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DEDICATION

To my family

Congratulations!
Today is your day.
You're off to Great Places!

You're off and away!

You have brains in your head.

You have feet in your shoes

You can steer yourself

any direction you choose.

You’re on your own. And you know what you know.

And YOU are the guy who’ll decide where to go.

You'll look up and down streets. Look 'em over with care.
About some you will say, "I don’t choose to go there.”
With your head full of brains and your shoes full of feet,

you're too smart to go down any not-so-good street.

OH!
THE PLACES YOU’LL GO!

-Dr. Seuss
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ABSTRACT

This thesis presents a minimum energy optimal sampling-based motion
planning algorithm, MEAQR RRT*, specifically for systems with non-linear
dynamics, non-holonomic and actuation constraints. The motion planner de-
veloped is intended for unmanned aerial systems (UAS) whether they be fixed
or rotary wing. The eventual implementation in this thesis revolves around
a quadrotor platform. This work extends the algorithms presented previ-
ously [53, 20] by formulating a fixed-final-state-free-final-time open loop state
space pseudometric for nearest neighbours search and the appropriate closed
loop steering method for the tree extension heuristic. By doing so, it allows
the introduction of constraints on actuation magnitude and bandwidth. The
controller is formulated by solving a minimization problem for the amount
of input energy used to connect two states along a trajectory segment. This
thesis argues that this properly tuned pseudometric integrated into a state
space exploring algorithm results in a trajectory with minimal energy expendi-
ture, which is extremely beneficial for present-day battery limited capabilities
of unmanned aerial systems. The algorithm is demonstrated on two exam-
ple systems (1) a simple 2D pendulum with actuation constraints and (2)
a quadrotor described by a 13-dimensional state-space model. In addition,
an environment modelling procedure is designed, implemented and tested for
a-priori map building required in order to test the algorithm on a real life

environment.
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ABREGE

Cette these présente un algorithme de planification de mouvement qui
minimise 1'utilisation d’énergie utilisant une approche d’échantillonnage. Cette
algorithme est nommé MEAQR RRT™, il a été congue pour les systémes non-
linéaire dynamiques, non-holonomique et avec contraintes d’actionnements.
Ce planificateur de mouvement a été développé pour les systéemes aériens sans
pilotes (UAS) soit avec ailes fixes ou rotationnelles. Ce mémoire pourrait
éventuellement planifier des chemins pour une plateforme quadrotor. Ce tra-
vail est un extension des algorithmes présenté [53, 20| en formulant un état
fixe final et libre dans un espace d’états ouverts afin de trouver le voisin
le plus prés et la méthode appropriée pour fermé les boucles de conduite.
Ceci permet d’introduire des contraintes d’actionnements sur la grandeur et
I'intensité. Ce controleur résout le probleme de minimiser 1’énergie utilisé afin
de connecter deux états selon une trajectoire. Il est discuté que ce pseudo-
métrique intégré a l'exploration d’états résulte en une trajectoire qui minimise
I'utilisation d’énergie. Ceci permet de réduire la consommation d’énergie sur
les batteries aux capacités limités d’"UAS. Il est démontré la puissance de notre
systeme par ’entremise de deux exemples, un simple pendule avec des con-
traintes d’activation en deux dimensions et en modélisant un quadrotor avec
un espace d’état a 13 dimensions. De plus, une procédure de conceptualisation
a été concu, implémenté et testé afin d’évaluer les besoins d’un plan afin de

tester le modele présenté dans un environnement réel.
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Chapter 1
Introduction

1.1 Background

In recent years unmanned aerial vehicles (UAVs) have gained popularity
for various applications, both civilian and military. As technology advanced,
UAVs became cheaper, lighter and more readily available than their manned
versions. They are utilized for missions where the added value of a human pilot
is low while the risk or dullness of the tasks are incommensurately high. Much
of the current research in the UAV community aims to modify the system
structure to allow the human to over-see the ongoing mission instead of being
an integral part of it. The interest is to move the human from the classical
position of in-the-loop to a more supervisory position on-the-loop. This will
allow human-robot teams to better perform by liberating the human from
constant online mission operation to an upper hierarchy of decision making,
which is to monitor the mission and to intervene when needed.

Though a developing market, most UAVs with a limited level of autonomy
that are in use today are large fixed-wing commercial-altitude aircraft for
military missions. The ability to operate autonomous, small scale (< 5kg in
weight), hover-craft UAVs in an urban environment is yet to be conquered.
The solution of flying such vehicles above the building line using a straight
line trajectory is appealing in its simplicity; however, maintaining such high
altitude hinders the mission scope, nor does it exploit the high manoeuvrability
of rotary aircraft. On the other hand, flying unmanned vehicles at street
level requires that they be able to cope with the proximity to obstacles and

the dynamic environment in a safe and efficient manner. Hence, developing
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a feasible trajectory planner for an urban environment is key to achieving
autonomous UAV flight.

In order to develop such autonomous capabilities, researchers at McGill
Aerospace Mechatronics Laboratory, as part of a research contract with DRDC-
Suffield, have retrofitted a commercially available octorotor UAV Draganflyer
X8 (hereafter X8) with the appropriate sensor suit to allow state estimation,
localization and mapping for the vehicle - eventually aimed at autonomous
flight. Although the X§ has eight rotors, it is in an x configuration with
four coaxial pairs of rotors. It can be regarded as a quadrotor since each
coaxial pair is treated as a single actuator at the higher level of the control
architecture. The availability of a small scale platform, such as the X8, allows
for short range operations within a cluttered environment below the building
height line. At the same time, the aircraft size significantly decreases and
constrains its load carrying capabilities. Thus, battery capacity is limited (in
today’s battery capabilities bounds) and eventually substantially reduces the
vehicle’s mission endurance and range. Hence, the preferred trajectory for the
vehicle to follow is the one that will enable the UAV to operate for as long
as possible. This has led to the work described in this thesis which considers
minimization of energy as the desired objective along the trajectory generated
for the aircraft. This thesis presents an energy optimal kinodynamic sampling
based trajectory generator for actuator-limited non-linear systems, specifically
the X8. The developed motion planner is integrated with a-prior: environment
modelling for a more complete solution.

The field of unmanned aerial systems (UAS) motion planning is a heavily
researched area for the reasons alluded to earlier. The majority of existing

motion planners were developed for holonomic systems and tend to be very

1 Draganfly Innovation http://www.draganfly.com/uav-helicopter/draganflyer-x8/index.php
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reliable and fast for such systems. However, the system at hand is one with
non-holonomic constraints. As discussed in chapter 2, the state-of-the-art
probabilistic motion planners can cope with such systems successfully even
though the general motion planning problem is considered PSPACE-hard! .
The aforementioned constraints arise in systems with fewer actuators than
degrees of freedom. The non-holonomic constraints are non-integrable con-
straints linking the derivatives of the state variables to one another. A physical
interpretation of one would be a forward moving quadrotor and its inability to
instantaneously move transversely to the forward pointing body axis. In order
for a quadrotor to achieve such a maneuver, a direction change is needed first,
only later yielding the desired motion. This is due to the axes upon which the
forces and torques of the X§& act - a six degree of freedom system with merely
four actuators.

The rapidly exploring random trees (RRT) family of algorithms was cho-
sen as the development frame-work of the motion planner for the X§ aerial
vehicle due to RRT's ability to deal with the kinematic and actuation limita-
tions and to quickly generate a solution. Of the available probabilistic motion
planners, the RRT does not require the connecting method (see section 3.1) to
be symmetric - hence, it does not require the distance measure between two
states to be a true metric. With the ultimate goal of generating an optimal
trajectory with respect to a specified cost functional or metric, this thesis uses
the variant RRT* for its desirable attributes.

The RRT* is an asymptotically optimal variant of the classical RRT. It
differs from the RRT in its ability to rewire the tree in an optimal manner

(with respect to the cost functional defined on the state space) and to optimally

L A problem classified as PSPACE corresponds to one that can be solved by a Turing
machine in polynomial space complexity .
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choose the best parent for each newly generated state. This yields asymptot-
ically optimal trajectories [28]. In applying the RRT* to a quadrotor such
as the X8, two domain-specific components of the motion planning algorithm
were addressed in this thesis: the distance metric and the extension heuristic.
Early versions of the sampling based motion planners [34, Ch 5] utilized a Eu-
clidean distance metric which failed to capture the state space (SS) manifold
structure and resulted in poor SS coverage and slow rate of convergence. As
an extension heuristic, random actuation also resulted in slow convergence to
an optimal solution. The possibility of using optimal control theory to derive
the approximate cost-to-go for use as a pseudometric and to define optimal-
control-based extension heuristic/steering scheme was suggested by LaValle
and Kuffner [35]. Glassman and Tedrake [20] derived a pseudometric based
on an affine quadratic regulator for a regular RRT. Webb and Berg [53] uti-
lized the same affine quadratic regulator to produce the means to connect two
states in optimal fixed-final-state-free final-time for systems with differential
constraints.

In yearning for autonomous flight, a complicated multidisciplinary task
indeed, various components must be designed, implemented, integrated, ver-
ified and tested. In addition to motion planning, which is the focus of the
present thesis, these components include: task assignment, guidance, control,
environment modelling, communications, system health monitoring, fault de-
tection and others. Each of these topics require substantial research efforts
and are indeed present throughout the literature. With the view to validating
and demonstrating the performance of the motion planner developed here, the
task of environment modelling was addressed. Environment modelling was im-
plemented with a reconnaissance flight prior to autonomous deployment. The
mission flight zone is scanned with a laser to create a map to be used in the

motion planing prior to mission execution.
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1.2 Problem Statement

In order to properly define the problem, some notation needs an intro-
duction. Let y C R? be the state space of dimensionality d where the elements
of x are known as states denoted as . Let U C R% be the control space of
dimensionality d,,. The space occupied with obstacles is x.»s leaving the rest
of the space free X free. A path o € x is a continuous function o(t) = (x, 1)
connecting two states. It is said to be free iff 0 € Xy and feasible if in
addition it satisfies the dynamic and actuation constraints.

The motion planning problem is stated as: Given an initial state @;,;
at tp, an environment with obstacles x.s and a goal state &gy, the motion
planning problem deals with finding a feasible collision-free path connecting
the initial state to the goal state. The strict goal state condition can be
loosened by having a tolerance about it represented by a goal region, denoted
as Xgoal- Figure 1-1 is an illustration of the generic motion planning problem.
The feasibility of the path ¢ is determined by not only residing in the free

space but also governed by the non-linear SS dynamics described by eq. (1.1):

= f(x,u) (1.1)

The above is the usual formulation of the motion planning problem which is
concerned only with finding a feasible path. However, for many applications
such as the one this thesis is aimed at, an optimal path is preferred. If the set
of paths is denoted as X then c: ¥ — RT is a cost functional that maps a can-
didate free path to a non-negative scalar cost. The optimal motion planning
problem deals with finding a path ¢ that does not only adhere to the aforemen-
tioned criteria but also minimizes the cost function: c(o*) = infsex,, .. c(5).
The optimal path is a once differentiable function C! although for actuation

feasibility C? is required. The time sequence of control inputs w propagat-

ing eq. (1.1) forward in time is called the control policy denoted as w. The
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optimal control policy is the sequence yielding the minimal cost value with
respect to the defined cost functional c:

" = argmin c(7, Tinit, Xgoal) (1.2)

Finding the optimal control policy 7* for the system in eq. (1.1) essentially

solves the optimal motion planning problem.

Figure 1-1: The motion planning problem is to find a feasible path o € X free
from ®;ni t0 T goal

1.3 Thesis Overview

This work presents an RRT* based motion planner incorporating a min-
imum energy affine quadratic regulator (MEAQR) as a metric in addition to
environment modelling, as depicted in fig. 1-2 for the X8 vehicle. The map
building solution implemented in this work for integration with the proposed
motion planner is based on a laser-based sensor scanning the environment,
aggregating and projecting all the scans to a world frame and map building a

primitive based representation.
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ReaK

User Input
Start, Goal,
Planner
Parameters

ROS 3D ROS
3D PCL Primitive Kinod namic
Sensor retrofitted | Pointcloud - Map Map y. .| Guidance
g o1 g > Motion >
Draganflyer X8 Building Time Stamped System
Planner State Space
A Trajectory

Physical Parameters
Constraints

Control

Figure 1-2: A manual flight is executed while laser scans are assembled
(ROS)? and converted to primitives (PCL)? eventually invoking the mo-
tion planner off-line. Its output, a time stamped SS trajectory is given to
guidance system for execution on the X§&

The RRT* based motion planner is an extension of the previous publi-
cation by the author and Sharf in [46], and builds on the work by Glassman
and Tedrake [20], and Webb and Berg [53]. More specifically, the motion
planner, linearises the system non-linear dynamics about each sampled state
and uses the MEAQR pseudometric to find which vertex in the tree is to
be extended while simultaneously computing the optimal feedback controller
(a.k.a., steering policy) to connect the two states. This allows the introduction
of other dynamic constraints, such as, actuation magnitude and bandwidth
limits which characterize real life systems. Collision checking is done as the
steering function extends the tree into unexplored SS territory. The motion
planner continuously runs, improving on the solution found thus far and can
be stopped when the trajectory is needed by other components of the au-
tonomous system or when no substantial cost change is recorded between one

solution to the next. This trajectory is then passed to the guidance system

I Robot Operating System which provides libraries and tools to help software developers
create robot applications. It provides hardware abstraction, device drivers, libraries, visu-
alizers, message-passing, package management, and more. ROS is licensed under an open
source BSD license [45].

2 The Point Cloud Library is a standalone, large scale, open project for 2D/3D image
and point cloud processing. PCL is licensed under an open source BSD license [47].
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of the aircraft commanding the vehicle to follow the trajectory or otherwise
continue to hold, in case other conditions apply. The results of the motion
planner are presented for two non-linear systems of different SS dimension-
ality: (i) a simple pendulum with actuator limits and (ii) a Draganflyer X8
quadrotor.

The remainder of this thesis is organized as follows. In chapter 2, the
related literature is explored, followed by chapter 3 presenting the framework of
the probabilistic motion planner based on RRT*. In Chapter 4, the particulars
of the proposed pseudometric for minimum energy trajectory generation and
the incorporation of this pseudometric into an optimal sampling based motion
planner for a non-linear system is elaborated. Then, dynamic models and
simulation results for the two chosen robotic systems in artificially created
environments are presented in chapter 5. This is followed by environment
modelling described in chapter 6. Finally, chapter 7 summarizes the thesis

and discusses potential research extensions.




Chapter 2
Related Work

The problem of planning a dynamically feasible trajectory for a robot
is a core problem in modern-day autonomous systems designers’ aspirations.
Unfortunately, the problem is known to be at least PSPACE-hard, requiring
consideration of the algorithm’s completeness according to the following clas-
sification adapted from [34]. An algorithm is considered complete if, for any
query, it terminates in finite time and either finds a solution or correctly reports
that no solution exists. The combinatorial motion planning methods briefly
noted in section 2.1.1 will achieve this. Unfortunately, such completeness is
not obtained with sampling-based planning. Thus, two weaker notions of com-
pleteness are defined: resolution completeness and probabilistic completeness.
An algorithm is resolution complete if it is complete for a certain parameter
value defining the resolution of the underlying search space. An algorithm is
probabilistically complete if the probability that it finds an existing solution,
if one does exist, converges to one as the number of iterations increases. The
RRT belongs to the probabilistically complete group of algorithms.

2.1 Existing Approaches

There are many algorithms available for solving the motion planning prob-
lem in continuous state spaces with numerous assumptions or restrictions. All
of these approaches fall into one of the two main categories: combinatorial mo-
tion planning and sampling-based motion planning [34]. As part of this thesis,
extensive motion planning surveys were conducted and are publicly available

online [39, 40] for the interested reader.
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2.1.1 Combinatorial Motion Planning

Combinatorial approaches solve the motion planning problem without re-
sorting to approximations. Due to this property, combinatorial methods are
also referred to as ezxact. To solve a motion planning query, all combinatorial
approaches construct a roadmap. A roadmap provides a discrete representa-
tion of the continuous environment without loosing the original connectivity
information required to solve the query. Such a query is resolved by connect-
ing the start and goal states to the roadmap and then performing a discrete
graph search within it. Some algorithms commence with a cell decomposition
step while others create a roadmap directly. The early papers on combinato-
rial approaches are documented in [48]. The classical robot motion planning
book by Latombe [33] covers the majority of combinatorial motion planning
algorithms.
2.1.2 Sampling-Based Motion Planning

Sampling-based approaches to motion planning conduct a search that
probes the continuous state space with a sampling scheme in order to avoid
the explicit construction of the obstacle space (as the case in combinatorial
approaches previously mentioned). The concept is depicted in fig. 2-1 adapted
from [34]. Exploring the state space is possible with a collision detection mod-
ule, which the motion planner considers as a ”black box”. This enables the
development of the algorithm independently of the particular world represen-
tation and vehicle dynamics/kinematics. The collision detection module can
handle any environment representation model such as algebraic sets, 3D tri-
angles (mesh) and even non-convex polyhedra. This philosophy has been very
successful in dealing with environments represented by thousands of geomet-
ric primitives in many different domains. Such problems would be practically
impossible to solve using alternative techniques that implicitly represent the

state space.

10
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Collision Detection

Figure 2-1: The sampling-based motion planning architecture uses a collision
detection module as a ”"black-box”. Thus, the planning is separate from the
specific geometric world representation and the dynamic/kinematic vehicle
model.

The sampling-based motion planning framework features both determin-
istic and probabilistic approaches. The deterministic sampling based methods
include exhaustive search, depth-first search, breadth-first search, Dijaksta’s
algorithm [13] and the famous A* [24]. The discussion in this thesis will
be limited to the probabilistic sampling based approach presented through
the consideration of two main planning methods, the Probabilistic Roadmap
(PRM) [29] and the Rapidly-Exploring Random Tree (RRT) [35].

Both PRM and RRT have been proven to be probabilistically complete [35,
30]. Moreover, these methods utilize a space topology x and a respective met-
ric D to solve the motion planning problem. The metric used is a measure
of proximity required to define state neighbourhoods and quantify the cost
of edges connecting states within the space. The PRM framework can offer
several routes to the goal in a single query and therefore deals well with wide
open spaces. It avoids the computational complexity of the deterministic,
complete algorithms (as are the combinatorial methods). It is a multi-query
method divided into two planning phases: the off-line preprocessing stage and
the on-line query. The preprocessing stage is aimed at constructing a graph
of feasible edges connecting different states in the SS making future queries
much easier. The on-line phase basically adds the initial and final states to the
roadmap and searches the graph for the most suitable trajectory connecting

those two. Whereas the PRM requires the metric used on the space to be a

11
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true metric (see section 2.2), the unidirectional classical RRT algorithm does
not.

The RRT is a better fit to the motion planning problems where building
a roadmap a-priori may be irrelevant or simply infeasible, due to its single
query nature. This allows for more options to consider for the metric and
the tree edge connections. Many variants of RRT have been developed and
used in several applications [3, 6, 7, 11, 12, 26, 37, 38, 50, 52|, in particular, for
autonomous vehicles [16, 31}, humanoids [25, 27] and computer animation [21].
The RRT methodology builds a tree as it explores the SS by extending tree
edges/branches towards randomly generated states starting from the initial
state. The RRT is efficient in finding an initial solution, although it may
contain unnecessary detours which are far from optimal. To ameliorate this
side-effect, trajectory post-processing is usually conducted by, for example,
smoothing [1] or spline fitting [32, 5].
2.2 Motion Planning Metrics

A key component which has a substantial effect on the convergence of
any sampling-based motion planner is the distance metric used. This thesis
deals with formulating a pseudometric to be used in the state space as an
energy optimal trajectory is searched for. Thus, this section is dedicated to
explaining what is a metric, how one might choose a suitable one and lists
metrics commonly used in motion planning.

Commencing by defining a metric space (x, D) which is a topological space
x equipped with a function D : y x x — R=Y such that for any a, b, ¢ €  the
metric holds to the following properties:
Nonnegativity: D(a,b) >0
Reflexivity: D(a,b) =0 if and only if a = b
Symmetry: D(a,b) = D(b,a)
Triangle inequality: D(a,b) + D(b,c) > D(a,c)

12
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A metric can represent linear or angular displacement, control effort or
time. The space need not be a vector space, but the discussion here shall be
limited to such vector spaces noting that y C R". Choosing a metric that
best represents the objective of the motion planning problem is a designers
choice. Domain specific knowledge is obviously beneficial for choosing the
metric which best fits the problem at hand, especially if parameter tuning is
needed for the chosen metric. There are multitudes of metrics which are used
in non-holonomic motion planning. T'wo that are related to the one developed
in this thesis are:

Total Time For a dynamical system defined by eq. (1.1), the amount of time
connecting two states (0) = a, x(T,pta1) = b can be used as a measure

of distance:
Ttotal
D(a,b) — / 1dt
0

It is asymmetric and thus considered a pseudometric. The distance is
the time needed to steer the system from one state to the other. This
metric can also be formulated as an minimum-time optimization problem
more generally known as a two-point-boundary-value local optimization
problem.

Control Effort Similar to the total time metric for a dynamical system
in eq. (1.1), the total actuation effort needed to steer the system from

z(0) = a to ©(Tisa) = b, can be an asymmetric measure of distance:

Ttotal
D(a,b) = / [l 2 dt
0

Again, this can be formulated as an optimal minimum-actuation two
point boundery value problem.
2.2.1 Optimal Control Based Metrics
As already alluded, the distance metric is an essential part in SS explo-

ration. The nearest neighbour search and the SS coverage rate are highly
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dependent on the chosen metric. An efficient exploration of the SS is obtained
only once the metric reflects the true cost-to-go [10] or actual distance be-
tween the states. The cost-to-go can be based on optimal control methods for
linearised systems [35]. A linear quadratic regulator (LQR) used as a pseudo-
metric was suggested by both Perez et al. [43] and Glassman and Tedrake [20].
Perez et al. suggested an infinite horizon LQR formulation like in eq. (2.1).
The solution to this optimal control problem is then used as both a metric as

well as an optimal control policy when extending the tree.

u

D(a, b) = min {/Ow[(w - b)"Q(x —b) + uTRu]dt}

given that R=R">0,0=Q" >0 2.1)

subject to & =Ax+ Bu+C
z(0) =a

The symbols > and > denote positive definite (PD) and positive semi-definite
(PSD) matrices respectively. The matrices A, B, C are the Jacobians of the
non-linear system dynamics model in eq. (1.1) whereas R and @) are the weight
matrices in the LQR problem formulation. Although this pseudometric shows
promising results in [43], it fails to capture the physical significance of the SS
distance. It is difficult to properly incorporate the different elements of the
state vector (of such different physical units) with appropriate significance into
the pseudometric. In addition, it is not obvious how to scale the regulation
matrices R and (). When the optimal control policy derived from the solution
to eq. (2.1) is used as the extension part of the motion planner, it suffers
from two drawbacks: first, the state towards which we extend the tree might
not be controllable in which case the quadratic regulator problem is ill-posed.
Secondly, the infinite horizon controller yields an optimal solution only if the
time approaches infinity - whereas the actual time for the extension step does

not. This causes the suggested extension heuristic to under-perform, yielding
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a sub-optimal trajectory or at best a slower convergence rate to that supposed
optimal solution.

The two aforementioned references [43, 20] deal with non-linear systems
with differential constraints (accounted for by representing the system in a
higher dimensional SS), but do not take into account the actuation magnitude
and bandwidth limitations. Glassman and Tedrake’s work deals with improv-
ing exploration techniques for RRT's by approximating reachability regions but
does not demonstrate practical applications on real high dimensional systems.
To improve upon the previous work, Webb and Berg [53] introduced a fixed-
final-state free-final-time LQR formulation to be used in the local planner as
the metric and extension heuristic. Unfortunately, their work does not take
into account any actuation constraints. With the view to ensuring dynamic
feasibility and adherence to the real system characteristics, these must be in-
troduced. This can be done either by incorporating a regulation term into
the objective function which increases computational cost or by the method
suggested in this thesis.

2.3 Optimal Probabilistic Motion Planning

To achieve optimal trajectories, the RRT* algorithm [28] was introduced
as an extension of RRT that guarantees almost-sure! convergence to an opti-
mal solution with respect to the defined metric. Although both the RRT and
RRT* have been implemented successfully in various practical scenarios [34], a
limitation of these probabilistic motion planners is their reliance on the ability
to connect two distinct states with a trajectory (optimal at times). As previ-
ously mentioned, for holonomic robots, feasible trajectories might be as simple
as a straight line along the SS connecting the two states. However, for kinody-

manic systems, or robots with non-holonomic constraints, these straight lines

! The cost of the minimum cost path in the RRT* converges to the optimal cost c*
almost surely, i.e., Prob(limy_eoc(o) = cx) =1
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are not feasible trajectories since they do not adhere to the system dynamics.
The method introduced in this thesis improves on the previous work by re-
moving restrictive assumptions on the system and generates minimal energy

trajectories for a real life platform such as the X§.
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Chapter 3
The Probabilistic Motion Planner - RRT

This chapter briefly introduces the well-established RRT and RRT* algo-
rithms for sampling-based motion planning with generic algorithmic compo-
nents for the sake of simplicity.

3.1 Rapidly Exploring Random Tree

Initially presented by Kuffner and LaValle [35], RRT is an incremental
sampling-based single query motion planner for holonomic systems. Since
inception, it has been further developed and extended; however, the basic
building blocks were maintained in all existing variants. In the following, the
basic components of RRT are presented. Pseudocode for the algorithm can
be found in algorithm 3.1.1 and the interested reader can consult existing
literature for further details.

The RRT involves five main components and each can be encapsulated
into a function or procedure as follows:

Sample When invoked, the sampling procedure returns a sampled state €
Xfree from a random distribution (uniform, normal with the goal as
mean, or any other pseudorandom sequence as the designer chooses).

Steer Given two states &1, s € x free the steer procedure attempts to connect
these two states. Depending on the specific design, it either returns a
boolean indicating connection success and/or a path segment o € x such
that 0(0) = @; but not necessarily terminating at @s.

Collision Check Given a path segment o(t) € x or state & € x this proce-
dure returns a boolean true iff o or @ is within x .. in its entirety; that

is: 0(t) € Xfree V O & € X free-
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Figure 3-1: RRT extension step of ®,cqrest towards @,q,q. The subset of

potential nearest neighbours V.., marked red are chosen from a region Y,cqr

depicted as a circle in blue. Nodes in purple have not been added to the tree.

The tree node @j,cqrest 1S steered towards x,.,q. The dotted path segment

is the optimal trajectory connecting the two states where the actual output

of the steering function is o. The discrepancy between the dotted path and
the steered segment is due to either actuation constraints or insufficient time

horizon discussed in section 4.5

Metric A metric (or a pseudometric) is a function D : (z, x3) — R=Y re-
turns a scalar which stands for the "distance” in whichever sense the
metric has been defined between the two states. If the two states are
not connectible, the metric returns an infinite distance. A true metric
along with its properties was defined in section 2.2.

K Nearest Neighbours Given a subset of states V C x and a state x €
X, this routine, also known as KNN, returns a subset V.., C V of
the nearest neighbours to & with respect to the metric D defined on

1
the space, i.e., Vyeor = {wl eV,(i=1,--- ,K): D(x;,x) < a (%)d}
where d is the SS dimensionality, N is the number of states in the tree, a
is a user defined volume parameter, and K is the number of neighbours

queried for. These parameters define the neighbourhood in which the

search is conducted.
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The above components shall be now tied together into the basic RRT pro-
cedure. The tree is initialized with the x;,;; state as the root node. Then, a
state @,q,q 18 sampled from the SS with a predefined probability distribution.
The nearest neighbour @,.q, t0 ®,qnq is searched for among all existing tree
nodes (or a subset of those) with respect to the metric D defined on the SS.
Once a neighbour @,,.q..s: is chosen, the steering method is called to attempt
to connect it to @,qnq using the dynamics model forward integration with re-
spect to time. The resulting trajectory (branch/edge) is denoted as ¢ and its
end @,., might differ from @,,,s due to collision, limited integration horizon
or actuation constraints as per the discussion in section 4.5. If the generated
trajectory and states are valid (no collision with workspace and state space
obstacles), they are added to the tree. The aforementioned steps of sampling,
searching for the nearest neighbour and eventually steering towards the ran-
dom sample are called together the extension step which is depicted in fig. 3—1.
The process is repeated until the number of iterations is exhausted or the goal

region Xgoq is reached.

Algorithm 3.1.1 RRT
1. procedure RRT(Zinit, X goats X free:N)
2: Initialize(T, zi,i)
3: while 7 < N do
Trand < Sample(Xfree>
Tnear < KNN(2pqna, T)
[Tnew, 0] < Steer(Tnear, Trand)
if CollisionFree(o, X free) then
T.edges < Tegges U
T.vertices < Tyertices Y Tnew
10: end if
11: end while
12: end procedure

3.2 Optimal Rapidly Exporing Random Tree - RRT*
The RRT* is an asymptotically optimal sampling based trajectory gen-

erator. The main difference between the RRT* shown in algorithm 3.2.1 and
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its predecessor the RRT are the ChooseParent and the Rewire routines.
Those routines guarantee the almost-sure convergence to the optimal solution
with respect to the metric defined on the space. The ChooseParent and the
Rewire procedures presented in algorithms 3.2.2 and 3.2.3 are adapted from

Perez et al. [43].

Algorithm 3.2.1 RRT*
1: procedure RRT™*(Zinit, X goat, X free;N)
2: Initialize(T, Zn)
3: while : < N do

4: Trand < Sample > Sample from the SS
5: Tnear £ KNN(mranm T)
6: [:Cnewa U] A Stee’r(xneara $rand)
7 Viear < KNN (Zpew, T)
8: [Tmin, Omin] < ChooseParent(Vyear, Tnew)
9: if CollisionFree(o, X free) then
10: T.edges < T.edges U o
11: T .vertices < T .vertices U X e
12: Rewire(T, Xnears Tnew)
13: end if

14: end while
15: end procedure

The ChooseParent procedure presented in algorithm 3.2.2 is used to en-
sure the optimality of connections in the tree. For a state  and neighbouring
states V,eqr a candidate @; € Ve is steered towards x. Then, a search for
the best parent, designated as @, € Vyeqr, via which reaching x has the least
cost, is conducted. The search is based on the actual cumulative incurred cost
as opposed to the computed cost-to-go in the KNN search. Thus, each new
state @, we reach is guaranteed to have its parent state in the tree to be the
one with the least actual incurred cost with respect to the metric defined on
the SS.

The Rewire procedure presented in algorithm 3.2.3 is also used to ensure
the optimality of connections in the tree. « is steered towards a candidate

T; € Vyear- If they are connected and the cost to reach the x; via x is less
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Algorithm 3.2.2 ChooseParent
1. procedure CHOOSEPARENT(z,V,cqr)
2 MinCost <+ oo
3 LTomin < 0
4: Omin < 0
5: for Vx; € V,eqr do
6
7
8
9

[Tpew, 0] < Steer(x;, x)
if Cost(x;) + Cost(o) < MinCost then
MinCost < Cost(x;) + Cost(o)

10: Omin < O
11: end if
12: end for

13: end procedure

than the cost to reach x; via its current parent, we remove the edge connecting
x; to its parent and reconnect it to . This ensures that the connections made

are always improving with respect to the cost.

Algorithm 3.2.3 Rewire
1: procedure REWIRE(T )V, ,cqr,7)
2 for Vz; € V,cqr do
3 [Tpew, 0] < Steer(z, z;)
4 if Cost(z) + Cost(o) < Cost(z;) then
5: if CollisionFree(o) then
6
7
8
9

Tparent < Parent(z;)
T.edges < T.edges \ {Zparent, Ti}
T.edges < T.edges U o

: end if
10: end if
11: end for

12: end procedure

It is important to note that although the steering function is not re-
quired to make a connection in general, when it is called upon from within the
ChooseParent and Rewire routines it must. This is why both a boolean
indicator as well as a path segment is returned from the steering routine. If a
connection cannot be made, the routine iterates to the next potential connec-

tion.
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The RRT* presented in this chapter is used as the framework for the
motion planner proposed in this thesis. Next, the SS topology and its essential

components for solving the motion planning problem are presented.
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Chapter 4
Minimum Energy Affine Quadratic Regulator

This chapter introduces the Minimum Energy Affine Quadratic Regulator,
how it is used as a pseudometric as well as a closed loop control for steering
and how it is incorporated into the motion planner.

4.1 Affine Quadratic Regulator: Preliminaries

With the aim of generating an optimal trajectory, the first issue addressed
is the specific cost by which the trajectory’s optimality will be measured. This
cost will be formulated as an objective function to be minimized along the gen-
erated trajectory, similar to the optimal control metrics used in non-holonomic
motion planning mentioned in section 2.2.1. One of the barriers to autonomous
aerial systems’ capabilities is the limited mission endurance due to short bat-
tery life mentioned earlier in chapter 1. As is the case for small unmanned
aerial vehicles, the chosen cost is one that provides a measure of the total en-
ergy consumed during a mission. It is well-known that for electromechanical
systems, the total energy used for actuation is proportional to the integral
of the norm of the control effort [2]. Therefore, the cost considered for the

proposed motion planner is defined as:
Ttotal T
C<7'l', Linit; Lgoal s T;fotal) = / §’U; Rudt ; R0 (41)
0

As alluded in chapter 2, computing the optimal control policy 7* repre-
sents a global optimization problem. One of the basic principles behind the
RRT family of algorithms is to "divide and conquer” the global motion plan-
ning problem into smaller local sub-problems. Each is treated as an optimal
control problem, that is, to optimally connect two states every extension step

using a linear approximation of the system’s dynamics. In the context of the
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RRT* motion planner, each sampled state acting as a target state @,qnq iS
essentially the linearisation point denoted in this chapter as x,. Hence, for
a non-linear system such as in eq. (1.1), both the cost and the dynamics are
reformulated about that target state such that @ = o+ & and ©v = ug + u
to yield:

n TZ 1 . A
c= Z/o §(u0 +a)" R(uo + @)dt
i=1

n T
i1
=> / §[u0TRu0 + 2ug” R + 4" Ru)dt
i=1 70

where n is the number of segments that comprise the entire trajectory. Since
@ is an arbitrary state, which might not be a set point, the drift term f (o, uo)
in eq. (4.4a) (C in eq. (4.4b)) is either minimized by solving the minimization
problem:

wy = argmin|| f (o, u)|| (4.2)

or simply set to zero and compensated for as described in section 4.3. The
cross term uy’ Ru is neglected for the purposes of the approximation aided by
the assumption that the relative magnitude and directions of ug and w yield
a negligible term. Thus, the cost associated with segment ¢ of eq. (4.2) can

then be written as:
T 1
0

where p; can be interpreted as half the generalized norm of the control signal
needed to maintain the state at xy. To linearise the dynamics, a standard

application of the Taylor expansion to eq. (1.1) gives:

S, .0 X
T = or T+ or u ~+ f(xo, wo) (4.4a)
ox I ou I
or, using the state-space notation:
x=Az+ Bu+C (4.4Db)
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Following the Bellman principle of optimality [4], the optimality of each of the
segments shall guarantee the optimality of the entire trajectory. To simplify
the presentation, (A) notation is now dropped such that = &, u = u hereafter.
Therefore, the local planning problem is to generate a trajectory segment o;
connecting x; to @y such that 0;(0) = x; and 0;(7;) = @2, while incurring

minimal cost with respect to the objective function in eq. (4.3). Omitting the

segment index ¢, the local planning problem is stated as:

o
D(x1, T2) = min {/ o+ 5uTRu}dt}
“ 0

given that R=RT>0, peR*t

subject to t=Ax+ Bu+C (4.5)
x(0) = x;
x(T) = a9

The solution to the minimization problem on J (the argument of the min-
imzation function in eq. (4.5)) is used as a state-space distance pseudometric
D, and cost-to-go for the tree expansion step (closed loop control) as explained
in section 4.3. It is referred to as a pseudometric because it violates the sym-
metry property of a true metric as defined in section 2.2 and is called the
minimum energy affine quadratic regulator pseudometric (MEAQR) hereafter.
However, it does conform to the triangle inequality due to the minimization
operation yielding the ”shortest” path in the metric sense. This formulation
is similar to the optimal control metrics mentioned in section 2.2.1 as they
are integrated with respect to time and the system dynamics are incorporated
into the optimization problem.

To derive the optimal feedback control law, Pontryagin principle of op-
timality [36] is called upon, commenced by defining the Hamiltonian for the

optimization problem in eq. (4.5):
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1
HXu,x)=p+ éuTRu + AT[Az + Bu + (] (4.6)

where the dynamics of the systems are incorporated in the Hamiltonian via
the Lagrange multiplier A. The necessary conditions of the optimal trajectory

and control are:

OH

. OH
A= — =47 4.7b
5 A (4.7b)

and the optimal (open-loop) control policy can be computed from the station-

ary condition:

H
0= of _ Ru+ BTX
ou
u=—R'B'A (4.8)

Initial and final conditions for the differential eq. (4.7b) will be derived in sec-
tions 4.2 and 4.3, depending on the specific usage.
4.2 Minimum Energy Pseudometric

This section deals with the actual computation of the cost incurred by con-
necting two states with respect to the suggested objective function in eq. (4.5)
which is regarded as the MEAQR pseudometric. Moreover, the optimal time
to complete that trajectory is also computed. This enables an approximation
of the cost-to-go from a chosen tree state to any other state in unexplored
SS. It is worth mentioning that the discrepancy between the actual system
dynamics and the linearised system make the computation of the cost-to-go in
section 4.2 depend on the proximity of the two states for which the pseudodis-

tance is computed. Moreover, the pseudometric does not take into account the
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actuation constraints which might affect the ability to connect the two states.
This is dealt with in section 4.5.4.
4.2.1 Pseudometric Formulation

The Lagrange multiplier vector A determined by its dynamics in eq. (4.7b)
is independent of the state and a closed-form solution for it can be obtained

by analytically integrating eq. (4.7b) back in time:

A(t) = exp[AT(T — HIA(T) (4.9)

Before the above can be used to compute the optimal control policy of eq. (4.8)
and subsequently the cost-to-go, the final condition A(T") is required. The
following derivation outlines a solution procedure for A(T').

Substituting eq. (4.9) into eq. (4.4) and then into eq. (4.8) and integrating

for the final state oo gives:
x(T) = a9 (4.10)
T
= exp|AT)x, — / exp[A(T — 7)|BR BT exp[AT(T — 7)|\(T)d7+
. 0
/ Cexp[A(T — 7)]dr
0

Introducing the weighted controllability grammian as:

Glto, T) = / explA(T — 7)|BR-'B expAT(T — 7))dr (4.11)

to
which is a positive-definite (PD) symmetric matrix and can be found as the

solution to the Lyapunov matrix differential equation in eq. (4.12) [36]:
P =AP + PA" + BR'B” (4.12)

with P(tg) = 0, and accordingly, G(to,t) = P(t). To simplify eq. (4.10), it is
helpful to define two auxiliary variables:

D(t) = AD(t)+C ; D(0)=0 (4.13a)
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and

ZIR(x,t) = exp[Atlx, + D(t) (4.13b)

With the use of eqs. (4.12) and (4.13) in eq. (4.10), a concise form for x; is
obtained:

xy = ZIR(x,,T) — P(T)X(T) (4.14)

Adapting the missile guidance terminology for zero-effort-miss denoted by:
d(xy,x2,T) = a3 — ZIR(x1,T) (4.15)
and using it in eq. (4.14), a solution for A(T") can be immediately written as:
AT) =P 1 T)d(xy, x, T) (4.16)

The above development, in particular, egs. (4.9) and (4.16) allows writing
the optimal control policy merely as function of the boundary states and the

time horizon:
u(t) = R Blexp[AT(T — )| P~ (T)d(z1, 22, T) (4.17)

The control policy in eq. (4.17) can be used to estimate the cost-to-go
of a specific vertex from @, to @, by substituting eq. (4.17) into the defini-
tion of J in eq. (4.5) and remembering the integral definition of the weighted

controllability grammian in eq. (4.11) to give:
1
J(xy, 20, T) = pT + 5d(azl, xo, 1) P (T)d(x1, 22, T) (4.18)

For a specific initial and final condition @, and x5 respectively, the cost-
to-go function J is given in terms of the terminal time (arrival time). The
time interval in which the trajectory segment is executed is denoted:

T* = argmin J(x1, 22, 7T) (4.19)
T
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Once obtained, it allows the computation of the pseudodistance such that:
D(ﬂ:l,wg) = J(wl,wg,T*) (420)

4.2.2 Computing the Optimal Time
The optimal T* time is found by computing J(x1, 25, T) from T = 0 until

a predetermined time horizon T}.ri0n. As mentioned when first introduced,
the matrix P is positive-definite and thus so is its inverse P~!. However,
as eqgs. (4.12) and (4.13a) are integrated for an increasingly larger time in-
tervals, several types of behaviours can occur for the weighted controllability
grammian P. The matrix P can either be unbounded or can converge to some
limiting solution P(00). Extensive research has been conducted to formulate
the necessary and sufficient conditions under which one could expect the Ric-
cati differential equation (RDE) to converge (the Lyapunov matrix differential
equation is a particular, simpler case of RDE). Since the cost-to-go in eq. (4.18)
is comprised of a linear term in time and a quadratic term weighted by P~
it would be preferable to see the grammian P — oo so that the second term
in eq. (4.18) converges to zero. The convergence depends on the properties of
the dynamic system, the linearisation point and the objective function weight-
ing matrix R. The limiting behaviour of the grammian is determined by:

e non-uniqueness of the solution;

e insufficient time horizon - T}orizon;

e the non stabilizability! of the state and control matrices (A, B);

e the non detectability? of (A4,+/Q) ; There is no Q matrix in eq. (4.5).

1 Stabilizability is a weaker notion of controllability - a system is considered to be stabi-
lizable when all uncontrolable states have stable dynamics

2 Detectability is a weaker notion of observability - a system is considered to be detectable
if and only if all unobservable states have stable dynamics
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The time Tjori20n for which the matrix ODE is integrated is finite, bounded
and determined at each iteration by the probabilistic sampler as elaborated
in section 4.4. Although the time horizon can be enlarged and the sampled
states can be limited to stabilizable ones (limiting the RRT SS exploration
capability), the non detectability of the system hinders any further attempts
at guaranteeing the preferred behaviour of the RDE. However, regardless of
the limiting behaviour of the grammian, there might still be a minimum value
for the cost-to-go objective function for some t € [0, Thorizon] ; Thorizon < 0.
This is what makes the MEAQR method better than the infinite horizon
affine quadratic regulator (where solution of the algebraic Riccati equation is
attempted). The interested reader is referred to the works by Callier, Frank
and Park [8, 15, 42] for studies on the RDE behaviour for various systems.

The reader’s attention is directed to the fact that the cost-to-go is com-
prised of a linear term in 7" and another positive term so that the time de-
pendant lower boundary for the cost is pT. At every time step the cost J(T')
is compared to the minimal cost found thus far denoted by J* with its corre-
sponding 7. Once pT' > J* the search can be terminated at T, since no
lower cost than the one already found may be obtained, J* is then used as the
pseudodistance value of D(x, x2). The relationship between J and time with
the corresponding optimal values are graphically depicted in fig. 4-1.

In the unfortunate case where no minimal cost is found within the lim-
ited time horizon Tjri-on, the projected cost is approximated based on the
present minimal computed cost J,;, and its corresponding time 7,,;, as de-
picted in fig. 4-2. Since the pseudodistance is bounded from below by the term
pT', and the cost converges to that linear function (oscillations are caused by

the matrix differential equation in eq. (4.12) for P), it is used as a reference
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T* Tstop Thorizon t

Figure 4-1: An illustration of the cost function vs. time during the search for
optimal time and minimal pseudodistance. When the allowed time horizon is
sufficiently large such that T < Tjorizon an exact value of J* can be obtained
value. First, T7 = Jme is computed, then the time corresponding to the mid-

point denoted as T% = %(Tl + Thorizon) and its corresponding optimal cost

value J* = %(Jmm + pT™).

J
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Figure 4-2: An illustration of the cost function versus time during the search
for optimal time and minimal pseudodistance. When the time horizon is in-
sufficiently large eventually resulting in an approximation of both the optimal
cost J* and optimal time T™. T,,;, is equal to Therizon in this case.

Finally, the optimal time 7™, in whichever way it was obtained, is used
to compute the closed loop control policy as presented in section 4.3. For
practical implementation purposes, the closed loop gain matrix and bias vec-

tor presented in section 4.3 are computed simultaneously with the cost-to-go
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estimation presented here. This is possible due to the dependence of the differ-
ential equations solely on the linearisation point as well as their resemblance
to one another (egs. (4.12) and (4.25)). This issue is further elaborated on
in section 4.5.
4.3 Minimum Energy Closed-Loop Control

The closed loop policy is employed once the optimal time 7™ has been
found for connecting x; to @, as described in section 4.2.2. As in real life sys-
tems, actuation is limited in magnitude as well as in bandwidth. Formulating
a closed loop extension heuristic as opposed to an open loop policy enables us
to account for the actuation constraints as will be detailed in section 4.5.4.

To formulate the closed loop control policy, A is now assumed to be a
function of the state a rather than an autonomous variable (as eq. (4.7b)
might suggest). This is aimed at developing a feedback law which assumes an
affine relationship between the Lagrange multiplier A(¢) and the state x(t) [19],
that is:

A(t) = M(H)z(t) + n(t) (4.21)

such that at the final time eq. (4.21) satisfies A(T") = M (T)x(T") inferring that
n(T) = 0. As for the matrix M, its final condition shall be derived shortly.

Differentiating eq. (4.21) and substituting eqs. (4.4) and (4.8) into it yields:
A=Mzx+ Mz +7=Mz+ M[Ax — BR'BY(Mz +n)+C]+7
equating the above result with eq. (4.7b) :

M+ MA+ A"M — MBR'B"M]z + [+ A"n — MBR'B"n+ MC] =0
(4.22)
The reader’s attention is now directed to the two parts of eq. (4.22). The

second term in square brackets describes the dynamics of 7 which, as an extra

32



Chapter /

degree of freedom, must adhere to the following differential equation:
n+[AT — MBR'B'In+MC=0 ; n(T)=0 (4.23)

The first bracketed term of eq. (4.22) must also equate identically to zero, that
is:

M+ MA+A"™ — MBR'B"™™ =0 ; M(T)=oc0 (4.24)
This is a backwards integrated RDE, where the final condition for M arises
from the fixed-final-state. This condition, however, makes the integration
of eq. (4.24) backwards in time from 7" impractical, and eq. (4.24) is therefore

replaced by the matrix differential equation for M~!, using the relationship

Mt'=-M1'MM™":
Mt=AM'+ M'AT - BR'BT ; MYT)=0 (4.25)

To summarize, once the closed loop control policy is called upon in the
motion planner, the following system is recalled from memory, as it was already
integrated backwards in time during the pseudometric computation stage, ac-

cording to section 4.5.2 :

n (A" — MBR'B")n+ MC n 0
M-! AM™t + M—1AT — BR1BT M1 0
t=T
(4.26)

The solution of eq. (4.26) for the optimal time duration of the segment 7*
allows computation of the optimal closed-loop control policy for the entirety

of the segment from eqs. (4.8) and (4.21).
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4.4 Minimum Energy Affine Quadratic Regulator in RRT*

Now that the RRT* algorithm has been explained as well as the suggested
pseudometric, the implementation scheme that integrates all the previous el-
ements that comprise the proposed kinodynamic motion planner can be pre-
sented. Algorithm 4.4.1 is the pseudocode and fig. 44 is the flowchart of the
entire algorithm with the MEAQR as the KNN search pseudometric as well

as the MEAQR closed loop control law for extending the tree.

Algorithm 4.4.1 RRT* with MEAQR
1. procedure RRT™(2nit,X joat,X free, V)
2: Initialize(T, zinit)
3: while s < N do

4: Trand < Sample > Sample from the SS
5: Tnear < KNN(2rqng, T)

6: while D(2,car, Trand) > E do

7: Trand < 0.5(Tnear + Trand) > Brought closer in L, sense
& Znear — KNN(2rang, T)

9: end while
10: [Tnew, 0] < Steer(Tnear, Trand)
11: Voyear < KNN(Zpe, T)

12: [Tmin, Omin) — ChooseParent(Viear, Tnew)

13: if CollisionFree(omin, X free) then

14: T.edges U opin > Added iff ¢(o,m) < BestCost thus far
15: T .vertices U Tpew > Added iff ¢(0,,i,) < BestCost thus far
16: Viear < K NN Rewire(x,ey, T)
17: Rewire(T, Viear, Tnew)

18: end if

19: end while
20: end procedure

Sampling. The SS representation is comprised of a vector with posi-
tion and velocity states (might also be orientation and angular velocity where
applicable). The sampling scheme utilized in this work is uniform on the po-
sition and orientation subspace (pose hereafter), meaning that only the pose
states are sampled uniformly and the remaining states are set to zero. This
fits within the characteristics of the sampling framework for sampling based

planning for the class of problems dealt with in this thesis, since the initial
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and goal regions both lie on the zero velocity manifold. Each random state
sampled x,.,q is used as the linearisation point so that the initial condition
of the optimization problem of the MEAQR in eq. (4.5) is 1 = Tpear — Trand
and the ideal final state is x5 = 0. Sampling is step #1 in fig. 4-4.

Nearest Neighbours. Potential neighbouring states are searched for

within a time horizon of Thorizon = Timaz (ngVN )Ud where N and d have al-
ready been defined in section 3.1 and 7,,,, is a user-defined time threshold.
This vicinity should be carefully selected and it is a function of the tree den-
sity [30]: too large a vicinity radius would render the linearisation invalid.
Thus, special attention should be devoted to defining 7;,,., which in the
context of the MEAQR pseudometric essentially bounds the allotted energy
sphere radius £ in which the KNN search in conducted. Once computed, P
and d are used to determine which state is the nearest neighbour along with
its corresponding optimal time 7T™. If the pseudodistance of @ to @,unq is
D(x, Trana) > 0.750T horizon, Trana 1S iteratively brought closer, until it is close
enough, along the straight line (Euclidean sense) connecting the two states
and denoted x,.,q4, where 7 stands for the contraction iteration. In the rare
case where the dynamics model of the system at hand is linear, it is beneficial
to pre-compute all of the aforementioned time dependant matrices, P, D, M !
and 7, prior to query. The nearest neighbour search is step #2 in fig. 44.
The MEAQR KNN pseudocode is presented in algorithm 4.4.2.

Steering.  Once the state x,4,q4, is ”close-enough”, a steering attempt
is made. Steering is regarded as acceptable only if ¢(o) > 0.1D(x, ,4n4,)
to ensure minimal length path segments. The end of the path segment o
is referred to it as @,., hereafter. The closed loop control matrices M and
n in eq. (4.26) are computed during the KNN search simultaneously with

P and D in eqgs. (4.12) and (4.13a) and saved associated with @,e,. If the

optimal time 7™ was the result of the approximation (as in fig. 4-2) and is

35



Chapter /

Algorithm 4.4.2 MEAQR K-Nearest-Neighbours
: procedure KNN(T,7,,,.,K,N)

: k<+0 > Initialize neighbour counter

log N\ 1/d
Thorizon — Tmax ( oA;gV )

1

2

3

4: Candidates < All vertices in T
5: while t < T},0ri20n dO
6

7

8

9

BestCost = 0o
for all Candidates do
D« pt+3d" () P~L(t)d(t)

: if D < BestCost(i) then > Improvement in cost found
10: BestCost(i) < J
11: OptimalTime(i) <t
12: end if
13: if BestCost(i) < pt then > Cost threshold reached
14: Neighbours(k) < Candidate(i) > Register neighbour
15: Candidates < Candidates \ Node(7)
16: k<« k+1
17: end if
18: if k = K then return Neighbours
19: end if
20: end for
21: end while

22: end procedure

larger than Tj,o.izon, the steering method uses the initial entries of the gain
and bias matrices M and m for the time interval of ¢ € [0,7* — Thorizon]-
Since these matrices are obtained by backwards integration as elaborated on
in section 4.5.2, these are essentially the final entries prior to reversing the
ordering. Steering is step #3 in fig. 4-4.

Collision Checking. Throughout the steering process, collision check-
ing is done every few integration steps, depending on a predefined SS resolu-
tion. Meaning, once the state has been propagated some pseudodistance, the
collision check is invoked. If collision is detected, the integration is terminated
and the trajectory is truncated of the invalid part, returning the portion of the
segment residing in X fre.. The specific realization of the collision checking is,
as mentioned in 2.1.2, independent of the environment representation. In this

thesis, a simple intersection check between the state (or trajectory segment) in
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question and all of the obstacles primitives (representative of the environment)
as well as SS bounds, is used as the collision checking procedure. Collision
checking is step #4 in fig. 4-4.

Choose Parent. The neighbourhood from which the parent is chosen
for @,,.,, is computed with respect to that node since the pseudometric matrices
differ with each linearisation point. Figure 4-3 illustrates this for the SS of
inverted pendulum, where contours representing equal pseudodistances from
three chosen states are shown; @ ...z, is equidistant from those states in the Lo-
norm sense but there is no one distinct point that is equidistant from all three
states with respect to the MEAQR pseudometric. This is why for the purposes
of neighbour or parent search, a metric based data structure as opposed to a
simple linear search scheme is preferable, as will be addressed in section 4.5.5.
Finally, the optimal parent is chosen and the corresponding edge is added to
the tree. The optimal parent might be the original state @, et from which
T,e Was steered if it in indeed still within the neighbourhood, or any other
state in the subset V... The ChooseParent routine is step #b5 in fig. 4-4.

Rewire. The neighbourhood of ., used for rewiring is of high im-
portance to the optimality of the tree and thus for the eventual trajectory
generated by the motion planner. Unlike the extension stage, in the rewiring
procedure the tree is extended from @, towards its neighbours and the pseu-
dodistance is to be computed using the target state x,cqr € Viear pseudodis-
tance matrices P and d as opposed to the newly added node @,., matri-
ces. The nearest neighbour search for the rewire process is depicted in al-
gorithm 4.4.3 and the actual rewiring process was presented in section 3.2
and algorithm 3.2.3. The Rewire routine is step #6 in fig. 4-4.

Pruning. Once a solution is found for the first time, the cost is updated

from oo (no path connecting the root to the goal region) to the computed
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Algorithm 4.4.3 KNN REWIRE

1. procedure KNNREWIRE(T,T,,,.,K)
2 Candidates < All vertices in T
3 while ¢t <7T,,,, do

4 BestCost + oo

5: for all x € Candidates do
6

7

8

9

[P, d] < x.LoadMatrices(t)
J <+ pt+id"Pd

if J < BestCost(i) then > Improvement in cost found
: BestCost(i) < J
10: OptimalTime(i) <t
11: end if
12: if BestCost(i) < pt then > Cost threshold reached
13: Netghbours < Neighbours U x
14: Candidates < Candidates \ x
15: end if
16: if size(Neighbours) = K then return Neighbours
17: end if
18: end for

19: end while
20: end procedure

value now called MinCost. In order to reduce computational complexity, tree
pruning is done by discarding all states with a cost higher than MinCost.

Branch and Bound. As the tree continues to grow after an initial
solution, the solution is further optimized and only states with cost lower
than MinCost are added to the tree - this is a branch and bound method,
employed to minimize redundant states in the tree. One disadvantage of this
method worth mentioning is that all subsequent solutions generated will be
of the same homotopical class, thus restricting the solution space. Therefore,
if the initial solution is not within the same homotopical class as the optimal
solution, the latter will never be found.

Goal Bias. To shorten the time till an initial solution is generated, the
sampling scheme can be biased towards the goal. There are multiple ways of
inducing a bias: one possibility is to sample &,q,q € Xgoa @ specified percentage

of the samples while the rest of the SS is sampled regularly. Another option
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MEAQR Contours in Pendulum State Space
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Figure 4-3: Inverted pendulum state space pseudometric contours which are
highly dependent on the linearisation points x;, as can be seen from their form
and values. All three states are equidistant (in the Ly sense D = 0.98175) from

Teenter = [%, ?—g} However, the MEAQR pseudodistance of @.enter from each

varies and equals to 7.388,91.63,2.82 J respectively when p=1and R =%
is to sample a Gaussian distribution with @, as its mean. The algorithm
behaviour is sensitive to the bias parameter which should be adjusted with
care. The disadvantage of a strong bias can be the resulting large regions of
unexplored SS which affect the convergence of the RRT* to a solution and the
optimal solution in particular. The extreme case of solely sampling the goal
might yield the fastest solution for an environment without obstacles. On the
other hand, the RRT* might get stuck, unable to expand if an obstacle is right
in the way between the tree and the goal region (local minimum).
4.5 Practical Implementation

The algorithm presented in this paper was developed with the view to
a specific practical application—motion planning for quadrotors; thus, the

restrictions that arise for such are addressed in this section.
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Figure 4-4: MEAQR RRT* Algorithm Flowchart

4.5.1 Weighted Controllability Grammian Positive-Definiteness
As the weighted controllability grammian P is integrated backwards in
time, it is imperative it maintains its positive definiteness. Another con-

cern is the inversion of the grammian required for computing the cost-to-go
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in eq. (4.18). The initial condition for P(0) = 0 is merely theoretical and does
not allow inversion, therefore, the matrix P(0) is defined with small elements
on its diagonal (numerical damping). Another concern is that the accumu-
lated integration errors might result in deviation of P from maintaining its
positive-definiteness. In order to ensure the PD of P as well as its counterpart

M~ the Cholesky decomposition [49] is used in this implementation. Thus,
P=1LL" (4.27a)

P=LL" +LLT (4.27b)

where L is lower triangular. Substituting eq. (4.27b) into the RDE in eq. (4.12)
gives:

LI + LLT = ALLY + LLYAT + BR'B” (4.28)

and pre-multiplying by L=! and post-multiplying by L=7, yields:

L', + LT =L 'AL+LTATL T4+ L'BR'BTL™T (4.29)
S—— S——

Lower Triangular ~ Upper Triangular
The left hand side of eq. (4.29) is a sum of a lower triangular matrix and an
upper triangular matrix. Denoting this sum by F' = F;r+ Fyr and computing

F from eq. (4.29), L is then obtained from the lower triangular part Fyp as:
L= LFir

and is integrated to yield L. As the integration process proceeds, P can be
computed from eq. (4.27a) as needed.
4.5.2 Integrating Backwards in Time

To integrate egs. (4.23), (4.25) and (4.26) backwards in time, a generic

ODE is assumed with a final condition formulated as follows:

y=ft,y(t) ; ylty)=vyy
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Introducing a change of variable for time 7:

d
T =1ty —t such that d_:;:_l

the final condition ODE is reformulated as an initial value problem:

dy _dydr

e —f(ry(1) 5 y(r=0)=ys

The backwards integration process can be summarized in the following two
steps:

1. Integrate the original ODE with a preceding minus sign, forward in time

T € [0,t]

2. Time reverse the solution such that y(7 = 0) becomes y(ty)

4.5.3 Scaling the MEAQR Pseudometric
The MEAQR pseudometric must be scaled in an appropriate way to allow

the pseudodistance computed to correspond to a physical quantity. If the cost
connecting two states is the energy consumed along the trajectory in Joules,
then the search for neighbours within specified Thopizon is essentially bounding
the allowed energy used to steer the system from one state to the next. With
the units of the integrand as watts (power), the weighing parameter designated
by p shall represent the power used to maintain the vehicle at the linearisation
point x, (assumed to be stabilizable). This parameter changes with x, and
can be approximated point-wise or for regions of the SS before the planner is
queried and stored in a look-up table. For simplicity, p is assumed constant
for the entire SS and is equal to the power needed to maintain the system
idle. The second term in the integrand of eq. (4.5) is u’ Ru, and hence for
units of the control signal taken as Newton for thrust or Newton - meter for

torque, R should have the units of Yooty o Angularvelocity yognoctively, If
’ Force Torque

maximal values of velocity (angular velocity) and force (torque) are used (for

the respective actuation axes), the term u’ Ru is equivalent to the fraction
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of the available maximal power used in applying the control at that instance.
This interpretation is both physical and intuitive. Additional scalar weights
can be introduced in the matrix R at the designers’ discretion to weigh the
different actuation axes differently.
4.5.4 Actuation Limitation
In order to incorporate the actuation constraints into the formulation of
the optimal trajectory, it is imperative to first identify them mathematically.
Magnitude Limit The control signal of the system is limited in magnitude
due to electromechanical constraints for the two application examples
employed in this thesis. An inverted pendulum is limited in motor torque
and the X8 vehicle is limited in thrust and moments about each of its
axes. These constraints are not necessarily symmetrical and can be
written as:

Unin < U(E) < Upae VT € [0,T7] (4.30)

Bandwidth Limit The rate at which the control signal can change depends
on the motor dynamics. Since the motion planner does not take the
motor model into account explicitly, a limitation on the time derivative

of the element-wise control signal is formulated as:
[ (t)|| < Umae YVt € [0,T7] (4.31)

These constraints are defined on the control signal u associated with the path
segment o for the optimal time interval 7 computed in section 4.2.

Two methods are available to incorporate these limitations into the mo-
tion planning framework. These shall be called the approximate and the iter-
ative methods. The approrimate method is based on the fact that in infinite
time linear quadratic regulators for stabilizable systems, the control signals

and their time derivatives monotonically converge to zero. The explicit form
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Figure 4-5: Illustration of the state, control and cost profiles versus time. The
magnitude and bandwidth constraints are marked with red and purple lines
respectively

of the control derivative & can be obtained from eq. (4.17) as:
W) approw = —R BT ATexp[AT(T* — )| P~H(T*)d(x:, x, T™) (4.32)

As can be seen from eqs. (4.17) and (4.32), the matrices R, B, A, P~! and
d are all constant and do not depend on time (7% was already determined
in section 4.2). Thus, the only term varying in time is exp[AT (T* — t)] which
obtains its maximal value when ¢ = 0 if the system is indeed stabilizable. This
approzimate method can be used within the K-nearest-neighbours search when
the pseudodistance is computed; if the magnitude or bandwidth constraints
are violated for a given candidate neighbour, it is discarded as it is unreachable
from the starting state and the routine continues to the next candidate.

The iterative method verifies that the control signal conforms to both

constraints at every integration step. The minimal and maximal values, U4,

44



Chapter /

and ,,;,, are derived from the systems’ physical properties whereas the time

dependant bounds @,,;, and W, are computed by:

Uz = U + umaxAt
(4.33)

Uppin = Wg — umaxAt
Both are depicted by dark and light red lines in fig. 4-5 which illustrates the

state, actuation and cost versus time as the steering takes place. At each time

step both the actuation and its approximate first derivative in eq. (4.34):

uiter = uk—l—lA; il (434)

are tested to verify their conformity to the bounds defined. If a violation
is detected, the appropriate signal is saturated accordingly and the integra-
tion continues normally. While the iterative method is more computation-
ally expensive, it is less conservative in discarding potential nearest neighbour
compared to the approximate method. Therefore the iterative is the chosen
method used in this thesis.

These added non-linearities in the system, undermine the validity of the
optimal time computed in the open loop part of the algorithm. If the actuation
limit is reached, it is highly probable that the system will not reach its target
state by the designated time T™. However, as the tree grows and its reachability
region does as well, there will be fewer occasions where chosen neighbour states
are unreachable. Hypothetically, it is possible to allow the steering function to
propagate the system forward past the optimal time towards the target state
until it is within a predefined proximity measure. However, this time interval
needs to be determined prior to calling the steering function since the matrices
M and n are highly dependent on it (due to the backwards integration in time)
and the propagated edge can ”over-shoot” its target. Thus, as already noted

earlier, we shall only extend the tree for T presuming that as the tree grows, its
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unreachable region will shrink and occurrences of non-target reaching segments
will diminish.
4.5.5 Data Structures

As alluded to earlier, the KNN routine is of substantial computational
complexity and there is much benefit in minimizing the amount of computa-
tions needed to find the subset of neighbouring states. The data structure is
crucial from a memory management and complexity perspectives. The avail-
ability of this data saves redundant re-computations and enables all state-
dependent operations on the tree to be easily executed.

As the RRT* grows and explores the SS, each state within it holds the
following attributes that shall be noted as State Data Entry:

e State vector x

e Linear state-space matrices A, B, C for the system linearised about «

Pseudometric time dependant matrices P, D

Closed loop time dependant control matrices M, n

e Cost from root state

e Pointers to parent state
All of the RRT* State Data Entries together are called the Data Set. The
State Data Entry is constructed as follows: the state vector is registered once
the state is sampled where as the linearisation, pseudometric and closed loop
matrices are computed and logged immediately after. The cost from the root
is updated along with the parent pointer once the state is added to the tree.
The cost is also updated within the Rewire routine as connections are broken
and others are made - ensuring a reduction overall.

Many data structures that can be used to accommodate the motion plan-

ner are available. Whichever structure is used, it is preferable that it be
readily available from software libraries used for implementation and should

also enable the following operations on it:
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1. Easy Update - Minimal structural disruption when a new state is added
to the data structure

2. Fast Query - When a state is queried for its nearest neighbours from
among the SS tree, the number of operations needed to search down the
structure (and their complexity) should be minimized.

The simplest approach to accommodate the tree requirements and desired
operations is a linear search among the tree states organized as a list (also
known as the naive approach). The structure update is easily done since it is
merely a concatenation of a corresponding state data entry to the array. As
for the query, as its name might suggest, the entire list is iterated while the
K states yielding the lowest cost-to-go to the arbitrary state x, are pointed
to in a neighbours pointers list. This method has a running time of O(Nd),
where its recalled that N is the number of states in the tree and d is the
SS dimensionality. The linear search approach was used as a benchmark to
improve upon when choosing the data structure eventually used in this thesis.
Other data structures considered can be mainly classified into projective and
metric methods and are briefly discussed below. These are tree-based data
structures that arrange the SS states in a binary structure where each decision
juncture is called a node.

Projective methods categorize the Data Set based on each entry’s projec-
tion on some lower-dimensional space. The Kd-Tree [17] of Friedman, Bentley
and Finkel has emerged as a useful tool in Euclidean space of moderate dimen-
sions. It is a multidimensional generalization of a binary search tree. It can be
constructed in O(N logd) time. The Kd-Tree is built by recursively bisecting
the database using a single SS coordinate position cuts as depicted in fig. 4-6.
For a given SS axis, the data set is cut at the median of its projection onto
that axis. An optimized Kd-Tree results by choosing the cutting axis to be

that whose distribution exhibits the most variance. Similarly, the PCA-Tree
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is not axes aligned but rather uses Principal Component Analysis to find the
eigenvector along which the data set has the highest variance. This direction
is then used for bisection. For SS of higher dimension (d < 10), both of these
methods tend to visit nearly every data set element, approaching linear query
time, and thus rendering these methods irrelevant [54]. Furthermore, these
methods appear to ignore the underlying data structure hierarchy, and thus
are generally more useful for smoother and abundant data sets which is not

the case in the motion planning domain.
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Figure 4-6: Kd-tree space decomposition method. The data set is marked as
small dark dots and the coordinate-aligned fragmentation as straight lines is
noticeable [56]

Metric methods are data structures that partition the space (organize the
state data entries) based on any metric that can be computed for any pair
of points. Thus, they do not require points to be finite-dimensional or even
in vector space. A ball tree is a complete binary tree in which a ball (hyper
sphere in the Euclidean sense) is associated with each partitioning node. Each
node partitioning is binary in that all entries in the data set inside the ball
are assigned to one child node (interior), and all externals are assigned to the
other (exterior). An interior node’s ball is the smallest to contain the balls of
all its children. Unlike the node regions in Kd-Trees, the sibling hyper-spheres

in ball-trees are allowed to intersect and need not partition the entire space.
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Five methods of construction of ball-tree data structures are described in [41]

and an example of a bottom-up construction method is depicted in fig. 4-7.
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Figure 4-7: Ball Tree Data Structure : A two-dimensional data set marked
in small white circles, organized in a ball tree data structure. Balls of lower
hierarchy are darker in shade [55]

Vantage point (Vp) trees [56] are similar to ball trees in their in/out and
left /right decomposition, but rather than using a FEuclidean hyper ball, the
Vp-Tree employs a pseudometric from a selected vantage point taking advan-
tage of symmetry and triangle inequality. State data entries which are near
the vantage point, make up the left/inside subspace while the right/outside
consists of far data entries as seen in fig. 4-8. Proceeding recursively, a binary
tree is formed. Each of its nodes (a carefully selected state data entry) is
considered a vantage point, and contains the boundaries of the subspace for
its child nodes.

Given a metric space such as the SS defined in section 1.2, and a subset
Vp, it is beneficial to organize the data set so that the K nearest neighbours are
more efficiently located. For a query @y € x the K nearest neighbours operator
within the energy hypersphere E is denoted K NN|z(xo, Vp, K). Each element
of the SS in a sense has a perspective on the entire space, as perceived by it

via the pseudodistance to all the other elements, making it a potential vantage
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Figure 4-8: Vp-tree space decomposition. The data set is marked as small
dark dots and the arcs are representative of the circles of the in/out subspace
division [56]
point (a Vp-Tree node if chosen). This perspective is adapted for this thesis
from [56] and best formulated mathematically:
Definition 1. Let (x,D) be a [0,1]* bounded metric space. Given a distin-
guished element p € x, the following are defined for all a,b € x:

1. 11, - x — [0,1] is given by : I1,(a) = D(a, p).

2. D,:x xx—[0,1] is given by :

Dp(a,b) = [l,(a) —I1,(b)| = [D(a, p) — D(b, p)|
The function II, is best thought of as a projection of x onto [0, 1] from

the perspective of p ; that is, how Yy is seen from p through the pseudometric
perspective. The function now defined as D, is not a metric since it is not
symmetric but it does satisfy the triangle inequality. Relying on the previously

asserted triangle inequality for the MEAQR pseudometric in section 4.2:

D(a,b) > [D(a, p) — D(b,)| = Dy(a,) (435)
3 Unbounded metrics can be easily scaled by D(a,b) = 1_?51(2’7)1))
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Hence, pseudo-distances tend to shrink when viewed from p by D,. A useful
implication is:

D,(a,b) > E = D(a,p) > E (4.36)

Therefore, if during a search, state « that is a pseudodistance E from xq is
encountered, there is no need to consider any element for which D,(xo, ) > E.
Since the MEAQR pseudometric is indeed state dependent when incorporated
into the RRT* framework, that is, as if every state is a perspective, it makes
perfect sense to use the perspective-dependence property of the Vp-Tree. To
deal with the asymmetry of the MEAQR pseudometric, the actual value used
to represent the cost is the minimum of the two pseudodistance values such
that:

D(a,b) = min{D(a,b),D(b,a)} (4.37)

This is a conservative method ensuring that potential near neighbours
are not discarded easily yet inducing an increase in computational cost. This
thesis makes use of the Dynamic Vp-Tree (dVp) structure described in [18] that
enables fast update operations and is available in ReaK library [44] developed
by M. Persson. As can be seen from fig. 4-9, compared to the linear search,
the performance of dVp-tree is substantially better in execution time of the

KNN search with the MEAQR pseudometric, for trees of all sizes.
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Comparison of Linear Search and DVP-tree on ME

AQR Quadrotor Space
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Figure 4-9: A log-log graph of the KNN execution time of the MEAQR pseu-
dometric in a X8 topology (13D) with linear search compared to a dVp-Tree

structure [44]
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Simulations

The suggested algorithm was tested in simulation on two different kino-
dynamic non-linear systems: an inverted pendulum with actuation constraints
(2D SS) and a quadrotor in 3D work space (13D SS) which is also non-
holonomic. The two systems and the corresponding motion planning scenarios
are discussed in section 5.1 and section 5.2 respectively. The inverted pendu-
lum was chosen for its model simplicity as well as its low dimensionality while
it is still a non-linear system. The X& is the target system for the contract
this thesis is a part of; thus, a proof of concept is the main aim in designing a
motion planner for use by that system. The Monte-Carlo simulations for the
inverted pendulum were conducted on a 64-bit PC with Intel i7-2600 3.4Ghz
with 8GB RAM running Mathworks Matlab© 2012b and simulations for the
X8 were conducted using C++ Reak [44] by M. Persson.

Although the classical SS sampling scheme is uniform in nature on all di-
mensions, a different sampling strategy was employed in the implementation
for the two aforementioned systems as was elaborated in section 4.4. As for
the goal biasing, instead of sampling the goal region every few samples, all
newly added tree nodes x,., are attempted to connect to the goal region as
long as those are within a predefined energy threshold. This solves the ex-
treme bias problem by maintaining a uniform tree expansion while shortening
the time elapsed till an initial solution is generated. As a benchmark for algo-
rithm performance, the Ly-norm of the actuation signal E;, = fOTt"t“l ||| [Pdt is
computed as well as the total trajectory time T}, for a constant p based on
Monte-Carlo runs. A valid assumption is that there exists a minimal amount

of electromechanical energy to bring a system from its initial state to the final
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one. The successful planner will generate, with high probability, a trajectory
corresponding to that minimal energy level, regardless of its parameters, which
will be demonstrated in the following.
5.1 Torque Limited Pendulum
5.1.1 Dynamic Model

The torque limited inverted pendulum is depicted in fig. 5-1 and its dy-

namics with viscous frictional damping term are described with eq. (5.1):

70 = —mglcos — b + 1 (5.1)

mgy

Figure 5-1: Inverted Pendulum Free Body Diagram

AT
The state vector is defined as * = [6’, 6’] and the parameters of the model
are: moment of inertia Z = ml?, mass m = lkg, length [ = 1m, damping
coefficient b = 0.1Nms and g = 9.81ms~2. In SS formulation, the dynamics

model is:

@ = =2 (5.2)

Lz (7 — ba(2) — mgl cos z(1))
The pendulum SS bounds arise from dynamic and geometric constraints as
listed in table 5-1 along with the actuation magnitude ||7|| and bandwidth

(rate) ||7|| constraints. The pendulum is referred to as under-powered since

the torque required to maintain it at the zero state z = [0,0]" is:

Toero = Mgl = 9.81Nm
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Table 5-1: Pendulum State Space and Actuation Bounds

State | Units | Lower Bound | Upper Bound | Maximal Rate
T N m -3 10
0 rad -7 7r -
0 rad/sec -8 8 -

whereas there are only £3/Nm available from the actuator. The set-points in

the SS are those for which both states are zero:

0

arccos< T )

as represented in the SS by merely a line along the 8 = 0 axis on the interval

(5.3)

Lset =

0 € [-0.31,0.31], symmetric about the downward equilibrium state of the
pendulum as expected.

The environment in which the pendulum manoeuvres is obstacle free.
The sampling scheme is of the form @,.,g = [0,0]" where 8 ~ U(—m, ).
This scheme avoids redundant sampling and increases the probability of sam-
pling a stabilizable point (a set-point) which improves the behaviour of the
proposed pseudometric as discussed in section 4.5.1. The trajectory gener-
ated by the motion planner originates from the downward equilibrium state
501"
5.0

forces needed to quasi-statically bring the pendulum from the initial zero-

Linit = searching a trajectory to the inverted equilibrium state

Tgoal = The change in energy, in the absence of non-conservative
velocity state to the goal zero-velocity state is simply the change in the grav-

itational potential energy of the pendulum, that is:

AE = mgl(1 + sin (g>) ~19.82 J (5.4)
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The input energy E;, and the frictional forces are the non-conservative forces,

and the work-energy balance is therefore:
AE = E;, + Wy (5.5)

The work done by the viscous friction depends on the specific trajectory (as for
non-conservative forces), and is computed numerically for the sample optimal

trajectory presented in fig. 5-3 as:
Tiotal .
Wy = /dee = —/ b*dt = —3.14 J (5.6)
0 0

This suggests that an approximate lower bound for the pendulum system,
which shall serve as a theoretical benchmark for the motion planner perfor-

mance is:

5.1.2 Monte Carlo Results and Discussion

Montre-Carlo simulations are conducted with the proposed MEAQR RRT*
motion planner. It is queried 100 times for each value of p with R = g, and
Tz = 5[s] limiting the number of tree states to Ny., = 2000 and running
time to 10 minutes. Table 5-2 and fig. 5-2 report the results of Monte-Carlo
simulations for nine different values of p in the range 0.01 to 100.

As can be seen from table 5-2, the average values of energy for varying p
range between 50 — 65/ with a large standard deviation of approximately 40%
on average. This is far from the energy consumption for the optimal trajectory,
leading to the conclusion that for many runs, the planner had not sufficient
time (as well as sufficient states) to converge to the optimal solution. Over
all, such high standard deviation (> 100%) means there is no true meaning to
the average value. Thus, a more clear picture of the Monte-Carlo simulation
results is depicted in fig. 5-2 which in addition to the average values shows

the minimum and maximum energy trajectories.
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Figure 5-2: Motion planner (a) success rate for generating a trajectory and
(b) total actuation energy input (minimum, maximum, average) for varying
values of p. The approximate lower bound E = 23/ is also shown as a blue
line. Values are generated by running 100 Monte-Carlo simulations for each
value of p.

Theoretically, the energy value needed for a trajectory is bounded from
below by the global minimum, approximated in eq. (5.7), which is needed to
steer the pendulum from start to goal. The results in fig. 5-2 along with
the energy bound E,, show that changing the pseudometric parameter p does
not yield a significant difference in the computed minimum energy used on a
given trajectory, which is a desirable finding. From above, the energy value is
unbounded since there may be cases when no trajectory is generated by the
motion planner, hence, the infinite cost.

A run for which no trajectory was generated is discarded, and counted as
a failure (hence the success rate). The reason for monotonic decrease in the
success rate as p increases is due to the way p affects the local planner through
its representation in the pseudometric. As p increases, the optimal time 7™
is shortened (the termination condition of MinCost < pT is reached sooner),
resulting in shorter trajectory segments. Thus, for given N (number of states
in the tree), the branches (and therefore growth and region of reachability)

are much smaller relative to a tree with a lower p value.
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Table 5-2: Pendulum Monte-Carlo simulation results. The mean and standard
deviation of the energy E;,, trajectory time T}, and computation time T
till a solution is available.

p | pe £ oglJouls] | pr,,... £0T,,,[5] | Hpist £ 0pst[s] | Success Rate [%)]
0.01 | 51.63 +£19.27 5.89 £ 2.19 71.83 £102.1 94
0.1 62.48 + 27.30 7.18£3.15 111.4£171.9 87
62.27 £ 22.76 7.38£2.5 61.81 £+ 89.79 67
64.62 + 24.40 7.76 £2.7 103.76 + 136.81 62
59.95 £ 18.60 7.17+£2.12 107.97 4+ 132.52 51
10 56.37 £17.97 6.69 + 2.08 135.3 £152.43 48
20 59.27 £17.14 6.92 +1.85 95.84 +166.3 44
50 50.40 + 15.72 5.86 £ 1.79 70.41 4+ 109.45 46
100 | 56.26 £17.55 6.47 £ 1.95 91.9 +£141.19 36

The decreasing trend in the maximum energy used, is due to the decreas-
ing success rate, as there are significantly fewer trials to represent the true un-
derlying distribution of energy consumption for the generated trajectories. If
infinitely many Monte-Carlo simulations were attempted, the maximal energy
levels recorded will be, as mentioned, unbounded. Probabilistically speaking,
for each set of pseudometric parameters, there might be at least one simula-
tion that is able to generate a highly inefficient (nearly infinite cost) trajectory
right before the time limit is reached and the simulation is terminated.

As claimed earlier, if an optimal trajectory exists, for which the energy
consumption is minimal, the algorithm shall converge to it, regardless of the
parameters p and R. The parameters do however, affect the rate of convergence
of the algorithm to the optimum. Given a sufficient amount of time and a
higher upper bound on the number of states allowed in the tree, trials should
eventually converge to that optimal trajectory. The closer the approximation
of the pseudometric to the actual cost at each linearisation point, the faster is

the convergence.
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5.1.3 Sample Trajectories

Sample energy optimal and suboptimal trajectories along with their ac-
tuation signal and states versus time are presented in figs. 5-3 and 54 re-
spectively. The optimal trajectory reached the goal region within two swings
across the downward equilibrium point applying the maximal available torque
in synchronization with the sign of 9, maximizing the positive work done by
the actuator. In contrast, the suboptimal trajectory swings multiple times,
applying torque not in phase with 0. During these intervals, the actuator does
negative work thus reduces the amount of mechanical energy in the system,
wasting valuable power and resulting in a sub-optimal trajectory. The satu-

ration and bandwidth limits are apparent in the actuation plot versus time

in figs. 5-3(b) and 5-4(b).
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MEAQR RRT* — Pendulum State Space
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Figure 5-3: An energy optimal trajectory of the inverted pendulum with the
MEAQR pseudometric parameters: p =1, R = %. The total energy needed is
E;n, = 25.2 J where as the work done by the viscous friction is Wy = —3.14 J
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MEAQR RRT* — Pendulum State Space
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Figure 5-4: A suboptimal trajectory of the inverted pendulum with the
MEAQR pseudometric parameters: p =1, R = %. The total energy needed is
E;n = 48.96 J where as the work done by the viscous friction is Wy = —1.98 J
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5.2 Draganflyer X8

The quadrotor simulation is based on the previously mentioned Dragan-
flyer X8 vehicle shown in fig. 5-5. Due to the complexity of the vehicle and
the absence of a comprehensive model for this specific vehicle, it is modelled
in appendix A as a four rotor helicopter (quadrotor) with approximated aero-
dynamic body drag and no gyroscopic affects. The state vector x of the X8
is comprised of the position p = [z,y, 2], velocity v = [u,v,w], a quater-
nion rotation representation q = [qo, ¢1, 2, q3] (o is the scalar) and angular
rates w = [wy, wy,w,| and is formally defined in eq. (A.2) with the non-linear

state-space model given in eq. (A.3).

Figure 5-5: The Draganflyer X8 retrofitted with LIDAR, beam directing mir-
rors and a GoPro camera.

The quadrotor state bounds arise from dynamic and geometric constraints
which are listed in table 5-3. The actuation pair u = (F, T) of dimensionality
4, is comprised of the total thrust F and 7 = [£, M, N] which are torques
in body axes. It is limited in magnitude ||u| and in bandwidth (rate) |||
as listed in table 5-4. The non-holonomic constraints are derived and shown
in eq. (A.4) without aerodynamic drag terms. Those constraints represent
an explicit relationship between the orientation (represented for human read-
ability by two Euler angles 6 and ¢) and the inertial acceleration and the yaw
angle 1. The non-holonomic constraints can be incorporated into the sampling

scheme of the planner, allowing to compute € and ¢ as a function of p and
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1. However, by doing so, the SS representation must include the acceleration
terms, which leads to a SS of higher dimensionality than the original formula-
tion. Instead, the steering function propagating the dynamics model forward
in time ensures adherence to those constraints. The workspace bounds listed
in table 5-3 are scenario dependent, and are identical for the two artificial

environments considered in this thesis.

Table 5-3: X§ state space bounds

State Units | Lower Bound | Upper Bound
[z,y, 2] m 0
[lv|| m/sec 0
||wl] rad /sec 0 3
Table 5-4: X8 actuation bounds
Input Name | Units | Lower Bound | Upper Bound | Maximal Rate
F N 0 35 20
L N m -5 10
M N m -5 10
N N m -3 )

The MEAQR RRT™* algorithm is queried with the pseudometric and plan-
ner properties in table 5-5. The planner is tested on two artificial environments
in which the X8 manoeuvres; both contain obstacles in the form of geometrical
primitives.

Table 5-5: X8 MEAQR pseusdometric parameters

Parameter | p R
Value 20

Tonaz|$]
)| 5

Nmax
2000

(6 3
diag(ss, 5,

(S8 [VN]

5.2.1 Single Pillar Room
In this scenario the motion planner is invoked to determine a path for the
X8 in a bm x bm x bm space with a prism-like obstacle in the center (see fig. 5—-

6(a)).

The initial and target positions queried are p,,; = [0.75,0.75,1] and
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Pgoar = [4,4,3] respectively. Figure 5-6(a) depicts the trajectory in the
workspace. It averts the obstacle located at the center of the room while
maintaining a smooth trajectory. Figure 5-6(b) shows the speed profile of
the trajectory which clearly satifsies the velocity magnitude constraints and
is smooth, befitting a physical system. The energy needed to complete this
trajectory is £, = 2650 J and the trajectory duration is 7},,; = 3.7 s. It takes,
on average, approximately an hour to generate this trajectory. For comparison
purposes, the amount of energy needed to maintain the X§ in steady hover
for the same length of time can be computed. Based on power consumption of
Prover = 230 Watit, the total energy needed to maintain hover for the duration
of the trajectory is 851.J.
5.2.2 Single Window Room

A more challenging environment to manoeuvre in is depicted in fig. 5-7
with the MEAQR RRT* optimal trajectory and velocity profile. The initial
and target positions queried are p;,;; = [0.3,2,1] and p,,,; = [4,4, 2] respec-
tively. The energy needed to complete this trajectory is E;, = 2818 J and the
time needed to complete it is T},; = 3.2 5. It takes, on average, approximately

an hour to generate this trajectory.
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MEAQR RRT* - Environment A
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Figure 5-6: The projection of the trajectory on the 3D workspace and the
speed profile for environment A.
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MEAQR RRT* - Environment B
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Figure 5-7: The projection of the trajectory on the 3D workspace and the
speed profile for environment B.
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Map Building

In order to apply the motion planner on a real environment, a map repre-
senting the workspace is required prior to invoking the planner. In a scenario
where a map of the mission environment is not available a-priori, a manual re-
connaissance flight is conducted prior to the autonomous flight. This chapter
presents the different parts of the map building process, the parts of which are
depicted in fig. 6-1, that was developed and implemented for the X§& vehicle
and accordingly, makes use of the shortly presented sensors, available on the
X8. Of course, if the environment map is already available from other sources,
the motion planner can be applied directly to it.

In the course of the previous work in AML, conducted as part of a research
contract with DRDC-Suffield, the X§ has been retrofitted with the appropriate
sensor suit to allow state estimation, localization and mapping. This sensor
suit is comprised of an inertial measurement unit (IMU, available on stock
vehicle), an Hokuyo laser range finder (LIDAR)! , a sonar sensor and a multi-
camera vision system.

The Hokuyo LIDAR, mounted atop the X8, continuously scans its region
of interest as depicted in fig. 6-2. Each sweep of the plane contains 1080
samples or a circular sector of 270°. Each sample represents a reflected laser ray
treated by the system as an obstacle at that point in space. Atop the LIDAR,
two down reflecting mirrors are strategically placed to allow measurement of

distance to the surface above which the flight is conducted.

! http://www.hokuyo-aut.jp/02sensor/07scanner/utm_301x.html

- 07 -



Chapter 6

User Input
Start, Goal,

—— Planner
Draganflyer X8 Parameters
Hokuyo UTM < R I t. 3D
l 301X Laser } eal-time 3D Primitivef A
- . Kinodynamic
scan filter | Pointcloud Map Map " Guidance
- Motion
and Building ] System
ime Stampe
MCPTAM+ Posd v o~ Planner Ts s:s d
@_ Kalman Filter aggregato A ;:;cr:f:
\. J Physical
I Constraints

Control

Figure 6-1: The sensor retrofitted Draganflyer X8 is manually flown in the
target environment while laser scans are aggregated and projected to the world
frame, segmented, clustered, bounded and exported as a primitive based map
for the motion planner.

Detection Angle: 270°
Angular Resolution: 0.25°
Measurement Steps: 1080

Figure 6-2: Hokuyo LIDAR sampling region. Adapted from product specifi-
cations !

The multi-camera vision system runs an MCPTAM [23] (by A. Harmat
of AML) algorithm which utilizes the features detected by the vision system,
fused with IMU data, passed through a Kalman filter, to estimate the pose of
the X8 and to localize it relative to an arbitrary global frame of reference. The
pose and location estimates are used in ROS [45] to create a transformation

tree (tf tree? ) relating the different frames of reference used, such as vision,

2 tf is a ROS package that lets the user keep track of multiple coordinate frames over
time. tf maintains the relationship between coordinate frames in a tree structure buffered
in time, and lets the user transform points, vectors, etc between any two coordinate frames
at any desired point in time.
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sonar, IMU, body and LIDAR to one another. As depicted in fig. 6-1, it is

on the basis of this transformation information that the LIDAR aggregated

scans are projected to the global frame of reference to create a point cloud.

The point cloud is processed using PCL [47] to build the eventually exported

primitive based map of the target environment.

6.1 Laser Aggregator

To construct the map of the target environment with the X§ vehicle, a
laser assembler ROS node® queues the incoming scans through the following
filters:

Shadow Filter Readily available from ROS, this filter removes laser scan
samples that are most likely caused by the veiling effect when the edge
of an object is being scanned and returns multiple samples from that
edge. These redundant samples are removed by the shadow filter in the
following manner: Let O denote the origin of the laser scanner and two
samples are P, and P,. If the angle ZOP, P, is less than a particular
minimum or greater than a particular maximum, all neighbouring sam-
ples further away than P; are removed. The user defines the minimal
and maximal angle, and the number of neighbouring samples that are to
be removed. The interested reader is directed to ROS documentation.

Mirror Filter The environment mapping procedure does not attempt to
explicitly recognize the ground; thus, the samples associated with the
down-reflecting mirrors are filtered. These samples do not hold relevant
information for the obstacle registration process.

Rig Obstruction Filter Samples representative of objects closer than a pre-

defined distance (1 meter in this case) are also ignored. The distance

3 A node is a process or independent routine in ROS that performs a computation.
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/scan_Filter/scan_filtered L

ROS Bag File of Reconnaissance Flight

Jmy_assembler

Figure 6-3: As LIDAR scans and the tf tree are published (from the ROS
Bag file), the laser assembler and the filter nodes subscribe to those massages.
Scan are queued for filtering and are projected using the tf tree. Eventually,
all transformed and filtered scans are published as a point cloud file for further
processing in PCL.

used is one meter since it is not intended for the X& to fly in such prox-

imity to obstacles. Moreover, there are physical components on the X§&

which obstruct the laser beam path thereby generating false samples

and, should not be mapped.
The filter chain through which the laser scan are passed, is depicted in fig. 6-3.
Each scan is associated with a time stamp and so are the transformations in
the tf tree. Once filtered, the scans are transformed, by the corresponding
transformation from the tf tree, to the world frame. The z,y axes of the world
frame are arbitrary in their direction, where the z direction (gravity based) is
approximated from the Kalman filtered IMU data. The laser scan assembler
aggregates the projected scans together to a 3D point cloud representative of
the environment.
6.2 Map Creation

The proposed motion planner receives a primitive based environment map
as input. To create this representation, the generated point cloud is processed
using PCL [47] using both readily available algorithms it offers, as well as
custom written ones.
Due to the high sampling rate of the LIDAR, there might be multiple

samples in a given location in space. These are regarded as redundant; thus,

with the aim of reducing the cloud size, down-sampling is conducted using the
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Figure 6-4: A block diagram through which the point cloud is processed as

the environment map is created

PCL wozel filter* . Then, a PCL Kd Tree data structure is built to reduce

computational complexity of nearest neighbour queries in the following stages.
To identify the obstacle scene, the ground plane is segmented first in order

to limit the flight altitude. The ground is assumed to be a plane of the form:
NeT +nyy +mn.z2+D =0 (6.1)

where 7o = [ng, ny, nz]T is a normal unit vector. The segmentation is done using
model based RANSAC® [14] assuming an upward pointing normal vector 7
such that:

arccos (fv - 2) < 15°

A similar segmentation scheme is utilized to identify the walls (if those
exist), also modelled as planes, with a normal vector perpendicular to the
ground normal. Lastly, Euclidean clustering is conducted on the remaining
points in the cloud. Each cluster cloud is then fitted with the minimal bounding
bor using principal component analysis representative of the space occupied
by this obstacle. The resulting bounding boxes are registered and exported to

the motion planner. This process is depicted in the block diagram in fig. 6-4.

4 The space is divided by a grid of user chosen voxel resolution. All points within a voxel
are replaced by a single point in the voxel geometric center, otherwise, it is left empty.

> RANdom SAmple Consensus is an iterative method to estimate parameters of a math-
ematical model from a set of observed data which contains outliers.
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6.3 Real World Examples

Now that the motion planner and the map building process have been
presented, a test for their integration and performance on a real environment
is conducted. The McGill Aerospace Mechatronics Laboratory and the Mc-
Donald Engineering building were used as testing environments. The X§ was
manually flown in both environments with LIDAR and vision data collected
for the map building procedure. The picture of the environment, the point
cloud after segmentation, clustering and bounding, and the primitive based
ReaK representation are shown in fig. 6-5 for the AML laboratory. Figure 6-6

shows the same for the McDonald Engineering building rooftop.
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Figure 6-5: Map generation of the McGill Aerospace Mechatronics Laboratory.
(a) A panoramic picture of the lab. Note the point cloud clusters in different
colors (b) with their corresponding bounding boxes which are then used as
obstacle primitives in ReaK [44] as shown in figure (c)
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(b) McGill McDonald Engineering Building Rooftop in PCL

(¢) McGill McDonald Engineering Building Rooftop in ReaK

Figure 6-6: Map generation of the McGill McDonald engineering building (a)
A panoramic picture of the roof. Note the point cloud clusters in different
colors (b) with their corresponding bounding boxes which are then used as
obstacle primitives in ReaK [44] as shown in figure (c)
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Conclusions and Future Directions

This thesis presented a kinodynamic minimum energy RRT* based motion
planner-an incremental sampling based approach that extends the RRT* for
non-holonomic systems with actuation constraints for a-priori known environ-
ments to achieve minimal energy consumption along the generated trajectory
while maximizing the utility of the flight envelop. The MEAQR pseudometric
for the KNN search and a closed-loop optimal steering method for tree exten-
sion for state connections were formulated. The MEAQR pseudometric is rep-
resentative of the electromechanical energy needed to steer the system. Hence,
by minimizing the trajectory cost with respect to this pseudometric, a mini-
mal energy trajectory is obtained. This approach is asymptotically optimal,
as it takes advantage of the guaranteed optimality of the RRT* almost-sure
convergence. The proposed algorithm was tested on two systems: the inverted
pendulum, a system with 2D SS representation and the Draganflyer X8, an
octocopter in an x configuration with a 13D SS representation and complex
actuation constraints. In the following, the approach is summarized, its con-
tributions and limitations are reviewed, and lastly, possible improvements and
future research directions are conveyed.

7.1 Summary

Minimum energy. The MEAQR RRT* planner is based on the premise
that there exists such an optimal, minimal energy trajectory connecting the
initial state to the goal region. It was built on the concatenation of optimal
local path segments, yielding a global optimal trajectory, which was mathe-
matically validated for the simple, yet non-linear, and under-powered, inverted

pendulum system through Monte-Carlo simulations. Moreover, the planner
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was demonstrated on the high dimensional, under-actuated, non-holonomic
Draganflayer X8 system, by generating smooth, feasible, energy optimal tra-
jectories. The cost functional formulated for the linearised SS used as a pseu-
dometric represents the local approximation of the global objective to be min-
imized, which is the total energy consumed along the trajectory generated,
resulting in a minimal energy trajectory. In systems where this pseudometric
misrepresents the energy costs, the convergence rate of the proposed algorithm
to the minimal energy trajectory shall be substantially reduced.

Flight envelope and actuation constraints. The planner maximizes
the utility of the flight envelope, while ensuring the feasibility of the trajectory
by maintaining the actuation signals used to steer the systems dynamic model
forward in the tree extensions step, within their physical bounds.

Complex local planner. Most other motion planning approaches are
concerned only with collision detection and goal reaching on a simplified dy-
namic model. Moreover, the accepted approach for probabilistic motion plan-
ning (roadmap building) is based on the simplicity of the local planner for
configuration (or state) space connections. The MEAQR RRT* planner, in
contrast to these approaches, uses a complex local planner and pseudometric,
with high computational complexity involving long running times for trajec-
tory generation, rendering this method not feasible for real-time application,
given present day computing ability.

Environment modelling. The proposed planner assumes a-priori: knowl-
edge of the static environment in which the autonomous flight shall be con-
ducted. To test the proposed planner on an actual vehicle, a map building
procedure was developed in ROS and PCL utilizing the X8 sensor suit. A
primitive based environment representation was created using a set of seg-

mentation, clustering and bounding routines.
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7.2 Improvements and Future Directions
7.2.1 Algorithmic Improvements

Sampling scheme. A wisely chosen alternative sampling scheme, such
as goal centred Gaussian, shall shorten the elapsed time till an initial solution
is available and increase the convergence rate of the algorithm to the opti-
mal solution. However, the planner may get stuck in a local minima under
unfortunate circumstances, depending on the environment configuration. An-
other option is a dynamic sampling region. Regions that are already explored
are no longer of interest to steer towards. Mapping the reachability region
of the tree with respect to the metric, similar to [51], and sampling outside
that region, reduces redundant sampling and steering towards areas which are
already within the RRT's reach.

Increasing the convergence rate. Once a solution is found, and the
planner is allowed to continue running and improve on that generated trajec-
tory, sampling about that solution shall contribute to the convergence to the
optimal trajectory. However, this restricts the eventual trajectory to a specific
homotopic class of trajectories.

Reducing overall running time. In this work, the Runge-Kutta inte-
grator was found to be the most computationally efficient (least running time)
among those offered by both Matlab© and ReaK library. However, energy bal-
anced integrators (symplectic [9] or in particular Verlet [22]) which are used in
orbital trajectories or Hamiltonian mechanical systems, shall be more useful
in planners where the actuation is explicitly known, such as the one presented
in this thesis. Those are based on conservation of either energy or momentum

or a known incremental change in those quantities.
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7.2.2 Future Work

The area of operating autonomous aerial vehicles shall continue to de-
velop. There are many future research directions in this field from which the
MEAQR RRT* planner can benefit.

Bi-Directional RRT. Simultaneously growing an RRT from the initial
as well as the goal state substantially shortens the search time till an initial
solution is available and reduces the chance of converging to local minimas. A
Bi-Directional RRT approach is possible if the MEAQR can be formulated to
represent the cost connecting two states backwards in time.

Energy Functional. The pseudometric this thesis makes use of is based
on the fact that the electromechanical energy is proportional to the Ls-norm
of the actuation. Incorporating a machine-learning approach to create a more
accurate mapping from state space trajectories to their energy consumption
profiles will enable the planner to reach even closer to the true global minimum
energy trajectory. It will also enable lower dimensional planning, representing
the kinematics of the vehicle only, since each segment can be mapped to its
energy consumption profile.

Planning with a kinematic system representation. The frame-
work employed in the proposed planner, is equivalent to solving for a PID
controller (optimal control) for the system as many time as there are connec-
tions in the tree. If the closed-loop response of the system is known (after
the controller design), planning in the kinematic space as opposed to the open
loop dynamic space, shall prove to be much faster. To pursue this, a mapping
of an initial state and a reference signal to the state space is needed, enabling
collision detection and cost evaluation. This method can maintain its energy
considerations if trajectory segments can be efficiently mapped to their energy

consumption costs.
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Dynamic Environment. Though operation in a static environment
was assumed in this thesis, it is imperative that in future work, other aerial or
ground vehicles during low altitude flight shall be accounted for as obstacles.

Larger Mission Spaces. Mapping data structures used in this thesis
are sufficient for very small missions (rooms under 500,,3 in volume). However,
more efficient representations and algorithms are required to plan a trajectory
in a possible long range mission.

Trajectory Following Controllers. The appropriate trajectory fol-
lowing controllers, shall be used to demonstrate the generated trajectory on
the X§8. Such controllers can be developed with any one of existing traditional

techniques such as LQR or virtual target following.
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Appendix A
Draganfly X8 State Space Model

The Draganfly X8 state space model fits the state derivative formulation:

a(t) = f(x(t), u(t)) (A1)

z(t) = [p(t), v(t), q(t), w(t)] (A.2)

p(t) = [Pz, Dy, p.]" Position for the vehicle center of mass in

the global frame of reference

q(t) = [q0, 1, 2, qg]T Unit quaternion representing the rotation
of the body fixed frame in SO(3), with go

being the real part

v(t) = [va, vy, 0" Linear velocity in the global frame of ref-

erence

w(t) = [we,wy,w.]” | Angular velocity

The equations of motion follow:

p(?) v!()
o I __ R(q) 5 T ol Tl B
O ] 9" (Cb,(R(g)™' (1) IR(@) v ()] + F*) (A3)
q(t) 3q(t) - " (1)
o) |\ I (R0 - @) x J0P() - CpwoP (B)]lw (1))
where w(t) = [0, w,,wy,w,|". The rotation matrix R(q) and its transpose

R(q)T are obtained by converting the unit quaternion q(t) to its equivalent
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matrix representation. Since the unit quaternion constraint is enforced, the
SS is equivalent to 12D SS. F and 7 are the actuation forces and torques.
gl =10,0, g]T is the gravity vector. Note that the superscript I and B refers
to vector representation in the global and body fixed frame of references re-
spectively. Cp, and Cp, are translational and rotational aerodynamic drag
coefficient matrices. Both are R3**? and assumed to be diagonal to simply
model body cross-sectional drag.

Due to symmetry the inertia matrix J is assumed to be diagonal. The
translational and rotational drag coefficients are assumed to be located on the
diagonal as well. The numeric values of the parameters used in the model are:

Table A—1: X8 Physical Parameters

Parameters | Units | Value

m kg 2.025
Jn = ng kgm2 0.0613
Jas kgm? | 0.1115
Ch, kg/m | 0.51353

CD k‘g/m 0.5]3><3

w

The non-holonomic constraints presented here without aerodynamic drag with

Euler angles for readability:

tan (9) = © Cosf,fgSiw (A.4a)
sin () = —Zsiny + jcosy (A.4b)

VE iR+ (2 - g
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