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Abstract
Change points in Sgr A*’s X-ray flaring rate: fact or artifact?

by Élie BOUFFARD

An unusual object, G2, had its pericenter passage around Sgr A*, the 4 × 106 M� super-

massive black hole in the Galactic Centre, in Summer 2014. Several research teams have

reported evidence that following G2’s pericenter encounter the rate of Sgr A*’s bright X-

ray flares increased significantly. Our analysis carefully treats varying flux contamination

from a nearby magnetic neutron star and is free from complications induced by using

data from multiple X-ray observatories with different sensitivities and spatial resolutions.

We test this scenario using a massive dataset from the Chandra X-ray Observatory, the only

X-ray instrument that can spatially distinguish between Sgr A* and the nearby Galactic

Centre magnetar throughout the full extended period encompassing G2’s encounter with

Sgr A*. We use X-ray data from the 3 Ms observations of the Chandra X-ray Visionary

Program (XVP) in 2012 as well as an additional 1.5 Ms of observations up to 2018. We

use detected flares to make distributions of flare properties. Using a simulation model

of X-ray flares accounting for important factors such as the different Chandra instrument

modes, we test the null hypothesis on Sgr A*’s bright (or any flare category) X-ray flaring

rate around different potential change points. In contrast to previous studies, our results

are consistent with the null hypothesis; the same model parameters produce distributions

consistent with the observed ones around any plausible change point.



ii

Résumé
Change points in Sgr A*’s X-ray flaring rate: fact or artifact?

par Élie BOUFFARD

Un objet inhabituel, G2, a atteint son péricentre autour de Sgr A*, le trou noir supermassif

de 4 × 106 M� au centre de la galaxie, durant l’été 2014. Certains groupes de recherche

ont affirmé que, suite à cela, le taux d’éruptions brillantes a augmenté significativement.

Notre analyse traite avec soin la contamination de flux variable provenant du magnétar

à proximité et n’a pas de complications induites par l’utilisation de données provenant

de plusieurs observatoires à rayons X avec différentes sensibilités et résolutions spatiales.

Nous testons ce scénario en utilisant un ensemble de données volumineux du Chandra

X-ray Observatory, le seul instrument à rayons X capable de distinguer spatialement Sgr

A* et le magnétar du Centre Galactique pendant toute la durée de la rencontre entre

G2 et Sgr A*. Nous utilisons les données de rayons X issues des observations de 3 Ms

du X-ray Visionary Program (XVP) de Chandra en 2012, ainsi que 1,5 Ms supplémentaires

d’observations jusqu’en 2018. Nous utilisons les éruptions détectées afin de créer des dis-

tributions de leurs propriétés. À l’aide d’un modèle de simulations d’éruptions rayons

X prenant en compte des facteurs importants tels que les différents modes d’instrument

de Chandra, nous testons l’hypothèse nulle sur le taux d’éruptions rayons X lumineuses

(ou de n’importe quelle autre catégorie) de Sgr A* autour de différents points de change-

ment potentiels. Contrairement aux études précédentes, nos résultats sont en accord

avec l’hypothèse nulle; les mêmes paramètres du modèle produisent des distributions

cohérentes avec les distributions observées autour de tout point de changement plausible.
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Chapter 1

Introduction

1.1 The Black hole family

Black holes are some of the most unusual objects in the Universe. They are so dense that

no force can hold them in equilibrium with gravity. This means that all of their mass is

concentrated in a single point of volume zero, called a singularity. A black hole’s grav-

ity is so powerful that its escape velocity is greater than the speed of light in vacuum.

Black holes were first predicted at the end of the 18th century by English philosopher

John Mitchel, who used the term "dark stars". He proposed in 1783 that there could be

stars whose gravitational pull would be strong enough to prevent light from escaping

their surface. He even predicted that one could find such objects by detecting a star that

behaved as if it were in a binary system, but with an invisible companion. This prediction

is impressive since we know today of many binary systems containing a black hole.

In the early 20th century, Albert Einstein published his famous Theory of General Rel-

ativity which explained gravity as the manifestation of a curvature of spacetime. In the

following year, Karl Schwarzchild applied General Relativity to the concept of a black

hole and found that its radius Rs (named after him) is linked to its mass M via the famous

equation
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Rs = 2GM/c2 (1.1)

where G is the gravitational constant and c is the speed of light in vacuum.

The term black hole was later popularized by American theoretical physicist John

Archibald Wheeler and has been the official term for many decades.

Cygnus X-1 is the first black hole discovered in 1964 (Bowyer et al., 1965) by X-ray ob-

servations during a rocket flight above the atmosphere (which blocks X-ray light). Com-

bining these observations with subsequent radio and optical data, it was shown that this

system contained a black hole that was accreting mass from its companion star (Oda,

1977).

Following this discovery, scientists have discovered large populations of black holes

and we now understand that black holes appear in two categories based on their mass:

stellar mass black holes and supermassive black holes (SMBH).

1.1.1 Main categories of black holes

Stellar mass black holes

Stellar mass black holes have masses ranging from ∼2.7 M� up to 102M�. The lower

bound comes from the binary neutron star merger GW170817 which was detected by the

gravitational wave (GW) detectors LIGO-Virgo on August 17 2017 (Abbott et al., 2017d,e).

The remnant of this merger is thought to have initially formed an hyper-massive neutron

star which lived for a timescale of the order of milliseconds before collapsing into a black

hole (Margalit & Metzger, 2017; Metzger et al., 2018). This is supported by the fact that the

remnant’s mass (2.74+0.04
−0.01M�; Abbott et al., 2017d) is above the mass of the most massive

known neutron star (1.97 ± 0.04M�; Demorest et al., 2010) and by the lack of electromag-

netic emission consistent with neutron star spin-down (Margutti et al., 2018).
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Gravitational waves were predicted by Einstein’s Theory of General Relativity and

are generated when mass is accelerated, similarly to light being radiated when charged

particles accelerate (e.g., bremsstrahlung radiation). These waves also travel at the speed

of light. However, instead of being characterized by electric and magnetic fields, they

are ripples of spacetime itself. To detect them, LIGO and Virgo use laser interferometry

which is accurate enough to probe spatial modulation of one part per 1021. Such a high

sensitivity is required to detect astrophysical signals since they originate from 10’s of Mpc

to Gpc distances, and unlike electromagnetic waves, we can only detect their amplitude,

not their energy. Even though their amplitude decreases as 1/r, their initial amplitude is

only comparable to the size of the merger. The first GW detection happened on September

14, 2015 (Willke et al., 2018) with the discovery of the first binary black hole system and

merger. As of today, 11 mergers have been observed (Abbott et al., 2016a,b, 2017a,b,c,d).

Formation channels for stellar mass black holes are clearer than those for SMBH. A

massive star M & 20M� can reach high enough densities and temperatures at its core

to fuse heavier elements than lower mass stars like our Sun. More massive elements are

harder to fuse because their nuclei have higher charges, such that their Coulomb barrier

is stronger. During fusion, energy is released because the heavier elements produced are

more stable (their binding energy to mass energy ratio is higher). However, this trend

stops at iron, because fusing iron is an endothermic instead of exothermic process and

therefore requires more energy than would be produced. This lowers the amount of radi-

ation pressure that was opposing the force of gravity, resulting in the star’s collapse. For

massive enough stars, the degeneracy pressure provided by electrons isn’t enough to stop

the collapse (i.e., the core mass is higher than the Chandrasekhar limit of about 1.4 M�).

Electrons thus merge with nuclei, forming neutrons. The newly created neutron degener-

acy pressure is also not strong enough to stop the collapse of such massive stars and the

remnant collapses to a black hole.

Many stellar mass black holes are known in our galaxy often in X-ray binary system
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like Cygnus X-1 (see Remillard & McClintock (2006) for a review of known objects). In

these systems, X-rays are generated by matter falling from the companion onto the com-

pact object (in this case a black hole, but sometimes it can be a neutron star). Part of the

gravitational potential energy of this accreting matter is released as radiation. For excel-

lent reviews discussing accretion, see Abramowicz & Fragile (2013) and Yuan & Narayan

(2014).

Supermassive black holes

SMBHs have masses ≥ 106M� and are found at the centres of massive galaxies. In their

reviews of observational evidence of SMBHs, Ferrarese & Ford (2005) and Graham (2016)

explain in detail the diverse detection methods and their historical perspective. One piece

of early strong evidence in favour of SMBHs came from quasars, extraordinarily bright

objects that were originally thought to be local stars but were later shown to be located

at high redsift. For example, the radio galaxy 3C 273 was shown to be extremely bright

(absolute magnitude of −26.7; Greenstein & Schmidt, 1964) and at a cosmological dis-

tance (redshift of z=0.158; Schmidt, 1963). Yet these two facts are not convincing enough

evidence of the existence of a SMBH. Indeed, this behaviour could be explained by a

compact group of luminous stars. What finally tipped the balance in favour of a SMBH

was the discovery of variability on a 1 year timescale in 3C 273 (Smith & Hoffleit, 1963).

This implied that the source had a spatial extent of less than 1 light-year long. The one

remaining problem was to explain how can so much power be generated from such a com-

pact source. The idea was suggested (and later widely accepted) that the only reasonable

explanation was the conversion of gravitational energy to radiation via accretion onto a

massive compact object (Salpeter, 1964; Shakura & Sunyaev, 1973). The presence of a very

massive object was also motivated by observations of these objects near the Eddington

luminosity, LEdd. This limit is defined as the luminosity at which the central object’s radi-

ation pressure equates its gravitational pull, preventing new material from accreting (the
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central object has to be very massive to be that luminous).

After this discovery, many more similar objects were discovered. Nowadays, one of

the strongest evidence for a SMBH comes from our own Galactic Centre. We have ob-

served the influence of a SMBH there, Sagittarius A* (Sgr A* henceforth). Its mass has

been measured at∼ 4×106 M� (Genzel et al., 2010) using the motion of stars in its vicinity

(see also the GRAVITY Collaboration Abuter et al. (2018a,b)). Indeed, its relative proxim-

ity enables very accurate measurements of the orbits of stars in its vicinity and from the

orbital parameters, the mass can be deduced.

Very recently, the Event Horizon Telescope (EHT) Collaboration has released its first

look at M87’s central black hole, taking a snapshot of the SMBH’s shadow. This un-

precedented feat provides direct evidence for SMBHs at the centres of massive galaxies

(Akiyama et al., 2019). The EHT Collaboration is still analyzing their data for Sgr A*, but

we expect to learn a great deal more about its accretion physics in the coming years.

Farther from home, some SMBHs have been found at z > 6 with masses ∼ 109M�

causing theoretical challenges and begging the question of how the Universe grows black

holes to these masses within a billion years. A popular idea is that the first generation of

stars (Pop. III stars) formed early (z ∼ 20 − 50) within potential wells from dark matter

halos, and collapsed to black hole seeds of masses ∼ 150M� after ∼ 2 Myr. These seeds

would then grow via accretion and mergers with other seeds (Volonteri, 2010). Another

idea is the direct collapse of gas clouds (Begelman et al., 2006) which would form black

holes of 10 − 20M� which can grow to 106M� by z = 10 − 20, and even 109M� by z = 6

by means of Super-Eddington accretion. Finally, another hypothesis is the formation of

primordial black holes during the Big Bang (Sasaki et al., 2018). Hopefully, future James

Webb Space Telescope and gravitational wave observations will provide enough observa-

tional constraints to determine which model -if any- is the correct one.
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1.2 Sgr A*, the SMBH in the centre of our galaxy

1.2.1 Quiescence

Our local SMBH’s X-ray emission is characterized by: (1) a constant and extremely faint

quiescent 2-10 keV unabsorbed luminosity of a few 1033 erg/s (Baganoff et al., 2003) and

(2) a ∼ daily rapid increase of a factor of a few to a few hundred in luminosity that lasts

several minutes to hours (Baganoff et al., 2001; Goldwurm et al., 2003; Porquet et al., 2003,

2008; Belanger et al., 2005; Nowak et al., 2012; Neilsen et al., 2013, 2015; Degenaar et al.,

2013; Barriere et al., 2014; Mossoux et al., 2016; Ponti et al., 2015; Yuan & Wang, 2015; Yuan

et al., 2017; Zhang et al., 2017). In fact, its bolometric luminosity (i.e., integrated across all

wavelengths) of LBol ∼ 10−9LEdd is orders of magnitude fainter than that of typical nearby

low-luminosity active galactic nuclei (LLAGN) (see Table 9 of Ho, 1999) which have LBol

from 10−6LEdd to 10−3LEdd.

Given such a low luminosity, the best models to describe Sgr A*’s accretion flow are

the radiatively inefficient accretion flow (RIAF) models (see Narayan et al. (1998) and

Yuan & Narayan (2014) for reviews). The model proposed by Yuan et al. (2003) (see

Figure 1.1) shows an effective radiative efficiency Lbol/
[
Ṁin(RB)c2

]
≈ 2 × 10−5, where

Ṁin(RB) ∼ 10−5M�/year (Baganoff et al., 2003) is the accretion rate at the Bondi radius

RB ∼ 105Rs at which the thermal energy of the gas is equal to its gravitational potential

energy. This accreted material comes from stellar winds of nearby massive stars (Cuadra

et al., 2007). This low efficiency is explained by two main factors. Firstly, the vast majority

of the accreted mass at the Bondi radius never makes it into the black hole but is instead

redirected as an outflow, such that ˙MBH ∼ 4 × 10−8, where ˙MBH is the accretion at Rs.

This model is consistent with radio and X-ray observations (Marrone et al., 2006; Wang

et al., 2013) showing evidence of a decreasing accretion rate with decreasing radius ( ˙MBH

is constrained between 10−9 − 10−7M�/year).
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Secondly, advection dominates over radiation such that the radiative efficiency at Rs

becomes Lbol/
[
ṀBHc

2
]
≈ 4 × 10−4 (Yuan et al., 2003). Advection dominates in a RIAF

because the density is so low that ions don’t collide enough with electrons. Such Coulomb

collisions are normally how ions cool; they transfer their energy to electrons that can then

radiate it away. When this becomes negligible due to low densities, the gas adopts a two-

temperature configuration and heat, instead of being radiated away, is advected into the

black hole (Quataert, 2003; Yuan & Narayan, 2014). In the case of Sgr A*, the gas density

is so low that even electrons do not cool efficiently by radiating. In this regime, both

electrons and ions are advection dominated.

The X-ray quiescent emission is well fit by a thermal bremsstrahlung process

(Quataert, 2002), in which free electrons in the plasma are deflected by ions, radiating

energy. This emission is spatially extended (∼ 1.4") and covers a region around Sgr A*

corresponding to the Bondi radius (Baganoff et al., 2003).

At the other end of the spectrum, still following the model of Yuan et al. (2003) of

Figure 1.1, the power-law emission at the lowest frequencies is synchrotron radiation pro-

duced by a population of non-thermal electrons (because thermalization via collisions is

inefficient; Özel et al., 2000). Synchrotron emission from thermal electrons is responsible

for the first bump, and the subsequent bumps at higher frequencies are caused by inverse

Compton scattering.

1.2.2 Flares

As mentioned in the previous section (and illustrated by the bow ties in Figure 1.1, but see

Figure 1.3 for an X-ray image comparing quiescence and flaring states), Sgr A* flares about

once a day in the X-ray band. These flares are 10’s to 100’s of times brighter than quies-

cence and are characterized by an harder spectra than quiescence (power-law index of

Γ = 2 instead of Γ = 3 in quiescence) (Nowak et al., 2012). Their spectra are interestingly
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Figure 1.1: Spectral energy distribution of Sgr A* in quiescence (taken from Yuan &
Narayan (2014) who used the model proposed by Yuan et al. (2003)). Circles with arrows
pointing down are infrared (IR) upper limits and circles with error bars are radio observa-
tions. Circles with error bars in the IR region were taken after the model was produced.
The lower and upper bow ties represent X-ray measurements of Sgr A* in quiescence and
during a flare, respectively. The thick black line is the RIAF model from Yuan et al. (2003),
which is the sum of the bremsstrahlung emission from the Bondi radius (long-dashed
line), the synchrotron and inverse Compton emission from thermal electrons (dot-dashed
line), and the synchrotron emission from non-thermal electrons (short-dashed line). The
dotted line represents the sum of the last two components (i.e., without bremsstrahlung).

consistent across all flares (Neilsen et al., 2013; Yuan et al., 2017), suggesting a common

origin. They are characterized by timescales of minutes to several hours, further implying

an origin physically close to the black hole (∼ 10’s of Rs (Quataert, 2003)) unlike the spa-

tially resolved quiescent emission. Recently, the GRAVITY Collaboration confirmed this

scale by resolving the orbits of 3 IR flares (Abuter et al., 2018a) by using K-band astrometry

measurements of an accuracy of∼ 20-70 microarcseconds (µas). This incredible resolution

is achieved via interferometry of four 8 m telescopes of the Very Large Telescope (VLT).

The left side of Figure 1.2 shows a simulation of gas in a circular orbit around Sgr A*. The

right side of the figure is the equivalent from observations. It shows the projected orbit of
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one of the flares, which was observed on July 22 2018 for 30 min. Each point represents a

different time, and the positions are the offsets with respect to their median. The orange

square shows the position of Sgr A* as determined from the S2 star’s orbit (Abuter et al.,

2018b), which is consistent with the centroid of the flare’s orbit (the pink cross) within the

± 50 µas uncertainties. The centroid motions of the 3 flares are consistent with a circular

orbit of ∼ 10 Rs, in agreement with earlier estimations from flare durations.

Despite this knowledge, the physical explanations behind these flares and the X-rays

emitted are still illusive. Several mechanisms have been proposed to explain their spectra

such as inverse Compton, synchrotron and synchrotron self-Compton (in which electrons

emit infrared (IR) photons before inverse Compton scattering them) (Marrone et al., 2008;

Dodds-Eden et al., 2009; Eckart et al., 2009; Yusef-Zadeh et al., 2012; Witzel et al., 2012;

Nowak et al., 2012; Barriere et al., 2014; Neilsen et al., 2015; Ponti et al., 2017; Zhang et al.,

2017; Boyce et al., 2019; Haggard et al., 2019). Many scenarios have been put forward as the

physical process leading to the radiation observed including tidal disruption of asteroids,

magnetic reconnection (and/or shocks, sometimes combined with gravitational lensing as

in Ball et al. (2016, 2018)) leading to particle acceleration (Markoff et al., 2001; Liu & Melia,

2002; Yuan et al., 2003; Liu et al., 2004; Čadež et al., 2008; Kostić et al., 2009; Zubovas et al.,

2012; Dibi et al., 2014, 2016; Mezcua, 2017).

These flares have fluences and durations following a power-law distribution with in-

dices of Γ ∼ −1.5 and Γ ∼ −0.9 respectively (Neilsen et al., 2013). Although early work

showed a correlation between the flares’ fluence and duration (Neilsen et al., 2013), more

recent work indicates that this originates from detection biases (Yuan & Wang, 2015; Yuan

et al., 2017) (more energetic flares tend to be detected for longer than less energetic ones).

At first glance, flares also appear to be uncorrelated in time (following a Poisson flaring

rate), but they can also show evidence of clustering e.g., 4 flares are detected within ∼ 23
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Figure 1.2: Left: Simulation of gas moving at 30% of the speed of light in a circu-
lar orbit around Sgr A*. This bright gas is actually an IR flare. Figure taken from
the GRAVITY press release (https://www.eso.org/public/images/eso1835a/,
Credit: ESO/Gravity Consortium/L. Calçada). Right: Projected orbit of K-band (2.2 µm)
astrometric positions of the centroid of a flare on July 22 2018 observed for 30 min from
the GRAVITY collaboration (taken from Abuter et al., 2018a). Each point has an arbitrary
color denoting a different point in time and its position corresponds to its offset with the
median of all points (small pink cross). The orange square represents Sgr A*’s centroid, as
determined by the orbit of the S2 star (Abuter et al., 2018b). The clockwise orbital motion
of the gas implies an orbital speed of 30% of the speed of light. Error bars are 1σ and the
scale is 10 µas = 1 Rs = 1.2 × 107 km.

ks (ObsID 13854) with an associated probability of 3.5 % (Neilsen et al., 2013, 2015). How-

ever, at the moment, there are not enough observations to properly constrain this phe-

nomenon to get a better understanding of the underlying process, but it’s been suggested

recently (Yuan & Wang, 2015; Yuan et al., 2017) that it might be related to a piecewise-

deterministic Markov process (Davis, 1984, used to model earthquakes). These authors

notice that flares tentatively deviate from a Poisson process at the ∼ 96% level in one of

their two datasets, but only at the ∼ 50% level in the other.

To properly detect flares, it is important to keep contamination from other nearby

sources at a minimum, especially in the Galactic Centre and when it comes to the faintest

flares. On April 25 2013, this became more difficult even for the high resolution of

Chandra when a new transient source, an erupting magnetar (SGR J1745-2900), appeared

∼ 2.4" from Sgr A* (Kennea et al., 2013; Coti Zelati et al., 2017).

https://www.eso.org/public/images/eso1835a/
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Figure 1.3: Image taken from a Chandra press release (http://chandra.
harvard.edu/press/15_releases/press_010515.html, Credit:
NASA/CXC/Northwestern Univ/D.Haggard et al). Shown are images of Sgr A* in
quiescence and during a bright X-ray flare. Analogue of the bow ties in Figure 1.1. Note
that the source in the "before" window is the Galactic Centre magnetar (not Sgr A*, since
it is much fainter than the magnetar in its quiescent state).

Despite the extra flux leaking into Sgr A*’s extraction region (multiplying its detected

quiescence count rate by a factor ∼ 2 in the first following months), several authors re-

ported an increase in Sgr A*’s bright/very bright flaring rate at the end of August 2014

following the pericentre passage of an extended object, G2 (Gillessen et al., 2012), around

the SMBH (Ponti et al., 2015; Mossoux & Grosso, 2017).

1.2.3 G2

While G2’s nature is still up for debate (ideas range from a clumpy gas stream originat-

ing from stellar winds collisions (Calderón et al., 2015) to enshrouded stars (Ballone et al.,

2016) or even proto-planets (Mapelli & Ripamonti, 2015)), it is known that it is an ex-

tended cloud of ∼ 3 Earth masses on a very eccentric orbit of e ∼ 0.97 with a pericentre

of ∼ 2000Rs (Gillessen et al., 2012, 2013a,b). Several research groups predicted different

http://chandra.harvard.edu/press/15_releases/press_010515.html
http://chandra.harvard.edu/press/15_releases/press_010515.html
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pericentre passage times for G2 depending on their proposed models. For example, Madi-

gan et al. (2016) showed that a pure Keplerian orbit fit to the astrometry and velocity data

from Gillessen et al. (2013a,b) and Pfuhl et al. (2015) (from observations performed with

the VLT) gives an estimated time between the end of February to mid April 2014 and that

the addition of a drag force pushes this date to between the end of May to mid-July. If

an inflow is also added from the accretion flow, this prediction becomes from early July

to early September. These predicted pericentre passage times are summarized in Figure

1.4. More recently, Gillessen et al. (2018), who had access to recent GRAVITY observations

(Abuter et al., 2018a,b), proposed a model involving a drag force without an inflow (the

drag forces come from the orbital velocity of G2 through a relatively stationary ambient

medium, based on the fact that Sgr A* has both inflow and outflow components). They

compared their orbital fit to one using only Keplerian motion and found that the drag

force is significant at the 10σ level. They report a pericentre passage time of 2014.58 ±

0.13, earlier but consistent with Madigan et al. (2016).

Figure 1.4: G2 pericentre times for different models. Figure taken from Madigan et al.
(2016), but with the predicted pericentre time of 2014.58 ± 0.13 from Gillessen et al. (2018)
added in red. The black bar is for a Kepler orbit. The derived time for models with inflow
is in blue, and the time for models without inflow is in orange.

This cosmic encounter has led to many numerical simulations. Most early predictions



Chapter 1. Introduction 13

consisted of a brightening in the X-ray (Gillessen et al., 2012) and radio (Narayan et al.,

2012; Abarca et al., 2014) which were not observed (Chandler & Sjouwerman, 2014; Hag-

gard et al., 2014; Bower et al., 2015; Borkar et al., 2016). On the other hand, some sim-

ulations predicted a delayed brightening years after pericentre (Schartmann et al., 2012)

due to G2’s angular momentum. More recently, Kawashima et al. (2017), unlike previous

works, performed long-term (decade timescale) 3D general relativistic magnetohydrody-

namic simulations. They predict an increase in X-ray luminosity 5-10 years after pericen-

tre. However, due to poor understanding of the physical mechanisms behind flares, no

direct predictions regarding the flaring rate has been performed to date.

Regarding observations, Sgr A* was closely monitored in Summer and Fall 2014 to

detect any increase in activity related to this encounter. Several X-ray observatories per-

formed many observations, namely Chandra, XMM-Newton and Swift. Based on these

observations, several research groups reported an increase in the bright flaring rate of Sgr

A*.

Ponti et al. (2015) report 80 flares from Chandra and XMM-Newton in 6.9 Ms from

September 1999 to November 2014. They find an increase in the bright/very bright flaring

rate (defined as flares with an absorbed fluence greater than 5×10−9 erg cm−2) from 0.27±

0.04 to 2.5±1.0 a day at 99.9 % confidence after summer 2014 . They also report a decline in

the moderate-bright flares from mid-2013 at the 96% level. However, these authors used

PIMMS to convert count rates to fluxes. This leads to systematic underestimation of the

fluxes because PIMMS doesn’t correct the point spread function (PSF) extraction fraction.

Ponti et al. (2015) used Bayesian Blocks (Scargle et al., 2013) to detect and characterize

flares but they did not calibrate the prior.

Mossoux & Grosso (2017) also use Bayesian Blocks as their detection algorithm, but

they calibrate their prior. Using 9.3 Ms of data from 1999 to 2015 from Chandra, XMM-

Newton and Swift, they report 107 flares. They also find an increase in the most energetic

flaring rate by a factor of 3 following 2014 August 31 and a decay for the faintest flares
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by a similar factor. To do so, they use bottom-to-top and top-to-bottom searches on the

detected flare fluxes and fluences. However, the way they apply this method removes

observing gaps which doesn’t properly treat partial flares caught at the beginning or end

of an observation (edge flares).

Both of these authors use data from Chandra but also from XMM-Newton and Swift

to have as many flares as possible. This complicates things significantly since all these

observatories have different sensitivities. Additionally, neither of these authors perform

extensive Monte Carlo simulations of X-ray flares. Mossoux & Grosso (2017) do simulate

X-ray flares to control their detection bias and they also allow simulated flares to start be-

fore the beginning or after the end of a given observation to consider edge effects. How-

ever, they do not use their tool to study the impact of other factors such as simulations

with multiple flares.

1.3 Outline of Thesis

In this thesis, I use the highest-quality Chandra observations of the Galactic Centre in

an effort to be as consistent as possible. I use Bayesian Blocks to detect and characterize

flares, and I create fluence and duration distributions of flares like Neilsen et al. (2013). By

splitting the observations into two datasets around a potential change point related to G2

(and repeating this process for every potential change point), I test the null hypothesis by

performing Monte Carlo simulations of each X-ray light curve within each dataset using a

model with the same parameters to produce confidence intervals for the flare distributions

of both datasets. If there exists an ensemble of parameters producing confidence intervals

consistent with the observed distributions before and after each potential change point

then the null hypothesis is confirmed, implying no significant change in Sgr A*’s flaring

properties due to G2. The motivation is to test previous claims (e.g., Ponti et al. (2015)
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and Mossoux & Grosso (2017)) of an increase in the bright flaring rate in late August 2014,

corresponding with G2’s pericentre passage.

The thesis is organized as follows. In Chapter 2, I explain the Chandra data reduction.

In Chapter 3, I describe my handling of potential contamination from the nearby magne-

tar. In Chapter 4, I explain how I used Bayesian Blocks to detect and characterize flares

and show the detected flares. In Chapter 5, I present my Monte Carlo simulation model

and look for different possible flare rate variations. Finally, in Chapter 6, I discuss my

results and put them into the context of other works before concluding.
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Chapter 2

Observations

2.1 X-ray Visionary Program data

Chandra observed Sgr A* for 38 observations during the 2012 X-ray Visionary Program

(XVP) campaign, collecting a total of∼3 Ms of data1. The observations were all taken with

the High Energy Transmission Grating (HETG) Spectrometer with the Advanced CCD

Imaging Spectrometer-Spectroscopy (ACIS-S) camera at focus. The HETG disperses some

of the photons across the detectors which increases spectral resolution via the grating

equation

sin β = mλ/p (2.1)

where β is the diffraction angle, m is an integer representing the diffraction order, λ is the

wavelength and p is the grating lines spacing. β is computed from the distance of a given

event from the zeroth-order (i.e., undispersed) image. λ is assigned using β (and also a

m value deduced from the zeroth-order distance) and the energy E is computed with the

usual equation Eλ = hc, where h is Plank’s constant and c is the speed of light. m is

verified by using the event energy as measured by the ACIS-S camera and the distance

from the undispersed image. Since the energy resolution of ACIS-S isn’t perfect, I allow

1The average exposure time per observation is ∼ 78 ks.
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an order sorting tolerance of ±0.2 (for example, m values found between 0.8 and 1.2 are

assigned to m = 1).

I perform basic data reductions using the Chandra Interactive Analysis of Ob-

servations2 (CIAO) v.4.9 tools (Fruscione et al., 2006) with the calibration database

CALDB v.4.7.6 and I reprocess the level 2 events file3 with the chandra_repro

script before updating the World Coordinate System (WCS) with the wcs_update tool.

chandra_repro is a powerful tool that applies the most recent calibration and makes

multiple corrections to the data, including filtering events from bad pixels. wcs_update

corrects the sources’ positions found in the observation in detector coordinates such that

it minimizes the difference with respect to known sources from a catalog in RA and DEC.

This increases the accuracy of source localisation and is particularly important in the

crowded Galactic Centre.

The diffraction order m of each event is determined by the tg_resolve_events tool

(which automates the steps previously explained) and I keep zeroth and±first order pho-

tons. I use the same extraction region as Nowak et al. (2012), Neilsen et al. (2013) and

Mossoux & Grosso (2017) to minimise background. I extract 2-8 keV zeroth-order events

from a small 1.25" radius circular region centered around the radio position of Sgr A*4 and

first-order counts (with grating order tolerance of ±0.2) are extracted from a rectangular

box with a 5 pixels (2.5") width also centered on the source (see Figure 2.1). The PHA2

files (FITS files containing events filtered to keep only 0th and ±first order and a spec-

trum) and the gratings responses (matrices that define the sensibility of each pixel at a

given energy) are created with the tg_extract and mktgresp tools, respectively, while

the zeroth order spectra and response files are extracted with the specextract tool.

The exposure of each observation is not dead time corrected and is given by the time

2Available at http://cxc.harvard.edu/ciao/
3Level 2 events file refer to events that have gone through extra filtering to keep only good and reliable

events
417:45:40.04909, -29:00:28.118 (Reid & Brunthaler, 2004)

http://cxc.harvard.edu/ciao/
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between the first and last event. Dead time refers to the readout time of each event (∼

0.04104 s) during which no events can be recorded. In this instrument mode, the frame

time is 3.1 s, but with the additional readout time it becomes effectively 3.14 s. I refer to

this effective time as the frame time from now on.

2.2 Post-XVP data

Chandra observed Sgr A* again in April 2013 and has continued to do so in a series of

on-going observations. To create a consistent dataset, I only use observations from the

ACIS-S3 1/8th subarray instrument mode (see Figure 2.1). This instrument mode reduces

pile-up (see Section 2.3) by only using a 1/8th subarray of the central S3 chip (128-rows),

which reduces the frame time to 0.44104 s.

I use a 1.25" radius circular extraction region around Sgr A* to select 2-8 keV events

after reprocessing the data with the chandra_repro tool and updating the WCS coordi-

nate system with the wcs_update tool. I extract X-ray spectra with the specextract

tool. There is one complication, however; in 2013 April 25, the magnetar SGR J1745-29,

at only 2.4" from Sgr A*, went into outburst (Mori et al., 2013; Kennea et al., 2013). Its

luminosity was so great that it leaked into Sgr A*’s extraction region. This influences how

I handle background contributions for the majority of this dataset (see Chapter 3). Like

for the XVP data, I do not perform dead time correction.

I exclude ObsIDs 14944 and 16597 from my analysis because the tool wcs_match did

not properly correct the WCS coordinate system. This is likely due to their short expo-

sure (20 ks and 18 ks) making the localization of the sources more difficult. Inaccurate

positions of the extraction regions would significantly affect the contribution of the mag-

netar, reducing my ability to correct for the magnetar’s contribution to Sgr A*’s quiescent

flux (see Chapter 3). Similarly, I exclude ObsIDs 18055 and 18056 because of the presence

of a low-mass X-ray binary in outburst, Transient 15 (Ponti et al., 2016) (see Figure 3.2).
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My final Post-XVP ACIS-S3 1/8th subarray dataset consists of 1.56 Ms of data across 39

observations.

2.3 Pile-up

When two or more photons hit the same detector region in less than 1 frame time, they are

counted as a single count with an energy corresponding to the total energy of the photons.

This phenomenon is called pile-up and can happen to zeroth-order events in gratings data

or any event in non-grating data. First-order events suffer very little pile-up because they

are dispersed to a larger area, making it unlikely that more than one event hit the same

detector region in a single frame time.

Pile-up can be described by Equation 2 of Nowak et al. (2012):

Λd =

[[
eαΛi − 1

]
e−Λi

αΛi

]
Λi (2.2)

where Λi is the incoming (unpiled) counts per frame, Λd is the detected (piled) counts per

frame and α is the grade migration parameter (representing the fraction of recorded piled

events) which I assume to be α = 1.

For gratings data (frame time of 3.14s), I unpile the flaring count rates in the zeroth

order of each flaring block (see Section 4.1). I retrieve an average 0th/1st order flaring

count rate ratio (quiescence subtracted) across all XVP flares of ∼ 1.6, consistent with

Nowak et al. (2012).

2.4 X-ray flare energies

To accurately compare between grating and non-grating flare fluences, I must convert

counts to energy. Since Sgr A*’s flares have been shown to have very similar X-ray spectra

(Nowak et al., 2012; Neilsen et al., 2013), their count rates are directly proportional to
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their flux using the same absorption model. I use XSPEC (Arnaud, 1996) with a model

of dustscat*tbabs*powerlaw, the abundances of Wilms et al. (2000) and the cross

sections of Verner et al. (1996). I take a power-law index of Γ = 2, an hydrogen column

density ofNH = 14.3×1022 cm−2, a dust scattering optical depth τ = 0.324(NH/1022 cm−2)

and I normalize to the the brightest flare of 2012, which has an absorbed 2-8 keV flux of

F abs
2-8 = 8.5+0.9

−0.9 × 10−12 erg cm−2 s−1 and an unabsorbed 2-10 keV luminosity of Lunabs
2−10 =

19.2+7.2
−3.7 × 1034 erg s−1 (Nowak et al., 2012). The unabsorbed fluences reported in Tables

4.1 and 4.2 are pile-up corrected and quiescence subtracted. To normalize to the brightest

flare of 2012, I modify the model amplitude until it corresponds to that flare. I save the

valueR0 = 5.07×10−4 (in units of 10−46 cm−2) of this amplitude divided by its unabsorbed

luminosity5. R0 is purely model dependent and is the same for gratings and non-gratings

observations.

To convert luminosities to count rates using R0, I compute the normalization factor

for each luminosity in Neilsen et al. (2013)’s Table 1 for each of my ObsID by multiplying

R0 by each luminosity and extract the count rate6 associated with the given model. This

results in a count rate for each unabsorbed luminosity listed in Neilsen et al. (2013)’s Table

1 for each of my own ObsID’s instrument responses. I define R1 as the ratio between a

count rate and its associated unabsorbed luminosity7. For each ObsID, I take the mean R2

of R1. Finally, I take the median of R2 across all of my ObsIDs to get a final conversion

factor.

With this model, I find a conversion factor between unpiled, quiescence subtracted 2-8

keV flare count rates and their unabsorbed 2-10 keV luminosity of R2 = 0.0077 ct/(1034

erg) for gratings flares and R2 = 0.013 ct/(1034 erg) for subarray flares. The difference is

5This assumes that the unabsorbed 2-10 keV luminosity is linearly proportional to the absorbed 2-8 keV
flux. This is justified in my case because the absorption/spectral model is similar for every flare.

6Since I do not have a pile-up component in this model, the count rates are incoming (i.e., unpiled) by
default.

7The only difference between gratings and non-gratings observations in this process is that for gratings
data I need to compute the model count rates for the 0th and 1st order independently since they have
different spectral files. To get R1, I use as count rate the sum of the 0th and 1st orders.
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due to differing effective areas of these instrument modes. Indeed, ACIS-S/HETG0th+1st

orders has an effective area of ∼ 200 cm2 whereas ACIS-S has an effective area of ∼ 300

cm2 (at 5 keV8). My conversion factors are consistent with those reported by Yuan & Wang

(2015) where the authors report 0.0053 ct/(1034 erg) for the 0th order (which translates to

∼ 0.008 ct/(1034 erg) when adding the ±1st order counts with the ∼ 3:2 ratio of Nowak

et al. (2012)). For their ACIS-I data (which has similar effective area as ACIS-S3), they get

0.0136 ct/(1034 erg).

Figure 2.1: Example of observations done with the ACIS-S instrument, with and without
the HETG. Left: HETG observation (ObsID 14392) with chips S2 to S5 labeled. The green
rectangle on the S3 chip represents the 1/8 subarray used in the Post-XVP observations
without the HETG. The bright spot on the upper part of this region is Sgr A*. Middle:
Zoomed in version of the left image around Sgr A*. The green rectangular boxes with
a 2.5" width are the ±1st order extraction regions and the circle with a 1.25" radius is
the 0th order extraction region. Right: ACIS-S3 chip with a 1/8 subarray observation
(ObsID 14703). Figure 3.1 shows a zoomed-in version of this image around Sgr A* and the
magnetar. 1" ∼ 105 Rs ∼ 8000 AU.

8http://cxc.harvard.edu/caldb/prop_plan/pimms/

http://cxc.harvard.edu/caldb/prop_plan/pimms/
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Chapter 3

Magnetar model and contamination

3.1 The Galactic Centre magnetar SGR J1745-2900

The Galactic Centre is a crowded place. This is why Chandra’s high spatial resolution

(angular resolution of 0.5") is crucial for observations of individual objects located in the

region. Things get even more difficult when new bright sources appear. One such tran-

sient showed up on 2013 April 25 when it was detected by Swift as a Soft Gamma Repeater

(SGR; Mori et al., 2013; Kennea et al., 2013). This magnetar, SGR J1745-2900, is 2.4" away

from Sgr A* (Coti Zelati et al., 2017), making Chandra the only X-ray observatory capable of

spatially resolving the two sources. Figure 3.1 shows a Chandra image taken on 2013 June

4 in which the magnetar is much brighter than Sgr A*. In fact, the magnetar only drops to

a luminosity comparable to Sgr A*’s quiescence about 3 years after outburst. This means

that a bright source is contaminating my Sgr A* extraction region for the majority of my

Post-XVP data.

3.2 Estimation of the magnetar’s contamination

To correct for the magnetar’s contamination, I need to calculate the count rate fraction of

the magnetar that overlaps with Sgr A*’s extraction region. To do so, I adopt the back-

ground region from Coti Zelati et al. (2017), i.e., an annulus with an inner radius of 5" and
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Figure 3.1: Image of ObsID 14703 from Chandra. The annulus is the background ex-
traction region (inner radius of 5" and outer radius of 8", center on RA:17:45:40.084,
DEC:-29:00:28.70). The brightest spot is the magnetar (extraction region centered on
RA:17:45:40.169, DEC:-29:00:29.84 with a radius of 1.3"). The circle towards the upper-
right from the magnetar is Sgr A* (extraction region centered on RA:17:45:40.0409, DEC:-
29:00:28.118 with a radius of 1.25"). The three other regions have the same radius as Sgr A*
and their center’s position are : RA:17:45:40.2971, DEC:-29:00:31.57 and RA:17:45:40.0542,
DEC:-29:00:31.7615 and RA:17:45:40.2838, DEC:-29:00:27.9185 respectively.

Figure 3.2: Same as figure 3.1, but for ObsIDs 18055 (left) and 18056 (right). We can
clearly see a very bright source that saturates the CCDs (Transient 15). This contaminates
significantly my background region. Sgr A* flared in ObsID 18055, which is why it is
brighter.
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outer radius of 8" (see Figure 3.1). I extract background-subtracted count rates in the 2-8

keV band from 3 regions located at the same radial distance from the magnetar as Sgr A*,

with the same size as Sgr A*’s extraction region (radius of 1.25"). I take the mean of the

extracted count rates and divide the result by the 2-8 keV background-subtracted count

rate of the magnetar’s extraction region (radius of 1.3"). This results in the fraction ε of

the count rate Qmagn from the magnetar that leaks out to Sgr A*’s radial distance. In other

words, the measured Sgr A* quiescence count rateQeff (corresponding to the longest block

obtained with a Bayesian Blocks algorithm, see Chapter 4) is given by

Qeff = ε×Qmag +Qsgr (3.1)

where Qsgr is the actual Sgr A* quiescent count rate.

I calculate ε for every ObsID of my Post-XVP observations until ObsID 18057 since at

that point the magnetar is faint enough that count rates in the testing regions fall to back-

ground level. This method makes several assumptions: (1) the PSF is radially symmetric

and (2) the 3 regions do not contain any significant X-ray sources.

The resulting plot of ε as a function of time since the outburst is shown in Figure 3.3.

I get similar results whether or not I take pile-up into account. I correct for pile-up by

calculating the predicted incoming count rate (which should be higher than the detected

count rate) in the following way. I compute the piled count rates of 10 000 different in-

coming count rates between 0.001 and 10 counts/s equally separated in logarithmic space

using Equation 2.2 with α = 1. I identify which incoming count rate corresponded to

the detected magnetar count rate for each ObsID and compute the magnetar fraction us-

ing this value. I do not consider pile-up in the 3 regions as their count rates are too low

for pile-up to be significant. I find 〈ε〉 = (1.4 ± 0.2)% without correcting for pile-up and

〈ε〉 = (1.3 ± 0.2)% if I correct for it. The following analysis uses the ε obtained with a

pile-up correction.
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Figure 3.3: Each point corresponds to an ObsID. The horizontal lines are the mean value
of their respective dataset (pile-up corrected in orange and not, in blue). Their associated
standard deviation is marked with a vertical line. I obtain 〈ε〉 = (1.4 ± 0.2)% without
treating pile-up and 〈ε〉 = (1.3± 0.2)% if I treat it.

3.3 Implication for Sgr A*’s quiescence count rate

Now that I know what fraction ε of the magnetar count rate contaminates Sgr A*’s extrac-

tion region, I can estimate its quiescent count rate Qsgr. Following Equation 3.1, I subtract

the magnetar contribution ε × Qmagn from the observed quiescent count rate Qeff of each

ObsID (defined as the count rate of the longest block obtained from the Bayesian Blocks

algorithm, see Chapter 4). This results in Sgr A*’s quiescent count rateQsgr for that ObsID.

The associated error on each Qsgr is given by

σQsgr = σQeff + σ〈ε〉Qmagn (3.2)
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where σQeff is the Poisson noise from the measurement of Qeff from the Bayesian Blocks

and σ〈ε〉 = 0.2% is the error of 〈ε〉 when considering pile-up. In general, the Poisson error

in a count rate is given by:

σPoisson =

√
Ncts

tblock
(3.3)

where Ncts is the number of counts within a duration tblock. In the present scenario, Ncts is

the number of counts in the longest block of duration tblock from the Bayesian Blocks (see

Chapter 4).

To find the mean quiescent count rate from this distribution, I use Monte Carlo sim-

ulations. For each point (i.e., for each ObsID), I daw a random point from its associated

value and standard deviation. Once I have done this for every point, I save the mean and

the standard deviation of the whole set. I repeat this process 10 000 times and take the

mean of all the means as well as the mean of all the standard deviations. This results in a

value of
〈
Qsgr

〉
= (0.005± 0.001) ct/s for Sgr A*’s average quiescent count rate.

Nowak et al. (2012) find that Sgr A*’s quiescent absorbed flux is F abs
2−8 = 0.147+0.004

−0.003 ×

10−12 erg/cm2/s using an absorbed power-law with index Γ = 3.0+0.2
−0.2. They use an hy-

drogen column density of NH = 12.9+0.8
−0.8× 1022 cm−2, with the abundances of Wilms et al.

(2000) and the cross-sections of Verner et al. (1996). I use XSPEC (Arnaud, 1996) with a

model dustscat ∗ tbabs ∗ powerlaw using their parameters. Other parameters include τ ,

the optical depth to dust scattering at 1 keV and Halosz, the halo size at 1 keV relative to

detector beamsize. Still following Nowak et al. (2012), I choose τ = 0.324(NH/1022 cm−2)

and Halosz = 50.

Using this model, I extract the corresponding count rates QNowak for each ObsID using

the instrument response files and compare them to the expected value, Qsgr. This is shown

in Figure 3.4 and Table 3.1, where we can see that my resulting mean quiescent count

rate
〈
Qsgr

〉
is consistent with Nowak et al. (2012)’s prediction. Indeed, I obtain

〈
Qsgr

〉
=

(0.005 ± 0.001) ct/s while 〈QNowak〉 = (0.0052 ± 0.0008) ct/s. I obtain the error associated
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with their mean count rate by the same method as I use for my own mean count rate,

where the uncertainty associated with each ObsID is the Poisson error. The agreement

between the two results confirms my treatment of the magnetar’s contribution to Sgr A*’s

extraction region.
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Figure 3.4: This plot shows the difference between Qeff and 〈ε〉 ×Qmagn in blue as well as
the quiescent count rate predicted by Nowak et al. (2012) in red, QNowak, at each ObsID
present in Figure 3.3. The error bar of each blue point is found by propagating the errors
of the parameters of Equation 3.2. The mean count rate

〈
Qsgr

〉
= (0.005 ± 0.001) ct/s is

represented by the blue horizontal line, with its associated 1σ Monte Carlo error bar in the
same color. The red line shows 〈QNowak〉 = (0.0052± 0.008) ct/s. Its error bar is also a 1σ
Monte Carlo error bar, and the error bar of each red point is the Poisson error.

Figure 3.5 shows the summary of this analysis. Since my own mean quiescent value is

very close to the value measured by Nowak et al. (2012), both choices are reasonable. In

the following work, I choose to use my own quiescent value.



Chapter 3. Magnetar model and contamination 28

3.3.1 A note about the background

To add the quiescent count rates from Nowak et al. (2012) to the magnetar contribution,

it makes sense that I previously used background subtracted count rates to compute said

fraction ε, otherwise I would be adding the background twice. Indeed, Nowak et al. (2012)

do not background subtract at all (therefore their quiescence already contains some back-

ground). This is also true for my own count rates extracted from the lowest block from

the Bayesian blocks. Since those count rates are obtained from event files, they cannot be

background subtracted.
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Figure 3.5: Count rates plotted against time since the magnetar outburst. The blue points
are the magnetar contribution count rates and the orange points are the count rates of the
longest block of each ObsID. The green points show the sum of the count rates from the
empirical quiescence and the magnetar contribution, and the purple points represent the
sum of the count rates from Nowak et al. (2012)’s quiescence and the magnetar contribu-
tion.
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In summary, the magnetar SGR J1745-2900, which is located at an angular distance of

2.4" from Sgr A* and was detected on 2013 April 25 by Swift and NuSTAR, contributes

(1.3 ± 0.2)% of its count rate to Sgr A*’s extraction region. After correcting for this con-

tamination, we calculate Sgr A*’s quiescent count rate to be (0.005 ± 0.001) ct/s, which is

in agreement with the prediction of Nowak et al. (2012) of (0.0052 ± 0.0008) ct/s.
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ObsID Date Time 〈ε〉 ×Qmag Qeff QNowak Qsgr
since

outburst
– – Days ×10−3 ct/s ×10−3 ct/s ×10−3 ct/s ×10−3 ct/s

14702 2013-05-12 16 7± 1 12± 1 4.0± 0.6 5± 2
14703 2013-06-04 39 5.6± 0.8 12.1± 0.8 4.0± 0.5 6± 2
14946 2013-07-02 67 4.8± 0.7 9.5± 0.7 4.0± 0.4 4± 1
15041 2013-07-27 92 4.3± 0.6 8.7± 0.6 5.6± 0.5 4± 1
15042 2013-08-11 108 3.9± 0.6 8.4± 0.5 5.6± 0.4 4± 1
14945 2013-08-31 127 3.6± 0.5 7.7± 0.6 4.0± 0.5 4± 1
15043 2013-09-14 141 3.4± 0.5 9.9± 0.5 5.0± 0.4 7± 1
15044 2013-10-04 161 3.2± 0.5 8.0± 0.4 5.6± 0.3 4.7± 0.9
14943 2013-10-17 174 3.0± 0.5 7.9± 0.6 5.6± 0.5 5± 1
14704 2013-10-23 180 3.0± 0.4 8.5± 0.5 4.0± 0.3 5.5± 0.9
15045 2013-10-28 185 2.9± 0.4 7.8± 0.5 5.6± 0.4 4.9± 0.9
16508 2014-02-21 301 1.9± 0.3 7.7± 0.4 5.6± 0.4 5.8± 0.7
16211 2014-03-14 322 1.9± 0.3 7.4± 0.4 5.5± 0.3 5.5± 0.7
16212 2014-04-04 343 1.7± 0.3 6.3± 0.4 5.6± 0.3 4.6± 0.6
16213 2014-04-28 367 1.6± 0.2 6.7± 0.4 5.6± 0.3 5.1± 0.6
16214 2014-05-20 389 1.5± 0.2 6.4± 0.4 5.6± 0.3 5.0± 0.6
16210 2014-06-03 403 1.4± 0.2 6.2± 0.6 5.6± 0.5 4.9± 0.8
16215 2014-07-16 447 1.1± 0.2 6.5± 0.4 5.6± 0.3 5.3± 0.5
16216 2014-08-02 463 1.1± 0.2 5.7± 0.4 5.5± 0.3 4.6± 0.5
16217 2014-08-30 491 0.9± 0.1 5.7± 0.5 5.6± 0.5 4.7± 0.6
16218 2014-10-20 542 0.9± 0.1 6.3± 0.6 5.5± 0.6 5.4± 0.7
16963 2015-02-13 658 0.7± 0.1 6.1± 0.6 5.5± 0.6 5.3± 0.7
16966 2015-05-14 748 0.55± 0.08 7.2± 0.8 5.5± 0.7 6.1± 0.9
16965 2015-08-17 843 0.42± 0.06 6.3± 0.5 5.2± 0.5 5.9± 0.6
16964 2015-10-21 908 0.32± 0.05 6.0± 0.5 5.5± 0.5 5.6± 0.5
18731 2016-07-12 1173 0.15± 0.02 5.5± 0.3 5.5± 0.3 5.3± 0.3
18732 2016-07-18 1179 0.17± 0.03 5.0± 0.3 5.5± 0.3 4.8± 0.3
18057 2016-10-08 1261 0.15± 0.02 5.2± 0.5 5.5± 0.5 –
18058 2016-10-14 1267 0.15± 0.02 4.6± 0.4 5.6± 0.5 –
19726 2017-04-06 1441 0.10± 0.01 5.0± 0.4 5.5± 0.4 –
19727 2017-04-07 1442 0.11± 0.02 5.7± 0.5 5.5± 0.5 –
20041 2017-04-11 1446 0.11± 0.02 7.2± 0.7 5.5± 0.6 –
20040 2017-04-12 1447 0.10± 0.02 5.5± 0.4 5.5± 0.4 –
19703 2017-07-15 1541 0.09± 0.01 4.6± 0.3 5.5± 0.3 –
19704 2017-07-25 1551 0.09± 0.01 5.0± 0.2 5.5± 0.3 –
20344 2018-04-20 1820 0.055± 0.008 5.4± 0.4 5.5± 0.4 –
20345 2018-04-22 1822 0.048± 0.007 4.4± 0.4 5.5± 0.4 –
20346 2018-04-24 1824 0.049± 0.007 4.3± 0.4 5.5± 0.5 –
20347 2018-04-25 1825 0.056± 0.008 5.1± 0.4 5.5± 0.4 –

Table 3.1: Time since the magnetar’s outburst (taken to be 2013 April 25 (Kennea et al.,
2013)), count rate 〈ε〉 × Qmag leaking from the magnetar to Sgr A*’s extraction region,
detected quiescent count rate Qeff, predicted quiescent count rate QNowak according to
Nowak et al. (2012) andQsgr = Qeff−Qmag for each ObsID. From ObsID 18057, the magne-
tar is faint enough that count rates in the testing regions fall to background level, resulting
in ε < 0. This is why the corresponding Qsgr values are undefined.
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Chapter 4

Detected flares

4.1 Bayesian Blocks and prior calibration

4.1.1 The Bayesian Blocks algorithm

To identify flares in the data, I choose Bayesian Blocks (Scargle et al., 2013). I start from

the implementation provided by Williams et al. (2017), which I modify to use event lists

from simulations (Chapter 5) and my own prior calibration (section 4.1.2 and Appendix

A). The algorithm assumes that the data can be separated into different blocks of constant

count rates. If it detects a significant change in count rate at a specific point in the data, it

will start a new block. This is called a "change point". The first point is always a change

point, such that the number of blocks is given by Nblocks = Ncp + 1, where Ncp is the

number of non-trivial change points. The goal of the algorithm is to find the optimal way

of separating the data. To do so, it needs a prior on the number of change points. This

prior should assign a smaller probability for a large number of blocks, otherwise it would

lead to overfitting (e.g., making each point its own block in an extreme case). The prior

depends on a single parameter, γ, as follows:

P (Nblocks) = P0γ
Nblocks (4.1)
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where P (Nblocks) denotes the prior probability of having a number of blocks Nblocks and P0

is a normalization factor. Naturally, 0 < γ < 1. As in Scargle et al. (2013), I define the prior

on the number of change points as:

ncp_prior = − log γ (4.2)

The intuition behind this parameter is that for larger values of ncp_prior, the algorithm is

expecting fewer blocks since it translates to a lower value of γ and thus a lower probability

for larger Nblocks.

The algorithm aims to maximize the log-likelihood of a given block k having a cer-

tain duration T (k) and number of events N (k), translating to a count rate λ = N (k)/T (k).

Mathematically, for the case of X-ray events data, the maximum likelihood is given by:

logL(k)
max +N (k) = N (k)

(
logN (k) − log T (k)

)
. (4.3)

However, this likelihood must take the prior into account. A simple way to implement

this is to subtract Equation 4.2 from Equation 4.3.

Since ncp_prior is linked to the expected number of blocks, it can be mathematically

connected to the probability of a given change point being a false positive. I refer to this

false alarm probability as p0 (more is explained about p0 in Section 4.1.2). ncp_prior should

also depend on the number of events in a given light curve. Indeed, if one light curve has

more events than another, it should be more susceptible to false positives. Therefore,

ncp_prior is a function of p0 and N , the number of events. It must also depend on the un-

derlying statistics of the data. For example, it behaves differently for Gaussian noise than

for Poisson noise. As such, the algorithm needs to be properly calibrated on signal-free

data before being applied to real data. The next Section explains in detail how I determine

the calibration shown in Figure 4.2 that computes an appropriate value of ncp_prior for
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p0 = 0.05 for a light curve with a given number of events N .

4.1.2 Prior calibration

To calibrate ncp_prior on Poisson noise, I follow the procedure suggested in Scargle et al.

(2013). I choose a number of expected countsN and a constant noise count rate cr, in units

of counts/s. I also adopt a frame time of 0.441 s (I tested with 3.14 s, and it did not change

anything; the calibration is frame time independent). I find the expected length L of the

simulated observation needed to reach N counts, by computing N/(cr ∗ frame_time).

With this length, I create a time array from 0 to the predicted length multiplied by the

frame time such that the time step is one frame time. I generate a Poisson light curve of

the same length with an expected count rate cr × frame_time. This light curve dictates

how many counts are in each frame time (since a Poisson distribution only generates non-

negative integers). In other words, each array index 0 ≤ i ≤ (L− 1) in the light curve has

an element n ≥ 0, and I repeat the corresponding ith element in the time array n times.

The resulting event list is sent to the Bayesian Blocks algorithm, which returns the

number of change points detected. For each N considered, I search for the value of

ncp_prior that correctly results in a given false positive rate p0. To do so, I evaluate values

of ncp_prior between 3 and 15, with a step of 0.1, and generate 1000 random Poisson light

curves. p0 is then the sum of the detected change points divided by the number of light

curves (recall that if the Bayesian Blocks algorithm output a single block, then the number

of change points is Ncp = 0). Figure 4.1 shows an example of p0 as a function of ncp_prior

for 3 different N , with a line indicating p0 = 0.05, corresponding to 50 or fewer change

points in 1000 light curves. To identify the closest ncp_prior that gives the desired false

positive rate (p0) for a given N , we take the first value of ncp_prior in Fig 4.1 that results

in a p0 value less than the desired p0.

To create the final calibration of ncp_prior values corresponding to p0 = 0.05, I simulate
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Figure 4.1: Number of change points detected in 1000 random Poisson-generated signal-
free light curves divided by 1000 (p0) as a function of ncp_prior for different number of
expected counts in the light curves. The red horizontal dotted line indicates p0 = 0.05

Poisson light curves with the following values of N : 100, 200, 300, 400, 500, 600, 750, 1000,

1250, 1500, 1750, 2000, 2250, 2500 and 3000 expected counts. To accelerate the process, I

stop sweeping through ncp_prior as soon as I find the desired value for p0, and for the

next value of N I start looking at values of ncp_prior 0.5 less than the value found for

the previous N , because ncp_prior increases with N . For each value of ncp_prior, if the

number of change points goes above the number of false positives (50 for p0 = 0.05 and

1000 light curves), I skip it and go to the next value instead of computing the remaining

light curves.

Since the value of ncp_prior chosen with my method is a bit noisy (e.g., Figure 4.1),

I run the simulation for 10 different noise count rates (0.004, 0.005, 0.006, 0.007, 0.008,
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0.009, 0.01, 0.011, 0.012 and 0.1 count/s)1 and calculate the mean of the different ncp_prior

values obtained at each N , as well as their standard deviation. The resulting dependence

of ncp_prior on N for the desired value of p0 = 0.05 is displayed in red points in Figure

4.2.

I fit the following function to the data points in Figure 4.2:

ncp_prior(N) = A logN +B (4.4)

where ncp_prior(N) is the fitted value of the prior for a given expected number of events

N , A is the amplitude and B is a constant. Figure 4.2 also shows the corresponding 3σ

error region. The error bars on the data points are the standard deviations of the values of

ncp_prior across all simulations.

For comparison, I also plot 2 other calibrations used in Scargle et al. (2013). They were

derived via similar simulations, but for Gaussian noise, and only considered N values

up to 1024. I show the 3σ error region to accommodate the noise and to minimize false

positives (recall that higher values of ncp_prior imply that the algorithm is less susceptible

to false positives). Roughly, this means that I am 3σ confident that my calibration yields

p0 ≤ 0.05. My final calibration is the upper bound of the 3σ fit; every time I run Bayesian

Blocks (either for simulations or real data), I use this fit and the number of events in the

given event list to assign a value of ncp_prior.

4.1.3 Blocks classification

In addition to the Bayesian Blocks implementation, I need a set of criteria to determine

which blocks are flaring blocks. This is especially important since I perform extensive

Monte Carlo simulations and need to treat simulations and observations consistently.
1I choose different count rates to double-check my intuition that changing the count rates does not change

the results. Indeed, if the count rate changes, the only modification in the Bayesian Blocks should be the
mean count rate of each block (i.e., the probability of finding false change points shouldn’t change). The
plot with all the different count rates is shown in Appendix A.
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Figure 4.2: Summary plot showing the results of 10 different calibration runs for different
noise count rates. Each red point represents the mean value of ncp_prior found across
those runs for that given expected number of events N , the error bars are their standard
deviation. The green line is the resulting best fit and the blue shaded region is its 3σ error
envelope. The blue and orange dotted lines are the calibrations obtained by Scargle et al.
(2013) for similar simulations for Gaussian noise for p0 = 0.05 and p0 = 0.03, respectively.
They didn’t provide error bars.

Since Sgr A* has a low flaring rate (∼ 1.1 flare/day (Neilsen et al., 2013)), its quiescent

count rate can be determined from the longest block in each observation. Given that the

uncertainty on that block’s count rate will be rather small (since it spans a long period), I

consider a block as a flaring block if the difference between its count rate and the quiescent

count rate is greater than 3 (σQ + σblock), where σQ and σblock are the quiescent and flaring

block’s Poisson error on their count rate (defined by Equation 3.3), respectively. Each

consecutive flaring block is associated with the same flare. While this criteria may seem

conservative, it is necessary otherwise clearly distinct flares separated by a block barely
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above quiescence can be considered as a single flare. Figure 4.3 displays two distinct flares

that would be grouped together into one flare without this criteria.

Once all the flaring blocks have been found, I unpile them using Equation 2.2 (see

Appendix C for details about the XVP data, which is more complex since pile-up is only

relevant in the 0th order). I then multiply each block’s count rate by their duration, add

the resulting number of counts from each flaring block together, and divide it by the total

duration of all the blocks in the flare, resulting in the flare’s average count rate. Then, I

subtract the quiescent count rate from it, and convert the resulting rate to a fluence using

the conversion factors presented in Section 2.4.

Since I assume simple Gaussian-shaped flares for my simulations (see Chapter 5), it

is possible in principle for two long and bright flares to occur too close together in time

to be distinguishable. This is discussed by Yuan & Wang (2015), where the authors find

that such a phenomenon is quite unlikely (only 1/3 of their flares showing evidence of

substructures have a probability of being made of multiple flares above 5%). I introduce

another criterion in an effort to distinguish close flares and test my whole analysis with

and without it. The criterion stipulates that if there is a series of consecutive flaring blocks

with one of them (not the first nor the last one) having a count rate significantly lower

than the others (the count rate difference is larger than 3 error bars added in quadrature

between the block and its neighbours), then it is flagged and the flare is considered to be

made of two flares. This block is separated in half, with its first half being associated with

the left flare and the other half with the right flare. This occurs in only 3 observations, all

of which are Post-XVP (ObsIDs 15043, 16218 and 20346). Figure 4.4 shows ObsID 16218 as

an example. In Chapter 5, I do not use this criteria unless specified otherwise. I report my

flares in Tables 4.1 and 4.2.
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Figure 4.3: Light curve of ObsID 15045. The bin time is 300 s, the Bayesian Blocks are in
red with their associated Poisson errors and the blue vertical bars indicate the beginning
and end times of the two detected flares with the criteria explained in Section 4.1.3. If one
relaxes the constraint, the block between the two flares will be considered a flaring block
as well, thus leading to the detection of a single flare instead of 2.

4.2 Detected flares

I find that the flaring rate is consistent across the datasets as I detect 40 XVP flares in

3 Ms (1.2 ± 0.2 flare/day) and 18 post-XVP flares in 1.56 Ms (1.0 ± 0.2 flare/day)2. If

I add the flare separation criteria, I have the same number of XVP flares, but I find 21

post-XVP flares giving a rate of 1.2 ± 0.3 flare/day, consistent with Neilsen et al. (2013).

The properties of each flare are provided in Tables 4.1 and 4.2. I compare my detected

flares in detail with other works (Neilsen et al., 2013; Ponti et al., 2015; Mossoux & Grosso,

2017) in Appendix B. My results are mostly consistent with the different authors, but some

differences occur for the faint/short flares, mainly due to what different authors consider

2Post-XVP light curves are available at https://www.dropbox.com/sh/gu8zt95h8eukj4n/
AAC4ZyuWOjF8A96YzdW1z4fsa?dl=0 and XVP light curves are at https://www.dropbox.com/sh/
d2ox22wy6ek0caj/AAAX8UiO3nAPUZWBTqYJyy3ha?dl=0

https://www.dropbox.com/sh/gu8zt95h8eukj4n/AAC4ZyuWOjF8A96YzdW1z4fsa?dl=0
https://www.dropbox.com/sh/gu8zt95h8eukj4n/AAC4ZyuWOjF8A96YzdW1z4fsa?dl=0
https://www.dropbox.com/sh/d2ox22wy6ek0caj/AAAX8UiO3nAPUZWBTqYJyy3ha?dl=0
https://www.dropbox.com/sh/d2ox22wy6ek0caj/AAAX8UiO3nAPUZWBTqYJyy3ha?dl=0
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Figure 4.4: Like Figure 4.3 but for ObsID 16218. There is an apparent dip between two
flares. However, the block between the two flares is still significantly above quiescence.
If I use the flare separation criteria, this block is cut in half and I end up with two flares
instead of one.

a flaring block, the Bayesian Blocks calibration and the flare detection method.
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ObsID Exp Quie. cr Fstart Fend Dur Mean cr Fluence
(ks) (×10−3 ct/s) (MJD) (MJD) (s) (ct/s) (2-10 keV, 1037 erg)

13850 60.0 5.9± 0.3
14392 59.0 6.9± 0.5 55966.433 55966.458 2109 0.021± 0.003 3.74

55966.602 55966.667 5641 0.145± 0.004 101.1
14394 17.4 6.8± 0.6
14393 41.1 8.0± 0.4
13856 39.7 5.6± 0.4
13857 39.5 6.7± 0.5
13854 22.7 8± 1 56006.487 56006.494 669 0.054± 0.009 3.97

56006.528 56006.538 817 0.055± 0.008 4.96
56006.586 56006.596 944 0.053± 0.007 5.45
56006.682 56006.687 402 0.11± 0.02 5.08

14413 14.7 6.5± 0.7
13855 19.9 6.9± 0.6
14414 20.0 5.9± 0.5
13847 153.4 6.3± 0.3 56048.511 56048.549 3251 0.024± 0.003 7.56
14427 79.9 5.7± 0.5 56054.097 56054.151 4679 0.020± 0.002 8.71

56054.468 56054.490 1899 0.020± 0.003 3.46
13848 97.8 6.4± 0.3
13849 178.3 6.8± 0.3 56058.690 56058.704 1172 0.028± 0.005 3.19

56059.008 56059.064 4891 0.015± 0.002 5.36
56059.315 56059.330 1244 0.025± 0.004 2.96
56060.137 56060.166 2435 0.055± 0.005 15.46

13846 55.8 6.1± 0.3
14438 25.3 6.3± 0.5
13845 133.3 5.9± 0.2 56066.576 56066.595 1633 0.018± 0.003 2.53

56067.864 56068.026 14006 0.017± 0.001 20.38
14460 23.8 5.6± 0.7
13844 19.8 5.9± 0.5
14461 50.6 7.0± 0.4
13853 73.3 5.7± 0.3
13841 44.8 6.2± 0.4
14465 44.2 5.8± 0.5 56126.977 56127.034 4911a 0.019± 0.002 8.25

56127.177 56127.203 2255 0.018± 0.003 3.56
14466 45.0 7.0± 0.4 56128.552 56128.555 286a 0.08± 0.02 2.62
13842 191.6 6.1± 0.3 56130.187 56130.225 3246 0.039± 0.003 13.84

56130.908 56130.919 925 0.055± 0.008 5.87
56131.494 56131.585 7865 0.021± 0.002 15.63

13839 175.5 6.5± 0.2 56132.389 56132.399 856 0.051± 0.008 4.95
56133.999 56134.180 15614 0.026± 0.001 40.33

13840 162.2 6.7± 0.2 56136.457 56136.507 4271 0.015± 0.002 4.42
56136.627 56136.655 2346 0.019± 0.003 3.72

14432 74.2 5.9± 0.3 56138.558 56138.609 4482a 0.013± 0.002 3.88
56139.374 56139.416 3651a 0.053± 0.004 22.57

13838 99.1 6.5± 0.3 56141.013 56141.049 3067 0.055± 0.004 19.48
13852 155.9 6.9± 0.3 56143.317 56143.331 1215 0.053± 0.007 7.22

56144.330 56144.350 1724 0.022± 0.004 3.45
14439 111.3 6.3± 0.2 56147.132 56147.147 1338 0.026± 0.004 3.51
14462 133.8 5.9± 0.3 56207.180 56207.191 947 0.031± 0.006 3.07

56208.187 56208.220 2822 0.025± 0.003 7.02
14463 30.4 6.7± 0.6 56216.240 56216.247 525 0.12± 0.02 7.89
13851 106.8 5.3± 0.3 56217.096 56217.097 152 0.07± 0.02 1.34

56217.814 56217.878 5486 0.074± 0.004 51.76
15568 35.9 6.3± 0.4
13843 120.4 6.4± 0.3 56223.381 56223.476 8174 0.034± 0.002 29.02
15570 68.4 6.0± 0.3 56225.233 56225.262 2436 0.032± 0.004 8.10
14468 145.9 5.8± 0.2 56230.298 56230.338 3504 0.024± 0.003 8.38

56231.567 56231.592 2178 0.030± 0.004 6.90

Table 4.1: List of all Chandra XVP observations. Listed for each observation are the qui-
escence count rate, the exposure (taken as the total time spanned by the Bayesian Blocks),
the flare start and end times and the duration. The flare mean count rates are pile-up
corrected but not quiescence-subtracted and I indicate their Poisson error bars. The flu-
ences are from 2-10 keV (not 2-8 keV like the mean count rates), are pile-up corrected and
quiescence-subtracted.
a Flare truncated by the beginning or end of the observation.
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ObsID Exposure Fstart Fend Dura Mean cr Fluence
(ks) (MJD) (MJD) (s) (ct/s) (2-10 keV, 1037 erg)

15041 50.0 56500.146 56500.158 1041 0.035± 0.006 2.03
56500.460 56500.470 850 0.033± 0.006 1.55

15042 49.2 56516.357 56516.371 1262 0.028± 0.005 1.84
56516.405 56516.441 3109 0.028± 0.003 4.60

15043 50.0 56549.085 56549.108a 2036 0.75± 0.02 127.86
56549.108a 56549.149 3503 0.49± 0.01 142.91

15045 50.0 56593.675 56593.702 2300 0.033± 0.004 4.31
56593.831 56593.842 946 0.031± 0.006 1.63

16508 47.8 56710.024 56710.048 2066b 0.027± 0.004 3.02
16217 37.8 56899.488 56899.546 4979 0.019± 0.002 5.07
16218 40.0 56950.557 56950.606a 4189 0.191± 0.007 58.79

56950.606a 56950.630 2055 0.031± 0.004 3.81
16963 24.8 57066.252 57066.262 869 0.044± 0.007 2.51
16966 24.6 57156.501 57156.537 3131 0.054± 0.004 11.14
18731 86.3 57581.947 57581.957 904 0.036± 0.006 2.06
18732 84.4 57587.623 57587.653 2564 0.022± 0.003 3.36
20041 33.9 57854.352 57854.379 2287 0.103± 0.007 16.70
19703 89.0 57949.959 57950.009 4610b 0.015± 0.002 3.40

57950.547 57950.561 1210 0.033± 0.005 2.66
20346 33.0 58232.206 58232.219a 1082 0.12± 0.01 9.39

58232.219a 58232.246 2373 0.117± 0.007 20.48

Table 4.2: List of all Chandra flares from my Post-XVP flare dataset. Listed for each
flare are the observation start date, the exposure (taken as the total time spanned by the
Bayesian Blocks), the flare start and end times and the duration. The flare mean count
rates are pile-up corrected but not quiescence-subtracted and I indicate their Poisson error
bars. The fluences are from 2-10 keV (not 2-8 keV like the mean count rates), are pile-up
corrected and quiescence-subtracted. They are obtained from the spectral model used by
Neilsen et al. (2013) via a method explained in Section 2.4.
a Flares showing important substructure, which could indicate the presence of two flares
if I use the criteria explained in Section 4.1.3.
b Flare truncated by the beginning or end of the observation.
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Chapter 5

Simulations

I simulate Chandra X-ray light curves by creating event files and running Bayesian Blocks

on them. Quiescence count rates are first determined and then flare fluences and dura-

tions are drawn from a power-law distribution. Their number is determined assuming a

Poisson flaring rate which also yields their occurrence times. For each rendering of a given

entire dataset, I simulate every ObsID and save the detected flare fluences and durations.

I run these simulations thousands of times with the same parameters to test the null hy-

pothesis by creating confidence intervals for the flare fluence and duration distributions

which I use to compare with the real dataset. I aim to determine if there are indeed change

points in the flaring behaviour of Sgr A* as reported by Ponti et al. (2015) and Mossoux

& Grosso (2017). Instead, I verify the null hypothesis, i.e, I find that the same selection

of best-fit parameters match the data before and after each change point. This Chapter

explains each step in detail, including the differences that must be considered when sim-

ulating gratings versus non-gratings light curves.

5.1 Modeling event files

The foundation for this section is adapted from Appendix D of Mossoux & Grosso (2017).

The basis for my simulations are the event files. These are files containing a list of time

stamps corresponding to photon arrival times. The minimum resolvable time between
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each event corresponds to the frame time (it is also possible to have multiple events in a

single frame time). In the case of the ACIS-S3 chip with a 1/8 subarray, the frame time is

about 0.441 s, while in HETG gratings observations it is 3.14 s.

To simulate a constant count rate, I use the frame time, the count rate, and the length

of the observation. I generate a random light curve obeying Poisson statistics via a Cumu-

lative Distribution Function (CDF). This function outputs, for each time t, the probability

that an event occurs before that t. Naturally, it must be 0 at t = 0 and 1 at t = T , where T

is total duration of the light curve. For a constant count rate, the CDF is:

CDFc(t) = t/T (5.1)

For a constant count rate r, the expected number of counts is Nc = rT . The actual

number of counts N follows a Poisson distribution:

P (k;λ) = λk
e−λ

k!
(5.2)

where in my case k = N is the random variable and λ = Nc is the expected value.

After selecting a random number of events N , I draw N numbers uniformly dis-

tributed between 0 and 1 and associate them with a t using the inverse of equation 5.1.

I show the proof that the events are uniformly distributed in Appendix E. Each t corre-

sponds to an event time, or simulated photon. Since the resolution of the time array is the

frame time, if two random t are less than a frame time apart, they will fall at the same t1.

A more interesting case is when there is a flare in the light curve. To simulate flares

(under the simplifying assumption that they are Gaussian as in Neilsen et al. (2013) and

Mossoux & Grosso (2017)), I need more parameters, namely the flare peak count rate A

(i.e., its amplitude), the flare’s standard deviation σ, as well as the time of the flare’s peak,

tpeak. Since the quiescence count rate of Sgr A* is constant, the flare peak count rate is

1See Section 2.3 about pile-up.
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taken to be the measured peak count rate minus the quiescence count rate. Again, I utilize

the CDF; the CDF of a Gaussian is given by (Evans, 1993):

CDFg(t) =
Aσ

Ng

√
π

2

(
erf
(
tpeak√

2σ

)
+ erf

(
t− tpeak√

2σ

))
(5.3)

where Ng is the expected number of counts in the Gaussian and erf is the error function.

To get Ng, I integrate the Gaussian flare over the observation, i.e.:

Ng =

∫ T

0

Ae
(t−tpeak)

2

2σ2 dt (5.4)

Numerically, I limit the integration to ±5σ around tpeak to avoid underflow errors. If the

flare occurs less than 5σ from the edge of an observation, I integrate until the edge instead.

Since the quiescent emission is always present, I combine the CDF of the quiescence

and the flare, via the sum of the normalized CDFs:

CDFtot(t) =
Nc

Ng +Nc

CDFc(t) +
Ng

Ng +Nc

CDFg(t). (5.5)

The expected number of events is N = Nc + Ng, so I draw a random number of events

Ntot around the expectation value using Equation 5.2. I again draw Ntot random numbers

uniformly distributed between 0 and 1 and find the t to which each of them corresponds

using the inverse of Equation 5.5. Numerically, I implement this by taking advantage of

the fact that the time array and the CDF are both always increasing with t, such that if

I sort the Ntot random values, I know that the drawn times will be sorted automatically.

Thus, I can use a fast function from numpy called searchsorted to associate each of the Ntot

values with a time t. Due to the numerical imprecision at high t for exponential functions,

like erf, I divide each CDF by its maximum value (which is also its last value) to be sure

that it is always normalized. A full example of CDFs is shown in Figure 5.1. Note that the

CDFs for the Gaussian and the constant count rate are the CDF times their normalization
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factors from Equation 5.5, which gives the total, normalized CDF.

An example of a simulated Poisson light curve from the combined CDF is shown in

Figure 5.2. Each point corresponds to a 300 s bin. The red lines are the Bayesian Blocks,

obtained with p0 = 5% and properly calibrated for Poisson noise (see section 4.1.2 for de-

tails); the red vertical line is its corresponding Poisson error bar (computed with Equation

3.3). The blue curve represents the actual Gaussian formed from the input parameters

(without any noise).

0 2500 5000 7500 10000 12500 15000 17500 20000
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Figure 5.1: Cumulative distribution function (CDF) as a function of time for a simulated
light curve made of a quiescent (orange line) and a flaring component (green line). The
total CDF is the blue curve and is normalized to its own maximum value.
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Figure 5.2: A random Poisson light curve generated from the CDF shown in Figure 5.1.
The simulated quiescence count rate is 0.006 count/s. There is also a flare centered at 5000
s, with an amplitude of 0.159 count/s and a standard deviation of 500 s. This Gaussian
flare is plotted as the blue curve. The grey dots are 300 s bins (the points are plotted at
their middle time such that the first point is at 150 s not 0 s). The red horizontal lines are
the Bayesian Blocks with their respective Poisson error.

5.2 Simulated quiescence count rates

A crucial part of the simulations is the quiescence count rate. For XVP HETG data, I

implement it in a rather simple way. Since I do not detect any trend over long periods

in the observed quiescence count rates of this dataset (see Table 4.1), I simulate a random

Poisson quiescent count rate around the median of the observed values, 0.0063 ct/s, for

each simulated observation. That is, I draw a random Poisson numberN of counts around

the total expected number of counts from a count rate of 0.0063 ct/s in an observation with

a given exposure T . The count rate is then N/T .

For Post-XVP light curves, I need to consider the presence of the magnetar, for which I

use my work from Chapter 3. I draw random values from 〈ε〉×Qmag for the corresponding
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ObsID and Qsgr and add them together. For ObsIDs after 18732, I draw random Poisson

quiescence count rates from Qsgr similar to the XVP case.

5.3 Simulated flares

The total simulated time for a given ObsID is given by the sum of the duration of each

of its Bayesian Blocks (given in Tables 4.1 and 4.2 as the exposure) plus an additional 32

ks before and after to allow edge flares, i.e., flares that occur near the edge of a given

observation. It is important to consider this since several edge flares were observed in

my dataset. (See Figure 5.3 for an example of a simulated light curve with an edge flare.)

Flare times are placed randomly in the simulated observation according to a given Poisson

flaring rate.
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tc = 22.0 ks

Figure 5.3: Similar to Figure 5.2. Example of a simulated light curve containing a normal
flare in blue and an edge flare in orange.
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To simulate Gaussian flares at each flare time, I assume that flare fluence2 and duration

distributions follow a power-law (Neilsen et al., 2013) and compute their associated CDF.

I explain how to compute the CDF of a power-law distribution in Appendix D. I start by

drawing a duration from its CDF. I only consider flares that occur at times t in a given

ObsID of exposure T such that −3σ ≤ t ≤ T + 3σ. (I assume that σ is given by the flare

duration divided by 4, as will be explained later in this section). If a given flare occurs

outside this range, it is rejected from the simulation since it would not be detectable. If

a flare is accepted, I draw a fluence from its CDF. I assume that there is no correlation

between fluence and duration as shown in Yuan et al. (2017), where the authors prove that

the apparent correlation seen in Neilsen et al. (2013) is caused by detection bias. Indeed,

faint flares can only be detected if they are short, otherwise their mean count rate is too

low to be detectable.

From these quantities, I find the mean count rate of a given simulated flare by dividing

the fluence by the duration and converting the inferred luminosity to a count rate using

the conversion factor found in Section 2.4 for the corresponding observing mode. This

count rate needs to be piled prior to running Bayesian Blocks. To do so, I use Equation

2.2 and the count rate that is piled is the sum of the mean count rate of the flare and the

quiescence. I recover the piled flare mean count rate by subtracting the quiescence from

the computed total piled count rate. For XVP HETG data, it is slightly more complicated

because pile-up only happens in the 0th order counts. I explain how I handle HETG pile-

up in Appendix C.

To find the amplitude A of the Gaussian flare, I suppose that the mean count rate is

found by considering a duration of ±2σ around the time tpeak. Knowing that 95.5% of the

2I choose to use fluence instead of luminosity since fluence is an integrated quantity and thus contains
more signal than luminosity.
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Gaussian is contained in this range, I can find its amplitude A as follows:

crm =
A
∫ tpeak+2σ

tpeak−2σ
e

(t−tpeak)
2

2σ2 dt

4σ
=

0.955A×
√

2πσ

4σ
(5.6)

A =
2
√

2crm
0.955

√
π

= 1.67crm (5.7)

where crm is the mean count rate (count/s). In practice, the faintest flares are often de-

tected for less than 4σ (or not detected at all) and the brightest flares can be detected for

more than 4σ. I discuss this in the following section.

In summary, for a given flare time, I draw a flare duration and I convert it to the σ of

a Gaussian by dividing it by 4. I draw a fluence if the flare is at most 3σ before (after) the

observation’s start (end). I calculate the luminosity of the flare and convert it to a mean

count rate which is then piled. Finally, I compute the amplitude A of the flare and before

simulating the event list, I remove the extra 32 ks that were added on each side of the

observation.

I run Bayesian Blocks on the simulated event lists and retrieve the detected flares (and

the quiescence count rate) in the same way I did for the data in Section 4.1. The value of

ncp_prior used by the algorithm is computed from the total number of events N in the

event list (using the calibration explained in Section 4.1.2).

5.4 A discussion about my model’s response function

At this point, I can test how well my model retrieves flare parameters (i.e., its response

function). I show in Figure 5.4 an example of a simulation that uses the detected param-

eters of the two flares from ObsID 14392 as input. My algorithm retrieves fluence values

very close to the originals (3.5 and 100.0 vs 3.74 and 101.1, all in units of 1037 erg). The
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duration values aren’t as good (1300 s and 6300 s whereas the input values were 2109 s

and 5641 s, respectively). The relative inaccuracy of the durations are acceptable since my

goal is to study the behaviour of Sgr A*’s flaring rate for flares of different fluences, (i.e., I

want to determine if the flaring rate of bright/very bright flares is constant or if it changes

at some point as claimed by Ponti et al. (2015) and Mossoux & Grosso (2017).)

Figure 5.5 shows the fluence response function obtained by simulating a typical qui-

escence count rate of 0.006 ct/s in subarray mode. Each point represents one simulation

and I show 10 000 in total. Flare durations and fluences are drawn from uniform distri-

butions between 500 s and 8000 s and 1.3 to 275 ×1037 ergs, respectively. I use uniform

distributions here because this gives a better general understanding of what is happening.

To isolate the response function, only 1 flare was simulated at the centre of an observation

with an exposure of 50 ks. This removes complicating edge effects, which bias the detected

fluences. I plot an orange line to guide the eye around the perfect response. The overall

median of the detected/input flare fluences is 1.06. If I look at flares simulated with flu-

ences less than 50 ×1037 ergs, this improves to 1.017. This is interesting since ∼ 94% of

simulated flare fluences assuming a power-law index of -1.7 are below this value, mean-

ing that my algorithm does an excellent job for the vast majority of my simulated flares.

This power-law index is used in my model to explore change points as explained in the

following sections. I performed the same simulations for the grating instrument mode and

found a global median of 1.06, which becomes 0.999 for simulated fluences of less than 50

×1037 ergs. This difference originates from the different conversion factor between count

rate and luminosity (the detected/input flare fluences ratio is dragged down because the

mean count rates go down, so the flares tend to be detected for a shorter time, hence the

lower median).

The detected/input flare fluence ratio tends to increase with fluence because bright

flares tend to be detected for a longer time. On the other hand, faint flares tend to be

detected for shorter periods. Furthermore, long and bright flares are made of multiple
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blocks, so the pile-up correction will be stronger for the highest blocks. This, combined

with extra duration, increases the detected fluence with respect to the input fluence be-

cause when the flare is injected in the simulation, only the global mean count rate is piled.

This is the best I can do when injecting the flare into the simulation since I cannot predict

how many blocks will be created during its detection. However, this effect is small. Fig-

ure 5.5 indicates that the response function tends to ∼ 1.05 for the brightest flares. The

dominant effect must thus be the extra detected duration which adds back some of the

extra ∼ 4.5% of the Gaussian (Equation 5.6).

Long and faint flares have their fluence generally underestimated more than others

because the amplitude of the Gaussian flare goes down, which in turn makes it harder to

pick up for the Bayesian Blocks tool. The latter will detect the flare for a shorter amount

of time, translating to even lower fluence.

The strong noise in the plot comes from the inherent Poisson counting noise and the

fact that durations and fluences were drawn independently (flares with similar fluence

can have very different durations).

I provide the code that simulates flares of given durations and fluences in a given

instrument mode at https://github.com/Elie23/X-ray-flare-simulator.

5.5 Parameters needed for the model

My model needs multiple parameters. I previously described the quiescence, the con-

version factor between flare count rate and luminosity, the 0th/1st order ratios in both

quiescence and flares for XVP simulations, the exposure time, and the extra time added

before and after each simulated light curve. Other parameters include the power-law in-

dices of the duration and the fluence distributions (ΓDura and ΓFluence, respectively), the

simulated range of duration (from Dmin to Dmax) and fluence (from Fmin to Fmax), and the

flare rate R.

https://github.com/Elie23/X-ray-flare-simulator
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Figure 5.4: Top: 2-8 keV light curve of ObsID 14392 showing the combined zeroth and first
order events in 300 s bins. Shown in red are the Bayesian Blocks. Bottom: Simulated light
curve using the same quiescence and flare parameters as those measured in ObsID 14392
as input. The two flares detected in ObsID 14392 are represented by the blue and orange
Gaussians, respectively. Their parameters are stated in the legend. The Bayesian Blocks
algorithm retrieves unabsorbed flare fluences of 3.5 × 1037 erg and 100.0 × 1037 erg (the
input values were 3.74× 1037 erg and 101.1× 1037 erg).

5.6 Simulating entire datasets

With these tools, I can simulate entire datasets made up of multiple ObsIDs. For each

ObsID in a given instrument mode within the dataset of interest, I draw a quiescence

count rate as explained in Section 5.2. I convert a given R to a rate per frame which

I use to draw a Poisson number for each frame in the ObsID (of duration equal to the

corresponding observed ObsID plus an additional 32 ks before and after). This number,

effectively always 0 or 1 given the low flaring rate of Sgr A*, is the number of flares in

each given frame time. For each flare, I proceed as explained in Section 5.3, and retrieve

its properties with the Bayesian Blocks.

I do this for a given dataset and reconstruct the flare fluence distribution to compare
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Figure 5.5: Detected/input flare fluence plotted against detected fluence. From a sam-
ple of 10 000 points, where each represents a subarray simulation in which a flare was
simulated and then detected with my algorithm. Flare fluences were drawn from a uni-
form distribution between 1.3 and 275 ×1037 ergs. Each fluence was assigned a random
duration drawn from a uniform distribution between 500 and 8000 s. The orange line
represents a perfect response would be.

it with observations. I split the simulation data and the real data in the same fluence bins

to compare them. These are used to produce a binned power-law distribution, where the

y-value is equal to the number of flares within that bin divided by the midpoint of the

bin. I simulate each given dataset 3000 times3 to produce 95% (2.5% to 97.5%) confidence

shaded regions for each bin. To do so, I save the number of detected flares within each

fluence bin for each simulated dataset. After a complete run of 3000 simulations, I get

a distribution of the number of flares in each bin and I use it to create 95% confidence
3I observe robust bin statistics after ∼ 1000 simulations in all of my datasets. I perform 3000 simulations

to obtain more accurate error intervals.
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intervals. This allows comparison between simulations and real data. The error bar on

each real data bin is assumed to be 1 +
√

0.75 +N divided by the midpoint of that bin,

where N is the number of flares in that bin (Gehrels, 1986). By using the same model

parameters for different datasets, I can test the null hypothesis by determining if the flare

fluence distributions from the datasets are consistent with the confidence intervals from

the model for each bin. If this is not the case, it would indicate a significant change in

the fluence distribution (which would imply a change in the flaring rate of bright or faint

flares, for example). Figures 5.6 and 5.7 compare the XVP and Post-XVP datasets as well as

the Pre and Post-G2 datasets for different change points (after April 4th 2014 and August

30th 2014), respectively. The confidence intervals were obtained from the same model

parameters for each plot.

5.6.1 Simulations of the XVP and Post-XVP observations

Since the XVP and Post-XVP datasets were obtained in different instrument modes with

different sensitivities, one might expect to detect different flare fluence distributions. I

can test if such a change is physical or due to detection biases since my model takes these

factors into consideration automatically. In Figure 5.6, I show the fluence distributions

from my XVP (top) and Post-XVP (bottom) datasets over-plotted with 95% confidence

regions produced by 3000 Monte Carlo simulations of each datasets. I use the following

model parameters to produce confidence regions of the flare fluence distributions of both

datasets to test the null hypothesis: ΓDura = −0.8, ΓFluence = −1.7, Dmin = 500 s, Dmax =

8000 s, Fmin = 1.3 × 1037 erg, Fmax = 275 × 1037 erg and a flaring rate of 52 flares per

3 Ms (R ∼ 1.5 per day). The duration and fluence power-law indexes are consistent

with those reported by Neilsen et al. (2013), but my flaring rate is higher since it takes

into account detection biases. However, I do not claim that these parameters are the real

physical parameters of Sgr A*; they are model parameters and my model isn’t a perfect
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representation of Sgr A*’s behaviour due to some potential shortcomings explained in

Chapter 6.

If a flare duration or fluence is detected outside the simulated range in a given simu-

lation, it is appended to the closest bin and the midpoint of that bin is adjusted accord-

ingly. For XVP simulations, I find no flare fainter than 1.3× 1037 erg because the detection

efficiency rapidly drops below ∼ 2 × 1037 erg, but I find at least 1 flare brighter than

275 × 1037 erg in 8.8% of simulations. For Post-XVP simulations, we find at least 1 flare

fainter (brighter) than 1.3× 1037 erg (275× 1037 erg) in 47% (2.3%) of simulations. This in-

strument mode has a much better sensitivity, such that its detection efficiency only starts

to drop for fluences below ∼ 1.5× 1037 erg. Flares around 1.3× 1037 erg are much harder

to detect in the gratings instrument mode because they translate to even lower count rates

and flares of this fluence are already difficult to detect. These flares are more easily de-

tected in subarray simulations, which explains the much higher percentage. Furthermore,

as explained in Section 5.4, faint flares tend to be detected for shorter periods, translating

to underestimated fluence (some faint flares get pushed to fluences lower than 1.3 × 1037

erg). On the other hand, the higher percentage of simulations containing flares brighter

than 275× 1037 erg in the XVP simulations comes from the fact that the simulated time is

higher (3 Ms vs 1.56 Ms) and that each XVP observation is on average longer than each

Post-XVP observation (average durations of 78 ks and 40 ks, respectively). This makes

flares less likely to happen on the edge of a given observation (and thus it is more likely

that bright flares will be detected for longer).

Since I find 40 XVP flares and 18 Post-XVP flares, I use 7 and 5 bins, respectively.

Having too many bins risks introducing holes in the distribution while too few do not

characterize it robustly. As can be seen from Figure 5.6, the noise is important enough to

make each confidence interval produced by simulations using the same model parame-

ters consistent with its respective bin for every bin of the two observed flare fluence dis-

tributions, confirming the null hypothesis. Many complex factors contribute to this noise,
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namely the random draw from a CDF of a low number of flares, edge effects, overlapping

flares, the inherent Poisson counting noise, and the Bayesian Blocks detection process. The

fact that scatter is that important for the same model parameters makes a Markov-chain

Monte Carlo approach more complicated and unnecessary. I tried this approach but since

the same model parameters can produce very different results (and similar results can be

obtained from different parameters), the walkers get confused. I thus found the model

parameters by trial and error.

If I use an additional criterion to separate flares showing a dip in their center (explained

in the last paragraph of Section 4.1.3), I change the maximum fluence to 150×1037 erg since

the flare in ObsID 15043 becomes two flares. Leaving the other model parameters at their

original values, I also find that the two datasets are consistent.

5.7 Looking for change points around G2’s pericentre pas-

sage

Ponti et al. (2015) and Mossoux & Grosso (2017) report an increase in the bright flaring rate

on August 31, 2014 which they argue is caused by the pericentre passage of G2 around Sgr

A*. Ponti et al. (2015) also argue that this change could be caused by a noise process, where

the flaring rate is constant on average but shows clustering on shorter timescales which

was only detected because of the increased monitoring frequency around G2’s pericentre

passage. These authors also mention that they do not observe this change if they limit

themselves to Chandra data only. Indeed, most (4 out of 5) of the bright/very bright

flares responsible for this shift are from XMM-Newton. Mossoux & Grosso (2017)’s results

also rely on 2 more recent Chandra flares from ObsID 16966 and 17857 (this observation

isn’t in the present work since it is a gratings observation instead of ACIS-S3 subarray
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observation, and I want to keep my datasets as consistent as possible) and a Swift flare

from February 2015.

I can test if the inclusion of new Chandra data and my simulations are consistent with

such a change point. I tested 4 different points in time; ObsIDs 16212 (April 4th, 2014),

16214 (May 20th, 2014), 16215 (July 16th, 2014) and ObsID 16217 (August 30th 2014). The

motivation for these times comes from the different G2 pericentre times from different

models. A purely keplerian orbit fit gives an estimated time between the end of February

to mid April 2014. The addition of a drag force pushes this date to between the end of

May and mid-July, and if an inflow is also added, this prediction shifts to between July

and September (Madigan et al., 2016).

I find that the same model parameters presented above produce 95% confidence inter-

vals consistent with all the flare fluence distributions from these different datasets, once

again confirming the null hypothesis. Since the only ObsID in which I find flares is 16217,

the only variation in the other tested ObsIDs is how the exposure is split between Pre and

Post-G2. This difference doesn’t change the 95% confidence regions of my simulations

until ObsID 16217. Therefore, I only show my results for ObsIDs 16212 and 16217 in Fig-

ure 5.7. I observe that despite the removal of the flare in ObsID 16217 from the Post-G2

dataset, the reduced exposure increases the scatter enough to make the entire dataset con-

sistent with the Pre-G2 observations. I also test the change point reported by Mossoux &

Grosso (2017) where they find a decrease in the flaring rate of the less energetic flares on

2013 July 27 (ObsID 15041). I do not recover their findings.

As in the previous section, I tested the impact of the additional flare separation criteria

and found that the datasets remain consistent.
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Figure 5.6: Binned unabsorbed fluence differential distribution of XVP (top) and Post-
XVP (bottom) flares (see Tables 4.1 and 4.2) in black, with Poisson errors of 1+

√
0.75 +N ,

whereN is the number of flares in that bin. The 95% confidence region obtained from 3000
Monte Carlo simulation is also shown in green (orange) for the (Post-)XVP dataset.
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Chapter 6

Discussion and conclusion

Based on the simulations and analysis presented here, I do not report any significant

change in Sgr A*’s bright or faint flaring rate at any point in my datasets. This is in con-

trast with the findings of Ponti et al. (2015) and Mossoux & Grosso (2017) who find that

such an increase occurs from 2014 August 31 (after ObsID 16217) for the bright flares (the

latter also report a decrease of the faint flaring rate on 2013 July 27 (ObsID 15041), which

I do not recover). However, these authors also use data from XMM-Newton and Swift

which cannot detect weak and moderate flares. Most of the brightest flares responsible

for the change point are detected by XMM-Newton. On the other hand, Chandra allows

proper characterization of all flares, which motivates my choice to analyze data from this

single observatory in the present work.

Ponti et al. (2015) use PIMMS to convert counts to energies, which systematically un-

derestimates the energies of each flare since it doesn’t correct the PSF extraction fraction.

These authors also don’t properly calibrate their prior for the Bayesian Blocks which could

lead to unreliable uncertainties. For example, in their Section 5.5, they simulate event lists

containing a fixed number of flare times (each representing an event) drawn from a uni-

form distribution and run Bayesian Blocks on them. With a p0 of 0.3%, they find change

points in 0.1% of their lists. Their work also doesn’t consider edge effects nor the relative

flare detection efficiency of different instruments/observing modes.
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Mossoux & Grosso (2017) directly fit their spectra in each observation to get a flux for

each flare. However, as shown in Neilsen et al. (2013) and Yuan et al. (2017), Sgr A*’s flares

have very similar spectra. Fitting them directly can lead to strong deviations due to poor

statistics (the spectrum of some flares can have very few counts per energy bin, leading

to unreliable fits). For example, flares #38 and #39 (within the same observation) of Table

A.2 of Mossoux & Grosso (2017), have count rates are 0.021± 0.004 ct/s and 0.041± 0.005

ct/s respectively but their mean 2-10 keV unabsorbed fluxes are 9.20× 10−12 erg s−1 cm−2

and 2.08×10−12 erg s−1 cm−2. This counter-intuitive behaviour1 happens with many other

flares reported by these authors and leads to a strong difference in their ratio of count rates

to unabsorbed fluxes between the similar (in terms of effective area) ACIS-S3 subarray and

ACIS-I instrument modes (248.2 and 148.1 × 10−12 erg cm−2/ct, respectively). They also

neglect to report this ratio for the gratings instrument mode.

Mossoux & Grosso (2017) improve upon Ponti et al. (2015) regarding edge effects.

However, in their Section 6, where they look for change points, they perform the search

without gaps between observations which doesn’t take edge flares into account. They

look for a signal by performing a top-to-bottom (bottom-to-top) search, where they run

Bayesian Blocks on an event list where each event is a flare. They remove the brightest

(faintest) flare and re-run Bayesian Blocks. They repeat this process until a change point

is found. However, they do not consider the number of trials in the computation of the

significance of the change points found. It is unsurprising that they find similar change

points for the bottom-to-top and top-to-bottom searches as the signal in one should be the

inverse of the signal in the other. Finally, the fact that these points occur at the edge of

their light curve is also not surprising because it requires only one change point (a change

in the middle would require two) and such spurious fluctuations are characteristic of the

Bayesian Blocks.

1I admit that it is possible that this strange behaviour could be explained by large error bars, but they
were not provided, nor even mentioned, by these authors.
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The present work shares some flaws with these previous studies. Namely, I assume

that the flares occur at random Poisson times. However, it’s possible that Sgr A*’s flaring

behaviour possesses clustering as mentioned in Yuan & Wang (2015) where the authors

show that flare clustering on timescales of 20-70 ks is significant at the 96% level (for

their gratings dataset, but for their ACIS-I sample this number drops to ∼ 50%) and may

be described by a piecewise-deterministic Markov process (Davis, 1984). Furthermore, I

assume that flare durations and fluences are independent. However, Neilsen et al. (2013)

show a moderate correlation (ρ ∼ 0.54) between the two. My simulations a-posteriori

recover some of this correlation (ρ ∼ 0.23) from detection biases. I consider this sufficient

as Yuan et al. (2017) report no correlation between those quantities.

Despite these potential shortcomings, the change points reported by Ponti et al. (2015)

and Mossoux & Grosso (2017) are unlikely to be indicative of an increase in Sgr A*’s bright

flaring activity caused by G2. If the increased bright flaring rate observed by these authors

was due to G2, this process should stay active for at least a viscous timescale (∼ 3-10 years

at ∼ 2000 Rs (Yuan & Narayan, 2014; Ponti et al., 2015; Mossoux et al., 2016) assuming the

canonical viscous parameter value α = 0.1 (with α as defined as in Shakura & Sunyaev,

1973)). In this scenario, my model should have detected this persistent signal with the

additionalChandra exposure of 652 ks across 14 observations from June 2016 to April 2018

(from ObsID 18731 to 20347). In addition to the change points reported in the previous

Chapter, I can make an independent and quick sanity check on only these observations.

This timescale of a few years after pericentre also probes the estimated timescale before an

increased activity begins according to RIAF models (Yuan & Narayan, 2014). I observe 3

bright flares between June 2016 and April 2018 (according to Ponti et al. (2015)’s definition

of > 120 counts, corresponding to an unabsorbed fluence of 9.2 ×1037 erg in my case),

corresponding to a bright flaring rate of 0.4 ± 0.2 flare/day. For the whole Post-XVP

dataset, I detect 6 bright flares in 1.56 Ms giving a bright rate of 0.3 ± 0.1 flare/day. For

the XVP dataset, I have 10 bright flares in 3 Ms translating to a bright flaring rate of 0.29
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± 0.09 flare/day. All these rates are consistent within errors. The 3σ upper limit of 3 is

12.7 (Gehrels, 1986) giving a rate of 1.7 flare/day, still lower than the predicted rate of

2.52±0.98 flare/day as found by Ponti et al. (2015). As was determined by my model, this

increase can thus be excluded.

Since I do not find an increase, I argue that the signal found by these authors with the

inclusion of XMM-Newton and Swift data is either an analysis artifact or due to flare clus-

tering as suggested by Ponti et al. (2015). This behaviour would thus have been observed

due to the increased monitoring frequency of Sgr A* and not by G2’s pericentre passage.

It is also worth noting that another gas cloud, G1, which has nearly identical orbital

parameters to G2 (Pfuhl et al., 2015), underwent a pericentre passage near Sgr A* in 2001

and no change in Sgr A*’s quiescence or flaring properties were observed (Yuan & Wang,

2015).

My results are in agreement with simulations from Schartmann et al. (2012) and

Kawashima et al. (2017) who predict an increase in activity only a few years and 5-10

years after pericentre, respectively. Whereas the former explain this delay by the strong

angular momentum of G2 (which delays accretion), the latter use more careful full

3D general relativistic magnetohydrodynamic simulations to model the evolution of

magnetic fields as they interact with the cloud. An instability develops, and a magnetic

reconnection event is expected to increase the radio and X-ray luminosity on a dynamo-

viscous timescale of 5-10 years. Future observations will determine if this prediction is

supported.

In this MSc thesis, I have shown empirically that (1.3 ± 0.2)% of the count rate from

the transient magnetar SGR J1745-2900 contaminates Sgr A*’s extraction region and quan-

tified it as a function of time since its outburst on April 25 2013. Using Bayesian Blocks

calibrated on Poisson noise with p0 = 5%, and adding flaring blocks together with a sys-

tematic method I detected and characterized 58 flares (40 XVP flares and 18 Post-XVP

flares, respectively) in 4.5 Ms. I simulated X-ray light curves built from parameters such
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as flaring rate, quiescence count rate, flare count rate to luminosity conversion factor, flu-

ence and duration distributions, exposure time and pile-up. I tested the null hypothesis by

using those simulated light curves to produce confidence intervals using the same model

parameters and comparing them to their respective observed flare fluence bins for differ-

ent datasets (XVP and Post-XVP or Pre-G2 and Post-G2). My results show that the null

hypothesis is confirmed for every tested potential change point; I found no evidence of a

change point in the fluence distributions above 95% confidence at any point in time. I con-

clude that my findings, combined with those of Ponti et al. (2015), Yuan & Wang (2015),

Yuan et al. (2017) and Mossoux & Grosso (2017) imply that the increased bright flaring rate

observed after the pericentre passage of G2 in previous works was due to an underlying

non-stationary noise process, which was only detected due to the increased monitoring

frequency.

Recent work on simultaneous IR and X-ray observations (Boyce et al., 2019) has put

new constraints on the physical mechanisms for Sgr A*’s variability. Within >100 hours

of observation, 4 X-ray flares ∼ 4 times quiescence were detected, each having an associ-

ated IR flare (though additional IR peaks did not coincide with a detectable X-ray flare).

Through a cross-correlation analysis, Boyce et al. (2019) find that X-ray flares lead IR by

10-20 minutes but also point out that their 99.7% confidence region is consistent with no

time lag at all. This rules out models in which X-rays lag the IR as would be predicted by

inverse-Compton processes but is consistent with models predicting the opposite trend

in which X-rays and IR come from synchrotron emission generated following magnetic

reconnection by two electron populations, an IR generating one and a relativistic, X-ray

generating one Dodds-Eden et al. (2010); Yusef-Zadeh et al. (2012). In their model, the

synchrotron cooling time of the IR generating electrons is longer than the injection rate

of relativistic X-ray emitting electrons, giving rise to a lag of the IR flares with respect to

the X-ray flares. Models predicting simultaneous IR and X-ray flares through synchrotron

self-Compton are also consistent with the findings. However, the work of Boyce et al.
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(2019) cannot pick a singular model that matches observations. Luckily, there will be joint

Spitzer/Chandra/GRAVITY observations in Summer 2019 which could help break this

degeneracy. These exceptional multiwavelength observations will push our understand-

ing of Sgr A*’s accretion physics further than ever before.

Finally, data from the Event Horizon Telescope Campaigns capable of resolving Sgr A*

and M87’s black holes (e.g., Akiyama et al., 2019) will put strong constraints on the under-

lying physical processes behind flares and the accretion flow, and inform better general

relativistic magnetohydrodynamic simulations. The next few years will certainly be ex-

tremely informative regarding black hole accretion physics.
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Appendix A

Prior calibration
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Figure A.1: Behavior of ncp_prior calibrated for p0 = 0.05 for different count rates against
different values of expected number of events, N . As I suspected, the behavior is not
strongly correlated with the count rate. Instead, it is dominated by random fluctuations.
Hence, I choose to take the fit of the mean of these curves, and then use the 3σ overall fit
as my calibration for the Bayesian Blocks algorithm.
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Appendix B

Comparing with the literature

B.1 Comparison with other works

In this section, I compare my flares with Neilsen et al. (2013), Ponti et al. (2015) and

Mossoux & Grosso (2017). To compare fluences with Ponti et al. (2015), I convert from

absorbed to unabsorbed values using the scaling between the unabsorbed fluences and

absorbed fluxes of Table 1 of Neilsen et al. (2013) assuming a distance of 8 kpc. This should

be sufficient for comparison purposes. For the comparisons in this section, I use my flares

as obtained without the flare splitting criteria (see Section 4.1.3). Table B.1 shows every

flare detected or missed by every work considered and Figures B.2 and B.3 compare the

different flares’ durations and fluences of each author. From Figure B.3, my work (green

’+’) shows remarkable agreement with Neilsen et al. (2013) (red triangles) for the XVP

dataset. This is expected since I also scale my flares’ fluxes to the brightest flare of 2012

from Nowak et al. (2012). Mossoux & Grosso (2017) (blue ’x’) instead perform a direct fit,

leading to extra scatter and Ponti et al. (2015) (black dots) use PIMMS, disregarding the

response matrices and leading to systematic flare fluxes/fluences underestimation.

B.1.1 XVP flares
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ObsID Flare index This work N13 P15 M17
14392 1 X X X

2 X X X X
13857 3 X
13854 4 X X X X

5 X X X X
6 X X X X
7 X X X X

13847 8 X X X X
9 X

14427 10 X X X X
11 X X X

13849 12 X X X X
13 X X X X
14 X X X
15 X X X X

13845 16 X X
17 X X X X

13853 18 X
14465 19 X X X X

20 X X X X
14466 21 X X X X

22 X
13842 23 X X X X

24 X X X X
25 X X X X

13839 26 X X X X
27 X X
28 X X X X

13840 29 X X X
30 X X

14432 31 X X X
32 X X X X

13838 33 X X X X
13852 34 X X X X

35 X
36 X X X X

14439 37 X X X X
14462 38 X X X X

39 X X X X
14463 40 X X X X
13851 41 X X X

42 X X X X
15568 43 X X
13843 44 X X X X
15570 45 X X X X
14468 46 X X X X

47 X
48 X X X X

15041 49 X – X X
50 X – X

15042 51 X – Xa X
52 X – a X

14945 53 – X
15043 54 X – X X
14943 55 – X
15045 56 X – X X

57 X – X X
16508 58 X – X
16217 59 X – X
16218 60 Xa – X Xa

61 a – X a

16963 62 X – – X
16966 63 X – – X
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Table B.1: List of all the flares reported in this work, Neilsen et al. (2013) (N13), Ponti et al.
(2015) (P15) and Mossoux & Grosso (2017) (M17) within the observations considered in
this analysis. I show my results without the flare splitting criteria. I stop at ObsID 16966
since more recent ObsIDs were not available at the time of publishing the other papers.
a These authors report these two flares as a single one.

Neilsen et al. (2013) report 39 XVP flares and I find 40. 35 flares are in common. I find 5

flares that they missed in ObsIDs 14427, 13845, 13840 (2 flares in this ObsID) and 14432

(flares # 11, 16, 29, 30 and 31, see Table B.1 and the associated Figures B.2 and B.3). Those

flares are rather long (durations above 1600 s) and have low count rates (0.019 ct/s and

less). They are thus more likely to be missed by direct Gaussian fitting on the 300 s binned

light curves whereas Bayesian Blocks can detect them more easily. However, they report

4 flares that I do not find in ObsIDs 13847, 13853, 13839 and 14468 (flares # 9, 18, 27 and

47). These flares are short (durations from 500 s to 1200 s) and have low fluences (between

8 and 15 counts, or 1.15 and 2 ×1037 ergs). My results agree for the most significant flares,

but some differences exist for the weaker flares, which can be explained by the different

detection methods used.

Ponti et al. (2015) use Bayesian Blocks like me, but they do not properly calibrate their

prior. Despite that, I obtain similar results. For the XVP dataset, they find 37 flares, of

which 35 are in common. I find 4 flares that they miss in ObsIDs 14392 (# 1), 13849 (#

14), 13845 (# 16) and 13840 (# 30). All of these flares are faint (unabsorbed fluences below

3.7 × 1037 erg) and are most likely missed because they limit themselves to the 0th order

and they don’t calibrate ncp_prior. They also report 2 flares that I do not detect in ObsIDs

13852 (# 35) and 15568 (# 43). The flare in ObsID 13852 is not found by Mossoux et al.

(2016) nor Neilsen et al. (2013). It is very long (13 ks) and has a very low count rate (0.0049

ct/s) and is therefore consistent with quiescence. The flare at ObsID 15568 is also found

by Mossoux et al. (2016) but not by me nor Neilsen et al. (2013). Even though I indeed

find a block there, my criterion doesn’t consider it significantly above quiescence. Since

Mossoux & Grosso (2017) and Ponti et al. (2015) do not explicitly state what they consider
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to be a flaring block, it is hard to compare. Either way, this flare is rather faint (∼ 2x

quiescence) and its detection is thus sensitive to what different authors consider to be

significant.

Mossoux & Grosso (2017) find 44 XVP flares, of which I have 40 in common. The 4 flares

that I do not find are in ObsIDs 13857, 14466, 13839, and 15568 (flares # 3, 22, 27 and

43). Even though I indeed find blocks in ObsIDs 13857, 14466, and 15568, they are not

considered flares because of my significance criterion. The reported flares at ObsIDs 13857

and 14466 are short (durations of 471 s and 380 s) and the one at ObsID 15568 lasts >4907

s but is very faint (0.006 ct/s above quiescence). This translates to rather high error bars,

which explains why my method doesn’t consider them flares. The flare at ObsID 13839 is

undetected by my Bayesian Blocks and also by Ponti et al. (2015), but it is on the short end

(750 s according to Neilsen et al. (2013) and 1411 s according to Mossoux & Grosso (2017)).

This difference can be explained by the way I calibrated ncp_prior by taking the 3σ upper

fit, which is motivated by the noise of the process.

Overall, my results are consistent in both duration and fluence with these authors and

only differ for faint/short flares.

B.1.2 Post-XVP flares

Ponti et al. (2015) report 10 flares for the Post-XVP observations that I share. There are

substantial differences with what I find. For ObsID 15041, Mossoux & Grosso (2017) and

I find two flares (flares # 49 and 50), but Ponti et al. (2015) only find the first one. That

second flare is faint (unabsorbed fluence of 1.55 × 1037 erg). Likewise, I find two flares in

ObsID 15042 (flares # 51 and 52), but Ponti et al. (2015) report this flare as one and Mossoux

& Grosso (2017) do not find any. I argue that there are two distinct flares since we can see

in Figure B.1 that the two flares are separated by a non-flaring block. Ponti et al. (2015)

also report 2 faint flares (unabsorbed fluence of 0.6 and 0.7 ×1037 erg) in ObsIDs 14945
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and 14943 (flares # 53 and 55), but Mossoux & Grosso (2017) and I do not find them. As

explained in Mossoux & Grosso (2017), this is likely the result of the prior calibration.

Ponti et al. (2015) also report a flare in ObsID 16508 (# 58) and another one in ObsID

16217 (# 59) that Mossoux & Grosso (2017) do not find, but I do. Briefly, my results are a

combination of these authors and the differences occur based on the criterion that selects

what is considered a flaring block and how the Bayesian Blocks are calibrated.
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Figure B.1: Light curve of ObsID 15042. Notice the block separating the two flares.



Appendix B. Comparing with the literature 72

0 10 20 30 40 50 60
Flare index

102

103

104

Du
ra

tio
n 

(s
)

Figure B.2: Durations of the flares detected in this work (green ’+’), Neilsen et al. (2013)
(red triangles), Mossoux & Grosso (2017) (blue ’x’) and Ponti et al. (2015) (black dots). See
the associated Table B.1.
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Figure B.3: Like Figure B.2 but for unabsorbed fluences. For Ponti et al. (2015), I converted
from absorbed to unabsorbed values using the scaling between the unabsorbed fluences
and absorbed fluxes of Table 1 of Neilsen et al. (2013) assuming a distance of 8 kpc. This
should be sufficient for comparison purposes.
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Appendix C

Pile-up for gratings data and simulations

For HETG data, obtaining the unpiled, quiescence subtracted count rate of each flare to

compute the fluence is more complex than simply using Equation 2.2. After running

Bayesian Blocks on the gratings event list, I save the number of 0th and 1st order counts

in the quiescence block and compute the 0th/1st order count ratio. I save the number

of 0th and 1st order counts of each flaring block and unpile the 0th order with Equation

2.2. Using the 0th and 1st order quiescence count rates of that observation, I perform qui-

escence subtraction to each unpiled flaring block and save the flare 0th/1st unpiled and

quiescence subtracted count rate ratio.

I obtain a median value across all observations of quiescence 0th/1st order count rate of

0.45 and a median value of unpiled and quiescence subtracted 0th/1st order flare count

rate of 1.6.

For simulations, I assume that these ratios are fixed to those median values for each sim-

ulated observation. To pile flare mean count rates, I thus find the total 0th order count

rate using these ratios (0th order count rate from the mean flare count rate + 0th order

quiescence count rate) and pile it using the pile-up equation. The simulated flare piled

mean count rate is then that piled count rate minus the quiescence count rate.

The unpiling process in simulations requires more attention since the (piled) 0th/1st or-

der flare ratio changes due to pile-up in the 0th order. This phenomenon can be taken

into account via a calibration that computes the piled 0th/1st order flare ratio for different
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unpiled count rates. I generate incoming count rates, apply pile-up in their 0th order as-

suming a quiescence count rate corresponding to the median of the ones observed (0.0063

ct/s) and using my 0th/1st order ratios found in the real data. I compute the new 0th/1st

order ratio in the flare count rate after pile-up and save that value. When the Bayesian

Blocks detect a flaring block mean count rate, my algorithm looks for the corresponding

piled 0th/1st order flare ratio which itself is linked to the unpiled count rate.
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Appendix D

Finding the CDF of a power-law

distribution

Suppose we have a power-law distribution of some quantity L, with index Γ. If this quan-

tity is defined between Lmin and Lmax, then we can easily normalize it to get its probability

density function (PDF):

C =

∫ Lmax

Lmin

L−ΓdL =
L−Γ+1
min − L−Γ+1

max

Γ− 1
(D.1)

The PDF is then obtained directly:

PDF (L) =
L−Γ

C
(D.2)

Since the CDF represents the probability of L being less than a given value, it can be

computed from the PDF by integrating it up to said value, i.e.:

CDF (L) =

∫ L

Lmin

L−Γ

C
dL (D.3)

CDF (L) =
1

C

L−Γ+1 − L−Γ+1
min

−Γ + 1
(D.4)
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Appendix E

Time distribution of Poisson events

Let’s assume that we are given a Poisson distribution with mean rate λ and that we know

that there is exactly one event before time T . Knowing that a Poisson process has no

memory (i.e., each draw is independent), we could be inclined to think that the probability

of the event happening within any interval within [0, T ] of the same duration should be

the same. Indeed, it can be shown that the probability of the occurrence time T1 being

within [0, t] with t ≤ T is

Pr (T1 ≤ t|N(T ) = 1) =
Pr (1 event in (0, t]) Pr (0 events in (t, T ])

Pr (N(T ) = 1)

=
λt exp [−λt] exp [−λ (T − t)]

λT exp [−λT ]

=
t

T

(E.1)

This shows that the time of the event is characterized by an uniform distribution over

the interval [0, T ]. This result can be generalized to N events1 and is the basis behind the

method used in Section 5.1 to create event lists containing a known number of Poisson

events.

1See Section 1.5 of Sigman (2007)



77

References
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