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Abstract 

This thesis presents the design and experimental results of a 7.3GHz notch image 

reject filter, combined with a 5.8GHz low-noise amplifier (LNA), for integrated 

heterodyne receiver front-ends. A new image reject filter implementation is proposed. 

Q-enhancement circuitry for on-chip inductors are used to optimize the depth of image 

rejection. Experimental results show that more than 62dB of image rejection at 7.3GHz 

can be obtained in a standard CMOS O.18J.LlIl technology, wbile operating from a 1.8V 

supply. The LNA exhibits a gain of 15.8dB and an IIP3 of -5.3dBm while consuming 

9m W of power. With maximum image rejection, the LNA-notch combination circuit 

achieves a 4.1dB noise figure at 5.8GHz. The proposed notch filter alone can operate 

from a 1 V supply voltage. It is shown analytically how circuit stability can he ensured. 

The implementation of new robust and stable high-Q CMOS image reject filters, 

which enables the realization of fully integrated heterodyne 5GHz RF receivers is also 

presented. A cascade of two notch filters with their image reject frequencies slightly 

ofIsetted is proposed, in order to obtain a wide image rejection bandwidth, without 

having to resort to the overhead of automatic tuning circuitry. Thus, power consumption, 

area, and complexity are significantly reduced. Experimental results show that more than 

30dB ofimage rejection can he obtained in a standard O.18J.LlIl CMOS technology, over a 

400MHz bandwidth centered at 7.4GHz. 

Finally, an approach to estimate the distortion ID CMOS short-channel 



Résumé 

Cette thèse discute le design et les résultats expérimentaux d'un 7.30Hz filtre 

"notch" combiné à un amplificateur à bas-bruits (RF LNA) opérant à 5.80Hz, intégrés 

tous deux spécifiquement pour les receveurs hétérodynes implémentés avec la 

technologie submicronique de type métal-oxyde-semiconducteur complémentaire 

(CMOS). Une nouvelle topologie de filtre notch est proposée. Des circuits pour 

améliorer le facteur de qualité des inductances sur puce ont été utilisés afin d'obtenir la 

meilleure réponse possible du filtre de rejet. Les résultats expérimentaux démontrent que 

plus que 62dB de rejet peuvent être atteints à 7.30Hz dans une technologie O.18J.11ll 

CMOS standard, tout en opérant d'une source de tension de 1.8V. 15.8dB de gain, -

5.3dBm de distorsion de modulation à l'entrée et 4.1dB de facteur de bruits (NF) ont été 

mesurés à 5.80Hz. 

De nouveaux filtres robustes et stables dans la technologie CMOS, qui permettent 

l'intégration sur puce de receveurs hétérodynes opérant à 50Hz, sont aussi présentés. 

Deux filtres notchs, avec leur fréquence de résonance respective légèrement séparée, sont 

cascadés stratégiquement pour qu'ils procurent une large bande de rejet, sans l'utilisation 

des circuits complexes. Ceci permet une réduction significative de la complexité, de la 

dimension, et de la consommation d'énergie des receveurs hétérodynes. Les résultats 

expérimentaux prouvent que l'obtention de plus que 30dB de rejet d'image sur une bande 

de fréquence de 400MHz centrée à 7 AOHz peut être obtenue avec une technologie 
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O.18Jlm CMOS standard. 

Finalement, une méthodologie pour estimer la distorsion dans la technologie 

CMOS submicronique dans les amplificateurs à bas-bruits est présentée. Des équations 

compactes et précises qui décrivent les effets de plusieurs paramètres parasites du 

transistor CMOS sur la distorsion sont dérivées. Pour la première fois, la distorsion du 

second ordre, qui est cruciale pour certains systèmes tel que les receveurs homodynes, est 

étudiée. Des équations décrivant la distorsion de modulation du troisième ordre dans les 

LNA sont aussi dérivées. Les équations dérivées sont vérifiées via des simulations et des 

résultats expérimentaux obtenus en testant un LNA opérant à 5.8GHz et alimenté à partir 

d'une source de tension de IV. L'analyse suggérée prouve que la distorsion dans un LNA 

est indépendante du condensateur parasite Cgs. Des régies de conception pour optimiser 

la distorsion dans les CMOS LNA sont fournis. 
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Introduction - Wireless Systems 

Chapter 1 - Introduction - Wireless 

Systems 

Since Hertz experimentally verified Maxwell's equations in the 1880s, Marconi 

developed the fust commercial radio in 1898, and Fessensden transmitted voice and 

music via radio in 1900 [1] - a more than a $100 billions market for radio communication 

systems was bom [2]. 

Recently, designing and integrating RF and microwave circuits has received 

considerable interest due to the explosive growth in the wireless telecommunication field 

[3]-[26]. An RF transceiver (transmitter/receiver) has the task of detecting a physical 

channel and transforming it into a low-frequency analogldigital signal for further 

processing at the receiver end. It also modula tes the baseband signal and converts it into a 

high-power RF signal at the transmitter end (Fig. 1.1). As such, the 1ransceiver performs 

RF, analog, and digital processing. 

Analog and mixed-signal circuits were developed in the Complementary Metal 

Oxide Semiconductor (CMOS) technology in the mid-1970s [27]. It was only in the 

beginning of the 1990s that researchers in universities suggested using this low cost 

technology for RF applications. A fully integrated CMOS low noise amplifier was 

reported for the fust time by Chang et al. in 1993 [28]. Almost a decade later, in 2001, 

the first fully integrated CMOS transceiver was published in the literature [29]. 

1 



Introduction - Wireless Systems 

DAC: Digital to ana/og converter 
AOC: Analog to digital converter 

Figure 1.1 RF transceiver functions. 

State-of-the-art CMOS technologies offer competitive performance in terms of 

noise and cutoff frequencies. With a 0.18Jlm gate length standard CMOS process, a 

minimum noise figure (NF) of less than 0.5dB was measured at 5.1GHz with an 

associated 16dB of gain [30], and an /max of 150GHz was obtained by careful layout 

techniques [31]. Also, an/max of more than 150GHz with a 0.8dB NF at 6GHz [32], and 

64GHz and 100GHz oscillating frequencies [33] have as weIl been achieved using a 

CMOS 90nm gate length process. These performances are sufficient to allow the 

integration of circuits operating in the lower giga-Hertz range, and to cover most of 

today's consumer wireless applications. As a result, many efforts are ongoing on the 

integration of RF receivers in low-cost CMOS technologies. Such integration is necessary 

in order to enable the implementation of the RF front-ends alongside the digital signal 

processors, and allow low-cost single-chip fully integrated solutions. 

Today, the CMOS technology is the dominant choice in applications such as 

wireless local area networks (WLAN) and Bluetooth. Its rapid evolution and the high 

level of integration it offers have made it an attractive candidate for wireless applications. 

It is also gaining popularity in GSM cellular circuits and Global Positioning Systems 

(GPS) [34]. In this Ph.D. thesis, two research topics related to the integration of CMOS 
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Figure 1.2 Radio frequency trends. 

RF circuits are discussed, namely the design, fabrication, and test of CMOS image reject 

notch filters for 50Hz heterodyne receivers [35]-[40], and the distortion analysis of RF 

CMOS low noise amplifiers (LNAs) [41]-[42]. 

1.1 - Introduction to RF Applications 

Nowadays, consumer applications are demanding an increasing amount of storage 

and memory, faster processors, higher resolution images and displays, etc. As a result, 

devices' speed and storage capabilities are increasing exponentially year after year, i.e. 

following Moore's law (Fig. 1.2). Therefore, higher data rate transfers between consumer 

devices are needed. For wireless communication systems, increasing data rates involves 

employing new modulation schemes to transfer more efficiently data in the available 

spectrum, and integrating RF circuits operating at higher frequency bands (50Hz and 

above). The frrst option is limited to data transfer rates of about 2.5bits/sIHz, which might 

not be sufficient for future consumer demands. Higher data rates are currently obtained 

3 



Introduction - Wireless Systems 

by moving towards higher frequency bands. Following, a representative set of RF 

consumer applications are introduced. 

1.1.1 - 400MHz and 900MHz ISM Bands 

Besides the well-know wireless products such as cellular phones and pagers, 

examples of RF consumer products are many. For example, rem,ote keyless entry (RKE) 

systems are implemented in more than 70% oftoday's vehicles. A transmitter using built­

in authentication mechanisms is integrated on a remote key. The receiver is placed inside 

the vehicle. These systems operate in the Industrial, Scientific and Medicine (lSM) band 

at 400MHz or 900MHz [44]. RKE systems, including start and car finder, theft alarm, 

lock and unlock doors, are a high volume after-market accessories. 

1.1.2 - Wireless Local Area Networks (WLAN) 

In order to obviate the need for wired networks in offices, coffee shops, hotels, 

hospitals, homes, factories, airports, etc., communication between people or equipment 

can be made through a Wireless Local Area Network [45]. IEEE 802.11a/b/g WLANs 

standards are aIlowing wireless connectivity in network consumer electronic devices. 

Thanks to the convenient access to network resources they provide for portable 

computers and handheld devices, they are becoming key elements of many enterprise 

networks. Based on the current explosive growth of wireless networking, analysist 

predict that wireless connections could reach 40% of LAN networks by 2008. 

1.1.3 - Cordless Phones 

More and more households are usmg cordless phones. They operate in the 

900MHZ, 2.4GHz or 5GHz frequency bands. Unfortunately, the 2.4GHz and 5GHz 

frequencies faIl in the same frequency bands as the wireless 802.11b/g local area network 

standards. The 2.4GHz cordless phones standard is implemented based on the frequency 

hopping spread spectrum (FHSS) technology. FHSS hops from frequency-to-frequency 

across the entire 2.4GHz spectrum. On the other han~ 802.11 b WLANs use direct 

sequence spread spectrum (DSSS) modulation, which transmits within approximately one 

4 



Introduction - Wireless Systems 

third of the 2.4 GHz spectrum. Therefore, since FHSS hops across the entire spectrum 

while DSSS remains in a single frequency band, a 2.4GHz cordless phone may clobber 

on an 802.11 b network, causing the latter to fail. Hence, special care should be taken 

when installing WLAN networks. 

1.1.4 - Global Positioning Systems 

According to the Industrial Economics and Knowledge Center (IEKC) of the 

Industrial Technology Research Institute (ITRI), the Global Positioning System (GPS) 

production market may reach $21.5 billions worldwide by 2008 [46]. Originally intended 

for military use only, and funded by the US Department of Defense with more than $12 

billions of investment, the GPS network became available for civilian use in 1980. Since 

then, GPS products have been developed for many commercial applications. With the 

continuous advancements in technologies, the prices and sizes of GPS systems are 

decreasing. GPS signals are currently used to determine or monitor objects' and people's 

locations, to facilitate marine, plane, and vehicle navigation, to create world maps, and to 

bring precise timing to the world. The system consists of a constellation of 24 satellites in 

six orbits. These satellites travel on pre-determined circular trajectories around the earth. 

Operating in the 1500MHz frequency band, they transmit coded positional and timing 

information continually. A receiver on earth picks up the signals and uses triangulation to 

calculate the user' s exact location. Typically, three satellites are needed to provide the 

location, and a fourth one is used to determine the timing. 

1.1.5 - Home Satellites 

The home satellite television network is yet another RF application that has 

undergone an explosive growth in the last decade. It is still gaining popularity and is 

competing with cable TV. In the United States only, the market share for home satellites 

was 25 billions dollars as of December 2002 [47]. Frequency bands, such as 6, 14 and 

17GHz, are currently being dsed for broadcasting the television signais. 

5 
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1.1.6 - RFID Tags 

The worldwide market for radio frequency identifications (RFID) tags is expected 

to jump from $300 millions in 2004 to $2.8 billions in 2009. During this period, RFID 

tags are expected to be used in many consumer applications, such as supply chains, 

live stock, domestic pets, pharmaceutical products, large freight containers, package 

tracking, etc. For example, the international Walmart chain started to mandate its 

suppliers to use this technology [48]. However, privacy issues related to many consumer 

RFID applications are currently being debated in courts and governments around the 

world. 

Other consumer applications, such as wireless smart implants [49], are currently 

being investigated as weIl. 

1.2 - Front-End Receivers 

Until very recently, most of the RF 50Hz transceivers (transmitter/receiver) 

employed discrete building blocks, mainly based on high-cost technologies, such as the 

GaAs technology. To decrease the cost and the sÏze of the circuits, researchers have been 

putting significant efforts to fully integrate transceivers on silicon (e.g. SiGe or CMOS 

technologies) [3]-[26]. The challenges for integrating systems operating at frequencies 

higher than 5GHz are numerous: The packages, the interconnections, the bonding wires, 

noise, the quality of the on-chip passive devices, the available transistors models, the 

parasitics, the input and output matching circuitry, etc., all need to he taken 

simultaneously into account early on during the design stage, in order to obtain the 

required system performance [50]-[51]. 

A simplified structure of a receiver is shown in Fig. 1.3. It mainly consists of an 

antenna, a duplexer, filters, mixers, amplifiers, detectors, and voltage controlled 

oscillators. The receiver needs to process very weak signais. Therefore, the noise 

generated by the receiver itself should he as sma11 as possible. The performance of each 

component affects the sensitivity, the overall gain, and the noise behavior of the receiver. 

6 
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RF blocks Detedor 
Antenna 

Duplexer 

Transmitter 

Figure 1.3 Simplified structure of a receiver front-end. 

The following is an overview of the main RF blocks in a receiver. 

1.2.1 - Antenna 

The fust block in the receiver chain is the antenna. The antenna, a conductive 

physical device, has the task of capturing and radiating RF signaIs, i.e. electromagnetic 

energies. It is an interface between the receiver' s input and free space. It is characterized 

by its gain, bandwidth, radiation loss, beamwidth, resistive loss, noise, and size 

parameters. Typically, the output impedance of an antenna is set to 50n . 

1.2.2 - Duplexer 

The antenna is usua1ly followed by a duplexer. The duplexer allows transmitting 

and receiving signaIs using a single antenna. An ideal duplexer provides infinite isolation 

between the receiver and the transmitter, and a OdB loss for the transmitted and received 

signaIs. In order to minimize leakage from the transmitter to the receiver and vice-versa, 

80 to 100 dBs of isolation may he required. For RF applications, a duplexer can be 

implemented using an RF switch, single-ended terminated filters, or circulators. The RF 
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switch allows toggling the antenna back and forth between the transmitter and the 

receiver. Typically, the toggling is controlled by a microprocessor or by a simple "push to 

talk" button. Single-ended terminated filters are also commonly used as duplexers. They 

are designed such as one of the filters provides a low impedance termination on the 

receiver port, and a high impedance termination on the transmitter port, while the second 

filter performs the inverse operation. They are employed in systems where the receiver 

and the transmitter operate at different :frequency bands. Finally, circulators are three-port 

RF devices that allow signal propagation in one direction only. Signals appearing at port 

1 can only flow to port 2 without reaching port 3, and signais appearing at port 2 transmit 

to port 3 and are isolated from port 1. 

1.2.3 - Low Noise Amplifiers (LNA) 

The LNA needs to provide enough gain to OOost the desired signal aOOve the 

noise floor, while adding minimal amount of noise and distortion. It is usually the fust 

active circuit in the receiver chain: it is typically implemented with transistors and 

passive components, such as inductors and capacitors. The noise figure of the receiver 

depends heavily on the gain and on the noise hehavior of the LNA. A high gain reduces 

the effect of noise on subsequent blocks in the receiver chain, which in turns enhances the 

overall receiver noise performance. However, too much gain Can saturate the following 

stages. 

Being inherently nonlinear, the transistors used to implement the LNA add 

distortion to the amplified signal. Thus, the output signal of an LNA is not perfectly 

linear. Intermodulation distortion, gain compression, and harmonie distortion are 

therefore observed, affecting the quality of the amplified signal. Besides gain, noise, and 

linearity, power consumption and size are important issues that need to he considered as 

weIl. Design considerations of low noise amplifiers are discussed in details in Chapters 2 

and 4. 
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1.2.4 - Filters 

Filters are commonly used in RF receivers. For example, preselect filters have the 

task of attenuating out of band channels, in order to prevent nearby strong interferers 

from producing intermodulation distortion and saturating the front-end receiver. They can 

be ceramic, lumped elements (inductors and capacitors) or Surface Acoustic Wave 

(SA W) filters. Image reject filters are used in heterodyne receivers. Traditionally, they 

have 50n input impedances, and are placed off chip. In order to increase the level of 

integration of receivers, on-chip filters with performances meeting specifications are 

needed. Moreover, decreasing the supply voltage and the power consumption is a great 

challenge in analog and RF filters [52]-[53]. Fully integrated single-ended and 

differential CMOS image reject filters are presented in this thesis. The problem of image 

rejection in heterodyne receivers is discussed in details in Chapter 3. 

1.2.5 - Mixers 

Mixers perform the frequency downconversion and upconversion tasks. In a 

simplified way, they can be viewed as multipliers oftwo signais. At the receiver end, the 

downconversion task consists of translating the RF signai to a lower intermediate 

frequency (IF) for further processing [54]. Typically, a mixer needs to hand1e large 

signais without adding distortion. At the transmitter end, upconverting the signai involves 

converting the IF signai to much higher frequencies. At the receiver and at the 

transmitter, new frequency components are generated at the output of the mixer, thus the 

transfer function of a mixer is inherently nonlinear. 

1.2.6 - Local Oscilla tors (LO) 

Local oscillators generate large sinusoidal reference signals operating at specific 

frequencies. In most RF receivers, a voltage controlled oscillator (VCO) is used [55]: A 

VCO is an oscillator, the frequency of which can he varied by changing the voltage on a 

control port of the circuit. The voltage on this port is usually set by a phase-Iocked-loop 

(PLL) system. Beside the frequency, key specifications for VCO designs are phase noise, 
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tuning range, spurious output levels, and lock time. 

1.3 - Motivations of this Thesis 

With the advances in CMOS technologies, it is now feasible to integrate low-cost 

and small-size multi-giga-Hertz receivers in CMOS [17]-[26]. For a fully integrated 

heterodyne system, many issues such as on-chip image rejection still need to be 

addressed. Homodyne and low-IF receivers do not suffer from image-rejection. However, 

the 1/f noise and DC offsets can degrade the overall performance of a receiver and 

increase its complexity. 

Typically, a heterodyne receiver employs off-chip image reject filters, which 

increase the cost and the complexity of the overall design. Image rejection of 30 to 80dB 

can be required, depending on the application. Research is currently being conducted on 

using active filters to suppress the signal at the image frequency in integrated heterodyne 

receivers [56]-[64]. Two elegant multi-GHz notch filters, which use a negative resistance 

to compensa te for the on-chip inductor losses, were proposed by Macedo et al.[15] and 

by Rogers et al. [58]. Shown in Fig. l.4-a and b, these circuits were integrated and 

demonstrated in a bipolar technology. When directly mapped to a CMOS 

implementation, the overall performance of the circuit proposed in [15] is limited by 

many factors. For example, the first limitation identified was related to the fact that the 

DC current of the notch circuit affects the DC behavior of the LNA. The depth of the 

notch is controlled by varying the biasing current of transistor B3. By varying the biasing 

of B3, the DC biasing of B2 is also altered. Due to the strong channellength modulation 

effect in modem submicron CMOS technologies (}.. can he as large as 0.4 in a CMOS 

0.18J.1ID. standard technology), the response of the LNA is therefore afIected when tuning 

the notch depth. Preferably, the DC current of the notch filter should he independent of 

that of the LNA. A detailed discussion of this circuit' s limitations is carried out in 

Chapter 3, along with the proposai for a novel notch filter circuit that does not suifer 

from this limitation and others. 
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(a) (b) 

Figure 1.4 LNA-notch circuits proposed by a) Rogers et al. [58], and b) Macedo et al. [15]. 

The highest frequency of a CMOS notch filter reported to date is at 

4.20Hz ([18],[63]), and the highest image rejection obtained was 50dB at 2.20Hz [60]. 

Most of the CMOS notch filters reported employ differential topologies, and are based on 

cross-coupled differential pairs connected in parallel with the on-chip inductors, in order 

to enhance their quality factors (e.g. transistors MS and M6 in Fig. 1.5). Two new 

differential CMOS notch filters operating above 70Hz are presented in this thesis in 

Chapter 5. 

One of the objectives of this work was to demonstrate the feasibility of 

implementing image-reject filters in the 7.30Hz range in CMOS for a 50Hz high IF 

heterodyne receiver, without using any off-chip component. A prototype chip 

incorporating a single notch image reject filter (IRF) operating at 7.30Hz, combined with 

a 5.80Hz low noise amplifier, was tirst implemented and tested. Chapter 3 ofthis thesis 

presents the design and experimental results of this chip. This design is then used to 

11 
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Figure 1.5 Structure of the LNA image reject filter proposed in [61]. 

implement a double IRF front-end receiver. 

The proposal of a novel heterodyne front-end receiver architecture, that allows a 

simple implementation of fully integrated heterodyne 5GHz RF receivers, is then 

presented. It is one of the major contributions of this work. The front-end circuitry 

consists of a low noise amplifier and of a cascade of two notch filters. The notch filters, 

which use on-chip inductor Q-factor enhancement techniques, are designed to provide a 

strong and wide bandwidth of image rejection (IR), eliminating the need for accurate IR 

tuning circuitry. Traditionally, a single image reject filter is used. Automatic tuning 

circuits are then needed to properly set the image reject frequency, which considerably 

increases the power consumption and the complexity of the receiver. The objective ofthis 

work is to demonstrate the feasibility of implementing fully integrated heterodyne 5GHz 

front-end receivers in a standard CMOS O.18Jlffi technology, without using PLL-based 

automatic tuning [65]-[78], or calibration circuits [79] for tuning the image rejection 

frequency. Thus, the cost and the power consumption of the front-end receiver can be 

12 
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Figure 1.6 Characteristics of gm3vs. the overdrive voltage of 
a standard 100J.lm width CMOS O.18J.lm gate length transistor. 

considerably reduced. 

LNAs are widely used in teleeommunieation systems (e.g. [3]-[26], [80]-[81]). 

Their linearity is becoming ofprime importance for modem RF receivers [82]-[88]. Even 

order harmonics generate DC offsets in homodyne reeeivers, while third-order 

intermodulation harmonics resulting from mixing with interferers in adjacent channels 

can corrupt the desired downconverted signal. 

Several studies of the effects of CMOS transistors characteristics on RF LNAs 

have already been reported, e.g. by Kang et al. [82] and Toole et al. [83]. The analysis 

reported in [82] discusses the third order distortion behavior of CMOS transistors for RF 

applications. The results presented were based on empirieal coefficients obtained from 

measurements of specifie deviees. The analysis in [83] attempted to exploit a "sweet­

spot" in the third-order distortion response, without providing practical detailed equations 

relating specifie transistor parameters to distortion. In a CMOS transistor, the third-order 

transeondunetance term (gm3) tends to zero at a certain biasing condition, when the 

transistor is operating in the moderate region, as shown in Fig. 1.6. At this biasing point, 

also known as the "sweet-spot" point, theoretieally, the third-order harmonie distortion 

13 
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would tend to be zero, which would result in an infinite third-order output intercept point 

(OIP3). In reality, due to the cross-modulation between higher order terms, the OIP3 

tums out to be fmite, as will be demonstrated in Chapter 4. It will also be shown that this 

biasing point does not necessarily optimize the distortion level in practical RF CMOS 

LNAs. 

The analysis in [84] provided distortion models for high-frequency CMOS 

transistors, without providing distortion-aware design guidelines for LNAs. Up to date, 

all reported studies do not provide c10sed form frequency-dependent expressions 

describing the second-order harmonic distortion in RF CMOS LNAs, which is a major 

problematic issue in modem homodyne receivers. An approach to estimate the distortion 

in CMOS short-channel (O.18J.1m gate length) RF low noise amplifiers, based on 

Volterra's series, is presented. Compact and accurate frequency-dependent closed form 

expressions describing the effects of the different transistor parameters on harmonic 

distortion are derived. For the fust time, the second order distortion (HD2), which is 

crucial for sorne systems such as homodyne receivers, is studied. Equations describing 

third-order intermodulation distortion in RF LNAs are reported. Distortion-aware design 

guidelines for RF CMOS LNAs are also provided. 

1.4 - Thesis Outline 

Chapter 2 gives an overview of the main design issues in CMOS LNAs. Issues 

such as distortion, noise, RF layout optimization techniques, and on-chip inductors are 

discussed. 

The design procedure and specifications of a 7.3GHz CMOS notch filter, along 

with experimental results, are presented in Chapter 3. The image reject (IR) problem in 

heterodyne receivers is summarized in Section 3.2.1. Special focus in this chapter is 

given to the negative resistance technique which was used by Macedo et. al. in [15] to 

implement a bipolar notch fIlter. As previously mentioned, when the latter is integrated in 

a CMOS technology, its overall performance is limited by many factors, which are 
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discussed in details in Section 3.3. A proposed novel notch circuit capable of mitigating 

these limitations is presented in Section 3.4. Experimental results are reported in Section 

3.5. Section 3.6 outlines the design procedure of the proposed cascade image reject filter 

architecture. Experimental results and discussions are reported in Section 3.7, followed 

by a comparison between the proposed implementation and other state-of-the-art designs. 

Distortion anaIysis of LNAs is carried out in Chapter 4. An overview of the 

limitations of the use of the sweet-spot approach for RF applications is fust provided. 

The procedure to obtain closed-form expressions describing the distortion in nonlinear 

circuits using Volterra's series is presented. The distortion analysis of a single-transistor 

amplifier and of a folded cascode amplifier are discussed in details. Distortion-aware 

design guidelines for RF LNAs are provided in Section 4.5. This chapter concludes with 

a comparison of the analyticaI results with measured results from an LNA chip prototype. 

DifferentiaI CMOS IR filters are discussed in Chapter 5. PLL systems are aIso 

introduced, aIong with the implementation of a new charge pump circuit. 

Finally, this thesis concludes with a summary of the proposed work and with 

suggestions for future research topics. 
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1.5 - Summary of Thesis Contributions 

The following is a summary of the contributions ofthis thesis: 

1- Chapter 3: New CMOS Circuit Implementation of a Notch Filter (7.3GHz) with 

62dB of Image Rejection1 [36], [38]: 

1.1- A new image reject fllter (IRF) circuit in CMOS is proposed. The design and 

experimental results of a 7.3GHz CMOS implementation, combined with a 

5.8GHz low-noise amplifier (LNA) for integrated heterodyne receiver front­

ends, are presented. Experimental results show that more than 62dB of image 

rejection at 7.3GHz can be obtained in a standard CMOS O.18J.1Ill technology, 

while operating from a 1.8V supply voltage. The proposed notch fllter alone 

can operate from a IV supply voltage. 

1.2- Q-enhancement circuitry for on-chip inductors are used to optimize the depth 

of the image reject filters. It is shown analytically that the latter can be 

designed to be inherently stable with the added circuitry. 

Main contribution: 

R. A. Baki and M.N. EI-Gamal, "A CMOS notch filter (7.3GHz) with 62dB of 
image rejection for wireless receivers", Presented at the 2004 IEEE Asia Pacific 
Microwave Conference (APMC 2004) - Paper number APMC/04/l/540, Dec. 2004. 

2- Chaprer 3: RF CMOS Fully-Integrated Heterodyne Front-End Receivers Design 

Technique for 5GHz Applications [35]-[37]. 

2.1 The implementation of a robust, unconditionally stable, and high-Q image reject 

filter in standard CMOS is presented, enabling the realization of on-chip 

heterodyne receivers at 5GHz and beyond. 

1. Second position - The Canadian Microelectronic Cooperation (CMC) award annual research 
competition MR&DCAN, September 2004. 
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2.2 The use of two cascaded notch filters is proposed, with slightly offsetted 

frequencies, resulting in a wide rejection bandwidth, thus eliminating the 

overhead of automatic tuning. 

Main contributions: 

R. A. Baki and M.N. EI-Gamal, "Robust multi-GHz (7.4GHz) on-chip image 
rejection in CMOS", the 2005 IEEE Custom Integrated Circuits Conference, 
accepted, San Diego, USA, to be presented in September 2005. 

R. A. Baki and M.N. EI-Gamal, "Robust multi-GHz (7.4GHz) on-chip image 
rejection in CMOS", Submitted to the IEEE Journal of Solid-State Circuits, June 
2005. 

3- Chanter 4: Distortion Analysis of RF CMOS Short Channel Low Noise 

Amplifiers [41]-[42]: 

3.1- An approach to estimate the distortion in CMOS short-channel (O.18J.Ull gate 

length) RF low noise amplifiers (LNA), based on Volterra's senes, IS 

presented. 

3.2- For the first time, the second order distortion (HD2), which is crucial in 

homodyne receivers, is studied. 

3.3- Compact and accurate frequency-dependent c10sed form expressions descri­

bing the effects of the different transistor parameters on harmonic distortion 

are derived. The analytical analysis is verified through simulations and 

measured results from a O.18J.Ull CMOS 5.8GHz folded-cascode LNA 

prototype chip geared towards sub-1 V operation. 

3.4- Distortion-aware guide1ines for designing LNA's are presented, and are 

verified through simulation and analytical results. 
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Main contribution: 

R. A. Baki, T.K. Tsang, and M.N. EI-Gamal, "Distortion in RF CMOS short 
channel low noise amplifiers", the IEEE Transactions on Microwave Theory and 
Techniques, accepted, to appear in September 2005. 

4- Chapter 5: Other contributions: 

4.1- A novellow-voltage CMOS charge pump, intended for 5GHz and above phase 

locked-Ioop system, is proposed. Design techniques to decrease the glitches in 

the charge pump output signal are reported. The circuit was designed when 

investigating the possibility of designing very-Iow voltage PLLs [43]. 

4.2- The design and the simulation results of two new differential image reject 

filters are presented [39]-[40]. 
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Chapter 2 - Issues ln Implementing 

RF CMOS LNAs 

In wireless receivers, the fust active circuit following the antenna is the low noise 

amplifier (LNA). The signal received at the antenna is typically in the micro-volts range, 

which explains the need of amplifying it before any further processmg. The LNA has the 

task of providing gain, ideally without adding noise and distortion. Noise deteriorates the 

sensitivity of the receiver. Even order harmonics generate DC offsets in homodyne 

receivers, while third-order intermodulation distortions, resulting from mixing with 

interferers in adjacent channels, can corrupt the desired downconverted signal channels. 

This chapter discusses the main design issues of CMOS LNAs. 

This chapter hegins with definitions of the performance metrics for LNAs. In 

heterodyne receivers, an image reject filter follows the LNA. The performance of an 

integrated mter depends mainly on the quality of the on-chip inductors. The quality of 

integrated inductors in standard CMOS technologies is discussed in Section 2.2. An 

overview of Q-enhancement techniques for on-chip inductors is presented in Section 

2.2.2. In order to optimize the performance of RF integrated circuits, the layouts of the 

inductors, of the interconnections, and of the transistors need to he carefully considered. 

This subject is addressed in Section 2.3. The three LNA topologies used in this thesis are 

then presented, namely the single transistor amplifier, the cascode amplifier and the 

folded-cascode amplifier, with a derivation oftheir design equations. 
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2.1 - Performance Metrics 

2.1.1 - Noise Sources in CM OS Transistors 

A- Thermal noise 

Thermal noise, also referred to as Johson or Nyquist noise, is one of the dominant 

noise sources in CMOS transistors at high frequencies. Randomly varying motion of 

charge carriers due to the thermal agitation in conductors and resistors give rise to a 

random voltage. Its amplitude increases with increasing resistance or temperature. For a 

resistance R, the generated thermal noise voltage in root mean square (rms) is given by 

2 
V n = 4kTR!lI, (2.1) 

where k is the Boltzmann's constant and !lI is the noise bandwidth in Hertz. For a son 
resistor, about 1 n V / Jifz of thermal noise is generated. It is modelled as a voltage source 

in series with an ideal resistor, or as a current source in shunt with the resistor. For a 

specifie resistance value, thermal noise can he optimised by decreasing the temperature, if 

possible, and by limiting the bandwidth !lI. 

In a MOSFET transistor, thermal noise is mainly generated by the fluctuations of 

charges in the channel. The channel itself has an internaI resistance, with the current noise 

given by 

(2.2) 

where gdo is the drain source conductance at zero drain to source voltage (VDS)' y is a 

parameter that equals 1 at zero VDS' and tends in saturation towards 2/3 and 2-3 in 10ng­

and short-channel CMOS devices, respectively. The distributed gate resistance in MOS 

transistors also adds thermal noise. However, this noise contribution can become 

insignificant with proper transistor layout. 
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B- Shot noise 

When a current is flowing in a MOSFET transistor, the random arrivaI times of 

charges crossing the source and the drain junctions generate shot noise. This source of 

noise is mainly due to the non-unifonn flow of charge carriers crossing potentiaI barriers. 

It can he modelled as a noise current source, connected hetween the drain and the source 

of a MOSFET transistor. The shot noise of a transistor with an average biasing current 

IDe is given by (in rms) 

i~ = 2qIDc4f, (2.3) 

where q is the electronic charge. It can be seen from Eq. (2.3) that the shot noise depends 

mainly on the biasing current of the active device and on the noise bandwidth. Reducing 

it is possible by decreasing the biasing current of the active device. 

c- l/fnoise 

The random release and trapping of charges in MOSFET transistors due to lattice 

defects and surface impurities generate l/fnoise, aIso referred to as flicker noise. The l/f 

noise in MOSFETs is modelled as a current source, and its mean-square vaIue is given by 

(2.4) 

where K and a are device-specific constants. Typically, K for NMOS transistors is 50 

times larger then for PMOS transistors. Intuitively, using a larger transistor may decrease 

the effect of the l/fnoise, since larger transistors offer a larger gate capacitance, which in 

turn helps decreasing charge fluctuations in the channel. Finally, it should he noted that 

for RF LNAs, the l/f noise does not play a major role since the signal amplification 

occurs in a narrow bandwidth at very high frequencies. However, this source of noise is 

problematic in receiver designs in general, since it corrupts the desired signaI at 

baseband. 
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D- Noise figure 

In LNA designs, the noise performance is characterized by the noise factor 

parameter. The noise factor measures the degradation of the input signal to noise ratio 

caused by a given network. It is detined as 

_ SNR j _ S/Nj 

F - S-N-R- - =S -/=N-=-' 
o 0 0 

(2.5) 

where SNR j and SNRo are the input and output signal to noise ratios, respectively. In RF 

circuits, the noise factor is more commonly expressed in dB as 

NF = lOlogF dB, (2.6) 

where NF stands for Noise Figure. 

2.1.2 - Distortion 

When applying a sinusoidal input to a linear circuit, it is well known that the out­

put signal will also be a sinusoidal waveform, with the same frequency. However, since 

many of the basic electronic devices are nonlinear (e.g. bipolar and MûS transistors), 

most circuits will distort the input signal to a certain extend. The output will consist of the 

same input frequency, also referred to as the fundamental, accompanied by higher-order 

harmonics at multiples of the input frequency. Assuming a weakly nonlinear system, i.e, 

a system for which the output signal v 0 converges with the fust few terms, v 0 can be 

expressed in terms of the input signal Vi as 

(2.7) 

where ao represents the De term, a} is the fundamental component, a2 and a3 correspond 

to the second and third order distortions, respectively. The sizes of these high-order har­

monics set an upper limit on the largest acceptable input signal that can be processed by a 

circuit. 

In RF circuits, a high level of distortion deteriorates the overall performance of 
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Figure 2.1 Corruption in a direct-conversion receiver due to second-order distortion. 

the receiver. For example, the second-order harmonic distortion can severally affect the 

performance of direct-conversion receivers. This phenomenon is illustrated in Fig. 2.1. 

Suppose that alongside the desired channel, two strong interferers in adjacent channels 

appear at the input of the low-noise amplifier, as show in Fig. 2.1. Due to the second­

order distortion behavior of the LNA, these interferers cross-modulate and generate a 

low-frequency beat. If an ideal mixer follows, this low frequency beat will not corrupt the 

down-converted signal. Unfortunately, mixers have a finite amount of feedthrough. As a 

result, a portion of this beat appears at low frequencies and corrupts the desired channel. 

Design guidelines to enhance the second-order distortion behavior in LNAs will be 

provided in this thesis in Chapter 4. 

In RF LNAs and filters, distortion is typically quantified by the 1dB compression 

point and the third-order intercept point (lP3). Consider an amplifier with a linear gain G 

(dB) at a certain frequency for small input signaIs (Fig. 2.2). By increasing the power of 

the input signal, a point is reached where the output signaI stops following asymptotically 

the linear gain, due to devices saturation. The input power that causes a 1 dB drop in the 

linear gain is called the 1dB compression point. The 1dB compression point is 

approximately equal to 
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Figure 2.2 1 dB compression point. 

where the coefficients al and a3 are defined in Eq. (2.7). 

(2.8) 

Applying a two-tone input signal Vi = A(cos21t/tt+ cos21t/2t) to a system with 

a function given by Bq. (2.7), results in an output signal of the following form 

2 2 3 3 
v 0 = ao + a1A( COS 21tf1 t + cos21tf2t) + a2A (cos21tfl t + cos21tf2t) + a3A (cos21tfl t + cos21tf2t) + ... 

(2.9) 

The spectrum ofvo is shown in Fig. 2.3, where lM and RD stand for intermodulation and 

harmonic distortion, respectively. Expanding equation (2.9), the output tones at the fre­

quency 1 = 12 - Il ' also referred to as the second-order intermodulation product (1M2), 

and the output tones at frequencies 1 = 2/t - 12 and 1 = 2/2 - It ' also referred to as the 

third-order intermodulation products (lM3), are given by: 

(2.10) 

(2.11) 
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Figure 2.3 Output spectrum of a nonlinear system with a two-tone input 
signal at frequenciesll andh. 

IffJ is close toh, the 1M3 tones appear in the vicinity ofthefJ andh signals. 

(2.12) 

The problem that arises from the third-order intermodulation distortion products is 

illustrated in Fig. 2.4 . Consider the front-end section of a receiver. The antenna selects a 

weak signal, shown as the desired channel signal. Two strong interferers operating at 

nearby channels are partially selected by the antenna and appear at the input of the LNA 

as well. If the amplifier is nonlinear with a strong third order distortion behavior, the two 

interferers generate a third-order intermodulation distortion term, which might fall in the 

same frequency band as the desired amplified channel. This phenomenon corrupts the 

desired signal and degrades the overa11 selectivity of the receiver. It is characterized in RF 

circuits by the third-order input intercept point (IIP3) performance metric. In Fig. 2.4-b, 

the linear output power and the third-order intermodulation are plotted versus the input 

signal power on a logarithmic scale. The IIP3 is detined as the power of the input signal 

at which the extrapolations of the linear output and of the third-order intermodulation 

product lines intercept. The second-order input intercept point (IIP2) can be determined 
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Figure 2.4 a) Corruption in a receiver due to third-order intermodulation distortion 
trom two strong Interferera. b) Concept of the third-order intercept point. 

in a similar way. 

In short-channel CMûS transistors, the main source of distortion comes from the 

nonlinear behavior of the transconductance. The AC current in a MûS transistor can be 

mode lIed as 

(2.13) 

where gmn is the nth order transconductance term, gdn is the nth order output cond­

unctance term, and the gmd term represents the cross modulation between gmn and gmd· 

Assuming the output transconductance to he linear, and the cross modulation hetween the 

transconductances is negligible, equation (2.13) is simplified to 
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(2.14) 

The second order hannonic distortion would depend on the even-order terms, while the 

third order distortion on the odd-order ones. The output third-order intermodulation point 

(OIP3) is related to the input third-order intermodulation point (IIP3) as follows 

OIP3 ~ IIP3 + Gain ~ 2010g( 2 J:;~') + Gain (dB), (2.15) 

where Gain is the LNA gain at the frequency of interest. Note that Eq.(2.15) is only accu­

rate at low-frequencies and at low-distortion levels. At RF frequencies, where parasitic 

capacitors and inductors heavily affect the hehavior of a circuit, the expression for the 

IIP3 term in Eq. (2.15) does not hold - The IIP3 becomes frequency dependent, as it will 

be discussed later on. 

Figure 2.5 shows the behavior of gmb gm2' and gm3 for a typical O.l8Jlm gate 

length, 100J.1m width transistor, obtained by differentiating the drain current of the MOS 

transistor from BSIM3v3 simulations. Fager et al. demonstrated that these plots 

accurately represent the transconductances measured experimentally, and that they can he 

used to model the behavior of distortion in MOSFET circuits [89]. As it can be seen in 

Fig. 2.5, the second-order transconductance gm2 starts off around OA 2N at zero VgS' then 

increases hefore reaching a maximum value at a small overdrive voltage (Vgs-Vt). Further 

increase in Vgs results in decreasing gm2' As a result, gm3, obtained by differentiating gm2 

with respect to Vgs' decreases to zero at a very small overdrive voltage, i.e. when the 

transistor is still operating in the moderate inversion region. Therefore, theoretically, if 

the transistor is biased at this operating point, also known as the "sweet-spot" point [83], 

the third-order harmonic distortion would tend to he zero, which would result in an 

inftnite third-order output intercept point (OIP3). It is an attractive line of thought to 

follow for analog circuit designs in general. Besides, the corresponding biasing current is 

small, which rninirnizes the overa1l power consumption. In reality, due to the 

cross-modulation between higher order terms, the OIP3 turns out to he finite, as it will he 

demonstrated in Chapter 4. The latter discusses in details the distortion behavior in short-
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Figure 2.5 Characteristics of (a) icJt (b) gm1, (c) gm2> and (d) gm3 vs. the overdrive voltage 
of a standard 100~m width CMOS O.18~m gate length transistor [83]. 

charmel RF CMOS LNAs. Design guidelines for decreasing distortion, along with closed­

form expressions describing the second and third orders harmonie distortions are 

provided. 
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Figure 2.6 Onchip inductor model. 

can be implemented using the top Metal interconnect, in order to decrease substrate 

coupling effects. Circular spiral inductors are known to provide a better Q-factor, when 

compared to square or polygon structures. However, not all standard technologies support 

round interconnect structures. As a result, octagonal shapes, such as the one shown in Fig. 

2.7, can he used. 

To decrease the series resistance, the width of the Metal lines of an inductor 

should be made as large as possible. However, a large Metal width increases the area of 

the inductor for a given inductance value and, as a result, increases its parasitic 

capacitances. This in turns increases the substrate coupling effect and decreases the self­

resonant frequency of the inductor. A typical optimum width of 20J..LID was measured for 

the standard CMOS 0.18f.1m process used by Tsang [90] and in this thesis. Traces 

connected to inductors are made wide to decrease their parasitic resistances. To isolate 

inductors from substrate noise, ground shielding can he added under the inductors. 

Finally, inductors in general create large magnetic fields. They should be placed as far as 

possible from each other, and from the rest of the layout, in order to avoid interference 

with nearby signais and circuits. A minimum distance of 30J..LID hetween the inductors and 

the rest of the circuit components was used throughout alilayouts presented in this thesis. 
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Figure 2.7 Octagonal shape inductor. 

2.2.2 - On-Chip Q-Enhancement Techniques 

For silicon-based RF circuits, the poor inductor Q-factor is mainly due to metal 

and substrate losses. For example, for a InH inductor at 5 GHz, the inductor series 

resistance can he as large as 10-150, which would result in a quality factor hetween Q = 

5 to 6. This limits the performance of circuits employing on-chip inductors in general. 

Difficult Q-enhancement techniques are often used to overcome this shortcoming. 

Simple layout optimization techniques for CMOS on-chip inductors were reported 

in [91] and [92]. The method explained in [91] consists of decoupling the inductor from 

the substrate by adding pattemed ground shields to reduce substrate losses, as shown in 

Fig. 2.8-a. This technique enhances the Q-factor of the inductor at the cost of increasing 

the parasitic substrate capacitance. The latter bas the effect of decreasing the inductor 

self-resonance frequency, and therefore is not suitable for multi-giga-Hertz RF circuits. 

In [92], symmetric dual layer spiral inductors, which were designed as a cascaded 

connection of two layer inductors, were reported. These inductors have the advantage of 

providing aImost four times the inductance of a single layer inductor, while doubling the 

Q-factor for a given area. However, since lower metallayers are needed to implement the 
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Figure 2.8 Example of Q~nhancement techniques: Decoupling the induc­
tor from the substrate by addlng patterned ground shields. 

inductor, compared to the top layer-only inductors, substrate losses are alsoincreased due 

to parasitic coupling. 

Other Q-enhancement techniques exist, such as etching the substrate helow the 

inductor to decrease substrate losses [93], or the use of thicker top metal for inductor 

implementation. These special fabrication techniques are expensive, which makes them 

not suitable for low-cost solutions. In differential designs, a 50% enhancement in the 

quality factor and a wider operating bandwidth can he obtained by differentially exciting 

the on-chip inductor [94]. 

A typical active approach to enhance the Q-factor of an on-chip inductor is to con­

nect current-sourcing devices in parallel with the inductor, in order to produce a parallel 

negative resistance circuit (e.g. [15]). This concept is illustrated in Fig. 2.9-a. The on-chip 

inductor bas a series resistance rs which can he modeled by a parallel resistance RLoss. To 

restore the energy 10st in the tank due to this resistance, a compensation circuit is added in 

parallel with it. The input resistance R in looking into the transconductance cell is negative 

and is given by 

R = -1/g in m· (2.18) 
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RLoss 
Ml 

(b) 

M2 M3 

(c) 

Figure 2.9 An approach for active Q-enhancement: the transconductor 9m will compen­
sate for the energy lost in RLoss• b) Negative resistance provided by capacitive feedbacks 
around transistor Mi. c) Negative resistance provided by a cross-coupled pair. 

A practical example of implementing such a negative resistance circuit is shown in 

Fig. 2.9-b [95]. It consists of a transistor with capacitive feedback between its gate and 

source and its drain and source, commonly used in single-ended voltage controlled oscilla­

tûr designs. Analyzing the circuit in Fig. 2.9-b, Rneg is found to he 

(2.19) 

where gm is the transconductance of the transistor, andfis the operating frequency. 

The cross-coupled pair shown in Fig. 2.9-c may also be used to generate a 

negative resistance. It consists of a cross-coupled amplifier, commonly used in 

differential voltage controlled oscillator designs. The negative resistance is approximately 

given by 

2 
R =--

neg gm (2.20) 
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2.3 - RF Layout Techniques 

The layout of an RF circuit affects greatly its performance. Simple layout 

techniques, which are summarized in this section, can be adopted in order to achieve 

minimal amount of discrepancies hetween the expected performance and the actual one. 

First of all, the layout should be designed in a uni-directional fashion, in order to 

limit the efIect of crosstalk between the RF input and output signais. If a difIerential 

topology is used, a ground pad should be added hetween the differential input and 

differential output pads, to better isolate the signais. To filter substrate noise, ground 

shielding is a must around ail transistors and capacitors (Fig. 2.10). DC traces should be 

made as thin as possible, such that they appear as high impedances for the RF signais. AC 

interconnect traces are made wide in order to decrease their series parasitic resistances. 

To limit RF signai substrate coupling, AC traces are implemented using the top two metal 

layers. Interconnection carrying RF signais should he made as short as possible, in order 

to reduce their parasitic capacitances. 

Coupling capacitors hetween stages are widely used in RF front-end receivers. 

The value of these capacitors should he adequately selected, such that they provide low 

impedances for the RF signais, while blocking the DC biasing. Large coupling capacitors 

would produce higher substrate coupling, and are therefore not recommended for high 

frequency operation. 

For designs housed in standard packages, which is the case for the circuits 

presented in this thesis, all of the grounds pads, including the pads connected to the 

probes for on-chip measurements, should he connected together. Moreover, many ground 

pins should be used in order to decrease the sensitivity of the circuits to ground 

inductances. RF pads are implemented using the top metallayer, while DC pads are made 

with all metal layers connected together with the maximum amount of vias. Finally, all 

DC pads are connected to large grounded-capacitors, in order to fùter noise and 

interference in the DC interconnections. 
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Figure 2.10 Transistor layout, with a 144JLm width and 0.18~ gate length. 

2.4 - LNA Topologies 

The three LNA structures used in this thesis, namely the single transistor LNA, 

the cascode LNA, and the folded-cascode LNA are shown in Fig. 2.11. The cascode LNA 

was used to integrate the LNA-notch combination circuits, while the single transistor 

LNA and the folded cascode were used for distortion analysis. A differential folded­

cascode LNA-notch filter was also investigated. Every structure bas its own advantages 

and disadvantages. The single transistor structure allows low-voltage operation. However, 

due to the gate to drain parasitic capacitance of the MOSFET transistor, and due to the 

Miller effect, a low impedance appears at high frequencies between the gate (the input 

node) and the drain (the output node) of the transistor. As a result, the single-transistor 

LNA provides poor isolation between its input and output ports, which makes it prone to 

instability . 

Cascode amplifiers require a relatively higher voltage headroom, compared to 
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Figure 2.11 a) Common source LNA. b) Cascode LNA. c) Folded-cascode LNA [96]. 

single-transistor LNAs, since they involve stacking two transistors. However, the higher 

isolation they provide between the input and output ports make them less prone to 

instability. Moreover, as the feature sizes of CMOS technologies downscales, this 

topology can operate at relatively low-voltages. 

The folded cascode amplifier can operate with power supplies lower than 1 V 

since only one transistor is stacked between ground and the supply voltage [96]. 

Transistor Ml transforms the input voltage signal into a current signal. Inductor Ld is a 

relatively large inductor: it behaves as an RF choke to block the AC current signal in the 

frequency band of interest. As a result, the AC current generated from transistor Ml is 

almost totally transferred to transistor M2. 

In most wire1ess systems, the LNA is preceded by an off chip filter and/or by an 

RF antenna. These blocks are typically designed with a 50n output impedance. 

Therefore, to maximize the power transfer between them and the LNA, input matching 
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becomes critical. Hence, matching inductors Lg and Ls were added Fig. 2.11. Inductor Ls 

provides source degeneration, and is needed to match the real part of the characteristic 

input impedance (typically 50 Q). Inductor Lg is added to cancel the reactance effect of 

the parasitic gate to source capacitance of transistor Ml. The small-signal equivalent 

circuit of the input transistor of the LNAs is shown in Fig. 2.12. Note that, in the cascode 

and folded-cascode amplifiers, Cgd does not affect much the behavior of the LNA, since 

there are no Miller effects. Analyzing the circuit shown in Fig. 2.12, the following set of 

equations are obtained 

(2.21) 

(2.22) 

Neglecting the channel modulation effect, and performing KCL at node 1, results in 

(2.23) 

Rewriting Eqs (2.21)-(2.23), the input impedance Zin of the LNA is found to be 

(2.24) 

At resonance, the input impedance is real and is given by Zin = g mILs / C gs 1 • In the 

above analysis, the series resistances of the on-chip inductors were neglected. In reality, 

as explained in previous sections, on-chip inductors have a relatively large series 

resistances, especially at high-frequencies. Including these resistances and re-analyzing 

the circuit in Fig. 2.12 results in an input impedance given by 

(2.25) 

where Rg and Rs are the series parasitic resistances of the Lg and Ls inductors, 

respectively. Adding these resistances complicates the input matching task, since their 

values depend on the layout and on process parameters. 
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Figure 2.12 Small signal equivalent model of the input stage of an LNA. 

The output buffer stages, represented by "B" in Fig. 2.11, are added for measuring 

purposes: They were designed to match the input impedance of the test equipment 

(typically SOn). For the cascode amplifier, a class A cascode output stage was used (Fig. 

2. 13-a). Capacitor C is a coupling capacitor. Resistance Re is a large resistor used to 

block the AC signal from leaking to the biasing circuit of the output stage. The cascode 

structure was preferred to the single-transistor common-source structure (Fig. 2.13-b) in 

order to better isolate the LNA's tank from the test equipment. 

On the other hand, the folded cascode LNA was integrated with a common drain 

output buffer, implemented with a PMOS transistor and a son resistance (Fig. 2.13-b). In 

this case, since the folded-cascode LNA targeted very low-voltage operation, a cascode 

structure was not an option. When the LNA is connected to a mixer in a heterodyne 

receiver, these output buffers become redundant. They are employed to characterize and 

test all prototype chips presented in this thesis. 
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Figure 2.13 a) Cascode output buffer used here. b) Common drain output buffer 
used here. 

39 



Robust RF CMOS Image Reject Filters 

Chapter 3 - Robust RF CMOS Image 

Reject Filters 

3.1 - Introduction 

Research bas been conducted on using active notch filters to suppress the signal at 

the image frequency in heterodyne receivers (e.g. [59]-[64]). The highest frequency of a 

CMOS notch filter reported to date is at 4.2GHz ([18],[63]), and the highest image rejec­

tion obtained was 50dB at 2.2GHz [60]. 

The specifications of 5GHz RF receivers for the 802.11a WLAN applications are 

summarized in Table 3.1. A minimum of 30dB of image rejection is required, while the 

maximum noise figure and minimum receiver sensitivity are 10dB and -65dBm, 

respectively. Different RF receiver architectures that could meet these requirements have 

been introduced in the literature and are discussed in Appendix A. In summary, the 

receiver has three main tasks: 

1- It provides sufficient amplification for the incoming signal, such that the signal 

acquires sufficient gain before passing through the analog to digital converter 

for further digital processing. 

2- It demodulates the signal in order to retrieve the transmitted information. 

3- It suppresses the undesired noise and distortion as much as possible. 
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Frequency 5.18-5.32 GHz 
range 5.745-5.805 GHz 

Modulation 64QAM 

Noise Figure 10 dB 
(NF) 

Sensitivity -65dBm 

Image rejection 30 dB 

Table 3.1: IEEE 802.11a WLAN receiver specifications. 

Receivers can be divided into two main categories: homodyne receivers and 

heterodyne receivers. In homodyne receivers, the signal is downconverted directly to DC. 

In heterodyne structures, the signal is flfSt translated to an intermediate frequency, before 

being translating to baseband. 

This chapter begins with an introduction of heterodyne receivers, followed by a 

discussion of the image problem. An elegant multi-GHz notch filter, which uses a nega­

tive resistance to compensa te for the on-chip inductor losses, was proposed by Macedo et 

aL [15]. When integrated in a CMOS technology, its overall performance is limited by 

many factors, which will be discussed in details in Section 3.3. A proposed novel notch 

circuit capable of mitigating these limitations is presented in Section 3.4. Experimental 

results and discussions are summarized in Section 3.5. Section 3.6 proposes an architec­

ture that extends the bandwidth of image rejection and eliminates the need for automatic 

tuning. 

3.2 - Heterodyne Structures 

Shown in Fig. 3.1-a, the heterodyne receiver translates the RF signal to baseband 

by employing multiple downconversions. The signal is first translated to a first 

intermediate frequency (IF) at fin -ho1' The signal is then transferred to baseband by a 

second downconversion. Every downconversion is preceded by image filtering. 
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Figure 3.1 a) Structure of traditional IRF-based receiver front-ends. b) Structure 
of the proposed double notch IRF-based receiver architecture 

The heterodyne structure is known to he the most reliable structure in RF 

receivers. The sensitivity and the selectivity it otIers have made it the dominant choice 

for RF receivers. However, for fully integrated designs, on-chip image reject filters with 

automatic frequency tuning, Le. with a PLL, are needed (Fig. 3.1-a). Employing a PLL 

system for tuning the frequency of the image reject filter invoives integrating a frequency 

divider, a phase detector, a charge pump, and a VCO. 

The RF front-end receiver architecture proposed in this thesis is shown in Fig. 

3.1-b. It does not employa PLL system for IR tuning. Instead, it consists of cascading 

two notches after the LNA, with their image reject frequencies slightly otIsetted. As a 

result, a wide image rejection bandwidth can be obtained, without the need for extra 

notch tuning circuits. Thus, the cost, the complexity, and the power consumption of the 

front-end receiver can he reduced. 
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3.2.1 - The Image Problem 

Consider the simplified front-end receiver shown in Fig. 3.2-a Right after the 

antenna, the bandpass filter selects the desired frequency band. Usually, the signaI at the 

antenna has a very smaIl amplitude, which explains the need of amplifying it before any 

further processing. This task is performed by the LNA. 

The operation of the mixer can be viewed as a simple analog multiplier, i.e. the 

incoming RF signal is multiplied by a cos (2nf LOt) signal. At the output of the mixer, the 

signal has two frequency components: one at fLO - f RF , referred to the intennediate 

frequency ifiF), and the other one at fLO + f RF. If the ant~nna picks up a strong interferer 

at the frequency fLO + f IF , this signaI, referred to the image signal, is going to get 

partiaIly amplified by the LNA, and appears at the output of the LNA, as shown in 

Fig.3.2-b. The image signal gets modulated by the mixer, and is translated to the 

fLO-fRF frequency, i.e. it appears in the same IF frequency band as the downconverted 

RF signaI, corrupting the desired channel. Note that, since the power of the image signal 

can not be determined heforehand, it may be strong enough to seriously damage the 

desired channel. The image signal can he in the form of noise or simply a strong 

interferer. 

The image rejection ratio (IRR) is typicaIly used to characterize the amount of 

image suppression a receiver (or a filter) provides with respect to the desired signal. It is 

expressed as 

IRR = 1010g~out-l~ -1010g Pin-lM, 

out-SI Pin-Si 
(3.1) 

where Pout-lM and Pout-Si are the output powers of the image and of the desired 

signaIs, respectively, and Pin-lM and Pin-Si represent the powers of the input 

signaIs. 
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Figure 3.2 The image problem. a) A simplified structure of a front-end receiver. b) The 
RF and the image signais. c) The downconverted signais at the intermediate frequency. 

Traditionally, a high-Q image-reject filter is placed before the mixer. Off-chip 

image reject filters are typically used. SA W filters, with son input impedances, are the 

most common choice for this application. Unfortunately, off chip filters introduce many 

restrictions on the overall receiver design. In such a scenario, the output impedance of the 

LNA and the input impedance of the mixer must be matched to son, in order to maximize 

power transfer. At 5GHz, this matching procedure is hard to realize, since the slightest 

parasitic would considerably affect it. Ibis added complexity comes with an added cost as 

weIl, which is not desirable in wireless consumers products. Fully integrated solutions are 

therefore needed. 

3.2.2 - Image Reject Filters 

Consider the LC network shown in Fig. 3.3-a. At resonance, i.e. when the negative 

impedance of the capacitor equates in amplitude that of the inductor, a low impedance 

path is created from the input RF signal node to ground, thus shunting the RF signal at a 
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(a) (b) f 

Figure 3.3 a) Notch filter, and b) its transfer function. 

specifie frequency. The transfer function ofthis tank is shown in Fig. 3.3-b, with the notch 

resonant frequency given by 

(1) 

Assuming ideal devices, the quality factor of the Le tank would be infinite, 

resulting in an infinite notch depth. In reality, the series parasitic resistances of the 

devices dramatically affect the tank's quality factor. For silicon-based RF circuits, the 

poor inductor Q-factor is dominant. This would limit the notch filter' s depth to a few 

dBs, and does not allow sufficient image rejection. To obtain acceptable image rejection, 

on-chip Q-enhancement techniques, such as the ones suggested in Section 2.2.2, are 

therefore needed. 
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Figure 3.4 Schematic of the CMOS equivalent circuit for the LNA and 
notch filter proposed by Macedo et al. [15]. 

3.3 - Macedo's Notch Filter and its Limitations 
When Implemented in a CMOS Technology 

An image reject filter which uses the negative resistance concept was reported 

by Macedo et al. [15]. The circuit was integrated and demonstrated in a O.5J.1Ill bipolar 

technology. When mapped to a CMOS technology, it results in the circuit shown in Fig. 

3.4. Its operation can he summarized as follows: 

i-Transistors Ml and M3 form a cascode low noise amplifier with an overall gain 

set by the L~T resonant tank, and by the sizes and biasing currents of the transistors. A 

cascode amplifier stage was chosen to isolate the input port from the output one, which 

improves stability. By modifying the DC voltage at the gate of Ml, i.e. by varying the 

biasing current, gain controllability can be achieved. 
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ii-Within the frequency band of the LyCTresonant tank, the impedance ZN_Mlook­

ing into the notch filter is re1atively large. Thus, the overall circuit operates like a regular 

LNA with Ls as inductor degeneration. 

iii-Capacitors CNI and CNb along with inductor LN' implement the notch filter. 

Their sizes were chosen such that the combination of CN/CN2 and inductor LN set the 

notch frequency. When the absolute values of the reactances of capacitors C NI and C N2 

equal the reactance ofinductor LN, a low impedance connection to ground is created. This 

results in shunting the AC signal to ground, and therefore obtaining a notch response at 

this frequency. Transistor M2 provides the negative resistance that compensates for the 

losses of inductor LN 

Inductor Ls provides source degeneration. It also matches the real part of the char­

acteristic input impedance (typically 500). Inductor Lg cancels the reactance efIect of the 

parasitic gate to source capacitance Cgs of transistor Ml. 

The fust limitation that was identified in the circuit of Fig. 3.4 was related to the 

fact that the DC current of the notch circuit affects the DC biasing of the LNA. Transistor 

M2 obtains its current through transistor M3. The depth of the notch is controlled by vary­

ing the biasing current of transistor M2. By varying the biasing of M2, the biasing of M3 

is also altered. Due to the strong channellength modulation efIect in modem submicron 

CMOS technologies pl. can be as large as 0.4 in a CMOS 0.18J.1m standard technology), 

the response of the LNA is therefore affected, when tuning the notch depth. Preferably, the 

DC current of the notch filter should be independent from that of the LNA. 

A small-signal analysis was performed to derive the input impedance ZN_M of the 

notch circuit in Fig. 3.4. The equivalent-circuit is shown in Fig. 3.5. For simplicity, the 

dynamic elements are ignored (i.e. the output transconductance and the parasitic drain to 

source capacitor). Only the parasitic series resistance rs of the inductor is considered. The 

gate to source parasitic capacitor of transistor M2 is included in the value of CNI . Since 
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Figure 3.5 Small-6ignal model of the notch filter in [15). 

capacitors C Ni and C N2 are at least an order of magnitude larger than the parasitic drain to 

bulk (Cdb), source to bulk (Csb)' and the gate to drain (CgcJ> capacitors, Cdb, Csb' and Cgd 

were not included in the following analysis. The input impedance of the notch filter is 

obtained by solving for ZN _ M = V in 1 iin' The real and imaginary parts of the input 

impedance are then derived. The real part gives the resistance that needs to be compen­

sated for. The imaginary part of ZN-M sets the frequency of the notch. Analyzing the small-

signal equivalent circuit shown in Fig. 3.5, we get 

(3.2) 

(3.3) 

and 

(3.4) 

where gm2 is the transconductance of transistor M2, and v gs is its gate to source voltage. 

Solving the above set of equations, the real and imaginary parts of ZN_Mare found to he 

(3.5) 
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Im{Z } = - NI N2 + gm2 2 :fL gm2 
(

C + C ) 2 J 
N M 2;fiC C ~ 1t r' s 2 2 

- 1t NI N2 (21tf)\""NI CN2 (21tf) CNI 

1 
x-----2-------2~2~ 

(1 + gm2/(2nj) CNI) 
(3.6) 

From equation (3.5), the negative resistance is given by Lsgm2 . In order to obtain 
CNl 

an infinite notch depth, this negative resistance needs to compensate not only for '$' but 

aIso for the grr;,2 2 term. This results in higher power consumption than necessary. 
(2nf) CNl 

Compensation is further complicated due to the dependence of this additionaI resistive 

term on gm2' Moreover, equation (3.6) suggests that the frequency of the notch does not 

depend only on CN/> CNb and LN' It aIso depends on rs and gm2 1. The dependency on,s 

introduces an undesirable additionaI design constraint. The dependency on gm2 is rather 

detrimental. As gm2 is varied to control the depth of the image rejection, the notch fre­

quency will shift! This makes the design and control of such a circuit very difficult. As 

discussed in the following section, the circuit proposed here does not suifer from any of 

the limitations above. 

1. For the notch circuit proposed here (Section 3.4), the negative resistance needs only to compen­
sate for rs. simplifying the control of the circuit and minimizing power consumption. 
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Figure 3.6 Schematic of the LNA and proposed notch filter. 

3.4 - Proposed LNA- Notch Circuit and Design 
Equations 

Fig. 3.6 shows the new notch filter circuit, connected to a cascode LNA. Similar to 

the circuit in Fig. 3.4, the impedance ZN looking into the gate ofM2 is larger than 1/gm3 at 

the midband frequency of the LNA, thus not affecting its operation in this frequency band. 

At the resonant frequency of the notch circuit, ZN is low and the RF current is steered 

away from transistor M3, resulting in signal attenuation at the output. Transistor M2 com­

pensates for the losses in the Le-tank of the notch circuit. It should he noted that the bias­

ing of the notch tilter is not obtained through transistor M3, and thus it does not affect the 

LNA De biasing. 

The sizes of transistors Ml and M3 were carefully chosen to provide more than 

15dB of gain at the center frequency of the LNA, while minimizing the noise figure. Tran­

sistor Ml was chosen to he relatively large. Large transistors have the advantage of pro-
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viding high transconductances at relatively small hiasing currents, and therefore achieving 

the desired gain with minimum power consumption. Also, since this results in a larger Cgs' 

a smaller inductor for the input matching circuit can be used. On the other hand, using a 

large transistor results in higher substrate coupling and parasitic losses. Transistor Ml is 

200JlmlO.18Jlm, while the size of transistor M2 was chosen to be 50J!rnlO.18Jlm. A cas­

code common-source amplifier with a 50n load resistance was used to implement the 

buffer for output matching measurement purposes. 

3.4.1 - The Notch Filter 

The notch circuit is highlighted in Fig. 3.6. At the desired resonance frequency of 

the filter, impedance ZN can be set to be much smaller than 1/gm3. The smaller ZN is, the 

higher the RF signal suppression will be. Analyzing the small-signal equivalent circuit of 

the notch filter (Fig. 3.7), the following equations are obtained 

(3.7) 

(3.8) 

(3.9) 

and 

(3.10) 

Solving the above set of equations, the real and imaginary parts of ZN were found to he 

(3.11) 

(3.12) 

Comparing equations (3.11) and (3.12) to equations (3.5) and (3.6), we note the following: 
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Figure 3.7 Small-signal model of the proposed notch tilter. 

1- Both circuits generate similar impedances. The circuit in [15] offers a 

smaller real impedance by a factor of 2 1 2 c: ,which 
(1 + gm2/(2rcf) NI) 

may result in an enhanced image rejection. However, the same way 

this factor decreases the impedance of Z M-N at the resonant frequency 

of the notch, it also decreases it around the LNA midband range, 

resulting in a decrease of the LNA gain. 

2- Equation (3.11) suggests that the proposed circuit generates a nega-

. . . b R gm2 hi h ds bve reslstance gIven y neg = 2 ,w c nee to 
(2rcf) CNI CN2 

compensate only for the inductor ohmic loss (r s), which is not the 

case for the circuit in Fig. 3.4. 

3- From equation (3.12), the frequency of the notch is given by: 

which is independent of gm and rs, as opposed to the case of the cir-

cuit in Fig. 3.4. 

(3.13) 
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Figure 3.8 Tuning of the magnitude of ZN by varying (a) CN20 and b) 9m. 

The magnitude of ZN (Bq. 3.11-3.12) is plotted versus frequency in Fig. 3.8. As 

demonstrated in the figure, by varying capacitor CN2 (e.g. using a varactor), the frequency 

of the minimum input impedance would vary, thus tuning the frequency of the notch ifN)' 

Keeping the notching frequency constant, while varying the transconductance of transistor 

M2 (e.g. by varying its bias current), results in controlling the input impedance, thus tun­

ing the depth of the filter's notch (Fig. 3.8.b). 
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3.4.2 - Stability of the Notch Filter 

Since capacitor CN2 in Fig. 3.6 implements positive feedback, ensuring stability 

under all biasing conditions is of prime importance. Stability was frrst verified by deriving 

the transfer function of the overa11 LNA-notch circuit, including the input matching induc-

tors Ls and Lgo in order to obtain the positions of the poles and zeroes 1. First, the LNA gain 

was fixed and set to 15dB. Under this biasing condition, two of the poles were real and 

negative. The other two poles were complex conjugates, and a locus plot is shown Fig. 

3.9-a. The transconductance of transistor M2 was varied from 0 to lOOmAN, i.e. with the 

negative resistance value tuned from 0 to -75Q. This is much larger than the maximum 

negative resistance needed to theoretically achieve an infinite-Q notch. As expected, by 

keeping the LNA biasing constant while increasing the biasing of the notch filter, the com­

plex poles move towards the right-half plane. The poles locations for two important 

transconductance values are highlighted in the figure, namely the transconductance 

needed to generate an infinite-Q notch, and the one which makes the circuit reach instabil­

ity. It is interesting to note that the gm2 needed for ideal compensation is aImost 5 times 

smaller than the one at which the complex conjugate poles reach the right-half plane, i.e. 

before the system reaches instability. This fact proves that the proposed circuit can, in the­

ory, generate an infinite notch depth, while remaining stable. Moreover, if the notch bias 

is even increased above that point, the circuit still provides a large safe margin before 

instability occurs. In modem submicron CMOS technologies, the transconductances of the 

transistors increase with increasing the gate to source voltages, then reach a maximum 

value, before starting to decrease. Therefore, one can choose the size of the transistor that 

provides the necessary gm for an infinite notch depth, while ensuring that this size never 

provides the transconductance value which would make the system reach instability. As a 

result, the filter can be designed to be a1ways stable. 

1. A complete analysis is summarized in Appendix B. 
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Figure 3.9 Locations of the poles of the LNA-notch circuit. Locus of the poles when 
tuning the biasing current of a) the notch fUter (M2), and b) of the LNA (M1). 

The biasing of the LNA (transistor Ml) was then varied, with the notch depth fixed 

to more than -50dB. As demonstrated in Fig. 3.9-b, the poles remained in the left-hand 

plane under all LNA biasing conditions. 

A simpler and maybe more practical approach for verifying stability, which yields 

the same results as above, while providing more insight, was considered as well. It con­

sists of modelling the notch filter as shown in Fig. 3.10, where Rgm3 is the source resis-

tance of transistor M3, RLoss is the equivalent parallel parasitic resistance of the LN' eNb 

55 



Robust RF CMOS Image Reject Filters 

Figure 3.10 A simple model of the proposed notch filter, used to study stability. 

and CN2 resonant tank, and Rneg is the negative resistance generated by the transistor. One 

can argue that Rneg can be equal in magnitude, or even larger than RLoss without compro­

mising stability, since Rgm3 provides sufficient damping to the sys~m. This means that an 

infinite-Q notch can be practically obtained, without compromising stability. 

3.5 - Experimental Results 

A prototype chip was implemented using a O.18Jlm gate length CM08 process, 

and was housed in a standard CFP24 package. Ground and DC signais are connected to 

the package through regu1.ar bonding wires, while on-chip probing is used for the RF input 

and output signais. 

S-parameters were measured using a 20GHz Agilent 8720E8 vector network ana­

lyzer. Figure 3.11 shows the transfer function of the LNA plus one image reject filter. A 

15.8dB LNA gain is obtained at 5.8GHz, and up to 62dB of stable image rejection at 

7.3GHz is demonstrated. The corresponding measured input and output reflection coeffi­

cients, S11 and 822 (Fig. 3.12), are -6.5dB and -13.5dB at 5.8GHz, respectively. Tunabil­

ity of the notch depth (Fig. 3.11) is achieved by varying the biasing of transistor M2 (Fig. 

3.6). The corresponding variation in 811 and 822 is shown in Fig. 3.12. Clearly, tuning the 

Q-factor of the notch filter bas minor effects on the system' s 8 Il and S22. 
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Figure 3.11 Measured forward transmission (821), showing the 
image rejection depth tunability. 

Many approaches for automatic Q-tuning have been introduced in the literature. 

For example, a master-slave technique, which consists of controlling the notch filter 

(slave) by correlating its response to that of a voltage controlled oscillator (master), can be 

added to the circuitry proposed here (e.g. [65]). This technique was implemented by Li 

and Tsividis in bipolar [65], but can be adopted for CMOS filters as weIl. For automatic 

Q-tuning, the image rejection should not he sensitive to small variations in the notch 's 

biasing current [15]. The image rejection of the single IRF filter proposed in this chapter 

with respect to the hiasing current of transistor M2 is plotted in Fig. 3.13, with the current 

varied from 1.6mA up to 2.1mA. As it can he seen from the figure, hiasing currents rang­

ing frOID 1.68mA to 2.0mA generate more than 35dB of image rejection. This suggests 

that the current in the notch can deviate as much as 10% around 1.82mA, while providing 

reasonable image rejection. This supports the practical feasihility of adding automatic 

Q-tuning to the circuit proposed here. 
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Figure 3.12 a) Measured input reflection coefficients (811), and b) measured 
output reflection coefficients (822) for different image rejection bias settings. 

Figure 3.14.b shows the midband gain behavior of the LNA as the notch depth is 

tuned (Fig. 3.14.a): it is interesting to note that only a maximwn deviation of IdB in the 

gain is observed over a wide tuning range, demonstrating that the notch filter does not 

affect much the behavior of the LNA. With the image rejection set to -62dB, the noise fig­

ure of the LNA-notch combined circuit is 4.1dB at 5.8GHz. With the notch circuit turned 

off, the measured noise figure is 3.3dB. With the LNA gain set to 15.8dB, a IdB compres­

sion point of -15dBm is measured. 

Excluding the output buffers, the circuit conswnes 9m W of power. Power con­

swnption can be further rninimized by using a folded cascode structure for the LNA [96]. 

The proposed notch fùter alone can operate from a IV supply voltage. Tuning of the 
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Table 3.2: Summary of the measured and simulated 
performance of the combined LNA-notch circuit. 

Simulated Experimental 
Technology CMOSO.18~m CMOSO.18~m 

fo. LNA 5.8GHz 5.8GHz 

LNAgain 17.5dB 15.8dB 
511 @5.8GHz -10dB -6.5dB 
522@5.8GHz -13dB -13.5dB 
NF@5.8GHz 3.3dB 3.6 dB 
fo - Notch 7.4GHz 7.3GHz 

Maximum image rejection -65dB -62dB 
VOD 1.8V 1.8V 
Power consumption 11mW 11mW 
Input 1dB compression point -16dBm -15dBm 
IIP3 -4.5dBm -5.3dBm 

notching frequency may be obtained by replacing capacitor CN2 by an accumulation mode 

varactor. The circuit measured performance is summarized in Table 3.2. Also shown in 

the table are the simulation results of the prototype layout, including ail devices, intercon­

nect, and packaging parasitics. 

3.6 - Proposed Receiver RF Front-End Architec­
ture 

Consider the band-reject filters shown in Fig. 3.15-a. Assume that the passive 

devices have acceptable quality factors, such as their transfer functions generate a 

maximum image rejection of -30dB (Fig. 3 .15-b). The IR frequencies of the filters are 

slightly offsetted, and are centered at 4.8 and 5.1GHz, respectively. In this case, each 

filter has a 3dB bandwidth of 84MHz. Cascading them with care could result in the 

transfer function shown in Fig. 3.15-c: A maximum image rejection of 55dB is obtained, 

with a -3dB bandwidth of 160MHz. More than 30dB of image rejection can now be 

obtained over a 400MHz bandwidth. 

Let's see how this idea can he exploited in RF heterodyne receiver front-ends. 
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Figure 3.15 a) Image reject filters using passive devices. b) Transfer function of the indl­
vidual image reject filters. c) The response of the cascaded filters. 
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Figure 3.16 a) Structure of the proposed receiver architecture. 
b) Transfer function of the LNA pius the two IRF's. 

Figure 3.16 shows the proposed front-end receiver architecture, aimed at reducing circuit 

complexity by eliminating the need for tuning the notch flUer, while ensuring adequate 

performance over PVT variations. The front-end does not employa PLL for tuning the 

notch (e.g. Fig. 3.l-a). Instead, it consists of cascading two notches after the LNA, with 

their image reject frequencies slightly offsetted. As a result, a wide image rejection 

. bandwidth can be obtained, without the need for extra notch frequency tuning circuits. 

For a 5.8GHz receiver with an 800MHz IF, and a veo frequency of 6.6GHz, the 

image signal would lie in the vicinity of 7.4GHz. For an image rejection bandwidth of 

200MHz, the fust and second notching frequencies are set to 7.3GHz and 7.5GHz, 

respectively. The rejections at the notching frequencies can he sharpened by using on­

chip active Q-factor enhancement for each notch independently. This solution 
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considerably decreases the power consumption and the complexity of the receiver. 

The LNA-notch filters combination in Fig. 3.17 was designed using the circuits 

reported in Section 3.4. The circuit opera tes as follow: 

i- Transistors Ml and M3 form a cascode LNA. 

ii- The first notch filter is connected at the drain of transistor M1.This ftlter was 

designed to nominally resonate at 7.3GHz. 

iii- Transistors M4 and M6 along with the 50n resistance form a cascode output 

buffer. The second notch ftlter was connected at the drain of transistor M4. 

This filter was designed to nominally resonate at 7.5GHz. 
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Figure 3.18 Photomicrograph of the double IRF LNA-notch combinatlon. 

Capacitor Cc is a large decoupling capacitor. The lOill resistance was used to 

block the AC signal from leaking to the biasing circuitry of the output buffer. 

Calibration of the wide image rejection bandwidth over process variation can he 

performed at power-up, thus eliminating the overhead of integrating a 7.40Hz PLL to 

track the image reject frequency. For example, an array of digitally controlled switch­

capacitors can he added to adjust the center frequency of the filters [66]-[69]. As a result, 

the power consumption of the front-end is rninirnized during receive mode. Since a PLL 

is not required to tune the image rejection frequency of the front-end, the power 

consumption during receive mode is significantly reduced. 

3.7 - Experimental Results 

The proposed front-end receiver was designed and integrated using a O.18J..1m 

CMOS process from TSMC. The prototype chip was housed in a standard CFP24 

package. The micrograph of the LNA double-notch combined circuit is shown in Fig. 

3.18. This chip occupies 1.2mm2, inc1uding all bonding pads. 
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The PCB board is shown in Fig. 3.19. Microstrip lines were manually designed. 

ParaUel surface-mount capacitors were connected to aU BNCs in order to filter out the 

DC lines and the power traces. The BNCs were placed on opposite sides of the board, in 

order to liberate enough space for on-chip probing, as shown in Fig. 3.20. 

Figure 3.21 shows the transfer function of the LNA plus the two IRFs. A +15dB 

LNA gain at 5.8GHz, and a minimum of 30dB of image rejection over a 400MHz band­

width centered at 7.4GHz, are obtained. This is much wider than the 200MHz bandwidth 

specification for the 802.11 a WLAN standard. Also, 40dB of IR is obtained for over a 

250MHz bandwidth. To the best of our knowledge, there bas not been any reported mea­

surements with such a wide image rejection bandwidth for CMOS RF heterodyne receiv­

ers, operating in this frequency range. The measured input and output reflection 

coefficients, 811 and 822, are -15dB and -12.4dB at 5.8GHz, respectively (Fig. 3.22). 

A comparison between the circuit performance in [60], which included automatic 

tuning for the IR filter, and the LNA double-notch circuit proposed here is summarized in 

Figure 3.19 pee of the LNA-double notch circuit. 
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Figure 3.20 Test setup showing combined wire bonding biasing and on-chip RF problng. 
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Figure 3.21 Measured forward transmission (S21) of the LNA-IRF front-end, show­
ing 30dB of image rejectlon over a 400MHz bandwidth. 

Table 3.3. First, the double IRF architecture greatly decreases the overall complexity of 

the heterodyne front-end since an entire PLL for tuning the filter's frequency was replaced 

by one extra notch filter (i.e. one transistor, two capacitors, and an inductor). Moreover, 

the power consutnption of the image reject filter in [60] and of its automatic tuning cir-

cuitry sums up to 12.5m W l , while the combined IR filters proposed in this thesis consume 

only 4mW, combined. Finally, the frequency of the image reject filter and the maximum 

amount of RF signal suppression obtained here are higher than the ones reported in [60]. 

3.8 - Conclusion 

A new implementation of a CMOS notch filter was reported earlier in this 

chapter. Then, a simple and robust implementation of on-chip image rejection, based on 

the cascade of two slightly offsetted image reject filters, was proposed in this chapter. 

1. The power consumption of the notch in [60], which is a differential circuit, was divided by 2 for 
a fair comparison. 
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Figure 3.22 Measured a) 811 and b) 822 parameters. 

The circuit does not requrre on-chip frequency automatic circuits nor off-chip 

components. The LNA and double IRF front-end demonstrated more than 30dB of IR 

over a 400MHz bandwidth centered at 7.40Hz in a standard CMOS technology. 
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Table 3.3: Summary of the measured performance of the combined 
LNA-two IRF circuit, and comparison to state-of-the-art. 

Thiswork Kor021u et aL r601 
Technology O.18~CMOS O.15J1m CMOS 
VDD 1.8V 1.5V 
fo_ LNA 5.8GHz 1.8GHz 

LNA gain 15dB 23.5 
fo- Notch 7.3-7.5GHz 2.0-2.2GHz 

30dB IR bandwidth 400MHz -
Maximum IR -62dB @ 7.5GHz -49dB @ 2.2GHz 

(from Fig. 3.21) 
NF 4.idB @ 5.8GHz 4.5dB @i.8GHz 
Power consumption 4mW i2.5mW 
of the IR filters (for both filters) (including tuning 

circuitry) 
Input idB compres- -i5dBm N/A1 

sion point 
IIP3 -5.3dBm N/A1 

1. The values reported in [60] are for the entire front-end. 
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Chapter 4 - Distortion in RF CMOS 

Short Channel LNAs 

4.1 - Introduction 

The linearity of LNAs is becoming of high importance for modem RF receivers. 

Even order harmonics generate DC offsets in homodyne receivers, while third-order 

intermodulation distortions, resulting from mixing with interferers in adjacent channels, 

can corrupt the desired downconverted signal channels. 

Several studies of the effects of the CMOS transistors characteristics on the lin­

earity of RF LNAs have already been reported, e.g. by Kang et al. [82], Toole et al. [83], 

Wambaq et al. [85], and Kim et al. [86]. The analysis reported in [82] discusses the third 

order distortion behavior of CMOS transistors for RF applications. The results presented 

are based on empirical coefficients obtained from measurements of specific devices. It 

focused mainly on the effect of the output transconductance of the transistors on distor­

tion. The analysis in [83] attempted to exploit a "sweet-spot" in the third-order distortion 

response, without providing practical detailed analytical equations relating specific tran­

sistor parameters to distortion. In Section 4.2, we are going to discuss this work, which is 

the latest distortion analysis reported in the literature for RF CMOS amplifiers. The anal­

ysis in [85] pro vides models to compute the distortion in CMOS LNAs, without 
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providing closed form simple expressions describing the effect of specifie transistor 

parameters, and thus without suggesting design guidelines to enhance the distortion 

behavior. The analysis in [86] proposes a technique to enhance the IIP3 of RF amplifiers 

by using multiple gated transistors, without focusing much on the fundamental behavior 

of distortion in the transistor itself. Besides, only the transconductance nonidealities were 

discussed in details. The effects of technology variations and of technology scaling were 

investigated in [87]-[88]. A model was proposed in [89] for large signal distortion analy­

sis and was applied to RF CMûS power amplifiers. Linearity analysis of switching pairs 

operating in the weak inversion region was presented in [97]. Distortion analysis for long 

channel RF CMOS amplifiers was reported in [98]. In that analysis, only the effect of Cgs 

was considered. Up to date, all reported studies do not pro vide closed form frequency­

dependent expressions describing the second-order harmonie distortion in RF CMOS 

short-channel based LNAs, which is becoming a major problematic issue in modern 

homodyne receivers. Studies of second-order distortions in MESFET and HBT devices 

have already been reported (e.g. [99], [100]). 

In this chapter, a complete method to estimate the distortion in RF low noise 

amplifiers is presented. Compact equations relating distortion to the CMOS transistors' 

design parameters are derived. The approach used is based on the theory of Volterra's 

series [101]-[107]. Volterra's series are time dependent power series which can be used to 

describe systems with memory, i.e. employing capacitors and inductors. The CMOS tran­

sistors characteristics considered in this work inc1ude the source resistance (rs)' the output 

resistance (ra)' the parasitic gate-to-drain (Cgd), gate-to-source (Cgs), and drain-to-source 

(Cds) capacitances [108]. For simplicity, the substrates of the MûS transistors are 

assumed to be connected to the sources, and substrate leakage currents are not inc1uded, 

since they do not produce considerable amount of distortion [82]. The analysis is per-
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Figure 4.1 a) Commo" source LNA. b) Folded cascode LNA. 

fonned on a common source RF amplifier and on a folded cascode amplifier (Fig. 4.1). 

The chapter is organized as follows: Section 4.2 gives an overview of the limita­

tions of the use of the sweet-spot point for RF applications. The procedure to obtain 

closed-fonn expressions describing the distortion in nonlinear circuits using Volterra's 

series is presented in Section 4.3. Distortion analysis of a single-transistor amplifier and 

of a folded cas code amplifier is then discussed in details in Section 4.4. Distortion-aware 

design guidelines for RF LNAs are provided in Section 4.5. The chapter concludes with a 

verification of the analytical results proposed through a comparison with measured 

results from an LNA chip prototype. 

72 



Distortion in RF CMOS Short Channel LNAs 

4.2 - Limitations of Using the Distortion Sweet­
Spot Point for RF Applications 

A summary of the work presented in [83] is discussed in this section. To the best 

of our knowledge, it is the most recent distortion analysis of RF CMOS amplifiers 

reported in the literature. In short-channel CMûS transistors, the main source of distor­

tion cornes from the nonlinear behavior of the transconductance. Assuming the output 

transconductance to be linear and that the cross modulation between the transconduc­

tances is negligible, the AC CUITent in a MûS transistor can be modeled as: 

(4.1) 

As explained in Chapter 2, the second-order transconductance gm2 equals OA/V at zero 

Vgs' then increases before reaching a maximum value at a small overdrive voltage (Vgs-

Vt) (Fig. 2.5). Further increase in Vgs results in decreasing gm2' As a result, gm3' which is 

obtained by differentiating gm2 with respect to Vgs' decreases to zero at a very small over­

drive voltage, i.e. when the transistor is still operating in the moderate inversion region. 

Therefore, theoretically, if the transistor is biased at this operating point, known as the 

"sweet-spot" point [83], the third-order harmonic distortion wou Id tend to be zero, which 

would result in an infinite third-order output intercept point (OIP3). It is an attractive line 

of thought to follow for analog circuit designs in general. 

Typical structures of low-noise, low-power, RF amplifiers are shown in Fig. 4.2, 

and are used in the following analysis. For simulation purposes, the tank impedance was 

set such that the LNA midband gain is maximized at around 5GHz. Capacitor CT models 

the parasitic capacitances of the on-chip inductor and ail of the parasitic capacitances that 

appear at the tank from wiring connections. It also includes the parasitic capacitances of 

subsequent stages that are usually connected to the output node of the LNA. After evalu­

ating CT' LT was chosen to resonate the tank at 5GHz. RT models the parasitic resistances 

of the LC tank. In standard CMûS processes, the typical quality factors of on-chip induc-
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.................. 
• 

............ z : 
..... g. 

. . ....... ,. 
Figure 4.2 Circuits used for analysing the "sweet-spot" point in RF CMOS LNAs. 

tors at 5GHz are in the range of Q=4-8. The sizes of the transistors were set ta 

125J.lm/O.18J.lm, which is reasonable for RF LNA designs. First, the circuit was simu­

lated without using any degeneration impedances or input matching inductors. The output 

intereept point was then obtained from transient simulations based on the BSIM transis­

tor models in HSPICE. As expected and as obtained in [83], the OIP3 is maximized at the 

biasing point where the third-order transconductance reaches zero (Fig. 4.3). At that 

point, the maximum RF LNA midband gain obtained, without degeneration impedances, 

was 6dB. The circuit was then simulated after adding a small degeneration resistor (20n). 

As demonstrated in the plot, the OIP3 results changed - the maximum OIP3 in the moder­

ate inversion region has decreased by 5dB and shifted to a lower bias CUITent value. The 

latter is obviously desirable from a power point of view. 

In most wireless systems, the LNA is preeeded by an off chip filter or by an RF 

antenna. These blocks are typically designed with son. output impedances. Therefore, to 

maximize the power transfer between them and the LNA, input matching becomes criti­

caL Henee, an input matching inductor Lg with a Q of 5 was added to the circuits in Fig. 

4.2, and the degeneration resistor was replaced by an inductor Ls' The cOITesponding 

OIP3 is shawn in Fig. 4.3. The value of the gate inductor Lg was chosen such that the 
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Figure 4.3 OlP3 simulations of a single transistor amplifier i) without degeneration 
and input matching, ii) with a degeneration resistor, and iii) with a degeneratlon 
resistor and input impedance matching. Note that varying the overdrive voltage is 
equivalent to biasing the transistor at different current bias points. 

input reflection is less than -10dB at 5GHz. It is interesting to note that by adding Lg, the 

OIP3 in the moderate inversion region decreased by about 15dB from its original peak 

(Fig. 4.3). 

The ûlP3 decreases with the addition of the input impedance matching and the 

degeneration impedance due to the feedback path created between the output voltage v 0 

and the fundamental tone of the input signal (Fig. 4.4). The OlP3 depends mainly on 

three responses: the third-order response of the circuit, the cross-modulation between the 

second-order harmonie distortions and the fundamental tone, and the cross-modulation of 

higher order terms. In LNA designs, when the circuit is stable and the transistor is operat­

ing in the deep saturation region, the CUITent in the MûS transistor converges within the 

[IfSt few terms of its Taylor's expansion (Eq. 4.1). Thus, high-order harmonics are rela-
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t---.... ---...... ~-+-..... -~t-Ovout 

Figure 4.4 Small signal model of a FET transistor, showing the effect of input imped­
ance matching and the degeneration impedance as a feedback path. 

tively small and can be neglected. If a degeneration impedance is used in the LNA, an 

AC ground appears at the source of the input transistor, such that the second-order har­

monic output response is isolated from the input node. A small feedback path however 

still exists through the parasitic gate to drain capacitor Cgd. Since the value of Cgd is typi­

cally very small, only slight cross-modulation between the fundamental tone and the 

second harmonic occurs and does not affect much the OIP3. However, as illustrated in 

Fig. 4.4, with degeneration, the output second-arder response of the LNA is fed back to 

the input node via Zs and the large parasitic capacitance Cgs• Hence, the second-order 

response mixes with the fundamental tone and greatly degrades the third order intercept 

points [109]. It is interesting to note that at the bias operating point where gm3 equals 

zero, gm2 (the second-order non-linear response of the transconductance) reaches a maxi­

mum. As a result, at this sweet-spot point, the second-order harmonie distortion and the 

cross-modulation of the second-arder response with the fundamental tone are large. 
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Figure 4.5 OIP simulation of a 5GHz cascode amplifier with a degeneration induc­
tor of 200pH, a load inductor of 1.2nH, and a transistor sizing of 125Jlm/O.18Jlm. 

By simulating a more typical RF LNA structure, namely a cascode structure with 

a degeneration inductor of 200pH and a 1.2nH load inductor with a quality factor of 5, 

the maxima in the OIP3 response in the moderate inversion region disappears, as demon-

strated in Fig. 4.5. 

The above suggests that the use of the "sweet-spot" point in the moderate inver­

sion region for CMOS short channel transistors might not be easily applicable for RF 

LNA designs. However, it can be greatly appreciated in amplifiers operating at lower fre­

quencies [83]. 
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Figure 4.6 Schematic representation of an n-th order system response [85]. 

4.3 - Basics of Volterra Series 

Under sorne general continuity requirements, i.e. the function and its n frrst deriv­

atives are continuous and differentiable, the output of a nonlinear system can be 

expanded into a Volterra series. The Volterra series can be seen as the sum of the 

responses of a frrst-order operator, a second-order operator, etc. (Fig. 4.6). Assuming H(t) 

is a nonlinear system and x(t) is its input, the output y(t) can be expanded as 

(4.2) 

where 

Hi(x(t» = ( ... ( (hi('ti.···'t)·x(t-'t1)···x(t-'t)d't1···d't), (4.3) 
-00 -00 

is the ith Volterra operator, and hi (.) is the ith Volterra kernel. The Laplace transform of a 

multi-dimensional function hn (.) is 
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Cgd 

Vin 00--+-1 ...... ---11 
Vgsl . Cgs 

(a) 
Cgd Vout 

JL~-+~l~~I~~--~~--~--~-o 
-= Vgsl Cgs igml_2 

(b) 

Figure 4.7 Small-signal equivalent circuit of the LNA in Fig. 4.1a: a) the circuit 
used for the first-order kernel analysis, and b) the circuit used for the second 
order kernel analysis. 

00 00 

-00 -00 

(4.4) 

where si is the Laplace variable in the ith dimension. The nth order Laplace transformed 

Volterra kernel defines entirely the nth order behavior of the system in the frequency 

domain. 

A method based on Volterra series to study the nonlinear effects of transistors in 

continuous time analog circuits was presented in [101] and is adopted for our analysis. It 

can be summarized as follows: 

1- A small-signal nodal analysis is initially performed to obtain the first-order 

response of the circuit (e.g. Fig. 4.7-a). The set of transfer functions relating the input 

voltage vin to the nonlinear internaI voltages (the gate-source voltages vgsk) is then 

derived. The equations obtained Can be arranged in a matrix format as follows 
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ail Q12 ...... alK 
Vout 
v ClVin 

(4.5) a21 ... ... -.. ... gSl 0 
... ... '" ... . .. v 0 gS2 
... ... ,-, ... . .. 

a
Kl ...... aKK v 0 

... gsK '-v----' 

A(s) Bfs)' C(s) 

where aZm is a function of the circuit' s parameters in the frequency domain, and K is the 

number of transistors. Dividing through by v in' and taking the Laplace transform, the 

column vector on the left hand si de becomes 

(4.6) 

where Hnvgsk(s) is the nth-order transfer function between the input voltage and the gate­

source voltage of the klh transistor. Using Kramer's mIe, we can then solve for Hnout(s) 

and for Hnvgsl (s) up to HnvgsK(S) • 

2- To obtain the second-order nonlinear response, the circuit is then analyzed as in 

step 1 with the nonlinear inputs i gmk _ 2 placed in parallel with each nonlinear element, 

and with the linear input Vin short circuited (Fig. 4.7-b). The value of the second-order 

nonlinear CUITent source i gmk _ 2 is gi ven by [110] 

(4.7) 

whereK
gmk

_
2 
is the second coefficient in the Taylor expansion of the relationship between 

the voltage and the CUITent in a CMOS transistor. For CMOS devices with width W and 

length L, when the transistor is operating in the deep-inversion saturation region, the 

drain CUITent is approximately given by: 

(4.8) 

where a is related to the subthreshold slope factor, ESATis the critical electrical field, Cox 

is the capacitance per unit gate area, VT is the threshold voltage, VA is the Early voltage, 

and Ile!! is the effective mobility modeled as 
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(4.9) Pe!! = V +V V + V 2 

( gS Tl (gS Tl 
1 +(ua +uc Vsb ) T ) +ub T ) 

ox ox 

for short channel MûS devices. In Eq. (4.9), Ua and ub represent the first and second 

mobility degradation coefficients respectively, Uc is the body-effect of the mobility degra­

dation coefficient, Tox is the oxide thickness, and ~o is the charge's mobility [110]. For 

the derivation of the nth nonlinear response, the terms K
gmk

_
n 

can then be obtained by 

deriving n times the expression of the CUITent Id with respect to Vgs (Appendix Cl). 

Note that it is possible to write the system's equations such that the resulting square 

matrix A(s) and its determinant A(s) have the same format as that of Eq. (4.5). In fact, 

only the input vector (matrix C(s) in Eq. (4.5)) becomes a function of the nonlinear cur-

rent sources i gmk . 

3- With the frequency variable s replaced by sZ+s2 in the A(s) matrix, and using 

Kramer's mIe, the second-order output response of the circuit can be calculated as 

follows: 

(4.10) 

where E(sbs2) is the determinant of the square matrix in (4.5) when the first column is 

replaced by the nonlinear input vector. In order to calculate the magnitude of the second­

order harmonie distortion for a sinusoidal input with amplitude Vin' it is sufficient to eval­

uate the magnitude of 

(4.11) 

where Bout1( s) is the linear transfer function of the circuit. 

4- The third harmonic distortion is calculated by following a similar procedure to 

that described in the previous steps, with s replaced by sZ+s2+s3' and with igmk - 3 given 

by: 
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(4.12) 

For s] = s2 = s3' Eq. (4.12) simplifies to: 

(4.13) 

where the second term of the right-hand side represents the intermodulation effect of the 

frrst- and second-order harmonics on the third-order one. The third-order response of the 

circuit can be evaluated as is the second response of the circuit, with the frequency vari­

ables (sI> s2) replaced by (sI> sb s3)' It is thus given by 

(4.14) 

The third-order intermodulation distortion can then be evaluated using 

( 4.15) 

where w] and W2 are the frequencies of a two-tone input test signals with equal ampli­

tudes. Finally, the IIP3 is given by: 

_ (vout(I,2)-IM3) 
IIP3 - 2 + vin' (4.16) 

where V out( 1,2) is the amplitude of the output signal at the w] or w2 frequencies, and can 

be estimated by v out( 1, 2) = H out 1 v in . 

Although it will not be done in this thesis, this method can be extended to calcu­

late the n th kernel of the Volterra series [85]. This would require using nonlinear current 

sources of the nth order, and repeating the process described in the previous two steps. 

For low-noise amplifiers, the input signal is usually small, and thus the small-signal cur-
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rent in the MOSFET transistor (Eq. (4.1)) norrnally converges within the frrst few terrns. 

Moreover, the transfer functions of LNAs typically have low-pass or bandpass responses, 

which helps filtering out high-order frequency terrns generated in the transistors. It is 

therefore sufficient to de scribe the distortion behavior in LNAs with only the second and 

third-order responses. 

The remainder of this chapter studies the second and third-order harmonic distor­

tions in RF CMOS short-channel LNAs operating in the deep inversion region. The 

analysis shows the effects of transistor parasitics such as the source resistance (rs)' the 

output transconductance (modelled by a linear resistor r 0)' the parasitic gate-to-drain 

(Cgd), gate-to-source (Cgs), and drain-to-source (Cds) capacitances, and the transconduc­

tance nonidealities on distortion. Distortion aware design guidelines are suggested 

throughout. 

4.4 - Distortion Analysis of RF CMOS LNAs Using 
Volterra's Series 

As explained earlier, small-signal analysis of the circuit of interest has to be per­

forrned first in order to obtain the nth-order behavior. The equivalent circuit for the 

common source RF amplifier in Fig. 4.1-a with degeneration is shown in Fig. 4.7 -a. The 

following set of equations are obtained for this circuit by performing nodal analysis1: 

(4.17) 

(4.18) 

(4.19) 

1. Note that in order to reduce the complexity of the equations reported, the effect of Cgd was neglected. 

It is however included in the final model and its effect is studied, as will he shown later in this chap­
ter. 
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(4.20) 

where gml is the transconductance of Ml, Zds = l/(l/ro + sCds ), and ZTank is the 

paraHel combination of RTank , CTank , and LTank. AH capacitors in Fig. 4.7 are assumed to 

be linear [108]. Equations (4.17) to (4.19) were [Ifst rearranged in a matrix format, then 

expressions for the second and third-order harmonic responses were obtained, as 

explained in steps 2- to 4- in Section 4.3. The same analysis was performed for the folded 

cascode LNA shown in Fig. 4.l-b, and interestingly yielded equivalent results. 

Expressions describing the third-order intermodulation distortion in the LNA were also 

derived and are summarized in Appendix C2. 

Although exact c1osed-form expressions for the second and third-order distor­

tions dependencies on the combined CMOS transistor characteristics were obtained using 

the mathematical tool Maple and were verified experimentally (Section 4.6), they were 

very complex, providing no insight or value for hand analysis. In order to provide the 

reader with practical design guidelines, we derived compact analytical expressions for 

distortion, taking into account only one CMOS parameter at a time. Due to the fact that 

the system is nonlinear, one could argue that superposition can not be used, in theory. 

However, since the circuit is actually weakly nonlinear, and it normally handles rel a­

tively very small signals, the cross-modulation terms resulting from the interactions 

between the different CMOS nonidealities were found to always be very small, com­

pared to the other distortion terms considered and reported in this paper. Thus, these 

cross-modulation terms could be neglected, and a superposition-like analysis could safely 

be carried out, as supported by numerous simulations and measurements presented here. 

4.4.1 - Effeet of the CMOS Transconduetanee (gm) on Distortion 

Considering the effect of gml alone, the following HD2 and HD3 expressions 

were derived: 
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Figure 4.8 Effect of gm: Analytical and simulated distortions a) H02, and b) 
H03. [W/L = 50Jlm/0.18Jlm, Rtank= 3000.]. 
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ml 

(4.21) 

(4.22) 

where Kgm-2 and Kgm-3 are the second and third coefficients of the taylor expansion of 

Id (Vgs J, as explained in Section 4.3, and are constant for a given bias point. Note that, 

since the Kgm-i tenns depend on the biasing CUITent, for every gm value, the Kgm-i tenns 

have to be, and are, re-evaluated. By increasing the transconductance of transistor Ml, the 

harmonie distortions Can be significantly decreased 1 (Fig. 4.8). For example, an increase 

of 30% in gml results in a 9dB decrease in HD2. It is interesting to note that both Kgm-i 

(Appendix Cl) and gml are proportional to W / L, and therefore the second and third 

order harmonie distortions due to gml are independent of the W / L ratio, and are 

only inversely proportional to Vgs • In a distortion aware design context, this translates 

to a preference of selecting a relatively small transistor size, capable of providing the nec­

essary gm when biased at the highest possible overdrive voltage (Vgs-Vt), in order to 

1. Note that, for ail simulation results presented in this section, Vin = ImV unless otherwise specified. 
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Figure 4.9 Analytical and simulated distortions: Effect of Cgs for two different 
transistor sizings. 

decrease the effect of gm on distortion. 

4.4.2 - Effect of the Gate-Source Capacitance (Cgs ) on Distortion 

Expressions for HD2 and HD3 caused by C gs were obtained using Maple: 

(4.23) 

(4.24) 

The source resistance rs was set to a typical value (i.e. 2.0.). From equations (4.23) and 

(4.24), setting f= 5GHz, Cgs = 60fF, and W/L =50J.lmlO.18J.lffi, we have srsCgs = 0.0037 

« 1. It can therefore be concluded that increasing Cgs will almost have no effect on 

HD2 or HD3. This statement was verified using HSPICE and Maple, for different tran­

sistor sizes and bias currents (Fig. 4.9). This suggests that it is possible to decrease the 

size of the input matching inductor of an LNA, while maintaining the same resonant fre-
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Figure 4.10 Effect of Cgd : Analytical and simulated distortions a) H02, and b) 
H03. [W/L = 50j.1m/0.18j.1m, Rtank = 3000.]. 

quency at the input, by simply adding a capacitor in paraIlel with Cgs , aIl without 

affecting the linearity of the circuit. Figure 4.9 aIso suggests that Cgs has no impact on 

HD2 and HD3, for different transistor sizings and bias currents. 

4.4.3 - Effects of Parasitic Capacitances Cds and Cgd on Distortion 

When considering Cds aIone, HD2 and HD3 were found to be: 

HD2(s) 
1 Kgm _ 2(1 + sCdsZTank) 

= 2vin 
(1 + 2sCdsZTank)gml 

(4.25) 

HD3(s) 
= ..!..iin K gm _ 3(1 + sCdsZTank) 

12 (1 + 3sCdsZTank)gml 
(4.26) 

Similar expressions were obtained for Cgd and are given by: 

HD2(s) 
= 1 K gm _ 2(1 + SCgdZTank) 

2Vin
(1 + 2SCgdZTank)(sCgd-gml) 

(4.27) 

HD3(s) 
= 1 2 K gm _ 3(1 + SCgdZTank) 

12
Vin

(1 + 3SCgdZTank)(sCgd-gml) 
(4.28) 
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The term (sCgd-g m1 ) in the denominator of HD2(s) and of HD3(s) in the above equa­

tions represents the feedback that the parasitic capacitor Cgd introduces between the input 

and the output of a single-transistor LNA. As the sCgd increases and gets closer in value 

to gm' the term (sCgd-gm1 ) decreases, which results in an increase in the second and 

third-order distortions. Theoretically, the above equations imply that for a specifie bias­

ing condition, the distortion generated due to the feedback through Cgd can be infinite. 

However, when the transistor is operating in the saturation region, as generally is the case 

in LNA designs, the parasitic capacitor Cgd is mainly due to the lateral diffusion of the 

drain region below the gate's oxide, giving rise to an overlap region between them. This 

capacitor is linearly dependent on the width of the CMOS transistor and is given by 

C gd = WCoxXd' where xd is the width of the overlap. The value of this overlap is rela­

tively small. For example, for a 1 OO~m width 0.18~m length transistor, with frequencies 

up to 10GHz, the term sCgd is always smaller than gm' Therefore, practically, the distor­

tion in RF LNAs due to C gd is limited. Figure 4.10 suggests that the effect of C gd on 

distortion is higher than that of Cgs (Fig. 4.9), but it remains relatively weak, compared 

to, for an example, the effect of gm' By varying Cgd from OfF to 200fF, the distortion 

deteriorates only by about 4dB. 
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4.4.4 - Effects of the Output Resistance r 0 and of the Source Resistance 

(r s) on Distortion 

The output resistance of the MOSFET transistor is modelled as ro in Fig. 4.7. It is 

assumed linear, in order to keep the analysis simple [83]. It introduces a certain amount 

of distortion, since it creates a signal path between the source and the drain of the transis­

tor [l09]. Note that without including rs in this analysis, ro would appear between vout 

and V dd' in parallel with the tank impedance, and we would not be able to derive its para­

sitic effect on the circuit. In reality, the parasitic resistance rs at the source of a MOSFET 

is typically around 2n.. When considering ro' HD2(s) and HD3(s) were found to be 

(4.30) 

where 

(4.31) 

Analytical and simulation results demonstrating the effect of the output resistance are 

shown in Fig. 4.11. As expected, the distortion decreases when increasing the output 

resistance. 

Taking only rs into account, HD2 and HD3 are given by: 

HD2(s) (4.32) 
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Figure 4.11 Analytical and simulated distortions: Effect of ra a) H02, and b) 
H03. [W/L = 50Ilm/O.18Ilm, Rtank = 300Q). 

(4.33) 

Equation (4.32) suggests that HD2 is almost inversely proportional to the square of the 

degeneration resistor rs' while Eq. (4.33) shows an inversely proportional cubic relation­

ship between HD3 and rs' The LNA in Fig. 4.l-a was simulated with a bias current of 

2mA and a gain of 15dB, while rs was varied from 2Q to 80Q. As shown in Fig. 4.12, a 

source resistance of only 20Q can decrease HD2 and HD3 by 6dB and lOdB, respec-
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Figure 4.12 Effect of r s: Analytical and simulated distortions a) H02, 
and b) H03. [W/L = 50J.l.m/0.18J.1.m, Id = 2mA, Rtank = 3000.]. 

tively. This asserts the common knowledge that, in a distortion-aware design, adding a 

degeneration impedance to the source of the input transistor significantly decreases dis­

tortion, since the latter is square/cubic inversely proportional to it. This can practically be 

achieved using a small resistor or inductor. While both elements will have the same effect 

in terms of distortion, inductors are invariably the elements of choice, due to their mini­

mal effects on the noise figures of LNAs. 
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4.5 - Practical Considerations in Distortion-Aware 
LNA Designs 

From the analysis presented earlier, it is possible to summarize the distortion­

aware design guidelines for RF CMOS LNAs as follows: 

1· Select the smallest possible transistor which will provide the necessary gm 

when biased at the highest possible overdrive voltage (Vgs• Vt): A small 

transistor will minimize the effects of Cds and Cgd (Section 4.4.3), while a 

large (Vgs-Vt) will decrease the distortion caused by gm (Section 4.4.1). 

2· Add a capacitor in parallel with the Cgs of the input transistor: This is to 

mitigate the use of a small transistor. The addition of Cgs wou Id lower the 

input impedance and ease input matching, without having any effect on distor­

tion (Section 4.4.2). 

3· Add a degeneration impedance to the source of the input transistor: Only 

a small degeneration impedance will significantly decrease distortion, since 

the latter is square/cubic inversely proportional to it (Section 4.4.4). 

To demonstrate the value of the above design considerations, three low-noise 

amplifiers were designed and simulated. Their respective parameters are shown in Fig. 

4.13. They were chosen such that all circuits provide similar gains, using similar degener­

ation impedances and resonant LC tanks. However, the sizes of the transistors were 

varied. Similar gains were obtained by only tuning the gate to source voltage Vgs' For 

example, a lOdB gain was achieved by setting Vgs to O.55V in Design 1, O.5V in Design 

2, and 0.475V in Design 3. To mitigate the use of small transistors while ensuring a rea­

sonable size of the input matching inductor, a capacitor was added in parallel to Cgs for 

the LNAs with smaller transistor sizes (designs 1 and 2), such that similar SIl parame­

ters were obtained for the three circuits. Fig. 4.14 shows the distortion behaviors in terms 

of IIP3 and OIP3 for the three amplifiers with respect to their gains. As it can be seen, for 
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Table 4.1: Three LNA design parameters. 

Parameter Design 1 Design 2 Design 3 

c+ p:,,. ~R,. l'x size (J.unlJlm) 75/0.18 150/0.18 300/0.18 

Lg(H) 2.5n 2.5n 1.8n 

L.(H) O.3n O.3n 0.3n rtM2 -v ... CT(F) 650f 600f 550f 

Lr(H) 1.5n 1.5n 1.5n 

RT (il) 125 125 125 
Lg .... Cgs-Extra (F) 200f 100f 0 

Vin~Ml 
Gain (dB) 16 16 16 

cgs_L:Y OIP3(dBm) 14 4.5 -1.5 

~Ls NF (dB) 1.8 2.3 2.5 
~. V",,(V) 0.7 0.55 0.5 

Power consump- 9.8 7.2 5.8 
tion (mW) 

Figure 4.13 Schematic of a cascode LNA with different design parameters, used to demon­
strate the effect of different transistor sizings on distortion. Also shown, for a 16 dB gain, 
the OIP3, Vgso the power consumption, and the NF. 

all gain values, the distortion was minimum for the smallest transistors LNA (i.e. 

W = 75~m). For higher gains, even greater than 12dB, the smallest transistors amplifier 

surpassed the distortion performances of the other two designs (i.e. higher IIP3). With the 

gain set to 16dB, OlP3s of +14, +4.5 and -1.5 dBm were measured for the 75~m, 150~m, 

300~m transistor widths, respectively. It should be noted that by using a small transistor, 

the 10dB enhancement in distortion came at the cost of increasing the overall power con­

sumption to 9.8mW for the 75~m10.18Jlm LNA, compared to 7.2mW and 5.8mW. These 

results demonstrate that, for a given acceptable LNA gain, the distortion can be mini­

mized by using smaller transistors driven by large overdrive voltages while employing 

degeneration impedances, at a moderate increase of power consumption. Note that simi­

lar results were observed for the folded cascode LNA operating from a 1 V power supply 

(Fig.4.1-b). 
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Figure 4.14 a) IIP3 and b) OlP3 for three LNAs with different transistor sizes. The smallest 
transistor consistently results in lower distortion (higher IP3). 
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Figure 4.15 Photomicrograph of the folded cascode LNA [96]. 

4.6 - Experimental Results 

The folded-cascode structure in Fig. 4.1-b was implemented in a standard CMOS 

0.181lm process [96]. A specifie layout implementation is shown in Fig. 4.15. It operates 

from a IV power supply. The LNA exhibits a 13.2dB of gain at 5.8GHz. Including the 

output stage, the circuit consumes 22mW of power and has a noise figure of 2.5dB. The 

measured input and output reflection coefficients were less than -5 dB and -10 dB, 

respectively. The layout occupies 0.9mm2, including the bonding pads. Harmonie and 

intermodulation distortions were measured on wafer using Cascade GSG probes. 

Figure 4.16 shows the measured and simulated results for HD2 and HD3, and 

compares them to the values computed analytically using Maple. For the simulations, 

HSPICE was used: a transient analysis was performed over 50 periods, and only the last 

period was considered to avoid transients. The second- and third-order harmonies were 

then estimated through post-processing using the FFf algorithm of Matlab. Coherent test­

ing conditions were observed aIl along in order to ensure maximum accuracy. 

95 



Distortion in RF CMOS Short Channel LNAs 

(a) 

(b) 

40r---------------------.---------------------~ 

+Ü:=~~:~~~·;'~·;··~~·~:~-: .. ·~::··~~·~ .. Ji,;=··:: .. ii: .• ,.~' .... : .. :.~=.~ .. s·~··~·~~~1 _ -so! ;t 
~ :~B 
';;' -55 
o 
~ -60 
'Iii 
Ci -65 u 
'2 
~ -70 
C'CI 

::c -76 

-8$5 

40 

45 

iD 
~ 
c 
0 
:e .s 
.~ -60 
C 
.~ 
s:: -65 0 
E 
"-
ta 

::I: 

3dB 

-30 

__ Analytical 
Simulation 

- Experimentai 

Input Power (dBm) 

HD2 

" 
....... 3dB 

-- Analytlcal 
- - - - Simulation 

Experimentai 

-32 -31 -30 -29 -28 -27 
Input Power (dBm) 

-25 

-26 -25 

Figure 4.16 Comparisons of experimental, analytical, and simulation 
results of H02 and H03 of the 5.8GHz folded-cascode LNA with different 
bias currents of (a) Id = 11.3mA, and (b) Id = 5.8mA. 

The analytical results were obtained by modeling the distortion following the 

approach described in Section 4.3 using Maple, while taking into account all of the 

CMOS transistor parameters affecting distortion. The validity of this analytical approach 
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is weIl demonstrated by the results in Fig. 4.16: the maximum deviation between the 

experimental, simulated, and analytical distortions, for two different biasing currents, 

namely Id = 11.3mA (Fig. 4.16.a) and ~ = 5.8mA (Fig. 4.16.b), is 3dB. Also, a good 

agreement regarding trends and slopes between aH corresponding curves is evident. 

Finally, Fig. 4.17 compares the in-band third-order intermodulation distortion 

obtained from measurements and simulations to the analytical results computed by 

Maple. Once again, the good agreement between aH curves supports the validity of the 

entire analysis procedure proposed in this chapter. 
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4.7 - Conclusion 

Nonlinearity equations in terms of Volterra's series have been derived, allowing 

the investigation of the distortion in short-channel CMOS RF LNAs. Closed-form and 

frequency-dependent equations describing distortion were derived and compared to simu­

lation and experimental results. Simple practical design considerations were suggested 

and verified by comparing the distortion behavior of three LNA setups. Results showed 

that the distortion is lowered for LNA designs using smaller transistors while operating 

with larger overdrive voltages, without impacting much the power consumption. To the 

best of our knowledge, this is the frrst time this design approach is proposed and demon­

strated along with simple closed-form equations demonstrating the effect of Cgs on 

distortion in LNAs. 
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Chapter 5 - Miscellaneous Circuits 

This chapter summarizes research work that was conducted at different stages 

over the span of the last three years. Namely, the design of low-voltage, low-glitch phase 

locked loops (PLL) and the implementation of differential image reject filters. Initially, 

we considered the use of a PLL to automatically tune a notch filter. The complexity of 

the system, and the several design issues that we faced, prompted us to consider a more 

simple approach, which resulted in the two-notch implementation proposed earlier in 

Chapter 3. Extending the work presented in Chapter 3 to a differential implementation is 

a natural progression of this research. The feasibility and performance of a differential 

system is addressed in this chapter as weIl. 

Over the last decade, PLLs have been successfully integrated in a variety of 

technologies, e.g. bipolar, SiGe, MESFET, and CMOS, with frequencies of operation 

from the mega-Hertz to the giga-Hertz ranges [68]-[74]. Shown in Fig. 5.1-a, a PLL 

system generates a sinusoidal output signal with its frequency directly related to the 

difference of phase/frequency between a feedback signal lffb) and an incoming reference 

signallfref). The difference in phaselfrequency between the two signaIs is detected by a 

phaselfrequency detector (PFD). The PFD produces two outputs denoted by UP and DN 

in Fig. 5.1. The three possible states of the PFD are shown Fig. 5.I-b. Depending on the 

state produced, the charge pump (CP) generates a DC voltage. This DC signal controls 

the frequency of operation of the voltage controlled oscillator (VCO). Accordingly, a 
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Figure 5.1 a) Charge-pump based PLL. b) States of the PFD. 

reference signal with a frequency fout is produced at the output of the veo. After being 

processed by a frequency divider, this signal is fedback to the PFD, and is compared 

again to the reference signal. 

The implementation of integrated PLL charge pump circuits faces many 

challenges. Decreasing dock feedthrough from the charge pump to the local veo is a 

crucial issue [68]. Obtaining a large output voltage range, while operating from a low 

power supply, is another interesting research issue [112]. 

In this chapter, the feasibility of implementing a charge pump (ep) capable of 

operating from a very low voltage supply, with minimum glitching is demonstrated. As 

previously mentioned, the CP converts the digital output of the PFD to a stable analog 

output voltage. Any spike in this voltage produces undesirable spurious tones in the veo 

output signal. The proposed charge pump operates from a IV power supply, with 60JlW 

power dissipation, and does not suffer from the common spurious jump phenomenon 

[76]. Section 5.1.1 begins with an overview of charge pump circuits. Section 5.1.2 
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discusses the evolution of the proposed topology. Simulation results are presented in 

Sections 5.l.3. General challenges in PLL designs are discussed in Section 5.l.4. 

DifferentiaI implementations of CMOS notch filters are also investigated in this 

chapter. In Section 5.2, an overview of differential CMOS image reject filters is provided. 

Two novel differential CMOS multi-GHz IR filters are then presented. 

5.1 - A New 1 V CMOS Charge Pump 

5.1.1 - Overview of Charge Pumps 

Figure 5.2-a shows the conceptual model of a charge pump, along with the three 

possible states of the PFD outputs. The charge pump employs two CUITent sources, which 

are connected to capacitor C through switches SI and S2. For state l, when UP is high 

and DN is low, switch SI conducts and S2 is open, allowing the CUITent lup to charge the 

capacitor, and therefore raising the voltage V c. In state II, when DN is high and UP is 

low, switch S2 connects C to the CUITent source ldn' which results in discharging the 

output voltage V c. In state 0, both switches are open, and the voltage V c, ideally, remains 

constant. 

The conventional charge pump circuit shown in Fig. 5.2-a has many limitations. 

For example, when the PFD output switches to state 0, the voltage at capacitor C is left 

floating, while the voltages at the sources of SI and S2 are rapidly pulled to VDD and 

ground, respectively. Due to the non-ideal characteristics of the MûS switch, such as 

charge injection and clock feedthrough, this rapid change in the source voltages creates 

glitches in the capacitor cUITent, which can result in a jump in the stored voltage V c. Any 

jump in V c adds undesirable spurious tones and phase noise to the output signal of the 

VCÛ. 

A possible approach, used to mitigate this problem, consists of adding an op-amp, 

connected as shown in Fig. 5.2-b, to the conventional charge pump circuit [75]. The 

feedback amplifier stabilizes the voltages at nodes I and 2, preventing the voltage jump 
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Figure 5.2 a) Schematic of the conventional charge pump, along with the three pos­
sible PFD states. b) Improved charge pump. 

phenomenon at C to occur. Enhancing the performance of the charge pump using this 

method cornes at the expense of extra complexity, area, and power consumption. 

Different novel charge pump circuits with a reduced jump phenomenon were 

recently proposed in [76]-[78]. Their supply voltages were 1.5, 2V, and 3.3V, 

respectively. 

5.1.2 - Proposed Architecture 

To implement a very low voltage charge pump, we start by designing and testing 

a low-voltage switched push-current source, as shown in Fig. 5.3. It operates from a 1 V 
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Figure 5.3 Proposed switched push-current source. 

power supply as follow: 

1-When the signal UP is at a high logicallevel: 

i- Transistor Pl is OFF, and the current Iop is steered to transistor P2. 

ii- Since the power supply is IV, when transistor P2 is ON, transistor P4 will not 

have enough voltage headroom between its gate and source to be ON. 

iii- Since transistors P2 and P3 form a current mirror, a current Iup will be pushed 

into the capacitor C, raising the voltage V c. For current matching pwposes, P2 

and P3 are made relatively large. 

2-When the signal UP is at logical zero: 

i - Transistors Pl and P4 tum ON. 

ii - The current in P2, and therefore P3, will be negligible. The voltage at the 

capacitor should, ideally, remain stable. 

For the proposed structure, the minimmn power supply that can be used is given by 

(5.1) 

where VSG-P2 is the source to gate voltage of transistor P2. By simulating the circuit in 

Fig. 5.3 using HSPICE, it was observed that the switching speeds of the PMOS 

103 



Miscellaneous Circuits 

UPOo----1I 

VDD . 

Added .' 
circuitry 

, 

# 
# 

# , 

~c 

Complementary : 
pull-down • 

circuit 

Figure 5.4 Schematic of the improved switched current source. Transistors P5 
and Mi speecl up switching at A. 

transistors were the limiting factors of the overall speed of the circuit: when the UP signal 

is switched from 0 to 1, the charging time of transistor P2 is relatively long, which results 

in a slow switching speed at the gate ofP3. To overcome fuis problem, transistors P5 and 

Ml (Fig. 5.4) are inserted at the gate of transistor P3. With the addition of these 

transistors, as the UP signal switches from 0 to 1, the voltage at the gate of P3 is rapidly 

pulled do~ turning ON transistor P3 in a shorter time. Note tbat the voltage st node A 

is set by transistor P2. Therefore, when P2 is on, the voltage at the gate of P2 forces 

transistor P5 to operate in the saturation region, which means tbat P5 hebaves as a cmrent 

source, and not as a switch. 

To carry the same currents, transistors Ml and P5 bave to he perfectly matched. 

When they are both ON, they operate in the saturation region. Since, in the CMOS 

O.18f.111l technology, the electIOns mobility is approximately tbree times that of the boles, 

the size of P5 was chosen to he 3.2 times the size of Ml to ensure CUITent matching. 

Moreover, in order not to add extra parasitic capacitances at node A, the sizes of Ml and 

P5 were minimized. A comparison of the switching speeds of the voltage st the gate of 

P3 for the circuits in Figs. 5.3 and 5.4 is demonstmted in Fig. 5.5 
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Figure 5.5 The voltage at the gate of transistor P3 switches faster when 
M1 and P5 are added. 

For the circuit in Fig. 5.4, glitches due to charge sharing with P3 will appear at the 

output capacitor (Fig. 5.6-a). To eliminate this problem, the circuit was modified as 

shown in Fig. 5.7. The additional buffer stage acts as a small delay element: It ensures the 

switching of transistor P3 before transistor P6 by a certain period of time, td (Fig. 5.6). 

During td> any glitches generated by transistor P3 will not he transferred to the capacitor. 

Also, the added parasitic capacitances of transistor P6 in the current patb, along with 

capacitor Cd. cause the glitches in the output current to he further attenuated. Figures 5.6-

a and 5.6-b show the current in the output capacitor with and without the extra buffer 

stage, when the frequency of the input UP signal equals 500MHz. As evident from the 

figure, with the added delay buffer, the current in the capacitor bas almost no glitches. 

Note that only transistors P2 and P3 need to operate in the saturation region, in order to 

behave as a current mirror. AIl other transistors are allowed to go into triode, enabling 

operation from a very low voltage headroom. 

The circuit in Fig. 5.7 performs the pull-up function (i.e. the fonction of St in Fig. 

5.2-a). For pull-down, an identical complementary circuit is used. 
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Figure 5.6 Current in capacitor Ca) without the buffer in Fig. 5.7, and b) with 
the buffer, for a SOOMHz signal. 
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Figure 5.7 Final structure of the proposed charge pump. The extra buffer stage 
results in considerable reduction of the output glitches. 
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Figure 5.8 Pumping up the output voltage. 

5.1.3 - Simulation Results 

The proposed charge pump was designed using a 0.18J..lDl CMOS process. AlI 

results reported are with a IV power supply. Simulations were done using HSPICE, with 

device models from TSMC. The pull-up current Iup and the pull-down current Idn were 

set to 10JlA. 

Figure 5.8 shows the pumping up of the circuit. The 900mV maximum output 

voltage, atong with the stable Gump free) voltage steps, are demonstrated and compared 

to the output voltage from a conventional charge pump. For the pump-down circuit, the 

results are shown in Fig. 5.9. Finally, the circuit was simulated with the temperature 

varying from 00 to 100°C. A maximum deviation of 0.056V was observed in the output 

voltage, as shown in Fig. 5.10. The average power consumption of the circuit is 60J.1W. 

5.1.4 - Challenges in PLL Systems 

In the previous section, a novel charge pump circuit, optimized for very low 
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Figure 5.9 Pumping down the output voltage. 
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Figure 5.10 Maximum deviation of the output voltage with the tem­
perature ranging from 0 to 100°C. 
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voltage PLLs, was presented. The requirements on the frequency divider, the veo, and 

the PFD are even more stringent. For example, the performance of a PLL depends greatly 

on the bias current and on temperature variations, which affect the tuning of the veo. As 

a result, PLL calibration techniques might he required, which further complicate the 

overall design. With the 802.11a WLAN standard, the subchannel separation is 20MHz, 

which imposes very stringent frequency specifications and phase noise requirements on 

the PLL and on the veo. 

The power consumption in PLL systems is yet another critical issue. As much as 

200mW may be required for the PLL system alone [113]. To the hest of our knowledge, 

at SGHz, the smallest power consumption reported for a CMOS frequency synthesizer 

system is 13.5mW [114]. Therefore, even though CMOS PLLs have been successfully 

integrated at multi-GHz frequencies, avoiding using them, as it was done in this thesis for 

wireless receiver front-ends, is an attractive line of thought, since the power 

consumption, the complexity, and the chip area can he greatly reduced. 
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Figure 5.11 Structure of the LNA image reject filter proposed in [61] implemented in CMOS. 

5.2 - CMOS Differentiai LNA-Notch Combination 

It is weIl known that differential circuits are more robust, benefi.t from common 

mode rejection, and suppress second-order harmonies. Fig. 5.11 shows a differential 

LNA-notch combination circuit proposed in [61]. As discussed in Section 2.2.2, a 

negative resistance is formed by the cross-coupled pair (transistors M5 and M6) for 

inductors Q-enhancement - a topology commonly used in voltage controlled oscillators. 

Stability issues of the notch :filter become of primary concern. The notch is formed by 

M5-M6, C N, Cp, and LN- The input impedance ZN of the notch circuit is given by 

(5.2) 

In the midband of the LNA, the impedance ZN looking into capacitors Cp is larger than 

1/gm3 and l/gm4> therefore not affecting the behavior of the amplifier. At the resonant 

110 



Miscellaneous Circuits 

1.8V 1.8V 

N2 Ven 

Figure 5.12 Structure of the LNA-PMOS image reject filter [40]. 

frequency of the notch tilter, ZN becomes low. This results in steering the RF current 

away from transistors M3 and M4, thus rejecting the AC signal at the output. This circuit 

generated 50dB of image rejection at 950MHz in CMOS [61]. 

5.2.1 - Differentiai Cascode LNA-PMOS Notch Combination Circuit 

Knowing that PMOS devices produce less noise compared to NMOS transistors, 

the circuit in Fig. 5.11 was modified to the one shown in Fig. 5.12, in which the notch 

tilter was implemented using PMOS transistors [37]. This notch bas a similar function as 

that of the circuit shown in Fig. 5.11. However, the filter is now connected at the gates of 

the input transistors of the LNA. The inductor tank LT is difIerentially excited to improve 

its quality factor. The frequency of the LNA was set to 6.5GHz. 

Capacitors Cl and C2, along with the two varactors VI and V2, and inductors LN1 

and LN2 implement the notch filter. Their sizes were chosen such that the combination of 
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Vi/V2, Ci/C2 and the parasitic transistors capacitances of PIIP2 and inductors LN}/LN2 

provides a notch tuning range from 10.5 to Il GHz, set by the total capacitance of the 

varactors at nodes NI and N2. When the absolu te values of the reactances of the 

capacitances at NI and N2 are equal to the reactances of inductors LN] and LN2 

respectively, low impedance connections to ground are thus created. This results in 

rejecting the AC signal at the input ports of the LNA, and therefore obtaining a notch 

fllter. The cross-coupled pair PMOS transistors PI and P2 provides the negative 

resistance that compensa tes for the on-chip inductor losses. 

In the frequency band around 6.5GHz, the impedance seen at the input ports of 

the notch fllter is relatively large, which means that the circuit operates like an LNA with 

inductor degeneration. The effect of the notch is observed at much higher frequencies, 

and therefore can be neglected when designing the input matching circuit. 

The notching frequency tuning varactors were implemented as PMOS transistors, 

by shorting the substrate to the drain and to the source. This results in PN junction-based 

varactors. The gate lengths of the PMOS transistors were rninirnized to reduce their 

effective resistances. 

The scattering S-parameters were estimated using the Spectre RF simulator. 

Figure 5.13-a shows the +12dB LNA gain, along with the gain tunability obtained by 

varying the bias currents of Ml and M2. The input and output reflection coefficients, SIl 

and S22, are below -lOdB at 6.5GHz (Figure S.13-b). By simultaneously varying the 

biasing currents in the Q-enhancement circuit and the voltages across varactors VI and 

V2, tuning of the notching frequency is obtaine~ as demonstrated in Fig. 5.14. The 

power consumption of the circuit and the noise:figure are 22mW and 2.4dB, for a +12dB 

LNA gain and a -SOdB image rejection.. The performance ofthis circuit is summarized in 

Table 5.1. 
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Figure 5.13 a) 8imulated 821 showing the gain tunability of the LNA. b) The 811 
and 822 parameters showing input and output matching. 
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Table 5.1: 5ummary of the simulated performance of the circuit proposed in Fig. 5.12. 

Technology CM050.18J.1.m 

fo_ LNA 6.5GHz 

LNA gain 12dB 

511 @6.5GHz -35dB 

522@6.5GHz -10dB 

NF@6.5GHz 4.4dB 

fo- Notch 10.5-11.1GHz 

Maximum image rejection -SOdB 

VDD 1.8V 

Power consumption 22mW 

IIP3 -12.5dBm 
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5.2.2 - Differentiai Very Low Voltage LNA-Notch Combination Circuit 

Growing consumer demand for smaller, lighter and cheaper wireless products is 

driving engineers to investigate new technologies and to enhance the performance of 

existing ones. The continuous down scaling of deep-submicron technologies imposes a 

reduction in the supply voltage of the analog, RF, and digital circuits in portable devices. 

A possible approach to reduce the supply voltage in LNAs is to use a folded-cascode 

topology (Fig. 5.15). As it can be seen in the figure, a maximum of one transistor and a 

current source are stacked hetween the power supply and ground. As a result, a supply 

voltage as low as 1 V can he used. A notch filter, operating from a 1 V supply voltage as 

weIl, is connected to the LNA (Fig. 5.15-b). This notch has a similar function as that of 

the circuits shown in Fig. 5.11 and Fig. 5.12. 

The small-signal equivalent circuit of the notch tilter is shown in Fig. 5.16, where 

the cross-coupled pair is replaced by RNeg = -2/g11T RL is the series parasitic resistance of 

LN' Analyzing the circuit, the input impedance of the notch is found to be 

(5.3) 

The magnitude of ZNis plotted versus frequency in Fig. 5.17. As demonstrated in 

the figure, by varying capacitor eN, the frequency of the notch can he set. Keeping the 

notching frequency constant while varying the transconductance of transistors MS and 

M6 results in changing the input impedance ZN (Fig. 5.17 -b), thus tuning the depth of the 

filter' s notch. As it can he seen in the figure, a zero IZ NI can be achieved theoretically by 

properly biasing the cross-coupled pair, resulting in an infinite notch depth. In reality, due 

to parasitic capacitances and resistances, the image rejection is limited to -58dB. 

The image reject filter must always he stable, which means that the gain of the 
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1.0V 1.0V 

1.0V 1.OV 

Figure 5.15 a) Structure ofthe 1V folded cascode LNA. b) Structure of 
the 1V image reject filter [39]. 
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Figure 5.16 Simple model of the notch filter of Fig. 5.15. 
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Figure 5.17 Tuning of ZN by varying (a) CNto set the frequency, and 
b) 9m to set the rejection. 

cross-coupled pair should not exceed a certain level. We found that it was possible to 

obtain infinite Q-notch depth without compromising stability. Assume that the cross­

coupled pair is biased such that the negative resistance produced equals in magnitude the 

resistive loss of the notch resonant tank. In that case, the source input impedances of 

transistors M3 and M4 (l/gm3 and lIgm4, respectively) would ensure the circuit stability, 

by providing damping. The gain of the cross-coupled pair should not be increased much 

beyond this biasing point, otherwise oscillation might occur. 

The proposed circuit was implemented using a standard CMOS O.18J.1ffi gate 

length process. The sizes of the transistors and of the inductors used are shown in Table 

5.2. 
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Table 5.2: Sizes of the transistors and inductors for the folded­
cascode LNA-IR fiHer of Fig. 5.15. 

Transistors M1 - M4 200p.m/O.18p.m 

Transistors M5 - M6 50p.m/O.18p.m 

LN 1nH 

eN PMOS varactors 

LT 1.3nH 

LS11 Ls2 O.15nH 

Lgi1 Lg2 2.3nH 

LCii LC21 LC31 and LC4 3nH 

Figure 5.18 shows a 13dB LNA gain at 5.8GHz, along with the gain tunability 

obtained by varying the bias currents of Ml and M2. Figure 5.l9-a shows the notch depth 

tunability. As it can be seen in the figure, the notch depth can be tuned by varying the 

biasing current of the filter, i.e. by varying IN' A maximum notch depth of -58dB is 

20 
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Figure 5.18 S21 parameter showing gain tunability of the LNA. 
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Figure 5.19 a) Tuning the notch depth. b) Tuning the notch frequency, for the 1V 
circuit in Fig. 5.15. 

obtained, when the notch filter is biased at 400J.1A. Under this biasing current, the power 

consumption of the filter is O.8mW only. It is interesting to note that the filter remained 

stabled and provided sufficient image rejection, even when it was biased with higher 

currents. This demonstrates an earlier argument that the biasing of the cross-coupled pair 

could be increased above the current required for infInite IR, before instability occurs. 
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Table 5.3: Summary of perfonnance ofthe 1V circuit proposed in Fig. 5.15. 

Technology CMOSO.18~m 

fo_ LNA 5.8GHz 

LNA gain 13dB 

S11 @5.8GHz -14dB 

S22@5.8GHz -15dB 

NF@5.8GHz 4.2dB 

fo- Notch 8.0GHz 

Maximum image rejection -S8dB 

VDD 1.0V 

Power consumption of the O.8mW 
notch @ -S8dB of IR 

IIP3 -13dBm 

The frequency of the IR filter can be made tunable by replacing one of the eN capacitors 

by a PMOS varactor (Fig. 5.19-b). Table 5.3 summarizes the LNA-notch circuit 

performance. 

5.3 - Conclusion 

A low-voltage, low-glitch charge pump was designed when investigating the 

possibility of designing very-Iow voltage PLLs for automatic filter tuning. The chapter 

concluded with a the presentation of two novel differential CMOS multi-GHz IR filter 

implementations, one of them designed for very low-voltage operation. 
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Chapter 6 - Conclusion 

6.1 - Summary 

We presented a new notch filter topology combined with a low noise amplifier. 

Experimental resu1.ts demonstrated the feasibility of obtaining 62dB of image rejection at 

7.30Hz in a standard CMOS technology, along with an LNA exhibiting 15.8dB of gain 

at 5.80Hz. Stability analysis of the proposed notch circuit was presented, and the 

conditions for stability were derived. Comparisons to other recently reported image reject 

filters in the literature are shown in Fig. 6.1. It is interesting to note that the frequency of 

operation reported here is almost double that of state-of-the-art CMOS implementations, 

with a higher image rejection of -62dB at 7.50Hz in this work compared to- 50dB at 

2.20Hz in [60]. 

A new approach for implementing 50Hz front-end heterodyne receivers was 

proposed. A simple and robust implementation of on-chip image rejection, based on the 

cascade of two slightly offset image reject filters, was implemented and tested. The 

circuit does not require on-chip automatic circuits nor off-chip components. The LNA 

and double IRF front-end demonstrated more than 30dB of IR over a 400MHz bandwidth 

centered at 7.40Hz in a standard CMOS technology. These experimental results showed 

that the specifications for the IEEE 802.1 la WLAN standard cau he met using a standard 

CMOS technology. 

Nonlinearity equations in terms of Volterra's series have aIso heen derived, 
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Figure 6.1 a) Comparison between the notch implementation in this thesis 
and state-of-the-art implementations. 

allowing the investigation of the distortion in short-channel RF CMOS LNAs. Closed­

fonu and frequency-dependent equations describing distortion were derived and 

compared to simulation and experimental results. Simple practical design considerations 

were suggested and verified by comparing the distortion behavior of three LNA setups. 

Results showed that the distortion is lowered for LNA designs using smaller transistors 

while operating with larger overdrive voltages, without impacting much the power 

consumption. To the best of our knowledge, this is the tirst time this design approach is 

proposed and demonstrated, along with simple closed-form equations demonstrating the 

effect of Cgs on distortion in LNAs. 

6.2 - Topies for Future Researeh 

This thesis presented several circuit innovations circuits and ideas: i) A new IRF 

circuit that has minimal effect on the gain of the preceding LNA was proposed. ü) Tuning 

the sharpness of the proposed IRF is simple and practical. ili) We demonstrated that the 

IRF circuit is unconditionally stable for all practical settings of its Q-factor. iv) We 
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proposed a front-end architecture that enables the reaIization of a large image rejection 

bandwidth. v) We provided design guidelines for optimizing the distortion hehavior in 

CMOS LNAs. The following is a list of proposed future research topics: 

1. Distortion analysis: With respect to the distortion analysis, the distortion­

aware guidelines proposed throughout the text shall be verified experimentally. 

This can be done by integrating the LNAs analyzed in Section 4.5, and 

experimentally measuring their distortion responses. 

2- Distortion and IR tlIten: Design techniques for optimizing distortion in RF 

LNAs were suggested in this thesis. It will be interesting to see if these design 

guidelines apply for the IR fIlters proposed in Chapter 3. 

3. DitTerential IR tlIten: The maximum frequency of a CMOS differential image 

reject filter reported to date is around 4.2GHz, with an IR less than 30dB [18]. 

Therefore, the difIerential multi-giga-Hertz CMOS IR filters proposed in 

Chapter 5 shall he integrated and tested. The challenges that will he faced are 

many. First, there is a limited access to difIerential RF equipment operating at 

high frequencies (above 5GHz). Moreover, generating difIerential signaIs to 

test difIerentiaI circuits is a complicated task at multi-GHz frequencies. 

DifferentiaI transformers with cut-off frequencies above 5GHz are not readily 

available. One way of producing difIerential signaIs consists of implementing 

ofI-chip baluns. At RF frequencies, the parasitics have a significant efIect on 

the overall circuit performance. Designing perfectly symmetrical layouts for 

the integration of the difIerential notch fIlters is a great challenge. 

4- MEMS IR filters: Recently, high-Q varactors and resonators (e.g. [115]-[116]) 

were successfully used in RF applications, such as in LNAs and in VCOs 

[117]-[118]. The Q-factors ofMEMS components can he much higher than the 

Q-factors of passive devices integrated in standard CMOS technologies. 

Therefore, using MEMS components along with CMOS active devices to 

integrate IR filters may result in very efficient circuits, and shall he 
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investigated. 

5- Double IR receiver: The double IR receiver architecture shall be integrated 

and tested in an entire heterodyne receiver, i.e. with active mixers, voltage 

controlled oscilla tors, ADCs, etc. 
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Appendix A - Receivers 

Architectures 

RF circuit designers are facing an increasing demand for low-cost and small size 

circuits. Many efforts are ongoing on the integration of RF receivers in low-cost CMOS 

technologies. Fully integrated 5GHz RF receivers have recently been implemented in a 

variety of technologies and architecture~ e.g. [3]-[26]. For a fully integrated heterodyne 

system, many problems such as on-chip image rejection still need to he addressed. 

Homodyne and low-IF receivers do not suifer from image-rejection. However, l/fnoise 

and DC offsets can degrade the overall performance of a receiver and increase its 

complexity . 

This appendix briefly descrihes homodyne, low-IF, and digital receiver 

architectures. 

A.1 - Homodyne Receivers 

Figure A.1 shows the basic structure of a homodyne receiver. In this scheme, the 

RF signal is directly downconverted by the mixer to De. As a result, the image signal is 

the same as the RF signal, and this type of architecture does not suifer from the image 

problem. Moreover, since the downconverted signal lands at very low frequencies, the 
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Figure A.1 Structure of a homodyne receiver. 

digital processing circuits can operate at very low speeds. 

On one hand, the simplicity of this structure makes it an attractive solution. On 

the other hand, it is not a very popular scheme for RF systems integrated on-chip, 

because it is inherently sensitive to De and low-frequency heat signals. First, mixer 

leakage, self-mixing of the Lü signaI, and of strong interferers can generate De offsets. 

The latter can saturate subsequent circuits due to their high gain. As a result, De offset 

cancellation circuits are required. Second, homodyne receivers employ quadrature 

mixing. Mismatches between the 1 and Q signaIs affect the downconverted signal. 

Finally, the performance of homodyne receivers is severely affected by even-order 

distortions and 1/f noise. The noise limitations of homodyne receivers can he mitigated 

by employing architectures with a low intermediate :frequency (IF), such as the Weaver 

architecture or the Hartley topology. 

A.2 - The Weaver Architecture 

Shown in Figure A.2, the Weaver receiver exploits the fact that the image and the 

desired signal are out of phase after downconversion. Therefore, by downconverting the 

detected RF signal through two different paths using a set of quadrature mixers, 

cancellation of the image signal can he realized. This architecture is less sensitive to De 
offsets, Lü leakage and lIf noise. This technique would offer a suitable solution for 

implementing 5GHz front-end receivers, if perfect gain and phase matching in the 
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Q 

Figure A.2 Quadrature Weaver architecture. 

quadrature outputs could he achieved. The image rejection ratio (IRR) for this 

architecture is given by 

(A.1) 

where e is the fractional gain mismatc~ and € is the phase matching error in radians 

between the RF signal patbs in the receiver chain. For example, a a of 0.1% and an E of 

10 limit the IRR to 41 dB, which might not he sufficient for many wireless applications. 

At 5G~ due to increasing parasitic effects, large phase and gain mismatches cau easily 

occur. As reported in [18], a CMOS Weaver architecture practi.cally achieves between 25 

to 35 dB image rejection. 

This architecture also suffers from a secondary image problem. The problem is 

illustrated in Fig. A.3. Suppose a signal appears at the frcqucncy 2/',01 + 2!"02-!'W' 
aiong"idr th{' RF signal, at the input of the first mixer. The image signal is first translated 
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Figure A.3 Secondary image problem in Weaver receivers. 
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frequency lower than the downconverted RF signal (Fig. A.3-b), it is not rejected by the 

low pass filter. Therefore, after the second downconversion, it falls in the same frequency 

band as the desired channel, as shown in Fig. A.3-c. An image reject fùter or a high-Q 

selective bandpass filter are needed to suppress this image signal. 

A.3 - The Hartley Architecture 

Shown in Fig. A.4, the image-reject downconverter is yet another implementation 

of an IF homodyne receiver. The RF signal is fust mixed with a quadrature phase local 

oscillator. Low-pass filtering is then performed to remove the high frequency terms. To 

see how image rejection is obtained, assume that the signal at the LNA output is of the 

form 

j21tfRF -j21tfiu 
xA(t) = x(t)e +xIU<t)e , (A.2) 

where x(t) is the desired RF amplified signal, and xIU<t) represents the image signal. 
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c 

Figure A.4 An image-reject mixer based architecture: The Hartley architecture. 

After the quadrature downconversions, the signals at nodes B and C are given by 

(A.3) 

( ) 1 () j 21thf 1 .. .1 ) -j21thf Xc t = --;x t e --.x/M,t e 2] 2] , (A.4) 

where fi! = fLo - f RF · The signal at node Bis shifted by 90°. At node D, it becomes 

(A.5) 

At the output of the summer, the image signals cancel each other out, and the resulting IF 

signal is given by 

(A. 6) 

As a result, image rejection is obtained. The major drawback of this architecture relies on 

the fact that it uses a constant gain broadband 90° phase shifter, which is typically hard to 

implement, especially in CMOS at 5 GHz. Also, the phase shifter exhibits a significant 

amount of loss and noise, which affects the overall performance of the receiver. For this 

architecture, the IRR is also given by Eqn. (A. 1 ), which means that, the image rejection is 
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Figure A.5 a) Structure of a digital RF receiver. b) Structure of a digital IF receiver. 

mainly dependent on the phase and gain mismatches of the two RF signal paths. 

A.4 - Digital Receivers 

Shown in Fig. A.5-a, an ideal digital receiver does not suffer from 1 and Q 

mismatches or from the image problem. After fIltering and amplification, the RF signal is 

sampled by an analog to digital converter (ADC). Aliasing the desired signal through the 

sampling process results in downconverting the RF signal, without using any mixers. 

The perfonnance of this structure depends mainly on the ADC characteristics. 

First, the frequency bandwidth of the ADC should be at least twice that of the RF carrier 

frequency [111]. Second, its least significant bit should be about 9dB below the minimum 

receiver sensitivity. Third, its thennal and quantization noise must not exceed few tens of 

microvolts. Moreover, the ADC should be as linear as possible not to distort the 

downconverted signal. Finally, a large dynamic range is required in order to 

accommodate for variations in the signal levels. These strlngent requirements are very 

hard to achieve. Note that 50Hz CMOS digital receivers have not been reported yet. 

Also shawn in Fig. A.5-b is a digital IF receiver. In such a structure, the signal is 
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first downconverted with a mixer to an IF frequency. The signal is then processed by an 

ADC and the second downconversion is performed in the digital domain. The ADC' s 

specifications are also very stringent, however it operates at lower frequencies. 
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Appendix B - Stability Analysis of the 

Proposed LNA-Notch 

Combination 

As mentioned in Section 3.4.2, the stability of the proposed circuit was fust 

verified by deriving the transfer function of the overall LNA-notch circuit, inc1uding the 

input matching inductors Ls and Lg- in order to obtain the positions of the poles and 

zeroes. The circuit was modeUed as shown in Fig. B.I, where ZTank is the paraUel 

combination of RT, CT' and LT, given by 

(B.I) 

Performing nodal analysis, the foUowing set of equations is obtained 

V out = -Ztankgm 3 V gs3 ' (B.2) 

(B.3) 

and 
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Figure 8.1 Small-signal model of the LNA-notch combination circuit of Fig. 3.6. 

(B.4) 

Combining equations (B.2)-(B.4), the transfer function v out(s) Ivin(s) of the LNA-notch 

combination circuit is found to be 

(B.5) 

Using equations (3.11), (3.12) and (B.1), the transfer function can be expressed as 

(B.6) 

where G(s) is given by 
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(B.7) 

We start by examining the numerator of Eq. (B.6) in order to obtain the zeroes of 

the system. Note that the zeroes of the LNA-notch transfer function provide the notching 

frequency of the circuit. As explained in Section 3.4.1, the term 2 gm2 is neg-
s CN1 CN2 . 

S = j21tf 

ative and it compensates the effect of r S. As a result, the sum of these two terms tends 

toward zero, and the numerator of Eq. (B.6) can he simplified to: 

(B.8) 

The positions of the zeroes are then derived by setting H(s) to zero, resulting in 

(B.9) 

which is in agreement with equation (3.13). 

The denominator of equation (B.6) reveals that this is an eighth order system. Two poles 

( 
2 SLT ) 

come from the s C TLT + R + 1 term and are generated from the tank' s Le network at 
T 

the output node. As expected, the positions ofthese poles are in the left halfplane, and are 

independent of the notch depth tuning. Their locations are given approximately by 

(B.IO) 

Two other poles are generated at the input node of the LNA, and are dependent on the 

input matching inductors and on the parameters of transistor Ml. They are given by the 
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(iCgs1(Lg + Ls) + sgmlLs + 1) tenn in the denominator of equation (B.6). Their loca­

tions are found to be 

Lsgml + j 
sp(3.4)~ 2C (L +L) 

gsl g s JC (L + L ) gsl g s 

(B.II) 

Once again, these poles are weIl within the left half plane and do not cause insta­

bility. The last four poles of the system are derived by considering the polynomial G(s). 

However, the resulting equations are too complex, providing no useful insights. Instead, 

the poles' location were plotted (Fig. 3.9). 
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Appendix C - Distortion Analysis 

APPENDIX Cl- DERIVATION OF THE Kgmk - n TERMS 

The derivation of the Kgmk - n terms is shown in this appendix. Deriving Id (Bq. (4.8)) 

once with respect to V gs results in an equation describing the transcondanctance gm of the 

transistor. For the second order response, we need to obtain Kgmk-2' which is the sec­

ond order derivative of Idwith respect to Vgs• It is given by: 

_ K ( ub(5~s-2VgsVT-3~)+2uaCVgs-VT) 
K - - 1- + 

gm-2 mob mob (C.l) 

(2ub(Vgs + VT) + U;)2(VgS - VT)~ 
mob -) 

where 

(C.2) 

and 

(
V +V) (V + V)2 mob = 1 +(u +u V) gs T +u gs T 

a c sb T b T . 
ox ox 

(C.3) 

The third-order term Kgmk - 3' which is the third-order derivative of Id with respect to 

Vgs' is found to he: 
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_ K ( 3(2ub(Vgs + Vr) + Ua)3(Vgs - Vr)2 
Kgm-3 - --2 3ua - 12ubVgs + 2 + 

mob mob 

6(Vgs - Vr)(2Ub(Vgs+ Vr) + ua)(ub(3 Vgs + Vr) + Ua)Î . (C.4) 

mob ) 

As it can be seen from equations (C.l)-(C.4), the terms Kgmk _
n 

depend mainly on 

constant MOSFET model parameters, such as ua' Tox, etc., on the transistor's size (W 

and L), on the biasing voltages (Vgs, V ds and Vsb), and on the threshold voltage Vr. Under 

a specifie biasing condition, aIl of these terms are constant and frequency independent. 

Moreover, it is interesting to note that Kg and Kg are e:ffectively inversely pro-
mk-2 mk-3 

portional to Vgs . This is because the highest order term of Vgs is 5 in the denominator of 

Kgmk _
2 
and 4 in its numerator. Similarly, the highest orders of Vgs are 8 and 7 in the 

denominator and in the numerator of Kg , respectively. Finally, as it is the case for 
mk-3 

the biasing CUITent 14 and for the transconductance g"" the Kgmk_
n 

terms are linearly 

dependent on the W/L ratio. 

ApPENDIX C2- 1M3 DISTORTION IN THE LNA 

Using Volterra's series (Section 4.3) and equations (4.17)-(4.20), expressions describing 

the third-order intermodulation distortion in the LNA were derived and are summarized 

as follows: 

The output 1M3 voltage is given by: 

(C.5) 

where 

1 (SCds+gml ) 
Houtl (s) = A(s) l/r + sC + 1 sCds ' 

s ds 
(C.6) 

(C.7) 
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and 

where 

(C.9) 

igml - 3 = Kgml_3HlvgSl (jwl)Hlvgsl (-jwZ)Hl vgs 1 (-jwZ) + ~3K 
gmk-2 

(C.IO) 

X [Hl vgs 1 (jwl)HZvgs 1 (-jwz' -jwZ) + 2Hlvgsl (-jwZ)HZvgsl (jW 1, -jwZ)] 

l sCd H (S) = _ s 
lvgsl A(s) 1 + sC r 

ds s 
(C.ll) 

H2vgsl (sI' s2) = l + sC:srsA(S)( l - rs(s(CdS + Cr) + sir + ~~) , (C.12) 
s =sl +s2 

where Kgm-2 and Kgm_3 are the second and third coefficients of the Taylor expansion of 

Id (Vgs), (derived in Appendix Cl), and are constant for a given bias point. 
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