
Generalized Helicoids
for Hair Modeling

Emmanuel Piuze-Phaneuf

Master of Science

School of Computer Science

McGill University

Montreal,Quebec

2010-08-31

A thesis submitted to McGill University in partial fulfilment of the
requirements for the degree of Master of Science in Computer Science

c©Emmanuel Piuze Phaneuf 2010

ACKNOWLEDGEMENTS

The past year has not been an easy one for me. I am truly grateful to the

many friends and people that were there to listen, and offered their support.

You guys made all the difference. I would like to thank Jonathan Guillemette

for his omnipresence when I really needed it. What more could I ask for than

a good friend, food, a frisbee, and a magnificent University campus during

summer time to cheer me up? I would like to give a special thank to my

awesome lab mates Parya MamayyezSiahkal and Svetlana Stolpner, for their

friendship, guidance, and constant support. They made Room 404 a wonderful

place to be and for that alone, I will always be there to debug their Java

programs. I want to express sincere thanks to my supervisor Kaleem Siddiqi,

for his wisdom and resourcefulness, and for his encouragement when things did

not go so well. I thank him for believing in me and giving me the opportunity

to work in a field I was not familiar with. I consider myself incredibly fortunate

that our paths have crossed. I thank the School of Computer Science at McGill

University, Kaleem Siddiqi, le Fonds Québécois de la recherche sur la nature et

les technologies (FQRNT) and the Natural Sciences and Engineering Research

Council of Canada (NSERC) for their financial support. Finally, I would like

to thank my girlfriend Judy Dumont, for so much. Not enough words or state-

of-the-art renderings could fit in these pages to express how much I owe her

for this thesis. She is the hands that have kept me above the waterline. Her

cuisine is exquisite!

ii

ABSTRACT

The modeling of hair and hair-like patterns, including those of grass and

fur, is recurrent in the computer graphics literature. The reproduction of the

extensive variety of these arrangements, and their generation from scarce infor-

mation, remains a challenge for the computational models that describe them.

This thesis introduces a novel mathematical model of hair-like patterns to the

field of computer graphics, one that is based on a class of minimal surfaces

called generalized helicoids. This representation is characterized by intuitive

parameters that control the curvature of a hair along its tangent, normal and

binormal directions, and its elevation angle. This representation equips a hair

with information not only about its own geometry but also about the geo-

metric behavior of other hairs in its vicinity. A hair modeling framework is

proposed to investigate these properties. This framework includes an implicit

surface sampling method based on interacting particles for determining hair

root locations. It also introduces algorithms for interpolating generalized he-

licoids from sparse hair samples as well as a fitting algorithm for modeling

unparameterized hair datasets. The usefulness of the generalized helicoid is

motivated via several applications including the generation of different types

of hair geometry, hair interpolation, hair fitting and wisp generation.

iii

ABRÉGÉ

La modélisation de cheveux et de structures s’apparentant aux cheveux,

incluant celles de l’herbe et de la fourrure, est courante dans la littérature en

informatique graphique. La reproduction de divers arrangements de cheveux,

et leur génération à partir d’information limitée, reste un défi pour les modèles

mathématiques de cheveux. Cette thèse introduit une nouvelle représentation

mathématique de structures de cheveux au domaine de l’informatique graphique.

Cette représentation est basée sur une classe de surfaces minimales appelée

hélicöıdes généralisés, et est caractérisée par des paramètres intuitifs contrôlant

la courbure d’un cheveux le long de ses directions tangentes, normales et bi-

normales, ainsi que son angle d’élévation. Non seulement cette représentation

équipe-t-elle un cheveux avec de l’information sur sa propre géométrie, mais

elle indique aussi le comportement géométrique des autres cheveux dans son

voisinage. Afin d’étudier ces propriétés, une plateforme de modélisation de

cheveux est proposée. Cette plateforme inclu une méthode d’échantillonnage

pour surface implicite basée sur l’interaction de particules afin de déterminer

l’emplacement de la racine des cheveux. Elle présente aussi des algorithmes

pour interpoler des hélicöıdes généralisés à partir d’échantillons de cheveux

clairsemés ainsi qu’un algorithme de fitting (ajustement) pour la modélisation

d’ensembles de données comportant des cheveux non paramétrisés. L’utilité

de l’hélicöıde généralisé est motivée par plusieurs applications, notamment

la production de différents types de géométrie de cheveux, l’interpolation de

cheveux, le fitting de cheveux, et la génération de brins de cheveux.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

ABSTRACT . iii

ABRÉGÉ . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 Introduction . 1

1.1 Overview . 2
1.2 Contributions of this Thesis 3
1.3 Outline . 3

2 Review of Hair Modeling . 5

2.1 Optimizations in Hair Modeling 8
2.1.1 Guide Hairs . 9
2.1.2 Wisps, Clusters, Strips and Generalized Cylinders . 9

2.2 Hair Models . 11
2.2.1 Explicit Methods 12
2.2.2 Implicit Methods 13
2.2.3 Multiresolution Methods 14
2.2.4 Capturing Hair Model to Images 15

2.3 Follicle Sampling . 16
2.3.1 Surface Mappings 16
2.3.2 Surface Interpolation 18

3 Hairs as Generalized Helicoids . 20

3.1 Hair Framing: Computing the Frenet Tetrad 21
3.2 The Generalized Helicoid Model 25
3.3 Tracing Vector Field Lines 28

3.3.1 Helical Waviness Offset 28
3.3.2 Smoothed Stochastic Perturbations 32

3.4 Properties of the Explicit Form 32
3.4.1 Restrictions on φ and kB 33
3.4.2 Reflection by kT . 34
3.4.3 Singularities . 35

v

3.4.4 Rotational Ambiguity 35
3.5 Wisps . 36
3.6 Hairs as Piecewise Helicoids 37

4 Follicle Sampling . 41

4.1 Implicit Surface Interpolation 41
4.2 Particle sampling . 44

4.2.1 PM Connectivity 46
4.2.2 Repulsion Energy 47
4.2.3 Constraint Forces 48
4.2.4 External Forces . 49
4.2.5 Force Integration 49
4.2.6 Particle Birth and Death 50
4.2.7 Parameters . 51
4.2.8 Boundary . 51
4.2.9 Sampling Results 52

5 Interpolating the Generalized Helicoid Model 55

5.1 Inverse Distance Weighting 55
5.2 Interpolation of Local Frames 56

5.2.1 Interpolation of Rotation Matrices and Euler Angles 57
5.2.2 Interpolation of Quaternions 59

5.3 Single Helicoid Interpolation 59
5.4 Procedural Piecewise Helicoid Interpolation 61
5.5 Interpolation on an Implicit Surface 65

6 Fitting the Generalized Helicoid Model 71

6.1 Local Frame Subtraction 71
6.2 Computing the Similarity Measure: The Fréchet Distance . 72
6.3 Discrete Optimization of Single Generalized Helicoid Fitting 73
6.4 Neural Networks Seeds . 76
6.5 Piecewise Helicoid Fitting 77
6.6 Application to the Reconstruction of Real Hair 80

7 Conclusion . 83

7.1 Achievements . 83
7.2 Future Work . 84

7.2.1 Reconstructing with Adaptive Sampling 85
7.2.2 Fitting Hair Volumes 85
7.2.3 Embedded Dynamics 85
7.2.4 Hairstyle Compression 85
7.2.5 Detail Transfer . 86
7.2.6 Curve Framing . 86

vi

A Implementation Details . 87

B Visualizing Implicit Surfaces . 89

C Learning with Resilient Propagation 91

References . 92

vii

LIST OF TABLES
Table page

4–1 Parameter values for sampling implicit surfaces using particles. 51

5–1 Various metrics used for determining interpolation weights. . . 61

viii

LIST OF FIGURES
Figure page

2–1 Surface mappings. (Adapted from [26]) 17

2–2 3D Scalp Space Parameterization. A world space point
P (x, y, z) is represented with its spherical projection P ′

on the unit sphere. The scalp space coordinates (u, v) are
given as two angles ranging from 0 to π. (Adapted from
Wang et al. [82]) . 18

3–1 Frenet frame ET ,EN ,EB traveling along a space curve c. The
osculating plane is spanned by ET and EN 21

3–2 Discrete differential geometry on a polyline. 22

3–3 Tracing a path in the 3D field defined by curvature parameters
kT = 1, kN = 0.05, kB = 0.5, α = 1. 29

3–4 The effect of varying the curvature parameters of a generalized
helicoid, of which a slice in the xy plane is shown in blue.
The parameter vector is defined as k = (kT , kN , kB, α). The
α parameter allows the helicoid to grow out of plane, and
must be non-zero to see the effects of the binormal curvature
kB. Figures 3–4a, 3–4b and 3–4c show the effects of varying
the tangential, normal, and binormal components of the
parameter vector, respectively. The hairs, shown in blue, are
traced from an initial direction that is tangential to the x
axis, shown in red. 30

3–5 Waviness offset (in blue) for helical radii a and frequencies b.
The helicoidal parameter of the hair is k = (1.1,−0.01, 0.2, 0.1).
The original hair is shown in red. The first two columns show
a front view, and the last two a side view. 31

3–6 Smoothing by weighting averaging of a point pi+1 on its midline t 33

3–7 Effect of varying the number of smoothing cycles c and the
magnitude of α. The original generalized helicoid is shown
in blue and the noisy and smoothed version in red. The
magnitude of the noise is r = 0.03. 33

ix

3–8 Moving singularity for different kT , kN and kB = α = 0. The
trace is shown in blue. The singularity is located at the
intersection of the two lines defined in equation 3.51, shown
in cyan and pink. The origin is shown as a red circle. 38

3–9 A wisp generated by offsetting the origin in the streamline
trace. The guide strand of the helicoid is shown in red and
the extrapolated hairs are shown in gold. 38

3–10 A long hair (left) combined with a waviness offset (right), shown
in red. The associated extrapolated wisps are shown in brown. 39

3–11 A “messy” hair (in red, on the left) and a curly hair (in red, on
the right) and their extrapolated wisps (in brown). 40

4–1 Visualization of an implicit function. The blue curves are the
the level sets f(x) − c = 0 for different values of c. The red
curves follow the direction of the gradient of f 42

4–2 Implicit fit of a 3D model. The vertices are shown in white.
Interior constraints lie inside the surface, surface constraints
are shown in blue, and exterior constraints in red. 45

4–3 Example of the particle-mesh connectivity for 500 particles in
a volume composed of 9 cells. 47

4–4 Evolution of the sampling for a 2D spiralling contour. 52

4–5 1000 contour particles (in red) keep 1000 floating particles (in
green) from drifting below the implied contour line. 53

4–6 Circle sampling for varying repulsion radii σ. 53

4–7 Sampling of 5000 follicles on the scalp using particle meth-
ods. Contour particles are shown in red following the scalp
contour. Implicit constraints are shown as pairs of red/blue
points. 54

5–1 Comparison of different weighting schemes for interpolating
generalized helicoids on a one-dimensional manifold for
oriented curvature parameters. Guide hairs are shown in
white, and interpolated hairs in random colors. 62

5–2 Comparison of different weighting schemes for interpolating
generalized helicoids on a two-dimensional manifold for
oriented curvature parameters. Guide hairs are shown in
white, and interpolated hairs in random colors. 63

x

5–3 A comparison of interpolation between guide hairs using gen-
eralized helicoids (left) and using only points sampled along
the guide strands (right). See text for a discussion. The two
guide hairs (in red) are π-rotated copies of each other, with
a parameter vector k = (1.39,−0.008, 0.904,−0.225). 66

5–4 Comparison of the interpolation of curvature parameters and
vertices, for piecewise helicoid guide hairs. A color code is
used to distinguish between helicoid pieces. Two guide hairs
are used, one having three helicoid pieces on the left and the
other having two helicoid pieces on the right. 66

5–5 Two examples of interpolation between p-helicoids on a plane.
The four guide hairs are shown in bright red and the inter-
polated hair strands are shown in brown. 67

5–6 Interpolation of a tuft on an implicit surface. The guide hairs
are shown in red, and the interpolated ones in brown. 69

5–7 Hair parting using normal rotations. The two guide p-helicoids
(in red) are composed of three helicoid pieces and have
different curvature parameters. The interpolated hairs are
shown in brown. 70

6–1 Fréchet distance analogy to a man walking his dog on a leash,
on two separate paths. The Fréchet distance between these
two curves is the minimal length that a leash must have for
the dog and the handler to move from the starting point of
each curve to their respective endpoint. 74

6–2 Mean computational time (ms) involved in evaluating the
Fréchet distance between random curves of increasing point
count. 75

6–3 Tridimensional simplex for finding the optima of a bivariate
Himmelblau function. 76

6–4 Accepting a candidate fit prematurely will end up propagating
an inherent differential error between the target and candi-
date hairs. The target is shown in black, and the fit in red.
Fragmentation points are shown as dots along the fit. 79

6–5 Single helicoid fit (in red) of a synthetic hair (in black) obtained
with a parameter vector (1.768, 0.024,−0.227,−0.115) and
with noise of magnitude 0.013. The fit has a parameter
vector (1.740,−0.034,−0.136,−0.105). 80

xi

6–6 Piecewise helicoid fitting. The target hair (in black) was
obtained by aligning 5 single generalized helicoids together.
The fit (in red) is composed of 3 helicoidal pieces. 81

6–7 P-helicoid fitting (in color) of unparameterized data (in white)
selected randomly from a hairstyle in Paris et al. [64]. . . . 81

6–8 The reconstruction of the “straight” hairstyle from Paris et al.
[64] by fitting and interpolation of p-helicoids. 82

A–1 GUI and user-controllable parameters for the generation and
fitting modules of the hair modeling framework. 87

A–2 GUI and user-controllable parameters for the implicit surface
fitting, hair builder, and particle sampling modules of the
hair modeling framework. 88

B–1 Division of a cubic cell into six tetrahedra. 90

B–2 Marching tetrahedra test cases. A binary 0/1 value is assigned
at the corners of each tetrahedron depending on whether
the evaluation of the implicit function yields a negative
or positive value, respectively. By default, evaluations to
zero (within one machine-epsilon) are assigned the smallest
non-zero positive value. 90

xii

CHAPTER 1
Introduction

Hair-like patterns, comprised of dense collections of curve-like elements,

are ubiquitous in our world [60]. Consider examples arising in nature such as

hair, fur, grass, feathers, and white matter fiber tracts in the brain, or those

arising in man-made structures, such as textiles, optical fibers or threads. The

realistic modeling of such patterns in computer graphics remains a significant

challenge, in part because of the difficulty in obtaining accurate measurements

from real data and in part because of the inability of current computational

models to capture the extensive variety of hair-like arrangements. Whereas

there is an intuitive sense these structures can be straight, wavy or curly,

modeling them mathematically is not trivial. Hair patterns and their specific

distribution and adaptation to internal and external forces form a complex

physical system, making their study and effective reproduction computation-

ally challenging. Furthermore, the typical large number of strands involved

in pair-wise interactions currently makes the modeling and rendering of fiber

patterns by manual placement and direct computations intractable for appli-

cations constrained by efficiency and time complexity.

The prospect of a simple and elegant mathematical model encompassing

both the local flow and geometry of hair-like patterns is thus of particular

interest for the field of computer graphics. To simplify the modeling of hairs,

assumptions are often made about their length, their continuity and their local

geometry. For example, when such patterns are generated through biological

processes, there often is a coherency between the orientation and curvature

of neighboring hairs. In the computer vision literature such locally parallel

1

2

dense curves have been referred to as texture flows [6]. The coherency is a

direct result of the local forces – static, interaction, and external – that apply

on a larger scale than each individual hair. This suggests the use of local

geometric models to incorporate neighboring information, without requiring

the underlying forces to be explicitly modeled.

1.1 Overview

This thesis investigates an approach for generating, fitting, and interpo-

lating hair patterns. An emphasis is placed on hair modeling as the driving

application for the methods proposed. Many intricacies of hair modeling are

shared with those of fur, feathers, and grass modeling, and so the proposed

methods should hold for these and related cases as well. Important complica-

tions related to the modeling of hairs are addressed. First, the explicit manual

construction of individual strands in a hair pattern is a laborious task. Con-

sidering that there are typically more than 100, 000 strands [73] on a human

head, this also leads to a description of a hair volume that is computationally

inefficient for further applications. Conversely, the interpolation of a subset of

key hair strands, if not carried out carefully, can lead to a largely inhomoge-

neous and inconsistent hair pattern, where coherency between local neighbors

is not enforced.

Motivated by these considerations, this thesis introduces a parametric

model for generating, fitting and interpolating hair patterns to computer

graphics, one that is based on the generalized helicoid, a well-known minimal

surface [14]. The generalized helicoid has found use in the computer vision

literature, in particular for texture analysis [6], and in the medical imaging

literature [76]. Its application to hair modeling, however, is novel, and is the

objective of this thesis.

3

The generalized helicoid can be expressed in such a way that it character-

izes a hair strand using three parameters that control curvature in the tangent,

normal, and binormal directions to the strand, and a fourth parameter to con-

trol elevation angle above a tangent plane [77]. This intuitive representation

equips a strand with information not only about its own geometry but also

about the “flow” of hairs in a local volumetric neighborhood. As such, the

model is not merely a representation of a single hair, but rather, captures a

volumetric bundle of hairs in the neighborhood of a hair strand. The model

can be used for a variety of applications, including hairstyle synthesis and

hairstyle reconstruction from sparse samples.

As a result, the model can be used for a variety of applications including

hairstyle synthesis and hairstyle reconstruction from sparse samples.

1.2 Contributions of this Thesis

The major contributions of this thesis are the following:

1. The introduction of a generalized helicoid-based framework to model the

geometry of a hair strand and its local (volumetric) neighborhood.

2. The synthesis of different hair types, including wisps, by sampling from

a generalized helicoid-based representation.

3. The use of the model to “fill-in” a patch of hair between hair strand

samples, by interpolation, and the use of a particle sampling method for

implicit surfaces to determine hair root locations.

4. The use of the model to fit unparametrized hair strand data, which when

combined with interpolation allows for efficient hairstyle reconstruction

from sparse samples.

1.3 Outline

Chapter 2 presents a review of the computer graphics literature on hair

modeling. Chapter 3 introduces the generalized helicoid model. Chapter 4

4

presents a particle method for sampling implicit surfaces. Chapter 5 investi-

gates the interpolation of the generalized helicoid representation on possibly

sparse and irregular datasets. Chapter 6 develops an approach for deriving

a correspondence between an arbitrary hair strand (described as a series of

points) and its generalized helicoid representation. Finally, Chapter 7 reviews

the concepts discussed in this thesis and presents possibilities for future work.

CHAPTER 2
Review of Hair Modeling

The problem of modeling realistic hair patterns, from the construction

of a single hair to the animation and rendering of a full hairstyle, is non-

trivial. Nonetheless, hair modeling can be divided into three common themes:

hairstyling, hair simulation, and hair rendering [84]. Hairstyling addresses

the geometrical aspects of hair, and accounts for its general static shape. Hair

simulation incorporates the notions of external or interaction forces (friction,

collisions, wind, etc.) and time (dynamics), into the hair modeling framework.

Hair rendering is in charge of polishing the visualization of the resulting hair.

Hairstyling, hair simulation and hair rendering each comprise numerous

subproblems. What complicates matters is that many levels of the hierarchy of

subproblems interact with one another i.e., they seldom work independently.

Therefore, proponents of a novel hair modeling method typically need to in-

corporate it into an existing framework in order to investigate its usefulness.

Take hair rendering for example – in order to experiment on a novel rendering

algorithm, one must first decide what computational model of hair geometry

will be used, and how it will be simulated.

The same computational model can also be used to generate hairs and to

simulate them, in which case the parameters governing the dynamics of the

hair are embedded into its geometric description. This is the case with the

super-helix mechanical model, employed in Bertails et al. [10], where a hair

strand is described by a parameterized piecewise super-helix with each piece

corresponding to an individual helix with constant curvature and torsion. The

dynamics of hair are directly encoded into the parameters of each helix.

5

6

There are other times when hairstyling, hair simulation and hair rendering

are completely decoupled from each other, with different and possibly nonin-

teracting methods being used for each. For instance, parametric curves and

surfaces, generalized cylinders, cantilever beams, fluid flows, particle methods,

vector fields and hand sketches are all different methods used for hairstyling

[84], but many don’t apply well to hair simulation. In these cases, other meth-

ods are used to ensure the continuity of the hair modeling process.

In the hair modeling literature, important issues have been somewhat

ignored, with advances made in more “exciting” areas. Rendering is one

such topic, and the literature on the subject has expanded considerably in

the last few years, particularly in top conferences and journals in the field

(I3D, SIGGRAPH, Eurographics, ACM Transactions on Graphics, to name a

few). Moreover, the increasingly exquisite hair animations seen in blockbuster

movies seem to indicate that the general problem of hair modeling is nearly

solved. In reality there are other important and less discussed issues in the

hair modeling literature, such as those of finding better geometrical models

of hair, fitting hair to data, and interpolating hairs. These topics tend to be

discredited as they can be addressed by – computationally and time expensive

– brute-force methods. The cost of running these brute-force approaches to

completion could be reduced by advances in such topics, and the amount of

required human intervention could be lowered.

The generation of complete hairstyles from minimal or sparse data, which

will be referred to as the hair reconstruction problem, is one such recurrent and

unsolved problem in the computer graphics literature. Little work has been

carried out on the development of approaches for efficiently and realistically

interpolating hair from sparse samples. Moreover, hair reconstruction is highly

7

dependent on the computational hair model at work. Hairs are often repre-

sented as series of points, vector fields, meshes, or textures, obtained through

either an explicit (discrete) or implicit (continuous) generative process. In the

case of explicit models, void spaces can be filled by directly interpolating the

position of the points in key selected hair strands (commonly referred to as

guide hair strands). On the other hand, for implicit methods, the interpo-

lation problem is generally simpler and in some cases, it simply amounts to

tracing additional streamlines in a continuous medium.

This thesis investigates an approach for hair reconstruction using a novel

parametric model for hair, the generalized helicoid. This parametric repre-

sentation of hair contrasts with the ones aforementioned in that each hair,

described as a piecewise helicoid, carries information about its own geometry

and also about the curvature of hair strands in its neighborhood. The gener-

alized helicoid model makes it possible to produce a coherent hairstyle from

sparse hair data. A small sample of hair strands is first required to shape the

global hairstyle, and then additional hairs are interpolated from this sample.

Hairs are generated from their implicit (parametric) representation using a

streamline tracing algorithm, described in Chapter 3. As such, the general-

ized helicoid representation can be described as a hybrid between implicit and

explicit approaches.

Going back to the more general problem of modeling the geometry of

natural fibers, there is an extensive literature to cover. Fiber patterns – par-

ticularly hair, fur, and grass – have been studied and modeled extensively in

computer graphics for the past three decades. This literature review focuses

on work that is related to the modeling of hair geometry in computer graphics.

The topics were selected to cover as much as possible of the relevant literature

for this thesis. For a review of hair dynamics and hair rendering, two topics

8

that are not directly addressed in this thesis, see Bertails et al. [9], Parke et

al. [65], Ward et al. [84], Hadap et al. [32], and Magnenat et al. [55].

2.1 Optimizations in Hair Modeling

The human scalp is typically populated by more than 100,000 hair strands,

that vary in width from 0.05 mm to 0.09mm [73]. Consequently, the computa-

tion of the geometry, dynamics and rendering of all hairs is intractable at the

highest level of resolution, if hairs are considered individually. The generation

of a small hair volume having a consistent and natural geometry is already a

difficult problem on its own. Furthermore, the problem of hair dynamics does

not scale well as the hair count increases, as the number of possible pairwise

hair interactions increases quadratically. In hair rendering, the more hairs that

are considered, the more complex it is to compute shadows and the scattering

of light through the hair medium. These issues become considerably more im-

portant in real-time applications. Thus, simplifications and optimizations are

an essential part of any hair modeling framework, regardless of the methods

or regime (offline, real-time) at hand.

Most solutions avoid considering each hair individually, and instead work

with a subsampling of the complete hair count, down to a few samples named

guide hairs, representative of the full hairstyle. Additional hairs can be inter-

polated from this subset of guide hairs, giving it a globally consistent shape.

Locally, hair clusters can be generated from individual guide hairs to improve

both the texture of the hair and the efficiency of the computations. These two

optimizations are respectively discussed in Sections 2.1.1 and 2.1.2. Other

simplifications arise from the nature of the computational hair model that

is used. For instance, the simplest way to model the appearance of hair is

through the use of textures applied to polygon patches. Due the great variety

of such methods, the possibilities are numerous, and they are described in

9

Section 2.2, grouped into the categories that best describe the mathematical

processes they involve.

2.1.1 Guide Hairs

A useful optimization in hair modeling is the use of guide hairs that

represent a coarse approximation to a full hairstyle. This optimization is

employed in most hair modeling techniques, and is carefully investigated by

Alter [2]. The process often goes as follows. A few selected guide hairs are first

placed on the scalp. Ideally, these strands are selected such that they describe

the large scale impression of the hairstyle. Then, a denser and consistent

representation of the hairstyle is obtained by interpolating across guide hairs.

The measure of how well interpolation scales with the number of hairs is highly

dependent on the geometric hair model at work. The interpolation can be done

before the hair dynamics are solved, or after, depending on the density of the

initial sampling and the complexity of the hairstyle. Many issues arise with

regard to the orientation and geometry of the hairs that are interpolated from

guide hairs. This particular point is addressed in Chapter 5.

2.1.2 Wisps, Clusters, Strips and Generalized Cylinders

Depending on the degree of refinement in the guide hair interpolation

step described in Section 2.1.1, the overall hairstyle may still look sparse and

undersampled. The extrapolation of guide hairs to form what is referred to

as wisps, clusters, strips or generalized cylinders can be used to both fill in

missing hairs and to speed up the animation of the resulting hairstyle. This

operation involves the grouping of many hairs together, in order to simplify the

computations. Wisp extrapolation contrasts with guide hair interpolation in

that consistency is not directly enforced between hairs belonging to different

wisps. This is a cheap and efficient way to pack in additional hairs at a

low computational cost. The wisps are often formed before solving for the

10

hair dynamics, as they provide a way to constrain the interactions between

larger volumes (e.g. piecewise generalized cylinders) and involve less pairwise

interactions. For simple hairstyles, this optimization is highly convenient at

the design, animation, and rendering stages. For more complex hairstyles, the

level of detail might be so high that consistency plays a crucial role in the

visual appearance of the hairstyle. In such cases, either individual hairs are

generated in great number, leading to expensive computations, or interpolation

is carried out at a finer level of detail.

Although the wisp model is often used in the hair modeling literature,

some articles address it more specifically. Watanabe and Suenaga [86] is one

of the first to introduce the hair wisp abstraction, and uses a trigonal prism

model as a representation of hair. Wisps are generated by offsetting exist-

ing hairs in random directions. Chen et al. [16] also uses a trigonal prism

wisp model, and the full hair is divided into several groups of wisps, follow-

ing their position on the skull. Each wisp is constructed using continuous

trigonal prisms, defined by three connected 3D b-spline curves. In contrast,

Yang et al. [92] and Xu et al. [90] use a cluster-based hair model. A vol-

ume density model is embedded into a generalized cylinder that specifies the

shape of the hair envelope. Then, more recently, Plante et al. [67] uses a

wisp model for simulating interactions inside long hair, where hair strands are

clustered into wisps consisting of a skeleton and its (deformable) envelope to

capture the global and local motion of hair, respectively. In Choe et al. [17],

wisps are represented as generalized cylinders and are generated by offsetting

a (Catmull-Rom spline) master strand. In Section 3.5, the generalized helicoid

model is presented as a way to efficiently generate coherent and realistic hair

clusters around skeletal guide strands.

11

2.2 Hair Models

Computational models for hair can be classified into two main categories:

those which are explicit and those which are volumetric or implicit. Explicit

models use a representation for hair strands that is based on a collection of

geometric primitives, for instance, generalized cylinders [39], mechanical rods

[29], or super-helices [10]. Implicit models instead use the evaluation of a dis-

tribution function over space, for instance particles in a continuous medium

[5], or a type of fluid flow [30]. Explicit approaches generally provide a greater

control over the local shape of the hair than implicit approaches, and can fully

benefit from the most advanced hair rendering techniques. However, the mod-

eling and rendering of hair using explicit methods can be quite time consuming.

On the other hand, whereas implicit approaches can be straightforward to use

and incorporate useful mathematical properties such as continuity, smooth-

ness and flow into the global shape of the hair, they typically do not offer

sufficient precision and control. Furthermore, they can fail to reproduce hair

styles where certain intrinsic assumptions related to the nature of the implicit

method are violated.

A compelling argument against explicit methods is that since they model

individual hairs in a discrete fashion, it is not immediately clear how they can

capture geometric coherency between neighboring strands, or allow for hair

curvature to vary consistently across the scalp. In contrast, implicit methods

are prone to the oversimplification of hair geometry. The generalized model

presented in this thesis addresses these limitations. It may be viewed as a hy-

brid between explicit and implicit approaches, benefiting from the advantages

of both worlds. In particular, whereas individual hair strands are represented

explicitly by a geometrical model, the model is truly implicit and enforces

12

coherency between nearby strands while allowing hair curvature to vary arbi-

trarily across the scalp.

2.2.1 Explicit Methods

Explicit approaches to hair modeling describe hairs as a series of con-

nected geometric primitives. The main advantage of explicit hair models is

that they provide optimal precision and control (see Bergou et al. [7] and

Singh et al. [79] for instance) and can fully benefit from the most advanced

hair dynamics and rendering algorithms. Their major drawback is that they

involve a great number of hair primitives, and thus require a lot of storage,

and can be slow to render. Explicit approaches generally use interpolating

splines for representing hairs in the final rendering stage.

Some methods use connected trigonal prisms as a representation of hair

[16, 57, 86]. Other methods describe hairs as polygonal chains or polylines

[2, 34, 44, 58, 80]. Some methods use straight cylindrical segments connected

by points to describe a hair [56, 20, 47]. A cluster-based hair model extending

the idea of simple cylindrical hairs can also be used [68, 17, 39, 90, 92]. In this

case, a master strand or a volume density model is embedded into a generalized

cylinder that specifies the shape of the hair envelope. Some make use of a

pseudo-physical hair system where hairs are represented as serial multi-body

chains or spring-connected masses rotating about hinges [29, 18, 4, 74]. Lee et

al. [48] extends this idea by using a simplified cantilever beam model. Plante

et al. [67] uses a multi-layer explicit wisp model to represent a hair. The hair

is composed of three layers: a skeleton center polyline that defines large-scale

motion and formations; a deformable envelope that defines the deformation

of the wisp; an extrapolation of the skeletal polyline to fill the wisp with hair

strands. Piecewise helices, called super-helices, can be used to describe hairs

[13, 8, 12, 10]. Kmoch et al. [42] use elastic rods to describe hairs. In Reeves

13

et al. [70, 71], the first model of hair-like objects making use of particles was

introduced. Hair-like objects are represented as a cloud of primitive particles

that define its volume. Similarly, Bando et al. [5] uses loosely connected

particles to represent a hair strand. For particle methods, hair interaction is

controlled via a particle system driven by physical forces.

2.2.2 Implicit Methods

Implicit approaches to hair modeling describe hair as a continuous medium,

in which each location in space is associated information regarding the behav-

ior of hair in its vicinity. Texture-based methods are included in this category.

Although simple to use, in general implicit methods provide a less precise

control over the local shape of the hairstyle. There are rendering algorithms

designed specifically for some implicit methods that can be faster than those

for explicit methods (see Lengyel et al. [51] for instance). However, these

rendering algorithms are very specific and usually fail to generalize for other

hair modeling methods.

Csuri et al. [19] introduce one of the first implicit methods to model

hair-like objects in the graphics literature. Each hair is modeled as a texture

applied on a triangle defined on a polygonal surface. A z-buffer algorithm is

used for hidden surface removal. Similarly, Ivanov et al. [36, 49] use textured

polygonal meshes. Others use a generalization of this texturing approach as

an intermediate model between geometry and texture [61, 38]. The geometry

of the hair is encoded in textures that are distributed everywhere in space,

and are referred to as texels. Yuksel et al. [94] use hair meshes to define the

large-scale topology of the hairstyle, and generates a refined version of it by

growing hairs along the meshes. Perlin et al. [66] employ volume densities,

controlled with pseudo-random functions, to generate soft fur-like objects. In

Goldman et al. [27], a probabilistic model is used to approximate the lighting

14

properties of a furry surface. The geometry of hair is completely disregarded,

and thus, this method is only suitable for fur viewed at a great distance. Xu

et al. [90] and Yang et al. [92] use a cluster-based hair model where a volume

density model is embedded into a generalized cylinder that specifies the shape

of the hair envelope. Others model the hair shape as streamlines of a single

fluid flow, wrapped around the scalp and characterized by sources and vortices

[93, 31, 30]. This work is perhaps the one that is most similar to the methods

described in this thesis. The fluid flow described in these articles is defined

once for the whole hair volume, while the generalized helicoid model assigns a

different fluid flow to each hair.

2.2.3 Multiresolution Methods

Multiresolution approaches are very similar to MIP (multum in parvo,

meaning “much in small space”) maps in computer graphics in the context of

texture filtering. In the typical rendering of a scene, a fully detailed texture is

applied on an object, and then a scaling transformation is applied on it as the

viewer moves closer or further from it. In contrast, mipmap methods instead

precompute subsampled versions of the same texture, and depending on the

level of resolution that is required (as determined by the distance from the

object to the viewer), the appropriate subsampling is picked. In the context

of hair modeling, multiresolution approaches work the same way. Depending

on the distance from the viewer to the hair, a different level of detail or com-

putational model of hair is used. For instance, a cluster of hair viewed from a

great distance is almost fully opaque and could be replaced by a generalized

cylinder. On the other hand, when located very close to a hair tuft, a fine

resolution could be selected such as to make the distinction between individ-

ual hairs possible. This kind of optimization can dramatically speed up the

15

dynamics and rendering of hair, although the transition from one level of res-

olution to the other must be dealt with carefully (e.g. see Ward et al. [85] for

example).

Kim et al. [40] and Koh et al. [43] use a dual representation for hairstyles

comprised of mostly long hairs: a large scales, hair is approximated by con-

nected surface patches or strips ; a smaller scales, hair is represented by a set

of thin cylinders spread on these surfaces. This duality is combined to form

what is referred to as a thin shell volume. Lengyel [51] and Lengyel et al.

[50] combine explicit and simplified volumetric methods for rendering fur and

short hair. When the viewer is close to the hair, a polyline hair representation

is used, while from distant views, a fur coating is modeled using concentric

texture layers. Ward et al. [82], Wang et al. [83] and Kim et al [39] use a

hierarchy of generalized cylinders to represent hair. Ward et al. [85] use a hi-

erarchical representation for hair – strips, clusters and then individual strands.

Their framework switches seamlessly between different levels of detail using

the methods described in Funkhouser and Séquin [25]. In Kong and Nakajima

[44], a visible volume buffer is proposed, where hairs that are close to the

camera are rendered as thin polylines, and the background hairs are rendered

as thick polylines.

2.2.4 Capturing Hair Model to Images

Kong et al. [45] is considered the first approach to use real hair pictures

to automatically create hairstyles [84]. A 3D hair volume is approximated

using the 2D outline of different viewpoints, and hair strands are reconstructed

through this volume following a simple point matching heuristic. Grabli et al.

[28] use a shape-from-inverse-lighting approach, where a stationary viewpoint

is used along with a moving light source. A synthetic reflection profile is

determined and used for extracting the orientation of hair strands. Paris

16

et al. [63] extends this idea by placing a lower bound on the number of

images and sequences required, and develops a more sophisticated methods

for reconstructing all visible hairs. The 2D orientation of a hair is inferred

from its anisotropic behavior, and its 3D orientation is reconstructed from the

reflection of multiple light rays. Similarly, Wei et al. [87] use images captured

from multiple views to recover the hair geometry. Hair strands are triangulated

from local per pixel orientations at each viewpoint. Paris et al. [64] build on

these ideas and simplifies the capture of complex features such as concavities

and curls. Yamaguchi et al. [91] use an array of synchronized video cameras

to capture dynamic hairstyles. Hair is reconstructed at each frame using an

orientation-preserving algorithm. Jakob et al. [37] use macrophotographs with

a shallow depth of field of a hair and extracts features from these. They use

a sequence of least squares iterations to grow hair fibers in a cloud of hair

features derived from the series of images.

2.3 Follicle Sampling

Regardless of the computational hair model used, the locations where

hairs are grown need to be determined. The great variability in the topology

of surfaces and in the clustering of follicles complicates this task. For instance,

sampling might be required on sharp edges (e.g. near an ear) and there might

be locations on the scalp where varying hair distributions are required (e.g.

balding spots). Different sampling methods have been used in the graphics

literature, and these can be divided in two broad categories, those making

use of surface mappings, described in Section 2.3.1 and those using surface

interpolation methods, described in Section 2.3.2.

2.3.1 Surface Mappings

Surface mappings seek to find an invertible surface transformation that

yields a representation of the original surface that is more convenient to work

17

(a) Conformal
mapping

(b) August (conformal) map (c) Aitoff (equidistance) map

Figure 2–1: Surface mappings. (Adapted from [26])

with. For instance, we find 2D world maps more often than 3D ones since they

convey the same information, are cheaper to produce, and take less space. Typ-

ically, the transformation is applied on the vertices of a geometrical surface.

Certain types of constraints concerning how the geometry and relationship

of neighboring points are preserved in the mapping can be enforced. For

instance, conformal mappings locally preserve oriented angles between curves

passing through the same point. Other properties include the preservation of

distances (equidistance, isometry), geodesics (great circles), directions, area

(equivalence), distortion patterns, and angle deformation patterns.

Figure 2–1 shows different types of mappings. In general, such analytical

mappings are hard to find for arbitrary surfaces, except in some simple cases

such as the plane mapping example shown in Figure 2–1a. Wang et al. [82]

is a good example of how surface mappings can be used in the context of

hair modeling. They use scalp space coordinates for modeling the curved

hair volume bounded by the scalp from below. The coordinate system is

defined as a mapping of the scalp points onto a sphere. The head scalp can

then be sampled by using the parameterization obtained through a spherical

projection. Figure 2–2 shows the scalp parameterization for this mapping.

18

Y

X

Z

P ′

w

P

X

Y

O

P ′

S0 = (0,−1, 0)

u

Z

Y

O

P ′

S0 = (0,−1, 0)

v

Figure 2: 3D Scalp Space Parameterization. Given a world space point P (x, y, z) and its spherical projection P � on the unit sphere, its
scalp space coordinates (u, v, w) has an intuitive meaning: u and v can be interpreted as two angles ranging from 0 to π as shown in the
two rightmost figures.

(0,−1, 0). Distortion introduced by our parameterization becomes
larger as y decreases. In practice, however, we can always map the
hair roots to the upper hemisphere where the distortion is acceptable
for our application.

We also define a local tangent frame at every point on the scalp sur-
face. To compute the tangent and binormal vector within the frame,
we first compute a rotation matrix, R, that represents the rotation
from the y-axis to the local surface normal. Then, the local tangent
and binormal are defined by rotating the x- and z-axis respectively
using R. This definition can be extended to any point in the hair
volume. The local frame at such a point shares the same coordinate
axes with the point on the scalp that has the same u and v.

4 Hierarchical Hair Clustering

To reproduce characteristic hierarchical wisp structures during
example-based hairstyle synthesis, it is crucial to identify such
structures for the example hairstyles. Inspired by the triangle clus-
tering algorithm in [Cohen-Steiner et al. 2004], we introduce a vari-
ational hair clustering algorithm which automatically divides the
original set of hair strands into k clusters and computes a center
strand for each cluster. The set of these k clusters is called a k-
partition. With this algorithm, building the full hierarchy follows
a straightforward process: at each level of the hierarchy, we divide
the hair strands at the current level into clusters and let the center
strands be the hair strands in the next (coarser) level.

Our hair clustering follows the general approach of Lloyd’s algo-
rithm (a.k.a. k-means clustering) [Lloyd 1982], which is guaranteed
to converge. Lloyd’s algorithm alternately repeats the following
two phases: partitioning and fitting. For the first phase, we design a
cluster growing algorithm that simultaneously expands all the clus-
ters from their seeding strands to cover the entire set of strands.
It guarantees that strands within the same cluster are connected
according to a predefined neighborhood structure. In the second
phase, we compute for each cluster an optimal local representative,
the center strand.

4.1 Energy Function

Defining an appropriate energy function is a key ingredient in clus-
tering. Given two hair strands γa and γb, we first discretize each
of them into ns sample vertices. Let γa(l) and γb(l) denote the
coordinates of the l-th vertex (from root to tip) in the local frame
defined at the root of γa and γb, respectively. Then we define the L2

distance between them as L2(γa, γb) =
�ns

l=1
�γa(l) − γb(l)�2.

Note that in this equation we do not add more weights to the hair
roots, because we would like to emphasize the similarity between
“more visible” portions of the hair strands. We refer to the input set

of hair strands as S, its k clusters as Si, and their current respective
center strand as γ̄i. The overall energy function for hair clustering
is defined as

E(S) =

k�

i=1

|Si|�

j=1

L2(γi
j , γ̄i), (3)

where γi
j represents the j-th strand in the i-th cluster.

4.2 Partitioning

Knowing a fixed set of center strands, we wish to update the par-
tition while minimizing the energy function in (3). For the i-
th cluster of the previous partition, we first locate a seed strand
γi
1 ∈ Si that is most similar to its associated center strand, i.e.,

γi
1 = arg minγj∈Si L2(γj , γ̄i). In the very first iteration, the parti-

tioning phase picks k strands at random, and each of these strands is
designated a center strand as well as a seed strand. The assignments
of all the other strands are initially set to null. In order to cluster
together only strands that are similar to the center strand, for each
seed strand γi

1, we insert every strand γj in its neighborhood into a
global priority queue, with a priority inversely proportional to the
distance to the corresponding center strand, L2(γj , γ̄i), and we fur-
ther post a tag indicating the cluster label i of the center strand it
is being tested with. The neighborhood of a strand is acquired by
Delaunay triangulation of all hair roots.

The region-growing process proceeds by repeatedly popping hair
strands with the highest priority until the queue is empty. For each
popped strand, we check its cluster assignment. If it has already
been assigned to a cluster, we do nothing and skip to the next strand
in the queue; otherwise, we assign it to the cluster indicated by
its tag, and push its unlabeled neighboring strands into the queue
along with the same tag. When the priority queue has been emptied,
each strand has been assigned to a cluster. Notice that this process
ensures connected and non-overlapping clusters as required, and
that it has a low computational complexity, N log N , where N is
the total number of strands.

4.3 Fitting

Once we have obtained a new partition, we wish to update the center
strand of every cluster in order for it to be the best representative.
For the L2 distance metric, the center strand that minimizes the
energy function in (3) is simply the average of the hair strands in
each cluster.

4.4 Adaptive Clustering

Usually it is inconvenient for the user to decide the proper number
of clusters for a given hairstyle. Therefore we have made a simple

Example-Based Hair Geometry Synthesis • 56:3

ACM Transactions on Graphics, Vol. 28, No. 3, Article 56, Publication date: August 2009.

Figure 2–2: 3D Scalp Space Parameterization. A world space point P (x, y, z)
is represented with its spherical projection P ′ on the unit sphere. The scalp
space coordinates (u, v) are given as two angles ranging from 0 to π. (Adapted
from Wang et al. [82])

2.3.2 Surface Interpolation

There are cases where there might be no convenient mapping, or none

flexible enough to include large variations of the surface being sampled. For

instance, we might seek a hair sampling method that could be used for both

a human scalp, and a topologically different surface such as the back of a

dog, while remaining computationally efficient and allowing for user input.

Wang et al. [82] showcases the inability of mapping methods to easily tackle

these requirements altogether. The distortion induced by their parameteriza-

tion increases as the value of one of their parameters (y) decreases, leading

to inconsistent mappings in the case of highly irregular surfaces. Moreover,

non-conformal mappings can yield a confusing representation for complex and

folded surfaces, and are thus not well suited for interactive user input.

Surface interpolation methods are typically more useful when dealing with

complex surfaces, and when users are required to interact. Moreover, they

pair well with particle-based methods for sampling surfaces. They involve the

making of an approximative surface, through an interpolation process driven

by some constraints on the resulting topology, and on a similarity to the

original surface. The approach used in this thesis, namely that of using a

19

particle system to sample an implicit representation of an arbitrary three-

dimensional mesh, is described in Chapter 4.

CHAPTER 3
Hairs as Generalized Helicoids

This thesis investigates an approach for generating, fitting, and interpo-

lating hair patterns using a parametric model which is based on the generalized

helicoid. Although the generalized helicoid has been used in the computer vi-

sion literature for texture analysis [6], and in the medical imaging literature

[76], its application to hair modeling is new. The generalized helicoid provides

an intuitive representation that equips a hair strand with information not only

about its own geometry but also about the flow of hair in its neighborhood.

Using the generalized helicoid model, a hair strand H rooted at posi-

tion r can be represented in explicit (discrete) form as a sequence of points

H = {r,p1, · · · ,pn}, and parameterized in implicit (continuous) form using

H → (k, r,M). The significance of the parameter vector k is described in

Section 3.2. M refers to the local transformation matrix aligning the hair at

r. Depending on the problem at hand, either the explicit or the implicit de-

scription of a hair will be used. There are other cases where both descriptions

will be used simultaneously.

Section 3.1 first introduces topics on the differential geometry of space

curves that are used throughout this thesis, more precisely, the Frenet frame

is discussed. Then the generalized helicoid model is introduced in Section

3.2. Section 3.3 shows how the explicit form of a hair can be obtained from

a spherical mapping of its implicit parameterization. In Section 3.4, intrinsic

properties of the generalized helicoid are discussed. Finally, the concept of a

single generalized helicoid is extended in sections 3.5 and 3.6 to respectively

form wisps and composite (piecewise helicoidal) hairs.

20

21

Figure 3–1: Frenet frame ET ,EN ,EB traveling along a space curve c. The
osculating plane is spanned by ET and EN .

3.1 Hair Framing: Computing the Frenet Tetrad

For various applications, the local frame describing the orientation of a

hair at its root and at various locations along its arclength need to be com-

puted. More generally, there is a need to determine a coordinate frame travel-

ling along with the hair, a process refered to as curve framing. This coordinate

frame should allow to study the differential geometry of the hair under inves-

tigation (specifically, its curvature and torsion). Different approaches exist

for framing spatial curves, including quaternion-approaches, parallel frames,

Frenet frames, and the simple “fixed-up” method [23, 11, 41]. In this thesis,

the Frenet frame approach is used, since it naturally corresponds to the geo-

metrical motivation behind the generalized helicoid model, it smoothly varies

along the curve, is consistent, and is fairly easy to compute in the discrete

case.

In R3, the Frenet frame of a curve c is a reference frame that moves along

its length, and is uniquely determined by three orthonormal and positively

oriented vectors ET ,EN ,EB, referred to respectively as the tangent, principal

normal, and binormal vectors. The tangential and normal components span

the osculating plane, as shown in Figure 3–1. In the case of a continuous and

differentiable curve, the accompanying 3-frame (triad) is given by Kuhnel et

al. [46]:

22

!"#$% &' ()$ *&'+$,-(./01$#$1+-'2 01&0$1(. &3 ()$ *41+$5
6)$ 3&17$1 "001&"*) -# " 8&*"8 3"-1-'2 7$()&%9 "'% ()$
%"(" 0&-'(# "1$ 3"-1$% 7"()$7"(-*"88.5 6)$ 8"(($1 $708&.#
").!1-% 3"-1-'2 7$()&%9 :)-*) *&'#-#(# &3 " 28&!"8 01&*$/
%41$ "'% " 8&*"8 ;'$ 3"-1-'2 #("2$5 <. 4(-8-=-'2 ()$ *&'+$,-(./
01$#$1+-'2 01&0$1(. &3 ()$ -'($10&8"(&1. *41+$9 ()$ 8"(($1
"82&1-()7 $70)"#-=$# 7&1$ &' ()$ 3"-1-'2 &3 " *41+$ ()"(
"' #"(-#3. ()$ 1$>4-1$7$'(# -70&#$% !. ()$ %$#-2'$1 #4)
"# 8&*"8 *&'+$,-(.9 $'% *&'#(1"-'(9 "'% (&8$1"'*$ *&'#(1"-'(5
?)-8$ #4*) "4(&7"(-* 3"-1-'2 7$()&%# "1$ $3;*-$'("'%
33*(-+$9 " 0&($'(-"8 %-#"%+"'("2$ -# ()$ 0&##-!-8-(. &3
8"12$ %$@$*(-&'# "1-#-'2 31&7 ()$ 4#$ &3 ()$ -'($10&8"(&1.
*41+$ AB9CBD5

6)1 "1$ *"#$# :)$1$ &'8. 4'%$#-1"!8$ &1 !"% 0&-'(#
"1$ "88&:$% (& !$ 7&%-;$% -' &1%$1 (& E$$0 ()$ &1-2-'"8
#)"0$ -'3&17"(-&' 1$*&1%$% -' ()$ %"(" 0&-'(#5 F&1
$,"708$9 -' ()$ 1$+$1#$ $'2-'$$1-'2 &3 *&708$, #413"*$#9
:$ '$$% (& 1$08-*"($ " 3"-1 #)"0$ ()"(-# *"0"!8$ &3
%$0-*(-'2 ()$ &1-2-'"8 #)"0$ &3 ()$ %"(" 0&-'(# "# 74*)
"# 0&##-!8$5 6)$ *"0(41$% %"(" 0&-'(# "1$ &3($' %$'#$ "'%
$11&1/;88$%5 6)$ 01&!8$7 -# '&(G4#((& 7&%-3. ()$!"%
0&-'(# (& 7"E$ ()$;((-'2 *41+$ 3"-19 !4("8#& (& E$$0 ()$
%-33$1$'*$# !$(:$$' ()$ 7&%-;$% %"(" 0&-'(# "'% ()$
&1-2-'"8 0&-'(# "# #7"88 "# 0&##-!8$9 #& "# (& $'#41$
()"(()$ &1-2-'"8 !"#-* #)"0$ -'3&17"(-&' -# 1$8"(-+$8.
4'"33$*($% AC9CBD5 H(-# %-3;*48((& "**&708-#) " #"(-#3"*/
(&1. 1$#48(3&1 #4*) *"#$# !. 4#-'2 ()$ "!&+$/7$'(-&'$%
3"-1-'2 7$()&%#5 6)$1$3&1$9 -' ()-# 0"0$19 :$)"+$
01&0&#$% " %-#*1$($ *41+"(41$ I!/*41+"(41$J 3"-1-'2
7$()&% "'% %$+$8&0$% " *&11$#0&'%-'2 "%"0(-+$ 3"-1-'2
"82&1-()7 (& #&8+$ ()-# 01&!8$75 K' ()$ &()$1)"'%9 &41
3"-1-'2 "82&1-()7 3&*4#$# &' (:&/%-7$'#-&'"8 IBLJ
%-#*1$($ 0&-'(#5 M&:$+$19 -(-# "008-*"!8$ (& 01&!8$7#
-'+&8+-'2 NL *8&4% %"(" "'% ()-# :-88 !$ 01$#$'($% -'
()$ *"#$ #(4%.5

!" #$%&'()(&*'+,)*'(-. /$%&'()(/,), 0-$1)%

H' %-33$1$'*$ 2$&7$(1.9 " 0&8.2&' !!""#"#O #
!!O!!C!$!!#" 1$01$#$'(# ()$ 0&8.2&'"8 *&''$*(-&' :-()
#(1"-2)(/8-'$ #27'(# &3 ()$ # ! C +$1(-*$# &1 %-#*1$($
0&-'(# !" ! !% I% # B -# " 08"'$1 %-#*1$($ *41+$ "'% % # N
" #0"(-"8 %-#*1$($ *41+$J5 6)$ 0&8.2&' -# *"88$% *8&#$% :)$'
&'%-(-&' !O # !# -# #"(-#;$% "'% ()$ &()$1 +$1(-$# "1$ -''$1
+$1(-*$#5 K()$1:-#$ -(-# *"88$% &0$' "'% 0&##$##$# # " C
-''$1 +$1(-*$# !C9P9!#"C5 H3 :$ 0"1"7$($1-=$ ()$ +$1(-*$# &3
()$ 0&8.2&' 4#-'2 *)&1%/8$'2() 0"1"7$($1-="(-&'9 ()$ 0&8./
2&' *"' !$ "##&*-"($% :-() " 1$248"1 0"1"7$(1-* *41+$ -'!%5
M$'*$9 -' ()-# 0"0$19 :$ *"88 0&8.2&' !!""#"#O (& !$ " %"&'()*)
'+(,) ACND -' !% "'% *41+"(41$ "(+$1($, !" "# %"&'()*)
'+(,-*+()I!/*41+"(41$J &3 !"5

Q##47-'2 ()"("' &0$' %-#*1$($ *41+$!!""#"#O -# 2-+$' -'
!B9 :$ %$;'$ ()$!/*41+"(41$ "(!"9 ."9 "# ()$ 1$8"(-+$ *41+"/
(41$ &3 " *41+$ ()"(0"##$# ()1&42) ()1$$ "%G"*$'(0&-'(# !""C9
!"9 "'% !"!C5 Q# -884#(1"($% -' F-25 CI"J9 ." *"' !$ $,01$##$%

4#-'2 *-1*48"1 *41+"(41$ "#R

." #
B!!""C!"!"!C

/"/"!C0"
#2'!!!""C!"!"!C

" B#-'""

0"
!C"

:)1 "" #$!" " !""C $! #" #$!"!C " !""C $ "'%
!!""C!"!"!C

-# ()$ #-2'$% (1-"'248"1 "1$"5 ?)$' !""C9 !"9 "'%
!"!C 14' *&4'($1/*8&*E:-#$9 ." -# %$;'$% "# 0&#-(-+$ (& -'%-/
*"($ ()"(!" -# " *&'+$, 0&-'(9 "'% +-*$ +$1#"5 F&1 ()$ (:& $'%
0&-'(# !O9 !#9 ()$ *&11$#0&'%-'2!/*41+"(41$ -# *"8*48"($% "#
3&88&:#R

C5 H3 ()$ $'% ("'2$'(+$*(&1 -# 4'E'&:'9 *-1*48"1 $'% *&'%-/
(-&' -# "008-$% (& $#(-7"($ ()$ (:& $'% ("'2$'(+$*(&1#
!$ O 9 !$ # 5 S&-'(# !O % !C % !B "1$ #8*($% (& $#(-7"($
!$O :)-8$!# % !#"C % !#"B 3&1 !$# 5 6"E$!$O "# "'
$,"708$9 %$'&($ %2 # !C " !O! 1O # !B " !O "'%
&2 # %2 ! '29 !$O -# *"8*48"($% !. ACTDR

!$O # (O ! &O" $ (O ! &O $:-()

(O # U $ %O $B !'O ! &O"! $ 'O $B !&O ! %O"V"!B $ &O $B"
!B"

B5 Q# #)&:' -' F-25 CI!J9 (:& "%%-(-&'"8 0&-'(# !"
O 9 !

!
"1$

"%%$% "8&'2 ()$ %-1$*(-&' &3 " !$O9 " !$# 9 #"(-#3.-'2
$!C " !O $#$!O" " !O $9 $!#"C " !# $#$!#!"
!# $5

N5 !/*41+"(41$# "(!O9 !#9 "1$ *"8*48"($% 4#-'2 W>5 ICJ :-()
!O" % !O % !C "'% !#"C % !# % !#! 9 1$#0$*(-+$8.5

2343 /"+)* -53 6 789:+*)(;<"%)% !)&"=> ?@ ABCCBD ?CEF?BCNCO

F-25 C5 W#(-7"(-&' &3 !/*41+"(41$5

Figure 3–2: Discrete differential geometry on a polyline.

ET =
c′

||c′||
(3.1)

EN =
E′T
||E′T ||

=
c′ × (c′′ × c′)

||c′|| ||c′′ × c′||
(3.2)

EB = ET × EN =
c′ × c′′

||c′ × c′′||
. (3.3)

where ||.|| is the Euclidean norm, and c′, c′′ respectively denote the first and

second derivatives of the curve with respect to its arclength. Furthermore, c is

uniquely determined, up to Euclidean motion, by its curvature κ and torsion

τ , which are directly related to the Frenet frame of the curve:

κ = ||E′T || (3.4)

τ = E′N · EB (3.5)

where · is the inner product in R3. A complete relationship between the Frenet

triad and the curvature and torsion of the curve is defined by the Frenet-Serret

theorem [62]. The discrete curvature κi and torsion τi at a point pi with

tangent Li can be estimated by ([3, 52, 53]):

23

Li = pi − pi−1 (3.6)

cos (αi) =
Li · Li+1

LiLi+1

(3.7)

κi =
2 sin (αi)∣∣∣∣pi+1 − pi−1

∣∣∣∣ (3.8)

Vi = Li × Li+1 (3.9)

Ni =
Vi

Vi
(3.10)

cos (βi) = Ni−1 ·Ni (3.11)

∆i = det (Li−1,Li,Li+1) (3.12)

τi = sgn (∆i)
sin (βi)

Li
(3.13)

where Li = ||Li|| and ∆i is the (signed) area formed by the triangle pi−1, pi, pi+1.

Since backward tangent estimations are used, the first tangent is not well-

defined. The first tangent is set identical to the second one. This assumption

makes sense since the polylines forming hairs are opened, and no prior in-

formation exists for how the curve should behave in the vicinity of the first

tangent. The first tangent is therefore obtained by:

L1 = L2 = p2 − p1. (3.14)

For a hair represented as a polygonal chain (defined by a connected series

of points), there is no direct analytical expression c = c(t) that describes the

curve along its arclength t. Therefore, a discrete version of the Frenet frame

is used that would approximate that of the continuous curve if its description

was available. A polygonal chain or polyline is a discrete curve formed by a

sequence of vertices p1,p2, ...,pn. A rough but sufficient approximation of the

differential geometry in the case of a discrete curve for three successive poins

24

pi−1,pi,pi+1 can be found in Sapidis et al. [75]. The Frenet frame is given by:

ET =
pi − pi−1∣∣∣∣pi − pi−1

∣∣∣∣ (3.15)

EB =
ET,i − ET,i−1

||ET,i − ET,i−1||
(3.16)

EN = EB × ET . (3.17)

which respectively correspond to backward tangents, tangent differences, and

cross products of tangent differences. A transformation matrix R ∈ R4×4 from

the canonical basis of R3 (world coordinates) to the basis ET ,EB,EN located

at a location p can then be represented as the orthogonal matrix

W =




| | | 0

ET EN EB 0

| | | 0

0 0 0 1




+




0 0 0 |

0 0 0 pi

| | | 0

0 0 0 1




(3.18)

= E + T (3.19)

Since E is orthogonal, ET = E−1 and ET − T is therefore the inverse trans-

formation matrix to the canonical basis. The Frenet frame is not defined at

locations where the second derivative vanishes and the curve is locally flat (i.e.

three consecutive points are collinear):

ET,i = ET,i−1 (3.20)

or ET,i = 0 (3.21)

or ET,i−1 = 0. (3.22)

A heuristic based on the magnitude of the normal component is used to de-

termine when this is the case:

||EN || < ε. (3.23)

25

where ε→ 0. If equation 3.23 is satisfied at a point pi, the framing algorithm

backtracks along the curve until it finds an appropriate frame E or the identity

matrix, if the backtracking reaches the root.

3.2 The Generalized Helicoid Model

The generalized helicoid is a well-known mathematical object and is the

only nonplanar ruled minimal surface. More generally, Catalan [15] showed

that any minimal ruled submanifold of a Euclidean space is part of a general-

ized helicoid. To get a more intuitive feel of the generalized helicoid, consider

the following. If a twisted curve rotates about a fixed axis and is displaced par-

allel to this axis such that the displacement rate is always proportional to the

angular velocity of rotation, then this curve generates a generalized helicoid

[89, 69]. In the context of Diffusion MRI analysis, the generalized helicoid

model has been shown to describe the two orientation angles θ(x, y, z) and

φ(x, y, z) of a 3D flow via four parameters: k = (kT , kN , kB, α), in a Cartesian

reference frame [76]. In spherical coordinates, these two orientation angles are

given by

θ(x, y, z) = arctan

(
kTx+ kNy

1 + kNx− kTy

)
+ kBz, (3.24)

φ(x, y, z) = αθ(x, y, z). (3.25)

Here θ represents the orientation in the xy plane, φ represents the elevation

angle out of this plane, and α is a constant. As shown by Savadjiev [77],

this model has two key mathematical properties. First, the hypersurfaces

(x, y, z, θ) and (x, y, z, φ) are both minimal surfaces, i.e., surfaces with mean

curvature zero. As such, the orientation of the flow is guaranteed to vary

smoothly in a local neighborhood. Second, the parameters kT , kN , kB are

26

each related to a notion of a tangential, normal and bi-normal curvature,

respectively, of the underlying flow field.1

In the context of texture flow, the scalar orientation function θ(x, y, z)

represents the local behavior of the flow at a point in space, and is the solution

to the projection of the frame field of a curve satisfying Cartan’s connection

equations [62]. The texture flow manifold s(x, y, z) is then represented by the

4-tuple

(x, y, z, θ(x, y, z)). (3.26)

By imposing the notion of a slowly varying dominant orientation, certain con-

straints are enforced on the behavior of θ(x, y, z). More precisely, the following

harmonic energy is minimized:

∫
||∇θ||2 dV (3.27)

and also the surface tension by the hyperarea functional

∫ √
1 + θ2

x + θ2
y + θ2

zdV. (3.28)

The right or “generalized” helicoid is a solution to these constraints. See

Savadjiev et al. [76] and Ben-Shahar and Zucker [6] for more information re-

garding the theory supporting the generalized helicoid model and for a deriva-

tion of the curvature parameters. Although this thesis does not extend the

1 In fact, if one drops the terms related to the coordinate z in the model,
one obtains the right-helicoid which is known to be a minimizer of a harmonic
energy. This model has been used by Ben-Shahar and Zucker [6] to model 2D
(i.e. planar) texture flows in computer vision.

27

theory concerning the generalized helicoid, it proposes a novel way to rep-

resent it in explicit form and proposes its use for hair modeling as a direct

application.

A more intuitive way to describe this model is to define a frame field

at the origin, with its tangential, normal and bi-normal components given in

spherical coordinates by

ET = (cosφ cos θ, cosφ sin θ, sinφ) (3.29)

EN = (− sin θ, cos θ, 0) (3.30)

EB = (− sinφ cos θ,− sinφ sin θ, cosφ) . (3.31)

Let the tangential component be aligned with the direction of a local

flow pattern. The generalized helicoid then describes the fashion in which the

frame field must be rotated, in a local neighborhood, to fit the flow pattern

at a point (x, y, z). The three curvature parameters kT , kN , kB describe the

curvature along flow lines in the tangential plane, the curvature across flow

lines in the tangential plane and the curvature of flow lines out of this plane,

respectively2 . These planes define a Frenet frame along the helicoid.

2 Another, more elaborate way of describing the effect of the generalized
helicoid parameters kT , kN , kB, α in the context of hair tracing is the following:
• kT defines the main orientation quadrant of the hair, either in the

positive-y or negative-y portion of the x-y plane, with (always) positive
x.
• kN defines the amount of normal curvature in the hair, pointing towards

its osculating circles. This is the same as pulling the tip of the hair and
wrapping it in a coil-like fashion.
• kB defines the amount of local torsion in the hair. This torsion twists

the hair away from the osculating frame.
• α defines the main growth quadrant of the hair, either in the positive-z

or negative-z portion of the x-z plane, with (always) positive x.

28

It is important to note that the generalized helicoid differs from the super-

helix model presented by Bertails et al. [10]. Single streamlines in the gen-

eralized helicoid behave qualitatively like super-helices and in fact, a direct

relationship might exist. However, the correspondence does not go beyond

this point without extending or simplifying one or the other of the models.

The generalized helicoid is itself a higher dimensional object and carries infor-

mation (e.g. smoothness of the surrounding flow) about a volumetric neigh-

borhood of streamlines, not just of a single hair strand.

3.3 Tracing Vector Field Lines

The generalized helicoid representation can be used to generate a hair, by

tracing a path along an initial tangential direction of the flow field, which is

assumed to be aligned with the x axis at the origin. More precisely, starting

from the origin, the orientation θ(x, y, z) is evaluated in space and a step is

taken in the tangential direction (cosφ cos θ, cosφ sin θ, sinφ) of the generalized

helicoid frame field. Additional steps are taken until a desired fiber length step

count is reached. This essentially follows a forward Euler approach, described

in Algorithm 1. The scale of the actual polyline generated with this algorithm

can be adjusted appropriately, following the length scale predetermined by

the problem at hand. Figure 3–4 illustrates the effect of varying the curvature

parameters kT , kN , and kB on both the generalized helicoid (a planar slice is

shown in blue) and the resulting hair that is traced (shown in black).

3.3.1 Helical Waviness Offset

Instead of directly encoding the waviness of a hair in its helicoid pa-

rameterization, a helical waviness offset can be used. This waviness offset is

intuitive (controlled by one principal parameter, the frequency), efficient to

compute (it reuses the precomputed Frenet frame moving along the curve),

and couples well with the generalized helicoid tracing algorithm. It preserves

29

Algorithm 1 Generalized helicoid-based fiber tracing

1: function trace (float stepSize, float stepCount, Point p0)
2: List<Point> points← {}
3: Point p← p0

4: for step = 1 to stepCount do

5: θ(p)← arctan
(
kT px+kNpy
kNpx−kT py

)
+ kBpz

6: φ(p)← αθ(p)
7: ET ← (cosφ cos θ, cosφ sin θ, sinφ)
8: p← p + stepSize · ET

9: points← points ∪ p
10: end for
11: return points
12: end function

Figure 3–3: Tracing a path in the 3D field defined by curvature parameters
kT = 1, kN = 0.05, kB = 0.5, α = 1.

the large scale geometry of the target hair, while adding local helical pertur-

bations. This allows one to completely decouple the notion of waviness from

the generalized helicoid parameterization, at the benefit of concentrating its

effects on the overall shape and neighborhood of a generated hair, not on its

local behavior.

A helix of radius a and pitch (frequency) 2πb is described as a curve in

3-dimensional space parameterized by its arclength t in Cartesian coordinates

30

(a) p = (0.5, 0, 0, 0) (b) p = (0.5,−0.2, 0, 0) (c) p = (0.5, 0, 0.5, 1)

Figure 3–4: The effect of varying the curvature parameters of a generalized
helicoid, of which a slice in the xy plane is shown in blue. The parameter vector
is defined as k = (kT , kN , kB, α). The α parameter allows the helicoid to grow
out of plane, and must be non-zero to see the effects of the binormal curvature
kB. Figures 3–4a, 3–4b and 3–4c show the effects of varying the tangential,
normal, and binormal components of the parameter vector, respectively. The
hairs, shown in blue, are traced from an initial direction that is tangential to
the x axis, shown in red.

by

x(t) = a cos(t) (3.32)

y(t) = a sin(t) (3.33)

z(t) = bt. (3.34)

In the case of a generalized helicoid, the Cartesian coordinates are replaced by

the Frenet coordinates, moving along with the curve. The waviness offset is

mapped in the normal/binormal plane spanned by EB,EN . The offset W =

a cos(t0 + t/b)EB + a sin(t0 + t/b)EN is applied to the tangential component

of the representation in spherical coordinates of the generalized helicoid:

ẼT = ET + W (3.35)

where a controls the radius of the waviness offset, b its frequency, and t0

determines the phase of this helix. a is typically set to a small constant value,

31

since it is the frequency of the waviness offset that mostly drives its qualitative

impression. Noise can be added to the initial phase t0 in order to break the

similarity between hair neighbors. Note that the waviness offset is applied only

to the perceived geometry of the generalized helicoid, but its trace remains the

same. This way, the original generalized helicoid actually lives at the center

line of the helix responsible for its offset, and can be used for later purposes

(e.g. interpolation). Figure 3–5 shows an original hair inside its waviness offset

for radii and frequencies of different magnitudes.

(a) a = 0.1, b = 3 (b) a = 0.2, b = 3 (c) a = 0.1, b = 3 (d) a = 0.2, b = 3

(e) a = 0.1, b = 5 (f) a = 0.2, b = 5 (g) a = 0.1, b = 5 (h) a = 0.2, b = 5

(i) a = 0.1, b = 10 (j) a = 0.2, b = 10 (k) a = 0.1, b = 10 (l) a = 0.2, b = 10

Figure 3–5: Waviness offset (in blue) for helical radii a and frequencies b. The
helicoidal parameter of the hair is k = (1.1,−0.01, 0.2, 0.1). The original hair
is shown in red. The first two columns show a front view, and the last two a
side view.

32

3.3.2 Smoothed Stochastic Perturbations

Stochastic perturbations can be directly added to the generalized helicoid

tracing algorithm. If Gaussian random noise of mean 0, standard deviation 1.0

and magnitude r is used, the following orientation update equation is obtained,

replacing equation 3.25 for θ:

θ → θ + rN(0, 1). (3.36)

This perturbation is not cumulative in the sense that it is applied inde-

pendently at each step of the tracing algorithm. Smoothing can be applied on

the resulting geometry of the hair in order to improve its visual appearance

and filter the higher frequencies in the resulting noise. Smoothing by weighted

averaging is used herein, because of its simplicity and sufficient efficiency. The

smoothing is done by traversing the polyline describing the helicoid and ap-

plying the following update rule at each point pi of the polyline:

pi+1 → pi+1 + α

((
pi+1 − pi

)
− 1

2

(
pi+2 − pi

))
(3.37)

= (1 + α) pi+1 −
α

2

(
pi + pi+2

)
(3.38)

where 0 ≤ α ≤ 1 determines how much smoothing is applied at each iteration.

Figure 3–6 shows the direction n towards which the point pi+1 is pulled with

a magnitude α. The effect of the smoothing is illustrated in Figure 3–7 for

different numbers of smoothing cycles, and different values of α.

3.4 Properties of the Explicit Form

This section derives some properties relating to the symmetries and singu-

larities in the trace of a generalized helicoi. Recall that a generalized helicoid

is defined by the orientation angle

θ(x, y, z) = arctan

(
kTx+ kNy

1 + kNx− kTy

)
+ kBz. (3.39)

33

Figure 3–6: Smoothing by weighting averaging of a point pi+1 on its midline t

(a) c = 1, α = 0.75 (b) c = 2, α = 0.5 (c) c = 3, α = 0.35

Figure 3–7: Effect of varying the number of smoothing cycles c and the mag-
nitude of α. The original generalized helicoid is shown in blue and the noisy
and smoothed version in red. The magnitude of the noise is r = 0.03.

3.4.1 Restrictions on φ and kB

In the helicoid tracing Algorithm 1, the assignment of φ = αθ needs to

be dealt with carefully. Since the orientation angle θ varies monotonically,

it eventually completes full 2π cycles in the x − y plane. The assignment of

φ = αθ should thus be constrained in order to prevent cusps from forming

in the helicoidal trace where θ suddenly goes from 2π to 0, and therefore φ

goes from 2απ to 0. It is therefore necessary to count the number of complete

turns that θ cycles through, and the direction (positive or negative) in which

it is turning. This directly leads to a restriction on kB, as it should not be

greater than 2π, otherwise θ starts skipping turns and the trace will become

inconsistent.

34

3.4.2 Reflection by kT

Flipping the sign of kT merely results in a reflection of the trace about

a rotated x-z plane. The reflection occurs near the origin, and immediately

determines the quadrant into which the trace will be located. Let the current

location p = (x, y, z) in the tracing algorithm be near the origin, that is

p = (ε, ε, ε) where ε → 0, from any direction. Then the orientation angle can

be rewritten as follows:

lim
x,y,z→ε

θ(x, y, z) = lim
x,y,z→ε

arctan

(
kTx+ kNy

1 + kNx− kTy

)
+ kBz (3.40)

= lim
x,y,z→ε

arctan (kTx+ kNy) + kBz (3.41)

= kTx+ kNy + kBz (3.42)

where in the last step the taylor series arctanφ = φ− 1
3
φ3 + 1

5
φ5 + · · · was used

and the O(φ3) terms were omitted for small φ. The tangential component of

the trace is given by:

ET = (x, y, z) (3.43)

= (cosαθ cos θ, cosαθ sin θ, sinαθ) . (3.44)

The planar case α → 0 is first considered. If the orientation angle flips sign,

that is θ → −θ, and is substituted in equation 3.44, the following is obtained:

ET = (cos θ,− sin θ, 0) . (3.45)

Thus flipping the orientation angle results in a reflection of the trace about the

x-axis. This behavior can be obtained by flipping the sign of kT in equation

3.39. Since arctan is an odd function,

arctan (φ) = − arctan (−φ) (3.46)

35

using equation 3.42 yields

lim
x,y,z→ε

−θ(x, y, z) = (−kT)x+ (−y)kN (3.47)

which shows that flipping the sign of kT changes that of both θ and y, resulting

in the aforementioned reflection. For nonzero α, cosαθ 6= 1, z = sinαθ is still

small since θ is small, and the result is a reflection that is now done in a

rotated version of the x-z plane.

3.4.3 Singularities

Equation 3.39 is not defined if both the numerator and the denominator

in the argument of the arctan are 0. That is, if the following two equations

are satisfied:

kTx+ kNy = 0 (3.48)

1 + kNx− kTy = 0. (3.49)

This happens when

xc = − kN

1 +
(
kT
kN

)2 (3.50)

yc =
kT

1 +
(
kT
kN

)2 . (3.51)

The critical point (xc, yc) is responsible for the helicoidal behavior of the trace.

As shown in Figure 3–8, the closer the singularity is to the origin, the more

compact and coiled the trace becomes.

3.4.4 Rotational Ambiguity

This section showcases three simple cases to reveal ambiguities in the

way hairs are described by generalized helicoids when aligned in different local

frames. Let two generalized helicoids face each other. Their helicoidal param-

eters are assumed to all be zero, except for tangential curvature, which takes

36

either the value kT or −kT . The helicoid on the right is either aligned with

the left one (θ = 0), or rotated about the normal by θ = π radians. The three

cases that are considered are the following:

1. kT (a) = −kT (b), θ = 0. should produce opposing generalized helicoids,

one rotated by π radians from the other.

2. kT (a) = kT (b), θ = π. should produce opposing generalized helicoids,

one rotated by π radians from the other.

3. kT (a) = −kT (b), θ = π. should produce dentical and aligned helicoids.

In cases 1 and 2, the hairs look exactly the same. In case 3, they look differ-

ent. In all three cases, the generalized helicoids should have the exact same

geometry (as per the argument mentioned in Section 3.4.2). These ambiguities

are dealt with automatically by imposing kT to be always positive and using

normal rotations instead when necessary.

3.5 Wisps

By offsetting the origin p0 in Algorithm 1, a dense distribution of locally

parallel hair strands can be generated. Looking at Figure 3–4, this amounts

to tracing additional streamlines surrounding a master strand. The offset has

the same qualitative effect as interpolating between the master hair and other

strands of higher curvature. However, the offsetting method is much simpler

since it requires no additional information about the location and geometry

of neighboring hairs. This feature is of particular interest for proponents of

the hair wisp model. The computation of a wisp using the offsetting method

is fast since it only involves tracing streamlines in the helicoidal field. Noise

and random orientation perturbations can be added to further emphasize the

fanning of the wisp.

Figure 3–9 shows a wisp generated from extrapolated strands around a

guide hair. The diameter of the sampling region around the guide hair is 0.01

37

and the offset scaling with respect to the displacement vector from a sample

location to the guide hair is 0.1. 256 hairs are extrapolated from the guide

hair.

3.6 Hairs as Piecewise Helicoids

A more powerful and flexible way of representing hairs with the general-

ized helicoid model is to make use of a composite parameterization, referred

to as piecewise-helicoids or p-helicoids. P-helicoids are simply the union of

multiple generalized helicoids, aligned together by their Frenet frame using

equation 3.31. This characterization of hair strands enforces C0 continuity

(pieces are always connected), and C2 continuity (connected pieces share the

same tangent and second derivative at their connection point). C2 continuity

is obtained from the generalized helicoid parameterization. The transforma-

tion matrix that maps a point at the root of a p-helicoid to its tip is found by

traversing its helicoidal pieces, and carrying over the premultiplication of the

Frenet frame at the tip of each piece.

Piecewise helicoids can be used to generate the geometry of more complex

hairstyles. As described in sections 3.3.2 and 3.3.1, waviness and noise offsets

can be used to produce more realistic strands. The examples shown in this

section are represented in their wisp form, to give a more appreciable result.

For instance, Figure 3–10 shows a long hair composed of 3 helicoidal pieces

with varying curvature parameters. Figure 3–11 shows a “messy” hair using

5 helicoidal pieces and a curly hair composed of 3 helicoidal pieces of similar

curvature. All wisps are formed of 256 extrapolated hairs.

38

(a) kT = 1.2, kN = 0 (b) kT = 1.2, kN = 0.2 (c) kT = 1.2, kN = −0.2

Figure 3–8: Moving singularity for different kT , kN and kB = α = 0. The trace
is shown in blue. The singularity is located at the intersection of the two lines
defined in equation 3.51, shown in cyan and pink. The origin is shown as a
red circle.

Figure 3–9: A wisp generated by offsetting the origin in the streamline trace.
The guide strand of the helicoid is shown in red and the extrapolated hairs
are shown in gold.

39

(a) A long hair. (b) A long hair with a waviness offset.

Figure 3–10: A long hair (left) combined with a waviness offset (right), shown
in red. The associated extrapolated wisps are shown in brown.

40

(a) A “messy” hair. (b) A curly hair.

Figure 3–11: A “messy” hair (in red, on the left) and a curly hair (in red, on
the right) and their extrapolated wisps (in brown).

CHAPTER 4
Follicle Sampling

To interpolate across guide hairs, root locations (or follicles, if the bi-

ological terminology is used) have to be determined. The method used is

an adapted implementation of Turk and O’brien [81] and Witkin and Heck-

bert [88] for using particles to sample implicit surfaces. Although the particle

methods that are proposed closely follow the ideas introduced in Witkin and

Heckbert [88], the use of contour particles for outlining the shape of the hair

surface is novel in the hair modeling literature. Section 4.1 first presents the

implicit surface interpolation method. Section 4.2 then describes how particles

can be spread and constrained on the implicit surface. Finally, Section 4.2.9

shows the results of the sampling method applied on different surfaces.

4.1 Implicit Surface Interpolation

The method by Turk and O’brien [81] is used to generate an interpolated

representation of the growth surface for sampling hairs. More specifically, the

interpolated surface is an implicit surface. An implicit surface is defined by a

real-valued function f : R3 → R. The locus of the zero-crossings {x|f(x)−c =

0} represents the level sets of the implicit surface, for varying c. Figure 4–1

shows different level sets of a gaussian-like function. In 3D, these level sets

would actually correspond to different surfaces, of which only one (for a fixed

c, determined through some constraints with respect to the original surface)

is considered.

In the context of surface interpolation, an implicit function is sought such

that at least one of its level sets passes through (or within an epsilon-radius

41

42

Figure 4–1: Visualization of an implicit function. The blue curves are the the
level sets f(x) − c = 0 for different values of c. The red curves follow the
direction of the gradient of f .

of) a set of constraints (control points). The nature of the implicit function

determines how the surface varies in the vicinity of the control points.

In Turk and O’brien [81], the energy function

E(f) =

∫

Ω

f 2
xx(x) + 2f 2

xy(x) + f 2
yy(x)dx (4.1)

is used to evaluate the smoothness of the implicit function f over the region

of interest Ω. This energy measures how much the surface changes in the

region, and is often used in the context of regularization, in the Computer

Vision literature. Points of high curvature contribute to a large value of E,

while smooth regions tend to minimize it. Different applications yield different

smoothness criterion regarding E. If the implicit function satisfies the set of

constraints implied by the interpolation problem, and minimizes the energy E

defined in equation 4.1, then it is denoted a thin-plate solution.

The thin-plate solution gets its name from an analogy with a thin sheet of

metal, laid flat and bent such that it grazes the ends of a collection of vertical

poles distributed following the constraints of the interpolation problem. A

metal plate naturally resists bending such that it smoothly changes in shape

in between the poles, which is exactly the kind of neighborhing behavior that

minimizes the energy function E defined above. [81]

43

In the 3D interpolation case, the thin-plate radial basis function (RBF)

φ(x) = |x|3, for which the positional constraints are automatically satisfied

and the smoothness is enforced, is typically used. It is the thin-plate function

defined by Turk and O’brien [81], and the one adopted in this thesis. Con-

straints cj are selected by the user by picking vertices on a 3D model. Interior

and exterior constraints are added automatically by adding an offset in the di-

rection of the normal at the vertex corresponding to a constraint. The implicit

function that generates the interpolation surface is written as

f(x) =
k∑

j=1

wjφ(x− cj) + P (x) (4.2)

where wj are the weighting factors to be found for each RBF, cj are the

location of the constraints, and P (x) = p0 + p1x + p2y + p3z is a polynomial

of degree one that describes the constant behavior of f . The gradient of this

function, pointing in the normal direction to the implicit surface, is given by:

∇f(x) = n(p1, p2, p3) + 3
n∑

j=1

wj ||x− cj||2 (x− cj) . (4.3)

and the constraint equation that solves for the weights wj’s is obtained by

hi =
k∑

j=1

wjφ(ci − cj) + P (ci). (4.4)

44

Now let ci = (cxi , c
y
i , c

z
i) and φij ≡ φ(ci − cj). Equation 4.4 can then be

expanded as the linear system




φ11 φ12 · · · φ1k 1 cx1 cy1 cz1

φ21 φ22 · · · φ2k 1 cx2 cy2 cz2
...

...
...

...
...

...
...

φk1 φk2 · · · φkk 1 cxk cyk czk

1 1 · · · 1 0 0 0 0

cx1 cx2 · · · cxk 0 0 0 0

cy1 cy2 · · · cyk 0 0 0 0

cz1 cz2 · · · czk 0 0 0 0







w1

w2

...

wk

p0

p1

p2

p3




=




h1

h2

...

hk

0

0

0

0




(4.5)

which can be rewritten in compact form:




Φ G

GT 0







w

p


 =




h

0


 . (4.6)

Equation 4.6 can be solved by computing the pseudoinverse of the constraint

matrix using its singular value decomposition, and zeroing singular values

that fall below a certain threshold (thus smoothing the implicit representa-

tion). Other least-squares methods could be used by exploiting the symmetri-

cal structure of the constraint matrix, such as QR decomposition. Figure 4–2

shows the implicit constraints and the resulting interpolated implicit surface.

The visualization of the interpolation surface can be done using the methods

described in Appendix B.

4.2 Particle sampling

By having an implicit representation of the growth surface, methods that

have been developed in particle-based implicit surface sampling can be directly

incorporated. By their adaptive and dynamic nature, particle-based sampling

45

(a) Model (b) Implicitfit

Figure 4–2: Implicit fit of a 3D model. The vertices are shown in white.
Interior constraints lie inside the surface, surface constraints are shown in
blue, and exterior constraints in red.

approaches typically provide (and require) user control, and offer great flex-

ibility. The particle-based implicit surface sampling method by Witkin and

Heckbert [88] was adapted, in which the sampling is done with a particle

system driven by repulsion forces and implicit constraints. This method ef-

ficiently distributes particles across the scalp in a near-regular manner, by

allowing particles to fission (divide in two), and die.

The system is updated through a number of computational steps.

1. Initialization. Force accumulators are zeroed and the system is initial-

ized.

2. Connectivity. Particle neighbors are assigned through a particle-mesh

(PM) scheme.

3. Repulsion. A pairwise repulsion energy is computed amongst particle

neighbors.

46

4. Constraints. Hard constraints are applied on the velocity of the particles

in order to keep them in contact with the implicit surface.

5. External forces. Drag, user interaction forces, and other external forces

are added to the force accumulators.

6. Force integration. Particle positions and velocities are updated using

the force accumulators.

7. Fission. Particles satisfying certain requirements are allowed to fission.

8. Death. Particles satisfying certain requirements are allowed to die.

4.2.1 PM Connectivity

Particle neighbors are set using a particle-mesh scheme. Particle-mesh

methods dramatically reduce the computational time for updating the parti-

cle system, especially when it is very large. In a simple particle-particle ap-

proach, for n particles, O(n2) distance comparisons are required, while using

particle-mesh approach with a grid composed of m cells, O(mn) comparisons

are required.

First, the volume of the particle system is divided into grid cells. For a

fixed volume, the cell size determines their number, and has to be adjusted

carefully. Too many cells will result in many cells being empty, and more

comparisons will be made than when using a simple particle-particle based

approach. Not enough cells will result in a poor improvement with respect to

a particle-particle implementation.

Each particle is then assigned to the cell of which the center is closest to

its position. The connectivity is assigned using the following specifications:

1. Particles that do not connect through their neighboring radius cannot

be neighbors.

2. Cells within one-cell radius of each other are set as neighbors.

47

(a) Particle-mesh grid. The white transparent
lines connect the particles to their respective
cell centers.

(b) Connectivity graph.

Figure 4–3: Example of the particle-mesh connectivity for 500 particles in a
volume composed of 9 cells.

3. Particles that share the same cell or are within neighboring cells are set

as neighbors if rule 1 is also satisfied.

Figure 4–3 shows the particle mesh for a system composed of 500 particles,

and a volume divided into 9 cells. Following our connectivity rules, particles

in the cell no 5 are neighbors to all other particles, since it is within a 1-cell

radius to all other cells. In contrast, particles in cell no 1 are only neighbors

to other particles in cell no 2, 4, 5.

4.2.2 Repulsion Energy

Neighboring particles acquire a non-symmetrical interaction energy based

on their pairwise distances. The energy of a particle i interacting with a

particle j at a distance rij is defined as

Eij = α exp

(
−|rij|

2

2σ2
i

)
(4.7)

48

where α is a global repulsion amplitude parameter, and σ the local repulsion

radius.

The total interaction energy of a particle i with n neighbors is then defined

as

Ei =
n∑

j

(Eij + Eji) (4.8)

= α
n∑

j

[
exp

(
−|rij|

2

2σ2
i

)
+ exp

(
−|rij|

2

2σ2
j

)]
(4.9)

The particle system is required to eventually converge to a more or less

static configuration. This is done by enforcing the energy of each particle to

reach a local minimum, using gradient descend in space at each system update:

Pi = −σ2
iEi (4.10)

= σ2
i

n∑

j

(
rij
σ2
i

Eij −
rij
σ2
j

Eji

)
(4.11)

where Pi is the change in velocity for this system update.

The repulsion radius follows an adaptive scheme based on local energy

measurements. For a particle i, the amount of energy that is determined by

its own repulsion radius is

Di =
n∑

j

Eij (4.12)

A linear feedback equation is used to keep this energy near the desired value

Ê:

Ḋi = −ρ
(
Di − Ê

)
(4.13)

where ρ is the feedback constant.

4.2.3 Constraint Forces

Although the velocity update defined in Section 4.2.2 will ensure that the

global repulsion energy will be minimized, it does not impose any constraints

49

on the actual location of the particles in space. Particles are constrained by

projecting equation 4.11 on the implicit surface F :

ṗi = Pi −
∇Fi ·Pi

∇Fi · ∇Fi
∇Fi (4.14)

where ∇Fi = ∇F (pi) is the gradient of the implicit function describing the

implicit surface evaluated at the position of particle i, and ṗi is the update

for the velocity of particle i.

4.2.4 External Forces

In the context of a particle system, drag refers to forces that oppose

the relative motion of the particles as they move in space. Drag forces suck

energy out of the system, making sure that it stays numerically stable through

its integration. Linear drag Fd was used for a particle i moving a velocity ṗi:

Fd = −bṗi (4.15)

where b is the drag coefficient. For small time integration steps ∆t, adding

drag forces to the system might not be required. However, for larger time

steps, the drag coefficient needs to be adjusted carefully. A large value of b

will result in a very stable integration, but the particle system will be nearly

static and the time to reach equilibrium will be increased. On the other hand,

a small drag coefficient might make the system converge faster to equilibrium,

but numerical errors might accumulate and result in a catastrophic scenario

where particles become so unstable that they take enormous jumps in space

(the particle system is said to “blow up”).

4.2.5 Force Integration

Many particle system integration methods exist, and their usefulness de-

pends on the requirements of the problem at hand. In this context, all the

constraints are explicitly handled in the construction of the velocity update Pi.

50

Moreover, numerical errors are tolerated, as long as the system behaves rela-

tively smoothly (i.e. does not blow up) for small time steps. Euler’s (explicit,

first order) method is a fast and sufficient method of updating the system:

pt+∆t
i = pti + ∆tṗi (4.16)

where ∆t is the time step that discretizes the temporal evolution of the particle

system and pti is the position of particle i at time t.

4.2.6 Particle Birth and Death

Particle fissioning and death ensure a uniform sampling of the implicit

surface. Particles with a repulsion radius that is too large become isolated

within a predetermined region of space, and should fission (split in two). On

the other hand, particles that lie in an overcrowded region should die. The

conditions for deciding which option applies for a particle i are based on par-

ticle velocity ṗi and repulsion radius σi.

Fission. The requirements for fissioning a particle i are the following:

1. The particle is near equilibrium: ṗi < γσi.

2. The particle’s repulsion radius is large: σi > σmax.

3. The particle is adequately energized and its radius is above the desired

radius: Di > νÊ and σi > σ̂.

The particle is fissioned if the condition 1) is met, with either 2) or 3) also

holding. The two particles emerging from the fission of a particle i are given

repulsion radii of σi/
√

2, and a velocity in a random direction with a magnitude

proportional to σi. Their initial location is set as a short step in the direction

of their velocity.

Death. The requirements for killing a particle i are the following:

1. The particle is near equilibrium: ṗi < γσi.

2. The particle’s repulsion radius is too small: σi < δσ̂.

51

3. A biased randomized test based on a uniform random number R between

0 and 1 succeeds: R > σi/ (δσ̂).

The particle is killed if all three conditions are met. The third stochastic

criterion prevents the mass killing of all particles in an overcrowded region.

4.2.7 Parameters

The particle sampling method requires many parameters to be finely

hand-tuned and Witkin and Heckbert [88] give recommended values for most

of them. These parameter recommendations were subsequently hand-tuned.

The value and meaning of each parameter are listed in Table 4–1.

Table 4–1: Parameter values for sampling implicit surfaces using particles.
Parameter Value Purpose

∆t 0.03 time step
φ, ρ 15 feedback coefficients to keep particles from drifting off

the surface, and keep particles energized, respectively
α 6 repulsion amplitude

Ê 0.8α desired particle energy
β 10 prevents division-by-zero in the adaptive repulsion

scheme
σ̂ ? desired repulsion radius

σmax ? maximum repulsion radius
γ 4σi equilibrium speed

ν 0.2Ê controls particle fission
δ 0.2σ controls particle death

4.2.8 Boundary

Although the particle sampling method in Witkin and Heckbert [88] per-

forms well for closed implicit surfaces, additional work must be done in order

to extend it to open surfaces, such as that of a scalp. The novel concept of con-

tour particles was designed as a way of restraining the evolution of the particle

system within the boundary of a closed surface. In practice, contour parti-

cles have a large and fixed repulsion radius, and a high repulsion magnitude.

They define a boundary that prevents other floating particles from drifting

52

(a) t0 (b) t1 (c) t2 (d) t3 (e) t4

Figure 4–4: Evolution of the sampling for a 2D spiralling contour.

below the implied contour line. This contouring method, to the extent of our

knowledge, has not been employed in the graphics literature before.

4.2.9 Sampling Results

Figure 4–4 shows the particle sampling method applied to a 2D spiraling

contour. Starting from an initial set of parameters and a 4-particle seed, the

particles are automatically fissioned/killed until they spread the interior of the

contour uniformly. The spiral is opened at one end and particles are allowed

to drift out. Figure 4–5 shows the sampling of 1000 particles on a 3D model

delimited by contour particles. Figure 4–6 shows the sampling of a circle and

the associated particle connectivity and system grid. Figure 4–7 shows the

implicit constraints and the sampling of a scalp for 5000 interacting particles.

53

(a) Implicit surface view (b) Model view

Figure 4–5: 1000 contour particles (in red) keep 1000 floating particles (in
green) from drifting below the implied contour line.

(a) Particles (σ = 20, n = 176) (b) Connectivity (c) System grid

(d) Particles (σ = 80, n = 8) (e) Connectivity (f) System grid

Figure 4–6: Circle sampling for varying repulsion radii σ.

54

Figure 4–7: Sampling of 5000 follicles on the scalp using particle methods.
Contour particles are shown in red following the scalp contour. Implicit con-
straints are shown as pairs of red/blue points.

CHAPTER 5
Interpolating the Generalized Helicoid Model

The generalized helicoid parameterization, because of its inherent sim-

plicity, smoothness, and ability to ensure neighborhood coherency, can be

efficiently used for interpolating hairs in sparse datasets. This chapter aims

to demonstrate this claim. Section 5.1 introduces the inverse distance weight-

ing scheme that is used for interpolating generalized helicoids and their local

frames. Section 5.2 discusses the interpolation of orientation frames. The no-

tions developed in sections 5.3 and 5.4 regard the interpolation of generalized

helicoids, and p-helicoids, on a planar surface. These sections are further ex-

panded into a more general framework in Section 5.5, where the interpolation

is carried out on surfaces of arbitrary topology.

5.1 Inverse Distance Weighting

This section describes an inverse distance weighting (IDW) scheme for

interpolating scattered data points. An IDW method describes a weighting

scheme in which the interpolating surface is more influenced locally by nearby

points, and less by distant points. The method used in this thesis is also

referred to as Shepard’s method [24]. Given a set of scattered data points

Q = {qi|i = 1, · · · , n} defined by

qi = (pi,ki) (5.1)

where pi is the position of the data point and ki its (possibly vector) value,

weights wi = wi (pi, p̃) are determined in order to interpolate a value k̃ at an

arbitrary point p̃. The interpolated value from the collection of data points is

55

56

obtained by

k̃ =
n∑

i=1

wiki. (5.2)

The weights are computed from a metric φ = φ(p, p̃) that is a function of the

distance from the interpolant to the interpolation location. The weights are

then normalized

wi =
φi∑n
i=1 φi

(5.3)

such that

n∑

i=1

wi = 1. (5.4)

The interpolation is thus given by

k̃ =

∑n
i=1 φiki∑n
i=1 φi

. (5.5)

The metric φ determines the behavior of the interpolating surface in the vicin-

ity of control points. Different metrics were experimented with, including α-

norms, power functions, exponential functions, and other harmonic functions.

Section 5.3 discusses these metrics in more details. Cut-offs are typically used

when the interpolation location hits an interpolant within an ε-radius, in order

to ensure a perfect match. In this case the weight for this interpolant is set

to 1 and the others are set to 0. This also prevents the computation of an

∞/∞ in the normalization, as is the case for the metric φ = ||p− p̃||−1 when

p = p̃.

5.2 Interpolation of Local Frames

The problem of interpolating coordinate frames is often found in computer

animations, where the path of an object is interpolated from a selection of key

orientations located in space. There are many ways by which coordinate frames

57

can be interpolated, and we refer to Dam et al. [21] for more information. In

this Chapter we describe three ways of interpolating coordinate frames, using

rotation matrices, Euler angles and quaternions.

5.2.1 Interpolation of Rotation Matrices and Euler Angles

As described in Section 3.1, a transformation matrix E ∈ R4×4 from the

canonical basis of R3 to another basis E1,E2,E3 located at position p can be

represented as

E =




| | | |

ET EN EB p

| | | |

0 0 0 1



. (5.6)

This transformation matrix is actually a rigid transformation, and can be

factorized out into its rotational R and translational T components:

E = TR. (5.7)

The translation T is simply given by

T =




1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1




(5.8)

and the rotation matrix R can be further factorized as a series of rotations of

magnitude θx, θy, θz about the x, y and z axes respectively:

R = Rx(θx)Ry(θy)Rz(θz). (5.9)

58

The three rotation matrices can be expressed explicitely:

Rx =




1 0 0

0 cos θx sin θx

0 − sin θx cos θx



,Ry =




cos θy 0 − sin θy

0 1 0

sin θy 0 cos θy



,Rz =




cos θz sin θz 0

− sin θz cos θz 0

0 0 1



.

(5.10)

The order in which the rotations are applied is important (rotation matrices

are non-commutative) and there is no unique combination of Rx,Ry,Rz such

that R = RxRyRz since their ordering can be permuted and different angles

can be used to obtain the same result. Moreover, one rotation about a given

x, y or z axis can be completely ignored (only two are needed in order to get

access to all degrees of freedom). For instance, the rotation ordering ZXZ and

its corresponding rotation angles (φ, θ, ψ) are the Euler angles. The rotation

ordering XY Z is known as TaitBryan angles or roll (x), pitch (y) and yaw (z).

Both the rotation matrix and the Euler angles representations can be

directly used to interpolate coordinate frames. As an example, consider the

linear interpolation of coordinate frames between two control points E1 and

E2 with a free parameter 0 ≤ t ≤ 1 that describes the line joining them. In

matrix form, the interpolation can be viewed as

Ẽ = (1− t)E1 + (t)E2. (5.11)

Similarly, interpolating Euler angles as 3-tuples Θ = (φ, θ, ψ) yields

Ẽ = (1− t)Θ1 + (t)Θ2. (5.12)

Both the matrix and Euler angle interpolation methods suffer from what

is called a Gimbal lock (when a degree of freedom is lost) and the inter-

dependencies between axes are ignored, amongst other disadvantages [21]. The

59

quaternion representation is more robust and has many advantages over these

two methods in the context of coordinate frame interpolation.

5.2.2 Interpolation of Quaternions

A unit quaternion is defined by a 4-vector

q = (q0, q1, q2, q3) (5.13)

with ||q||2 = q2
0 + q2

1 + q2
2 + q2

3 = 1. A quaternion q is represented in R4 as

q = q0 + q1i+ q2j + q3k (5.14)

where i, j, k are the elements of this basis and are fully described by the fol-

lowing properties:

i2 = j2 = k2 = ijk = −1. (5.15)

Quaternions can be used to describe coordinate frames. The interpolation of

coordinate frames using their quaternion representation involves the compo-

nents of the 4-vector q = (q0, q1, q2, q3). The coordinate frame can be recon-

structed from a quaternion using ([33]):




φ

θ

ψ




=




atan2 (2(q0q1 + q2q3, 1− 2(q2
1 + q2

2))

arcsin (2(q0q2 − q3q1)

atan2 (2(q0q3 + q1q2, 1− 2(q2
2 + q2

3))




(5.16)

and subsequently applying rotation matrices Rx(φ),Ry(θ),Rz(ψ) and a trans-

lation matrix T.

5.3 Single Helicoid Interpolation

The interpolation of generalized helicoids defined by a single set of curva-

ture parameters, referred to as single generalized helicoids, is now described.

60

In this context, the parameter nodes are defined directly on the growth sur-

face, and nowhere else in space. It is assumed that an initial sampling of

a region is available with parameter nodes wi defined by wi = (ki,pi) and

ki = (kT , kN , kB, α) where ki is the curvature vector introduced in Chapter

3.2 and pi the spatial location of the node. These parameter nodes are actually

control points through which the interpolation process is carried out. These

curvature vectors can be interpolated using an IDW scheme at new locations

p′i in space and a dense collection of additional parameter nodes can be gen-

erated. Hair strands are then traced using the methods described in Chapter

3.3, in this volume of curvature vectors. A key property is that since the in-

terpolation is carried out on curvature parameters, the resulting interpolants

are themselves guaranteed to be generalized helicoids. The application of an

arbitrary rotation to the parameter nodes about the surface normal allows to

generate hairs of a variety of possible geometries in in any quadrant.

Different interpolation strategies were tested and the spatial metric was

adopted. It was determined that the spatial metric provides consistent and

smooth results, while allowing the user to control the degree of consistency

with the set of guide hair strands, and so this is the metric that is used for the

rest of this thesis. Table 5–1 shows the list of metrics investigated. Figures 5–1

and 5–2 show the difference between the metrics in the context of generalized

helicoid interpolation in both the 1D, and 2D case. For comparison, a simple

IDW Euclidean interpolation scheme was implemented on the positions of

the polyline vertices. A comparison of this point-based interpolation with the

parametric interpolation using generalized helicoids and the logarithmic metric

is shown in Figure 5–3. Qualitatively, interpolating generalized helicoids yields

slightly smoother results. More importantly, since the geometry and local

frames of guide hairs are interpolated in the reduced coordinate system of the

61

generalized helicoid parameters, the interpolated hairs flow naturally from one

guide hair to the other while preserving their shape. This is a key property

in the reconstruction of hair styles from sparse initial hair strand samples. In

contrast, the interpolation of vertices breaks the geometrical similarity between

the two guide hairs, and leads to unwanted geometries, for instance a straight

hair at their midpoint, as seen in Figure 5–3b.

Table 5–1: Various metrics used for determining interpolation weights.
φ Description

log (1 + ||p− p̃||2)−1 Logarithmic norm. Produces smoother turning
points around the interpolants.

||p− p̃||−1
α Spatial norm. Produces sharper turning points

around the interpolants. Different values of α yield
similar results, with a lower α giving smoother re-
sults, at the cost of reduced precision.

exp
(
− ||p−p̃||

σ2

)
Exponential norm. Produces very sharp turning
points around interpolants. σ determines the length
scale at which the interpolants cease to influence their
neighborhood and can be adjusted to regularize the
interpolation.

5.4 Procedural Piecewise Helicoid Interpolation

The method used for p-helicoid interpolation builds on top of the ideas

developed in Section 5.3 for single generalized helicoids. The interpolation

scheme and metric remain the same. The major difference lies in the space

of helicoidal interpolants, which is now allowed to be populated everywhere

(following the parameter nodes of the p-helicoids that serve as guide hairs),

not only on the growth surface. This implies major changes in the way the

interpolation of hairs is carried out. Interpolated p-helicoids are computed

procedurally, piece by piece. The number of helicoidal pieces composing each

guide hair also has to be considered. When a hair is interpolated, the fol-

lowing two questions must be answered: how many pieces should compose

the interpolated p-helicoid, and what should their individual length be? It

62

(a) Log, front (b) Log, top (c) Log, side

(d) Spatial, front (e) Spatial, top (f) Spatial, side

(g) Exponential, front (h) Exponential, top (i) Exponential, side

Figure 5–1: Comparison of different weighting schemes for interpolating gen-
eralized helicoids on a one-dimensional manifold for oriented curvature pa-
rameters. Guide hairs are shown in white, and interpolated hairs in random
colors.

63

(a) Log, front (b) Log, top (c) Log, side

(d) Spatial, front (e) Spatial, top (f) Spatial, side

(g) Exponential, front (h) Exponential, top (i) Exponential, side

Figure 5–2: Comparison of different weighting schemes for interpolating gen-
eralized helicoids on a two-dimensional manifold for oriented curvature pa-
rameters. Guide hairs are shown in white, and interpolated hairs in random
colors.

64

turns out that the answer to these questions can also be found by means of

interpolation.

The procedural p-helicoid interpolation method is carried out on a set

of p-helicoid guide hairs, and it produces an interpolated p-helicoid rooted at

location p. A p-helicoid is interpolated procedurally by interpolating multiple

single helicoids, starting from the location of the root p = r, and aligning

them together at their end. In point form, the algorithm works as follows:

1. Interpolate the number ñ ∈ R of helicoidal pieces at p. ñ is rarely an

integer, except when all guide hairs have the same number of pieces.

The number of pieces in that p-helicoid is thus defined as the ceiling of

that number, n = dñe.

2. Fix the step size, and step count in the tracing algorithm. The length

of the current interpolated helicoid is determined by scaling it uniformly

by some scaling factor s. For a single helicoid, s = 1 is used. Therefore,

to be consistent with the varying length across p-helicoids, s = 1/ñ is

used for the first n − 1 helicoids, and s = r/ñ for the last one, where

the residual r is defined as the fractional difference between ñ and n:

0 ≤ r = 1− (n− ñ) ≤ 1. This ensures that the last helicoid will only be

long enough such that there is a smooth transition between p-helicoids

having different number of pieces.

3. Interpolate a generalized helicoid parameter vector from the guide hairs.

4. Trace a generalized helicoid piece from this parameter vector. Orient

the piece properly by using the Frenet frame at the tip of the previous

one.

5. Repeat with the next helicoid piece using p was the tip of the current

piece.

65

Figure 5–4 and 5–5 show the interpolation of p-helicoid guide hairs on a

line, and on a plane. This interpolation is compared with the vertex-based

approach described in Section 5.3. Again, in the helicoidal approach, the

interpolation of local frames makes hairs flow and turn naturally from one

guide hair to the other while preserving their shape. In the vertex-based

approach, although the interpolation is smooth over guide hairs, the geometry

of interpolated hairs is inconsistent when guide hairs are facing each other.

If desired, this parting behavior can be emulated in the generalized helicoid

interpolation by placing a nearly straight guide hair where the hair is required

to split on either sides.

5.5 Interpolation on an Implicit Surface

In the interpolation of guide hairs on arbitrary surfaces, the concept of

local frame interpolation, addressed in Section 5.2, becomes more subtle. Two

frames now have to be considered: one representing the coordinate system W

of the surface, and the other representing the orientation frame Rθ in which

the helicoid is grown. The two frames are defined by

W =




ET EN EB p

0 0 0 1


 (5.17)

Rθ =




cos θ 0 − sin θ 0

0 1 0 0

sin θ 0 cos θ 0

0 0 0 1




(5.18)

where EN is set according to equation 4.2. A helicoid H traced at the origin

can be transformed to the coordinate system on the surface at position p using

H→WRθH. (5.19)

66

(a) Helicoid-based (b) Sampled Point-Based

Figure 5–3: A comparison of interpolation between guide hairs using gener-
alized helicoids (left) and using only points sampled along the guide strands
(right). See text for a discussion. The two guide hairs (in red) are π-rotated
copies of each other, with a parameter vector k = (1.39,−0.008, 0.904,−0.225).

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 5–4: Comparison of the interpolation of curvature parameters and
vertices, for piecewise helicoid guide hairs. A color code is used to distinguish
between helicoid pieces. Two guide hairs are used, one having three helicoid
pieces on the left and the other having two helicoid pieces on the right.

67

(a) Example 1: Top view (b) Example 2: Top view

(c) Example 1: Front view (d) Example 2: Front view

Figure 5–5: Two examples of interpolation between p-helicoids on a plane.
The four guide hairs are shown in bright red and the interpolated hair strands
are shown in brown.

68

using the fact that the helicoid orientation frame is just a rotation of magnitude

θ about the world normal e2. Since W is defined everywhere on the implicit

surface, the only frame that needs to be interpolated is Rθ, so it should be

stored separately. Figure 5–6 shows the interpolation of guide hairs on an

implicit surface. A parting is obtained by using opposite normal rotations and

widely spaced guide hairs, as shown in Figure 5–7.

69

(a) Guide hairs (b) Interpolated, side view

(c) Interpolated, front view

Figure 5–6: Interpolation of a tuft on an implicit surface. The guide hairs are
shown in red, and the interpolated ones in brown.

70

(a) Front view

(b) Side view (c) Side view

Figure 5–7: Hair parting using normal rotations. The two guide p-helicoids
(in red) are composed of three helicoid pieces and have different curvature
parameters. The interpolated hairs are shown in brown.

CHAPTER 6
Fitting the Generalized Helicoid Model

Chapters 3 and 5 demonstrated that the generalized helicoid framework

can generate hairstyles from scratch. A small number of helicoidal hair samples

are initially generated by hand and following their interpolation a complete

hairstyle is constructed. In this case, the samples are of synthetic nature and

their helicoidal parameterization is available. There are other times when the

hair samples consist of raw data, represented as polylines having no helicoidal

parameterization. This chapter demonstrates that generalized helicoids can

be exploited to capture, manipulate, and reconstruct the flow of an existing

hair pattern. To this end, a hair fitting algorithm is proposed that draws a

correspondence between a set of polylines and their piecewise helicoid param-

eterization. Combined with the interpolation method described in Section 5.4,

this parameterization can be used to generate dense hair patterns tailored to

external sparse hair distributions.

Section 6.1 describes the local frame subtraction that transforms target

hairs to their natural reference frame. Section 6.2 introduces the Fréchet dis-

tance, the distance metric that is minimized in the fitting of a target hair to

a generalized helicoid. Section 6.3 describes the fitting algorithm for single

generalized helicoids. Section 6.4 describes a neural network strategy for ac-

celerating the fitting process. Section 6.5 extends the case of single generalized

helicoids to the case of p-helicoids for fitting target hairs.

6.1 Local Frame Subtraction

Before a polyline is fit, the local coordinate system Q in which it is located

has to be determined. The fitting process uses this frame to translate and

71

72

orient generated polylines such that they are aligned with the target hair (or

equivalently, the fitting could be done in world coordinates, only then QT

would be used instead). Q is the product of two transformation matrices.

The first, T, corresponds to the local frame on the surface where the hair is

located. The normal ET is known, and two additional orthogonal vectors EN ,

EB on the surface are found by taking the cross product of the normal with an

arbitrary reference vector. The second transformation matrix, R, corresponds

to the alignment of the hair with respect to the first frame. R is built such that

the first segment (tangent) of the polyline corresponds to the first orthogonal

vector vT of the basis. The second and third vectors of the basis, vN and vB,

are found from the normal and binormal components of the discrete Frenet

frame at the origin of the polyline. The transformation from a polyline h to

a polyline h̃ in the local coordinate of the target hair located at a location p

on the surface is summarized as follows:

h̃ = Qh (6.1)

= TRh (6.2)

=




| | | |

ET EN EB p

| | | |

0 0 0 1







| | | 0

vT vN vB 0

| | | 0

0 0 0 1




h (6.3)

6.2 Computing the Similarity Measure: The Fréchet Distance

The Fréchet distance is proposed as a natural measure of the similarity

between two polylines. Alt and Godau [1] provides an intuitive description of

the Fréchet distance, using the analogy of a dog and its handler walking on

their respective paths, as illustrated in Figure 6–1. Both the man and the dog

can control their speed independently but can never backtrack. The Fréchet

73

distance between these two curves is the minimal length that a leash must

have for the dog and the handler to move from the starting points of the two

curves to their respective endpoints. A discrete variant of the Fréchet distance,

which is referred to as the Fréchet coupling, was introduced in Eiter and

Mannila [22], and better represents a global measure of the distance between

two polygonal curves, represented as a list of points. This is the measure

that is used in the fitting of generalized helicoids to data. Returning to the

walking man and his dog analogy, this measure represents the minimum total

length of leashes needed for men walking their dogs – one on each point of each

curve – such that leashes do not cross over. The simplest dynamic algorithm

for computing the Fréchet coupling has a computational complexity of O(pq),

where p and q are respectively the number of points on the two discrete curves.

Algorithm 2 shows the pseudocode for computing the Fréchet coupling between

two curves. ca is the array in which the dynamic programming algorithm

stores the pairwise Fréchet distances from one polyline to the other. Figure

6–2 shows the mean running time in ms for computing the discrete Fréchet

coupling between random polygonal curves of varying length. The quadratic

fit on the plot reflects the expected complexity of O(pq).

6.3 Discrete Optimization of Single Generalized Helicoid Fitting

The simplest case of hair fitting uses a single generalized helicoid to ap-

proximate a target hair. A parameter vector k = (kT , kN , kB, α) that generates

the trace of a hair is optimized iteratively. The objective function is the min-

imization of the Fréchet distance between a target hair h located at r with

local frame Q and a helicoidal trace H:

k0 = argmin
k

fc (c1, H(k, r,Q)) . (6.4)

74

Figure 6–1: Fréchet distance analogy to a man walking his dog on a leash,
on two separate paths. The Fréchet distance between these two curves is the
minimal length that a leash must have for the dog and the handler to move
from the starting point of each curve to their respective endpoint.

Algorithm 2 Frechet coupling

1: function fc(Polyline c1, Polyline c2, float array ca, int i, int j)
2: if ca(i, j) ≥ −1 then
3: return ca(i, j)
4: else if i = 1 and j = 1 then
5: ca(i, j) := d(c1(1), c2(1))
6: end if
7: elseif i > 1 and j = 1 then ca(i, j) := max {fc(i− 1, 1),d(c1(i), c2(1)}
8: elseif i = 1 and j > 1 then ca(i, j) := max {fc(1, j − 1),d(c1(1), c2(j)}
9: elseif i > 1 and j > 1 then ca(i, j) :=

min{fc(i− 1, j), fc(i− 1, j − 1), fc(i, j − 1)}+ d(c1(i), c2(j)}
10: else ca(i, j) =∞
11: return ca(i, j)
12: end function
13:

14: function d(Point a, Point b)
15: return ||a− b||2
16: end function

75

0 10 20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1

1.2

Point count

T
im

e
(m

s)

Time
Quadratic Fit

Figure 6–2: Mean computational time (ms) involved in evaluating the Fréchet
distance between random curves of increasing point count.

In order to avoid numerical approximation errors – the objective function

equation 6.4 is not analytical – it is preferable to use a gradient-free method.

The Nelder-Mead (NM) algorithm, first proposed by Nelder and Mead [59], is a

technique for optimizing a function in a multidimensional space that generally

performs well with arbitrary seed points. The algorithm only uses the evalua-

tion of the function and does not require the computation of an approximate

gradient in its optimization process.

The optimized parameter is the curvature vector k = (kT , kN , kB, α) that

is used to trace a hair using Algorithm 1. The distance between this trace

and the target hair is evaluated using the Fréchet coupling measure defined in

Algorithm 2. The optimization is done iteratively over a simplex constructed

of N + 1 vertices, where N = 4 is the dimensionality of the function to opti-

mize. Figure 6–3 shows an example of NM optimization for the case N = 2,

where the simplex of dimension 3 forms a triangle in the plane. Each vertex

corresponds to a different test point, and is assigned a value following the

Fréchet coupling measure. From an initial simplex, the Nelder-Mead opti-

mization scheme uses a combination of heuristics in order to climb towards

76

Figure 6–3: Tridimensional simplex for finding the optima of a bivariate Him-
melblau function.

the local optima of the function. Put simply, the NM method extrapolates

the behavior of the objective function at each vertex, and follows the direction

of the worse updated vertex at each iteration. The algorithm iteratively loops

over a series of intermediate steps:

1. Order values

2. Calculate centroid

3. Compute a simplex transformation (reflection/expansion/contraction)

along the worse updated vertex

4. Compute simplex reduction if the transformation step failed

6.4 Neural Networks Seeds

There are instances for which the optimization will fail to converge. This

happens if the parameter vector k reaches a local minima that has a large

magnitude and the increase in one or more curvature parameter has no signif-

icant effect on the resulting trace. The output from a neural network trained

with generalized helicoid data can be used as a seeding point, and this is of-

ten crucial in making the optimizer converge faster and closer to the global

77

optima. A multilayer feedforward backpropagation neural network is used for

fitting generalized helicoid parameters to hair strands. A resilient propagation

(RPROP) learning [72] strategy is used that updates neural weights based on

local gradient information (see Appendix C, Hornik et al. [35] and Scarselli

and Chung Tsoi [78] for more details). The inputs to the neural network

are the characteristics of the hair strands used in the training process. More

precisely, the curvature κ, torsion τ , and tangential vector ET evaluated at

multiple locations along each strand using the methods described in Section

3.1. In general, a good rule of thumb is to use a sampling of 10% of the vertices

describing the hairs. For the examples shown in this paper, 10 tangent, curva-

ture, and torsion evaluations for generalized helicoids containing 100 vertices

were sufficient to describe the hair strand under investigation. The output

of the neural network is a curvature parameter tuple k = (kT , kN , kB, α) that

describes a particular hair strand given as input.

For training the neural network, a data set was generated containing syn-

thetic hairs by sampling and tracing the parameter space k = (kT , kN , kB, α).

The random parameter vectors k were generated in the following range: kT ∈

[−1, 1] , kN ∈ [−0.1, 0.1] , kB ∈ [−0.5, 0.5] , α ∈ [−1, 1]. Noise offsets were

added to the trace of the training data, as described in Section 3.3.2, to make

the neural network more robust to noise.

6.5 Piecewise Helicoid Fitting

The examples in Section 3.2 demonstrate that whereas a single generalized

helicoid can represent a simple hair strand, it cannot accurately capture the

behavior of a more complex geometry. In practice, a single generalized helicoid

is best used to fit a hair that contains up to one inflection point. In order to

extend the applicability of this representation to the modeling of natural hair

patterns, piecewise generalized helicoid fits are used. The essential idea is

78

to connect together a few generalized helicoids such that they approximate

a target hair strand. Each individual helicoid is fit to different pieces of the

target strand, following the methods described in Section 6.3. In order to

do this, the locations where the target hair is fragmented first need to be

determined. For this purpose, a recursive algorithm was designed for the

piecewise helicoid fitting of hairs.

The fitting process is initially carried out on the complete target hair

strand. The neural network is given this target as input, and the resulting

parameter vector is given as input to the direct search algorithm. The op-

timized parameter vector is used to generate a helicoid fit using Algorithm

1. If the Fréchet coupling measure from the target hair piece to the fitted

helicoid piece is small enough, the fit is accepted. Otherwise, the target hair

piece is fragmented into two pieces, at a location determined by differential

and Fréchet heuristics.

The efficiency of the piecewise fit depends largely on the distribution

of the target fragments that the individual helicoid pieces are fit to. The

following two heuristics are used for determining this fragmentation. First, a

thresholding is used on the Fréchet coupling between the target and candidate

hairs. Using a threshold of 100% of the Fréchet coupling results in fitting the

entire target with a single helicoid. It was experimentally determined that 60%

is a reasonable threshold percentage to use, with a suitable trade off between

overfititng and avoiding large biases. The objective of this thresholding is

to provide an upper bound on the fragmentation location. However, more

information is needed regarding the geometry of the hair to prevent a candidate

hair from being accepted prematurely, in which case the fit can suffer from

inconsistencies in the orientation of the hair near the fragmentation location,

as seen in Figure 6–4.

79

(a) Thresholding only (b) Thresholding +
curvature

Figure 6–4: Accepting a candidate fit prematurely will end up propagating an
inherent differential error between the target and candidate hairs. The target
is shown in black, and the fit in red. Fragmentation points are shown as dots
along the fit.

In order to ensure that the orientation of the target hair is preserved,

it is required that the candidate hair share similar differential characteristics

to the target hair at the fragmentation location. This coherency is enforced

between the corresponding Frenet frames on the target and candidate hairs. A

curvature profile is computed on both hairs, starting from the fragmentation

location, and backtracking to the origin of the fiber. The new fragmentation

location is picked such that it minimizes the difference in curvature between

the two fibers.

An additional hair alignment step must also be taken in order to ensure

an acceptable fit. The tracing algorithm generates curves along the tangential

axis of the Frenet frame of the generalized helicoid, as explained in Section 3.2.

The inverse Frenet frame can be computed on the target hair, and applied on

itself, thereby producing a target hair that is aligned with the growth axis of

the generalized helicoid tracing algorithm. In order to preserve C2 continuity

between the helicoid pieces, once fit, the separate pieces are connected back

80

Figure 6–5: Single helicoid fit (in red) of a synthetic hair (in black) obtained
with a parameter vector (1.768, 0.024,−0.227,−0.115) and with noise of mag-
nitude 0.013. The fit has a parameter vector (1.740,−0.034,−0.136,−0.105).

together using the Frenet frame at the tip of their parent. The natural frame

Q of the target hair is premultiplied to properly align the resulting p-helicoid

to the target hair. The result of fitting a hair with a single helicoid is shown

in Figure 6–5. A piecewise helicoid fit is shown in Figure 6–6.

6.6 Application to the Reconstruction of Real Hair

This section illustrates the fitting of real hair data to the generalized

helicoid representation and its interpolation. Figure 6–7 first shows piecewise

helicoid fits of unparameterized wavy hairs. This sample was extracted from a

real wavy hairstyle reconstructed from different viewpoints using the methods

described in Paris et al. [64]. Figure 6–8 (top left) shows a sparse sampling of

the “straight” hairstyle, along with the individual p-helicoid fits to each hair

strand sample (top right). The fit closely resembles the sampled hair strands.

The remaining rows focus on the process of reconstructing a selected tuft at

the resolution of the original data (Figure 6–8 c)) by means of subsampling

and interpolation. The salient geometrical features of the original hairstyle

can be recovered from as little as 10% of the fit to the guide hairs.

81

(a) Front view (b) Right side view

Figure 6–6: Piecewise helicoid fitting. The target hair (in black) was obtained
by aligning 5 single generalized helicoids together. The fit (in red) is composed
of 3 helicoidal pieces.

Figure 6–7: P-helicoid fitting (in color) of unparameterized data (in white)
selected randomly from a hairstyle in Paris et al. [64].

82

(a) Original hairstyle (b) Fitting each strand in a)

(c) A tuft at full resolution (d) Fitting each strand in c)

(e) Sampling 50% of d) (f) Interpolating from e) to 100%

(g) Sampling 10% of d) (h) Interpolating from g) to 100%

Figure 6–8: The reconstruction of the “straight” hairstyle from Paris et al.
[64] by fitting and interpolation of p-helicoids.

CHAPTER 7
Conclusion

A novel mathematical model based on generalized helicoids was presented

in Chapter 3 for modeling the geometry of hair-like patterns. Hair modeling

was used as the driving application, resulting in a parameterized representa-

tion of hairs strands. The properties of the generalized helicoid were exploited

for hair modeling. It was determined that the composition of a hair using

multiple generalized helicoids, referred to as piecewise helicoids or p-helicoids,

provides a richer description that allows the synthesis of complex hairstyles.

A physically-driven particle-based method was designed in Chapter 4 for sam-

pling and contouring an implicit representation of the growth surface. Chapter

5 presented methods for interpolating composite generalized helicoids on sur-

faces of arbitrary topology. Chapter 6 introduced algorithms for fitting the

generalized helicoid to unparameterized hair data. In the following sections

we discuss the many possibilities afforded by the incorporation of generalized

helicoids in hair modeling. We then list several possible directions for future

work.

7.1 Achievements

The hair modeling framework presented in this thesis opens up many pos-

sibilities to the computer graphics community. Piecewise generalized helicoids

can be used to generate hair strands having a rich and diverse geometry. The

intuitive nature of the helicoid parameters make this task simple. Waviness

and noise offsets act as modifiers to the local shape of hair strands, while

preserving the global geometry predetermined by their curvature parameters.

The ability to generate many additional hairs from a few of these piecewise

83

84

helicoids has a particular advantage. Dense hair patterns can be produced

from sparse guide hairs by the interpolation of their curvature parameters, as

described in Chapter 5. Similarly, a dense wisp can be generated from a single

guide hair, by offsetting the origin of its streamline trace. The wisp follows

the principal direction of the guide hair, while fanning out, corresponding to

the adjustment of a single parameter.

Motivated by progress in reconstruction methods for acquiring real hair

data [63, 64, 37] where individual hairs are described by the vertices of a poly-

line, Chapter 6 developed a procedure for fitting a p-helicoid to a hair strand

using a measure of similarity based on Fréchet distance. The fitting process

can be carried out for a set of sampled hair strands, following which their

p-helicoid parametrization can be interpolated densely to fill in the hairstyle.

Results indicate that both the fits and the interpolated strands preserve the

qualitative geometry of the hairstyle. In fact, a complex tuft of hair can be

reconstructed from as little as 10% of the original unparametrized hair data.

Thus, the p-helicoid representation may be used to parametrize and then com-

press a hairstyle, an application that will likely grow in interest as databases

containing detailed hair capture data become available.

7.2 Future Work

This thesis paves a way for many possible further directions. In particu-

lar, whereas the examples in this article focused on human hair, the methods

developed are readily applicable to the modeling of other hair-like patterns in-

cluding, for example, fur, grass and feathers. Individual strands in fur typically

have a simpler geometry than human hair and a higher degree of geometric

coherency. Similarly, the geometry of the barbs of a feather emerging from

its main shaft closely resembles that of a generalized helicoid. Several other

potential directions are listed below.

85

7.2.1 Reconstructing with Adaptive Sampling

A proper hair sampling – more precisely the task of selecting which hairs

are to be fit and where they are to be interpolated – is critical when recon-

structing sparse hairstyles. For instance, a coarse hairstyle made of widely

spaced hair tufts will not be reconstructed properly if too many sample points

are placed in-between those tufts. An adaptive sampling based on the homo-

geneity of hair neighborhoods could improve the visual appearance of the hair

as a whole, and naturally recover structures such as clumps and wisps.

7.2.2 Fitting Hair Volumes

The fitting approach presented in this thesis goes through all hairs, one by

one. An extension of this work is to fit a volumetric neighborhood surrounding

a hair at the same time. The volumetric nature of the generalized helicoid

suggests such a task should be possible and perhaps even more desirable.

Similar work carried out in Savadjiev et al. [76] points towards that direction.

7.2.3 Embedded Dynamics

Given the success of the piecewise helical super-helix representation for

modeling hair dynamics [10, 8], a second area of research that could prove

fruitful is the coupling of these ideas with the p-helicoid representation. Since

the p-helicoid captures the geometry of the flow of hair strands in a volumetric

neighborhood of a guide hair, it allows for sparsity and hence efficiency. It

would be interesting to determine whether the physics of hair, such as the

modeling of external forces including wind and contact, or internal properties

such as torsion, bending and stretching, can be embedded directly into the

p-helicoid parameterization.

7.2.4 Hairstyle Compression

Although the reconstruction of sparse hairstyles was investigated quali-

tatively, more work has to be done in order to extend this application in the

86

context of hair compression. A parameterization using generalized helicoids

could be used as a way to store a hair strand using less information than a

listing of its vertices. This application could be of interest for large databases

containing highly detailed hairstyles.

7.2.5 Detail Transfer

As in Wang et al. [82], it should be possible to use the generalized helicoid

in the context of hair detail transfer. P-helicoids can serve as the skeleton

for a variety of hairstyles, obtained by using waviness, noise, and possibly

other kinds of offsets. Imagine for instance building a template for a general

hairstyle, and then refining it depending on the type of hairstyle wanted (e.g.

straight, wavy, or curly hair).

7.2.6 Curve Framing

The effect of the curve framing approach used in this thesis was not in-

vestigated thoroughly. Additional methods should be considered to find more

efficient approaches for determining Frenet frames on discrete polylines [11],

[41] and [7].

APPENDIX A
Implementation Details

The hair modeling framework was implemented in the Java programming

language, under Mac OS X. OpenGL was used for real-time rendering. Blender

was used for rendering more detailed depictions of hairstyles, using NURBS

for hair strands. Figures A–1 and A–2 show a selection of snapshots from the

hair modeling framework.

(a) Generation (b) Fitting

Figure A–1: GUI and user-controllable parameters for the generation and
fitting modules of the hair modeling framework.

87

88

(a) Implicit surface

(b) Hair builder (c) Sampling

Figure A–2: GUI and user-controllable parameters for the implicit surface fit-
ting, hair builder, and particle sampling modules of the hair modeling frame-
work.

APPENDIX B
Visualizing Implicit Surfaces

Implicit surfaces are harder to visualize than explicit ones. The difficulty

resides in the continuous description of the surface, defined for all points in

space. In this case, the level set of interest is the zero-crossing. In a brute-

force manner, all points in space could be evaluated using the implicit function

describing the implicit surface, and the ones that yield a value of 0 would be

marked for rendering. Obviously, this is not an efficient way to go, and differ-

ent methods have been designed for this purpose. One of the most well-known

method for rendering implicit surfaces is the marching cube algorithm. This

method is not described here. See [54] for more information. A similar method,

the marching tetrahedron, was used. The method works by dividing the ren-

dering space into a grid of tetrahedra, and evaluating the implicit function at

the four corners of the cells composing that grid. The division of a cube into

six tetrahedra is shown in Figure B–1. The value (positive, zero, negative) of

each cell constitutes a signature, for which only one possibility exists, locally,

as the planar approximation of the surface. The cell signature determines

which of the cases listed in Figure B–2 applies.

89

90

Figure B–1: Division of a cubic cell into six tetrahedra.

Figure B–2: Marching tetrahedra test cases. A binary 0/1 value is assigned
at the corners of each tetrahedron depending on whether the evaluation of the
implicit function yields a negative or positive value, respectively. By default,
evaluations to zero (within one machine-epsilon) are assigned the smallest
non-zero positive value.

APPENDIX C
Learning with Resilient Propagation

Given an error function E, each neural weight wij is updated according to

an adaptive individual update-value ∆ij that depends on the gradient of the

error function over the previous time steps. The update rule for the weights

wij is thus given by:

∆
(t)
ij =





η+ ∗∆
(t−1)
ij if ∂E(t−1)

∂wij
∗ ∂E(t)

∂wij
> 0;

η− ∗∆
(t−1)
ij if ∂E(t−1)

∂wij
∗ ∂E(t)

∂wij
< 0;

∆
(t−1)
ij else.

(C.1)

w
(t)
ij =





−∆
(t)
ij if ∂E(t)

∂wij
> 0;

+∆
(t)
ij if ∂E(t)

∂wij
< 0;

0 else.

(C.2)

w
(t+1)
ij = w

(t)
ij + ∆w

(t)
ij (C.3)

where 0 < η+ < 1 < η+. If the partial derivative changes sign, in the case

where the minimum was missed, a backtracking weight step is carried out and

the update rule is reverted:

∆w
(t)
ij = −∆w

(t−1)
ij , if

∂E(t−1)

∂wij
∗ ∂E

(t)

∂wij
> 0. (C.4)

To prevent the same backtracking in the following time step, the update value

of the weights should stay the same, so the following is enforced:

∂E(t−1)

∂wij
= 0. (C.5)

The original article ([72]) suggests the use of η+ = 1.2 and η− = 0.5.

91

References

[1] H. Alt and M. Godau. Computing the Fréchet distance between two
polygonal curves. International Journal of Computational Geometry and
Applications, 5(1):75–91, 1995.

[2] J.S. Alter. Hair generation and other natural phenomena with surface
derived control volumes in computer graphics and animation, April 13
2004. US Patent 6,720,962.

[3] S.B. Andersson. Discrete approximations to continuous curves. In
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE In-
ternational Conference on, pages 2546–2551. Citeseer, 2006.

[4] K. Anjyo, Y. Usami, and T. Kurihara. A simple method for extracting
the natural beauty of hair. In Proceedings of the 19th annual conference
on Computer graphics and interactive techniques, page 120. ACM, 1992.

[5] Y. Bando, B.Y. Chen, and T. Nishita. Animating hair with loosely con-
nected particles. In Computer Graphics Forum, volume 22, pages 411–418.
Citeseer, 2003.

[6] O. Ben-Shahar and S.W. Zucker. The perceptual organization of texture
flow: A contextual inference approach. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(4):401–417, 2003.

[7] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun.
Discrete elastic rods. In ACM SIGGRAPH ASIA 2008 courses, page 14.
ACM, 2008.

[8] F. Bertails. Linear time super-helices. In Computer Graphics Forum,
volume 28, pages 417–426. John Wiley & Sons, 2009.

[9] F. Bertails, S. Hadap, M.P. Cani, M. Lin, T.Y. Kim, S. Marschner,
K. Ward, and Z. Kačić-Alesić. Realistic hair simulation: animation and
rendering. In ACM SIGGRAPH 2008 classes, page 89. ACM, 2008.

[10] Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux,
Frédéric Leroy, and Jean-Luc Lévêque. Super-helices for predicting the
dynamics of natural hair. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Papers, pages 1180–1187, New York, NY, USA, 2006. ACM.

[11] J. Bloomenthal. Calculation of reference frames along a space curve.
Graphics gems, 1:44–54, 1990.

92

93

[12] U. Bonanni and P. Kmoch. Virtual hair handle: A model for haptic
hairstyling. In Proc. Eurographics, pages 135–138, 2008.

[13] U. Bonanni, P. Kmoch, and N. Magnenat-Thalmann. Interaction
Metaphors for Modeling Hair using Haptic Interfaces. International Jour-
nal of CAD/CAM, 9(1), 2010.

[14] E. Catalan. Sur les surfaces réglées dont l’aire est un minimum. Journal
de Mathématiques (1), 7:203–211, 1842.

[15] B.Y. Chen. A report on submanifolds of finite type. Soochow Journal of
Mathematics, 22(2):117–337, 1996.

[16] L.H. Chen, S. Saeyor, H. Dohi, and M. Ishizuka. A system of 3d hair style
synthesis based on the wisp model. The Visual Computer, 15(4):159–170,
1999.

[17] B. Choe and H.S. Ko. A statistical wisp model and pseudophysical ap-
proaches for interactive hairstyle generation. IEEE Transactions on Vi-
sualization and Computer Graphics, 11(2), 2005.

[18] Byoungwon Choe, Min Gyu Choi, and Hyeong-Seok Ko. Simulating com-
plex hair with robust collision handling. In SCA ’05: Proceedings of the
2005 ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion, pages 153–160, New York, NY, USA, 2005. ACM.

[19] C. Csuri, R. Hackathorn, R. Parent, W. Carlson, and M. Howard. Towards
an interactive high visual complexity animation system. In Proceedings
of the 6th annual conference on Computer graphics and interactive tech-
niques, pages 289–299. ACM, 1979.

[20] A. Daldegan, N.M. Thalmann, T. Kurihara, and D. Thalmann. An inte-
grated system for modeling, animating and rendering hair. In Computer
Graphics Forum, volume 12, pages 211–221. John Wiley & Sons, 1993.

[21] E.B. Dam, M. Koch, and M. Lillholm. Quaternions, interpolation and
animation. Technical report, Institute of Computer Science, University
of Copenhagen, 1998.

[22] T. Eiter and H. Mannila. Computing discrete Fréchet distance. Technis-
che Universitat Wien Technical Report CD-TR, 94:64, 1994.

[23] J.D. Foley, A. Van Dam, S.K. Feiner, J.F. Hughes, and R.L. Phillips.
Introduction to computer graphics. Addison-Wesley Reading, MA, 1994.

[24] R. Franke. Scattered Data Interpolation: Tests of Some Methods. Math-
ematics of Computation, 38(157):181–200, 1982.

94

[25] T.A. Funkhouser and C.H. Séquin. Adaptive display algorithm for inter-
active frame rates during visualization of complex virtual environments.
In Proceedings of the 20th annual conference on Computer graphics and
interactive techniques, pages 247–254. ACM, 1993.

[26] Carlos A. Furuti. Map projections.
http://www.progonos.com/furuti/mapproj/. last checked august 2010.

[27] D.B. Goldman. Fake fur rendering. In Proceedings of the 24th annual
conference on Computer graphics and interactive techniques, pages 127–
134. ACM Press/Addison-Wesley Publishing Co., 1997.

[28] S. Grabli, F.X. Sillion, S.R. Marschner, and J.E. Lengyel. Image-based
hair capture by inverse lighting. Graphics Interface 2002: proceedings:
Calgary, Alberta, 27-29 May, 2002, page 51, 2002.

[29] S. Hadap. Oriented strands: dynamics of stiff multi-body system. In
Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on
Computer animation, page 100. Eurographics Association, 2006.

[30] S. Hadap and N. Magnenat-Thalmann. Interactive hair styler based on
fluid flow. Computer Animation and Simulation’00, pages 87–100, 2000.

[31] S. Hadap and N. Magnenat-Thalmann. Modeling dynamic hair as a con-
tinuum. Computer Graphics Forum, 20(3):329–338, 2001.

[32] Sunil Hadap, Marie-Paule Cani, Ming Lin, Tae-Yong Kim, Florence
Bertails, Steve Marschner, Kelly Ward, and Zoran Kačić-Alesić. Strands
and hair: modeling, animation, and rendering. In SIGGRAPH ’07: ACM
SIGGRAPH 2007 courses, pages 1–150, New York, NY, USA, 2007. ACM.

[33] A.J. Hanson and H. Ma. Quaternion frame approach to streamline visu-
alization. IEEE Transactions on Visualization and Computer Graphics,
1(2):164–174, 1995.

[34] B. Hernandez and I. Rudomin. Hair paint. In Computer Graphics Inter-
national, 2004. Proceedings, pages 578–581, 2004.

[35] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural networks, 2(5):359–366, 1989.

[36] D. Ivanov, V. Lempitsky, A. Shokurov, A. Khropov, and Y. Kuzmin.
Creating Personalized Head Models from Image Series. In Proc. of the
International Conference on Computer Graphics & Vision GraphiCon,
2003.

[37] W. Jakob, J.T. Moon, and S. Marschner. Capturing hair assemblies fiber
by fiber. In ACM SIGGRAPH Asia 2009 papers, pages 1–9. ACM, 2009.

95

[38] JT Kajiya and TL Kay. Rendering fur with three dimensional textures.
In Proceedings of the 16th annual conference on Computer graphics and
interactive techniques, pages 271–280. ACM New York, NY, USA, 1989.

[39] Tae-Yong Kim and Ulrich Neumann. Interactive multiresolution hair
modeling and editing. ACM Trans. Graph., 21(3):620–629, 2002.

[40] T.Y. Kim and U. Neumann. A thin shell volume for modeling human
hair. In Computer Animation 2000, pages 104–111, 2000.

[41] F. Klok. Two moving coordinate frames for sweeping along a 3D trajec-
tory. Computer Aided Geometric Design, 3(3):217–229, 1986.

[42] P. Kmoch, U. Bonanni, and N. Magnenat-Thalmann. Hair simulation
model for real-time environments. In Computer Graphics International,
pages 5–12. ACM, 2009.

[43] CK Koh and Z. Huang. Real-time animation of human hair modeled in
strips. In Computer animation and simulation 2000: proceedings of the
Eurographics Workshop in Interlaken, Switzerland, August 21-22, 2000,
page 101. Springer Verlag Wien, 2000.

[44] W. Kong and M. Nakajima. Visible volume buffer for efficient hair ex-
pression and shadow generation. ca, page 58, 1999.

[45] W. Kong, H. Takahashi, and M. Nakajima. Generation of 3d hair model
from multiple pictures. In Proceedings of Multimedia Modeling, pages
183–196, 1997.

[46] W. Kühnel and B. Hunt. Differential geometry: curves-surfaces-
manifolds. AMERICAN MATHEMATICA, 2006.

[47] A.M. LeBlanc, R. Turner, and D. Thalmann. Rendering hair using pixel
blending and shadow buffers. The Journal of Visualization and Computer
Animation, 2(3):92–97, 1991.

[48] D.W. Lee and H.S. Ko. Natural hairstyle modeling and animation. Graph-
ical Models, 63(2):67–85, 2001.

[49] Y. Lee, D. Terzopoulos, and K. Waters. Realistic modeling for facial
animation. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 55–62. ACM, 1995.

[50] J. Lengyel. Real-time fur. In Eurographics Rendering Workshop, pages
243–256, 2000.

[51] J. Lengyel, E. Praun, A. Finkelstein, and H. Hoppe. Real-time fur over
arbitrary surfaces. In Proceedings of the 2001 symposium on Interactive
3D graphics, pages 227–232. ACM New York, NY, USA, 2001.

96

[52] T. Lewiner, J.D. Gomes, H. Lopes, and M. Craizer. Curvature and torsion
estimators based on parametric curve fitting. Computers & Graphics,
29(5):641–655, 2005.

[53] GH Liu, YS Wong, YF Zhang, and HT Loh. Adaptive fairing of digitized
point data with discrete curvature. Computer-Aided Design, 34(4):309–
320, 2002.

[54] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. In Proceedings of the 14th annual confer-
ence on Computer graphics and interactive techniques, page 169. ACM,
1987.

[55] N. Magnenat-Thalmann, S. Hadap, and P. Kalra. State of the art in hair
simulation. In International Workshop on Human Modeling and Anima-
tion, pages 3–9, 2000.

[56] N. Magnenat-Thalmann, M. Montagnol, R. Gupta, and P. Volino. Inter-
active virtual hair-dressing room. Computer-Aided Design & Applications,
3(5):535–546, 2006.

[57] G.S.P. Miller. From wire-frames to furry animals. In Proceedings on
Graphics interface’88, pages 138–145. Canadian Information Processing
Society, 1989.

[58] M. Nakajima, S. Saruta, and H. Takahashi. Hair image generating algo-
rithm using fractional hair model. Signal Processing: Image Communi-
cation, 9(3):267–273, 1997.

[59] JA Nelder and R. Mead. A simplex method for function minimization.
The computer journal, 7(4):308, 1965.

[60] A.C. Neville. Biology of fibrous composites: development beyond the cell
membrane. Cambridge Univ Pr, 1993.

[61] F. Neyret. Modeling, animating, and rendering complex scenes using
volumetric textures. IEEE Transactions on Visualization and Computer
Graphics, 4(1):55, 1998.

[62] B. O’Neill. Elementary differential geometry. Academic Pr, 1997.

[63] S. Paris, H.M. Briceño, and F.X. Sillion. Capture of hair geometry from
multiple images. ACM Transactions on Graphics (TOG), 23(3):712–719,
2004.

[64] S. Paris, W. Chang, O.I. Kozhushnyan, W. Jarosz, W. Matusik,
M. Zwicker, and F. Durand. Hair photobooth: geometric and photo-
metric acquisition of real hairstyles. In ACM SIGGRAPH 2008 papers,
page 30. ACM, 2008.

97

[65] F.I. Parke and K. Waters. Computer facial animation. AK Peters Ltd,
2008.

[66] K. Perlin and EM Hoffert. Hypertexture. In Proceedings of the 16th
annual conference on Computer graphics and interactive techniques, page
262. ACM, 1989.

[67] E. Plante, M.P. Cani, and P. Poulin. A layered wisp model for simulating
interactions inside long hair. In Computer Animation and Simulation
2001: Proceedings of the Eurographics Workshop in Manchester, UK,
September 2-3, 2001, page 139. Springer Verlag Wien, 2001.

[68] Proceedings of EGSBM. A Sketching Interface for Modeling and Editing
Hairstyles, 2005.

[69] H. Reckziegel. Mathematical Models from the Collections of Universities
and Museums. Munich, Germany: Braunschweig, 1986.

[70] W.T. Reeves. Particle systems—a technique for modeling a class of fuzzy
objects. ACM Transactions on Graphics (TOG), 2(2):108, 1983.

[71] W.T. Reeves and R. Blau. Approximate and probabilistic algorithms
for shading and rendering structured particle systems. ACM Siggraph
Computer Graphics, 19(3):313–322, 1985.

[72] M. Riedmiller and H. Braun. A direct adaptive method for faster back-
propagation learning: The RPROP algorithm. In Proceedings of the IEEE
international conference on neural networks, volume 1993, pages 586–591.
San Francisco: IEEE, 1993.

[73] C.R. Robbins. Chemical and physical behavior of human hair. Springer
Verlag, 2002.

[74] R.E. Rosenblum, W.E. Carlson, and E. Tripp. Simulating the structure
and dynamics of human hair: Modeling, rendering and animation. The
Journal of Visualization and Computer Animation, 2(4):141–148, 1991.

[75] N.S. Sapidis. Designing fair curves and surfaces: Shape quality in geo-
metric modeling and computer-aided design. Society for Industrial Math-
ematics, 1994.

[76] P. Savadjiev, S.W. Zucker, and K. Siddiqi. On the differential geometry
of 3d flow patterns: Generalized helicoids and diffusion mri analysis. In
Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference
on, pages 1–8, Oct. 2007.

[77] Peter Savadjiev. Perceptual Organization in Diffusion MRI: Curves and
Streamline Flows. PhD thesis, McGill University, 2008.

98

[78] F. Scarselli and A. Chung Tsoi. Universal approximation using feedfor-
ward neural networks: A survey of some existing methods, and some new
results. Neural Networks, 11(1):15–37, 1998.

[79] K. Singh and E. Fiume. Wires: a geometric deformation technique. In
Proceedings of the 25th annual conference on Computer graphics and in-
teractive techniques, page 414. ACM, 1998.

[80] N.M. Thalmann, S. Carion, M. Courchesne, P. Volino, and Y. Wu. Virtual
clothes, hair and skin for beautiful top models. In Computer Graphics
International, pages 132–141. Citeseer, 1996.

[81] G. Turk and J.F. O’brien. Modelling with implicit surfaces that interpo-
late. ACM Transactions on Graphics (TOG), 21(4):855–873, 2002.

[82] L. Wang, Y. Yu, K. Zhou, and B. Guo. Example-based hair geometry
synthesis. In ACM SIGGRAPH 2009 papers, page 56. ACM, 2009.

[83] T. Wang and X.D. Yang. Hair design based on the hierarchical cluster hair
model. In Geometric modeling, page 359. Kluwer Academic Publishers,
2004.

[84] K. Ward, F. Bertails, T.Y. Kim, S.R. Marschner, M.P. Cani, and M.C.
Lin. A survey on hair modeling: Styling, simulation, and rendering. IEEE
transactions on visualization and computer graphics, pages 213–234, 2007.

[85] K. Ward, M.C. Lin, J. Lee, S. Fisher, and D. Macri. Modeling hair using
level-of-detail representations. In Computer Animation and Social Agents,
2003. 16th International Conference on, pages 41–47. IEEE, Published by
the IEEE Computer Society, 2003.

[86] Y. Watanabe and Y. Suenaga. Drawing human hair using the wisp model.
The Visual Computer, 7(2):97–103, 1991.

[87] Y. Wei, E. Ofek, L. Quan, and H.Y. Shum. Modeling hair from multiple
views. In ACM SIGGRAPH 2005 Papers, page 820. ACM, 2005.

[88] A.P. Witkin and P.S. Heckbert. Using particles to sample and control
implicit surfaces. In ACM SIGGRAPH 2005 Courses, page 260. ACM,
2005.

[89] G. Xu and G. Wang. Control mesh representation of a class of minimal
surfaces. Journal of Zhejiang University-Science A, 7(9):1544–1549, 2006.

[90] Z. Xu and X.D. Yang. V-hairstudio: an interactive tool for hair design.
IEEE Computer Graphics and Applications, pages 36–43, 2001.

99

[91] T. Yamaguchi, B. Wilburn, and E. Ofek. Video-Based Modeling of Dy-
namic Hair. Advances in Image and Video Technology, pages 585–596,
2009.

[92] X.D. Yang, Z. Xu, J. Yang, and T. Wang. The cluster hair model. Graph-
ical Models, 62(2):85–103, 2000.

[93] Yizhou Yu. Modeling realistic virtual hairstyles. In PG ’01: Proceedings
of the 9th Pacific Conference on Computer Graphics and Applications,
page 295, Washington, DC, USA, 2001. IEEE Computer Society.

[94] C. Yuksel, S. Schaefer, and J. Keyser. Hair meshes. ACM Transactions
on Graphics (TOG), 28(5):1–7, 2009.

