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CHAPTER ONE 

INTRODUCTION. 

One of the best known Diophantine equations that 

mathematicians have worked on for a long time is the equation 

yl-k - x*3. Although many mathematicians have attempted to solve 

this equation, it remains unsolved except for certain classes of 

k. Nagell^ ' gives the values of k such that k J< 100 for which 

the solutions have not been found. The values are: k = 2,9,10,12, 

15,lg,19,22,24,26,2g,30,31,33,35,36,37,32,^0^1,^3,^,^,50,52,5^ 

55,56,57,63,64,65,63,71,72,73,7^,76,79,20,21,22,39,91,92,94,97,92, 

99,-7,-15,-13,-20,-23,-25,-26,-23,-31,-39,-40,-45,-47,-42,-53,-54, 

-55,-56,-60,-61,-63,-71,-72,-79,-23,-24,-37,-39,-95. 

The great mathematician, Fermat, investigated this 

equation. He claimed to have solved the equation y2+2 = x3 but it 

is not known if Fermat had a rigorous proof of the result. It is 

interesting to note that the only integral solutions of this 

equation are y = *5> x =3» 

Euler also did some work on this equation. He solved 

the equation y2- 1 = x3 by the method of infinite descent. He also 

gave a method for solving the equation y2+ 2 = x^, but the method 

was fallacious. He wrote the equation in the form (y • \T^~2)(y- v^2) = x3 

He then stated that there exist integers a and b such that 

y +v
r^--2 = (a -f- b V^ 2)3# This statement is now known to be correct, 

but since a rigorous theory of algebraic numbers did not exist at 

that time, Euler had no justification in stating this result. In 

fact, it is now known that the equation y + V^T = (a + b y ^ l ) ^ 
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will give the complete solution of y2_k = x3 only for certain k. 

One of the greatest single steps made in the direction 

of solving the equation was the development of algebraic number 

theory. It was found that with the introduction of a new type of 

element, an ideal, unique factorization holds in any algebraic 

(2) 
number field. Mordellv ' applied this in his attempt to solve the 

equation y2- k = x3. He succeeded in solving this equation for 

certain classes of k in his paper of 1912. 

A few years later Landau and Ostrowskiw published a 

2 1 general result proving that the equation y - k = x' has only a finite 

number of solutions. In fact, the result was proved for the more 
O V) S2 

general equation ay 4- by + c = dx n>3 where a, b - 4ac, d are un­

equal to zero. The result also gives a method of reducing the 

equation y^- k = x3to a finite number of equations of the form 

f (x,y) = N where f (x,y) is a binary hhmogeneous cubic. 

The reduction of the equation y2- k = x3 to the equation 

f(x,y) = N was an important step forward. Various results have been 

discovered in connection with the equation f(x,y) =* N although the 
equation is still far from solved in general. I will show later 

2 "5 how certain information about the solutions of the equation y - k = x-' 

can be obtained by an amplication of information about the solutions 

of the equation f (x,y) = N. 

In this thesis we shall solve the equation y2- k = x3 

for certain special values of k. It will be seen that by means of 

the theory of congruence and of quadratic residues, certain cases 

can be dealt with. We will also, by means of ideal theory, solve 



- 3 -

the equation for certain classes of k. In chapter 5 certain properties 

of the equation ax3* bx2y * cxy2f dy^/will be discussed. A theorem 

proved at the end of chapter five, which so far as the author knows 

is original gives an intimate connection between the equation 

2 "3 
y - k » x?f and the oubics derived from it. This will be applied 
in chapter 6 to obtain an upper bound to the number of solutions of 

2 "3 the equation y - k = TLJ for certain classes of k. Before discussing 

the equation y2- k = x3^ a few properties of ideal classes will be 

mentioned, because the concept of ideal classes plays an important 

part in the development of the theory for this equation. 

To begin with, two ideals a and b are said to be equiva­

lent if there exist principal ideals x and y such that ax = by. This 

relation can easily be seen to be reflexive, symmetric, and transi­

tive; and therefore the ideals are thus broken up into classes. 

With an obvious definition for the multiplication of classes, it 

is found that the classes form an Abelian group. One of these classes 

is the set consisting of all principal ideals, and this class is 

obviously the identity element of the group. An important result 

is that for a given field there are only a finite number of ideal 

classes. Thus, we have a finite group, and many of the properties 

of ideal classes follow directly from the theory of finite groups. 

The number of ideal classes in a field is commonly called the class 

number of the field. 

If b is any ideal of an algebraic number field and h is 

the class number of the field, it follows by the theory of groups 

V-, m 

that b n is a principal ideal. If b is also known to be a principal 
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ideal, and if furthermore m is prime to h, then it follows that b 

itself is also a principal ideal. This result will be used in this 

thesis to solve the equation y- k = x3 for some classes of k. 
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CHAPTER TWO 

THE FINITE NUMBER THEOREM 

In this chapter it will be proved that the equation 

ay2+ by + c = dxn where a, 4ac - b , d ^ o has only a finite number 

of solutions in integers if n ̂  3. 

Let ay2+ by + c = dxn, 

therefore k&'-y + 4-aby + 4ac = ̂ adx11, 

or (2ay + b ) 2 + ^ac - b 2 = ̂ adxn. 

Let 2ay + b = y, 4ac-b = m, 4ad = k. 

Then y2+ m = kxn where m, k f o. 

If ay + by + c/had an infinite number of solutions so 

would y -f m = kxn, since for every value of y a different value of 

y is obtained. It therefore suffices to prove that an equation of 

the type y2 - k = mx11 has only a finite number of integral solutions 

for k, m i o, 

CASE 1 
p 

Let k = p where p is an integer, 

therefore y2 - p = mx11, 

or (y-p)(y+p) - mxn. 

Let S be a prime factor of y -f p which is prime to 2mp. 

It follows that S is prime to 2p and therefore to y-p. Also S is 

prime to m. 

From the expression (y-p)(y+p) - mx , it follows that the 

power of S contained in y f p equals the power of S contained in x*. 

That is, y + p contains S for some integral 1. By similar reasoning 

for all other prime factors of y + p which are prime to 2mp, it 

follows that y + p is an exact nth power of all these factors. Jm 
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other words, the only prime factors of y + p of which y + p may not 

contain an exact nth power are those that divide 2mp. 

That is:-

y + P--s/*S |
r |3/^ Sa^X31 where S;, S4, S,,...Sn 

divide 2mp. The r#s may each be chosen less than n by incorporating 

all nth powers into the X. Then, there are only a finite number of 

possible factors S, ' Sx
 x Sj J. S n n since 2mp contains only a 

finite number of prime factors. 

Therefore y f p = ex11, where c runs through a finite number 

of values. 

By exactly the same reasoning y - p - bz11 where b runs 

through a finite number of values. 

It is sufficient to prove that the simultaneous equations 

y + p = cxn, y - p = bz n have only a finite number of solutions 

x,y,z, for fixed b and c, for a finite sum of finite numbers is still 

finite. Subtracting, we obtain, 2p = cxn- bz11. If the equation 

cxn- bzn= 0 is considered, the values of x are the nth roots of b, and 
z c 

the roots are therefore all distinct. Since n^3, it follows by Thue's 

theorem that the equation has only a finite number of solutions. Thus, 

there are only a finite number of solutions for x,y,z, and the theorem 

is proved for this case. 

CASE 2 
p 

If k is not an exact square, let k = p^d where p is integral 

and d has no square factors. We will work in the quadratic field 

R( /ff). 

We have y 2 - p2d = mx11, 
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or (y + p/cT)(y - pVd) = mxn. 

Let b be a prime ideal factor of y + p/d which is prime 

to 2pm|fd. b is therefore prime to m and prime to y t pl̂ d - 2p/cL or 

y - p/d. b is therefore contained as often in y + p/cL as it is 

contained In xn. It follows that y f p/cf contains b to an exponent 

divisible by n. As before, it can be seen that the only prime ideal 

factors of y f p/cL which do not necessarily occur with an exponent 

divisible by n are those that divide 2pm/cl# 

y + p/d = b, r' b ^ b ^ b a
P a Xn where \>1$ b2, b^....J 

divide 2pm/cf. By incorporation into the x all the r*s can be made 

less than n, and since an ideal has only a finite number of prime 

ideal factors, y + pl/cf = ex11 where c may have only a finite number of 

values. It suffices to show that y + p/cL = ex11 has only a finite 

number of solutions for fixed c. 

A W x is an ideal which can lie in any one of a finite number 

of ideal classes. It is therefore sufficient to prove this result 

for a fixed ideal class B. 

Let W be an ideal of the reciprocal ideal class. Using 

the symbol^^/for equivalent we have, W n^W ex (ex is a principal 

ideal). We have wn^nxncr*c since wx^l. It follows that g(wn) = f(c) 

where f and g are principal ideals. 

From the relation y + p/3" = cxn we have f(y + p/d) =fcxn = 

g(wn)xn = gzn where z is a principal ideal. 

Thus we have a relation involving principal ideals only. 

Transforming this into an equation involving ordinary numbers only, 

obtain f(y + pl/cf) = egz11 where e is a unit of the field R(tfT)# 

n 

we 
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This may be expressed in the form f(y + p*̂ d) = emgzn where e is the 

fundamental unit and m an integer which is positive, negative, or 

zero, m may be so chosen that 0^m«n by incorporating a suitable 

amount into the z . It therefore suffices to prove that the equa­

tion f(y + p/d) = egz11 has a finite number of solutions for fixed 

e,f,g. Multiplying by f the conjugate of f vie have, 

f f(y + ptfS.) = fegz11 which gives, 
^ n rational 

c (y + p / d ) = mzu where c i s a f * ., i n t e g e r , and m i s 

an a l g e b r a i c I n t e g e r of the f i e l d i/d. 

Let z = a + bw where ( l ,w) i s a b a s i s of the f i e l d 

R ( / d ) . We then o b t a i n , 

c (y f pj/cL) = m(a + bw) . By t a k i n g conjuga tes 

c (y - r>ifcl) = in (a+bw) n . 

Therefore 2pct/cTz: m(a + bw)n - m(a + b w) . 
w-w w - w 

The right hand side is easily seen to be a rational integral homo­

geneous function of a and b, since A-A is always real for all A. 
W-W, N 

We thus have an equation of the form f(a,b) = k. To apply Thue's 
theorem, it is sufficient to show that no two linear factors of 

f(a,b) are alike. 

The factors of f (a,b) are (m)» (a + bw) - (m)" (a t bw)Si 

where Si is one of the nth roots of unity. 

Suppose two factors are alike, Then the determinant of 

the coefficients of two of the factors must vanish. 
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That i s m* - m*s 

m^ - rn^sj 

4 A -
m w - m* WS|. 

m*w - m̂ » ws j 

nffc 
L e t Ai = m'" s i . . . , , ~£ 2 L _ i l and Aj = E " e< 

of m . We have , 
m 

mfr 

1 - Ai w - Aiw 

1 - Aj w - AJW 

= 0 

Ai and Aj are nth roots 

= 0 

or 1 - Ai 

1 - AJ 

1 w 

1 w 
0 

Now 1 w 

1 w 
is the square root of the 

discriminant of the field R(/d) and is therefore not equal to zero. 

It follows that Ai = Aj i.e. i = j. This proves that no two linear 

factors can be alike. Thue's theorem applies. There is, therefore, 

only a finite number of values a and b, and therefore it follows from 

c(y + p/cf) = m(a + bw) n that there are only a finite number of values 

y. The theorem is thus completely proved. 

This method of proof does not enable us to find the solutions 

of the equation y2 - k = x-, but the method does enable us to reduce 

the solutioh of this equation to that of a finite number of homo­

geneous binary cubic equations each equal to a constant. 
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CHAPTER THREE 

SPECIAL METHODS 

Before solving the equation y2 - k - x3 for various 

special values of k, it is important to note certain restrictions 

on the possible values of x and y which depend uoon the residue of 

k mod 3. 

If k i2 mod 3 then y is odd, x = 3 mod 4; 

k = 3 m°d 3 y is even, x = 1 mod 4; 

k = 6 mod 3 y is even, x = 3 mod ̂ J 

k E 6 mod 3 y is odd, x = 3 mod 4; 

k E 7 m°3- 3 y is even, x = 1 mod 4. 

This follows from elementary theorems in the theory of 

congruence. For example, use is made of the fact that if x is odd, 

then x2 = 1 mod 3. These results are useful since they throw out 

many values of x and y at the outset. 

We will begin by proving that the equation y + 3 = x^ has 

no integral solutions. Since k E f mod 3 we know at the outset that 

y is even and x 5 3 m 0& *K 

We have y2 + 4 = x? +1 = (x 4- l)(x2-x + 1). 

Since X = 3 mod 4 it follows that x2 - x + 1 = 3 mod 4. 

Letting xd - x + 1 = 4n + 3 we have 4n + 3 VY + 4, 

-4 = y2 mo& ^n + 3» 

The last result is a contradiction of a fundamental 

theorem of quadratic residues. We thus have a contradiction. 

Exactly the same reasoning will apply to the eoxuation 

y
2 + 4 - (i + 3c)3 = x>. 



- 11 -

We will now consider the equation y2 + 1 - p^ - x* where 

p E 2 mod 4. Therefore we have y2 4- 1 - x$+ p3 = (x + p)(x
2 - px + p 2 ) # 

In this case k - p3 - l E 7 mod 3, and hence y is even and x is odd. 

.#. x + P = 3 mod 4, and hence 4n f 3 | y2 + 1. 

This is impossible, and hence this equation has no 

solutions in rational integers. 

This procedure will icftd to the same result for. the more 

general equation y2 + q - p3 - x3 where q is odd and p = 2 mod 4 

providing it is known that x f p is prime to q. 

So far the contradiction has been based on the theorem 

for the quadratic character of -1. The next result will use the fact 

that /2j= (-1) £ • . . 

Consider the equation y2 - 45 = x* 

,-.y is even and x = 3 mod 4. 

Let y = 3k. Therefore 9k2 - 45 = x3. 

3 must divide x, and letting x = 31, we obtain, 

9k2_i.0<z 27*3 

k2-S ~ 3l3 

k2 = 6 mod 3. 

This last result is impossible. 

This proves that y is prime to 3. 

From the fact that y2 - 4*T = x3 we obtain, 

y2 _ 72 = x3 - 27 = (x-3)U
2t3x+9) 

y
2 -13 = x2+27 * (x+3)(x2-3x+9) 
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X is either congruent to -1 or 3 mod 3. 

But if x - -1 mod 3, x2 - 3x + 9 = ^ mod 3; and if 
p 

x = 3 mod 3, x + 3x + 9 5 3 mod 3. 

In either case 2 is obtained as a quadratic residue of 

a number, which is impossible according to the theory of quadratic 

residues. Hence y - 45 = x^ has no integral solutions. 

Certain cases which make use of algebraic number theory 

will be discussed at present. A more general theory will be reserved 

for the following chapter. 

Let y2 + 2 = x3. 

;, x and y are both odd. 

We have (y + /^"T) (y - \T^2) = x3. 

Any common factor of y + l/^^ and y - f^~2. must divide 

2 \T=^2. and x3. It is obvious that y + /^2 is therefore prime to 

y -|/*=^5. 

By a well-known theorem in the theory of numbers y + \^r^-

must be an exact cube. 

y 

y 

It follows that b =+..1 a = £ 1; y -15, x - 3 

Therefore y =£5, x = 3 are the only rational integral 

2 "̂  solutions of the equation y + 2 = x-% 

+ \rr^2 - (a f b ^ ^ 2 ) 3 

= &} - 6ab2 1 = b(3a2 - 2b ) x = a
2 + 2b2. 

The solution of the equation y2+k = x^ may be obtained by 

a special technique. 

We have y 
2 • 4 = x3 
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Therefore (y + 2i)(y-2i) = x3 . 

Two separate cases will be considered, y = 1 mod 2, 

and y = 0 mod 2. 

If y is odd, x is also odd, and it is easily seen that 

y + 2i is an exact cube. 

y + 21 = (a+bi)3 

y = a3 - 3ab
2 2 - b(3a2 - b2) x - a2 4 b 2 

We obtain y =» t 11, x = 5. 

If y is even, y - 2z for some integral z 

lj.z2 + 4 = x3. x is therefore even. 

x » 2b. Therefore z2 * 1 = 2b>. z is odd. 

We have /z + l\2 + (z - jf- b3 

z + l + i /z - lA is prime to ̂ + J , _ 1 fe-^±J 

Therefore z +_1 ± l(z-l). = (* + m j - ) ' 
— 2 — + 2 , 

z f 1_= f
3- ̂ m 2

s z - 1 = 3l2n - ^ 

By subtraction ^*-jj m-j^rrf + m * j 

or (V- /») (I1- 3^7n + m*) * I. 

We easily obtain/= l ^ m = O o r / = 0 , m = - l 

The solutions are,-therefore, y =+11, x = 5 and 

y =t2, x = 2. 

Brauer^ has given a method for solving the equation 

y2-2f3 = x3 where f is positive. His special method applies to the 
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case where S( f- 6f) has class number prime to 3 and 6 f contains no square factors. 

Uspensky and Heaslet employed Brauer*s technique on the special case 

r - 2 : x-># After reading this, and at that time heing unaware of Brauerfs 

paper, the following independent generalization was made. The equation y ~ 2f^ £ -sP 

was solved in the case where f is positive, B( I/- 6f) has class number prime to 3t 

and x 4- 2f is prime to 6(x + f)f. Our condition, unfortunately, is expressed in 

terms of the indeterminants of the given equation; whereas Brauerfs condition is 

entirely in terms of f. However this condition is applicable as is shown in the 

example that follows. I have attempted to prove that this condition is equivalent 

to Brauer*s condition, hut I did not succeed. 

We will now solve the equation for the case stated ahove. 

y2 _ 2f5 - x3 

Let x a z -f 

.*. y* - 2f* = z> - 3*2f + 3zf* - f3 

* 6z1f = z* • 3 z*f + 3*** + f J - <z * f)% 

(y + *f^5i) (y-z\p6f) * (« • *? • 

Since X • 2 f i s P r i m e *° ^(X +• f ) f 

z + f ie prime to ozf. 

y + z ^TSf i s prime to y - z / - 6f. 

. . ya 

y 
z \/T"6f - e(a + tf-St) where e i s a unit of the f ield 

R(y- 6f) . 

A miifr ef 

can he incorporated into the cube, and hence we have y + Z>/T6f 

(c f d/^6f) • 

e 

3 
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y s c3 - 18 fed* and z s 3cad - $fd3, ( l ) 

Also i + f = ca + 6fda 

. . c* 4 6fda a f 4 3c2d - 6fd3 

. \ ^(l»3d) = f(l-6da - 6d3) 

. ' . ca - f ( i - 6 d * - 6 d i ) * f ( 6 d i 4 6 d i - i ) 
i^3a ^ 

. . c1 = ff2d% gd + g „ i ( 1 / ^ 
I 3 9 973riM)J W 

. . 9ca s f(lSda f 2Ud + S - i V 
3d-/ 

_.f, is integral. 
3d»>l 

. • 3^-1 divides f. 

!Ehe values of d can easily he found; and from (2), c can he 

found. 

Now we can find z from (l). Since x » z-ff x can he found. 

Thus the equation can he solved in this case. 

As a special case we will consider the equation y* ~ 2 s x^. 

In this case f z 1. All the conditions are satisfied in this case. 

Proff 

B( £5) has class numher prime to 3 

It suffices to pr#ve that X + 2 is prime to 6(xfl) 

But x 4 2 is obviously prime to x + 1 

It suffices to prove that x 4 2 is prime to 6 i.e. prime to hoth 2 and 3. 

Prom the equation y» - 2 = X3 „ e ̂ ^ x ^ y ^ odd ^ ^ 
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this case k ; 2 mod 8. 

.*. x 4 2 is odd, and is thus prime to^# 

Suppose 3 divides x 4 2. 

• !. x * 1 mod 3. I*et x s 3m 4 1 

x^ s (3a I l) g l mod 9. 

Prom y* - 2 s x3 we have y*s 2 4 x3 5 3 mod 9 

This last result is impossible since the equation x1 ; 3 nod 9 is 

insolvahle. 

.*. x 4 2 is prime to 3 

The result has therefore been proved 

Applying the method to this case 

We have 3d - 1 divides 1 <«f* ») 

d must therefore be 0. 

From (2) we obtain that c * ± 1. 

From (l) we have z £ 0 y « £ l . 

The only solutions of the equation ya ~ 2 s x3 are therefore 

y s 4 1, x » -1. 
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CHAPTER FOUR 

THE EQUATION y2 - k « x? FOR NEGATIVE k 

CASE 1 

k contains no squares, k = 2 or 3 mod ^, h Is prime 

to 3 (h stands for the class number of the field R (/k)) 

It is easily seen that x must be odd in either case. 

The fact that x is prime to k follows from the assumption that k 

contains no square factors. • 4 x is prime to 2k, 

(y 4//~k) (y ~/k) = x3# 

Any common factor of y + /k and y ~/TT divides 2^1 and 

x3. it follows that y 4/k is prime to y ~/k, and therefore 

X + l/"k = b3 where b is an ideal of R(i^T). 

We have:-

b^ is a principal ideal and b*1 is a principal ideal. 

Also, 3 ̂ s prinie to h. 

It follows that b is a principal ideal. 

We therefore obtain y + /k = e(c+d/k) where e is a unit 

of R(/k). Since k can not equal -3, e can always be incorporated 

into the cube, and we obtain y + ̂ k = (V + v/k)3. 

/ . y = W3 4 3»V2k, 1 = V (3U2 + V2k), x = V2 - V2k. 

We obtain V = + 1, -k = 3V2 + 1, x = *W2+ 1. 

In this case, there is at most one value of V , and 

therefore one value of x« 

This case gives a unique solution except for the sign 

2 + 
of y if -k can be expressed in the form Ji ~ 1 where V is integral. 

Otherwise the equation is insoluable. 
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The result for k = ~2 worked out in the preceding 

chapter is a special case of this more general result. The 

following cases also follow from this result. 

y2 + 1 = x3 x s +i, y = 0 

y2 4 5 = x3 no solutions 

y2 4 6 = x3 no solutions 

y2 4 10= x3 no solutions 

y2 4 13= x3 x = +17, y = +70 

y2 4 1^= x3 no solutions 

y2 + 17 =x3 no solutions 

y2 4 21= x3 no solutions 

y2 4 22= x3 no solutions 

y2 4 30= x3 no solutions 

y2 + 33= x3 no solutions 

y2 + 314.= x3 no solutions 

y2 4 37= x3 no solutions 

y2 4 kl- x3 no solutions 

y2 + 4*2= x3 no solutions 

y2 4 14.6= x3 no solutions 

CASE 2 

k contains no squares, k s £ mod 2, h is prime to 3. 

It is easily seen that x is odd and y is even. As 

before, x is prime to 2k. Except for the special case k = -3, we 

obtain y +/"* = (V + v/k)3f since h is prime to 3 and e = + 1. 

In this case (l/k~) is not a basis of the field R (l/k), 

and it is preferable to use the basis (l,w) where w = 14 /k. 
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We obtain, y ~ l + 2 w = ( c + dw)2. 

y - 1 = c3^ 3 c d 2 |k^l | 4 d3 | k _ i | 

2 = dJ3c2 + 3 d + d2 | k43>1 

x = (c+dw)(c+dw) = c24 cd - d 2 | k - l \ 

It is easily seen that there is a maximum of four 

solutions in this case. 

The following examples illustrate this case. 

2 1 

y + 11 = x^ x = 43, y = 4 l* x = +15, y = +58 

y2 + 19 = x3 x = +71 y = i lg 

y2 4 35 = x3 x = +11, y = + 36 
y2 + 1̂3 - x3

 n o solutions 

CASE 3 k contains no squares, k s 1 mod 2, h is prime to 3. 

The preceding method can be used to give all the 

solutions when x is odd, but the case x is even is much more diffi­

cult to solve. 

To begin with, y +/k is not prime to y ~/k. However; 

the only possible prime factors common to y +/k and y ~tfTare the 

factors of 2. Since the prime factors of 2 are (2,w) and(2,t?)J we 

obtain y 4/k = (2,w)r (2,w)s & where b is an ideal of R (fk). It 

is important to note that b is not necessarily a principal ideal in 

this case. At any rate, b must belong to a fiXed ideal class. This 

is proved as follows. Suppose b^ and b2 satisfy this equation. 

Therefore b ^ ^ b 3 ^ Also, bjk—'bg*1, since each side is a principal 
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ideal . 

h 3m~hn -u 3m~bn ^ 
• # Di ^~st>2 for a l l integral m and n. 

But 3 i s prime to h. 

. • There exist integral m and n such that 3m«hn = 1 

bi^bg which was to be proved. 

It is obvious that r and s may be chosen so that 

0^r*3 and O^s -^3. By taking conjugates it is easily seen that 

r + s = 3. From this it is not difficult to obtain the homogeneous 

binary cubics. As an example, the cubic y > 7 - *3 w m ^e reduced 

to two homogeneous binary cubics. 

By the method of case 2, it is seen that y + 7 = x3 

has no solutions for odd x. For even x we have the equation, 

y - 1 + 2w = (2,w)r (2,w)S b5 where r + s = 3. 

In this case w = 1+j/"̂ 7 » and therefore wfi = 2 
5 

. . w and w "both divide 2. The ideals (2,w) and (2,ft)are 

equal to (w) and (w)respectively. 

We have y-l+2w = (w)r (w)s b30 

Since the class number of R (/~7) is prime to 3, and the 

only units of R(/^) are +1, t h i s may b e written as a relation involving 

ordinary numbers, 

y~l42w = wr??sb3 

The possible values of r and s are:~ 

r = 2, s = l ; and r = 1, s = 2. 
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We have y - 1 + 2w = 2w (c4dw)3 (i) 

or y - 1 4 2w = 2w (c4dw)3 (2) 

Equating the coefficients of w, we obtain 

o3+ 3cd
2 - 3cd2 - 3d3 = l 

-c34 6cd2 4 2d3 = l 

From these cubics the trivial solutions c = 4l d = 0 

may be obtained. These give the solutions y = 4 1, x = 2; to the 

2 7 equation y +7 = x^. There does exist a tedious process for obtaining 

all the solutions of these two cubics. Jt A more detailed discussion 

of the cubics obtained from the equation y2~k=x3 will be found in the 

following chapter. 

CASE k 

k = 2 or 3 mod kf h is prime to 3» 

P 

Let k be of the form kf where k contains no square 

factors. If it so happens that x is prime to 2kf, this case can be 

easily dealt with. 
We have, y2~kf = x3 

(y 4 f/k)(y ~ fvk) = x3 

Any prime common factor of y 4 f/1 and y - ft~k must 

divide 2f/k and x. 

• • 
* y 4 fFK is prime to y - f i k. 

The rest of the reasoning is similar to that of the 

case y2~k = x3 where k contains no square factors. 

We have y 4 fj/k = (c+d^k)3 
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• • 
y = c343cd k 

f = d(3c24d2k) 

2 2 
X = Cc-dHfc 

The maximum number of solutions is ^T(f) where T(f) 

is the number of divisors of f(if f is not divisible by 3, 2T(f) may 

be taken as an upper bound). 

Let us consider the case f = ^. 

y2 - l6k = x3. Suppose 2 divides x 

2 divides y. Let x = 2xlf y = 2yi. 

« 

*l - 14-lt = 2x^5. 2 divides yi# 

Let y^ = 2y2 . 2y £
2 _ 2k = ^ , 2 divides x1, 

• • 

. * . y 2 ~ k = ^ x 2 3 where x i = 2X2 . 

• • y2
2 S k mod k; but this is impossible since k = 2 or 3 mod k. 

Therefore x is odd* 

But x is prime to the odd part of k. 

/ , xis prime to 3k i.e. prime to 2kf. 

Hence the condition for solvability by the preceding 

method is satisfied. As an example, we have the following result. 

y24 32 = x3 has no solutions. (k= -2) 

CASE 5 

k = 5 mod 6, h prime to 3 

Let k be of the form kf2 where k contains no square 

factors. As before, if x is prime to 2kf, we obtain 
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y + ffk = (c + dl/kV or in terms of a basis 1, w, 

y - f + 2fw = (v + vw)3 

y - f = v3 _ 3vv
2(k-l) + v^ (k-l) 

2f = V JJJV2 4 3«v 4 V2 (k 4 3)1 

x = t»2 + irv - v2 (k-l). 

This case can therefore easily be solved. 

In this case there is an upper bound of ST(f) solutions; 

and if f is prime to 3, an upper bound is ^T(f), 

Let us consider the case f = 2 

y2- life = x3 let 2 divide x. 

.•# 2 divides y, and letting x = 2xlf y = 2y^ we have, 

y!2 - k = 2xx
3. 

Since k is odd, y,must be odd * y 2 = 1 mod g 
• • 1 

2X3̂3 s i « j i l | , mod S 

. ! . x i 3 s 2 mod K 

This is impossible. Therefore x is odd. 

But x is prime to the odd part of k. 

.•. x is prime to ^k i.e. 2kf. 

Therefore this case can be solved in general. 

As an example, we have the following result. 

y2 + 114 a x
3 x = 5, y = ±9 (k = -ID. 
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CHAPTER FIV6 

THE EQUATION ax3 + bx2y + oxy2 + ay 3 = f 

I have shown that it is possible to reduce the 

solution of the equation y2-k = x3 to that of a finite number of 

homogeneous binary cubics each equal to a constant. 

Thus, if the equation ax3 + bx2y + cxy2 + dy3 = f 

can be solved, then the original equation can also be solved. I 

will now show that any equation of the form F(x,y) = N can be re 

duced to a finite number of equations f(x,y) = 1. 

We have, ax3 + bx2y 4 cxy2 + dy3 = N. 

Let us assume at first that x is prime to N. If so, 

there exists a u such that xu s y mod N for all y. 

We obtain, ax3 4 bx3u 4 cx3u2 + dx3u3 « 0 mod N. 

Since x is prime to N, a+bu4cu2 +du3 =. 0 mod N. 

All the possible values of u mod N can be found by 

trial, (there is obviously a maximum of N values). 

Selecting an arbitrary u, we have y = xu 4 Nz, 

Where z is an integer. By substituting, we obtain:-

ax3 4 bx2(xu 4 Nz) 4 ex (xu 4 Nz)2 + d(xu + Nz)3 = N 

or x3(a 4 bu 4 cu2 + du3) + Nx2z (b + 2cu 4 3du2) * N2xz2 

(c + 3du) 4 N3z3d = N 
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By construction N divides a } but cu2 4 du3 

Let a 4 bu 4 cu24 du^ = MN 

.*. MX3 4 x2z(b 4 2cu 43du2) 4 xz2(cl! 4 3duN)f dN2z3 = 1. 

Thus the equation is reduced to the form f(x,y) = 1. 

There remains the possibility that x is not prime to N. 

Let x and N have a nrime common factor P. Let x = Px,, 

and N = P]^, 

.•. P(aP2
Xl3 f 6Pxx

2y 4 cx^y2) + dy3 = PN X 

P must divide d or y. If P divides d, let d = Pdi 

•*. aPx 1 f bPx1
2y 4 cx1y

2 4 d1y3 = ^ 

Thus the N has been reduced to N # 

If P divides y we have y = Pyi; and we obtain 

P3(ax 3 + bx 2y + ex y + dy 3) = N 

This can only happen if N contains P- as a factor, and 

letting N = P3?^, we have, ax 3 4 bx 2y + cxy 2 f dy 3 = T^ m 

In either case N can be reduced, and therefore in a finite 

number of steps we can reduce the -oroblem to the case where x is 

prime to N. 

A useful corollary is that if d is prime to N and if N 

contains no cubes, then x is prime to N. 

.*. In all cases the solution of the equation F(x,y) = N can 

be reduced to that of a finite number of equations of the form 

f (x,y) = 1. 
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Certain trivial reductions may also be made. If vie have; 

ax3 4 bx2y 4 cxy2 4 dy3 = N, we obtain a3x^ 4 a2bx2y 4 a2cxy2 4 a2dy3 

= a2N. By letting ax and y be the new unknowns, the equation has 

been transformed to the form x3 4 ax2y 4 hXy2 4 cy3 = N. It is 

easily seen that the equation can also be reduced to the form 

x3 4 bxy2 4 cy-' = N. 

Any important function associated with a cubic form is 

the discriminant. The discriminant of ax^ 4 bx2y 4 cxy2 4 dy3 is 

•;lg abed - 4b3d 4 b2c2 - 4ac3 - 27a2d2.; This is exactly equal to 

' h t \ 2 / N 2 , v 2 ^ -

\. a^(x1 - x2) (x^ x-j) (x2- x-j) >-where xl9 x2, x^ are the roots of 

the equation ax3 4 bx2 4 ex 4 d = 0m it follows that the discriminant 

is zero if and only if the equation has repeated roots, the dis­

criminant is positive if all the roots are real and distinct, and 

the discriminant is negative if the equation has complex roots. 

If the discriminant is zero, it is easily seen that the 

cubic ax3 4 bx^y 4 cxy2 4 dy3 must have a rational factor. The 

cubic equation then takes the form (mx-ny)fPx2 + ̂ x f r) = 1, 
This equation can easily be solved. 

(R) Wilhelm Ljunggren K^J published a method of solving the 
"l p p "Z 

equation xJ \ Px y 4 oxy + ry-̂  = 1 where the discriminant is positive, 

He was able to reduce the solution of this equation to that of two 

simultaneous exponential equations in two unknowns. There also 

exists methods of dealing with exponential equations.v J 

No method exists at present for solving the equation 
"5 2 2 3 

ax^ 4 bx y 4 cxy 4 dyy = 1 for negative discriminant. However; 

there are interesting results known in connection with upper bounds 
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to the number of solutions to the equation. 

(7) Nagellv' discovered a certain theorem of this type. The 

theorem states that if f(x,y) is an irreducible binary cubic form 

with negative discriminant, then the Diophantine equation f(x,y) = 1 

has at most three solutions except in the following cases. 

x3 4 xy2 4 y3 = 1 or an equivalent form, 

x3 ~ x2y 4 XY2 4 y3 = 1 or an equivalent form 

x3 - xy2 4 y3 = 1 or an equivalent form. 

(Two forms are equivalent if one may be transformed into 

the other by a transformation whose determinant is 4l). Equivalent 

forms have the same number of solutions. Also, the theorem states 

that the equation x3 4 Xy^ 4 y3 = 1 has four solutions, the equation 
7 p p "7 

x^ - x y 4 Xy + y-? = 1 has four solutions, and the equation 
7 2 7 x^ - Xy +• y = 1 has five solutions. It is useful to note that the 

discriminants are -31, -44, -23 respectively. 

If f(x,y) is reducible, there is obviously a maximum of 

four solutions since we have (ex 4 dy)(Px2 4 fxy 4 ry2) = 1 giving 

ex f dy = KL. Combining these two results we obtain a maximum of 

five solutions in either case. 

It is not difficult to extend this result to an equation 

of the form f(x,y) = N where f(x,y) is a homogeneous cubic T-Tith 

negative discriminant. The equations obtained by reducing this 

equation to a finite number of equations of the form f(x,y) = 1 all 

have discriminant of the same sign as f(x,y). Therefore if f(x,y) 

has negative discriminant, an upper bound to the number of solutions 

is five times the number of auxiliary equations obtained. 
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If x or y must be prime to N, then SN is an upper bound 

to the number of solutions. This is ensured if N contains no cubes, 

and either the coefficient of xP or of y3 is prime to N. If further­

more, N is a prime, the upper bound, can be taken to be IS since there 

can be 3 auxiliary equations at the most. 

By extending this reasoning, an upper bound may be obtained 

to the number of solutions of the equation f(x,y) = N for any N. 

The method, in general, is to find the number of auxiliary equations 

(or at least an upper bound to that number) and multiply the answer 

by five. 

The following theorem will enable us to use the preceeding 

results to find an upper bound to the number of solutions of 

yd -k = x3 for certain classes of k. 

THEOREM 

The auxiliary cubics obtained from the equation y2 - k = x3 

all have discriminant opposite in sign to k. 

CASE 1 

Suppose k is not an exact square, and k = 1 mod 4. 

From chapter two it may be seen that the auxiliary cubic is the 

coefficient of J/1E in (t 4 v/k)(a 4 bl/k)3 where t 4 vi/k is an 

arbitrary number of R (/k). 

.•. The auxiliary cubic is of the form 
•z p 2 3 

V3? t 3ta b 4 3k*ab 4 tkb^ 

By substitution, discriminant is 
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l62v2k2t2 - 10S t \ + gl v2k2t2 - 102 k ^ - 27 t W = 

= -10gk.(t̂  - 2t2kv2 + k2v ) 

= -102k (t2 - k\i2)2. 

By hypothesis T2 -kw2 f 0. Hence the result follows. 

CASE 2 

k is not an exact square, and k = 1 mod k. This 

time it is necessary to consider the coefficient of w in (t + v«T)(a+bw)^. 

Let f(a,b) be the coefficient of w. 

.'. The coefficient of //£ = £f(a,b). [w = .l + /k' 
2 I 

But (t 4 Vw)(a4bw)3 = (2t 4 V . v/kU2a 4 b . b/kl3 

^_2 4 —̂ —I (—̂  + -2-) 

The coefficient of /k = F(2a 4 b , b) where F is a homogeneous 
( 2 2) 

binary cubic with discriminant opposite in sign to k by the previous 

result. 

But if (a,b) = F(2a 4 b , b) . 
( — 2 — 2) 

.*• The discriminant of f is of the same sign as the discriminant 

of F. 

Hence the theorem is proved for this case. 

CASE 3 k is an exact square. 

From chapter two a typical auxiliary cubic is 

2p = ex3 - bz3. This has discriminant -27b^c. Since k, being an 

exact square, is positive, the theorem is proved for this case also. 
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In the equation y2 - k = x3, if k is positive, the 

discriminant of all the cubics are negative. This theorem can 

therefore be used to find an upper bound to the number of solutions 
p 3 

of y - k = xy for positive k. In the following chapter I will obtain 

upper bounds for a few classes of k. 
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CHAPTER SIX 

THE EQUATION y2 - k = x3 FOR POSITIVE k 

CASE 1 

k contains no squares, k = 2 or 3 mod 4, h is prime to 3. 

As in the case where k is negative, we obtain, y 4l/k -

e(a 4 b/kp where e is a unit e may have an infinite number of 

values. The values of e are of the form (T + v/k)n where t 4 v/k 

is the fundamental unit, and n is a positive integer, negative 

integer, or zero. By incorporation into the cube, n may be chosen 

satisfying the inequality -2*n<2. The following cubics are obtained: 

y 4 /k = (T 4 \ll/k)(a 4 b/k)3 gives:-

Va3 4 3^a2b 4 3kt*ab2 4 Tkb3 = 1. 

y 4 / k = (T%v/k)(a 4 b / k ) 3 g i v e s : -

-Wa3 4 3Ta2b - 3kVab2 4 Tkb3 = 1. 

y + |/k= (a 4 b/k)3 gives b(3a2 4 b2k) - 1. 

The last equation has no solutions. 

The discriminants of the first and second equations are 

negative and not equal to -31* -44, or -23. If the equations are 

irreducible, this suffices to show that each of them has a maxi­

mum of 3 solutions. This gives a maximum of 6 solutions to the 

equation y2 - k = x3. If the cubics are reducible, the equations 

can be solved, and a maximum of 2 solutions is obtained. 

Hence in this case there is a maximum of 2 solutions. 
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CASE 2 

k contains no squares, k = 5 mod 2, h is prime to 3. 

As in the case where k is negative, we obtain 

y - 1 4 2w =(s 4 tw)(c 4 dw)3 where s 4 tw is a unit of R(|flE). 

We obtain the following three possible cases 

y- 1 4 2w= (a * bw)(c 4- dw) 3 

y - 1 4 2w = (a 4 bw)(c 4 dw) 

y - I f 2w = (c 4 dwK 

The last equation gives the cubic, 

2 = dftc2 - 3ed 4 d2(k 4 3)1 
L (—*-) 

Unless k = S where this gives the solution y = £2, x = -1; 

this equation has no solutions. 

The other cubics are of the form f(c,d) = 2. Such a 

cubic has a maximum of 10 solutions where c is odd, and a maximum of 

S where c is even, giving a maximum of lg solutions. 

Since there are two such cubics, there is a maximum of 

30 solutions in this case. 

If k = 1 mod 3, this method will give the upper bound 

of 30 to the odd solutions of x. 

C-ASE 3 k = 2 or 3 mod 4, h is prime to 3-

Let k "be of the form kf^# If x is prime to 2 kf we obtain y 4 fi/k = 

e(c 4 d/k) 3. in this case we ohtain two cubics of the form g(cfd) a f, and a cubic 

f = d(3c2 4 d 2k). 



- 3 1 -

Ir\ <f*.r\€\rQ\ 
We will consider the case f is prime. Unless f «• >3> the last 

equation has a maximum of 2 solutions. Ia-general, the equation has a maximum 

of )| solutions, A cubic of the form g(x,y) s f where f is prime has a maximum of 

13 solutions where x is prime to f, and a maximum of 5 where x is not prime to 

f. This gives a total of kO solutions for "both cubics. The total number of 

solutions of the equation y 2 - k = x3 is 1& in this case. 

It is possible to obtain an upper bound to the number of solutions 

for all positive k, but the arithmetic becomes cumbersome for many values of k. 

The cases that were done here seem to be the most interesting. 

It is important to note that the upper bound obtained in many of 

these cases may be extremely coarse, and a much smaller upper bound may possibly 
US 

be obtained by using other methods. This method, however, enables/\to determine 

an upper bound for any negative k. 
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