣΣΣeee (estimated at the sensor level using background or baseline activity) to obtain a
pseudo-Z score:

ZZZLCMV,rrr =
trace

(
(WWW t

LCMV,rrrΣΣΣ
−1
mmm WWW LCMV,rrr)

−1
)

trace
(
(WWW t

LCMV,rrrΣΣΣ
−1
eee WWW LCMV,rrr)−1

) =
trace ((GGGt

rrrΣΣΣ
−1
mmm GGGrrr)

−1)

trace
(
(GGGt

rrrΣΣΣ
−1
eee GGGrrr)−1

) (2.16)

ΣΣΣeee needs then to be estimated with background activity.
A frequency domain extension of LCMV, entitled Dynamic Imaging of Coherent Sources

(DICS), was also developed (Gross et al., 2001). DICS actually consists of estimating a spatial
filter matrix optimized for some specific frequency band, by minimizing the cross-spectral
density matrix at a particular frequency band instead of the data covariance matrix.

2.5.2.2 MUSIC approaches

Another well-known dipole scanning approach is the MUSIC method (Mosher et al., 1999b),
based on signal classification between signal and noise via signal sub-spaces. If we consider
the singular value decomposition of the data mmm = USVUSVUSV t, the solution to MUSIC consists
of minimizing the orthogonal projection onto the noise subspace, estimated by the linear
operator (III −UUUdUUU

t
d), where UUUd is the d first columns of UUU , d being the estimated rank of the

signal space. The estimated MUSIC cost function to minimize for a dipolar source located in
rrr is then given by:

‖(III −UUUdUUU
t
d)GGGrrr‖2

‖GGGrrr‖2
(2.17)

A variant to MUSIC is the Recursively Applied MUSIC (RAP MUSIC) (Mosher and
Leahy, 1997), which consists of applying the MUSIC cost function successively after removing
the contribution of the previously identified sources as an interesting approach to specifically
assess the number of ECD sources contributing significantly to the solution.

2.5.3 Distributed source imaging models

Distributed source imaging models are imaging approaches, attempting to estimate the
current density of a set of dipoles, for which the position in space is fixed a priori, doing so at
every time sample from the recorded EEG or MEG data. Those dipoles can either be assumed
to be sampled in a volumetric source space, typically a 3D grid, or evenly distributed along a

23



CHAPTER 2. PRINCIPLES OF ELECTROPHYSIOLOGY AND SOURCE LOCALIZATION

tessellated mesh of the cortical surface (Dale and Sereno, 1993). Solving the inverse method
with the distributed source imaging approach is further discussed in Section 2.6, where the
Maximum Entropy on the Mean (MEM) framework is introduced. We show that all the
well-known linear distributed methods can be defined within this framework. Moreover, we
present here the source imaging technique entitled coherent MEM (cMEM), which is widely
used in this thesis.

In distributed models, the vector datammm of size Ns, the number of sensors can be expressed
as the linear combination between the gain matrix GGG, the Ns×Nd matrix solving the forward
problem, where Nd is the number of dipolar sources, and the vector source jjj of size Nd:

mmm = GGGjjj + εεε (2.18)

where the Ns × 1 vector εεε is the additive instrumental noise.

2.6 Solving the inverse problem using the Maximum

Entropy on the Mean framework

The inverse problem of the distributed model can be solved within the MEM framework. The
MEM framework uses a Bayesian probabilistic approach, where the source jjj is considered
as an observation of the continuous random variable JJJ that describes the dipole current
intensities. MEM uses a reference or a prior distribution µ and solves the inverse problem by
finding a trade-off between prior information and data fit, i.e. by maximizing the relative
entropy (i.e. minimizing the Kullback-Leibler divergence) between the source distribution
and the reference distribution, under the constraint of explaining the data.

The source JJJ can be decomposed into the expectation of JJJ , corresponding to the source
of interest, and a zero-mean additive physiological noise nnn: JJJ = E[JJJ ] + nnn. Equation (2.18)
can be then written:

mmm = GGG(E[JJJ ] + nnn) + εεε = GGGE[JJJ ] +GGGnnn+ εεε = GGGE[JJJ ] + eee (2.19)

where eee is the combination between the physiological and instrumental noise.
To solve this equation, the MEM framework regularizes the inverse problem by incorporat-

ing prior on JJJ in the form of a reference distribution µ(jjj). The relative entropy, also known
as Shannon entropy or mu-entropy, can then be used to quantify the divergence between the
reference µ and the probability distribution p of the random variable JJJ :

Sµ(p) = −
∫
p(jjj) ln

p(jjj)

µ(jjj)
djjj (2.20)
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The relative entropy measures the difference between the two probabilities, and the positive
variant of Equation (2.20) is the Kullback-Leibler divergence between µ and p. In other
words, it calculates the amount of information that is needed to be added to the reference
distribution µ to explain p, i.e. it measures the amount of “surprise” (new information)
received from the distribution p with regards to the prior µ. This measure is negative, and
Sµ(p) is equal to 0 when p is equal to µ.

The objective of the MEM framework is to find the distribution p explaining the data
that maximizes the entropy. The corresponding distribution p̂ is defined as:

p̂ = arg max
p

Sµ(p), given mmm = GGG

∫
R
jjjp(jjj)djjj + eee (2.21)

In practice one does not need to calculate p̂ explicitly. Indeed the solution of the inverse
problem, i.e. the current density ĵ̂ĵj, is obtained as the expected value of p̂:

ĵ̂ĵj =

∫
R
jjjp̂(jjj)djjj (2.22)

The solution of this equation can be solved using the free energy function associated with
the reference distribution µ:

Fµ(sss) = ln

∫
exp(sxsxsx)µ(xxx)dxxx (2.23)

Solving Equation (2.22) consists then of maximizing the cost function D(λλλ) (Demoment,
1989; Amblard et al., 2004):

λλλ∗ = arg max
λλλ

D(λλλ) with D(λλλ) = λλλmmm− Fµ(GGGλλλ)− 1

2
λλλtΣeΣeΣeλλλ (2.24)

Where ΣeΣeΣe is the noise covariance matrix. ΣeΣeΣe is often estimated from segments of ongoing
background activity. To avoid numerical instability, the off-diagonal elements of ΣeΣeΣe are usually
set to zero, and only the diagonal elements are estimated.

It can be shown that in this equation, the function D(λλλ) to maximize is a strictly convex
function, which means that the maximum value is unique and it is not possible to fall into a
local maximum. Once the optimal lambda is found, the current density source solution ĵ̂ĵj can
be obtained by:

ĵ̂ĵj = ∇sssFµ(sss)|sss=GGGtλλλ∗ (2.25)

The main originality of MEM framework is the degree of flexibility offered in the definition
of prior information through the so-called reference distribution, µ. It is possible to obtain
solutions that are widely known in the literature with the right choice of µ. Different source
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imaging techniques could then be obtained within the MEM framework. Moreover it is worth
noting that in practice, the optimization problem of MEM depends only on the parameter λλλ
which is the same dimension as the number of sensors Ns, thus reducing the computational
load compared to methods which need to solve an optimization problem of the dimension of
the number of dipolar sources Nd.

2.6.1 Minimum norm estimate

If the reference distribution is defined as a Gaussian distribution with zero mean and a covari-
ance matrix ΣjΣjΣj, the MEM optimization problem can be solved analytically. Equation (2.23)
becomes:

Fµ(sss) =
1

2
ssstΣjΣjΣjsss (2.26)

Therefore the cost function D(λλλ) can be written as:

D(λλλ) = λλλtm− 1

2
(GGGtλλλ)tΣjΣjΣj(GGG

tλλλ)− α

2
λλλtΣeΣeΣeλλλ

= λλλtmmm− 1

2
λλλt
(
GGGΣjΣjΣjGGG

t + αΣeΣeΣe

)
λλλ

(2.27)

To solve Equation (2.24), one can observe that D(λλλ) is convex. Therefore, the maximum
of D(λλλ) can be found by solving the equation dD

dλλλ
= 0:

dD(λλλ∗)

dλλλ
= 0 ⇐⇒ mmm− (GGGΣjΣjΣjGGG

t + αΣeΣeΣe)λλλ
∗ = 0

⇐⇒ λλλ∗ = (GGGΣjΣjΣjGGG
t + αΣeΣeΣe)

−1mmm

(2.28)

Therefore, once the optimal λλλ∗ is found, the corresponding current density solution within
the MEM framework Equation (2.25) can be solved:

ĵ̂ĵjMNE = ∇sssFµ(sss)|sss=GGGtλλλ∗

= ΣjsΣjsΣjs|sss=GGGtλλλ∗

= ΣjΣjΣjGGG
t(GGGΣjΣjΣjGGG

t + αΣeΣeΣe)
−1mmm

= WWWMNEmmm

(2.29)

where WWWMNE is defined as the resolution kernel. This solution is called the Tikhonov
regularization of Equation (2.19) which is more known in the source imaging community as
the Minimum Norm Estimate (MNE), as first proposed in Hämäläinen and Ilmoniemi (1994).
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As indicated by the name of the technique, MNE will exhibit the solution with the lowest
`2-norm with the constraint of the data fit. The MNE solution is still widely used in the
community, and noise-normalized version of MNE exist, as explain in Section 2.6.1.1 and in
Chapter 5.

In practice, since the a priori variance of the currents is unknown, a hyperparameter α
controlling the proportion between the contribution of the noise and source of interest to the
data is often introduced. The source covariance matrix can be written as ΣjΣjΣj =

Σ′jΣ′jΣ′j
α
. The MNE

solution of Equation (2.29) then becomes:

ĵ̂ĵjMNE = Σ′jΣ′jΣ′jGGG
t(GGGΣ′jΣ′jΣ′jGGG

t + αΣeΣeΣe)
−1mmm (2.30)

A high value of α indicates that noise is an important contributor to the data, which tends
to reduce the amplitude of source current. In some circumstances, α can be approximated as
the inverse of the signal-to-noise ratio3.

A good estimation of α is crucial, as different values of α can lead to different source
imaging reconstructions. Different methods in the literature have been presented to estimate
this hyperparameter. One of the common methods is the L-curve technique (Hansen, 1992),
which uses graphical interpretation to define α as the point with the highest curvature when
plotting the curve of `2-norm of the inverse solution against its residuals, parametrized by α.
Indeed it can be shown that the MNE solution can be solved by minimizing the cost function
(Gramfort, 2009):

ĵ̂ĵjMNE = arg min
jjj
‖mmm−GjGjGj‖2

ΣeΣeΣe
+ α‖jjj‖2

ΣjΣjΣj
(2.31)

where ‖XXX‖ΣΣΣ = trace(XXX tΣΣΣ−1XXX). The solution to the L-curve is then the point of highest
curvature of ‖ĵ̂ĵj‖2

ΣjΣjΣj
against ‖mmm−GĵGĵGĵ‖2

ΣeΣeΣe
by varying the values of α. A graphical illustration of

an L-Curve can be found in Figure 2.7. Other methods exist to estimate α such as Morozov
discrepancy approach (Morozov, 1966), generalized cross-validation (Golub et al., 1979) or
the restricted maximum likelihood (Daunizeau et al., 2007).

In the present manuscript, the MNE technique has been used in the first two manuscripts
of this thesis (Chapters 5 and 6) and the α parameter has been set arbitrarily to 1/3 using
whitened gain matrices, indicating that the SNR was estimated to be 3.

MNE results tend to be biased towards more superficial sources. This tendency can be
alleviated by adjusting the source covariance matrix ΣjΣjΣj to counterbalance this bias. One
way of solving this issue is to set all the diagonal elements of ΣjΣjΣj as the norm of the columns

3see https://mne.tools/dev/overview/implementation.html#the-minimum-norm-current-estimates
for further explanation
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Figure 2.7: Illustration of the L-curve technique on EEG data for the localization using MNE of
an average visual evoked potential induced by the visual stimulation of the left hemifield. When the
parameter α was too large (here when α = 1), the source reconstruction had low amplitude and was
spatially spread. Conversely, when α is too small (α = 0.004), the maximum of localization was too
sensitive to noise. When α was chosen at the elbow of the L-curve, the source was focal and located
on the right occipital region, which is expected from the visual stimulation of the left hemifield.

of the gain matrix GGG (Lin et al., 2006). A similar approach could be used to enhance the
contribution of other modalities, such as fMRI-constrained source localization (Liu et al.,
1998).

2.6.1.1 Noise-normalized MNE: dSPM and sLORETA

As further explored in the first manuscript (Chapter 5), different variants of the MNE solution,
defined as noise-normalized versions of MNE method, have been introduced in the literature.
The aim of these approaches is to convert the inverse solution into a dimensionless statistical
quantity which is normalized with respect to a reference level (typically, baseline activity).
Z-transformation is often used on MNE maps to convert the current density values to a score
that represents the number of standard deviations with respect to background activity. To
obtain a Z-map, the variance ΣΣΣe of the sources of the background activity is computed. Then
we transform the data ĵ̂ĵjMNE by dividing the baseline standard deviation: zzz = ΣΣΣ

−1/2
e ĵ̂ĵjMNE.

Other methods of noise normalization exist, such as dynamic Statistical Parametric
Mapping (dSPM) (Dale et al., 2000) and standardized Low Resolution brain Electromagnetic
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Tomography (sLORETA) (Pascual-Marqui, 2002). The goal of these two approaches is to
normalize the MNE solution using the empirical standard deviation SSS

1/2

ĵ̂ĵj
of the effect in order

to derive a t-statistic:

t̂̂t̂t = SĵSĵSĵ
−1/2 ĵ̂ĵjMNE (2.32)

The difference between dSPM and sLORETA lies in the definition of the empirical variance
SSSĵ̂ĵj.

dSPM In dSPM method, the variability of the inverse solution is assumed to come only
from the additive noise eee. For this reason, the source jjj is not assumed to be a random
variable (which, in practice, is in contradiction with the MEM framework). This additive
noise is supposed to follow a Gaussian distribution with zero mean and covariance matrix ΣeΣeΣe.
Consequently, the empirical variance SSSĵ̂ĵj,dSPM is given by:

SSSĵ̂ĵj,dSPM = diag(WWWMNEΣeΣeΣeWWW
t
MNE) (2.33)

and the dSPM method is therefore:

tttdSPM =
√

diag(WWWMNEΣeΣeΣeWWW t
MNE)

−1

ĵ̂ĵjMNE (2.34)

tttdSPM is then a dimensionless, normalized statistic that follows a Student t-distribution,
where the null hypothesis is the absence of source activity. If the number of time samples
used to calculate the noise covariance matrix ΣeΣeΣe is large enough, then the empirical variance
approaches the true variance and tttdSPM can be then considered as a z-score (Dale et al.,
2000).

sLORETA This method is similar to dSPM but also considers that the source also
contributes to the variance. The empirical variance is then given by:

SSSĵ̂ĵj,sLORETA = diag(WWWMNE(GGGΣjΣjΣjGGG
t + λΣeΣeΣe)WWW

t
MNE) = diag(RRRMNE) (2.35)

where RRRMNE is the resolution matrix. The sLORETA solution can be then written:

tttsLORETA =
√

diag(WWWMNE(GGGΣjΣjΣjGGGt + λΣeΣeΣe)WWW t
MNE)

−1

ĵ̂ĵjMNE (2.36)

As discussed in Chapter 5, sLORETA is often called the “zero-localization error method”
since, in a noiseless case when only one dipolar source is active, the sLORETA method has
no localization bias (Pascual-Marqui, 2002).

The same statistical properties of dSPM hold for sLORETA.
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2.6.2 LORETA

Apart from the depth-weighted minimum norm, other types of constraints can be added to
the MEM solution. The spatial smoothness within the cortical surface, controlled by the
Laplacian-weighted minimum norm, can be used as one of these contraints. This method
is an equivalent to the method called Low Resolution brain Electromagnetic Tomography
(LORETA – Pascual-Marqui et al., 1995). Laplacian-weighted minimum norm tends to
find a solution which is spatially smooth by adding a Laplacian operator LLL in the source
prior (ΣΣΣjjj,LORETA = LLLΣjΣjΣj). Each source is then correlated with its neighbors, resulting in a
spatially smooth localization source map with larger patches of activity. The method was
originally introduced for volumetric source localization, but a LORETA solution constrained
to the cortical surface, cLORETA (cortical LORETA) was then proposed by Wagner et al.
(1996). However, the computation of a discrete Laplacian on a complex closed cortical surface
can lead to numeric instabilities and requires additional level of regularization (David and
Garnero, 2002).

Even if LORETA comes from the physiologically plausible assumption that the neuronal
activity of a population of neurons is affected by its connecting neighbors, LORETA is often
criticized because spatially close regions of the brain might not be directly connected, such
as the medial parts between the two hemispheres and the two walls of a gyrus. This can lead
to additional blur and misleading reconstructions (Michel et al., 2004).

2.6.3 coherent Maximum Entropy on the Mean (cMEM)

One of the inverse methods developed in our laboratory is entitled coherent Maximum
Entropy on the Mean (cMEM). It was designed within the MEM framework and uses a
data-driven approach based on the prelocalization of the source to define the reference. It
was validated multiple times with realistic simulations but also with real data acquisitions on
healthy subjects and patients with epilepsy.

2.6.3.1 Definition of the reference distribution

The main idea behind cMEM reference distribution is to consider that brain electrical activity
is organized within non-overlapping parcels with homogeneous activity within each parcel
(Amblard et al., 2004). The parcellization of the brain is based on a data-driven approach
called Multivariate Source Pre-localization (MSP) (Mattout et al., 2005). MSP uses the
information of the EEG/MEG data and the solution to the forward model to estimate
an index for each of the source. This index, which varies between 0 and 1, assesses the
contribution of every dipolar source of the distributed model to the scalp recording and can
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be interpreted as the probability that a given dipolar source is active given the data. Cortex
parcellization is then obtained using a region-growing algorithm, where the seed points are
defined as the sources exhibiting the local maxima of the MSP score. The size of the parcels
is defined a priori and usually is of the same order of magnitude as the number of sensors.
However, we have demonstrated that the size of the parcels was not an issue. Chowdhury
and colleagues investigated how cMEM was robust to the spatial scale of such parcellization,
regardless of the spatial extent of the underlying generator (Chowdhury et al., 2013).

Each of the cortical parcels is then considered to follow either an active or inactive
reference distribution. The probability for a certain parcel k to be active is defined as αk and
the reference distribution of this parcel µkcMEM can then be written as:

µkcMEM(jjjk) = αk µ
k
act.(jjjk) + (1− αk)µkinact.(jjjk)

= αkN (0,ΣΣΣk)(jjjk) + (1− αk) δ(jjjk)
(2.37)

where µkact. and µkinact. correspond respectively to the reference distributions in the active
and inactive state of the cortical parcel k. Whereas an active parcel is assumed to follow a
normal distribution of zero mean and variance ΣΣΣk, the reference distribution of a parcel in a
inactive state is a dirac distribution, thus “shutting down” all the sources in the corresponding
parcel when inactive.

In our standard implementation, the parcels are considered independent to each other4.
The reference distribution of all the sources µMEM is then defined as:

µcMEM(jjj) =
K∏
k=1

µkcMEM(jjjk) =
K∏
k=1

[αkN (0,ΣΣΣk)(jjjk) + (1− αk) δ(jjjk)] (2.38)

where K is the total number of parcels.
The formula for the estimated cMEM source can then be derived from Equations (2.25)

and (2.38). The cMEM estimate for each parcel ĵ̂ĵjkcMEM can be written:

ĵ̂ĵjkcMEM =
αk

(1− αk) exp
(
−F k

act.(GGG
t
kλ
∗λ∗λ∗)
) [ΣΣΣkGGG

t
kλ
∗λ∗λ∗
]

(2.39)

where GGGk is the subset of the lead field matrix GGG for dipolar sources belonging in parcel
k, and F k

act. is the free energy function for parcel k when it is active. Therefore, we have:

F k
act.(GGG

t
kλ
∗λ∗λ∗) =

1

2
λ∗λ∗λ∗tGGGkΣΣΣkGGG

t
kλ
∗λ∗λ∗ (2.40)

Contrary to the previous inverse methods, cMEM has no analytical solution since the
estimation of λ∗λ∗λ∗ still need to be done to obtain ĵ̂ĵjcMEM.

4The use of a connected graph to describe the relationship between parcels has been already introduced
from the theoretical point of view in Amblard et al. (2004).
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2.6.3.2 Initialization of αk and ΣΣΣk

Two parameters need to be initialized for the estimation of cMEM: the probability for parcel
k to be active αk, and the covariance matrix of the active reference distribution for the kth
parcel ΣΣΣk. αk is usually initialized as the median MSP score from all the sources within the
parcels.

ΣΣΣk is defined as:

ΣΣΣk = ηηηWWW k(σ)tWWW k(σ) (2.41)

where ηηη = 0.05 1
#Pk

∑
i∈Pk

ĵ̂ĵj2
MNE(i) is used as a scaling factor. Pk is the set of all the sources

in parcel k and #Pk is its cardinal.
WWW k(σ) is a smoothing operator for parcel k. It is based on the diffusion-based spatial

prior, proposed by Harrison et al. (2007), which is an extension of the discrete Laplacian
operator along a geodesic cortical surface. σ is an index of smoothness, indicating the strength
of the spatial smoothness. For this manuscript, σ is set to 0.6. The calculation of WWW k(σ) was
originally proposed by Friston et al. (2008):

WWW k(σ) =
8∑
i=1

σi

i!
SSSi ≈ exp(σSSS) (2.42)

Similarly to LORETA, the WWW k matrix allows us to add local smoothness, therefore
allowing a more physiologically plausible solution.

2.6.3.3 Detailed evaluation of cMEM methodology

Numerous studies have used cMEM as an inverse source localization method, either to
validate the method or to use it as a source localization procedure of interest. An initial
version of cMEM (without spatial smoothing) was first introduced in Amblard et al. (2004)
using the MEM framework proposed in Clarke and Janday (1989). In Amblard et al. (2004),
the method was validated using synthetic data and compared to other techniques, namely
LORETA and S-MAP (Baillet and Garnero, 1997), a Bayesian approach using anatomical and
temporal a priori information to solve the inverse problem. cMEM technique outperformed
the latter techniques in terms of localization accuracy thanks to its ability to “shut down”
cortical parcels which do not contribute to the data.

In Grova et al. (2006a), cMEM was further validated using realistic simulations of interictal
epileptic discharges (IEDs) contaminated by background EEG noise recorded from a patient.
cMEM and LORETA-like inverse methods were tested within different level of signal-to-noise
ratios and spatial extensions of the generator. Good performance of cMEM was confirmed
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and this study proved that cMEM was sensitive to the spatial extent of the underlying source.
This was the first time spatial extents of source maps were carefully evaluated, using the
receiver operating curve analysis and its Area Under the Curve (AUC). A specific AUC
metric was introduced for this purpose.

The comparison of inverse methods in the localization of IEDs of 15 patients was performed
in Heers et al. (2015). The performance of cMEM was compared to Bayesian methods similar
to MNE and LORETA. cMEM was shown to outperform the other techniques in terms of
concordance with intracranial results and spatial spread of the reconstruction.

In Chowdhury et al. (2016), cMEM was compared to the 4th order Extended Source
Multiple Signal Classification (4-ExSo-MUSIC), another inverse method which is sensitive to
the spatial extent of the source, using realistic simulations generated using a biophysical com-
putational model. While both methods exhibited excellent performance in the reconstruction
of the simulated source, cMEM was the only one able to reconstruct several simultaneous
sources.

Pellegrino et al. (2018) aimed at comparing the performance of cMEM with the ECD
technique in the localization of interictal epileptic discharges. This study is of particular
interest since ECD is the only localizing technique which is approved by the Food and Drug
Administration for the localization of epileptic events. On a study on 49 epilepsy patients,
cMEM was shown to exhibit a better accuracy and was more sensitive to the spatial extent
of the sources than the ECD solution.

cMEM was also used to compare electrical or magnetic brain activity to the hemody-
namic response recorded with fMRI during similar epileptic discharges recorded either using
EEG/MEG or simultaneous EEG-fMRI. In Grova et al. (2008), cMEM source localization of
IEDs in EEG was compared to the fMRI BOLD clusters of the same events. On this study
involving 9 patients, for most of the patients, BOLD clusters were highly concordant with
the cMEM reconstruction indicating a spatial relationship between the distributed source
imaging technique and the hemodynamic response elicited by fMRI. This finding was further
confirmed in Heers et al. (2014), where each of the BOLD cluster was compared to the
localization of the average IEDs in 21 patients, this time considering source localization
obtained from both EEG and MEG recordings. Again, it was proved that ESI and MSI
were concordant with the hemodynamic response (see Figure 2.8). In addition, the study
demonstrated that the fMRI clusters which were the most concordant to ESI or MSI were
the ones displaying the most significant t-value.

In Grimault et al. (2014), cMEM was used as the inverse solution in a short-term memory
task and helped to prove that the brain activates more parts of the frontal, temporal and
parietal regions as the number of items stored in memory increases. cMEM allowed having a
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fine localization of the recruited regions, thus it helped understanding of the physiological
processing of short-term memory.

In Grova et al. (2016), cMEM was used to estimate intracranial EEG (iEEG) tracing
based on MEG data. To do so, cMEM was applied to IED recorded in MEG, and the source
reconstruction was projected on the iEEG contacts using the iEEG forward model. The
comparison between the MEG-estimated iEEG traces and the actual recorded iEEG signals
was used to assess the concordance between both modalities, iEEG being considered as the
clinical gold standard. The study demonstrated an excellent correspondence between MEG
and iEEG in 4 out of 5 patients, the generator being too deep for the last patient. It notably
exhibited an excellent concordance between the number of iEEG contacts involved during
IEDs in both approaches. This study was our first attempt at a quantitative evaluation of
the ability of cMEM to recover the spatial extent of the generators using clinical data. See
Figure 2.9 for an illustration.

Another use of cMEM can be using the reconstruction as prior for functional Near-
InfraRed Spectroscopy (fNIRS). Specifically, in Pellegrino et al. (2016b), cMEM was used to
help determine a optical montage for the placing of fNIRS sources and optode detectors.

cMEM was also used as a potential candidate to perform EEG or MEG functional
conductivity. Hassan et al. (2016) tested source imaging techniques, one of them being cMEM,
with different connectivity measures, to test the performance of source connectivity using
these methods. This study indicated that MNE was preferable to the other tested techniques.
It is possible that cMEM did not perform well in the detection of distant networks because
of its ability to cancel the parcels which are distant from the region contributing the most to
the data.

Source imaging using fusion between EEG and MEG has been performed using cMEM
in Chowdhury et al. (2015). The fusion was obtained by combining the MSP score from
both modalities using a logical OR operator, resulting in a reference distribution using the
complementary information of EEG and MEG. Using realistic simulations, the result of the
fusion method was proved to be more accurate than cMEM when applied to either EEG or
MEG (see Figure 4.3). This finding was further validated using epilepsy data (Chowdhury
et al., 2018). In a study with 26 patients, the sources using the fusion technique were found
to be more concordant with the known epileptogenic focus than the EEG or MEG source
imaging. This study also introduced the concept of consensus maps, which allow for more
robust and more reliable results than simple averages. Consensus maps were very similar to
the automatic IED clustering technique introduced in Chapter 7.
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2.6.4 Wavelet-based Maximum Entropy on the Mean (wMEM)

and ridge MEM (rMEM)

Other reference distributions, derived from cMEM, can be used for particular cases.
The wavelet-based MEM (wMEM) uses the same reference distribution of cMEM, but

instead of applying the MEM framework for each time sample, the technique was applied to
every coefficient of a wavelet-based time-frequency decomposition. This method, introduced in
Lina et al. (2014), uses a discrete wavelet representation to transform the EEG/MEG temporal
signal into time-frequency bins. Each of the bin contains a wavelet coefficient indicating the
strength of the signal at a particular time and frequency. The use of discrete wavelets allows
an efficient sparse representation of the recorded signal, in a non-redundant manner, offering
interesting denoising properties. The MEM framework was performed on the frequency
decomposition using a reference distribution similar to cMEM. The reconstruction source
is then a set of wavelet coefficients. An inverse wavelet transform is needed to reconstruct
the time course signals in the source space, using either the full frequency band or a more
specific one, which allows the study of the localization of specific brain oscillations. This
technique is useful for the localization of oscillatory patterns such as bursts of rhythmic
activity, commonly found in some patients with epilepsy.

wMEM was used to localize the generators involved in the onset of the epileptic seizures.
In Pellegrino et al. (2016a), the authors localized the onset of seizures of 13 patients and
tested the concordance with the clinically defined Seizure Onset Zone (SOZ) for these patients
(see Figure 4.4). The study proved that wMEM was concordant with the SOZ for 81 % of
the seizures (increasing to 90 % when considered only MEG localizations) and was therefore
a useful tool for the presurgical investigation.

Moreover, wMEM was also used to localize fast oscillations (40-160 Hz) (von Ellenrieder
et al., 2016) and High-Frequency Oscillations (HFO) (80-500 Hz) (Papadelis et al., 2016)
in MEG and EEG. The authors in von Ellenrieder et al. (2016) developed a method to
semi-automatically find pathological rhythmic events between 40 Hz and 160 Hz and used
wMEM to localized these events. wMEM reconstructions of fast oscillations overall showed
excellent concordance with the proven epileptogenic zone, thus proving that wMEM was a
suitable method in the detection of rapid oscillations. In Papadelis et al. (2016), the authors
used the same detector proposed in von Ellenrieder et al. (2016) to localize HFO from
pediatric epilepsy patients . Again, wMEM showed good concordance with the seizure onset
zone.

Another variant of wMEM, named ridge MEM or rMEM, was introduced in Zerouali et al.
(2014) to study the time-frequency properties of sleep spindles. Ridges are the curves formed
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by the local maxima of the time-frequency plane and are of particular interest to detect
frequency-locked events that change over time and space. Source imaging using wMEM can
be performed on each element of the ridge curve in order to only localize the generators
of frequency-locked activity. rMEM was used in Zerouali et al. (2014) to show that earlier
synchrony during sleep spindles was associated with mainly intra-hemispheric connectivity
whereas later synchrony was associated with global long-range connectivity.

2.6.5 Other inverse solutions

Several other source localization have been proposed to solve the distributed inverse problem
and the list provided in this Chapter is not exhaustive: we refer the interested reader to these
reviews of the field (Baillet et al., 2009; He et al., 2018; Michel and Brunet, 2019).

LAURA

It is worth citing the Local Auto-Regressive Average (LAURA) model which has been largely
used (Grave de Peralta Menendez et al., 2001). LAURA is similar to the MNE approach but
differs in the definition of the source covariance matrix ΣjΣjΣj . In LAURA, the covariance matrix
is written as:

ΣjΣjΣj = MMM tMMM , where MMM = WAWAWA (2.43)

where WWW is a matrix whose diagonal elements correspond to the norm of the column of
the lead field matrix GGG and AAA is a matrix related to the spatial distance to the neighbor
sources.

Sparse Solutions

While MNE corresponds to solving the inverse problem with an `2 regularization, sparse
solutions have also been used in electrical and magnetic source imaging. One of the solution
using sparse constraint is the minimum current estimate, or LASSO regularization, which is
a solution that imposes sparsity directly on the sources by using `1-norm regularization.

Note that these kinds of estimates usually provide unrealistic estimates of the time course
of the sources. To overcome this issue, combination of `1 prior in space and `2 prior in time
have been proposed (Gramfort et al., 2012).
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2.7 Conclusion

In this chapter, the basic principles of EEG and MEG, from the physiology of their generators
to the technical aspects of source localization, were introduced. First, a summary of the
functioning of a neuron, especially the pyramidal cells, which are the main contributors of
EEG and MEG, was presented. Then, the technical aspects of EEG or MEG recording were
introduced, with a discussion on the different type of EEG and MEG sensors. Finally, the
different techniques used to perform source imaging were widely discussed. Source localization
in EEG and MEG can be used in a variety of applications, and have been applied in the
manuscripts of this thesis either on evoked potentials or on epileptic discharges.
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Figure 2.8: Illustration of a concordance of BOLD activation with ESI/MSI on a patient with
occipital lobe epilepsy. A: (1): Activations (red) and deactivations (blue) of the BOLD response
of the interictal discharges (IEDs) (ii) corresponding BOLD clusters. B:(i): Combined BOLD t-
map (red: activation, blue: deactivation, green: most significant BOLD cluster) projected over the
cortical surface. (iii): MEG signals and corresponding MSI results of the averaged IEDs with the
superimposition of the most significant project BOLD cluster. C: Same as in B for EEG and ESI.
This figure nicely illustrates the different characteristics of ESI and MSI: The ESI peak is found
on top of the gyration, whereas the peaks of the MSI findings are localized over the borders of the
sulci, which are most often the generators of tangential sources. Please note that ESI and MSI are
concordant with different parts of the BOLD cluster. Taken from Heers et al. (2014).
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Figure 2.9: Illustration of a correlation between MEG and iEEG for a patient with right orbitofrontal
epileptic discharges. (a) MEG topography at the peak of the averaged epileptic spike. (b) iEEG
implantation overview where each iEEG contact is represented in 3D as a green sphere. (c) cMEM
source localization results and corresponding VMEG iEEG potentials estimated from MSI at the peak
of the averaged epileptic spike. (d) Actual iEEG recording ViEEG (e) Time courses of the estimated
iEEG VMEG potentials estimated over all contacts obtained for all epileptic spikes (average time
course in red, ±standard deviation in blue). (f) Time courses of the actual ViEEG potentials recorded
over all contacts for all epileptic spikes.
This figures shows an excellent spatial concordance between cMEM sources, estimated VMEG
potentials and recorded ViEEG involving mainly a lateral right orbitofrontal generator. A secondary
right temporal source involving the deepest contacts of RA electrodes was also found with VMEG
and confirmed with ViEEG. Taken from Grova et al. (2016).
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Simultaneous recording of EEG and fMRI

This chapter will introduce the technique of functional magnetic resonance imaging (fMRI)
and how it can be combined with a simultaneous electroencephalography recording (EEG) to
explore brain activity.

After briefly describing the history of MRI and functional MRI, this chapter will present
the technical aspects associated with the recording and analysis of MRI and fMRI data,
before focusing on the specificity of the simultaneous EEG-fMRI recording.

In this chapter and the following, anatomical MRI imaging is presented extensively,
therefore before we start it is important to clarify important vocabulary used when dealing
with the orientation of the MRI images. Figure 3.1 presents the three standard orientations
of a brain MRI image (axial, sagittal, coronal), as well as the corresponding directiodens of
the orientation.

3.1 History of magnetic resonance imaging

The origin of MRI comes with the discovery of a magnetic property of the nuclei of atoms
composed with an odd number of nucleons (protons and/or neutrons) called the Nuclear
Magnetic Resonance, or NMR (Rinck, 2018). This phenomenon was described independently
in 1946 by two scientists, Felix Bloch and Edward M. Purcell, who were later awarded the
Nobel Prize in Physics in 1952.

A few years later, the Swedish scientist and doctor Erik Odeblad found the potential of
this technique in medicine and was a precursor of MRI in bioimaging. With the help of the
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Figure 3.1: MRI orientation of the slices with axial (or transversal), sagittal and coronal orientation
of a T1-weighted MRI. The respective directions are: Superior (S) to Inferior (I); Left (L) to Right
(R) and Anterior (A) to Posterior (P).

physicist Gunnar Lindström, he submitted the first works on NMR data on biological data
in 1954.

In the 50s and 60s, significant progress was made in the context of instrumentation
and fundamental knowledge of NMR properties, when applied to either animal or human
participants. In the early 70s, Paul C. Lauterbur, a professor of chemistry, produced the
first images based on NMR signals and was the first to publish scholarly articles about
them (Lauterbur, 1974). He called these images Zeugmatograms (see Figure 3.2). The term
zeugmatogram, unlike the technique, did not stand the test of time, and was later replaced by
NMR imaging and then MRI. Lauterbur’s imaging technique was improved in 1975 by the
Swiss physical chemist Richard Ernst who had the idea of performing image reconstruction
in the Fourier domain, which is the fundamental process which is still in use in today’s MRI
reconstructions. Ernst’s study on MRI development was awarded a Nobel prize in Chemistry
in 1991. In the same period, Peter Mansfield developed the use of gradients of magnetic fields
during the image acquisition, thus reducing the recording time from several hours to just a
few minutes. This important breakthrough permitted a new way of imaging in vivo subjects,
and notably soft tissue, in full complementarity with X-ray-based computed tomography.
MRI was therefore at the origin of a new state of the art approach and practice in medical
imaging. Both Lauterbur and Mansfield received the Nobel prize in Physiology or Medicine
in 2003 for their significant work in the development of MRI. In the following decades, MR
imaging acquisition techniques were greatly improved and became a valuable clinical tool.

The first functional MRI findings were reported in 1990 by Ogawa and colleagues (Ogawa
et al., 1990), using the paramagnetic properties of deoxyhemoglobin as an intrinsic contrast
agent for MRI. The authors coined the term Blood Oxygenation Level-Dependent (BOLD)
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Figure 3.2: First zeugmatogram of animal MR images. Proton density map of the thoracic cavity
of a live mouse. Taken from Lauterbur (1974)

response, which is still in use today. The first human fMRI images were acquired a few years
later (Kwong et al., 1992).

The first study introducing MRI-compatible electrodes in the MR scanner during an
fMRI experiment was performed in 1993 by Ives and colleagues (Ives et al., 1993). While
fMRI experiments can recorded using a wide variety of imaging techniques, the current most
commonly used technique is the single-shot Echo Planar Imaging (EPI). EPI was proposed
in the 70s by Mansfield, but it is only since the mid 1990s that this technique has become
widely available (Schmitt et al., 2012). Moreover, several sequences of multiband EPI have
been proposed by the community, leading to increased EPI sequence speeds by a factor of 30
(Moeller et al., 2010; Feinberg and Setsompop, 2013).

3.2 Fundamentals of magnetic resonance imaging

Magnetic Resonance Imaging requires the use of a large static magnetic field B0 (typically
from 1 T up to more than 10 T). In the human body, some atoms, including hydrogen 1H
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(i.e. single protons) have a small magnetic dipole moment that aligns with this magnetic field,
in a similar fashion to a compass needle pointing to the direction of the Earth’s magnetic
north. The magnetic moments of the Hydrogen atoms add up, and give rise to a macroscopic
magnetization vector parallel to the magnetic field.

The magnetization vector can be tilted from the orientation of the static field by applying
a radiofrequency magnetic pulse B1, rotating at the so-called Larmor frequency, which
is the frequency which provokes a change in the orientation of the magnetization vector.
This physical phenomenon is called the Larmor precession. Once the excitation is over, the
net magnetization gradually returns to its original state. This effect is called relaxation
and is characterized by two time constants: the return of the longitudinal component of
magnetization vector along the axis of the static magnetic field B0 which follows an increasing
exponential with time constant T1, and the decay of the transverse magnetization following
a decreased exponential with time constant T2.

T1 and T2 depend on the strength of the magnetic field, and the type of tissue in which
the hydrogen atom is located. In the human brain, in a 3-T scanner, the T1 values vary
roughly between 850 ms (in the white matter) to 4500 ms (in the cerebrospinal fluid – CSF)
and T2 values range between 80 ms (white matter) to 2000 ms (CSF) (Wansapura et al.,
1999). Considering that the MRI signal is most sensitive to the density of hydrogen 1H, it
is possible to develop MRI acquisition sequences that exploit whether T1 or T2 contrasts,
which is why MRI as an imaging technique is so well adapted to study soft tissues within the
body. T1-weighted techniques are commonly used to visualize and quantify brain morphology,
whereas T2-weighted acquisition are often used to detect lesions (Nishimura, 2010).

Another additional source of signal decay of the transverse magnetization components is
due to local inhomogeneity of the static magnetic field B0, provoking a desynchronization
of the magnetization of the atoms. Such decay, combined with the T2 related decreased of
magnetization in the transverse plane, is characterized by the time constant T2*, which
is much shorter than the T2 constant. The T2* constant is influenced by local field in-
homogeneities created by local artifacts (e.g. local influence of dental work on the MRI
signal), but also importantly by the local amount of deoxyhemoglobin molecules, which act
as an intrinsic contrast agent and locally distort the static magnetic field because of its
paramagnetic characteristics. Consequently, T2*-weighted images are sensitive to local change
in deoxyhemoglobin. This is the main physical principle used to track the hemodynamic
response of the brain to a specific event by measuring the so-called Blood Oxygenation-Level
Dependent (BOLD) signal.

Although in some rare cases 3D acquisition is used, in general MRI acquisition consists
of acquiring a series of 2D slices of the brain in any of the three standard directions. To
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do so, gradient magnetic fields are used in addition to the main field. These gradient fields
slightly modify the overall magnetic field which allows the Larmor frequency of hydrogen
1H to vary slightly as a function of their position in space. By tuning the frequency of the
radiofrequency pulse B1, the signal becomes excited and can be imaged from one specific slice
of the head, in any orientation. MRI scanners are quite versatile and offer several ways to
explore brain anatomy and function, through the tuning of appropriate sequences. While T1-
and T2-weighted MRI can be used for anatomical imaging, diffusion MRI measure the local
anisotropy of the water in the white matter to generate images of the fiber tracks within the
white matter (Wu and Miller, 2017). Magnetic resonance angiography is used to accurately
map blood vessels vessels (Lim and Koktzoglou, 2015). Magnetic resonance spectrography
measures the local concentrations of some metabolites instead (Lim and Koktzoglou, 2015).
The final two techniques worth mentioning in this non-exhaustive list of advanced MRI
sequences are perfusion MRI, which measures the delivery of oxygen and other nutrients to
organs and tissue (Günther, 2014), and myelin water imaging, which measures and quantifies
the local myelin loss in patients with multiple sclerosis (Kolind et al., 2012).

3.3 Functional Magnetic Resonance Imaging

MRI can be used to explore the brain functions of a living subject using functional MRI
(fMRI). As mentioned previously, an fMRI signal is obtained by recording T2*-weighted
images, and is sensitive to local distortion of the magnetic field induced by the presence
of de-oxygenated hemoglobin (or deoxyhemoglobin). The signal recorded by the fMRI, the
so-called blood oxygenation-level dependent (BOLD) signal, is inversely proportional to
the local content of deoxyhemoglobin (Ogawa et al., 1990), and therefore depends on local
changes in cerebral blood volume and cerebral blood flow.

BOLD response is then indirectly related to the underlying neuronal activity through
the so-called neurovascular coupling process. Although, the relationship between activity
of the neurons and the corresponding hemodynamic response is still not fully understood
(Wan et al., 2006), several theoretical models have been suggested to define the neurovascular
coupling (Buxton et al., 1998; Friston et al., 2000; Sotero and Trujillo-Barreto, 2008; Phillips
et al., 2015; Iadecola, 2017). An illustration of a typical hemodynamic response to a transient
increase in neuronal activity is presented in Figure 3.3. The relation between neural response
and the BOLD response is then defined using different parameters of the hemodynamic
response, namely the Cerebral Blood Flow (CBF), the Cerebral Blood Volume (CBV), and
the Cerebral Metabolic Rate of Oxygen consumption (CMRO2), i.e. the proportion of oxygen
consumed by the tissue. During neuronal activity, the first observed physiological phenomenon
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is an increased of CMRO2 due to the demand for oxygen by the active neurons. This process
creates a short and fast initial decrease in BOLD response corresponding to a local increase in
deoxy-hemoglobin concentration: the so-called initial dip (Buxton, 2001). The physiological
response to the increase of oxygen consumption is the local vasodilatation of the arterioles,
inducing a large local increase of CBF. Increasing CBF reduces the local concentration of
deoxyhemoglobin by dilution, thus increasing the BOLD response. On the other hand, due to
the compliance structure of the membrane of the veins, CBV increases as well, which has the
effect of increasing the local amount of deoxyhemoglobin, thus reducing the BOLD response.
However, during the first 5-10 s following the initial dip, the effect of CBF is stronger than
the increase in CMRO2 and CBV, thus inducing a large increase in the BOLD response. This
is called the “washout effect” (Hoge et al., 1999). After the response, the levels of CMRO2,
CBF, and CBV progressively returns to their baseline levels. However, CBV takes more time
to reach its physiological level, resulting in CMRO2 and CBF inducing a late decrease in
BOLD response called the undershoot.

It is worth mentioning that in some cases, neuronal activity, especially epileptic discharges,
are associated with negative BOLD responses instead of positive responses (Mullinger et al.,
2014; Mayhew et al., 2016). The physiological interpretation of the deactivation patterns
remains unclear possibly, reflecting an active neuronal inhibition, an inadequate perfusion of
tissue or the shunting of blood flow (Kobayashi et al., 2006; Sten et al., 2017).

3.4 Simultaneous EEG-fMRI recording

As mentioned in Section 2.3, EEG is a direct measure of neuronal activity with a good
temporal resolution (around 1 ms) but suffers from a poor spatial resolution and a relative
incapacity to detect deep seated generators (Mulert and Lemieux, 2010). On the other hand,
fMRI is a technique which allows the monitoring of brain activity within the whole head with
an excellent spatial resolution but has a temporal resolution of 1 s and is an indirect measure
of neuronal activity. Combining both EEG and fMRI simultaneously was first utilized in the
1990s and the complementary nature of both modalities offers a larger picture and a better
understanding of some brain mechanisms. However, recording EEG in the presence of a high
magnetic field is a challenging task because of the inherent artifacts induced by the presence
of metal electrodes in the MR scanner, as described in Section 3.4.1.
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Figure 3.3: A typical haemodynamic response function following a stimulus, showing a negative
initial dip, a strong positive BOLD response, and a subsequent negative undershoot. These phenomena
can be explained by the different time constants of the underlying physiological parameters: the
metabolic rate of oxygen consumption (CMRO2), the cerebral blood flow (CBF), and the cerebral
blood volume (CBV). Taken from Deichmann et al. (2010).

3.4.1 MR-related EEG artifacts

Recording EEG in the MR scanner is a challenging task.The EEG signal is affected by
different kinds of artifacts, which impacts the validity of the ESI results. Any movement of
electric wire in the presence of a high magnetic field will induce currents that will contribute
to the ongoing EEG signal. This is the reason why electric wires should be immobilized with
sand bags and the patient’s head should be kept still, ideally with vacuum cushions, during
simultaneous EEG-fMRI recordings (Benar et al., 2006).
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Changes of the magnetic gradients, which are required during the fMRI acquisition, will
also induce an artifact in the EEG of a far larger amplitude than background EEG activity:
the so-called gradient artifact. Consequently, in order to successfully correct the data from the
gradient artifact, the EEG amplifier used for the EEG-fMRI analysis should be characterized
by a large dynamic range and sampling rate. Several methods have been proposed to remove
this artifact (De Munck et al., 2013; Grouiller et al., 2007). The most popular method is
the Artifact Average Subtraction (AAS) (Allen et al., 2000), which is based on averaging a
large number of occurrences of the gradient artifact, followed by a subtraction of this artifact
model to the EEG data. Thanks to the reproducibility and stability of the gradient artifact,
this method is able to remove most of the artifact without altering the signal of interest
(Grouiller et al., 2007). AAS can perform even more efficiently when the clocks of the fMRI
and the EEG amplifier are synchronized, which result in a better modelling of the gradient
artifact (Mandelkow et al., 2006; Mullinger et al., 2008b). It is worth noting that the gradient
artifact is sensitive to how the subject and the EEG equipment are installed in the MRI,
and it is possible to reduce the effect of gradient artifact on the EEG signal with a careful
adjustment of the subject’s axial position (Mullinger et al., 2011) and with a optimizing
EEG cap-cabling configuration (Chowdhury et al., 2019). It is also possible to avoid the
occurrence of gradient artifacts by creating small quiet periods without fMRI acquisition. In
other words, during these periods of time, the gradient magnetic fields are not active, and
therefore prevents the appearance of an artifact. The so-called sparse fMRI sequences have
been proposed in multiple studies (Mulert and Lemieux, 2010; Scheeringa et al., 2011; Leicht
et al., 2016), even in multiband fast fMRI sequences (Uji et al., 2018).

Another phenomenon, called the BallistoCardioGram (BCG) or pulse artifact, also greatly
affects the EEG quality. This artifact appears 100–200 ms after each heartbeat. The main
contributors of the artifact are small pulse-related head rotations of the subject (Yan et al.,
2010; Mullinger et al., 2013a). Contrary to the gradient artifact, the shape and amplitude
of this artifact vary over time, following heart beat variability. As a result, this artifact is
more difficult to characterize. Several BCG artifact removal algorithms have been proposed:
Allen et al. (1998) developed a method very similar to AAS, consisting of estimating the
averaged artifact obtained from several consecutive heartbeats before subtracting this artifact
template from the data after each heartbeat detected on ECG (see Figure 3.4 for a diagram
explaining the method) or using a more sophisticated measure of the heart activity, the
vectorcardiogram (Mullinger et al., 2008b). Nakamura et al. (2006) proposed using ICA and
discarded components contaminated by the BCG artifact. Niazy et al. (2005) considered
Optimal Basis Sets (OBS) by applying a principal component analysis on all the artifact
occurrences for each channel independently, a process which can model the average effect as

47



CHAPTER 3. SIMULTANEOUS RECORDING OF EEG AND FMRI

Figure 3.4: A diagram representing the AAS method for BCG correction. (A) The QRS complexes
are identified on the ECG recorded during the fMRI analysis. (B) The BCG artifact waveforms in
the EEG channels, following the ECG peaks, are averaged. (C) The averaged BCG artifact signal
for each channel is subtracted from the EEG signals at times corresponding to the ECG peaks. (D)
QRS complexes are then averaged and cross-creelated with the ECG signal to detect false ECG
peaks, as in (E). (F) QRS complexes which are not detected by threshold crossing are identified by
detecting an “R-R” interval between successive ECG peaks. (G) The time delay between the ECG
peaks and the BCG peaks is calculated automatically. (H) Artifactual ECG segments are discarded.
Taken from Allen et al. (1998).

well as some degrees of temporal variability in the occurrence of the artifact. Then, the authors
proposed removing the first three OBS components which were assumed to contain only BCG
artifacts. Ferdowsi et al. (2013) modeled the BCG artifact with an autoregressive model which
predicted the amplitude of the artifact at a particular time point based on the previous time
samples and the artifact of the previous heartbeat. Grouiller and colleagues (Grouiller et al.,
2007) compared four BCG artifact correction methods (AAS, PCA, ICA and an adaptive
filtering technique) on simulated and real data (spontaneous alpha rhythm and epileptic
discharges). They concluded that the AAS method was the most accurate, by correcting the
artifact without deteriorating too much ongoing EEG brain activity. Using simulated data,
they showed that the BCG artifact affected EEG signals mainly below 12 Hz. Consequently,
they claimed that, when looking at higher frequencies, the BCG artifact removal techniques
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were not useful and tended to deteriorate the data. Another group proposed a comparison
of OBS and ICA methods when using a Go/NoGo task (Vanderperren et al., 2010). The
authors concluded that both methods showed similar results but advised OBS method since
it had fewer parameters to tune.

In addition to software solutions, BCG artifacts could be solved using hardware techniques.
LeVan et al. (2013) used video recordings to track small head movements and used these
measurements as a confound to model the artifact. Luo et al. (2014) and Xia et al. (2014)
introduced a hardware solution where they insulated some electrodes of an high-density EEG
system. Those electrodes, which were still placed on the scalp, recorded only artifactual
data, in particular gradient and BCG artifacts, and no brain activity. The signal was then
cleaned from gradient artifact and was used as a regressor to remove the BCG artifact
from the non-insulated EEG electrodes. Moreover, loops made of carbon wire could also be
considered as an hardware-based approach to monitor BCG artifacts. Using this approach,
the data can then be regressed out from the EEG data using the Carbon Wire Loop (CWL)
data recorded during the fMRI experiment (van der Meer et al., 2016b; Abbott et al., 2015;
van der Meer et al., 2016a). In van der Meer et al. (2016b), the authors showed that the
CWL correction produced EEG data more comparable to EEG obtained outside the scan,
compared to conventional post-processing methods.

Other types of interference can have a negative effect on the quality of the EEG recorded
in the MR-scanner, such as the internal ventilation system (Nierhaus et al., 2013), or the
cryogenic pump (Rothlübbers et al., 2014; Kim et al., 2015). The best way to avoid these
artifacts is to turn off ventilation and helium pumping during the fMRI analysis, but it might
not always be possible to do so, due to the subject’s discomfort or hospital policy.

It is also worth mentioning that EEG electrodes, wires and equipment inside the MR
scanner can create a distortion in the magnetic field that can result in a drop of signal in
corresponding MRI images (Stevens et al., 2007; Mullinger et al., 2008a). Whereas the impact
on anatomical scans can be problematic (Mullinger et al., 2008a), fMRI images (T2*-weighted
scans) were shown to be less sensitive to these decrease in MRI signal quality caused by the
metallic equipment in the scanner (Krakow et al., 2000).

3.4.2 EEG-fMRI integration strategy

In this section, we will clarify the rationale of combining EEG and fMRI, and explain
their impact on analysis approaches and the main limitations and difficulties associated to
those approaches. Firstly, since EEG and fMRI measure two different processes, it is worth
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mentioning that we do not expect a one-by-one correspondence between EEG and fMRI
signal contributors. Indeed, some neural activity detected on EEG might not be associated
with a BOLD response, corresponding for instance to an hemodynamic response with an
amplitude that is too small to be detected, or a pathological deficit (Song et al., 2016).
Conversely, BOLD signal changes are sometimes not associated with EEG signals. Indeed,
synchronization of neuronal activity in time and space is required to generate detectable EEG
signals (because for instance of geometry favorable to signal cancellation, or deep generators)
whereas the BOLD response reflects a metabolic process that does not require synchronization
(Nunez and Silberstein, 2000).

Different methods have been proposed to integrate EEG and fMRI data. They can be
classified according to the three following categories (Jorge et al., 2013): fMRI-informed EEG
(Kiebel et al., 2008), symmetrical approaches (Valdes-Sosa et al., 2009; Daunizeau et al.,
2010), and EEG-informed fMRI (Abreu et al., 2018a).

3.4.2.1 fMRI-informed EEG

The fMRI-informed EEG approach uses fMRI results as spatial priors or constraints to solve
EEG source localization for either equivalent current dipoles method (Daunizeau et al., 2010;
Kiebel et al., 2008) or distributed models (Babiloni et al., 2004; Grova et al., 2008). In this
approach, EEG and fMRI do not need to be recorded simultaneously and, most of the time,
EEG is recorded outside the MR scanner to avoid the potential loss in quality when cleaning
EEG data from MR-related artifacts. One disadvantage of the fMRI-based constraint is that
EEG and fMRI generators are not always concordant, and can lead to false positive if the
constraint is too strong. To alleviate this problem, Bayesian techniques have been used to
reduce the contribution to the fMRI-informed prior if it is not relevant (Kiebel et al., 2008).

3.4.2.2 EEG-fMRI symmetrical approaches

EEG-fMRI symmetrical approaches propose a multimodal generative model where EEG and
fMRI data could be used jointly within a fusion process to infer underlying brain activity.
Different methods have been proposed in this context, and key approaches are presented here.
First of all, Bayesian framework can be used to obtain a source map reflecting the results of
a ESI approach as well as the BOLD response (Daunizeau et al., 2007; Luessi et al., 2011).
Another use of the Bayesian model was found in (Lei et al., 2011) to detect the common
findings between EEG and fMRI in the detection of brain networks involved during cognitive
tasks or during resting state.
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Joint Independent Component Analysis (ICA) was also proposed as a fusion approach,
where the EEG independent temporal components and fMRI independent spatial components
were combined to determine a fused BOLD and ERP response (Calhoun et al., 2005, 2009).

Ostwald et al. (2010) proposed a method analyzing the concordance between different
features in EEG and fMRI using information theory, notably the mutual information (Ostwald
and Bagshaw, 2011).

Finally, (Yang et al., 2010) presented a reciprocal approach combining EEG-based fMRI
prediction with fMRI-driven EEG estimation. EEG data were initially decomposed with ICA,
and the time courses of the independent components were used for fMRI GLM analysis. Each
of the resulting statistical maps was then used as a prior to reconstruct the EEG sources
originating the corresponding independent component, yielding a final source distribution
with improved spatiotemporal resolution. The authors validated their methods on the study
of alpha-band EEG modulations during a eyes-open-eyes-closed resting state experiment
and successfully found an increase in alpha power and alpha-band phase-synchronization in
eyes-closed condition versus eyes-open condition.

3.4.2.3 EEG-informed fMRI

EEG-informed fMRI analysis is the most common strategy considered when analyzing
simultaneous EEG-fMRI recordings. EEG can be used as a marker of neuronal activity or to
quantify specific properties of the EEG response, whereas fMRI is then used to study the
corresponding hemodynamic response elicited by such activity within the whole brain.

An overview of all the proposed methods using EEG-informed fMRI is presented in
Table 3.1. The most common method of EEG-informed fMRI is the General Linear Method
(GLM) (Friston et al., 1998), where events or signals of interest detected on EEG are used
to detect BOLD changes on the fMRI (see Section 3.4.2.4). The method presented in the
following chapters uses Dirac and boxcar functions to model neural activity elicited by
interictal epileptic discharges (IED) (Gotman and Pittau, 2011) or ERP (Debener et al., 2005;
Bénar et al., 2007; Fuglø et al., 2012; Nguyen and Cunnington, 2014; Wirsich et al., 2014).
This method consists of taking into account only the time of occurrence and potentially the
duration of the events, but is blind to other features of the IED. Other characteristics of
the IED (or ERP) have been used to help the fMRI analysis. In a study on independent
component analysis (ICA) of the BOLD signals, LeVan et al. (2010) showed a significant
correlation between the HRF and IED amplitudes, and then proved that the amplitudes
of the IEDs could be used to modulate the regressors in the GLM analysis to increase
the specificity of EEG-fMRI studies in epilepsy. Moreover, several studies have shown the
importance of modeling the stimulus onset (Debener et al., 2005; Wirsich et al., 2014; Nguyen
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Table 3.1: List of EEG features predictive of BOLD signal fluctuations of interest. Modified from
(Abreu et al., 2018a).

Type of features Name Reference
Temporal events Dirac and boxcar functions (Lemieux et al., 2001; Bagshaw et al.,

2005; Jacobs et al., 2009; Thornton
et al., 2010)

IED amplitude, energy and width (Bénar et al., 2002; LeVan et al., 2010)
IED amplitude width, slope of the ris-
ing phase, energy and spatial extent
(icEEG)

(Murta et al., 2016)

ERP amplitude and response latency (Debener et al., 2005; Wan et al.,
2006; Bénar et al., 2007; Fuglø et al.,
2012; Nguyen and Cunnington, 2014;
Wirsich et al., 2014)

Spectral features EEG power across frequency bands (Goldman et al., 2002; Mantini et al.,
2007; Tyvaert et al., 2008; de Munck
et al., 2009; Meir-Hasson et al., 2014;
Marecek et al., 2016)

Phase-amplitude coupling (icEEG) (Murta et al., 2017)
Spatial correlation
features

Spatial template from separate EEG
recordings

(Grouiller et al., 2011)

EEG microstates (Britz et al., 2010; Yuan et al., 2012;
Schwab et al., 2015)

Continuous ESI (Vulliemoz et al., 2010a)
Functional connec-
tivity

Partial directed coherence (Biazoli et al., 2013)

Phase synchronization index (Mizuhara et al., 2005; Kottlow et al.,
2012; Abreu et al., 2018b)

and Cunnington, 2014), the amplitude of the ERPs (Bénar et al., 2007; Fuglø et al., 2012;
Nguyen and Cunnington, 2014), and the latency of the ERPs (Bénar et al., 2007; Fuglø
et al., 2012). The articles presented studies in various fields, such as auditory stimulation
(Bénar et al., 2007), visual stimulation (Fuglø et al., 2012), face recognition (Nguyen and
Cunnington, 2014; Wirsich et al., 2014) and monitoring task performance (Debener et al.,
2005). A study on IEDs in intracranial EEG (iEEG) tested how different features of the
epileptic events (namely, the amplitude, the width (i.e. duration), the slope of the rising
phase, the energy and the spatial extent of the sharp wave) accounted for the variance of the
BOLD response. The authors showed that only the width of the IEDs had a significant effect
on the BOLD response, suggesting that the amplitude of the BOLD signal depends more
on the duration of the epileptic events than on the degree of neuronal activity synchrony
(Murta et al., 2016).

Other studies studies aimed at investigating the BOLD correlates of specific frequency
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Figure 3.5: Correlation between BOLD and alpha power of a individual patient (a) and on the
group analysis (b). Alpha power is associated with an activation in the thalami and putamen and a
deactivation in the occipital lobe, inferior parietal lobule, precentral gyrus, inferior frontal gyrus and
middle frontal gyrus, bilaterally. Taken from Tyvaert et al. (2008).

bands, especially the alpha band (usually 8–10 Hz) (Goldman et al., 2002; Scheeringa et al.,
2012; Wilson et al., 2019) and the gamma band (30–100 Hz) (Castelhano et al., 2014; Green
et al., 2017; Leicht et al., 2016; Mantini et al., 2007; Michels et al., 2010; Mulert and Lemieux,
2010; Rosa et al., 2010; Scheeringa et al., 2011), which were sometimes studied with other
frequency bands of interest, such as delta (0.1–4 Hz), theta (4–8 Hz), and beta (12–30 Hz)
bands (Tyvaert et al., 2008; de Munck et al., 2009; Uji et al., 2018). To do so, the power
variations of each frequency band were convolved with the canonical HRF and used as
regressors in a GLM analysis (Goldman et al., 2002; Tyvaert et al., 2008; de Munck et al.,
2009; Scheeringa et al., 2012). The illustration of the fMRI response correlated to the alpha
band is illustrated in Figure 3.5. Another study (Murta et al., 2017) used as regressors
not only the power of the alpha, beta and gamma, but also the phase-amplitude coupling.
Phase-amplitude coupling is a measure of the influence of the phase of activity at a low
frequency band in the amplitude of high-frequency activity, which was proven to be a good
model of neural functional mechanisms (see review in Hyafil et al., 2015). In the article
(Murta et al., 2017) the regressor reflecting the phase-amplitude coupling strength explained
the variance of the amplitude of the fMRI BOLD signal that had not been explained by the
band-power-related regressors alone.

Other continuous regressors can also be used to compare EEG and fMRI, such as continuous
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ESI (See review Vulliemoz et al., 2010b), which is further described in Section 4.3.3 and in
Chapter 6.

When none or few IEDs were found in EEG recorded with the fMRI, Grouiller et al. (2011)
proposed a technique to use the information of EEG recorded outside the scanner to localize
the hemodynamic response elicited by the fMRI signals. To do so, the authors proposed a
method to measure the correlation between the spatial topography of IEDs detected outside
the scanner and the EEG data recorded during an fMRI analysis. The correlation is then
convolved with an HRF and used as a regressor for a GLM analysis. The BOLD changes
detected by the GLM analysis were found to be concordant with invasive findings or with
surgical resection.

Functional connectivity, which is a measure of how different regions of the brain commu-
nicate with each other, is of particular interest, both in the fields of EEG and fMRI. Different
markers of functional connectivity were convolved with the canonical HRF to construct
regressors for the fMRI analysis, such as the partial directed coherence (Biazoli et al., 2013),
and the phase synchronization index (Mizuhara et al., 2005; Kottlow et al., 2012; Abreu
et al., 2018b). These studies permitted to better understand and to identify brain networks
during resting state (Biazoli et al., 2013), or during cognitive tasks such as an arithmetic task
(Mizuhara et al., 2005), a face recognition task (Kottlow et al., 2012) or to help identifying
the brain networks involved during IEDs (Abreu et al., 2018b).

Another important feature of EEG is the brain microstates which corresponds with several
stable brain states (usually four), lasting around 100 ms, which structure the spontaneous EEG
(Michel and Koenig, 2018). In resting-state studies of healthy volunteers, the fMRI response
to the EEG microstates has been studied based on the hypothesis that resting-state networks
are reflected in both EEG and fMRI. Predictors of spontaneous BOLD fluctuations occurring
during rest have been obtained by spatially correlating the concurrent EEG topographies
at each time point with the previously identified EEG microstates (Britz et al., 2010; Yuan
et al., 2012).

EEG-fMRI has been used to better understand the mechanisms of sleep (Picchioni et al.,
2013) and EEG has been used to define and characterize the different brain states that
occur during sleep (Berry et al., 2013). While EEG can detect the different stages of sleep,
fMRI can be used to measure the brain networks involved during each stage using functional
connectivity (Kaufmann et al., 2006). EEG-fMRI can also be used to detect the structures
involved in the production of different frequency bands related to sleep such as the alpha,
delta, and sub-delta bands (Czisch et al., 2004) and to further understand the function of
sleep-specific event recorded on EEG during sleep, such as K-complexes and spindles (Schabus
et al., 2007).
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3.4.2.4 EEG-informed fMRI using GLM analysis

Since GLM analysis is the most common method used in an EEG-fMRI analysis, it is
important to introduce here the basics of fMRI analysis through GLM. The GLM model
introduced here only considers the neural activity detected on EEG as timing events, modeled
by Dirac and boxcar functions. For finer GLM models, taking into account specific parameters
such as the amplitude or the latency of the response, the reader is invited to refer to: Mayhew
et al. (2010); Mullinger et al. (2013b). A illustration of the GLM analysis in the context of
epilepsy is presented in Figure 3.6.

The GLM analysis is a mass-univariate approach for voxel-wise statistical analysis of the
hemodynamic response to events detected on EEG (Friston et al., 1995; Worsley et al., 1996;
Monti, 2011). In this framework, the BOLD signals measured at NT time points on NV voxels
YYY (NT ×NV matrix) can be expressed as a linear combination of regressors, consisting of the
expected effect of the task stimulus or other known effects that may confound the results.
All the concatenated Nr regressors used for the model form the so-called design matrix XXX
(NT ×Nr matrix). The relationship between the BOLD signal at a voxel i, denoted yyyi, and
the design matrix XXX is then as follows:

yyyi = XXXβββi + εεεi (3.1)

where εεεi ∈ RNT is additive noise. The vector βββi of size Nr is the unknown regression
coefficients that needs to be estimated. The design matrix XXX is usually constructed with two
parts:

The regressors of interest consist of the expected effect of the events of interest (usually
ERPs or IEDs). These regressors of interest are usually constructed with the convolution
of the timing of events of interest (often estimated by Dirac and boxcar functions)
with the canonical Hemodynamic Response Function (HRF) (Glover, 1999), which is
the expected neurovascular response to neural activity (Friston et al., 1998). However,
the shape and the delay of the HRF vary as a function of both task and brain region
(Birn et al., 2001; Marrelec et al., 2003). Moreover, pathological activity, such as
epileptic discharges, can also affect the hemodynamic response. For instance, studies
have reported HRF occurring a few seconds before the detected scalp discharge (Pittau
et al., 2011; Hawco et al., 2007). Therefore, using the same canonical for every voxel
and for every task might lead to imprecision in the model. Several methods have been
proposed in the literature to overcome this issue (Lindquist et al., 2009). A popular
choice is to use a combination of the canonical HRF and its derivatives with respect to
time and dispersion (Friston et al., 1998; Henson et al., 2002). In this thesis, a different
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approach was chosen, in which four different GLM analyses are performed, wherein the
peak of the HFR varies from 3 s to 9 s after the stimulus (Bagshaw et al., 2004).

Nuisance regressors are experimental factors confounding the analysis (such as head
motion or signal drifts). The nuisance regressors may be empirically determined (e.g.
actual measurements of head translations and rotations obtained during the experiment)
or modeled (e.g. by a linear trend or oscillating basis functions). In this thesis, the
nuisance regressors include motion trends measured during the experiment and signal
drifts estimated by cubic splines designed to model a polynomial trend of degree 3.

To perform a GLM analysis, the error εεεi should be a sequence of independent and
identically distributed normal random variables with zero mean (i.e. white noise). This
assumption is usually not true in actual fMRI recordings. To alleviate this issue, εεεi is often
modeled with the first order autoregressive model, AR(1) (Worsley et al., 2002). In the AR(1),
the error at time instant t depends on the amplitude of the error from the previous time
instant t− 1: εεεi(t) = ρεεεi(t− 1) + ξξξi(t), where |ρ| < 1 and ξξξi follows a white noise distribution
of variance σσσξiIII: ξξξi ∼ N (0,σσσξiIII). The autocorrelation parameter ρ is estimated from the
residuals of the GLM model without an autoregressive model of the noise. The estimated
AR(1) parameters ρ̂ can then be used to prewhiten the data YYY (t) and the design matrix XXX(t)

at time instant t:

ỸYY (1) = YYY (1), ỸYY (t) = (YYY (t)− ρ̂YYY (t− 1)) /
√

1− ρ̂2

X̃XX(1) = XXX(1), X̃XX(t) = (XXX(t)− ρ̂XXX(t− 1)) /
√

1− ρ̂2
(3.2)

With the prewhitened matrices, the GLM in Equation (3.1) becomes:

ỹyyi = X̃XXβββi + ξξξi (3.3)

The parameters βββi for voxel i can then be estimated by the ordinary least-squares estimates
that find the solution β̂ββi minimizing the sum of squared errors ‖ξξξ‖2 as follows:

β̂ββi =
(
X̃XX

t
X̃XX
)−1

X̃XXỹyyi (3.4)

Usually, a parametric statistical test is needed to infer whether the measured signals
exhibit a specific effect of interest or not. Often, this is tested by examining whether a linear
combination of regressor coefficients controlled by a contrast vector ccc of length Nr, ccctβββi, has
a non-null effect. To do so, a null hypothesis H0: ccctβββi = 0 is tested against an alternative
hypothesis H1: ccctβββi 6= 0. One can show that under the H0 hypothesis, a t statistic can be
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constructed with the estimated contrast effect ccctβ̂ββi and the estimated variance of the noise
σ̂ξiσξiσξi

2 as:

σ̂ξiσξiσξi
2 =

rrrtirrri
ν

(3.5)

where rrr is the vector of residuals: rrri = ỹyyi − X̃XXβ̂ββi, and ν = Nt − rank(X̃XX) is the degrees of
freedom.

The test statistic can then be defined as:

t =
ccctβ̂ββi√

σ̂ξσξσξ
2ccct
(
X̃XX

t
X̃XX
)−1

ccc

(3.6)

which follows an approximate Student’s t distribution with ν degrees of freedom. For each
voxel, the null hypothesis H0 is then rejected if t > uα for a significant level α = p(t > uα|H0).

The statistical inference is performed for every voxel in the brain, i.e. in the order of
100,000 times. Therefore, this approach suffers from the multiple comparison problem (Nichols,
2012). Because of the massive number of tests, a standard significant level α of 5 % would
lead to about 5,000 false positives, potentially provoking spurious results. Several methods
have been suggested to correct for multiple comparisons by controlling the family-wise error
rate (FWE; the chance of one or more false positives), such as the Bonferroni correction
(Nichols and Hayasaka, 2003) or the random field theory (Worsley et al., 1996). Other studies
suggested controlling the false discovery rate (FDR; the expected proportion of rejected
hypotheses that are false positives) (Benjamini and Hochberg, 1995).

3.5 Conclusion

This chapter presented the principles of MRI and fMRI, and the strategies and challenges of
recording EEG inside the MRI scanner. A focus was set in the correction of MR-related EEG
artifacts as it is in important aspect of the proposed manuscripts 2 and 3 (Chapters 6 and 7).
In this manuscript, we used the AAS to remove the gradient and the ballistocardiogram
artifacts (Allen et al., 1998, 2000). An overview of the use of EEG-fMRI in the literature was
presented, but the use of this imaging technique in epilepsy is further explained in the next
chapter.
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Figure 3.6: Common pipeline of EEG-informed fMRI in epilepsy. Taken from Murta et al. (2015).
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4
Presurgical investigation of epilepsy

4.1 Definition of epilepsy

The International League against Epilepsy (ILAE) and the International Bureau for Epilepsy
define epilepsy as “a disorder of the brain characterized by an enduring predisposition to
generate epileptic seizures and by the neurobiological, cognitive, psychological, and social
consequences of this condition. The definition of epilepsy requires the occurrence of at least
one epileptic seizure” (Fisher et al., 2005).

Epilepsy is not a disease per se since the causes of the seizures are multiple, but rather
a condition of the brain where a sudden and abnormal neuronal discharge could occur,
provoking a seizure. This disorder can be caused by different factors. For example, the
presence of anatomical abnormalities may result in the occurrence of seizures, as for instance
malformation during cortical development, brain lesions, tumors, central nervous system
diseases, post-traumatic scars or other abnormalities (whose cause may not be known or
identified) (Engel and Pedley, 2008).

Epilepsy affects 1 % of the population in Canada (Wiebe et al., 1999). Seizures can be
controlled through long-term drug therapy. Medication does not cure epilepsy but rather helps
reduce or stop the occurrence of seizures. The type of medication prescribed to the patients
depends on the type of seizures and the patient’s age, sex and health condition. However,
30 % of the patients are drug-resistant, meaning that medication has no or little effect on
the reduction of the occurrence of seizures. For those patients, other forms of treatments
are considered. Patients with focal epilepsy may undergo surgery to resect the brain region
responsible for the generation of the the seizures while avoiding any important functional
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loss (Stippich, 2007).

4.2 Epileptic seizures and interictal epileptic discharges

Seizures and interictal epileptic discharges (IEDs) are both important markers for the
diagnostic and treatment of epilepsy. An epileptic seizure, as described by the ILEA, is “a
transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous
neuronal activity in the brain” (Fisher et al., 2005). In rare cases, IEDs are defined as
spontaneous abnormal paroxysmal events of short duration (a few hundred milliseconds)
occurring in between the seizures. IEDs are not associated with any clinical manifestation, as
patients are unaware of having them.

4.2.1 Classification of epileptic seizures

There are three main features that characterize an epileptic seizure (Fisher et al., 2005):

1. A seizure is demarcated in time, delimited by a clear onset and termination. Typically,
a seizure lasts a few minutes, but can be as short as a few seconds. On the other hand, a
long-duration case of epileptic seizures, called status epilepticus, can last days or weeks.

2. A seizure provokes clinical manifestations. Those clinical signs are various, depending
on the location of the brain areas involved during the generation and propagation of
the seizure. Epileptic seizures can involve loss of consciousness; interruption of memory;
sensory, visual or auditory hallucinations; motor automatisms such as jerking; and
changes of emotional state, among other symptoms. Not all seizures affect all of these
factors and patients can experience seizures causing different clinical signs.

3. A seizure is caused by abnormal synchrony of overexcited neurons in a region of
brain. This excessive and unpredictable discharge is often due to a decrease in local
inhibition on a population of pyramidal neurons. These abnormal neuronal discharges
give rise to changes in electro-magnetic activity in the neurons, that can most of the
time be detected remotely by measuring differences of electrical potentials using scalp
EEG and variations in magnetic field using MEG. It is worth noting here that some
epileptic events provoke long-lasting (several seconds) abnormal discharges detectable
in EEG, but without causing any clinical manifestations. These types of events are
called electrographic seizures.
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In 2017, the ILAE presented their latest classification of seizure types, based on the
type of onset. The basic and extended versions were introduced. The basic version of the
classification is presented in Figure 4.1.

Figure 4.1: The basic ILAE 2017 operational classification of seizure types. “1 Definitions, other
seizure types and descriptors are listed in the accompanying paper and glossary of terms. 2 Due to
inadequate information or inability to place in other categories.” Taken from Fisher et al. (2017).

The first two classifications of basic seizure types focus on characterizing seizures on
whether their onset is focal or generalized. Seizures have a focal onset if the generator of the
seizure is a delimited brain region. Comparatively, the onset of generalized seizures involves
an extended network of brain regions, covering both hemispheres.

Focal onset seizures can be sub-classified by whether or not the seizures are associated
with cognitive impairment (Fisher and Saul, 2010). They can be further characterized by
the type of clinical manifestations that appear at the onset of the seizures, such as motor
onset (e.g. automatisms, tonic, atonic or clonic postures) or nonmotor onset (emotional,
such as fear, anxiety or joy, sensory, cognitive impairments, or behaviors) symptoms. Finally,
some focal seizures can evolve into bilateral tonic-clonic motor activity, which are reported
as focal seizure with secondary generalization in the previous classifications. Focal seizures
account for about 60 % of all seizures (Hauser et al., 1991; Keränen et al., 1988). The onset of
focal seizures can be localized anywhere in the brain. However, seizures with an onset in the
temporal lobe are more frequent (60 % of all focal seizures), whereas seizure onset localized
in the forntal lobe account for 30 % of all focal seizures. Finally, seizures onset localized in
the parietal and occipital lobes account for the remaining 10 % (Shorvon, 2009).

Generalized onset seizures involve extended brain regions covering both hemispheres.
They can further be characterized by the description of seizures, whether it is associated
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with motor (tonic-clonic, or other types of motor manifestations) or nonmotor manifestations
(absence seizures).

When the classification of seizures into focal or generalized-onset categories is not possible,
seizures are then referred to the category entitled “unknown onset”. However they may still
be characterized with some evidence of motor or non-motor characteristics.

4.2.2 Classification of epilepsy types

The ILAE also proposed a classification of the patient’s type of epilepsy (Scheffer et al., 2017).
The epilepsy types include four different groups:

Focal epilepsies include unifocal and multifocal disorders. They are characterized by
seizures with focal onset and are often associated with focal interictal discharges
detected on EEG.

Generalized epilepsies are characterized by seizures with generalized onset such as absence,
myoclonic, atonic, tonic or tonic-clonic seizures. Interictal findings usually include
generalized spike and wave activity on EEG.

Combined generalized epilepsies and focal epilepsies are characteristic of patients
presenting both generalized and focal seizures. They are characterized by ictal record-
ings, but also interictal EEG tracings, usually with the presence of both characteristic
generalized spike and wave discharges and more focal epileptiform events.

Unknown epilepsies is a category used when the diagnosis of epilepsy could be made but
it is not possible to determine if the epilepsy type is focal or generalized.

Once the type of epilepsy is known, it is sometimes possible to define an epilepsy syndrome
associated with the disease. An epilepsy syndrome refers to “a cluster of features incorporating
seizure types, EEG, and imaging features that tend to occur together” (Scheffer et al., 2017).
The diagnostic of an epilepsy syndrome permits a broader classification than only the seizure
type. Indeed epilepsy syndromes also include information about the clinical features of
the patient, such as the severity, the prognosis and the treatment implications. They are
characterized by several age-dependent features, i.e. age at onset and remission (where
applicable), seizure triggers and diurnal variation, but also characteristic intellectual and
psychiatric dysfunction, EEG findings and imaging studies.

62



CHAPTER 4. PRESURGICAL INVESTIGATION OF EPILEPSY

4.2.3 Interictal epileptic discharges

Interictal epileptic discharges (IEDs) are abnormal EEG activity which occur without the
manifestation of seizures. IEDs are the EEG byproduct of the summation of postsynaptic
potentials from pathologically synchronized firing neurons. They usually occur sporadically,
isolated or in short rhythmic bursts and without clinical manifestations. IEDs can have
different characteristics and are often described as either sharp waves, spikes, or polyspikes
(see Figure 4.2). Sharp waves and spikes are both transient events with a duration between 70-
200 ms for sharp waves and 20-70 ms for spikes, whose amplitudes detach from physiological
EEG background. Polyspikes are characterized by a fast series of spikes. Spikes and polyspikes
can sometimes be followed by a slow wave, usually of higher amplitude and lasting longer
than the spike (Noachtar and Rémi, 2009). IEDs are sometimes associated with rhythmic
activity, such as high-frequency oscillations (Frauscher et al., 2017) or slower activity, like
paroxysmal slow activity. The identification of IEDs from physiologic or artifactual sharp
transients usually requires the expertise of a trained epileptologist (Zijlmans et al., 2002).

These events are generated by the brain without clinical manifestations. They do not
induce patient movement and occur more frequently than the seizures. For these reason, they
are a excellent marker used in EEG and MEG source imaging for the pre-surgical evaluation
of patients who are candidates for epilepsy surgery (Pittau et al., 2014; Habibabadi et al.,
2019).

4.3 Treatment of epilepsy

The goal of the treatment of epilepsy is to achieve seizure freedom with minimal side-effects.
The first method of treatment is anti-epileptic medication, which aims to reduce or abolish
the occurrence of seizures by altering the neuronal excitation and inhibition balance in
the region triggering the seizures. For approximately 60-80 % of the patients, anti-epileplic
drugs successfully control the seizures (Kwan et al., 2010). When the medication is not
able to reduce the occurrence of seizures, the epilepsy of those patients is then referred to
as drug-resistant epilepsy. For drug-resistant patients with focal epilepsy, surgery may be
considered.

The principle of epilepsy surgery is to resect the so-called epileptogenic zone, i.e. “the
minimum amount of cortex that must be resected (inactivated or completely disconnected) to
produce seizure freedom” (Lüders et al., 2006). Surgery successfully achieves seizure freedom
in 30 % to 85 % of the patients (Téllez-Zenteno et al., 2005), depending on the epilepsy
syndrome and the ability to clearly define and completely resect the epileptogenic zone. It
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Figure 4.2: Interictal epileptic discharge patterns recorded with intracranial electrodes. A. Spike;
B. Polyspike; C. Sharp wave; D. fast activity (brushes) riding on a spike; E. paroxysmal slow
activity superimposed to slow spikes. Taken from Curtis et al. (2012).

is therefore very important to perform a comprehensive presurgical evaluation, in order to
precisely localize the epileptogenic zone.

4.3.1 Presurgical evaluation

The presurgical evaluation aims at localizing the zone of the brain triggering the seizures.
To do so, a large variety of measures could be used. Different aspects of epilepsy can be
investigated to gain information about the localization of the epileptogenic zone, such as
the seizure semiology, the study of cognitive deficit produced by the epilepsy, the potential
presence of anatomical brain lesions, the electrophysiological patterns associated with epileptic
discharges, or finally the corresponding hemodynamic and metabolic patterns associated with
epilepsy.

Each of the measures have advantages and disadvantages, and none of the techniques can
provide a perfect marker of the epileptogenic zone. In reality, each of the techniques helps
localize different brain areas which are related to the epileptogenic zone, which is a theoretical
concept not directly accessible. Table 4.1 reports the definition of all those regions of interest.

EEG and MEG allow the detection and localization of the generators of the IEDs and
seizures, defining the irritative zone and the seizure onset zone respectively. The irritative
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Table 4.1: Brain areas of interest in partial epilepsy. Modified from (Engel and Pedley, 2008)

Brain area Definition Measure

Irritative zone Area of cortex that generates IEDs EEG, MEG, EEG-
fMRI, iEEG

Seizure onset zone Area of cortex that initiates or generates seizures EEG, MEG, EEG-
fMRI, iEEG

Epileptogenic le-
sion

Structure pathology of the brain that is the direct cause
of seizures

CT, MRI, tissue
pathology

Symptomatogenic
zone

Portion of the brain that produces the first clinical
symptoms

EEG, behavioral
observation

Functional deficit
zone

Cortical area producing nonepileptic dysfunction Neurologic exam,
neuropsychology,
PET, SPECT

Epileptogenic zone Total area of the brain that is necessary to generate
seizures and that must be removed to abolish seizures

—

zone usually involves a larger region than the ictal onset zone (Hauf et al., 2012). Concor-
dance between the irritative zone or the seizure onset zone and the epileptogenic zone has
been validated many times (Rampp et al., 2019; Mouthaan et al., 2019). A more precise
localization of the irritative and seizure onset zone can be done with invasive recorded, i.e.
intracranial electrodes (iEEG). iEEG includes ElectroCorticoGraphy (ECoG) using subdural
grid electrodes or stereotactic EEG (sEEG) using depth electrodes (Parvizi and Kastner,
2018).

When epileptic seizures are likely to be elicited by the presence of an underlying lesion,
the area of the lesion may be detected with brain imaging techniques such as Magnetic
Resonance Imaging (MRI) (Bernasconi et al., 2011; Strandberg et al., 2008) and Computed
Tomography (CT), or with the analysis of tissue pathology during biopsy performed before or
during resective surgery. These techniques reveal the epileptogenic lesion, whose resection is
often sufficient to abolish epileptic seizures (Téllez-Zenteno et al., 2010; De Tisi et al., 2011).

The Symptomatogenic zone is the zone that produces the clinical manifestations occurring
at the onset of the seizure. This area is usually determined by the testimony of the patient’s
relatives or by video-EEG.

Sometimes, patients with epilepsy may also exhibit specific cognitive deficits. The location
of the brain region associated with a deficit in a particular cognitive function (the functional
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deficit zone) can also help identify the epileptogenic zone. For this purpose, a series of
neurological and neuropsychological tests are performed to define the impaired cognitive
functions (Baxendale, 2018). The functional deficit may be characterized by a change in local
brain metabolism and perfusion than can be elicited by Position Emission Topography (PET)
(Juhász and Chugani, 2003) and Single-Photon Emission Computed Tomography (SPECT)
(Knowlton and Shih, 2004; Van Paesschen et al., 2007) respectively.

4.3.2 EEG and MEG source localization in epilepsy

Due to the unpredictable and infrequent nature of epileptic seizures, EEG and MEG investi-
gations usually focus on estimating the irritative zone by the analysis of IEDs. When these
discharges are recorded with a sufficient number of channels, source localization can be used
to increase spatial resolution and localization accuracy (Baillet et al., 2009). Studies have
shown performance of dipole fitting (Knowlton et al., 2006), dipole scanning (Mosher et al.,
1992), and distributed models (Klamer et al., 2014; Pellegrino et al., 2018). To assess the
performance of source localization techniques, the gold standard or reference is either the
results of iEEG local measurements or the surgical outcome. As mentioned in Section 2.6.3.3,
our group have shown that the distributed model using cMEM might be preferable to dipole
fitting for the pre-surgical evaluation of patients with epilepsy (Pellegrino et al., 2018) .

In a meta-analysis, Mouthaan et al. (2019) analyzed the results of 11 studies of interictal
source localization in MEG and/or high-density EEG (≥ 64 electrodes), for a total of 264
patients in MEG and 127 patients in EEG. Source localization was performed using a
linear source imaging technique for EEG, and dipole fitting methods for MEG. When the
concordance with the resected area was compared to seizure outcome, the meta-analysis
reported an overall sensitivity of 82 % ( Confidence Interval (CI) at 95 %: 75–88% ) and
specificity of 53 % (95%-CI: 37–68 %). It seems then that EEG and MEG source localization
could add valuable information in the presurgical evaluation. Consequently, it seems that EEG
and MEG source localization was effectively beneficial to guide the placement of intracranial
EEG electrodes (Sutherling et al., 2008; Knowlton et al., 2009).

In the review of Mouthaan et al. (2019), the authors found no statistical difference
between patients presenting an epileptogenic lesion detected on anatomical MRI images
and patients with no lesions. They also reported no difference in localization performance
between temporal lobe and extra-temporal lobe epilepsy. These two results are considered
controversial since other studies did show a statistical difference between the diagnostic
accuracy between lesional and non-lesional patients (Abdallah et al., 2017; Rampp et al.,
2019), and between temporal and extra-temporal lobe epilepsy (Rampp et al., 2019; Vadera
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et al., 2013; Abdallah et al., 2017).
Not only can distributed source localization methods give information about the localiza-

tion of the irritative zone, but also its spatial extent. The spatial extent of the underlying
source of IEDs was shown to be helpful in the pre-surgical investigation and several ESI and
MSI techniques which were able to recover the source spatial extent have been proposed in the
literature (Ding et al., 2007). Specifically, our method cMEM was proven to be sensitive to
spatial extent in multiple studies (Chowdhury et al., 2013, 2015; Heers et al., 2015; Chowdhury
et al., 2016), and was compared in a study to another technique, 4-ExSo-MUSIC, and both
techniques were found accurately sensitive to the location and spatial extent of the sources
(Chowdhury et al., 2016).

Most of the studies presented in this section used either EEG or MEG separately. It
has been showed that EEG and MEG conveyed complementary information, and several
approaches considered the fusion of EEG and MEG data to perform source localization.
These fused data sets demonstrated that combined EEG-MEG exhibited a higher accuracy
in terms of source localization for the presurgical evaluation than either modality taken
separately (Aydin et al., 2015; Chowdhury et al., 2015, 2018). The potential added value
of fusion EEG/MEG is illustrated in Figure 4.3. On this patient, combined EEG/MEG
identified a source in the inferior part of the left pre-central gyrus which was in perfect
concordance with a Focal Cortical Dysplasia (FCD) identified on the anatomical MRI of this
patient. Conversely, individual EEG and MEG localizations mainly detected sources in the
frontal lobe, which more likely consisted in secondary sources. Another source was found in
MEG close to the FCD location, but it was not the source exhibiting the largest amplitude.

Another point of debate in the ESI and MSI community is the ability for those techniques
to localize IEDs coming from deep generators, as, for example, mesial temporal structures.
While some studies state that sources coming from deep structures are not visible on EEG
(Gavaret et al., 2014), others claim being able to localize sources in the mesial temporal region
(Carrette et al., 2011). A study comparing intracranial EEG to scalp EEG (Koessler et al.,
2014) demonstrated that in mesial temporal lobe epilepsy deep structures can contribute
to the EEG data, but with a level of amplitude much lower than the background activity,
which means that mesial temporal sources are not spontaneously visible on the scalp. EEG
was found to be more sensitive to source propagation coming from the neocortex. Another
study on simultaneous iEEG and MEG was able to detect brain activity on MEG of deep
structures, such as the hippocampus and amygdala, using the ICA method triggered by IED
events detected on iEEG (Pizzo et al., 2019).

IEDs are complex phenomena that could be subject to propagation. Some studies advised
performing source localization based on the time period halfway between the onset and the
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peak of the spike in order to avoid propagation effect (Ebersole, 1991; Lantz et al., 2003b).
A more recent study recommended analyzing both the onset and the peak of the spikes in
order to optimize the accuracy of the source imaging (Mălîia et al., 2016).

It is commonly known that epilepsy is a condition affecting the parts of brain involved in
the generation of seizures and IEDs, but also the regions which are functionally connected to
them. The study of brain networks through EEG or MEG is a promising technique that can
help to identify the structures involved in epilepsy and help with pre-surgerical evaluation.
However, it still needs to be thoroughly validated (see review in van Mierlo et al., 2019).

Even though seizures are rare events, it is still possible to record them and therefore
to localize them using either EEG or MEG data during seizures. Source localization of
ictal activity has already been reported and showed good concordance with the presumed
epileptogenic zone (Koessler et al., 2010; Pellegrino et al., 2016a; Kuo et al., 2018). In a
study from our group (Pellegrino et al., 2016a), the onset of epilepsy seizures of 13 patients
was localized using wavelet-based MEM (wMEM) in EEG and MEG, and the relevance of
the source imaging results was compared to IED source imaging. The decision to analyze
the seizure onset was chosen to avoid contamination from motion and muscle artifacts. As
illustrated in Figure 4.4, the analysis of ictal data can provide valuable information to the
presurgical evaluation. In this figure, the source localization of the seizure onset zone was
localized in the left posterior frontal region, in concordance with intracranial findings, where a
focal cortical dysplasia had been detected on the anatomical MRI of this patient. Conversely,
ESI and MEG of spikes were located in the more anterior frontal region, suggesting that, for
this patient, the localization of ictal activity was more informative than the localization of
interictal events. Overall, over the 46 seizures we reported on these 13 patients, one of the
largest reported cohorts so far, we found a good level of agreement between seizure and IED
source imaging.

4.3.3 Simultaneous EEG-fMRI investigations

For the detection of the epilepleptogenic zone, EEG-fMRI aims to estimate and localize the
hemodynamic response associated with transient epileptic discharges detected on scalp EEG.
The most common use of EEG-fMRI in studies on epilepsy is the localization of the change
in hemodynamic response following IEDs (Mulert and Lemieux, 2010; Gotman et al., 2006;
Gotman, 2008).

After carefully denoising EEG data acquired during fMRI acquisition (see Section 3.4.1),
each IED detected on scalp EEG is then marked by an expert epileptologist as an event with
or without duration, following the nature of the discharge. These events are then usually
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convolved with the so-called canonical HRF, which is an estimation of the change in blood
flow following an IED, and then used as a regressor in a general linear model (Friston et al.,
1998).

The resulting fMRI maps display significant BOLD clusters associated with the neural
activity elicited by the IEDs. A significant BOLD cluster can indicate either an increase
(activation) or a decrease (deactivation) in BOLD response. In either case, the BOLD cluster
can be a marker of the irritative zone (Heers et al., 2014; Pittau et al., 2012). The BOLD
clusters are related to either the generation of epileptic discharges (Grova et al., 2008; Heers
et al., 2014), their eventual propagation patterns (Vulliemoz et al., 2009) or remote influence,
as for instance on the default mode network (Gotman et al., 2005). The region displaying the
most significant BOLD cluster has been suggested to be a good indicator of the presumed
epileptigenic focus (Heers et al., 2014; Khoo et al., 2017).

The clinical relevance of EEG-fMRI investigations in epilepsy has been extensively
evaluated using intracranial data or surgical outcome (Zijlmans et al., 2007; Zhang et al.,
2012; An et al., 2013; van Graan et al., 2015). Figure 4.5 is an illustration of the concordance
between EEG-fMRI analysis and intracranial EEG data. In this example, the fMRI BOLD
cluster was located in the right orbito-frontal region, indicating the location of the generators
of the epileptic discharges. This location which was later confirmed by iEEG, and with
surgery, the patient being seizure-free after the resection of this region.

One main limitation of EEG-fMRI analysis is the low detection rate of IEDs in EEG.
It has been showed that no IED was detected in 40 % of the cases, and for another 30 %
of cases, no significant fMRI response was found (Salek-Haddadi et al., 2006). To improve
the sensitivity of the technique, Grouiller et al. (2011) proposed a method by which a GLM
regressor was constructed based on the correlation between the clean topography of the
averaged IEDs recorded outside the scanner and the EEG signals recorded during the fMRI
analysis, thus increasing sensitivity to 83 % (Grouiller et al., 2011; Elshoff et al., 2012).

EEG-fMRI analysis shows the effect of IEDs on the full brain, thus allowing the analysis
of the network involved during an epileptic event. Indeed, the distributed BOLD clusters
detected in fMRI were proven to be functionally synchronized in iEEG (Khoo et al., 2017).
IEDs were shown to disturb the brain network, such as the default mode network, both in
generalized (Laufs et al., 2006; Gotman et al., 2005) and focal epilepsy (Fahoum et al., 2013).

EEG-fMRI analyses of ictal events, though uncommon, were also verified as being reliable
indicators of the epileptogenic zone (Chaudhary et al., 2013).
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4.4 Conclusion

To summarize, epilepsy is defined by the presence of recurring seizures. Those seizures are
controlled by medication in most of the patients. For the remaining patients, if their epilepsy
is focal, i.e. where seizures are triggered in a delimited location in the brain, surgery may
be considered. During presurgical evaluation, different approaches are used to define, as
precisely as possible, the zone of the brain that is needed to resect in order to abolish the
seizures. Two of those approaches are EEG/MEG source localization, which aims at localizing
the generator of the seizure onset and other epileptic events detected in EEG and MEG,
and EEG-fMRI, an imaging technique which detects the hemodynamic response related to
epileptic events. The goal of this thesis is to use both ESI and EEG-fMRI with the same
EEG data to perform an EEG-fMRI analysis informed by ESI. To do so, we developed and
presented in Chapter 7 a method to automatically classify IEDs on EEG recorded in the MRI
scanner, which constructs GLM regressors with a more homogeneous population of IEDs to
increase the accuracy of the fMRI analysis.

70



CHAPTER 4. PRESURGICAL INVESTIGATION OF EPILEPSY

Figure 4.3: Single spike localization of one patient. (a) EEG and MEG signal for the respective
spike type. (b) EEG and MEG topographies at the peak. (c) Source localization results using
cMEM method for EEG data, MEG data and fusion between EEG and MEG (MEEG). Taken from
Chowdhury et al. (2015).
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Figure 4.4: Illustration of MSI/ESI source localization of ictal activity. Left panel: top: MSI/ESI
localization of the SOZ. From top to bottom: MEG (cyan) and EEG (pink) traces of the onset of the
seizures. The onset is marked by the red line. center : Time-frequency decomposition suggesting the
involvement of two frequency bands in the alpha–beta range, with the strongest energy change at
about 20 Hz. bottom: corresponding localization of the onset zone in EEG and MEG. Right panel:
MSI/ESI localization of the spikes. Bottom, middle panel: estimated epileptogenic zone (in blue),
confirmed by intracranial EEG. Taken from Pellegrino et al. (2016a).
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Figure 4.5: Illustration of a EEG-fMRI analysis of a patient with right frontal epilepsy. The
BOLD response showed a limited activation in the lateral right orbitofrontal region. The finding was
validated with intracranial EEG showing a active epileptic general in the lateral portion of the right
orbitofrontal lobe (electrodes ROF6–ROF10). A limited right frontal corticectomy was performed
and histology showed focal cortical dysplasia type 1. Taken from Pittau et al. (2012).
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Manuscript 1: Comparison of the spatial

resolution of source imaging techniques in

high-density EEG and MEG

Authors: Tanguy Hedrich, Giovanni Pellegrino, Eliane Kobayashi, Jean-Marc Lina, Christophe
Grova.

Context

Detection and source analysis of IEDs is widely used during the pre-surgical investigation
of patients with intractable epilepsy. As outlined in the previous chapters, EEG and MEG
record the neuronal dynamics of brain activity with high temporal resolution, but with
limited spatial resolution, since recordings are made from the scalp. To alleviate this problem,
electrical or magnetic source imaging can be considered to improve the spatial resolution
and to obtain a more accurate localization of the generators of IEDs. Several ESI and MSI
techniques have been proposed, including some within the framework of distributed source
models, meaning that the generators of the EEG/MEG signals can be estimated with a set of
fixed dipolar sources distributed along the cortical surface. Source localization then consists
of estimating the amplitudes of the dipolar sources that can explain the EEG/MEG data. We
have developed such a source imaging technique in our group, cMEM, and have demonstrated
in several studies that cMEM was an interesting technique, especially because it is sensitive
to the spatial extent of the underlying generators. So far, our group mainly evaluated cMEM
using either MEG data or standard EEG montage (56 or 64 electrodes) but not high-density
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EEG. Since our overall objective is to consider cMEM-based ESI during an hdEEG-fMRI
analysis, we first had to further investigate the spatial resolution of cMEM, and compare it
to well-known standard ESI methods: MNE and its noise-normalized variants, dSPM and
sLORETA. For this study, we were inspired by the studies from other researchers, especially
Molins et al. (2008), to compare the intrinsic spatial resolution of all these source imaging
techniques using the analysis of their resolution matrices, as introduced in Chapter 2. We
were then able to assess the spatial resolution of these four techniques in ideal conditions, i.e.
in the absence of noise, and assuming no errors in the forward solution before comparing the
different methods during an electrical median nerve stimulation paradigm.

This study is our first study carefully assessing the behavior of cMEM in presence of
focal sources, as opposed to spatially extended generators of IEDs, while providing a detailed
comparison of source localization performance of MEG and hdEEG data.

This manuscript was published as: T. Hedrich, G. Pellegrino, E. Kobayashi, J.
M. Lina, and C. Grova. Comparison of the spatial resolution of source imaging
techniques in high-density EEG and MEG. NeuroImage, 157:531–544, 2017.

Abstract

Background: The present study aims at evaluating and comparing electrical and magnetic
distributed source imaging methods applied to high-density Electroencephalography (hdEEG)
and Magnetoencephalography (MEG) data. We used resolution matrices to characterize spatial
resolution properties of Minimum Norm Estimate (MNE), dynamic Statistical Parametric
Mapping (dSPM), standardized Low-Resolution Electromagnetic Tomography (sLORETA)
and coherent Maximum Entropy on the Mean (cMEM, an entropy-based technique). The
resolution matrix provides information of the Point Spread Functions (PSF) and of the
Crosstalk functions (CT), this latter being also called source leakage, as it reflects the
influence of a source on its neighbors.

Methods: The spatial resolution of the inverse operators was first evaluated theoretically
and then with real data acquired using electrical median nerve stimulation on five healthy
participants. We evaluated the Dipole Localization Error (DLE) and the Spatial Dispersion
(SD) of each PSF and CT map.

Results: cMEM showed the smallest spatial spread (SD) for both PSF and CT maps,
whereas localization errors (DLE) were similar for all methods. Whereas cMEM SD values
were lower in MEG compared to hdEEG, the other methods slightly favored hdEEG over
MEG. In real data, cMEM provided similar localization error and significantly less spatial
spread than other methods for both MEG and hdEEG. Whereas both MEG and hdEEG
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provided very accurate localizations, all the source imaging methods actually performed
better in MEG compared to hdEEG according to all evaluation metrics, probably due to the
higher signal-to-noise ratio of the data in MEG.

Conclusion: Our overall results show that all investigated methods provide similar
localization errors, suggesting very accurate localization for both MEG and hdEEG when
similar number of sensors are considered for both modalities. Intrinsic properties of source
imaging methods as well as their behavior for well-controlled tasks, suggest an overall better
performance of cMEM in regards to spatial resolution and spatial leakage for both hdEEG and
MEG. This indicates that cMEM would be a good candidate for studying source localization
of focal and extended generators as well as functional connectivity studies.

5.1 Introduction

High-density Electroencephalography (hdEEG), defined here as EEG with 256 electrodes, and
Magnetoencephalography (MEG) are two complementary and non-invasive neurophysiology
modalities used to depict electromagnetic brain activity (Ebersole and Ebersole, 2010; Ahlfors
et al., 2011). Electrical and magnetic source imaging consist in solving a so-called inverse
problem, localizing the generators of scalp EEG or MEG signals into the brain (Darvas et al.,
2004).

The inverse problem is ill-posed by nature and a unique solution can only be found if
specific constraints are added for regularization (Baillet et al., 2009). Multiple inverse solution
approaches are nowadays available, including equivalent current dipole fitting, dipole scanning
approaches and distributed source models (see Wendel et al., 2009; Klamer et al., 2014).

The spatial accuracy of source imaging techniques is influenced by several factors, including
the choice of modality (Pittau et al., 2014), the number of sensors (Sohrabpour et al., 2014),
the orientation of the generator (Ahlfors et al., 2010), the conductivity of the biological tissues
(Aydin et al., 2014) and the source imaging technique used to solve the inverse problem (Hauk
et al., 2011).

The objective of this study was to compare the intrinsic spatial resolutions of different
source imaging techniques applied to hdEEG and MEG signals, when considering these
two modalities with approximately the same number of sensors. We analyzed the resolution
matrix, whose application in the neuroimaging field was originally proposed by Grave de
Peralta Menendez (Grave De Peralta Menendez et al., 1997), to characterize the spatial
properties of a linear inverse operator. The spatial resolution matrix is a square matrix, whose
size is the number of dipolar sources, providing the following two features (Schoffelen and
Gross, 2009):
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1. The columns of the resolution matrix quantify the Point Spread Functions (PSF) of
every dipolar source of the source space. Each PSF is assessing the solution of the
source imaging method for the activation a single cortical dipole, when considering
noise-free data. Analyzing the localization error and the spatial extent of the PSF
provides information about the intrinsic spatial property of a source imaging technique.

2. The rows of the resolution matrix represent the crosstalk functions (CT) which reflect
the influence a single dipolar source may have on the estimation of the generators in its
neighborhood. Hence, the spatial extent of the CT informs on the amount of “source
leakage” and the potential bias in the estimation of functional connectivity patterns
leading to spurious local coherence (Schoffelen and Gross, 2009).

An ideal resolution matrix should be the identity matrix. In practice, any source estimate
is subject to blurring (if large amplitude values are found in off-diagonal terms in the matrix)
and mislocation (if off-diagonal values were higher amplitude than diagonal values).

Once PSF and CT maps are constructed for each dipolar source, one can assess their
spatial properties through evaluation metrics such as Dipole Localization Error (DLE) and
Spatial Dispersion (SD) (Liu et al., 2002; Molins et al., 2008). DLE measures the Euclidean
distance between the maximum of the PSF or CT maps and the true source location, whereas
SD quantifies the spatial spread around the true source location.

Beyond the theoretical analysis of the resolution matrix, a validation of the comparison
between the intrinsic spatial resolution can be achieved by studying real data acquired under
well-controlled paradigms, for which the location of generator is known a priori. To that
motive, we measures somatosensory evoked responses measured after electrical stimulation
of the median nerve. This paradigm is known to generate evoked response exhibiting the
activation of the contralateral primary sensory hand region (Balzamo et al., 2004). In this
context, for which the generator is located in a predefined focal brain region, properties of
source imaging techniques and comparison between them could also be evaluated using DLE
and SD metrics, as proposed by Molins et al. (2008).

We chose to evaluate and compare four distributed sources localization methods. Three
of them are well-known linear operators: Minimum Norm Estimate (MNE) (Hämäläinen
and Ilmoniemi, 1994), dynamic Statistical Parametric Mapping (dSPM) (Dale and Sereno,
1993) and standardized Low-Resolution Electromagnetic Tomography (sLORETA) (Pascual-
Marqui, 2002). The fourth one is the coherent Maximum Entropy on the Mean (cMEM)
(Amblard et al., 2004; Grova et al., 2006a), which is a novel non-linear method specifically
evaluated for its sensitivity to recover the spatial extent of the underlying cortical generators
(Chowdhury et al., 2013; Heers et al., 2015; Grova et al., 2016). Whereas the calculation
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of the resolution matrix is straightforward for the linear methods (MNE, sLORETA and
dSPM), specific estimation of the resolution matrix for the non-linear method cMEM was
performed with the iterative reconstruction of the PSF of every dipolar source.

We proposed a systematic and quantitative assessment of these source imaging techniques
based on two strategies: (i) theoretical analysis of the resolution matrix; (ii) study of the source
estimated from hdEEG and MEG responses evoked by electrical median nerve stimulation,
in the primary somatosensory cortex.

5.2 Material and Methods

5.2.1 Subjects selection

Five right-handed healthy subjects (3 males, mean age ± standard deviation = 26.6± 3.21)
were selected for this study. The study was approved by the Research Ethics Board of the
Montreal Neurological Institute and Hospital and a written informed consent was signed by
all participants prior to the procedures.

5.2.2 Electrical Median Nerve Stimulation

Electrical Median Nerve Stimulation (MNS) was performed using a Digitimer system (Dig-
itimer DS7A, Letchworth Garden City, U.K). 600 stimuli were delivered to the left and right
median nerves using electrodes placed on the wrist. A 12-minute run was acquired for each
stimulation side, using two different modalities, i.e. hdEEG and MEG. The stimulus duration
was set to 0.2 ms, the inter stimulus interval was set to 500 ms, with an additional jitter
between 0 ms and 500 ms. The stimulation intensity was set just above the motor threshold
to cause a small thumb movement. During the whole recording, participants were instructed
to focus on a fixation cross in the middle of a black screen.

5.2.3 MEG data acquisition

MEG data were acquired on a 275-gradiometer CTF system (VSM MedTech Systems Inc.,
Coquitlam, BC, Canada) in a magnetic shielded room at the McConnell Brain Imaging
Centre of The Montreal Neurological Institute (McGill University, Montreal, Canada). Elec-
trocardiogram (ECG) and electrooculogram (EOG) were acquired to record potential sources
of artifacts contaminating MEG signals. The sampling rate was set to 1200 Hz. Continuous
head localization was obtained using three localization coils attached to the nasion and left
and right peri-auricular points on each subject. The exact position of the localization coils,
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as well as the shape of the head of the subject, were digitized with a 3D Polhemus localizer
for subsequent coregistration with the anatomical MRI.

5.2.4 hdEEG data acquisition

hdEEG was recorded using a 256-electrode EGI system (Electrical Geodesics Inc., Eugene,
Oregon) with a sampling rate of 1000 Hz. ECG was also recorded using additional electrodes.
For safety reasons Since the EEG system we used for this study was actually an MRI-
compatible EEG device, each electrode was equipped with an additional 10 kΩ resistance.
Good data quality was achieved by maintaining the EEG impedances below 70 kΩ.

The EEG sensor positions were estimated using the Geodesic Photogrammetry System
(GPS, geodesic inc., Eugene, OR). The system consists in 11 cameras mounted in a geodesic
structure. The electrodes were then manually labeled on the 11 pictures, and the coordinates
were calculated using a triangulation algorithm (Russell et al., 2005).

5.2.5 Anatomical MRI

A high resolution T1-weighted MRI (MPRAGE 1 mm isotropic 3D acquisition, 192 sagittal
slices, 256×256 matrix, TE = 9.2 ms, TR = 22 ms, flip angle 30 degrees) was acquired at the
McConnell Brain Imaging Centre Siemens Tim Trio 3T scanner. MRI brain segmentation
and white/gray matter interface reconstruction were performed using BrainVISA software
(http://www.brainvisa.info) (Mangin et al., 1995).

5.2.6 Determination of the primary somatosensory region

Source localization was performed at the peak of the N20 component of the somatosensory
evoked response (Balzamo et al., 2004; Molins et al., 2008). Invasive EEG investigations have
shown that the generator of the N20 wave is localized in the primary somatosensory region
and more precisely in the primary sensory hand region, denoted in this paper as S1HAND,
located in the postcentral sulcus facing the hand knob region (Maldjian et al., 1999; Eickhoff
et al., 2008; Yousry et al., 1997; Rumeau et al., 1994). For evaluation purposes, an expert
neurologist (GP) marked on the cortical mesh of each subject the location of S1HAND relying
on these anatomical landmarks before any data analysis.

5.2.7 hdEEG and MEG data preprocessing

hdEEG and MEG processing was performed using Brainstorm software (Tadel et al., 2011).
Epochs lasting 350 ms (from -100 ms to 250 ms, 0 being the time of the stimulus) were
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imported.
Preprocessing included 0.3-300 Hz band-pass filter, 60 Hz and 120 Hz notch filter, DC

correction (baseline window from -100 ms to -10 ms) and noisy channels removal. For MEG,
the third-order software gradient compensation was also applied. The hdEEG electrodes
located on the face and on the neck (76 channels) were excluded for further analysis for each
subject before re-referencing all the remaining electrodes to an average reference.

ECG and eye movement artifacts were removed from hdEEG and MEG using Signal
Space Projection (SSP) method (Uusitalo and Ilmoniemi, 1997).

5.2.8 Forward model estimation

The coregistration of the hdEEG or MEG sensor positions with the MRI images was performed
by fitting the fiducial landmarks and hundreds additional points covering the shape of the
head of the subject into the space of the MRI using a rigid geometrical transformation
(3 rotations, 3 translations). The source space consisted in a mesh of the cortical surface
segmented from the white-gray matter interface, subsampled to around 8000 vertices. The
distributed source model consisted in placing dipolar sources on every vertex of the mesh
oriented perpendicularly to the cortical surface.

The forward model assessing the contribution of every dipolar source to MEG or hdEEG
sensors was computed using the Boundary Element Method (BEM) proposed by Kybic et al.
(2006). For hdEEG, the gain matrix was calculated with a 3-layer BEM model consisting in
the inner skull, outer skull and scalp surface (respective conductivity: 0.33 S/m, 0.0165 S/m,
0.33 S/m). For MEG, we chose a 1-layer BEM model (inner skull; conductivity: 0.33 S/m).
To do so, we used the OpenMEEG implementation (Gramfort et al., 2010) in Brainstorm.

5.2.9 Estimation of the sensor-level noise covariance matrix

A 2-second artifact-free segment of resting-state data was used for noise estimation, i.e. the
computation of sensor-level noise covariance matrix (full matrix) Σe for MNE, dSPM and
sLORETA and baseline data for cMEM. We verified that the choice of this 2-second segment
background activity to model the noise covariance matrix had little influence as long as the
segment did not contain artifacts. To do so, resolution matrix results were reproduced three
times, using three different segments of background activity, showing overall very similar
results (data not shown).
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5.2.10 Source imaging methods

We assumed the source space to be defined as a set of evenly distributed dipolar sources
located on the gray-white matter interface which are normally oriented to the surface. The
measurement for each time sample can then be represented as a vector m, which is given by:

m = Gj + e (5.1)

where m is the measurement vector of dimension number of sensors ns. G is the gain matrix
of dimension number of sensors ns by number of dipolar sources nd, providing the solution of
the forward model. j (dimension nd × 1) is the current density of each dipole source and e

(dimension ns × 1) is the measurement noise.

5.2.10.1 Minimum norm estimate (MNE)

The general solution of the minimum norm estimate can be written as follows:

ĵMNE = Wm (5.2)

where W = GT
(
GGT + λΣe

)−1 is the resolution kernel and λ is a regularization hyper-
parameter. Several methods have been proposed to estimate λ: either using the estimate
signal-to-noise ratio (SNR) of the data, the L-curve approach (Hansen, 1992; Gorodnitsky
et al., 1995) or restricted maximum likelihood estimate within a Bayesian framework (Friston
et al., 2008). In our study, we fixed λ = 1/SNR2, with the SNR arbitrary set to 3 (Brainstorm
default value). By varying this value from 1 to 5, we observed that this value had very little
impact on the estimation of the resolution matrices and its properties (data not shown). Σe

is the noise covariance.

5.2.10.2 dynamic Statistical Parametric Mapping (dSPM) and standardized
Low-Resolution Brain Electromagnetic Tomography (sLORETA)

dSPM is a method aiming at providing a statistical parametric map based on MNE results
(Dale et al., 2000). It consists in a noise-normalized version of MNE and can be written with
the MNE solution ĵMNE as follows:

tdSPM(i) =
ĵMNE(i)

Wi(λΣe)WT
i

(5.3)

where ĵMNE(i) is the ith element of ĵMNE and Wi denotes the ith row of the resolution kernel
W (Dale et al., 2000).
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sLORETA, proposed by Pascual-Marqui (Pascual-Marqui, 2002) consists in another
normalized version of MNE solution:

tsLORETA(i) =
ĵMNE(i)

Wi (GGT + λΣe) WT
i

(5.4)

5.2.10.3 coherent Maximum Entropy on the Mean (cMEM)

We proposed a probabilistic source imaging technique within the MEM framework (Amblard
et al., 2004). MEM-based source localization procedure consists in two steps: (i) initialization
of a reference distribution summarizing our prior knowledge; (ii) an entropy-based regulariza-
tion framework allowing to identify a solution explaining the data “on average”, by estimating
a distribution as close as possible to the reference distribution, according to Kullback-Leibler
divergence. In the present implementation, cMEM reference model assumes brain activity to
be described by K cortical parcels covering the whole cortical surface, while each parcel is
associated to an hidden state variable controlling whether the parcel is active or not. During
the regularization step, cMEM is able to switch off the parcels that do not contribute to
the solution, while preserving the ability to create a contrast of current intensities within
the active parcels. We demonstrated that the use of such parcellation model was the key
feature to provide a method sensitive to the spatial extent of the sources (Chowdhury et al.,
2013). cMEM also imposes a local spatial smoothness constraint within each parcel. The
implementation of cMEM used in this study is available in brainstorm software (we used
the default parameters for this study) and a tutorial describing its use has been created:
http://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst.

MNE, dSPM and sLORETA were computed in brainstorm using the following settings:
constrained orientation of the dipolar sources normal to the cortical surface, no prewhitening
using Principal Component Analysis, SNR set to 3 to tune the regularization hyperparameter,
regularization of the noise covariance using a value of 0.1, no depth weighting.

5.2.11 Estimation of the resolution matrix

An analytic solution of the resolution matrix for MNE could be obtained by combining
Equations (5.1) and (5.2):

ĵMNE = W(Gj + e) = RMNEj + N (5.5)
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where RMNE is the resolution matrix of MNE. It characterizes the relation between the source
estimate and the actual source distribution. N is the matrix showing the effect of the source
imaging technique on the noise. Therefore, the resolution matrix for MNE is given by:

RMNE = WG (5.6)

Similarly, analytical expression of the resolution matrix can be found for dSPM and
sLORETA, as follows:

RdSPM(i, j) = RMNE(i, j)/SdSPM(i, i) (5.7)

RsLORETA(i, j) = RMNE(i, j)/SsLORETA(i, i) (5.8)

where RdSPM(i, j) is the element of the ith row and jth column of RdSPM, SdSPM =

W(λΣe)W
T and SsLORETA = W

(
GGT + λΣe

)
WT .

No analytical formulation of the resolution matrix can be derived for non-linear source
imaging techniques such as cMEM. However, one could still provide an estimation of the
resolution matrix, by applying iteratively cMEM algorithm on noise-free simulations of
single dipolar sources. We could then construct the resolution matrix column by column, by
computing the source localization of a simulation including a single activated dipolar source,
for each source in the cortical surface.

Indeed, assuming the definition of cMEM resolution matrix to be ĵcMEM = RcMEMj, then
for each j = δi, where δi is a vector with 1 in the ith element and 0 otherwise, RcMEMδi

provides an estimate of the ith column of RcMEM:

ĵcMEM(i) = RcMEMδi = RcMEM,i (5.9)

where RcMEM,i is the ith column of RcMEM.

5.2.12 Analysis of the intrinsic properties of the resolution matrix

One can easily notice that RMNE is symmetrical, meaning that the PSF and CT are equiv-
alent for this source imaging technique. On the contrary, neither RdSPM or RsLORETA are
symmetrical. However, the noise-normalization of MNE methods introduced for both dSPM
and sLORETA only impact the PSF maps of the resolution matrix. Therefore, the spatial
properties of CT maps for dSPM and sLORETA (i.e. the rows of the corresponding resolution
matrices) are identical to those for MNE since they are only multiplied by a scaling factor.

Plus, one can notice from Equation (5.7) that:
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SsLORETA = W
(
GGT + λΣe

)
WT = GT

(
GGT + λΣe

)−1
G = RMNE (5.10)

Therefore, RsLORETA(i, j) = RMNE(i, j)/RMNE(i, i), meaning that the maximum value for
each column of RsLORETA is always found on the diagonal, allowing zero localization error for
sLORETA (Pascual-Marqui, 2002).

5.2.13 Reconstruction of a spatially extended generator using the

resolution matrix

Based on the resolution matrix, it is possible to compare the source reconstruction of different
imaging techniques for an extended source in ideal conditions, i.e. when no noise, no error in
the forward model or no channel co-registration error could corrupt the data. We performed
the reconstruction of a 11 cm2 cortical generator, located on the right middle frontal gyrus,
by using the sum of the PSF of all the dipolar sources corresponding to the region of interest
in MNE, dSPM, sLORETA and cMEM. In addition, another cMEM reconstruction was also
done by applying source localization on the extended source as a whole. For linear techniques,
sum of the PSF or reconstruction of the whole extended source provide identical results.
Since cMEM is a non-linear technique, we were interested in assessing the differences between
the two approaches.

All the source reconstructed maps were individually normalized so that their values
ranged between 0 and 1. Validation metrics were calculated for the source reconstructions,
the simulated source being the ground truth.

5.2.14 Reconstruction of source of different spacial extents

To assess the ability for the source imaging technique to reconstruct spatially extended
sources, we extended our evaluation of the resolution matrix, when considering spatially
extended generators instead of single dipolar sources. To do so, we first constructed two sets of
non-overlapping parcels covering the whole cortical surface: small parcels (300 parcels, average
parcel surface: 3.75 cm2) or large parcels (50 parcels, average parcel surface: 30 cm2). For
each set of spatially extended generators, noise-free hdEEG and MEG data corresponding to
generators in each parcel were constructed. These noise free data were localized using the four
proposed methods (cMEM, MNE, dSPM and sLORETA) before assessing the performance of
each method using DLE and SD metrics, the corresponding simulated parcel being considered
as ground truth.
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5.2.15 Validation metrics considered for quantitative analysis

5.2.15.1 Resolution matrix analysis

The resolution matrix analysis was performed in MEG and hdEEG considering the sensor
configuration and the geometry of one of the five subjects (cortical surface, sensor registration,
sensor noise covariance matrix). The metrics of Dipole Localization Error and Spatial
Dispersion (Hauk et al., 2011; Molins et al., 2008) were applied to each PSF and CT map:

• Dipole Localization Error (DLE) was estimated as the Euclidean distance between the
maximum of every PSF or CT map and the position of the true activated generator. In
ideal conditions, a DLE of zero indicates that the maximum amplitude of the source
reconstructed map was indeed located on the activated generator.

• The Spatial Dispersion (SD) was estimated for each dipole as follows, for each PSF
and CT map:

SDPSF(i) =

√∑nd

j=1 d
2
ijR

2
ij∑nd

j=1 R2
ij

(5.11)

SDCT(j) =

√∑nd

i=1 d
2
ijR

2
ij∑nd

i=1 R2
ij

(5.12)

with dij the Euclidean distance between dipolar sources i and j. Notice that the
difference between Equation (5.11) and Equation (5.12) is that for SDPSF, we apply a
summation over the columns of R, whereas for SDCT, we apply a summation over its
rows.

This metric was proposed to characterize the spatial spread of a source imaging method.
SD values reflect either a mislocation of the point spread function to the actual source
or large overestimation of the spatial extent around the generator (Molins et al., 2008).

DLEPSF, SDPSF for all the source imaging techniques and DLECT and SDCT for cMEM
were calculated in all the nd = 8003 dipolar sources distributed along the cortical
surface.

5.2.15.2 Evaluation of source localization of somatosensory evoked responses

In the context of median nerve stimulation data, we considered the manually labeled region
of interest S1HAND as the ground truth to evaluate the localization of the N20 using DLE
and SD metrics for all source imaging methods. DLE was defined as the minimum distance
between the maximum of source reconstruction and the closest boundary of S1HAND.
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SD was calculated as follows:

SD =

√√√√∑nd

i=1 d
2
i,S1ĵ

2
i (t20)∑nd

i=1 ĵ2
i (t20)

(5.13)

where di,S1 is closest Euclidean distance between the dipole i and S1HAND region border and
ĵ2
i (t20) is the energy of the ith dipole of the source reconstruction at the time of the N20
peak. For each participants, the N20 peak was estimated using the local maximum in the
global field power around 20 ms.

DLE and SD results may be largely affected by spurious activity located far from the
primary sensory region. To avoid taking into account potential source imaging instabilities
involving distant and medial structures, activity arising from remote regions were therefore
not taken into account for the calculation of these metrics, focusing on the ability of the
methods to localize S1HAND region only at the time of the N20. Dipoles whose shortest paths
to S1 along the mesh were larger than 6 vertices along the cortical surface (corresponding
approximately to a geodesic distance of about 75 mm) were discarded for DLE and SD.
Figure 5.1 shows an example of S1HAND region of interest and its surrounding area considered
to estimate DLE and SD metrics. The set of all distant dipoles, i.e. all the dipolar sources
which do not belong to S1HAND or its surrounding, was defined as Θ.

Figure 5.1: Example of the detection of the primary sensory hand region S1HAND (in white) and
the surrounding region (in green) displayed on the inflated cortical surface of one subject. The white
region was marked by an expert neurologist. The green region was constructed by taking all vertices
belonging to the 6th order neighbors of any vertex in S1HAND. For MNS data, DLE and SD metrics
were calculated within the green region only. RSA is defined as the ratio between the energy of the
source reconstruction outside the green region and the total energy on the cortex.

To measure the Ratio of distant Spurious Activity (RSA), we measured the ratio between
the energy localized for distant sources over the total energy:
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RSA =

∑
θ∈Θ ĵ2

θ(t20)∑nd

i=1 ĵ2
i (t20)

(5.14)

5.2.15.3 Statistical analysis

Using a Kolmogorov-Smirnov test, we observed that the distribution of all metric values did
not follow a Gaussian distribution. Therefore, for hdEEG and MEG separately, we computed
a Kruskal-Wallis ANOVA test on the inverse operators to assess the effect of the source
imaging method on DLE or SD distributions. Comparisons between modalities (hdEEG and
MEG) and one-on-one comparisons between inverse operators were performed using a non-
parametric Wilcoxon signed rank test. Level of significance was set to p < 0.05/6 = 0.0083,
in order to take into account multiple comparison through the analysis of four source imaging
methods (i.e. 6 comparisons tested) using Bonferroni method.

5.3 Results

5.3.1 Quantitative analysis of the resolution matrices

5.3.1.1 Analysis of DLE and SD distributions

For each source localization technique and each modality, the distributions of DLE and SD
metrics over all dipolar sources along the cortical surface are presented in Figure 5.2, using
boxplot representations. As expected (see Section 5.2.12), all metrics values for MNE PSF
and MNE CT were identical. Similarly, all metrics values for MNE CT, dSPM CT, and
sLORETA CT were the same. Moreover DLE values for sLORETA PSF were correctly found
to be zero.

The Kruskal-Wallis ANOVA test indicated a significant effect of the source imaging
technique for DLE and SD metrics in both hdEEG and MEG (p < 0.001).

The difference of median distributions between source imaging techniques and their
pairwise comparison tests were presented for PSF in Table 5.1.

In MEG for DLE values, no significant difference was found between cMEM PSF and
MNE PSF (Wilcoxon signed rank test, p = 0.80), whereas both these methods showed
a significantly lower median value than dSPM PSF (5.47 mm and 5.69 mm respectively,
Wilcoxon signed rank test, p < 0.001).

In hdEEG for DLE values, all pairwise comparisons were found statistically significant
(Wilcoxon signed rank test, p < 0.0083). However, for each comparison, the effect size was
actually very small (median difference being less than 1 mm), except for sLORETA.
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Figure 5.2: Statistical distribution of the evaluation metrics for DLE in MEG (A) and hdEEG
(B), and SD in MEG (C), and hdEEG (D) for cMEM, MNE, dSPM and sLORETA using boxplot
representations. All values are in mm.

In MEG for SD values, we found that the cMEM PSF median was significantly lower
than all the other techniques (differences of medians: 16.82 mm, 21.85 mm and 21.50 mm for
MNE, dSPM and sLORETA respectively, Wilcoxon signed rank test, p < 0.001).

Similarly in hdEEG for SD values, we found that cMEM PSF median was significantly
lower than all the other techniques (differences of medians: 4.53 mm, 12.41 mm and 11.52
mm for MNE, dSPM and sLORETA respectively, Wilcoxon signed rank test, p < 0.001).

The comparisons of CT maps were displayed in Table 5.2. The difference between cMEM
DLE CT and the other techniques in MEG, although significant (Wilcoxon signed rank test,
p < 0.001), was found to have a negligeable effect size (median difference being less than 1
mm). We observed that the DLE CT values in hdEEG were significantly lower in cMEM
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Table 5.1: Difference between distribution medians of source imaging techniques for DLE and SD
in PSF maps. Each cell shows the difference between the distribution median of the source imaging
technique in the column against the distribution median of the source imaging technique in the
corresponding row. As an example, the second cell of the first row indicates that the median of
DLE PSF of dSPM in MEG was 5.47 mm higher than the median of DLE PSF of cMEM. n.s.: not
significant. * : p < 0.0083. **: p < 0.001. The effect size of the median distribution differences is
color coded as follows: red: difference of median higher than 10 mm. Light red: median difference
between 1 mm and 10 mm. Light gray: median difference between -1 mm and 1 mm. Light blue:
median difference between -10 mm and -1 mm. Blue: median difference below -10 mm.

MNE dSPM sLORETA

MEG DLE PSF
cMEM n.s. 5.47 ** -13.74 **
MNE 5.69 ** -13.52 **
dSPM -19.21 **

hdEEG DLE PSF
cMEM -0.3580 * -0.87 ** -16.65 **
MNE -0.51 ** -16.30 **
dSPM -15.78 **

MEG SD PSF
cMEM 16.82 ** 21.85 ** 21.50 **
MNE 5.03 ** 4.68 **
dSPM -0.35 **

hdEEG SD PSF
cMEM 4.53 ** 12.41 ** 11.52 **
MNE 7.88 ** 6.99 **
dSPM -0.89 **

Table 5.2: Difference between the distribution medians of linear source imaging techniques against
cMEM for DLE and SD on CT maps. As an example, the first cell of the first row indicates that the
median of DLE CT of cMEM in MEG was 0.43 mm lower than the median of the other techniques.
n.s.: not significant. * : p < 0.0083. **: p < 0.001. The effect size of the median distribution differences
is color coded as follows: red: difference of median higher than 10 mm. Light red: median difference
between 1 mm and 10 mm. Light gray: median difference between -1 mm and 1 mm. Light blue:
median difference between -10 mm and -1 mm. Blue: median difference below -10 mm.

MNE & dSPM & sLORETA
MEG DLE CT cMEM -0.43 **
hdEEG DLE CT cMEM 2.12 **
MEG SD CT cMEM 16.13 **
hdEEG SD CT cMEM 5.69 **

compared to the other techniques (difference of medians: 2.12 mm, Wilcoxon signed rank
test, p < 0.001).

We found that SD CT values in MEG were significantly lower in cMEM compared to the
other techniques (difference of medians: 16.13 mm, Wilcoxon signed rank test, p < 0.001).
Similarly, we observed that the SD CT values in hdEEG were significantly lower in cMEM
compared to the other techniques (difference of medians: 5.69 mm, Wilcoxon signed rank
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Table 5.3: Difference between the distribution medians of hdEEG against MEG for DLE and SD.
As an example, the first cell of the first row indicates that the median of DLE PSF of cMEM in
hdEEG was 2.92 mm higher than the median of DLE PSF of cMEM in MEG. n.s.: not significant. *
: p < 0.0083. **: p < 0.001. The effect size of the median distribution differences is color coded as
follows: red: difference of median higher than 10 mm. Light red: median difference between 1 mm
and 10 mm. Light gray: median difference between -1 mm and 1 mm. Light blue: median difference
between -10 mm and -1 mm. Blue: median difference below -10 mm.

hdEEG
cMEM cMEM (CT) MNE dSPM sLORETA

MEG DLE 2.92 ** 1.80 ** 2.78 ** -3.43 ** n.s.
SD 4.04 ** 4.67 ** -8.25 ** -5.40 ** -5.95 **

test, p < 0.001).
The results for the comparison between hdEEG and MEG are displayed in Table 5.3.

cMEM DLE (PSF and CT) as well as MNE DLE values were significantly lower in MEG
when compared to hdEEG (difference of medians: 2.92 mm and 1.80 mm, for cMEM DLE
PSF and cMEM DLE CT respectively, Wilcoxon signed rank, p < 0.001), whereas it was the
other way around for dSPM DLE. For SD values, cMEM (PSF and CT) were significantly
lower in MEG compared to hdEEG (difference of medians: 4.04 mm and 4.67 mm, for cMEM
SD PSF and cMEM SD CT respectively, Wilcoxon signed rank, p < 0.001), whereas the
opposite behavior was found for MNE, dSPM and sLORETA.

5.3.1.2 Spatial distribution of the metrics

To further characterize the spatial distribution of DLEPSF and SDPSF, we represented the
results over the inflated cortical surface (only the left hemisphere is shown) for MEG
(Figure 5.3) and in hdEEG (Figure 5.4).

The localization errors were smaller in DLE maps in cMEM and MNE for superficial
sources when compared to deeper generators. In contrast, dSPM exhibited excellent DLE
values for deeper generators, except for temporo-mesial sources.

A qualitative assessment of SDPSF maps showed that lower SD values were located in more
superficial sources for cMEM and MNE, whereas a more homogeneous spatial distribution
was found for dSPM and sLORETA.

Overall, for most cortical regions, SDPSF values were smaller for cMEM when compared to
other methods, illustrating known intrinsic properties of cMEM to be sensitive to the spatial
extent of the underlying generators. The other methods, in contrast, would overestimate such
spatial extent.

Despite the statistical differences between DLE and SD when comparing hdEEG and
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MEG (Section 5.3.1.1), the spatial distribution of these metrics for both modalities was
actually very similar.

Figure 5.3: Spatial distribution of DLEPSF and SDPSF metrics in MEG. The figure shows the
lateral and mesial aspect of the left hemisphere’s cortical surface.

5.3.1.3 Illustration of the theoretical ability to recover a spatially extended
generator

The reconstruction of the spatially extended source was illustrated in Figure 5.5. For all
source imaging techniques, MEG and hdEEG reconstructions were very similar except that,
as expected, MEG did not recover the radial aspects of the dipolar source belonging to this
spatially extended patch.

DLE values were null for most source reconstructions, indicating that the maximum of the
source amplitude was found within the simulated extended source. However, the maxima of
the source reconstruction for dSPM in MEG and hdEEG were more than 20 mm away from
the ground truth. The maxima were actually located in anterior cingulate region, illustrating
the bias of dSPM towards deep structures.
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Figure 5.4: Spatial distribution of DLEPSF and SDPSF metrics in hdEEG. The figure shows the
lateral and mesial aspect of the left hemisphere’s cortical surface.

Among all the source imaging techniques, the lowest SD values were found for cMEM using
the “sum of PSF ” (7.30 mm for MEG, 5.25 mm for hdEEG) or “source recons.” map (5.92
mm for MEG, 3.80 mm for hdEEG). Despite the non-linearity nature of cMEM estimation,
we overall noticed very little difference in the two approaches indicating that the source
localization result of the whole generator is equivalent to the sum of the PSF for each dipolar
source composing the generator.

In order to generalize our results on the resolution matrix analysis, Figure 5.6 is reporting
performances of the four source imaging methods when considering noise-free simulation of
spatially extended generators. Using two sets of parcels covering the whole cortical surface,
either large (50 parcels) or small parcels (400 parcels), we assessed the performance of all
source imaging techniques using DLE and SD metrics. Overall the results were in agreement
with the ones presented in Figure 5.2 for single dipolar sources, i.e. similar DLE values
for all methods and smaller SD values for cMEM (except perhaps for DLE metrics when
applied to cMEM in MEG when considering small parcels). It is first worth noting than when
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considering spatially extended sources, sLORETA is not providing zero-localization error
anymore.

Figure 5.5: Summation of all point spread functions corresponding to the spatially extended red
source (cf. the red line in all figures). The source is located in the frontal cortex and is composed by
63 dipolar sources (11 cm2). Sources with amplitude below 10% of the maximum were displayed in
grey. SD and DLE were calculated based on the simulated source, all units in mm.

5.3.2 Evaluation of source localization of somatosensory evoked

responses

From 10 recorded runs of MEG and hdEEG, nine were analyzed: one MEG run corresponding
to right MNS was contaminated by stimulation artifacts that could not be successfully

93



CHAPTER 5. MANUSCRIPT 1: COMPARISON OF THE SPATIAL RESOLUTION

Figure 5.6: Reconstruction of noise-free spatially extended generators. Statistical distribution of
the evaluation metrics for DLE in MEG (A - E) and hdEEG (B - F), and SD in MEG (C - G), and
hdEEG (D - H) for cMEM, MNE, dSPM and sLORETA using boxplot representations. The metrics
are based on source localization in ideal condition obtained from the large parcels (A to D) and
from the small parcels (E - H). All values are in mm.

removed, and was therefore discarded. Results for DLE, SD and RSA are displayed in
Figure 5.7.

No significant effect of source imaging methods on DLE scores were found for either
hdEEG and MEG (Kruskal-Wallis ANOVA test, p > 0.5), indicating similar DLE scores for
all source imaging methods.

No significant effect was found for SD in hdEEG (Kruskal-Wallis test, p = 0.084).
However, we observed a significant effect of the source imaging method on SD scores for
MEG (Kruskal-Wallis test, p < 0.05). Moreover, in MEG, all pairwise tests between source
imaging techniques showed a significant difference (Wilcoxon signed rank test, p < 0.0083),
with a better performance of cMEM (mean for SD: 5.2 mm) over the other techniques (means
for SD: 10.1 mm, 9.3 mm and 9.7 mm for MNE, dSPM and sLORETA respectively).

We observed a significant effect of source imaging methods on RSA scores for hdEEG
(Kruskal-Wallis test, p < 0.05): all the pairwise comparison were significantly different
(Wilcoxon signed rank test, p < 0.0083), except between dSPM and sLORETA. Overall
cMEM showed the lowest RSA score in hdEEG. Similarly, a significant effect of source imaging
methods on RSA scores for MEG (Kruskal-Wallis test, p < 0.05): all the pairwise comparison
were significantly different (Wilcoxon signed rank test, p < 0.0083), except between dSPM
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Figure 5.7: Results of the dipole localization error (DLE), spatial dispersion (SD) and ratio of
spurious activity (RSA) for left and right median nerve stimulation in MEG and hdEEG. Points
represent each individual results (n = 9 for MEG and n = 10 for hdEEG) and horizontal thick lines
represent the mean of the distribution.

and sLORETA and between MNE and dSPM. Overall cMEM showed the lowest RSA score
in MEG.

When comparing results between hdEEG and MEG, we observed a significant difference
between modalities in DLE and RSA for dSPM and in SD and RSA for cMEM (Wilcoxon
signed rank test, p < 0.05). with an overall better performance of MEG over hdEEG.

The source group average of the MNS results were obtained by projecting all the individual
sources on a template cortical surface within Brainstorm software (Figure 5.8). This figure
also displays the distribution of the amplitude for each source reconstruction, as a function of
the Euclidean distance to S1HAND. When compared to other methods, the results for cMEM
appeared less spatially distributed and more accurately focused around S1HAND. Moreover,
it is worth noting that dSPM and sLORETA tended to generate a large amount of energy
in deep structures. The histogram representations further confirmed that cMEM was more
focused than the other techniques, in agreement with the SD values reported in Figure 5.7.
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Figure 5.8: Source average of median nerve stimulation in MEG and hdEEG. The results reflect the average of the stimulation of 5
subjects (4 subjects for right MNS in MEG). For each source imaging method, The source results corresponding to the N20 peak were
projected on a cortex template, normalized and averaged. Results were illustrated by a view of the cortical surface from the top and the
mesial part of the left and right hemispheres. In all the maps, sources whose amplitudes were lower than 30% of the maximum were
displayed in gray. The spatial distribution of source amplitudes is further described by reporting the histogram of sources amplitudes as a
function of their Euclidean distance to S1HAND
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5.4 Discussion

In this study, we applied the concept of resolution matrix to compare four source imaging
methods, namely MNE, dSPM, sLORETA and cMEM on the basis of spatial accuracy
measured with PSF and CT scores. The spatial properties of the imaging techniques were
also analyzed by applying source localization of the N20 peak of the somatosensory evoked
response to electrical stimulation of the median nerve.

Whereas most methods can reach overall good performance in accurately localizing the
main peak of the generator, as measured by DLE, cMEM presented excellent results in term
of SD in hdEEG and MEG signals, confirming our previous observations from epilepsy studies
(Grova et al., 2006a; Chowdhury et al., 2013; Heers et al., 2015; Grova et al., 2016).

In addition, here we demonstrated for the first time that cMEM was also able to accurately
localize focal sources, besides its ability to also recover large extended sources. In the MNS
study, cMEM was the source imaging technique which provided the most focal sources within
the expected cortical area and which was the most robust to noise, since it exhibited very
little distant spurious activity compared to other methods.

Surprisingly even if pairwise comparisons were found statistically different, some of the
differences in DLE or SD between source imaging techniques were extremely small. Indeed,
several significant differences consisted in differences of distribution median below 1 mm.
The unusual shape of the statistical distribution of those metric (e.g. DLE values present
a bimodal distribution with values ranging from 0 to 70 mm, and a large number of null
values) may be an explanation why significant statistical differences were found despite the
negligeable effect size. We added a color code of the effect size in Tables 5.1 to 5.3 to facilitate
the interpretation of our results in this regard.

Whereas this present study was focusing on resolution matrix analysis and electrical
median nerve stimulation experiments, it is worth mentioning that cMEM has already been
studied and compared to other source imaging techniques, in configurations involving more
complex source patterns. The behavior for cMEM in presence of realistic simulations of
EEG and MEG data has been extensively studied: in Grova et al. (2006a), using realistic
simulated EEG data, we first evaluated the ability of cMEM to be sensitive to the spatial
extent of the generators. A later study completed this work by extensively studying MEG
source imaging in similar contexts (Chowdhury et al., 2013), showing that cMEM was indeed
able to reconstruct MEG sources of various sizes with good accuracy and robustness. In
a last study comparing cMEM to another method characterized by its ability to recover
extended sources (4-ExSo-MUSIC), the ability of cMEM to reconstruct two synchronous or
propagated sources was studied (Chowdhury et al., 2013). cMEM was also proven to be a
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promising source imaging technique for clinical data, such as epileptic discharges: our group
compared the reconstruction of EEG and MEG transient epileptic discharges and assessed
concordance with intracranial EEG findings (Heers et al., 2015; Grova et al., 2016). We
demonstrated that cMEM was more accurate and did not tend to overestimate the source
extent, when compared to the other standard source imaging techniques (Heers et al., 2015).
A wavelet-based extension of MEM (Lina et al., 2014) has demonstrated promising results
when localizing high-frequency oscillations (von Ellenrieder et al., 2016) or epileptic seizures
onset (Pellegrino et al., 2018). Finally it is worth noting that cMEM has been applied in other
context than epilepsy by our group or others, as for instance auditory short-term memory
task using MEG (Grimault et al., 2014), oscillatory patterns such as epileptic high-frequency
oscillations (Papadelis et al. 2016) or sleep spindles (Zerouali et al., 2014), and more recently
in functional connectivity studies (Zerouali et al., 2016; Hassan et al., 2016).

5.4.1 Resolution matrix analysis

Resolution matrix is an interesting approach for investigating the intrinsic spatial properties of
source localization technique in noise-free conditions. An analytical formula of the resolution
matrix exists for linear techniques as MNE, dSPM and sLORETA. However, this is not the
case for cMEM since it is a non-linear inverse solver. We assumed here that cMEM spatial
properties could be estimated by a reconstruction of the resolution matrix. One important
hypothesis behind this is that cMEM reconstruction of a spatially extended generator is given
by the additive superposition of the reconstructions of all the dipolar sources, which is true
in the linear techniques but not straightforward in a non-linear framework. This assumption
was partly confirmed by the comparison of the two approaches, i.e. summing the PSF of every
dipole involved in a spatially extended generator or the noise-free localization of the signal
generated by the whole patch (Figure 5.5). Moreover, the analysis of source reconstruction
of parcels with different spatial extents presented similar results than the ones obtained for
the PSF analysis when simulated noise free single dipolar sources (Figure 5.6). Our results
indeed suggest that, in noise free conditions, the intrinsic spatial properties of cMEM could
be investigated through its estimated resolution matrix.

Best results in DLE in hdEEG and MEG analyzed with cMEM and MNE were found for
superficial sources (Figures 5.3 and 5.4). For dSPM, the noise normalization had an effect of
depth weighting on the solution. As a consequence, dSPM exhibited good DLE values for
deeper sources when compared to other methods, except in the temporo-mesial structures.
Overall, the median of DLE of all the techniques never exceeded 20 mm for both MEG and
hdEEG (See Figure 5.2 A-B), which was low considering that the mean distance between
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two neighbor dipoles along the cortical surface was about 5.5 mm.
It has already been pointing out that the localization error could not be enough to

determine the quality of a source imaging technique (Grave de Peralta et al., 2009; Hauk
et al., 2011). This is the reason why we added spatial dispersion metric to our analysis. In
PSF and CT, cMEM SD values were significantly smaller than all the other methods. cMEM
seems to exhibit intrinsic spatial properties to accurately localize focal sources, especially
superficial ones. cMEM SD values were indeed quite low in superficial regions, when compared
to other methods, whereas the distribution of SD values were more uniform throughout the
whole brain for other techniques. Interpretation of SD is more difficult for deeper sources,
because it is then influenced by spatial spread and localization error.

A study of the spatial properties of MNE, dSPM and sLORETA in MEG (Hauk et al.,
2011) showed similar results in SD for all techniques, with lower DLE values in dSPM
compared to MNE. Our study was not able confirm this observation, as we found that
DLE values were actually high for dSPM for superficial sources. dSPM tended to be biased
towards deep sources, resulting in large amplitude current density estimated in some deep
structures (probably due to some numerical instabilities), consequently increasing DLE values
for superficial sources. This difference may also be due to the different MEG technology used in
(Hauk et al., 2011). Indeed, their study was done on an Elekta Neuromag Vectorview system,
with 102 magnetometers and 204 planar gradiometers (Elekta AB, Stockholm, Sweden),
whereas the current study uses 275 axial gradiometers.

Other studies used additional metrics to characterize the spatial properties of the resolution
matrices. This included the average of all PSF or CT maps reported for each dipolar source
suggested by Liu et al. (2002) or the resolution index proposed by Hauk et al. (2011). These
metrics did not provide additional information that what we already showed using DLE and
SD (data not shown).

CT maps are a marker of characterizing how dipoles could affect surrounding dipole
reconstruction, which is also studied as the source leakage caused by volume conduction (Hauk
and Stenroos, 2013). Low leakage is important when choosing source imaging techniques
for functional connectivity studies (Hassan et al., 2014). Our results showed that resolution
matrices had very low values of SD CT for cMEM when compared to other well-established
methods. cMEM is therefore a promising relevant method to be considered for functional
connectivity studies, and has recently be applied with success in such context (Zerouali et al.,
2016).

cMEM results showed significantly lower SD values for MEG when compared to hdEEG
whereas the reverse trend was observed for the other techniques. Our results are in agreement
with Liu et al. (2002) who also demonstrated that MNE had more crosstalk in MEG when
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compared to EEG. However, Molins et al. (2008) reported larger SD values in MNE for EEG
when compared to MEG. The difference between these studies may again be explained by the
used MEG sensors: Liu’s study as well as ours used gradiometers, whereas magnetometers
were used in Molins et al. (2008). This difference may explain the higher spatial dispersion
reported in MEG in this study.

Here we illustrated, for the first time, the behavior of cMEM in focal source configuration
and in noise-free conditions. Out results suggest that the maximum of activity was usually
successfully recovered by most methods. However MNE, dSPM and sLORETA were less
sensitive to the spatial extent of the source generators, whereas cMEM was able to provide a
more accurate representation of the true underlying spatial extent for cMEM.

Some of the differences we observed between hdEEG and MEG analysis could also be
caused by the choice of the forward model. In terms of forward modeling, we considered
a Boundary Element Model for hdEEG and MEG. We decided to chose such forward
models because they are easily available through conventional software packages and source
reconstructions were shown to be more accurate than when using single-sphere or overlapping-
sphere models (Henson et al., 2009). We notably used OpenMEEG implementation of BEM
(Gramfort et al., 2010), a method that was demonstrated to be robust to numerical instabilities
that could occur when the source model is getting to close to inner BEM surfaces. Whereas
we previously demonstrated that cMEM was quite robust to possible errors related to the
brain-to-skull conductivity ratio (Chowdhury et al., 2015, 2016), one should mention that
different head modeling affect differently EEG and MEG data, as suggested in Vorwerk
et al. (2014). In this study, starting with a 3-compartment Finite Element Method model,
the authors measured the effect of adding different compartments (such as cerebrospinal
fluid (CSF), skull spongiosa, or skull compacta) on the accuracy of EEG and MEG forward
models and concluded that including the CSF and distinction between gray and white matter
should be considered in head volume conductor modeling for both EEG and MEG. However,
studying specifically the effect of the choice of the forward model on the resolution matrix
results, despite being of great interest, was falling out of the scope of the present study.

5.4.2 Evaluation using somatosensory data

MNS was used because it is known to produce a focal activity in the hand region of the
primary sensory cortex (Wood et al., 1988; Allison et al., 1995; Barba et al., 2005). Since
such a generator is very focal and reliably localized in S1 area, one can consider the same
metrics to analyze PSF maps (Molins et al., 2008) using an anatomical landmark as gold
standard (Kuo et al., 2014).
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Distant spurious activity was not considered in the evaluation of SD and DLE metrics in
order to avoid bias evaluation results by remote activity far from the generator, as proposed
in Grova et al. (2016). In order to quantify the amount of activity discarded by this approach,
the metric RSA was introduced. We showed that when compared to other source imaging
methods, cMEM exhibited very little distant spurious activity, probably due to its ability to
shut down parcels during the regularization process. This finding is also in agreement with
our previous studies investigating the localization of extended epileptic generators (Grova
et al., 2016; Heers et al., 2015).

DLE values were similar for all source imaging techniques, whereas cMEM exhibited
significantly smaller SD and RSA values when compared to any other methods. This means
that while all the techniques often found their maximum in the region of interest, cMEM
produced less spatial spread around the main generator, exhibiting very little distant spurious
activity, especially in MEG.

The overall results showed that SD and RSA metrics were lower in MEG compared to
hdEEG in almost all techniques. The difference between hdEEG and MEG in MNS data
could be explained by the difference in signal-to-noise ratio of the average signals, and the
difficulty for hdEEG to correctly estimate the conductivity value of the skull. We also verified
that the S1HAND regions manually segmented for this study consisted mainly in tangential
oriented sources. To do so, we used the measure of cancellation index proposed in Ahlfors
et al. (2010) on all regions and showed similar level of cancellation for hdEEG and MEG,
suggesting that source orientation may not explain the different results obtained in both
modalities.

Molins et al. (2008) also reported DLE and SD metric to compare EEG and MEG for N20
reconstructions. It is important to note that the SD and DLE values found in Molins’s study
were higher than the ones reported in the present investigation. These differences can be
explained mostly by the choice of the ground truth. Molins and colleagues decided to compare
the source imaging reconstruction to the equivalent current dipole reconstructions, whereas
we opted with the anatomical location of S1HAND. Our labeled region representing the ground
truth being by construction larger than theirs, DLE and SD values were consequently smaller.

This is the first time we are investigating the behavior of cMEM on real data in controlled
experiments to identify focal generators. cMEM results were very accurate and the behavior
of the method was in agreement with our previous studies, for both MEG and hdEEG.
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5.5 Conclusion

We used the resolution matrix to compare different source imaging techniques (MNE, dSPM,
sLORETA, and cMEM) in terms of PSF (related to the intrinsic spatial resolution of the
source reconstruction) and CT, an important feature to be characterized before assessing
functional connectivity between different regions. In this study combining theoretical analysis
of resolution matrices and localization of real somatosensory data, we carefully evaluated
both MEG and hdEEG data using similar amount of sensors. We showed that, despite few
differences slightly in favor of MEG, both modalities allowed very accurate localization.
Moreover, for both MEG and hdEEG, we showed that cMEM outperformed widely used
linear operators in term of PSF and CT maps, especially for cortical sources. We concluded
that cMEM was the best candidate to correctly reconstruct focal sources and was more robust
to noise than other techniques.
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Manuscript 2: Effect of MR-related noise on the

quality of electrical source imaging

reconstructions of visual evoked potentials

Authors: Tanguy Hedrich, Ümit Aydin, Stephan Grimault, Habib Benali, Jean-Mac Lina,
Christophe Grova.

Context

In Chapter 5, we have demonstrated the excellent performance of cMEM in terms of spatial
resolution, as well as its ability to recover the extent of a source with minimal leakage. We
did so providing a detailed evaluation using MEG data but also for the first time with
high-density EEG data. Since our overall objective was to apply ESI on EEG data recorded in
the MR scanner, this second manuscript aimed at assessing the robustness of different source
imaging techniques when applied to EEG data in presence of MR-related noise. As described
in Chapter 3, recording EEG inside the MR scanner is a challenging task since MR-related
artifacts affect the EEG data and create distortion in the signals. Several techniques have been
used to overcome this issue. Despite advanced method to remove those artifacts, remaining
residuals could still contaminate the data. To understand the effect of the MR-related noise
on the quality of ESI reconstructions, we performed visual stimulation experiments on healthy
subjects twice: once outside the scanner, and then during an fMRI experiment. In that way,
we were able to obtain a gold standard (data recorded outside) as a comparison reference for
a better assessment of the performance of the ESI techniques. Conducting this experiment to
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carefully evaluate ESI quality from hdEEG data acquired inside the scanner was necessary
before considering ESI from hdEEG inside the scanner to localize IEDs (Chapter 7).

All the acquisitions were realized at the PERFORM centre in Concordia University
in Montreal. With this study, we were actually the first group performing an EEG-fMRI
experiment in the PERFORM centre and we were able to obtain good quality data and
results with the help of our MR physicist Dr. Grimault and the PERFORM scientific director
Dr. Benali, as well as all the technicians from the PERFORM centre.

The manuscript was submitted for publication as: T. Hedrich, Ü. Aydin, S. Grimault,
H. Benali, J.-M. Lina, and C. Grova. Effect of MR-related noise on the quality of
electrical source imaging for simultaneous EEG-fMRI recordings. Human Brain
Mapping, Under Review.

Abstract

Background: Electroencephalography (EEG) recorded simultaneously with functional mag-
netic resonance imaging (fMRI) suffers from artifacts caused by the high magnetic field
environment. The goal of this study was to assess the quality of electrical source imaging
(ESI) techniques using EEG data recording in the scanner using a well-controlled visual
stimulation paradigm.

Methods: The P100 peak recorded inside and outside the MR scanner was acquired in
14 participants and localized using two ESI techniques: Minimum Norm Estimate (MNE)
and coherent Maximum Entropy on the Mean (cMEM). The EEG quality was assessed using:
Signal-to-Noise Ratio (SNR) and the correlation with grand average topography (Corr). The
ESI accuracy was measured using: Dipole Localization Error (DLE ), Spatial Dispersion (SD)
and Ratio of Spurious Activity (RSA).

Results: Corr and SNR were affected by the residuals of the MR-related artifacts, as
indicated by a significant decrease of those metrics inside the scanner. However, only small
effects were found on DLE and SD indicating the robustness of ESI to MR-related noise.
However, ESI from data inside the scanner exhibited a large amount of distant spurious
activity. Overall cMEM proved to be more robust to this noisy environment than MNE.

Conclusion: Even if EEG quality decreased in the presence of high-magnetic field, EEG
source reconstruction remained accurate, exhibiting similar performance when compared
to data acquired outside the scanner, although contaminated with more distant spurious
activity. These results strengthen the prospect to compare and combine ESI of neuronal
activity and the corresponding hemodynamic response using simultaneously recording.
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6.1 Introduction

Functional magnetic source imaging (fMRI) is a largely recognized neuroimaging technique
measuring the Blood Oxygen Level Dependent (BOLD) signal in the brain (Kwong et al., 1992;
Ogawa et al., 1992). fMRI is an indirect measure of brain activity and relies on the estimation
of the blood hemodynamic response elicited by neural activation following neurovascular
coupling processes (Logothetis et al., 2001). On the other hand, electroencephalography
(EEG) measures directly the brain activity by recording neuronal bioelectrical activity, mostly
post-synaptic potentials, with scalp electrodes (Nunez and Srinivasan, 2006). Whereas fMRI
provides excellent spatial resolution at a millimetric scale, EEG provides a better temporal
resolution, measuring brain neuronal activity at the millisecond scale. Both modalities can be
recorded simultaneously (Gotman et al., 2006; Mulert and Lemieux, 2010; Abreu et al., 2018a).
However, measuring EEG in the MR scanner is challenging, mainly due to large artifacts
produced by the MR scanner on the EEG signals. Main artifacts are: the gradient artifact,
caused by rapidly varying magnetic field during gradient switches; the ballistocardiogram
artifact, mostly due to small head movements induced by heartbeats; and the vibrations
induced by helium pump (Allen et al., 2000; Vanderperren et al., 2010; Mullinger et al.,
2013a). There is a growing interest in acquiring EEG simultaneously with fMRI. Indeed,
EEG could be used to detect specific brain activity, such as specific oscillations (Tyvaert
et al., 2008), epileptic discharges (Gotman et al., 2006), and sleep spindles (Dang-Vu, 2010).
fMRI could then localize the hemodynamic changes related to those events with an excellent
spatial resolution. In epilepsy, simultaneous EEG-fMRI is a valuable method used to localize
brain regions involved during the generation of epileptic discharges, by studying the brain
hemodynamic changes related to transient epileptic events detected on scalp EEG (Gotman
et al., 2004; Khoo et al., 2017; van Graan et al., 2015)).

In order to improve the spatial resolution of EEG data, Electrical source imaging (ESI)
can be considered (Hämäläinen and Ilmoniemi, 1994; Lascano et al., 2015; Michel et al., 2004).
ESI consists in solving a so-called inverse problem to localize the generators of scalp EEG
signals along the underlying cortical surface (Baillet et al., 2009). The problem is ill-posed in
nature, meaning that a unique ESI solution can only be found if additional constraints are
added to the model. Several methods providing inverse solution for ESI have been proposed
and carefully validated in the literature (He et al., 2018). The forward model, based on
realistic individual brain segmentation and a physical model of electric propagation inside
the head, should also be carefully addressed to obtain reliable results (Hallez et al., 2007;
Mosher et al., 1999a). In this study, we used the distributed inverse solution approach entitled
coherent Maximum Entropy on the Mean (cMEM), developed by our group (Amblard et al.,
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2004; Grova et al., 2006a; Chowdhury et al., 2013) using boundary element model (BEM)
methods as the forward model. cMEM has been carefully evaluated and validated in the
context of EEG and magnetoencephalography source imaging for its ability to be sensitive to
the underlying spatial extent of the generators (Chowdhury et al., 2018, 2015; Grova et al.,
2006b; Pellegrino et al., 2018) and its robustness in the presence of data with low signal to
noise ratio (Chowdhury et al., 2016; Hedrich et al., 2017). In a recent study, we demonstrated
that, when using high density EEG, cMEM exhibited an excellent spatial resolution when
compared to other widely used ESI techniques, namely the minimum norm estimate (MNE)
and its noise-normalized variants (dSPM and sLORETA) (Hedrich et al., 2017).

On the other hand, simultaneous EEG-fMRI allows studying the hemodynamic response
to electrophysiological signals of spontaneous activity, pathological patterns or cognitive tasks.
Simultaneous EEG-fMRI studies have been notably considered to investigate the relationship
between the hemodynamic activity and different brain rhythms during rest (Laufs, 2008;
Tyvaert et al., 2008), or during sleep (Dang-Vu, 2010; Picchioni et al., 2013). EEG-fMRI
has been also used to study well-controlled tasks, for example pain stimulation, cognitive,
motor and sensory tasks, where the amplitude, but also several other characteristics of
the EEG response such as spectral components, latencies of the evoked response or spatial
topographies could be included within the fMRI statistical model to assess their interaction
with hemodynamic activities (Arnstein et al., 2011; Bénar et al., 2007; Christmann et al.,
2007; Debener et al., 2005; Knyazeva et al., 2006).

However, ESI has been rarely applied to EEG data recorded in the scanner (Boutin et al.,
2018; Brookes et al., 2008; Groening et al., 2009; Vulliemoz et al., 2009, 2010a). Most studies
aimed at detecting EEG patterns to be analyzed within the fMRI framework (e.g. epileptic
discharges, sleep related discharges, specific events); for this reason, only a few electrodes
were usually considered for simultaneous EEG-fMRI acquisitions (about 20 electrodes), thus,
limiting the possibility to perform reliable and accurate ESI reconstructions. Moreover, even
after careful artifact corrections using different approaches (Allen et al., 1998, 2000; Mullinger
et al., 2013a; Vanderperren et al., 2010), EEG data within the scanner remains of lower
quality when compared to EEG data recorded outside the scanner, whereas ESI procedure
would require good EEG quality over the whole spatial topography (Leijten and Huiskamp,
2008). To the best of our knowledge, the effects of the high magnetic field environment on
the performance of the ESI reconstruction have never been studied in a dedicated manner.
In this study, we carefully investigated the use of high-density EEG (hdEEG), involving 256
electrodes, to evaluate the accuracy of ESI within the context of simultaneous EEG-fMRI
acquisitions, using a well-controlled visual task.

One could question the interest of using ESI inside the MRI scanner. Indeed, several
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studies compared ESI and fMRI using EEG data recorded outside the scanner (Mayhew et al.,
2013), including some studies from our group (Grova et al., 2008; Heers et al., 2014). One
advantage of simultaneous recording is that EEG and fMRI hold complementary information.
Electrophysiology is sensitive to synchronous post-synaptic potential whereas fMRI records
the hemodynamic activity: recording both modalities at the same time allows to better
understand the dynamics of the neurovascular coupling and avoids discrepancies that are due
to differences in vigilance or in attention during EEG and fMRI acquisitions. In this context,
resting state functional connectivity appears as a domain which might greatly benefit from
the fusion of the information generated simultaneously from both modalities (Mantini et al.,
2007; Meyer et al., 2013).

In the present study, we propose a careful evaluation of ESI using high-density EEG data
acquired in the scanner, using a well-controlled visual stimulation task. We evaluated the
accuracy of ESI using high-density EEG data acquired either outside or inside the scanner,
while varying the number of averaged evoked response trials, hence the level of signal-to-noise
ratio (SNR). Our objective was to demonstrate whether ESI can be considered for hdEEG
data acquired in the scanner, even in low SNR conditions.

6.2 Material and methods

6.2.1 Subjects

From 20 subjects who were enrolled in the experiment, 6 were excluded because of high
movement artifacts and too many eye blinks synchronous with the stimulation (n=5) or high
susceptibility artifact (n=1). Thus, fourteen healthy volunteers (eleven females; age range:
[21-40]), with normal or corrected-to-normal vision participated in the study. All 14 subjects
performed two sessions, EEG only first, then EEG acquired simultaneously with fMRI. The
study was approved by the “Comité centrale d’éthique de la recherche” of Quebec ministry of
health and a written informed consent was signed by all participants prior to the procedures.

6.2.2 Paradigm design

The visual stimuli consisted in the presentation of radial black and white checkerboard,
derived fromPinel et al. (2007), of the left side of screen in a gray background, while the
participant was asked to fixate a plus-shaped cross at the center of the screen (Figure 6.1).
Each stimulus was presented for one second, with a phase reversal after 500 ms of presentation,
with a random interstimulus interval varying between 6 s and 8 s, for a total number of
70 stimuli. To maintain the subject’s attention during the experiment, five times randomly
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throughout the experiment, the plus-shaped cross target was changed into an ’X’-shaped
and the participant was instructed to press a button as soon as possible when such a change
occurred.

The diameter of the checkerboard stimuli outside the MR scanner was 33 cm and the
distance between the participants and the monitor was set to 75 cm. Inside the MR scanner, a
Hyperion MRI digital projection system (PST100984) was used for the stimuli. The diameter
of the checkerboard was 60.7 cm, the distance from the mirror to the screen was 128 cm and
the distance from the eyes to the mirror was approximately 10 cm.

Figure 6.1: Diagram describing the visual stimulation task.

6.2.3 Data acquisition

All acquisitions were conducted at the PERFORM Centre of Concordia University. hdEEG
data was recorded using a 256-electrode EGI system (Philips Neuro, Eugene, OR, USA) at a
sampling rate of 1000 Hz. Electrocardiography was also recorded using additional electrodes.
For safety reasons allowing EEG recording inside the MRI, each electrode was equipped with
an additional 10 kΩ resistance. We visually evaluated that good data quality was therefore
achieved by maintaining the EEG impedances below 70 kΩ as suggested by the manufacturer.

MRI data were acquired using a 3T GE Discovery MR750 scanner (General Electric,
Milwaukee, WI, USA). During the task, the fMRI data acquisition consisted in an EPI
sequence (3.7 × 3.7 × 3.7 mm3 voxels, 33 slices, 64 × 64 matrix TE = 25 ms, TR = 1.9
s, flip angle 90°). Additionally, two high-resolution T1-weighted MRIs (1 mm isotropic 3D
acquisition, 192 sagittal slices, 256× 256 matrix, TE = 2.98 ms, TR = 2.3 s, flip angle 9°)
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were acquired after the task, one with the EEG cap and one without the EEG cap for fMRI
image co-registration and head modeling for hdEEG source imaging.

The data that support the findings of this study are available from the corresponding
author upon reasonable request.

6.2.4 hdEEG data analysis

For data acquired inside the scanner, MR-related artifacts (gradient and pulse artifacts)
were corrected using averaged artifact subtraction method (Allen et al., 1998, 2000) using
BrainVision BrainAnalyzer2 software (Brain Products, Munich, Germany). The acquired
EEG data were then imported in to Brainstorm software (Tadel et al., 2011). A 1-25 Hz
band-pass filter was first applied as suggested in Mayhew et al. (2013). Blink artifacts were
reduced using the Signal Space Projection method, where we selected the first one or two
components to remove, based on their topography, time courses and explained variance
(Uusitalo and Ilmoniemi, 1997). The data was then segmented into 700 ms epochs (from -200
ms to 500 ms, 0 being the time of the visual stimulus onset) and DC correction was applied,
considering a baseline window from -200 ms to 0 ms. Electrodes located on the face and on
the neck (76 channels) as well as any other potential noisy channels were excluded for further
analysis. All the remaining electrodes were re-referenced to an average reference. All trials
were inspected visually and trials with remaining large artifacts were discarded. For some
of the subjects, if ballistocardiogram artifacts were still present in the signal, independent
component analysis (Nakamura et al., 2006) was performed to visually remove additional
components, based on their topographies and rhythmicity. For each subject and condition,
all non-discarded trials were averaged and the exact timing of the P100 peak was estimated
as the peak of maximum amplitude of the electrode O2 around 100 ms after the stimulus.

In order to study the effects of the signal-to-noise ratio of the evoked potential of hdEEG
data acquired inside and outside the scanner, subaveraged signals were constructed by
randomly drawing and averaging n trials, with n = {1,5,10,20,30,40}. For each n, draws with
replacement were repeated 20 times. The whole process of hdEEG data analysis is illustrated
in Figure 6.2.

6.2.5 Forward model estimation

The EEG sensor positions were estimated using the default EGI positions in Brainstorm soft-
ware (Tadel et al., 2011), individually adapted for each subject. After this, head segmentation
using the MRI of the subjects with the EEG cap on was performed and the position of the
EEG electrodes was modified so that each electrode fit to the center of the corresponding MRI
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Figure 6.2: Summary of the EEG and ESI analysis pipeline. SNR: Signal-to-Noise Ratio; Corr :
spatial correlation of the EEG topography with grand average; DLE : Dipole Localization Error;
RSA: Ratio of Spurious Activity.

signal attenuation. Another head segmentation, using MRI images of the subject without the
EEG cap, was then performed and the position of the EEG electrodes was coregistered to
this surface using Brainstorm. The source space consisted in a mesh of the cortical surface
segmented based on the mid-line between gray-white matter interface and the pial surface,
subsampled to around 8000 vertices, estimated using Freesurfer Fischl (2012) and Brainstorm
software. All dipolar sources in the distributed source model were oriented perpendicularly
to the cortical surface.

The forward model assessing the contribution of every dipolar source to hdEEG sensors
was computed using the Boundary Element Method (BEM) proposed by Kybic et al. (2006).
The gain matrix was calculated using a 3-layer BEM model consisting in the inner skull,
outer skull and head surface (respective conductivity: 0.33 S/m, 0.0165 S/m, 0.33 S/m). The
calculations were done using the OpenMEEG implementation (Gramfort et al., 2010) in
Brainstorm software.

6.2.6 Source analysis

Two source imaging techniques were considered in this study. The weighted minimum norm
estimate (MNE) (Dale and Sereno, 1993; Hämäläinen and Ilmoniemi, 1994), a widely used
linear technique calculating the source solution which explains the measured data assuming
a broad distribution of low-amplitude currents in the brain.

The other source imaging technique used was coherent Maximum Entropy on the Mean
(cMEM) (Amblard et al., 2004; Chowdhury et al., 2013), a Bayesian approach, in which the
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a priori knowledge is given through a parcellation of the cortical surface, whereas data fit
and regularization are ensured through entropic approaches. We have carefully evaluated the
accuracy of cMEM source imaging method, and notably its ability to recover the underlying
spatial extent of the generators in realistic EEG and MEG simulations (Grova et al., 2006a;
Chowdhury et al., 2013, 2016) as well as with clinical data (Chowdhury et al., 2018; Grova
et al., 2016; Pellegrino et al., 2018). The implementation of cMEM algorithm considered in
this study is available as a plug-in in Brainstorm software and a tutorial describing its use is
available: http://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst.

6.2.7 fMRI statistical analysis

The EPI data underwent a standard General Linear Method (GLM) analysis using FSL soft-
ware (http://www.fmrib.ox.ac.uk/fsl/index.html). fMRI preprocessing included non-
brain tissue removal, slice timing correction, motion correction using MCFLIRT method
(Jenkinson et al., 2002), spatial smoothing (5 mm FWHM) and high-pass filtering (temporal
cutoff: 100 s). Regressors for the visual stimulations were based on the timing of each event,
convolved with the canonical hemodynamic response function. The six parameters estimated
during motion correction were also included in the GLM analysis as confound regressors,
in order to account for residual movement artifacts. The significance of every cluster was
assessed using a method involving Gaussian random field theory (Z threshold: 2.3, Cluster
threshold: p < 0.001 (Woo et al., 2014)). The BOLD cluster containing the voxel exhibiting
the largest absolute t-value was selected and projected into the EEG source space, i.e. the
cortical surface, using a Voronoi based interpolation (Grova et al., 2006a; Heers et al., 2014).

6.2.8 Inter-subject variability

Inter-subject and test-retest reliability of hdEEG source imaging for data recorded outside
and inside the scanner were evaluated at the sensors and at the source level using metrics
similar to the ones introduced in our previous study (Hedrich et al., 2017).

Our first metrics aimed at assessing the quality of the evoked response within the sensor
space. We also used metrics in the source space aiming at assessing specifically source
imaging performances. For these latter ones, we considered as “ground truth” an anatomical
segmentation outlining the right lateral occipital region. This anatomical region was extracted
from the Desikan-Kiliany atlas, estimated on subject specific cortical surface during the
Freesurfer surface segmentation. This occipital region was indeed the region where we could
expect maximum intensity of our source reconstruction of P100 as suggested in Di Russo
et al. (2002).
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6.2.8.1 Signal-to-noise ratio on electrode O2 (SNR)

The signal-to-noise ratio (SNR) was estimated as the ratio between the amplitude of electrode
O2 (EGI electrode 150) at the P100 peak and the standard deviation pre-stimulus background
estimated in O2 along a period of 200 ms before the visual stimulation.

6.2.8.2 Spatial Correlation of the EEG topography with grand average (Corr)

To assess the spatial accuracy of the evoked topography at the P100 peak, we estimated
spatial Pearson’s correlation (Corr) of EEG topographies using as reference the grand average
P100 peak topography obtained by averaging all trials recorded outside the scanner from all
subjects.

6.2.8.3 Dipole Localization Error (DLE)

The Dipole Localization Error (DLE ) was used to assess the localization error of the source
reconstruction. This metric in millimeters was calculated as the minimum Euclidean distance
between the location of the reconstructed dipolar source exhibiting maximum amplitude at
the P100 peak, and the closest border of the anatomical reference area considered for this
study.

6.2.8.4 Spatial dispersion (SD)

The spatial dispersion (SD), as originally proposed by Molins et al. (2008), measured the
spatial spread around the right lateral occipital region. A low score of SD indicates a focal
source, whereas a higher score means that the source was either mis-localized when compared
to the reference or exhibited a spatially extended pattern around the presumed true location.
SD was calculated as follows:

SD =

√√√√∑nd

i=1 d
2
i,φĵjj

2

i (tP100)∑nd

i=1 ĵjj
2

i (tP100)
(6.1)

where di,φ is the closest Euclidean distance between the dipole i and the anatomical
reference φ, and ĵjj

2

i (tP100) is the energy of the ith dipole of the source reconstruction at the
time of the P100 peak.

6.2.8.5 Ratio of spurious activity (RSA)

For the calculation of DLE and SD, we only selected dipolar sources exhibiting activity at a
distance smaller than 40 mm from the anatomical reference. This was done to prevent the
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DLE and SD metrics to be biased by additional spurious source reconstructions occurring
far from the presumed localization. Consequently, we also developed a metric quantifying the
amount of activity falsely localized in remote regions from the presumed generator. To do so,
we calculated the ratio between the energy far from the studied region, i.e. activity in dipolar
sources located at a distance larger than 40 mm from the right lateral occipital reference
region, to the total energy. Results were expressed in percentage, where 0 % means that all
the activity was localized within a close neighborhood of the anatomical reference and 100 %
that all the activity was located far from this region and therefore considered as spurious.

6.3 Results

6.3.1 Sensor based metrics (SNR and Corr)

Figure 6.3 presents the distribution of the two proposed scalp EEG sensor-based metrics
(SNR and Corr) as a function of the number of trials considered to compute the evoked
response, in both conditions: inside (dark line) and outside (light line) the scanner. Group
median of the 14 participants is presented on the left side of each figure, whereas results
obtained for every individual analysis are presented on the right side. The grand average
spatial topography from EEG data recorded outside the scanner, considered as the reference
for Corr estimation, is presented in Figure 6.6.

Regarding spatial correlation, Corr, we observed an increase in correlation values as the
number of averaged trials increased, ranging from 0.53 for single trial topographies and
reaching a plateau at around 0.76 when 20 trials were averaged, for all subjects for EEG
data recorded outside the scanner. Similarly, for EEG data recorded inside the scanner, we
observed a median Corr value of 0.31 for single trial data, reaching a plateau at 0.68 when
for a subaverage of 30 trials. Correlation values were significantly smaller for data acquired
inside the scanner when compared to the EEG data acquired outside the scanner (Wilcoxon
RankSum test, p < 0.05, Bonferroni corrected). We also found a large inter-subject variability,
the range of correlation values for 40 averaged trials ranged from 0.20 (S4) to 0.94 (S2) for
data acquired outside the scanner, and from 0.28 (S4) to 0.94 (S2) for data acquired inside
the scanner.

The SNR levels measured at O2 electrode varied from 2.10 to 8.50 outside the scanner and
from 1.64 to 5.32 inside the scanner. Importantly, at the group level, SNR values estimated
inside the scanner were statistically larger than SNR values estimated from data recorded
outside (Wilcoxon RankSum test, p < 0.05, Bonferroni corrected) for all subaverages. Again,
a large inter-subject variability was observed, with SNR data ranging from 1.88 (S1) to 26.5
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(S2) for data recorded outside and 1.49 (S1) to 15.3 (S2) for data recorded inside the scanner,
when considering a subaverage of 40 trials.

Figure 6.3: (A) Topography spatial correlation (Corr) and (B) signal-to-noise ratio (SNR) as a
function of the number of trials. For each subfigure, the left panel presents the group subject average,
whereas the right panel depicts the results for each individual subject. Each sample point represents
the median +/- interquartile range over the corresponding distribution. The dark line and light line
represent the data inside and outside the scanner, respectively. A plain color was used between the
two curves when the corresponding metric exhibited better performance outside versus inside the
scanner. On the other hand, hatchings were used between the two curves when the metric exhibited
better performance inside versus outside the scanner. For group and single subject and for each level
of subaveraging, Wilcoxon RankSum was used to compare metrics obtained inside and outside the
scanner. (*: p < 0.05, Bonferroni corrected.)

6.3.2 ESI based metrics (DLE, SD, and RSA)

DLE, SD and RSA metrics after applying cMEM or MNE source localization methods are
reported in Figure 6.4. At the group level, DLE showed a decrease in localization error when
increasing the number of trials used for averaging for both ESI techniques. For single trials,
the average DLE values was 14 mm for MNE and 20 mm for cMEM, both outside and
inside the scanner. Increasing the number of trials averaged inside the scanner decreased the
DLE values for MNE down to a median value of 0 mm with a subaverage of 10 or higher.
Surprisingly, there was a constant, although not significant, bias (∼5 mm) in median DLE
values between inside and outside the scanner for MNE. DLE values for cMEM did not show
any significant differences between inside and outside the scanner and the median values
in both conditions were 0 mm when the number of averaged trials exceeded n=20. At the
single subject level, we could however observe a large discrepancy between the subjects. Some
subjects illustrated good results with DLE scores rapidly decreasing to 0 or very small DLE
values (S2, S5 and S9 for both MNE and cMEM, S3 for MNE only, S14 for cMEM only).
On the hand, other subjects showed very high localization error, and for some subjects,
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localizations were more accurate for data acquired inside when compared to data outside the
scanner compared to outside (5 subjects for MNE, 4 subjects for cMEM).

SD values at group level were decreasing when increasing number of trials, starting, for
data outside the scanner with median values of 22 mm for single trial data (for both cMEM
and MNE), and reaching a plateau at around 14 mm (for cMEM) and 19 mm (for MNE) for a
subaverage of 20 trials. The SD scores outside the scanner were significantly lower compared
to the ones inside the scanner for averages of 5 and 10 trials for cMEM and when averaging
more than n=10 trials for MNE (Wilcoxon RankSum test, p < 0.05, Bonferroni corrected).
The number of averaged trials had little effect on the SD scores for MNE, indicating that
increasing SNR did not benefit the spatial dispersion of MNE. On the other hand, for cMEM
the SD decreased from a median of 22 mm to 14 mm as increasing number of trials. At the
single subject level, we observed overall the same patterns as for the group level, with little
effect of the number of trials seen for MNE, and a progressive decrease for cMEM, suggesting
that when increasing the SNR, cMEM was able to recover more accurately the spatial extent
of the underlying generators.

Regarding distant spurious localizations at the group level, RSA values decreased sig-
nificantly when increasing the number of trials, for both data acquired inside and outside
the scanner, ranging from 87 % to 29 % for data inside and from 72 % to 7.7 % for data
outside for cMEM. RSA values were ranging from 76 % to 62 % for data inside and from
76 % to 51 % for data outside for MNE. RSA values were found significantly higher inside
the scanner when compared to data acquired outside for all subaverages in cMEM and for
subaverages of 10 and 40 trials for MNE (Wilcoxon RankSum test, p < 0.05, Bonferroni
corrected). Importantly, we found considerably lower RSA scores for cMEM when compared
to MNE in all conditions (inside and outside, for all number of trials larger than 10). At
the single subject level, one could observe a consistent pattern, i.e. a constant decrease of
RSA values when increasing the number of trials, for MNE. However, for cMEM, we could
observe some larger discrepancies in RSA values when comparing data recorded inside and
outside the scanner (S6, S8, S10, S12, S13 and S14), suggesting the influence of remaining
MR artifacts impacting source localization results. On the other hand, for few other subjects,
very low RSA scores were found in both conditions (S2, S5, S7, and S9).

6.3.3 Illustration with single subject level analyses

Figure 6.5 provides an illustration of the results obtained for two subjects (S2 and S8), when
considering a subaverage of n=20 trials.

In subject S2, EEG signals and the reconstructed sources were similar in both conditions
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Figure 6.4: (A) Dipole Localization Error (DLE ), (B) Spatial Dispersion (SD) and (C) Ratio of
Spurious Activity (RSA) as a function of the number of trials for cMEM reconstructions. For each
subfigure, the left panel is the subject average whereas the right panel depicts the results for each
individual subject. Each sample point represents the median +/- interquartile range. The dark line
and light line represent the data inside and outside the scanner, respectively. A plain color was used
between the two curves when the corresponding metric exhibited better performance outside versus
inside the scanner. On the other hand, hatchings were used between the two curves when the metric
exhibited better performance inside versus outside the scanner. For group and single subject and for
each level of subaveraging, Wilcoxon RankSum was used to compare metrics obtained inside and
outside the scanner. (*: p<0.05, Bonferroni corrected.).

116



CHAPTER 6. MANUSCRIPT 2: EFFECT OF MR-RELATED NOISE

(inside and outside the scanner). Indeed, SNR and Corr scores were high for data recorded
inside and outside the scanner (SNR: 12.2 outside compared to 16.0 inside; Corr: 0.94 outside
compared to 0.86 inside). Source reconstructions were also similar, as illustrated by the
small differences in DLE and SD values between each condition. cMEM exhibited a clear
localized focus in the lateral occipital region (with DLE = 0 mm in both conditions, and
SD = 12.0 mm inside and 11.3 mm outside the scanner), whereas MNE presented a more
diffuse reconstruction in the same region (with a maximum in the lateral occipital region, as
indicated by a zero DLE score in both conditions, and SD values of 17.4 mm inside and 15.0
mm outside the scanner). However, the RSA scores were found slightly higher for data outside
the scanner (2.7 % for cMEM and 23 % for MNE for data recorded inside, compared to 3.2 %
for cMEM and 32 % for MNE for data recorded outside the scanner). These possible distant
spurious sources were more likely generated by the anterior positivity in the topography,
which is probably caused by remaining artifacts, as for instance remaining eye blinks artifacts.

Subject S8 was an example that showed highly degraded EEG signals inside the scanner
when compared to data acquired outside the scanner, confirmed by the drop in SNR from
12.7 outside to 3.6 inside the scanner. However, the topographies obtained in both conditions
were still very similar and characterized by similar levels of spatial correlation with the
reference (Corr of 0.79 outside versus 0.72 inside). For data acquired outside the scanner,
cMEM found the maximum of activity in the lateral occipital region (DLE = 0 mm), while
recovering accurately the spatial extent of the generator and exhibiting very little distant
spurious activity (SD = 11.0 mm and RSA = 3.2 %). On the other hand, MNE found the
maximum activity slightly outside the region of interest (DLE = 14.6 mm). This error in
localization also impacted the spatial dispersion measure (SD = 19.6 mm), whereas MNE also
exhibited distant spurious sources (RSA = 58 %). Inside the scanner, cMEM still performed
well despite the low quality of the EEG data (DLE = 0 mm, SD = 16.8 mm, RSA = 33
%), and found a source in the lateral occipital region, which is consistent with the EEG
topography. In this situation, MNE failed to localize activity in the occipital region (DLE =
37.4 mm, SD = 26.0 mm, RSA = 81 %).

6.3.4 Group level analysis

Figure 6.6 shows the EEG grand average from all the subjects for EEG recorded inside and
outside the MRI and the corresponding group level fMRI analysis. The P100 peaks from
each subject were realigned and centered at 0 ms (Figure 6.6). Individual source models were
coregistered to a template segmentation of the cortex (Colin27) using Freesurfer registered
spheres. All the individual subject average EEG signals and their corresponding source
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Figure 6.5: Illustration of the EEG signal, topography and source reconstruction using cMEM
and MNE of the P100 peak for two subjects for n=20 averaged trials. For all the figures, the blue
outline represents the reference lateral occipital region. The EEG signal shows a butterfly plot of all
the EEG channels. The tracing highlighted in red corresponds to O2 electrode. All sources were
normalized for visualization purposes and sources whose amplitude was found below 10 % of the
maximum were discarded. The corresponding fMRI analyses of the subjects are also presented (t
map, clusters corrected using Random Field Theory, Z threshold: 2.3, Cluster threshold: p < 0.001).

imaging maps were averaged to obtain the sensor-based and source-based grand average
data. The EEG source grand averages in both conditions were localized in the right lateral
occipital region with both cMEM and MNE. Overall the SNR and topography correlation
were excellent (SNR: 46.5 outside versus 24.8 inside; Corr: 1.00 (which was expected as this
correlation was the reference) outside versus 0.97 inside). For data acquired outside the
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scanner, cMEM found the maximum of activity in the lateral occipital region (DLE = 0
mm), while recovering accurately the spatial extent of the generator and however exhibiting
some distant spurious activity (SD = 14.7 mm and RSA = 19 %). MNE found the maximum
activity slightly outside the region of interest (DLE = 5.67 mm). The spatial dispersion
was however similar to cMEM (SD = 16.1 mm), but MNE exhibited more distant spurious
sources (RSA = 34 %). Inside the scanner, cMEM and MNE found their sources inside the
region of interest (DLE = 0 mm), but cMEM outperformed MNE in term of SD (10.8 mm
versus 20.5 mm for MNE) and RSA (20 % versus 53 % for MNE). The group average fMRI
analysis, however, showed a maximum activation in the calcarine gyrus in the medial occipital
region (V1). The discrepancy between the EEG sources (lateral occipital) and the fMRI
results cluster (medial occipital) is further discussed in the next section.

Figure 6.6: Grand average using all non-discarded trials from all subjects of averaged EEG signal,
topography and source reconstruction using cMEM and MNE of the P100 peak. All sources were
normalized for visualization purposes and sources whose amplitude was found below 10 % of the
maximum were discarded. The fMRI analysis represents the group average of the fMRI BOLD
response (t map, clusters corrected using Random Field Theory, Z threshold: 2.3, Cluster threshold:
p < 0.001).

6.4 Discussion

The main objective of this study was to carefully assess the performance of two source imaging
techniques, MNE and cMEM, in two conditions, when considering hdEEG data recorded
inside and outside the MRI scanner, while varying the SNR level using different levels of
partial trial averaging.
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The overall results using a well-controlled visual protocol demonstrated that accurate
source reconstructions could be achieved from hdEEG acquired inside the scanner, despite
the overall decrease in EEG quality. We aimed at studying the effect of the MR-related noise
on the accuracy of EEG source reconstruction, while varying the SNR level by assessing
ESI for different levels of trial averaging. The effect of the number of trials on the SNR of
EEG evoked potentials has been shown in the literature in some early studies (Nakamura
et al., 1988; Turetsky et al., 1988), however, to the best of our knowledge this idea was never
investigated in the context of simultaneous EEG-fMRI acquisitions. Even after considering
several “standard” preprocessing steps to reduce the influence of MR-related artifacts, the
EEG inside the scanner was still found degraded, as demonstrated by a drop in SNR and
topography correlation when compared to EEG data acquired outside the scanner. This
decrease in the overall EEG quality can be explained by the presence of residuals of MR-
related artifacts. However, at the group level, we reported almost no significant differences (or
little effect) in ESI accuracy, even when using these lower quality EEG data, when considering
the location and extent of the main generator, as illustrated by similar DLE and SD metrics
for data recorded outside and inside the scanner. Unlike DLE and SD, we did observe an
increase in RSA scores inside the scanner, which indicated increased activity distant from the
presumed occipital generator, when localizing noisier hdEEG data recorded inside the scanner.
Therefore, even after careful artifact removal software procedures, MRI related artifacts tend
to reduce the SNR and the accuracy of the EEG topography of the evoked response. However,
they only slightly affected the localization error and spatial spread around the presumed
region of interest, whereas we found an increase level of distant spurious activity in the source
reconstruction maps.

Overall MNE and cMEM demonstrated similar values of DLE, whereas cMEM outper-
formed MNE, effectively reducing spurious activity around the source (SD metric) or at
distant location (RSA metric). These results are in agreement with our previous studies
comparing MNE and cMEM on synthetic and real data for EEG and MEG (Grova et al.,
2006a; Chowdhury et al., 2013, 2015; Heers et al., 2015; Chowdhury et al., 2016; Hedrich
et al., 2017). Therefore, our present study suggests that ESI could indeed be considered for
hdEEG data acquired inside the MRI scanner and opened the possibility to study the source
imaging results of non-averaged events along with the corresponding BOLD response, as long
as the SNR is sufficient large.

It is worth mentioning that residuals from MR-related artifacts were still present and
did impacted source localization results, especially through the presence of distant spurious
localization. Those artifacts were mainly generated in the temporal regions, therefore probably
had lesser impact on the accuracy of ESI for generators located in the occipital cortex. In
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other conditions, involving more frontal or temporal generators, these residuals MR related
artifacts would more likely influence the accuracy of ESI results. In this context, several efforts
have been deployed to improve the accuracy and efficiency of artifact removal procedures,
proposing either hardware-based (LeVan et al., 2013; Chowdhury et al., 2014; Abbott et al.,
2015; van der Meer et al., 2016b) and software-based solutions (Vanderperren et al., 2010) in
the recent years. Studying the impact of these promising approaches on ESI was out of the
scope of this study and will be considered in future investigations.

To the best of our knowledge, this work is the first study carefully evaluating the accuracy
ESI using hdEEG data recorded inside the MRI scanner, while comparing performances with
ESI applied to hdEEG acquired outside the scanner. Few other studies actually investigated
the possibility to perform ESI from EEG data acquired inside the scanner, i.e. when considering
MR-corrupted EEG data (Brookes et al., 2008; Groening et al., 2009; Vulliemoz et al., 2009;
Centeno et al., 2017; Boutin et al., 2018), but without a direct comparison with ESI from
good quality EEG recorded outside the scanner. In Brookes et al. (2008), beamformer source
localization was applied on 32 channels EEG data recorded simultaneously with fMRI during
a visual stimulation protocol. They showed that the spatial filter inherent to beamformer
methods was able to filter out the ballistocardiogram and residual gradient artifact efficiently
by comparing the power spectra of scalp EEG electrodes and the estimated beamformer
virtual electrodes. In Groening et al. (2009), the authors combined ESI and fMRI to study
pediatric epilepsy patients, concluding that ESI helped to differentiate BOLD responses
corresponding to propagating sources versus early sources during interictal epileptic discharges.
They used LAURA (Local autoregressive average) ESI algorithm on EEG data acquired
from 30 channels. Although Brookes et al. (2008) and Groening et al. (2009) were providing
very interesting and promising results that are also in agreement with our findings, the low
number of EEG channels used for ESI and the low numbers of subjects considered in both
studies (two subject in Brookes et al. (2008) and four subject in Groening et al. (2009)
were a limiting factor. Another study on 53 epileptic pediatric patients showed that spatial
concordance between ESI (LAURA method, with 64 electrodes) and fMRI responses to
epileptic discharges was a better predictor of postsurgical outcome (Centeno et al., 2017).
However, the study focused on the comparison between ESI and fMRI and their clinical
relevance, but not on the accuracy of ESI when recorded simultaneously with fMRI. The
authors tested the concordance between ESI and fMRI where we focused on the assessment
of the accuracy of ESI using the data recorded outside the scanner as reference. We validated
the accuracy of ESI technique by varying the level of SNR, i.e. by varying the number of
trials averaging. It is therefore difficult to compare the results in Centeno et al. (2017) to the
present study. In Vulliemoz et al. (2009), by comparing ESI of interictal epileptic discharges
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using LAURA with 32 to 64 EEG channels and fMRI BOLD responses, the authors were able
to differentiate the BOLD clusters corresponding to the onset of the epileptic discharges from
the BOLD clusters related to propagation of the discharges. These results were in line with
our own findings comparing BOLD response to EEG and MEG source imaging from data
not simultaneously acquired with MRI (Heers et al., 2014). Moreover, the good concordance
between ESI applied inside the scanner and the BOLD cluster indicated a good quality of ESI
reconstruction inside the scanner. Furthermore, the same group (Vulliemoz et al., 2010a) used
LAURA on the continuous EEG signal recorded during an fMRI analysis and used the source
signal in the fMRI analysis. They demonstrated that continuous ESI could help localizing the
irritative zone (Vulliemoz et al., 2010a). Finally, Boutin and colleagues (Boutin et al., 2018)
performed source imaging on spindles during EEG-fMRI sleep recordings using 64 sensors and
MNE as source imaging technique, providing a spectral analysis of deep regions at the time
of the spindles. However this study was not able to assessed the performance of the spectral
analysis of ESI results in the scanner. All these studies showed the versatile and powerful
potential of using ESI at the time as fMRI analysis. It is important to note that except
Brookes et al. (2008), all of these studies were investigating spontaneous brain activities with
considerably larger amplitudes than evoked potentials, such as interictal epileptic discharges
or sleep spindles. Therefore, the effect of SNR on the quality of the localization has not been
evaluated in these studies, whereas this validation is one of the main contributions of our
present study.

As a controlled experiment for this validation study, we considered a visual stimulus
paradigm, using the presentation of a radial checkerboard in the left hemifield. The results
for our source reconstructions, when considering hdEEG data acquired inside or outside the
scanner, were found located in a dorsal part of the occipital lobe. These activations were not
in direct spatial concordance with corresponding fMRI analyses, since BOLD responses were
exhibiting the largest activation in the V1 region, close to the calcarine sulcus (see Figures 6.5
and 6.6). As suggested in Souza et al. (2013) and Odom et al. (2004), pattern onset/offset
and pattern reversal actually produce different evoked potentials. Pattern reversal elicits
N75, P100, and N135 components while pattern onset elicits C1, C2 (also named as P1), and
C3 (also named as N1) components. Therefore, the component we analyzed in this study
with EEG was actually the P1 component. However, since only 500 ms after the pattern
onset there was a pattern reversal, we suspect the slow hemodynamic responses for both
pattern onset and pattern reversal were contributing together to fMRI activations, resulting
in mainly V1 BOLD response. Furthermore, studies have shown that while the earlier C1
component of the pattern onset, were generated in the medial occipital V1 region, the later
components, especially the P1 component, studied here, have been shown to arise from
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more ventral occipital regions (Di Russo et al., 2002, 2005; Whittingstall et al., 2008) in
agreement with our findings. Therefore, we can conclude that our EEG source localization
results and the anatomical reference we considered for ESI evaluation were in agreement with
this literature. The topography of the EEG recorded in this study was very similar to the one
presented in Mayhew et al. (2013), who performed a similar protocol. Despite this spatial
discrepancy we observed between ESI and fMRI results, this visual task proposed within an
event-related design was chosen for a better control on the total number of trials to average.
To further investigate this issue, for one of the subjects (S14), we also considered another
visual paradigm, using a block design experiment. Instead of considering only the onset of the
checkerboard stimulation, this block design was focusing on the visual response elicited by the
phase reversal of the checkerboard. When considering an average of n = 550 phase reversal
trials, the resulting averaged evoked response exhibited an excellent SNR of 32.6 outside
the scanner and 16.6 inside the scanner. The corresponding P100 source exhibited source
generators located in the ventral occipital region (Figure 6.7), in better agreement with fMRI
results and consistent with the literature (Cottereau et al., 2011). These findings confirmed
the good localizations of the generators of event-related ERP in this study, reinforcing the
claim that it is feasible to perform ESI from hdEEG acquired in the scanner.

Figure 6.7: Example of a subject (S14) using a visual block design showing EEG signal, topography
and source reconstruction using cMEM and MNE of the P100 peak. All sources were normalized for
visualization purposes and sources whose amplitude was found below 10 % of the maximum were
discarded. The fMRI analysis represents the group average of the fMRI BOLD response (t map,
clusters corrected using Random Field Theory, Z threshold: 2.3, Cluster threshold: p < 0.001).
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6.5 Conclusion

We compared visual evoked potentials inside and outside the scanner with two source imaging
techniques (MNE and cMEM). Studying evoked potentials allowed us to control the SNR
by varying the number of trials averaged. We assessed the quality of the EEG signal at the
scalp level (using SNR and correlation measures) as well as the overall quality of hdEEG
source reconstructions, in terms of localization error, spatial dispersion and amount of distant
spurious activity. We showed that even if the EEG quality was degraded in the high-magnetic
environment, the accuracy of source reconstructions remained similar for data acquired
outside and inside the scanner, although more spurious activity was found when localizing
hdEEG acquired inside the scanner, resulting in noisier reconstructions. Our study also
confirmed the overall excellent performance of cMEM, especially in term of spatial dispersion
and sensitivity to distant spurious localization, for hdEEG data acquired inside the scanner.
This study proves that source imaging inside the scanner is feasible and accurate, even at
relatively low SNR, therefore opening the possibility to compare accurately brain activity
localized using EEG and the corresponding hemodynamic response elicited by fMRI analysis
during simultaneous hdEEG-fMRI sessions.
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Manuscript 3: Automatic classification of

interictal epileptic discharges based on electrical

source imaging for the EEG-fMRI analysis of

patients with focal epilepsy.

Context

Using well-controlled stimulation paradigms, we demonstrated in Chapter 5 that cMEM had
a good spatial resolution and we have shown in Chapter 6 that it was a good candidate
to perform ESI on hdEEG data recorded during an fMRI experiment. The goal of this
final manuscript is to take advantage of the accuracy of ESI using cMEM in the context of
the presurgical evaluation of patients with epilepsy introduced in Chapter 4. To do so, we
proposed a method using ESI of IEDs to improve fMRI analysis. We have demonstrated
in Chapter 6 that, when the SNR was large enough, source localization of averaged evoked
responses was feasible in the scanner. We then assumed that similar level of SNR and therefore
similar ESI performance could be obtained when localizing spontaneous IEDs, or at least
when considering local averaging of those events to ensure a sufficiently large SNR. To use
the additional information brought by the ESI reconstructions, we developed an automatic
clustering technique that classified IEDs according to their source maps. Those clusters of
IEDs were then used to build the corresponding regressors for fMRI analysis and compared
with standard manual classification IEDs, which required a significant amount of time and
was operator-dependent. All the acquisitions were performed at the McConnell Brain Imaging
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Centre in McGill University, and the patients were recruited thanks to the help of Dr Gotman
and his team.

The manuscript is currently in preparation and is soon to be submitted for publica-
tion: T. Hedrich, H. M. Khoo, A. Koupparis, C. Abdallah, J. Gotman, and C.
Grova. Automatic classification of interictal epileptic discharges based on electri-
cal source imaging for the EEG-fMRI analysis of patients with partial epilepsy.
In preparation..

Abstract

Background: Combined electroencephalography (EEG) and functional magnetic resonance
imaging (fMRI) is an important method for the pre-surgical investigation of patients with focal
epilepsy. Interictal epileptic discharges (IEDs) are usually manually detected and classified
on scalp EEG traces, therefore allowing one to study the corresponding fMRI response to
every type of discharge. The classification of IEDs is a crucial step in the fMRI analysis, and
an incorrect classification can lead to a decrease in sensitivity of the method. This study
proposes an automatic IED clustering which groups events based on the results of electrical
source imaging (ESI).

Methods: Eight patients were recruited and underwent simultaneous high-density EEG
(256 electrodes) and fMRI recordings. IEDs were detected manually and then source imaging
was performed using coherent Maximum Entropy on the Mean (cMEM). Source results were
then classified using a hierarchical clustering technique with the Earth mover’s distance as
clustering metric. IED classes detected with the automatic clustering algorithm were used
to define regressors within the framework of fMRI statistical analysis using a general linear
model. Resulting fMRI clusters exhibiting the most significant responses were compared
to the ones when defining regressors using standard manual classification of IED events. A
presumed clinical reference was defined for each patient, based on seizure semiology and
other available imaging techniques, and the level of spatial concordance with fMRI and ESI
results was evaluated qualitatively at a sub-lobar level.

Results: From all eight patients, the automatic clustering algorithms detected 10 IED
classes, for which the ESI location was found concordant with the presumed clinical reference
in 6 out of 10 cases, and partially concordant in 2 out of 10 cases. Regarding corresponding
fMRI results, fMRI analysis obtained for 7 out of 10 regressors defined using IED classes were
found concordant with the presumed clinical reference, whereas no significant fMRI response
was found for 3 out of 10 cases. Overall, considering either automatic or manual classification,
we found an ESI localization and its corresponding most significant fMRI cluster to both be
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concordant with the clinical reference for 6 out of 8 patients. Moreover, we showed that fMRI
analyses obtained when using IED classes identified with the automatic clustering algorithm
exhibited t-values similar overall to those obtained when using manual classification and
larger t-values, when compared to random IED classifications.

Conclusions: This study showed that automatic clustering based on ESI, exhibited
similar results to manual classification and better performance than random classification.
Such technique offers a method to classify IED which is less subjective and less time-consuming
for the epileptologist and therefore can help facilitating the process of EEG-fMRI analysis.

7.1 Introduction

For patients with drug-resistant focal epilepsy, surgery may be considered if the epileptogenic
focus is precisely localized. Electrical source imaging (ESI) and simultaneous electroen-
cephalography and functional magnetic resonance imaging (EEG-fMRI) are two neuroimaging
techniques that may provide clinically relevant information on the epileptogenic focus, by
localizing the generators of transient Interictal Epileptic Discharges (IEDs) (Pittau et al.,
2014).

EEG-fMRI is a non-invasive technique that can measure the hemodynamic response
elicited by the generation of IEDs (Mulert and Lemieux, 2010; Gotman and Pittau, 2011).
fMRI is a whole-brain imaging technique that records the Blood Oxygen Level Dependent
(BOLD) signal, which is sensitive to the local amount of deoxyhemoglobin (van Graan et al.,
2015). In epilepsy, EEG, when recorded conjointly with fMRI, is usually used as a marker to
detect IED events. The timing of the events is then convolved with the canonical hemodynamic
response function, and then used as regressors in a general linear model (GLM) to detect
the BOLD changes associated to these events. The regions exhibiting significant positive
or negative BOLD responses are therefore related to the generation of epileptic discharges
(Grova et al., 2008; Heers et al., 2014), their eventual propagation patterns (Vulliemoz et al.,
2009) and remote influence, as for instance on the default mode network (Gotman et al.,
2005). The region exhibiting the most significant BOLD cluster has been suggested to be a
good indicator of the presumed epileptogenic focus (Heers et al., 2014; Khoo et al., 2017).

On the other hand, electrical source imaging (ESI) uses scalp EEG information to localize
the underlying generators of the such bioelectrical activity recorded during epileptic events
(He et al., 2018). Contrary to fMRI, ESI is a direct imaging technique of neuronal activity,
but is mainly sensitive to sources located in the neocortex (Baillet et al., 2009). ESI was
proven to be a reliable approach in terms of localization of the epileptogenic focus especially
when considering source localization of IEDs (Brodbeck et al., 2011; Chowdhury et al., 2016,
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2018; Mouthaan et al., 2019).
In general, both imaging techniques are performed during different sessions, where ESI

was applied to EEG data acquired outside the scanner, in less difficult conditions. Most
comparisons between ESI and EEG-fMRI results were notably reported from two separate
acquisition sessions (Grova et al., 2008; Heers et al., 2014; Pittau et al., 2014; Lei et al.,
2015). However, EEG recorded during an fMRI experiment can also be used for ESI, if a
sufficient number of electrodes was used during the the EEG-fMRI recording and if special
care was brought to clean the EEG data from MRI-related artifacts (Abreu et al., 2018a).
A few studies have already pointed out the advantage of using both imaging techniques
simultaneously in epilepsy (Centeno et al., 2017). Indeed, the concordance between both
imaging techniques increases the accuracy of the prediction of the seizure outcome (Centeno
et al., 2017). It was also shown that ESI was able to help distinguishing the epileptic discharge
onset from the propagation pattern in fMRI (Vulliemoz et al., 2009; Groening et al., 2009).
The detection of IEDs from scalp EEG data is a primordial step for the EEG-fMRI data
analysis in epilepsy (Gotman and Pittau, 2011). However, a patient might exhibit different
patterns of discharges and it is usually essential to classify IEDs into different categories
for the EEG-fMRI data analysis (Gotman et al., 2004; Curtis et al., 2012). IEDs are often
manually detected by expert epileptologists, using scalp EEG traces, and then classified into
different types, based on the topography, the morphology of the EEG anomalies and their
duration. fMRI analysis could then be performed considering one regressor for each IED
type to determine one BOLD response per regressor, since the hemodynamic response might
vary between each pattern of discharges and might involve different anatomical regions. Both
spike detection and classification are operator-dependent and often offer poor reproducibility
(Webber et al., 1993; Sharma et al., 2017). Moreover, inaccuracy in IED classification, as well
as adding spurious IEDs or missing IEDs of interest, notably due to MR-related noise, can
lead to errors during the estimation of the BOLD response (Flanagan et al., 2009). Indeed,
grouping inconsistent IEDs together will decrease the statistical power of the GLM analysis
since the events erroneously included in the same regressor should not correspond the same
hemodynamic response. Therefore, one can expect that such inaccuracies of the GLM model
might result in false positive BOLD responses, while reducing the sensitivity of the true
response. This important issue may partly explain why fMRI responses to IEDs are often
associated to a large number of significant BOLD clusters distant from the presumed focus
(Heers et al., 2014). It is indeed not clear whether those distant BOLD responses could result
from the propagation of EEG discharges (Vulliemoz et al., 2009), distant BOLD correlations
(Gotman et al., 2005; Khoo et al., 2017) or false positive spurious detections. An automatic
clustering of the IEDs called wave_clus, based on a selection of a few EEG channels, was
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already used for EEG-fMRI analysis, and was shown to be a reliable alternative to manual
classification (Pedreira et al., 2014; Sharma et al., 2017, 2019). However, this automatic IED
classifier used only scalp traces and not ESI reconstructions. In this study, we hypothesize
that source imaging could help distinguishing the different types of IEDs and therefore
improve the IED classification required for fMRI analysis.

The purpose of this study was to present a reliable alternative to a manual classification,
using a automatic clustering of IEDs using ESI results. We first proposed a method based on
hierarchical clustering of the sources, using ESI results localized using the coherent Maximum
on the Mean (cMEM) technique (Amblard et al., 2004; Chowdhury et al., 2013, 2016). We
then applied our method on simultaneous EEG-fMRI data acquired from eight patients with
focal epilepsy. We compared the accuracy of the fMRI statistical maps and ESI results by
assessing their sublobar spatial concordance with a clinical reference localizing the presumed
epileptogenic zone. We considered fMRI results obtained using either the standard manual
classification or the automatic clustering of IEDs using the t-value of the most significant
cluster (Khoo et al., 2017).

7.2 Material and Methods

7.2.1 Patient selection

The study was performed in agreement with the Helsinki Declaration of 1975 (and as revised
in 1983), was approved by the Research Ethics Board of the Montreal Neurological Institute
and a written informed consent was obtained from all participants. Eight patients with focal
epilepsy were recruited (Table 7.1). Inclusion criteria were: (i) diagnosis of focal epilepsy; (ii)
presence of frequent (> 10 IEDs per hour) IEDs on telemetry; (iii) well-defined focus based
on clinical history and seizure semiology, EEG features and anatomical MRI data.

7.2.2 Data acquisition

All acquisitions were conducted at the McConnell Brain Imaging Center of the Montreal
Neurological Institute. High-density EEG data was recorded using a 256-electrode Philips
Neuro system (Eugene, OR, USA) at a sampling rate of 1000 Hz. Electrocardiography was
also recorded using two additional electrodes placed on the chest. For safety reasons allowing
EEG recording inside the MRI, each electrode was equipped with an additional 10 kΩ

resistance. We visually evaluated that good data quality was achieved by maintaining the
EEG impedances below 70 kΩ as suggested by the manufacturer.
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Table 7.1: Patient table. Abbreviations: L: left, R: right, mTLE: mesial temporal lobe epilepsy, TLE:
temporal lobe epilepsy, FTLE: frontal temporal lobe epilepsy, P: parietal, F: frontal, T: temporal, P:
parietal, O: Occipital, C: central, HME: hemimegalencephaly, FCD: focal cortical dysplasia, ACC:
anterior cingulate cortex, H: heterotopia, AH: amygdalohippocampectomy

Age/Sex Epilepsy
syndrome

Topography
of IEDs

MRI Lesion Previous
surgeries

Outcome

1 31/F L mTLE L FT None n/a n/a

2 38/M R FTLE 1- bi F R HME 1- R F Engel III
2- L F 2- R FT
3- R F 3- R F

3 23/F L FTLE 1- L F None n/a n/a
2- bi F
3- L post. T

4 26/F L FTLE L FT L ACC FCD 1- L ant. T Engel IV
2- L ACC
3- L ACC

5 28/M R TLE 1- R TP R T FCD n/a n/a
2- R TPO

6 37/M R FTLE R FT None R F Engel II

7 48/M L TLE L FT L TO H 1- AH Engel IV
2- L T

8 35/F R P & R
FTLE

1- R FT R P FCD R P Engel II

2- R FCT
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All MRI sequences used in this study were already reported in previous studies (Gotman
and Pittau, 2011; Fahoum et al., 2013; Khoo et al., 2017). A T1-weighed anatomical acquisition
was obtained (1×1×1 mm3, 192 sagittal slices, 256×256 matrix, TE = 2.98 ms, TR = 2.3 s,
flip angle 9 °). The functional data was acquired in runs of 6 min using a T2

∗-weighted
echo-planar imaging sequence (3.7×3.7×3.7 mm3 voxels, 33 slices, 64×64 matrix, TE =
25 ms, TR= 1.9 s, flip angle 90 s°). Patients were instructed not to move and to stay with
eyes closed, resting during the acquisition.

7.2.3 EEG Preprocessing

MR-related artifacts (gradient and pulse artifacts) were corrected using averaged artifact
subtraction method (Allen et al., 1998, 2000) using BrainVision BrainAnalyzer2 software
(Brain Products, Munich, Germany). For some patients, Independent Component Analysis
was used to remove remaining artifact residuals by manually discarding artifactual components
based on their topographies and rhythmicity (Nakamura et al., 2006). A 1–70 Hz band-pass
filter was then applied.

After preprocessing, EEG data was screened visually and marked by an expert epilep-
tologist to detect epileptic events, considering a subset of 25 electrodes using a monopolar
and bipolar montages (10-20 montage, plus F9, T9, P9, F10, T10, and P10), using the same
number of electrodes as in previous EEG-fMRI reported studies from our group (Gotman
and Pittau, 2011; Fahoum et al., 2013; Khoo et al., 2017).

7.2.4 Electrical source imaging

To perform ESI, only the first 6-min runs that contained a cumulative number of fewer
than 300 IEDs were considered to reduce computation time, since our proposed method
requires a pair-wise comparison between the sources of each single event. Each event was then
segmented into a window of 2 s around the event and DC correction was applied, considering
a baseline window from -1 s to -0.2 s. Electrodes located on the face and on the neck (76
channels) as well as any other potential noisy channels were excluded for further analysis.
All the remaining electrodes were re-referenced to an average reference.

For each patient, a distance matrix between each event was calculated. The measured
distance was the Euclidean distance of the spatial topography at the peak of the IED, using
for each patient a subset of electrodes of interest (around 70 electrodes), i.e. the electrodes
displaying the maximum amplitude at the peak of the average IED. Each IED was averaged
with its four closest IEDs to increase signal-to-noise ratio (Hedrich et al., Under Review).
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Each of these local averages were then considered for ESI, allowing an ideal trade-off between
single event source localization and accurate localization at a good signal-to-noise ratio.

The source space consisted in a tessellated mesh of the cortical surface segmented based on
the mid-line between gray-white matter interface and the pial surface, subsampled to around
8000 vertices, estimated using Freesurfer (Reuter et al., 2012) and Brainstorm software (Tadel
et al., 2011). All dipolar sources in the distributed source model were oriented perpendicularly
to the cortical surface.

EEG sensor positions were estimated using the Geodesic Photogrammetry System, which
consists in a structure composed of 11 cameras, developed by Philips Neuro, and its dedicated
software. The position of the electrodes was then coregistered to the scalp surface of the
participant using a surface matching algorithm withing Brainstorm software

The forward model assessing the contribution of every dipolar source to EEG sensors
was computed using the Boundary Element Method (BEM) proposed by Kybic et al. (2006).
The gain matrix was calculated using a 3-layer BEM model consisting in the inner skull,
outer skull and head surface (respective conductivity: 0.33 S/m, 0.0165 S/m, 0.33 S/m). The
calculations were done using the OpenMEEG implementation (Gramfort et al., 2010) in
Brainstorm software.

Source imaging was applied using coherent Maximum Entropy on the Mean (cMEM)
(Amblard et al., 2004; Chowdhury et al., 2013) using a time window of 40 ms around the peak
of each sub-averaged IED. The noise covariance was estimated using a time window of -1000 –
-100 ms before the peak. cMEM is an empirical Bayesian approach developed in our laboratory
which was carefully validated using simulations (Grova et al., 2006a; Chowdhury et al., 2016),
evoked potentials (Hedrich et al., 2017, Under Review) and clinical data (Pellegrino et al.,
2018; Chowdhury et al., 2018). The implementation of cMEM algorithm considered in this
study is available as a plug-in in Brainstorm software and a tutorial describing its use is
available on: http://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst. For further
methodological details on cMEM implementation and validation, the reader is referred to
Chowdhury et al. (2013).

7.2.5 Automatic clustering of IEDs

For each patient, the Earth’s mover distance (EMD) was used to perform a pairwise comparison
of the source reconstructions of all the local subaverages. EMD was computed with ESI
results at the peak of the discharge, defining a metric for the automatic IED clustering based
on ESI results. EMD is a measure that was first used in image reconstruction (Pele and
Werman, 2009; Rubner et al., 2000) but was also introduced in neurosciences for EEG/MEG
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Figure 7.1: Diagram describing the method of this paper.

source reconstruction analyses in Haufe et al. (2008). In this measure, the source amplitude is
considered as either a stack of earth for one source reconstruction, or a collection of holes for
the other source. The EMD measures the least amount of work needed to fill the holes with
earth, where the work is the product between the amount of earth which was transported
and the ground distance covered. In our case, the ground distance was the geodesic distance
along the cortical surface.

To measure EMD, source amplitudes below 10 % of the maximum were discarded and then
the remaining amplitudes were normalized so that the sum of all amplitudes were the same,
which is a prerequisite for the following algorithm. In these conditions, calculating EMD is
similar to solving a transportation problem, that was solved using a least-cost algorithm
(Klein, 1967). The least-cost algorithm for two amplitudes maps, one source jjjs (“the stacks”)
and one target jjjt (“the holes”), given the geodesic distance d, is computed as follows:

1. Set the cost c to 0

2. Select the dipolar sources with non-null amplitudes (â, b̂) with minimal distance:

(â, b̂) = arg min
(a,b)

d(a, b), where jjjs(â) > 0 and jjjt(b̂) > 0 (7.1)

where d(a, b) is the geodesic distance between the dipolar sources of indices a and b, or
the Euclidean distance when a and b were not located in the same hemisphere.

3. Reduce as much amplitude as possible from the source and the target and add it to the
cost:

m = min(jjjs(â), jjjt(b̂))

jjjs(â)← jjjs(â)−m
jjjt(b̂)← jjjt(b̂)−m
c← c+ d(â, b̂)×m

(7.2)
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4. Repeat from step 2 until jjjs = jjjt = 000

The EMD distance matrix was then used as a metric to perform a hierarchical clustering
algorithm, similarly as in Chowdhury et al. (2018). Agglomerative hierarchical clustering
was implemented using MATLAB R2019a “linkage” function, using the shortest distance to
calculate distance between clusters. To determine the number of clusters, we used a visual
inspection of a break in the evolution of the cluster linkage values, as recommended in
Martinez and Martinez (2005). The clusters containing fewer than 5 events were discarded,
and the others were used as regressors in the fMRI analysis.

7.2.6 fMRI analysis

The fMRI analysis was similar to previous studies (Khoo et al., 2017). Two fMRI analyses
were considered, for the first one, the regressors were built from IED types that were classified
manually. For the second analysis, we used our the IED types of our automatic clustering.
Events with duration were manually classified but were not included in the automatic
clustering algorithm. For the fMRI analysis, the events with duration, such as bursts of
rhythmic activity or polyspikes, of a certain manual class were added to the automatic cluster
whose cluster source average was closest to the manual class source average, since they were
not suitable for standard ESI. For each IED class identified (manually or automatically),
the corresponding regressor was obtained by convolving each event with four hemodynamic
response function (HRFs) peaking at 3, 5, 7, and 9 seconds. The GLM analysis was performed
with fMRIstat (Liao et al., 2002) to obtain a statistical t-maps. A combined t-map was
created for each regressor by taking, at each voxel, the t-value with the highest absolute value
from the four t-maps created with the four HRFs as described and evaluated in (Bagshaw
et al., 2004). The combined map was first thresholded using an uncorrected t > 3.1 (or
t < −3.1, i.e. p < 0.001), before correcting for multiple comparison with a topological false
discovery rate (FDR) of 0.05.

7.2.7 Evaluation of clinical concordance

The ESI results and the most significant BOLD cluster provided by either the manual or
the automatic IED classification were reported. The maximum of ESI was located in a
sublobar atlas (see Figure 7.2), and was checked for concordance to the clinical reference.
The presumed clinical reference was defined by patient history, semiology and other imaging
techniques. Each result was characterized as Concordant (C) , when the maximum of the
ESI map or the most significant BOLD cluster were located in the same sublobe of the
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clinical reference; partially Concordant (pC) , if a secondary ESI local maximum or if any

significant BOLD cluster was concordant with the clinical reference, or Discordant (D) .

Figure 7.2: Sublobes used to determine concordance with the clinical reference.

To test whether the automatic clustering algorithm provided better statistical performance
than chance, we additionally generated for each patient one hundred random IED clusterings.
A random cluster was composed of the same number of IED clusters as the automatic
clustering, with the same number of events in each cluster, but the composition of the IED
cluster was randomly selected among all the marked events of the patient. Therefore, a similar
number of events was discarded from fMRI analysis, both for the automatic and the random
clustering (but not the same events were discarded in both conditions). The timing of IEDs
corresponding to these random IED clusters were then used to build regressors for fMRI
analysis. The t-values of the maximum BOLD cluster from all the 100 random clustering
were reported and compared to the maximum t-value of the automatic clustering. To do so,
we calculated how many random cluterings exhibited a higher t-value than the one obtained
with the automatic clustering, and computed the maximum percentile of t-values larger than
the t-value obtained by the automatic IED clustering.

The whole proposed methology is illustrated in Figure 7.1.
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7.3 Results

7.3.1 Clinical relevance

The comparison between ESI and fMRI analysis results using the manual and automatic
classification of the IEDs are summarized in Tables 7.2 and 7.3. The range of detected IED
for the patients was between 18 and 282 (median: 58.5). Among the 8 patients, four of them
had frontal-temporal lobe epilepsy, three of them had temporal lobe epilepsy, in which one
had mesial temporal lobe epilepsy. The last patient, patient 8, had two focuses: one focus in
the parietal lobe and one focus in the frontal-temporal lobe (See Table 7.1).

When considering manual IED classification (Table 7.2), 14 IED classes were found for the
8 patients resulting in 1.75 classes on average per patient. The corresponding ESI localization
was found concordant with the estimated epileptogenic zone in 10 out of 14 of the IED classes,
and partially concordant in 3 out of 14 cases. The fMRI most significant cluster was found
concordant with the clinical reference in 7 out of the 14 IED classes, discordant for 1 out of
14 cases, and no significant clusters were found for 6 out of 14 cases. In 6 patients out of 8,
at least one manual class was found concordant with the clinical reference in both ESI and
fMRI BOLD.

Concerning the automatic classification, 10 IED classes were found resulting in 1.25
classes on average per patient. The corresponding ESI localization was concordant with the
estimated epileptogenic zone in 6 out of 10 of the IED classes, and partially concordant in
3 out of 10 IED classes. The fMRI most significant cluster was found concordant with the
clinical reference in 7 out of the 10 IED classes, and no significant cluster was found for 3 out
of 10 cases. In 6 patients out of 8, at least one automatic IED class was found concordant or
partially concordant with the clinical reference in both ESI and fMRI BOLD (For Patient 7
, the ESI results exhibiting a peak in RTla region were also partially concordant with the
clinical reference, by exhibiting a secondary generator in the same LTla region found by
fMRI analysis). The automatic clustering method discarded 2–26 events (2.4 % – 17.9 % of
the total events for the patients). These discarded events were therefore not considered for
further fMRI analysis. Those events were discarded because they were part of clusters with
fewer than 5 events. With fewer IED events in the fMRI analysis, one could expect a decrease
in the statistical power of the resulting BOLD clusters. We did not observe such an effect
on statistical power in our analysis, since the maximum t-value of the BOLD clusters were
similar between the analyses using the manual and the automatic classification algorithms.
This might indicate that these discarded events did not negatively influence the fMRI results.

The relevance of the automatic clustering was further tested using random clusterings,
using the same size of cluster than the automatic clustering. For each IED class of the
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Table 7.2: Result table for manual IED classification. In the table are referred the estimated
epilepsy syndrome, the number of IED classes identified by the epileptologist, the ESI focus with a
color indicating the concordance with the clinical reference ( Concordant , partially concordant and
discordant ) as well as the number of IED events (with or without duration) corresponding to each
class. The location of the most significant BOLD cluster was also reported, with the same color code
as the location of the ESI focus, as well as their most significant (maximum or minimum) t-values.
The gray line indicated no significant cluster. L: left; R: right; bi: bilateral; mTLE: mesial temporal
lobe epilepsy, TLE: temporal lobe epilepsy, FTLE: frontal temporal lobe epilepsy, P: parietal; the
sublobar location acronyms are presented in Figure 7.2

Patient
number

Epilepsy syndrome Number of
IED types

ESI focus
Number of IED events

(+ events with duration)
Location of most significant

BOLD cluster
Maximum t-value

1 L mTLE 1 bi Cl (D) 41+8 L hip (C) 6.25
2 R FTLE 3 L Fp (pC) / L Fp (pC) / R Fp (C) 14+0 / 2+0 / 2+0 — / — / — n.s. / n.s. / n.s.
3 L FTLE 3 L Tla (C) / L Tla (C) / L Tla (C) 154+307 / 15+14 / 5+9 L Fp (C) / L Ins (D) / — -23.44 / 8.43 / n.s.
4 L FTLE 1 L Tla (C) 54+4 L Ins (C) 7.86
5 R TLE 2 R Tla (C) / R Ol (pC) 149+31 / 97+5 R Tlp (C) / — 7.17 / n.s.
6 R FTLE 1 R Tlp (C) 182+64 R Tla (C) 7.53
7 L TLE 1 L Tlp (C) 32+11 L Tlp (C) -6.03
8 R P & R FTLE 2 R Fo (C) / R Fo (C) 19+7 / 9+24 — / R Fo (C) n.s. / 10.17

patients, the corresponding distribution of the t-value of the most significant BOLD cluster
for the fMRI analysis of each random clustering is reported using boxplot representation in
Figure 7.3. The actual maximum t-value of the most significant BOLD cluster of the fMRI
analysesobtained with the automatic clustering technique was compared to those values
(indicated as a dot Figure 7.3). In 6 out of 8 patients, in at least one of the IED clusters, the
t-values obtained with the automatic clustering were higher than the third quartile of the
t-values obtained with the random clusterings. In patient 2, significance of the fMRI maps
was not obtained with the automatic classification, but was observed in 21 out of 100 random
analyses, but none of them exhibited a fMRI BOLD response in concordance with the clinical
reference. In two patients (Patients 5 and 8), two IED clusters were found by the automatic
clustering algorithm. The fMRI analysis using the automatic IED clustering of the second
cluster (containing fewer events than the first cluster) did not show any significant BOLD
cluster and displayed a significant BOLD cluster for only 6 out of 100 random analyses for
Patient 5, where only half of the 6 significant BOLD clusters were in concordance with the
clinical reference, and for 2 out of 100 random analyses for Patient 8, showing no concordance
with the clinical reference.

7.3.2 Representative cases

Patient 5 (Figure 7.4) is a 28 year old male with an extensive focal cortical dysplasia on
the right temporal lobe, clearly identified on the anatomical MRI. Two types of IED events
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Table 7.3: Result table for automatic IED clustering. In the table are referred the estimated
epilepsy syndrome, the number of IED classes identified by the epileptologist, the ESI focus with a
color indicated the concordance with the clinical reference ( Concordant , partially concordant and
discordant ) as well as the number of IED events (with or without duration) corresponding to each
class, and the number of discarded IED events. The location of the most significant BOLD cluster
was also reported, with the same color code as the location of the ESI focus, as well as their most
significant (maximum or minimum) t-values. The gray line indicated no significant cluster. L: left; R:
right; bi: bilateral; mTLE: mesial temporal lobe epilepsy, TLE:temporal lobe epilepsy, FTLE: frontal
temporal lobe epilepsy, P: parietal; the sublobar location acronyms are presented in Figure 7.2

Patient
number

Epilepsy syndrome Number of
IED types

ESI focus
Number of IED
events (+ events
with duration)

Discarded events
(% of events)

Location of most
significant cluster Maximum t-value

1 L mTLE 1 bi Cl (D) 39+8 2 (4.8%) L hip (C) 6.25
2 R FTLE 1 L Fp (pC) 15+0 3 (16.7%) — n.s.
3 L FTLE 1 L Tla (C) 164+332 4 (2.4%) L Fp (C) -23.92
4 L FTLE 1 L Tla (C) 49+4 6 (10.9%) L Ins (C) 8.69
5 R TLE 2 R Tla (C) / R Ol (pC) 121+31 / 99+5 26 (10.6%) R Tlp (C) / — 6.98 / n.s.
6 R FTLE 1 R Tlp (C) 172+64 10 (5.5%) R Tla (C) 7.60
7 L TLE 1 R Tla (pC) 27+11 5 (15.6%) L Tla (C) -5.67
8 R P & R FTLE 2 R Fo (C) / R Tlp (C) 15+24 / 8+7 5 (17.9%) R Fo (C) / — 10.50 / n.s.

were visually identified by an expert epileptologist (H.M.K.). The first IED type consisted in
right temporo-parietal (RTP) spikes and waves and polyspike complexes with a maximum
amplitude on electrodes T4, T6, T10 and P10 on average montage. From the EEG signals of
the patient, 180 RTP IED events were marked, among them 31 consisted in bursts of such
discharges and were therefore marked with a duration, whereas 149 were marked as single
event discharges consisting in one spike only (modeled as a Dirac for the GLM analysis ).
Only marked events with no duration were considered for ESI and then IED classification.

A second type of IED discharges consisted in right temporo-parieto-occipital spike and
waves discharges, involving maximum amplitude on electrodes T6, P10 and O2. This type of
events was named ‘RTPO’. 102 of these IED events were marked, among them 5 were bursts
marked with a duration.

Results for Patient 5 are presented in Figure 7.4. When considering manual classification
of IEDs, ESI results of RTP events localized a generator in the right temporal lobe, with
a maximum on the middle temporal gyrus. The corresponding fMRI analysis indicated a
large activation cluster over the right temporal lobe, in complete agreement with ESI results
and exhibiting a maximum t-value of 7.17. ESI results of RTPO events found a right lateral
occipital generation, whereas the corresponding fMRI analysis did not exhibit any significant
fMRI response after FDR correction.

Using hierarchical clustering of ESI results, the corresponding dendrogram was thresholded
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Figure 7.3: Distribution of the most significant t-values of fMRI analysis for all the 100 random
clustering. Boxplot representation reporting the median value (middle line), the first and third
quartiles (edges of the box) and the extrema (end of the dashed lines) of the t-value distribution.
For each patient is also represented the maximum activation (red dot) or deactivation (blue dot) of
the fMRI analysis of the automatic clustering. Non-significant t-values are colored in grey (level of
significance: p < 0.001, FDR corrected). It is worth noting that the scale of t-values was different for
each patient.

using the evolution of the cluster linkage values and obtained 22 clusters. Among them, only
two large clusters were kept, since all the others were composed of fewer than 5 IED events,
resulting in a total of 26 IED events further discarded from fMRI analysis. IED Class 1
obtained after hierarchical clustering of ESI results was composed of 121 events, among which
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77 were previously manually classified as RTP and 44 as RTPO. Despite such a difference in
classification, ESI results for this new automatic cluster corresponding to the RTP class were
very similar to the manual class, exhibiting a right temporo-superior source. Therefore the
events with duration corresponding to ‘RTP’ was attributed to this cluster.

The corresponding most significant fMRI cluster was located in the right temporal lobe
with a maximum t-value of 6.98, very similar to the fMRI results obtained after manual
classification of IEDs.

IED Class 2 obtained after hierarchical clustering of ESI results was composed of 99
events, among which among which 56 were previously manually classified as RTP and 43 as
RTPO. Resulting ESI results for this class were localizing a right occipital lateral region very
similar to the generator found when considering RTPO manually classified events. There
were also 5 RTPO events with duration, for which ESI was not computed, those events were
associated with this RTPO regressor for fMRI analysis. The fMRI analysis did not find any
significant clusters.

When considering 100 random classifications consisting in 121 events for the first regressor
and 99 for the second (total number of events: 220), none of the t-values obtained with the
first regressor was as large as the one obtained in the first regressor using the automatic
clustering, whereas only 6 out of 100 of the second regressor of the random analyses reached
a significant level, in which only 3 of them were in agreement with the ESI.

Patient 8 (Figure 7.5) is a 35 year old female with a deep focal cortical dysplasia in the
parietal region, associated with no IED manifestation on scalp EEG, and a diffuse lesion in
the frontal-temporal lobe. Two types of IED events were visually identified. The first IED
type consisted in right Fronto-temporal (RFT) spike and waves and polyspike complexes
with a maximum amplitude on electrodes F8, T4, F10, and T10 on average montage. From
the seven 6-minute runs selected for this study, 26 RFT IED events were marked, among
them 7 consisted in bursts of such discharges and were therefore marked with a duration,
whereas 19 were marked as single event discharges consisting in one spike only.

A second type of IED discharges consisted in right fronto-centro-temporal (RFCT) spike
and waves discharges, involving maximum amplitude on electrodes F8, T4, F10, T10, and C4.
33 of these IED events were marked, among them 24 were bursts marked with a duration.

Results for Patient 8 are presented in Figure 7.5. When considering manual classification
of IEDs, ESI results of RFT events localized a generator in the right orbito-frontal source.
The corresponding fMRI analysis did not exhibit any significant fMRI response. ESI results of
RFCT events found a similar source in right orbito-frontal source, whereas the corresponding
fMRI analysis indicated a large activation cluster over the right orbito-frontal region, in
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Figure 7.4: Illustration of Patient 5. The manual classifications contains two classes: RTP, composed
n = 149 single IED events and nd = 31 events with duration, and RTPO, composed of n = 97 single
IED events and nd = 5 events with duration. On the right hand side, the hierarchical clustering
displays the dendrogram of all the single events, and the cut threshold. After thresholding, IED
events belonging to IED clusters with fewer than 5 events were discarded (26 IED events in total).
Two IED clusters contained more than 5 events and are shown on the right side: the first one
containing n = 121, in which we added nd = 31 events with duration, and the second with n =
99 in which we added nd = 5 events with duration. For each class and IED cluster, the average
topography and source imaging results using cMEM of the single events were presented, as well as
the fMRI analysis using all n+ nd events and centered on the most significant BOLD cluster. The
source imaging map was thresholded so that only amplitudes higher than 10 % of the maximum
were displayed. fMRI maps were threshold to reach a FDR of 0.05.

complete agreement with ESI results and exhibiting a maximum t-value of 10.17.
Using hierarchical clustering of ESI results, the corresponding dendrogram was thresholded

using the evolution of the cluster linkage values and obtained 4 clusters. Among them, only
two large clusters were kept, since the two others were composed of fewer than 5 IED events,
resulting in a total of 5 IED events further discarded from fMRI analysis. IED Class 1
obtained after hierarchical clustering of ESI results was composed of 15 events, among which
10 were previously manually classified as RFT and 5 as RFCT. ESI results for this new
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automatic cluster were very similar to the manual classes, exhibiting a right orbito-frontal
source. This IED cluster contains the majority of the RFCT events and therefore the 24
events with duration corresponding to RFCT was attributed to this cluster.

The corresponding fMRI analysis exhibited the most significant BOLD cluster in the
right orbito-frontal region with a maximum t-value of 10.50, very similar to the fMRI results
obtained after the RFCT manual classification.

IED Class 2 obtained after hierarchical clustering of ESI results was composed of 8 events,
among which 6 were previously manually classified as RFT and 2 as RFCT. Resulting ESI
results for this class were localized in the right temporal region with a maximum value in the
middle temporal gyrus and a secondary source in the right orbito-frontal region. There were
also 5 RFT events with duration, those events were associated with this regressor for fMRI
analysis. The fMRI analysis did not find any significant clusters.

When considering 100 random classifications consisting in 15 events for the first regressor
and 8 for the second (total number of events: 23), t-values obtained in the first regressor
of the automatic clustering was higher than the 85th percentile of the first regressor of the
random analyses. No significant fMRI response was found for this second regressor of the
random analyses, whereas only 2 out of 100 of the second regressor of the random analyses
reached a significant level, in which none of them were in agreement with the ESI.

Patient 3 (Figure 7.6) is a 23 year old female with a large epileptogenic zone covering the
frontal and the temporal lobe, as defined through intracranial EEG investigation, with no
clear lesion seen on the MRI. Three types of IED events were visually identified. The first
IED type consisted in spike and waves in the left frontal region (denoted ‘F7F9Fp1’). 461
F7F9Fp1 IED events were marked, among them 307 consisted in bursts of such discharges and
were therefore marked with a duration, whereas 154 were marked as single event discharges
consisting in one spike only.

The second type of IED discharges consisted in bifrontal (denoted ’biF’) spike and waves
discharges. 29 of these IED events were marked, among them 14 were bursts marked with a
duration.

The third type of IED discharges consisted in left temporal (denoted ’T5P9’) spike and
waves discharges. 14 of these IED events were marked, among them 9 were bursts marked
with a duration.

Results for Patient 3 are presented in Figure 7.6. When considering manual classification of
IEDs, ESI results of F7F9Fp1 events localized a generator in the left temporal lateral regions,
whereas a secondary ESI generator covered a left frontal generator, in spatial agreement with
fMRI results. The corresponding fMRI analysis exhibited a left frontal lobe deactivation with
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Figure 7.5: Illustration of Patient 8. The manual classifications contains two classes: RFT, composed
n = 19 single IED events and nd = 7 events with duration, and RFCT, composed of n = 9 single
IED events and nd = 24 events with duration. On the right hand side, the hierarchical clustering
displays the dendrogram of all the single events, and the cut threshold. After thresholding, IED
events belonging to IED clusters with fewer than 5 events were discarded (5 IED events in total). Two
IED clusters contained more than 5 events and are shown on the right side: the first one containing
n = 15, in which we added nd = 24 events with duration, and the second with n = 8 in which we
added nd = 7 events with duration. For each class and IED cluster, the average topography and
source imaging results using cMEM of the single events were presented, as well as the fMRI analysis
using all n+ nd events and centered on the most significant BOLD cluster. The source imaging map
was thresholded so that only amplitudes higher than 10 % of the maximum were displayed. fMRI
maps were threshold to reach a FDR of 0.05.

a minimum t-value of −23.44. ESI results of biF events found a similar source covering only
the left temporal lobe, whereas the corresponding fMRI analysis showed a bilateral activation
of the anterior frontal lobe, in discordance with the clinical reference with a maximum t-value
of 8.43. ESI results of T5P9 events found a similar source in the left temporal lobe, whereas
the corresponding fMRI analysis did not find any significant cluster.

Using hierarchical clustering of ESI results, the corresponding dendrogram was thresholded
using the evolution of the cluster linkage values and obtained 7 clusters. Among them, only
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one large cluster was kept, since the 6 others were composed of fewer than 5 IED events,
resulting in a total of 9 IED events further discarded from fMRI analysis. The IED Class
obtained after hierarchical clustering of ESI results was composed of 164 events, among
which 145 were previously manually classified as F7F9Fp1, 14 as biF and 5 as T5P9. ESI
results for this new automatic cluster were very similar to the manual classes, where the most
significant BOLD response was found in the left temporal region. All the 332 events with
duration marked for this patient were added to this cluster for the fMRI analysis.

The corresponding fMRI analysis exhibited the most significant BOLD cluster in the left
frontal region with a minimum t-value of −23.92, very similar to the fMRI results obtained
after the F7F9Fp1 manual classification for which this main deactivation was concordant
with the secondary ESI source.

When considering 100 random classifications consisting in 164 events as regressor, the
t-values obtained in the regressor of the automatic clustering was lower (i.e. more significant)
than all the regressors obtained using random clusterings.

7.4 Discussion

The aim of this study was to introduce an automatic clustering technique of IEDs on EEG
for the fMRI analysis in order to offer a less operator-dependent method than the standard
manual classification. The method was based on the hierarchical clustering of ESI results at
the peak of the IEDs, using the Earth Mover’s Distance as source distance metric within a
hierarchical clustering framework. The results of the automatic classification were compared
to manual classification at the level of ESI cluster map and its contribution to the fMRI
analysis. We also compared the fMRI results of the automatic clustering with random
clustering, when considering cluster of the same size as for the automatic clustering, but
with shuffled labels. In this study, 8 patients were analyzed, and we obtained overall similar
results between the automatic and manual clustering. We could therefore conclude than our
proposed automatic IED clustering provided similar results than the operator-dependent and
time consuming manual classification. Moreover we also found that, based on the t-values of
the most significant BOLD cluster, the automatic clustering performed better than random
clustering.

To the best of our knowledge, automatic clustering of IED events was already proposed
by only one group on EEG with 32 or 64 electrodes (Pedreira et al., 2014) and intracranial
EEG (Sharma et al., 2017, 2019). In these studies, IED recordings at the sensor level
were characterized by a wavelet-based technique in order to classify events based on their
morphology, on some selected channels. This wavelet-based clustering method was denoted
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Figure 7.6: Illustration of Patient 3. The manual classifications contains three classes: F7F9Fp1,
composed n = 154 single IED events and nd = 307 events with duration; biF, composed of n = 15
single IED events and nd = 14 events with duration, and T5P9, composed of n = 5 single IED events
and nd = 9 events with duration. On the right hand side, the hierarchical clustering displays the
dendrogram of all the single events, and the cut threshold. After thresholding, IED events belonging
to IED clusters with fewer than 5 events were discarded (10 IED events in total). Only one IED
cluster contained more than 5 events and was shown on the right side: it contained n = 164, in which
we added nd = 332 events with duration. For each class and IED cluster, the average topography
and source imaging results using cMEM of the single events were presented, as well as the fMRI
analysis using all n + nd events and centered on the most significant BOLD cluster. The source
imaging map was thresholded so that only amplitudes higher than 10 % of the maximum were
displayed. fMRI maps were threshold to reach a FDR of 0.05.

wave_clus (Quian Quiroga et al., 2004). The results were validated using concordance between
the clinical reference and the fMRI data analyses (Pedreira et al., 2014; Sharma et al., 2019)
in comparison with manual classifications provided by several EEG reviewers (Sharma et al.,
2017). From these studies, the authors showed using scalp EEG information that fMRI
analyses using wave_clus was better than or similar to the manual clustering in most of the
8 studied patients (Pedreira et al., 2014) in terms of lobar concordance with the presumed
epileptogenic zone. When considering intracranial EEG data acquired simultaneously with
fMRI, the classification ability of wave_clus was tested on 5 patients and compared to
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visual classifications made by 3 epileptologists, as quantified by the metric of “variation of
information”. the automatic classification variabity was found to fall within inter-reviewer
agreement variability. Therefore the authors concluded that the automatic classification
was indistinguishable from a visual classification (Sharma et al., 2017). Another study on
intracranial EEG tested the concordance of the fMRI analysis based on manual and automatic
classification with the resection zone of 8 patients who became seizure-free after surgery
(Sharma et al., 2019). The authors found that BOLD maps for the automatic approach
resulted in a larger proportion of BOLD clusters found in the vicinity of the resected area
in four patients, a lower proportion in one patient, and the same proportion of concordant
clusters for three remaining patients. wave_clus is a technique exploiting the topography
of IEDs at the EEG sensor level, using wavelet representation. The goal of our work is
to test whether automatic classification using source imaging technique could be useful to
guide fMRI analysis. The level of spatial agreement between the fMRI analysis obtained
with the automatic clustering and the clinical reference was similar to our findings but their
definition of concordance was less conservative than ours. Indeed, they used a threshold on
the fMRI t-map so that p < 0.001, uncorrected from multiple comparison (Pedreira et al.,
2014; Sharma et al., 2019), whereas we focused our analysis only on the cluster exhibiting
the most significant BOLD response, as recommended by Khoo et al. (2017). Therefore we
did not quantify the concordance of fMRI results for the secondary BOLD response, only
the most significant response was taken into account in our sublobar concordance analysis.
Moreover, the patient cohort used in both studies was different. The inclusion criteria in
Pedreira et al. (2014) indicated that the patients should have at least 200 events to be
selected, which was the case for only one in our patient cohort (Patient 5). Our patient cohort
and the possibility for our automatic clustering technique to discard events are the possible
reasons why our clustering algorithm seemed to reduce the number of clusters compared to
the manual clustering. On the other hand, when using wave_clus, automatic clustering had
the tendency to rather increase the number of IED clusters.

The method we proposed here is based on source imaging using the cMEM technique. We
have shown in our previous studies that cMEM was an excellent technique in terms of source
localization of IEDs (Chowdhury et al., 2015, 2016; Pellegrino et al., 2018) and sensitivity to
the spatial extent of the generators (Grova et al., 2006a; Chowdhury et al., 2013; Hedrich
et al., 2017) and robustness to noisy data (Chowdhury et al., 2013; Hedrich et al., Under
Review). This was the main reason why we chose cMEM as the source imaging technique
to perform the automatic clustering technique. Moreover, it was proven that cMEM was a
suitable technique to apply ESI on data recorded during an fMRI analysis (Hedrich et al.,
2017, Under Review). In a previous study, we showed that scalp EEG signals were more

146



CHAPTER 7. MANUSCRIPT 3: AUTOMATIC CLASSIFICATION OF EPILEPTIC DISCHARGES

distorted by remaining high magnetic field related artifacts than ESI results (Hedrich et al.,
Under Review). Indeed, the SNR and the topography of the average evoked potential quality
was decreased during a visual stimulation experiment. Similar performance of ESI results was
found between the data recorded inside and outside the scanner. Based on this observation
and the ability for cMEM to switch off inactive parcels and to reduce spurious activity, we
hypothesized that IED clustering exploiting the sparsity property of cMEM sources would
more likely be more discriminant than sensor-level IED clustering techniques, or source-level
clustering techniques using MNE as a source localization technique This was the main reason
why, in this study, the automatic classification of the IED inside the scanner was performed on
ESI results and not on EEG signals. Further study would be needed to confirm the advantage
of using cMEM source-based clustering techniques over sensor-based technique and other
source localization methods, but fell outside the scope of the present study. However, in
the same study, we also demonstrated that the signal-to-noise ratio of EEG data should be
large enough to obtain reliable ESI results (Hedrich et al., Under Review). To do so, IED
EEG data in this study was averaged with similar events to increase the signal-to-noise ratio.
To reduce the uniformity of the EEG topographies due to averaging, each IED event was
averaged with only the 4 closest IED events in terms of EEG topography of the peak.

The automatic clustering used in this study is very similar to the consensus map proposed
by our group in Chowdhury et al. (2018). In this paper, we used a hierarchical clustering to
gather source imaging results of the fusion between EEG and MEG single IED events. The
source imaging cluster which was closest to the clinical reference was selected and considered
as the consensus map. We found that for all the patients in this study, the consensus map
corresponded to the cluster composed of the largest number of IEDs. The consensus map
method was proposed because it was considered more reliable and robust than the global
average of the sources, or the source imaging of the averaged IED events. For this study,
hierarchical clustering was also used, but we considered another clustering metric, EMD,
instead of the absolute correlation.

To the best of our knowledge, EMD was used in neuroimaging only once (Haufe et al.,
2008) to compare magnetic source imaging results localization error. EMD was used because
it provided “a meaningful measure for arbitrary types of source distributions” (Haufe et al.,
2008). It is also worth noting that EMD is an important measure in image processing (Rubner
et al., 2000; Pele and Werman, 2009). The important aspect of EMD is that it relies on the
geodesic distance, which seems adequate for comparing source maps. Indeed if two sources
were not concordant, EMD is sensitive to the geodesic distance between the sources; in
other words, source maps showing discordant sources, but located in the same lobe would
have a lower EMD than two source maps exhibiting sources which are located in remote
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regions. For the calculation of EMD, a least-cost algorithm was used, which provides a
fast but unoptimized estimation of EMD. The distances reported in this study were then
overestimated. However, preliminary studies on several patients indicated such a bias did not
have influence the overall clustering algorithm.

The purpose of our study was to automatically classify IEDs but not detecting them.
Automatic detection of spikes is a challenging task which was already largely studied in the
literature (See review in Hogan, 2011) but falls beyond the scope of this study. It has been
shown that omitting true IED events and mixing true IED with non-epileptiform activity
decreased the number of active voxels in the fMRI experiment (Flanagan et al., 2009). In our
study, the automatic classification was able to discard events if they were too different from
the other IED events in terms of EMD. On average for each patient, 10.0 % of the events
were discarded without having any impact on the t-values of the fMRI analysis. From visual
inspection, the events which were discarded presented a spurious source which was different
from the other events.

Our study has some limitations which are worth mentioning. First of all, the events with
duration were not taken into account in our classification method. This can be problematic
for some patients who have numerous bursts of polyspikes, representing the majority of IED
manifestations. However, source localization of epileptic events with duration is a difficult
task, and the resulting source map might be different to the source imaging maps of the single
events in terms of source distribution. This discrepancy can lead to the difficulty to classify
events with duration along with single events, e.g. wrong classification and false rejection.

Whereas single spikes localizations of each event could still be considered within a
burst of spikes with a specific duration, bursts of rhythmic activity are more complex to
localize. However, bursts of rhythmic activity can also be successfully localized using different
technique, such as wavelet-based MEM, which is an extension of MEM method applied after
time frequency decomposition of the signals of interest (Lina et al., 2014). Consequently,
strategies to take into account events with duration could be implemented in a future
development of the presented automatic classification method, by focusing on the rhythmic
activity of the events with duration (Pellegrino et al., 2016a; von Ellenrieder et al., 2016;
Papadelis et al., 2016) or the localization of several single spikes within a burst. It is important
to note here that the results presented here is simply a proof of concept of a new automatic
IED clustering algorithm, and will need further investigation considering a larger cohort, and
involving fewer complex cases.

The proposed automatic classification was based on the source localization results at the
peak of the IEDs only. A future improvement of the classifier would be to take into account
the potential propagation of the source, by using a time window instead of a single time
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sample for the classification.

7.5 Conclusion

We have introduced a new automatic classification algorithm of epileptic events, based on
ESI results, to guide fMRI analysis and applied this new methodology to the analysis of 8
patients who underwent simultaneous hdEEG-fMRI acquisition. The EEG-fMRI analysis
using automatic classification overall exhibited fewer BOLD cluster with no significant
response when compared to manual classification, therefore corresponding to an increase
in fMRI sensitivity. On the other hand, specificity of fMRI analysis remained the same. In
addition, we have shown that the automatic classification was better than random IED
classification in terms of maximum t-values of the fMRI BOLD clusters. In summary, this
new classification approach is a clinically useful tool that helps reducing subjectivity in the
EEG-fMRI analysis during the presurgical evaluation of patients with focal epilepsy. This is
an important finding allowing to consider a less operator-dependent approach for EEG-fMRI
investigations in epilepsy.
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8
General discussion

8.1 Summary and limitations of main contributions

The objective of this PhD thesis was to assess the application and feasibility of ESI on hdEEG
data recorded inside the MR scanner. To do so, we selected an ESI method developed in our
laboratory, cMEM, and evaluated it in ideal conditions (Chapter 5). We then assessed its
performance within a noisy MR environment using a visual paradigm (Chapter 6). Finally,
we considered cMEM as a tool to classify interictal discharges to help the EEG-fMRI analysis
of patients with epilepsy (Chapter 7).

In Chapter 5, the spatial resolution of several imaging methods was carefully evaluated
using their resolution matrices (Hedrich et al., 2017). To do so, we used two metrics to
measure their spatial properties: the dipole localization error, which is the distance between
the estimated source and the simulated source, and the spatial dispersion, which quantifies
the spatial spread around the simulated source. These metrics were used to measure two
features of the resolution matrix, the point spread functions (PSF), i.e. the columns of the
resolution matrix, assessing the solution of the source imaging method for the activation
a single cortical dipole in ideal conditions, and crosstalk maps (CT), i.e. the rows of the
resolution matrix, reflecting the influence a single dipolar source may have on the estimation
of the generators in its neighborhood. We compared the resolution matrix metrics for two
modalities, hdEEG and MEG using a similar number of sensors, and four source imaging
techniques: cMEM, MNE and its noise-normalized variants, dSPM and sLORETA. Overall
we found that DLE scores were similar for all source imaging techniques and for either PSF
and CT maps, with the exception of sLORETA which was developed to have zero localization
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error in PSF maps. cMEM outperformed the other source imaging techniques in terms of
SD, both for PSF and CT maps. These findings indicated that all the tested source imaging
techniques had the same level of localization bias, but that the spatial spread was smaller for
cMEM, which made us conclude that cMEM had a better spatial resolution than the other
tested techniques. Moreover, the performance of ESI was similar to the one of MSI. This is
an important finding since it is the first time that ESI and MSI were compared by using a
similar number of channels. The spatial resolution was further measured with an electrical
median nerve experiment with five subjects. The estimated sources were compared to the
hand region of the primary sensory cortex using DLE and SD. Since both metrics can be
biased by remote sources, activity located far from the region of interest was discarded to
calculate the metrics. A third metric, the ratio of spurious activity (RSA) was introduced
to measure the influence of remote sources. The MNS data confirmed the analysis of the
resolution matrix and the study on the RSA results indicated that cMEM was the source
imaging technique with the lowest RSA scores, i.e. the method which was the most robust to
noise. One of the limitations of the first manuscript was the fact that, since cMEM is not a
linear technique, its resolution matrix did not exist. To overcome this issue, an approximation
of the resolution matrix was constructed by concatenating all the measured point spread
functions. Moreover, in ideal conditions, a generator composed of several dipolar sources
is equal to the sum of the corresponding point spread functions. This property does not
hold for cMEM but efforts were made to prove that the results found in focal generators
could be extended to larger generators. The DLE and SD metrics here were calculated using
Euclidean distance. The geodesic distance, i.e. the minimum distance following the cortical
surface, was already used by our laboratory for the calculation of DLE (Grova et al., 2006a,
2008). In this manuscript, the Euclidean distance was preferred because it was more easily
implementable. It is worth noting that the Euclidean distance and the geodesic distance
were very similar measures when considering small distances from the expected generator,
which was the case in this study. The results for DLE and SD were however reported using
sub-millimetric precision, which was without doubt an overestimation of the precision of
those metrics, given the resolution of the cortical mesh used in this study, where the mean
distance between adjacent vertices was around 5 mm.

We can conclude from Chapter 5 that cMEM is a source imaging technique displaying an
excellent spatial resolution. However, the results were collected in ideal condition, assuming
no noise and no error in the forward model. Even if these findings were partly validated in
real-life conditions with an experiment on somatosensory evoked responses in Chapter 5,
we wanted to further understand the behavior of cMEM in a noisy environment. Because
of this, the goal of Chapter 6 (Hedrich et al., Under Review) was to test the quality of
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two ESI techniques (cMEM and MNE) on EEG data recorded in the MR scanner using a
well-controlled visual stimulation paradigm. The artifacts created by the MRI environment
were corrected using a software method: the average artifact correction (Allen et al., 1998,
2000). In this manuscript, the same visual stimulation experiment was performed twice,
outside the scanner and then during an fMRI experiment. The quality of the EEG signal
at the peak of the P100 visual potential obtained from the experiments was tested using
two metrics: the SNR of the 02 channel, and the correlation of the topography with the
topography of the evoked response of the group average (entitled Corr). Source imaging was
then applied (using either cMEM or MNE) and three source metrics: DLE, SD and RSA, as
defined in Chapter 5 (Hedrich et al., 2017), using an anatomical landmark as reference. To
test the effect of the high-magnetic environment on EEG data and the source reconstruction
at different SNR, the 5 metrics (SNR, Corr, DLE, SD and RSA) were calculated for different
numbers of averaged evoked response (from 1 to 40). The results suggested that EEG data
recorded inside the scanner had lower performance in terms of SNR and Corr, compared
to data recorded outside. Concerning the quality of the source reconstruction however, no
significant or low effect was observed for DLE and SD scores between the data recorded inside
and outside the scanner. Conversely, RSA for cMEM was found significantly higher inside the
scanner, indicating more spurious activity for source imaging results when recording during
an EEG-fMRI experiment. These results indicated that the source imaging techniques were
less affected by the MR-related noise, compared to the EEG signals itself. We concluded from
these observations that source imaging inside the scanner was feasible. Moreover, cMEM was
proven to have better performance in terms of SD and RSA when compared to MNE (the
results in DLE were similar), indicating that cMEM could be a viable imaging technique for
data recorded simultaneously with fMRI data. It is worth mentioning that one limitation of
our proposed study could be the choice of the method used for MR-related artifacts correction.
This is an important issue that was outside the scope of our proposed paper. It is important
to note that MR-related artifacts mainly affect electrodes in the temporal regions. Therefore
the choice of the right cleaning algorithm is less critical in our study since the artifacts have
less influence on the accuracy of ESI for generators located in the occipital cortex, compared
to other brain regions. In both Chapter 6 and 7, we considered the software-based method of
Allen and colleagues (Allen et al., 1998, 2000) which has been validated multiple times and is
still largely used today (Vanderperren et al., 2010; Masterton et al., 2007). Moreover, when
artifacts were still present after this standard procedure, further cleaning was performed
using independent component analysis (Nakamura et al., 2006; de Souza et al., 2013), albeit
with the risk of reducing the quality of the data. In future experiments, it may be possible
to use other artifact correction techniques to reduce distortion, such as such as hardware
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techniques, e.g. the carbon wire loops (van der Meer et al., 2016b; Abreu et al., 2016) or
other recordings to reduce the contribution of the artifacts on the EEG data (LeVan et al.,
2013; Luo et al., 2014; Chowdhury et al., 2014). Finally, in this manuscript, it was difficult to
measure the concordance between ESI reconstructions and fMRI analysis. As explained in
the Discussion section of Chapter 6, the locations of the ESI reconstructions and the fMRI
activation were different due to the visual stimulation protocol used in this paper. Even if
assessing such multimodal concordance was not the main objective of the manuscript, it
would have been interesting to compare the accuracy of the ESI results and the fMRI BOLD
clusters, depending on the number of averaged trials. It has been shown that a block design
of the same visual stimulation protocol offered an ESI source which was located in the same
location as the fMRI activation Figure 6.7.

We have demonstrated in Chapters 5 and 6 that cMEM was a source imaging technique
exhibiting an excellent spatial resolution (Hedrich et al., 2017), and that it was possible to
obtain accurate ESI results with EEG data recorded during an fMRI acquisition (Hedrich
et al., Under Review). These findings paved the way for the final project of this PhD thesis
in Chapter 7 (Hedrich et al., In Preparation), which consisted of using ESI with cMEM
to help the fMRI analysis on patients with epilepsy. In this last manuscript, we developed
an automatic clustering technique that classified IEDs with their ESI results in order to
improve the definition of IEDs regressors for the fMRI analysis. We aimed at improving
the time-consuming and subjective process of IED classification to facilitate the EEG-fMRI
analysis of patients with epilepsy. To do so, eight patients with focal epilepsy were recorded
during a simultaneous high-density EEG and fMRI acquisition. After applying a standard
denoising strategy, IEDs were detected and manually classified from EEG data by an expert
epileptologist. Source imaging using cMEM was applied to each IED and an automatic
clustering technique based on a hierarchical clustering was introduced. Our objective was
to propose a new objective approach to classify IEDs in order to avoid the need for manual
classification. The IED clusters obtained from both classification schemes (automatic and
manual) were compared in terms of ESI localization. fMRI analyses were performed using the
corresponding IED clusters as regressors. We then assessed sublobar concordance of ESI and
fMRI results according to the clinical reference, defined by patient history, semiology and
other imaging techniques. Overall, the results showed that the automatic clustering method
provided fewer IED classes with similar ESI localizations and fewer BOLD clusters with
no significant response corresponding to an increased in fMRI sensitivity, when compared
to manual classification. We observed however no change for specificity. Moreover, we have
shown that the automatic classification exhibited higher significant t-values for the resulting
fMRI BOLD clusters when compared to EEG-fMRI analysis using a classification based on
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IED random shuffling. These results indicate that our new classification approach could be
used as a clinical tool that could help reduce subjectivity in the EEG-fMRI analysis during
the pre-surgical evaluation of patients with focal epilepsy. There were a few limitations in
this manuscript: first of all, we noticed that the SNR of non-averaged IEDs was too low
to perform accurate ESI without averaging, when compared to IEDs acquired in less noisy
conditions (Chowdhury et al., 2018). To overcome this issue, partial averages were considered,
where IED were averaged to four other IEDs which were closer in terms of spatial topography
at the peak. This subaveraging operator was performed to increase the SNR and produce an
accurate ESI in order to obtain a reliable automatic clustering technique. Bursts of rhythmic
activity and polyspikes were not included in the automatic clustering however, since specific
ESI approaches should be used to localize these events, which was outside the scope of
this study. This issue could have impacted our results since epileptic events with duration
represented a large proportion of the marked events considered in fMRI analysis in some
patients. Moreover, a clustering technique including a temporal component might be needed
to differentiate different propagation patterns or the morphology of the IED. ESI was shown
to be able to help distinguishing fMRI BOLD clusters corresponding to primary generators
from the clusters related to propagation patterns (Vulliemoz et al., 2009; Tanaka et al., 2010).
Indeed, it was shown that the generators of an epileptic discharge can propagated between
the rising phase of the spike and its peak (Lantz et al., 2003b). Consequently, the future
implementation of the IED classifier would include a time window including the rising slope of
the spikes instead of only the peak of the spike, in order to distinguish different propagation
patterns between IEDs and how different the corresponding fMRI regressors could be. Finally,
given the low number of studied patients and the complexity of their epilepsy, these results
would require further validation with a larger sample size.

8.2 Future directions

Throughout this PhD thesis, we validated the use of ESI inside the scanner and developed an
automatic IED clustering technique based on ESI to assist fMRI analysis. This project paves
the way towards better understanding of the understanding of the relationship between neu-
ronal activity, recorded on EEG and localized with ESI, and the corresponding hemodynamic
response, measured with fMRI. To do so, an interesting potential future study would be to
test and compare findings obtained with ESI/fMRI data and different physiological models
of neural generation of EEG signals (Garnier et al., 2016; Kameneva et al., 2017) and of
neurovascular coupling (Mesmoudi et al., 2015; Blanchard et al., 2016; Mathias et al., 2017).
The neural mass models aim to model the local field potentials coming from an assembly of
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neurons (usually two populations of excitatory pyramidal cells, a inhibitory population of
interneurons and, in recent studies, a population of astrocytes). Such modeling can enrich
our understanding on brain mechanisms and are used to predict neuronal physiological and
pathological behavior (Blanchard et al., 2016; Mathias et al., 2017). Similar models were
used along with a physiological model of the neurovascular response to local field potential in
order to simulate the BOLD response obtained in fMRI to a neuronal activity. The modeling
community also proposed advanced models of neurovascular coupling (Mesmoudi et al., 2015;
Blanchard et al., 2016; Mathias et al., 2017). The analysis of both ESI and fMRI from data
acquired simultaneously offers the unique possibility to further understand neurovascular
coupling mechanisms and therefore to confirm or invalidate predictions made by those models.
The work done in this thesis, especially in Chapter 6, validated and introduced cMEM as
an ESI technique suitable for performing a simultaneous and multimodal analysis of the
neurovascular coupling that could assist further validation of those models.

As mentioned earlier in this thesis, special care needs to be taken to clean EEG signals
from MR-related artifacts. In this thesis, EEG data were corrected from MR-related artifacts
using a standard technique entitled Average Artifact Subtraction (AAS) (Allen et al., 1998,
2000), as mentioned in Chapter 3. Several other techniques have been proposed, discussed
and compared in the literature (Vanderperren et al., 2010; Abreu et al., 2016). However,
hardware-based solutions for artifacts removal seem to offer cleaner and more reliable results
(van der Meer et al., 2016b; LeVan et al., 2013). In our group, recent investigations were
made to include carbon wire loops to the high-density EEG systems to improve the artifact
correction. Figure 8.1 is an illustration of our preliminary results with installing and testing
the performance of artifact correction using the carbon wire loops (CWL). Five carbon
wire loops were installed on a 256-electrode EEG net in order to measure the difference of
potentials measures by the loops simultaneously with an EEG-fMRI analysis. The CWL
are not sensitive to brain activity and record only MR-related artifacts. CWL signals were
regressed out of the EEG signals using the technique proposed in van der Meer et al. (2016b).
In these preliminary results illustrated in Figure 8.1, we have demonstrated that the data
corrected using CWL signals seemed less distorted than when using the AAS technique. The
power spectrum density of the EEG data corrected with the CWL seemed closer to the EEG
recorded outside the scanner, when compared to the EEG data corrected with the AAS
method.

The goal of this thesis was to obtain a good performance of ESI during an fMRI experiment.
The ability of ESI obtained with hdEEG data to guide fMRI analysis was illustrated on
patients with epilepsy, but the same framework could be extended to other neuroimaging
applications. Indeed, analysis of ESI results and the automatic clustering technique could be of
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Figure 8.1: 1. Diagram illustrating the placement of the five carbon wire loops. 2. Photograph of
the EEG net with the carbon wire loops. 3. Power spectrum density of EEG data during resting
state when recording outside the MR scanner (black), inside without artifact correction (red), or
with artifact correction using AAS (green) or CWL regression (blue). 4. 7 seconds of EEG data
during a resting state experiment during fMRI analysis without artifact correction. 5. Same EEG
segment, but with MR-related artifact correction using AAS. 6. Same EEG segment, but with
MR-related artifact correction using CWL regression.

great interest when studying the influence of sleep spindles discharges in sleep studies aiming
at characterizing physiological and pathological processes associated with sleep. Spindles
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are transient oscillations at 11–16 Hz occurring during the stages N2-N3 of non-rapid-eye-
movement sleep (Berry et al., 2013). Spindles are often subcategorized into slow (< 13

Hz) and fast (≥ 13 Hz) spindles. Fast sleep spindles were shown to be involved in memory
consolidation (Schabus et al., 2007), but also, as demonstrated recently by our group in an
EEG-fMRI experiment, in declarative learning performance (Jegou et al., 2019). Another
EEG study showed that memory consolidation was associated not only with spindles, but
also with low- and high-frequency around the sleep spindles (Laventure et al., 2018). Such
findings demonstrated that a characterization of sleep spindles using ESI alongside with fMRI
could be useful to further understand the role of sleep spindles in memory consolidation and
declarative memory.

cMEM was proven to be a source imaging technique that exhibits an excellent spatial
resolution and is robust to noise. These properties could be of interest when considering ESI
in other domains, notably in the context of resting-state functional connectivity Schölvinck
et al. (2013). In Chapter 5, we have shown that cMEM was characterized by an excellent
performance in terms of crosstalk maps. Crosstalk maps, which was related to source leakage,
are measures which are important to control in order to avoid or reduce volume conduction
errors when estimating the functional connectivity patterns. Moreover, the ability for cMEM
to shut down parcel, when combined to effective hardware and software solutions to remove
artifacts, would allow reducing the influence of spurious distant source from the measure of
functional connectivity. Our group recently performed a study on functional connectivity using
a wavelet-based MEM (wMEM), a time-frequency variant of cMEM, as the source imaging
technique (Aydin et al., In Preparation). In this study, 13 patients performed simultaneous
EEG/MEG acquisition before receiving surgery, in which 7 became seizure-free after surgery
and 6 became non seizure-free. wMEM was able to discover a significant difference between
the patients who were seizure-free and the patients who were not in terms of long-range
functional connectivity in the alpha band. Seizure-free patients showed an isolated epileptic
network characterized by weaker connections between the IED generator and the rest of
the cortex when compared to connectivity patterns between the corresponding contralateral
homologous region and the rest of the cortex. Conversely, non seizure-free patients were
observed to have a stronger connectivity between the IED generator and the rest of the cortex,
in comparison to the contralateral region and rest of the cortex. Connectivity in the alpha
band was chosen because studies have found some correspondence between the alpha band
fluctuations detected on MEG and the BOLD signals measured by fMRI (Hipp and Siegel,
2015; Brookes et al., 2005). However, one can only perform an indirect comparison since MEG
and fMRI cannot be performed simultaneously. With the findings indicated by this thesis, it
may be possible to use fMRI and ESI from hdEEG in healthy and pathological conditions to
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further investigate the relationship between brain oscillations at different frequency bands
and the corresponding hemodynamic response detected in fMRI.

8.3 Conclusion

The aim of this thesis was to test the concordance between ESI and fMRI results for the
analysis of epileptic discharges. The emphasis was put on the choice of and challenges in
selecting a suitable source imaging technique. An ESI and MSI framework was developed
by our group, the MEM framework, and a data-driven prior model, cMEM was carefully
validated as a suitable technique for simultaneous ESI-fMRI analysis. To do so, the intrinsic
spatial resolution of cMEM was compared to traditional ESI/MSI techniques using their
resolution matrices. We proved that cMEM had a better spatial resolution than the other
standard approaches. However, EEG recorded during an fMRI analysis is affected by artifacts
that may distort the signal: for this reason, we wanted to test the robustness of cMEM to
MR-related noise. We compared the quality of cMEM applied on EEG data either acquired
inside or outside an MR scanner, and we showed that even if the quality of the EEG signals
were poorer inside the scanner, cMEM was able to perform as accurately in both conditions.
We concluded that cMEM was an excellent candidate for an ESI technique to use during
an EEG-fMRI analysis of patients with epilepsy. Based on this premise, we developed an
automatic IED clustering using ESI results to improve the fMRI analysis process. We showed
that the automatic clustering performed as well as a manual clustering, paving the way for a
less operator-dependent and less time-consuming analysis of IEDs in an EEG-fMRI analysis.
Overall, we demonstrated the feasibility of using ESI during an EEG-fMRI analysis and
validated it in the context of patients with epilepsy. The possibility to obtain ESI results and
fMRI BOLD responses at the same time could be of great interest in other fields, such as
functional connectivity, in normal and pathological conditions.
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