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ABSTRACT 

The first part of the thesis describes the concepts of 

viscoplasticity as a continuum plasticity theory highlighting 

different kinds of yield functions, plastic potentials and 

viscoplastic constitutive laws. 

A 2-dimensional elasto-viscoplastic finite element model for 

stressjstability analysis of mining excavations has been 

developed for use on microcomputers. An iterative explicit 

time stepping scheme is implemented. The program uses 

automatic time-step calculator based on equations giving a 

limit on the time step in an attempt to prevent numerical 

instability when common forros of isotropie yield functions and 

plastic potentials are used in the viscoplastic solution. 

When the input data are read paraI leI to the analysis 

undertaken the user can simulate compound behaviour by 

stopping the analysis, examining the results graphically and 

restarting it again and possibly implementing a certain 

decision in the subsequent appended input. This also imposes 

no limit on the number of time stations at which 

instantaneous changes like elements cut, el.ements backfilled, 

loads added or simply outputs are required. The program is 

equipped with graphical pre- and post- processors. 
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RÉSUMÉ 

La première partie de cette thèse porte sur les notions de viscoplasticité comme 

théorie de la plasticité des milieux continus où son-: mis en évidence plusieurs 

types de fonctions de fluage, de potentiels de plasticité et de lois r.onstitutives 

de viscoplasticité. 

Un modèle d'élasto-viscoplasticité bidimensionnel à éléments finis pour 

l'analyse des contraintes et de la stabilité dans les cavités minières a été 

élaboré pour être utilisé sur micro-ordinateur. Le modèle utilise un élément 

isoparamétnque quadrilatéral à quatre noeuds et un schéma itératif explicite 

d'intégration dans l'intervalle de temps. Pour empêcher l'instabilité numérique 

de la solution, le programme utilise des équations qui limitent l'intervalle; cela 

assure la stabilité numérique de la solution pour les formes courantes de 

fonctions de fluage isotropiques et de potentiels de plasticité servant à la 

formulation d'une loi de viscoplasticité. Lorsque les données d'introduction 

sont lues parallèlement à l'analyse entreprise, l'utilisateur peut simuler le 

comportement composé en stoppant l'analyse, en procédant à l'examen 

graphique des résultats, puis en reprenant l'analyse; il peut même intégrer une 

décision dans les données qui seront ajoutées par la suite. Cela n'impose pas 

de limites quant au nombre de points dans le temps auxquels des modifications 

instantanées (éléments sectionnés, éléments remblayés ou charges appliquées) 

sont apportées, ou auxquels des données doivent être extraites. Le programme 

comporte des pré et post-processeurs graphiques. 

iii 



( 

( 

ACKNOWLEDGEMENTS 

First of aIl, l give thanks to my Lord Jesus Christ for 

guiding me through this work and giving me the light to see 

through the subject of this study. 

l wish to express my appreciation to my supervisor ProfQssor 

H. S. Mitri for his continuing encouragement and support 

throughout the period of my study. without his help, this work 

would not have corne to its current state of development. He 

offered technical support and made available aIl the 

necessary hardware for the program development. Thanks are 

also given to aIl mernbers of the Numerical Modelling Group 

particularly my colleagues Phanuwat Suriyachat and Keyvan 

Fotoohi with whom l shared a friendly work environment which 

was essential for production. 

iv 



".,J!.. 

TABLE OF CONTENTS 

ABST.RAC'f • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ii 

RESUME . • • • • . • • • • • • • . . • • • • . • • • • • . . • • • • . • • • . • • . . • • • • • . . • • •. iii 

ACKNOWLEDGEMENTS ...•••.••••••..••.•••••••.•••••..•.•• 0 iv 

TABLE OF CONTENTS ...•••....•••....•...•••••.••••....••... v 

LIST OF FIGURES ..•.....••..•.••.......• , • • • • . . . . . . . . . . • •. viii 

NOTATION •..•....••...•••...•••..•••.... :; . . . . . . . • • . . . . . . .. xii 

CHAPTER 1 INTRODUCTION •...••....•......••....•......•... 1 

1.1 GENERAL ••.••••••.••.••..•••..•••••...•••....•••.. 1 

1.1.1 ELASTO·VISCOPLASTICITY • • . • • • • • . . • • . • . . . . • • .. 1 

1.1.2 CREEP IAWS ...••.....•....•••....•.......... 2 

1.1.3 YIELD FUNCTIONS AND PLASTIC POTENTIALS .... 3 

1.2 PLAN OF STUDY ••••..••••••••••••••••.•••• • • . . • • • • .. 4 

1.3 PROGRAM VISA2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 

1.4 THESIS OUTLINE •••..•••••••••.•...••....••••....•.. 7 

CRAPTER 2 ELASTO-VISCOPIASTICI1Y AS A CONTINUUM 

PIASTICI'IY THEORY • • • • • • • • • • • • • . . . . • • • . . . • • • • • • . • . • • •. 9 

2.1 BASIC CONCEPTS OF PLASTICI1Y ..........••••....••.. 9 

2.1.1 YiELD FUNCI10NS AND PLASTIC POTE~TIALS •• •. 10 

2.1.2 mE INCREl\IENTAL THEORY OF PLASTICI1Y: • . • •. 15 

v 



2.1.3 ELASTO-VISCOPLASTICI1Y THEORY • • . . . . • • • . . .• 19 
( 

2.2 NON·LINFAR VIELD FUNCfIONS ......•..•.....•••...• 24 

2.3 DILATANT·COMPACfING YIELD FUNCI10NS ......••.... 29 

2.3 CREEP AND VISCOPLASTIC CONSTITUTIVE LAWS •.... 39 

2.4 RHEOLOGICAL ANALOGUE OF ROCK ZONE 

INTERSECTED BY PARALLEL JOINT SETS...... • . . .• 47 

2.5 TIME DEPENDENT NO TENSION MODEL . . • • • . . . . • • • . . .• 50 

CHAPTER 3 NUMERICAL ALGORITHM •.• . . . • . . . . • . . . . • • • • . . .. S2 

3.1 INTRODUCfION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. S2 

( 
3.2 NUMERICAL ALGORITHM OF THE ITERATIVE EXPLICIT 

TIME STEPPING SCHEl\1E IMPLEMENTED IN PRO GRAM 

VISA2D ............. " . . . . . . . . . . . . . . . . . . . . . . . . . .. 53 

3.2.1 TIME DEPENDENT ANALYSIS • • . • • • • • . . . . • • . . .. SS 

SEGMENT 1 ................................ SS 

SEGMENT 2 ................................ 56 

SEGMENT 3 ................................ S9 

SEGMENT 4 ................................ 60 

SEGMENT 5 ................................ 63 

SEGMENT (; ................................ 64 

3.2.2 TIME INDEPENDENT ANALYSIS . . . • . . • • • • • • • . .. 66 

( -. vi 



'. 

3.2.3 MORE ABOUT THE PROGRAM ..•••••••.•• • . • • •• 68 

3.2 NUMERICAL STABILI1Y OF A FULLY EXPLICIT TIME 

STEPPING SCHEME •.....•...••.•..••.•.•.• • . . . • •• 76 

CHAPTER 4 USER'S GUIDE TO COMPUTER PROGRAM ••.••••..•• 81 

4.1 INTRODUrnON .................................... 81 

4.2 DESCRIYI10N OF INPUT DATA FOR ELASTIC ANALYSIS .• 82 

4.3 VISCOPLASTIC INPUT DATA. • . • • • . • . • . • • • • • . . . • . • . . .• 91 

4.4 MODEL VERIFICATION AND ILLUSTRATIVE EXAMPLES ... 100 

CRAPTER 5 

4.4.1 INTRODUCTION ..•.• • . . . • . • . . . . • . . . . . . • • • . • .• 100 

4.4.2 EXAMPLE 1: ( MODEL VERIFICATION) ..•••....• 100 

4.4.3 EXAMPLE 2: THE USE OF CUT SEQUENCE TO 

SIMULATE FACE ADVANCE ................... 102 

4.4.4 EXAMPLE 3: ELASTOPLASTIC ANALYSIS .••..... 104 

CONCLUSIONS •...•••...•....•• ft • • • • • • • • • • •• i Z2 

LIST OF REFERENCES •••..•.••••..•.••... • • . . . • . • . . . • . • . . . .. 12", 

APPENDIX •• • • • • • • • • • • • • • • • • • • • •• 130 

vii 



( 

( 

( 

LIST OF FIGURES 

Figure 2.1 :A plot of the yield surface of an isotropie 

material in the principal stress spa ce •. .• 12 

Figure 2.2 :Orientation of planes of weakness dictating 

an anisotropie yield condition ..• 

Figure 2.3 a: Mohr coulomb C-. yield surface [4] 

Figure 2.3 b :Drucker-Prager C-. yield surface [4] 

Figure 2.4 a :Elasto-plastic behaviour under uniaxial 

compression .. . • 

Figure 2.4 b:Hardening 

softening . . . . . 

. . . . . . . . . . . 
perfect plasticity, and 

. . . . . . . 
Figure 2.5 : Determination of the aF /ak using uniaxial 

compression test 

Figure 2.6 :Simple 

model ...•.. 

elasto-viscoplastic mechanical 

Figure 2.7 a: Viscoplastic stra in under constant 

stress . . . . . . . . . . . . . . . . . . . . . 
Figure 2.7b :The typical three phases of creep behavior 

. . . . . . . . . . . . . . . . . . . . . .:. 

Figure 2.8 :Viscous deformation with relaxation 

Figure 2.9 :Comparison between instantaneous and viscous 

12 

14 

14 

16 

17 

18 

19 

20 

21 

23 

plasticity •..•..••.•..• 23 

Figure 2.10: Normalized peak strength envelope for 

sandstones [2] . .• •. . 24 

Figure 2 .11a: Configuration of the non linear rupture 

and yield loci in the stress invariants spa ce 

viii 

28 



" 

Figure 2.11 b,c,d,e: stress strain relations during 

path: OC2, OC1 ,OADE [12] . . . . . . . . . . . . . 29 

Figure 2.12:Triaxial compression in the principal stress 

and strain space (20] ......... 30 

Figure 2.13 a:Yield curve and critical state on p-q 

plane [20] in volume [20] . . . . 32 

Figure 2.13 b:Family of yield surfaces function of the 

change 32 

Figure 2.13 c:The critical state yield function for 

soil-like materials 33 

Figure 2.14 :Dilatant compactinq yield curve (Equation 

2.24 36 

Figure 15 : Plots of F Equation 2.25 : for different 

stress paths [24] • . . . 38 

Figure 2.16 :Burger model and Zener model [6] . . .. 43 

Figure 2.17 :Rheological model for rocksalt [29] 44 

Figure 2.18 : Curve 1 is the prediction using time 

hardening law and curve 2 is the prediction using 

strain hardening law when the stress is 

incremented. 45 

Figure 2.19 :Analyzing a mechanical model by 

considering: an elastic part and viscous part. 46 

F~gure 2.20 :Rheological analogue of multilaminate model 

of j ointed rock mass .............. 49 

Figure 3.1 : A qualitative diagram of the change of 

stress and viscous strain at a relaxing ( 

ix 



eritical ) point in the rock mass 

Figure 3.2 :Flow chart of program VXS~D 

Figure 3.3 : Numerical prediction for 

explieit scheme [17] 

dy =-11 Y using the 
dt 

Figure 3.4 :The effect of the time increment on 

nurnerieal stability 

Figure 4.1 :Mesh generation scheme 

Figure 4.2 : Mapping a typieal structure to a key diagram 

Figl1re 4.3 : Model zones . . 
Figure 4.4 :Positive sign directions of surface loading 

54 

69 

. 80 

80 

88 

89 

89 

load/unit area: acting at element or zone sides 94 

Figure 4.5: Finite element grid of example 1 106 

Figure 4.5: Comparison between numerieal and analytical 

results 106 

Figure 4.7 : Zone diagram of example 2 107 

Figure 4.8 :Cut sequences along the time scale (example 

2) . . . 107 

Figure 4.9 : Finite element grid of example 2 108 

Figure 4.10a :Displacements after blasting at t=O.O 109 

Figure 4.10b :Displaeements after one day creep · . 109 

Figure 4.10e :Displacernents after cut at t=l day 110 

Figure 4.10d :Displacements before eut at t=2 days 110 

Figure 4.10e:Displaeements after eut at t=2 days 

Figure 4.10f:Displaeements after eut at t=9 days 

x 

· . 111 

· . 111 



Figure 4.10a :Principal stresses at time 0.0: 112 

Figure 4.11b :Prineipal strt:!sses before eut at t=1 

day . . · . . . . . . . . . 112 

Figure 4.11c :Prineipal stresses after eut at t=l 

day . . . · . . . . . . . . . . 113 

Figure 4.11d : Principal stresses before eut at t = 2 

days 114 

Figure 4.11e :Principal stresses after eut at t=2 days 

114 

Figure 4.11f :Principal stresses before eut at t=9 ddyS 

114 

Figure 4.12 :Zone diagram of exarnple 3 115 

Figure 4.13 :Finite eleroent grid of example 3 116 

Figure 4.14a :Displaeernents after plastic behavior 117 

Figure 4.14b : Principal plastic strain with dilation, 

around the eireular tunnel of example 3 

Figure 4.15 :Prineipal stresses after the plastic 

behaviour · . . . . . . . . . . . . . . . . . . 
Figure 4.16 :Rock behaviour around the circular tunnel 

. . . . . . . 
Figure 4.17 :Using Hoek & Brown failure criterion to 

make sure that the state of ~tress after plastic 

yield is also safe within its lirnits 

xi 

118 

119 

120 

121 



( 

( 

( 

NOTATION 

Note that bold letters represent vectors or matrices 

s·. 
1 J 

J
20

% 

0' 

n 

stress vector 

stress at plane i in the direction of j 

0'1' 0'21 0'3 are the principal stresses 

first stress invariant 

= 0', +0'2 + 0'3 = ax +O'y + az =3 am 

rnean stress or hydrostatic stress 

=J,/3 

deviatoric stress at plane i in j direction 

=(] .• -a 
IJ m 

second deviatoric stress invariant 

-J YI - 20 

third deviatoric stress invariant 

=1/3 sijSjkSkl 

Lode' sangle 

= 

total strain vector 

and -1r/65: n S 'lr/6 



E· . 
1 J 

=Yx/ 2 

EX/=T x/2G 

viscous strain vector 

plastic strain vector 

inelastic strain vector which correspond to fvp 

or. EP 

viscoplastic strain rate = 

volumetrie strain = Ex+Ey+Ez 

mean plastic strain 

and E,me = uni (3K) 

devp 
dt 

strain at plane i in the direction of j 

El' E 21 E3 are the principal strains 

deviatoric strain at plane i in j direction 

=Eij-Em and e i / = si/2G 

deviatorir. strain invariant corresponding to 

J zo'" 

=(~e. ·e· .)"'= 
1 J 1 J 

=0,+0'3 

=10,-°31/2 When x-y is the plane of maximum and 

minimum stresses= (~)2 a 
2 + tq 

=E,+E3 

=IE,-E,3//2 when x-y is the plane of maximum and 
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k 

• 
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D 
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(, Atn 

H 

b 

s 

dO 

dr 

( 

minimum strains= ~( e.;eyf + c1tY2 

Young's modulus 

E shear modulus = 
2 (1 +v) 

bulk modul us = 

yield function 

plastic potential 

hardening variable 

angle of \nternal friction 

cohesio:"l 

elasticity matrix 

global stiffness matrix 

time 

time increment between tn and t~1 

rate of sOftening or hardening used 

incremental plasticity 

body force/unit volume (e.g the own weight) 

in 

vector of surface loading / unit surface of the 

element side (shear and pressure) 

infinitesimal volume and Je 
o 

)dC is the 

integration of a function over the elements 

volume 

infini tesimal area and [ ( )dr 

integration of a function over the side surface area 

of an element . 



1.1 GENERAL 

CHAPTER 1 

INTRODUCTION 

The prediction of stresses and strains around excavations 

is one of the major objectives of rock mechanics studies . 

Most of the rock mechanics problems involving stress 

calculation and mine stabili ty are so complicated that closed 

form solutions are difficult to der ive and that numerical 

methods have to be employed. The rapid development of 

personal computers in the last two decades has made it easy 

for numerical modelling techniques like finite elements and 

boundary elements to play an important role in rock mechanics. 

Usually, the finite element is the preferable numerical 

modelling technique for solving rock mechanics stabilty 

problems, because of being a differential method which offers 

its ability to handle materials of nonlinear behaviour and 

makes it possible to account for time dependent effects step 

by step. This report is focusing on the use of vicoplastici ty 

in the fj nite element. The reader is referred to References 

[1] and [2] for a description of the different numerical 

methods in general and to Reference [3] for details on the 

finite element method in particular. 
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1.1.1 ELASTO-VISCOPLASTICITY 

The theory of elastici ty has found wide spread use in rock 

mechanics studies for solving problems of linearized material 

behav iour. PIast ici ty is a continuum theory and i ts use 

arises when the non-linear stress-strain behaviour or the 

time dependent behaviour has to be considered. 

The the ory of elastici ty together wi th the theory of 

viscoplasticity or the incremental theory of plasticity are 

used in a numerical modelling technique like the finite 

element method to calculate the stresses and deformations 

induced after excavation. The incremen+-al theory of 

plasticity is used to model the instantaneous elastoplastic 

behaviour, while the theory of viscoplasticity is used to 

model the time-dependent behaviour. Physically, the 

instantaneous and time-depend,~nt plasticity cannot be treated 

separately. The apparent difference is that the former occurs 

at a high rate sometimes higher than the loading rate, e.g 

compressible porous media initially under low hydrostatic 

pressure and for unstable (softening) parts of the rock mass. 

The main subject of this study is the theory of el asto

viscoplasticity which can also be used to model problems of 

instantaneous or viscous elastoplasticity. References [4], 

(3J, (5J present a comprehensive description of plasticity. 

1.1.2 CREEP LAWS 

In order to model the short term stress strain response in 

2 



viscoplasticity, the time is used as a fictitious variable 

and the rate of viscoplastic strain is chosen on an arbi trary 

scale [4]. On the other hand, the creep behaviour is a 

phenomenon frequently met when dealing \II'ith geotechnical 

problems involving weak rocks , salt rocks or rocks rich in 

clay minerals,etc. [6]. The importance of this phenomenon is 

magnified when dealing with the stability or the closure of 

deep mine openings excavated in ductile halite or potash. The 

great interest arose from the challenge of embedding in a safe 

and permanent way the nuclear radioactive waste in deep 

viscous rocksalt for which the creep phenomenon is very 

apparent. 

Several experimental and analytical approaches have been 

presented to formulate creep laws. Reference [6] presents an 

exhaustive review of creep laws of rock in general and of 

rocksalt in particular. In most cases, these are scalar 

functions relating the total creep strain or its rate with the 

affecting parameters mainly: the acting stress, time (case of 

time hardening creep laws) or strain , temperature and other 

environmental variables like the humidity. It should be noted 

that in the nu::-:erical modelling of nonlinear creep behav iour, 

we are most concerned with the rate of creep as a function 

of the variables wi th time which are the stress and the strain 

(case of strain hardening creep laws) or the time itself (case 

of time hardening creep laws). 
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1.1.3 YIELD FUNCTIONS AND PLASTIC POTENTIALS 

A great portion of rock mechanics studies in the last two 

decades was aimed for the description of yield functions for 

different rock types under different stress conditions [7], 

[8], [9]. The yield function checks if the yield (or creep) 

occurs, while the material parameters included in it, together 

wi th those invol ved in the creep law i tsel f , as being 

functions of the viscoplastic strain or the plastic work 

reflect the hardening or softening behaviour (primary or 

tertiary creep) [10], [11] . To obtain the components of the 

strain rate, a plastic potential is used. 

Sorne aspects of the inelastic behaviour cannot be modelled 

by the conventional linear yield conditions like Mohr-Coulomb 

or Drucker prager especially when the yield condition is used 

as a plastic potential. This led to the development of 

special forms of yield functions and plastic potentials which 

att.empt to model the compound paths of the stress-strain 

behaviour as weIl as the observed eomponents of the inelastic 

strain rate especially its volumetrie changes (e.g. 

[11], [12], [13]). 

Several papers in the reeent years deal with anisotropie 

yield functions and the anisotropie evolution of these yield 

surfaces in the acting stresses spaee [14],[9]. 

1.2 SCOPE OF WORK 

The plan of this study ean be summarized in a point forrn as 

4 



·,f 

follows ; 

1) LITERATURE REVIEW 

a) After revising the finite element modelling of 

elastic behavior of rock excavations , study the 

plasticity theories; incremental theory of 

plasticity and elasto-viscoplasticity and their use 

in the finite element method with the related 

concepts of yield functions and plastic potentials. 

b) From the plastici ty theor ies the theory of 

viscoplasticity is chosen to model time dependent 

and time independent plasticity. 

c) Review the recent developrnents of yield functions, 

plastic potentials, and constitutive creep laws. 

d) Review of creep laws applicable to soft rock in 

general and rocksalt in particular. 

e) Review of the numerical procedure of irnplementing 

the viscoplasticity in the finite elernent method. 

This subject is rarely available in the literature 

but Re ff~rences [4], [3] present i ts bas ic concepts. 

2)-writing an elasto-viscoplastic 2D finite element computer 

program . And considering the numerical stabilty and accuracy 

of its proposed iterative explicit time integration scheme. 

3) Modification of an existing graphical pre- and 

postprocessors to account for tirne dependent input and output. 
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1.3 PROGRAM VISUD 

The developed numerical model is a 2-D finite element 

program using the theory of elasto-viscoplasticiy to model 

the effect of short term and time dependent behaviour on 

stresses and deforrnations around compound layouts of surface 

or underground mine excavations. 

The program uses the continuum theory of elasto-

viscoplasticity thus to overcome the inhomogeneity of the 

surrounding rock several material types can be used. It uses 

the classical 4 node-isclparametric elements with four 

integration points and it handles different types of loading 

, like own weight, nodal loading , surface loading and the 

initial or premining stresses. At any time station , the user 

can speci fy instantaneous changes. These could be added loads 

or additional cut or fille The program can be stopped at any 

time and the analysis may be restarted at that time station 

later. The program models the combined effect of 

elastoplasticity and creep by first performing the 

viscoplasticity as an artifice to elastoplastic behaviour then 

it starts assessing creep. This approach is suited for its 

iterative explicit time integration scheme, while the 

approach used in Reference [22] is a useful tool for an 

implicit scheme. Several yield functions and creep laws can 

easily be adopted in the developed numerical model. 

In writing the program , it was focused on reducing the 

running time , increasing the limit on th~ nurnber of elements 
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it can handle, and rnaking the prograrn user-friendly and 

flexible. The prograrn is written using many of the powerful 

features of MicroSoft Fortran version 5.0 [15) which deals 

efficiently with the 80286 processors and 287 coprocessors. 

The numerical model has a preprocessor for mesh generation 

and three graphics programs for checking the input data and 

interpreting resul ts. PRBSAP is a preprocessor used to 

generate the required finite element mesh by reading a simple 

free format input data file in which the user just divides the 

problem into zones representing distinct conditions of rock 

types and intensity of elements. This data file written by 

the user is compatible with the data files used by prograrn 

KSAP2D [16). One graphics program is used to check this free 

format user-created data file , the second is used to check 

the actual rnesh data of nodal points and elements connectivity 

mesh created by the preprocessor. The third is used to 9 ive 

the graphical interpretation of stresses and deformations 

around openings as weIl as the material behavior. 

The program uses an automatic time stepping calculator 

formulated based on the same concept of Reference (17) for 

explicit stepping scherne. 

1.4 THESIS OUTLINE 

The basic concepts of viscoplasticity as a continuum 

plasticity theory are explained in section 2.1 highlighting 

yield iunctions , and plastic potentials with reference to 
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the incremental the ory of plasticity and viscous elasto

plasticity. 

section 2.2 and section 2.3 discuss sorne types of yield 

functions and plastic potentials while Section 2.4 presents 

different kinds of creep and viscoplastic constitutive laws 

which can be or already implemented in the developed 

computer program. 

The numerical alqorithm of an iterative explicit time 

integration scheme irnplemented in program VISA2D and its flow 

chart are described in Section 3.2. Section 3.3 derives the 

equations used for the numerical stability of a fully 

explicit stepping scheme. A description of the input data 

are qiven in Sections 4.2, 4.3 • 

will be discussed in section 4.4 

Three illustrative examples 

of this report representing 

; a simple axisyrnmetric problem , the effect of face advance 

and creep on the deforrnations and stresses around the 

longitudinal section of a circular tunnel in axisyrnmetric 

ground conditions and finally an elastoplastic solution of 

a circular tunnel by the the ory of viscoplasticity then the 

report ends by conclusions. 
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CHAPTER 2 

ELASTO-VISCOPLASTICITY AS A CONTINUUM 

PLASTICITY THEORY 

2.1_BASIC CONCEPTS OF PLASTICITY: 

One use of plasticity theories arises when the post yield 

behaviour of the material has to be considered. This is the 

case when analyz ing excavations in soft rock or when problems 

involving large deformations of rock mass are encountered 

Examples of such problems inlude rock mass caving, slope 

instability involving rock of weak quality and soil layers or 

backfill. other important uses arise when deal ing wi th 

creeping rocks of viscous nature like potash. 

The theory of plasticity is a continuum theory like the 

the ory of elasticity i.e a constitutive model (composed of the 

two theories) assigned to a specifie zone (or element) 

describes it as being uniform or homogeneous. This 

assumption deteriorates if the considered zone is intact and 

traversed by one discontinuity. In this case another 

constitutive model should be assigned to the discontinui ty 

itself. However if the relative scale of spacing between 

discontinuities and rock mass of the considered zone is srnall 

the domain might be eonsidered homogeneous and in this case 

one constitutive model may describe this zone of composite 
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material [18J. The theory of plasticity involves a number of 

important concepts that can only be briefly introduced here. 

Readers are advised to consu]t Reference [4],[5], [3],[1] for 

more detail. 

2.1.1 YlELD FUNCTIONS AND PLASTIC POTENTIALS 

The state of stress under which the plastic flow occurs 

satisfies what is called a yield function or yield criterion 

such that : 

F (o,eP ) ~o. 0 ( viscoplasticity ) 
OI 

F(o,eP ) -0.0 Uncrementalplasticity) 

Where a is the stress vector and EP is the plastic or 

viscoplastic strain vector. In sorne cases the yield function 

might he simplified as follows 

F(o,e P ) -f(a)-Y(eP ) (2.1) 

where f(a) is an expression of the acting stresses and Y is 

the yield strength wnich varies with the evolution of 

viscoplastic strain [3]. Once plastic yielding has taken 

place the relation between stresses and strains might not be 

unique. A flow rule is the relation between the state of 

stress at which viscoplastic strain occurs and the rate of 

that strain vector. At early stages of plasticity the ory one 

of the assumptions was to relate the plastic strain rate in. a 

certain direction wi th the deviatoric stress in this direction 

[5],(3]. Later the concept of the plastic potential (Q> was 

10 



developed, see equation 2.7,2.11 where Q is an expression of 

the acting stresses and might as weIl depend on the plastic 

strain. It represents a convex surface in the stress space 

which means that the plastic work is positive because the 

normal to this surface is parallel to the direction of the 

inelastic strain rate. 

It is also accepted that this surface would be that of the 

yield condition whiçh implies that F = Q. The reason of this 

assumption might be clear if one considers yielding of 

specimen under shear stress. By using an associative flow 

rule (normality condition F = Q) ,the yield function would 

serve as : 

1-A stress condition to check if yield (or creep) occurs. 

2-Gives the direction of the plastic strain rate vector ( see 

Figure 2.1 ). 

3- The material constants in the yield function , as being 

dependent on the viscoplastic strain , govern the behavior 

pattern in the stress-strain curve or in deforrnation-time 

curve , thus simulating the hardening , sOftening or perfect 

plasticity [12],[18] (see Figure 2.4b and Figure 2.7b) . 

Isotropic yield functions are used for isotropie rock mass. 

In this case the yield condition is independent of the 

direction of the acting stresses but depends on the principal 

stresses at the point. 

Il 
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A plot of the yield surface of an isotropie material 
in the principal stress space 

( Figure 2. 1 ) 

Y 

~JoIro+-- X 

z Zl 

F= F ( a x' a y' a z' 

1 Xy'''' yz' f u' t») 

Orientation of planes of weakness dietating 
an anisotropie yield condition 

( Figure 2.2 ) 

For anisotropie roek or the case of one or more parallel 
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sets of joints , an anisotropie yield function which depends 

on the direction of loading wi th respect to a plane of 

weakness is used [1],[14],[19], see equation 2.31. 

Isotropie hardening keeps the yield funetion isotropie and the 

stress eondi tion remains in the principal stress space 

[20],[13]. References [8],[11],[9] give examples of 

anisotropie hardening which convert the yield condition to an 

anisotropie one dependent on the direction of the past plastic 

strain to inelude Bauscinger effeet [18]. 

In the following review isotropie yield functions and 

plastic potentials are the main subject however the yield 

functions discussed in sections 2.4 and 2.5 are anisotropie. 

Mohr-Coulomb yield condition considers only the plane of 

maximum and minimum principal stresses 0" 03 relating the 

maximum shear with the normal stress [5] (see Figure 2.3a); 

where 1jr is the angle of internaI friction and c is the 

cohesion and 2C cos, may correspond to Y(f~) in equation 2.1 

as a material parameter function of the inelastie strain. 

other yield functions like Drucker-Prager relate the 

deviatoric and hydrostatic stress invariants to the material 

constants c and t as follows : 

F -..j3 IJ
2D 

+ 2 sim" J _ 6 c cos.t 
3 - sim" 1 3 -sin", 

(2.3) 

13 



---------~~~~~~~~~~~-- --

( 

(~ 

to 

( 

Mohr coulomb C-. yield surface [4] 
( Figure 2.3 a ) 

Drucker-Prager c-t yield surface [4] 
( Figure 2.3 b ) 

To consider the post yield behavior Equations 2.2,2.3 have 

be thought of as follows (see Figure 2.3): 
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(2.4 b) 

where Q, , Q2' Y" Y2 material constants controlling the role 

of the yield function and plastic potential as seen in more 

detail in Sections 2.2, 2.3. 

2.1.2 THE INCREMENTAL THE ORY OF PLASTICITY: 

Two major continuum theories are used to quantify and model 

the plastic behaviour these are : 

1) The the ory of elasto-viscoplasticity, This is implemented 

in program VISA2D which is reviewed in the following 

subsection and therefore is the main subject of this study. 

2) The incremental theory of plasticity. This theory is widely 

used for the short term stress-strain behavior as will be 

briefly reviewed only in this subsection (see References 

[1],[3],[5] ). 

In this theory the relation between the instantaneous 

plastic strain increments and the stress increments is 

deterrnined from Drucker's consistency Condition 

F (a, e:P ) - 0 . 0 at yield 

da + oF deP - o. 0 
ôe: P 

aF ... dF--aa 

15 
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This means that when the loading energy exceeds the elastic 

energy at the initial yield point Yo a plastic strain 

increment takes place causing hardening or softening effect on 

the material behavior. For example in the simple case 

represented in Figure 2. 4a , hardening means that each d(p 

allows for an incréase in the yield strength of the friction 

slider. In other words when the yield strength of the 

material can no longer sustain the applied load (or energy) 

, dfP occurs and the strength is changed by an increment -

(in equation 2.5) which then allows da to satisfy 

Drucker consistency condition: 

- do satisfying i ~F do.- oF deP 
00 éJeP 

tT Y 

Friction 
s1i4er 

p 

(2.6) 

Elasto-plastic behaviour under uniaxial compression 
( Figure 2.4 a ) 

, and so on for the successive strain and stress increments to 
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give the nonlinear behavior shown in ~igure 2.4. 

e 

èF < 0.0 
c3c yp 

hardening 

E 

:CF - 0.0 
vp 

perfect plasticity 
( Figure 2.4 b) 

~F > 0.0 
vp 

softening 

By using a flow rule , the relation between each component of 

the plastic strain and the stress Increment vect.ors can be 

forrnulated as in equation 2.7. 

(2.7) 

where Q is the plastic potential and the increment dl is given 

when Drucker's consistency condition i5 applied as followSi 

where H is 

caused by 

de P - dJ.. c30_((~ .dO)) oQ 
èo H èo 

(2.8) 

a scalar quantifying the hardening or softening 

dfP/dl i H-- èF ao or if k is the strain ae p 00 

hardening variable H- - ~:: and dk/dJ.. is determined 

according to the flow rule used. For sorne yield functions H 

may by do,/d€p in a uniaxial test (see Figure 2.5). Because 

da vector is unknown the relation between d(P and da is given 

17 
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as follows; 

deP-..!. [aO OFl da 
H aa oa (2.9) 

In equation 2.9 , using the yield function as a plastic 

potential gives a symmetric stress strain matrix leading to 

symmetric global stiffness matrix, thus reducing significantly 

the time and storage size. When H is positive it reflects 

hardening behavior while when H is negative the softening 

behavior is simulated in which case we might face non 

uniqueness of the solution. This problem is overcome in the 

theory of viscoplastici ty described in the following section. 

Qi 

Determination of the aF/ok using uniaxial 
compression test 

( Figure 2.5 ) 
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2.1.3 ELASTO-VISCOPLASTICITV THEORY: 

The elasto-viscoplasticity theory developed by ~~inkiewicz 

and Corrneau [4], has been adopted in the present study. 

The elasto viscoplastic behaviour could be described by the 

behaviour of the dashpot inside the mechanical model shawn in 

Figure 2.6 Each cOlnponent of the creep strain vector is 

obtained using the a plastic potential which for associative 

viscoplasticity is the yield function (F) itself [3]. 

F 

F 

F(o,(!!P) -f(a)-Y«(!!P) 

~ 0.0 ~ elasto-viscoplastic 

ë • aO 
VP1j- 00 ij 

< 0.0 ~ elastic 
• 0.0 f = vp 

Oashpot 

i.e 

(J' 

Sprlng 

(J' 

Friction 
allder 

Simple elasto-viscoplastic mechanical model 
(Figure 2.6 ) 

(2.10) 

(2.11) 

The model behaves elastically under instantaneous loading 
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allowing for the acting stresses f (a) to build up elastically 

over the yield threshold Y in equation 2.10 , which is a 

simplified form of a yield function. Then the viscoplastic 

strain starts under the effect of the dynamic yield function 

F > o. 0 [ Il] , see Figure 2. 7 . The rate of viscoplastic 

strain is defined' experimentally by a the positive scalar 

expression of ~ which is a function of the dynamic yield 

function , the viscoplastic strain (or the inelastic work 

[10]), time and several other variables like the temperature 

,humidity,etc. In a uniaxial compression test, this function 

may he the uniaxial plastic strain ( depending on the plastic 

potential Q ) and F may he ,or linearly related to, the 

uniaxial acting stress, while in a conventional triaxial test 

~ and F could be ,or linearly related to, the differential 

strain (f ,-f2) and differential stress respectively (0',-0'2). 

a or fIaI 
f1mary secondary tertiary 

yield Iimit Y ~vJ 

E 

Viscoplastic strain under constant stress 
(Figure 2.7a) 
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'Prlm~ry 
creep 

, Secondary 
creep 

'Tertlary 
creep 

t 

The typical three phases of creep behavior 
( Figure 2.7b ) 

The strain hardening or softening effect (see Figure 2.7a) 

might appear in the material constants of the yield function 

or directly in the creep law itself. 

~ !2J:. ~ < 0.0 .. 
ôt: c3e yp 

primary creep (hardening) 

ôcI> !2J:. ~ - 0.0 .. 
ôt: Oe yp 

secondary creep (perfect plasticity) 

~ !2J:. ~ > 0.0 .. 
ôt: c3e yp 

tertiary creep (softening) 

If the time variable t replaces the strain variable €~ in the 

function (/> , the creep law is called time-hardening creep law 

and in such creep experiments the value of the creep threshold 

y might be assumed = 0.0. 

Figure 2.9 presents a comparison between the theory of 

elasto-viscoplasticity and the incrernental the?ry of 

plasticity when used to model the elastoplastic or the short 

term stress strain behaviour dùring a conventional triaxial 
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test and assuming that stresses are applied in small 

increments and remains constant. The incremental theory of 

plasticity assumes that the plastic strain occurs 

instantaneously followed by the elastic response This 

assumption is at variance with experirnent and is at best a 

convenient mathematical fiction [4]. 

The total strain de - deI + de e (2.12) 

Equation 2.12 shows that both time dependent and tirne 

independent inelastic strain mechanisrns (dEI) , their effect 

is to be added to the elastic strain dE e causing a 

relaxation or 1055 of the stored elastic strain energy at a 

point if dEtotal<d€l. According to Reference [15], the study 

of creep (time dependent or viscous strain) is curried out in 

two kinds of experirnent:s; the "short term" creep is studied 

by a universal testing machine with fast applied incremental 

loading followed by tirne intervals of several minutes during 

which the stress is kept constant and the "long term Il creep 

is studied with standard apparatus like conventional creep 

tests. 
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Viscous deformatiop 
with relaxation 
( Figure 2. 8 ) 

CI 

ElASTO-VISCOPLASTI CI TY 

CI 

rleld Il.11 

•• eU •••• '111 •• F-O.O 

e •• 

stabillzation 

1 

E 

Comparison between instantaneous and viscous plasticity 
( Figure 2.9 ) 

23 



( 

( 

( 

2.2 NON-LiNEAR YlELD FUNeTIONS: 

Yield functions like Mohr-coulomb or Drucker-Prager ( when 

presented in equations 2. 4a, b are 1 inear relations between the 

deviatoric and hydrostatic stresses and if a similar plastic 

potential is used· , the viscoplastic flow will always be 

accompanied by constant ratio of dilation (volume increase) to 

deviatoric strain [14]. 

Hoek and Brown (2) ( equation 2.13) developed an empirical 

non-linear failure condition which is a good tool to check the 

peak conditions after which unstable behaviour may occur. It 

is mainly a failure cri terion and not a yield function as its 

constants are obtained experimentally to satisfy a peak 

condition, but the y are not checked to whether this condition 

is used as a plastic potential nor are they functions of the 

inelastic strains or inelastic work (see Figure 2.10) • 

JI 
. .' • 

U. le ... U 
OJ 10, ~. 

• 
as.-CJe 

Il 

Normal ized peak strength envelope for sandstones 
( Figure 2.10) [2] 
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where Oc is the uniaxial stress of the intact rock, m and s 

are constants that depend on the properties of the rock and 

the extent to which it has been broken before it i" subjected 

to failure stresses. 

It has been stated in several papers, e. g [13], [22] ,that 

unless dilatancy and compressibility are accurately modelled 

, the constitutive equation is not appropriate for rock-like 

materials. 

Reference [12] gives an example of a non-linear yield function 

giving a non-linear dilatant plastic strain. It uses two 

plastic strain variables to model hardening followed by 

softening behaviour. This yield function was proposed for 

modelling elastoplastic behavior of hard rock under moderate 

stresses. As the progressive fracturing induces the weakening 

of material, there is also the hardening effect related to 

inhomogenei ty of microdeformations associated with 

irreversible strain. The rate of plastic dilatancy is 

directly linked to microdamage and softening mechanisms: 

~ - a ê% ( 2 . 14 a) 

where B is a microdamage and softening pararneter , a is a 

positive constant. On t~~ 0ther hand, it is the rate of 

deviatoric strain invariant which is related to hardening 

mechanisms, or the closure of microcracks; 

(2.14b) 
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where eit is the deviatoric plastic strain. k may also be 

the inelastic work of the deviatoric stresses Sij ~ 

• p 
k- Sij elj (2.14c) 

where elt and f. mP are obtained uRing the yield function 

(equation 2.15a) as a plastic potential. 

(2.15a) 

where pCk,B) is a material function controlling the rate of 

hardening and softening and J, 0 is a constant 

(2.15b) 

and Po' z"z2 are positive constants determined experimentally. 

In equation 2.15 , the nonlinear yield function includes the 

effect of the second deviatoric stress invariant J 2D'" squared 

(see Figure 2.1), as weIl as the hydrostatic stress J, ,while 

the two inelastic strain variables (EmP , k) appear in the 

function P(k,B) . 

The vanishing of plastic ductility under tensile stresses, 

justifies the existence of a rupture surface as a function of 

the stresses only. The brittle rupture condition is shown in 

equation 2.16 • 

(2.16) 

where J* , y , ô are constants independent of the strain 

history. 

The configuration of the rupture and yield loci in the stress 
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invariants space is shown in Figure 2.11 a. 

The yield surface is represented by a set of parabolas giving 

€ p = 4>~ - 34» oF - 34> (2p(k,E)) so that the viscoplastic 
v 00 ii oJ1 

strain Ëvp is always accompanied by volume increase (dilatant) 

and as the surface expands by the increase of p(k,B) the ratio 

of dilatant to deviatoric deformations increases. 

The intersection of the initial yield parabola (for p(k,~) 

= po) and the rupture curve (equation 2.16) occurs at points 

F 11 F2 representing simple shear states. For stress paths 

having tensile hydrostatic stress brittle rupture occurs (0 

C2 ) 1 while when the stress path is accompanied by low 

hydrostatic pressure limited ductility happens with 

hardening effect , followed by brittle rupture when the stress 

path intersects the rupture surface, see Figure 2.11-a) . 

The ductile curve (Figure 2.11 (d,e» is simulated by this 

yield function if the applied stress path is accompanied by 

higher values of hydrostatie stress. In Figure 2.lIa ( path 0 

ADE) , the initial expansion of the yield surface means a 

predominating hardening effect , whi1e the softening takes 

place when the effect of volumetrie dilatancy beeomes 

prevailing. In this case there is no contribution of the 

brittle rupture condition • The transition from hardening to 

softening (or to unstable behaviour) means that the rock 

mass has become highly rearranged so that the softening effect 

of dilatancy (/3) beeomes more than the hardening of the 
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deviatoric compone nt of the inelastic strain increments (k). 

-----~---

l ,. 
".' 1 .. , .. ' , -------""" , 

Configuration of the rupture and yield loci 
in the stress invariants spa ce 

Figure 2.11a )[12) 

o 

t 

Ir;' ola_l ____ ...::.t 

-t 

(e) 

stress strain relations during path: oc2,OC"OADE 
( Figure 2.11 b,c,d,e ) [12) 
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In equation 2.15b, p(k,B) is function of the (-B2) making the 

effect of an increment dB on dp(k, B) increases with the growth 

of the plastic strain. 

This model is suited for viscous elastoplastic analysis of 

hard rock showing ductile or brittle behaviour [12]. It also 

seems to be good for creep analysis, as the three phases of 

the creep behaviour can be established even under constant 

stress i.e constant flow rule ( by considering the effect of 

p(k,B) in equation 2.15b). 

2.3 DIlATANT -COMPACTING YlELD FUNCTIONS: 

Sorne rocks cannot be described by a dilatant yield function 

like that described earlier (equation 2.15), in that over 

certain pressure ranges the initial yield point decreases with 

subsequent increases in the conf ining pressure, at which a 

transition from dilatant deformation to compaction or volume 

decrease takes place (see Figure 2.13). This concept first 

was treated by adding "end caps" to the dilatant yield 

function. However, a discontinuous yield condition makes 

the numerical modelling difficult and not flexible enough. 

Equation 2.19 [23] is a continuous yield function based on the 

critical state concept developed for soil-like materials [23], 

[11] • The idea of this theory comes from the theory of work 

dissipation [23]. For conventional triaxial test one may 

define the hydrostatic pressure and deviatoric stresses as in 

equations 2.17 (see Figure 2.12) : 
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'" "'~ 
(b) 

- - lCal 

..... +-oot-- specimen 
.......... -rubbcr 

Ilde. 

_cOntinln, 
pre~R 

(a) 

(c) 

1 

'~ 

Triaxial compression in the principal stress 
and strain space [20] 

(Figure 2.12) 

(2.17 a) 

and the corresponding viscoplastic strain increments as: 

de~ - .-!.. (der + 2 de!) 
.f3 

de:~ - -2- ( der - de! ) 
.f6 

(2.17 b) 

and assuming the plastic potential depending on p,q (or 

J, ,Jzo Yt) only , the loading power could be described in the 
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plane of p-q as follows : - qdE!~ + p de~ 

and for a frictional material this power is dissipated in 

friction work only : 

(2.18 ) 

where M* = qc/pc is a simple friction constant relating the 

deviatoric and hydrostatic stresses at the critical state 

where no inelastic volume change takes place. Equation 2.18 

means that the volumetrie work (p d€vP) in case of compact ion 

increases the friction and for dilation decreases the friction 

work by a factor of (p/Pe). By integrating equation 2.18 

[23], [20] after putting dqjdp = d€l/d€l as a property of the 

required plastic potential Q: 

Q---L+ln P -1 (see Figure 2.13 a) and noting that q and p 
M· P Pc 

are proportional to a=J20'lr ,J1 respectively we reach the form 

of yield function F - Q as follows (see Figure 2.13 c) ; 

(2.19) 

where p.* is a friction constant relating the deviatoric 5tress 

invariant J~'Ir and J 1 at the critical state (i.e when the 

volumetrie viscoplastic strain is zero ) and J s is the 

hydrostatic yield limite 

When F > 0.0 the viscoplastic strain occurs , while when F < 
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0.0 ,the behaviour is elastic. Figure 2.13c indicates that 

, for associative plasticity , when a point is subjected to J. 

and f. the value of F is positive and the plastic strain 

incrernent is normal to the revolutionary surface : 

- J. 
(J-F- a +ln_1 - 0.0 

Jo'. JI JcÎ 
(2.20a) 

where Q is the plastic potential and J d is a constant 

satisfying the equality. 

If a soil specimen, subjected to hydrostatic pressure Jcr ' is 

sheared till ucr so that (ac,./Jcr ) = J.'. (see Figure 2.13c ) the 

resulting behaviour has no volumetrie viscoplastic strain and 

is perfectly plastic. Higher values of applied (a/J,) at 

yielding gi~e softening behav.iour accompanying the dilatant 

viscop1astic strain and lower values give cornpaction and 

hardening behaviour. 

p 

Yield curve and critical 
state on p-q plane [20] 

(Figure 2.13 a) 
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v 

Family of yield surfaces 
function of the change 

in volume [20] 
(Figure 2.13 b) 
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., * ..... . 
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.e •• 

~~'reot~ 
/' 

The critical state yield function 
for soil like materials 

(Figure 2.13 c) 

o 

In equation 2.19 J s is a material parameter which may be 

constant , or function of the volumetrie inelastic strain and 

simulates the hardening and softening responses as expansion 

and contraction of a static yield surface defined by ; 

(2.20 b) 

Equation 2. 21b uses the critical state yield function 

equation 2.21a , in the creep law (~) to simulate the viscous 

behaviour(consolidation) of clay in case of isotropie 

hardening and using the effective mean stress ami in place of 

J, (effective means net stress in case any pore water 

pressure exists). 

l2J a' 
F- V::W+ln-m--Ae P 

1 Il v 
J,1 0 m amy 

(2.21 a) 

(2.21 b) 
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'lP1j - aa ij (2.21 c) 

where bo ' Co and A are constants, f./ is the volumetrie 

viscoplastic strain and 0m'is the effective mean stress. Each 

component of the viscoplastic strain vector is obtained using 

the dynamic yield function as a plastic potential , equation 

2.21 c . The critical state concept is mainly applied to 

model short term ( elastoplastic ) behaviour of frictional 

media like soil [20],[23], backfill and it is possible to use 

it to model the behaviour of rock having initial cohesion but 

this cohesion drops to 0.0 after very small plastic 

deformation (like cemented back fill). It has its application 

for time dependent behavior of frozen soils , clay and 

consolidation analysis of clay-like soils [11] important for 

settlement of foundations or slope stability. It is 

interesting here to note that the hardening simulated by the 

expansion of the static yield surface is physically accepted 

as it is towards the high hydrostatic stress while the 

material remains the non-tension one. 

This general concept is the origin of dilatant-compacting 

yield function used to model rock behaviour.The difference 

here lies in that to model intact rock behaviour (or partially 

fractured) the assumption of work dissipation might be 

expressed as follows; 

qde~ + p de~ - M· P 1 de~l+const. (2.22) 

where M* is the friction constant. This means that at p=O.O 
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(i.e no hydrostatic pressure) there is still a way of internaI 

work dissipation, which might be due to the cohesion 

viscoelastic mechanisms and the ductility,etc. On the other 

hand, the assumption that the dilatant behaviour corresponds 

to softening or that zero plastic volume change gives perfect 

plasticity is not valid because for rock the deviatoric strain 

(representing the shape change ) may cause hardening or at 

least eliminates some or aIl of the softening effect caused by 

dilation or micro cracks. Instead of depending on the work 

dissipation theory ,researchers [13],[14] assume yield 

functions in a polynomial form of the stress invariants 

Equation 2.23 is an isotropie dilatant compacting yield 

function; 

J ZD + Q,J, + QzJ,' - A (2.23) 

where a"Qz,A are material parameters. 

Equation 2.24 [13], is another example of this type of yield 

functions relating (0',-0'3) and (0',+0'3) when considering the 

state of stress on the plane of maximum and minimum principal 

stresses 

F = (0',-0'3)2 + n 2 (0',+0'3)2 + 4n 2 c(O"+0'3) + 4 c 2 (nZ -tanZ 8) (2.24) 

where n,c,tan8 are parameters governing the location and shape 

of the set of ellipses represented by F=O.O whose major axis 

is directed along the line of hydrostatic stresses [13]. 

Using this family of dilatant compacting yield functions (see 

Figure 2.14) . , apart from the experimental stress-strain 

characteristics , the field state of stress governs ; 
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* Softening or hardening (point 1 compared with point 2) 

* The rate of hardening or softening (point 2 compared with 

point 3) 

* For the incremental loading of elasto-plastic behaviour ( 

see Figure 2.9) fOF which the state of stress is at (or near) 

the static yield surface (i. e Q=F(static,= 0.0), the expansion or 

contraction of this surface simulates non-linear hardening and 

softening as the ratio of the viscous strain increments 

df/:dfl changes (e.g it increases with surface expansion to 

decrease the rate of hardening) • 

dllatlon de" 

Dilatant compacting yield curve (Equation 2.24) 
( Figure 2. 14 ) 

Equation 2.25 [24] is a yield function proposed for soft rock 
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Ce.g. soapstone); 

Where 

total 

F-J. -(-~ 
2D a: 

o 
,~ 

J 3D where Sr-~ 
J 2D 

(2.25) 

Qo,n,m,y,'7, and a, are constants, ~ is the trace of 
l 

plastic strain= f (de~j de~j)"2· The effect of the third 

deviatoric stress invariant J 30 is more apparent for low 

hydrostatic stresses when P-Eo e-,Sl.Jl where 8
0
,8, are 

constants. This effect causes the yield 1 imi t of the 

deviatoric stress invariant J ZD to be lower in case of triaxial 

extension i. e when (0'2=0'3>0',) than it is for triaxial 

compression (a, >0'2=0'3) (see Figure 2 .15a) . 

In equation 2.25, Q is chosen function of the total plastic 

strain trajectory WhlCh simulates successive hardening or 

expansion of the yield surface in the course of the plastic 

strain. At point 1 (see Figure 2. 15a) where the plastic 

strain increments are 100% deviatoric (d€/=O. 0 ), the rock 

still exhibits hardening behaviour. At point 2 the plastic 

strain increment is dilatant (d€'/ > 0.0 ) , this dilation 

according to the equation of Q, has no softening effect, so 

the yield function continues to expand , but its expansion is 

only towards the high hydrostatic compression . This means 

that the behaviour is perfectly plastic at points higher than 

the ultimate envelope in Figure 2.15e (these points correspond 

to stress states of low ratio of hydrostatic to deviatoric 

stresses). The softening or contraction of the yield surface 
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is not modelled by the parameters of this yield conditions. 

The value of n in equation 2.25 representing the power of J, 

has a control on the shape of yield curve (Figure 2.15b) and 

consequently c~ntrols the ratio between the volumetric and 

the deviatoric plastic strain increments , thus used to fit 

this yield function (when used as a plastic potential) to the 

experimentally observed plastic strain [24]. 
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2.3 CREEP AND VISCOPLASnC CONSTITUTIVE lAWS 

When viscoplastici ty is used to predict el asto-plastic 

behaviour, the function ~ in equation 2.11 represents , not 

the exact viscoplastic rate , but a rate proportional to the 

stress condition 4> - Â F (compared to other points in the 

rock-mass) where l is called the fluidity parameter and may 

be chosen = 1 because the time here is used as a fictitious 

variable i.e the time increments At is chosen such that A€vp 

does not exceed a certain limit which causes 

numerical instability (see Section 3.3), similar to the 

initial strain approach [4]. However in case of incremental 

viscoplasticity Â takes a real number so that ~ simulate the 

real viscous rate. In reference [10] the incremental 

viscoplasticity is simulated using a work hardening creep law. 

In case of creep or time-dependent deformations the value of 

~, the creep rate at time t, should be modelled by equation 

2.11. The empirical approach takes the form of the cr~ep la'vls 

and their constants by best fitting interpolation of the data 

obtained from a series of laboratory creep tests . Popular 

forms of the empirical creep laws are the time power and 

exponential laws [25],[26] ( the environmental effects like 

tempe rature , humidity appear in the constants): 

ec(t)- Btma n 

e c ( t) - B ( 1- e~m t:) a n 
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where B,m,n are constants, a is usually the axial stress in 

a uniaxial creep test or the differential stress in a 

conventional triaxial creep test, while Ec is the vertical 

creep st.rain f, or the differential creep strain (E,-f2). 

other creep laws may take an exponential strain hardening 

form [27] (see also equation 2.21); 

(2.26b) 

. 
where A is a constant and fs.cr. is the secondary creep rate 

where no hardening or softening occur which is function of 

stresses( i.e Ès.cr.=f(o) or =A, on ) and the effect of stresses 

appears aiso in the limit at which the secondary creep starts 

( see Figure 2. 7b); ftll=m, (o/G) m where m, and m are constants. 

While some authors suggest logarithmic forms others use mixed 

forms as Iisted in reference [6]. 

When a rheoloqical approach is adopted , a mechanical system 

of springs ,dashpots , sliders or friction blocks is built up 

in a certain arrangement to exhibit a time dependent behaviour 

similar to that of the material studied (see Figure 2.16). In 

this case the mechanical. model suggested for the material 

imposes the form of the creep law while the parameters or the 

constants involved have to be determined experimentally by 

curve fitting. 

This approach seems to have the flexibility to be applied to 

different rock types in different conditions [6],[21]. 
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It is common for creep laws to assume a zero yield limit or 

creep threshold • Several authors state that a rock-like 

material loaded starting from a stress-free state or low 

premining stresses (initial stresses) passesses a near zero 

yield limit [28],[10],[29]. 

Figure 2.16 shows two popular mechanical models; Zener and 

Burger [6] with their equations. These models are one 

dimensional and sorne researehers like Serata [29] implements 

them to model two separate eomponents of the isotropie creep 

strain: the me an strain Em and the second deviatorie strain 

invariant If -a = (the stress 

corresponding to Ed ) < Co aeeording to Figure 2.17 Zener model 

is used for Em' Ed as follows (Figure 2. 16-a detines the 

constants) : 

(2.27a) 

e - am + ~ (1-e (-(lX'/3,,') tl) (2. 27b) 
m 3 K 3K. 

but if a> Co aecarding ta Figure 2.17, Burger model is used 

for Ed only (i.e no volumetrie creep) as follows 

€d- ~+ -2- (1_e<-(2G1/2'h) tl) + _0_ t (2.28) 
2 G 2 G) 2 'l, 

To determine the form of the creep rate funetion ~ using an 

experimental or a mechanieal model , a yield funetion and a 

plastic potential are assumed to relate ~ (see equatian 2.11) 

with the measured strain eomponent (like Ëm' €d in equations 

2.27) during a creep test and aiso ta relate the applied 
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uniaxial or triaxial state of stress to three dimensional 

state of field stresses. 

If the theory of elasto-viscoplasticity is used to model the 

time dependent behaviour of the mechanieal model of Figure 

2.17 , one would put a compound creep rate law as followSi 

where the yield fun ct ion 

Ô02 

ao ij 
and F 2=O'm with 

(2.29a) 

no creep 

thresholds imposed (viscoelastie) and using a plastic 

potential Q,=a=(J2D )Vt=(!z SijSij)~const .. This gives a flow rule 

of pure deviatorie strain Ëvpij =~ 4>, sil (J2D ) Vt and consequently 

ÉdVP=\4>, while Q2= {(a m) 2 =eonst. chosen to give pure 

volumetrie strain gives im=4>2/3 (of the same sign of am) thus 

the equations of the ereep rates are : 

cl> -2 OedVP _ 2 ~ e (-(GzI"z) t) 

1 at 21'12 
(2.29b) 

cl> -3 Oemvp _ 3 ~ e (- (X2/,,·) t) 

2 at 3". 
And if ü is checked to be > Co the following law is usedi 

(2.30a) 

where 4>3 = 2 times idvp given by equation 2.28 beeause Q, which 

gives no volumetrie plastic strain is still used ; 

(2.30b) 
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Figure 2.18 compares between the prediction of a tim~-

hardening creep law : ~=f(t,a) and strain-hardening creep law 

: ~=f (a, Evp> for nonlinear creep where the stress a changl~s 

with time. It can be noted that time hardening creep laws are 

not weIl suited to rnodelling the stress history. Work-

hardening creep laws ( ~=f( a,fadE~) ) is the best approach 

in such cases. 

creep under «12 ) tli .............................. .. ......... 2 
• •••••••••••••••••••• 1 

: .....• ... ..... : 
.' . 

s raln bal'e~lng l 
'1" "J 

1 

1 
L_--.-.-.-. -.. -.-.--.-.-...... -:-:. -~·~-~·-:·~c~re~ep under CJI 

Change of stresses at U 

Curve 1 is the prediction using time hardening 
law and curve 2 is the prediction using strain 
hardening law whcn the stress is incremented. 

( Figure 2.18 ) 

Ta adopt an empirical or mechanical model in the theory of 

viscoplasticity described in section 2.1.3, the model (like 

that of Figure 2.19) has to be divided to a system having a 

stiffness of an instantaneous elastic response (system 1) 
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attached serially to another system (system 2) which cannot be 

strained instantaneously but is qivinq a viscous strain rate 

(described by a creep law as in equation 2.29 ) and its 

viscous strain €~ (beinq viscoplastic or viscoelastic) is to 

be added seria!ly to ë. to give the total strain i.e Ët=Évp+;e. 

If at time t, an element of the rock mass is confined so that 

Aft is less than Afvp the viscoplastic strain (Af~) will cause 

a relaxation in the elastic enerqy fe. 

Reference (6] presents a comprehensive survey of creep laws 

used for rock in qeneral and rocksalt in particular. 

system 1 

syste. 2 

Analyzinq a mechanical ~odel by considerinq 
an elastic part and viscous part. 

( Figure 2.19 ) 
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2.4 RHEOLOGICAL ANALOGUE OF ROCK ZONE INTERSECTED SV 

PARALLEL JOINT SETS 

In the iterative explicit scheme described in section 3.2 it 

is possible to incorporate the rheological model describing 

a rock mass transversed by sets of parallel joints (Figure 

2.20) [1],[19]. 

If on is the stress normal to the joint surface , l' is the 

resultant of shear stresses parallel to the joint surface k : 

(2.31a) 

Fk - ~tI+a n tan6 k - Ck ](jointsetk) > 0.0 

where Ok is the joint friction angle and Ck is the apparent 

cohesion ; 

Ok - [ ,fèE+a n tan'" k - Const -0.0 ] (joint set k) (2.31b) 

(2.31c) 

where 'k is the dilation angle and Àk is a fluidity parameter 

of the parallel joint set k (depends on surface condition and 

the number of parallel joint per unit length). Àk may be 

assumed unit y in an elastoplastic solution. 

The yield function and plastic potential used to describe 

this model are anisotropie. The yield limit monitors the 

yielding along the shear parallel to the joint surface k (1' k) 

The logie of having the form of the plastic potential near to 

that of the yield function appears obviously when equation 
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2.31b is used as a plastic potential thus giving inelastic 

shear deformation parallel to the joint surface, while the 

dilation is controlled by the value of tan ('k). Equations 

2.31 are used if the stress normal to the joint surface is 

compression i.e an 5 0.0. If an > 0.0 it would not be true and 

a viscoplastic no-tension model is added to redistribute the 

stresses and relief the tension ; 

F2 - [a n]k > 0.0 (2.32 a) 

O2 - [0 n - cons t. - o. 0].. k 
JOlnt 

(2.32 b) 

8vpx -À k Flic 
ôOl ÔQ2k r +À k F2 ôa lj 

(2.32 c) 
a ij t 

where F, and Q, are the yield function and plastic potential 

of equations 2.31a,b respectively. F"Q, might preferably be 

( 1 k 2) V. as in equation 2.3 4b depending on the opening of joints 

at this point In both cases the total viscoplastic rate is ; 

n 

èvp - E èvpt +évp ot lntact rock 
k-l 

Equations 2.31, 2.32 are 

anisotropic yield functions which are dependent on the 

direction of a set of parallel planes of weakness. other 

types of anisotropie yield functions are discussed in 

References [9], [10] . 
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2.5 TlME DEPENDENT NO TENSION MODEl: 

Reference [1] proposed a time dependent no tension model 

given by equation 2.33 to relieve the false tension exceeding 

the tension resistance at a point ; 

F - 0 1- 0m + ; OSi~n+ 23
1t

) (2.33 a) 

0- 0
1

- cons t . - 0 . 0 ( 2 • 33 b) 

where a, is the maximum principal stress (tension) , a is the 

second deviatoric stress invariant and n is the Iode angle. 

Another way of handling the excessive tension is proposed 

here; If the total stress 0, = 0x+O'y ( in the x-y plane) at 

a point is positive (tension) and exceeds the tension 

resistance , the maximum principal stress is calculated 

(which is the tension ) and the direction it rnakes Qo as weIl 

(assurning a plane problem). Then two associative viscoplastic 

rnechanisrns with two yield functions are assurned; 

The first , see equation 2.34 a, is a viscoplastic relaxation 

of the tension in a direction normal to the plane of Qa (Qa 

once calculated remains constant throughout the analysis) • 

The second ,equation 2.34 b, is for the shear acting parallel 

to the joint ( assumed to be locally created after the tension 

failure) i.e the two yield functions are sirnulating a free 

surface created (and localized at the gauss point) at angle Qa 

with the horizontal: 
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Fi - an> 0 i. e (tension) 
(2.34 a) 

Fa - ,fiT 
(2.34 b) 

€vpJj - 4» ( F 1 ) ;0 n +4> ( F
2 

) o~ 
°ij OOij (2.34 c) 

This approach presented her.e is more convenient because the 

direction of the tension failure Qo once existed is considered 

constant throughout the analysis and not changing with 

direction of the maximum principal stress which is the case of 

equation~ 2.33 ( especially for the case of incremental 

loading). Equations 2.34 are also easy to implement in the 

plane strain or axisymmetric problems rnodelled by the 

developed program for which the planes of principal stresses 

are predefined. 

In both approaches cf> (F) =Â.F or another form chosen to give the 

sarne sensitivity to a change in stress (i.e acf>/aF) as those of 

the viscoplastic creep laws implemented for the surrounding 

rock (important for an explicit time integration scheme). 

Equations 2.34 are anisotropie yield conditions and plastic 

potentials. Using an anisotropie yield function in the 

numerical modelling of associative viscoplasticity depending 

on an implicit time integration scheme does not violate the 

symmetry of the global stiffness matrix . 
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3.1 INTRODUCTION 

CHAPTER 3 

HUMERICAL ALGORITHM 

The developed numerical model VISUD is a 2-D finite element 

program using the theory of elasto-viscoplastieiy to model 

the effect of short term and time dependent behaviour on 

stresses and deformations around compound layouts of surface 

or underground mine excavations. It uses the classical 4 

nOde-isoparametric elements with four integration points and 

it handles different types of loading , like own weight , 

nodal loading , surface loading and the initial or premining 

stresses. At any time station 1 the user can specify 

instantaneous changes. These could be added loads or 

additional eut or fill. The program can be stopped at any 

time and the analysis may be restarted at that time station 

later. The program uses the continuum theory of elasto

viscoplasticity thus to overcome the inhomogeneity of the 

surrounding rock several material types can be used. Several 

yield functions and creep laws can easily be adopted in the 

developed numerica1 model. 

In this chapter 1 the finite element formulation of its 

elasto-viscoplastic numerical algorithm is explained in detail 

through section 3.2 which describes the flow chart of the 
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developed computer program Section 3.3 explains the 

numericai stability of a fully explicit time integration 

scheme. 

3.2 NUMERICAL ALGORITHM OF THE ITERAnvE EXPUCITTIME STEPPING 

SCHEME IMPLEMENTED IN PROGRAM VISA2D: 

This section describes how the numerical model uses the 

finite element and the theory of viscoplasticity to integrate 

the inelastic strain rate over the successive time increments 

by using an iterative explicit scheme . 

with the viscous strain rate expressed by equation 2. Il, we 

can define a strain increment âE yp" occurring in a time 

interval âtn = tn+,-tn as follows; 

lla ZJ _ (t n(1-9) +è n+18) ~t (3.1) 
VJI ".p 'VJ) n 

For 9 = 0.0 we ebtain the Euler time integratien scheme which 

is also referred to as 'fully explicit' since the 

viscoplastic strain increment is completely determined from 

conditions at time tn' On the other hdnd, e = 1 gives a fully 

implicit scheme with the strain increment being determined 

from Èypn+l. The case of 9=1/2 results in the so called irnplicit 

trapezoidal scheme or Crank-Nicolson rule. The value of 9 

lies from 0.6 te .9 which is dictated by the shape of the Ëvp-t 

at the critical points (see Figure 3.1d) and aiso from 

equation 3. 28. 
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A qualitative diagram of the change of stress and viscous 
strain at a relaxing (critical) point in the rock mass 

( Figure 3. 1 ) 
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Referring to equation 3.1 , as a first (fast) i teration the 

viscoplastic strain increment is determined from conditions at 

t ime tn i. e 9=0. 0 • 

accuracy with 9=0.7. 

Other iterations follow to improve 

Referring to Figure 3.1 the analysis starts at point 0 before 

excavation at t=o. 0 and viscoplastic modelling starts and 

continues to time station tf at which an instantaneous change 

is applied (e.g elements cut or filled) th en viscoplastic 

modelling continues and so on. 

3.2.1 TIME DEPENDENT ANALYSIS: 

SEGMENT 1: INSTANTANEOUS RESPONSE 

Calculate the total load vector due to the sudden changes 

after excavation and hence solve the system under this loading 

conditions. This is given by :-

+ [NT i' dr - fB T a dO - Je Â u 
l' Q 0 (3.2) 

where NT , BT are the element shape function and strain 

matrices relating the nodal displacement of an element with 

the deforrnation u and strain vector respectively at a point 

wi thin this element. The formulation of element shape 

functions are described elsewhere [32]. P is the load vector 

due to applied point loads, fN T b dO 
Q 

is the global load 

vector due to body forces (own weight), [NT ïi dr represents 
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surface traction loading (side pressures and shears) global 

load vector, and f ST (J 0 da 
o 

is the balancing initial stress 

load vector which might not be in total balance with the first 

three terms because of a created cavity. 

K is the global stiffness matrix and âu is the required nodal 

displacements. 

The set of equilibrium equations of the global degrees of 

freedom in 3.2 is solved by a Gauss elimination equation 

solver [33] which divides the global stiffness matrix into a 

number of blocks in order to alleviate the storage limit 

problem while using a banded symmetric stiffness matrix. The 

equation solver has been modified for the optimization of the 

iterative explicit time integration scheme in which the 

triangularized (or decomposed ) global stiffness is stored 

for further use in the viscoplastic analysis (like equation 

3.8 ) and only the load vector enters the process of Gauss 

elimination. 

Direct access, unformatted files are used to store the 

element data and the calculated !l'ltrices like [DXB]4x8 for 

use in the coming viscoplastic analysis to reduce execution 

time . For each element, one direct access unformatted 

record is used to read, update and write the stress a and 

viscoplastic strain vectors etc •• at aIl integration points 

in order to minimize the computer storage requirements . 

SEGMENT 2: UPDATE THE STRESSES AND THE VISCOPLt\STIC STRAIN 
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RATE DUE TO THE INSTANTANEOUS CHANGE AT t=O. 0 (OR 

ANALYSIS IS AT POINT S) 

In the following steps integrations are actually done using 

numerical integration at four Gauss points within each element 

However for simplicity of interpretation the formulas 

presented below use the integration symbol f • 

Repeat the following steps for each element: 

Known:abf or (ao at t=o.O) bf • bf 
, €yp , €yp (see Figure 3.1), the 

element assigned material number (mat) to access the 

appropriate constitutive law iErnat,umat,Dmat and if the mat~rial 

is specified as a creeping one, the non zero integers: NY (MAT) 

and NCR (MAT) are used to access the forrns Frnat , QlTIat , cpmat. and 

their constants which are stored per material.( see Section 

4.3 cards 3,4) 

a)- Use the elernent nodal displacernent increments resulting 

from segment 1 to update stresses from a bf to Clat ; 

CI al - a bl + D B Il u (3 • 3) 

If the material of this element is specified by the user to be 

treated elastically ; skip steps b,c,d,e,f,q. 

b hl l ) - Use Clbf , €vp to ca culate the numerical value of the 

specified yield function Fmat «(vp' a) i 

If F < 0.0 ... no creep at this point -+ skip steps c, d, 

e,f,(and step q - is skipped if this happened at the four 

gauss points) 

c)- Get the viscoplastic strain rate vector 
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Calculate the value of the scalar creep rate ~ according to 

the creep law assigned ta the current material type. If the 

creep implies more than one yield function (like for each 

friction slider in Figure 2.19) the program checks the yield 

(or creep) of each mechanism to finally substitute in the 

appropriate form of ~ . 

Calculate the viscoplastic strain rate vector bl' using the 

specif ied plastic potential Qmat (a, Evp) • 

oomat 
~ - cI>-:=--

VPJ:J 00 ij (3.4) 

If the viscoplastic strain rate vector ivp is composed of 

different mechanisms with different flow rules like in Figure 

2.17 ; 

• , af (The updated values of a and 'vp correspond to aaf' Evp in 

Figure 3.1 res~ectively ). 

d) - Get the lue of ~ oF oF 00 000 (1.' f the y1.' eld va aF '-00 ' ~ , -a ' d vaT 0d 07 

function and plastic potential depend on J"J2D ,they replace 

or ,od respectively) which are important for monitoring the 

numerical stability during At f (or At, aft.er t=o.O) .see 

Section 3.3 for details and exceptions. 
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e)- Use the viscoplastic strain increment during a unit time 

(Afyp=Êyp*l) to calculate the load vector due to stress 

relaxation or relief per unit time of At, (or Atf after tf) 

which is still unknown; 

ve1 • - f B T D èvp d C (3 • 6 ) 
Q 

f)- Calculate the maximum allowable time increment according 

to the current state of element i ; At
maX

(I) using equations of 

section 3.3, and compare it with the minimum value of the 

preceding elements AtMINMAX. 

g) - Add the element out of balance load vector Velo (equation 

3.6) to the global out of balance load vector. 

*End of loop over elements 

Referring to Figure 3.1, the execution is at point 1 or point 

6. 

SEGMENT 3: 

a) - Use the mdximum allowable time increment at the most 

critical point AtMINMAx (see step f segment 2 ) to get the value 

of the tirne increment At f (At, at t= 0.0) by following the 

flow chart inside segment 3 in Figure 3.2 (In the flow chart 

if the analysis is at t=o. 0 then tf represents t=O. 0 and tff 

represents tf). Making sure when t=tf that t+Atf $ tff (or when 

t=O.O that t+At, $ tf ). 

b)- Get the true value of the global relaxation load vector; 

(3.7) 

59 



( 

( 

( .. 

c)- Solve and get the global displacements Au from 

K.1u-v 

The system is solved under V only and the 

triangularized form of the stiffness matrix is used. 

Update the total displacements: u - u +4u 

(3.8) 

stored 

(3.9) 

In the following segment tf and At f will serve as tn ' Atn 

respectively. 

SEGMENT 4: Inteqration of the creep rate over the time 

increment Atn 

Repeat the following steps for each element. 

At the end of a time increment say Atn_' and the beginning of 

new one At n 
n • n , 

:an ' Eyp' €vp' ütn are known at tn Cafter an 

instantaneous change these knowns at t=t f are . a .r 8f 
• af ' ~ vp , 

• ef 't (' ) t t 1 • 1 't lIt d (vp 'ü f see Fl.gure 3.1 or a =0.0 a"Eyp ,€vp ,Ü f ca cu a e 

at segment 2). 

a)-If the material is elastic skip this step. Otherwise; 

The first trial over Atn uses a fully explicit stepping i. e 

i =i n and assuming full relaxation in this step only vp vp 

.1.~ - è~ 4 tn 

~~1(1) _ .~+.1~) 

fi - fi - D Il c!;,) 
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b)- Update an for AI resulting from the application of 

the out of balance load vector ( which was assumed 0.0 in step 

a if this is the first iteration or in step q of the first 

iteration if this is the second iteration) 

CI - a + DB Au 

. , 

(3.13) 

If the material of this element is specified by the user to be 

l inear elastic , skip the followinq steps for the current 

element and start step a for another element. 

c) - Use an+1 ' E yp".1m to calculate the numerical value of the 

specified yield function Fmat «(yp' a) ; 

If F < 0.0 -+ no creep (or no viscoplastic strain rate) at 

this point ~ skip steps d,e,f,q,h,i,j, (and step k if this 

happens at the four gauss points ). 

d) - Perform step c in segment 2 to qet the plastic strain rate 

t . n+1 b d n+1 vec or Evp ase on an+1' (vp • 

e) - obtain an improved estimate of Eypn+1 using Éypn and ivpn+1 ; 

ftl;- - e ~ + (è ~ (1 - 8) + ~!;,1 0) A t n ( 3 • 14 ) 

Repeat steps:- c ( with (vpn+1 in place of Evpn+1(1) ),d,e to qet 

an improved estimate of fvpn+1, Èypn+1 • 

Referring to Figure 3.1 , analysis may be at point 2 or 4 or 

in between. 

f) -Get the correction of the total viscoplastic straln at this 

point; 

(3.15 ) 
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Where Eypn+1(1) is the estimate of the previous i teration i. e 

step a of the first iteration if this is the Second iteration 

QI step e of the second iteration if this is the third 

iteration and so on. 

q) - Update stresses for OEvp (assuming full confinement 

OEt=O. 0) : 

•. (3.16) 

h) - Obtain the out of balance load vector caused by OE yp 

~Vel' -f B T D ~8vp dO 
g 

(3.17) 

Obtain the values of ~, oF , oF, 00 00 (if the yield 
oF 00 d 00 T 00 d' 00 7 

function and plastic potential depend on ,J, ,J2D ,they replace 

or ' ad respectively) based on 0'n+1 and Evpn+1, which are important 

for monitoring the numerical stabili ty during ~tn+1 . see 

section 3.3 for details and exceptions. 

i)- Use the viscoplastic strain increment during a unit time 

(AE =Ë n+1*1) to get the out of balance load vector per unit yp vp 

time of Atn+1 which is still unknown. 

V e1 •
n

+
1 -f B T D~l dO (3.18) 

g 

j)- Get the maximum allowable time increment according to the 

current state of element i ~tmax(i) using equations of section 

3.3, and compare it with the minimum value of the preceding 

elements ~tHINMflX' 

k) - Assemble the load vectors OVel ., Ve l.n+1 into the global 

relaxation load vector 6V, vn+' : 
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' .... 

*End of loop over elements 

SEGMENTS: 

If accuracy is satisfied or the required number of iterations 

over Atn are done (whatever happens first) go to step b. 

a)- Apply the global out of balance load vector 6V to solve 

for the resulting global displacements: 

Update the total displacements; u - u + 6 u (3.20) 

To do a second or third i teration over the sarne time incrernent 

Atn : repeat the loop over aIl elements in segment 4 from step 

b to step t. 

Referring to Figure 3.1 the execution would be entering the 

2 nd (or 3 rd or 4 th •••• ) iteration over Atn to get an irnproved 

, t f n+l d' n+1 estIma e 0 a, (vp an fvp • 

b)- Now the required number of iterations over time step Atn 

are do ne (or accuracy is satisfied whatever happens first) and 

we reach tn+1 i.e t=t+Atn=tn+1. The value of Atn+1 is defined by 

following the chart in Figure 3.2 where AtHJNHAX is the minimum 

of time increment lirnits (Atmalt(i» for numerical stability at 

each integration point in the rock mass and tf the time 

station at which a sudden change may take place or the 

program may stop. 
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c)- Arriving at the start of flt~1' the program calculates the 

true out of balance load vector based on the first estimate 

of ' A~ ~1 = • n+1 At 
1 "vp (vp g ~1' 

v - Vl+l !:J. t n+1 + Ô V (3.21) 

where 6V is the residual of the previous fltn • 

- Apply the global out of balance load vector V to get the 

resulting global displacements; 

kâu-V (3.22) 

u-u+âu • (3.23) 

- Go to segment 4 and repeat what was done for fltn with fltn+1 

• n+1 • n 
, (vp as (vp and 0 and u. 

SEGMENT 6: 

The analysis arrives at point 5 in Figure 3.1 where an 

instantaneous changes like cutting elements (additional 

excavation) or adding elements (adding backfill) may be 

applied. It can also include adding external nodal loads or 

surface loading. 

A general equation would be as follows; 

p + [N T b dO + [NT iï dr - [ B T a dO + P added + [N T irdded dl" - K â u 

(3.24) 

The first three terms; P, represent 

external applied loads at time t=O.O (including the added 

changes at previous time stations ), o represents the 
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stresses just before tf (at point 5 in Figure 3.1) 

-If the changes inelude eut elements only the applied load 

would come from the unbalance between the external loads and 

the internaI stresses 05 (see Figure 3.1) because of the 

absence of elements cut at this time station i 

P+ fNTbdO +fNTBdr _fSTos dO-le âu 
cre 

(3.25) 

and the cut elements are skipped when the global stiffness 

matrix K is reconstructed form the element stiffness matrices 

(k = fB
T 

DBdCl ) and stored for the subsequent viscoplastic 
e g 

analysis. 
-If the changes include only added loads (surface or nodal) 

equation 3.24 is written as followSi 

P added + J NT irdded d r + ~ V - le 0 â u ( 3 • 2 6 ) 
r 

where Ko is the initial global stiffness matrix which remains 

unchanged. The creep process redistribute the stresses 

throughout the rock mass but it does not affect the 

equilibrium between the external forces and the internaI 

stresses so in this case equation 3.26 is used because in 

equation 3.24 when there is no cut fBTodQ - fBTosdO - fBTOldQ 
g a a 

is in total equilibrium with The 

residual out of balance load vector (from the last iteration 

of the previous time increment ) has to be added in equation 

3.24 only, because in equation 3.24 or 3.25 its effect is 
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included in (- fSTosdO ) (see equation 3.16 ). 
a 

- The backfill is represented by adding or replacing existing 

elements with elements of new properties and zero internaI 

stresses (u ~ 0.0) . The program reads their properties and 

construct their records of data needed for the coming analysis 

and adds the related loads (body or surface loads) to the 

global load vector The backfill stiffness is added to the 

global stiffness matrix te contribute in the response to any 

external or future relaxation loads (like in equation 3.22) . 

The three types of changes ;cut,fill and added loads can be 

specified simultaneously at tf (see section 4.3 cards 

8,9,10,11). This is particularly useful in the analysis of 

rocksalt mines. 

After obtaining the elastic displacements (âu) in response to 

the applied sudden loading, the program updates the stresses 

and v iscous strain rate by executing the loop in segment 2 

after which the analysis may continue or stop according to 

what is specified by the user (in card 12 of Section 4.3). 

3.2.2 TlME INDEPENDENT ANALYSIS 

When the viscoplastic model is used to predict an 

elastoplastic response , the time is a fictitious variable and 
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tf does not exist in the input data (see Section 4.3 card 1 ). 

The applied load of the instantaneous change (Equation 3.24) 

is divided into a number of increments NINCR (specified in the 

input data file card 5. ) in order to obtain the incremental 

viscous plasticity solution, see Figure 9. In this case the 

first increment of the global load vector; 

Liner - 1 (P+JNT b dO +JNT t dr _JST 00 dO) (3.27) 
NINCR D r Q 

is applied and the elastic displacements response obtained 

from Ko Au = Liner are used to update the stresses and 

viscoplastic strain rate in the loop of segment 2. If the 

yield limit is exceeded at any point of the structure the 

viscoplastic stepping starts and the relaxation due to the 

viscous strain rate is redistributed throughout the rock mass 

by executing segment 4 and segment 5 (step a,b only) for the 

successive time Increments (At, , Atz, ...• ) untill the yield 

function F (a, €vp) at the most critical element of the rock mass 

is less than a small positive number (depending on the stress 

unit used in Card 2 of Section 4.3). At this po.i.nt 1 the 

execution is transferred to segment 5 where the fOllowing 

load Increment is applied ; L incrZ = Liner +6V where 6V is the 

residuaL out of balance load vector of the last Iteration over 

the preceding At. The elastic response is obtained from 

.. AU - L 1.' s obtal.· ned AO ~ - incrZ The stresses and viscoplastic 

67 



( 

.;( 

strain rate are updated in the loop of segment 2 and so on. 

The program stops when a stabilization is obtained after the 

full load is already 

applied. 

3.2.3 MORE ABOUT THE PROGRAM 

Whenever the program produces results of the stresses and 

deformation at any time station using segment , it calculates 

the sign of which is the same as ~ --ÈiL to 
àeVPJ.:J • 00 ~J 

àetermine if the behaviour at this point is stable ( negative) 

or uns table (positive) (see Figure 4.16). The analysis may 

be performed for elastoplastic response (by the theory of 

elasto-viscoplasticity) then the creep analysis starts based 

on the obtained elastopl~stic distribution of stresses. ln 

this case for each material the user has the option to specify 

a yield function for the elastoplastic simulation and a yield 

function and creep law for the creep behavior (see Section 4.3 

If after the elastoplastic analysis the 

behaviour of an element was checked using the postprocessor 

to be sOftening (or perfectly plastic) one might specify 

properties of incompressible weak material (high poisson' s 

ratio) for this element at the start of the creep analysis 

to avoid adding stresses over its yield limit during 
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SEGMENT 1 

INITIAL ELASTIC ANALYSIS 

----.---------"t---------.-------.. -

UPDATE STRESSES AND VISCOUS STRAIN RATE 

DUE TO INSTANTANEOUS CHANGES 

t --------------~---------_._--- _._._ .... -
SEGMENT 3 

N 

.c:: 
~ .... 
) 

QI 
~ 
0 

y ), 
0 

when--.- __ . ____ . __ . ________ -y--_.....L. ___ . __ -.--.. --.. .--.. - - -- .-

tf=to 
l---------------'------.-------.-.--

~I 

SEGMENT 4 
1 

VISCOPLASTIC ALGORITHM 

ANOTHER ITERATION 
OVER At n STEP b,c,d,e,f ... 

. _------1------------... -_.--._-

FLOW CHART OF PROGRAM vrSA2D 
(continued in the followinq page) 

( Figure 3.2 ) 
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L .. 
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INSTANTANEOUS CHANGE 
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Flow chart of program VISA2D 
( Figure 3.2 ) 
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the creep process. Or instead, one may specify for this 

element, a creep law giving (a~/aF) equal to the surrounding 

rock as being function of the same yield function used for the 

elastoplastic behaviour (to avoid numerical instability) . 

In this way the effect of the short term and time dependent 

plasticity are simulated by an iterative explicit time 

integration scheme with sorne interference by the user while 

automating this feëture inside the program is not done yet._ 

In the above discussion there is no focus on a specifie 

constitutive law because the numerical model can with ease 

adopt di f [erent kinds of yield functions and creep laws 

suitable for the different rock types under different 

conditions and possibly in the same problem as mentioned in 

section 2.3 , 2.4. The subject of numerical stability is 

reviewed in the following section. 
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3.2 NUMERICAL srABILllY OF A FULLY EXPLICIT 

riME srEPPING SCHEME 

The value of the time increment used inc;ide the program 

depends on the creep law , yield function and plastic potential 

dictating the rate of viscoplastic strain rate as in equation 

2. Il The concept used here is the same used in reference 

[17]. 

In a nonlinear viscoplastic strain behavior at which the 

stresses change with time and for rocklike materials , the 

stress a is the most effective variable in the viscoplastic 

rate and the nurnerical instability which is the oscillatory 

change of the creep rate is caused by the oscillatory change 

of stresses • If ~ is the change in the creep rate during a 

l'-lit time, as a first step, we try to express it in terrns of 

the creep rate itself ~ ; 

(3.28) 

Therefore let us first consider in the following that F=F(a) 

and; e - ~ (F) ~ • Assuming that Q depends on a=J20
Vr , 

VPJj oa ij 
J 1 only which is the common case of plastic potentials 

having a revolutionary surface around the axis of the 

hydrostatic stress conditions (a, = u 2 = 03) the stress and 

plastic strains become coaxial in the plane of a,J1 and it 
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can easily be shown that the inelastic strain corresponding to 

a ,J, are ; 

t d - -e e· - _ ..... -= ( 
1 )V. 1 oQ 
2 ~J ~J 2 '1' 00 (3.29) 

(3.30) 

It is assumed that the viscous strain increment causes pure 

relaxation i.e A't= â'. + A,vp = 0.0 at the most critical 

points of the rock mass which is a theoretical conservative 

assumption. Using this assumption (d't=O.O) ... dEe=-dfl at a 

critical point of the rock rnass and the corresponding change 

of stresses is obtained by using the elasticity relations of 

an ~30tropic material ; 

-~ ~ (2 G) - - 1. ~ E oQ 
o - 1 Ca (3.31) 2 + v 

jl - - ~~ E 
- - 3 ~ 

E 00 (3.32) 
1-2 v 1-2v oJ1 

Taking also the common case that the yield function is 

dependent on -a, only (like Drucker and prager yield 

function ) the change in F during unit time of ât can be 

expressed as follows ; 

oF - oF 
dF- oa da + - dJ èJ

1 
1 

È' _ - o~ ( l:. «j) ~ (0) _ oF ( j cl> E 00 ) 
00 2 1 +v 00 oJ1 1 - 2 v èJ1 

(3.34) 
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In equation 3.34 it is assumed that the viscoplastic strain is 

not causing hardening or softening by changing the value of F 

or directly affecting ~ (this case will be explained later) 

For now we get : 

d~ _ ~ _ c3~ F 
dt oF 

d ~ _ _ à$ ( .!. ~ ai' 00 + 3 E éJF éJo ) ~ 
dt oF 2 1 + v 0 a 00 1 - 2 v éJJ1 oJ1 

(3.35) 

comparing equation 3.35 with equation 3.28 we get 17, as 

follows; 

(3.36) 

The equation Y = -17 Y is popular mathematically (see Figure 

3.2 (17)). If this equation is integrated using a fully 

explicit time integration scheme the time increments should be 

less than a certain limit Atcrit=2/17 which admits stable 

oscillatory convergence to steady state and Atmax = Atcrit/2 

represents an upper bound for non oscilla tory stable 

predictions [17]. In our case the value of Y which corresponds 

to ~ can never be negative i. e ~ - -''h ~ is not unstable 

numerically by itself. 

But if the tirne incrernent used to integrate this equation and 

multiplied by the viscous rate to qet the relaxation stress 

increment at aIl the critical elements of the rock mass is 
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higher than Atcrit an oscillation in the transfer of the 

relaxation load from one element to another occurs, i . e 

referring to Figure 3.3 the stress a of an element relaxes 

during Atn to reach point 1, but carries the relaxation loads 

of the adjacent elernents during Atn+' to reach point 2 and so 

on. Based on that, equation 3.37 gives Atmax=Atcr,t/2 for yield 

functions and plastic potentials depending on J, and Ci only : 

At . _ (l+v) (1-2v) 

cnt éHP E (..!. (1-2v) a~ 00 + 3(1+v) aF 00) (3.37) 
oF 2 oa êTa aJ1 oJ1 

Applying this general form to Orucker-prager associated 

viscoplasticity where the yield function is of the form : 

where 

shown 

AtcrH 

• is the 

that 

F - 2 sim" J + .f3 o-const 
3 -sim" 1 

angle of internaI friction 1 

oF aQ -/3 - --Ga aa 
oF 00 ------ 2 sin V 
oJ1 OJ1 3 - sinV 

is obtained by substituting in equation 

2(1+v)(1-2v) (3-sinV)2 

(3.38 ) 

it can easily be 

3.37 as follows 

~ E(; (1-2v) (3 - sim,,) 2+12 (1 + v) Sin2v) (3.39 ) 

This result is the sarne as that given by Cormeau [4] for 

Orucker-prager yield function. However this approach is more 

75 



( 

( 

general and easier to be applied to a variety of yield 

functions and flow rules. 

When the yield funetion and plastic potential are concerned 

with the plane of minimum and maximum principal stresses like 

Mohr-Coulomb, Tresca, or the yield function of reference [13] 

the total stress 0T=0,+03 clnd the differential stress 0d= 1 a,
°31/2 monitor the hydrostatic and deviatoric component of the 

appl ied stress in place of J, and J 20 1/2. 

In this case the corresponding plastic strain inerements are; 

(3.40) 

(3.41) 

using the same assumption of Èt = Ee + ÈP =0 and the 

elasticity relations for an isotropie material in plane the 

negative change (relaxation) in the dynamic yield function is 

controlled by the ad' aT as follows ; 

(3.42 ) 

E el' _ (_) 2 E a" ~ (3.43) 
(l+v) (l-2v) or (l+V) (1-2v) 00 T 

And proc,~eding in the same way as equation 3.37 the critical 

time limit âtcrit for oscillatory stable response is given by; 

2 (l+v) (1-2v) 

~ E (..!. aF oQ (1-2v) +2 oF aQ) 
oF 2 00 d Da d ca T ao T 

(3.44) 
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where ar=a,+a] and the differential stress ad= 1 a,-a3 1 /2. 

considering Mohr-coulomb yield function , 

(3.45) 

where • is the angle of internaI friction , and considering a 

plastic potential in a similar form ; 

where a here is the dilation 

oF -2 
00 d 

angle • In this case ; 

oQ -2 
00 d 

oQ sincx 
00 T -

(3.46) 

Substi tuting in equation 3.44 we reach the sarne expression 

found in reference [17] for ât~x ; 

(l+v) (1-2v) 
t. ecrit - ~ 

2 oF E (1-2v +sinwsincx) 
(3.47) 

In the derivation of equation 3.37 or 3.44 it is assumed that 

â€=O.O meaning a full relaxation caused by the yielding at 

the most critical point which is on the safe side • When â€ 

". 0.0 the numerical stabil i ty becornes less cri tical and higher 

limits for âtmax can be used • For example in case of constant 

stress creep experiment where A€ = A€vp At is not limited by 

equation 3.37 or 3.44. 

The strain hardening aff~cts the accuracy of the solution but 

not the numerical stability. In arder to take the effect of 
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strain hardening or softeni.ng in the equation ~ - -Tl 4> where 

Atmex=l/l1 and noting that 
~ oQ = (Oe • --aa- ) tI> and 

VPlj ij 

equation 3.28 is rewritten as follows: 

~ - -1') 4>--( 1')1 - ~. -ÈfL) ca. 
c3evp àa ij 

.•• (3.48) 

where '1, is given by equation 3.36 when the yield function is 

dependent on 0, J, . And when the plastic flow is in the plane 

of maximum and minimum principal stresses and if the strain 

hardening or softening variables are e 1
d and E 1

T which are the 

allowable plastic strain parameters for isotropie hardening; 

(3.49) 

where: 

~E 
_ oF (1:. (1-2v) dF 3 Q + 2 aF dQ) 

'h ( 1 + v) ( 1-2 v ) 2 d a d ào d ào T àa T 

(3.50) 

In the above equations if El d and Eivor El T appear in F rather 

than tI> and with strain 

harding '1 increases but with strain softening ry decreases and 

Atmax increases. Using the same approach the work hardening 

can also be considered in Atmax' 

However in both cases for early stages of primary creep giving 

considerable hardening the accuracy of the solution has to be 

considered especially for low values of E (soft rock and soil-

like materials, see equation 3.44) like examples 1,2 in 

section 4.4 

The preceding forro of At is simplified and easy to program 
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espeeially in the 3 dimensional state of stress. If the yield 

function or the plastic potential are anisotropie like 

equation 2.31 or contairu the effeet of J 3D • the general form 

given in referenee [17] should be used 

(3.51) 

Hp is a viseoplastic strain 

hardening parameter (see referenee [17]). 

It has to be noted that effect of the assurned relaxation in 

the deviatoric stress increment during ât~x is considerably 

higher than the volumetrie one The simplicity of 

considering only the deviatoric part may justify using a 

si.. 'c:lified forro of âtmax in case of complicated forms of yield 

functions and plastic potentials as a factor of âtcr1t is used. 

Another limit on numerica1 stability is irnposed by the 

numerical integration itself. Transferring the relaxation 

stress j ncrements from each integration point wi thin an 

element to nodal forces and the vice versa with the nodal 

displacements Cafter solving) to get the redistributed 

stresses (equation 3.13) , is based on a linearized process 

which imposes a !irnit on ât for the explicit as weIl as the 

implicit scherne especially when the change of the internaI 

stresses : and hence the viscous relaxation rate) are high 

within relatively big elernents. 
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Numerical prediction for dy --T}Y using the explicit scheme 
dt 

( Figure 3.3 ) [17] 

element 1 (higher creep 
1 rate) 

.\/ ......... j '" ','" 
Itablt l 
nurntrloal predlotlon .& t ( "tUI \ 

1 

ItaUo oondltlon 
F-o.O 

• t 

The effect of the time increment on numerical stabili ty 
(Figure 3.4 ) 
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CHAPTER 4 

USER'S GUIDE TO COMPUTER PROGRAM 

4.1 INTRODUCTION 

The input data of the program VISUD goes in parallel with 

the elasto-viscoplastic analysis to be performed. The program 

starts by reading the necessary data for the elastic analysis 

so that the user may examine first the elastic response 

without having to enter data for viscoplastic analysis. So 

the major part of the input file (file. VSC) includes data like 

nodal coordinates degrees of freedom element 

connectivities, elastic properties of materials, distribution 

of initial stresses 00 and initially applied loads. This 

part is generated using the preprocessor program PREBAP. It 

reads a free format file (file.dat) and generates the first 

part of (file. vsc) • The same data file can be used for 

viscoplastic analysis by adding a few more data cards as 

described in Section 4.3. If an input error is detected, the 

program stops giving the user an error message te rectify the 

error. The program can then be resta -ted from where this 

mistake occurred and the previous analysis is net lost. The 

program is assisted by three graphical programs to check the 

input files and to illustrate the output as will be explained 

later. In section 4.4, the model verification and two 

8J. 



examples are demonstrated. 

4.2 DESCRIPTION OF INPUT DATA FOR ELASnC ANALYSIS 

In this Section, the ~.nput data required for the computer 

program is descril>ed. Inputting the data is usually time 

consuming and aiso requires considerable effort for error 

checking if the user is not assisted by a preprocessor. The 

user writes a simplified free format data file (file.dat) 

configuring the problem layout as zones of different material 

properties, grid density and simulating the openings and 

possible mining sequence. First, the user runs a graph ics 

program called ZONE to view the problem layout (zones and 

openlng) on the computer screen. program PRESAP reads this 

user-written file (tile.dat) and generates the finite element 

grid with the required mesh density and grading for each zone 

and specifying openings and different rock types to the 

computer program in file (file.vsc). 

In the following the sequence of input data (file. dat) to the 

mesh generator PRE SAP is given. The use of the program is 

demonstrated through numerical examples in Section 4.4 This 

program generates the output file of program SAP2D for which 

LL=l and NPROB = 1 is also the first section of the input file 

(file.vsc). 

Card 1 • Headinq ca rd 

TITLE The master heading information for use in 

labelling the output 
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CARD 2. Control card for finite element mesh qeneration 

NZNP 

NVZONE 

NSPANl 

NSPAN2 

NPROB 

NFOLD 

ANGLE 

Ca rd 3. 

Number of zone nodal points 

Number of non-void zones 

Humber of spans in ~ direction 

Humber of spans in '1 direction 

Humber of subproblems simulating a mining 

sequence. (Enter 1). For mining sequence in 

viscoplastic analysis, see Section 4.3 

= 1 if mesh is fanning 

= 0 if mesh is rectangular 

Angle between gravit y and x axis (measured 

according ta the X-y axis used) 

Subdivision of zones in ~ direction 

NSBDVl {NSPAN1) Array defining the nurnber of subdivisions in 

~ direction. (see Figure 4.1,4.2) 

Card 4. Subdivision of zones in ~ direction 

NSBDVl (NSPAN1) Array defining the number of subdevisions in 

'1 direction. (see Figure 4.1,4.2) 

CARO 5. Data of zone nodal points (NZNP cards) 

N 

NCODZP(H) 

Hode number 

code for degrees of freedom (DOF) at 

the node 
= 0 , bath X and Y DOF are f!. ee 
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= 1 ,X fixed and Y free 
= 2 ,X free and Y fixed 
= 3 ,both X and Y DOF are fixed 

XZP(N) X coordinate 

YZP(N) y coordinate 

CARD 6. Data of zone node numbers and boundary loadinq 

(NVZONE cards + loading cards) 

a) Nodes 

N 

IZ (8,N) 

MATZ (N) 

NCUTZ (N) 

NUMPC 

b) Loads 

N5IDE 

Pl 

P2 

51 

Zone number 

Node number defining the zone : see 

Fig. 4.3 for order or sequence 

Material nurnber associated with zone N. 

eut number associated with this zone of 

elements. NCUTZ(N) is compared with NCOUNT 

entered in card 6 of section 4.3 (for each 

time station) If NCUTZ(N) = 0 the elements 

are cut in the elastic analysis. 

Number of sides subj ected to surface 

loading. (0 to 4) 

NUMPC cards (If NUMPC=O , skip this card) 

side number (=1, 2, 3 or 4); see Fig. 4.4 

for details. 

Pressure at the first node 

Pressure at the second node 

Shear at the first node 
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CARD 7. 

NBE 

LL 

NPRNT(1) 

NPRNT(2) 

NPRNT(3) 

NRES 

ICONC 

SCALE 

NUMMAT 

NSTR 

Shear at the second node 

Control card for finite element analysis 

Boundary elements (=0 here) 

t!umber of load cases (,:: 1 here) 

=1 to print input data 

=0 otherwise 

=1 to print nodal displacements 

=0 otherwise 

=1 to print stresses 

=0 otherwise 

=1 to inelude initial stresses; 

=0 otherwise 

=1 to inelude eoncentrated forces; 

=0 otherwise 

Geometrie seale factor to be multiplied by 

X and Y eo-ordinates of points 

Number of materials \.lsed 

=0, axisymmetric analysis 

=1, plane starin analysis 

CARD 8. Data of materials used ( NUMMAT * 2 cards ) 

(a) Material Classification 

M Material number 

WT (M) Weight per unit volume 

ISO CM) =1, isotropie material 
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=2, anisotropie material (elastic analysis 

only) 

(b) Isotropie material properties ( If ISO (M)=2, Skip this 
card) 

E 

R 

CARD 9. 

AINIT(8) 

Young's rnodulus of elastjcity 

Poisson's Ratio 

Initial stress data (If NRES = 0 skip this card) 

Array defining 8 coefficients to be used for 

the calculation of initial stresses Gox 1 

GOY' Goz 1 r oxy respecti vely as linear 

functions of Y. Each stress component 

requires two coefficients a, b 

such that G = a + b Y 

For the case of initial stresses developed 

in a plane strain condition ; 

G oz = V ( 0' ox + a Oy) 

For the case of initial hydrostatic state; 

G
OX 

= O'Oy= O'oz. In an axisyrnrnetric problem Gr 

replaces x , z replaces y and 0'0 replaces O'z 

CARD 10 Coneentrated loads - any number of cards endinq wi th 
a blank carèl 

If ICONC = 0, skip this card group 

N Node number 

L Load case ( =1 here) 

FX(L,N) Force in X-direction at N for load case L 
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FY (L, Nj Force in Y-direction at N for load case L 

CARD 11. Force multipliera used by MSAP2D for each load 

case. (Put any 5 numbers separated by spaces here. These will 

not be used in progr~ VISA2D ) 

The input data generated by PRE SAP represents, in case of a 

dense rnesh, about 95% the size of (file.vse) which ean be 

ehecked graphieally by program MESH2D. This graphical prograrn 

shows the finite element gr id with node numbering and elernents 

eonnectivity. Beeause sorne of the input data of Section 4.3 

rnight be linked to specifie elernents or node nurobers of the 

actual finite elernent grid, it becarne convenient to generate 

the finite elernent gr id first in (file.vsc) (based on 

file.dat) then the user (after cheeking i~) proeeeds to the 

viseoplastie analysis by appending a free-forrnat viseoplastie 

input data to file.vsc. Any referenee to elements or nodes 

~fould then be possible ( a zoorned-in plot of the grid as in 

Figure 4.9 is useful). 
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~----------------~~x 

(a) Physical domain 

2 2 ~ 2~ 
13 14 16 16 

1 ~ 1 ~ 2' , le 11 12 

1 ~ 1 3 1 ~ 
G , 7 8 

6 8 ID 
1 2 3 4 

1 2 3 6 

~----------------E 

Cc) Node and element 
numbering 

. 

- s 

~-----------------~ 
(b) Key dia':lram 

&Mesh discretizinC) 

y 

t 

, 
1 2 3 .. 6 

26 

.. X 

(d) physical domain after 

being discretized 

Mesh generation scheme 
( Figure 4.1 ) 
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1J C.) TYPICAL STRUCTURE " ( ~) KEY 0 r AeRA" 

.. 

1 2 

Mapping a typical structure tv a key diagram 
( Figure 4.2 ) 

" 'J :1 " 
., 

• , 

1 1 

Model zones 
( Figure 4.3 ) 
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p1 

positive sign directions of surface loading 
(loadjunit area) acting at elernent or zone sides 

( Figure 4.4 ) 
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4.3 VISCOPLASTIC INPUT DATA 

This section describes the simple free format input file of 

the viscoplastic data written directly to the input file 

(file.vsc) (see Appendix) after the formatted data has bean 

generated by PRESAP. 

CA RD 1 WHAT TO DO AFTER SOLVING FOR THE ELASTIC RESPONSE 

STATUS END or STOp2 : The program stops after the elastic 

analysis. ~r; 

CONT :The program proceeds to time dependent 

analysis or; 

OUP&CONT :The program proceeds to time dependent 

analysis after generating output files. 

VIseo The program uses viscoplasticity to 

obtain elastoplastic response. 

CARD 2 SOME UNITS USED TO CONVERT THE CONSTANTS USED BY THE 

PROGRAM AS LOWER LIMITS INSTEAD OF AN ABSOLUTE ZERO FOR THE 

ASYMPTOTIC CONVERGING EXPRESSIONS 

STUN The stress unit expressed in MPa (for checking 

the yield function against .005 MPa) 

FUN 

TMUN 

The force unit expressed in Mega-Newtons;lE+6 N. 

The time unit of the creep strain rate ifJ [time]"' 

expressed in seconds . This is used through the 

time dependent analysis and is not important if 

card 1 is entered as VISeO. 
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MXTR 

NOTR 

TMMUL 

Example:if Young's moduJ.us (E) and stress'9S are 

in psi ~ STUN=lj145, FUN=9.81/2.21/10e+6 and if 

~ is strain per day enter TMUN~24*60*60=86400 . 

The maximum number of time increments after which 

the program gives the maximum yield function and 

asks the user whethe~ to stop or to continue . 

The number of iterations per time increment ât 

which is effective from t=O.O to tf 

NOTR = 1 ~ fully explicit and faster 

NOTR > 1 ~ Iterative explicit with higher 

accuracy. (use 2 or 3 •• ) 

A factor multiplied by âtmax (given by Equation 

3.37 or 3.44) which is effective only from t=o.o 

Normally put this factor = 1.0 unless 

higher accuracy is required for primary creep of 

rock with low Young's modulus E (see example 1 in 

section 4.4). 

CARO 3 Viscoplastic properties of material number MAT 

MAT Material number for which the following data is 

entered 

TENS (MAT) The tensile resistance of this material (use a 

high tensile resistance if not interested in 

tension checking and relief 

NY (MAT) A number corresponding to the type of yield 
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function and plastic potential used and in sorne 

cases the creep law as weIl 

NY (MAT) =1 -+ Mohr-Caulomb Equation 2. 4a and as a 

plastic potentic31 without strain hardening (Y1=Yo) • 

NY (MAT) =2 -+ Drucker'-Prager Equation 2. 4b and as a 

plastic potential without strain hardening(Y2=Yo ) 

NY(MAT)=3~10 are planned ta point to other 

common types of yield functions . 

NY(MAT)=ll -+ Tresca Equation 4.4 i5 used (case of 

the axisymmetric analysis of example 2) with 

Y1=0.O and is used also as a plastic potential. 

At the same tj me i t directs the execution to 

Equation 4.4 as a constitutive law. 

NCR (MAT) A number pointing to a creep law from a 1 ibrary 

CARD .. 

of creep laws ( When NY (MAT) > 10, it directs the 

execution to the creep law ~s weIl ) 

NCR(MAT)=l -+ qJ is given by equation 2.26a (time 

hardening) 

NCR(MAT) =2 -+ cp= F for time independent plasticity 

NCR(MAT) =3 -+ ~ is given by equation 2.26c 

(strain hardening) 

This might be one or two cards (lines) qiving the 

constants of the forms of yield function, plastic potential, 

and creep law assiqned to this material type (by NY (HAT) 

,NCR(MAT» • 

When NY(MAT)=11 (exdmple 2) Card 4 is two lines the first 
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contains a 1 ' Y10 of equation 2. 4a and the second contains the 

constants of equation 4.1 In example 3 of Section 4.4, 

NY (MAT) is entered 2 and card 4 is one line containing a1 , Y,o 

( see Appendix ) while NCR(MAT)=2 implies no input. 

Cards 3,4 should be repeated until MAT in card 3 is input as 

o at which the prograrn jumps to card 6 witil materials not 

specified remaining elastic through the viscoplastic analys.i s. 

Decision : If card l is specified as VISC, the program jumps 

to ca rd S'. 
The following cards are entered for each time station tf , 

tff' etc. In the following to=O. 0 is assumed as the current time 

station and tf is the coming time station (see F iqure 3.1). 

CARO 5 This is a blank card serving as a separator between 

cards of successive time stations (see Appendix~ • 

CARO 6 

NCOUNT This is a number associated with the current time 

station tf • It 1s entered such that when compared 

with the cut number of each element NCUT jl which 

is basically that of its zone (see section 4.2 

card 6), determines if the Element is to be cut 

or to remain active according to the following 

relation: 

NCUT
1 

:$ NCOUNT 

NCUT j > NCOUNT 

~ the element is cut 

~ the element is active 
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CARD 7: 

tf 

UNIT 

NOTR 

TMMUL 

NCUYN 

The time (tf > at which the changes occur (Fig. 

3.1) 

A character variable defining the time unit used 

to enter tf and should be one of the following: 

'SE' -+ tf is in seconds 

'MI' -+ tf is in minutes 

'HR' -+ tf is in hours 

, DA' -+ tf is in days 

'WE' -+ tf is in weeks 

'MO' -+ tf is in months 

'YE' -+ tf is in years 

The number of iterations per time increment !t 

which becomes effective from tf to tff 

NOTR = 1 -. fully explicit and faster 

NOTR > 1 -+ Iterative explicit with higher 

accuracy.(put =2 or 3 or 4) 

A factor rnultiplied by !tmax given by Equation 3.37 

or 3.44 which will become effective only from tf 

to tff' Normally put this factor = 1.0 unless 

higher accuracy is required for primary creep of 

rock with low Young's modulus E (see exarnple 1 in 

section 4.4>. 

Indicator to the prograrn to reconstruct the 

global stiffness matrix in case of excavation 

seqt~ence. Use NCUYN = l if the relation of card 
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6, which is checked for each element, will resul t 

in sorne elements (active before tf) to become cut 

at this time .QX if card 8 is used to specify a 

range of element numbers to be eut at this time. 

Otherwise enter NCUYN = 0 • Thi~ is important 

because the program will not spend time in 

reconstructing the stiffness matrix and getting 

its triangular decomposed form unless NCUYN = 1 

or the first occurence of card 9 ~ 0 (i. e case of 

backfilling ) 

After ~eading card 7 the execution proceeds for viscoplastie 

analysis and adds time increments till when t=t! at which i 

If NCUYN = 1 it reads eard 8, otherwise it jumps to card 9. 

CARO 8 In this eard, a range of elements are implicitly 

speciried as eut by chanqinq their eut number. 

MeTi 

MCTj 

NCUT 

the first element in the range MCTi:MCTj 

the last element in the range MCTi:MCTj 

the cut number of the range of elements MCT i: MCTj 

For example if NCOUNT = 3 (see eard 6) , specify 

NCUT = 3 for these elements to be excavated at tf 

and remain eut afterwards. 

This card should be repeated for different ranges of elements 

untill MCTi is entered O. 

For example if NCUYN=l and the cut sequence of card 6 in 

section 4.2 is sufficient for excavation steps put 0 in the 
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first oeeurenee of this cardo ( see Appendix ) 0 

CARD 9 In this card a range of elements are specified to 

to be tilled. 

MFli the first element in the range MFLi :MFLj 

MFLj the last element in 'the range MFLi: MFLj 

MAT the material number of the baekfill in the 

elements range MFLi:MFLj 

This card should be repeated for different ranges of elements 

baekfilled at tf untill MFLi is entered as O. For example if 

there is no baekfill at tf put 0 in the f ~ rst oceurence of 

this card.(see Appendix). If at the eurrent time station a 

group of elements M,:M2 are eut and filled , this eard would 

be enougho 

CARD 10 Nodal loads added at this time station 

INO node number at whieh the added nodal load is 

applied 

Rx X eomponent of the point load 

Ry y eomponent of the point load 

This eard should be repeated till it is entered as 0 o( see 

Appendix ). 

CARD 11 This card de scribes the added surface loads at one 

or more sides of element M. 

M element number ( a non eut element) 

NPRSD number of sides subjeeted 0 pressure or shear. 

The following should be repeated NPRSD times (in the same 
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line). 

k Side number (see Figure 4.4) 

Pl (k) pressure at node 1 of this side 

P2(k) pressure at node 2 of this side 

Sl (k) shear at node 1 of this side 

S2 (k) shear at node 2 of this side see Figure 4.4 

This card (card 11) should be repeated until M is entered 0 

After reading cardes) 11. the program appl ies the 

instantaneous changes at-Ltt) and computes the displacements 

as described in Section 3.3 (Equation 3.24 or 3.250r 3.26), 

then it reads the following card to know what to do next. 

CARD 12 what to do next 1 

STATUS STOP' -+ the program stops 

or 

OUP&CONT -+ the program reads card 5,6,7 mainly to 

identify the next time station (say tff)' It 

updates the stresses, viscoplastic strain rate 

due to changes at tf and produces output (Segment 

2 in Section 3.2) then continues the viscoplastic 

analysis tUl arriving at t=tff where it reads 

cards 8,9,10, Il of tff and so on. Note that tff 

should be ~ tf 

CONT -+ the sarne as above except no output is 

generated at tf' 
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The program stops when card 12 is entered as STOP1. If an 

error in the input file is encountered, the program stops 

after identifying the line of input error. Once the input data 

is corrected the program restarts the reading from that line 

and the previous analysis is not lost. 

The following cards are related to the case of time 

independent analysis and entered after card 4; 

CA RD 51; 

NINCR The number of increments required to simulate the 

incremental plasticity by the theory of 

viscoplasticity (see Subsection 3.2.2 and Figure 

2.9 ). 

If the user is not interested in creep behavior 

after the nonlinear (short term ) behavior hejshe simply puts 

card 6 1 as 0 and skips card 7 /• The two cards are the sam€: as 

cards 3 and 4, and they are used to input yield functions and 

creep laws of materials which will exhibi t time dependent 

behaviour after the elastoplastic analysis. 

2 Whenever STOP or END is read the program updates the stresses, 
viscoplastic strain rate and total displacements. It produces output 
and stores the data necessary for continuing the same analysis later 
(after asking the user if he wants 50. 
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4.4 MODEL VERIFICATION AND IU.USTRATIVE EXAMPLES 

4.4.1 INTRODUCTION: 

In this ehapter a comparison between the model prediction 

and an analytical solution, which may be viewed as a way to 

verify the model, is presented. Two other examples are used to 

illustrate the use of the program to model eut sequence and 

its use to model the elastoplastic behaviour using the theory 

of elasto-viscoplasticity. 

4.4.2 EXAMPLE 1: ( MO DEL VERIFICATION) 

In the fOllowing, a comparison between the numerical model 

predictions and the analytical solution derived by Sulem et 

al. [14] is presented. The solution derived is for an 

axisymmetrie problem involving a cireular tunnel opening of 

radius ro in a hydrostatie ground stress field ao. Assuming 

that the rate of ereep or the total creep strain to be 

linearly proportional with (ao - Gr)' i.e. 

(4.1) 

it was shown that, 

a r - a, [1 - l ( ~rl . (4.2) 
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and 

..!:!. _ 2 i.. ° 0 . f ( t) . (r 0)2 + Â (J 0 ( r 0 )2 
l A r 2G r 

(4.3) 

where Â = 1 when neglecting the face advance effect, A is a 

constant and G is the shear modulus of elasticity. In order 

to run the comparison of results, a finite element grid was 

constructed for the purpose of numerical modelling; see Figure 

4.5 The following data has been used to generate the results 

shawn in Figure 4.6: 

00 = 2 MPa, A = 256 MPa, E = 360 MPa, G = 150 MPa, v = 0.2, 

f(t) = 1 - [0.2/(0.2 + t) ]0.3 

Q = F = 0, - a 3 

and, 

aF èvp - 7.2308 X 10-4 (t + 0.2)-1.3. F. --aOij 
(4.4) 

The effect of e, used in Equation 3. 1 on the integration 

scheme is very significant at early stages of primary creep 

whereby a considerable time hardening t,akes place. A value of 

e of (0.7 - 0.8) gives more accurate integration scheme than 

() = 0.5. The value of the stresses remained constant 

throughout the numerical time dependent analysis in agreement 

with Equation 4.2. This shows that for similar problems, an 
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iterative explicit time integration scheme is more effective 

than an implicit one, because the change of stress over ât = 

0.0 The time increment is limited by the hardening occurring 

from time tn to tn+1. In this example, a factor of 0.036 

was multiplied Dy ât given by Equation 3.44 used to maintain 

the accuracy of time hardening because E is low. The input 

data (axisym.dat and axisym.vsc) are provided in the Appendix. 

4.4.3 EXAMPLE 2: THE USE OF CUT SEQUENCE TO SIMULATE FACE 

ADVANCE 

To take the effect Df the face advance in Equations 4.2, Sulem 

et al. [14] used a factor À (x) varying from 0 to 1 as the 

distance to the tunnel face (x) becomes longer. This assumes 

that the effect of face advance on the stresses and 

displacements can be separated from the effect of creep. 

However they cannot be separated, as the rate of creep is a 

direct function of the applied stresses which in turn depend 

on the face advance. Thus, instead of depending on this 

parameter to simulate the face advance one can use the program 

to analyze a section along the tunnel axis presented by the 

finite element grid shown in Figure 4.8. This is also an 

axisyrnmetric problem where a point is defined by ~ , ~ in the 

plane of the finite element grid and similar planes rotating 

around the tunnel axis (in e direction ) should have the same 

properties (axisymmetric). Like above, the initial state of 
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stress is assumed hydrostatic and constant. program PRE SAP 

was used to generate the first part of file tunnel.vsc which 

is checked graphically as in Figure 4.9 and the viscoplastic 

part is written directly to tunnel.vsc (see Appendix ) using 

a reminding comment at the end of each free format record. 

Curve 3 in Figure 4. 6 represents a plot of the radial 

deformation with time when the cut sequences along the tunnel 

are considered as per Figure 4.8. The deformation is measured 

at point 1 and tunnel face advanees at a rate of 1 m/day in 

intervals from 1 m (up to day 10) to 10 m. At each time 

station NCOUNT entered at card 6 of Section 4.3 is compared 

with the cut number of each element to eut the necessary 

elements (see Appendix). In Figure 4.9, the finite element 

gr id has no openings, however, at t=O.O (the initial elastic 

analysis) the elements having eut number =0 are cut to 

sirnulate an initial face advance of 1 meter. The viscoplastic 

analysis is conducted till t=l day where no instantaneous 

changes are dictated so it just produces output and continues. 

But the following time station t ff= 1 day also, so the program 

reads directly the associated changes, applies them produces 

output and continues creep till t faff = 2 days and so on. Like 

that we have two outputs at t= l day one before the cut and 

another after it thus having the stepped response of curve 3 

due to the sudden change in deformation rate following the 

start of each time interval accompanied by a cut sequence. 

Clearly, this modelling capability developed in the numerical 
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model results in a prediotion that is more coherent with what 

may be observed in practice. 

Figures 4.10,4.11 present the stress and deformation fields at 

different times where it may be raoticed that the stress 

concentration in the longitudinal section at the corner of the 

tunnel face which increases with the creep relation of 

adjacent sections farther from the tunnel face. This means 

that this three dimensional stress concentration which is more 

critical than the prediction of the conventional plane strain 

analysis might cause premature failure at the tunnel walls 

immediately after the face advance. According to Figure 2.18, 

a strain hardening law is weIl suited to nonl inear creep 

behaviour like this case and should give better results than 

the time hardening creep law which is used here only for 

demonstrating sorne features of the present computer program. 

4.4.4 EXAMPLE 3 ELASTOPLASTIC ANALYSIS 

In this example, the computer program is used to Model the 

elastoplastic behaviour of a circular tunnel using the theory 

of elasto-viscoplasticity. The input file of the mesh 

generator (circular.dat) is attached in the Appendix. It is 

checked using the program ZONE as shown in Figure 4.12 which 

shows the super elements or zone diagram. 

stresses 0h=O'y=55 MPA and E=40 GPa and ,,=.2 . 

The initial 

The finite 

element grid and elastic properties contained in the first 
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part of file circuIar.vsc generated by PRESAP is also checked 

graphically using program HE8H2D as in Figure 4.13. The short 

free form viscoplastic part is appended to file circular. vsc. 

Mohr-Coulomb yield function is used as a plastic potential as 

weIl. In this case the viscoplastic strain rate is given 

function of the current state of stress as: €vp=F(aF/aa) 

where 

(4.5) 

The ficti tious time increments (4t) are chosen according to 

Equation 3.44 • The load is divided to 20 steps (see Figure 

2.19 and Equation 3.27) with a maximum of 100 time increments 

per load step except for the last one which ended after 125 

time increment with F=.2 MPa. 

Figures 4.14 / 4.15 present the stress , deforrnation fields 

after plastic yielding. Figure 4.16 illustrates the material 

behavior around the circular tunnel which in this case is 

only; either elastic or perfectly plastic because no strain 

hardening or softening variables were implemented in the yield 

function F or the viscoplastic rate law~. The user can use 

the post processor to check the state of stress of Figure 4.15 

using a failure criteria or another yield function as seen in 

Figure 4.17. 
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Principal stresses at time (0.0) 
( Figure 4. 10a ) 
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Principal stresses before eut at t=1 day 
( Figure 4. llb ) 
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Principal stresses after eut at t=l day 
( Figure 4.11e ) 
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principal stresses before eut at t= 2 days 
( Figure 4.11d ) 

113 



,,""" 

1 h'lY-$\--\ , , , + + + + + + + + + -t 
+++++hL \ , , + + + + + + + + + + 

~+ ~XA'"~ 
~ -?\ ~~ .., -

,. ~- --
"'" ..... , .,..- -
;..~-. ~~ :;.. : 

~ r:: 
• jo 

-~ 

Principal stresses after eut at t=2 days 
( Figure 4.11e ) 
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Principal stresses before eut at t=9 days 
( Figure 4.11f ) 
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Zone diagram of example 3 
( Figure 4. 12 ) 
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Finite element grid of example 3 
( Figure 4.13 ) 
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Displacernents after plastic behavior 
( Figure 4.14a ) 
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the circular tunnel of example 3 

( Figure 4.14b ) 
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,.' CHAPTER 5 

CONCLUSIONS 

Bath the the ory of viscoplasticity and a variety of 

constitutive models used for different rock types have been 

reviewed in detail in Chapter 2 in an attempt to present a 

global perspective on the subject and highlight the main 

contributions by various authors in recent years. 

A 2-dimensional elasto-viscoplastic finite element program 

incorporating linear and nonlinear yield functions and an 

iterative explicit time marching scheme has been developed. 

The program is designed primarily for mining engineering 

applications; it is written using Microsoft version FORTRAN 

5.0 which utilizes the features of the 80286 processors. This 

program occupies 260 kb of RAM when it handles 2000 elements. 

At the same time, it makes use of bath direct and sequential 

access files. One prime concern was to minimize execution 

tirne which is of importance for this kind of nonlinear 

analysis. Unformatted and binary files are used for internaI 

use to speed up the read write operations. Repeated 

calculations are avoided by reading and writing a direct 

access unforrnatted record per element (containing data of aIl 

integration points). Also binary files were imr~- ;nted to 

store long data like the global total displacements vector. 

This helped to avoid excessive structuring of the program 

122 



code (calls to subroutines) which adds to the execution time 

especially when a calI is located in a nested do loop (like 

Segment 4 in Section 3.2). 

There is no limit imposed on the number of time stations at 

which instantaneous changes occur like elements eut, elements 

backfilled, applied loads or simply an output is required. A 

time station tf can be specified more than one time with 

different associated cards. This is useful when outputs just 

before and just after a cut or a fill are required. This 

feature might also be useful if premining stresses are not 

uniform because of the surrounding geology. In this case, the 

user can run the program '\:.0 get the non uniform stress 

distribution (caused by own weight and tectonic effect ) 

before mining at t=O.O. Then, specify cards 5 ~ 12 with tf 

= 0.0 and eut the elements representing the excavation. The 

user can stop the program at this point and use the 

postprocessor to see the re3ults. The same analysis could be 

pursued later for time dependent behavior when he appends 

cards of tf > 0.0 to the input file Cfile.vsc). 

The program simulates eut elements by skipping them when 

constructing the global stiffness and the global total load 

vector while the installation of backfill by taking into 

account the changed element properties and their initialized 

internaI stresses in reconstructing the global stiffness and 

load vectors. 

When the input data is read in parallel with the analysis, 
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the user can simulate compound behaviour by stopping the 

analysis, examining the results graphically and restarting it 

again and possibly after making a decision to be implemented 

in the subsequent appended input like adding a backfill at a 

given time station. The user can run the program to perform 

nonlinear behaviour (time independent) which is one basic use 

of viscoplastici ty. The creep (time dependent) analysis might 

start afterwards based on the stresses obtained from the 

nonlinear behaviour. 

The iterative explicit time integration scheme is simple and 

can accommodate a variety of constitutive models. The scheme 

is iterative to allow the improvement of solution accuracy. 

The user can speed the execution by optimizing the number of 

iterations per time increment for a period between 

consecutive time stations. 

two 

The program uses an automatic time-step calculator in an 

attempt to prevent solution instability. 

the concept adopted in reference [17] 

Section 3.4 uses 

ta der ive easy ta 

program equations giving the maximum time step insuring 

stability for common forms of yield functions and plastic 

potentials. 

The program input and output are made compatible with those 

of program SAP2D to make use of its preprocessor and graphical 

programs. However, sorne modifications had to be done to the 

postprocessor to accommodate time dependent analysis output. 

section 4.4 presented three illustrati ve examples The 
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program was debugged using Microsoft Fortran debugger when it 

was used to simulate other problems for verification. Using 

this interactive debugger makes it easier to program and 

verify the coding in detail. 

oespite the good correlation between numerical and analytical 

results, mu ch remains to be done on the model sensitivity 

analysis and validation with actual geomechanical data. 

Anisotropic (transversally isotropie) elastic properties 

will be included. The program should expand to 3 dimensions 

(the program structure encourages that) and should incorporate 

ground support elements as with rock bolts and cable bolts. 

Only then will the present numerical model have the potential 

for becoming a general mine design tool. 

125 



-.~ 

'~jH 

--..... 

LIST OP REFERENCES 

1. Pande, G.N., Beer, G. and Williams, J.R., 1990. 

Numerical methods in rock mechanics. John Wiley & Sons 

Ltd., New York. 

2 Brady, B.H.G and Brown, E.T.,1980. Rock Mechanics For 

underground Mining. George Allen & Unwin, London. 

3. Owen, D.R. and Hinton, E., 1980. Finite Element In 

Plasticity. Pineridge Press Limited, Swansea, U.K. 

4. Zienkiewicz, o.c. and Cormeau, 1974, Viscoplasticity -

plasticity and creep in elastic solids - a unified 

numerical solution approach. Int. J. Num. Meth. Engng., 

8: 821-845. 

5. 

6. 

Mendelson, A., 1968. Plasticity Theory And Application. 

Aubertin, M., Gill, D. and Ladanyi, B. , 1987. Le 

comportement rheologique du sel: revue bibliographique 

Tome l Essais en laboratoire et modelisation 

empirique. -Tome II Mechanismes de deformation, 

modelisation physique, rupture, essais en place et 

comportement in situ. Ecole Polytechnique de Montreal, 

Quebec, Canada. 

7. Brown, E.T. and Michelis, P.N,1978. A critical state 

yield equation for strain softening rock. Proc. 19th U. 

S. Sympos. On Rock Mech. , 515-519, Lake Tahoe Nevada. 

8. Suzuki, K. and Desai, C.S., 1985. Finite element 

analysis using an elasto-plastic anisotropie hardening 

model. Fifth International Conference On Num. Meth. In 

Geomechanics, Nagoya. 317-324 

126 



( 

( 

9. Axelsson, K. and Samuelsson, A., 1979. Finite element 

analysis of elastoplastic materials displaying mixed 

hardening. Int. J. Num. Meth. Engng., 14: 211-225. 

10. Cristescu, N., 1987. Elasto/Viscoplastic constitutive 

equations for rock. Int. J. Rock Mech. Min. Sci. & 

11. 

Geomech. Abstr. 24; 271-282 

Oka, F., Adachi, T. and Okano, Y., 1986. Two-

dimensional consolidation analysis 

viscoplastic constitutive equation. 

Meth. Geomech., 10:1-16. 

using an el asto

Int. J. Num. Anal. 

12. Dragon, A. and Mroz, Z., 1979. A continuum model for 

plastic-brittle behaviour of rock and concrete. Int. J. 

Engng. Sei., 17: 121-137. 

13. Pietrus?czak, S. and Mroz, Z., 1980. Numerical analysis 

of elastic-plastic compression of pillars accounting for 

material hardening and softening. Int. J. Rock Mech. 

Min. Sei. & Geomech. Abstr. 17: 199-207. 

14. Smith, B.M. and Cheatham Jr., J.B., 1980. An 

anisotropic compacting yield condition applied to porous 

limestone. Int. J. Rock Mech. Min. Sei. & Geomech. 

Abstr., 17: 159-165. 

15. Microsoft corporation, 1989. Microsoft Fortran Advanced 

Topics. 

16. Chau, K.S.P., 1988. A finite element model for stress 

analysis of underground openings. M.Eng. Thesis, Mining 

Enigineering, McGill University, Montreal, Canada. 

17. Stolle, D.E. and Higgins, J.E., 1989. Viscoplasticity 

and plasticity numerical stability revisited. 

Numerical Models in Geomechanics NUMOG III, Niagara 

127 



'." 

18. 

Falls, Canada, Elsevier Science Pub1ishers, 431-438. 

Nayak, G.e., Zienkiewicz, O.C., 1972. Elasto-p1astic 

stress analysis a genera1ization for various 

constitutive relations inc1uding strain softening. Int. 

J. Num. Meth. Engng., 5:113-135. 

19. Sun, J. and Lee j Y.S., 1985. A viscous e1astop1astic 

numerica1 ana1ysis of the underground structure 

interacted with families of multi-Iaminate rock mass 

using FEM. Fifth International Conference On Num. 

Meth. In Geomechanics, Nagoya. 1127-1134 

20. Gerogiannopoulos, N.G. and Brown, E.T., 1978. The 

critica1 state concept app1ied to rock. Int. J. Rock 

Mech. Min. Sei. & Geomech. Abstr. 15:1-10. 

21. 

22. 

Gioda, G., 1981. A finite element solution of non-

linear creep problems in rocks. Int. J. Rock Mech. Min. 

Sci. & Geomech. Abstr., 18:35-46. 

Cristescu, N., 1985. Plasticity of compressible 

dilatant rock-1ike materials. Int. J. Engng Science 23; 

1091-1100 

23. Schofield, A.N. and Wroth, C.P., 1968. critical state 

soil mechanics, McGraw-Hi11. 

24. Desai, c.s. and Salami, M.R., 1987. A constitutive 

model and associated testing for soft rock. Int. J. 

Rock Mech. Min. Sei. & Geomech. Abstr. 24; 299-307 

25. Langer, M. 11984. The rheologica1 behaviour of rock 

salt. Proc. l st Int. conf. on the mech. behavior of 

salt (Nov. 1981), Trans Tech Pub. 201-240. 

26. Horseman, S.and Passaris, E., 1984. 

storage cavity closure prediction. 

128 

Creep tests for 

Proc. 18t Int. 



( 

( 

conf. on the mech. behavior of salt (Nov. 1981), Trans 

Tech Pub. 119-157. 

27. Munson, D.E., Dawson, P.R., 1979. Constitutive model for 

the low temperature creep of salt. Sandia National 

Laboratories, SAND-79-1853 . 

28. Sulem, J., Panet, M. and Guenot, A., 1987. An 

analytical solution for time-dependent displacements in 

a circular tunnel. Int. J. Rock Mech. Min. Sci. & 

Geomech. Abstr., 24; 155-164. 

29. Serata, S., 1968. Application of continuum mechanics to 

design of potash mines in canada. Int. J. Rock Mech. 

Min. Sci. 5; 293-314. 

30. Dragon, A. and Mroz, Z., 1979. Amodel for plastic creep 

of rock-like materials accounting for the kinetic of 

fractures. Int. J. Rock Mech. Min. Sci. & Geomech. 

31. 

Abstr. 16; 253-259 

Zienkiewicz, O.C., Valliappan, S. and King, I.P., 1969. 

Elasto-plastic solutions of engineering problems 

"Initial stress" finite element method. Int. J. Num. 

Meth. Engng., 1:75-100 

32. Mitri, H.S. and Scoble, M.J., 1989. A numerical 

procedure for stability analysis of hardrock mine 

structures. Min. Sei. Technol., 9:187-195. 

33. Mitri, H.S.,1988. Finite element applications in mining 

engineering. Professional Development Seminar Notes, 

--~--- -- -----

Department of Mining & Metallurgical Engineering 

McGill University, June 2-6, Montreal. 

129 



" 
APPENDIX 1. EXAMPLES OF INPUT DATA FILES 

The following is the preprocessor's Input data file (FILE.DAT) 

of example 1: 

AXISYMMETRIC TUNNEL IN PLANE STRAIN (EXAMPLE 1) -CARD 1 
6 1 1 1 1 0 -90 -CARD2 

1 -CARD3 
100 -CARD4 
1 2 10 -CARD5 

22200 -CARD 5 
321.5 -CARD 5 

4220.5 -CARD 5 
526.50 -CARDS 

,,-1';-
626.5.5 -CARDS 

"'iè'> 
1 3124 0506 1 21 -CARO 6a 

32200 -CARD6b 

o 1 000 o 00 1 1 01 1 -CARD 7 

1 .01 -CARD8a 

360.2 -CARD8b 

-2 0 -2 0 -2 0 0 0 -CARD9 

1 1 1 1 1 -CARD 11 

--
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This is the input data file of program VISA2D ; the first part 

is generated by the preprocessor PRESAP based on the above 

data and the second is user written. 

AXISYMMETRIC TUNNEL IN PLANE STRAIN (EXAMPLE 1) 
202 1 1 0 0 0 1 1 0 ·90000 

1 0 1 .1 OOOOOOE t01 .1000000Et01 

2 0 1 .1000000E+01 .OOOOOOOE +00 
3 0 .1031600E+01 . 9999999E +00 
4 0 1 .1031600E+01 .0OOOOOOE+00 

5 0 1 .1066400E+01 .1000000E+01 
6 0 .1 066400E +01 .OOOOOOOE +00 
7 0 .1104400E+01 .1000000E+01 
8 0 .1104400E+01 .OOOOOOOE +00 

and so on ti11; 
199 0 1 .1965159Et02 .1 OOOOOOE + 01 
200 0 1 .1965159E+02 .OOOOOOOE+OO 
201 0 .2000000E +02 .1000000E+01 

202 0 .2OCXJlJOOE+02 .OOOOOOOE+oo 

4 100 1 1 0 1 

1 1 .OOOOOOOE+OO .OOOOOOOEtOO 

-control card 
nodal points data and 

degrees of freedom (generated) 

control card (generated) 

.3600000E t03 .3600000E+03 .3600000E+03 .2000000EtOO .2000000E +00 -elastic materia/ 

.2000000E +00 .1500000E + 03 

·2000000Et01 .OOOOOOOE+oo· 2OOOOOOE+01 .OOOOOOOEtOO 

• 2000000E t01 OOOOOOOE +00 

1 1 2 4 3 1 2 0 0 .000 1.000 

2 3 4 6 5 1 2 0 0 .000 1 000 

3 5 6 8 7 1 2 0 0 .000 1.000 

and so on tillt 
97 193 194 196 195 1 2 0 0 .000 1000 
98 195 196 198 197 1 2 0 0 .000 1.000 
99 197 198 200 199 1 2 0 0 .000 1.000 

100 199 200 202 201 1 2 1 0 .000 1.000 

properties 
initial stresses (generated) 

elements data and 
and connectivity (generatedj 

3 2000 2000 .000 .000 pressure on side 3 of e/ement 100 (generated) 

.000 1.000 1 000 1.000 1.000 1.000 mu/tipliers ofloading are not used by VlSA2D 
PRN&CONT CARO 1 (these are time dependent data cards written by the user') 
1. 1.86400 100 3.036 CARO 2 
1 200 11 0 CARO 3 
7.23088-4 CARO 4 
o CARO 3 is put 0 ta end its occurrence 
•••••••••••••••••• CARO 5 

.010 'DA' 3.036 0 

o lor added liII 

o lor added ndld 

CARD 6 -NCOUNT is put = 1 and ail e/ements remain active 
CARO 7 a factor of .036 is used because E is very small 

CARO 9 
CARO 10 
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o for added aur. pro 

PRN&CONT 

*·****************a5 a 5eperator*************** 

1 

.30 'DA' 3 036 0 

o 
o 
o 
PRN&CONT 

.. *.*_.*.*-*---

.430 'DA' 3 .036 0 

o for added fill 
o for added ndld 
o 'or added sur. pro 
PAN&CONT 

*-*-*._._*------
1 

730 'DA' 3.036 0 
o for added fin 
o 10r added ndld 
o for added sur. pro 
PAN&CONT 

and so on till 10 4ays time: 
*_*_a_.t.** ___ ** 

10 'DA' 3.036 0 
o 
o 
o 
oup&cont 

.. *-*--*.**-----
1 

50 'DA' 3.036 0 
o 
o 
o 
oup&cont 
***_*_**a_. ____ • 

1 
100 'DA' 3.036 0 
o 
o 
o 
STOP 
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CARO 11 
CARO 12 

CARO 6 of time .3days 
CARO 7 of time .3days 

CARO 9 of tlme .3 days 
CARD 10 of time .3 days 
CARO 11 of time 3 days 
CARO 12 of time .3 days 
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The follovinq ia the preprocessor's input data file (FILB.DAT) 

of exemple 2: 

AXISYMETRIC ANALYSIS OF A CIRCULAR TUNNEL 

2593330-90 

101010 

3107 

1 3 0 70 

2 1 0 60 

3 1 0 40 

4 3020 

5 2 1.5 70 

6 0 1.5 60 

7 0 1.5 40 

8 3 1.5 20 

9 2 5 70 

10 0 5 60 

11 0 5 40 

12 2 1020 

13 2 20 70 

14 0 20 60 

15 0 20 40 

16 2 20 20 

17 2 2.8 70 

18 0 2.8 60 

19 0 2.8 40 

20 2 10 70 

21 0 10 60 

22 0 10 40 

23 0 1.5 32 

24 1 0 32 

25 0 7 32 

1 1 265 

2 2 376 
3 3 4 8 7 
4 5 6 109 
5 6 7 11 10 
6 7 8 1211 

7 9 1014 13 

3 2200 

8 10 11 1514 

3 2200 

0000100 

0000100 
240230 1 00 
0180171200 
019018 120 0 
230 2519 1 20 0 

021020 1 20 1 

022 0 21 1 20 1 
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CARO 1 
CARO 2 
CARO 3 
CARO 4 

CARO 5 
CARO 5 
CARO 5 

CARO 5 
CARO 5 
CARO 5 

CARO 5 

CARO 5 
CARO 5 
CARO 5 
CARO 5 

CARO 5 
CARO 5 
CARO 5 
CARO 5 

CARO 5 
CARO 5 
CARO 5 
CARO 5 
CARO 5 

CARO 5 
CARO 5 
CARO 5 
CARO 5 

CARO 6 
CARO 6 

CARD6a 
CARD6b 
CARD6a 
CARD6b 



~.l'~, 

",," 

~ 

...... 

9 11 1216 15 250 022 1 20 1 

3 2200 Sida pressura of 2 Mpa at side 3 of zone 9 

01000 0001 1011 

1 .01 

360 2 

20202000 

1 1 1 1 1 

CARO 7 
CARO Ba 
CARO Bb 
CARO 9 

CARO 11 

This is the input data file of program VISA2D ; the first part 

is generated by the preprocessor PRE SAP based on the above 

data and the second is user written. 

AXISYMETRIC ANALYSIS OF A CIRCULAR TUNNEL WITI1 eUT SEQUENCE 
651 1 1 0 0 0 3 1 o -90.000 

1 1 1 .OOOOOOOE+OO .7000000E+02 
~ 1 0 .OOOOOOOE +00 6899999E+02 
3 1 0 .OOOOOOOE +00 68OOOOOE+02 
4 1 0 .OOOOOOOE+oo .6700000E+02 
5 0 OOOOOOOE +00 66OOOOOE+02 
6 0 .OOOOOOOE+OO .6500000E+02 
7 1 0 .OOOOOOOE+OO 6400000E+02 

and so on ti11i 
649 0 0 2000000E +02 2500000E"'02 
650 0 0 2OOOOOOE+02 2250000E+02 
651 0 .2000000E +02 2OOOOOOE+02 

4 600 1 0 1 
1 1 .OOOOOOOE +00 .OOOOOOOE+OO 

.3600000E +03 .3600000E +03 .3600000E +03 .2000000E+oo .2000000E+OO 

.2000000E +00 .1500000E +03 
-.2000000E+01 .OOOOOOOE+oo -.1800000E+01 .OOOOOOOE +00 
- 2OOOOOOE+01 .OOOOOOOE+OO 

1 1 2 33 32 1 0 0 0 .000 1.000 
2 2 3 34 33 1 1 0 0 .000 1000 
3 3 4 35 34 1 2 0 0 .000 1.000 
4 4 5 36 35 1 3 0 0 .000 1.000 
5 5 6 37 36 1 4 0 0 .000 1.000 
6 6 7 38 37 5 0 0 .000 1.000 
7 7 8 39 38 6 0 0 .000 1000 
8 8 9 40 39 1 7 0 0 .000 1.000 
9 9 10 41 40 1 8 0 0 .000 1000 

1(1 10 11 42 41 9 0 0 .000 1.000 
11 11 12 43 42 10 0 0 .000 1.000 

12 12 13 44 43 10 0 0 .000 1.000 

13 13 14 45 44 1 11 0 0 .000 1.000 
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and connec/Mty (genera/ed) 

an e/ement of cut no. 10 
an e/ament of cut no 11 
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14 14 15 46 45 

15 15 16 47 46 

11 0 0 

12 0 0 
16 16 17 48 47 1 12 0 0 
17 17 18 49 48 13 0 0 
18 18 19 50 49 13 0 0 
19 19 20 51 50 1 14 0 0 
20 20 21 52 51 1 14 0 0 
21 21 22 53 52 15 0 0 
22 22 23 54 53 15 0 0 
23 23 24 55 54 16 0 0 
24 24 25 56 55 1 16 C 0 
2525265756 1700 

26 26 27 58 57 17 0 0 
27 27 28 59 58 18 0 0 
28 28 29 60 59 18 0 0 
29 29 30 61 60 19 0 0 

30 30 31 62 61 1 19 0 0 

31 32 33 64 63 1 0 0 0 

3233346564 100 

3334356665 200 

and so on ; 

.000 1000 

.000 1 000 

.000 1000 

.000 1 000 

.000 1.000 
000 1000 
.000 1.000 
000 1000 
.000 1.000 
000 1.000 
000 1000 
.000 1000 
.000 1.000 
.000 1.000 
.000 1 000 
.000 1000 

.000 1.000 

.000 1000 

.000 1.000 

000 1.000 

87 89 90 121 120 
88 90 91 122 121 

18 0 0 .000 1.000 
18 0 0 .000 1.000 

89 91 92 123 122 1 19 0 0 .000 1.000 
90 92 93 124 123 19 0 0 .000 1.000 

an e/ement of eut no. 11 
an e/ement of eut no. 12 

an e/ement of eut no. 19 
an e/ement of cut no. 0 
an a/ement of eut no. 1 

an element of cut no. 2 

91 94 95 126 125 20 0 0 .000 1.000 elements around the tunnel have a cut no. 20 
92 95 96 127 126 1 20 0 0 .000 1.000 
93 96 97 128 127 1 20 0 0 .000 1 000 
94 97 98 129 128 1 20 0 0 000 1000 

and so OD ; 
568 586 587 618 617 1 20 0 0 
569 587 588 619 618 1 20 0 0 

570 588 589 620 619 1 20 0 0 

000 1.000 
.000 1.000 
.000 1000 

571 590 591 622 621 1 20 1 0 .000 1.000 
3 2.000 2 000 .000 000 

572 591 592 623 622 1 20 1 0 .000 1.000 
3 2.000 2 000 .000 000 

and so OD 
598 617 618 649 648 1 20 1 0 .000 1.000 

3 2.000 2 000 .000 .000 
599 618 619 650 649 1 20 1 0 .000 1.000 

3 2 000 2 000 .000 .000 
60U 619 620 651 650 1 20 1 0 .000 1.000 

3 2 000 2.000 .000 .000 

000 1.000 1.000 1.000 1 000 1.000 

oup&cont 

1. 1 86400.100 3.036 

1200 110 

7.2308804 

o 
*** ••••••••• **.*.* 
o 

no point loads 
load multiplier not used by VISA2D 

to continue and print results 
card 2 

card 3:NY(1)= 11 (and NCR(1) =0 but not used) 
eard 4: the constant of equation 4.4 
card 3: put 0 ta end its occurence 

card 5: seperator for clarity 
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o 'DA' 0 

o 
o 

for instantaneous e/astic analysis output 
no backfill 

no added nodalloads 
o no added surface pressure 
PRN&CNT. 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
o 
1 'DA' 3 .036 0 

o 
o 
o 
PRN&CNT. 
****************** 

{MI the end of the tirst day } 
no backfill 

no added nodal loads 
no added surface pressure 

{elements of cut number 1 are cut at t= 1 day} 
1 'DA' 3 .036 1 

o 
o 
o 
o 

no change of cut number of any e/ement (the sequence above IS sufflcient) 
for added fIIl 

for added ndld 
for added sur. pro 

PRN&CNT. 
*****.~*******.*** 

2 'DA' 3 .036 0 {till the end of the second day} 
o 
o 
o 
stop 
**_ttt*tttttttt* __ 

2 
2 'DA' 3 .036 1 !{elements of cut number 2 are eut at t= 2 days} 
o 
o 
o 
o 
PRN&CNT . . _._*._*tt.t ____ t_ 

3 
3 'DA' 3 .036 1 {elements of cut number 3 are eut at t= 3 days} 
o 
o 
o 
o 
PRN&CNT. *_*_*_*t*_t ______ _ 

4 
4 'DA' 3 .036 1 {elements of cut number 4 are eut at t= 4 days} 
o 
o 
o 
o 
PRN&CNT. ***.* __ t ______ •• _. 

5 {elements of cut number 5 are cut at t .. 5 days} 
5 'DA' 3.036 1 
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the program is stopped here(at t=2 days) 
and is restarted here 



( 

( 

( 

o for added eut 

o for added fil! 

o for added ndld 
o for added sur, pr, 
PRN&CNT. 
tt_t*, •• a._*_tt_.* 
6 

it is preferable to write a comment at the end 
of each tree format record to help the program 

locate the error at the exact line if It happens, 

6 'DA' 3 036 1 {elements of eut number 6 are eut at t= 6 deys} 
o for added eut 
o for added flll 
o for added ndld 
o for added aur, pr 
PRN&CNT, 

an 80 on till; 
* •• ** ••••• **'11 •• 

18 means eut number 18 15 eut at end of day 50 
50 'DA' 3 036 1 
o for added eut 
o for added flll 
o for added ndld 
o for added sur, p 
cont. 
._.t't •••• " •• __ 
19 means eut number 19 Is cut at end of day 75 
75 'DA' 3 ,036 1 
o for added cut 
o for added fill 
o for added ndld 
o for added sur, p 
cont, 
*tt_ttt_ ••• t't* 

19 analysls continues tiil day 100 
100 'DA' 3 ,036 0 
o for added flll 
o for added ndid 
o for added sur, p 
STOP 
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The rollowinq ia the preprocessorls input data ril. (Pl:LE.DAT) 

of exampl& 3: 

ELASTO PLASTIC ANALYSIS OF A CIRCULAR TUNNEL USING VISCOPLASTICITY 
2341410·90 
50 
5555 
1210 
23100 
30.894 .447 
41 105 
50.707.707 
631010 
70.447 894 
82510 
91 01 
103010 
1123.20 
12 0 .970 .243 
131 102.5 
140321.6 
150.8.6 
161107.5 
1703.23.2 
180.6.8 
1927.510 
20 01.63.2 
21 0 .243 .970 
22 2 2.510 
23103.2 
1 1 243 11 1314 121 20 
2346514161715120 
3568717 1920 18 1 20 
4 7 8 10 9 20 22 23 21 1 2 0 
0111101011111 
1 .0 1 
50000.2 
·55.0 -55 .0·55.0 0 0 
1 1 1 1 1 
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( 

( 

( 
" 

This is the input data file of program VISA2D ; the first part 

is generated by the preprocessor POSAP based on the above 

data and the second is user written. 

ELASTO PLASTIC ANAL YSIS OF A CIRCUIAR TUNNEL USING V1SCOPLASTICITY 
1071 1 1 1 1 1 1 1 0 1.000 

1 0 1 .1000000E+01 .OOOOOOOE+OO 
2 0 .1078080E+01 .OOOOOOOE+OO 
3 0 .1160320E+01 OOOOOOOE+oo 

and sC) on till; 
1069 1 0 .OOOOOOOE+OO .9440323E+01 THESE DATA ARE GENERATED BY THE PREPROCESSOR 
1070 ~ 0 .OOOOOOOE+OO .9718082E+01 
1071 1 1 OOOOOOOE+OO .1000000E+02 

.. 1000 1 1 1 1 
1 1 .OOOOOOOE+OO .OOOOOOOE+oo 

.5000000E + 05 .5000000E + 05 SOOOOOOE + 05 .2000000E + 00 .2000000E + 00 

.2000000E+OO .2083333E+05 
-.5500000E+02 .OOOOOOOE+OO - 55OOOOOE+02 OOOOOOOE+oo 
-.5500000E+02 .OOOOOOOE+OO 

1 1 2 53 52 1 2 0 0 .000 1.000 
2 2 3 54 53 1 2 0 0 .000 1 000 

and so on till; 
999 1018 1019 10701069 1 2 0 0 000 1.000 

1000 1019 1020 1071 1070 1 2 0 0 .000 1.000 

.000 1000 

VISeo 

1 1 86400 100 2 .5 

1 2 12 

.4 -20 

0 

20 

0 

1.000 1.000 1.000 1 000 

CARD 1 OF VISCOPLASTIC INPUT 
ICARD 2: maximum of 100 time inerements per load increment 

ICARD3; 2MPa is the tension resistence and 
/CARO 4:Mohr Coulomb perfeet plastieity for the unique material type 

!CARD3: no other materials 
!CARD 5~ The applied load is incremented to 20 steps 

!CARD 6 ~no ereep data 
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