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ABSTRACT

The first part of the thesis describes the concepts of
viscoplasticity as a continuum plasticity theory highklighting
different kinds of yield functions, plastic potentials and
viscoplastic constitutive laws.

A 2-dimensional elasto-viscoplastic finite element model for
stress/stability analysis of mining excavations has been
developed for use on microcomputers. An iterative explicit
time stepping scheme is implemented. The program uses
automatic time-step calculator based on equations giving a
limit on the time step in an attempt to prevent numerical
instability when common forms of isotropic yield functions and
plastic potentials are used in the viscoplastic solution.
When the input data are read parallel to the analysis
undertaken the user can simulate compound behaviour by
stopping the analysis, examining the results graphically and
restarting it again and possibly implementing a certain
decision in the subsequent appended input. This also imposes
no limit on the number of time stations at which
instantaneous changes like elements cut, elements backfilled,
loads added or simply outputs are required. The program is

equipped with graphical pre- and post- processors.
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RESUME

La premiére partie de cette thése porte sur les notions de viscoplasticité comme
théorie de la plasticité des milieux continus ou son* mis en évidence plusieurs
types de fonctions de fluage, de potentiels de plasticité et de lois constitutives

de viscoplasticité.

Un modeéle d’élasto-viscoplasticité bidimensionnel & éléments finis pour
I'analyse des contraintes et de la stabilité dans les cavités miniéres a été
élaboré pour étre utilisé sur micro-ordinateur. Le modéle utilise un élément
isoparamétrique quadrilatéral a quatre noeuds et un schéma itératif explicite
d‘intégration dans l'intervalle de temps. Pour empécher I'instabilité numérique
de la solution, le programme utilise des équations qui limitent l'intervalle; cela
assure la stabilité numérique de la solution pour les formes courantes de
fonctions de fluage isotropiques et de potentiels de plasticité servant a la
formulation d’une loi de viscoplasticité. Lorsque les données d’introduction
sont lues parallélement & |’analyse entreprise, l'utilisateur peut simuler le
comportement composé en stoppant I'analyse, en procédant a I'examen
graphique des résultats, puis en reprenant 'analyse; il peut méme intégrer une
décision dans les données qui seront ajoutées par la suite. Cela n‘impose pas
de limites quant au nombre de points dans le temps auxquels des modifications
instantanées (éiéments sectionnés, éléments remblayés ou charges appliquées)
sont apportées, ou auxquels des données doivent étre extraites. Le programme

comporte des pré et post-processeurs graphiques.
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NOTATION

Note that bold letters represent vectors or matrices

g

€ or €,

stress vector
= T

—‘ax ay O, Ty Tyz L™ )

stress at plane i in the direction of j

6,, 0,, 0, are the principal stresses

first stress invariant

=0, +0, + 03 =0, +0, + 0, =3 O,

mean stress or hydrostatic stress

=J,/3

deviatoric stress at plane i in j direction
=0i; " Om

second deviatoric stress invariant

3 LI 1 2.1 2 .2
(8;;8;5) d = s§+% Sy+3 Se+tl, 410, +T oy
T %

"Jzo
third deviatoric stress invariant
=1/3 S;;5jkSki

Lode's angle

1 . ] 23 e
3 st 3 2 3| and -m/6<n < 1/6

2
J2D

total strain vector

= (€ €, € Yy Vyz Yux )T




xy

vp
eP

ij

ij

3

¢

e

=Y/ 2
exy°='rxy/2G

viscous strain vector

plastic strain vector

inelastic strain vector which correspond to ¢

or €P

viscoplastic strain rate = d—;Z-‘!

volumetric strain = €, e e,

mean plastic strain

and €,° = 0./ (3K)

strain at plane i in the direction of j

€y, €5, €; are the principal strains
deviatoric strain at plane i in j direction
=¢;;—€, and eije = s;,/2G

deviatorin strain invariant corresponding to

%
Ja
= %
=(he;je)"= | L2, 2 e§+—1- er+el +€2 462,
2 2 2
=0,+05

=|a1-o3|/2 When x-y is the plane of maximum and

[} (] . 2
minimum stresses= (Ox Oz) .

2

=€, +€q

=|e1-e3|/2 when x-y is the plane of maximum and
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¢ ®" O 0O e ~ ©

dn

dar

L . :
minimum strains= ( ¢x'¢z) . ey
P

Young's modulus

N

shear modulus = (1)
bulk modulus = —E
3(1-2v)

yield function

plastic potential

hardening variable

angle of internal friction

cohesion

elasticity matrix

global stiffness matrix

time

time increment between t_ and t

rate of softening or hardening |used in
incremental plasticity

body force/unit volume (e.g the own weight)

vector of surface loading / unit surface of the

element side (shear and pressure)

infinitesimal volume and f( ) dQ is the
)
integration of a function over the elements

volume

infinitesimal area and l.( ) dl'
integration of a function over the side surface area

of an element .
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CHAPTER 1
INTRODUCTION

1.1 GENERAL

The prediction of stresses and strains around excavations
is one of the major objectives of rock mechanics studies .
Most of the rock mechanics problems involving stress
calculation and mine stability are so complicated that closed
form solutions are difficult to derive and that numerical
methods have to be employed. The rapid development of
personal computers in the last two decades has made it easy
for numerical modelling techniques like finite elements and
boundary elements to play an important role in rock mechanics.
Usually, the finite element is the preferable numerical
modelling technique for solving rock mechanics stabilty
problems, because of being a differential method which offers
its ability to handle materials of nonlinear behaviour and
makes it possible to account for time dependent effects step
by step. This report is focusing on the use of vicoplasticity
in the finite element. The reader is referred to References
(1] and [2] for a description of the different numerical
methods in genaral and to Reference (3] for details on the

finite element method in particular.
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1.1.1 ELASTO-VISCOPLASTICITY

The theory of elasticity has found wide spread use in rock
mechanics studies for solving problems of linearized material
behaviour. Plasticity is a continuum theory and its use
arises when the non-linear stress-strain behaviour or the
time dependent behaviour has to be considered.

The theory of elasticity together with the theory of
viscoplasticity or the incremental theory of plasticity are
used in a numerical modelling technique 1like the finite
element method to calculate the stresses and deformations
induced after excavation. The incremental theory of
plasticity is used to model the instantaneous elastoplastic
behaviour, while the theory of viscoplasticity is used to
model the time-dependent behaviour. Physically, the
instantaneous and time-dependent plasticity cannot be treated
separately. The apparent difference is that the former occurs
at a high rate sometimes higher than the loading rate, e.g
compressible porous media initially under 1low hydrostatic
pressure and for unstable (softening) parts of the rock mass.

The main subject of this study is the theory of elasto-
viscoplasticity which can also be used to model problems of
instantaneous or viscous elastoplasticity. References [4],

(3], [5] present a comprehensive description of plasticity.

1.1.2 CREEP LAWS

In order to model the short term stress strain response in

2




viscoplasticity, the time is used as a fictitious variable
and the rate of viscoplastic strain is chosen on an arbitrary
scale [4). On the other hand, the creep behaviour is a
phenomenon frequently met when dealing with gectechnical
problems involving weak rocks , salt rocks or rocks rich in
clay minerals,etc. [6]. The importance of this phenomenon is
magnified when dealing with the stability or the closure of
deep mine openings excavated in ductile halite or potash. The
great interest arose from the challenge of embedding in a safe
and permanent way the nuclear radioactive waste in deep
viscous rocksalt for which the creep phenomenon is very
apparent.

Several experimental and analytical approaches have been
presented to formulate creep laws. Reference [6] presents an
exhaustive review of creep laws of rock in general and of
rocksalt in particular. In most cases, these are scalar
functions relating the total creep strain or its rate with the
affecting parameters mainly; the acting stress, time (case of
time hardening creep laws) or strain , temperature and other
environmental variables like the humidity. It should be ncted
that in the nunerical modelling of nonlinear creep behaviour,
we are most concerned with the rate of creep as a function
of the variables with time which are the stress and the strain
(case of strain hardening creep laws) or the time itself (case

of time hardening creep laws).



1.1.3 YIELD FUNCTIONS AND PLASTIC POTENTIALS

A great portion of rock mechanics studies in the last two
decades was aimed for the description of yield functions for
different rock types under different stress conditions (7],
[8], [9]. The yield function checks if the yield (or creep)
occurs, while the material parameters included in it, together
with those involved in the creep law itself, as being
functions of the viscoplastic strain or the plastic work
reflect the hardening or softening behaviour (primary or
tertiary creep)[10],[{11]. To obtain the components of the
strain rate, a plastic potential is used.

Some aspects of the inelastic behaviour cannot be modelled
by the conventional linear yield conditions like Mohr-Coulomb
or Drucker Prager especially when the yield condition is used
as a plastic potential. This led to the development of
special forms of yield functions and plastic potentials which
attempt to model the compound paths of the stress-strain
behaviour as well as the observed components of the inelastic
strain rate especially its volumetric changes (e.qg.
(11}, [12],(13]).

Several papers in the recent years deal with anisotropic
yield functions and the anisotropic evolution of these yield

surfaces in the acting stresses space [14],([9].

1.2 SCOPE OF WORK
The plan of this study can be summarized in a point form as

4
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follows ;

1) LITERATURE REVIEW

a) After revising the finite element modelling of
elastic behavior of rock excavations , study the
plasticity theories; incremental theory of

plasticity and elasto-viscoplasticity and their use
in the finite element method with the related

concepts of yield functions and plastic potentials.

b) From the plasticity theories the theory of
viscoplasticity is chosen to model time dependent
and time independent plasticity.

c) Review the recent developments of yield functions,
plastic potentials, and constitutive creep laws.

d) Review of creep laws applicable to soft rock in
general and rocksalt in particular.

e) Review of the numerical procedure of implementing
the viscoplasticity in the finite element method.
This subject is rarely available in the literature
but References [4], [3] present its basic concepts.

2)~-Writing an elasto-viscoplastic 2D finite element computer
program . And considering the numerical stabilty and accuracy
of its proposed iterative explicit time integration scheme.
3) Modification of an existing graphical pre- and

postprocessors to account for time dependent input and output.
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1.3 PROGRAM visa2p

The developed numerical model is a 2-D finite element
program using the theory of elasto-viscoplasticiy to model
the effect of short term and time dependent behaviour on
stresses and deformations around compound layouts of surface

or underground mine excavations.

The program uses the continuum theory of elasto-
viscoplasticity thus to overcome the inhomogeneity of the
surrounding rock several material types can be used. It uses
the classical 4 node-iscparametric elements with four
integration points and it handles different types of loading
, like own weight , nodal loading , surface loading and the
initial or premining stresses. At any time station , the user
can specify instantaneous changes. These could be added loads
or additional cut or fill. The program can be stopped at any
time and the analysis may be restarted at that time station
later. The program models the combined effect of
elastoplasticity and <creep by first performing the
viscoplasticity as an artifice to elastoplastic behaviour then
it starts assessing creep. This approach is suited for its
iterative explicit time integration scheme |, while the
approach used in Reference [22] is a useful tool for an
implicit scheme. Several yield functions and creep laws can
easily be adopted in the developed numerical model.

In writing the program , it was focused on reducing the

running time , increasing the limit on the number of elements

6
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it can handle, and making the program user-friendly and
flexible. The program is written using many of the powerful
features of MicroSoft Fortran version 5.0 [15] which deals
efficiently with the 80286 processors and 287 coprocessors.
The numerical model has a preprocessor for mesh generation
and three graphics programs for checking the input data and
interpreting results. PRESAP is a preprocessor used to
generate the required finite element mesh by reading a simple
free format input data file in which the user just divides the
problem into zones representing distinct conditions of rock
types and intensity of elements. This data file written by
the user is compatible with the data files used by program
MBAP2D [16]). One graphics program is used to check this free
format user-created data file , the second is used to check
the actual mesh data of nodal points and elements connectivity
mesh created by the preprocessor . The third is used to give
the graphical interpretation of stresses and deformations
around openings as well as the material behavior.

The program uses an automatic time stepping calculator
formulated based on the same concept of Reference (17] for

explicit stepping schene.

1.4 THESIS OUTLINE
The basic concepts of viscoplasticity as a continuum
plasticity theory are explained in Section 2.1 highlighting

yield lunctions , and plastic potentials with reference to




the incremental theory of plasticity and viscous elasto-
plasticity.

Section 2.2 and Section 2.3 discuss some types of yield
functions and plastic potentials while Section 2.4 presents
different kinds of creep and viscoplastic constitutive laws
which can be or already implemented in the developed
computer program.

The numerical algorithm of an iterative explicit time
integration scheme implemented in program VISA2D and its flow
chart are described in Section 3.2 . Section 3.3 derives the
equations used for the numerical stability of a fully
explicit stepping scheme. A description of the input data
are given in Sections 4.2, 4.3 . Three illustrative examples
will be discussed in section 4.4 of this report representing
; a simple axisymmetric problem , the effect of face advance
and creep on the deformations and stresses around the
longitudinal section of a circular tunnel in axisymmetric
ground conditions and finally an elastoplastic solution of
a circular tunnel by the theory of viscoplasticity then the

report ends by conclusions.
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CHAPTER 2
ELASTO-VISCOPLASTICITY AS A CONTINUUM
PLASTICITY THEORY

2.1 BASIC CONCEPTS OF PLASTICITY:

One use of plasticity theories arises when the post yield
behaviour of the material has to be considered. This is the
case when analyzing excavations in soft rock or when problems
involving large deformations of rock mass are encountered
Examples of such problems inlude rock mass caving, slope
instability involving rock of weak quality and soil layers or
backfill. Other important uses arise when dealing with
creeping rocks of viscous nature like potash.

The theory of plasticity is a continuum theory 1like the
theory of elasticity i.e a constitutive model (composed of the
two theories) assigned to a specific zone (or element)
describes it as being uniform or homogeneous. This
assumption deteriorates if the considered zone is intact and
traversed by one discontinuity. In this case another
constitutive model should be assigned to the discontinuity
itself. However if the relative scale of spacing between
discontinuities and rock mass of the considered zone is small
the domain might be considered homogeneous and in this case

one constitutive model may describe this zone of composite



material [18]. The theory of plasticity involves a number of
important concepts that can only be briefly introduced here.
Readers are advised to consult Reference [4],[5],(3],[1] for

more detail.

2.1.1 YIELD FUNCTIONS AND PLASTIC POTENTIALS

The state of stress under which the plastic flow occurs

satisfies what is called a yield function or yvield criterion

such that :

F (0,eP) 20.0 ( viscoplasticity )
or
F (0,eP) =0.0 (incremental plasticity)

Where o0 is the stress vector and €P is the plastic or
viscoplastic strain vector. In some cases the yield function

might be simplified as follows :

F(o,eP) =f(o)-Y(eP) (2.1)

where f(g) is an expression of the acting stresses and Y is
the yield strength which varies with the evolution of
viscoplastic strain [3]. Once plastic yielding has taken
place the relation between stresses and strains might not be
unique. A flow rule is the relation between the state of
stress at which viscoplastic strain occurs and the rate of
that strain vector. At early stages of plasticity theory one
of the assumptions was to relate the plastic strain rate in a
certain direction with the deviatoric stress in this direction

[(5].,(3]-. Later the concept of the plastic potential (Q) was

10




developed, see equation 2.7,2.11 where Q is an expression of
the acting stresses and might as well depend on the plastic
strain. It represents a convex surface in the stress space
which means that the plastic work is positive because the
normal to this surface is parallel to the direction of the
inelastic strain rate.

It is also accepted that this surface would be that of the
yield condition which implies that F = Q. The reason of this

assumption might be clear if one considers yielding of

specimen under shear stress. By using an associative flow
rule (normality condition F = Q) ,the yield function would
serve as :

1-A stress condition to check if yield (or creep) occurs.
2-Gives the direction of the plastic strain rate vector ( see
Figure 2.1 ).
3- The material constants in the yield function , as being
dependent on the viscoplastic strain , govern the behavior
pattern in the stress-strain curve or in deformation-time
curve , thus simulating the hardening , softening or perfect
plasticity [12],[18] (see Figure 2.4b and Figure 2.7b)
Isotropic yield functions are used for isotropic rock mass.
In this case the yield condition is independent of the
direction of the acting stresses but depends on the principal

stresses at the point.

11




Yleld surface

.
.
ot
o

-01

A plot of the yield surface of an isotropic material
in the principal stress space

( ( Figure 2.1 )

F=F(ax,ay,al,

b)

xy’ 7yz' fxz'

z 2
Orientation of planes of weakness dictating
an anisotropic yieid condition
( Figure 2.2 )

For anisotropic rock or the case of one or more parallel

12




sets of joints , an anisotropic yield function which depends
on the direction of loading with respect to a plane of
weakness is used [1]},[14]),[19], see equation 2.31.

Isotropic hardening keeps the yield function isotropic and the
stress condition remains in the principal stress space
[20],[13]. References [8],[11],(9]) give examples of
anisotropic hardening which convert the yield condition to an
anisotropic one dependent on the direction of the past plastic
strain to include Bauscinger effect [18].

In the following review isotropic yield functions and
plastic potentials are the main subject however the yield
functions discussed in Sections 2.4 and 2.5 are anisotropic.
Mohr-Coulomb yield condition considers only the plane of
maximum and minimum principal stresses o,, o0; relating the

maximum shear with the normal stress [5]) (see Figure 2.3a):

F(o,e ) =lo, - 0,1+ (0,+0,) *siny - 2Ccosy (2.2)

where ¢ is the angle of internal friction and c¢ is the
cohesion and 2C cosy may correspond to Y(e,,) in equation 2.1
as a material parameter function of the inelastic strain.

Other yield functions 1like Drucker-Prager relate the
deviatoric and hydrostatic stress invariants to the material

constants ¢ and ¥ as follows :

Fey3 [T + 2siny ,_ 6ccosy (2.3)

3-siny ! 3-siny

13




- 6,
MOMR-COULOME )0

Mohr coulomb C-¥ yield surface [4]
( Figure 2.3 a )

YON MISES
Yo

Drucker-Prager C-¢y yield surface (4]
( Figure 2.3 b )

To consider the post yield behavior Equations 2.2,2.3 have

to be thought of as follows (see Figure 2.3):
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Flo,e,) -lo, - 0,1+ a (0,+0,)-Y,(e) (2.4 a)

F(o,e.) -/T, + a,J,- Y,(e,) (2.4 b)
where a, , a,, ¥,, ¥, material constants controlling the role
of the yield function and plastic potential as seen in more

detail in Sections 2.2, 2.3.

2.1.2 THE INCREMENTAL THEORY OF PLASTICITY:

Two major continuum theories are used to quantify and model
the plastic behaviour these are :
1) The theory of elasto-viscoplasticity, This is implemented
in program VIBA2D which is reviewed in the following
subsection and therefore is the main subject of this study.
2) The incremental theory of plasticity. This theory is widely
used for the short term stress-strain behavior as will be
briefly reviewed only in this subsection (see References
(11,(31,(5] ).

In this theory the relation between the instantaneous
plastic strain increments and the stress increments is

determined from Drucker's consistency Condition :

F(o,eP) =0.0 at yield

2.5
~dr-9F 4g + OF ger . 0.0 (2.5)

do oeP

15



This means that when the loading energy exceeds the elastic
energy at the initial yield point Y, a plastic strain
increment takes place causing hardening or softening effect on
the material behavior. For example in the simple case
represented in Figure 2.4a , hardening means that each deP
allows for an incréase in the yield strength of the friction
slider. In other words when the yield strength of the
material can no longer sustain the applied load (or energy)
,deP occurs and the strength is changed by an increment -

7%5 de? (in equation 2.5) which then allows do to satisfy

Drucker consistency condition:

defP -~ -éae—f; deP -~ do satisfying; %§ do --—a—ae% de® (2.6)
o1Y P
£ I 8
A ldY
de! E
Y, Friction
slider
£ Y (eP)
]
vl
€
P

Elasto-plastic behaviour under uniaxial compression
( Figure 2.4 a )

, and so on for the successive strain and stress increments to
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e

give the nonlinear behavior shown in rigure 2.4.

o 0 ]
Y §--
]
n - Yo -
€ €

?§§-< 0.0 €£ﬂ-- 0.0 ?%§-> 0.0
w » v
hardening perfect plasticity softening

( Figure 2.4 b)
By using a flow rule , the relation between each component of
the plastic strain and the stress increment vectors can be

formulated as in equation 2.7.

de? = de®; - dA aioj (2.7)
1

where Q is the plastic potential and the increment dA is given

when Drucker's consistency condition is applied as follows;

oF
—.do
deP=d\ 32-(1&__1] o) (2.8)
do

H 90
where H is a scalar quantifying the hardening or softening

OF 0Q . .
P . H=- 92 O ;
caused by deP/dA ; H r oo ©°F if k 1is the strain

hardening variable Hi-€§§-g§ and dk/dA is determined

according to the flow rule used. For some yield functions H
may by do,/deP in a uniaxial test (see Figure 2.5). Because

do vector is unknown the relation between deP and do is given

17




as follows;

dev--}l{[g—f%gflda (2.9)
In equation 2.9 , using the yield function as a plastic
potential gives a symmetric stress strain matrix leading to
symmetric global stiffness matrix, thus reducing significantly
the time and storage size. When H is positive it reflects
hardening behavior while when H is negative the softening
behavior is simulated in which case we might face non

uniqueness of the solution. This problem is overcome in the

theory of viscoplasticity described in the following Section.

dr _ do, doiga;g
dkdk dep _dk*
def def
i
€f

Determination of the dF/dk using uniaxial
compression test
( Figure 2.5 )
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2.1.3 ELASTO-VISCOPLASTICITY THEORY:

The elasto-viscoplasticity theory developed by Zeinkiewicz
and Cormeau (4], has been adopted in the present study.
The elasto viscoplastic behaviour could be described by the
behaviour of the dashpot inside the mechanical model shown in
Figure 2.6 Each Eomponent of the creep strain vector is
obtained using the a plastic potential which for associative

viscoplasticity is the yield function (F) itself (3].

F(o,eP) =f(o)-Y(eP) (2.10)

F 2> 0.0 - elasto-viscoplastic i.e

30
evpu ao- 11 o (2-11)
F <« 0.0 = elastic
€. = 0.0
b Spring
Dashpot 'Eﬂ Friction
slider

o

Simple elasto-viscoplastic mechanical model
(Figure 2.6 )

The model behaves elastically under instantaneous loading
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allowing for the acting stresses f(o) to build up elastically
over the yield threshold Y in equation 2.10 , which is a
simplified form of a yield function. Then the viscoplastic
strain starts under the effect of the dynamic yield function
F > 0.0 [11] , see Figure 2.7 . The rate of viscoplastic
strain is defined experimentally by a the positive scalar
expression of ¢ which is a function of the dynamic yield
function , the viscoplastic strain (or the inelastic work
(10]), time and several other variables like the temperature
,humidity,etc. 1In a uniaxial compression test, this function
may be the uniaxial plastic strain ( depending on the plastic
potential Q ) and F may be ,or linearly related to, the
uniaxial acting stress, while in a conventional triaxial test
¢ and F could be ,or linearly related to, the differential

strain (e,-¢,) and differential stress respectively (g,~0,).

T
o o flol
rnmary _secondaty yertiary
Y, ] yield limit Y fe,)
e
€| ey ,
! €

Viscoplastic strain under constant stress
(Figure 2.7a)
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/\Tertlary
creep

> Secondary

~
Primary creep

creep

The typical three phases of creep behavior
( Figure 2.7b )

The strain hardening or softening effect (see Figure 2.7a)
might appear in the material constants of the yield function

or directly in the creep law itself.

e

or B 2 0.0 - primary creep (hardening)

ol

de,,
or -a—?; - 0.0 -~ secondary creep (perfect plasticity)
»
o
de

¥l

or —=— > 0.0 - tertiary creep (softening)

If the time variable t replaces the strain variable € in the
function ¢ , the creep law is called time-hardening creep law
and in such creep experiments the value of the creep threshold
Y might be assumed = 0.0.

Figure 2.9 presents a comparison between the theory of
elasto-viscoplasticity and the incremental theory of
plasticity when used to model the elastoplastic or the short
term stress strain behaviour during a conventional triaxial
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test and assuming that stresses are applied in small
increments and remains constant. The incremental theory of
plasticity assumes  that the plastic strain occurs
instantaneously followed by the elastic response . This
assumption is at variance with experiment and is at best a

convenient mathematical fiction [4].

The total strain de = de? + de® (2.12)

Equation 2.12 shows that both time dependent and time
independent inelastic strain mechanisms (de!) , their effect
is to be added to the elastic strain de® causing a
relaxation or loss of the stored elastic strain energy at a
point if denn“<de’ . According to Reference [15], the study
of creep (time dependent or viscous strain) is curried out in
two kinds of experiments; the "short term" creep is studied
by a universal testing machine with fast applied incremental
loading followed by time intervals of several minutes during
which the stress is kept constant and the "long term " creep

is studied with standard apparatus like conventional creep

tests.
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. F statle eondition F=0.0

yleld Himit

€
v

Viscous deformation

with relaxation .

( Figure 2.8 ) €

"

. stabllization
o
b
o {
ELASTO-VISCOPLASTICITY )
l"
e’ P P 3
Y, .
— o €° | ELASTOPLASTICITY
E
€
Comparison between instantaneous and viscous plasticity
( Figure 2.9 )
-

23



2.2 NON-LINEAR YIELD FUNCTIONS:

Yield functions like Mohr-coulomb or Drucker-Prager ( when
presented in equations 2.4a,b are linear relations between the
deviatoric and hydrostatic stresses and if a similar plastic
potential is used., the viscoplastic flow will always be
accompanied by constant ratio of dilation (volume increase) to
deviatoric strain (14].

Hoek and Brown [2] ( equation 2.13) developed an empirical
non-linear failure condition which is a good tool to check the
peak conditions after which unstable behaviour may occur. It
is mainly a failure criterion and not a yield function as 1its
constants are obtained experimentally to satisfy a peak
condition, but they are not checked to whether this condition
is used as a plastic potential nor are they functions of the

inelastic strains or inelastic work (see Figure 2.10).

(2.13)

2 L] . . - L] L]
o, - o,q/ﬁzoco, + S0

Normalized peak strength envelope for sandstones
( Figure 2.10) [2]
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where o_ is the uniaxial stress of the intact rock, m and s
are constants that depend on the properties of the rock and
the extent to which it has been broken before it i~ subjected
to failure stresses.

It has been stated in several papers, e.g [13],[22],that
unless dilatancy and compressibility are accurately modelled
, the constitutive equation is not appropriate for rock-like
materials.

Reference [12] gives an example of a non-linear yield function

giving a non-linear dilatant plastic strain. It uses two

plastic strain variables to model hardening followed by
softening behaviour. This yield function was proposed for
modelling elastoplastic behavior of hard rock under moderate
stresses. As the progressive fracturing induces the weakening
of material, there is also the hardening effect related to
inhomogeneity of microdeformations associated with
irreversible strain. The rate of plastic dilatancy is

directly linked to microdamage and softening mechanisms:

p-ael (2.14 a)

where B is a microdamage and softening parameter , a is a
positive constant. On t»~ other hand, it is the rate of
deviatoric strain invariant which is related to hardening

mechanisms, or the closure of microcracks;

1
k-(8f ef) ? « e e v s« (2.14Db)
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where eijp is the deviatoric plastic strain . k may also be

the inelastic work of the deviatoric stresses Si; 3

where éu." and e'mp are obtained using the yield function

(equation 2.15a) as a plastic potential.

Flo,k,B) = J,p - 2p(k,B) (5°-J,) (2.15a)
where p(k,B) is a material function controlling the rate of

hardening and softening and J,° is a constant :

p(k,B) =p, + z,k - 2, p?
(2.15b)

and p,, 2,,2, are positive constants determined experimentally.
In equation 2.15 , the nonlinear yield function includes the
effect of the second deviatoric stress invariant JZD"' squared
(see Figure 2.1), as well as the hydrostatic stress J, ,while
the two inelastic strain variables (¢ ,k) appear in the
function P(k,B) .
The vanishing of plastic ductility under tensile stresses,
justifies the existence of a rupture surface as a function of
the stresses only. The brittle rupture condition is shown in
equation 2.16 .

F* (@) = (J,-J")% - J,p¥2-82 =0.0 (2.16)
where J' , y , § are constants independent of the strain
history.

The configuration of the rupture and yield loci in the stress
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invariants space is shown in Figure 2.11 a.

The yield surface is represented by a set of parabolas giving

erf= 4’325— - 3¢—a§-§— -3¢ (2p(k,B)) so that the viscoplastic
ii 1

strain évp is always accompanied by volume increase (dilatant)

and as the surface expands by the increase of p(k,8) the ratio

of dilatant to deviatoric deformations increases.

The intersection of the initial yield parabola (for p(k,#)
= p,) and the rupture curve (equation 2.16) occurs at points
F,, F, representing simple shear states. For stress paths
having tensile hydrostatic stress brittle rupture occurs (0
C,), while when the stress path is accompanied by 1low
hydrostatic pressure , 1limited ductility happens with
hardening effect , followed by brittle rupture when the stress
path intersects the rupture surface, see Figure 2.11-a) .

The ductile curve (Figure 2.11 (d,e)) is simulated by this
yield function if the applied stress path is accompanied by
higher values of hydrostatic stress. In Figure 2.1l1a ( path O
A D E) , the initial expansion of the yield surface means a
predominating hardening effect , while the softening takes
place when the effect of volumetric dilatancy becomes
prevailing. In this case there is no contribution of the
brittle rupture condition . The transition from hardening to

softening (or to unstable behaviour) means that the rock

mass has become highly rearranged so that the softening effect

of dilatancy (f) becomes more than the hardening of the
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deviatoric component of the inelastic strain increments (k).

Configuration of the rupture and yield loci
in the stress invariants space
( Figure 2.11la )[12]

0

(d) ()
Stress strain relations during path: 0C,,0C,,OADE
( Figure 2.11 b,c,d,e )[12)
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In equation 2.15b, p(k,8) is function of the (-8?) making the
effect of an increment dB8 on dp(k,B) increases with the growth
of the plastic strain.

This model is suited for viscous elastoplastic analysis of
hard rock showing ductile or brittle behaviour [12]. It also
seems to be good for creep analysis, as the three phases of
the creep behaviour can be established even under constant
stress i.e constant flow rule ( by considering the effect of

p(k,B) in equation 2.15b).

2.3 DILATANT-COMPACTING YIELD FUNCTIONS:

Some rocks cannot be described by a dilatant yield function
like that described earlier (equation 2.15), in that over
certain pressure ranges the initial yield point decreases with
subsequent increases in the confining pressure, at which a
transition from dilatant deformation to compaction or volume
decrease takes place (see Figure 2.13). This concept first
was treated by adding "end caps" to the dilatant yield
function. However, a discontinuous yield condition makes
the numerical modelling difficult and not flexible enough.
Equation 2.19 [23] is a continuous yield function based on the
critical state concept developed for soil~like materials [23]},
[11]. The idea of this theory comes from the theory of work
dissipation [23]. For conventional triaxial test one may
define the hydrostatic pressure and deviatoric stresses as in

equations 2.17 (see Figure 2.12) :
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specimen
rubber
Jacket

o—confining
pressure

e

Triaxial compression in the principal stress
and strain space [20)
(Figure 2.12)

1
p-_(01+203)

‘/23— (2.17 a)
q-‘/_ﬁ_- (01-03)

and the corresponding viscoplastic strain increments as:
def - _\/L:T (deP +2def)
(2.17 b)

deﬁ-—% ( def - de?P)

and assuming the plastic potential depending on p,q (or

J,,d5") only , the loading power could be described in the
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plane of p-q as follows :- gdef+ pde®

and for a frictional material this power is dissipated in

friction work only :

gdeh+ pde® = M*pldefl - —5— (q.deb) (2.18)
c

where M' = q./p. is a simple friction constant relating the
deviatoric and hydrostatic stresses at the critical state
where no inelastic volume change takes place. Eguation 2.18
means that the volumetric work (p de P) in case of compaction
increases the friction and for dilation decreases the friction
work by a factor of (p/p.). By integrating equation 2.18
[23], [20] after putting dg/dp = deP/dep as a property of the
required plastic potential Q;

o-—9 _+1n-L -1 (see Figure 2.13 a) and noting that q and p

M*Dp =

are proportional to 3=JZDV' ,J; respectively we reach the form
of yield function F = Q as follows (see Figqure 2.13 c) ;

- +ln—‘—7-1-
by Js (2.19)

where p" is a friction constant relating the deviatoric stress
invariant J,* and J, at the critical state (i.e when the
volumetric viscoplastic strain is zero ) and J, is the
hydrostatic yield limit.

When F > 0.0 the viscoplastic strain occurs , while when F <
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0.0 ,the behaviour is elastic. Figqure 2.13c indicates that
, for associative plasticity , when a point is subjected to J,
and 1, the value of F is positive and the plastic strain

increment is normal to the revolutionary surface :

0=F-—9 _41n%t g0 (2.20a)
A Ja

where Q is the plastic potential and J; is a constant
satisfying the equality.

If a soil specimen , subjected to hydrostatic pressure J_ ,is
sheared till ¢ so that (d,./J,) = u' (see Figure 2.13c ) the
resulting behaviour has no volumetric viscoplastic strain and
is perfectly plastic. Higher values of applied (EVJQ at
vyielding give softening behaviour accompanying the dilatant
viscoplastic strain and lower values give compaction and

hardening behaviour.

q e*“,’
6"’ q=Mp 9
¢
% </
dep - \
P
0 ) ) »
1
q %
Vs
v
Yield curve and critical Family of yield surfaces
state on p-q plane [20] function of the change
in volume [20]
(Figure 2.13 a) (Figure 2.13 b)
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The critical state yield function
for soil like materials
(Figure 2.13 c)
In equation 2.19 J, is a material parameter which may be
constant , or function of the volumetric inelastic strain and

simulates the hardening and softening responses as expansion

and contraction of a static yield surface defined by ;

J J,
Fsc,m--@dn-—‘: - 0.0 (2.20 b)
B*J; Js

Equation 2.21b uses the critical state yield function ,
equation 2.21a , in the creep law (¢) to simulate the viscous
behaviour(consolidation) of clay in case of isotropic
hardening and using the effective mean stress om/in place of
J, (effective means net stress in case any pore water

pressure exists).

!
yed.

FeY_—22+41n o:—Ae€

KO g Ony

(2.21 a)

[ - /

J -

¢ (F) - Coepr 2 /30 +1n Ow -Ae€ (2.21 b)
"lom o;:y
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VP4j ¢ do 13

& (2.21 c)

where b, , C, and A are constants, ev" is the volumetric
viscoplastic strain and o,/is the effective mean stress. Each
component of the viscoplastic strain vector is cbtained using
the dynamic yield function as a plastic potential , equation
2.21 c . The critical state concept is mainly applied to
model short term ( elastoplastic ) behaviour of frictional
media like soil [20],([23], backfill and it is possible to use
it to model the behaviour of rock having initial cohesion but
this cohesion drops to 0.0 after very small plastic
deformation (like cemented back fill). It has its application
for time dependent behavior of frozen soils , clay and
consolidation analysis of clay-like soils [11] important for
settlement of foundations or slope stability. It is
interesting here to note that the hardening simulated by the
expansion of the static yield surface is physically accepted
as it 1is towards the high hydrostatic stress while the
material remains the non-tension one.

This general concept is the origin of dilatant-compacting
yield function used to model rock behaviour.The differerice
here lies in that to model intact rock behaviour (or partially
fractured) the assumption of work dissipation might be

expressed as follows;

gdef+ pde® - M* plde§l+const. (2.22)

where M" is the friction constant. This means that at p=0.0
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(i.e no hydrostatic pressure) there is still a way of internal
work dissipation, which might be due to the cohesion |,
viscoelastic mechanisms and the ductility, etc. on the other
hand, the assumption that the dilatant behaviour corresponds
to softening or that zero plastic volume change gives perfect
plasticity is not valid because for rock the deviatoric strain

(representing the shape change ) may cause hardening or at
least eliminates some or all of the softening effect caused by
dilation or micro cracks. Instead of depending on the work
dissipation theory ,researchers [13],[14] assume yield
functions in a polynomial form of the stress invariants
Equation 2.23 is an isotropic dilatant compacting yield
function;

Jp + @ J, + 0,3, = A (2.23)
where a,,a,,A are material parameters.

Equation 2.24 [13], is another example of this type of yield
functions relating (o0,~0;)and (o0,+0,;) when considering the
state of stress on the plane of maximum and minimum principal
stresses ;

F = (04=03)* + n? (0,+05)*® + 4n*c(o,+05) + 4 c? (n’ -tan?0) (2.24)
where n,c,tan0 are parameters governing the location and shape
of the set of ellipses represented by F=0.0 whose major axis
is directed along the line of hydrostatic stresses [13}.
Using this family of dilatant compacting yield functions (see
Figure 2.14) ; apart from the experimental stress-strain

characteristics , the field state of stress governs ;
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* Softening or hardening (point 1 compared with point 2)

* The rate of hardening or softening (point 2 compared with
point 3)

* For the incremental loading of elasto-plastic behaviour (
see Figure 2.9) for which the state of stress is at (or near)
the static yield surface (i.e Q=F  (aricy= 0:0) , the expansion or
contraction of this surface simulates non-linear hardening and
softening as the ratio of the viscous strain increments
de P:de P changes (e.g it increases with surface expansion to

decrease the rate of hardening).

01-034
e’

N

JMI’)

Dilatant compacting yield curve (Equation 2.24)
( Figure 2.14 )

Equation 2.25 [24] is a yield function proposed for soft rock
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(e.g. soapstone);

F-Jz,,-(--a"—‘- JP+ ydt) (1-Bps)"

o

) a (2.25)
where S, - =2 a=-—= , B-8, e 5%
J2p gm

Where a ,n,m,y,n, and a, are constants, & is the trace of
1
total plastic strain= f(deﬁ’j de?;) 2 - The effect of the third

deviatoric stress invariant Jy, is more apparent for low
hydrostatic stresses when -8, e %% where B8 ,B, are

constants. This effect causes the yield 1limit of the
deviatoric stress invariant J,, to be lower in case of triaxial
extension i.e when (0,=0,>0,) than it is for triaxial
compression (o, >0,=0;) (see Figure 2.15a).

In equation 2.25, a is chosen function of the total plastic
strain trajectory which simulates successive hardening or
expansion of the yield surface in the course of the plastic
strain. At point 1 (see Figure 2.15a) where the plastic
strain increments are 100% deviatoric (deP=0.0 ), the rock
still exhibits hardening behaviour . At point 2 the plastic
strain increment is dilatant (def > 0.0 ) , this dilation
according to the equation of a, has no softening effect, so
the yield function continues to expand , but its expansion is
only towards the high hydrostatic compression . This means
that the behaviour is perfectly plastic at points higher than
the ultimate envelope in Figure 2.15c (these points correspond
to stress states of low ratio of hydrostatic to deviatoric

stresses). The softening or contraction of the yield surface
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is not modelled by the parameters of this yield conditions.
The value of n in equation 2.25 representing the power of J,
has a control on the shape of yield curve (Figure 2.15h) and
consequently controls the ratio between the volumetric and
the deviatoric plastic strain increments , thus.used to fit
this yield function (when used as a plastic potential) to the

experimentally observed plastic strain [24].

% r (a) [ {b)
o= TC 4
; ol /./@ o . 0 —TE odswved
- lo'.
) a, .
& 0 m | v /'\/\
*1290°¢ /\
. R \ |, 151074
(] 40 20 120 160 a‘o c‘o ';o : .;
J,(MPa)
1 (c) wor (d)
0——} Otserved [
Triaxial G
1] 3 Wtimote enveieps ? wr compression &.’»\c
/ o ¥ - plone s 6‘
7 4 ' :' ©
50
0 14 Triaxial extension
L] L) ° 30 n;o 1;0 i':o

/Z e, + /T 0, (MPo)

Plots of F (Eguation 2.25 ) for different stress paths
( Figure 15 ) [24)
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2.3 CREEP AND VISCOPLASTIC CONSTITUTIVE LAWS

When viscoplasticity is used to predict elasto-plastic
behaviour, the function ¢ in equation 2.11 represents , not

the exact viscoplastic rate , but a rate proportional to the

stress condition ¢ = AF (compared to other points in the

rock-mass) where A is called the fluidity parameter and may
be chosen = 1 because the time here is used as a fictitious
variable i.e the time increments At is chosen such that Aevp
At does not exceed a certain limit which causes

MmN,

vp

numerical instability (see Section 3.3), similar to the
initial strain approach [4]. However in case of incremental
viscoplasticity A takes a real number so that ¢ simulate the
real viscous rate. In reference [10] the incremental
viscoplasticity is simulated using a work hardening creep law.

In case of creep or time~dependent deformations the value of
¢, the creep rate at time t, should be modelled by equation
2.11. The empirical approach takes the form of the creep laws
and their constants by best fitting interpolation of the data
obtained from a series of laboratory creep tests . Popular
forms of the empirical creep laws are the time power and
exponential laws [25],[26] ( the environmental effects like
temperature , humidity appear in the constants):

e (t)=-BtTo” . e e . . (2.26a)

e, (t)= B (1-67%) o7 .« . (2.26b)
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where B,m,n are constants, ¢ is usually the axial stress in
a uniaxial creep test or the differential stress in a
conventional triaxial creep test, while €_ is the vertical
creep strain €, or the differential creep strain (e,;-¢,).
Other creep laws may take an exponential strain hardening

form [27]) (see also equation 2.21);

& =& erll ¢/t if ¢ <e
a;d s.cr. C ta . . (2'26b)
éc-és.cr. if €. €.,

where A is a constant and é&cn is the secondary creep rate
where no hardening or softening occur which is function of
stresses( i.e é&uu=f(a) or =I\,an ) and the effect of stresses
appears also in the limit at which the secondary creep starts
( see Figure 2.7b); en=m,(o/G)m where m, and m are constants.

While some authors suggest logarithmic forms others use mixed

forms as listed in reference [6].

When a rheological approach is adopted , a mechanical system
of springs ,dashpots , sliders or friction blocks is built up
in a certain arrangement to exhibit a time dependent behaviour
similar to that of the material studied (see Figure 2.16). In
this case the mechanical model suggested for the material
imposes the form of the creep law while the parameters or the
constants involved have to be determined experimentally by
curve fitting.

This approach seems to have the flexibility to be applied to
different rock types in different conditions [6],[21].
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It is common for creep laws to assume a zero yield limit or
creep threshold . Several authors state that a rock-like
material loaded starting from a stress-free state or low
premining stresses (initial stresses) possesses a near zero
yield 1limit [28],[10],[29].

Figure 2.16 shows two popular mechanical models; Zener and
Burger (6] with their equations. These models are one
dimensional and some researchers like Serata [29] implements
them to model two separate components of the isotropic creep
strain; the mean strain ¢, and the second deviatoric strain
invariant e€=(% e;e )" If ¢ = (J,)"* (the stress
corresponding to €4) < C, according to Figure 2.17 Zener model

is used for ¢, ,e, as follows (Figure 2.16-a defines the

constants):
o [ (-(2Gy/2n9) £)
€ = —vu+t l1-e 2 2
426 zcz( ) (2.27a)
o o * /a1y
€ w My _ "0 1-e(-(3K*/3n%) &) 2.27b

but if @ > ¢, according to Figure 2.17, Burger model is used

for €, only (i.e no volumetric creep) as follows ;

o ] (-(2G,/2n) &) o
€~ ——+ 1-e VEMI Ehy ey ¢
426 2G3( ) 2n,

(2.28)
To determine the form of the creep rate function ¢ using an
experimental or a mechanical model , a yield function and a
plastic potential are assumed to relate ¢ (see equation 2.11)
with the measured strain component (like €, ,€, in equations

2.27) during a creep test and also to relate the applied
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uniaxial or triaxial state of stress to three dimensional
state of field stresses.

If the theory of elasto-viscoplasticity is used to model the
time dependent behaviour of the mechanical model of Figure

2.17 , one would put a compound creep rate law as follows;

IfoasC, ;
301 an (2.29a)
ew;,'¢1(F1't) m*‘bz (F,, t) 30

1j

where the yield function F,=¢ and F,=0, with no creep
thresholds imposed (viscoelastic) and using a plastic
potential Q,=G=(J,)*=(% s;;s;;)*=const. . This gives a flow rule

of pure deviatoric strain évpij =% ¢, s“/(JZD)V' and consequently

édvp=g¢1 , Wwhile Q,= /(g )? =const. chosen to give pure

volumetric strain gives ém=¢z/3 (of the same sign of g,) thus

the equations of the creep rates are :

de, F.
=2 P .2 1 e"(cg/'lz) t)
¢ ot 2n,
(2.29b)

Oe, F. .
_3 vp_3 2 e("(X;/"I ) &)
4)2 ot 3n*

And if 0 is checked to be > C, the following law is used;

30,

€up,=s (Fyo £) = (2.30a)

ij
where ¢; = 2 times édvp given by equation 2.28 because Q, which

gives no volumetric plastic strain is stil) used ;

aed F, F.
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Burger model

( Figure 2.16 )[6]
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Rheological model for rocksalt [29]
( Figure 2.17 )
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Figure 2.18 compares between the prediction of a time-
hardening creep law : ¢=f(t,0) and strain-hardening creep law
:¢=f(°'¢w) for nonlinear creep where the stress o changes
with time. It can be noted that time hardening creep laws are
not well suited to modelling the stress history. Work-
hardening creep laws ( ¢=f( o,fadew) ) is the best approach

in such cases.
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Change of stresses at t4

Curve 1 is the prediction using time hardening
law and curve 2 is the prediction using strain
hardening law when the stress is incremented.
( Figure 2.18 )
To adopt an empirical or mechanical model in the theory of
viscoplasticity described in Section 2.1.3, the model (like

that of Figure 2.19) has to be divided to a system having a

stiffness of an instantaneous elastic response (system 1)
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attached serially to another system (system 2) which cannot be
strained instantaneously but is giving a viscous strain rate
(described by a creep law as in equation 2.29 ) and its
viscous strain éw (being viscoplastic or viscoelastic) is to
be added serially to €, to give the total strain i.e ét=ém+ée.
If at time t, an element of the rock mass is confined so that
Ae, is less than Acvp the viscoplastic strain (Aevp) will cause
a relaxation in the elastic energy ¢,.

Reference (6] presents a comprehensive survey of creep laws

used for rock in general and rocksalt in particular.

system 2

Analyzing a mechanical model by considering :
an elastic part and viscous part.
( Figure 2.19 )
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2.4 RHEOLOGICAL ANALOGUE OF ROCK ZONE INTERSECTED BY

PARALLEL JOINT SETS

In the iterative explicit scheme described in Section 3.2 it
is possible to incorporate the rheological model describing
a rock mass transversed by sets of parallel joints (Figure
2.20) [1],[19].

If o, is the stress normal to the joint surface , 7 is the

resultant of shear stresses parallel to the joint surface k ;

If okso.o

n

(2.31a)

Fi=tho,tanb, - Ck 1 soint set & 0.0

" where 6, is the joint friction angle and C, is the apparent

cohesion ;

Ok -[ ﬁ[+on tany, -~ Const =0.0 ](jointsetk) (2.31b)

20
&p ~h x Fi ao:; (2.31c)

where ¥, is the dilation angle and A, is a fluidity parameter
of the parallel joint set k (depends on surface condition and
the number of parallel joint per unit length). A, may be
assumed unity in an elastoplastic solution.

The yield function and plastic potential used to describe
this model are anisotropic. The yield limit monitors the
yielding along the shear parallel to the joint surface k (7,)
The logic of having the form of the plastic potential near to

that of the yield function appears obviously when equation
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2.31b is used as a plastic potential thus giving inelastic
shear deformation parallel to the joint surface, while the
dilation is controlled by the value of tan (y,). Equations
2.31 are used if the stress normal to the joint surface is

compression i.e o, £ 0.0. If o, > 0.0 it would not be true and

a viscoplastic no-tension model is added to redistribute the

stresses and relief the tension ;

Fp=[04, >0.0 (2.32 a)
Q, = [0, - const. - O‘O]jomck (2.32 b)
30, 30,
=2 1k alY
eVPK kFl.k aoij +Ak sz aalj (2.32 C)

where F, and Q, are the yield function and plastic potential
of equations 2.31a,b respectively. F,,Q, might preferably be
(-rkz)v' as in equation 2.34b depending on the opening of joints

at this point 1In both cases the total viscoplastic rate is ;

n
&Y &+ ok inrace rock  * Equations 2.31, 2.32 are
=1

anisotropic yield functions which are dependent on the
direction of a set of parallel planes of weakness. Other
types of anisotropic yield functions are discussed in

References [9],[10].
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2.5 TIME DEPENDENT NO TENSION MODEL:

Reference [1] proposed a time dependent no tension model
given by equation 2.33 to relieve the false tension exceeding

the tension resistance at a point ;

Feop=0p,¢+ -§-'&'sin(n+—23—“) (2.33 a)

0= 0,-const.=0.0 (2.33 b)

where o, is the maximum principal stress (tension) , o is the
second deviatoric stress invariant and n is the lode angle.

Another way of handling the excessive tension is proposed
here ; If the total stress o, = o,+0, ( in the x-y plane ) at
a point is positive (tension) and exceeds the tension
resistance , the maximum principal stress is calculated
(which is the tension ) and the direction it makes «, as well
(assuming a plane problem). Then two associative viscoplastic
mechanisms with two yield functions are assumed;

The first , see equation 2.34 a, is a viscoplastic relaxation
of the tension in a direction normal to the plane of a, (q,
once calculated remains constant throughout the analysis).

The second ,equation 2.34 b, is for the shear acting parallel
to the joint ( assumed to be locally created after the tension
failure ) 1i.e the two yield functions are simulating a free
surface created (and localized at the gauss point) at angle a,

with the horizontal:
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F, - 0,>0 i.e (tension)

(2.34 a)
F, = /1%
2 (2.34 b)
) do , EYd
e"PU (b(Fl) aoij+¢(F2) aOiJ— (2.34 c)

This approach presented here is more convenient because the
direction of the tension failure a  once existed is considered
constant throughout the analysis and not changing with
direction of the maximum principal stress which is the case of
equations 2.33 ( especially for the case of incremental
loading). Equations 2.34 are also easy to implement in the
plane strain or axisymmetric problems modelled by the
developed program for which the planes of principal stresses
are predefined.

In both approaches ¢ (F)=AF or another form chosen to give the
same sensitivity to a change in stress (i.e d¢/dF) as those of
the viscoplastic creep laws implemented for the surrounding
rock (important for an explicit time integration scheme).
Equations 2.34 are anisotropic yield conditions and plastic
potentials. Using an anisotropic yield function in the

numerical modelling of associative viscoplasticity depending

on an implicit time integration scheme does not violate the

symmetry of the global stiffness matrix .
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CHAPTER 3
NUMERICAL ALGORITHM

3.1 INTRODUCTION

The developed numerical model VISA2D is a 2-D finite element
program using the theory of elasto-viscoplasticiy to model
the effect of short term and time dependent behaviour on
stresses and deformations around compound layouts of surface
or underground mine excavations. It uses the classical 4
node-isoparametric elements with four integration points and
it handles different types of 1loading , like own weight ,
nodal loading , surface loading and the initial or premining
stresses. At any time station , the user can specify
instantaneous changes. These could be added loads or
additional cut or fill. The program can be stopped at any
time and the analysis may be restarted at that time station
later. The program uses the continuum theory of elasto-
viscoplasticity thus to overcome the inhomogeneity of the
surrounding rock several material types can be used. Several
yield functions and creep laws can easily be adopted in the
developed numerical model.

In this chapter, the finite element formulation of its
elasto-viscoplastic numerical algorithm is explained in detail

through Section 3.2 which describes the flow chart of the
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developed computer program . Section 3.3 explains the
numerical stability of a fully explicit time integration

scheme.

3.2 NUMERICAL ALGORITHM OF THE ITERATIVE EXPLICIT TIME STEPPING
SCHEME IMPLEMENTED IN PROGRAM VISA2D:

This Section describes how the numerical model uses the
finite element and the theory of viscoplasticity to integrate
the inelastic strain rate over the successive time increments
by using an iterative explicit scheme .

With the viscous strain rate expressed by equation 2.11, we
can define a strain increment A€, occurring in a time
interval At =t ,,~t as follows;

AeZ, - (&,7(1-8) + &,718) At, 1)

For 8 = 0.0 we obtain the Euler time integration scheme which
is also referred to as '"fully explicit! since the
viscoplastic strain increment is completely determined from
conditions at time t,. On the other hand, 8 =1 gives a fully
implicit scheme with the strain increment being determined
from Evp“”. The case of 6=1/2 results in the so called implicit
trapezoidal scheme or Crank-Nicolson rule. The value of @
lies from 0.6 to .9 which is dictated by the shape of the e'vp-t

at the critical points (see Figure 3.1d) and also from

equation 3.28.
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A qualitative diagram of the change of stress and viscous
strain at a relaxing (critical) point in the rock mass
( Figure 3.1 )
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Referring to equation 3.1 , as a first (fast) iteration the
viscoplastic strain increment is determined from conditions at
time t, i.e ©=0.0. Other iterations follow to improve
accuracy with 6=0.7.

Referring to Figure 3.1 the analysis starts at point o before
excavation at t=0.0 and viscoplastic modelling starts and
continues to time station t; at which an instantaneous change
is applied (e.g elements cut or filled) then viscoplastic

modelling continues and so on.

3.2.1 TIME DEPENDENT ANALYSIS:
SEGMENT 1: INSTANTANEOUS RESPONSE

Calculate the total load vector due to the sudden changes
after excavation and hence solve the system under this loading

conditions. This is given by :=-
P+ [N"bdQ NT3dl' - [BTo,dQ =K Au
| * | [27e. (3.2)

where N' , B' are the element shape function and strain
matrices relating the nodal displacement of an element with
the deformation u and strain vector respectively at a point
within this element. The formulation of element shape

functions are described elsewhere [32]. P is the load vector

due to applied point loads, fNTb dQ is the global load
o}

vector due to body forces (own weight), INTs ar represents
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surface traction loading (side pressures and shears) global
load vector, and fBT"on is the balancing initial stress
0

load vector which might not be in total balance with the first
three terms because of a created cavity.

K is the global stiffness matrix and Au is the required nodal
displacements.

The set of equilibrium equations of the global degrees of
freedom in 3.2 1is solved by a Gauss elimination equation
solver [33] which divides the global stiffness matrix into a
number of blocks in order to alleviate the storage limit
problem while using a banded symmetric stiffness matrix. The
equation solver has been modified for the optimization of the
iterative explicit time integration scheme in which the
triangularized (or decomposed ) global stiffness is stored
for further use in the viscoplastic analysis (like equation
3.8 ) and only the load vector enters the process of Gauss
elimination.

Direct access, unformatted files are used to store the
element data and the calculated witrices like [DxB],,, for
use in the coming viscoplastic analysis to reduce execution
time . For each element, one direct access unformatted
record is used to read, update and write the stress ¢ and
viscoplastic strain vectors etc .. at all integration points

in order to minimize the computer storage requirements .

SEGMENT 2: UPDATE THE STRESSES AND THE VISCOPLASTIC STRAIN
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RATE DUE TO THE INSTANTANEOUS CHANGE AT t=0.0 (OR - t¢ IF
ANALYSIS IS AT POINT 5) :

In the following steps integrations are actually done using
numerical integration at four Gauss points within each element
However for simplicity of interpretation the formulas

presented below use the integration symbol [.

Repeat the following steps for each element:

bf ¢ bf

w r €y ( see Figure 3.1), the

Known:o , or (o, at t=0.0) , €
element assigned material number (mat) to access the
appropriate constitutive law ;E™!,p™! D™!' and if the material
is specified as a creeping one, the non zero integers: NY(MAT)
and NCR(MAT) are used to access the forms F™?!,Q™', ¢™!'. and
their constants which are stored per material.( see Section
4.3 cards 3,4)

a)- Use the element nodal displacement increments resulting

from segment 1 to update stresses from o, to o, ;

Oaf-obf*"DBAu « . - . . - (3.3)

If the material of this element is specified by the user to be
treated elastically ; skip steps b,c,d,e,f,q.

b)~- Use o0, ,cv:” to calculate the numerical value of the

specified yield function F““(cw,o);
If F< 0.0 - no creep at this point - skip steps ¢,q,
e,f,(and step g - is skipped if this happened at the four

gauss points)

af

¢c)- Get the viscoplastic strain rate vector ém
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Calculate the value of the scalar creep rate ¢ according to
the creep law assigned to the current material type. If the
creep implies more than one yield function (like for each
friction slider in Figure 2.19) the program checks the yield
(or creep) of each mechanism to finally substitute in the
appropriate form of ¢ .

Calculate the viscoplastic strain rate vector by using the

specified plastic potential Q“‘"(o,cvp) .

. aomat
€p, = & 30, (3.4)

If the viscoplastic strain rate vector c'vp is composed of

different mechanisms with different flow rules like in Figure

2.17 ;

nae 900" o nae O0F nae 800" (3 5

é - o i s it e
VP11 ' ey ¢ da -T2

ij

(The updated values of ¢ and &vp correspond to aaf,évp"' in

Figure 3.1 resgectively ).

- % oF  OF 30 30 -
d)- Get the value of F * B0, ' Do, ' do, ' do, (1Lf the yield
function and plastic potential depend on Jy,Jdy ,they replace
o, ,04 respectively) which are important for monitoring the

numerical stability during At; (or At, after t=0.0) .see

Section 3.3 for details and exceptions.
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e)- Use the viscoplastic strain increment during a unit time
(A‘w=éw*1) to calculate the 1load vector due to stress
relaxation or relief per unit time of At, (or At, after t,)
which is still unknown;

v., -{prévpdn (3.6)
f)~- Calculate the maximum allowable time increment according

to the current state of element i ;At using equations of

max(1)
Section 3.3, and compare it with the minimum value of the
preceding elements At, .. .

g)- Add the element out of balance load vector v, (equation
3.6) to the global out of balance load vector.

*End of loop over elements

Referring to Figure 3.1, the execution is at point 1 or point

6.

SEGMENT 3:

a)- Use the maximum allowable time increment at the most
critical point At,,.. (see step f segment 2 ) to get the value
of the time increment At, (At, at t= 0.0) by following the
flow chart inside segment 3 in Figure 3.2 (In the flow chart
if the analysis is at t=0.0 then t, represents t=0.0 and t,
represents t;). Making sure when t=t, that t+At, < t,; (or when
t=0.0 that t+At, < t, ).

b))~ Get the true value of the global relaxation load vector;

vV -V At (3.7)
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c)~- Solve and get the global displacements Au from
KAu-v (3.8)
The system is solved under V only and the stored

triangularized form of the stiffness matrix is used.

Update the total displacements; u = u +Au (3.9)

In the following segment t, and At, will serve as t , At

respectively.

SEGMENT 4: Integration of the creep rate over the time

increment At
Repeat the following steps for each element.
At the end of a time increment say At _, and the beginning of

- . n M n
new one At 0, , €, €7, At  are known at t, (after an

instantaneous change these Kknowns at t=t, are :0_; ,evpaf,
€, '/ At, (see Figure 3.1 ) or at t=0.0 o, €, €', At calculated
at segment 2).
a)-If the material is elastic skip this step. Otherwise;
The first trial over At uses a fully explicit stepping i.e
évp=évp" and assuming full relaxation in this step only
(1) .
Ach - e?,pAtn - . . [ ] . (3.10)
€l —eliAgll . ... .. (3.11)

o-o_DAg‘(,;) s e o o e . (3.12)
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b)- Update o, for Ae resulting from the application of
the out of balance load vector ( which was assumed 0.0 in step
a if this is the first iteration or in step g of the first

iteration if this is the second iteration) :

g ~-0+DBAu (3.13)

If the material of this element is specified by the user to be
linear elastic , skip the following steps for the current
element and start step a for another element.

c)- Use o, ,€,.""" to calculate the numerical value of the
specified yield function F"‘a‘(evp,o);

If F< 0.0 - no creep (or no viscoplastic strain rate)at
this point - skip steps 4,e,f,9,h,i,j, (and step k if this
happens at the four gauss points ).

d)~ Perform step ¢ in segment 2 to get the plastic strain rate

n+1

: n+l
vector € based on O €y -

vp
e)~ obtain an improved estimate of evp"” using € " and e'vp“” ;

€ -el, + (&7, (1-0) + & 08) AL, (3.14)
Repeat steps:- ¢ ( with evp"” in place of evp"""” ),d,@ to get
an improved estimate of evp“",e'vp""

Referring to Figqure 3.1 , analysis may be at point 2 or 4 or
in between.

f) -Get the correction of the total viscoplastic strain at this

point;

6evp_e’:,;1_er“g‘(1) e« o« « « « (3.15)
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Where evp"”‘” is the estimate of the previous iteration i.e
step a of the first iteration if this is the Second iteration
or step e of the second iteration if this is the third

iteration and so on.

g)- Update stresses for 6evp (assuming full confinement
5§€,=0.0):

-Dde . v+ « . (3.16)

- g vp

o-ond n+l

h)- Obtain the out of balance load vector caused by 6evp

dv,;. -fBTDbevp an e e e . . (3.17)
Q

Obtain the values of % , aipd . a?, . a‘ipd , —a%% (if the yield
function and plastic potential depend on J,,J, ,they replace
o, ,04 respectively) based on g ,, and evp"”, which are important
for monitoring the numerical stability during At,, .see
Section 3.3 for details and exceptions-

i)~ Use the viscoplastic strain increment during a unit time
(Aevp=e'vp“"*1) to get the ocut of balance load vector per unit

time of At ,, which is still unknown.

vo.™ -[ BT DE;! da (3.18)
Q

j)~- Get the maximum allowable time increment according to the
current state of element i At ., using equations of Section
3.3, and compare it with the minimum value of the preceding
elements Aty .-

k)- Assemble the load vectors §év, ,v, ™ into the global
relaxation load vector §v,v™! :
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¢ 3

*End of loop over elements

SEGMENT 5:

If accuracy is satisfied or the required number of iterations
over At are done (whatever happens first) go to step b.
a)- Apply the global out of balance load vector 8V to solve

for the resulting global displacements;

Kdu-=3Vv

Update the total displacements ; u = u + du (3.20)

To do a second or third iteration over the same time increment
At : repeat the loop over all elements in segment 4 from step
b to step k.

Referring to Figure 3.1 the execution would be entering the

2™ (or 3™ or 4™.... ) iteration over At, to get an improved

[

< n+1 .
estimate of 0 , €,7 and €

b)- Now the required number of iterations over time step At
are done (or accuracy is satisfied whatever happens first) and

we reach t , i.e t=t+At =t The value of At , is defined by

e’
following the chart in Figure 3.2 where At .., is the minimum

of time increment 1limits (At ) for numerical stability at

max(i)
each integration point in the rock mass and t; the time
station at which a sudden change may take place or the

program may stop.
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c)- Arriving at the start of At ,,, the program calculates the

true out of balance load vector based on the first estimate
of; Ae ™ = & ™ At .

Vv - VAt + 8V (3.21)
where 6V is the residual of the previous At .

- Apply the global out of balance load vector V to get the

resulting global displacements;

kAu-v e e« e e s e« e » (3.22)
u~u+Au =+ ¢ ¢ o o o o o+ (3.23)
- Go to segment 4 and repeat what was done for At with At
as At,, €, as €. , €™ as €," and o and u.

SEGMENT 6:

The analysis arrives at point 5 in Figure 3.1 where an
instantaneous changes 1like cutting elements (additional
excavation) or adding elements (adding backfill) may be
applied. It can also include adding external nodal loads or
surface loading.

A general equation would be as follows;

P+ [NTbdR +lN"§'dI‘ -[BT0dQ +Pyypq+ [NT R T =K Au
Q Q r

(3.24)

The first three terms; P, f"rbdg , [Nridr represent
Q
external applied loads at time t=0.0 ( including the added

changes at previous time stations ), 0 represents the
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stresses just before t, (at point 5 in Figure 3.1)

-If the changes include cut elements only the applied load
would come from the unbalance between the external loads and
the internal stresses gy (see Figure 3.1) because of the

absence of elements cut at this time station

p+£NdeQ +_I[NTFdI‘ —.‘(B"os dQ-K Au (3.25)

and the cut elements are skipped when the global stiffness

matrix K is reconstructed form the element stiffness matrices

(kg = fBTDBdQ ) and stored for the subsequent viscoplastic
Q

analysis.
-If the changes include only added loads (surface or nodal)

equation 3.24 is written as follows;

P added *fNT?ddEddP +8V=~-K, Au (3.26)
T

where K, is the initial global stiffness matrix which remains
unchanged. The creep process redistribute the stresses
throughout the rock mass but it does not affect the
equilibrium between the external forces and the internal

stresses so in this case equation 3.26 is used because in
equation 3.24 when there is no cut [B70dQ - [B7o,dO - [BT 0, d0
[*] Q Q

is in total equilibrium with P + f"rbdﬂ + [N’E-dr' . The
0

residual out of balance load vector (from the last iteration

of the previous time increment ) has to be added in equation

3.24 only, because in equation 3.24 or 3.25 its effect is
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included in (-~ fBT°sdQ ) (see equation 3.16 ).
0

- The backfill is represented by adding or replacing existing
elements with elements of new properties and zero internal
stresses (o - 0.0) . The program reads their properties and
construct their records of data needed for the coming analysis
and adds the related loads (body or surface loads) to the
global load vector The backfill stiffness is added to the
global stiffness matrix tc contribute in the response to any
external or future relaxation loads (like in equation 3.22) .
The three types of changes ;cut,fill and added loads can be
specified simultaneously at t, (see Section 4.3 cards
8,9,10,11). This is particularly useful in the analysis of
rocksalt mines.

After cbtaining the elastic displacements (Au) in response to
the applied sudden loading, the program updates the stresses
and viscous strain rate by executing the loop in segment 2
after which the analysis may continue or stop according to

what is specified by the user (in card 12 of Section 4.3).

3.22 TIME INDEPENDENT ANALYSIS

When the viscoplastic model is wused to predict an

elastoplastic response , the time is a fictitious variable and
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t, does not exist in the input data (see Section 4.3 card 1).
The applied load of the instantaneous change (Equation 3.24)
is. divided into a number of increments NINCR (specified in the
input data file card 5. ) in order to obtain the incremental
viscous plasticity solution , see Figure 9. In this case the

first increment of the global load vector;

-1 T TEJr - (BT
L iner = Tinen (P+£N b dQ +£N £ dr .£B oon) (3.27)

is applied and the elastic displacements response obtained
from K, Au = L, are used to update the stresses and
viscoplastic strain rate in the loop of segment 2 . If the
yield limit is exceeded at any point of the structure the
viscoplastic stepping starts and the relaxation due to the
viscous strain rate is redistributed throughout the rock mass
by executing segment 4 and segment 5 (step a,b only) for the
successive time increments (At, , At,,....) untill the yield
function F(o’,evp) at the most critical element of the rock mass
is less than a small positive number (depending on the stress
unit used in Card 2 of Section 4.3). At this point, the

execution is transferred to segment 5 where the following

L. +6V where 6V is the

load increment is applied ; L;. ., = Lj.,

residual out of balance load vector of the last iteration over
the preceding At. The elastic response is obtained from

K, fu = L is obtained The stresses and viscoplastic

incrd
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strain rate are updated in the loop of segment 2 and so on.

The program stops when a stabilization is obtained after the

full load (P+fN"bdQ *‘fN‘ ¢t dr ‘fBTOO dﬂ) is already
a T Q

applied.

3.2.3 MORE ABOUT THE PROGRAM
Whenever the program produces results of the stresses and

deformation at any time station using segment , it calculates

0
the sign of -a—i‘b—-évp which is the same as aead) -goi to
vp VP1y 13

determine if the behaviour at this point is stable ( negative)

or unstable (positive) (see Figure 4.16). The analysis may
be performed for elastoplastic response (by the theory of
elasto-viscoplasticity) then the creep analysis starts based
on the obtained elastoplastic distribution of stresses. 1In
this case for each material the user has the option to specify
a yield function for the elastoplastic simulation and a yield
function and creep law for the creep behavior (see Section 4.3
cards 6/,7/) . If after the elastoplastic analysis the
behaviour of an element was checked using the postprocessor
to be softening (or perfectly plastic) one might specify
properties of incompressible weak material (high poisson's
ratio) for this element at the start of the creep analysis

to avoid adding stresses over its yield limit during
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the creep process. Or instead, one may specify for this
element, a creep law giving (d¢/JdF) equal to the surrounding
rock as being function of the same yield function used for the
elastoplastic behaviour (to avoid numerical instability) .

In this way the effect of the short term and time dependent
plasticity are simulated by an iterative explicit time
integration scheme with some interference by the user while
automating this fe:ture inside the program is not done yet._
In the above discussion there is no focus on a specific
constitutive law because the numerical model can with ease
adopt difierent kinds of yield functions and creep laws
suitable for the different rock types under different
conditions and possibly in the same problem as mentioned in
Section 2.3,2.4. The subject of numerical stability is

reviewed in the following Section.
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3.2 NUMERICAL STABILITY OF A FULLY EXPLICIT
TIME STEPPING SCHEME

The value of the time increment used inside the program
depends on the creep law ,yield function and plastic potential
dictating the rate of viscoplastic strain rate as in equation
2.11 The ccncept used here is the same used in reference
(17].

In a nonlinear viscoplastic strain behavior at which the
stresses change with time and for rocklike materials , the
stress o0 is the most effective variable in the viscoplastic
rate and the numerical instability which is the oscillatory
change of the creep rate is caused by the oscillatory change

of stresses . If ¢ is the change in the creep rate during a

v1it time, as a first step, we try to express it in terms of

the creep rate itself ¢ ;

é=--n,¢ (3.28)
Therefore let us first consider in the following that F=F(0)

5] . -
and ; €, - o (F) 7ﬁ£§ . Assuming that Q depends on 0=J," ,
J, only which is the common case of plastic potentials
having a revolutionary surface around the axis of the

hydrostatic stress conditions (o, = o0, = 0;) the stress and

plastic strains become coaxial in the plane of EQJ, and it
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can easily be shown that the inelastic strain corresponding to
. G,J, are ;
ed-(%exjeij)%-%d"g_g ... (3.29)
P 4] +&f+ ¢f - 34»—‘3—9— . e« « . (3.30)
oJ.
It is assumed that the viscous strain increment causes pure
relaxation i.e Ae,= A¢, + A€, = 0.0 at the most critical
points of the rock mass which is a theoretical conservative
assumption. Using this assumption (de ,=0.0) - de,=-de' at a
critical point of the rock mass and the corresponding change
of stresses is obtained by using the elasticity relations of

an isotropic material ;

- 1 E_ 80

. A A Tl (3.31)
P - _gp _E L E_ 90 3.32
S € T3V 3¢ 1-2v 9J, ( )

Taking also the common case that the yield function is
dependent on g, J, only (like Drucker and Prager yield
function ) the change in F during unit time of At can be

expressed as follows ;

OF ,— oF
dF —a-fo——do*'a—J;dJl
2. OF (1, E 09\ _ OF E__ 00 3.34
P (20 =) aJ1(’¢1-zv BJI) (3.34)

2w

73




P

In equation 3.34 it is assumed that the viscoplastic strain is
not causing hardening or softening by changing the value of F

or directly affecting ¢ (this case will be explained later)

For now we get ;

dé _§ _ 9

ac "% " 3"
dé %1 _E 07 00 , 3 E OF 30)4 (3.35)
det oF\ 2 1+v 00 do 1-2v dJ, 48J;

comparing equation 3.35 with equation 3.28 we get n, as

follows;

o081 _E OF 3 ,, E o 3

1 9F\ 2 1+v do Jdo 1-2v dJ, dJ, (3.36)
The equation ¥ = -n Y is popular mathematically (see Figure

3.2 [17)). If this equation is integrated using a fully
explicit time integration scheme the time increments should be
less than a certain 1limit At_,,=2/n which admits stable
oscillatory convergence to steady state and At , = At_,./2
represents an upper bound for non oscillatory stable

predictions [17]. In our case the value of Y which corresponds

to ¢ can never be negative i.e ¢ --n,¢ is not unstable

numerically by itself.
But if the time increment used to integrate this equation and
multiplied by the viscous rate to get the relaxation stress

increment at all the critical elements of the rock mass is
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4

higher than At an oscillation in the transfer of the

crit

relaxation load from one element to another occurs, i.e
referring to Figure 3.3 the stress ¢ of an element relaxes
during At to reach point 1, but carries the relaxation loads

of the adjacent elements during At _, to reach point 2 and so

n+l

on. Based on that, equation 3.37 gives At =At_ /2 for yield

crit

functions and plastic potentials depending on J, and o only :

At - (1+v) (1-2v)
T M1 1,y 9F X or 90\ (3:37)
aFE( 5 (1-2v) 35 50 ° 3(1+v) 57, aJ1)

Applying this general form to Drucker-Prager associated

viscoplasticity where the yield function is of the form :

F - —28iny J, + V3 o-const (3.38)

3-siny

where § is the angle of internal friction , it can easily be

shown that :
oF op
—_— W = - 3
do do V3
OF _ 9dQ _ 2siny
aJ, dJ, 3 - siny
At_;, is obtained by substituting in equation 3.37 as follows
At 2(1+v)(1-2v) (3 -8iny)?

crit a¢ 3 _ _ ol 2 « 2 (3.39)
79?3(—2. (1-2v) (3 -siny)2+12 (1 +v) sin?y

This result is the same as that given by Cormeau [4] for

Drucker-Prager yield function. However this approach is more
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general and easier to be applied to a variety of yield
functions and flow rules.

When the yield function and plastic potential are concerned
with the plane of minimum and maximum principal stresses like
Mohr-Coulomb, Tresca, or the yield function of reference [13]
the total stress o,=0,+0; and the differential stress ad=|a1-
03|/2 monitor the hydrostatic and deviatoric component of the

applied stress in place of J, and J,'/2,

In this case the corresponding plastic strain increments are;

2
oP _J(ei—e‘;) cep? . 190 4 (3.40)
d 2 4 2 do,
¢2-ePeep-2.99 ¢ (3.41)
0o 4
Using the same assumption of ét = ée + € =0 and the

elasticity relations for an isotropic material in plane the
negative change (relaxation) in the dynamic yield function is

controlled by the o, o, as follows ;

[\

8,9, . E i1 E 0
- (- —x_y - (- Pa (=) = 90 ¢ .
8am ( )\J( 2 ) E R Tev e ) 1+v do, (3.42)

- - (=) —E a2 . (- E 90
7= 83+0y= () (1+v) (1_2v)¢r ) 2 (1+v) (1-2v) ao.,.¢ (3.43)

And proceeding in the same way as equation 3.37 the critical

time limit At_. for oscillatory stable response is given by;

crit

2 (1+v) (1-2v)

crit *
‘3 (1 oF oo (1-2v) +2 OF _ag) (3.44)

oF © 2 30, do 4 do , 00 ,

At
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where o0,=0,+0; and the differential stress o= a,-osl/z.

Considering Mohr-coulomb yield function ,

F - lo,-0,l + (0,+0,)8iny - const. (3.45)

where ¥y is the angle of internal friction , and considering a

plastic potential in a similar form ;

0-lo,-0,l+ (0, +0,) sina - const - 0.0 (3.46)
where a here is the dilation angle . In this case ;
oF 90 _,

I a2

do 4 " dog

oF . 30
do ., sinv . do ,

Substituting in equation 3.44 we reach the same expression

- sina

found in reference [17) for At :

(1+v) (1-2v)

3 1 (1-2v +sinysi
2 BFE(l 2v +sinysine)

&Ccrit- (3.47)

In the derivation of equation 3.37 or 3.44 it is assumed that
A€e=0.0 meaning a full relaxation caused by the yielding at
the most critical point which is on the safe side . When Ae¢
» 0.0 the numerical stability becomes less critical and higher

limits for At , can be used . For example in case of constant

X
stress creep experiment where A¢ = A¢,, At is not limited by

equation 3.37 or 3.44.

The strain hardening aff2cts the accuracy of the solution but

not the numerical stability. 1In order to take the effect of
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strain hardening or softening in the equation ¢ = -n ¢ where

. o oQ
At,,,=1/n and noting that _a%p'tvp =( a"-'vp,,' 90 )¢ and

equation 3.28 is rewritten as follows:

ob 00
$ - -—n ¢-—( n - . ¢ . . . (3.48)
! Oe,, do

where n, is given by equation 3.36 when the yield function is
dependent on G,J,. And when the plastic flow is in the plane
of maximum and minimum principal stresses and if the strain

hardening or softening variables are e’d and cs'T which are the

allowable plastic strain parameters for isotropic hardening;

bo_ _ 1 o 00 ., op 30
¢ ('h 2 el Do, 28e£ 80,-)¢ (3.49)

where;

9
n, - oF L (1-2v) OF 80 ,, 9F 90 (3.50)
1o(14v) (1-2v) | 2 do, do, 30, 90 5

In the above equations if €', and €', or €', appear in F rather

o _ 0 or o6 _ 9 oF

than ¢ : 3;5 " BF aej and aef, aF _é;f: with strain

harding n increases but with strain softening 7 decreases and

At increases. Using the same approach the work hardening
can also be considered in At .

However in both cases for early stages of primary creep giving
considerable hardening the accuracy of the solution has to be
considered especially for low values of E (soft rock and soil-
like materials, see equation 3.44) 1like examples 1,2 in
Section 4.4

The preceding form of At is simplified and easy to program
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especially in the 3 dimensional state of stress. If the yield
function or the plastic potential are anisotropic 1like

equation 2.31 or contains the effect of J, ,the general form

300

given in reference [17] should be used :

1
Aty,, = ——
e v e e 3.51
-%%(H;+H;) ( )
where H, = (JdF/d¢)D(3Q/d0o) H, is a viscoplastic strain

hardening parameter (see reference [17]).
It has to be noted that effect of the assumed relaxation in

the deviatoric stress increment during At is considerably

X
higher than the volumetric one . The simplicity of
considering only the deviatoric part may justify using a

si.clified form of At _ in case of complicated forms of yield

X

functions and plastic potentials as a factor of At is used.

crt
Another 1limit on numerical stability is imposed by the
numerical integration itself. Transferring the relaxation
stress increments from each integration point within an
element to nodal forces and the vice versa with the nodal
displacements (after solving) to get the redistributed
stresses (equation 3.13) , is based on a linearized process
which imposes a limit on At for the explicit as well as the
implicit scheme especially when the change of the internal
stresses ‘ and hence the viscous relaxation rate) are high

within relatively big elements.
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CHAPTER 4
USER’S GUIDE TO COMPUTER PROGRAM

4.1 INTRODUCTION

The input data of the program VISA2D goes in parallel with
the elasto-viscoplastic analysis to be performed. The program
starts by reading the necessary data for the elastic analysis
so that the user may examine first the elastic response
without having to enter data for viscoplastic analysis. So

the major part of the input file (file.VSC) includes data like

nodal coordinates ' degrees  of freedom ' element
connectivities, elastic properties of materials, distribution
of initial stresses ¢, and initially applied loads. This
part is generated using the preprocessor program PRESAP. It
reads a free format file (file.dat) and generates the first
part of (file.vsc). The same data file can be used for
viscoplastic analysis by adding a few more data cards as
described in Section 4.3. 1If an input error is detected, the
program stops giving the user an error messade to rectify the
error. The program can then be resta-ted from where this
mistake occurred and the previous analysis is not lost. The
program is assisted by three graphical programs to check the
input files and to illustrate the output as will be explained
later. In Section 4.4, the model verification and two
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examples are demonstrated.

4.2 DESCRIPTION OF INPUT DATA FOR ELASTIC ANALYSIS

In this Section, the input data required for the computer
program is described. Inputting the data 1is usually time
consuming and also requires considerable effort for error
checking if the user is not assisted by a preprocessor. The
user writes a simplified free format data file (file.dat)
configuring the problem layout as 2zones of different material
properties, grid density and simulating the openings and
possible mining sequence. First, the user runs a graphics
program called Z0NE to view the problem layout (zones and
opening) on the computer screen. Program PRESAP reads this

user-written filie (file.dat) and generates the finite element

grid with the required mesh density and grading for each zone
and specifying openings and different rock types to the
computer program in file (file.vsc).

In the following the sequence of input data(file.dat) to the

mesh generator PRESAP is given. The use of the program is
demonstrated through numerical examples in Section 4.4 This
program generates the output file of program 8AP2D for which
LL=1 and NPROB = 1 is also the first section of the input file
(file.vsc).
Card 1. Heading card

TITLE The master heading information for use in

labelling the output
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i CARD 2. Control card for finite element mesh generation

NZNP Number of zone nodal points

NVZONE Number of non-void zones

NSPAN1 Number of spans in § direction

NSPAN2 Number of spans in n direction

NPROB Number of subproblems simulating a mining

sequence. (Enter 1). For mining sequence in
viscoplastic analysis, see Section 4.3
NFOLD = 1 if mesh is fanning
= 0 if mesh is rectangular
ANGLE Angle between gravity and x axis (measured

according to the X-Y axis used)

o

Card 3. Subdivision of zones in £ direction
NSBDV1{NSPAN1) Array defining the number of subdivisions in

£ direction. (see Fiqure 4.1,4.2)
Card 4. Subdivision of zones in 7n direction
NSBDV1 (NSPAN1) Array defining the number of subdevisions in

n direction. (see Figqure 4.1,4.2)

CARD 5. Data of zone nodal points (NZNP cards)

N Node number
NCODZP (N) code for degrees of freedom (DOF) at
the node

= 0, both X and Y DOF are fiee
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LF

1 ,X fixed and Y free
2 ,X free and Y fixed
3 ,both X and Y DOF are fixed

XZP(N) X coordinate
YZP(N) Y cocordinate
CARD 6. Data of zone node numbers and boundary loading

(NVZONE cards + loading cards)

a) Nodes
N

IZ(8,N)

MATZ (N)

NCUTZ (N)

NUMPC

b) Loads = NUMPC

NSIDE

P1
P2

S1

Zone number

Node number defining the zone ; see

Fig. 4.3 for order or sequence

Material number associated with zone N.

Cut number associated with this 2zone of
elements. NCUTZ(N) is compared with NCOUNT
entered in card 6 of Section 4.3 (for each
time station) If NCUTZ(N) = 0 the elements
are cut in the elastic analysis.

Number of sides subjected to surface

loading. (0 to 4)

cards (If NUMPC=0 , skip this card)

Side number (=1, 2, 3 or 4); see Fig. 4.4
for details.

Pressure at the first node

Pressure at the second node

Shear at the first node
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CARD 7.

NBE

LL

NPRNT (1)

NPRNT (2)

NPRNT (3)

NRES

ICONC

SCALE

NUMMAT

NSTR

CARD 8.

Shear at the second node

Control card for finite element analysis
Boundary elements (=0 here)
tlumber of load cases (= 1 here)
=1 to print input data
=0 otherwise
=1 to print nodal displacements
=0 otherwise
=1 to print stresses
=0 otherwise
=1 to include initial stresses;
=0 otherwise
=1 to include concentrated forces;
=0 otherwise
Geometric scale factor to be multiplied by
X and Y co-ordinates of points
Number of materials used
=0, axisymmetric analysis

=1, plane starin analysis

Data of materials used ( NUMMAT * 2 cards )

(a) Material Classification

M
WT (M)
IS0 (M)

Material number
Weight per unit volume

=1, isotropic material

85

A




=2, anisotropic material (elastic analysis

only)
(b) Isotropic material properties ( If IS0 (M)=2, skip this
card)
E Young's modulus of elasticity
R Poisson's Ratio

CARD 9. Initial stress data (If NRES = 0 skip this card)
AINIT(8) Array defining 8 coefficients to be used for
the calculation of initial stresses o ,

T respectively as 1linear

g oz’ oxy

oy’ g
functions of Y. Each stress component
requires two coefficients a, b

such that o0 =a + b ¥

For the case of initial stresses developed

in a plane strain condition ;

0,,.=V (O, + 0O

[ oy)

For the case of initial hydrostatic state;
6. =0_=0_. In an axisymmetric problem o,

ox oy oz

replaces x , 2z replaces y and 0y replaces o,

CARD 10 Concentrated loads - any number of cards ending with
a blank card

If ICONC = 0, skip this card group

N Node number
L Load case ( =1 here)
FX(L,N) Force in X-direction at N for load case L
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o,

FY(L,N) Force in Y-direction at N for load case L

CARD 11. Force multipliers used by MSAP2D for each load
case. (Put any 5 numbers separated by spaces here. These will

not be used in program VISA2D )

The input data generated by PRESAP represents, in case of a
dense mesh, about 95% the size of (file.vsc) which can be
checked graphically by program MESH2D. This graphical program
shows the finite element grid with node numbering and elements
connectivity. Because some of the input data of Section 4.3
might be linked to specific elements or node numbers of the
actual finite element grid, it became convenient to generate

the finite element grid first in (file.vsc) (based on

file.dat) then the user (after checking it) proceeds to the
viscoplastic analysis by appending a free-format viscoplastic
input data to file.vsc. Any reference to elements or nodes
vould then be possible ( a zoomed-in plot of the grid as in

Figure 4.9 is useful).
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being discretized

Mesh generation scheme
( Figure 4.1 )
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Mapping a typical structure to a key diagram
( Figure 4.2 )

I

Model zones
( Figure 4.3 )
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Positive sign directions of surface loading
(load/unit area) acting at element or zone sides
( Figure 4.4 )
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4.3 VISCOPLASTIC INPUT DATA

This Section describes the simple free format input file of

the viscoplastic data written directly to the input file

(file.vsc)

(see Appendix) after the formatted data has been

generated by PRESAP.

CARD 1 WHAT TO DO AFTER BOLVING FOR THE ELASTIC RESPONSE
STATUS END or STOP? :The program stops after the elastic
analysis. or;
CONT :The program proceeds to time dependent
analysis or:;
OUP&CONT :The program proceeds to time dependent
analysis after generating output files.
or;

VISCO : The program uses viscoplasticity to
obtain elastoplastic response.

CARD 2 SOME UNITS8 USED TO CONVERT THE CONSTANTS USED BY THE

PROGRAM AS LOWER LIMITS INSTEAD OF AN ABSOLUTE Z2ERO FOR THE

ASYMPTOTIC CONVERGING EXPRESSIONS

STUN

FUN

TMUN

The stress unit expressed in MPa (for checking
the yield function against .005 MPa)

The force unit expressed in Mega-Newtons;1E+6 N.
The time unit of the creep strain rate ¢ [time]™
expressed in seconds . This is used through the
time dependent analysis and is not important if

card 1 is entered as VISCO.
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Example:if Young's modulus (E) and stresses are
. in psi - STUN=1/145, FUN=9.81/2.21/10e+6 and if
¢ is strain per day enter TMUN=24*60*60=86400

MXTR The maximum number of time increments after which
the program gives the maximum yield function anrd
asks the user whether to stop or to continue

NOTR The number of iterations per time increment At
which is effective from t=0.0 to t,

NOTR = 1 -+ fully explicit and faster
NOTR > 1 =~ Iterative explicit with higher
accuracy. (use 2 or 3.. )

TMMUL A factor multiplied by At (given by Equation
3.37 or 3.44) which is effective only from t=0.0
to t,. Normally put this factor = 1.0 unless
higher accuracy is required for primary creep of
rock with low Young's modulus E (see example 1 in

section 4.4).

CARD 3 Viscoplastic properties of material number MAT
MAT Material number for which the following data is
entered
TENS (MAT) The tensile resistance of this material (use a
high tensile resistance if not interested 1in
tension checking and relief )

NY (MAT) A number corresponding to the type of yield

B
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NCR (MAT)

CARD 4

+NCR(MAT)).

function and plastic potential used and in some
cases the creep law as well

NY(MAT)=1 -+ Mohr-Coulomb Equation 2.4a and as a
plastic potential without strain hardening(Y,=Y ).
NY(MAT)=2 - Drucker-—~Prager Equation 2.4b and as a
plastic potential without strain hardening(Y,=Y )
NY(MAT)=3-10 are planned to point to other
common types of yield functions .

NY(MAT)=11 - Tresca Equation 4.4 is used (case of
the axisymmetric analysis of example 2) with
Y¥,=0.0 and is used also as a plastic potential.
At the same time it directs the execution to
Equation 4.4 as a constitutive law.

A number pointing to a creep law from a library
of creep laws ( When NY(MAT) > 10, it directs the
execution to the creep law is well )

NCR(MAT)=1 -+ ¢ is given by equation 2.26a (time
hardening)

NCR(MAT)=2 -+ ¢= F for time independent plasticity
NCR(MAT)=3 - ¢ 1is given by -equation 2.26c

(strain hardening)

This might be one or two cards (lines) giving the
constants of the forms of yield function, plastic potential,

and creep law assigned to this material type (by NY(MAT)

When NY(MAT)=11 (example 2) Card 4 is two lines the first
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contains «, , Y,, of equation 2.4a and the second contains the
constants of equation 4.1 In example 3 of Section 4.4,
NY (MAT) is entered 2 and card 4 is one line containing «,,Y,,

( see Appendix ) while NCR(MAT)=2 implies no input.

Cards 3,4 should be repeated until MAT in card 3 is input as
0 at which the program jumps to card 6 with materials not
specified remaining elastic through the viscoplastic analysis.
Decision : If card 1 is specified as VISC, the program jumps
to card s’.

The following cards are entered for each time station t, ,
ty,etc. In the following t,=0.0 is assumed as the current time
station and t, is the coming time station (see Fiqure 3.1).
CARD 5 This is a blank card serving as a separator between
cards of successive time stations (see Appendix).

CARD 6 :

NCOUNT This is a number associated with the current time
station t, . It is entered such that when compared
with the cut number of each element NCUT,, which
is basically that of its zone (see Section 4.2
card 6), determines if the element is to be cut
or to remain active according to the following
relation:

NCUT, < NCOUNT -~ the element is cut

NCUT, > NCOUNT -+ the element is active

24
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CARD 7:

tf

UNIT

NOTR

TMMUL

NCUYN

The time (t,) at which the changes occur (Fig.
3.1)

A character variable defining the time unit used
to enter t, and should be one of the following:
'SE' -+ t, is in seconds

'MI' - t, is in minutes

'HR' - t, is in hours

'DA' -+ t, is in days

'WE' - t, is in weeks

'MO' —+ t, is in months

'YE' » t, is in years

The number of iterations per time increment At
which becomes effective from t, to t

NOTR = 1 -+ fully explicit and faster

NOTR > 1 -+ Iterative explicit with higher
accuracy. (put =2 or 3 or 4)

A factor multiplied by At given by Equation 3.37
or 3.44 which will become effective only from t,

1.0 unless

to t,,. Normally put this factor
higher accuracy is required for primary creep of
rock with low Young's modulus E (see example 1 in
section 4.4).

Indicator to the program to reconstruct the
global stiffness matrix in case of excavation

sequence. Use NCUYN = 1 if the relation of card
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6, which is checked for each element, will result

in some elements (active before tf) to become cut

at this time or if card 8 is used to specify a
range of element numbers to be cut at this time.
Otherwise enter NCUYN = 0 . This is important
because the program will not spend time in
reconstructing the stiffness matrix and getting
its triangular decomposed form unless NCUYN = 1
or the first occurence of card 9 *# 0 (i.e case of

backfilling )

After veading card 7 the execution proceeds for viscoplastic

analysis and adds time increments till when t=t, at which ;

If NCUYN = 1 it reads card 8, otherwise it jumps to card 9.
CARD 8 In this card, a range of elements are implicitly

specified as cut by changing their cut number.

MCTi the first element in the range MCTi:MCTj
MCTJ the last element in the range MCTi:MCTj
NCUT the cut number of the range of elements MCTi:MCT)

For example if NCOUNT = 3 (see card 6) , specify
NCUT = 3 for these elements to be excavated at t,
and remain cut afterwards.
This card should be repeated for different ranges of elements
untill MCTi is entered O.
For example if NCUYN=1 and the cut sequence of card 6 in

Section 4.2 is sufficient for excavation steps put 0 in the
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first occurence of this card.( see Appendix ).

CARD 9 In this card a range of elements are specified to

to be fillea.

MF1i the first element in the rangz MFLi:MFLj
MFLj the last element in the range MFLi :MFLJ
MAT the material number of the backfill in the

elements range MFLi:MFLj
This card should be repeated for different ranges of elements
backfilled at t, untill MFLi is entered as 0. For example if
there is no backfill at t, put 0 in the first occurence of
this card. (see Appendix). If at the current time station a

group of elements M,:M, are cut and filled , this card would

be enough.

CARD 10 Nodal loads added at this time station

INO node number at which the added nodal 1load is
applied

Rx X component of the point load

Ry Y component of the point load

This card should be repeated till it is entered as 0 .( see
Appendix ).
CARD 11 This card describes the added surface loads at one
or more sides of element M.

M element number ( a non cut element)

NPRSD number of sides subjected o pressure or shear.

The following should be repeated NPRSD times (in the same
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line).

k Side number (see Figure 4.4)

P1(k) pressure at node 1 of this side

P2 (k) pressure at node 2 of this side

S1(k) shear at node 1 of this side

s2(k) shear at node 2 of this side see Figure 4.4

This card (card 11) should be repeated until M is entered 0

After reading card(s) 11, the proqram applies the

instantaneous changes at th) ané computes the displacements

as described in Section 3.3 (Equation 3.24 or 3.25or 3.26),

then it reads the following card to know what to do next.

CARD 12 what to do next 2
STATUS  STOP' - the program stops
or
OUP&CONT - the program reads card 5,6,7 mainly to
identify the next time station (say t,,). It

updates the stresses, viscoplastic strain rate

due to changes at t, and produces output (Segment
2 in Section 3.2) then continues the viscoplastic
analysis till arriving at t=t,, where it reads
cards 8,9,10,11 of t, and so on. Note that t
should be 2 t,

or

CONT -+ the same as above except no output is

generated at t..
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The program stops when card 12 is entered as sTOP'. If an
error in the input file is encountered, the program stops
after identifying the line of input error. Once the input data
is corrected the program restarts the reading from that line

and the previous analysis is not lost.

The following cards are related to the case of time
independent analysis and entered after card 4;

CarRp S/ ;

NINCR The number of increments required to simulate the
incremental plasticity by the theory of

viscoplasticity (see Subsection 3.2.2 and Figure

2.9 ).

cArRD 64, 74 If the user is not interested in creep behavior
after the nonlinear (short term ) behavior he/she simply puts
card 6/ as 0 and skips card 7/. The two cards are the same as
cards 3 and 4, and they are used to input yield functions and
creep laws of materials which will exhibit time dependent

behaviour after the elastoplastic analysis.

2 Whenever STOP or END is read the program updates the stresses,
viscoplastic strain rate and total displacements. It produces output
and stores the data necessary for continuing the same analysis later

(after asking the user if he wants so.
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4.4 MODEL VERIFICATION AND ILLUSTRATIVE EXAMPLES

4.4.1 INTRODUCTION:

In this chapter a comparison between the model prediction
and an analytical solution, which may be viewed as a way to
verify the model, is presented. Two other examples are used to
illustrate the use of the program to model cut sequence and
its use to model the elastoplastic behaviour using the theory

of elasto-viscoplasticity.

4.4.2 EXAMPLE 1: ( MODEL VERIFICATION)

In the following, a comparison between the numerical model
predictions and the analytical solution derived by Sulem et
al. [14) 1is presented. The solution derived is for an
axisymmetric problem involving a circular tunnel opening of
radius r; in a hydrostatic ground stress field o,. Assuming
that the rate of creep or the total creep strain to be

linearly proportional with (o, - o.), i.e.

€., = (0g-0,) . f;t:) - € . (4.1)

it was shown that,

2
o,-oo[l—).(ir‘l)] , Og = O,

r

ol e
r
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and

2 2
229 (e . (-—r°) . 2% (__IO) (4.3)
A r 2G r

M.

r
where A = 1 when neglecting the face advance effect, A is a
constant and G is the shear modulus of elasticity. 1In order
to run the comparison of results, a finite element grid was
constructed for the purpose of numerical modelling; see Figure

4.5 The following data has been used to generate the results

shown in Figure 4.6:

g, = 2 MPa, A = 256 MPa, E = 360 MPa, G = 150 MPa, v = 0.2,

f(t) = 1 - [0.2/(0.2 + t))03

&, -7.2308 x 107¢ (t + 0.2)23 , F, _9F (4.4)
da,;

The effect of 8, used in Equation 3.1 on the integration
scheme is very significant at early stages of primary creep
whereby a considerable time hardening takes place. A value of
0 of (0.7 - 0.8) gives more accurate integration scheme than
0 = o0.5. The value of the stresses remained constant
throughout the numerical time dependent analysis in agreement
with Equation 4.2. This shows that for similar problems, an
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iterative explicit time integration scheme is more effective
than an implicit one, because the change of stress over At =
0.0 The time increment is limited by the hardening occurring
from time t to t,. In this example, a factor of 0.036
was multiplied oy At given by Equation 3.44 used to maintain
the accuracy of time hardening because E is low. The input

data (axisym.dat and axisym.vsc) are provided in the Appendix.

4.43 EXAMPLE 2: THE USE OF CUT SEQUENCE TO SIMULATE FACE

ADVANCE

To take the effect of the face advance in Equations 4.2, Sulem
et al. [14] used a factor A(x) varying from 0 to 1 as the
distance to the tunnel face (x) becomes longer. This assumes
that the effect of face advance on the stresses and
displacements can be separated from the effect of creep.
However they cannot be separated, as the rate of creep is a
direct function of the applied stresses which in turn depend
on the face advance. Thus, instead of depending on this
parameter to simulate the face advance one can use the program
to analyze a section along the tunnel axis presented by the
finite element grid shown in Figure 4.8. This is also an
axisymmetric problem where a point is defined by r , 2 in the
plane of the finite element grid and similar planes rotating
around the tunnel axis (in O direction ) should have the same

properties (axisymmetric). Like above, the initial state of
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stress is assumed hydrostatic and constant. Program PRESAP
was used to generate the first part of file tunnel.vsc which
is checked graphically as in Figure 4.9 and the viscoplastic
part is written directly to tunnel.vsc (see Appendix ) using
a reminding comment at the end of each free format record.
Curve 3 in Figure 4.6 represents a plot of the radial
deformation with time when the cut sequences along the tunnel
are considered as per Figure 4.8. The deformation is measured
at point 1 and tunnel face advances at a rate of 1 m/day in
intervals from 1 m (up to day 10) to 10 nm. At each time
station NCOUNT entered at card 6 of Section 4.3 is compared
with the cut number of each element to cut the necessary
elements (see Appendix). In Figure 4.9, the finite element
grid has no openings, however, at t=0.0 {(the initial elastic
analysis) the elements having cut number =0 are cut to
simulate an initial face advance of 1 meter. The viscoplastic
analysis is conducted till t=1 day where no instantaneous
changes are dictated so it just produces output and continues.
But the following time station t = 1 day also, so the program
reads directly the associated changes , applies them produces
output and continues creep till t,. = 2 days and so on. Like
that we have two outputs at t= 1 day one before the cut and
another after it thus having the stepped response of curve 3
due to the sudden change in deformation rate following the
start of each time interval accompanied by a cut sequence.

Clearly, this modelling capability developed in the numerical
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model results in a prediction that is more coherent with what
may be observed in practice.

Figures 4.10,4.11 present the stress and deformation fields at
different times where it may be rnoticed that the stress
concentration in the longitudinal section at the corner of the
tunnel face which increases with the creep relation of
adjacent sections farther from the tunnel face. This means
that this three dimensional stress concentration which is more
critical than the prediction of the conventional plane strain
analysis might cause premature failure at the tunnel walls
immediately after the face advance. According to Figure 2.18,
a strain hardening law is well suited to nonlinear creep
behaviour like this case and should give better results than
the time hardening creep law which is used here only for

demonstrating some features of the present computer program.

4.44 EXAMPLE 3 ELASTOPLASTIC ANALYSIS

In this example, the computer program is used to Model the
elastoplastic behaviour of a circular tunnel using the theory
of elastoc-viscoplasticity. The input file of the mesh
generator (circular.dat) is attached in the Appendix. It is
checked using the program ZONE as shown in Figure 4.12 which
shows the super elements or zone diagram. The initial
stresses o,=0,=55 MPA and E=40 GPa and v=.2 . The finite

element grid and elastic properties contained in the first
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part of file circular.vsc generated by PRESAP is also checked
graphically using program MESH2D as in Figure 4.13. The short
free form viscoplastic part is appended to file circular.vsc.

Mohr-Coulomb yield function is used as a plastic potential as

well. In this case the viscoplastic strain rate is given
function of the current state of stress as : ém=F(aF/aa)
where

F =lo,-0,l + .4 (0,+0,) -20 (4.5)

The fictitious time increments (At) are chosen according to
Equation 3.44 . The load is divided to 20 steps (see Figure
2.19 and Equation 3.27) with a maximum of 100 time increments
per load step except for the last one which ended after 125
time increment with F=.2 MPa.

Figures 4.14,4.15 present the stress , deformation fields
after plastic yielding. Figure 4.16 illustrates the material
behavior around the circular tunnel which in this case is
only; either elastic or perfectly plastic because no strain
hardening or softening variables were implemented in the yield
function F or the viscoplastic rate law ¢. The user can use
the post processor to check the state of stress of Figure 4.15

using a failure criteria or another yield function as seen in

Figure 4.17.
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CHAPTER 5
CONCLUSIONS

Both the theory of viscoplasticity and a variety of
constitutive models used for different rock types have been
reviewed in detail in Chapter 2 in an attempt to present a
global perspective on the subject and highlight the mnain
contributions by various authors in recent years.

A 2-dimensional elasto-viscoplastic finite element program
incorporating linear and nonlinear yield functions and an
iterative explicit time marching scheme has been developed.
The program 1is designed primarily for mining engineering
applications; it is written using Microsoft version FORTRAN
5.0 which utilizes the features of the 80286 processors. This
program occupies 260 kb of RAM when it handles 2000 elements.
At the same time, it makes use of both direct and sequential
access files . One prime concern was to minimize execution
time which is of importance for this kind of nonlinear
analysis. Unformatted and binary files are used for internal
use to speed up the read write operations. Repeated
calculations are avoided by reading and writing a direct
access unformatted record per element (containing data of all
integration points). Also binary files were imy - 2nted to
store long data like the global total displacements vector.

This helped to avoid excessive structuring of the program
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code (calls to subroutines) which adds to the execution time
especially when a call is located in a nested do loop (like
Segment 4 in Section 3.2).

There is no limit imposed on the number of time stations at

which instantaneous changes occur like elements cut, elements
backfilled, applied loads or simply an output is required. A
time station t, can be specified more than one time with
different associated cards. This is useful when outputs just
before and just after a cut or a fill are required. This
feature might also be useful if premining stresses are not
uniform because of the surrounding geology. In this case, the
user can run the program o get the non uniform stress
distribution (caused by own weight and tectonic effect )
before mining at t=0.0 . Then, specify cards 5 ~ 12 with t,
= 0.0 and cut the elements representing the excavation. The
user can stop the program at this point and use the
postprocessor to see the results. The same analysis could be
pursued later for time dependent behavior when he appends
cards of t, > 0.0 to the input file (file.vsc).
The program simulates cut elements by skipping them when
constructing the global stiffness and the global total load
vector while the installation of backfill by taking into
account the changed element properties and their initialized
internal stresses in reconstructing the global stiffness and
load vectors.

When the input data is read in parallel with the analysis,
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the user can simulate compound behaviour by stopping the
analysis, examining the results graphically and restarting it
again and possibly after making a decision to be implemented
in the subsequent appended input like adding a backfill at a
given time station. The user can run the program to perform
nonlinear behaviour (time independent) which is one basic use
of viscoplasticity. The creep (time dependent) analysis might
start afterwards based on the stresses obtained from the
nonlinear behaviour.

The iterative explicit time integration scheme is simple and
can accommodate a variety of constitutive models. The scheme
is iterative to allow the improvement of solution accuracy.
The user can speed the execution by optimizing the number of
iterations per time increment for a period between two
consecutive time stations.

The program uses an automatic time-step calculator in an
attempt to prevent solution instability. Section 3.4 |uses
the concept adopted in reference [17] to derive easy to
program equations giving the maximum time step insuring
stability for common forms of yield functions and plastic
potentials.

The program input and output are made compatible with those
of program SAP2D to make use of its preprocessor and graphical
programs. However, some modifications had to be done to the
postprocessor to accommodate time dependent analysis output.

Section 4.4 presented three illustrative examples . The
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program was debugged using Microsoft Fortran debugger when it
was used to simulate other problems for verification . Using
this interactive debugger makes it easier to program and

verify the coding in detail.

Despite the good correlation between numerical and analytical
results, much remains to be done on the model sensitivity

analysis and validation with actual geomechanical data.

Anisotropic (transversally isotropic) elastic properties
will be included. The program should expand to 3 dimensions
(the program structure encourages that) and should incorporate
ground support elements as with rock bolts and cable bolts.
Oonly then will the present numerical model have the potential

for becoming a general mine design tool.
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e APPENDIX I. EXAMPLES OF INPUT DATA FILES

The following is the preprocessor’s input data file (FILE.DAT)

of example 1:

AXISYMMETRIC TUNNEL IN PLANE STRAIN (EXAMPLE 1)

611110-90

1

100

1210

22200

3215

42205

52650

6265.5

13124 0506 121
32200
0100000011011
1.01

360 .2
-20-20-2000
11111

o'

R
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—CARD 1
—CARD 2
—CARD 3
—+CARD 4
—+CARD 5
-»CARD 5
~»CARD 5
—-CARD 5
—CARD 5
~»CARD 5
~CARD 6a
—CARD 6b
—-+CARD 7
-+CARD 8a
—+CARD 8b
~—+CARD 9
—CARD 11



This is the input data file of program VISA2D ; the first part

is generated by the preprocessor PRESAP based on the above

data and the second is user written.

AXISYMMETRIC TUNNEL IN PLANE STRAIN (EXAMPLE 1)

202 1 1 0 0 0 1 t 0 -90000 —scontrol card
1 0 1 .1000000E+01 .1000000E+01 nodal points data and
.1000000E +01 .0000000E+00 degrees of freedom (generated)

.1031600E+01 .9999999E+00
.1031600E+01 .00N0000E+00
.1066400E+01 .1000000E+01
.1066400E+01 .0000000E+00
.1104400E +01 .1000000E+01
.1104400E +01 .0000000E+00

L I YR U G POy

and so on till;

199 O 1 .1965159E+02 .1000000E+ 01
200 O 1 .1965159E+02 .0O00000E+00
200 O 1 .2000000E+02 .1000000E+01
202 O 1 .2000000E+02 .0000000E+00

4100 1 1 0 1 control card (generated)

1 1 .DO0000OE+00 .00OO000E+00

.3600000E+03 .3600000E+03 .3600000E+03 .2000000E+00 .2000000E+00 ~»glastic material
.2000000E+00 .1500000E+03 properties
- 2000000E+01 .0000000E+00 - 2000000E+01 .0000000E+00 initial stresses (generated)
- 2000000E+01  OOOOOOOE +00

t 1 2 4 3 1 2 0 0 .00 1000 elements data and
2 3 46 5 1 2 0 0 000 1000 and connectivity (generatedj
35 68 7 1 2 0 0 .00 1000

and so on till;

97 193 194 196 195 1 2 0 0 .000 1000
98 195 196 198 197 1 2 0 0 .000 1.000
99 197 198 200 199 1 2 0 0 .000 1.000
100 199 200 202 201 1 2 1 0 .000 1.000
3 2000 2000 000 .000 pressure on side 3 of element 100 (generated)
000 1000 1000 1.000 1000 1.000 multipliers of loading are not used by VISA2D
PRAN&CONT CARD 1 (these are time dependent data cards written by the usen
1. 1.86400 100 3.036 CARD 2
1200 110 CARD 3
7.23080-4 CARD 4
0 CARD 3 is put 0 to end its occurrence
ARAARARN P RRAANRARY CARD 5
1 CARD 6 -»NCOUNT is put = 1 and all elements remain active
010 'DA* 3.036 0 CARD 7 a factor of .036 is used because E is very small
0 for added fill CARD 9
0 for added ndld CARD 10
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B

3

0 for added sur. pr.
PRN&CONT

CARD 11
CARD 12

!ﬁ!.tlt'.‘i't‘.l‘tas a s°perat°rttﬁtlttit.!l.t.

1

.30 'DA* 3 0360
0

0

0

PRN&CONT

ARRARRRRANRRANS

1

430 'DA' 3.0360
0 for added fill

0 for added ndld

0 for added sur. pr.
PRN&CONT
ANARREERANARANAR

1

730 'DA’ 3.036 0
0 for added fill

0 for added ndid

0 for added sur. pr.
PRN&CONT

and so on till 10 days

AARARRRRRANRRANS

1

10 'DA’ 3.0360
0

0

0

oup&cont
SARAR AN ARAANSER
1

50 'DA’ 3.0360
0

0

0

oup&cont
SRAARRRERRARRANS
1

100 'DA' 3.0360
0

0

0

STOP

CARD 6 of time .3days
CARD 7 of time .3days
CARD 9 of time .3 days
CARD 10 of time .3 days
CARD 11 of time 3 days
CARD 12 of time .3 days

time:
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The following is the preprocessor's input data file (FILE.DAT)

of exampls 2:

AXISYMETRIC ANALYSIS OF A CIRCULAR TUNNEL
259333090

101010

3107

1
2

3
4

5
6
7
8

9

10
11
12

13
14
15
16

17
18
19
20
21
2
a3
24
25

W O W NOOOMEWN -

3070
1060
10 40
3020

215 70
015 60
015 40
315 20

2570
0560
05 40
2 1020

220 70
02
02
220

8883

228 70
028 60
028 40
210 70
010 60
0 10 40
015 32
10 3
07 32

12685 0000100

2376 0000100

3 487 240230100

5 6109 0180171 200

6 71110 0190181 20 0
7 81271 2302519120 0

9 101413 0210201 20 1
2200
10 111514 022021 1 20 ¢
2200
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CARD 1
CARD 2
CARD 3
CARD 4

CARD 5
CARD 5
CARD 5

CARD 5
CARD 5
CARD 5
CARD 5

CARD 5
CARD 5
CARD 5
CARD 5

CARD 5
CARD 5
CARD 5
CARD 5

CARD 5
CARD 5
CARD §
CARD 5§
CARD 5
CARD 5
CARD 5
CARD 5
CARD 5

CARD 6
CARD 6

CARD 6 a
CARD 6D
CARD 6a
CARD 6b




-tg?

e

e

911 12165 250022 1 20 1

32200 Side pressure of 2 Mpa at side 3 of zone 9
0100000011011 CARD 7
1.01 CARD 8a
380 2 CARD 8b
20202000 CARD 9
11111 CARD 11

This is the input data file of program VISA2D ; the first part
is generated by the preprocessor PREBAP based on the above

data and the second is user written.

AXISYMETRIC ANALYSIS OF A CIRCULAR TUNNEL WIiTH CUT SEQUENCE

651 1 t 0 0 0 3
_0000000E +00
.0000000E +00
_000000OE +00
L0000000E +00
0000000E +00
L0000000E +00
.0000000E +00
o on till;
0 2000000E+02
0 2000000E+02
1
1

OO0 O0O00O0 =

5
NGO E N -
(]

.2000000E +02
1 0 1

1 0 -90.000

.7000000E+02

6899999E +02
6800000E+02

.6700000E+02

6600000E +02

.6500000E+02

6400000E+02

2500000E+02
2250000E+02
2000000E +02

1 1 .0000000E+00 .00Q00DOE+00

.3600000E+03 .3600000E +03

.2000000E+00 .1500000E+03

n

33
34
35
36
37
38
39
40
41
11 42 41
12 483 42

13 4 43
14 45 44

(=]

©CO®NDN LN -
BDNOAND BN =
CONOOOM A
588888288
- ot
BN AWN -

©
-d
[«

-
-G
-
o
©

-
-
-

- -
@ N
-

w N

- eh e -
- b -
- O O

000 1.000
000 1000
000  1.000
000  1.000
000 1.000
000 1.000
.000 1000
000 1.000
000 1000
000 1.000
000  1.000
000
000

1.000
1.000

0900 CO0O O
oc©Oo0ocoooo o

© 0 0©°
o o o©
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.3600000E+03 .2000000E+00 .2000000E+00

.2000000E+01 .0000000E+00 -.1800000E+01 .0000000E+00
2000000E+01 .0000000E +00

elements data and
and connectivity (generated)

an element of cut no. 10
an element of cut no 11




14 14 15 46 45
15 15 16 47 46
16 16 17 48 47
17 17 18 49 48
18 18 19 50 49
19 19 20 51 50
20 20 21 52 51
21 21 22 53 82
22 2 23 54 53
23 23 24 55 54
24 24 25 56 55
25 25 26 57 56
26 26 27 58 57
27 27 28 59 58
28 28 29 60 59
29 29 30 61 60
30 30 31 62 6t
31 32 33 64 63
32 33 34 65 64
33 34 35 66 65

and so on ;

87 89 121 120
88 90 91 122 121
89 91 92 123 12
90 92 93 124 123
91 94 95 126 125
92 95 96 127 126
93 96 97 128 127
94 97 98 129 128

and so on ;
568 586 587 618 617
569 587 568 619 618
§70 588 589 620 619
571 590 591 622 621
3 2000 2000
572 591 592 623 622
3 2000 2000

and so on

598 617 618 649 648
3 2000 2000
599 618 619 650 649

8

=, mh eh e ah edh cd A eh ek b eh b ed b ek ed —h oA —a

3 2000 2000 .000

60U 619 620 €51 650

3 2000 2000 000

1 000 an element of cut no.11

11 0 0 .00
12 0 0 .000 1000 an element of cut no.12
12 0 0 .000 1000
13 0 0 .000 1000
13 0 0 .000 1000
14 0 0 000 1000
14 0 0 .000 1000
15 0 0 000 1000
15 0 0 .006 1.000
16 0 0 000 1.000
16 C 0 000 1000
17 0 0 000 1 000
17 0 0 .000 1.000
18 0 0 000 1.000
18 0 0 .000 1000
19 0 0 .000 1000
19 0 0 .000 1.000 an element of cut no.19
0 0 0 .000 1000 an element of cut no. 0
1 0 0 .000 1.000 an element of cut no.1
2 0 0 000 1.000 an element of cut no. 2
1 18 0 0 .000 1.000
1 18 0 0 .000 1.000
1 19 0 0 .000 1.000
119 0 0 .000 1.000
1t 20 0 v .00 1.000 elements around the tunnel have a cut no. 20
1 20 0 0 .000 1.000
1 20 0 0 .000 1000
1 20 0 0 000 1000
1 20 0 O 000 1000
1 20 0 0 .000 1.000
120 0 O 000 1000
1 20 1 O .000 1.000
000 000
1 20 1 0 000 1.000
000 000
1t 20 1 0 .000 1.000
000  .000
1 20 1 0 000 1.000
000
1 20 1t 0 .00 1.000
,000
no point loads
1.000 1000 1.000 load multiplier not used by VISA2D

000 1.000 1.000

oup&cont

1. 1 86400. 100 3 .036
1200 110

7.2308e-4

0

ARARRDARNARRRRARSE S

0

to continue and print results
card 2
card 3:NY(1)=11 (and NCR(1)=0 but not used)
card 4: the constant of equation 4.4
card 3: put 0 to end its occurence
card 5: seperator for clarity
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0'DA' 0O for instantaneous elastic analysis output

0 no backfill
0 no added nodal loads
0 no added surface pressure
PRAN&CNT.

0PEEREEEREEEEEELRRERLELEECEEELEELLEEEEACRVEEEREEPRLREVERRPEEE@
0

1'DA' 3 .036 0 {tll the end of the first day }

0 no backfill

0 no added nodal loads
0 no added surface pressure
PRN&CNT.

1 {elements of cut number 1 are cut at t= 1 day}
1'DA’ 3 .036 1

0 no change of cut number of any element (the sequence above is sufficient)
0 for added fill
0 for added nald
0 for added sur. pr.

PRN&CNT,

RRANARRARRARANRR RSN

1

2'DA' 3.036 0 {tiil the end of the second day}

0

0

0

stop the program is stopped here(at t=2 days)
AAARRRARARRRAARRAR and iS reslaned here
2

2'DA'3.036 1 !{elements of cut number 2 are cut at t= 2 days}
0

0

0

0

PRAN&CNT.

REARRARKNRAANRARANS

3

3'DA’ 3.036 1 {elements of cut number 3 are cut at t= 3 days}
0

0

0

0

PRN&CNT.

ARARANAANARAARRE RN

4

4'DA’ 3.036 1 {elements of cut number 4 are cut at t= 4 days}
0

0

0

0

PRN&CNT.,

(2333322823220 2423}

5 {elements of cut number 5 are cut at t= 5 days}

5'DA’' 3.036 1
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0 for added cut
0 for added fill it is preferable to write a comment at the end
0 for added ndid of each free format record to help the program

0 for added sur. pr. locate the error at the exact line if it happens.

PRAN&CNT.

MARKROANARARAASANS

(]

6'DA'3 036 1 {elements of cut number 6 are cut at t= 6 days}
0 for added cut

0 for added fill

0 for added ndid

0 for added sur. pr

PRAN&CNT.

an so on till;

[ f133313 233230117}

18 means cut number 18 is cut at end of day 50
50 'DA'3 036 1

0 for added cut

0 for added fill

0 for added ndid

0 for added sur. p

cont.

AAARRARO R RRRRN

19 means cut number 19 is cut at end of day 75
75 'DA’' 3 .036 1

0 for added cut

0 for added fill

0 for added ndid
0 for added sur. p
cont,
ANNAARKNANANAAN
19 analysis continues tiil day 100
100 ‘DA’ 3 .036 0
0 for added fill

0 for added ndid
0 for added sur. p
STOP

137




s

rh

The following is the preprocessor's input data file (FILE.DAT)

of example 3:

ELASTO PLASTIC ANALYSIS OF A CIRCULAR TUNNEL USING VISCOPLASTICITY

234141090

50

§5565

1210

23100

3 0.894 447

41105

50.707 .707

631010

70 .447 894

82510

8101

103010

112320

12 0 .970 .243
1311025

140321.6

150.8.6

1611075

1703.23.2

1806 .8

1927510

2001.63.2

21 0.243 .970
2222510

231032
1124311131412120
2346514161715120
3568717192018120
47810920222321120
0111101011111
1.01

50000 .2

-55.0 -85 0-55.000
11111
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This is the input data file of program VISA2D ; the first part
is generated by the preprocessor PRESAP based on the above

data and the second is user written.

ELASTO PLASTIC ANALYSIS OF A CIRCULAR TUNNEL USING VISCOPLASTICITY
07t ¢+ 1 1 1 1 1 1 0 1000
1 0 1 .1000000E+0t1 .000000OE +00
2 0 1 .1078080E+01 .0000000E+00
3 0 1 .1160320E+01 0000OOOE +00

and so on till;
1063 1 O .0000000E+00 .9440323E+01THESE DATA ARE GENERATED BY THE PREPROCESSOR

1070 t O .0O000000E+00 .9718082E+01

1071 1 1 O000000E+00 .1000000E +02

41000 t 1 1 1

1 1 .0000000E+00 .000000OE +00

.5000000E +05 .5000000E+05 SOO00000E+05 .2000000E+00 .2000000E +00
.2000000E +00 .2083333E +05

-.5500000E +02 .0000000E +00 - 5500000E+02 (0000000E +00
-.5500000E+02 .0000000E +00

1 1 28 562 1 2 0 0 .00 1000

2 2 354 88 1 2 0 0 000 1000

and so on till;
999 1018 1019 1070 1069 1

2 0 0 000 1.000
1000 1019 1020 10711070 t+ 2 O 0

000 1.000

000 1000 1000 1000 1000 1000

VISCO CARD 1 OF VISCOPLASTIC INPUT
1 186400100 2.5 ICARD 2: maximum of 100 time increments rer load increment
1212 ICARD3; 2MPa is the tension resistence and
4 -20 ICARD 4:Mohr Coulomb perfect plasticity for the unique material type
0 {CARD3: no other materials

20 ICARD 5¢ The applied load is incremented to 20 steps
0 ICARD 6'no creep data
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