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Abstract

In this thesis, we study the problem of channel estimation under hardware impairments

for Large Multiple Input Multiple Output(MIMO) systems. Large MIMO are wireless

communication systems with tens to hundreds of antennas at the base station which offer

numerous advantages over conventional MIMO, such as improved performance and energy

efficiency [9]. Large MIMO systems are often built with low-cost components, which may

lead to hardware imperfections and cause distortion of the base station’s and the mobile

station’s signal. In order to perform channel estimation, we develop an accurate system

model taking into consideration the distortion caused by hardware impairments. For this

system model, we extend the Linear Minimum Mean Square Error (LMMSE) estimator

for Large MIMO systems proposed in [5] for a multi-user system. The proposed LMMSE

estimator considers the distortion at both ends of the communication link and achieves

better performance in terms of relative estimation error per antenna over Signal-to-Noise

ratio (SNR) compared to estimators used for conventional MIMO systems, such as the

LMMSE and the Least Squares (LS) estimator. Furthermore, the Cramer-Rao bound

(CRB) for the channel estimation of the system is calculated.
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Sommaire

Dans cette thèse, nous étudions le problème d’estimation des canaux en cas de dèfaillances

matèrielles sur les systémes Large MIMO. Les LMIMO sont équipés de dizaines à centaines

d’antennes sur la station de base, offrant de nombreux avantages par rapport aux systèmes

MIMO traditionnels, tels que de meilleures performances et une efficacité énergétique ac-

crue. Les grands systèmes MIMO sont souvent fabriqués à partir de composants à faible

cout, ce qui peut conduire à des imperfections matérielles et se solder par du bruit de

distorsion au niveau de la station de base et des utilisateurs. Afin d’élaborer un modèle

plus fidèle pour ce type de système, nous prenons en considération le bruit causé par les

défaillances matérielles durant le processus d’estimation des canaux.

Pour ce modèle de système, nous étendons l’estimateur à erreur quadratique moyenne

minimale linéaire (LMMSE) aux systèmes LMIMO; cet estimateur est proposé ici pour

un système multi-utilisateurs. L’estimateur LMMSE présenté prend en compte le bruit

de distorsion aux deux extrémités et offre de meilleures performances en termes d’erreur

d’estimation relative du rapport signal-bruit (SNR) par antenne comparé aux estimateurs

utilisés pour les systèmes MIMO classiques, tels que les estimateurs LMMSE et à méthode

des moindres carrés (LS). En outre, un calcul est effectué de la borne Cramer-Rao (CRB)

du système.
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Chapter 1

Introduction

Over the last years, there has been an increasing interest on systems with large antenna

arrays known as Massive or Large MIMO systems. Large MIMO systems include a base

station with tens to hundreds of antennas serving a significantly lower number of users

compared to the number of antennas. The main idea behind these systems is to extend

conventional MIMO on a greater scale in order to achieve better performance mainly in

terms of energy and spectrum efficiency [9].

Although Large MIMO systems have a lot of advantages there is a number of open

problems that have attracted research interest over the last years. A notable difference

between conventional and Large MIMO is the quality of the hardware. Large MIMO

systems often use low quality components due to the large number of antennas which are

particularly prone to impairments. These impairments may cause in-phase/quadrature

(I/Q) imbalance, may limit the capacity of the system and possibly cause inaccuracies on

the estimation of the channel by creating distortion at both ends of the communication

link.
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Introduction 2

Channel estimation has always been a prominent research field in communication sys-

tems. Channel state information (CSI) is essential in order to use a communication link.

There are several research efforts on that field for conventional as well as Large MIMO

systems. However, the fact that the hardware is often assumed to be perfect may lead to

an inaccurate system model for Large MIMO.

The objective of this thesis is to analyze the impact of hardware impairments in channel

estimation for a Large MIMO system. Thus, the system model used assumes distortion

caused by hardware impairments on both the base station and the users. We use as basis

the LMMSE proposed in [5] in order to present a LMMSE estimator considering hardware

impairments for a multi-user Large MIMO system. In order to evaluate the performance

of the proposed estimator we compare it with the Least Squares (LS) and the Total Least

Squares (TLS) estimators as well as the LMMSE used for conventional MIMO systems and

we calculate the Cramer-Rao bound (CRB) on the channel estimation of the system.

This thesis is organized as follows. In Chapter 2, we include an overview on Large

MIMO systems presenting their main advantages and challenges. Furthermore, we provide

a theoretical background on channel estimation and on the CRB. In Chapter 3, the proposed

LMMSE estimator is presented and compared to the impairment-ignoring LMMSE, the LS

and the TLS estimators for a large MIMO system. Chapter 4 focuses on calculating the

CRB of the system presented in Chapter 3. Finally, Chapter 5 includes a summary of the

thesis and possible future problems.



Chapter 2

Background

2.1 Large MIMO systems

MIMO are systems with multiple antennas at both ends of the communication link. MIMO

systems take advantage of the multi-path propagation and with the use of space-time signal

processing they achieve better quality or data rate compared to single antenna systems [21].

As a result, MIMO technology has been popular in wireless communication systems over

the last years. They have been an essential element of communication standards including

the latest, LTE-Advanced.

MIMO systems consist of a base station communicating with a number of users in a

cell environment. These systems are described as Multi-User MIMO or MU-MIMO. Due

to the use of multiple antennas at the base station, they manage to achieve more degrees

of freedom compared to single antenna systems [9]. These degrees of freedom occur from

the fact that there are more antennas at the base station than the number of users served

concurrently. As a result, MU-MIMO systems offer significant advantages, such as increased

3
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data rate and enhanced reliability. The latest MU-MIMO systems use 8-10 antennas at

the base station [24]. The reasons that most of the systems are limited to that number

of antennas are hardware complexity, energy cost as well as the physical space needed to

accommodate the antennas.

Over the last few years, there has been an extensive research on systems with a large

number of antennas at the base station. Such systems are called Large or Massive MIMO

systems. The main idea behind these systems is to use those extra antenna elements in

order to direct the signal more precisely to the receivers either in a line of sight environment

or in a rich scattering one [24].

Large MIMO systems have been proven to have advantages over conventional MIMO

systems [9], mainly in terms of improved performance and energy efficiency and they can

be the basis for the development of future networks. Working in a larger scale comes with a

number of new challenges as well as a number of traditional research questions that have to

be revisited, some of them being channel estimation, signal detection and radio frequency

(RF) chain management.

2.1.1 Challenges

In this section the main difficulties in developing Large MIMO systems will be presented.

The system model that will be used includes a base station with Nr antennas serving Nt

terminals with one antenna each.

The first problem that was noticed in Large MIMO was the communication link. In

conventional MIMO systems, a duplex communication link is established which can either

be frequency division duplex (FDD) or time division duplex (TDD). In FDD transmission,

two frequency bands separated by a guard band are used, one for the uplink and one for
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the downlink. On the other hand, in TDD, there is one frequency band for both links and

the base station and the terminals alternate their transmission over time.

In conventional MIMO systems, for a pilot based method, the terminals send pilots to

the base station, based on which the base station estimates the channel for the uplink.

For TDD, since the uplink and the downlink share the same bandwidth the channel is

reciprocal, which means that the downlink channel is the reverse of the channel estimated

for the uplink and as such it can be easily calculated by the base station without the use

of extra pilots. On the other hand, for FDD, the downlink channel has to be estimated.

This creates two problems. Firstly, optimal downlink pilots have to be orthogonal between

the antennas, which means that the amount of time-frequency resources scales with the

number of the antennas at the base station. Secondly, the amount of channel responses

that each user has to calculate also scales with the number of antennas at the base station.

Hence, both in term of resources and complexity, FDD is more difficult in Large MIMO

compared to conventional MIMO. Despite the challenges, there have been research efforts

on implementing FDD for Large MIMO. The main proposed solution suggests to map the

highly correlated antennas at the base station to a single value representing that group of

antennas [15] having a system model with significantly less antennas at the base station. As

a result, the effective channel matrix will be smaller and savings in the downlink training

can be achieved.

Channel estimation in TDD transmission is easily performed since the terminals send

orthogonal pilots and the base station performs the estimation for the uplink. The base

station also estimates the downlink channel due to channel reciprocity [19], since both ends

operate on the same frequency band. However, the communication link also consists of

the antennas, radio-frequency (RF) chains and other transceivers’ hardware. Hardware on
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both ends may cause the transmitted and received signals to have phase and amplitude

differences, which creates different channel realizations at the uplink and the downlink.

In order to solve that problem, [31] proposes calibration of the hardware as a solution.

Hardware calibration can be performed with the use of an external reference in order

to compensate for the differences mentioned previously [28]. Researchers in [31] propose

the use of relative calibration which means that as long as each base station antenna’s

channel measurement deviates from the real one by the same multiplicative factor, channel

reciprocity holds.

At this point, it is important to specify that the cell that the base station is working

in, is surrounded by other Nc− 1 cells. In order to perform the channel estimation in TDD

using orthogonal pilots we would need Nc×Nt pilot symbols for each user, a number which

becomes very large as Nc grows. If the orthogonal pilots are less than Nt ×Nc, the pilots

from one cell will have to be reused in another, a phenomenon called pilot contamination.

In pilot contamination, the base station overhears the pilot transmission of a terminal from

another cell which uses the same pilots as one within its cell. Consequently, interference

from that terminal occurs during the channel estimation. Pilot contamination can occur

for conventional MIMO as well but is not as common since the number of terminals that

can be served simultaneously is significantly less compared to Large MIMO. Many research

groups have worked on pilot contamination as it is a prominent problem in Large MIMO.

A number of solutions have been proposed which vary from new precoding techniques to

non-linear estimation methods [12].
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2.1.2 Advantages

As mentioned before, large MIMO offers numerous advantages over conventional MIMO.

Some of the most important ones are:

Energy efficiency

In conventional MIMO, in a non line of sight (LOS) environment the field strength is usually

focused by the transmit antennas to a geographical point where the transmitted signals add

constructively. In [24], it is shown that it is possible with large antenna arrays to focus the

electromagnetic field to the point where the receiver is with great precision. As a result,

there are no unnecessary power peaks in the general area around the user, something that

can happen in a conventional MIMO system. Hence, Large MIMO are allowed to have

multiple users in a small area, since they will not cause distortion to each other.

No added computational complexity

When the idea of Large MIMO was introduced, it was initially claimed that by increasing

the number of antenna elements the resource allocation and signal processing would be

significantly more complicated. Nevertheless, that is not the case. Resource allocation

includes the process of assigning time and frequency resources to the users. Finding the

best sub-carriers for each user can be challenging in conventional MIMO. Small-scale fading

causes channel variations and varies at the order of milliseconds creating the need for

accurate and fast resource allocation algorithms. However, in Large MIMO systems the

channel variations mainly depend on large-scale fading in the time domain, which varies

significantly slower than the small-scale fading, rendering the resource allocation techniques

used in conventional MIMO unnecessary [6]. The researchers of [6] also proved that the
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complexity of signal processing is indeed increased but only scales linearly with the number

of antennas at the base station.

Resistance to fading / interference

Fading is a limiting factor in wireless transmissions especially in high scattering environ-

ments. In conventional MIMO, a fading dip occurs when the signal travels through multi-

ple paths that add destructively and as a result the signal’s strength becomes significantly

lower. In Large MIMO, this problem is less common since the probability that the signals

from all the antennas add destructively becomes lower as the number of antennas grows [9].

In the case of interference, the excess degrees of freedom can be used to cancel signals from

external sources, like users from other cells.

Inexpensive or Impaired Hardware

While in conventional MIMO impaired hardware may lead to problems [9], in large MIMO

systems, they usually do not. That occurs since one defective antenna among 200 is less of

a problem compared to one impaired element among 4 or 8 antennas. Moreover, instead of

having a 40 Watt amplifier per antenna [30], it is more cost efficient to use more, smaller,

even in the order of milli-watts, amplifiers. As mentioned previously, the use of a large

number of small antennas enables focusing of the electromagnetic field to a specific point

with great precision.
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2.1.3 Research Questions

As described thus far, Large MIMO offer new advantages as well as new challenges compared

to conventional MIMO. While unveiling new problems is one aspect, there is a number of

traditional questions, for which the solutions proposed for conventional MIMO do not

directly apply to large systems. Channel estimation under hardware impairments, which

is analyzed in Chapter 3, is among them. Other examples of research questions that have

to be revisited are described below.

Detection

Detection is one of the most vital parts of a communication process. Achieving a near

optimal detection with low complexity can be difficult as the number of antennas grow,

since algorithms commonly used in conventional MIMO do not suit large MIMO. Detectors

which can achieve near optimum performance in conventional MIMO, such as the sphere

decoder, have high complexity in large arrays, while the ones with low complexity, such as

zero-forcing (ZF), achieve relatively low performance [29]. As a result, algorithms which

scale well with the antenna array’s size are needed. It has been found that heuristic

detectors scale well as the number of antennas grow while having low complexity [7]. The

main two examples are the Likelihood Ascent Search (LAS) and the Reactive Tabu Search

(RTS) algorithms.

In order to present these methods, we first present the system model, given by Y =

HX + N where H ∈ C
Nr×Nt is the channel matrix, X ∈ C

Nt is the transmitted signal,

Y ∈ C
Nr is the received signal and N ∈ C

Nr is the complex Gaussian noise. The number

of antennas at the transmitter and the receiver are Nt and Nr, respectively, and are both
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in the order of tens to hundreds.

Both the LAS and the RTS algorithm begin with an initial solution vector X(0) =

BY , where B ∈ C
Nt×Nr can be a matched filter (MF) or a zero-forcing (ZF) filter. A

neighborhood of this vector is defined arbitrarily, for example it can include all the vectors

that differ from X(0) in one entry. The detector computes the value of the maximum

likelihood cost function, ||Y −HX(i)||
2, of the current solution vector X(0) as well as that

of each neighboring vector. The LAS algorithm defines as X(1) the neighbor with the best

cost function, and finds its own neighborhood. The algorithm repeats the previous steps

until there is no neighbor who achieves better performance in terms of maximum likelihood

cost than the current solution. The RTS is similar to the LAS but continues for a pre-

defined number of iterations. This happens in order to avoid being trapped in the first

local minimum it visits. Having stored all the solutions that it visited, the RTS chooses

the best one in terms of maximum likelihood cost.

These algorithms have overall low complexity with the most complex operations being

the calculation of X(0) which is in the magnitude of O(NtNr) and the search part being

O(Nt), both calculated in [7]. Thus, the overall complexity is O(NtNr) per transmitted

QAM or PAM symbol. As for its performance, it improves as the number of antennas

increases for the same number of users [27].

There have been proposed some variations of the LAS and the RTS detectors with the

main ones coming from [8] where it is suggested using random initial vectors instead of

using MF or ZF in order to lower the complexity. Another proposed idea includes the use

of multiple instances of LAS or RTS algorithms simultaneously in order to have a larger

variety of possible solutions [16].





Background 12

by maximizing the average rate C = maxφ∈Φ maxψ∈ΨEH [C(Hφψ)] where C(Hφψ) is the

capacity of the channel Hφψ. The channel Hφψ defines the link between the set φ of Lt

antennas at the transmitter and the set ψ of Lr antennas at the receiver, where Φ and Ψ

include all the possible sets of antenna combinations at the transmitter and the receiver,

respectively.

In [18], it is proposed to use a single RF chain configuration at the transmitter. The

proposed transmitter operates with orthogonal frequency-division multiplexing (OFDM)

and achieves high power efficiency with the use of clipping techniques, in order to limit the

total transmitted power.

As stated previously, the hardware used in Large MIMO is usually inexpensive with the

exception of RF chains. This happens because communication systems are more sensitive

to RF chain impairments than other hardware elements, such as amplifiers or filters. More

specifically, non-ideal RF chains can cause I/Q imbalance which distorts the transmitted

signal. I/Q imbalance transforms a circular signal, whose probability density function

(PDF) is invariant to rotations, to non-circular. As a result, it degrades the receiver’s

performance since many detection algorithms rely on the circularity of the received signal

[14]. More specifically, I/Q imbalance distorts the received signal as, yimb = K1y +K2y
∗,

where y is the ideal received signal and y∗ its complex conjugate, K1 and K2 are the

I/Q imbalance coefficients. To address this challenge, [2] presents a system which uses

widely-linear (WL) beamforming. This method includes a signal transformation at the

receiver in the form of yWL = wH1 yimb + wH2 y
∗
imb where the imbalanced received signal

and its complex conjugate are multiplied by weights, w1 and w2 respectively and then

added up, in order to eliminate the I/Q imbalance coefficients. The result is yWL =

(wH1 K1y +wH2 K
∗
2y) + (wH1 K2y

∗ +wH2 K
∗
1y

∗), where the first term of the sum is the wanted
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received signal and the second is the unwanted interference which can be eliminated with

the use of the proper weight coefficients.

2.2 Channel Estimation

CSI is essential in order to establish a communication link. Channel estimation is the

procedure with which we obtain CSI. Many common methods use a set of known pilots

sent from one end of the communication link to the other in order to acquire knowledge of

the channel. Well known pilot-based methods, used in MIMO, are the least squares (LS)

and the linear minimum mean square error (LMMSE) estimators [4]. In order to present

these estimators, the system model will be expressed as

Y = HX +N (2.1)

where X is the Nt × T transmitted pilots with Nt being the number of transmit antennas

and T the pilot length with T ≥ Nt in order to have more equations than unknowns. The

received signal, Y , is a Nr×T matrix, H ∈ C
Nr×Nt is the channel matrix and N ∈ C

Nr×T is

the Gaussian noise matrix with 0 mean and σ2
NI variance, with I being the identity matrix.
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2.2.1 Least Squares (LS)

The LS estimator is a method with low complexity which does not require any knowledge

about the channel statistics. The LS estimator is solving the problem:

min
ĤLS

||Y − ĤLSX||2 (2.2)

The result of which is :

ĤLS = Y X† (2.3)

where X† is the pseudo-inverse of X:

X† = XH(XXH)−1 (2.4)

In order to find the optimal set of pilots we solve [4]:

min
X

E[||H − ĤLS||
2
F ] subject to ||X||2 = PX (2.5)

where E[·] denotes expectation over N and PX is the given power constant of the pilots.

Using (2.1) and (2.3) we get:

E[||H − ĤLS||
2
F ] = E[||NX†||2F ]

= σ2
NItr(XX

H)−1 (2.6)
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where tr((XXH)−1) is the trace of the matrix (XXH)−1. Hence, the optimization problem

in (2.5) can be modified as:

min
X

tr(XXH)−1 subject to tr(XXH) = PX (2.7)

For a training sequence to be optimal with respect to (2.7) it has to satisfy the given

equation as proven in [3]:

XXH =
PX

T
I (2.8)

where I is the Nt×Nt identity matrix. XXH is Hermitian and positive semi-definite, thus,

any training matrix with orthogonal rows with norm

√

PX

T
can be a solution to (2.7).

2.2.2 Total Least Squares (TLS)

TLS is an extension of the LS estimator with the main difference being that there are

perturbations at the transmitted signal as well.

In order to present TLS the system model in (2.1) is re-written in vector form stacking

the rows into one column as:

y = (X + V )h+ n (2.9)

where X is the NrT×NrNt transmitted pilots with T ≥ Nt; V is the NrT×NrNt distortion

at the user-end; y is the NrT × 1 received signal vector; h ∈ C
NrNt×1 is the channel vector

and n ∈ C
NrT×1 is a Gaussian noise vector.
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Initially we want to minimize the perturbations, which are the noise variables at the

transmitted and the receive signal:

min
V̂ ,n̂

||[V̂ n̂]||F subject to y − n̂ ∈ Range(X + V̂ ) (2.10)

where || · ||F denotes the Frobenius norm. Having the values of V̂ and n̂ we solve an

equivalent problem to the LS one:

min
ĥTLS

||(X + V̂ )ĥTLS − (y − n̂)||2 (2.11)

In order to solve (2.11) we define A = [X y] and UTAV = Σ its singular value

decomposition (SVD). The NrNt + 1 singular values of A are σ1, σ2, . . . , σNrNt
, σNrNt+1,

with σ1 ≥ σ2 ≥ · · · ≥ σNrNt
≥ σNrNt+1. The TLS estimator, ĥTLS, is equal to [10]:

ĥTLS = (XHX − σNrNt+1I)
−1XHy (2.12)

In order to have a TLS solution the matrix, (XHX − σNrNt+1I) has to be non-singular.

According to [10], that occurs when σNrNt+1 > σNrNt
which ensures that the last eigenvalue

has multiplicity one. In the case of σNrNt+1 = 0 the results of the LS and the TLS estimators

are identical.

2.2.3 Linear Minimum Mean Square Estimator (LMMSE)

Although the LS estimator is a well known method, it does not always provide the best

results. When the channel statistics are known it is preferable to use the linear MMSE

estimator since it achieves better performance [13]. This estimator can be expressed in the



Background 17

following form [4]:

ĤLMMSE = Y A (2.13)

In order to minimize the MSE we must find the optimal value of A:

argmin
A
E[||H − ĤLMMSE||

2
F ] (2.14)

The estimation error becomes:

e = E[||H − ĤLMMSE||
2
F ]

= tr(RH)− tr(RHXA)− tr(AHXHRH) + tr(AH(XHRHX + σ2
N)A) (2.15)

where RH = E[(H − E(H))(H − E(H))H ] is the covariance of the channel and RY =

E[(Y − E(Y ))(Y − E(Y ))H ] the covariance matrix of the received signal. The optimal

value of A is given by solving ∇Ae = 0, to obtain:

Ao = (XHRHX + σ2
NI)

−1XHRH (2.16)

Thus, the LMMSE estimator from (2.11) becomes:

ĤLMMSE = Y (XHRHX + σ2
NI)

−1XHRH (2.17)
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2.3 Cramer-Rao Bound

In estimation theory, the Cramer-Rao bound (CRB) or Cramer-Rao lower bound (CRLB)

expresses a lower bound on the variance of estimators. The bound is primarily used

for unbiased estimators but can be used for biased ones with known bias as well with

the proper modifications. The covariance matrix of a vector of unbiased estimators ϑ̂ =

[ϑ̂1, ϑ̂2, . . . , ϑ̂N ]
T of a parameter column vector ϑ = [ϑ1, ϑ2, . . . , ϑN ]

T is lower bounded by

the inverse of the Fisher information matrix [23]:

cov(ϑ̂) ≥ I(ϑ)−1 (2.18)

where the matrix inequality A ≥ B means that the matrix A−B is positive semidefinite [23].

Since the trace of a semidefinite matrix is greater or equal to 0, (2.18) becomes:

tr(cov(ϑ̂)) ≥ tr(I(ϑ)−1) (2.19)

The Fisher information is the answer to the question how much information can a vector

of data x = [x1, x2, . . . , xN ] provide about an unknown parameter. We consider a vector of

unknown parameters ϑ and x is the measurements vector with a known PDF p(x;ϑ), the

Fisher information measures the amount of information about ϑ that can be collected by

observing x and is a N ×N matrix whose (i, j)th entry is given by:

Iij(ϑ) = E[
∂

∂ϑi
logp(x;ϑ)

∂

∂ϑj
logp(x;ϑ)] = −E[

∂2

∂ϑi∂ϑj
logp(x;ϑ)] (2.20)
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where log p(x;ϑ) is the natural logarithm of the pdf of x and E[·] denotes the expecta-

tion over x. The CRB can be considered as a benchmark in order to compare unbiased

estimators. The ones that achieve it are called minimum variance unbiased estimators

(MVUE).



Chapter 3

Channel Estimation for a Large

MIMO System under Hardware

Impairments

As mentioned in Chapter 2, Large MIMO systems offer numerous advantages over conven-

tional MIMO systems. There has been extensive research on various topics with one of the

most important ones being channel estimation.

One of the major differences between conventional and Large MIMO systems is the level

of hardware impairments. The transceivers on both ends of the communication link consist

of various components, such as amplifiers, filters etc. Since Large MIMO use inexpensive

hardware, there can be imperfections on any of these. These impairments may cause I/Q-

imbalance, limit the capacity of the system and cause inaccuracies on the estimation of

the channel by creating distortion at both ends of the communication link [9]. In order to

characterize the level of distortion, [28] uses the error vector magnitude (EVM) which is

20
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defined as EVM = E[||d̃−d||2]
E[||d||2]

, where d is the ideal transmitted signal and d̃ is the distorted

one. The latest LTE standards have strict requirements and use transceivers with low

EVM, usually below 0.08 [5]. However, Large MIMO can use hardware with more relaxed

constraints and EVM in the interval [0.05, 0.15].

In this chapter, the impact of hardware impairments at the base station and the users, on

the process of channel estimation, will be studied building on the work of [5] and extending

it to multi-user systems. The nature of these impairments can vary and it is very difficult

to accurately model the distortion from each impaired component [28]. Researchers in [11]

have conducted experiments and measurements in order to model the noise from impaired

hardware. Although there are multiple sources of distortion it is shown that modeling the

noise as Gaussian accurately reflects the real-world residual impairments. More specifically,

the total noise caused at the base station and the users is modeled as Gaussian noise with 0

mean and standard deviation defined by the EVM in the interval [0.05, 0.15]. This model

is adopted for this thesis, as it captures the main characteristics of impaired hardware and

is experimentally verified.

3.1 Channel estimation for a single-user Large MIMO

system

In this section, we examine a system with a base station with Nr antennas and a single

antenna user. We explain in detail the LMMSE estimator proposed in [5] as it will be the

basis for the proposed LMMSE estimator for multi-user systems in Section 3.2. In order

to acquire CSI using TDD transmission, the user sends pilots to the base station. With

these pilots the base station performs the channel estimation for the uplink. Usually in
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Large MIMO systems, the users have only knowledge of the statistics of the channel [20].

Another method includes the base station usong the uplink pilots to estimate the downlink

channel, due to channel reciprocity, and send feedback to the users. Researchers in [15] have

proposed that the users can perform the estimation too, by mapping multiple antennas of

the base station into one value in order to have a system model with less antennas at the

base station.

The uplink system model is given by:

y = h(x+ iUE) + iBS + n (3.1)

where x ∈ C is the deterministic pilot signal; h is the Nr× 1 Gaussian channel matrix with

0 mean and covariance matrix R = E[hhH ]. The additive Gaussian noise, n ∈ C
Nr×1, has

zero mean and covariance σ2
nI. The noise from the hardware impairments at the user-end

is iUE ∈ C
1×1 ∼ CN (0, σ2

UE) and iBS ∈ C
Nr×1 ∼ CN (0, σ2

BS) is the noise from the hardware

impairments at the base station.

The variance of the distortion variables is given by [5]:

σ2
UE = κUE p (3.2)

σ2
BS = κBS p diag(|h1|

2, . . . , |hNr
|2) (3.3)

where κUE and κBS characterize the level of impairments at the user-end and the base

station, respectively. The transmitted signal’s power is given by p = |x|2 and diag(|h1|
2, . . . )

is the Nr ×Nr diagonal matrix with |hi|
2 values at the diagonal.
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The conventional LMMSE estimator is given in Chapter 2:

ĥcLMMSE = x∗R(pR + σ2
nI)

−1y (3.4)

However, for the system presented in (3.1) we have to take into consideration the in-

terference caused by hardware impairments for the LMMSE estimator in order to achieve

better performance. Hence, the value of Ry = E[yyH ], is:

Ry = E[(h(x+ iUE) + iBS + n)(h(x+ iUE) + iBS + n)H ]

= E[h(x+ iUE)(h(x+ iUE))
H ] + E[hiHBS] + E[iBSh

H ] + E[iBSi
H
BS] + E[nnH ]

= E[hxxHhH + hiUEi
H
UEh

H ] + E[hiHBS] + E[iBSh
H ] + E[iBSi

H
BS] + E[nnH ]

= p(1 + κUE)Rh + E[hiHBS] + E[iBSh
H ] + pκBSRdiag + σ2

nI (3.5)

where the terms h(x + iUE)n
H , iBSn

H , h(x + iUE)
Hn and iHBSn are equal to 0 since they

are products of uncorrelated random variables and Rdiag is the Nr × Nr diagonal ma-

trix with values |R11|, . . . , |RNrNr
|. From (3.3), the covariance matrix of σ2

BS is equal to

κBSpdiag(|h1|
2, . . . , |hNr

|2). However, the values of the channel vector h are unknown.

Therefore, the values of the channel covariance Rdiag are used for the proposed estimator

since the channel statistics are known.

The distortion at the base station iBS is rewritten as zσBS with z ∼ CN (0, 1) since iBS
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is Gaussian. Hence, (3.7) becomes:

Ry = E[(h(x+ iUE) + iBS + n)(h(x+ iUE) + iBS + n)H ]

= p(1 + κUE)Rh + E[hσBSz
H ] + E[σBSzh

H ] + pκBSRdiag + σNI

= p(1 + κUE)Rh + pκBSRdiag + σ2
nI

since h and z are uncorrelated with zero mean.

The proposed LMMSE estimator in [5], taking into consideration the hardware impair-

ments becomes from (3.4):

ĥpLMMSE = x∗R(p(1 + κUE)Rh + pκBSRdiag + σ2
nI)

−1y (3.6)

The MSE of which is:

MSE = E[||ĥpLMMSE − h||22] = tr(C) (3.7)

where C is the error covariance matrix calculated as follows:

C = E[(ĥpLMMSE − h)(ĥpLMMSE − h)H ]

= E[(x∗RR−1
y y − h)(x∗RR−1

y y − h)H ]

= E[x∗RR−1
y yyH(R−1

y )HRHxT ]− E[x∗RR−1
y yhH ]− E[hyH(R−1

y )HRHxT ] + E[hhH ]

= pR(R−1
y )HRH − pRR−1

y R− pR(R−1
y )HRH +R

= R− pRR−1
y R (3.8)
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Thus far we have presented the estimator using one pilot. Having T pilots can be

translated into performing T separate LMMSE estimators and averaging over them [5].

ĥavg =
1

T

T∑

i=1

ĥi (3.9)

The performance of the LMMSE estimator taking into consideration the hardware im-

pairments compared to the traditional LMMSE estimator as the pilot length varies from 1

to 10 is shown below.
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Figure 3.1: Estimation error per antenna for conventional LMSSE and LMMSE considering
hardware impairments over pilot length for SNR equal to 5dB and 30dB, where SNR is
defined as ratio of the signal over the AWGN noise. Single-user system with 50 antennas
at the base station.

Figure 3.1 presents the estimation error per antenna which is defined as E[||h−ĥ||2]
Nr

over

1000 Monte-Carlo realizations of the channel, the distortion on both ends and the Gaussian

noise.
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Figure 3.2: Estimation error per antenna for conventional LMMSE and LMMSE considering
hardware impairments estimators over SNR. Single-user system with 50 antennas at the
base station.

In Figure 3.2 above, the conventional LMMSE estimator is compared to the LMMSE

estimator taking into consideration hardware impairments as SNR varies from 0dB to 30dB

over 1000 Monte-Carlo realizations of the channel, the noise on both ends and the Gaussian

noise in a system with 50 antennas at the base station and one single antenna user. The

covariance matrix, R of the channel is a symmetric toeplitz matrix with value 1 at the

diagonal and correlation factor r = 0.7 such as R(i,j) = r|i−j|. This model describes a

uniform linear array (ULA) where the correlation factor determines the eigenvalue spread

in R [20]. The level of the impairments is chosen to be 0.052 as the lower bound where

there is a difference in the performance of the two LMMSE estimators and 0.152 as the

upper bound of the parameter defined in [17].
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3.2 Channel estimation for a multi-user Large MIMO

system

In order to extend the model to a multi-user system, a Large MIMO system is considered

with Nr antennas at the base station and Nt users with one antenna each. The least squares

(LS) and the total least squares (TLS) estimators for a multi-user system will be presented.

In order to perform the pilot-based channel estimation at the uplink, the following system

model is considered:

Y = H(X + IUE) + IBS +N (3.10)

where X ∈ C
Nt×T is the deterministic pilot signal; T is the length of the training sequence

and is set to be equal or larger than Nt in order to have more equations than unknowns.

The average power of the transmitted signal is p. The Gaussian channel H is a Nr × Nt

matrix. The additive Gaussian noise N ∈ C
Nr×T has zero mean and covariance matrix

σ2
NI. The distortion that occurs at the user-end, IUE ∈ C

Nt×T , consists of Nt independent

Gaussian random variables with zero mean and covariance matrix Σ2
UE and IBS ∈ C

Nr×T ∼

CN (0,Σ2
BS) is the distortion that occurs at the base station.

The channel matrix H can be written as:

H = R
1/2
r HwR

1/2
t (3.11)

with Rr ∈ C
Nr×Nr and Rt ∈ C

Nt×Nt being respectively the transmit and receive spatial

correlation matrices given by R(i,j)r = r
|i−j|
r and R(i,j)t = r

|i−j|
t , respectively; where rr and rt
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are the receive and transmit correlation factors. Moreover, Hw ∈ C
Nr×Nt has i.i.d. complex

Gaussian entries with zero mean and 0.5 variance [1]. Hence, the channel correlation matrix

is a symmetric toeplitz given by:

R = Rt ⊗Rr (3.12)

where ⊗ is the Kronecker product.

It will be helpful to rewrite (3.10) as follows:

vec(Y ) = (X̄ + ĪUE)vec(H) + vec(IBS) + vec(N) (3.13)

where vec(·) represents the column vectorization of the matrix argument. The transmitted

signal, X̄ is a NrT ×NrNt Toeplitz matrix with first row equal to [x1,1 0 . . . 0︸ ︷︷ ︸

Nr

. . . xNt,1 0 . . . 0︸ ︷︷ ︸

Nr

]

and first column equal to [x1,1 0 . . . 0︸ ︷︷ ︸

Nr

. . . x1,T 0 . . . 0︸ ︷︷ ︸

Nr

], with xi,j = X(i,j). The user-end noise

matrix, ĪUE, has the same form with first row equal to [iUE1,1 0 . . . 0︸ ︷︷ ︸

Nr

. . . iUENt,1
0 . . . 0
︸ ︷︷ ︸

Nr

] and

first column equal to [iUE1,1 0 . . . 0︸ ︷︷ ︸

Nr

. . . iUE1,T
0 . . . 0
︸ ︷︷ ︸

Nr

], with iUEi,j
= IUE(i,j)

.
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The covariance of the distortion of each user, iUEi is given by a T × T matrix:

Σ2
UE = p












κUE qUE . . . qUE

qUE κUE . . . qUE

. . . . . .
. . . . . .

qUE . . . qUE κUE












(3.14)

where qUE is the correlation between two noise samples from the same user, qUE =

E[iUEij
iHUEij′

] with j 6= j′, and is in the interval [0, κUE]. As mentioned before, the source of

the noise can vary. A user with one source of distortion will have highly correlated samples,

while a user with multiple impaired components will have lower values of qUE. We assume

that all the users will have the same hardware and as a result will develop noise with the

same covariance matrix Σ2
UE.

The covariance of the distortion at the base station, vec(IBS), is similarly to the single-

user case given by:

Σ2
BS = κBS p diag(|h1|

2, . . . , |hNtNr
|2) (3.15)

where the matrix diag(|h1|
2, . . . , |hNtNr

|2) is the NrNt×NrNt diagonal matrix including the

elements of the channel vec(H) along its diagonal. The values of κUE and κBS determine

the degree of the hardware impairments at the user-end and the base station, respectively,

and are usually in the range [0.052, 0.152] [17].
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The LS and TLS estimators from Chapter 2 are modified accordingly for the system

model in (3.15). The LS estimator of the MIMO channel vec(H) is given by [1]:

vec(ĤLS) = X̄†vec(Y ) (3.16)

The TLS estimator of vec(H) is [4]:

ĤTLS = (X̄HX̄ − σNNt+1I)
−1X̄Hvec(Y ) (3.17)

where σNrNt+1 is the last singular value of the matrix [X̄ vec(Y )]. The TLS solution exists

as long as σX̄NrNt
> σNrNt+1 as explained in Chapter 2.

The conventional linear MMSE estimation of the MIMO channel H is given by [1]:

vec(ĤLMMSE) = RHYR
−1
Y vec(Y ) (3.18)

where

RHY = E[vec(H)vec(Y )H ] (3.19)

RY = E[vec(Y )vec(Y )H ] (3.20)
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Equation (3.21) can be expanded as:

RHY = E[vec(H)(vec(H)H(X̄H + ĪHUE) + vec(IBS)
H + vec(N)H)]

= E[vec(H)vec(H)HX̄H ] + E[vec(H)vec(H)H ĪHUE]

+ E[vec(H)vec(IBS)
H ] + E[vec(H)vec(N)H)]

= RX̄H (3.21)

Furthermore, equation (3.22) can be extended as:

RY = E[(X̄vec(H) + vec(N))(vec(H)HX̄H + vec(N)H)]

= E[X̄vec(H)vec(H)HX̄H ] + E[vec(N)vec(N)H ]

= X̄RX̄H + σ2
NI (3.22)

Combining (3.23) and (3.24), (3.20) becomes:

vec(ĤcLMMSE) = RX̄H(X̄RX̄H + σ2
NI)

−1vec(Y ) (3.23)
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The proposed linear MMSE estimation of vec(H) is also based on (3.20). For the

proposed LMMSE estimator vec(ĤpLMMSE), equation (3.21) can be expanded as:

RHY = E[vec(H)(vec(H)HX̄H + vec(N)H)]

= E[vec(H)vec(H)HX̄H ] + E[vec(H)vec(H)H ĪHUE]

+ E[vec(H)vec(IBS)
H ] + E[vec(H)vec(N)H)]

= RX̄H (3.24)

Moreover, equation (3.22) can be extended as:

RY = E[((X̄ + ĪUE)vec(H) + vec(IBS) + vec(N))

(vec(H)H(X̄H + ĪHUE) + vec(IBS)
H + vec(N)H)]

= E[X̄vec(H)vec(H)HX̄H ] + E[ĪUEvec(H)vec(H)H ĪHUE]

+ E[vec(IBS)vec(IBS)
H ] + E[vec(N)vec(N)H ]

= X̄RX̄H + E[ĪUEvec(H)vec(H)H ĪHUE] + κBSpdiag(R) + σ2
NI (3.25)

Similarly to the single-user case iBS can be rewritten as Σ2
BSz, with z a vector with CN (0, 1)

where z is uncorrelated with the channel H in (3.26) and (3.27).
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The term E[ĪUEvec(H)vec(H)H ĪHUE] can be rewritten as E[ĪUEvec(H)(ĪUEvec(H))H ].

Setting A = ĪUEvec(H) we get:

A =





























iUE11h11 + iUE21h12 + · · ·+ iUENt1
h1Nt

iUE11h21 + iUE21h22 + · · ·+ iUENt1
h2Nt

...

iUE11hNr1 + iUE21hNr2 + · · ·+ iUENt1
hNrNt

iUE12h11 + iUE22h12 + · · ·+ iUENt2
h1Nt

...

iUE1T
h11 + iUE2T

h12 + · · ·+ iUENtT
h1Nt

...

iUE1T
hNr1 + iUE2T

hNr2 + · · ·+ iUENtT
hNrNt





























The (i, j)th element of E[AAH ] is given by multiplying the ith element of A with the jth

element of A . For example the (1, 1) element of E[AAH ] is:

E[AAH ](1,1) = E[iUE11h11(iUE11h11)
H + . . .

+ iUENt1
h1Nt

(iUE(Nt−1)1
h1(Nt−1))

H + iUENt1
h1Nt

(iUENt1
h1Nt

)H ]

= E[iUE11h11(iUE11h11)
H ] + · · ·+ E[iUENt1

hNt1(iUENt1
hNt1)

H ]

= cκUER(1,1) + cκUER(2,2) + · · ·+ cκUER(Nt,Nt)

= NtcκUER(1,1) (3.26)

Since iUE11 and iUE21 denote noise from different users and as a result are uncorrelated.

Furthermore, R is a symmetric toeplitz matrix with R(j,j) = R(1,1).
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Similarly, E[AAH ](2,1) = NtcκUER(2,1).

However, after taking the product of the first and the Nth element of A we obtain

according to (3.16):

E[AAH ](N,1) = E[(iUE11h11 + · · ·+ iUENt1
h1Nt

)(iUE12h11 + iUE22h12 + · · ·+ iUENt2
h1Nt

)H ]

= E[iUE11h11(iUE12h11)
H ] + · · ·+ E[iUENt1

hNt1(iUENt2
hNt1)

H ]

= NtcqUER11 (3.27)

Hence, the TNr × TNr matrix RA = E[ĪUEvec(H)vec(H)H ĪHUE] is given by:

RA = UUE ⊗Rr (3.28)

where UUE is the covariance of the noise at each user and is the T × T matrix given in

(3.16) and Rr is the Nr ×Nr receive spatial correlation of the channel matrix.

The covariance matrix RA has the form:

RA , E[AAH ] = Ntc
















κUER(1,1) . . . κUER(1,Nr) . . . qUER(1,1) . . . qUER(1,Nr)

. . .
. . . . . .

. . . . . .
. . . . . .

κUER(Nr,1) . . . κUER(Nr,Nr) . . . qUER(Nr,1) . . . qUER(Nr,Nr)

. . .
. . . . . .

. . . . . .
. . . . . .

qUER(Nr,1) . . . qUER(Nr,Nr) . . . κUER(Nr,1) . . . κUER(Nr,Nr)
















Combining (3.26) and (3.27) we get the proposed LMMSE estimator:

vec(ĤpLMMSE) = RX̄H(X̄RX̄H +RA + pκBSdiag(R) + σ2
NINNR

)−1vec(Y ) (3.29)
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As mentioned before, the correlation, qUE, of the distortion iUE of each user, depends on

the nature of the impairments that caused the distortion. Figure 3.3 shows the performance

of the proposed LMMSE estimator as qUE varies from 0.01 to 0.15. It is shown that the

value of qUE does not have an impact on the performance of the proposed LMMSE estimator

for neither low nor high SNR values. The simulation was performed over 1000 Monte-Carlo

realizations of the channel, the noise on both ends and the Gaussian noise.
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Figure 3.3: Estimation error per antenna for proposed LMMSE estimator over corellation
of the noise on each user for SNR equal to 5dB and 30dB. Multi-user system with 50
antennas at the base station.

In Figure 3.4 below, the proposed LMMSE estimator is compared to the LS, the TLS

and the conventional LMMSE estimator as SNR varies from 0 to 30dB in a system with

50 antennas at the base station and multiple users. The level of the impairments at both

ends is chosen to be 0.052 and 0.152. The simulation was performed over 1000 Monte-Carlo

realizations of the channel and the noise samples.
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(a) κBS = κUE = 0.052 and Nt = 5 users
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(b) κBS = κUE = 0.052 and Nt = 15 users
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(c) κBS = κUE = 0.152 and Nt = 5 users
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(d) κBS = κUE = 0.152 and Nt = 15 users

Figure 3.4: Estimation error per antenna for LS, TLS, conventional and proposed LMMSE
estimators over SNR. Multi-user system with 50 antennas at the base station.
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(a) Nr = 100 antennas at the base station and
Nt = 5 users
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(b) Nr = 200 antennas at the base station and
Nt = 5 users
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(c) Nr = 100 antennas at the base station and
Nt = 15 users
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(d) Nr = 200 antennas at the base station and
Nt = 15 users

Figure 3.5: Estimation error per antenna for LS, TLS, conventional and proposed LMMSE
estimators over SNR with level of impairments being κBS = κUE = 0.152.



Chapter 4

Cramer-Rao Lower Bound for a

System with Hardware Impairments

As stated in Chapter 2, the covariance matrix of every vector of unbiased estimators ϑ̂ =

[ϑ̂1, ϑ̂2, . . . , ϑ̂N ]
T of a parameter column vector ϑ = [ϑ1, ϑ2, . . . , ϑN ]

T is lower bounded by

CRB which is defined as the inverse of the Fisher information matrix [23]:

cov(ϑ̂) ≥ I(ϑ)−1 (4.1)

The (i, j)th entry of I is given by:

Iij(ϑ) = E[
d

dϑi
logp(x;ϑ)

d

dϑj
logp(x;ϑ)] = −E[

d2

dϑiϑj
logp(x;ϑ)] (4.2)

where logp(x;ϑ) is the natural logarithm of the pdf of x, E[·] denotes expectation over x.

38
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4.1 Cramer-Rao bound for a single-user Large MIMO

system

The system explored hasNr antennas at the base station and 1 user with 1 antenna element.

The modulation is QPSK or QAM and the system model used is:

Y = h(x+ iUE) + IBS +N (4.3)

where x ∈ C
1×T is the deterministic pilot signal with length T ; h is the Nr×1 deterministic

channel matrix. The additive Gaussian noise, N ∈ C
Nr×T , has zero mean and covariance

matrix σ2
NI. The distortion that occurs at the user-end is iUE ∈ C

1×T ∼ CN (0, σ2
UE) and

iBS ∈ C
Nr×T ∼ CN (0, σ2

BS) is the distortion that occurs at the base station. The signal at

the jth antenna is:

yj = hj(x+ iUE) + iBSj
+ nj (4.4)

where hj = aj+ibj is the channel between the jth antenna and the single user and x = c+id

is the pilot signal. The mean and the variance of yj are (ajc − bjd) + i(ajd + bjc) and

σ2
j = |hj|

2σ2
UE + σ2

BS + σ2
N , respectively. Hence, the 2× 2 Fisher information matrix of the

signal at the jth antenna is given by:

I(aj, bj) =






−E[(d
2p(y;aj ,bj)

dajdaj
)]− E[(

d
2p(y;aj ,bj)

dajdbj
)]

−E[(d
2p(y;aj ,bj)

dbjdaj
)]− E[(

d
2p(y;aj ,bj)

dbjdbj
)]




 (4.5)
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In order to calculate the CRB it is preferable to use two real Gaussian variables yrj and

yimj
, instead of yj, with means ajc− bjd and ajd+ bjc, respectively, and the same variance

as yj. Since we use a deterministic channel when calculating the CRB the only random

variables are the distortion samples iUE and IBS and the noise N . Hence, the received

signals y1, y2 . . . yNr
are independent. The PDF of y is:

p(y1, y2, ..., yNr
) =

Nr∏

j=1

T∏

i=1

1
√

2πσ2
j

exp(−
T∑

i=1

(yrji − (ajci − bjdi))
2 + (yimji

− (ajdi + bjci))
2

2σ2
j

)

(4.6)

The natural logarithm of the probability function is:

logp(y1, y2, ..., yNr
) = logp(y1) + logp(y2) + · · ·+ log(yNr

) (4.7)

Taking the derivative of (4.7) with respect to aj we get:

d log p(y1, y2, ..., yNr
)

daj
=−

T

2

2ajσ
2
UE

σ2
j

+
T∑

i=1

ci(yrji − (ajci − bjdi))

σ2
j

+
T∑

i=1

aσ2
UE(yrji − (ajci − bjdi))

2

(σ2
j )

2

+
T∑

i=1

di(yimji
− (bjci + ajdi))

σ2
j

+
T∑

i=1

ajσ
2
UE(yimji

− (bjci + ajdi))
2

(σ2
j )

2
(4.8)
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Taking the derivative of (4.7) with respect to bj we get:

d log p(y1, y2, ..., yNr
)

dbj
=−

T

2

2bjσ
2
UE

σ2
j

−
T∑

i=1

di(yrji − (ajci − bjdi))

σ2
j

+
T∑

i=1

bσ2
UE(yrji − (ajci − bjdi))

2

(σ2
j )

2

+
T∑

i=1

ci(yimji
− (bjci + ajdi))

σ2
j

+
T∑

i=1

bjσ
2
UE(yimji

− (bjci + ajdi))
2

(σ2
j )

2
(4.9)

In order to calculate I11(hj) from (4.5) we must calculate the second derivative of (4.8)
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with respect to aj:

d2 log p(y1, y2, ..., yNr
)

dajdaj
=
T (2a2j(σ

2
UE)

2 − 2σ2
UEσ

2
j )

(σ2
j )

2

+
T∑

i=1

−c2iσ
2
j − 2ajσ

2
UEci(yrji − (ajci − bjdi))

(σ2
j )

2

+
T∑

i=1

σ2
UE(yrji − (ajci − bjdi))

2 − a2jσ
2
UEci(yrji − (ajci − bjdi))

(σ2
j )

2

−
T∑

i=1

4a2j(σ
2
UE)

2σ2
j (yrji − (ajci − bjdi))

2

(σ2
j )

4

+
T∑

i=1

−d2iσ
2
j − 2ajσ

2
UEdi(yimji

− (bjci + ajdi))

(σ2
j )

2

+
T∑

i=1

σ2
UE(yimji

− (ajdi + bjci))
2 − a2jσ

2
UEci(yimji

− (ajdi + bjci))

(σ2
j )

2

−
T∑

i=1

4a2j(σ
2
UE)

2σ2
j (yimji

− (ajdi + bjci))
2

(σ2
j )

4
(4.10)
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We take the expected value over y:

E[
d2 log p(y1, ..., yNr

)

dajdaj
] =

T (2a2j(σ
2
UE)

2 − 2σ2
UEσ

2
j )

(σ2
j )

2

+
T∑

i=1

−c2iσ
2
j − 2ajσ

2
UEci(E[yrji ]− (ajci − bjdi))

(σ2
j )

2

+
T∑

i=1

σ2
UE[(E[yrji ]− (ajci − bjdi))

2 − a2jci(E[yrji ]− (ajci − bjdi))]

(σ2
j )

2

−
T∑

i=1

4a2j(σ
2
UE)

2σ2
j (E[yrji ]− (ajci − bjdi))

2

(σ2
j )

4

+
T∑

i=1

−d2iσ
2
j − 2ajσ

2
UEdi(E[yimji

]− (bjci + ajdi))

(σ2
j )

2

+
T∑

i=1

(E[yimji
]− (ajdi + bjci))

2 − a2jci(E[yimji
]− (ajdi + bjci))

(σ2
j )

2

−
T∑

i=1

4a2j(σ
2
UE)

2σ2
j (E[yimji

]− (ajdi + bjci))
2

(σ2
j )

4

=−
T∑

i=1

c2i + d2i
σ2
j

+
T (2a2j(σ

2
UE)

2 − 2σ2
UEσ

2
j )

(σ2
j )

2
(4.11)

Similarly, in order to calculate I21(hj) from (4.5) we must calculate the second derivative
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of (4.8) with respect to bj:

d2 log p(y1, y2, ..., yNr
)

dajdbj
=
2ajbjT (σ

2
UE)

2

(σ2
j )

2

+
T∑

i=1

cidiσ
2
j − 2ajmcmiσ

2
UE(yrji − (ajci − bjdi))

(σ2
j )

2

+
T∑

i=1

2ajdi(yrji − (ajci − bjdi))

(σ2
j )

2

+
T∑

i=1

4ajbj(σ
2
UE)

2σ2
j (yrji − (ajci − bjdi))

2

(σ2
j )

4

−
T∑

i=1

cidiσ
2
j − 2ajdiσ

2
UE(yimji

− (ajdi + bjci))

(σ2
j )

2

−
T∑

i=1

2ajci(yimji
− (ajdi + bjci))

(σ2
j )

2

−
T∑

i=1

4ajbj(σ
2
UE)

2σ2
j (yimji

− (ajdi + bjci))
2

(σ2
j )

4
(4.12)
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The expectation of which is:

E[
d2 log p(y1, y2, ..., yNr

)

dajdbj
] =

2ajbjT (σ
2
UE)

2

(σ2
j )

2

+
T∑

i=1

cidiσ
2
j − 2ajmcmiσ

2
UE(E[yrji ]− (ajci − bjdi))

(σ2
j )

2

+
T∑

i=1

2ajdi(E[yrji ]− (ajci − bjdi))

(σ2
j )

2

+
T∑

i=1

4ajbj(σ
2
UE)

2σ2
j (E[yrji ]− (ajci − bjdi))

2

(σ2
j )

4

−
T∑

i=1

cidiσ
2
j − 2ajdiσ

2
UE(E[yimji

]− (ajdi + bjci))

(σ2
j )

2

−
T∑

i=1

2ajci(E[yimji
]− (ajdi + bjci))

(σ2
j )

2

−
T∑

i=1

4ajbj(σ
2
UE)

2σ2
j (E[yimji

]− (ajdi + bjci))
2

(σ2
j )

4

=
2ajbj(σ

2
UE)

2T

(σ2
j )

2
(4.13)

According to Schwartz’s theorem [26], since the second partial derivatives of a loga-

rithmic function are continuous, its partial derivations are commutative. Thus, we have
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E[
d
2 log p(y1,y2,...,yNr )

dbda
] = E[d

2 log p(y1,y2,...,yN )
dadb

]. Differentiating (4.9) with respect to bj we get:

d2 log p(y1, y2, ..., yNr
)

dbjdbj
=
T (2b2j(σ

2
UE)

2 − 2σ2
UEσ

2
j )

(σ2
j )

2

+
T∑

i=1

−d2iσ
2
j − 2ajσ

2
UEci(yrji − (ajci − bjdi))

(σ2
j )

2

+
T∑

i=1

σ2
UE(yrji − (ajci − bjdi))

2 − b2jσ
2
UEdi(yrji − (ajci − bjdi))

(σ2
j )

2

−
T∑

i=1

4b2j(σ
2
UE)

2σ2
j (yrji − (ajci − bjdi))

2

(σ2
j )

4

+
T∑

i=1

−c2iσ
2
j − 2bjσ

2
UEdi(yimji

− (bjci + ajdi))

(σ2
j )

2

+
T∑

i=1

σ2
UE(yimji

− (ajdi + bjci))
2 − a2jdi(yimji

− (ajdi + bjci))

(σ2
j )

2

−
T∑

i=1

4b2j(σ
2
UE)

2σ2
j (yimji

− (ajdi + bjci))
2

(σ2
j )

4
(4.14)

Similarly to (4.11), taking the expected value over y gives:

E[
d2 log p(y1, y2, ..., yNr

)

dbjdbj
] = −

T∑

i=1

c2i + d2i
σ2
j

+
T (2b2j(σ

2
UE)

2 − 2σ2
UEσ

2
j )

(σ2
j )

2
(4.15)
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Hence the information matrix of the signal at the jth antenna is given by:

I(aj , bj) =






∑T
i=1

|x|2i
σ2
j

−
T (2a2j (σ

2
UE)2−σ2

UEσ
2
j )

(σ2
j )

2 −
2ajbj(σ

2
UE)2T

(σ2
j )

2

−
2ajbj(σ

2
UE)2T

(σ2
j )

2

∑T
i=1

|x|2i
σ2
j

−
T (2b2j (σ

2
UE)2−σ2

UEσ
2)

(σ2)2




 (4.16)

The 2Nr × 2Nr information matrix for the signals at all the antennas becomes:

I(h) =












I(a1, b1) 0 . . . 0

0 I(a2, b2) . . . 0

...
...

. . .
...

0 0 . . . I(aNr
, bNr

)












(4.17)

Finally, the Cramer-Rao bound is given by:

ĥ ≥ I(h)−1 (4.18)
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In Figure 4.1, the LMMSE estimator from [5], along with the conventional, impairment

ignoring, LMMSE estimator are compared to the CRB for a system with 50 antennas at the

base station and one single-antenna user as SNR varies from 0dB to 30dB. The covariance

matrix, R of the channel is a symmetric toeplitz matrix with value 1 at the diagonal and

correlation factor equal to 0.5. The level of the impairments is chosen to be 0.052 and 0.152

as the lowest and the upper bound of the parameter ,respectively, [11]. The length of the

training pilots are either T = 5 or T = 10. The simulation was performed over 1000 Monte-

Carlo realizations of the channel, the distortion on both ends and the Gaussian noise. The

results of the simulations show that both LMMSE estimators achieve a performance close

to the Cramer-Rao bound.
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(a) κBS = κUE = 0.052 and T = 5
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(b) κBS = κUE = 0.052 and T = 10
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(c) κBS = κUE = 0.152 and T = 5
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(d) κBS = κUE = 0.152 and T = 10

Figure 4.1: Estimation error per antenna over SNR. Conventional LMSSE estimator and
LMMSE estimator considering hardware impairments compared to the CRB for a single-
user system with 50 antennas at the base station.
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4.2 Cramer-Rao bound for a multi-user Large MIMO

system

In the multi-user case the system model is given by:

Y = H(X + IUE) + IBS +N (4.19)

where X ∈ C
Nt×T is the deterministic pilot signal; T is the length of the training sequence.

The channel H is a deterministic Nr×Nt matrix. The additive Gaussian noise N ∈ C
Nr×T

has zero mean and covariance matrix σ2
NI. The distortion that occurs at the user-end,

IUE ∈ C
Nt×T , consists of Nt independent Gaussian random variables with zero mean and

variance σ2
UE and IBS ∈ C

Nr×T ∼ CN (0, σ2
BS) is the distortion that occurs at the base

station. The received signal at the jth antenna at the instant t ∈ (0, T ) is given by:

yjt =
M∑

n=1

hjn(xnt + iUEnt
) + iBSjt

+ njt (4.20)
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Thus, yjt is a complex Gaussian variable;
∑M

n=1(ajncni − bjndni) + i(ajndni + bjncni)

and σ2
j =

∑M
n=1 |hjn|

2σ2
UE + σ2

BS + σ2
N are its mean value and variance, respectively. In

order to calculate the CRB it is preferable to use two real Gaussian variables yrj and yimj

as in Section 3.1. Similarly to the single user case the received signals y1i, y2i . . . yNri are

independent since the channel H is deterministic. The probability function of y is:

p(y1, y2, ..., yN) = p(y1)p(y2) . . . p(yN)

p(y1, y2, ..., yNr
) =

N∏

j=1

T∏

i=1

1
√

2πσ2
j

e
−

∑T
i=1

(yrji−
∑M

n=1(ajncni−bjndni))
2+(yinji

−

∑M
n=1(ajndni+bjncni))

2

2σ2
j

(4.21)

The natural logarithm of the probability function is:

log p(y1, y2, ..., yNr
) = log p(y1) + log p(y2) + · · ·+ log p(yNr

) (4.22)

The derivatives with respect to ajm and bjm are:

d log p(y1, y2, ..., yNr
)

dajm
=−

T

2

2ajmσ
2
UE

σ2
j

+
T∑

i=1

cmi(yrji −
∑M

n=1(ajncni − bjndni))

σ2
j

+
T∑

i=1

ajmσ
2
UE(yrji −

∑M
n=1(ajncni − bjndni))

2

(σ2
j )

2

+
T∑

i=1

ajmσ
2
UE(yimji

−
∑M

n=1(ajndni + bjncni))
2

(σ2
j )

2

+
T∑

i=1

dmi(yimji
−
∑M

n=1(ajndni + bjncni))

σ2
j

(4.23)
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d log p(y1, y2, ..., yNr
)

dbjm
=−

T

2

2bjmσ
2
UE

σ2
j

−
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At this point, we should mention that the Information matrix of the signal at the jth

antenna for the multi-user case is a 2Nt × 2Nt matrix and is given by:

I(aj , bj) =












Iaj1aj1 Iaj1bj1 Iaj1aj2 Iaj1bj2 . . . Iaj1ajM Iaj1bjM

Ibj1aj1 Ibj1bj1 Ibj1aj2 Ibj1bj2 . . . Ibj1ajM Ibj1bjM
...

...
...

...
. . .

...
...

IbjMaj1 IbjM bj1 IbjMaj2 IbjM bj2 . . . IbjM1ajM IbjM bjM












(4.25)
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The second derivative of (4.23) with respect to ajm is given by:
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Taking the expected value over yj:
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Similarly to (4.27) :

E[
d log p(y1, y2, ..., yNr
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The second derivative of (4.23) with respect to ajm′ is given by:

d log p(y1, y2, ..., yNr
)

dajmdajm′

=
T (2ajmajm′(σ2

UE)
2 − σ2

UEσ
2
j )

(σ2
j )

2

+
T∑

i=1

−cmicm′iσ
2
j − 2ajm′cmiσ

2
UE(yrji −

∑M
n=1(ajncni − bjndni))

(σ2
j )

2

+
T∑

i=1

σ2
UE(yrji −

∑M
n=1(ajncni − bjndni))

2

(σ2
j )

2

−
T∑

i=1

2ajmcim′(yrji −
∑M

n=1(ajncni − bjndni))

(σ2
j )

2

−
T∑

i=1

4ajmajm′(σ2
UE)

2σ2
j (yrji −

∑M
n=1(ajncni − bjndni))

2

(σ2
j )

4

+
T∑

i=1

−dmidm′iσ
2
j − 2ajm′dmiσ

2
UE(yimji

−
∑M

n=1(ajndni + bjncni))

(σ2
j )

2

+
T∑

i=1

σ2
UE(yimji

−
∑M

n=1(ajndni + bjncni))
2

(σ2
j )

2

−
T∑

i=1

2ajm′dim(yimji
−
∑M

n=1(ajndni + bjncni))

(σ2
j )

2

−
T∑

i=1

4ajmajm′(σ2
UE)

2σ2
j (yimji

−
∑M

n=1(ajndni + bjncni))
2

(σ2
j )

4
(4.29)



Cramer-Rao Lower Bound for a System under Hardware Impairments 56

Taking the expected value over yj:
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Similarly to (4.30) :
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The second derivative of (4.23) with respect to bjm is given by:

d log p(y1, y2, ..., yNr
)

dajmdbjm
=
T (2ajmbjm(σ

2
UE)

2 − σ2
UEσ

2
j )

(σ2
j )

2

+
T∑

i=1

cmidmiσ
2
j − 2ajmcmiσ

2
UE(yrji −

∑M
n=1(ajncni − bjndni))

(σ2
j )

2

+
T∑

i=1

2ajmdim(yrji −
∑M

n=1(ajncni − bjndni))

(σ2
j )

2

+
T∑

i=1

4ajmbjm(σ
2
UE)

2σ2
j (yrji −

∑M
n=1(ajncni − bjndni))

2

(σ2
j )

4

−
T∑

i=1

cmidmiσ
2
j − 2ajmdmiσ

2
UE(yimji

−
∑M

n=1(ajndni + bjncni))

(σ2
j )

2

−
T∑

i=1

2ajmcim(yimji
−
∑M

n=1(ajndni + bjncni))

(σ2
j )

2

−
T∑

i=1

4ajmbjm(σ
2
UE)

2σ2
j (yimji

−
∑M

n=1(ajndni + bjncni))
2

(σ2
j )

4
(4.32)

The expectation of which is given by:
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(4.33)

As mentioned previously, the second derivatives of log p(y1, y2, · · · , yNr
) are continuous

functions. As a result, according to the Schwartz’s theorem [26], its partial derivations are

commutative. Consequently, we get:

E[
d log p(y1, y2, ..., yNr

)

dbjmdajm
] = E[

d log p(y1, y2, ..., yNr
)

dajmdbjm
] (4.34)



Cramer-Rao Lower Bound for a System under Hardware Impairments 58

The 2Nt × 2Nt information matrix of the signal at the jth antenna from (4.25):

I(aj , bj) =


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











Iaj1aj1 Iaj1bj1 Iaj1aj2 Iaj1bj2 . . . Iaj1ajM Iaj1bjM

Ibj1aj1 Ibj1bj1 Ibj1aj2 Ibj1bj2 . . . Ibj1ajM Ibj1bjM
...

...
...

...
. . .

...
...

IajMaj1 IajM bj1 IajMaj2 IajM bj2 . . . IajMajM IajM bjM

IbjMaj1 IbjM bj1 IbjMaj2 IbjM bj2 . . . IbjM1ajM IbjM bjM
















Where Iajmajm = −E[d log p(y1,y2,...,yN )
dajmdajm

], Iajmajm′
= −E[d log p(y1,y2,...,yN )

dajmdajm′

],

Iajmbjm = −E[d log p(y1,y2,...,yN )
dajmdbjm

] , Ibjmbjm = −E[d log p(y1,y2,...,yN )
dbjmdbjm

]. The 2NtNr× 2NtNr informa-

tion matrix for the signals at all the antennas is as (4.17):

I(H) =












I(a1, b1) 0 . . . 0

0 I(a2, b2) . . . 0

...
...

. . .
...

0 0 . . . I(aNr , bNr)












Finally, the Cramer-Rao bound is given by:

var(Ĥ) ≥ I(H)−1 (4.35)
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Figure 4.2 presents the LMMSE estimator proposed in Chapter 3 with the LS, the TLS

and the conventional, impairment ignoring, LMMSE estimator relatively to the Cramer-

Rao bound for a multi-user system with 50 antennas at the base station and 5 or 15

single antenna users as SNR varies from 0dB to 30dB. The level of the impairments is

chosen to be 0.052 and 0.152 as the lower bound and the upper bound of the parameter,

respectively, [11]. The simulation was performed over 1000 Monte-Carlo realizations of the

channel, the distortion on both ends and the Gaussian noise. Contrary to the single-user

scenario, when having multiple users, the estimators do not achieve a performance close to

the Cramer-Rao bound as shown in the simulations below.
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(a) κBS = κUE = 0.052 and Nt = 5 users
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(b) κBS = κUE = 0.052 and Nt = 15 users
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(c) κBS = κUE = 0.152 and Nt = 5 users
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(d) κBS = κUE = 0.152 and Nt = 15 users

Figure 4.2: Estimation error per antenna over SNR. LS, TLS, conventional and proposed
LMMSE estimators compared to Cramer-Rao bound for a multi-user system with 50 an-
tennas at the base station.



Chapter 5

Summary and Future Research

5.1 Summary

In this thesis, we considered the problem of channel estimation under hardware impairments

for a single and for a multi-user Large MIMO system. As we explained in Chapter 2, Large

MIMO systems usually use inexpensive and low quality hardware components which may be

imperfect. Instead of modelling the distortion from each impaired component separately, we

modelled the total distortion at the base station and the users as Gaussian noise following

the work of [31].

We used the LMMSE estimator from [5] for a single-user system, which takes into

consideration the impairments on both ends, as a basis to develop the proposed LMMSE

estimator for a multi-user system. In order to evaluate the performance of the proposed

estimator we compared it with the conventional LMMSE, the LS and the TLS estimators.

Furthermore, we calculated the Cramer-Rao bound of the proposed system model.

61
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Under this framework, we showed that the proposed LMMSE channel estimator achieves

better performance in terms of relative estimation error per antenna over Signal-to-Noise

ratio (SNR) compared to the other estimators, especially as the level of impairments grows.

Moreover, the LMMSE channel estimator considering hardware impairments was shown to

be close to the Cramer-Rao bound for the single-user case.

5.2 Open Problems and Future Research

Although the proposed estimator achieves better performance compared to estimators used

for conventional MIMO there is still room for improvement, as the Cramer-Rao bound

shows. The research group in [5] remarks that there may be non-linear estimators which

achieve better performance. Finding a non-linear estimator for Large MIMO and evaluating

its trade-off between performance and complexity is a problem for future research.

Moreover, a more general problem is channel estimation for Large MIMO under hard-

ware impairments for FDD. As mentioned in Chapter 2, there are research efforts in [15]

exploring the subject of FDD for Large MIMO but perfect hardware is assumed. Ap-

proaching the problem considering imperfect hardware can be a challenging subject for

future work.
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