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CHAPTER ONE

INTRODUCTION,

One of the best known Diovhantine equatibns that
mathematicians have worked on for a long time 1s the equation
y*-k = x°, Although many mathematicians have attempted to solve
this equation, it remains unsolved except for certain classes of
K. Nagell(l) gives the values of k such that ; k |< 100 for which
the solutions have not been found., The values are: k = &,9,10,12,
15,18,19, 22,24, 26,24, 30, 31,33, 35,36,37,38,40, 41,43 Ll 48 50,52,54,
55,56,57,63,64,65,68,71,72,73,74,76,79,80,¢€1,82,89,91,92,94,97, 98,
99,-7,-15,-18,-20,-23,-25,-26,-28,-31,-39,-40,-45 U7 L& -53 -5l
-55,-56,-60,-61,-63,-71,-72,-79,-83,-84,-87,-89,-95,

The great mathematician, Fermat, investigated tThis
equation, He claimed to have solved the equation y2+2 = %0 but it
is not known 1if Fefmat had a rigorous proof of the result, It is
interesting to note that the only integral solutions of this
equation are y = ¥5, x =3,

Euler also did some work on this ecuation, He solved
the ecuation yz- 1= %3 by the method of infinite descent, He also
gave a method for solving the egquation y2+ 2 = XB, but the method
was fallacious. Fe wrote the equaticn in the form (y +|/f'§)(y_\/:§):x3

“e then stated that there exist integers a and b such that

y +VZ 2 = (a +bV= 2)3, This statement is now known to be correct,
but since a rigorous theory of algebraic numbers did not exist at
that time, Euler had no Justification in stating this result., In

fact, it is now known that tkhe equation y + y— X =(a + b\/f’ﬁ)3



will give the complete solution of ye-k = x3 only for certain k,

Cne of the greatest single steps made in the direction
of solving the equation was the development of algebraic number
theory. It was found that with the introduction of a new type of
element, an ideal, unique factorization holds in any algebraic
nunber field, Mordell(z) applied this in his attempt to solve the
equation y2— k = XB. He succeeded in solving this equation for
certain classes of k in his paper of 1912,

A few years later Landau and Ostrowski(B) published a

general result proving that the equation ve- k = x3 has only a finite

L4

number of solutions, In fact, the result was »nroved for the more

¢+ by + c = dx"ny3 where a, b~ bac, 4 are un-

general equation ay
equal to zero, The result alco gives a method of reducing the
equation yg— k = xzto a finite number of ecuations of the form
f (x,y) = N where £ (x,y) ie a binary hbmogeneous cubic,

The reduction of the equation y2- k = xJ to the equation
f(x,y) = N was an important step forward, Various results have been

discovered in connection with the ecuation f(x,y) = N although the

equation is still far from solved in general, I will show later
how certain information about the solutions of the equation y2- K = x)
can be obtained by an annlication of information about the solutions
of the equation f (x,y) = N,

In this thesis we shall solve the ecuation yo- k = xJ
for certain special values of k. It will be seen that by means of

the theory of congruence and of quadratlic residues, certain cases

can be dealt with., We will also, by means of 1ideal theory, solve
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‘the equation for certain classes of k, 1In chapter 5 certain pronerties'
of the equation ax3+ bxzy + cxy2+ dy;/;ill be discussed, A theorem
proved at the end of chapter five, which so far as the author knows

1s original gives an intimate connection between the equation

y2- k = %3, and the cubics derived from it. Thie will be apnlied

in chapter 6 to obtaln an unper bound to the number of solutions of

. s 2 . . .
tne equation y - k = X3 for certain classes of k, Before discussing

2

the equation y-- k = XB, a few vroperties of 1deal classes will be

mentioned, because the concept of ideal classes plays an important
rart in the development of the theory for this equation.

To begin with, two ideals a and b are said to be edquiva-
lent if there exist principal ideals x and y such that ax = by, This
relation can easlly be seen to be reflexive, symmetrlic, and transi-
tive; and therefore the ideals are thus broken up into classes,

With an obvious definition for the multiplication of classes, it

is found that the classes form an Abelian group, One of these classes
is the set consisting of all principal 1ldeals, and this class 1is
obviously the identity element of the group. An imvortant result

is that for a given field there are only a finite number of ideal
classes. Thus, we have a finite group, and many of the properties

of ideal classes follow directly from the theory of finite grcuos,

The number of ideal classeg in a field is commonly called the class

number of the field.,

If b is any ideal of an algebraic number field and h is

the class number of the field, it follows by the theory of groups

m .,
that bl is a »rincipal ideal, If b 1s also known to be a princival
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ideal, and 1f furthermore m is prime to h, then it follows that b
itself is also a principal ideal, This result will be used in this’

thesis To solve the equation yg— kK = xJ for some classeg of k,
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CHAPTER TWO

THE FINITE NUMBER THEOREM

In this chapter it will be vroved that the equation
aye+ by + ¢ = dx? where a, bac - b , d# o has only a finite number

of solutions in integers if n » 3.

Let ay® by + ¢ = axb,
therefore 4a°yT+ lLaby $ Yac = Lagx",
or (2ay + p)° 4 lag - b° = badx™,
Let 2ay + b = y, hac-b° = m, 4ad = k,
Then y2+ m = kx where m, k * O

= dx"

2 4 by 4+ c/had an infinite number of solutions so

If ay
would 72 + m = kxn, since for every value of y a different value of
Y is obtained, It therefore suffices to prove that an equation of
the type y2 - k = mx” has only a finite number of integral solutions
for k, m # o,

CASE 1

2

Let k¥ = n*~ where p 1s an integer,

therefore ye - p° = mx",
or (y-p)(y+p) = mx",
Let S be a prime factor o7 y + p which 1s prime to 2mp.
It follows that S is orime to 2p and therefore tc y-o. Also S is
prime to m.
From the exuression (y-p)(y+#») = mx , 1t follows that the
pover of S contained in ¥y + D equals the vpower of S contained in x",
That is, y + p contalns Sln for some 1lntegral 1., By similar reasoning

for all other prime factors of ¥ + » which are »rime to 2mp, it

follows that y + p 1s an exact nth power of all these factors, Im
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other words, the only nrime factorsof Yy + p of which ¥ + v may not
contaln an exact nth vower are those that divide 2mp.,

That is:-

y+Dp= S“r’ s‘-r‘s, e85 X wnere Sy, 83, 53,...5,

divide 2mp, The r’s may each be chosen less than n by incorporating
all nth vowers into the X, Then, there are only a finite number of
nossible factors S,n S’Q;SJIb...."snPn since 2mp contains only a
finite number of »rime factors,

Therefore y + p = oxn, where ¢ runs through a finite number
of values,

By exactly the same reasoning y - p = bz where b runs
through a finite number of values,

It is sufficient to prove that the simultaneous ecuations
Yy +p=cx', y-p=bz” have only a finite number of solutions
X,y,z, for fixed b and ¢, for a finite sum of finite numbers is still

finite, ©Subtracting, we obtaln, 2p = cx- bz, If the equation

cx- bzl'= 0 ig considered, the values of X are the nth roots of b, and
the roots are therefore all distinct, Siice n>%, it follows by %hue‘s
theorem that the equation has only a finite number of solutions, Thus,
there are only a finite number of solutlons for Xx,y,z, and the theorem
is proved for this case,
CASE 2

If ¥ is not an exact souare, let x = pgd where p 1s integral
and d has no square factors, e will work in the quadratic field

R(y/4d).

We have ye- p°d = mx7,
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or (y + pVd)(y - o¥d) = mx®,
Let b be a prime ideal facﬁor of y + pfﬁ vhich 1s orime -
to 2pmfd., b is therefore vnrime to m and orime to ¥y + nVad - 2pYa or
vy - pVﬁl b 1s therefore contained as often in y 4 o¥d as it is

n. It follows that y ¢+ pVa contains b to an exnonent

contained in x
divisible by n, As before, 1t can be seen that the only prime ideal
factors of y + o¥d which do not necessarily occur with an exponent
divisible by n are those that divide mefa.
v + p/d = b, i bzr*b3r5 eve...ba™@ X where by, bp, bz.....by

divide 2pmVd, By incorporation into the x all the r’?s can be made
less than n, and since an ideal has only a finite number of prime
ideal factors, y + pVd = cx” where ¢ may have only a finite number of
values. It suffices to show that y + pVd = cx” has only a finite
number of solutlons for fixed c.

MNMwX 18 an ideal which can lie in any one of a finite number
of ideal classes. It is therefore sufficient to prove this result
for a fixed ideal class B,

Let W be an ideal of the reciprocal icdeal class, Using

the symbol ~~for equlvalent we have, o wlox™ (cxn is a principal

n n

ideal). We have wiaw"x"c~c since wz~l, It follows that g(w?) = £(c)

where f and g are principal ideals,

From the relation y + pvVd = cxP we have £(y + pV/d) =fex" =
g(wh)xl = gzl where z is a princival ideal,

Thus, we have a relation involving princival ideals only,

Transforming this into an edquation involving ordinary numbers only,

we obtain f(y + pV@) = egz® where e is a unit of the field R(vd)
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This may be exoressed in the form f(y + pld) = egz™ where e is the
fundamental unit and m an integer which is nositive, negative, or
zero, m may be so chosen that O<men by incorvorating a sultable
amount into the zn. It therefore suffices to »rove that the equa-

tion f(y + pfa) = egzn has a finite number of solutions for fixed

e,f,g. Multiplying by T the conjugate of f we have,

f F(y + pvd) = Fegz" which gives,
n rational '
cly + p¥d) = mz? where c is a / * . integer, and m 1s
an algebraic integer of the field Va.
Let z. = a + bw where (1,w) is a basis of the field

R(/d). e then obtain,

cly + pva) = m(a + bw)", By taking conjJugates
cly - o¥/@) = m (apbw)®,

Therefore chyﬁ’: i(a + bW)? - @la + b W) .
W-w W - W

The right hand side 1s easily seen to be a rational integral homo-

geneous function of a and b, since A-A_1is always "real  “or all A,

e ottt
-

W-W
We thus have an equation of the form f(a,b) = k, To annly Thue's
theorem, 1t is sufficlent to show that no two linear factors of
f(a,b) are alike.

4
n

The factors of f(a,b) are (m)% (a + bw) - ()" (a + bw)Si

where Si is one of the nth roots of unity.

Supnose two factors are alike, Then the determinant of

the coefficients of two of the factors must vanish,



. +
That is n* - m" s Py - m* WS,
=0

mk - fifg; mbw - mh ws

Let AL = g -
°h AT —EIEL and Ay = m” sy A} and A; are nth t
J . : roots
Y J

or 1l - Aj 1l w
= 0
1-Ayll1w
Now 1l w
is the square root of the
1w

discriminant of the field R(/4) and is therefore not equal to zero,

It follows that Al = A3y i.e, 1 = J. This proves that no two linear
factors can be alike, Thue's theorem applies. There is, therefore,
only a finite number of values a and b, and therefore it follows from
c(y + p/@) = m(a + bw)? that there are only a finite number of values

Y. The theorem is thus completely »roved,

This method of oroof does not enable us to find the solutions
3

of the equation y2 - k = X7, but the method does enable us to reduce

the sclutioh of this equation to that of a finite number of homo-

geneous bilnary cubic equations each equal to a constant,



Before solving the equation y2
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CHAPTER THREE

SPECTAL METHCDS

_k:XBfOr

various

special values of k, it is imvortant to note certain restrictions

on the possible values of x and y which denend unon the residue of

k mod &,
If k 22 mod 8 then y is 0dd, x = 3 mod U;
kK = 3 mod % y is even, x = 1 mod 4;
k = s mod & ¥y 1s even, x = 3 mod U4;
k = 6 mod & y is 0dd, x = 3 mod k4;
k = 7 mod 8 y is even, x = 1 mod 4,
This follows from elementary theorems in the theory of
congruence, For example, use is made of the fact that if x is odd,

then %2 = 1 mod 8.

many values of x and y at the outset,

We will begin by nroving that the equation y

no integral solutions,

y is even and x = 3 mod 4,

These results are useful since they throw out

e x3 has

+ 3 =

Since k¥ = & mod 8 we know at the outset that

We have y° 4+ 4 = x2 #1 = (x + 1) (x2-x + 1),

Since X = 3 mod 4 it follows that x

Letting x2 -

~4 = y© mod Un + 3,

x4+ 1=4n+ 3 we have Un + 3 'yg

2

- X% 1= 3 mod k4,

+ U

b

The last result 1s a contradiction of a fundamental

theorem of quadratic residues,

We thus have a contradiction,

Exactly the same reasoning will aptly to the equation

y2 y U4 - (1 + gc)’ = X7
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We will now consider the equation yE A p3 = x3 where

P = 2 mod 4, Therefore we have vy + 1 = x04 p3 - (x + p)(x2 - DX + pE)

In this case k = pJ - 1 = 7 mod &, and hence y is even and x is odd.

.°. X+ p= 3mod 4, and hence Un + 3| y° + 1.

This 1s impossible, and hence this equation has no
solutions in rational integers,

This procedure will {eqd to the same result for the more
general ecuation y2 + q2 - p3 = x3 where g is 0dd and p = 2 mod U4
providing it is known that x + p is prime to q.

So far the contradiction has been based on the theorem

for the quadratic character of -1, The next result will use the fact

that _2_): (-1)7F ..
p .
Consider the equation y° - 45 = x7
-y is even and x = 3 mod 4,
Let y = %k, Therefore 9k° - 45 = xJ,

3 must divide x, and letting x = 32X, we obtain,
oxC-lLg = 2717

k2 = & mod 3,

This last result is impossible,
This proves that y is »prime to 2,
From the fact that y© - L& = xJ we obtain,
y2 - 72 = x3 - 27 = (x-3) (x%43%49)
yo -18 = x°427 = (X+3)(X2-3X+9) )
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X is either congruent to -1 or 3 mod &,

But‘if x = -1 mod &, x° - 3x ¢ 9 = & mod &; and if

X = % mod &, X2 4 3 + 9 = % mod &.

In elither case 2 is obtained as a quadratic residuve of

a number, which is lmvossible according to the theory of quadratic

resicdues,

will be discussed at present.

Hence y= - 45 = x3 has no integral solutions,
Certain cases whilch make use of algebralc number theory

A more general theory will be reserved

for the following chanter,

Let y2 + 2= XB.

. X and y are both odd,

2y= 2 and
y—MO

must be an

We have (y + v=2) (y - /= 2) = x3,
Any common factor of y + V=2 and ¥y - /= 2 must divide

xJ, It 1s obvious that y + v= 2 is therefore orime to

By a well-known theorem in the theory of numbers y y =7

exact cube.

y+V/=2 = (a+by=2)°
2

y = ad - 6aB° 1= b(3a% - 207) x = a2 4 20°,
It follows that b=*1 a=2X1; y=2%5, x=3

Therefore y =i:5, x = 3 are the only rational integral

2
solutions of the equation y2 + 2 = X7,

The solution of the equation y2+4 = x7 may be obtained by

a special technlique,

We have y© + U4 = x7
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Therefore (y + 21)(y-21) = xJ

Two separate cases will be considered, y = 1 mod 2,

and y = O mod 2,

If y is 0odd, x is also odd, and it is easily seen that
Yy + 21 is an exact cube,

y + 21 = (a+b1)?

y = 80 - 3ab2 2 = b(}a2 - b2) x = af 3 b°

We obtain y = t 11, x = B,

If y is even, y = 2z for some integral z

bge + U = x2, x is therefore even,

x = 2b, Therefore 22 4 1 = 2b3. z is odd.

We have( + 1) (z . >2= | b3
e <02 )

- 1\ is prime to z + 1 _ 1 - 1
2yl g tlegl) e 5= ("T)

Therefore g;%%jh+ iig%;l = (fg+ mi)i
L - - 3n?, 2ol
By subtraction _@3_ 359 _em* 222 - )

or (/-m)(ﬂ—-a/mfm‘): /.
We easily obtain £= 1\m =OQor £=0 ,m=-1

S ozt o Yeta X,

The solutions are,-therefore, y =%*11, x =5 and
y =f'2, X = 2o
Brauer(u) has given a method for solving the equation

y2.2¢3 = x3 wnhere f is positive., His special method apnlles to the’
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case where B(Vr:—g}) has class number prime to 3 and 6 f contains no square factors,
Uspensky and Heaslet employed Brauer's technique on the special case
Yz -2= 13. After reading this, and at that time being unaware of Brauer's
paper, the following independent generalization was made. The equation y2 -~ 283z %3
was solved in the case where f is positive, R(l/:—g}) has class number prime to 3,
and x ¢ 2f is prime to 6(x & f)f. Our condition, unfortunately, is expressed in
terms of the indeterminants of the given equation: whereas Brauer's condition is
entirely in terms of f, However this condition is applicable as is shown in the
example that follows, I have attempted to prove that this condition is equivalent
to Braver's condition, but I did not succeed.
We will now solve the equation for the case stated above,

y’2-2f5:x3

Let x = z =f

S, oyte2f3z 3 o 322 4 B2t - £2

3
. . y"+621f= 234-3211‘ +32f1+f3=(z+f)

(v + Zf-_6_f) (Y-Z\I’:G—;') =(z 4 f)3 .

Since X 4 2f is prime to 6(X + f) f

e 2 4 £ is prime to 6zf,

e y + zmis prime toy-z\[-—G?.

e Yy + zm-“-‘ e(a + bf-:6-f)3 where e is a unit of the field
R(y. 61).

Ao f—tire—frere—Rtt)

e can be incorporated into the cube, and hence we have y + z\r:g;

= (c+ dv— 6f)3 .
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y=cd - 18 fed' and z = 2¢%a - Grad, (1)

Also 2 4 £ = ¢ 4 6£4°

.. ¢ 46832 =14 3c%a - 6£d3

c o @A(1.3d) = £(1.64° - 6a3)

.. e = f1.6a - 6d) 3 2
148 a £(6d .;dfg - 1)

9¢? = £(18a° ¢ 244 & & -1 )
* * 377 )

£ is integral
341 £ o

o o 34-1 divides f,

The values of d can easily be founds and from (2), c can be

found,

Now we can find z from (1). Since x = z-f, x can be found,

Thus the equation can be solved in this case,

As a sDecial case we will consider the equation y* = 2 = xJ,

In this case £ = 1, All the conditions are satisfied in this case,

Proeéf
B(ﬁ) has clags number prime to 3

' It suffices to préve that X 4 2 1s prime to 6(x+l)

But x 4+ 2 1s obviously prime to x4 1

" It suffices to prove that x ¢ 2 is prime to 6 i,e., prime to both 2 and 3,

From the equation y2 -~ 2 = x° we have, x and y are 0dd since ip



- 14y ..

this case k = 2 mod 8,

e « X ¢ 2 1is 0dd, and is thus prime to JQ,

Suppose 3 divides x ¢ 2,

ce. X% 1mod 3, Let x33mg4 1l
x3 = (3m ¢ 1)3 & 1 mod 9,
From y2 - 2 8 x3 we have y*3 2 4 x3 5 3 mod 9
This last result is impossible since the equation x? = 3 mod 9 is

insolvable,

oo X¢ 2 is prime to 3

The result has therefore been proved
Applying the method to this case

We have 3d — 1 divides 1 (f£z21)

d must therefore be O,

From (2) we obtain that ¢ = + 1.
From (1) we have 2z =0 y = + 1,

—

The only solutions of the equation y2 - 2 = x3 are therefore

Yy=+1, x= 1,
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CHAPTER FOUR

THE EQUATION y© - k = x3 FOR NEGATIVE k

CASE 1

k contains no squares, X = 2 or 3 mod 4, h is prime
to 3 (h stands for the class number of the field R (/E3),

It 1s easlly seen that x must be odd in either case.
The fact that x 1s prime to k follows from the assumption that k

contalns no square factors, . . X is prime to 2k,

(y +/%) (y -/k) = x3,

Any common factor of ¥y +I/E’and y -77E'divides 2/k and
x3, It follows that y +/k l1s prime to y -/ k, and therefore

¥ + VK = b3 where b is an ideal of R(VK).

We have:-

bJ is a principal 1ldeal and b is a principal ideal,

Also, 3 is prime to h,

It follows that b 1s a princlipal 1ideal.

We therefore obtain ¥ +/k = e(c+d/§)3where e is a unit
of R(/k). Since k can not equal -3, e can always be incorporated

into the cube, and we obtaln y +/Vk = (V * v/k)7,
.y = s vk, 1 =V (2 4 v3k), x = V2 - VK,
We obtaln V = + 1, =k = 32 ¥ 1, x = W2F 1,

In this case, there 1s at most one value of 02, and

therefore one value of X,
This case gives a unique solution except for the sign

+
of y, if =k can be expressed in the form 3V2 ~ 1 where V¥ 18 integral,

Otherwlse the equation 1is insoluable.
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The result for k = -2 worked out in the preceding
chapter 1is a speclal case of this more general result. The

followlng cases also follow from this result,

¥ +1 = x3 X =+l, y =0
32 +5 = xJ no solutions
¥ +6 = x3 no solutions
y2 + 10= xJ no solutlions
¥ + 13= x3 X = +17, ¥ = +70
¥ + 1= x5 no solutions
y2 + 17 =x) no solutions
y2 + 21= xJ no solutions
y2 + 22= %) no solutions
y2 + %0= x no solutlons
y2 + 3%= xJ no solutlions
¥ + = x) no solutions
y2 + 3= xJ no solutlons
¥ o+ Bl= %2 no solutions
y2 + Lo= xJ no solutions
v + U6= x7 no solutions

CASE 2

k contalns no squares, k = Fmod &, h is prime to 3.

It is easily seen that x 1s odd and ¥y is even., As
before, x is prime to 2k, Except for the speclal case k = =3, we
obtain y +Vri = (V + VVE)B, since h 1s prime to 3 and e = + 1,

In thls case (1,/§3 1s not a basls of the field R (/E),

and 1t is preferable to use the basls (1,w) where w = 1+ /k.
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We obtaln, y - 1 + 2w = (¢ + dW)z.

y -1 = cB-}caeiEE;l + 43 ‘5&-_1_

2 = dEce + 3cd + a2 ( 1%1’:]

X = (c+dw) (c+d#) = ¢24 ca - delEEl

It 18 easily seen that there is a maximum of four

solutions in this case,

The following examples illustrate this case.

y2+19=13 X = +7, y=_-!-_18
y2 + 35 = x> x = +11, y =+ 36
y© + 43 = x3 no solutions
CASE 3 k contalns no squares, kK = 1 mod &, h is prime to T

The preceding method can be used to give all the
solutlons when x 18 odd, but the case x 1s even is much more 4iffi-

cult to solve,

To begin with, ¥y +/k 18 not prime to ¥y -/k. However;
the only possible prime factors common to ¥y +/k and Yy =-fk are the
factors of 2, Since the prime factors of 2 are (2,w) and(2,R), we
obtain y +k = (2,w)T (2,%)" 53 where b is an 1deal of R (Vk). It

18 important to note that b is not necessarlly a principal ideal in
this case. At any rate, b must belong to a fiXed 1deal class. This

ls proved as follows. Suppose by and b, satisfy this equation.

Therefore b13f\, b23 . Also, blhr\/bgh, since each side 1s a principal
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ideal.

* 3Im~hn ~hn
.. b ~ b0

But 3 is prime to h,

for all integral m and n.

- « There exist integral m and n such that 3mehn = 1

[ 4

« « by~Dbs which was to be proved.
It 1s obvious that r and s may be chosen so that
O<r <3 and O<s <3, By taking conjugates 1t is easily seen that
r+8 =3, From this 1t is not difficult to obtain the homogeneous

binary cubics., As an example, the cubilc y2+-7 = x3 will be reduced

to two homogeneous binary cubles.

2+7=x3

By the method of case 2, 1t 1s seen that y
has no soluations for odd x, For even X we have the equation,
r -
y-1+2w = (2,w) (2,w)8 12 where r + 8 = 3,

In this case w = 1+/ -7 , and therefore wW = 2

« « W and W both divide 2. The ideals (2,w) and (2,W)are
equal to (w) and (W)respectively,

We have y-l+2w = (w)T (W)® 2,

Since the class number of R (/:$) is prime to 3, and the
only unlts of R(/:7) are +1, thls may be written as a relation involving
ordinary numbers,
y=142% = W #°bJ
The possible values of r and s are:=-

r=2,8=1;andr =1, s =2,



We have ¥ - 1 + 2w = 2w (c+dw)” (1)
or ¥ -1+ 2w = 2% (c+dw)>  (2)
Equating the coefficlents of w, we obtain
¢3+ 3ca® - 3ca° - 30 =1
—03+ 6ca® + 233 =1
From these cublecs the trivial solutions ¢ = +1 d =0
may be obtained. These give the solutions y = + 1, x = 2; to the
equatlion Y2+7 = x3. There does exist a tedlous process for obtaining
all the solutlions of these two cublcs.(s) A more detalled dlscussion
of the cublcs obtained from the equation yeuk=x3 will be found in the
following chapter,
CASE 4

k=2 or 3mod 4, h 1s prime to 3.

Let k be of the form kf2 where k contalne no square
factore, If it so happens that x is prime to 2kf, this case can be
easlly dealt with,

We have, yzukfz = x3

w-bﬂ@Hy-ﬂ§)=x3

Any prime common factor of y + £’k and y - f/k must

divide EfWE and X,

* y + f%E'is prime to y = £k,
The rest of the reasoning is similar to that of the

case Yeﬂk = x3 where k contains no square factors,

We have ¥y + £/k = (c+dVﬁ)3
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oy = 04305
£ = d(3c°+d%)
X = 02—(121{

The maximum number of solutions is UT(f) where T(f)
is the number of divisors of f(if f 1s not dlvisible by 3, 2T(f) may
be taken as an upper bound).

Let :us conslder the case £ = U,

y° - 16k = X3. Suppose 2 dividee X

. 2 divides y. Let X = 2Xy, y = 2y1.

. . Y12 - bk = 2x)3, 2 aivides y,

Let vy 2

1 =% - eyo© - 2k = %P , 2 divides x,,

* Y22 - k = L"Xz} where xl= ZXE.

« » ¥5° 2 k mod 4; but this is impossible since k = 2 or 3 mod L,

Therefore x is odd.

But x is prime to the odd part of k.

x ig prime to 8k i.e. prime to 2kf,
Hence the condition for solvabllity by the preceding

method is satisfied, As an example, we have the following result,

Y2+ 32 = x3 has no solutions, (k= -2)

CASE 5

k = § mod 8, h prime to 3

e

Let k be of the form kf~ where k contains no square

factors, As before, if x is prime to 2kf, we obtaln



y + £k = (¢ + a/k)° or in terms of a basis 1, w,
y-f +2fw = (y + vw)

y-f =yl - 3vv2(k—1) + v (k-1)
T o

It
ef = v [éve + YV + v2 (k + 3{}

x =4 +vv - v° (k-1).
RN

This case can therefore easily be solved.

In thls case there 1s an upper bound of &T(f) solutions;
and if f is prime to 3, an upper bound is UT(f),

Let us consider the case f = 2

y°- bk = x7  let 2 aivide x.

. 2 divides y, and letting x = 2x1, y = 2y1 we have,

y12 -k = 2x13.

Since k 1s odd, ¥ muet be odd . y12 = 1 mod &

2x77 =1 - g = U mod &

.:. x13 =2 2 mOd 2‘"0
This is impossible., Therefore X ls odd.

But x 18 prime to the odd part of k,

.*. X 18 prime to Lk 1i,e, 2kf,
Therefore thie case can be solved in general,

As an example, we have the following result,

2+ =x’ x=5,y=319 (k=-11).
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CHAPTER F{VE

THE EQUATION ax’ + bxy + oxy2 + dyJ = f

I have shown that 1t 1s possible to reduce the

2k = x3 to that of & finite number of

solution of the equation y
homogeneous binary cubics each equal to a constant,

Thus, if the equation ax’ + bx2y + cxy2 + dy3 =f

can be solved, then the original equation can also be solved, I
wlll now show that any equation of the form F(x,y) = N can be re-
duced to a finite number of equations f(x,y) = 1,

We have, ax’ + bxey + cxy2 + dy3 = N,

Let us assume at first that x is prime to N. If so,
there exists a u such that xu = y mod N for all y.

We obtailn, ax? + bxdu + cx3u + dx3u’ = 0 mod N,

Since X is prime to N, a+bu+cu +du’ = 0 mod N.

All the possible values of u mod N can be found by
trial, (there is obviously a maximum of N values).

Selecting an arbitrary u, we have y = Xu + Nz,

Where z is an integer. By substituting, we obtaln:-

axJ + bx2(xu + Nz) + ex (xu + Nz)2 + d(xu + Nz)J = N

or x3(a + bu + cu? + dul) + Nx%z (b + 2cu + 3du2) # N°xz2

(¢ + 3du) + NJz3d = N
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By construction N divides a + bu 4 cu 4 du?

Let a % bu + cu‘+ a’ = MN

. O3 x x%2(b ¢ 2cu $3duf) ¢ xz8(ci + 3duN)y anezd = 1,
Thus the equation is reduced to the form f(x,y) = 1,

There remains the vossibility that x is not prime to N.

Let x and N have a orime common factor P, Let x = Px,

and N = PN,

5 S
.*. P(aP X13 + 6PX12y + cxlyz) + dyj = PNy
P must divide & or y, If P divides d, let 4 = Pdj

. aP2x1 + belgy + cxlye + dlyB = Nl

Thus the N has been reduced to N

lo
If P divides y we have y = Pyl, and we obtain
3 3 2 2 3 = N
P (ax1 ¥ bxl y o+ CxyyT 4+ dyl ) N
This can only hapren if N contalns P3 as a factor, and

2y + CX y2 + 4y 3 = N..

letti 1= ply ;3
etting N = P/H., we have, ax, + bxl 1 1

l)

In either case N can be reduced, and trherefore in a finite

number of steps we can reduce the vroblem to the case where X 1is
prime to N,
A useful corollary is that if 4 is »rime to N and if N

contains no cubes, then x is prime to N,

.*. In all cases the solution of the equation F(x,y) = W can
be reduced to that of a finite number of eauations cf the form

f (x,y) = 1,
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Certain trivial reductions may also be made, If we have;
ax’ + bx°y + cxy2 v ay? = N, we obtaln adx> & aszgy ¥ aexy® + afay’
= a®N, By letting ax and y be the new unknowns, the equation has
been transformed to the form X3 & axzy + bxyz + cy3 = N, It is
easlly seen that the equation can also be reduced tc the form
x5 ¥ bxy2 + cy3 = N.

Any important function associated with a cubic form is

2

the discriminant, The discriminant of ax3 + bX“y % cxy2 4+ dy3 is

;18 abed - 4bJa + b2c? - 4&03'— 87a2d2,; This 1s exactly ecual to
4( 2 2

X, - xg)e(xl- x3) (xp- x3) \inere  xq, Xo, xz are the roots of

the equation 8X3 + bx% 4 X + 4 = O, It follows that the discriminant

I~’ a

1s zero if and only if the equation has repeated roots, the dis-
criminant is vposltive 1f all the roots are real and distinet, and
the discriminant is negative if the equation has complex roots,
If the discriminant is zero, 1t is easlly seen that the
cubic ax’ + bx2y + cxy2 4 dy3 must have a rational factor, The
cubic equation then takes the form (mx-ny)(Px° 4 9x + r) = 1,

This equation can easily be solved,

Wilhelm Ljunggren (5) published a method of solving the

equation x3 + ngy + oxy2 + ry3 = 1 where the discriminant is nositive,

He was able to reduce the solution of this ecuation to that of two
simultaneous exponential equations in two unknowns, There also

2\

. . . : ©

exigts methods of dealing with exponential equatlons.( /

No method exists at nregent for solving the equation
3 2 2 3 = 3 ve 3 Tr ] .
ax” + bx"y 4+ cxy + 4y’ = 1 for negative discriminant. Tovever;

there are interesting results known 1in connectlion with unver bounds
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to the number of solutions to the equation,

Nagell(7> discovered a certain theorem of this type. The
theorem states that 1f f(x,y) 1s an irreducible binary cubic form
with negative discriminant, then the Diophantine equation f(x,y) = 1
has at most three solutions except in the following cases,

x5 & xy2 + y3 = 1 or an equivalent form,

x5 - xzy + xy2 + y3 = 1 or an equivalent form

x5 - xy2 + y3 = 1 or an ecuivalent form,

(Two forms are equivalent if one may be transformed into
the other by a transformation whose determinant is i1>- Equivalent
forms have the same number of solutions. Also, the treorem states
that the equation x2 + xyg + y3 = 1 has four solutlions, the equation

2Y + Kyz + y3 = 1 has four solutions, and the equation

x3 - x
x5 - xyz + y3 = 1 has five solutions, It 1s useful to ncte that the
discriminants are -31, -44, -23 respectively,

If f(x,y) is reducible,}there is obviously a maximum of
four solutions since we have (cx + dy)(Px2 4 9xy + ry°) = 1 civing

cx ¢ dy = +1, Combining these two results we obtain a maximum of

five solutions in either case,

It is not difficult to extend this result to an equation
of the form f(x,y) = N where f(x,y) 1s a homogenecus ctbic *ith
negative discriminant. The eguations obtained by reducing this
equation to a finite number of equaticns of the form f(x,y) = 1 all
have discriminant of the same sign as f(x,y). Therefore if 7(x,y)
has negative discriminant, an uover bound to the number of solnutlions

1s five times the number of auxillary ecuations obtained,
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If x or y must be »rime to N, then SN is an upner bound
to the number of solutions., This i1s ensured 1f N contains no cubes,
and eilther the coefficlient of x3 or of y3 is nrime to N, If further-
more, N is a vrime, the urner bound can be taken to be 1§ since there
can be 3% auxiliary edquations at the most,

By extending this reasoning, an un»ner bound may be obtained
to the number of solutions of the equation f(x,y) = N for any N,
The method, in general, is to find the number of auxiliary equations
(or at least an upper bound to that number) and multiply the answer
by five,

The following theorem will enable us to use the preceeding
results to find an upver bound tc the number of sclutions of

2 -k = xJ for certain classes of Xk,

Y
THEOREM

The auxiliary cubics obtained from the equation y~ - k = %2

all have discriminant opnoslite in sign to k,
CASE 1

Suppose k is not an exact square, and k = 1 mod 4,
From chapter two it may be seen that the auxiliary cublc 1is the
coefficlent of Yk in (t + vfi)(a + ng)B vnere t 4+ VYK 1s =n

arbitrary number of R (J&).

¢ The auxiliary cubic is of the form

L L ]

2
VaB ¥ Btago + JSkvab  + tk.b3

By substitution, discriminant 1s
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i 2

>
...kl._.v 2

L 2, 2.2

k + 81 vkt~ - 108 k3v
= 108k (tt - 262uxe? 4 k2

162v°%°t° - 108 ¢ - 27 ¢ = :

= -108k (t2 - kxy°)2,
By hypothesis T2 _kv® t O. Hence the result follows,

CASE 2
k 1s not an exact square, and k = 1 mod 4, This
time it is necessary to consider the coefficient of w in (t + v) (a+bw) .,

Let f(a,b) be the coefficient of w,

.*. The coefficient of JVE = if(a,b). (w =.1 ¢ ng

But (t + ww)(asbw)d = {gﬁgi‘! + vgg)(EaZ} b, 9%2)3

.*. The coefficient of Yk = F(2a 4 b , bg where F 1s a homogeneous
(2 2
binary cubic with discriminant onposite in sign to k by the previous

result,
But if (a,b) = F(2a + b, b) .
(T2 —  2)
.« The discriminant of f 1c of the same sign as the discriminant
of F,
Hence the theorem 1s nroved for this case,
CASE 3 k is an exact square,

From chanter two a tyvical auxilisry cublc is
D ] .
ep = 013 - bzz. This has discriminant —27b“02. Since k, being an

exact square, is vositive, the theorem 1is »roved for tals case also,
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In the equation y© - k = x2, if k is nositive, the

diseriminant of all the cublcs are negative, This theorem can
therefore be used to find an upper bound to the number of solutions
of y2 - k = x3 for positive kX, In the following chapter I will obtain

upper tounds for a few classes of Kk,



CHAPTER SIX

THE EQUATICN y2 - x = xJ FOR POSITIVE k

CASE 1
k contains no squares, X = 2 or 3 mod %, h is prime to 3,
As in the case where k is negative, we obtain, y vk =
e(a bVi)B winere e 1s a unit e may have an infinite number of

values, The values of e are of the form (T ¢ VVE)H where t + vlk

is the fundamental unit, and n is a positive integer, negative

integer, or zero, By incorporation into the cube, n may be chosen

satlsfying the inequality -2<n<2. The following cubics are obtained:
v+ Ve = (T + wk)la 4 blf'lz)3 gives:-

va® + 3%a®b 4 3kwab® 4 TkbS = 1,

y +Vk = (Tew/k)(a + bVk)’ gives:-

~ua’ 4 3Tab - Jkvab® + Tkbo = 1,

v+ Vk = (a + b¥k)’ gives b(}a2 # bx) = 1,

The last equation has no solutions,

The discriminants of the first and second ecuations are
negative and not equal to =31, =Wl or -23., If the ecuations are
irreducible, this suffices to shew that each of them has a maxi-
mun of 3 solutions., This gives a maximum of 6 solutions to the
equation y2 - k = x3., If the cublcs are reducible, the equations
can be solved, and a maximum of & solutions is obtained.

Hence in this case there is a maxinmum of & solutions,
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OASE 2
k contalns no squares, k = §.mod &, h is n»nrime to 3,
As 1n the case where k is negative, we obtain
y- 14 2w =(s 4 tw)(c + dw)? where s 4+ tw 1s a unit of R(yk).
We obtain the following three nossible cases
y-142w= (a3 bw)(c + ci’a.«f)}3
y-14+2w= (a+ dW)(c + dw)3
y-1l4¢ 2w = (c + dw)3
The last equatlion gives the cublc,

2 = d[302 - %cd + dzgk ¥ _3;-3

Unless k = § wvhere this gives the solution y = #2, x = -1;
this equation has no solutions,

The other cubics are of the form f{c,d) = 2., Such a
cubic has a maximum of 10 solutlions where c¢ is odd, and a maximum of
§ where ¢ 1s even, giving a maximum of 1§ solutions.

Since there are two such cublcs, there is a maximum of
30 solutions in this case,

If ¥ = 1 mod &, this method will give the upver bound

of 30 to the odd solutions of x,

CASE 3 k=2 or 3mod 4, h is prime to 3.
Let k be of the form kfa. If x is prime to 2 kf we obtaln y 4 £k =
elc + dVE)3. In this case we obtain two cubics of the form glc,d) = £, and a cubic

£ = a(3c® 4+ a%k),
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In  gencral
We will consider the case f is prime., ¥mless—f=% the last

equation has a maximum of 2 solutions, In-general, the equation-has—a maximum
of-Uselutions., A cubic of the form g(x,y) = f where f is prime has s maximum of
15 solutions where x is prime to f, and a maximum of § where x is not prime to
f. This gives a total of 40 solutions for both cubics, The total number of
solutions of the equation y° - k = x7 ig 42 in this case.

It is possible to obtain an upper bound to the number of solutions
for all positive k, but the arithmetic becomes cumbersome for many values of k,
The cases that were done here seem to be the most interesting,

It ig important to note that the upper bound obtained in many of
these cases may be extremely coarse, and s much smaller upper bound may possibly

us

be obtained by using other methods., This method, however, enablesAto determine

an upper bound for any negative k.,
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