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Abstract

In this thesis, we study the problem of channel estimation under hardware impairments
for Large Multiple Input Multiple Output(MIMO) systems. Large MIMO are wireless
communication systems with tens to hundreds of antennas at the base station which offer
numerous advantages over conventional MIMO, such as improved performance and energy
efficiency [9]. Large MIMO systems are often built with low-cost components, which may
lead to hardware imperfections and cause distortion of the base station’s and the mobile
station’s signal. In order to perform channel estimation, we develop an accurate system
model taking into consideration the distortion caused by hardware impairments. For this
system model, we extend the Linear Minimum Mean Square Error (LMMSE) estimator
for Large MIMO systems proposed in [5] for a multi-user system. The proposed LMMSE
estimator considers the distortion at both ends of the communication link and achieves
better performance in terms of relative estimation error per antenna over Signal-to-Noise
ratio (SNR) compared to estimators used for conventional MIMO systems, such as the
LMMSE and the Least Squares (LS) estimator. Furthermore, the Cramer-Rao bound

(CRB) for the channel estimation of the system is calculated.



vi

Sommaire

Dans cette these, nous étudions le probleme d’estimation des canaux en cas de defaillances
materielles sur les systémes Large MIMO. Les LMIMO sont équipés de dizaines a centaines
d’antennes sur la station de base, offrant de nombreux avantages par rapport aux systemes
MIMO traditionnels, tels que de meilleures performances et une efficacité énergétique ac-
crue. Les grands systemes MIMO sont souvent fabriqués a partir de composants a faible
cout, ce qui peut conduire a des imperfections matérielles et se solder par du bruit de
distorsion au niveau de la station de base et des utilisateurs. Afin d’élaborer un modele
plus fidele pour ce type de systeme, nous prenons en considération le bruit causé par les
défaillances matérielles durant le processus d’estimation des canaux.

Pour ce modele de systeme, nous étendons 'estimateur a erreur quadratique moyenne
minimale linéaire (LMMSE) aux systemes LMIMO; cet estimateur est proposé ici pour
un systeme multi-utilisateurs. L’estimateur LMMSE présenté prend en compte le bruit
de distorsion aux deux extrémités et offre de meilleures performances en termes d’erreur
d’estimation relative du rapport signal-bruit (SNR) par antenne comparé aux estimateurs
utilisés pour les systemes MIMO classiques, tels que les estimateurs LMMSE et a méthode
des moindres carrés (LS). En outre, un calcul est effectué de la borne Cramer-Rao (CRB)

du systeme.
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Chapter 1

Introduction

Over the last years, there has been an increasing interest on systems with large antenna
arrays known as Massive or Large MIMO systems. Large MIMO systems include a base
station with tens to hundreds of antennas serving a significantly lower number of users
compared to the number of antennas. The main idea behind these systems is to extend
conventional MIMO on a greater scale in order to achieve better performance mainly in
terms of energy and spectrum efficiency [9].

Although Large MIMO systems have a lot of advantages there is a number of open
problems that have attracted research interest over the last years. A notable difference
between conventional and Large MIMO is the quality of the hardware. Large MIMO
systems often use low quality components due to the large number of antennas which are
particularly prone to impairments. These impairments may cause in-phase/quadrature
(I/Q) imbalance, may limit the capacity of the system and possibly cause inaccuracies on
the estimation of the channel by creating distortion at both ends of the communication

link.
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Channel estimation has always been a prominent research field in communication sys-
tems. Channel state information (CSI) is essential in order to use a communication link.
There are several research efforts on that field for conventional as well as Large MIMO
systems. However, the fact that the hardware is often assumed to be perfect may lead to
an inaccurate system model for Large MIMO.

The objective of this thesis is to analyze the impact of hardware impairments in channel
estimation for a Large MIMO system. Thus, the system model used assumes distortion
caused by hardware impairments on both the base station and the users. We use as basis
the LMMSE proposed in [5] in order to present a LMMSE estimator considering hardware
impairments for a multi-user Large MIMO system. In order to evaluate the performance
of the proposed estimator we compare it with the Least Squares (LS) and the Total Least
Squares (TLS) estimators as well as the LMMSE used for conventional MIMO systems and
we calculate the Cramer-Rao bound (CRB) on the channel estimation of the system.

This thesis is organized as follows. In Chapter 2, we include an overview on Large
MIMO systems presenting their main advantages and challenges. Furthermore, we provide
a theoretical background on channel estimation and on the CRB. In Chapter 3, the proposed
LMMSE estimator is presented and compared to the impairment-ignoring LMMSE, the LS
and the TLS estimators for a large MIMO system. Chapter 4 focuses on calculating the
CRB of the system presented in Chapter 3. Finally, Chapter 5 includes a summary of the

thesis and possible future problems.



Chapter 2

Background

2.1 Large MIMO systems

MIMO are systems with multiple antennas at both ends of the communication link. MIMO
systems take advantage of the multi-path propagation and with the use of space-time signal
processing they achieve better quality or data rate compared to single antenna systems [21].
As a result, MIMO technology has been popular in wireless communication systems over
the last years. They have been an essential element of communication standards including
the latest, LTE-Advanced.

MIMO systems consist of a base station communicating with a number of users in a
cell environment. These systems are described as Multi-User MIMO or MU-MIMO. Due
to the use of multiple antennas at the base station, they manage to achieve more degrees
of freedom compared to single antenna systems [9]. These degrees of freedom occur from
the fact that there are more antennas at the base station than the number of users served

concurrently. As a result, MU-MIMO systems offer significant advantages, such as increased
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data rate and enhanced reliability. The latest MU-MIMO systems use 8-10 antennas at
the base station [24]. The reasons that most of the systems are limited to that number
of antennas are hardware complexity, energy cost as well as the physical space needed to
accommodate the antennas.

Over the last few years, there has been an extensive research on systems with a large
number of antennas at the base station. Such systems are called Large or Massive MIMO
systems. The main idea behind these systems is to use those extra antenna elements in
order to direct the signal more precisely to the receivers either in a line of sight environment
or in a rich scattering one [24].

Large MIMO systems have been proven to have advantages over conventional MIMO
systems [9], mainly in terms of improved performance and energy efficiency and they can
be the basis for the development of future networks. Working in a larger scale comes with a
number of new challenges as well as a number of traditional research questions that have to
be revisited, some of them being channel estimation, signal detection and radio frequency

(RF) chain management.

2.1.1 Challenges

In this section the main difficulties in developing Large MIMO systems will be presented.
The system model that will be used includes a base station with N, antennas serving NV
terminals with one antenna each.

The first problem that was noticed in Large MIMO was the communication link. In
conventional MIMO systems, a duplex communication link is established which can either
be frequency division duplex (FDD) or time division duplex (TDD). In FDD transmission,

two frequency bands separated by a guard band are used, one for the uplink and one for
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the downlink. On the other hand, in TDD, there is one frequency band for both links and
the base station and the terminals alternate their transmission over time.

In conventional MIMO systems, for a pilot based method, the terminals send pilots to
the base station, based on which the base station estimates the channel for the uplink.
For TDD, since the uplink and the downlink share the same bandwidth the channel is
reciprocal, which means that the downlink channel is the reverse of the channel estimated
for the uplink and as such it can be easily calculated by the base station without the use
of extra pilots. On the other hand, for FDD, the downlink channel has to be estimated.
This creates two problems. Firstly, optimal downlink pilots have to be orthogonal between
the antennas, which means that the amount of time-frequency resources scales with the
number of the antennas at the base station. Secondly, the amount of channel responses
that each user has to calculate also scales with the number of antennas at the base station.
Hence, both in term of resources and complexity, FDD is more difficult in Large MIMO
compared to conventional MIMO. Despite the challenges, there have been research efforts
on implementing FDD for Large MIMO. The main proposed solution suggests to map the
highly correlated antennas at the base station to a single value representing that group of
antennas [15] having a system model with significantly less antennas at the base station. As
a result, the effective channel matrix will be smaller and savings in the downlink training
can be achieved.

Channel estimation in TDD transmission is easily performed since the terminals send
orthogonal pilots and the base station performs the estimation for the uplink. The base
station also estimates the downlink channel due to channel reciprocity [19], since both ends
operate on the same frequency band. However, the communication link also consists of

the antennas, radio-frequency (RF) chains and other transceivers’ hardware. Hardware on
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both ends may cause the transmitted and received signals to have phase and amplitude
differences, which creates different channel realizations at the uplink and the downlink.
In order to solve that problem, [31] proposes calibration of the hardware as a solution.
Hardware calibration can be performed with the use of an external reference in order
to compensate for the differences mentioned previously [28]. Researchers in [31] propose
the use of relative calibration which means that as long as each base station antenna’s
channel measurement deviates from the real one by the same multiplicative factor, channel
reciprocity holds.

At this point, it is important to specify that the cell that the base station is working
in, is surrounded by other N, — 1 cells. In order to perform the channel estimation in TDD
using orthogonal pilots we would need N, x N; pilot symbols for each user, a number which
becomes very large as N, grows. If the orthogonal pilots are less than N; x N,, the pilots
from one cell will have to be reused in another, a phenomenon called pilot contamination.
In pilot contamination, the base station overhears the pilot transmission of a terminal from
another cell which uses the same pilots as one within its cell. Consequently, interference
from that terminal occurs during the channel estimation. Pilot contamination can occur
for conventional MIMO as well but is not as common since the number of terminals that
can be served simultaneously is significantly less compared to Large MIMO. Many research
groups have worked on pilot contamination as it is a prominent problem in Large MIMO.
A number of solutions have been proposed which vary from new precoding techniques to

non-linear estimation methods [12].
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2.1.2 Advantages

As mentioned before, large MIMO offers numerous advantages over conventional MIMO.

Some of the most important ones are:

Energy efficiency

In conventional MIMO, in a non line of sight (LOS) environment the field strength is usually
focused by the transmit antennas to a geographical point where the transmitted signals add
constructively. In [24], it is shown that it is possible with large antenna arrays to focus the
electromagnetic field to the point where the receiver is with great precision. As a result,
there are no unnecessary power peaks in the general area around the user, something that
can happen in a conventional MIMO system. Hence, Large MIMO are allowed to have

multiple users in a small area, since they will not cause distortion to each other.

No added computational complexity

When the idea of Large MIMO was introduced, it was initially claimed that by increasing
the number of antenna elements the resource allocation and signal processing would be
significantly more complicated. Nevertheless, that is not the case. Resource allocation
includes the process of assigning time and frequency resources to the users. Finding the
best sub-carriers for each user can be challenging in conventional MIMO. Small-scale fading
causes channel variations and varies at the order of milliseconds creating the need for
accurate and fast resource allocation algorithms. However, in Large MIMO systems the
channel variations mainly depend on large-scale fading in the time domain, which varies
significantly slower than the small-scale fading, rendering the resource allocation techniques

used in conventional MIMO unnecessary [6]. The researchers of [6] also proved that the
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complexity of signal processing is indeed increased but only scales linearly with the number

of antennas at the base station.

Resistance to fading / interference

Fading is a limiting factor in wireless transmissions especially in high scattering environ-
ments. In conventional MIMO, a fading dip occurs when the signal travels through multi-
ple paths that add destructively and as a result the signal’s strength becomes significantly
lower. In Large MIMO, this problem is less common since the probability that the signals
from all the antennas add destructively becomes lower as the number of antennas grows [9].
In the case of interference, the excess degrees of freedom can be used to cancel signals from

external sources, like users from other cells.

Inexpensive or Impaired Hardware

While in conventional MIMO impaired hardware may lead to problems [9], in large MIMO
systems, they usually do not. That occurs since one defective antenna among 200 is less of
a problem compared to one impaired element among 4 or 8 antennas. Moreover, instead of
having a 40 Watt amplifier per antenna [30], it is more cost efficient to use more, smaller,
even in the order of milli-watts, amplifiers. As mentioned previously, the use of a large
number of small antennas enables focusing of the electromagnetic field to a specific point

with great precision.
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2.1.3 Research Questions

As described thus far, Large MIMO offer new advantages as well as new challenges compared
to conventional MIMO. While unveiling new problems is one aspect, there is a number of
traditional questions, for which the solutions proposed for conventional MIMO do not
directly apply to large systems. Channel estimation under hardware impairments, which
is analyzed in Chapter 3, is among them. Other examples of research questions that have

to be revisited are described below.

Detection

Detection is one of the most vital parts of a communication process. Achieving a near
optimal detection with low complexity can be difficult as the number of antennas grow,
since algorithms commonly used in conventional MIMO do not suit large MIMO. Detectors
which can achieve near optimum performance in conventional MIMO, such as the sphere
decoder, have high complexity in large arrays, while the ones with low complexity, such as
zero-forcing (ZF), achieve relatively low performance [29]. As a result, algorithms which
scale well with the antenna array’s size are needed. It has been found that heuristic
detectors scale well as the number of antennas grow while having low complexity [7]. The
main two examples are the Likelihood Ascent Search (LAS) and the Reactive Tabu Search
(RTS) algorithms.

In order to present these methods, we first present the system model, given by Y =
HX + N where H € CN"*M is the channel matrix, X € C™ is the transmitted signal,
Y € CM is the received signal and N € C™ is the complex Gaussian noise. The number

of antennas at the transmitter and the receiver are N; and N, respectively, and are both
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in the order of tens to hundreds.

Both the LAS and the RTS algorithm begin with an initial solution vector X =
BY | where B € C¥*N can be a matched filter (MF) or a zero-forcing (ZF) filter. A
neighborhood of this vector is defined arbitrarily, for example it can include all the vectors
that differ from X in one entry. The detector computes the value of the maximum
likelihood cost function, ||Y" — HX(;||?, of the current solution vector X o) as well as that
of each neighboring vector. The LAS algorithm defines as X(;) the neighbor with the best
cost function, and finds its own neighborhood. The algorithm repeats the previous steps
until there is no neighbor who achieves better performance in terms of maximum likelihood
cost than the current solution. The RTS is similar to the LAS but continues for a pre-
defined number of iterations. This happens in order to avoid being trapped in the first
local minimum it visits. Having stored all the solutions that it visited, the RTS chooses
the best one in terms of maximum likelihood cost.

These algorithms have overall low complexity with the most complex operations being
the calculation of Xy which is in the magnitude of O(NV;N,) and the search part being
O(N,), both calculated in [7]. Thus, the overall complexity is O(N;N,) per transmitted
QAM or PAM symbol. As for its performance, it improves as the number of antennas
increases for the same number of users [27].

There have been proposed some variations of the LAS and the RTS detectors with the
main ones coming from [8] where it is suggested using random initial vectors instead of
using MF or ZF in order to lower the complexity. Another proposed idea includes the use
of multiple instances of LAS or RTS algorithms simultaneously in order to have a larger

variety of possible solutions [16].
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Radio Frequency (RF) chains

The management of the radio frequency chains in a conventional MIMO system has been a
subject of interest, especially in systems with 8 —12 antennas, due to the fact that RF chains
are very costly it terms of power and hardware. In order to mitigate this cost, antenna
selection has been proposed. It is common to have a system with N, and NN, antennas but
only L; and L, RF chains at the transmitter and the receiver, respectively, with L, < N,
and L, < N,. In [25], it is suggested that antenna selection should be performed in order to
achieve the maximum possible signal-to-noise ratio (SNR). Hence, the L; and L, antennas

with the highest channel gain are chosen by exhaustive search.

[y RFchain

I T
|1 |1
I .
Signal L‘—‘* > Signal
processing : . RF . H . RF ‘ . processing
|
. . .

switch . . | ‘ switch

RF chain f “-;
]

. . . . .
1 | | | | | | ¢
RF chain — || |/ ——® RFchain

Figure 2.1: System with L; RF chains and N; antennas at the transmitter and L, RF
chains and N, antennas at the receiver.

In MIMO systems, the circuit power consumption scales linearly with the amount of
RF chains used and it can become a significant problem for large antenna arrays. Hence,
the antenna selection process can be even more necessary compared to conventional MIMO
systems. In the specific case of having a system with a base station with many antennas
and a user with one, [22] proves that the optimal configuration with respect to ergodic
capacity is to use half of the existing antennas at the base station when we have perfect

CSI. In more general cases, it is stated that the optimal RF chain management is achieved
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by maximizing the average rate C' = maxyeco maxyey Ey[C(Hyy)| where C(Hyy) is the
capacity of the channel Hyy. The channel Hy,y defines the link between the set ¢ of L;
antennas at the transmitter and the set ¢ of L, antennas at the receiver, where ® and W
include all the possible sets of antenna combinations at the transmitter and the receiver,
respectively.

In [18], it is proposed to use a single RF chain configuration at the transmitter. The
proposed transmitter operates with orthogonal frequency-division multiplexing (OFDM)
and achieves high power efficiency with the use of clipping techniques, in order to limit the
total transmitted power.

As stated previously, the hardware used in Large MIMO is usually inexpensive with the
exception of RF chains. This happens because communication systems are more sensitive
to RF chain impairments than other hardware elements, such as amplifiers or filters. More
specifically, non-ideal RF chains can cause 1/Q imbalance which distorts the transmitted
signal. I/Q imbalance transforms a circular signal, whose probability density function
(PDF) is invariant to rotations, to non-circular. As a result, it degrades the receiver’s
performance since many detection algorithms rely on the circularity of the received signal
[14]. More specifically, 1/Q imbalance distorts the received signal as, Y, = K1y + Kay*,
where y is the ideal received signal and y* its complex conjugate, K; and K, are the
I/Q imbalance coefficients. To address this challenge, [2] presents a system which uses
widely-linear (WL) beamforming. This method includes a signal transformation at the
receiver in the form of yy = wf{ Yimb + wf v, where the imbalanced received signal
and its complex conjugate are multiplied by weights, w; and wy respectively and then
added up, in order to eliminate the I/Q imbalance coefficients. The result is yy =

(wl Ky + wi K3y) + (wi Koy* + wl Kiy*), where the first term of the sum is the wanted
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received signal and the second is the unwanted interference which can be eliminated with

the use of the proper weight coefficients.

2.2 Channel Estimation

CSI is essential in order to establish a communication link. Channel estimation is the
procedure with which we obtain CSI. Many common methods use a set of known pilots
sent from one end of the communication link to the other in order to acquire knowledge of
the channel. Well known pilot-based methods, used in MIMO, are the least squares (LS)
and the linear minimum mean square error (LMMSE) estimators [4]. In order to present

these estimators, the system model will be expressed as

Y=HX+N (2.1)

where X is the N; x T transmitted pilots with N; being the number of transmit antennas
and T the pilot length with 7" > N, in order to have more equations than unknowns. The
received signal, Y, is a N, x T matrix, H € C¥"*M is the channel matrix and N € CN <7 ig

the Gaussian noise matrix with 0 mean and o031 variance, with I being the identity matrix.
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2.2.1 Least Squares (LS)

The LS estimator is a method with low complexity which does not require any knowledge

about the channel statistics. The LS estimator is solving the problem:

min ||Y — H s X|[? (2.2)

Hps
The result of which is :

Hpg=YX' (2.3)

where X1 is the pseudo-inverse of X:

X = XH(xxM! (2.4)
In order to find the optimal set of pilots we solve [4]:

min B[ H — Hpgl|%] subject to || X||* = Px (2.5)

where E[] denotes expectation over N and Py is the given power constant of the pilots.

Using (2.1) and (2.3) we get:

E[||H — Hys||2] = B[N XT|[3]

= o3 Itr(X X)) (2.6)



Background 15

where tr((X X)71) is the trace of the matrix (X X#)~1. Hence, the optimization problem

in (2.5) can be modified as:
n}}n tr(XX")™! subject to tr(XX") = Py (2.7)

For a training sequence to be optimal with respect to (2.7) it has to satisfy the given

equation as proven in [3]:

XXH = %I (2.8)

where [ is the N; x N, identity matrix. X X is Hermitian and positive semi-definite, thus,

| P
any training matrix with orthogonal rows with norm ?X can be a solution to (2.7).

2.2.2 Total Least Squares (TLS)

TLS is an extension of the LS estimator with the main difference being that there are
perturbations at the transmitted signal as well.
In order to present TLS the system model in (2.1) is re-written in vector form stacking

the rows into one column as:
y=(X+V)h+n (2.9)

where X is the N, T x N, N, transmitted pilots with T" > Ny; V' is the N, T x N, N, distortion

CNTNt x1

at the user-end; y is the N, T x 1 received signal vector; h € is the channel vector

and n € CN'T*1 ig a Gaussian noise vector.
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Initially we want to minimize the perturbations, which are the noise variables at the

transmitted and the receive signal:

min [|[V #]||p subject to y — 7 € Range(X + V) (2.10)
V.,
where || - || denotes the Frobenius norm. Having the values of V and 7 we solve an

equivalent problem to the LS one:

min [|(X + V)hrps — (y — 2)|? (2.11)

hrrs

In order to solve (2.11) we define A = [X y] and UTAV = 3 its singular value
decomposition (SVD). The N,N; + 1 singular values of A are o1,09,...,0N,N,s ON.N,+1,

with o1 > 09> -+ > 0NN, = 0n.N,+1- The TLS estimator, ilTLs, is equal to [10]:

hris = (XX — oy D) Xy (2.12)

In order to have a TLS solution the matrix, (X# X — oy, n,411) has to be non-singular.
According to [10], that occurs when oy, n,+1 > on,n, Which ensures that the last eigenvalue
has multiplicity one. In the case of oy, n,+1 = 0 the results of the LS and the TLS estimators

are identical.

2.2.3 Linear Minimum Mean Square Estimator (LMMSE)

Although the LS estimator is a well known method, it does not always provide the best
results. When the channel statistics are known it is preferable to use the linear MMSE

estimator since it achieves better performance [13]. This estimator can be expressed in the
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following form [4]:
Hiymse =Y A (2.13)
In order to minimize the MSE we must find the optimal value of A:
argmin E[||[H — Hyyrse |7 (2.14)
The estimation error becomes:

e = E[||H — Hoyuse|[7]

=tr(Ry) —tr(RgXA) — tr(AP X" Ry) + tr( AT (X" Ry X + 0%)A) (2.15)

where Ry = E[(H — E(H))(H — E(H))"] is the covariance of the channel and Ry =
E[(Y — E(Y))(Y — E(Y))"] the covariance matrix of the received signal. The optimal

value of A is given by solving V 4e = 0, to obtain:
A, = (X" RyX + o3 1) ' X" Ry (2.16)
Thus, the LMMSE estimator from (2.11) becomes:

Hinmse = Y(X¥RyX + 0% I) ' X" Ry (2.17)
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2.3 Cramer-Rao Bound

In estimation theory, the Cramer-Rao bound (CRB) or Cramer-Rao lower bound (CRLB)
expresses a lower bound on the variance of estimators. The bound is primarily used
for unbiased estimators but can be used for biased ones with known bias as well with
the proper modifications. The covariance matrix of a vector of unbiased estimators 9 =
[191,192, o ,@N]T of a parameter column vector ¥ = [J,%s,...,9x]|T is lower bounded by

the inverse of the Fisher information matrix [23]:
cov(9) > I(9) ! (2.18)

where the matrix inequality A > B means that the matrix A— B is positive semidefinite [23].

Since the trace of a semidefinite matrix is greater or equal to 0, (2.18) becomes:

tr(cov(9)) > tr(I(9)7) (2.19)

The Fisher information is the answer to the question how much information can a vector
of data x = [z, 23, ..., zy] provide about an unknown parameter. We consider a vector of
unknown parameters ¢ and x is the measurements vector with a known PDF p(z; ), the
Fisher information measures the amount of information about ¥ that can be collected by

observing x and is a N x N matrix whose (i, j);, entry is given by:

2

0 9, 0
Li5(0) = El55-logp(;9) 5 5-logp(w; 0)] = —E[75=5-logp(x; V)] (2.20)
7 J L,
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where log p(x;1) is the natural logarithm of the pdf of x and E[] denotes the expecta-
tion over x. The CRB can be considered as a benchmark in order to compare unbiased
estimators. The ones that achieve it are called minimum variance unbiased estimators

(MVUE).



Chapter 3

Channel Estimation for a Large
MIMO System under Hardware

Impairments

As mentioned in Chapter 2, Large MIMO systems offer numerous advantages over conven-
tional MIMO systems. There has been extensive research on various topics with one of the
most important ones being channel estimation.

One of the major differences between conventional and Large MIMO systems is the level
of hardware impairments. The transceivers on both ends of the communication link consist
of various components, such as amplifiers, filters etc. Since Large MIMO use inexpensive
hardware, there can be imperfections on any of these. These impairments may cause 1/Q-
imbalance, limit the capacity of the system and cause inaccuracies on the estimation of
the channel by creating distortion at both ends of the communication link [9]. In order to

characterize the level of distortion, [28] uses the error vector magnitude (EVM) which is

20
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defined as FVM = %, where d is the ideal transmitted signal and d is the distorted
one. The latest LTE standards have strict requirements and use transceivers with low
EVM, usually below 0.08 [5]. However, Large MIMO can use hardware with more relaxed
constraints and EVM in the interval [0.05, 0.15].

In this chapter, the impact of hardware impairments at the base station and the users, on
the process of channel estimation, will be studied building on the work of [5] and extending
it to multi-user systems. The nature of these impairments can vary and it is very difficult
to accurately model the distortion from each impaired component [28]. Researchers in [11]
have conducted experiments and measurements in order to model the noise from impaired
hardware. Although there are multiple sources of distortion it is shown that modeling the
noise as Gaussian accurately reflects the real-world residual impairments. More specifically,
the total noise caused at the base station and the users is modeled as Gaussian noise with 0
mean and standard deviation defined by the EVM in the interval [0.05, 0.15]. This model

is adopted for this thesis, as it captures the main characteristics of impaired hardware and

is experimentally verified.

3.1 Channel estimation for a single-user Large MIMO
system

In this section, we examine a system with a base station with N, antennas and a single
antenna user. We explain in detail the LMMSE estimator proposed in [5] as it will be the
basis for the proposed LMMSE estimator for multi-user systems in Section 3.2. In order
to acquire CSI using TDD transmission, the user sends pilots to the base station. With

these pilots the base station performs the channel estimation for the uplink. Usually in
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Large MIMO systems, the users have only knowledge of the statistics of the channel [20].
Another method includes the base station usong the uplink pilots to estimate the downlink
channel, due to channel reciprocity, and send feedback to the users. Researchers in [15] have
proposed that the users can perform the estimation too, by mapping multiple antennas of
the base station into one value in order to have a system model with less antennas at the

base station.

The uplink system model is given by:

y=h(z+ivp) +ips+n (3.1)

where x € C is the deterministic pilot signal; h is the N, x 1 Gaussian channel matrix with
0 mean and covariance matrix R = E[hhf]. The additive Gaussian noise, n € C**! has
zero mean and covariance o21. The noise from the hardware impairments at the user-end

isipp € C*' ~ CN(0,0} ) and ips € CN*! ~ CN(0, 0%) is the noise from the hardware

impairments at the base station.

The variance of the distortion variables is given by [5]:

JZ2JE = KUED (3.2)

2

os = kpspdiag(|h ;... |hn, ?) (3.3)

where kyg and kpg characterize the level of impairments at the user-end and the base
station, respectively. The transmitted signal’s power is given by p = |z|? and diag(|h/?, . ..)

is the N, x N, diagonal matrix with |h;|? values at the diagonal.
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The conventional LMMSE estimator is given in Chapter 2:

heLMMSE = 2*R(pR + o21) 'y (3.4)

However, for the system presented in (3.1) we have to take into consideration the in-
terference caused by hardware impairments for the LMMSE estimator in order to achieve

better performance. Hence, the value of R, = E[yy'], is:

Ry = E[(h(l‘ + iUE) + iBS + n)(h(:v + iUE) + iBS + TL)H]
= Elh(z + ivp)(h(z + ivp)"] + Blhigg] + Elipsh”] + Elipsizs] + E[nn"]
= Elhax b + hiygifl ph'] + Elhifig] + Elipsh™] + Elipgitg] + E[nn®]

= p(l + KUE)Rh + E[h’lgs] -+ E[ZBshH] +pl€Bstmg + O'?LI (35)

Hp and i ¢n are equal to 0 since they

where the terms h(x + iyg)n, igsn, Wz +iyg)
are products of uncorrelated random variables and R,y is the N, x N, diagonal ma-
trix with values |Ry|, ..., |Rx,n,|. From (3.3), the covariance matrix of 0% is equal to
kpspdiag(|hi]?, ..., |hn,|?). However, the values of the channel vector h are unknown.

Therefore, the values of the channel covariance Rg;,, are used for the proposed estimator

since the channel statistics are known.

The distortion at the base station igg is rewritten as zopgg with z ~ CA(0, 1) since ipg



Channel Estimation for a Large MIMO System under Hardware Impairments 24

is Gaussian. Hence, (3.7) becomes:

R, = E[(h(z +iyg) +ips + n)(h(z +iyg) + igs + n)"]
= p(1 4 kyg)Ry + E[hopsz™] + E[opszh™] + PEBsRaiag + onI

= p(1 + kyg) Ry + PrpsRaiag + 021

since h and z are uncorrelated with zero mean.

The proposed LMMSE estimator in [5], taking into consideration the hardware impair-

ments becomes from (3.4):

A~

hpLMMSE = ZL’*R(p(l + IQUE)Rh -+ plﬁBstiag + (7721[)713/ (36)
The MSE of which is:
MSE = E[||hyearse — hl|2] = tr(0) (3.7)

where C' is the error covariance matrix calculated as follows:

~ ~

C = El(hpryrmse — b)) (hprarmse — b))
= E[(z*RR,'y — h)(«*RR, "y — h)"]
= E[z*RR, yy" (R, )" R"2"] — E[x*RR,'yh"] — E[hy" (R, )" R"2"] + E[hh"]
= pR(R," )" R" — pRR,'R — pR(R," )" R" + R

= R—pRR,'R (3.8)
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Thus far we have presented the estimator using one pilot. Having 7' pilots can be

translated into performing 7" separate LMMSE estimators and averaging over them [5].

. 1 ..
havy = 7 > hi (3.9)
i=1

The performance of the LMMSE estimator taking into consideration the hardware im-
pairments compared to the traditional LMMSE estimator as the pilot length varies from 1

to 10 is shown below.

10° : : : : : : : : 10° : ‘ : : :
== LMMSE ignoring hardware impairments == LMMSE ignoring hardware impairments
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Figure 3.1: Estimation error per antenna for conventional LMSSE and LMMSE considering
hardware impairments over pilot length for SNR equal to 5dB and 30dB, where SNR is
defined as ratio of the signal over the AWGN noise. Single-user system with 50 antennas
at the base station.

Figure 3.1 presents the estimation error per antenna which is defined as

[ R
Ny

1000 Monte-Carlo realizations of the channel, the distortion on both ends and the Gaussian

noise.
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Figure 3.2: Estimation error per antenna for conventional LMMSE and LMMSE considering
hardware impairments estimators over SNR. Single-user system with 50 antennas at the
base station.

In Figure 3.2 above, the conventional LMMSE estimator is compared to the LMMSE
estimator taking into consideration hardware impairments as SNR varies from 0dB to 30dB
over 1000 Monte-Carlo realizations of the channel, the noise on both ends and the Gaussian
noise in a system with 50 antennas at the base station and one single antenna user. The
covariance matrix, R of the channel is a symmetric toeplitz matrix with value 1 at the
diagonal and correlation factor r = 0.7 such as R ; = rl"9l. This model describes a
uniform linear array (ULA) where the correlation factor determines the eigenvalue spread
in R [20]. The level of the impairments is chosen to be 0.05? as the lower bound where
there is a difference in the performance of the two LMMSE estimators and 0.15% as the

upper bound of the parameter defined in [17].
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3.2 Channel estimation for a multi-user Large MIMO
system

In order to extend the model to a multi-user system, a Large MIMO system is considered
with /V, antennas at the base station and N; users with one antenna each. The least squares
(LS) and the total least squares (TLS) estimators for a multi-user system will be presented.
In order to perform the pilot-based channel estimation at the uplink, the following system

model is considered:
Y=HX+Iyg)+Igs+ N (3.10)

where X € CM*T is the deterministic pilot signal; T is the length of the training sequence
and is set to be equal or larger than /N; in order to have more equations than unknowns.
The average power of the transmitted signal is p. The Gaussian channel H is a N, x N;
matrix. The additive Gaussian noise N € CV*T has zero mean and covariance matrix

CN>T consists of IV, independent

o3 I. The distortion that occurs at the user-end, Iyg €
Gaussian random variables with zero mean and covariance matrix 2%] pand Ipg € CNexT

CN(0,%%,) is the distortion that occurs at the base station.
The channel matrix H can be written as:
H = R"H,R,” (3.11)

with R, € CN*Nr and R, € CM*M being respectively the transmit and receive spatial

correlation matrices given by R; ), = i~ and Ry, = rf 7 respectively: where r, and 7,
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are the receive and transmit correlation factors. Moreover, H,, € CV*Nt hasi.i.d. complex
Gaussian entries with zero mean and 0.5 variance [1]. Hence, the channel correlation matrix

is a symmetric toeplitz given by:
R=R,®R, (3.12)

where ® is the Kronecker product.

It will be helpful to rewrite (3.10) as follows:
vee(Y) = (X + Iyg)vec(H) + vec(Ips) + vec(N) (3.13)

where vec(+) represents the column vectorization of the matrix argument. The transmitted

signal, X is a N, T x N,.N; Toeplitz matrix with first row equal to [z110...0...25,10...0]

N, N,
and first column equal to [£170...0...2170...0], with =, ; = X(,j- The user-end noise
matrix, Iz, has the same form with first row equal to live,,0...0. . ivey, ,0...0] and

N, N,
first column equal to [ipg, ,0...0.. . ivg, 0 ..0], with iyg, ; = lyg, -

N, N,
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The covariance of the distortion of each user, iy g; is given by a T x T matrix:

Rue 4que -.-- (4QUE
qQuE KUE --- QUE
| qQue --- 4qUE KUE i

where gy g is the correlation between two noise samples from the same user, qyg =
E [Z.UEijigEij/] with j # 7/, and is in the interval [0, xyg]. As mentioned before, the source of
the noise can vary. A user with one source of distortion will have highly correlated samples,
while a user with multiple impaired components will have lower values of qyr. We assume
that all the users will have the same hardware and as a result will develop noise with the
same covariance matrix 27 5.

The covariance of the distortion at the base station, vec(Ipg), is similarly to the single-

user case given by:

EgBS = /stpdiag(\hﬂQw--,’hNtNT|2) (3.15)

where the matrix diag(|hi]?, ..., |hn,N,|?) is the N, N; x N, N; diagonal matrix including the
elements of the channel vec(H) along its diagonal. The values of kyg and kpg determine
the degree of the hardware impairments at the user-end and the base station, respectively,

and are usually in the range [0.05%, 0.15%] [17].
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The LS and TLS estimators from Chapter 2 are modified accordingly for the system
model in (3.15). The LS estimator of the MIMO channel vec(H) is given by [1]:

vec(Hys) = Xtvec(Y) (3.16)

The TLS estimator of vec(H) is [4]:
]:ITLS = (XHX — O'NNt_HI)_lXHUeC(Y) (317)

where oy, n, 11 is the last singular value of the matrix [X wvec(Y)]. The TLS solution exists

as long as aﬁ N, > 0N, Ny+1 as explained in Chapter 2.

The conventional linear MMSE estimation of the MIMO channel H is given by [1]:
'Uec(f{LMMSE) = RHYR;lvec(Y) (318)
where

Riy = Evec(H)vec(Y)] (3.19)

Ry = Elvec(Y )vec(Y)] (3.20)
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Equation (3.21) can be expanded as:

Ruy = Evec(H)(vec(H) (X" + I}}y) + vee(Ips)™ + vec(N)H)]
= Elvec(H)vec(H)? X*] + E[vec(H)vec(H)" I}};]
+ Elvec(H)vec(Ips)"] + Evec(H )vec(N)™)]

= RX"

Furthermore, equation (3.22) can be extended as:

Ry = E[(Xvec(H) + vec(N))(vec(H)? X 4 vec(N)7)]
= E[Xvec(H)vec(H)" X" + E[vec(N)vec(N)"]

= XRX" + o} 1

Combining (3.23) and (3.24), (3.20) becomes:

vec(Hopprse) = RXT(XRXT + 02,1 tvec(Y)

(3.21)

(3.22)

(3.23)
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The proposed linear MMSE estimation of vec(H) is also based on (3.20). For the

A~

proposed LMMSE estimator vec(H,rpase), equation (3.21) can be expanded as:

Ryy = Evec(H)(vec(H)" X 4 vec(N)™)]
— E[vec(H)vec(H)HXH] + E[Uec(H)vec(H)Hng]
+ Efvec(H)vec(Ips)] + Elvec(H)vec(N)™)]

= RX"Y (3.24)

Moreover, equation (3.22) can be extended as:

Ry = E[((X + Iyg)vec(H) + vec(Ipg) + vec(N))
(vec(H)T (X + IH,) + vec(Ips)™ + vee(N)™))
= B[ Xvec(H)vec(H)" X + E[Iygvec(H)vec(H)" I}
+ Elvec(Ips)vec(Ips)] + Elvec(N)vec(N)"]

= XRX" + E[lypvec(H)vec(H)? I},] + kpspdiag(R) + o3 1 (3.25)

Similarly to the single-user case ipg can be rewritten as ©%¢z, with 2z a vector with CN(0, 1)

where z is uncorrelated with the channel H in (3.26) and (3.27).
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The term E[Iygvec(H)vec(H)?IH,] can be rewritten as E[Iypvec(H)(Iygvec(H))H).

Setting A = Iygvec(H) we get:

e+ e, iz + - +ivey, N,

WEnh2 + iuEs, he2 + - + By, han,

WEL N + iU, N2+ iuEy, NN,

A= WELh + iue,hiz + -+ ey,

wephi +iveyphie + - + iUENtTtht

WE N + B hne + -+ wEy, 2 AN,

The (i, j ) element of E[AA™] is given by multiplying the iy, element of A with the jy,

element of A . For example the (1,1) element of E[AAY] is:

E[AAY) 1 1) = Elive, bu(ive,hi)" + ...
+ vy, (0B, =)+ ivey, biv (ivey,, i)
= Elivg, b (ivp, b))+ + E[iUENtlhNt1<iUENt1hNt1)H]
= ckyp R + ckupReg) + - + ckupRin, vy

= NtC’fUER(l,l) (326)

Since iyp,, and iyg, denote noise from different users and as a result are uncorrelated.

Furthermore, R is a symmetric toeplitz matrix with R = R 1).
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Similarly, E[AA®] 1) = NickypRe1).

However, after taking the product of the first and the Ny, element of A we obtain

according to (3.16):

E[AA"(x1) = El(ivp,hin + -+ + BN, N (ioE M + v, + - + iUENtztht)H]
= Elive, hi(ivpnhin) "]+ - + Elivey,, hva (ivey,.hva) 7]

= NiequeRi1 (3.27)

Hence, the TN, x T'N, matrix Ra = E[lygvec(H)vec(H)H I}1;] is given by:
Ra=Uyp ® R, (3.28)
where Uy is the covariance of the noise at each user and is the T x T" matrix given in

(3.16) and R, is the IV, x N, receive spatial correlation of the channel matrix.

The covariance matrix R4 has the form:

kveRay .. kueRan,y -+ queRay - queRanN,)
"
Ra £ E[AA"] = Nyc kveRw.1) - kveRw,. Ny - queRw.1 - aeRw,. N,
I queRw.1) -+ aeBw,. Ny - sveRnw.1y - kueRnw, N |

Combining (3.26) and (3.27) we get the proposed LMMSE estimator:

Uec<f{pLMMSE) = RXH(XRXH + RA +pl€Bsdiag(R) + U?VINNR)71U€C<Y) (329)
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As mentioned before, the correlation, ¢y g, of the distortion iy g of each user, depends on
the nature of the impairments that caused the distortion. Figure 3.3 shows the performance
of the proposed LMMSE estimator as qyg varies from 0.01 to 0.15. It is shown that the
value of gy g does not have an impact on the performance of the proposed LMMSE estimator
for neither low nor high SNR values. The simulation was performed over 1000 Monte-Carlo

realizations of the channel, the noise on both ends and the Gaussian noise.

10' ¢
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Figure 3.3: Estimation error per antenna for proposed LMMSE estimator over corellation
of the noise on each user for SNR equal to 5dB and 30dB. Multi-user system with 50
antennas at the base station.

In Figure 3.4 below, the proposed LMMSE estimator is compared to the LS, the TLS
and the conventional LMMSE estimator as SNR varies from 0 to 30dB in a system with
50 antennas at the base station and multiple users. The level of the impairments at both
ends is chosen to be 0.05% and 0.152. The simulation was performed over 1000 Monte-Carlo

realizations of the channel and the noise samples.
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Figure 3.4: Estimation error per antenna for LS, TLS, conventional and proposed LMMSE
estimators over SNR. Multi-user system with 50 antennas at the base station.
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Chapter 4

Cramer-Rao Lower Bound for a

System with Hardware Impairments

As stated in Chapter 2, the covariance matrix of every vector of unbiased estimators 9 =
[151,192, . ,1§N]T of a parameter column vector ¥ = [J1,%s,...,9x]T is lower bounded by

CRB which is defined as the inverse of the Fisher information matrix [23]:

~

cov(V) > I(9)~* (4.1)

The (4, 7) entry of I is given by:

L ogp(as 9) L ogp(a: 9)] — — B[
ogp\; ogp\; = dﬁiﬁj

I09) = Blg5: 49,
i J

logp(; 9] (4.2)

where logp(x; ) is the natural logarithm of the pdf of z, E[| denotes expectation over x.

38
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4.1 Cramer-Rao bound for a single-user Large MIMO
system

The system explored has IV, antennas at the base station and 1 user with 1 antenna element.

The modulation is QPSK or QAM and the system model used is:

where x € C'*7 is the deterministic pilot signal with length T'; h is the N, x 1 deterministic
channel matrix. The additive Gaussian noise, N € CV"*T' has zero mean and covariance
matrix 03/. The distortion that occurs at the user-end is iy € C**7 ~ CN(0,0% ) and
ips € CN"*T ~ CN(0,0%) is the distortion that occurs at the base station. The signal at

the 74, antenna is:
y; = hj(x +ivp) +ips, +n; (4.4)

where h; = a;+1b; is the channel between the j;, antenna and the single user and x = c+id
is the pilot signal. The mean and the variance of y; are (a;c — b;d) + i(a;d + b;c) and
07 = |h;]*ofrp + 0%g + 0%, respectively. Hence, the 2 x 2 Fisher information matrix of the
signal at the j;, antenna is given by:

—E[( d2p(y;aj»bj))] — E( d2p(y;ajvbj))]

daj da; daj db;
I(aj,b;) = (4.5)

d? ja5,b; d? ja5,b;
—E[(Thretil)] - p(frpeti)]
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In order to calculate the CRB it is preferable to use two real Gaussian variables y,. and

Yim;, instead of y;, with means ajc — b;d and a;d + b;c, respectively, and the same variance

as y;. Since we use a deterministic channel when calculating the CRB the only random

variables are the distortion samples i;r and Igg and the noise N. Hence, the received

signals 41, 9o . .. yn, are independent. The PDF of y is:

N,

T
1 (Yry — (ajei = 0;di)* + (Yimy, — (a;di + bjc;))?
p(y17y27"'7er>:HH exp(—z : : . ! )

2
20j

j:1 =1 A / 271-0-‘72 =1

The natural logarithm of the probability function is:

logp(y1, y2, .-, yn,) = logp(y1) + logp(ya) + - - - 4 log(yn, )

Taking the derivative of (4.7) with respect to a; we get:

dlogp(y1, Y2, - yn,) T 2000

da; 2 o2

2
g;

J
T
n Z ci(Yr;;, — (ajc; — bid;))
=1

T 2 2
aotrp(Yr,; — (ajc; — bjd;))
+ Z (02)2

i=1 J

2
9;

T
£y di(Yim,, — (bjci + a;d;))
=1

T 2 2
a;o ima; bC@‘i‘CLdZ
4 2 : j UE(y y ( j j )

2
el (%’)2

(4.6)

(4.7)

(4.8)
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Taking the derivative of (4.7) with respect to b; we get:
dlogp(yla Y2y -e0s er) _ Z2bJU[2]E
dbj 2 O'jz
B XT: di(yr,, — (aje; — bjd;))
p i
T
b0'2 e acl-—bdi 2
+Z vE(Yry, (232 idi))
i1 (o j)
T
Ci(Yimy — (bjci + ajd;))
R R
T
b;ot g (Yim,: — (bjci + a;d;))?
L 4.9
> Gle o

In order to calculate I;(h;) from (4.5) we must calculate the second derivative of (4.8)
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with respect to a;:

P logp(y1, y2, - yn,)  T(2a5(0fp)* — 204 507)

dada, (sz)z
+ zT: _C%O-JZ B 2aj0[2]Eci(yTji - (ajci - bjdz))
=1 (032)2
- O%E(yrﬂ _ (ajcl b d )) — aj O-UECZ(yT]z (a'jci - b]dz))
> (03)?
=1 j
_ i 4ai (0t )07 (yr;, — (ajci — bydy))?
=1 (012')4
dZQO—JZ - 2aj02UEdi(yimji - (bjci + a'jdi))
: (P
i=1 j

T
055 (Yimy: — (a;di +0;¢:))* = a0 5Ci(Yim,, — (a;di + bjc;))
+ Z

(07)?

B Z UUE (?szJ — (a;d; + b;c;))?

(05)*

(4.10)
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We take the expected value over y:

d2 logp(yb sy er)] _T<2a3(0-(2]E>2 B 20(2]EJ]2>

E pu—
T da, (07)?

r —cio} — 2a;00 pci(Elyy,] — (aj6 — b;d;))

+ Z (03)?
i=1
d O-IQJE[(E[yrji] - (ajci - b]dZ))2 a; CZ(E[yTﬂ] (ajci — b]dz))]

2 (o)
i=1

4%2‘(0?119) j( [Yr,) — (ajc — b;d;))?
(3)*
—dio} — 2a;07 pdi(ElYim,,] — (bje; + a;d;))

+Z — Z(02>2

i=1 J

(2

|
ﬂﬂ'Mﬂ

N i [Wim,.) — (a;di + bjc:))? — a3¢i(EYim,,) — (a;d; 4 bic;))

(07)?

_ Z 3 (00 5)* 03 (ElYim,.] — (ajd; + bjc))?

(0}‘-’)4
- Z o+ (02)2 (4.11)
i=1 J J

Similarly, in order to calculate Iy;(h;) from (4.5) we must calculate the second derivative
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of (4.8) with respect to b;:

d’log p(y1, Y2, - yn,) _ 2a;0,T(0f)°

dadb;

(03)?
N ET: CidiO'JQ- — 2ajmcmi0(2]E(yrﬁ — (ajc; — b;d;))
p (a5)?
. 2a;d;(yr;; — (ajc; — bd;))
2 (o)
I i 4ajbj(0-(2]E)2U]2'(:(y;§): (ajc; — bjdi))2
i=1

CidiO'jZ — 2ajdia[2]E(yimﬁ — (ajdi + bjci))

(07)?

,Mﬂ

@
I
—

2a;¢i(Yim,;; — (a;d; + bjc;))

M-

i—1 (03)?
L Aajbi (02 )20 (Yim,, — (ajd; + bjc;))?

- (4.12)
Py (05)
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The expectation of which is:

E[d2 lng(yb Y2, .-y er)]

2a;0;T (07 ;)?

daj db]

(03)?

¢idi0F = 20jmCmiorp(Elyy,,] — (a;¢ — bid;))

(07)?

2a;di(Elyr,,] — (ajc — b;d;))

+

-

-
Il
—

1

.
Il

+
.MH
S

N

4ajbj(UI2JE)2U]2'(E[?Jrﬂ] — (ajc; — bjdi))2

(@2’

+
-

S
Il
—

B i CidiO'jZ — 2a]dla(2]E(E[ylm”] — (ajdi + bjci))

i=1 (UJQ')Q
_ i 2ajci(E[yimjz'(] ; (ajd; + bjci))
i=1 Uj)2
T 4a;b; (UIQJE)QO?(E[yimﬁ] — (a;d; + bjc;))?
2 ()
2 )2
2%@(-((;;;5) T 3

According to Schwartz’s theorem [26], since the second partial derivatives of a loga-

rithmic function are continuous, its partial derivations are commutative. Thus, we have
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d*log p(y1,y2,--Yn, )1 _ 17 d2 log p(y1,y2,-yn)
Bl dbda | =E] dadb

|. Differentiating (4.9) with respect to b; we get:

& log p(y1, Y2, -, YN,) _T(zbi(O-IQJE)Z - QUIQJEUJQ')

dbj dbj (0']2-)2
T —d?ajz — 2aj0[2JEc,-(yTﬁ — (ajc; — b;d;))
5> .
i=1
L 0F (Y, — (a6 — bidi))? = Vot pdi(y,,, — (aje; — byd;))
B3 4
=1

a 4b2(U%E)2U?(yTji — (ajc; — bjd;))?

_ Z J (02)4

=1 J

N i —cio} — 20,00 pdi(Yim,: — (bjei + a;d;))
— (03)?
T 0(2]E<yimji — ((Zjdi + ij'))Q - (]gdz(ylmﬂ — ((Zjdi + ij'))

- Z (02)2
=1 J

_y 20H )0 o, — (s + ) 1
p (03)*

Similarly to (4.11), taking the expected value over y gives:
1 L E+d? T2 (0} p)? — 208 507
E[ ng(y17y27 7er)] _ _Z G + i + ( J(UUE) UUEUJ) (415>

db; db;

2o (@77



Cramer-Rao Lower Bound for a System under Hardware Impairments

47

Hence the information matrix of the signal at the j;;, antenna is given by:

ZT l=l7 T (203 (0t 5)* —0 go3) _ 2a;3b(0frp)*T
i=1 52 o2)2 o?)?
I(aj,bj): J 2 (ZJ) 2 (JQ) 2 )2 2 2
_2ajbj(0'UE) T ZT |$‘1 o T(ij(UUE) —9uE% )
(03)2 =1 o] (%)*

The 2N, x 2N, information matrix for the signals at all the antennas becomes:

](al,bl) 0 0
0 I(as,by) ... 0
I(h) = (a2,52)
0 0 ](aNMbNT>

Finally, the Cramer-Rao bound is given by:

(4.16)

(4.17)

(4.18)
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In Figure 4.1, the LMMSE estimator from [5], along with the conventional, impairment
ignoring, LMMSE estimator are compared to the CRB for a system with 50 antennas at the
base station and one single-antenna user as SNR varies from 0dB to 30dB. The covariance
matrix, R of the channel is a symmetric toeplitz matrix with value 1 at the diagonal and
correlation factor equal to 0.5. The level of the impairments is chosen to be 0.05% and 0.152
as the lowest and the upper bound of the parameter respectively, [11]. The length of the
training pilots are either T'= 5 or T" = 10. The simulation was performed over 1000 Monte-
Carlo realizations of the channel, the distortion on both ends and the Gaussian noise. The
results of the simulations show that both LMMSE estimators achieve a performance close

to the Cramer-Rao bound.
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1 ! ! ! 10 T T T T
== LMMSE ignoring hardware impairments ; + == LMMSE ignoring hardware impairments
= ® = L MMSE considering hardware impairments = 4 = LMMSE considering hardware impairments
—6— CRB N, —6— CRB

Relative Estimation Error per Antenna
Relative Estimation Error per Antenna

1074 i i i i i 1074 L I I I I
0 5 10 15 20 25 30 0 5 10 15 20 25 30
SNR(dB) SNR(dB)
_ _ 2 —
(a) kps = kyg = 0.05%2 and T =5 (b) kBs = kyp = 0.05° and T'= 10
10° T T i i i 7 10 : : : :
== LMMSE ignoring hardware impairments ] + == LMMSE ignoring hardware impairments
= # = LMMSE considering hardware impairments |] = % = LMMSE considering hardware impairments
o —©— CRB

Relative Estimation Error per Antenna
Relative Estimation Error per Antenna

1074 i i i i i 107 L I I I I
0 5 10 15 20 25 30 0 5 10 15 20 25 30
SNR(dB) SNR(dB)
_ _ 2 _
(c) kps = ke = 0.152 and T =5 (d) kps = kye = 0.15% and T' = 10

Figure 4.1: Estimation error per antenna over SNR. Conventional LMSSE estimator and
LMMSE estimator considering hardware impairments compared to the CRB for a single-
user system with 50 antennas at the base station.
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4.2 Cramer-Rao bound for a multi-user Large MIMO
system

In the multi-user case the system model is given by:
Y=H(X+1Iyg)+Igs+ N (4.19)

where X € CM*T is the deterministic pilot signal; 7" is the length of the training sequence.
The channel H is a deterministic IV, x N; matrix. The additive Gaussian noise N € CN-xT
has zero mean and covariance matrix o3 I. The distortion that occurs at the user-end,
Iy € CN*T consists of N, independent Gaussian random variables with zero mean and
variance 0%, and Ipg € CVT ~ CN(0,0%g) is the distortion that occurs at the base

station. The received signal at the jy, antenna at the instant ¢ € (0,7") is given by:

M
Yit = Z Pjn (Tt + ivE,,) +iBs;, + N (4.20)

n=1
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Thus, y;; is a complex Gaussian variable; ny:l(ajncm- — bjndn;) + i(ajndni + bjncni)
and o7 = SM hjnl?0%, + 0%g + 0% are its mean value and variance, respectively. In
order to calculate the CRB it is preferable to use two real Gaussian variables y,, and Y,
as in Section 3.1. Similarly to the single user case the received signals yi;,¥2; ... yn,; are

independent since the channel H is deterministic. The probability function of y is:

Py, Y2, - yn) = p(y1)p(y2) - - - p(yn)

M 2 M 2
T (97"‘7'1' _anl(ajncni_bjndni)) +(yin]-i _anl(ajndni""bjncni))

N T T Bl
p(yl,ym ---,er HH j
j

Jj=11=1
(4.21)
The natural logarithm of the probability function is:
log p(y1,y2, - yn,) = logp(y1) +log p(y2) + - - - +log p(yn, ) (4.22)
The derivatives with respect to a;,, and b;,, are:
dlogp(yh Y2, “'7er) _ ZM
dajm 2 0]2
Cmi yrﬂ - Zn 1<a]ncnz - b]ndm))
DY U;,
aijUE(yTji - 224:1 (ajncm' - bjndm))2
5> o
i=1 J
T M
+ Z aij-IQJE(yimji - anl(ajndm' + bjncm'))2
— (07)?
T M
dmi Mg —la ndnz + b'ncni

g;
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dlogp(yla Yo, -, er) _ Z2b]m0_[2]E

dbj 2 CTJ2-

. XT: dmi(yrji - Ziil(ajncni - bj dnz))
= a;

+ XT: bij-QUE(yTji - 27];/[:1 (ajncm‘ - bj dni))2

(0%)?

=1 J
T

+ Z bij[Q]E(yimji - Zanl(ajndm' + bjncm'))2
pa (07)?
T M

Cmi (ylmp - Zn: (CL ndm + b'ncm'))

+) o d (4.24)

=1 J

At this point, we should mention that the Information matrix of the signal at the jy,

antenna for the multi-user case is a 2/V; x 2NV, matrix and is given by:

Iaj1aj1 Iajlbjl Iaj1aj2 Iajlij IajlajM IajlbjM
I ijlajl ijlbjl ijlaj2 ijlij s ijlajM ijlbjM 4
(aj,b;) = (4.25)
L ijMajl ijMbjl ijMlljz ijMij ijMlajM ijMbjM i
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The second derivative of (4.23) with respect to aj, is given by:

2

dlogp(y1, Yo, .., yn,) 1203, (00 p)? — 0rpo})

2)\2
dajmdajm (Uj

N ET: —20% = 207mCni0 5 (Yry, — Somet (AjnCni — bjndni))
1

(03)°

T 2 M 2
o s —1\@jnCn; — bndnl
+ § UE(y Je Zn_1< J J ))

(07)?

_ Z 2a_7mczm yrﬂ - Zn 1(a]nc'm - bjndnz))

(03)?
_ Z ajm UUE) a; (yrji - Ziiﬂ%’ncm‘ - bjndni)>2
; (0']2-)4

M
—d207 = 20jmriOF g (Yimy, — oo (Gjnni + Djncni))
+ Z

(07)?

o mg; andnz+bncnz 2
+Z UEyg an(] j )

(27

. Z 2a]m im yzm], - Zn 1(ajndm + bjncm))

(07)?

M
_ Z ajm UUE Uj (ylmﬂ - anl (ajndnl + bjncni))2

(@2

(4.26)
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Taking the expected value over y;:

dlogp(ylay27“'>er)] T<2a32m<0-(2]E)2 _O-IQJEO-?)

Bl dajy, dajm, B (03)?
+2T: ~Ci0; = 205mCmi0 5 (ElYr;.] = Sone1 (@nCas — bjndui)
P (7)?
amcm— bjndni))?

+Z ofie (Elyy;] _Z

B Z 20 jm Cim (Eyr,,] — Zn W@jnCni — bjndy;))

_ Z ajm (0fp)? Uj( [yr,] — nM 1 (@jnCni = bjndni))?

(03)*

M
i Z _d72nz o3 QGdemlUUE<E[?/imji] - anl(ajndni + bjncni>>

(07)?

+ Z J%E(E[yzmjl] - Zﬂf:l(ajndm‘ + bjncm‘))2

. XT: 2ajmdim(E[yimji] - ﬂf:l(ajndm’ + bjncm'))
(o

)2
_ i 4a§m(0(2]E)2‘7]2‘(E[yzmﬂ] " 1<a3ndm + bjncm))Q
(Uj)

_ Z b 7O )

(4.27)

Similarly to (4.27) :

El

dlog p(y1, ya, '-'aer - Z mi + dz,; T(2b2 (UUE)2 - UIQJEUJZ‘)
by, dbjy,
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The second derivative of (4.23) with respect to a;,, is given by:

dlog p(y1, Y2, -+, Yn,.) _T<2ajmajm’(0(2JE>2 - UIQJEUJQ')
dajmdajm/ N ((7]2-)2
T 2 2 M
s —CiCm1i0F = 20 CniO g (Yrss — D ne1 (@inCri — bjndni))
i=1 (032')2
N XT: 0% 5 (Wry — Sy (@jnCni — Djndi))?
=1 (O—JZ)2

T M
- Z 20 jm i (yrji — Zn:l (ajncm —b; dni))
=1

(07)?

T M
_ Z 4ajmajml(UT2JE)2U_]2(yTji - Zn:1(ajncm' - bjndni))2

— (03

L ilyi02 — 20100 Qi O 5 (Yims — S (@indni + binCni))
+ Z mitm/i® 4 im' UmiC U Ep yzmji n=1\%jnlnj intni

T M
n Z U%E(yimg‘i - Zn:1(ajndni + bjncm‘))2

= (97)?

T M
. Z 2ajm’dim<yimji - Zn:l (ajndm' + bjncni>)

2
i—1 (%‘)2

d 4ajmajm’(012]E)20']2(yimji - Ziil(ajndm‘ + banm‘))2
- - (4.29)
i=1 (Uj)4
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Taking the expected value over y;:

E[dlogp(yb Y2, .-y er)] :T(Qajmajm'<o-(2]E)2 - 0(2]E0]2'>
dajm dajm/ (0?)2
ET: —Cmilemio? + 24 (E[Yr,)] — Yoney (@junCni — bindni))]
i (02)?
i=1

ajncni - bjndni))2

+

(]~

Q
(«l™
S
&
<

g?

|
]
s

=1 ( 32)2
. i 2ajmcim/<E[yrji] — Qil(ajncni - bj dnz))
=1 (032)2
L Ayt (0703 Bl ) = SoaLs (@i = b))
. Z AjmAim' \Oy g 0] yT‘ji n=1\@jnCnsi intng
P (o7)"
a —dpm; [dm/iO-]Q' + 2ajm/<E[yimji] - Zﬁ/lzl (ajndm' + bjncni>>]
DY .
=1 J
+ i O%E(E[ylm]z] - Zi/lzl(ajndm‘ + bjncm‘))2
(07)?
=1 J
B XT: 20 i (EYimm,.) = S ny (@i + bjnCni)
i—1 (07)?
_ i 4a’jmajml(JIQJE)ZUJZ(E[yimﬂ] - Zﬁiﬂamdm‘ + bjncm'))2
P Gk
T
_ Z CmiCm/i —:dmidm’i + T(2ajmajm'(0[22]E)2 - O_IQJEO_JQ‘) (4.30)
- (o (0‘ ; )2
i=1 J J

Similarly to (4.30) :

E[C“ng(yla Y2, -0y er)] _ ET: ConiCm/i + dmldmll n T(2b]mbjm’(a[2]E)2 — 0(2]EJ]2'>
dbjmdbjm/ o2 (0-2)2

J

(4.31)

i=1 J
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The second derivative of (4.23) with respect to bj,, is given by:

dlogp(y1, 2, .., yn,) T (2ajmbjm(0t5)? — 07507

At dbjm, B (02)2

J

N ET: CmilmiO? = 201 CmiO% Yy — > omey (AnCni — bjndii))
=1

(03)°

T M
+ Z 2ajmdim(y1“ji - Zn:1 (ajncni - bj dnz))

g CHE
T M
+ Z 4ajmbjm(012]E)20]2'(yTji - anl (ajncni - bj dm))2
p (o5
T M
_ Z CmidmiO} = 20jmdmiot g (Yimg: — D pe1 (@indni + jnCni))
=1 (0]2)2

T M
. Z 2a]mc’5m(yzmﬂ - Zn:l(ajndni + b]ncnz))
(07)?

i=1
T M
40jmbim (08 5) 205 Yimy: — Dnet (@indni + bjnCni))?
N Z 2\4 (4.32)
=1 (Uj)
The expectation of which is given by:
dlog p(y1, 2, - Yn. ), _ 20jmbjm (0t )T
E| T | = I (4.33)
@jm ADjim, (0%)
As mentioned previously, the second derivatives of log p(y1,¥2, - ,yn,) are continuous

functions. As a result, according to the Schwartz’s theorem [26], its partial derivations are

commutative. Consequently, we get:

E[dlogp(yb Y2, .-, er)] _ E[dlogp(yb Y2, .-, er)]
A, dajm, At jpm dbjm,

(4.34)
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The 2N; x 2N, information matrix of the signal at the j;, antenna from (4.25):

Iajlajl Iajlbjl Iaj1aj2 [ajlbj2 s IajlajM IajlbjM
ijmjl ijlbjl ij1aj2 ijlbj2 s ijlaj]\/[ ijlbjM
I(a;,b;) =
IajMajl Iaijj1 IajMajz IaijjQ s IajMajM IaijjM
i ijMajl ijMbjl ij]VIaj2 ijMbjz ijMlajZ\/[ ij]\/lbjM i
Where I, = _E[dlogﬁéjy;»gé;;7yw)]’ Lujpa,s = _E[dlogdz(]i,}/d;;;;yzvm
Ly, = — B[R0 St)) - — p[E8EWLGUN)) - The 2N, N, X 2N, N, informa-

tion matrix for the signals at all the antennas is as (4.17):

I(ay,b1) 0 0
0 I(as,b 0
I(H) = (a2, b2)
0 0 I(an,,by.)

var(H) > I(H)™* (4.35)
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Figure 4.2 presents the LMMSE estimator proposed in Chapter 3 with the LS, the TLS
and the conventional, impairment ignoring, LMMSE estimator relatively to the Cramer-
Rao bound for a multi-user system with 50 antennas at the base station and 5 or 15
single antenna users as SNR varies from 0dB to 30dB. The level of the impairments is
chosen to be 0.05? and 0.15? as the lower bound and the upper bound of the parameter,
respectively, [11]. The simulation was performed over 1000 Monte-Carlo realizations of the
channel, the distortion on both ends and the Gaussian noise. Contrary to the single-user
scenario, when having multiple users, the estimators do not achieve a performance close to

the Cramer-Rao bound as shown in the simulations below.
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Relative Estimation Error per Antenna
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Figure 4.2: Estimation error per antenna over SNR. LS, TLS, conventional and proposed
LMMSE estimators compared to Cramer-Rao bound for a multi-user system with 50 an-
tennas at the base station.



Chapter 5

Summary and Future Research

5.1 Summary

In this thesis, we considered the problem of channel estimation under hardware impairments
for a single and for a multi-user Large MIMO system. As we explained in Chapter 2, Large
MIMO systems usually use inexpensive and low quality hardware components which may be
imperfect. Instead of modelling the distortion from each impaired component separately, we
modelled the total distortion at the base station and the users as Gaussian noise following
the work of [31].

We used the LMMSE estimator from [5] for a single-user system, which takes into
consideration the impairments on both ends, as a basis to develop the proposed LMMSE
estimator for a multi-user system. In order to evaluate the performance of the proposed
estimator we compared it with the conventional LMMSE, the LS and the TLS estimators.

Furthermore, we calculated the Cramer-Rao bound of the proposed system model.
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Under this framework, we showed that the proposed LMMSE channel estimator achieves
better performance in terms of relative estimation error per antenna over Signal-to-Noise
ratio (SNR) compared to the other estimators, especially as the level of impairments grows.
Moreover, the LMMSE channel estimator considering hardware impairments was shown to

be close to the Cramer-Rao bound for the single-user case.

5.2 Open Problems and Future Research

Although the proposed estimator achieves better performance compared to estimators used
for conventional MIMO there is still room for improvement, as the Cramer-Rao bound
shows. The research group in [5] remarks that there may be non-linear estimators which
achieve better performance. Finding a non-linear estimator for Large MIMO and evaluating
its trade-off between performance and complexity is a problem for future research.
Moreover, a more general problem is channel estimation for Large MIMO under hard-
ware impairments for FDD. As mentioned in Chapter 2, there are research efforts in [15]
exploring the subject of FDD for Large MIMO but perfect hardware is assumed. Ap-
proaching the problem considering imperfect hardware can be a challenging subject for

future work.
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