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CLAIM OF ORIGINALITY 

To the best of the author's knowledge, the following 

contributions are original. The order of listing is the or­

der of their appearance in the body of the thesis. 

(1) Proof that nonlinear as well as linear electrlc ma­

qhines may be represented by a unique, symmetric in­

ductance matrix. 

(2) Interpretation of Weber's 1931 eddy current theory in 

the complex frequency domain and consequent experimen­

tal verification. 

(3) Derivation of an expression for the shaft torque of 

a nonlinear electric machine from the flux linkage 

vector and the inductance matrix. 

(4) A. method of synthesizing stationary circuits and cor­

responding new canonic forms of two-element-klnd net­

works (especially R-L networks). 

All of these, taken together, constitute the establish­

ment of a quite general primitive machine that is not in any 

way restricted to linear behaviour and that is believed ori­

ginal. 
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INTRODUCTION 

Since the invention of calculating machinery, the atten­

tion of mathematicians has been turning from the search for 

methods of integrating differentia! equations to the investi­

gation of theorems of existence. Recent advances in stored­

program digital computer technology have contributed to the ac­

celeration of this trend and quickened interest in numerical 

analysis as well. Numerical techniques now exist for the in­

tegration of all ordinary and many partial differentia! equa­

tions; but it is clearly imperative to know beforehand wheth­

er the sought solution exista at all. The need for existence 

proofs is frequently neglected by engineers on the supposition 

that any physical problem must surely have an answer, most 

likely even a unique one. As any physical problem must first 

be described by a conceptual model and only the model trans­

formed into a mathematical problem, this simple view is unfor-

tunately not valid. There exist techniques in many fields for 

checking the correctness of the mathematical description of 

models; but the creation of the models themselves is at best 

an uncertain art. 

For about a generation, electric machines have been mo­

delled by most analysts in the manner proposed by Kron. As 

is set forth in greater detail in the following chapters, 

this method first of all supposes the machine in question to 

possess linear iron. Although this assumption is obviously 

an inaccurate one, it has nevertheless been widely· accepted 

as a necessary evil; the mathematical complexity of nonlinear 

models is a high priee to pay. While the superstructure aris­

ing on this basic assumption has been examined in detail by 

numerous authors, both with a view to methods of solution and 

to the philosophlcal validity of the model (Jones' work on 

commutation is a brilliant example), the effect of nonlinearity 

on the theoretical validity of the model has not to date been 
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examined. That is, no guarantee has been shown to exist of 

uniqueness or even existence of solutions of the describing 

equations of machines without linear iron. In order to re­

move this fundamental doubt, the present thesls seeks to es­

tablish that Kron's linear slip-ring primitive machine is in 

fact a particularly simple special case of a more general, non-

linear slip-ring primitive. Since Jones and Kurbasov have in-

dependently and in different ways shown that a commutator ma­

chine may (at least in princlple) be thought to consist of a 

slip-ring machine plus a switching circuit, the slip-ring ma­

chine problem is surely the one to solve first. 

The problem of stationary nonlinear networks is dealt 

with in numerous works. As a model for an electric machine 

differs from such networks primarily in being nonstationary, 

the major goal in the development of such a model must be the 

discovery of an expression of the torque produced by the mach-

ine. Assuming a slip-ring machine with arbitrary single-valued 

magnetic characteristics, such an expression is developed and 

verified. Kron's linear primitive is shown to be a special 

case of this more general machine. As the usual treatment of 

machines assumes that any electric machine may be modelled by 

means of a finite number of equivalent coils, an assumption 

at variance with the known behaviour of solid iron parts, a 

new representation of the eddy current behaviour of unlaminat­

ed machine portions is proposed and both theoretically and ex­

perimentally justified. As a byproduct of the latter investi­

gation, an original method of network synthesis is found to 

arise. This synthesis method leads to a new set of canonic 

forms of two-element-kind one-port immittance functions, as 

well as making sorne four-terminal network functions easy to 

realise. 

An attempt is also made to express the fundamental quan­

tities associated with a machine ln terms of its co-energy; an 

apparently novel physical interpretation of co-energy results. 
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ANALYSIS OF ELECTRIC MACHINES: 

THE STATE OF THE ART 

1. Classical Methods. Electric machines are not claimed as 

the exclusive invention of any one man, but are linked with a 

long list of names including the greatest scientific minds of 

the nineteenth century. The first rotating machine that may 

be described as being of fundamentally the same design as a 

modern commutator machine, however, appears to kave been const­

ructed by William Sturgeon in 1832, and displayed and described 

to the Royal Society in 1836, according to Sturgeon's own ac-
1 2 3 count • Joule corroborates this story; Sylvanus Thompson 

gives the date as 1835. Apparently the paper was not publlsh­

ed by the Royal Society but subsequently appeared ln Sturgeon 1 s 

own journal, the Annals of Electricity4 • The ring armature, 

used unti1 the end of the century, was first developed by Paci­

notti in 1860 and used in its final form by Gramme in 1871 5 • 

In a series of articles in 1885-6 Kapp, fo11owed by Drs. J. and 

E. Hopkinson in 1886, app1ied the then rapid1y deve1oping theo­

ry of magnetic circuits to the design of e1ectric dynamo machin-
6 

es • They may thus be said to have founded the magnetic-cir- ,· 

cuit-plus-electric-circuit schoo1 of machine analysls. This 

method of analysis held uncontested sway for near1y ha1f a 

century. During this time natura1ly a large number of contri­

butions from both practising engineers and research sclentists 

was added to the original theoretica1 structure. About the 

end of the nineteenth century, acceptance of a1ternating cur­

rent by electric utilities broadened. As a'result, the theory 

had to be widened to accommodate the new a-c machines. Many 

of the innovations of the early twentieth century are asso-
7 8 ciated with the nam~ of Steinmetz , Blondel , and others, who 

9 may be said to have laid the foundations upon whlch Park , Do-
lO herty and Nickle , and their followers built the elegant and 
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intricate structure that machine analysis had become by 1930. 

Most of the techniques used by practising designers today were 

developed during that period. 

In view of the very large body of experience with the nu­

merous classical techniques, that approach will probably remaln 

the preferred one for design for sorne time. Classical works, 
11 12 such as those by Langsdorf or Concordia , are as useful as 

ever for gaining a physical insight into machines; Still and 

Siskind 
13 

is still the authority for the student of design. 

Perhaps even more important is the fact that many contempora-

ry research papers and monographs employ the classical approach. 

The brief but violent flurry of interest about a decade ago in 

d-e machine performance under solidly short-circuited condi­

tions14' lS, 16 , for example, viewed the problem in its clas­

sical formulation. The commutation studies of Sketch, Shaw, 
17 and Splatt or the synchronous machine investigations of Su-

dan, Manohar and Adkins 18 and of Nikiforovskii 19 are more re­

cent examples from other fields. 

It might be said that classical theory has conslsted of 

two phases, supplanting but not replacing each other. The 

first phase involved d-e machine analysis, based on actual mag­

netic circuit calculations; the second, growing in response to 

the introduction of a-c machinery, substituted the notions of 

reactance and ref1ected 1oad resistance. D-e machine design 

to this day is based on the concepts of the first phase. The 

substitution of reactances for fluxes as ana1ytic entlties, 

during the quarter century from Blondel to Park, obvLated the 

need for magnetic circuit analysis and created the notion of 

an equivalent circuit. It is worth noting that the notion of 

reactance requires magnetic linearity, or equivalent lineari­

ty; the priee paid for elegance ln analysis is then a loss in 

accuracy of representation. 
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2. The Second C~ntury. In 1930, nearly a hundred years aft­

er Sturgeon first operated his electrical engine, Kron pub-
20 lished the next logical step after Park's machine reactanc-

es. Giving the sets of reactances geometrical instead of cir­

cuit significance, he viewed the reactances as dyadic operat­

ors in a vector space defined by the machine currents as axes. 

An interesting parallel is that the critics of Kron felt much 

tqe same about his work as the critics of Sturgeon a century 

earlier: both were felt to misuse established terminology and 

techniques in the crassest manner. While Sturgeon was berated 
21 for his apparently unclear grasp of scientific terminology, 

Kron ran into difficulties with mathematical usage and conven-
22 

tions • Both were recognised by their colleagues to possess 

genius, and both produced vast quantities of printed materials; 
23 

Kr.on, of course, is still doing so. Bewley feels that much 

of the work of the nineteen-thirties must in fact be credited 

to Pen-Tung Sah; while this may be a just point, few will de­

ny the magnitude of Kron's contribution. 

For nearly a decade, Kron remalned the prophet at home; 

engineers did not understand his mathematics, and mathemati-

cians were not prepared to accept his methodology. A line of 

more than two dozen articles and two books, all published in 

that first decade, however, won a few converts; and by the end 

of anothe~ ten years, numerous authors had espoused Kron's 

ideas. Some, it would appear, were willing to cou~t the wrath 

of the mathematical world by employing a terminology resemb­

ling Kron's, like Adkins
24

; others flirted with it more coyly, 

like Tustin
25

• Yet others, for example Fitzgerald and Kings-
26 

ley , adopted what might be called a semiclassical approach, 

stressing the unity of physical phenomena but adhering to the 

classical mathematical descriptions. Research work of the 

nineteen-fifties tended to follow suit. For example, Koentg
27 

pictures transient processes in machines as being explainable 

by way of machine inductances, but he dismantles the indue-
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tance matrix in order to solve his equations in the classical 
28 29 manner. Similarly, Litman and Riaz , each in his own way, 

formulate what might be called semiprimitive machines. 

By the mid-fifties a sufficient number of disciples bad 

been won to the new cause to generate a substantial volume of 

purely theoretical contributions. Of interest in the present 

context are primarily 
32 33 

and Yu ' , as well 

White and Woodson 35 • 

30 31 
the papers of Lynn , Tang and Cosgriff 

34 23 
as the books by Gibbs , Bewley , and 

As the middle sixties approach, this out-

put naturally enough continues to grow; an excellent selective 

bibliography !llustrating present trends is given by Shepherd 
36 in his discussion of Saunders' paper • 

3. Troublesome Techniques: Classical Theory Today. The diffi-

culties encountered in analysing machines by classical means 

are rouch the same today as in the past; the theory has grown 

to maturity and the work currently belng done, apart from ex­

perimentation, is for the most part in refinement of existing 

technique or re-interpretation for pedagogie purposes, As the 

mathematics involved can take care of a considerable amount of 

nonlinearity, steady-state operation tends to be stressed. A 

fairly active field of late has been that of d-e machine tran­

sient analysis; a review of this subject is given by Hindmarsh 
37 

in a series of articles , and examples of applications are fur-
38 39 nished by Smith and Ageev • Other areas of activity are, at 

the present time, induction machines with controlled-rectlfier 

feed (especially in the USSR), and doubly-fed induction motors. 

The initiative in these areas is readily seen to originate in 

the field of industrial automatic control. 

The first and major difficulty encountered ln the classi­

cal approach is of course the great complexity of modern ma­

chines. This complexity is reduced by various transformations 

in Kron's approach, but persista in classical theory. On the 

other hand, the latter preserves to some extent the nonllneari-
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ty of the real world and even exhibits its effects usefully; 

the latter case is particularly true if analysis is conducted 
40 graphically, as advised by Ahlquist • Unfortunately the com-

plexity of graphical analysis becomes enormous for, say, a 

doubly-fed induction machine, an amplidyne, or a Schr~ge motor. 

37 Secondly, as Hindmarsh notes , classical thèory is ill 

equipped to deal with the problem of eddy currents in the solid 

portions of machines. The quite considerable concern with this 

problem is reflected in the large number of articles devoted 

to the subject. The papers by Pohl
41

' 42 are useful examples, 

as they first develop an a-c eddy current theory and then ex­

tend it to the case of stepfunction magnetisation. Kesavamur-
43 thy and Rajagopalan employ a somewhat similar analysis but 

assume a sharply saturating magnetic materlal. More recently, 
44 

Karasev bas given a solution for a specifie useful case, that 

of a lifting electromagnet. 

The article that could well be termed fundamental on the 
45 linear eddy-current problem is that published 1931 by Weber • 

46 Subsequently, some observations were given by Wagner and oth-

ers. No remarkable progress in applying the analysis to non-

linear materials was made until twenty years later, when Duna­

evskii47 applled a piecewise-linear approach to systems with 

solid iron components. As Dunaevskii did not attempt proper 

matching of the eddy currents at the segment boundaries, his 

method is crude but possesses the virtue of simplicity. Ex-
48 perimental resulta are given by Brockman and Linkous and 

compared with predictions by Dunaevskii's technique. Sorne ve-
44 ry recent work on this problem bas been reported by Karasev • 

Commutation, finally, is the third major stumbling block. 

In steady state operation, it bas traditionally been treated 

as a separate problem, quite distinct from other aspects of 

machines. With treatment of transient problems required, how­

ever, it bas bad to be brought into the general framework of 
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machine analysis. Alger and Bewley 50 treat it on a quite con-

ventional basis, but clarify much that had previously been ob-
17 

seure; Sketch, Shaw and Splatt have provided experimental 

means for observing the actual commutation process waveforms. 

A new, and perhaps most illuminating, view of commutation is 

that proposed by Nacke 51 : he views it as a problem in handling 

armature leakage flux. The most significant recent contribu-

tion to classical commutation theory, however, is undoubtedly 
52 

the pair of articles by Kurbasov. In the first article , the 

view is advanced that commutator action is an energy exchange 

process whereby a d-e machine transfera energy from one wind­

ing to another, storing it in the rotor inertia in the interim. 
53 

The second article employs this theory to make up a design 

procedure for interpoles. Both the viewpoints of Nacke and 

Kurbasov give a physically comprehenslble explanation of a com­

plicated phenomenon, without obscuring the process by mathema-

tical complexity or chains of dubious approximations. They 

must therefore be considered important additions to the elec­

tric machine art. 

4. Compromises with Reality: The Modern View. Much like the 

older approach, the new theory of Kron has its shortcomings. 

Until very recently, the most important of Kron's transforma~ 

tions, that between slip-ring and commutator primitives, was 

justifiable only as a mathematical deviee, i. e. an applica­

tion of Floquet's theorem regarding the representation of ma-
. 54 55 trix equations with periodically time-varying coeffic1ents ' 

and their solutions. In other words: although the rotation 

transformation of Kron's slip-ring primitive did yield an im­

pedance matrix indistinguishable from that of his commutator 

machine, and vice versa, there was no physical reason to be­

lieve that such a transformation did in fact correspond to re­

placement of slip rings by a commutator. The coincidence of 

the impedance matrices might thus well be fortuitous. This 
56 difficulty was removed by Jones in a brilliant paper, in 
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which he showed that a slip-ring machine whose rotor connec­

tions were periodically altered did indeed possess the mathe­

matical properties required. This theory was further refined 

and re-presented two years later in collaboration with Barton57 • 

It must be noted, however, that this theory of commutation 

shares the linearity postulate with the remainder of the uni­

fied machine theory, as superposition is required for the proof. 

Since Jones' proof relies on the cancellation of certain trans­

former voltages by generated voltage components: to achieve zero 

elements in the impedance matrix, the extent to which the ap­

proximations involved in his development are valid becomes a 

critical question. This is so especially because the voltages 

whose cancellation the proof depends on may easily be of the 

order of ten times normal machine terminal voltage, making the 

entire proof hinge on the small difference of large numbers. 

Because of the linearity assumption, these large numbers can 

at best be known approximately for real machines, for the con­

cept of an inductance matrix is not applicable to nonlinear 

systems. 

At least equally troublesome is the production of numbers 

suitable for analysing real machines by Kron's methods. The se 

require the analyst, as is well known, to be in possession of 

an inductance matrix for the machine in question; bence methods 

of finding equivalent (in some sense) linear inductance values 

for machine windings must be developed. The first such measure-

ments to be performed on modern machines were proposed and car­

ried out by Snively and Robinson 58 with mixed success. Saund-
59 ers subsequently performed similar measurements and claimed 

good results, although his data would appear to be unusual, 

and not representative, in the light of further measurements 
. 27 60 56 

by Koen~g and Prescott and El-Kharashi , as well as Jones • 

The latter experimentera, independently and concurrently, came 

upon a ballistic bridge technique for measuring the flux link-
61 ages of a circuit directly; subsequent work by Barton and 
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others has been based on this method of measurement. ' The in­

fluence of eddy currents on measurements made in this way dis­

appears, and no linearity assumption is involved. Even if li­

nearity is assumed, Kron's theory does not take account of the 

space harmonies of mmf and flux around the periphery of a real 

machine. Amendments to the usual theory have, however, been 
62 

proposed by Dunfield and Barton , with excellent results re-

ported. 

At the root of all the trouble with the new theory, now 

that the commutator-transformation difficulty seems taken care 

of, lies the linearity assumption. It is demonstrable that 

the unified theory provides a rapid and elegant method of ana­

lysis, but it cannot at the present provide useful numerical 

answers; an inductance matrix is required for Kron's analysis, 

but has not to date been defined for nonlinear machines. In 

the strictest sense, then, the new theory is not in error in 

analysing real machines; Lt is rather not defined at all. 

It is the object of the following chapter to demonstrate 

that the linearity assumption underlying Kron 1 s slip-ring pri­

mitive is in fact not required, although it does make the mathe­

matics of analysis manageably simple. That is, it is proposed 

to show that there always extsts a unique describing matrix 

for any slip-ring machine which may be regarded aé ~he matrix 

of machine inductances. As this matrix will then be shown to 

possess those critical properties which unified machine theo-

ry requires of an inductance matrlx, Kron's linear machine is 

justified as merely a numerically simple approximation to the 

more general nonlinear machine. It is hoped that this deve­

lopment will sweep away the remaining major philosophical ob­

jection to generalised machine theory, and establish beyond 

doubt the validity of that extremely powerful analytic tool. 
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INDUCTANCE: A FUNCTION MATRIX 

1. The Unified Theory of Machines. To appreciate the impor­

tance of the inductance matrix in Kron 1 s theory of machines, a 

very brief review of the theory itself is probably in arder. 

The details of the t~ry as applied to specifie machines or prob-

1ems may be found in books and papers already referred to. The 

present concern is not so much with the technique of analysis 

as with the nature of the necessary fundamental quantities. 

A word on notation is first necessary. It is usual since 

the first papers of Kron were published to emp1oy the two no-

tations used in these pioneer works: the usual notation of ma-

trix ana1ysis whenever it is desired to write out the numbers 

or functions making up a quantity, and the conventional nota­

tion of tensor analysis whenever it is not necessary to speci­

fy the detailed functions. Thus, the statement that the flux 

linkages À of the coils of a two-coil system are linearly re­

lated to the coil currents by the inductanc~ coefficients, may 

be written in the matrix manner 

ru= l2J 
or, more brief1y, in the Einstein notation 

(201) 

1 LotA. ,· p.. ~ -,- ( 202) 

where the summations, according to conventional usage, are 

understood in the repetition of the dummy index )3. In the 

following, the essentially geometrica1 nature of the argument 

is occasionally underscored by employing the vector-and-dyad 
63 

notation used by Wil1s • In this notation, the above would 

be written 
À = L · i 

(203) 

The advantage of this latter representation lies in its stress 
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on the geometrical significance of the quantities; however, Lt 

is less convenient to manipulate than the tensorial notation. 

In the latter, the order of multiplications is specified by 

the indices, and the operation of multiplication is formally 

commutative; in the vector notation, it is not. 

In terms of the tensor notation, the machine theory of 

Kron begins with equation (202). That is to say, Kron views 

any machine as a collection of cotls possessing inductance and 

resistance; the resistance, in most cases, is merely a physi­

cally necessary nuisance. The quantities of primary interest 

are the coll flux linkages and the coil currents, since all 

terminal quantities are intimately related to them. Thus, all 

the machine terminal voltages must be given by 

or, rewriting, 
=d1[4i~] e 

di~ ~.(3 
Locrt-df +dt { 

Similarly, machine stored energy is easily shown to be 

U ..... ' .Il( ·(ô L - 2 ( l C<{!> 

and, assuming the system to have one mechanical degree of 

( 204) 

(205) 

(206) 

freedom, a rotational one, the torque may be shown to be giv-

en by r _ 1 d L&<a ,0( • t3 

'"-- 2 de - t ' (207) 

The above equations completely specify the electrical beha­

viour, under any set of circumstances, of a linear slip-ring 

machine. The machine is assumed to consist of an unrestrict­

ed but finite number of coils n, each with arbitrary source 

currents or voltages. Any real linear slip-ring machine may 

be constructed out of this primitive by suitably interconnect-

ing its windings. Geometrically speaking, the equations define 

one vector and two scalars in terms of the currents: the flux 

linkage set forms an n-vector and the torque and stored ener-

gy are scalar quantities. Imagining a cartesian coordlnate 

system with each axis representing one coil current, 1. e. 



a cartesian n-space, the flux linkages are a vector position 

function defined by the inductance dyadic operating on the 

position vector. The two scalars are seen to be quadratic 

forms also related to the inductance dyad. Interconnection 

of the machine windings restricts sorne of the currents to 

have specified relationships to others, and thus amounts to 

choosing a subspace out of the general n-space. 

13 

In steady-state operation, the behaviour of the machine 

may be thought of as the tracing of a closed path by a point 

in currents space--or, more precisely, in the subspace defin­

ed by the winding interconnection. By adopting a coordinate 

system rotating at sorne velocity about each of the axes embed­

ded in the subspace, the point of operation may be thought to 

describe a less complicated path in the moving coordinate sys­

tem. If the path should be such as to trace out a circle or 

other figure on the surface of a sphere (or, more generally, 

hypersphere), the path may often be reduced to a point by a 

quite simple coordinate transformation in which axes rotating 

at constant velocity are introduced. Simply stated, then, a 

large variety of machines problems may be transformed into 

problems in d-e machines by adopting movable coordinate sys­

tems in the current n-space. As a practical application of 

more than routine interest, transient problems in synchron­

ous alternators have been solved by adopting accelerating co-
64 ordinate systems • 

Clearly most of the transformations involved must first 

of all transform the inductance matrix. It is therefore es-

sential to possess a usable inductance matrix to solve any 

problems at all. In order to use the rich mathematical re­

sources of differentia! geometry in electric machine analysis, 

the inductance matrix should preferably be a tensor under a 

broad class of coordlnate transformations. 
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2. Flux Linkages In Conservative Systems. The foregoing the­

ory is quite clearly of no use in cases in which the inductance 

matrix cannot be written down as a set of constants. As point-

ed out in the foregoing, this is unfortunately true for nearly 

all real problems. It is thus of interest to try to extend this 

theory to the nonlinear case. 

In view of the known behaviour of real machines, it ls not 

unreasonable to try to rewrite Kron's theory for the case of a 

conservative system in which the flux linkage·vector must be a 

single-valued position function. It is of course realised that 

of the two common nonlinear phenomena, saturation is therewith 

taken into account, while hysteresis is not. The omission is 

not quite so serious as might at first glanee seem, however. 

In many situations, the observable effects of hysteresis can 

be accounted for by introducing an equivalent resistive loss; 

in many others, hysteresis can afford to be ignored. It is ne­

cessary to keep in mind that while it is in the final analysis 

saturation that limits the possible design values of a machine, 

hysteresis is more nearly of nuisance value ln most problems. 

An extension of the theory able to deal wlth hysteresls will 

be proposed later, although the complexity of the method is 

such as to render it impractical. 

Under the assumption, then, that the flux linkage vector 

is single-valued, the basic statement 

À = ()( L . (3 

0<(-!> l ( 202) 

may be taken as the definition of inductance. For an n-coil 

system with n independent currents and n flux linkage compo­

nents, the inductance is clearly an n-by-n square matrix. 

Other definitions of course might be chosen instead; for examp­

le, equation (204) might be rewritten 

( 
~ 1 . Jl d i13 

e = LO(f-J + ~( ar 
and the quantity in parentheses, {he coefficient 

(208) 

of the time 

derivative of current, regarded as inductance. For a linear 
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system, these two definitions are equivalent; for a nonlinear 

one, they are not. Thus, (208) shall be written 
dl f.J 

~ ~ I.rlp Cff (209) 

where a distinctive symbol is employed to distinguish from the 

inductance defined by equation (202). Both of these defini-

tions are useful; that of equation (209) is taken by sorne wri-
65 66 

ters as being fundamental ' As long as all networks are 

required to be static, there is little to choose; for dynamic 

circuit analysis, however, it is desirable to exhibit the sys­

tem flux linkages explicitly and equation (209) is at a disad­

vantage. Adoption of this definition would obscure the physi­

cal mechanism of voltage generation, as well as compltcating 

the mathematics a little. In consequence, the word inductance 

as used in this thesis shall always mean that implicitly defin­

ed by equation (202). The quantity defined by equation (209) 

shall be referred to as the dynamic inductance or the incremen­

ta! inductance. The latter name ls derived from the rearrange­

ment of equation (209) 

Lof.> d i(D (210) 

which is of the same form as equation (202) except that lt re­

lates incrementai rather than total quantities. In a similar 

manner and for similar reasons, the inductance defined by equa­

tion (202) will occasionally for emphasis be termed the total 

inductance. Other definitions yet may be created; the basic 

properties of linear systems given by equations (206) or (207) 

may be regarded as definitions of inductance. Of course, of 

all these possibilities only one may be chosen as the defini­

tion; the remaining three will clearly not be true in the ge­

neral case. 

It is now necessary to investigate whether the definition 

adopted--or, for that matter, any definition--will yield a uni­

que inductance matrix in the general nonlinear case. Single­

valuedness, as discussed, will however be assumed. 
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3. The Continuity Requirement. The flux linkage vector may be 

taken to be a continuous vector function of position as well as 

a single-valued one; discontinuities may hardly be allowed, in 

view of the requirement of conservative system behaviour. It 

does not, however, immediately follow that the components of the 

inductance matrix need also be symmetrical and continuous. As 

a matter of fact, an inductance matrix neither symmetrical not 

continuous is readily constructed. 

Consider the linear two-coil system of equation (201). By 

the word linear, it is here meant that all components of the in­

ductance matrix are constants: 

( 20 1) 

It is seen on brief examination that the description 

L + 1 L J2 2 
-yL,2 Il 3 12(, ( 211) 

• 

L21 L22 
yields precisely the same two algebraic equations as are incor­

porated in equation (201) and therefore describes the same sys­

tem (although with needless complexity). It also satisfies the 

definition of equation (202) and is thus an equation with a 

valid inductance matrix on the right. The "inductance" compon-

ents are not constant nor continuous, nor is the matrix symme­

trical. From the point of view here adopted the constancy or 

position-dependence of any inductance component is a fortuitous 

matter, since any of the components must be permitted to vary 

with system currents in order to describe nonlinear phenomena. 

The matter of continuity, on the other hand, is something else 

aga in. 



Quite clearly, there is a close interrelationship be­

tween continuity, symmetry, and uniqueness of the "inductance" 

matrix of any linear system. It is possible to create an in-

finite number of describing inductance matrices for the two­

coil system discussed, merely by using the same technique as 

17 

for the creation of equation (211). Only one of these matrices, 

however, will be continuous and symmetrical, the linear (i. e. 

constant) one of equation (201). In other words, unless continu-

ity is insisted upon, a linear system may be thought to have no 

unique inductance matrix. In a similar manner, it may be argu-

ed that whatever the inductance matrix of a nonlinear system 

may turn out to be, another may always be created by the tech­

nique shown unless this method is prohibited by a continuity re­

striction. On the other hand, insistence on continuity of the 

inductance components is not in any way objectionable, in that 

the flux linkage vector has already been restricted to be con-

tinuous. No discontinuous inductance components can therefore 

be shown to be necessary. 

It shall thus be assumed in the following that the flux 

linkage vector is a continuous, single-valued position func­

tion, and that the word inductance means a matrix of continuous 

functions that satisfies equation (202). 

4. A Theorem on Inductance. Using the arguments laid out above, 

the following theorem shall now be shawn to hold: 

If À is a cont~nuous, irrotational vector position 

function, and l the position vector of any point 

in an n-dimensional Cartesian space, then there al­

ways exista a square matrix ~ whose components are 

continuous position functions , and which will sa-

tisfy À = r_. r 
as well as be symmetrical and unique. 

The proof necessarily consists of several parts, since not on­

ly the existence, but also symmetry and uniqueness must be 

proven. 



The conservative character of the system being represent­

ed requires that the flux linkage vector be irrotational. Al­

though the proof is simple, it does deal with physical concepts 

later encountered. It is therefore introduced here as a lemma. 

Lemma. The flux linkage vector of a conservative system is ir­

rotational. 
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Considera system being moved from astateS to astate s•. Dur­

ing the motion, the vector of system voltages (the time deriva~ 

tive of the flux linkage vector) is 

- cl­
e=dtÀ 

The system input power must therefore be 

p e· T = 
so that the stored energy change between the two states is 

6U = J Pdt J:'T·dÀ 
This latter expre[ssio..:.]may be[integ]rated byl~f~s: _ 

6 U " À· i 
5

, - À· i 
5 

-
5 

À ·di 
Let 

!1T 
s' fs À ·di 

Th en equation (215) becomes 

!1U = 1:1 [À·t] -!1T 
or, in the special case of state S being the origin, 

U+ T = X·T 

( 212) 

( 213) 

(214) 

(215) 

( 216) 

( 217) 

(218) 

The quantity T may be recognised as an n-space generalisation 

of the quantity Cherry
67

' 
68 

and Mil1ar
69 tefe~ to ~s the co­

energy of a system. As their arguments are largely restricted 

to one-dimensional current spaces, their definitions and views 

on the nature of the co-energy are not the same as those pre-
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sented here. However, examination of the several theorems on 

co-energy, especially by Cherry 67 , indicates that their vali­

dity is not based on any particular number of dimensions, and 

is therefore unaffected. Equations (216) and (218), however, 

suggest an interpretation of the physical nature of co-energy 

radically different from Cherry 1 s or Millar 1 s; they may be re­

wr{tten to yield 

\JT (219) 

From this, the irrotationality of the flux linkage vector im­

mediat~ly follows. In equation (218), there appear two unique 

scalar position functions, and the co-energy; the co-energy must 

therefore also be a uniquely defined scalar position function. 

_Equations (216) and (219) identify it as a true state function. 

From the latter, 

\JxÀ = \Jx\j T = 0 (220) 

completing proof of the lemma. 

To proceed with the proof of the theorem itself, equation 

(220) may be rewritten 

( 221) 

. 64 70 regardless of the d1mensionality of the space ' Note that 

the incremental inductance of equation (209) may be written 

dÀO( (222) 

2; if!> 
so equation (221) amounts to a statement of symmetry of the in­

crementa! inductance matrix. As the reciprocity of incremental 

quantities is a well known experimental fact, and in fact under­

lies the use of linear analysis for physical problems, this is 

not new. 

Substitution of the original defining equation (202) for 

inductance into equation (221) resulta in 



20 

(22 3) 

LO(f-> - Lf-P = 

It will now be shown that this equation cannot be satisfied by 

any asymmetric inductance matrix, i. e. that there cannot in 

fact exist any such matrices. As the inductances form a square 

matrix, they may be written as the s~m of a symmetric plus an 

antisymmetric (skewsymmetric) matrix. Let the symmetric matrix 

be denoted by S and the skewsymmetric one by A: 

s~ + A()(~ 
(224) 

It is immediately seen that the symmetric portion satisfies 

equation (223} identically. Thus, on substitution of equation 

(224) into equation (223) there results 

l·~(dAêi_ dA~) 2Ji0( 2Jif.> 
The antisymmetric matrix may next be expressed in terms of an 

associated vector or column matrix. Let 

(225) 

(226) 

This equation is satisfied if the associated matrix is defined 

so that 

è)~ tA 
dl~ - 2 «.(3 

( 227) 

2 which can always be done. In this way, we may write down n dif-
2 

ferential equations defining the n partial derivatives of the 

vector (or column matrix) v. As all of these functions are re­

stricted to be single-valued and continuous, the components 

of v may be solved for. One possible way of making them up is to 

assume each component to be a product of several factors, each 

a function of only one coordinate, and carry out the solution 

by separation of variables. As this procedure is perfectly pos­

sible (although there is no need actually to perform it here), 

equation (226) is verified. Using this way of representing the 
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antisymmetric part of the inductance matrix, equation (225) may 

be written 

2 ( d~ _ dVf.') 
dlf:J 2Jioi. 

(228) 

Recombining terms, this equation in its turn may be written 

( 1 + ii d~' t ) ~ (229) 

For physical, or rather geometrical, interpretation, a pure vec­

tor notation is helpful. The vector equivalent of equation (229) 

is seen to be 

(T· \7) A -2A (230) 

which may be rewritten 

d4(} 
dl il 

-2 A«j-1 
li 1 

(231) 

where the differentiation is carried out in the radial direc­

tion. The legitimacy of this operation of course rests on the 

possibility of converting a Cartesian n-space into one described 

by hyperspherical coordinates (a radius vector and n-1 angles); 

a method of so doing for any dimensionality n is shown in Appen­

dix B. 

In words, equation (231) requires as its solution a set of 

functions each of which is continuous in the coordinates. Now 

the equation is satisfied by functions of the form 

A 
f ( e, , e 2 , .• ~ , en-A 

Of(!> 1 i 1
2 

(232) 

which are the only possible nonzero solutions; but these are 

discontinuous at the origin. Discontinuity is, however, not al­

lowed ex hypothesi. Renee it is necessary that 

0 ( 233) 

It is worth noting that in equation (232) the skewsymmetric por­

tion of the inductance matrix turned out to be discontinuous, 

while in equation (211) the discontinuous quantity is one of 
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the self-i~ductances. There is no contradiction involved here. 

In the development of equation (232) the self-inductances were 

all required to be continuous as part of the symmetric portion 

S of the inductance matrix (a skewsymmetric matrix cannot have 

any nonzero elements on the principal diagonal). Continuity is 

thus seen to be a necessary and sufficient condition of symme­

try. 

5. UHigueness of the Inductance Matrix. Neither existence nor 

uniqueness of the inductance matrix have as yet been proven. 

However, these present no great difficulty; now that symmetry 

is proven, both existence and uniqueness may be shown to hold 

by solving the equations already developed for the inductance 

matrix components. 

The precise method of solution is slightly complicated, 

but not difficult to follow. To begin, equations (224) and 

(233) assure the symmetry of the inductance matrix. As all the 

components are both continuous and differentiable, a scalar 

point function may always be constructed such that the lnduc­

tance components form the set of second derivatives of such 

a function. Upon differentiation, the initial defining equa-

tion for inductance, equation (202), becomes 

L d Lx{!~ ·~ 
«t + d i '1 l 

(234) 

or, if the symmetry of the inductance matrix and the consequent 

complete symmetry of the triadic (3-way matrix) of its deriva-

tives, is used to permit any rearrangement of indices of the 

second derivatives, 

dÀO( 
2Ji~ ( 1 + i~ :ir.. ) L.~ 

Again, in order to emphasize the geometrie meaning, the same 

equation may be presented in a purely vector-and-dyadic nota­

tion: 

(235) 
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( 1 +{ v) L ( 23 6) 

The differential operator operating on the inductance matrix, 

1 1 + t· \71 ' 
will be referred to here as the radial increment operator. In 

Appendix C to this thesis, a proof is furnished that 

(1+/-Vl&[~di =m~l(I+Tv)cpdi = 1 (237) 

that is, it is shawn that the radial increment operator is the 

inverse of the ?:fol [veïg;.g integral opera tor 

Since this is so, the differential equations (235) and (236) 

have as their solutions L 
1 J d~d' 

= ïil 0 èJif-> ' 

(238) 

Physically, equation (238) says that the value of the total in­

ductance at any point in current space is equal to the average 

of the incremental inductance values along a radial line drawn 

from the origin to the point under consideration. 

As the inductance matrix is therewith shawn to be calcu­

lable from experimental data for any point in the current space, 

it follows that it must exist. Since the calculation is the 

result of solving a family of differential equations with giv­

en boundary conditions and driving functions, the solution must 
71 72 

be unique ' • Thus, the inductance matrix must always exist, 

and must have uniquely defined, symmetric components. 

rem is thus proved. 

The theo-
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6. Inductances of Realisable Machines. Given a skillful expe-

rimenter with very large amounts of patience, the fluxes linking 

any coil of any electric machine are measurable for all points 

of a current space. Although a complete n-dimensional flux map 

of this sort is an arduous task, several versions of the Maxwell-

a 1 i h b lli i b id 56, 60, 62 h b d b i ay e g a st c r ge ave een use y exper men-

ters to make measurements of this type. In principle at any 

rate, there is no objection to construction of such a multidimen­

sional map. All possible current variables may be taken into 

account using such bridge techniques, except of course eddy cur­

rents flowing in the machine iron. It is at least in theory 

possible, though of course practically out of the question with 

present techniques, to reproduce these measurements for various 

yoke eddy current configurations, by use of one or another dyna­

mic measuring method (e. g. Koenig 1 s alternating-current bridg-
27 

es ). As shown in the next chapter and Appendix A, any solid 

iron may always be represented to an arbitrary accuracy by 

means of a multiplicity of short-circuited coupled coils on 

an incrementai basis. By using equation (238), the correspond-

ing varying total inductances may then be calculated, yield­

ing the complete inductance matrix of the machine. 

The experimental labour involved clearly precludes using 

the above method as a way of obtaining high-accuracy descrip-

tions of machines. However, since it involves a model of ar-

bitrarily high accuracy, it permits trading of labour for ac­

curacy of description, and further assures that an inductance 

matrix, however inaccurate, exista. 
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EDDY CURRENTS IN SOLID IRON 

1. Representations in Time and Frequency. It is evident from 

the foregoing that representation of nonlinear inductive sys­

tems in terms of an inductance matrix is legitimate--if not in 

all cases, then certainly in those of immediate practical in­

terest, i. e. those in which hysteresis may be neglected and 

discontinuities in flux-current plots are not encountered. The 

development, however, relies on all windings being accessible 

at least in a hypothetical sense, and is thus not directly ap­

plicable to portions of machines not describable by lumped-

circuit representations. The problem of flux establishment or 

change in a solid conducting medium of finite dimensions, i. e. 

the eddy current problem, has long been recognised to be a 

field rather than circuit problem. It is therefore not imme­

diately amenable to the simple treatment above. The abject of 

the following is to show that it is in fact possible to re­

present the fields involved as circuit elements, to any desir­

ed accuracy. 

Considerable interest was shown in this problem in the 

late nineteen-twenties and early thirties. Important theore-

tical work was published by both radio engineers interested 
73 in high-frequency performance of inductors, for example Scott , 

and power engineers concerned with alternator performance under 
45 transient conditions, for example Weber • Perhaps as a re-

ault of regarding transform calculus primarily as a mathema­

tical tool without rouch physical significance, or perhaps be­

cause of overriding concern with immediate practical problems, 

neither group appear to have published any further interpre-

tations of their work. The great difficulty of corroborative 

experimental work is of course likely to have been a contribu­

ting factor. 
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Weber's work, as a1ready mentioned, is of special in-
45 

terest. In his June 1931 paper , he assumes a toroida1 mag-

netic structure partly of solid iron, partly laminated, and 

part air gap. The exciting winding upon this structure is 

permitted leakage flux, the toroïdal geometry serving merely 

as a convenient way of setting up a coordinate system. Weber 

assumes iron to be magnetically linear and analyses the field 

problem resulting from application of a stepfunction voltage 

to the exciting winding. The current and core flux are both 

solved for by first writing the Maxwell field equations, then 

Laplace-transforming them, and subsequently finding inverse 

transforma with great mathematical finesse. For the coil 

current, the solution given is 

~ ~ [ 1 - f cj e-pjt] 
R ._, 

J-

( 30 i) 

l 

where 1 is the current, V the amplitude of the voltage step, 

R the coil resistance; C. are dimensionless geometrical con­
J 

stants, and the p. real positive numbers dependent on the di­
J 

mensions of the system. Because Weber deals with a toroidal 

geometry, the constants are expressed in terms of Bessel 

functions; as pointed out in the discussion by Poritsky, how-
73 ever, as well as by Scott , the series of Bessel functions 

are replaced by series in circular or hyperbolic functions 

if the problem is solved in rectangular coordinates instead. 

true that r C; = 1 

It is in any case 

( 30 2) 

1 

and that the pj are monotonie increasing in j. Thus, equation 

(301) may alternatively be written as 

l 
v 
R 

To appreciate the significance of this result, at any 

rate for purposes of the present thesis, it is necessary to 

( 303) 



27 

find the Laplace transform of equation (303). This is easi-

ly done: 

Ils) 
v 
5 

1 
R 

v 
Now the factor - may be recognised as the transform of the 

s 
exciting step voltage. Thus, dividing by this factor, the 

complex frequency admittance of the winding is given by 

(304) 

- _1 oo Ct (305) 

Yjsj - R L s + p, 
1 

In view of the fact that Weber 1 s assumed system is linear, 

this admittance cannot depend in any way on the system cur­

rents and voltages. It may therefore be regarded, as is the 
74 case for all linear networks , as a network function not in 

any way related to the fact that it was derived by means of 

a step excitation. 

2. Realisability of Terminal Admittance. The problem of a 

circuit representation of the field problem of eddy currents, 

it is seen, is thus reduced to the problem of synthesizing a 

network whose driving point admittance conforma to equation 

(305). Such a synthesis is not difficult, as becomes evident 

upon examination of the properties of the admittance function 

Y(s). The most obvious property of this function is that 

the series defining it converges for all values of s except 

s = -pj ; for these values, Y(s) must diverge. Secondly, 

it is clear that Y(s) must converge to pure real values for 

all pure real values of s for which it converges, since the 

pj are positive reals and the Cj real. 

Consider now the behaviour of Y(s) in the neighbour­

hood of those values of s for which it does not converge. 

As s approaches one of these .Points, say s = -pk' the limit-

ing v~lue of Y(s) (should there be one) is ( 

ltmY[s)--\ CJ +)_ _h_+ILm--- (306) . 1 k-1 • r . CK 1 l 
S-"-Fk R ~A -pt<. R j=k~' R·-Pk s--.-pk R S-i-pl< 



The limit of course does not exist. However, the first of 

the series on the right side of equation (306) is a finite 

series of finite terms anywhere in the neighbourhood of the 

singularity, and will thus always sum to a finite number. 
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The second summation representa all the terms of order high-

er than the one being investigated. It may be shown to con­

verge by considering a new summation (representing a new admit­

tance function) identical to the one under consideration, ex-
th 

cept for omission of the k term. Since s = -pk is not a 

singular point of this new series, the new admittance func­

tion must clearly converge there. The first two terms of the 

right side of equation (306), then, are finite everywhere in 

the neighbourhood of the singularity under consideration; 

it is only the last term which does not have a limit. As 

the singularity is approached from the left along the real 

axis, this term grows in a negative direction, whereas on 

being approached from the right, the growth is in the po­

sitive direction. 

Exactly the same argument may of course be applied to 

each and every singular point of the admittance Y(s). It 

follows then that, along the real axis, Y(s) is always pro­

ceeding from a large positive value towards a large negative 

one, as s moves towards the right from one singularity to 

the next. As Y(s) converges uniformly in each interval be­

tween two adjacent singularities, it must have a zero value 

somewhere in the interval between every pair of adjacent p., 
J 

and this zero must lie on the axis of reals. In other words, 

the admittance function Y(s) must have interlaced poles and 

zeros along the real axis. It cannot have any poles in the 

right half s plane, since all of the pj are positive. Exa­

mination of Y(s) shows it to approach zero for large posi­

tive real values of s. From the nonexistence of poles in 

the right half plane and the interlacing of poles and zeros, 

it follows that there cannot be any zeros in the right half 
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plane either, except for the zero at infinity. Furthermore, 

existence of zeros not on the real axis requires the exist-
74 75 ence of additional pol~s somewhere ' ; but as all poles 

must lie on the axis of reals, and have zeros between them, 

this is impossible. 

The value of Y(s) at the origin must thus be either a 

pole or a positive real number. Application of the final va­

lue theorem of Laplace transforma to equations (304) and (304) 

yields 

lim i[t) = 
t-oo 

whence 

Y(O) 

lim 5 J(s) s--o 
1 = R 

V YIO) ( 307) 

(308) 

which corroborates the expectation noted above, and implies 

that the first critical point to the left of the origin must 

be a pole. 

Summarising, Y(s) may be shown to possess interlaced 

poles and zeros, all along the negative real axis, with the 

first critical point to the left of the origin a pole. It 

is seen to decrease monotonically with increasing real s. 
76 . 77 According to the criteria of Hazony and Van Valkenburg , 

it is always possible to synthesize such a function using on-

ly resistive and inductive elements. It remains to show an 

example of such synthesis. Clearly, many possible ways may 

be devised of synthesizing any realisable network function, 

so it will not be possible to claim uniqueness for any re­

presentation. 

3. A Linear Synthesis Problem. In view of its conveniently 

simple properties, synthesis of a network of suitable input 

admittance is not hard. The simplest possibility is suggest­

ed by the fact that Y(s) as given by equation (305) is al-
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ready in partial-fraction form. This suggests a Poster syn­

thesis by means of the second canonic form, yielding a network 

structure as in Fig. 301. However, this representation is 

not entirely satisfactory in the sense that it bas solely ma­

thematical significance. The physical significance of any 

one branch of the network in terms of the eddy currents in 

solid iron is at best obscure. 

Fig. 301 

Another, physically more fruitful, representation is 

easily constructed. Y(s) may be inverted to yield the cor­

responding impedance function Z(s). The value of Z(s) at 

the origin will be Z(O) = R, and the poles and zeros of Z(s) 

will coincide with the zeros and poles of Y(s) respectively. 

To synthesize this function, its zero immediately to the 

left of the origin may be removed to the origin, by defining 

a new impedance function Z 1 (s) by 

1 
Z (s) + R = Z (s) ( 309) 

Now this new impedance functlon will still have interlaced 

real-axis poles and zeros, but will differ from Z(s) by hav-

ing a zero at the origin. It is equally well a network func-

tion realisable by means of resistive-inductive networks. 

The corresponding admittance function Y'(s) bas a pole at the 

origin and may, by the arguments of Van Valkenburg77 , be 

written as 

!SD_ + ~ K, 
s ~ 5+ k! 

Consider now the simple network shown in Fig. 302. Assum-

( 310) 

ing the left-hand inductor to be of zero resistance, and the 



coup1lng coefficient between windings to be k, the impedance 

looking into the termina1s is read11y shown to be 
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l ) R L 5 2 L1 L25
2 

Zns = R L +(1-N)R _LLs ( 311) 

2 + 25 2.,.. 2 
and the admittance 

1 k2 

1 L1 /- k2 
-- + --..l..-------~(s) 

(312) 

[1-k'lft2 + 5 
It follows immediate1y that the new admittance function may 

be synthesized using a shunt combination of an infinite sequence 

of networks of the type of Fig. 302, as shown in Fig. 303. 

Fig. 302 Fig. 303 

Such a coupled-circuit representation of the field wind­

ing is much more satisfactory from a physical point of vtew 

than the Foster form of Fig. 301 because in the case of an 

electric machine, not only terminal voltage and current but 

also the flux should be capable of visualisation. The ctr­

cuits of Fig. 303, unfortunately, are still not entirely sa­

tisfactory, for no single Lnductor anywhere 'Ln these networks 

representa the actual field winding. 

It is shown in Appendix A of this thesis that any im­

mittance function realisable with R-L elements is realisable 

also as a single inductor (possibly with series and/or shunt 

resistance added) to which are coupled numerous short-circui-
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ted windings. Such a system is shown in Fig. 304. The mutual 

inductances between the shorted windings may have zero or non­

zero values; the realisation of an admittance function requires 

one fewer shorted windings than the admittance function bas 

poles. In other words, for an admittance functlon as defined 

by equation (305), the realisation must consist of an infinite 

CHJD CJ 
Fig. 304 

set of inductors, one corresponding to each term of the infi-

nite series except the first. It is to be noted that this 

lends à physical significance to the mathematical operation of 

truncating the infinite series. In a qualitative sense, the 

multiplicity of coupled coils may conveniently be viewed as re­

presenting the multiplicity of existing eddy-current paths in 

a real solid iron machine part. 

4. Realisation of Transfer Functions. As a practical matter, 

not only the terminal quantities of any given winding of an 

electric machine are of interest but also the coupling terms 

that link the winding with others, i. e, the transfer immittan-

ces that tie together the various windings of a machine. After 

all, unified machine theory ls in the final analysis merely 

the investigation of the behaviour of these transfer immittan-

ces under various coordlnate transformations. The transfer 

immittances will of course be correctly represented if the flux­

es shared by the several windings are correctly given by the re-

levant inductances. For the case of a magnetic 

ed of part iron, part air, Weber 45 gives 

cp , <Po[ , _ r q ëP.l J 
1 

circuit campos-

(313) 
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The realisation sought is evldently that of Fig. 305. 

It is clear, then, that the achlevement of the prescribed two­

port network function is a matter of adjusting the mutual in­

ductances between the newly introduced winding associated with 

the second port, and the already existing inductors, so that 

the required coefficients Dj are obtained. All of the expo­

nential terms already exist, one being assocLated with each 

of the existing shorted windings. In terms of the frequency 

domain, all of the required pales already exist; the residues 

at them must be adjusted by adjusting mutual inductances. 

Fig. 305 

It should be emphasized once again that although the paper by 

Weber, on whose resulta the present argument is based, employa 

the assumption of toroidal geometry, provision is made for a 

leakage flux of unrestricted magnitude. Thus the introduction 

of the additional coll into Fig. 304 to arrive at the two-port 

of Fig. 305 does not require the use of any perfectly coupled 

(Brune) coils. The representation is therefore r~asonable from 

a physical point of view. Also, although the examples shown 

in Appendix A restrict some of the coupling coefficients to be 

zero, such a restriction is made for arithmetical s!mplicity 

and is not in general required. 

5. Experimental Methods. Weber's paper, as already mentioned, 

included some sample calculations but no experimental resulta. 

The experimenta reported by Scott, on the other hand, are not 

unlike those of other investigators in belng of a specialised 

nature. In general, experimenta dealing with the eddy-current 
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problem fall mainly into two categories: those of radio engi-

neers, whose main concern has been with the effects on high­

frequency inductors of thin, generally nonmagnetic, shields; 

and the machines engineers, whose main concern has been with 

time-domain response, and whose experimenta consequently have 

run into well-nigh prohibitive difficulties. 

The troubles involved in attempting to perform time-do­

main experimenta are readily appreciated. Consider again equa­

tion (301) which gives the time-function current in an inductor 

with solid iron core portions. The infinite series involved is, 

in practice, a fairly rapidly converging one. A reasonable ex­

perimenb might be the application of a step-function voltage, as 

required, to the winding, and measurement of the current result­

ing. Such experimenta were in fact performed. The windings 

used for experimental purposes were, as might be expected, the 

windings of real machines. Figs. 306 to 309 show, respective­

ly, the step-function response of a d-e machine armature and 

interpoles, of the same armature without interpoles, and the 

field windings of the same machine under two different condi­

tions of excitation. In Figs. 308 and 309 the response of the 

field flux linking the armature (as indicated by armature open­

circuit voltage) is also shown. It is reasonably evident from 

these pictures that the machine armature circuit behaves very 

nearly linearly, and extracting even the second term of the in­

finite series is a hopeless task (the responses in Figs. 306 

and 307 are describable by single exponential expressions to 

within about 5%). In the case of the field winding, where a 

much greater amount of solid iron is coupled to the wtnding 

much more intimately than is the case for the armature, the se­

cond term can be extracted by careful graphical work, and the 

presence of the third is just discernible. The inherent non­

linearity of the situation can to sorne extent be taken into 

account by solving the transient problem by phase-plane tech-

niques, ignoring eddy currents altogether. The difference be-
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tween the prediction neglecting eddy currents and the experi­

mental measurement must then be the sum of error plus the eddy 

current terms. Figs. 310 and 311 show the predicted curves and 

the measurements of Figs. 308 and 309 plotted on the same set 

of axes. It may be seen that the Weber theory holds àt least 

qualitatively. However, it is equally evident that this ap­

proach is unlikely to lead to useful quantitative verification. 

lnstead of attempting to verify equation (301), however, 

the verification of equation (305), its frequency-domain coun­

terpart, may be attempted. The advantage here is the disap­

pearance of the restriction of step-function drive; a sinusoid 

may as well be substituted. Such quantitatively useful expe­

rimental verification of the multiple-coupled-coil theory must 

by implication also verify the original time-domain develop­

ment. 

Since the above theory requires linearity as a presuppo­

sition yet iron is inherently magnetically nonlinear, the ex­

periment makes sense only on an incrementai basis. Equipment 

laid out as in Fig. 314 was employed for the measurements. 

The winding to be investigated (the same d-e machine field as 

used for the time-domain measurements of Figs. 308-313) was 

fed by an amplidyne furnishing a direct voltage plus variable-

frequency alternating voltage. In turn, the amplidyne was 

driven by a d-e source and a very low frequency generator con­

nected to separate input windings. Measurements were made 

over a frequency range of about three and a half decades; at 

the high-frequency end of the range, i. e. above roughly five 

cycles per second, the amplidyne became quite useless. An 

alternator driven at low speeds and connected to the winding 

under investigation via large series capacitors was employed 

instead. In view of the low frequencies involved, the only 

practical method of admittance measurement was the plotting 

of actual voltage-current traces by means of an oscilloscope 
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Fig. 306. Curreu t türough d-e 
machine armature and interpoles 
in response to a voltage step. 
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Fig. 307. Current through d-e 
machine armature alone, in re­
sponse to a voltage stepfunction. 
2. 5 amp/square, 2 msec/square. 

Fig. 309 

Field current and generated volta~ of a d-e machine in response to 
a steptunction fielü voltage. The more nearly exponential trace re­
presents generated voltage. Scala 55v/square, ü.2 amp/square, 
0.2 se c/s qoore. 
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Fig. 312. The curve of Fig. 
309, showing predicted and mea­
sured current. 
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Fig. 313. The curve of Fig. 
309, showing predicted and mea­
sured open-circuit voltage. 

Note: All predicted values above neglect eddy currents. 
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Fig. 314. Equipment layout for measurement of incremental admittance 
magnitude and angle at law frequenciea. The d-e source e•citing a . 
second input winding of the amplidyne is not shown. 

Fig. ~15. Termin~l voltage vs. 
current at bO eps. Scale 10 v/ 
square, 7 ma/square. No d-e. 
Terminal admitta nce 0.465 milli­
~os, phase angle -400. 

Fig. 316. As Fig. 315, but at 
0.7 eps and a d-o ourrent compo~ 
nent of 0.9 amp. Note asymmetry 
arising from nonlinearity. Our­
rent scale 38 ma/square, admit­
taqce 7.08/ -220 millimhos. 
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used as an x-y piotter. Because the tracing is slow at low 

frequencies, the traces were all photographed so as to permit 

examination. From the inclination of the resulting elllpti­

cal traces and from the semiaxis lengths, the magnitude and 

phase of admittance are readily found. Two such photographe 

are reproduced in Figs. 315 and Tl6, representing two points 

on the admittance-frequency curves. 

Runs over the entire frequency range were taken at d-e 

field currents of zero, 0.75, 0.90, and 1.00 ampere. The rat­

ed field current of the machine in question was 1.0 ampere, so 

0.75 ampere representa operation a little above the knee of 

the field saturation curve. The results of these runs were 

plotted on logarithmic paper (log-log for magnitude, semilog 

for angle) and curves fitted to them. The results for zero 

d-e field current appear in Figs. 317 and 318; it is evident 

that the curve fit is very good indeed. Note that ln both of 

these drawings, the solid lines represent not the estlmated 

average experimental curve, but rather the values given by the 

fitted function in each case. Similarly, parts of the magni­

tude plots for the cases of 0.75 ampere and 1.00 ampere d-e 

appear in Figs. 319 and 320. In the latter two cases, the 

infinite-product expressions for field admittance were trun­

cated below the highest break frequency available ln the da­

ta; this fact is clearly visible in both graphs as a sudden 

upward deviation of measured points from the fitted curve, in 

the region above 50 eps or thereabouts. 

The excellent agreement between measured data and syn­

thesizable polynomial-ratio admittance functions (especially 

since it holds both for magnitude and for angle) is held to 

demonstrate conclusively the validity of Weber's theory and 

bence also the legitimacy of representlng solid iron as an 

infinite series of coupled equivalent windings. It remains 

to note the fact that the experiment here performed dealt 
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Circles repreaent expèrimental points 

).0 10 .)0 

Fig. )19. BehaYiour ot 1norementa1 field admittance with trequency, with d•c field our· 
rent ot O. 75 ampere. 

l 0.0178 • •l Sol1d ine Y • 8.8 (0,1)2 a •l}[0.00709a +fT 

Ciroled pointa e~perimental 

l 

rrequenc,r, ops 

0.1 O.) l 0 

Fig. )20. BebaY1our of 1noremental field admittance with trequenoy, at tbe rated value of d-o t1el4 
ourrent ( 1.0 ampere ). 
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with incrementa! rather than total admittance because of the 

inherent nonlinearity of the problem. As was shown in the pre­

ceding chapter, the availability of incrementa! data is, at 

least in principle, sufficient for total description of an in-

ductive system. The total inductance matrix can always be de-

rived from measured incrementa! inductances. 

A complete description of a machine Lnvolving solid iron 

is thus in principle possible only by means of an inflnitely­

extendlng inductance matrix, since the solid iron requires an 

infinity of coupled equivalent windings for exact representa-

ti on. As a practical matter, the infinite series may be trun-

cated rather early, so that the inductance matrix of a real 

machine may be approxlmated by one of finite slze. 



IV 

ENERGY CONVERSION BY THE NONLINEAR MACHINE 

1. The Nonlinear Machine. In the preceding it has been 

shown that any purely conservative system of inductive energy 

storage elements (that is, any system of windings possessing 

an irrotational flux linkage vector) may be represented by 

means of an inductance matrix possessing the properties of 

continuity and symmetry. The derivatives of any order of this 

matrix with respect to the current coordinates are also seen 

to form completely symmetric multidimensional matrices. In or­

der to represent an electric machine by such means, the machine 

must first of all be considered to be a memory-free deviee (i. 

e. hysteresis must be removed). Next, the proportional terms 

in any representation must be removed as resistances. The re­

maining portion will then be a system of inductive elements 

possessing the required properties. Representation by an in­

ductance matrix is then possible: 

e = .,. ( 40 1) 

But this equation is only valid if the flux linkage vector is 

irrotational. If the coils described by equation (401) are 

permitted to move with respect to each other, electromechani­

cal energy conversion will of course take place; if no addi­

tional energy is introduced, the stored energy must then chang•. 

Alternatively, if the stored energy is kept constant, a net in­

put or output of electrical energy must occur, equal to the 

mechanical energy involved. Even excluding the resistors R, 

it is then clear that the resulting electromechanical system 

is conservative on an overall basis, but not on an electrical 

basis alone. The possibility of representing a machine, as 
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distinct from a stationary network, by means of an inductance 

matrix is therefore by no means certain yet. 

Much as was done by Kron for linear systems, the static­

network ideas contained in equation (401) may be extended to 

motional networks by the principle of virtual work. As the 

ultimate goal for the present is representation of electric 

machines, one dimensionless degree of mechanical freedom is a 

convenient assumption to adopt. If necessary, the development 

is easily enough adapted to contain a dimensional mechanical 

variable. (In the case of linear stroke-motors, this may be 

of interest, for example.) The development is also capable 

of extension to more degrees of freedom, if for sorne reason 

that should be necessary. 

2. Energy Balance for Small Displacements. Let a system such 

as the above be at rest in a state described by its vector of 
- . 

currents, say I, and its mechanical position, say e. As dis-

cussed and set forth in equations (212) to (215), the vector 

of system voltages is always expressible in terms of the flux 

linkage vector, and the stored energy may be written in terms 

of the flux linkage and current vectors: 

U =[I.e T·dÀ = [~"'d).. 
o,e o 

(402) 

where the symbol e in both limits of integration implies that 

the integration is to be performed without permitting mechani-

cal motion of the system. If this restriction is not adhered 

to, the integral will merely yield the input energy, not the 

energy stored. 

Suppose now that the system is moved from the state de­

scribed to sorne other neighbouring state, say (I + DI>' 
< e + 6e ) . The flux linkage vector À will during this pro-

cess also assume new values; since the motion is restricted to 
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the neighbourhood of the initial state, and all functions re­

quired to be continuous to any order, the new values of flux 

linkages must also be neighbouring ones, say 2\+ 6/\ . The 

energy increment during the motion (note that this is the in­

put energy increment, not the stored energy increase) may 

then be written 

DU (403) 

The motion here is assumed to be small. But because of the as-

sumed continuity properties, for large as well as small motions 

h fi 1 h f i 1 be 1 . d78, 79 t e rst mean va ue t eorem or ntegra s may app 1e 

with the result 

(404) 

where 1. 

In turn, the mean value theorem for derivatives (Rolle's 

theorem) may be applied to rewrite equation (404) as 

ou = If+ {Oflôe (~' (4os) 

where( d ~)r - [d Àcx] 
de - de (e+7lôe),lt+{cSID(J 

for the sake of brevity. 

Now as already pointed out, the energy increment repre­

senta a4~itional energy put into the system electrically, not 

the stored energy increase. The latter quantity may be found 

by applying the integral of equation (402) to the terminal 

state. Letting this new stored energy be U', 

u' = (+Ml ,~dÀ~ 
-{a) 

(406) 
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where the integral is evaluated with the parameter representing 

the mechanical degree of freedom remaining at its terminal 

value ( e + oe ) throughout. 

The integral of equation (406) may be at least partially 

evaluated by first integrating by parts 

!+61 
U' = li+ Or) jA.+ 61\..) -fa À-. di~ (407) 

where the integral is again evaluated at the terminal value of 

the mechanical angle e. Another applicatlon of the mean 

value theorem (Rolle 1 s theorem) may be made, this time operat­

ing on the components of the flux linkage vector: 

)._A je +ôe) = ,1,.IBI + oe[~ ~le+ oe) 
This way of writing may now be use' to 

(408) 

o;.~<J 
rewrite equation (407) 

with the integral evaluated at the lnitial value of the angle 

() . The stored energy in the terminal state thus becomes 

, 0( ri 0( u = r~+ 6T~+ 6A..r+ 6A.6I -Jo ÀD(di 

[+61 .~ il ( d À.x)" . ()( 
-~ À.., dt - oe 

0 
ae dt (409) 

'ri+o!J(è)À )' .« where (~~· rdÀo(l 
- oe1 de~ dt de J = L2>e Jle+S66l 

Now during the change of state from initial to terminal values 

of the currents and angle, mechanical energy exchange will in 

general take place. As equations (402), (405), and (409) glve 

the initial 

change, and 

stored energy, the energy put in during the state 

the final stored energy, respectively, all the da-

ta necessary for computing the mechanical work done, say Ôw, 
is available. Conservation of energy clearly requires that 

6w = u 1 
- u - Ou (410) 
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Substitution of the values of the right-hand terms from the 

above equations now yields the value of mechanical work. The re 

ob tains 

(411) 

The mean value theorem for integrais will next be applied 

two times, to the first and third integrais in equation (411). 

These terms become 

I+6I I ),_di ... =A.ôt +JJ.OA..or 
T ' 

(412) 

1Î+ot~· dt~ ôz{èlÀe] =6l(è)~r (413) 

.T, tha~Bon substitut~~ (~~~€f[t, in~e equat~:€7~11) 
above, and subsequently dividing both aides by the angle in­

crement 68 (thanks to the repeated applications of the mean 

value theorems, this increment appears as a factor in all but 

one of the terms of the right-hand member), there obtains 

~= I«l~-(gtJJ _ ff~~rd~~ -ôi~(~~&r 
(414) 

-t6I~(d~J' + (/-JJ..)O( ôA. 
de 6e 

Since a physically realisable system is being described, it 

is not unreasonable to suppose that both the currents and the 

angle must be continuous functions of time. The sole case 



49 

in which this assumption may be untenable is that of switch­

ing operations in coupled-circuit sets, where instantaneous 

changes in individual currents may be possible. Such cases 

must still be subject to the principle of conservation of flux 

linkages; bence the deficiency may be overcome by carrying 

out the entire development in terms of another set of current 

coordinates, e.g. loop instead of branch currents. The proof 

can thus be made to cover all real cases. As the time taken 

for the change of state is made smaller and smaller, the in­

crement achieved in each variable must be smaller and smaller 

also, all variables being continuous in the time parameter. 

As the time interval approaches zero, the variable increments 

approach zero also, and the precise values of the parameters 

less than unity introduced by repeated applications of mean 

value theorems are unimportant. The two derivatives of the 

first term of the right-hand member of equation (414) then 

approach equality, so that the term vanishes. The last three 

terms, b~ing multiplied by the current increment, also vanish. 

It may be noted that the remaining incrementai quantities in 

these three terms all appear in quotients, each of which ap­

proaches a finite value, so that the vanishing multiplier is 

the governing factor. In this way, 

lim 
ôt-o 

6W 
6if 

== dW= 
de 

(415) 

The derivative of the mechanical work input with respect to 

the angle may be recognised readily as the torque exerted up-

on the system by external mechanical agencies. This quantity 

must be the negative of the output torque of the machine. 

The output torque of any electrical machine may therefore be 

stated as 

JI 
0 

r = (416) 

In the case of a slip-ring machine, the current variables are 
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not in any way required to be connected to the angular variable. 

It follows that the fundamental definition of inductance, equa­

tion (202), may be substituted in (416), yielding 

l 
r 1 .(3 2J Lrxf* d ·<X (417) , èJe , 

0 
as the output torque of any slip-ring machine. It must be 

noted that this expression does not hold for commutator machines. 

The reason is simply that in arder to obtain (417) from (416), 

the currents and angle are assumed to be independant, so that 

the derivatives of currents with respect to angle vanish; in 

a commutator machine, this is not true. The function of the 

commutator is precisely to tie the rotor current distribution 

to the angular variable in a predetermined manner, and may as 

a result be viewed merely as a deviee for making the deriva­

tives of currents with respect to angle nonzero. 

3. Torque of a Linear Machine: A Special Case. The first step 

in verification of the above theory is naturally enough an in­

quiry into whether it does in fact predict the performance of 

a linear machine as described by Kron and others. 

Only one detail of such an inquiry is in need of clarifi­

cation, the path of integration. The integral of equation (417) 

was derived assuming first that the integral of equation (403) 

was carried out along some chosen path of integration. In that 

equation, the path of integration was unimportant, since the 

angle was invariant during the integration and the system in 

consequence conservative. No alteration, it may be seen upon 

inspection, is necessary in the course of the development if 

some other path of integration is initially chosen. It fol­

lows that the derived quantities of equations (416) and (417) 

must be independant of path also. The vector obtained by dif­

ferentiating the flux linkages with respect to angle must as 

a result be irrotational, and the dyad obtained by diffe~enti-
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ating the inductance dyad with respect to angle must be sym­

metrical. These are properties already established for the 

parent quantities. 

Consider now the matrix form of equation (417), the de-

fining equation of machine torque: 

r :::: li [i]t [~~] [di] 
Now consider that 

d {[il t [~ ~] [ i]} = [ilt[d~] [il + [ilt[~~J[di] 
+ [di] t [~ ~] [ i l 

so that, since the angular derivatives of inductance are a 

square matrix, and symmetric, 

[ilt[~][di] = ~ d{[ilt~~] [i]} 
and equation (418) may be rewritten 

1 
2 

(418) 

(419) 

(420) 

(421) 

But in a linear machine, the inductances (and bence their an­

gular derivatives) are independant of current. The second 

term on the right side of equation (421) therefore vanishes 

and there remains 

r _ _f_[·] [(jLl[·] 
-2 1 tdej 1 (422) 

64 23 which is precisely the result given by Kron , Bewley , and 

others. It is thus c1ear that the nonlinear theory here de­

veloped is a true generalisation of the linear one, includlng 

the latter within it. 



The development here carried out for nonltnear induc­

tive systems for the most part parallels the work of authors 
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on linear machines insofar as method is concerned. The proof 

is of necessity more tedlous and the result algebratcally 

less explicit. In vtew of the restrictions placed on the flux 

linkage vector and the inductance dyad--they are qutte weak 

from an engineering point of view--the complexity is qulte na-

turally to be expected. For example, although many engineer-

ing applications employ monotonically nonlinear materials, the 

development of the torque equation does not requlre monotoni-

city. As a compensation for this increased tedium, the result-

ing equations, (418) for torque and (209) for voltages, are 

equally valid for ordinary monotonie nonllnearities (such as 

might be encountered in, say, d-e machines) and for the much 

more complicated flux-current relatlonships discussed by Bes­

sonov80 Ln connection with self-excited oscillatory systems 

or by Blringer81 in dealing with frequency multipliera. 

Unfortunately, a correspondingly simple extension of the 

slip-ring machine theory above to nonllnear commutator machin­

es cannet in general be made. The simple rotation transforma-
82 

tion employed in the llnear theory is, as mentloned above, 

based on Floquet's theory of linear systems with time-varying 
55 parameters and cannot be employed here. The useful exten-

sion of Floquet theory exploited by Hale 54 establlshes the 

existence or nonexistence of certain terms in perlodic solu­

tions of nonlinear systems, but does not in its present form 

provide a ready method of transformation. In other words, 

commutator machines are at the present not amenable to treat­

ment as a general group, and will have to be tackled indivi­

dually or in small subgroups. 

4. An Anomaly Explained. Since the adoption of untfled theo-

ry of machines ln undergraduate currlcula, a need has been 

felt for suitable supportlng laboratory experimenta. The first 

major step in answering this need was made by the M. I. T. 
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staff in cooperation with the Westinghouse Electric Corpora­

tion in designing the MIT-Westinghouse Unified Machine, as it 

has become known. This electromechanical jack of all trades 

consista of an unexpectedly large half-horsepower frame and 

rotor, with an assortment of slip-rings, two-phase windlngs, 

brush sets, and commutator. It may be made to operate as a 

large variety of machines, though it runs well as none. A set 

of comprehensive experiment descriptions and typical results 

for this machine has been published
83

• Although the machine 

has normal iron, it is strlking that the correlation between 

typlcal resulta and predictions is surprlsingly good. Even 

with more standard types of machines, agreement between ex­

periment and prediction based on "averaged" measured induc­

tance values is at times quite good. As in all experimenta­

tion concerned with nonlinear deviees on an average-value ba­

sis, the results are open to crlticism on the grounds of the 

choice of averaging method. The seeming fact, then, that li­

near generalised theory appears to work in the nonllnear case 

may well be considered anomalous. 

The anomaly may be cleared up rapldly using the results 

derived above. The torque of a general nonltnear slip-ring 

machine is given by equation (417); ln the past, however, equa­

tion (422) has been employed, with the values of inductance-­

qr, to be precise, rate of change of inductance--taken as sorne 

reasonable average value within the range of operatlng condi­

tions being considered. An application of the mean value theo­

rem to equation (417) yields 

r., Jt·~ ·di= f[i]t [ ~ ~Lver[i] (423) 

the rate-of-inductance dyadic being evaluated at some point 

in the interval of integration and for sorne value of the cur­

rent vector. As this equation coincides formally with equa­

tion (422) and specifies evaluation of the nonlinear dyadic 
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somewhere within the same range of values, it is clear that 

in cases where the nonlinearity is not very severe, a guessed 

set of inductance values will come reasonably close to satis­

fying equation (423). 

A similar situation obtains with the voltage vector. 

The ~efining equation (204) may.be wrltten 

- = di -. 2JL 
e = i· dt + {. ae w (424) 

separating the induced (transformer) and speed (generator) vol­

tages. It is evident that the induced voltages depend on the 

incrementa! inductance matrix and the speed voltages on the to­

tal inductance mat~ix. It must be noted that the total lnduc­

tances in this equation .are the instantaneous values, not some 

sort of averages; if the same rate-of-inductance matrix is em­

ployed as for the torque calculation, the resulta wlll be too 

low with the usual kind of lron nonlinearity. Conversely, use 

of the mean total inductance in place of the incrementai in­

ductance is likely to lead to a value of lnduced voltages that 

is too large. With a rèasonably mild nonlinearity, the discre­

pancies are unlikely to be very great, however. As these two 

components are usually measured together as a total voltage, 

the compensatory nature of the errors tends to obscure faulty 

predictions. Especially in machines with long air gaps, like 

the MIT-Westinghouse laboratory machine, saturation curves 

tend to be flat and hysteresis loops negligibly narrow. For 

such cases, it is perhaps in any case best to ignore the ac­

curate development and rejotce in the simpliclty of the line­

ar methode at some tolerable cost in accuracy. 
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EXPERIMENTS WITH A SIMPLE REAL MACHINE 

1. Nature of the Experimenta. A great mass of experimental 

data, both acquired by the author and present in the litera-

ture, exists on electric machines. It may be seen readily 

that the formulation of the machine problem in terms of a non­

linear inductance matrix predicts the qualitative nature, or 

at least does not violate the nature, of these data. For ex-

ample, the phenomenon of armature reaction, well known for 

many decades, is seen to be intimately related to the change 

in apparent armature inductance of a d-e machine when current 

is made to flow in another winding in space quadrature with 

it. Both of these observations are seen to be explainable as 

merely representing nonzero values of armature-field mutual 

inductance. The change in apparent armature inductance was 

first reported by Jones
56 

but verified by a large number of 
. 27 

others. The experimenta of Koenlg are important as another 

aspect of the same problem; he first reported the fact that a 

current change in an armature circuit induced a transient volt-

age in the field circuit and vice versa. In short, much expe-

rimental datais available on commutator machines, both in 

the literature and newly gathered. These data are only of 

qualitative use, unfortunately, as there bas not yet been any 

remarkable success in the construction of a general commutator 

primitive to correspond to the slip-ring machin~ described. 

The latter, on the other band, does offer the posstbility of 

direct experimental verification in quantitative as well as 

qualitative terms. Because of the great difficulty in amass-

ing sufficient numerical data for salient-pole machines (new 

sets of measurements are required for every rotor position), 

a smooth doubly cylindrical structure was employed as the ex-
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perimental machine. To be precise, a small synchro transmit-

ter with three-phase stator and single-phase rotor windlngs 

was tested both for saliency and for sinusoidality of the mmf 

distribution around the air gap. Near-perfect cylindrlcal 

symmetry was found to obtain and the machine therefore put in­

to service, as the number of measurements to be performed 

could be kept within reasonab1e bounds. A smal1 torque balance 

was constructed so as to measure machine shaft torque. Since 

the balance weights employed were determined to qulte high ac­

curacy, but the torque arro length is probably subject to an 

error of about 1 mm in a total length of 180 millimetres maxi­

mum, the accuracy of torque measurement is optimistlcal1y es­

timated to be perhaps 1%. 

As a corollary to Koenig 1 s two-coil transient measure­

ments, it was first desired to perform some simple experiment 

to verify the nature and existence of the truly nonlinear but 

nevertheless genuine mutual inductance between spatially or­

thogonal coils. Subsequent1y, attention was devoted to the 

torque equation; little data (comparatLvely speaking) bas ap­

peared in the literature on torque measurements performed to 

sufficient accuracy to display clearly the nonlinearity in­

volved. Since the machine involved was a small one, it was 

possible to resort to electrical overloads of several hundred 

per cent. for short periods so as to drtve the machine iron 

deeply into saturation and be assured of truly nonlinear be­

haviour. 

Predictions of performance for all of the experimental 

work were made by first deriving reasonably general equations 

for the inductances of a two-coil, doubly cylindrical struc­

ture with sinusoidal distributions of the equivalent current 

sheets. The resulting inductance matrix was then employed 

to predict performance. Because of the geometrical slmplicl­

ty of the test machine, this procedure is possible. Whether 

its extension to large salient-pole machines is practical, is 

another question. 
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2. Cylindrical Machine with Orthogonal Windings. Because of 

its relative simplicity, a machin~ so arranged as to have its 

rotor and stator windings at rigbt angles to each other will 

first be examined. These windings will be referred to as a 

and b in the following development. The self and mutual in-

ductances are easily derived, as follows. 

Let either winding carry current. In view of the slnu-

soidal distribution of either winding, the total mmf distrlbu-

tion will be stnusoidal also. The total mmf may be written 

in terms of the ind.vidual winding mmf's as follows: 
. 

n~o '~- -

. 
na..to.. • 

'!'cos fJ 
\JlsinfJ 

(SOl) 

( 502) 

(503) 

These relationships may be illustrated by the phasor diagram 

shown; a phasor diagram may be employed because of the sinu­

soidal distributions of the windings. The flux distribution 

will not in general be sinusoidal, but it will always be sym­

metrical about the same axis as the mmf dtstribution. Imagin­

ing therefore, as Kron does, that the mmf and flux directions 

coincide, and that flux links coils according to the angle be­

tween the coil plane and the axis of flux symmetry, the coil 

flux linkages may be written as 

( 504) 

~ { '±') ( 505) 

where the flux is taken to be a function of the mmf, although 

of course not a linear function. 
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From the trigonometry of the phasor diagram of mmf, it next 

follows that the flux linkages may be rewritten 
. 

Ào.. no.. 
no. ta. cp 
'±' (506) 

Àb = nb nbt& cp 
\J.f 

( 501) 

By partial differentiation of the flux linkages given by these 

two equations, it is shown with a little algebraic manipulation 

th at 

(508) 

illu~trating the reciprocity of incrementai mutual inductances 

as a result of energy conservation independent of the nature of 

the fu·nc t tonal dependence between flux and mmf. In a similar 

mann er 

n4i2 n~~ è)~ 
( q{- ~l :z a...!2:' 

2> ia- '1'2 '±' (509) 

and 

d~,-
4·2 

(<P- -$-J n:(j) J]tz (~ (510) 

dÎb '!1 '!1 
Appendix C to this thesis shows that the relatLonship 

between total and incrementai inductances is a comparatively 

simple one. Integrating in the manner prescribed, the solu­

tion is found, as shown in equation (511). In its turn, this 

equation clearly illustrates the reciprocity of total mutual 

inductances at all points in current space (in this case, 

really a current plane). Examination of this equation also 

points out what was discussed at some length in Chapter II: 

in nonlinear systems, reciprocity can only have meaning as 

a property at a point in current space. The mutual terms are 

seen to change sign at each quadrant boundary, so that the 

mutual effect is always to decrease total flux and stored 
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energy. On the other hand, this nonlinear system is seen to 

share with linear ones the dependence of inductance on the 

square of turns number. 
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( 511) 

3. Machine with Windings not Orthogonal. The expressions de­

rived for the inductances of the pair of orthogonal windings 

may be extended to cover any two non-orthogonal coils as well. 

As before, the total mmf is easily found with the aid of a 

phasor diagram: 

1 

' . 
~-...1..::----~' n. lo. 

The flux linkages of the coils may be found by fLrst comput-

ing the total flux. As previously, it must share the axis of 

symmetry with the mmf, and depend on it in some functional man­

ner. Resolving the total in the directions of the two winding 

planes then gives the flux linkages of the coils. A phasor­

like diagram may be employed as an aid for the necessary tri­

gonometrie calculations; it must be remembered, however, that 

this diagram is not a true phasor diagram, but merely a sketch 

of the axes of symmetry. There easily obtains 
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''lep 
1 
1 
1 
1 

~---L~--------~' 9ba 

Ao.:::: na. cp cos j] < 513 > 

Àb = nb <t> cos (cx-}3) < 514) 

Although the algebra here is a little more drawn out than in 

the previous case, there is no difficulty in dtfferentiating 

to find the incrementa! mutual inductances 

~= ~t-n.n.[cj)'cos,O cos(cx -,0) - -$-sin,Osin (cx-,o)] <sls) 

and the self-inductances 

d~et = n 2 <t> + n2( <:/>' - P.) cos2 n 
è) l ~ tÀ \j! '!' J-1 

~f:= n! t+ n2
( q) -$ )cos

2
(cx-,O) 

( 516) 

( 517) 

Just as in the case of orthogonal windings, the total indue-

tances may next be calculated by integrating the approprlate 

differentiai equations. The expressions that result are si­

milar to those already obtained, though a little more compli­

cated. The inductance matrix, equation (518), is shown on 

page 61. 

Although the mutual inductance with zero currents is no 

longer zero, the other propertles enumerated for the orthogo­

nal case may be seen to hold. As a check, it may be verified 

that the inductance matrix of equation (518) does lndeed re­

duce to that given in (511) in the orthogonal case. 

4. Evaluation by Measurements. The general inductance matrlx 

of the machine is now available in terms of the flux-mmf func­

tional relationship and the numbers of turns in the windings. 

As the turns numbers must be such as to make allownace for the 

machine leakage fluxes, rather than physical turns numbers, 
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both the turns numbers and the flux-mmf relationship must be 

obtained by measurement. Consider .the machine first in such 

a position that the axes of the two windLngs coincide. The 

inductance matrix then reduces very simply to 

n2 
CL Tla. nb 

62 

L 
lcx=j]=O) nb na. n2 (519) 

b 

If one winding, say ~' is not energised, the flux-mmf ratio 

is further simplified. The following relationships are then 

readily deduced: 

:12_ MQbl t~QO) _j_ b 
\1f n~ nb no. nb lo.. 

(520) 

cp' L [~ ._Q_(b_)] 
no. nb i a + ~ d (~ ~~ 

(521) 

It is now seen that if the mutual inductance with one winding 

energised is now measured and the result substituted into equa­

tion (518), expressions result that contain no factors that 

are not analytically known or readily measured. For the very 

simple case of a completely symmetrical slip-ring machine, 

then, the components of the inductance matrix are readLly 

enough avai.lable. 

The flux-mmf characteristic of the synchro transmitter 

was measured in two ways. First, ballistic measurements with 

a Maxwell-Rayleigh .bridge and electronic integrator were made 

to determine static values. Subsequently, a fast integrating 

network and oscilloscope were employed to obtain dynamic hys-

teresia loops. Both of these methods are quite conventional, 

the former being very similar to Jones' measurements, the lat-

ter a standard test of ferromagnetic materials. Since the 

ballistic measurement does not requir e exciting currert·t to be 

left.on for long periods, it may be used with considerable 
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electrical overloads (currents several times rated value). 

The static mean magnetisation curve is shown in Fig. 501, and 

a dynamic curve exhibiting the hysteresis and eddy currents 

neglected in the above analysis appears in Fig. 502. Although 

some error will naturally result, it is evident from Ftg. 502 

that neglecting hysteresis is not wholly unreasonable. 

As already observed, the mutual inductance changes sign 

at each quadrant boundary if the two windings are orthogonal­

ly placed. Bence, as a dynamic verification of Koentg's tran­

sient measurements 27 , it was attempted to hold the current in 

one coll at a constant value while impresstng an alternating 

voltage across the other. Qualitatively, the coll carrying 

direct current only should now have a double-frequency alter­

nating current across its terminals. This voltage will result 

from the fact that the system is being driven along a straight 

line in current space that crosses the boundary between two 

quadrants, so the mutual inductance between the coils must 

change sign twice each cycle. A series of such tests were 

performed, the driven coll current being plotted against the 

induced voltage. One such plot appears in Fig. 503, where 

the round dots represent points predicted by means of the in­

ductance matrix of equation (518) and the mean magnetisation 

curve of Fig. 501. The photograph shown is representative of 

the run of tests. It is evident that in this test dlfficul­

ty was encountered in holding the coil d-e truly constant; 

some ripple current did appear, as evidenced by the large 

area •nclosed by the loops of Fig. 503 (these represent the 

energy being taken out of the machine). It is also to be 

noted that as an incremental flux variation is betng measur­

ed, hysteresis does make its presence felt. As the test ts 

a very demanding one, it is felt that the theory is adequately 

verified by this measurement. 
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Fig. 502. Dynamic hysteresis 
loop of test machine, with ro­
tor energised at 30 eps. The 
rotor.peak ourrent is 2.3 am­
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Fig. 503. Stator ourrent (hori~ 
zontal) vs. rotor terminal volt­
age (vertical). Rotor direct 
current 1.5 amperes. Dots repre­
sent predicted points. 
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5. The Torque Equation. A rouch more interesting problem, 

and far more demanding of experimental verification than the 

application of Faraday's law to nonlinear circuits (which, in 

a sense, is all that can be accomplished with stationary cir­

cuits) is of course the torque equation (417). One test of 

that expression has been made already: in equations (418) 

to (422) it is shown that it does predict the torque of a li­

near machine. Since a nonlinear machine with known indue-

tance matrix is now at hand, the torque equation shall next 

be employed to predict torque of the nonlinear machine. 

Substituting the inductance matrix of equation (518) in­

to the torque equation (417), after lengthy algebraic manipu­

latio~ there obtains 

r = rsinJJ[q!n,~cos)J +cp s(nQ coslo:-jJJn.]di 
)0 ,::, . s' n ex a. 

+pinlo:-fJ(cPnb~coslo:-jJ)+cfy 5~~fl cos)J11,]dio 
Unfortunately this expression is somewhat too complicated 

(522) 

for 

convenience. Sorne considerable simplification is possible 

upon a change of variables, converting the current plane of 

this problem into polar instead of Cartesian coordinates. 

Upon such a transformation, equation (522) becomes 

r =-fsino:forr sin2r[c#n/ 1 + sin2rcoso: 
(52 3) 

+ cp J dr 
r -J!+sin2ycoscx 

Starting again with the simplest possibility, in the case of 

orthogonal windings this conveniently reduces to 

r 1~1 = ; sin2r fr[ c#ir 1 + ~ ]rdr 
v 

(524) 
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The latter expression was evaluated by performing the indicated 

differentiation, multiplication, addition, and integration, in 

that order, graphically. Unlike in the voltage measurements 

graphical calculation was here preferred to computer work be­

cause graphical differentiation, continuously visible to the 

calculator, was considered more reliable than numerical diffe-

rentiation. One very simple experiment immediately offers lt-

self. If the two windings of the machine are connected in se­

ries, the polar angle in current space is fixed, and equation 

(524) gives the torque of the resulting system directly. Su ch 

an experiment was of course performed; the experimental results 

(shown as circles) and the predicted curve are shown in Fig. 

504. It is seen that the prediction is very close indeed, the 

error in predicted value being less than the stationary-fric­

tion dead zone of the torque measuring apparatus (bence in fact 

unmeasurable). It is interesting to note that the torque in-

creases very nearly proportionally to current for all but the 

lowest currents 9 rather than parabolically as linear machine 

theory would predict. By operating the machine at currents 

rouch in excess of its ratings, the maximum current being of 

the order of 500% of rated, a situation is created in which 

linear theory is not only unable to predict correct numerical 

values, but even gives qualitatively wrong answers. 

The case in which the windings are oriented at an arbi-

trary angle to each other may next be dealt with. During any 

one integration, the angles in equation (523) remain constant 

so that that expression may be rewritten 

r 
1 + sin27coscx 

sincx. sin2r ; Jr[cPirl+~ ]rdr 
0 

(525) 

and, recognising, the integral from equation (524), 

ll()(l = stn ex 1(~) ( 526) 
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The next experiment performed was that of investigating 

the behaviour of machine torque as the rotor position was va­

ried, the winding currents belng held constant. In terms of 

the cur~ent plane, the first experiment held the mechanical 

parameter fixed and investigated the torque variation along a 

radial line, i.e. the path of integration itself. The second 

experiment, on the other hand, keeps the system at a fixed 

point in current space and varies the mechanical parameter. 

The torque of course is calculated from equation (526). The 

predicted (solid line) and experimental (circles) values for 

three different current combinations are shown in Figs. 505, 

506, and 507. Again, the machine is quite deliberately strong­

ly saturated in two of these experimenta, and moderately in 
0 the third. Only the resulta for 180 of angular rotatlon are 

shown, the next half-turn producing a mirror image of these 

curves. 

The remaining curves, Figs. 508 and 509, show similar 

resulta, but this time for straight-line traces in current 

space parallel to one axis. To obtain such a trace, one of 

the windtng currents was held fixed and the other suitably 

varied. The rotor angle in these runs is held invariant. 

Again, experimenta are seen to yield excellent agreement with 

the predicted curves. 

For a weakly saturated, or nearly linear, .system, the 

torque equation has been shown to be valid analytically. 

For a strongly saturated system, where linear theory falls 

even in qualitative terms, the new theory is shown to yield 

excellent resulta. It is held that this combination of veri­

fying.tests is conclusive. 
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Fig. 505. Shatt torque againat rotor position or the test m6chine with rotor current 1.19 am­
pere, stator ourrent 0.76 ampere. Solid line representa predioted, circlee experimental velues~ 
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11g. 506, Shatt torque asainat rotor position tor the test maohlne with rotor ourrent 1.19 am­
pere, etator ourrent 0.40 ampere. Solld line representa predioted, oirolea experimental values. 
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Fig. 507. Shatt torqu~ asainst rotor position for the test machine. Rotor current 1.19 am­
peres, stator current 1.19 amperes. So1ià lina represente predicteà, circles experimental 
points. 
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Fig. ~09. Shaft torque of the test machine against the:rotor cur­
rent, with stator current held constant at 0.70 ampere and the ro­

o 
tor position at 120 • Solid line representa predicted, circles ex-
perimental values. 



CONCLUSION 

The foregoing development begins by postulating that 

an electric machine may be thought of as a purely energy-con­

servative set of coupled coils arranged in two groups free 

to move relative to each other, plus a set of series resis­

tances. Each of these two groups may contain accessible as 

well as ~ccessible coils (machine windings with available 

terminais as well as shorted windings and eddy current paths). 

It is first shawn that there always exists a matrix relatlng 

the machine flux linkages to the coil currents; by extension 

of the theory of linear machines, this matrix is termed the 

inductance matrix. Such a matrlx must always be single-

valued and symmetrical under the relatlvely lax restrictions 

assumed. Subsequently it is shawn that all inaccessible 

colle may be represented as wlndings coupled to one or more 

of the accessible coils on an incrementa! basis. Since an 

inductance matrix has been shawn to exist correspondlng to 

every set of incrementa! inductances, it follows that any 

machine may be represented by means of a finite nonlinear in­

ductance matrix to any desired degree of accuracy. 

The generalisation given for the inductance matrlx is 

such that it closely resembles the ordinary inductance matrix 

of linear machine theory. The major difference appears in the 

fact that the components of the nonlinear inductance matrix 

are not constants but fonctions of the machine currents. A 

natural result of the function-matrix nature of the inductances 

is that the inductance matrix does not relate voltages to cur­

rents directly; it is rather the incrementa! inductance matrlx 

that does so. The incrementai inductance matrix can of course 

always be constructed from the inductance matrix itself. In 
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the linear case where all derivatives of inductances with re­

spect to currents are zero, the total and incrementai induc­

tance matrices coincide; in the general case, they do not. 

By considering the energy involved in moving a machine 

from one position and set of currents to another, an inte­

gral expression for shaft torque is derived. In the special 

case of linearity of the inductance matrix, this expression 

reduces to the usual slip-ring machine torque equation of 

Kron; it is also shown to be Ln accord with the quasi-Lagran­

gian formulations of Cherry or White and Woodson. An experi­

mental verification of this torque equation in a definitely 

nonlinear case is shown to result in accurate torque predic­

tions for the test machine. 

As byproducts of the development, an experimental ve­

rification of Weber's eddy-current theory (1931) is given 

for the first time, and a new method of synthestzing canonic 

forma of two-element-kind networks is found. 

It is therewith shown that at the priee of an increase 

in complexity, slip-ring machines may now be analysed ln 

terms of a true non-linear slip-ring primitive. As a corot­

lary, the generalised machine theory of Kron is shown to be 

valid independently of the assumption of ltnearity. In view 

of the availability of fast digital computera, wide applica­

tion of the nonlinear primitive is hindered only by the dif­

ficulty of collecting adequate quantities of data about elec­

tric machines. It is to be hoped that early development of 

rapid ways of accumulating data will make possible the ful­

lest exploitation of this most general primitive machine es­

tablished to date. Equally, further physical investigation 

of the flux and inductance potential functions may be hoped 

to yield scalar functions more easily determined experimen­

tally than the matrices used to date. 
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APPENDIX A 

SYNTHESIS OF R-L NETWORKS 

1. Immittance Functions of R-L Networks. The properties of 

networks realisable by means of resistive and inductive com­

ponents only, not involving capacitors, have been examined 
Al A2 

by numerous authors (e.g. Van Valkenburg , Tuttle ). The 

pertinent properties are readily listed; they are apparently 

most easily given in terms of the immittance poles and zeros 

of the network. The critical frequencles (pole and zero lo­

cations) of auch networks must be pure imaginaries. That is, 

in a complex frequency plane (s-plane) the poles and zeros 

must all lie on the negative real axis. Further, all poles 

and zeros must be simple, and they must be lnterlaced; any 

given zero must have a pole to either side of it, and vice 

versa. The lowest critical frequency must be a zero of im-

pedance which may or may not occur at the origin; the high­

est critical frequency must be a pole of impedance which may 

or may not occur at infinite frequency. The lmmittance must 

be pure real for ail real s; furthermore, it must be a mono­

tonie function of s along the real axis, the impedance al­

ways decreasing and the admittance increasing with increasing 

imaginary frequency. 

These properties are in nearly all respects very simi­

lar to the properties of purely reactive networks, except 

that imaginary rather than real frequencies are referred to. 

It is usual in books on network theory, as a matter of fact, 

to examine the purely reactive case first, and subsequently 

treat the R-C and R-L cases by means of a coordinate trans­

formation that maps the positive and negative real frequency 

semiaxes of the a-plane into the negative imaginary frequen­

cy axis. The properties listed above are then automatically 
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obtained. If required, such networks may then be syntheslzed 

using either the Foster or Cauer techniques borrowed from the 

theory of purely reactive networks via the coordinate trans­

formation. 

Sorne difficulty, however, is encountered Ln such synthe­

ses, because of the nature of the coordinate transformation. 

In the case of R-L networks the residues at the poles of the 
Al 

impedance function are all real and negative , so the Fos-

ter partial-fraction technique leads to negative inductors. 

The usual prescription, heuristically arrived at, is to work 

with the function Z(s) instead of the impedance Z(s) itself. 
s 

Now any technique of network synthesis is essentially 

an organised method for rewriting impedance or admittance 

functions in such a way as to permit recognition of compli­

eated functions as agglomerations of reslstive, inductive, or 

capacitive elements. The structure of the agglomeration then 

yields the mode of interconnection as well as the required 

element values. In order for the networks syntheslzed to be 

real passive networks, the element values must all be posi­

tive. 

2. Synthesis of a Standard Form. From the point of view of 

the electric machines engineer, it is felt that the restric­

tion to passive two-terminal elements in the Poster and Cauer 

canonic forms is excessively restrictive. The requirement 

of two-terminal inductors, in particular, amounts to the spe­

cification of zero mutual inductance--a strikingly needless 

condition especially in view of the fact that precisely a 

nonzer~ mutual inductance can be called upon to furnish the 

negative sign attached to each residue at the poles of an: R~L 

impedance function. This latter statement is easily verified 

by examining the network of Fig. A-1. The impedance presented 

at the terminals of this network is seen to be 



Z[s) M2s2 
L2s + Z2 

A3 

(A-l) 

More generally, a network consistlng of an inductor and a re-

sistor with a number of other similar networks with zero im­

pressed voltage, all electrically unconnected but magnetically 

coupled as shown in Fig. A-2, may be described by 

Z(s) (A-2) 

where the subscript C refers to all the coils other than the 

one with accessible terminale. The coefficient of s 2 in this 

equation clearly representa a set of admittances which are not 

only realisable by means of R-L networks, but in fact exist 

in Fig. A-2. 

Synthesis is now an easy matter, once the negative stgn 

of each residue bas been associated with a mutual inductance. 

Consider an impedance function wlth a pole at infinity and a 

zero at zero. It may be written 

Zlsl = Hs PlsJ 
Qls) 

(A-3) 

where H is a constant, and P(s) and Q(s) are polynomials of 

order n with the coefficients of sn and s 0 nonzero. One may 

proceed with long division and write 

Z(s) = HK s + 0 
H :!U!sl 

Q[sj 
(A-4) 

where U(s) is a polynomial one order lower than Q(s), so that 

a partial-fraction expansion may be made: 
t"l 

ZtsJ = HK0 s + Hs2\. K L S+r. 
J'= 1 J 

(A-5) 
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All the coefficients Kj, being the residues of Z(s), must be 

negative. The development of equation (A-5) from (A-3), lt 

may be recognised, is precisely the procedure preseribed by 

Van Valkenburg for the synthesis of Poster series forma, ex­

cept for the "mistake" of forgetting to divide by s at the 

very beginning to enable a partial fraction expansion of Z(s) 
8 

to be made. Because of this "mistake", no Poster form can 

be extracted from equation {A-5). However, the network is 

known to be realisable; and comparison of equation (A-4) with 

(A-2) leads immediately to the conclusion that a coupled-cir­

cuit realisation must result. 

The case in which the lowest zero is not at the origin 

is seen to yield the same treatment and result, except that 

a constant additive term appears on the right side of equation 

{A-4). This term representa Z{O) and is of necessity always 

positive so that it may be realised by a simple series resis­

tor. The possibility of the highest pole not at infinity may 

be dealt wlth by first extracting Y(oo) in the form of a 

shunt resistor. The remainder is synthesizable by Cauer me-

thods, and therefore guaranteed syntheslzable by any other 

technique as well. 

It is important to realise that the mutual inductances 

here dealt with are not Brune ideal transformera artsing from 

the reconstruction of negatlve inductances; they are physical­

ly real mutual terms with less than unity coupling. This as­

pect of the problem will no doubt be clearly seen in the 

examples to follow. 

3. Sorne Simple Syntheses. To illustrate the principle in­

volved, let the simple impedance function 

Z(s) = 2 
( s+ 1) ( s+4) 

( s+2) 

be required. As is immediately seen, the expression is reali­

sable. 
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The required method of rewriting is easily obtained by long 

division: 

2+s 

so that 

) 8+ /Os +2s2 
8+ 4s 

6s+2s2 

6s+3s2 

2 -s 

2 
= 4 +3s-- 5 

2+s 

s2 
Z(s) = 4 + 3s-

2+5 
which may be recognised, term by term, as the network of 

Fig. A-3. 

(A-7) 

A more interesting case is one of the next order of com­

plexity, so that more than one secondary wlndlng is required. 

Consider, for example 

Zlsl =2 ls+ /) ls+ 4) (s+/0) 
!s+2) !s+S) (A-8) 

which is again a realisable function. The primary quantlties 

are quickly extracted by one long division 

10+7s+s2 )80+08s+30s2 +2s3 c8+ fts+ ..... 
80+56s + 8s2 

52s+22s2 +253 
52 s + 3ftf1 s2 +1& s;3 

_ 1q4s2 _Rs) 
10 10 

so that the impedance function may be rewrltten 
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8 52 /6 2 ls+'tj) 
Zls) "" - 10 5 -5 5 [s+2Jis+Sj (A-9) 

But the synthesis is not now complete. Several avenues, exist 

from this point. As the first mode of procedure, it may be ima­

gined that each coil is coupled only to those with numbers one 

higher and one lower, so that the nonzero terms in the impe­

dance matrix of the network of Fig, A-2 are those on the prin­

cipal diagonal as well as the immediately adjoining elements. 

This restriction leads to comparison of equations (A-9) and 

(A-1), and consequent realisation by applying the technique a 

second time to the last term in equation (A-9). The network 

obtained is that of Fig. A-4. 

Alternatively, all the mutual inductances may be imagin­

ed zero except those in the flrst row and column of the impe­

dance matrix so that coupling exista between the input coil 

and any other, but no coupling between any nonaccessible pair. 

The network obtained is then that of Fig. A-5; the values are 

readily obtained by partial-fraction expansion of equation 

(A-9) : 

~s! 1 
15 S+5 

(A-10) 

It is to be noted that the values of circuit elements are not 

uniquely determined by the above expression; only two num­

bers, the pole location and the residue, are prescribed for 

finding the elements R and L, and the coupling M. This fact 

may lead to interesting possibilities in the practical con­

struction of networks, since coupling coefficient between two 

coils is frequently easier to adjust than the inductances 

themselves. 

In the most general case, none of the mutual inductances 

might be taken to be zero. An infinite number of possible net­

work configurations is seen to result, all similar in form but 



different in element values. Analogously, of course, many 

possible syntheses of a higher-order network may be produc­

ed with zero coupling, by using intermixtures of the Foster 

and Cauer forms. 

4. Two Big Questions. Since the synthesis of resistive-in-

AB 

ductive networks for their own sake is of restricted interest 

at the present time, the foregoing is of limited interest if 

no extensions from it are possible. Two questions must be 

answered if the synthesis technique here produced is to be of 

more general interest: first, is the technique applicable to 

L-C and R-L-C networks? secondly, are the networks canonic? 

While detailed replies to these two questions are not 

only problems requiring considerable investigation, but also 

outside the scope of this thesis, the probable replies do 

appear to be yes. To the first question, it must be replied 

that any network amenable to this method of synthesis must 

contain a reasonable number of inductors, so only sorne R-L-C 

network functions might be so synthesizable; but sorne cer­

tainly are. As a simple example will demonstrate, and a re­

tracing of the coordinate transformation mentioned will show, 

the synthesis of purely reactive networks is possible. Let, 

for example, 

Z(sJ = 

As before, long division may be applied to yield 

Zls) !::: 4s + 3s2 5 
/+s2 

(A-11) 

(A-12) 

which may be recognised immediately as the combination of a 

one-farad capacitor and a one-henry inductor, coupled to a 

four henry primary. The coupling coefficient here is 0.866, 

but may be reduced by increasing the secondary capacitor 

size. Other similar synthesis examples may be worked out in 

precisely the same manner. 
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Again subject to the proviso that further work may turn 

up unexpected results, the reply to the second question (are 

they canonic?) seems fairly sure to be yes, at least in the R-L 

cases. The case in which all mutual inductances are zero save 

those bordering upon the main diagonal of the inductance matrix 

has a magnetic circuit topology closely resembling (though not 

congruent with) the electric circuit topology of the Foster 

shunt form; conversely, the case of all mutual inductances ze­

ro save those of the ftrst row and column Ls reminiscent of the 

Foster series form in its topological structure. The new net­

works are not merely duals of the Foster forms in Cherry's 
49 

sense They include, however, the same number of elements as 

the well-known Foster and Cauer forms, and the same number of 

constraints. The principal difference is of course the substi­

tution of magnetic for electrical constraint equations. 

While the synthesis method here provided is of immediate 

interest in connection with the representation of solid iron 

cores, it is easy to see that the resulting networks, especial­

ly the L-C forms, have sorne features that may well render them 

attractive for communications purposes~ Particularly the ar­

bitrariness of turns numbers involved in the magnetic con­

straints permits the use, for example, of resistors or capaci­

tors of one value only, or of standard values only. Such a 

possibility may be attractive in certain applications. 



APPENDIX B 

COORDINATES IN N-SPACE 

The spaces dealt with by Kron in his original version 

of the the~ry of electric machines, as those employed by la-

ter investigators, tend to be Cartesian. They are generally 

stationary or quasi-stationary and orthogonal, although at 

times nonstationary ones are encountered (e.g. in accelera-

tion problems). Such Cartesian coordinate systems are easy 

to visualise and to interpret physically. On the other band, 

sorne other kinds of coordinates lend themselves better to 

sorne of the mathematical manipulations that arise. Of parti-

cular interest in this thesis is the case of hyperspherical 

coordinates. To show the possibility of converting any Car-

tesian space into a corresponding hyperspherical one, the 

transformation formulas will be developed here. 

Consider the very simplest nontrivial space, that is, 

two-space. If it is described in terms of Cartesian coordi-

nates x
1

, x
2

, hyperspherical (here usually called polar) co­

ordinates may be introduced by the relations 

cos 

To construct a similar set of relations for three-space, the 

radius vector r
2 

of the two-space may be thought of as the 

projection on the x
1

-x
2 

plane of the three-dimenslonal ra­

dius vector r
3

• As that vector in general is at an angle e
3 

to that plane, such a relationship may be expressed by 

(B-1) 



The relationships between three-dimensional Carteslans and 

sphericals may th en be stated as 

xl = r3 cos 92 cos 93 

x2 = r3 sln 92 cos 93 

x3 = r3 sin 93 

Imagining next th at the three-space case is merely the pro-

jection on the x
1

-x
2
-x

3 
subspace of the four-d!mensional ra­

dius vector r 4 , making an angle 9 4 with this subspace, there 

next obtains 

r = 
3 

This process may be continued for any number of dimensions, 

with the result in the n-dimensional case 

.......................... 
x = r sin 9 cos 9 

1 
cos 

m n m m+ 

. . . . . . . . . . . . . . . . . . . . . . . . . 
x = r sin 9 n n n 

9m+2" ••••• cos 9 
n 

All 

(B-3) 

(B-4) 

(B-5) 

It is easily verified that the radius r is in fact the root-
n 

sum-square value of the Cartesian coordinates, and thus repre-

senta the hyperdistance from the orlgin of the coordlnate sys­

tem. 

As any space of finite or countably infinite dlmensiona­

lity may this way be described in terms of hyperspherical co­

ordinates, it follows that the differentia! equatlons encoun­

tered in the body of the thesis may be solved ln such a coor­

dinate system. 
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APPENDIX C 

RADIAL INCREMENT AND AVERAGE OPERATORS 

The two inverse OEerators. As se en in the body 

differentia! equations of the form 

(1 + T· v) x = y 
in terms of Cartesian n-spatial coordinates, 

X+,· èJX 
1 di, 

+ i èJX 
2 :::--., . 

0 l2 
+ ....... :. + ~~~1 

CJln 
y 

of this the-

(C-l) 

( C-2) 

frequently arise in the analysis of nonlinear systems of the 

kinds discussed. The source of such equations is the fundamen­

tal relationship between total and incrementa! quantities such 

as inductance. Solutions of differentiai equaLions of this 

form will naturally be required; they will be secured in this 

Appendix. 

The operator operating on the function X of equation 

(C-l) above will be called the radial increment operator, and 

the integral operator _!fr [ 
r o 

] dp 

will be called the radial averaging integral. To begin, it 

shall be shown that the following theorem holds: 

Theorem 1~ The radial increment operator and the radial 

averaging integral are inverse operations: 

11 +TvJ [
1
j1lct>dp] = ,:

1
fi 1 +P·\ll ct>dp = ct> l 0 0 

The differentia! operator portion of the increment operator 

( C-3) 

may be regarded as the radius vector multiplied by the ra­

dial directional derivative. Equation (C-3) may thus be writ-

ten 



1 +m 
- cp 

which is seen to be an identity. The theorem is thus prov-

Al3 

(C-4) 

(C-5) 

en subject to the restriction that 6 may have an arbitrary 

radially-invariant component. For physical reasons, auch ar­

bitrary additional terms are not of interest at the present. 

The inverse theorem (operators operating in the inverse order) 

is of course proved in exactly the same manner; lt is not sub­

ject to the arbitrariness mentioned in precisely the same way. 

2. Solution of a differential equation. With the ald of the 

radial averaging operator, equation (C-l) may now be solved. 

The solution, for reasons physically evident in the body of 

the thesis, is here subjected to the boundary conditions of 

finite value at all finite boundaries and points. As any dif­

ferential equations problem, this one may be solved by flrst 

finding the solution of the homogeneous part and then seeklng 

a particular integral by means of the averaging oper~tor. 

The homogeneous equation 

(1 + T·V) X = 0 

may be solved by separation of variables. 

tion X to be expressible as 

Assume the func-

where hyperspherical coordinates (Appendix B) are employed. 

Substituting equation (C-7) into (C-6) produces two possibi-

lities: the trivial case of one of the functions T zero, or 

the requirement 

( C-6) 

(C-7) 
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R + rR' a 0 (C-8) 

who se solution is easily found to be 

rR = F( 91, 92, ... 9n-l) 
(C-9) 

R 1 
F = r 

The arbitrary function of angles F is easLly evaluated from the 

boundary condition that X and bence R must remain finite at the 

origin. At the origin, r = 0 so necessarily F = 0 also. The 

solution of the homogeneous equation must then be zero with the 

boundary conditions imposed. 

The particular integral required.is quickly obtained by 

operating on both sides of equation (C-l) with the radial aver­

aging operator. There results 

1 IR -
R 

0 
(l+i.'ïJ!Xdi - j_lf? Y di 

R o 
which may by Theorem 1 be written 

1? 

j_ 1 Y di R o 
x 

so that the result may be stated as 

Theorem 2: Differentia! equation (C-1), subject to the 

requirement of finite value at all finite 

points, has as its complete solution equa­

tion (C-11). 

(C-10) 

( C-11) 



APPENDIX D 

THE COENERGY APPROACH TO THE 

TORQUE EQUATION 

The development of the torque equation by way of the mean 

value theorems of Chapter IV may be shortened by deriving the 

torque equation in the manner suggested by the quasl-Lagrangian 

formulation of White and Woodson 35 • By taking the coenergy of 

an inductive system to be the line integral of flux linkages, 

as suggested in Chapter II, the derivation may be carried out in 

scalar rather than vector terms. The simplification in the ma­

thematics is substantial. 

Consider two neighbouring states of a system, one given 

by I, 9
0

, the other by Ï + cYr, 9
0
+ ôe. The system may be 

moved from one state to the other in a large number of ways. 

There is only one evident way, however, of moving it from the 

initial state to the final in an energy-conservative manner. 

Such a path will lead first from the initial state to the ori­

gin with the angle invariant, so no mechanical work ts done. 

At the origin, with zero stored energy and coenergy, the angle 

may be altered to its terminal value without involving mecha­

nical work; then the currents may be built up to their termi­

nal values. Let the change in stored energy along this path 

be fJ. U and the change in coenergy /:J T. In operation the 

machine will follow some other path; let the change in input 

energy along that path be Ôu and the change in co-energy 

Ô T. Since the terminal values of the fluxes and currents 

of the system must be the same regardless of path, the end­

state energy and co-energy must also be lndependent of the 

path. Thus the extra input energy and co-energy in following 

the nonconservative path must be associated with mechanical 
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work done along the latter contour. The equality of fluxes 

and currents at the end-state may be expressed as the equali­

ty of the flux-current product, or 

IJ.U + l:JT ou + oT (D-l) 

This equation may be written 

IJ.U - 6U ( IJ. T - eST) 
(D-2) 

The left member of equation (D-2) is the difference in energy 

put in. Conservation of energy requires that this amount be 

equal the amount of energy taken out mechanically. Letting 

the work done be 0 W, 

6W !~J.T -6T) 
The increments of coenergy on the right are not difficult to 

evaluate. The increment along the conservative path is 

[+-~] 

~::, T = 16 r +Tl-r = f J..ltl.+Oel·at 
0 

which may be written, for small current and angle changes, 

IJ.T + of· ,t[a, + cSel 

(D-3) 

(D-4) 

(D-5) 

The increment in coenergy along the nonconservative path is, by 

definition, 

l
Ï ... Jï)eo~oe 

6T À· di (D-6) 

I,eo 
or, for small increments, using the mean value theoreme, 

ôT (D-7) 

where 
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In this way, equation (D-3) may be written 

(D-8) 

As the angle and current increments are taken small, they may now 

be permitted to approach zero. 

dW 
de 

In the limit, 

(D-9) 

Substituting the definition of co-energy and the deflnition of 

inductance in turn, there readily obtains 

r = J~~ ·di (417) 

r J~~ d---;"" 
= { ·-· ( 2Je 

(418) 

These results, it may be noted, bear some resemblance to those 

cited by White and Woodson. There are, however, differences 

both in application as well as in interpretation that should 

not be overlooked. It is important to note that the formulation 

of co-energy changes given by White and Woodson is in the usual 

Lagrangian form, requiring that the system of n currents and m 

mechanical degrees of freedom be treated in a space of dimen-

sionality n+m. In such a space, many of the simplest Cartesian 

coordinate transformations become meaningless, while an attempt 

to use coordinates such as the hypersphericals of Appendix B 

couverts the entire space into a dimensionally inhomogeneous 

entity. In the present development, the restriction of the 

problem to only one mechanical degree of freedom permits view­

ing that degree as a parameter, and preserves the Kronian cur­

rent space as such. 

The restrictions applying to the present development, it 

will be seen, are very much the same as in Chapter IV. 






