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Abstract

In the last few years the field of computer speech recognition has come into
its own as a practical technology. These advances have been due primarily
to a steady, step-wise refinement of existing techniques, and the availability
of ever more powerful computers on which to implement them. However,
many problems remain partially unsolved or entirely open. For example,
the current methods continue to fail in cases of small, highly confusable
vocabularies.

New acoustic modeling techniques and search methods are proposed in
the area of robust, speaker-independent continuous speech recognition. Ran­
domized search techniques are used to refine and improve the topologies
and clustered training of allophone hidden Nlarkov models. A new approach
for word hypothesization and pronunciation modeling is proposed, based on
pseudo-syllabic units. Aigorithms are described for transforming a lattice of
syllables into words, and learning the phonotactics of syllables automatically
in a statistical framework. Next, a multi-grammar method for generating al­
ternative hypotheses is presented, together with the method's experimental
evaluation in a telephone-based spelled word recognition system. A blueprint
is given for building time and memory-optimized speech decoders. Finally,
analysis and recognition techniques are applied to the problem of enhancing
the intelligibility of speech produced by alaryngeal speakers.
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Abstract

Ces dernières années, l'essor de la recherche en reconnaissance automatique
de la parole a permis le développement d'applications concrètes dans ce
domaine. Ces avancées sont essentiellement dues à un travail minutieux
d'amélioration de techniques existantes, ainsi qu'à l'apparition d'ordinateurs
plus puissants sur lesquels ces solutions ont pu être implémentées. Ainsi,
plusieurs logiciels de dictée automatique grand vocabulaire connaissent actuelle­
ment un véritable succès. Cependant, de nombreux problèmes liés à la re­
connaissance restent encore mal résolus.

Cette thèse étudie plus spécifiquement des vocabulaires difficiles où la con­
fusion entre les mots peut être grande, comme les lettres anglaises épellées. À
partir de ces lettres, un très grand nombre de noms propres peuvent être com­
posés. Or, une bonne reconnaissance de tels vocabulaires n'est pas correcte­
ment réalisée par les systèmes de dictée les plus connus. Plusieurs problèmes
liés à la modélisation acoustique et à la reconnaissance de la parole isolée
et continue sont considérés ici du point de vue de l'exploration des graphes.
Des techniques de recherche aléatoire sont ainsi utilisées afin d'affiner et
d'améliorer la topologie et l'apprentissage des modèles de rvIarkov des allo­
phones. Nous proposons également des algorithmes pour transformer des
treillis de syllabes en mots, et pour apprendre automatiquement les aspects
phonotactiques des syllabes, le tout dans un cadre statistique. De plus, une
méthode de recherche dans de multiple grammaires permettant de générer
plusieurs hypothèses est présentée. Nous avons évalué expérimentalement
cette méthode dans un reconnaisseur basé sur des mots épel1és à travers
le téléphone. Une méthodologie de construction des moteurs de recherche
optimisés en temps et en mémoire est proposée pour des applications de ce
type. Dans une étude parallèle, nous avons également appliqué ces techniques
d'analyse et de reconnaissance au problème d'amélioration de l'intelligibilité
de la parole produite par des locuteurs alaryngiques.
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Chapter 1

Preface

The investigation described in this thesis took place precisely during the pe­
riod computer speech recognition moved from the science laboratory ta the
marketplace. ~Iany of the key innovations and techniques that made this
possible were already known 10 years ago. A steady stream of refinements
on these methods by speech laboratories around the world, added to the
brisk pace of hardware improvements in memory and computational power,
has made possible the realization of real-time, large-vocabulary, speaker­
independent recognizers. It has also resulted in the widespread deployment
of extremely accurate small-vocabulary recognizers in telephone autoatten­
dants. This has made the technology visible and familiar to the general
public.

These developments have been a source of pride and excitement for us,
the scientists and researchers, and also a keen spur to competition. \Vith the
advent of software dictation products such as IB~l's Via Voice and Dragon's
Naturally Speaking, it may seem that the basic research problems have been
solved. The truth is that the field of automatic speech recognition (ASR) has
emerged from its infancy, with many open problems remaining and many of
the current techniques unsatisfactory.

Much remains to be learned about speech and speech recognition, inc1ud­
ing fundamental issues and practical ones. In 1994 Roger K. wIoore observed
that "in the eud, statistics is just a sound mathematical approach for mod­
eling uncertainty or ignorance... [When] speech is fully understood, there
may be very little residual uncertainty remaining to be modeled and the
stochastîc approach will have both served and lost its purpose" [~Iak84]. In
the meantime our tools for speech recognition remaîn primarily statistical
ones. \Vhere progress has been made is in managing the size of the space we
choose ta model with statistics. Instead of trying to model the raw signal,
we extract features such as the coefficients of the log magnitude spectrum,
or the linear prediction model (chapter 5), and try ta capture the statistics
of this greatly reduced space. The stilllimited success of recognizers in de­
carling spontaneous speech (around 50% accurate [BeaufaysEtAI99]) proves
that these smaller feature sets do Dot correctly separate the irrelevant from

2
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the relevant information in the acoustic signal. And yet all the necessary
information is there, packed in with a high degree of redundancy.

To illustrate the redundancy of information in the speech signal, consider
the bandwidth of the recorded speech signal, and contrast that with the in­
formation content, measured in bits per second (bps), of the message encoded
in the signal.

If the signal is sampled at 16kHz, in order to capture approximately the
frequency range of the human auditory channel, 16,000 two.byte samples of
linearly encoded speech are represented per second; at a bit rate of 256, 000
bps. For an average speech rate of two English words per second, eight
letters per word, the actual information content of the speech signal is 128
bps. The ratio of the signal bit stream to the bit stream of the message means
that an enormous amount of redundancy is employed by nature in order to
ensure that the message can he decoded, despite numerous variabilities of
speech production and transmission [Ata199]. These variabilities are due to
the imprecision of vocal production in the individual, individual differences
of the vocal tract, differences due to sex and age, differences of dialect and
accent, the characteristics of the transmission channel (e.g. microphone,
telephone circuit, room echo), and environmental noise, etc.

Ta the extent that these variabilities are understood, and can he modeled
directly, the quantity of ignorance which we model with statistics is dimin­
ished. Speech knowledge will eventually allow a better "clustering" in a
large acoustic space than the current Gaussian clusters trained on spectrum
derived coefficients. This is because the new clusters will he perceptually
based, i.e. they will represent units that are perceived as the same phoneme
by a human listener. Despite ongoing, and incrementally successful, efforts
to diminish t.he ignorance through improved speech knowledge, we do not yet
know enough to properly sift the redundancies inherent to the speech signal.

Thus in 1999, aIl ASR methods are hased largely still on statistics. 1t
can be safely said that only moderate qualitative knowledge has been gained
about the fundamental nature of the speech signal that serves to reduce the
uncertainty. Ignorance reaches from one endpoint of the problem space ta the
other; from the extraction of the most appropriate spectral (or time-domain)
features that feed the speech model, to the domain of naturallanguage under­
standing (NLU). Without NLU, speech can never he fully decoded in general,
and the recognition problem is increasingly coupied to progress in NLU, as
applications extend beyond speech-to-text dictation ta computer programs
that understand and act upon the meanings of natural speech inputs.

1.1 How this thesis is organized.

This thesis is divided into four main parts. The first part consists of this
preface and the following two chapters. It presents the context for the ASR
problem, describing it in terms of machine learning and pattern recognition.

3
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Part II comprises a survey of the basic tool5 used for continuous speech
recognition. Fundamental algorithms for acoustic analysis and modeling,
decoding and search are described.

The chapters of Part III contain original work on problems of acoustic
modeling, and the design of a fast search engine for speech decoding. The
research described here does not focus on very large vocabularies of common
words. The focus instead is aD difficult vocabularies, sucb as spelled letters,
with which a very large number of proper Douns can be composed. This is the
major application explored in this thesis, a subject for which good solutions
are not found in the most popular dictation systems.

The first chapter of Part III describes experiments with acoustic models,
their representations and training. The second chapter motivates the use
of syllabic modeling and reasoning for search, and enhanced word hypothe­
sization. The next chapter is a short manual on how to optimize the speed
and space requirement of a basic speech decoding engine. This search engine
is particularly weIl designed for smaH vocabularies. The following chapter
describes sorne original algorithms and their resulting improvements to the
robustness of a letter-based continuous spelled word recognizer. AH four of
these chapters are variations on the theme of search, particularly in the space
of small and confusahle vocabularies.

The last chapter of Part III introduces a successful application of speech
recognition ta the medical issue of esophageal speech enhancement.

The final part of the thesis is a concluding chapter describing the out­
standing issues in the field of ASR, and the most current and widely pursued
techniques to advance the technology. Also discussed are the weaknesses and
strengths of eurrent methods, and a perspective on where the most effort
should be spent in order to achieve the next generation of autornatie speech
and natural-language processing.

4
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Chapter 2

Speech Recognition: A Survey

Automatic Speech Recognition (ASR) is a problenl in the transfer of a highly
redundant information stream across a noisy interface. The signal originates
as a mental representation of a sequence of linguistic symbols, ie. words.
The words are translated inta sound by complex excitations of the organs
of the vocal tract. This signal is received and converted by the auditory
mechanisms of the listener's inner ear ioto a pattern of nerve-cell firings.
Withio the auditory, perceptual and language centres of the listener's brain,
the signal is converted ioto a sequence of Iinguistic symbols. The listener
then integrates and interprets these symbols as a sentence.

Between ear and mind, or microphone and computer memory, lies an
interface across which information is translated from analog to digital, from
continuous ta discrete, and from physical ta symbolic. The challenge is to
produce a machine which can reconstitute the original message as quickly
and with as little apparent error as a human being.

ASR is more difficult than many problems in pattern recognition because
the sound wave encodes the signal in an inherently non-uniform way. Sorne
sources of variability are:

1. Words are made up of phonemes, the basic alphabet of sounds consti­
tuting a particular language. But ditferent speakers will use a somewhat
different sequences of phonemes for a given ward, due to a different ab­
stract mental representation of the word.

2. Because of the complex way sounds are articulated, two individuals will
not pronounce a given phoneme exactly the same way.

3. Similarly, the same person will not pronounce a given phoneme twice
exactly the same way.

4. The duration of a phoneme is variable.

5. Phonemes are distorted by the contextual (or co-articulation) effects of
neighbouring phonemes.

5
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6. In general, the boundaries between the discrete symbols of interest (the
words) are Dot distinguished with silences or other cues.

In spite of this variability, speech is intelligible. This is hecause the
speech utterance is generally a highly redundant signal, and human beings use
information at different levels - acoustic, syntactic, semantic and pragmatic
- in order ta interpret it.

People have studied the acoustic-phonetic properties of phonemes for
nlany years, and there is now a rich literature in the use of statistical meth­
ods and pattern classification techniques for modeling them. The most pop­
ular methods include hidden Markov models [Rabiner89] and artificial neural
networks [WeibeIEtA189]. Other approaches include multi-level acoustic seg­
mentation and stochastic segment models [KimbalIOstendorf92]. AlI these
techniques have had similar success, and there is reason to suspect they are
DOW nearly at the information-theoretic limit for accurate decoding of speech
into sub-word acoustic symbols.

At present more attention is being focused on the study of robust sig­
nal processingT acoustic model adaptation, lexical representation, language
modeling, and interpretation methods. The goal is to understand better
how words relate to articulated sounds, and how context relates to words,
50 that ASR systems can he designed to work in more general contexts and
under more variable conditions than possible with current techniques. Lex­
ical access is a search prohlem: given a lexicon of words and their symbolic
representations, how can the phonetic symbols detected in an acoustic signal
best be mapped to a set of word hypotheses. Lexical search must be fast and
admissible.

Language modeling is based on a grammar which is in sorne cases a
stochastic one. The language being recognized may be restricted to the
rigid syntax of a finite-state grammar, or may be modestly constrained with
sequence-based probabilities. In the second case probabilities are associated
with the network transitions. In either case the generation of sentences is
based on a network of linguistic symbols.

The limits of computer speech recognition algorithms today are due to

1. Limited understanding of the psychü-acoustical factors at work in both
the production and the reception of speech sounds.

2. Signal processing algorithms which only guess at the important, infor­
mation bearing time and spectral-domain features of speech.

3. An acoustic representation that operates at a fixed resolution of discrete
intervals.

4. Language models that are Dot much more than crude filters.

5. Virtually no hard understanding of higher order language processing.

6



•

•

•

2.1 Historical Review

Computer-based speech recognition cau he seen to have evolved through
severa! generations, roughly coinciding with the decades from the 19505 on.
Early efforts, which began after the arrivai of computers equipped with A/D
converters, were based on hardware circuits. An input signal was passed
through a bank of analog filters, and the harmonie resonances of the sig­
nal were used ta spot vowels, or distinguish short words like digits based
on their vowels. The early work (1952-Bell Labs, 1956-RCA) showed that
the frequency-domain of the speech signal, the spectrum, couId he used to
tag invariant features of the phonemes for classification. In 1959 at Univer­
sity College, England, Fry and Denes introduced several ideas that would
later prove important, including phoneme recognition, the use of a pattern
matcher, and a primitive language model based on statistics of phone se­
quences.

The 19605 saw the introduction of methods for feature extraction includ­
ing zero-crossing anaIysis, and time normalization of the speech utterance.
Vintsyuk, in the Soviet Union, introduced a technique, later popularized
as dynamic time warping (DTW) , which became a generic method for the
isolated word recognition.

This 1960s also saw early work in connected word recognition, notably at
Carnegie-Ivlellon University. During this period the first commercial compa­
nies were created to market special-purpose hardware for word recognition.

The following decade saw the application or innovation of basic methods
that exist in systems of today. These include pattern classification, dynamic
programming, frame-synchronous analysis, the distance method for Hnear
predictive coding (LPC) coefficients (Itakura, 1975), network representations,
beam search (Baker, 19i5), and clustering algorithms for continuous speech
(AT&T Bell Labs).

Template matching techniques such as DT\V were successfully applied
to isolated-word, speaker-dependent applications. About this time, a more
general and powerful class of statistical models was recognized by researchers
to have the potential to manage continuous speech. The first description of
hidden Markov models (HIvlwIs) was given in [Baum72]. In [Baker75] their
utility in the realm of speech recognition was demonstrated for the first time.

Certain ongoing projects that saw their genesis in the 1970s became
benchmark systems for the field. One such system, IBIvl's Tangora, was
a speaker-adaptive isolated word recognition program for dictation of office
memos. By 1985 the system was capable of recognizing 5,000 words, and
became the basis of a commercial dictation product for personal computers.
A comparative overview of ASR in the 1970s which includes work carried out
in the non-English speaking world can be round in [Demori79].

In the 19805 two things happened which significantly advanced the state of
the art, and disseminated effective tools for the speech recognition problem
to a wider community of researchers. The first was the arrivaI of power-
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fuI workstations that could perform the demanding numerical computations
needed for speech recognition. The second was the popularization of hidden
Markov models as a basic methodology [FergusonBO), [RabinerB9).

Other important innovations of this period were methods of integrat­
ing phoneme spotting with word recognition for continuous speech, (NEC's
two-ievei dynamic programming, and Bell Labs' level building approach),
cepstrum-based feature extraction (Shikano), the use of the Mel-scale for
transforming the cepstral coefficients [DavisMermelstein80], and the use of
neural networks for phoneme recognition ego (Lippman, 1987) (Weibel,
1989).

In the 1980s great attention was paid to integrating more knowledge
sources within HMM-based search engines, e.g. lexical and language models.
By this time several outstanding research systems \Vere well-known to be ca­
pable of speaker-independent, continuous word recognition for medium-sized
vocabularies with good accuracy (> 90% on read speech). Notable systems
inc1uded C~IU's SPHINX, and BBN's BYBLOS, as weIl as projects of Lin­
coln Labs, lVIIT and Bell Labs.

The 19908 saw the culmination of this work leading to the widespread in­
troduction, particularly in the last three years, of commercial systems for
speaker-independent continuous speech dictation of very large (~ 60,000
ward) vocabularies, and spoken language understanding in lirnited domains.
ASR technology today, though still imperfect, has acceptable performance
for certain applications. Examples inc1ude rnedical and legal report dictation,
data entry, and information retrieval by telephone.

ASR applications for the automobile and telephone are now facing the
problem of improving performance in spite of low-quality microphones or
transducers, limited bandwidth, and environmental and channel noise. Sorne
of the remaining technical challenges include decreasing cost, increasing ro­
bustness, capturing speech with far-talking microphones or microphone ar­
rays (giving more freedom to the speaker), and improving modeIs 50 that
confusable vocabularies and natural speech are properly recognized.

References: [Demori98], [Rabiner89], [Lee89], [O'Shaughnessy871.
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Chapter 3

Machine Learning and Pattern
Recognition

The field of Artificial Intelligence (AI) has been defined as "the study of ideas
which enable computers to do the things that make people seem intelligent"
[\Vinston77]. Two endowrnents in particular mark human activity as intelli­
gent: the ability to solve difficult problems, and the ability to form abstract
representations, or models of the world, models which serve as the basis for
further problem-solving and new abstractions.

These two activities, model-building and problem-solving, are intimately
related. The formation of a new model is a kind of problem to be solved,
called the learning problem. The models we build are useful mostly to the
extent they afford new solutions to problems in sorne domain, solutions that
would otherwise he harder to attain. In trying to automate learning and
problem-solving, we find that different kinds of models emerge naturally from
different domains.

For example, there are rule-based models: symbolic models based on rules
and facts. Expert systems are tools for building rule-based models of the
world. These modeis are naturai ways ta simulate expertise in medicai diag­
nostics, or tax law [Tanimoto87], expertise that depends on basic knowledge,
and accumulated experience of how facts relate to one another.

The rule-based model embodied in an expert system has two main com­
ponents: a database of facts, and a set of mles of inference. The rules allow
the expert system to consider combinations of facts, and from them, infer
new facts. The system takes the facts at hand and attempts to generate
appropriate answers to the questions being asked. This is accomplished by a
separate component ta the system called an inference engine.

The inference engine makes problem-solving in a rule-based modei au­
tomatic, but the learning is oot. The model is built thraugh a laborious
preliminary stage of data acquisition, and often involves interviewing human
domain-experts. (Note that a distinction is being drawn here between learn­
ing, the gathering of an initial set of rules and facts, and problem-solving,
the subsequent automatic generation of new facts. In an expert system this
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distinction can be arbitrary; the latter is also sometimes described as a stage
of learning) .

In contrast with rule-based models, there are functional models: numer­
ical models based on functional relations of real-world variables. Scientists
construct functional models in seeking to understand physical systems. Many
human abilities sucb as vision and speech involve the processing of vast
streams of physical data. These data are hard to describe adequately with
symbols or facts, but can be sampled and quantified. Problems such as these
lend themselves to functional models.

In many cases there are automatic means for training functional models,
called algorithms for machine leaming. Let Nf = {)(, Y} be a measurement
of a set of variables, where Y is a vector of the variables we wish to consider
dependent on X, the remaining variables. Training a functional model means
taking a series of such observations, or measurements Mi, and finding the
parameters P of the model f(X) = f(P, ,X:) which produce the best fit of the
rnodel-predicted values (Xi, fCX:i )) to the actual measured (.X'i, ~). Outputs
can be smoothly continuous functions, as in the case of regression models, or
discrete elements of a finite set, as in pattern classification.

Aigorithms for fitting problems involve optimizing sorne measure of close­
ness of fit; thus the training of functional models relies on optimization meth­
ods.

In surnmary, AI deals in large part with building models and using them
to solve problems autornatically. Rule-based models are usually trained by
hand, but functional models can be "machine-learned" using optimization
algorithms. Problem-solving with rule-based models centres on the genera­
tion of inferences. Problem-solving with functional models varies with the
kinds of models, but in general involves computations on numerical inputs.

The preceding was an attempt ta il1ustrate the strong relation between
machine learning, specifical1y the fitting of parametric models, and computer
methods of optimization. The next sections survey the subjects of fitting and
optimization in arder ta provide context for the following work. Chapter 6
will discuss in detail the parametric model ta be used, hidden ~Iarkov models.

3.1 The Fitting Problem

3.1.1 Regression Methods

One approach to the fitting problem is to assume the data are perturbations
of the values of a "true" model, and the differences between the true values
and the measured values, or the measurement errors, are drawn from a known
probability distribution. ~Iodels assuming particular distributions are called
parametric models in statistical literature, because they require estimation
of the parameters of the distributions.

Stating the problem in statistical terms allows one to solve it by tech-
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niques of maximum likelihood estimation (MLE); finding the set of model
parameters with the highest likelihood given the data.

The classical techniques of linear regression apply MLE to the simplest
fitting problem: given a set of n points Pi =(Xi, Yi) in the real-number plane,
find the straight !ine Y = A +Bx which best fits these points. The coefficients
A and B are estimated from Pi using the chi-square merit function:

;r2(A, B) =t (Yi - A ~ BXi )2
i=1 C1~

If the Xi are known exactly, the Yi are reported with normally distributed
errors, and C1i is the standard deviation for the measurement error in Yi, then
minimizing X 2 gives A and B with the highest likelihood. The minimum can
be computed directIy.

The usefulness of this estimate depends on a negligible fixed component,
or error due to model inaccuracy, in the statistical error. In most applications
the linear model is only an approximation. In many cases a linear model is
inadequate even as an approximation.

By modeling the data with a linear combination of m arbitrary functions
X 1(x), ..., ",Ym(x), the regression approach can be extended to non-linearly­
related data . In the general linear least squares method, the parameters for
the rnodel are a set of m coefficients Ai, and the merit function becomes

The vector A which minimizes X 2 is solved for by methods of LU or Singular
Value decomposition [PressEtAI88}.

3.1.2 Pattern Classification

In ordinary regression the dependent variables are continuous. Pattenl Clas­
sification is the fitting problem in which the values of a dependent variable
range over a finite set of discrete elements.

Consider the independent variables Xl, ... , Xn as features, and the values
taken on by the dependent variable as the classes. This kind of problem
involves learning a classifier function which separates feature space !ln ioto
disjoint decision regions correspondiog to the classes. The regjons are de­
scribed in terms of their boundaries, which divide dusters of point sets in
feature space, each cluster corresponding to a class.

If the clusters are linearly separable, the decision houndaries cao he mod­
eled as a set of hyperplanes, Hi = Wi1Xl + ... + ~VinXn, in the feature space.
If, on the other hand, the cluster distributions are multimodal, the decision
surfaces are non-linear and require non-linear models.
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Discriminant Analysis

Bayesian discriminant analysis is the application of parametric MLE tech­
niques to pattern classification. The goal is to derive a classifier with the
smallest likelihood of error. This is any function which, for cIass Ci and
feature vector x, maximizes the a posteriori probability P(Cilx). One snch
function is

P(Ci ), the a priori probability of cIass Ci, is estimated simply from cIuster
size. The difficulty is in properly estimating p(xICi ), the conditional proh­
ability densities of the feature variables. Bayes classifiers generally assume
uni- or multi-variate normal densities.

Linear discriminant analysis assumes that the clusters aIl share the same
feature-covariance matrix. In this case the classes are hyperplane-separable,
and the the decision-bounding hyperplanes are given by

where E is the covariance matrix and J.Li is the mean feature vector of clus­
ter i. ~Ia..ximizing Hi yields the classes with minimal likelihood of error
[DudaHart73] .

Dropping the assumption that each class shares the same covariance ma­
trbc leads to a slightly more complex, quadratic mode!. The decision bound­
aries become hyperquadratics, and can separate clusters with more complex
distributions. The models' appropriateness still depends on how realistic are
the assumptions made for the feature densities.

Hidden Markov Models

Hidden !vlarkov models (H~lrvls) are the basic classification method used in
this thesis, and are described in detail in Chapter 6. The following is a
brief introduction, placing them in context of the family of pattern matching
techniques.

A ~larkov chain is a stochastic process which models systems of events
in sequence. It consists of a set of states, and the transitions between them.
At any given discrete tinle ti the system is in one of a finite (or countable)
set of states; in the next discrete time ti+ 1 the system makes a transition to
a new state. For each state the process has a set of probabilities associated
with transition to other states (figure 3.1.) These probabilities must sum to
l.

The entire system is described by a state transition matrix. A matrix cor­
responding to the !vlarkov chain of figure 3.1 with real transition probabilities
is given in figure 3.2.

In the techniques of previous sections each classification is statistically
independent of previous classifications. A !vlarkov chain is useful for modeling
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Figure 3.1: A Nlarkov chain.

1 2 3 4 5

•

1

2

3

4

5

0.7 0.3 0.0 0.0 0.0

0.0 0.0 0.5 0.5 0.0

0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 1.0

1.0 0.0 0.0 0.0 0.0

Figure 3.2: The state transition matrL""<:.

13



•

•

•

seriai processes, in which prior events affect the likelihood of subsequent
events. For example, the likelihood of a system being in state X at time ti
given that the system started in state Y at time to can be computed with a set
of operations on the state transition matrix, (equivalent to multiplying the
appropriate transition probabilities.) Similarly, calculations on the transition
matrLx can determine the likelihood of observing a particular sequence of
state-transitions Si - > Si - > Sk This process could be called an observable
~Iarkov model, since the outputs of the process are states corresponding to
observable events in the system being modeled.

A richer model is derived by embedding a second stochastic model in
the Markov source, such that the observable events of the system no longer
correspond to the states, but rather are generated as a probabilistic function
of the states. Since the states are not observable, the models are called
hidden Markov models (HMMs). The state of the system at time t can be
inferred through the stochastic process that produces the observable events.
The latter processes are modeled with probability distribution functions, in
practice, Gaussians, whose parameters depend on the state.

HM1t[s are trained for pattern classification by modeling sequences of fea­
ture vectors as observable events, and using them to estimate both the out­
put distributions and the state-transition probabilities of the ivlarkov chain.
Here, too, the objective is ~lLE: find the parameters of the HivI~[ with the
ma.ximum likelihood given the data.

The nurnber of states in an H~nv[ and its transition-structure are not
functional pararneters; they are selected empirically or on the basis of sorne
intuition about the system being modeled. In speech the most commonly
employed topology is a feed-forward structure (proposed by Bakis, 1976)
with a beginning state on the left and a terminal state on the right.

HNINIs satisfy two assumptions about the stochastic processes being mod­
eled. The state stochastic process assumes that when the model is in a given
state at time t, the history before time t has no influence on future events
- the so-called "first-order ~Iarkov hypothesis." The observation stochas­
tic process assumes that neither past states nor past observations affect the
present observation if the last two states are specified - the "output inde­
pendence hypothesis." Because hidden Nlarkov models produce sequences of
real-valued observations, they are particularly well-suited to model tempo­
rally evolving physical processes like speech.

Principal Compooent Aoalysis

In addition to the parametric models described above, there are many non­
parametric techniques for pattern classification, techniques which do not as­
sume particular probability distributions for the features.

Principal Component Analysis (PCA) is a parameter transformation tech­
nique which can be applied to certain pattern classification problems. PCA
is a method of reducing n-dimensional vectors made up of statistically cor-

14



•

•

Figure 3.3: A perceptron.

related features into smaller r-dimensional vectors of uncorrelated features.
The Singular Value Decomposition (SVD) theorem tells us that the rows
of a matrix of m feature vectors can be expressed as linear combinations
of r orthogonal vectors, (principal components in statistics,) where r ~ n

[Stewart73].
The principle components are an alternative set of orthogonal coordinate

a.xes, and in this new coordinate space two different variables have zero co­
variance. Projecting the data along the principal component with the largest
variance is equivalent to finding the direction of greatest variance in the fea­
ture space. When this direction coincides with the least overlap between data
clusters, PCA can perform pattern recognition. For example, PCA cao clas­
sify acoustic signal as speech or as noise because speech samples have singular
vectors with large variance relative to samples of noise [BakamidisEtAI90].
PCA differs from discriminant analysis which attempts to project explicitly
along the direction of maximum discrinlination between classes.

where Yi is the state of unit i, Wji is the weight on the connection from unit

Perceptrons

Perceptrons (also called Neural Networks or Connectionist systems) are a
family of powerful, non-parametric pattern recognition tools which have be­
come the subject of intensive investigation in recent years. Perceptrons are
distributed networks of simple processors, called artificial neUTons in analogy
with human brain cells (see figure 3.3.)

The neurons communicate via connections between them. Each unit has a
state that is computed as a function of the inputs received along connections
from other units. The combined activities of the units operating in parallel
lead to complex behaviors.

The kinds of functions goveming activations, or state-changes, in a neuron
vary with the connectionist model. One typical such function is a weighted
linear sum:

•
Xi = -(Jj + E YiWji

i

(3.1)
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lst Input 2nd Input Output
0 0 0
0 1 1
1 0 1
1 1 0

Table 3.1: The XOR operator.

i ta unitj, and 8j is a threshold term which acts as a bias on the j'th unifs
activation. In more complex networks, the new state of unit j will usually be
a non-linear function of the linear input Xj.

Neural Networks have been applied ta such diverse areas as associa­
tive memories, data compression, pattern classification, and speech recog­
nition (for examples in the area of speech, see [RobinsonFallside90] and
[BengioEtA190]) .

The units of a perceptron are assigned to specifie groups or layers, in­
cluding an input and an output layer. For pattern recognition problems, the
units in the input unit layer have their states set according ta the pattern
of feature variables. The neurons then update their activation-states accord­
ingly, and the output-unit states are interpreted as a class representation.
The connection weights are determined such that when a11 cells in the net­
work have computed their new states as a function of their individual inputs,
the activations of the output cells represent the correct classification of the
input pattern. Finding a set of weights to enable the perceptron to classify
effectively is another variant of the fitting problem.

There are many training algorithms available for fitting the connections
weights to the data. The perceptron convergence theorem showed that the
weights could be automaticaHy leamed [Block62] by iteratively computing,
for each input pattern, a change in Wji according to the learning rule

where t j is the desired state of neuron j (round in the training data), Yi is
the actual state, and f is a constant representing the learning rate.

Since this algorithm requires knowledge of the correct activations for aH
the units in arder to fit the connection weights to the data, it can only be used
ta train two-Iayer perceptrons, ie. networks containing only input and out­
put cells. Unfortunately, as ~Iinsky and Papert proved in [1\HnskyPapert69],
certain functions such as topological connectedness and parity are not com­
putable by two-layer networks. In fact, no set of weights can enable a two­
layer network to model a non-linearly-separable function. A well-known ex­
ample of such a function is the exclusive-or (XOR) operator (table 3.1) .
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Figure 3.4: A multi-Iayer neural network to compute XOR.

Multi-layer Neural Networks

Nonlinear problems can he solved by adding a layer of hidden units which al­
Low the perceptron to build internaI representations, ie. to model higher-order
relations in the feature data. Figure 3.4 gives a simple example of a network
to solve the XOR problem, (figure adapted from [RumelhartNIcClelland86]) .
In the figure, the linear activation rule of equation 3.1 computes the XOR
function of the states of the input units.

The problem then becomes how do we find the weights for hidden units, ie.
how do we solve the fitting problem for multi-Iayer perceptrons. One solution
is the error back-propagation aigorithm. In this method an error estimate E
is computed as the sunl of squares of the output activation errors:

where c is an index of the training patterns. This error is differentiated \Vith
respect to the weights on input connections, beginning \Vith the output layer,
and \Vorking backwards. As the error propagates back through the network, it
is used as a negative factor of proportionality in the weight modification mIe
LlWji. The weights are thus modified in the direction of minimal activation
error. This is easily recognized as a fonn of gradient descent, which will be
discussed in the section on optimization methods.

Another way to derive weights in a multi-Iayer perceptrons is the Boltz­
mann Machine algorithm [AckleyEtA185]. This is a stochastic method that
modifies the connection weights in the direction of convergence between the
conditional probability distribution exhibited by the output units of the per­
ceptron and the desired conditional probability distribution. The advantage
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Figure 3.5: Tractability of optimization problems.

of this non-parametric algorithm is that it computes the a posteriori proh­
abilities of the outputs. Also, it is able to model the feature distributions
without making any restrictive assumption on the types of distributions.
However, the algorithm runs quite slowly.

• 3.2 Optimization Methods

•

As described above, machine learning problems are solved \Vith optimization
techniques. The latter are as varied as the former. In general, the optimiza­
tion problem is stated:

~taximize (minimize) objective cost function:

Subject to m constraint functions:

gi(Xl, ... , In) ~ 0

Where:
i = 0, ... , m.

Optimization problems can be divided into two groups; linear/ quadratic
problems, for which large cases can be solved absolutely; and general proh­
lems, for which the solution space must be exhaustively searched to find an
optimum (and consequently can only be solved approximately.) The shaded
area of figure 3.5 shows how the size of tractable optimization problems
varies with the class of problems (graph adapted from [Fletcher69].) The
linear problem, in which both the objective function and the constraint func­
tions are linear combinations of the input vector X, is solved with the simplex
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algorithm, a subject addressed in detail by any elementary textbook of linear
programming. Methods for the general category of problems include hill­
climbing techniques and randomized search methods. Differentiable problems
are solved with hill-climbing algorithms.

3.2.1 Hill Climbing

Nothing in general is known about the solution of the general problem in the
present of constraints. Hill-climbing methods for optimizing general problems
without constraints faIl into two basic categories: gradient techniques, and
direct search methods.

Hill-climbing is a way of incrementally improving the solution to f by
exploring the solution surface and climbing (or descending) toward a max­
imal (minimal) solution. This approach suffers from the fact that in any
sufficiently interesting problem the n-dimensional solution space has com­
plex contours with many local extrema. Once a local solution is round,
hill-climbing either terminates or must begio again from a new initial solu­
tion; worse, for continuous functions there is no general way to identify a
globally optimal solution. (Of course, finite discrete problems can be solved
optimally through exhaustive search, but only for cases sufficiently small to
avoid combinatorial explosion.)

Gradient methods are for prohlems in which the gradient vector

al al(-, ...,-)
Xl X n

can be computed. Obviously this restricts the method to continuous,
differentiable cast functions. Since the partial derivatives provide a measure
of improvement in 1as the solution X is perturbed in a particular direction,
computing the gradient allows one to modify the solution at each step in the
direction of fastest change toward a local extremum.

Gradient techniques include conjugate gradient and quasi-Newton meth­
ods. NIost weight-correction rules for perceptron training, including the back­
propagation algorithm, are gradient-descent methods. 50 is the Baum-Welch
algorithm for NILE fitting of ~Iarkov model paranleters (chapter 6.) Given
the advantage of having a computable gradient, it can still be difficult to
ensure these methods make efficient progress along the solution surface, even
toward a merely local optimum. For example, in the method of steepest de­
scent, each successive point is found by minimizing along the line from the
previous point in the direction of the local downhill gradient. Steepest de­
scent in a long, narrow, three-dimensional valley can lead ta an inefficient
search, if the initial point does not happen to be on the plane normal ta the
short a.xis of the valley (figure 3.6, (adapted frorn [PressEtAI88]).

When no gradient is available, hill-climbing can only be guided by re­
peated direct ev-cÙuations of the cost function itself. These direct methods
involve sectioning or bracketing an area of the solution space in which a local
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Figure 3.6: Inefficiency of steepest descent. Dotted line shows desired mini­
mization.

minimum can be found, and iteratively continuing search within that section.
Examples include golden section search and the downhill simplex method.

3.2.2 Randomized search

In contrast with Hill-Climbing, randomized search does not set out to thor­
oughly explore the vicinity of a local extrelnum of the cost function, but
rather employs a stochastic solution generator to visit points aIl over the
solution surface. One advantage of this approach is that it is easily ap­
plied to almost any optimization problem, fini te or infinite, continuous or
discrete. Clearly the chance that a randomly generated set of m solutions
{(Xll' ... , Xl n ), ... , (Xml, ... , X mn )} will contain the global or even a local ex­
tremum of f is negligible for non-trivial cases. However, there is a higher
probability of yielding a solution S· such that

where m is sorne acceptable margin for errar in the solution. In the case
of fini te, combinatorial optirnization, if there are z possible solutions and e
random solutions are generated with uniform probability ~, the probability
that one of these will lie in the top l solutions is given by P( ~Ie) = 1-(1- ~y.

The pure randorn search above is sometimes called the Monte Carlo
method. Simulat·ing annealing is a method of randomized optimization which
is effectively a hybrid between Monte Carlo search and Hill-Climbing, begin­
ning like the former and settling into the latter near the end of the search.
The intriguing thing about simulated annealing is that it is the only known
general optimization method that can provide global solutions.

3.2.3 Heuristic Search

NIany discrete optimization problems can be formulated such that the solu­
tion space is a tree or graph to be expanded one node at a time. In this
fonnulation, nodes are steps along the path to a solution.
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Heuristic search is an algorithm which uses domain (problem-specific)

knowledge ta direct the arder in which nodes are visited. A useful heuristic is
one that directs the search to the optimal solution before the search becomes
exhaustive.

The A· algorithm is a heuristic search procedure that employs a an eval­
uation function e·(n) = g*(n)+h·(n), with h·(n) ~ h(n), where g. estimates
the minimum cost of a solution passing from the start node to node n, and
h·(n) estimates the minimum cost of a solution passing from n to the solu­
tion. h(n) is the true cast of the path from n to the solution. It is easy ta
show that if the descendants of visited nodes are queued by arder of increas­
ing e· (n), and nodes are expanded from the head of the queue, that the first
completed solution path will represent an optimal solution. Graph search
problems sucb as the traveling salesman problem naturally lend themselves
ta A* heuristic search.

Heuristic search is obviously an improvement over exhaustive search.
However, if the lower bound estimate h· is very much lower than h(n), or
the estimate is expensive to compute, the search time will be on the order
of the size of the search space. The important point ta note in this con­
text is that discrete functions can be optimized using both randomized and
knowledge-directed search.

•
3.3 Hand-Tuning of Machine Learning Mod­

els

•

The parameters of machine-learning models are fitted to training data using
appropriate methods of optimization. For example, the statistical distribu­
tions of hidden rvlarkov rvlodels, and the connection weights of perceptrons
are both estimated by gradient descent algorithms.

In both learning models, however, there are structural parameters which
are set by hand, either empirically or because of sorne understanding of the
specific learning problem being modeled. The designer of a neural network
has to decide the number of neurons assigned to each layer, and the number
and type of connections. Suppose the network is intended to map a set of
5 features to one of 3 classes: small, medium, and large. Since the solution
to the learning problem will compute a transformation from the input 5­
coordinate space to three values along a single dimension, one successful
network topology might be the 4-1ayer perceptron in figure 3.7. Unit T
represents the projection of the input space onto a single dinlension.

Markov models have topology: the number of states and the transition
paths between them. These presumably reftect the hidden states and visible
events of the process being modeled. Yet in many practical cases, including
ASR, the underlying discrete states of the system are unknown, if they exist
at all.
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Figure 3.7: Adapting perceptron architecture ta problems.
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Fundamentals of Speech
Processing
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Chapter 4

Speech Production and
Acoustic-Phonetics

4.1 Phonemes and Allophonic Variability

The human vocal tract can produce an infinite variety of sounds. However,
every language can be characterized by a basic set of abstract linguistic units
called phonemes. The phonemes are the smallest set of sounds adequate to
represent the phonology of the language. Typically there are 20-50 phonemes
in a language, and they constitute an alphabet of sounds to uniquely de­
scribe words in the language. Table 4.1, borrowed from [LeeEtAI90], lists
the phonemes of the English language with examples.

The physical sound produced when a phoneme is pronounced is called a
phone. Phonemes are discrete units; however, the vocal tract is not a discrete
system. The same phoneme will be produced in a slightly different way by
each speaker, and by the same speaker with each articulation. Thus, the
phoneme is only an exemplar corresponding to an infinitely large class of
phones.

Another source of variability is context. The continuously spoken speech
signal is not a concatenated sequence of discrete phones with a 1-1 corre­
spondence to phonemes. Because of the smoothly changing nature of the
articulatory process, a phone is affected by its proximity to the phones pro­
nounced both before and after. This effect is called coarticulation. The term
allophone descrihes a class of phones corresponding to a particular variant of
a phoneme.

4.2 Speech Production by Phoneme Group

There are two sources ofspeech sounds: vocal cord vibration, and frication, or
turbulent noise produced by forcing air past a constriction in the vocal tract.
Phoneticians classify speech sounds according to mannerof articulation, place
of articulation, and voicing. Manner of articulation is concemed with airflow:
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Phoneme Example Phoneme Example Phoneme Example
iy beat l led t tot
ih bit r red k kick
eh bgt y yet z zoo
ae b~t w wet v yery
ix rosgs er bird f fief
a..x tbg en mutt0I! th thief
ab byt m mom s §is
uw boot n non sb shoe
uh book ng sing hh hay
oy bQY d dad zh me8§ure
aw bough g gag dx butter
ow boat p pop el bottle
ao bought ch church sil -
aa cQt jh judge cl -
ey bait dh they vcl -
ay bite b hob epi -

Table 4.1: English phonemes.

the paths it takes, and the degree to which it is impeded by vocal tract
constrictions. Place of articulation is the point of narrowest constriction.
Voicing means there is a quasi-periodic vibration of the vocal cords as a
phone is produced.

Phonemes can be divided into phonetic groups and subgroups which share
acoustic characteristics. These relations are summarized in tables 4.2 and 4.3.

The two main groupings are vowels and consonants. Vowels are voiced
phonemes produced by vibrating the open vocal tract. Consonants are pro­
duced with a relatively narrow constriction at one of eight regions in the
vocal tract; thus they are closely associated with place of articulation.

For example, English consonants comprise labials, produced by the lips;
dental sounds; alveolarsounds, produced by the tongue near the uvula (figure
4.1 - 6); palatovelar sounds, produced by the tongue near the palate; and
glottal sounds, produced by closed or constricted vocal folds.

The consonants are usually grouped according to their manner of articula­
tion. English consonants come in five such groups: plosives, fricatives, nasals,
liquids, and affricates. These groups are acoustically dissimilar. \Vithin the
consonant groups, phonemes are distinguished by voicing and place of artic­
ulation.

Plosives, (also called stops,) come in two groups: voiced (b, d, g,) and
unvoiced (p, t, k.) Plosive sounds consist of a building up of pressure behind
a total constriction, followed by a release. The point of closure for a p or b
is the lips; for a t or d, the tangue pressed to the hard palate; and for a k or
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1. Lips
2. Teclh
3. Tcah.ridlC
4. Hard plate
5. Velum

6. UV\lla
7. Blide of IOIIpC

a. Froa& 01 1On&uc
9. BlCk of tl'naue

10. Pharynx
Il. Epillocti.
12. Vocal corda
13. Tip of tal'lJUe
14. Gloui.

•

Figure 4.1: The vocal tract. (from [DelnoriEtAI90))
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Class Manner-of-Articulction Subclass Phoneme
ih
eh
ae
ix
ax

short vowel ah
uh

vowel ao
aa.
ao
er
iy
ey

diphthong ay
oy
aw
ow

Table 4.2: Vowel classification.

g, the tongue pressed to the soft palate.
Fricatives also come in voiced and unvoiced groupings: v, th, z, and zh

are voiced; and f, dh, s, and sh are unvoiced. Voiced fricatives are produced
by vocal cord vibration and excitation at the glottis (figure 4.1 - 14.) The
air flow becornes turbulent at the point of constriction; for example, z is
articulated at the upper incisors. The unvoiced fricatives are produced by
a steady flow of air from the lungs, past the open glottis, to the vocal tract
constriction.

The nasals m, n, ng, and en, are always adjacent to a vowel. They are
caused by a dosing of the oral cavity and opening of the velum (figure 4.1 - 5)
during the articulation of the preceding vowel, effectively nasalizing it. The
vocal tract constricts at sorne point; the place of articulation distinguishes
the nasal consonant.

Liquids (also called semi-vowels or glides) are produced by a constriction
in the vocal tract srnaller than that of vowels, but still large enough to avoid
frication. This group of consonants, which include w, y, r, l, and el, are
distinguished by a slower rate of articulatory movement.

The affricates ts, ch, and jh, are plosivejfricative pairs: t-s, t-sh, and d-zh
respectively. The affricates are often modeled as single phonernes because of
the relatively short duration of the trailing fricative.

The vowels are voiced, unless whispered, and are louder than consonants.
English cantains about 15 different vowels. The characteristics of the different
vowels are shaped by the location of the tongue, position of the jaw, and the
degree of Hp rounding. The vowels cao he grouped in space according to
tangue position: back, front, and central. They are also grouped as ordinary
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Glass Manner-of-Articulation Subclass Phoneme
1
el

liquid r
y
w
hh
en

nasal ID

n
ng
ch
jh

consonant dh
z

zh
fricative v

f
th
s

sh
b
d
g

plosive p
t
k

<lx

Table 4.3: Consonant classification.
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vowels, ego ih, ah; and diphthongs such as iy and ay. The diphthongs can he
thought of as two different ordinary vowels spoken in sequence. Phonetically,
they are realized as a changing vowel sound in which the tongue and lips move
between two vowel positions.
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Chapter 5

Analysis of the Speech Signal

5.1 The Acoustic Analyser Module

The previous text mentions "features" or "parameters" used to train the
machine leaming model, without giving much indication what these are.
This chapter is about the specifie feature data we use to train statistical
models of human speech.

Figure 5.1 illustrates the flow of information along the speech channel.
The intended utterance of the speaker becomes an acoustic signal s(t), gen­
erated by the articulatory organs of the vocal tract. This signal is received
and converted by the auditory mechanisms of the listener's inner ear into a
pattern of nerve-cell firings. \Vithin the auditory perceptual and language
centres of the listener's brain, this received signal r(t) is converted into a
sequence of linguistic symbols S. These symbols might be words, or subword
units, (or non-verbal locutions). The listener then integrates and interprets
these symbols as a sentence.

The labels along the top of the figure describe the human modules of
speech perception. The bottom labels describe the corresponding machine
modules of an automatic speech recognition system. An acoustic signal is
transformed into an electrical waveform by a microphone, and then into a se­
quence of numerical samples by an analog-to-digital converter. The sampled
waveform must then be fed to an acoustic analyser in order that a pattern,
P, of acoustic features sufficient for its interpretation be extracted. These
features are passed to the final module, the linguistic symbol generator, which
matches acoustic patterns to linguistic symbols.

Chapter 6, on hidden Markov models, discusses our choice for a symbol
generator. This chapter is about the acoustic analyser, or feature extrac­
tor. In both human and automatic speech recognition, the acoustic features
used to discriminate among linguistic symbols are correlates of articulatory
features. In Chapter 4's brief description of speech production, a range of rel­
evant articulatory features were introduced. This chapter describes the pro­
cessing of the acoustic signal into various compressed representations which
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• inner ear mental speech centre

B- ~t) -1 ~~. ~ .(1)

microphone
& AID converter

acoustic
analyser

FFT feature

extractor

Iinguistic
symbOl
nerator

HMM pattern
classifier
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Figure 5.1: Transformation of information along the speech channel.

capture articulatory features, and are used to train speech models. The kinds
of analysis include measures of signal energy, observed in the time domain,
linear predictive coding (LPC) based analysis, Mel-filtered cepstral coefficients
(~lFCCL and perceptual linear predictive (PLP) analysis. The latter three
are computed in the frequency domain.

• 5.2 SignaIs and Spectra

Ex = i x 2(t)dt. (5.1)

The time waveform of an acoustic signal is a plot of the signal amplitude
versus time. Although the time waveform contains aU signal data, the infor­
mation is encoded in a form not easy to interpret. Two speech samples that
sound the same to a human being may have time waveforms that look quite
different.

Spectral analysis uses the Fourier transform to represent signaIs in terms
of frequencies. The production and perception of speech sounds are more
effectively described in frequency terms, because phonetic features are more
apparent in the frequency domain than in the time domain.

The spectrogram or spectral display converts the two-dimensional wave­
forro into a three-dimensional pattern: amplitude versus frequency versus
time. Time is the horizontal axis, frequency is the vertical, and amplitude
is denoted by the darkness of the display. Figure 5.2 contains the time­
waveform and spectrogram of a speech sample. The waveform shows the
intensity, periodicity and duration of speech segments. The spectrogram

Signais have many properties including amplitude, periodicity, duration, and
energy. Energy is a measure of the signal intensity over an interval of time
1:

•
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Figure 5.2: Waveform and spectrogram of an acoustic sampIe: "yes..or no?".

•
shows the distribution of speech energy as a function of frequency.

Voiced sounds are produced when the vocal roids open and close rapidly,
generating a quasi-periodic excitation of the vocal tract. The rate of vibration
is called the fundamental frequency. The tract, acting as a lUter, increases the
energy at certain sound frequencies while attenuating others. These spectral
energy peaks, called forrnants, show as darkened frequency bands across a
spectral display. In the figure, the formants of the vowels e and 0 can be
seen as 4 dark horizontal bands across a shifting range of frequencies. The
distribution and movement (in time) of the formants and energy troughs, or
resonances and anti-resonances, appear ta be the primary acoustic eues to
phonemes for the human ear [O'Shaughnessy87}. They also work weil for the
purposes of automatic speech recognition.

5.3 Acoustic Properties of Phonemes

•

\Vhat follows is a brief survey of the principle acoustic properties of the dif­
ferent phoneme groups. These properties appear to be the acoustic cues by
which phones are recognized by the human ear. They may be described as
a necessary but not sufficient set of eues for recognition: phonetic variabil­
ity due ta speaker, dialect, context, and random variation necessitates that
higher-Ievel knowledge be employed to map the signal to a phonemic string.

Vowels are characterized by substantial energy in frequencies up to 3500Hz.
Energy is concentrated in spectral lines at multiples of the fundamental fre­
quency. Vowels can be distinguished from one another by the locations of
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their first three formants. In general, when the tongue moves forward in
the articulation of a vowel, the second formant rises. As the tongue moves
higher, the the first formant decreases. Lip-rounding lowers the formants.
The variances of formant frequency distributions about the means for each
vowel are speaker-independent [DemoriEtA190].

Nasals are manifested as a sharp change in the intensity and spectral
features of a vowel, resulting from the entry of the air flow into the nasal
cavity. They are marked as weIl by a low-frequency spectral peak at around
300Hz.

The liquids are distinguished from adjacent vowels by a shift in formants.
If formants are labelled in order as FI, F2 , ••• , Fi, phoneme l will be marked
by a lower FI and F2 and a higher F3 than the adjacent vowel. Liquid formant
transitions are slower than those of other consonants.

The waveforms of fricatives and plosives are very different from the pe­
riodic, or sonorant phonemes above. They are aperiodic, much less intense,
and contain most of the energy at high frequencies. Voiced fricatives often
have simultaneous noise and periodic sound with sorne low-frequency energy
at the onset of frication. Unvoiced fricatives are shorter in duration.

Plosives are acoustically characterized as a prolonged silence followed by
an abrupt increase in amplitude at the moment of release. They are transient
rather than steady-state phenomena; in this they differ from other phonemes.
Release is accompanied by a frication burst. The interval between release and
the onset of voicing for the following vowel is longer for unvoiced (30 to 60
ms) than for voiced (lOto 30 ms) plosives.

As mentioned before, the vocal tract is not a discrete mechanism. The
various organs of articulation move smoothly and slowly between positions
for different phonemes. They often do not reach the target position due to the
contextual effect of neighboring phones. This coarticulation effect means that
allophones have different spectra from the target phonemes, which further
complicates the recognition task.

5.4 Acoustic Feature Extraction

The speech signal can be considered a non-stationary stochastic process.
Thus, its spectral analysis must take into account variability in both time
and frequency. As discussed earlier, the signal is produced by articulatory
organs moving from one position to another \Vith intrinsic mechanical time
constraints. Therefore, it is possible to define a stationarity interval within
which the signal can be considered time-invariant. During such intervals,
standard spectral analysis methods (see following sections) can be applied.
The main goal of the feature extraction step is the computation of a sequence
of feature vectors that provide a compact representation of the relevant in­
formation for the input signal (Demori98] .
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5.4.1 Signal Preprocessing

Prior to spectral analysis, there are steps of preprocessing which improve
the effectiveness of the feature extraction. Preprocessing may he aimed at
noise reduction (one such technique is called spectral subtraction), or at en­
hancement of formant visibility in the power spectrum. A characteristic of
the power spectrum is that higher-frequency formants have lower energy.
Preemphasis is a compensatory technique, realized by applying a fixed first­
order FIR 61ter with the z-transfer function H(z) = 1- az-1, where a is the
preemphasis parameter (usually 0.95).

5.4.2 Spectral Analysis

True periodic signais are called sinusoids. Speech sounds are analyzed in
terms of their sinusoidal components via Fourier series. A quasi-periodic
signal can be expressed as a linear combination of weighted sinusoids:

00

xp(t) = L Ck exp(j27rkt/T),
k=-oo

(5.2)

(5.3)

(5.5)

•
where T is the signal period, and Ck is a Fourier series of coefficients:

l
T+TO

Ck = xp(t) exp(-j2rrkt/T)dt,
t=To

li is the irnaginary; To is any constant. exp( - j2rrfJ) - cos(27rfJ) +
j sin(27r8).]

As weil, aperiodic signais can be modeled as SUffiS of weighted sinusoids:

Xa(t) = i:_e,,:1((f) exp(j21r ft)df, (5.4)

where .Y(f) is the Fourier transfoTm of xa(t). The complex frequency
function )«(f) determines the frequency content of the signal xa(t). I.Y(f)1
is called the spectrum. ...\" (f) is defined

X(f) =l~-oo xa(t) exp(-j21r ft)dt.

On a computer, the signal xa(t) is represented as a fini te, discrete time­
sequence of digital samples, x(n) = xa(nT), where T is the period of the
sampling rate. This leads to a discrete analog for equation 5.5, the N-point
windowed Discrete Fourier TransfaTm (DFT):

where N is the size of an analysis segment, or window. Clearly, the sampling
rate and window size will affect the accuracy of approximation ..Y(f). If N is

•
N-l

X(f) = TL xa (nT)exp(-j27rfnT).
n=O

(5.6)
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infinite, the approximation approaches the Fourier transform as the sampling
period T becomes infinitely small.

The Nyquist sampling theorem states that the sampling rate need only
be twice the highest frequency contained in the signal. In other wards, if
X(f) = 0 for Ifl ~ B, then then the sampling rate must satisfy

1
T ~2B.

(B is called the signal bandwidth). The evaluation of X(f) requires an­
other discrete sampling, this time of the real variable f. Because X(f) is a
periodic function, only values from 0 ta the period 1fT need be sampled. It
turns out that setting the frequency sampling interval to If(TN) allows for a
fast computation of the transforme This means that the number of frequency
samples computed is equal to the window size N. Computation of the DFT
is performed by means of a well-known divide and conquer algorithm called
the Fast Fourier Transform (FFT).

N is thus a crucial variable in spectral analysis of the speech signal.
Small values for N, meaning short windows and DFTs using few points,
give poor frequency resolution. On the other hand, they give good time res­
olution. A window of samples is examined for evidence of sorne "current"
aspect of the speech process. It must be short enough 50 that the acoustic
properties of interest do not vary significantly within the window. While a
longer window will allow spectral features to be evaluated more accurately,
those features will be averaged over a longer evolution of the signal, and
rapid spectral changes that are key for recognition may be smoothed away.
~lost speech analysis uses a fixed window duration in the range of 10-25 ms
[0'Shaughnessy87]. Ta avoid undesirable edge effects, the window's samples
are rnultiplied by a rounded window, with tapered edges, such as the Ham­
ming window. This has the effect of de-emphasizing the importance of the
samples near the window's edges on the spectral computation.

Other limitations of estimation methods based on the FFT include

• The position of the analysis window falls randomly within the pitch
period of voiced sounds. This can cause fluctuations in the spectral
estimate, especially for short windows.

• The sample spectrum is a biased estimator of the power spectral density
due to the finiteness of window length.

Although spectrographie analysis suffers these drawbacks, it is widely used
for speech analysis because the time-frequency patterns it produces have
proved useful [Demori98].

5.4.3 Auditory-Based Analysis

Auditory or ear-model analysis attempts to model the perceptual processes of
the inner ear through a frequency selective linear model implemented with a
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bank of filters. These filters are spaced along the frequency axis based on the
idea of critical bands, Le. ranges of sound frequeney roughly corresponding
the tuning eurves of auditory neurons. A critical band is a range for which
experiments have shown auditory perception wiU abruptly change as a sound
stimulus is modified to have frequeney components beyond the band. The
most commonly used critical band seales are the Mel seale and the Bark scale.
These seales space filters linearly up to about 1 kHz, and use a logarithmic
spacing above 1 kHz.

5.4.4 Linear Predictive Cading Analysis

The basic idea behind the linear predictive corling (LPC) model for speech is
that a given sample of speech Si can be approximated as a linear combination
of the preceding n samples, as follows:

n

Si = L CjSi_j + GXi'
j=l

(5.7)

•
where Xi is an excitation term that compensates for the error of the approx­
imation, and G is the gain of the excitation. The coefficients Cl, ... , en are
assumed to remain constant over the frame of analysis.

Formulation 5.7 leads ta a speech model which is both computationally
and analyticaUy tractable, and has been widely put ta use for many years in
speech coding, synthesis and recognition. The LPC model is useful because
it provides a good model of the speech signal, particularly during the near
steady-state regÏons of voiced phonemes like vowels. The aH-pole model of
LPC is a good approximation of the vocal tract "spectral envelope" in these
regions, and it permits an analytical separation of the source and vocal tract
models, as follows.

By applying the z trans/oTm to relation 5.7 we derive

n

S(z) = LCiZ-iS(Z) + G..Y(z),
l=l

and a transfer function, relating input and output:

H z = S(z) = 1 .
() G.X(z) 1 - L~=l CjZ-i

(5.8)

(5.9)

•

Equation 5.9 has a straightforward interpretation. An excitation source, x,
scaled by the gain G, serves as input to the aU-pole system H(z) which,
acting as a digital filter, produces the speech signal s. This model is used
for speech synthesis by feeding either a periodic train of pulses (for voiced
segments) or a random noise sequence (for unvoiced sounds) to the filter.
The coefficients Ci of the filter model the characteristics of the vocal tract.
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The prediction error e(i) is the difference between the true signal and the
linear combination of preceding speech samples:• n

e(i) = Si - ~ CjSi-j.

j=l

(5.10)

•

•

LPC analysis is performed on successive frames of speech, usually 5-20 msec.
long. The basic problem is to determine the set of predictor coefficients that
minimizes the mean-squared prediction error over a given speech frame.

For the purpose of speech recognition, the LPC predictor coefficients do
not themselves constitute a useful feature set. They are usually transformed,
for example, by the autocorrelation method, into equivalent representations
that are effective. One such set of features is called the reflection coeffi­
cients (RabinerJuang93]. Another useful set are the LPC-derived cepstral
coefficients. The experiments in this thesis are based on cepstral coefficients
derived from the logarithm of the signal magnitude spectrum (section 5.4.6),
or from perceptual linear prediction analysis, described next. These have
been shawn in many studies to be superior to LPC for speech recognition.

5.4.5 Perceptual Linear Predictive Analysis

The alI-pole model of the speech spectrum estimated by LPC analysis can be
viewed as a means of obtaining the smoothed spectral envelope of the speech
signal. In (Hermansky90] it is argued that the disadvantage of this model is
that the aU-pole model approximates the short-term power spectrum equally
well at aU frequency bands. This violates important known properties of
auditory perception:

• Hearing is most sensitive in the middle frequency range of the audible
spectrum.

• The spectral resolution of human hearing begins to attenuate above
800Hz.

LP analysis has other problems. The estimated LP pole frequency is often
shifted in the direction of the nearest harmonie peak. The inconsistency of
estimated LP poles limits the use of LP formant extraction. This is partic­
ularly true for female voices, in which formants are often observed to merge
(HermanskyEtAI85] .

Perceptual Linear Predictive (PLP) analysis modifies the spectrum to
mimic characteristics of the human auditory system. This modified spectrum
is then approximated by an alI-pole model (the linear prediction polynomial)
using an autocorrelation method, as in standard LPC analysis. The method
consists of the following steps:

1. The speech signal is blocked into 10 ms. frames and Hamming-windowed,
using a 20 ms. window.
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2. A 256 point FFT is performed for each window, and the power spectrum
is computed.

3. The spectrum is warped along its frequency axis using the Bark (crit­
ical band) scale. This involves convolution of the spectrum with the
simulated critical band masking curve. The result is then sampled in
1-Bark intervals.

4. The sampled spectra are preemphasized with a simulated equal-loudness
curoe, to approximate the disparate sensitivity of human hearing at dif­
ferent frequencies.

5. As an approximation to the power law of hearing, a cubic root ampli­
tude compression is computed:

This simulates the non-lînear relation between the intensity of sound
and its perceived loudness.

6. Finally, the spectrum is approximated by an alI-pole model using the
autocorrelation method of LPC analysis. 8 LPC coefficients are de­
rived.

In the experiments of chapters 10 and Il, the resulting autoregressive coeffi­
cients are further transformed to produce cepstral coefficients of the alI-pole
mode!. This signal analysis is called PLP-Cepstra. The derivatives of the
PLP-Cepstral coefficients, calculated using 8-sample linear regression, are
added to the feature set, as weil as the signal energy and its derivative,
forming l8-dimension feature vectors.

Another transformation employs time-filtering of the cepstral trajectories
to obtain a representation that is particularly robust over the telephone, and
other situations where the training and test environments vary. This feature
set is called RA.STA-PLP [HermanskyEtAI91].

5.4.6 Mel Filtered Cepstral Analysis

The features we employed for the purposes of training sorne of our HwlNl
speech models were based Dot directly on the spectrum, but rather on the
inverse transform of the logarithm of the speech spectrum IX(f)l, called the
reai cepstrum. In terms of the FFT computation, the cepstrum is defined as

•
where

1 N-l

c(n) = N L log 1 ..X"(f) 1 exp(j211" fnfiV)
/=0

n=O,l, ... ,N-l.
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The cepstral coefficients are the coefficients of the Fourier transform repre­
sentation of the log magnitude spectrum. These have been shown to be a
better feature set for speech recognition than the LPC coefficients. The Mel
Inters are a set of logarithmically spaced, triangular filters designed to bias
the feature set toward perceptually important critical bands.

More specifically, we use the first 12 Mel-filtered cepstral coefficients (MFCC).
These are gjven by

20

log I-,\"(f) 1 = 2 L Cmcos(fmt) + Co.
m=l

(5.12)

The following spectral analysis was performed for extraction of features
from speech signaIs in our research. The speech data was digjtally sampled
at 16kHz, and pre-emphasized with a factor of 0.95. Every 5 ms a 256-point
FFT computation was performed (window duration was 20 ms.) The 12 Mel
coefficients were calculated; these formed the first part of the feature vector
for a speech segment. The spectral information was supplemented by addi­
tionai information about rate of change of spectral features, as represented
by the difference cepstrum:

•
~C. - E~=-2 kCm(t + k)

1 - ~2 k2
.......k=-2

AlI together, 24 rvlel-based cepstral coefficients were extracted
window of the speech signal.

5.4.7 Waveform Analysis

(5.13)

from each

Time waveforrn analysis is used to supplement the cepstral analysis of the
previous section. (Indeed, it is simpler and more intuitive to examine the
untransformed signal for features relevant to discrimination of speech seg­
ments. r.tluch early work involved deriving measures directly from the time
waveform, e.g. zero-crossing rates.)

The frequency based features are typically supplemented with a measure
of energy and its derivatives, as given by (equation 5.1) and the approximate
energy rate-of-change (LlE) below:

~E{t)
Ll = R[E(t - ~t), E(t + ~t)]/ t (5.14)

•

R is a linear regression of m (in our case 9) successive samples. These two
measures added ta 24 Mel coefficients, make up the complete observation
vector. Thus, the acoustic analyzer created a 26-entry observation vector to
represent the features of each speech segment. This constitutes the acoustic
analysis used in the training and testing of speech models for the experiments
to be described in chapters 8 and 12.
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Chapter 6

Training and Decoding with
Acoustic Models

A first order Markov chain is a stochastic process which generates sequences
of discrete symbols. It consists of a set of states, and the transitions between
them. The system makes transitions from one state to the next in the manner
of a non-deterministic finite state automation, but the state transitions are
governed by statistics instead of rules. For each state the process has a set
of probabilities associated with transition ta other states.

A ~llarkov chain is useful for modeling seriaI processes, in which prior
events affect the likelihood of subsequent events. For example, the likelihood
of a system being in state x at time fi given that the system started in
state y at time ta can be computed with a set of operations on the state
transition matrL"{ (in effect rnultiplying the initial and subsequent transition
probabilities.) Other simple ca1culations can determine the likelihood of
observing a particular sequence of transitions.

The Markov chain could be called an observable ~[arkov model, since the
outputs are state symbols corresponding to observable events in the system
being modeled. A richer, second-order rvlarkov model is derived by embed­
ding another statistical modei in the Markov chain, such that the observable
events of the system do not directly correspond to the states, but are gen­
erated instead as a probabilistic function of the states. Since the states
are not observable, the second-arder models are called hidden f.;larko'U mod­

els (H1'INIs). The state of an HrvI1'I system at (non-initial) time t is not
known in general, but can be estimated statistically from the observed chain
of events. This doubly-embedded statistic structure renders HMrvls capable
of modeling non-lïnear relations between the features and the feature-space
classes.

HMrvls are trained for automatic speech recognition by casting acous­
tic feature vectors as observable events, and using them to estimate both
the output distributions and the state-transition probabilities of the rvlarkov
source. Because HrvlMs implicitly assume that events near in time are sta­
tistically dependent, they are well suited for modeling the acoustic-phonetic
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Fjgure 6.1: Hidden Markov nlodel for a phoneme

patterns involved in ASR. HMMs are also useful because they have a conve­
nient framework for dealing with duration variability. Figure 6.1 is a typical
HMM topology for modeling phonemes.

Each transition has an associated probability, and an output distribution
function for generating observation vectors. A transition from one state to
another causes the production of an observation vector. The H~I~I's feed­
forward structure models the stages of evolution of the speech unit. The skip
transitions between non-adjacent states mode! the durational variability of
the phone.

The number of parameters in the overall speech model depends on the
number of distinct statistical distributions. Since the accuracy with which
the model parameters are trained depends on the amount of training data
which is usually limited, it is useful in practice to reduce the dimensionality
of the fitting problem by sharing distributions between related transitions.

The outgoing transition probabilities for a given state S must SUffi to 1.
The observation vectors may he composed of discrete or continuous variables.
The distribution d(X) associated with a transition t must satisfy

L d(.X) = 1, ifXdiscrete;
x

f d(~Y)d.X: = 1, ifX cantinuaus.

A discrete distribution function may take the form

d(X) = p( ..Yld) ,X E {D, 1, ... , K - 1}.

X is a discrete scalar which takes on one of K different values. A more robust
discrete model employs multiple codehooks to reduce quantization error:

N

d()() = rI Pc(xcld),
c=l

where N is the number of codebooks, Xc is the eth component of X, and Xc

E {D, 1, ... , Kc } where Kc is the size of the eth codebook.
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d(X) = 11 N e-t<K_~)TE-1(K-~)
1E lï(21T)T

where N is the length of vector X, J.L is the mean vector of distribution d, and
E is its covariance matrÎX.

Unfortunately, acoustic feature distributions are not unimodal and can't
be accurately modeled by Gaussians. Better approximations are possible by
use of finite mixtures of Gaussian densities [NeyNo1l88]. A mixture distribu­
tion is a weighted sum of K distributions:

Continuous distributions HMMs use N-dimensional multivariate Gaus­
sians:•

K

Pmix(X) = L 'WkPk(X) ,
k=l

•

where 1::=1 Wk = 1.
Mixture distributions are easily implemented by having several paral­

leI transitions between two states, where each transition is assigned one
Gaussian probability distribution. There are also hybrid models called semi­
continuous HNl~1s [HuaJac89], which combine discrete probabilities with con­
tinuous densities, in an effort to combine the efficiency of the former with
the accuracy of the latter.

6.1 Basic HMM Computations

Given a HMNI parameter set H, a model m, and a length-robservation vector
Yr = YI, ... , Yr, the quantity evaluated most often is P(Yrlm), the probability
of observations Yr being generated by m. P(Yrlm) can he computed as

P(Yrlm ) = L P(Yr,pathlm) = L P(pathlm)P(Yrlpath)
pathEm pathEm

where Lpath is the length of the transition sequence path, tpath,j is the jth
transition in path, qt is the probability of transition t, and bt is the distribu­
tion belonging to transition t. Equation 6.1 states that the probability of
the model generating Yr is obtained by summing the conditional probability
of Yr over every possible path in the model multiplied by the a priori proh­
ability of that path. (\iVe assume only paths long enough to generate the
observation sequence are considered).

The computation of Equation 6.1 is exponential in r. Fortunately, how­
ever, there is an efficient recursive procedure to estimate the desired proba­
bilities. To illustrate HMM procedures,we define the following quantities:

•
Ql(i) = P(Yll ... ,ytlm, Sl = i),

f3l(i) = P(YI+b .. " Yrlm , Sl = il,
(6.2)

(6.3)

42



• i

state

2

2 3 4

observation
L

•

Figure 6.2: A trellis structure for alpha/beta computations.

where S, is the state producing the observation YI' QI(i) is the probability
that the model m generates the observations Yr = Yt, .. " YI using a path
ending in state i. f31(i) is the probability that the model m generates the
observations Yr = YI+ l, ... , Yr using a path beginning in state 'i. Thus

(6.4)

The computation of ol(i) and 131(i) involves an implied data structure
called a trellis (figure 6.2.) Column lof the trellis corresponds to time land
observation l. Row i corresponds to the ith state in the HNIJ\'1. Ol (i) and
f31(i) are computed recursively , column by column, Ot(i) starting in column
0, and f31(i) starting in column r.

Sorne transitions of an HMNI may have no distribution associated with
thern, because they model changes of state which produce no observation.
These are called empty transitions. ol(i) and /31(i) must be computed in two
parts: a sum over empty transitions and a SUffi over full ones.

For ol(i), each entry in the trellis is computed, in increasing order of
column nurnbers and state numbers, as follows:

a) Initialization:

b) Recursion:

(") {1, if i =0o z =o 0, otherwise (6.5)

•
ol(i) = L OI-l(lt)qtbt(Y,) + L ol(lt)qe, (6.6)

tlfull,rt=i tlempty,rt=i,lt <i

where lt and Tt are the origin and destination states, respectively, of transition
t.
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For f3,(i), each entry in the trellis is computed, in decreasing order of
column numbers and state numbers, as follows:

ai Initialization:• {3 (') {1, if i = ST
r t = 0, otherwise

b) Recursion:

/3,(i) = L f3'+l(rt)qt bt(YI+d + L {3,(rt)qt.
tlfull,lt=i tlempty,lt=i,Tt>i

(6.7)

(6.8)

(6.9)

•

•

Both recursions 6.6 and 6.8 are linear in sequence length r. Define
~(t, ylm) as the probability that observation sequence y was generated by
model m, using a path in which transition t was taken at time l. A transition
at time lis a transition that reaches a node in the lth trellis column. Pt(t, ylm)
may be efficiently computed as

R (t 1 ) - { Qt(ldqt!3,(rd, if t empty
l ,y m - QI-l(ldqtbt(YI){3t(rt), if t full

This quantity is central ta most H~nvl computations.

6.2 Training Algorithm: Maximum Likelihood
Estimation

Determining the HM~I probabilities is a problem in maximum likelihood es­
timation (MLE): finding the H~nvl parameters with the maximum likelihood
given the statistics of the training corpus.

Maximum Likelihood Estimation (MLE) by the Baum- Welch re-estimation
method [Lip82] is the most commonly used training procedure for estimating
the parameters of hidden l\tlarkov models. Other methods have been used
as well, including maximum mutual information (M~II) estimation [Bah186]
[Chow90], and minimum discrimination information (N'lOI) [EphDem89].
Simulated Annealing has also been proposed for this problem [PauI85]. Here
we discuss 1;ILE.

We need the H~I~I parameter set H which ma.ximizes the probability of
generating the data in

vtmin { }
.1\ X Cl, .•. , Cm .

We assume that x tmin is made up of sequences of observation vectors Yr, r =
1,2, ... , and we search for H such that

where mr is the correct model sequence corresponding to observation vector
sequence Yr' In practice it is not possible to find the optimal parameters. A
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•
gradient-descent procedure is used to iteratively converge to a local optimum
in the parameter space; that is to derive a sequence of progressively better
solutions Hl, H2 , ••••

Take the case of discrete distributions. An H~IM model is described by
two parameter matrices, A, the state transition matrix of probabilities llij

(probability of a transition from state i to state j), and B, the matrix of
multivariate probability distributions. Since each matrix row must SUffi to 1,
training is a problem in constrained optimization.

In each iteration of the Baurn-Welch algorithm, parameter CLi; is re-estimated
as

G..ï. ôP
, ) &a.)

a·· = -_-.:.--
1) N 8P

LG..ïk-
k=l 8aik

[O'Shaughnessy87]. The same reestirnation is applied to the entries of B.
Theoretically the descent through parameter space is performed until PH'
no longer improves between iterations; in practice only a few iterations are
necessary.

6.3 Decoding Aigorithm: Viterbi Search

Once the H~nvl parameters have been estimated, we need an algorithm which
can use the models to decode the sequences. The decoding, or recognition
problem is the search for the H~1M unit-model sequence mr which maximizes
the conditional probability P(mrIYr). The Viterbi algorithm provides an
efficient approximation.

The Viterbi algorithm [Vite67] was introduced in 1967 for maximum like­
lihood decoding. It is a dynamic programming algorithm to find the lowest­
cost path in a trellis, where the cost of a path at a given trellis node nj can
be computed as the sum of the cost at the previous node nj-l and the cost
incurred ta get from nj-l ta nj' Define the cost C(tlm) of a path t through
an Hrvlrvl as -1 times the a posteriori log-likelihood of the path:

C(tlm) = -log P(tlm)P(Yrlt).

Let Cl(i) be the cost of the lowest cast path ending in state i at time l, and
Cl(t, i) be the cost of going from state lt to state i at time 1, using transition
t. If t is full, then it cornes from from 1and Cl(t, i) = -logqt. If t is full, then
it cornes from time l-1 and Cl(t, i) = -logqtbt(YI)'

Cl can be computed as

Cl(i) = max { max (Cl(l,) + c,(t, i)), max (CI-1(l,) + Cl(t, i))} (6.10)
t.empty t.full

The lowest cost path is the one with the highest probability. The Viterbi
algorithm finds this cast by computing

•

• maxC(tlm) = max(-logP(tlm)P(Yrlt )) = Clv(F),
t t
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Figure 6.3: A looped word-recognition model.

•

where Co(O) = O. A trivial modification to the algorithm that computes Cl(i)
can provide the actual sequence of state transitions in the optimal path. AlI
through the recursion, a back-pointer Bl(i) to the transition that resulted in
the best path "so far" is saved. At the end, the pointers are used to trace the
optimal path from CLlI (F) to Co(O). The optimal state-path through HNINls
is often used as an alternative to Equation 6.1 (for P(ylm)), because it is
faster to compute.

Although the optimal state-sequence is the most likely path through the
models, the sequence of unit-modeis corresponding to this path may not be
the most likely models. This is because the probability of a model sequence
must summed over aU the paths in the sequence, and not only the most likely
path. Usually, however, the best path provides a close, efficient approxima­
tion.

Consider creating a general model mgen by looping the unit models to­
gether, so that the end state of the last unit model in each word has an empty
transition to the start state of the first unit model in each word, including
itself. Figure 6.3 shows a model for connected word recognition. In this case
the most likely path through mgerl corresponds to a series of paths through
individual word models. The Viterbi algorithm effectively provides a word
sequence corresponding to an acoustic observation sequence y. Simultane­
ously, it segments the observation vector into subsequences corresponding to
specifically recognized words. These words are the output of the recognition
procedure.

•
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6.4 Bearn Search

In Viterbi decoding, quantity C, of equation 6.10 must be computed at each
time 1for every node (ie. state) in the network which constitutes the language
model m. The end result is the likelihood of the optimal path with respect
to the exponentially large set of paths through the state-space. In the jar­
gon of heuristic search algorithms, Viterbi produces an admissible (provably
optimal) search.

The complexity is O(lml x r) where r is the numher of frames and Iml is
the number of states in the network. AlI though the algorithm is efficient in
terms of finding the solution in time polynomiaHy bounded by the size of the
language model, in practice terms the algorithm fails because it spends too
much time estimating the many low-likelihood paths through the network.
Consider that in a large vocabulary ASR system, there may be thousands
of words, each modeled by several phoneme H~IMs, each of these contain­
ing several states. A practical language model may construct the network
using n-gram statistics, inserting the same word in many parts of the graph
depending on the conditional transition probabilities with respect to other
words. As a result Iml may be on the order of millions. For example, the
AT&T system described in [LjoljeEtAI95] used a 60,000 word vocabulary
with 34 million 1-5grams. Since speech recognition must be performed 00­

line aod in real time ta be practical, the computational priee of admissibility
is too high.

The solution is to add a threshold computation to the Viterbi algorithm.
For each frame l of the signal, the ma.ximum state-likelihood is tracked as
equation 6.10 is computed. Each state has a boolean flag indicating whether
the state is active, initialized to false before the current frame is calculated.
When the state ca1culations are done, each state s is set active if and only if

(6.12)

•

where () is a parameter controlling the exhaustiveness of search. In frame
l + 1 only transitions from active states have their likelihoods computed.
The difference in equation 6.12 describes a beam through the search space
containing the most likely state-paths; this threshold-mediated Viterbi algü­
rithm is called beam search.

The effect is to prune from the search space all paths whose cumulative
likelihood is significantly less than the running optimum. This can be justified
by observing that if the initial segment of a path is very unlikely with respect
to the data sa far, it is almost certainly the wrong path. Exhaustive search
will compute the observation likelihood P(yli) of state i even if the path
probability P(tlm) leading to i is nearly zero.-For example, states close to the
initial node of the network would be considered all through the procedure,
even though they could almost certainly not have produced the features
observed near the end of the signal. Bearn search is more efficient and the
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benefit is cumulative, since early pruning of low-likelihood states prevents the
unnecessary overhead of extending these paths in subsequent frames. The
complexity of beam search is O(m x r) where m is the Mean number of states
entering the beam per frame. This Mean depends on the beam threshold and
is independent of the complexity of the language model.
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Chapter 7

Classical Search Methods

This chapter discusses typical solutions to the search problem in automatic
speech recognition, based on the underlying too15 of the previous chapters.
The speech programs of BBN Systems and Technologies may be consid­
ered one representative example. The BBN research system is called BYB­
LOS. It is a speaker-adaptive continuous speech recognizer based on context­
dependent discrete-distribution hidden rvlarkov models. The first published
results, in 1987, were 93% word accuracy on a 1,000 word task of read
speech.By November 1994 the system was reported to have achieved 96%
accuracy on the 2500 word ATIS task, a corpus of natural-Ianguage queries
to an airline travel information database. On the Wall Street Journal
corpus, a collection of read speech containing 20,000 words, the system was
reported to have achieved 89% word accuracy.

Unfortunately the performance of a recognition system on a carefully
recorded test set composed of read speech does Dot predict how it will per­
form under realistic conditions. Spontaneous speech is filled with hesitations,
non-verbal utterance, non-grammatical locution, and spurious environmen­
tal noise. Thus, performance badly deteriorated when the system described
above was tested on the Switchboard corpus, a database of 143 hours of
recorded spontaneous speech containing 22,000 words. (Weighted by fre­
quency, 5,000 words cover 97% of the data.) Despite using an extensively
trained statisticallanguage model based on two million word-pairs, BYBLOS
achieved a mere 50% word accuracy on the task.

BBN developed a commercial product based on BYBLOS which it called
HARK. This real-time system was fully-soft\vare based - its only specialized
hardware requirement was a 16kHz linear-sampled audio acquisition chan­
nel. The product has a basic module that processed continuou5 speech from
a 2,000 ward active vocabulary. By the spring of 1995 it was able ta do
dictation from a 40,000 word active lexicoD.) The system switched between
different active vocabulary/ grammars specifie to different tasks. Although
speaker-independent to a degree, BBN emphasized the importance of adapt­
ing the acoustic models to its customers' voices in order ta maintain a target
accuracy of approximately 3-4% word error rate. After adaptation, it had the
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ability ta switch the active acoustic model set based on the target speaker
using the system.

The systems described above are still representative of current speaker­
independent ASR technology for continuous speech. They also illustrate the
continuing weaknesses of CUITent methods. Key features are:

• Phoneme (triphone) HMMs. These are supplemented with word mod­
eis for short and common words.

• A network representation. The language recognized is represented as
a finite state network of phonemes, in which legal paths correspond to
words in the lexicon.

• A pronunciation dictionary. The phoneme sequence for each word is
drawn from a pre-compiled dictionary.

• A statistical grammar. The network is a combined phrase grammar and
statistical grammar based on word-pair probabilities (bigrams). The
speech signal is fitted frame-synchronously, left-to-right, to the network
to produce the optimal sequence.

• Closed vocabulary. The success of the system depends on being able to
model speech utterances a priori. If a specifie syntax is imposed, certain
illegal word sequences may be generated and then rejected. However,
there is no integrated way to spot and rejeet out-of-vocabulary words.
The highest-scoring hypothesis wins.

• Speaker adaptation. The system performs on-Hne speaker adaptation.
For best results the initial models requires adaptation ta the user's
voice.

• Task dependence. The system works better with a medium-size vocah­
ulary and a grammar depending on the current assigned task. This
reduces the scope of the search and enriches the context, improving
recognition. Performance seriously degrades with larger vocabulary
and less context.

7.1 The Classical Word-Lattice Approach

Another good example of ASR methodology is the SRI Decipher system
[MurveitEtAI93]. This type of system used a multi-pass algorithm in which
the first stage module is an acoustically-driven recognition engine. The acous­
tic module employs HlVINIs. Generally, a first-pass recognition module will
have models for phonemes, often supplemented by whole-word models for
short or common words. This module attempts to translate the signal ioto
an accurate lattice, or time-segmented graph of word hypotheses.
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The word lattice is generated one of two ways: the network method and
the lexical access method. In both methods, the lexicon of valid words is
generated from a dictionary in which the legal pronunciations of each word
are represented by phoneme sequences.

In the network method, the lexican is converted inta a graph in which the
arcs represent the transitions between phonemes. Each word in the lexicon
corresponds to a path in the network. The language model consists of n-gram
probabilities attached to the arcs between words. In this way, for example,
the conditional probability of a common word-pair (or bigram) is attached
to the arc connecting the two words in the network. If the language-corpus
derived probability of word-pair is zero (as would be the case for many word
pairs that are semantically possible but paorly represented in the training
corpus) a transition between the two words is still possible through a special
arc representing the backoff probability estimate.

The phoneme HrvlNIs are linked together in the shape of the network.
This large automaton then represents the language of the recognizer with
a11 the acoustic, lexical, statistical, and grammatical elements integrated. A
beam search is used to align the signal with the model and generate the
lattice of hypothesized words with corresponding time denotations.

A consequence of using one automaton to recognize the whole language
is the size of the resulting program. Even with a moderate vocabulary of
5,000 words, the nodes in the network can number in the millions. The
machine memory and CPU time required to process this kind of network is
considerable, and any useful recognition system must be made to work in
real-time. Consequently, researchers have looked for ways to compress the
graph by eliminating as much redundancy as possible [AntonioIEtAI94].

Even compressed, the network model is tao large for fast recognition if
detailed acoustic models are used. For this reason the phonetic network is
not used as a sentence hypothesizer in large (> 10,000 words) vocabulary
ASR systems. It is used instead to generate a word lattice in a first-pass.
The lattice is given as input to a second stage module which performs a
more detailed analysis. The system described in [NeyAubert94] used this
approach, generating a lattice with an average of 10 hypothesized words per
spoken word, and then applying a trigram language model to this vastly
reduced language space.

The second-stage recognizer may use more detailed acoustic models in fit­
ting the acoustic signal to the word hypotheses in the lattice. For example, in
[BocchieriEtAI95] the first pass used context-independent models with small
mLxtures. The word lattice was converted into a time-annotated reduced net­
work, and bigram probabilities were embedded in the reduced graph. The
second-pass employed a much larger set of allophone HNIMS with large num­
bers of distributions per mixture. These more accurate models were used to
re-estimate the ma.ximum likelihood word string from the reduced network
with respect to the already computed acoustic feature vectors.

Altematively, the second-pass may avoid any more acoustic analysis, and
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treat the ward lattice as symbolic data on which to apply higher-levellan..
guage constraints. These constraints can be the syntactic/semantic knowl..
edge of a parser, or they can be language model statistics.

In contrast with the network method, the lexical access mcthod uses the
acoustic models to produce an accurate phoneme string, or aitematively, a
lattice of phonemes. The word hypotheses are then generated symbolically,
using the phonemes ta access the lexicon and produce the most likely set of
candidate words.

Since the phoneme space is much smaller than the search space in the
network method, much more detailed and accurate acoustic models can be
used in the initial stage of the lexical method.

ASR systems built with a muiti-stage process incorporating LPC or Mel
coefficients, a language network or phoneme network, bigrams ward proba­
bilities, and ward lattices have been weil established for years, and may be
referred to as the classical ASR approach.

7.2 Sources of Error in Word Lattices

The classical method produces a ward lattice in a first-pass search, and it is
therefore crucial the lattice be as accurate as possible. If the correct word
is not present in the ward lattice, the second-pass, however accurate, cannat
produce the right string. No system, however, could produce a ward lattice
\Vith perfect accuracy, unless the search beam is widened to the point where
nearly everything is hypothesized everywhere.

First, the acoustic analysis is imperfect. The feature vectors are produced
by applying the rvlel-scale transfornl ta the signal spectrum. The rvlel filters
are logarithmically spaced triangular filters that have been derived to corre­
spond ta critical bands in the auditory model of speech perception. They are
used because they usefully project the spectrum into a small-dimensional,
perceptually significant feature space, and furthermore, they are used be­
cause they have been shown to be more effective than alternatives (when
there is a perfect match between the training and test conditions.) They are
imperfect because of the limitations of the auditory model on which they are
based, and because the frame-based FFT computation that generate them
must trade off the accuracy with which long and short-duration changes are
captured.

A second, ine\;table source of error is the pronunciation modeling proh­
lem. In continuously spoken English, the words are often distorted from
their dictionary, or canonical, phoneme representations as a result of speaker
tendencies (such as accents), contextual articulatory events, as well as ran­
dom articulatory variability. ASR systems address this variability by us­
ing clustered context-dependent models, and incorporating multiple lexical
"spellings" for each ward in the dictionary.

There are two basic reasons for modeling phonemes rather than words at
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the acoustic level. First, the number of acoustic models ta train is fewer, and
independent of the size of the vocabulary being modeled. This reduces the
complexity of the acoustic module, and allows users the modify or expand
the system's dictionary without retraining the acoustic models. Second, it
is possible to collect adequate amounts of training samples from the avail­
able speech corpora because the basic units are aIl weIl represented in many
contexts. But the problem of varying word pronunciations reasserts itself
here at the lexicallevel: it is difficult to acquire a priori knowledge of how
a given word may be pronounced by different speakers in different contexts.
For any large vocabulary there will be many words whose pronunciation is
poorly represented in the training corpora, and as a result only the canonical
representation is present in the dictionary, perhaps with one or two possible
distortions.

Another intrinsic limitation of the classical approach is particularly evi­
dent in the lexical access method. The acoustic analysis is performed in the
first-pass, and the second-pass aceesses a string or lattice of phonemes as
symbolic data. As stated above, there will be always be instances in which
the correct phonemes has been missed, and are simply not represented in the
lattice. In this case there is no way for the recognizer to recover the cor­
rect hypothesis because the acoustic information has already been discarded.
This problem exists for the network method, as weIl. Although the latter
reprocesses the acoustie data, it uses are the same Mel (or PLP or LPC)
based features as before and suffers the same limitations. Furthermore, the
second pass involves a ma..~mum-likelihood search of the reduced network
produced by the first pass, and whatever was missed the first time cannot be
re-introduced here. These problems are inherent to the systems described.
What is desirable is sOlne method of rescoring the signal on the basis of both
knowledge gained in the first-pass, and additional acoustie tests, in order to
improve the accuracy of the reduced network by adding hypotheses which
were rnissed the first time.

7.3 Out-of-Vocabulary Events

Another limitation of the classical approach is the out-of-vocabulary (OOV)
event. In a live ASR system, whether dealing with dictation or dialogue,
"i;he spoken input will reflect t!le real nature of hurnan speech in containing
numerous utteranees which do not correspond to lexical items in the dic­
tionary. These OOV events include non-dictionary words, hesitations and
pauses, false starts and restarts, and spontaneous speech utterances. Sponta­
neous speech utterances are the non-verbal noises, the "ahsn and "ersn with
which all real speech is liberally interjected.

The difficulties of modeling OOV events are plainly evident. The classical
method relies on a best-fit strategy in which the likelihood of dictionary items
occurring in sorne sequence is estimated a priori by the language mode!.
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Spotting OOV events requires a strategy of rejection, or the system will
inevitably produce an incorrect ward sequence. But in arder ta spot the
OOV event one has to model it accurately, or the chance increases of rejecting
actual dictionary items with non-ideal pronunciations. It is difficult ta model
the OOV event accurately because of its inherent variability. Further, it is
difficult to estimate the conditional probability of such events occurring in
the context of other lexical items, ie. it is hard to incorporate the OOV event
in the language model.

In the classical method, rejection of spontaneous speech utterances is at­
tempted through the use of garbage models, anti-models, and noise models
[WilponEtAl90]. The garbage model can be an HM!vI trained on sponta­
neous utterances, or on the average spectral events contained in non-silent
portions of the training signaIs. The noise model would be trained on non­
verbal utterances only. OOV \Vords can be spotted using a looped network of
phoneme HM!vIs. If the log-likelihood ratio comparing the winning hypothe­
sis with the garbage hypothesis is beneath a certain heuristic threshold, the
corresponding segment of the signal is denoted as an OOV segment, and re­
jected. Pauses and hesitations can be modeled with silence models, and these
have to be incarparated in the language model network effectively, 50 that the
pause can be "consumed" by the automaton wherever it might reasonably
occur in the utterance.

False starts and restarts are common events in which sorne word or phrase
is partially completed, the ending distorted or broken off into a slight pause or
non-verbal utterance, and the utterance repeated whole from the beginning.
This kind of event, simple to describe, is very difficult to model in the classical
system. The lexically accurate portion of the signal is not rejected, but the
complete utterance cantains a repetition of word(s) which cannot he pre­
estimated by any language model because of its inherent randomness. A
grammar or parser would he able to reject a phrase that contains a restart.
But this approach is ultimately undesirable for two reasons: the utterance
that contains a restart is often intelligible and should not he rejected; also the
eventual goal of A.SR is to reliably transcribe speech that is ungrammatical,
as this characterizes mast utterances actually spoken by human beings.

Chapter 9 introduces a multi-pass search method based on syllable-like
segments which is intended ta compensate for sorne of the problems discussed
in this and the previous section.
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Part III

New Aigorithms and
Experimental Work
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Chapter 8

Search for Acoustic Models

This chapter describes the development of a speaker-independent automatic
speech recognition system using hidden Markov models (HM~ls). Simulated
Annealing and randomized search are used to optimize discrete features of
the system, including topologies, parameter tying, allophone context clusters,
and the sizes of mixture densities. Domain knowledge is used to initialize and
to constrain the search, which optimizes recognition performance while re­
ducing the number of model parameters. System performance results for new
types of discrete and continuous H~I~ls measured on the TIMIT corpus are
reported. The small set of context-independent phoneme H1-I~Is produced
is competitive with much larger systems of context-dependent models.

8.1 Introduction

An HrvI1tI is a probabilistic finite state automaton which can model a stochas­
tic information source with a good compromise between simplicity and gener­
ality (Chapter 6). The list of states, connecting arcs, and the mapping which
assigns to them a probability density function, are collectively referred to
as the model "topology". While rigorous mathematical methods have been
developed for estimation of acoustic parameters, the choices made for the
topology, for tying distributions among different arcs or states, and for the
phonetic or phonemic events to be represented by an Hl'JIM, have been arbi­
trary.

1t is weIl established by now that having different HMMs for allophones
of a given phoneme substantially improves the performance of Automatic
Speech Recognition (ASR) systems [LeeEtAI90A], [KimbalIOstendorf92]. It
is also well known that training a large number of allophone models requires a
very large training corpus containing many samples of each allophone model
to be trained.

Various training methods have been proposed to reduce the imprecision
of parameter estimation if a limited amount of data is available for cer­
tain phones. One is to train models at different levels of detail-isolated
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phonemes, and phonemes in the left and/or right context-and to interpo­
late the statistical parameters of these models in order to obtain the parame­
ters of allophone HMMs [ChowEtAI86]. Various ways of tying the statistical
distributions associated ta different elements of HMMs have been studied
[Young92]. Another method consists of clustering contexts, and perform­
ing a sort of generalization using classification and decision trees [Hon92],
such that enough training samples are available for each cluster, and clus­
tering repects some mathematically defined criteria about the "impurity"
introduced when merging allophones. The decision tree method of deriving
allophone states and their corresponding density functions has become per­
haps the most popular tool for training acoustic models at the present time
[BahIEtA191], (Chou97], [BeulenNey98] [ChouReichI99].

This chapter proposes a methodology for a mathematically sound solution
of a group of problerns, sorne of whose solutions until now have usually been
arbitrary. l The basic concept is that choosing a set of allophones, H!vI~[

topologies, and tying of distributions is a search problem. There are various
rnethods and rneasures of success in directing a search toward sorne goal.

In Section 8.2, simulated annealing is proposed as a search method for
the above mentioned problerns, guided by the recognition performance on a
subset of the experirnental corpus disjoint from the test set. In general, search
complexity is prohibitive, so suitable heuristics have to be used in order to
constrain it. Section 8.3 describes how search is used to derive topologies and
distribution ties. As weIl, heuristics based on speech knowledge are proposed
to constrain the choice of phonemic and phonetic contexts which characterize
a cluster.

The chapter reports experimental results for phoneme recognition on
the TIMIT corpus using the allophone models obtained \Vith the above­
described search procedure. The recognition language model for our ex­
periments is a loop of allophone models similar to those described in the
literature [LeeHon89]. The experiments show small improvements obtained
with topology optimization, and substantial improvements with alkphone
models.

It is weIl known that the effectiveness of HwlM parameter estimation de­
pends on the initial values assumed for the parameters. In principle it should
be possible to use the improved topologies and al1ophones as starting condi­
tions for the design of new and better phoneme models. Section 8.4 describes
how allophone models corresponding to the same phoneme are merged into
a single phoneme model. The performance of the new phoneme model is
close to that of the allaphone models, suggesting that the rnethod proposed
here allows one to build a small and effective set of phoneme HIvI!vIs that are
competitive with a larger set of allophone HMMs.

Further improvements are obtained by conceiving simple HIvI!vls, one for

1The experimental work in this chapter has been published by the author and R. Demori
in similar form in volume 9, number 2 of the journal "Computer Speech & Language" .
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each phoneme, with mixtures having a large number of Gaussian distribu­
tions only at the beginning and at the end of the mode!. This choice is
supported by the conjecture that coarticulation effects produce large param­
eter variability at the boundaries between a phoneme and its neighbours.
The initial values of the parameters of the Gaussian distributions are the
ones of the trained distributions in corresponding initial and final arcs of
the allophone models. As weil, improvements can be obtained by eliminat­
ing similar Gaussian distributions and retraining the models with a reduced
number of mixtures.

Section 8.4 also shows how performances can be improved by introducing
simple acoustic parameters describing time and broad-band features not weil
characterized by lVlel-scaled cepstral coefficients and their derivatives.

8.2 Search Strategies

8.2.1 Simulated Annealing

In contrast with hill-climbing or gradient-descent optimization methods, ran­
domized search does Dot set out to thoroughly explore the vicinity of a local
extremum of the cost function, but employs instead a random solution gen­
erator to visit points a11 over the solution surface. One advantage of this
approach is that it is easily applied to almost any optimization problem,
continuous or discrete, regardless of non-linearities or discontinuities. A ran­
domly generated set of solutions Si is unlikely to contain the global or even a
local extremum to a non-trivial cost function /(S). However, there is a higher
probability of yielding a solution S· such that

where m is sorne acceptable margin for error in the solution.
The goal here is to find improved values for certain discrete parameters of

an HM~l speech recognition system. These parameters include the topology

of the unit models. The cost measure to be optimized is a measure of the
recognition performance of the system. As an example, consider the problem
space represented by an HI\tIM topology restricted to topologies with no more
than 7 states and 7 output distributions. The state-transition matrix has 49
entries, each of which can contain 9 values. (7 values for the seven possible
distributions, plus an extra 2 values representing either no transition, or
a lambda i.e. non-consuming transition.) This means there are 5.7 x 1046

distinct solutions. Clearly exhaustive search is infeasihle.
Although the computational cost of generating and testing new solutions

prohihits more than a cursory search of the problem space~ a pure ~Ionte

Carlo search can nevertheless have practical utility. Unless the initial solu­
tion is a good local optimum, any series of randomly generated candidates
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which are perturbations of the initial solution is likely to contain sorne can­
didates which improve the performance measure. Care must be taken with
this approach, however, since the goal is to derive a speech model which
generalizes weil to new data. A more directed kind of search is feasible,
in which a method is exists ta escape from local minima. For the last
fifteen years researchers have applied the technique of simulated annealing
[KirkpatrickEtAI83] ta many areas where gradient and other hill-clitnbing
methods were unavailable or inadequate. Simulating annealing is a method
of randomized optimization which acts like a hybrid between Monte Carlo
search and hill-climbing, begjnning like the former and settling into the latter
near the end of the search.

In Boltzmann annealing, the solutions ta a gjven cast function are as­

sumed to be distributed with the Boltzmann probability factor P(Si) =
exp(-E(Si)/kT) where E(Si) is the cost-function value for solution Si, k
is Boltzmann's constant, and T is a system parameter called temperature.
A new solution is generated randomly, and accepted if the cast improves
(ie. ~E < 0). Otherwise, the new solution is accepted according to the
probability ratio

= exp( -(E(Si+d - E(Sd)jkT)

= exp(-~EjkT)

This conditional acceptance of non-improvements allows the search proce­
dure to escape local Ininima. As T is reduced, the probabilities gjven by the
Boltzmann distribution vanish for aIl but the lowest-cost solutions. It can he
shawn that, given the above assumptions, if the temperature is lowered in
stages and enough solutions are sampled at each temperature, Boltzmann an­
nealing will converge to a globally optimal solution. One "cooling" schedule
that guarantees optimality is the logarithmic schedule

T. - 1', ln no
n - 0 ln n

where n is the temperature iteration and {To,no}, are sorne reasonable start­
L"lg values. In practice faster schedules are used which, while sacrificing the
theoretic property of convergence, tend to provide useful optimization results.
The latter approach is called simulated quenching.

In this research simulated annealing is used to optimize the structure of
H~lrvls for English phonemes. Because of the prohibitive size of the search
space, a variety of non-optimal schedules, including linear ones, were em­
ployed. During the annealing, new solutions were generated from old by
randomly permuting sorne discrete value, such as the value of an entry in the
matrix representing the Hl\tllVl topology. The measured recognition accuracy
of the Hl\tllVls provided the value for cost function E .
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8.2.2 Knowledge-guided Search

The solutions searched for are refinements to the structure and organization
of hidden Markov models for speech, things that are usually set by hand. The
models arrived at are in turn fitted to training data in the fonn of acoustic
speech samples. To ensure the things learned about HMMs are generalized
improvements, the objective function that drives the annealing process must
he evaluated accurately. This means re-training and re-evaluating the mod­
els on thousands of acoustic samples every time a new model structure is
generated. The computational cost of this procedure effectively precludes
exploring the search space very weIl. In topology experiments, for example,
only a few hundred solutions were tested at each temperature. However, any
measurable improvement on existing solutions is desirable.

Another interesting approach would be to let the amount of data used ta
train and evaluate the models serve as the system "temperature". This would
allow more solutions to be tested during the early part of the annealing, with
the higher error in the evaluation function serving as a probabilistic factor
affecting the acceptance of new solutions. Then as the system "cooled,"
increased training would provide a more and more accurate measure of solu­
tions, and direct the system more toward a better solution (in this case lower
recognitian error.)

In any case, since the problem space is large and the ability to explore
it limited, the best way ta solve the problem is to use the methodology
in tandem with knowledge of the problem domain. Search begins with
knowledge-guided and empirically proven solutions. Randomized search is
used to develop new and better solutions. These are evaluated in the light of
knowledge about the speech modeling problem, and adjustments are made.
If necessary, the entire procedure can be repeated. In the following exper­
iments, this approach of knowledge-guided random search has proved to be
an effective compromise, and provided better models for speech.

8.3 Applying Search to HMM Structure

8.3.1 Basic Recognizer Architecture

In each experiment, the original models are first evaluated by training them
on a set of sentences, and testing their recognition performance on another
set. The train/test suite is later used ta measure the optimized speech sys­
tem, to see if recognition performance improved. The sentences used to score
the models during search belong ta a third, separate test suite. AlI acous­
tic data were drawn from the TIMIT acoustic-phonetic speech corpus. 3679
sentences were used for training, and the core test of 192 sentences containing
7,333 labelled phonemes was used for final evaluation.

Both discrete and continuous HMMs were trained and evaluated. For the
continuous models, the HM!vl output distributions of 12 Mel-scaled cepstral
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Figure 8.1: The initial (top) and optimized topology for model "b".

coefficients, 12 difference cepstrurn coefficients and energy and energy rate­
of-change, were estimated from the training data using continuous mixture
densities composed of Gaussians. The covariance matrix is assumed to be
diagonal. For the discrete models, three codebooks, one for each feature set,
were introduced (256 entries were used for each of the first two sets and 64
for the energy features.)

To speed up search, continuous models \Vere abandoned in favor of discrete
ones during optimization experiments. The HrvIMs were trained by Saum­
Welch re-estimation. Recognition \Vas performed using Viterbi maximum­
likelihood decoding over a looped, phonemic finite state network.

8.3.2 Topologies and Distribution Ties

As mentioned in the introduction, the topology and tying of distributions in
hidden l\tlarkov models for speech are usually determined a priori, or based
on statistical measures [Young92]. Sorne researchers have made attempts to
evolve the topologies algorithmically [Casacuberta90EtAI], [SanchisCasabuberta91],
[JouvetEtAI91], [TakamiSagayama92]. In the method described here, the
topology and distribution assignments of an H~[lVl are represented as an in-
teger array, and simulated annealing is used to optimize this data structure.
Each perturbed solution is applied to the basic English phoneme models
which are trained on one target set of sentences from the TIMIT database,
using discrete parameters. The models are tben tested on a separate test
suite, with the measured unit accuracy used as the objective cast function
ta be maximized.

After a set of topologies adapted to particular phoneme classes have been
derived, they are evaluated on a third data set of 192 sentences. Figure
8.1 shows one such topology. A rnix of the best performing topologies are
selected (based on individual phoneme accuracy,) and finally evaluated by
training a model set with continuous mLxture-densities.

The searches are initialized with a proven, left-to-right model, and limit
the growth of the model to 7 states. Using domain knowledge in this way, the
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eontinuous no. distr. plosive vowel phone error
models errors errors rate
7 state topology 1440 402 924 44.06
mixed topologies 1362 385 890 43.62

Table 8.1: Comparison of initial and optimized topologies.

seareh is eonstrained enough to achieve a reasonable solution in reasonable
time. Sinee the different phoneme classes are acoustically dissimilar, it is
conjectured that different topologies should be developed for specifie broad
phoneme-classes.

Search began with the initial topology represented by the top of figure 8.1.
The optimization proceeded by repeatedly perturbing values in the transition
matrix, and evaluating the new topology represented by these perturbed val­
ues. Since the values represented both transitions and the distributions tied
to them, the method optimizes simultaneously over both topology structure
and parameter- tying.

48 or 53 units are modeled, depending on the experiment suite. Following
[LeeHon89], the original unit-models are mapped ooto a simpler set of 39
recognition units for classification. AIl performance results in this chapter
are for these 39 units. Recognition performance is given by the phone error
rate (PER):

PER = 100 x (#insertions + #deletions + #sUbstitutionS)
#units

Topology-optimization was performance-based, using 512 sentences to
train and 96 sentences to evaluate each perturbation of the topology set.
The success or failure of the experiments was determined by testing models
on another set of 96 sentences. After many stages of optimization driven by
large-sample performance, a best set of class-specific topologies was derived.
This set contained seven oew topologies for the phonetic classes silence, clo­
sure, fricative, nasal, liquid, vowel, and plosive. The models were trained
as many iterations as possible until performance failed to improve, and then
tested on a new data set. A unit-by-unit study was made of how the new
topology perforrned relative ta the 7-state topology, counting the number of
errors E associated in each case with a gÏven phoneme p. E has four com­
ponents: insertions, deletions, the number of times apis misrecognized as
something else, and the number of times something else is misrecognized as a
p. Using the measure E, a new model set was constructed, a mixture contain..
ing the better-performing topology for each phoneme. This mixture showed
an improved performance with a reduced number of Gaussian distributions
(Table 8.1). The mixture showed a 2% improvement in the discrete case,
and 1% in the continuous. The mixture was even better when considered on
a per-class basis, significantly reducing the number of errors for vowels and
hard-to-distinguish plosives.
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8.3.3 Allophone Context Clusters

The same performance-driven optimization approach was applied to the prob­
lem of efficiently clustering contexts for allophone models. Since the problem
space is large and expensive to search, acoustic-phonetic reasoning was used
to determine a sensible initial grouping of eontexts, and then simulated an­
nealing perturbed these clusters 50 as to improve the recognition accuracy of
rnodels trained on these contexts. The output of the search procedure was
also manually adjusted to conform to speech knowledge.

This approach is somewhat different from the tree-dustering algorithm
of [BahiEtAl91), or the state-splitting approach of [TakamiSagayama92]. In
this case, search is driven by performance and knowledge. In previous sec­
tions HMMs model the context-independent phonemes. Beeause of allo­
phonie variability, better results are possible when phonemes are modeled
in context [SchwartzEtAI85], [LeeHon89]. However, there are 48 possible
left-contexts and 48 possible right·contexts for each phoneme. If each con­
text of eaeh phone were modeled separately, it would be neeessary to train
483 = 110,592 different models. In faet, the task would be diffieult even with
large speech eorpora, sinee most of these eontexts oeeur too rarely to be weIl
represented.

The solution is to combine phonemie contexts into cLusters which have
similar eontextual effeets on the preceding or following phonemes. To model
left-context units using any of 10 clustered contexts, the allophones may be
represented with fewer than 500 models, a manageable number for which
there are likely ta be adequate training samples.

The problem is ta chaose the clusters appropriately. One approach would
be to choose as fine-grained a context as can be well-trained from the available
data. The more varied samples there are of a given speech unit, the more
specialized models can be made for that unit. [KimballOstendorf92] suggest
a distribution can be adequately estimated when the number of samples
is about sbc times the dimension of the observation vector. If the vectors
contain 24 cepstral derived coefficients (rvlel and ~Mel), at least 144 samples
per model are needed. Depending on one's point of view, a rigid threshold
like this nlay result in tao many or too few models. (In practice, good results
are achieved with sorne units trained on fewer samples.) In [LeeEtA191]
another data-driven approach is used to select clusters, Following a unit
reduction rule based on the number of samples available for a unit in the
training data, they build a set of models containing 47 context-independent
phones, 134 diphones, and 1101 triphones. While this approach guarantees
the trainability of the units, it may produce a large number of modeis with
similar distributions, in effect adding parameters without reducing system
entropy.

In [LeeEtA190A] an initial set of context-dependent models is trained,
and these models are merged into clusters, called generalized allophones, ac­
cording to sorne algorithm. The first method, agglomerative clustering, is
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based on an entropy distance measure applied to the allophones. The second
method is a heuristic decision tree, in which the root consists of the com­
plete set of allophones corresponding to a particular phoneme, and the 1eaves
contain generalized allophones. At each node, the allophones are recursively
divided into two sub-clusters based on the answer to a question provided by
an expert linguist, a question designed to capture contextual effects. The
recursion ends according to a metric of the distance between a parent clus­
ter and its subclusters. In both above methods, the metric used to merge
or split clusters is the "entropy increase" or information 10s8 in the output
distributions when two models are merged. Clustering is chosen 50 as to
minimize entropy gain [Hon92]. A context-decision tree is also constructed
in [BahlEtAI91], but their subtrees are divided according to a Poisson-mode1
likelihood of the possible splits measured against the training data. The gen­
eration of subtrees is statistically dependent on not just the adjacent (left or
right) contexts, but on the several preceding and following phones as well. In
[RabinerEtAI89] two methods are suggested which proceed from the opposite
direction: beginning with a generalized word model, they iteratively generate
more H~IMs to model that word, in which each HM~l is re-estimated from
different suhsets of the training samples for that word. Although they don't
address context, the same methods could in effect derive context clusters au­
tomatically, without appealing to acoustic-phonetic reasoning. However, the
resultant context-sets would probably overlap. The state-splitting algorithm
of [TakamiSagayama92] optimizes automatically along both topological and
contextual axes, based on measured likelihood on the training data. A triv­
ial ~Iarkov model is iteratively grown into a more complex model in which
contexts are clustered and integrated. Jouvet [JouvetEtA191] avoids the clus­
tering problem, instead reducing the parameter space by integrating ail left
and right contexts into the topological structure of the allophone mode!. This
can be seen equivalently as tying the distributions of the internaI states of
the allaphone models.

In the experiments of this chapter, acoustic-phonetic reasoning is com­
bined \Vith the performance-driven randomized search described earlier in
order to optimize the context clustering with respect to the available train­
ing data. In contrast with [TakamiSagayama92], recognition accuracy rather
than training-set likelihood serves as the objective function. 'vVe caU this
approach performance and knowledge-guided search.

Optimization was first applied ta the problem of efficiently clustering
right-contexts for plosive allophones. Speech science suggests that the right­
hand event, or succeeding phone, mostly affects plosive hurst and transitions
of relevant acoustic parameters. Intuition suggested an initial grouping of
vowel right-contexts as shown in Table 8.2, in which sorne phonemes starting
with the same symbol were grouped together. Simulated annealing perturbed
these clusters so as to improve the recognition accuracy of models trained
in these contexts. The output of the search procedure showed a tendency
toward grouping phonemes by place of articulation. Minor corrections ta
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1. ao aa ay aw ax ah
2. ix
3. ae
4. ih
5. uw uh
6. er
7. iy
8. oy ow
9. eh
10. y
Il. ey

Table 8.2: Initial right-context clusters for plosives.

1. ao aa ay aw a.x ah
2. ix ih iy Y ey
3. er ae
4. uw uh oy ow
5. eh
6. f v
7. s z
8. 1
9. r
10. w

Table 8.3: Optimized right-context clusters.

clustering were manually performed to finalize the trend, resulting in the
grouping shawn in Table 8.3; sorne consonant clusters were also manually
added.

Performance was used to drive the annealing. Since plosives were the
model of interest, the number of errors on the plosive data alone served
as the performance rneasure (ie. how many plosive events were deleted or
misrecognized.) Almost a11 plosives in the training data are found in the the
contexts of Table 8.3.

Optirnization was next applied to the problem of efficiently clustering left­
contexts for vowels. The initial grouping (Table 8.4) puts a11 the unsonorant
consonants having similar place of articulation in the same class. The clusters
produced after search are presented in table 8.5. The number of contens \Vas
reduced from 23 to 13.

A surnmary of results for discrete models using various types of context­
dependent allophones is shawn in Table 8.6. The solutions from ail the
searches were combined, and tested on new set of 96 sentences using discrete­
codebook H~IMs. The left contexts were expanded to include other conso­
nant classes, using the context-clusters of Table 8.5. Next, the left-context
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• 1. pbfvm
2. s z zh th dh jh t d n ch
3. ng hh g k
4. 1
5. w
6. ao
7. aa
8. uw
9. er
10. ay
Il. ey
12. aw

13. ax
14. ix
15. ih
16. ae
17. ah
18. uh
19.oy
20. iy
21. ow
22. eh
23. sil epi bel del gel pel tel kcl

•

•

Table 8.4: Initialleft-context elusters for vowels.

l.pbfvrn
2. s z zh th dh jh t d n ch
3. ng hh g k sil epi bel dcl gel pel tel kel qel
4. 1uh aw ow uw
5. w
6. eh er
7. ao
8. aa
9. ay ey ih oy
10. ax ix
11. ae
12. ah
13. iy

Table 8.5: Optimized left-context clusters.
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discrete plosive vowel misree. phone error
models errors errors rate rate
48 phonemes 199 508 42.88 47.06
359 models 202 461 40.25 44.51
left contexts
364 models 192 465 39.63 44.35
left & right contexts
7-state topology

Table 8.6: Development of the recognizer \Vith discrete HMMs. Phone error
rate includes insertion errors.

continuous num. misrec. phone error
models parameters rate rate
48 phonemes 74,880 38.36 44.06
364 allophones 473,304 34.32 40.i6
left & right contexts

Table 8.7: Results for continuous models (no language model).

vowel and consonant models were combined with the right-context plosives.
As hoped for, higher accuracy by class averaged out to a higher overall unit
accuracy. Finally, these same context sets were used ta train models with
topologies based on the earlier optimization experiments. The results are in
the last row of Table 8.6.

Results for the continuous-parameter models are summarized in table 8.ï.

8.4 Derivation of Phoneme Models from AI­
lophone Models

8.4.1 Merging and Retraining

Ta this point, the result of the search process was a set of unit model topolo­
gies and output distributions weIl trained for units in left or right context.
The final experiment attempted to simplify the speech recognition systenl by
merging the distributions of the allophones into phoneme units \Vith paral­
leI transitions. This was done for both discrete and continuous-distribution
models.

In the discrete case, the n allophones for unit U were merged in a straight­
forward way. AlI allophones for U had the same topology T. A new topology
was created with n parallel transitions for each single transition in T. Each
of these parallel transitions was tied to the corresponding distribution in one
of the allophones for U. Once these merged-model phonemes were built, they
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discrete plosive vowel misrec. phone error
models errors errors rate rate
53 phonemes 173 489 38.90 43.37
merged dists
53 phonemes 157 464 38.56 43.43
simplified

Table 8.8: Merging the discrete HMMs.

continuous oum. misrec. phone error
models parameters rate rate
53 phonemes 356,304 34.8 40.0
sinlplified
53 phonemes, with 397,416 33.8 39.7
additional features
53 phonemes, 301,252 32.7 38.2
fig. 8.2 topology
same, with 30.8 35.5
bigrams

Table 8.9: Merged continuous context-independent models.

were then re-trained for four iterations. These models had a better phone
error rate than the best allophone models (Table 8.8) .

In arder to simplify the models and further reduce the number of pa­
rameters, aIl the parallel transitions but one of the internai states of the
merged ITlodels were removed. Wc hypothesized that extra distributions are
ooly useful for modeling the contextual effects at the left or right end of
the units. In fact, the simplified models showed improvements, after four
training iterations, with respect to their predecessors.

The end result of the search process was to construct a set of discrete
models with internaI topological structure complex enough to model con­
textual effects of neighboring units significant to the particular unit. Re­
sults are summarized in Table 8.8. It appears that a substantial perfor­
mance improvement can be obtained in context-independent models by just
adding context-dependent distributions on the initial and final transitions of
phoneme HlVIlVIs.

The same mergefsimplify procedure was applied to the continuous mod­
els. Continuons-distribution HMlVIs already employ density mixtures. In
this case the process of combining allophone distributions essentially means
selecting mixture sizes for context-independent models and initializing the
corresponding distributions with well-trained values. Results are summa­
rized in Table 8.9.
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8.4.2 Further Improvements

A constant avenue of research is the hunt for new acoustic parameters which
are likely to contain information not well represented by MFCC, or other
established feature sets. In the experiments described in this chapter sim­
ple new measures in the time domain and in broad frequency bands were
investigated.

Following [DemoriEtAI76] the signai energy can be described in terms
of peaks and valleys. Let an "event" be a peak or a valley. Let tbj be the
beginning time of the j-th event e(j). A temporal feature

temp(t) = t - tbj

is computed where tbj is the beginning time of e(j) that covers a time interval
including t. A value JL(t) is then computed as follows:

t = { temp(t) if temp(t) < JLo
JL( ) P.o + log2(temp(t) - JLo) otherwise

where JLo is a constant chosen a-priori. The feature j..L(t) suggests the position
of the t-th frame in the suprasegmental acoustic event t belongs ta.

Two other features are obtained by introducing edt), the energy of the
highest spectral value in the lOO-900Hz band at time t, and

ea(t)
f2 31 (t) = loglO -(-)

el t

where e3(t) is the highest spectral value at time t in the 3-5kHz band. Per­
formances were further improved by adding the new acoustic fl~atures, as
shawn in Table 8.9. Simple broad-band acoustic parameters and temporal
features have the predicted significant positive impact on recognition.

A final experiment was performed using the same model topology, shown
in figure 8.2, for aIl complex phoneme models (vowels, liquids, nasals, and
plosives.) In this topology, the transitions represented by thick lines are
modeled with a moderately large number of Gaussian distributions, while
the transitions represented by thin lines are modeled with srnall mixtures.
The relative sizes of these mixtures reflect the number of contexts in which
the allophones described earlier were trained.

The initial distributions were taken from the well-trained merged-models
described in section 8.4.1. These distributions were duplicated or reduced
in number, 50 that each transition from the first state of the new topology
could be tied to a mixture of 39 densities, each mixture tied to the fourth
state could have 30 densities, and aU the internai "thin" distributions could
be mixtures of 6 probability density functions. The new models were then re­
trained for five iterations, and low-probability transitions were pruned. The
results (third row in table 8.9) confirm the importance of good initialization
of the parameters before estimation.
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large mixtures: modeiiing contextual effeds

smaU mixtures: modelling 1he internai states

Figure 8.2: Final topology.

8.5 Discussion

Taking into account the comparatively modest feature set employed here, and
the context-independence of the final models, these results compare favor­
ably with those reported in the literature. The only systems reporting better
phone-recognition rates on TIMIT around the time this research was pub­
lished ([Robinson91), [YoungWoodland94}) employed 2nd-order derivatives
and various kinds of context-dependency learning, e.g. allophone HN[~Is, or
recurrent neural networks. The results described here indicate that a sim­
ple phoneme model containing rich mLxtures of Gaussian distributions is a
serious candidate architecture for certain applications; for example, the fast­
match first pass of a large vocabulary ASR system. (Having a large number
of Gaussians per mLxture does not imply a high computation time if the
number of mixtures is limited.)

In this research allophone models were initialized \Vith the distributions
of context-independent models, and vice-versa. From a mathematical stand­
point it is better ta perform an interpolation of new specialized models with
the more general, better trained phoneme model from which they are derived.
This should improve performance.
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Chapter 9

Adding Knowledge with
Syllable Phonotactics

A search technique incorporating the automatic modeling of lexical variabil­
ity is introduced for speaker-independent speech recognition. Current state­
of-art systems depend on being able to model the entire language based on
acoustic features and the constraints of syntax or inter-word probabilities.
These methods often fail in the presence of nlultiple speakers, new vocabu­
lary, noise, and spontaneous speech phenomena. A new approach for word
hypothesization is proposed, based on an acoustic-phonetic unit called the
pseudû-syllable segment. An algorithm is described for transforming a se­
quence of syllables inta words. Techniques are suggested for controlling the
accuracy of the syllabic hypothesis set, and learning the phonotactics of syl­
lables automatically in a statisticai

9.1 Introduction

The output of an Automatic Speech Recognition (ASR) system fed by a
speech signal is a sequence representing the words uttered by the speaker.
The output of a Speech Understanding System (SUS) is an abstract concep­
tuaI representation of the meaning of the words uttered by the speaker. In
both cases, words are hypothesized by a search process that produces the
most plausible output according to a given scoring method for competing
hypotheses.

The most plausible output depends on the Knowiedge Sources (KS) used
for driving search and may not correspond to the information conveyed by
the signal. A search algorithm that ahvays finds the best hypothesis is said
ta be admissible. Errors in the best hypotheses are due to imprecision of the
KSs.

In theory and in practice, it is important to minimize the difference be­
tween the output of the ASR or the SUS and the speaker intention. With
this perspective, search algorithms which are non-admissible because they
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use sophisticated KSs may have better performance, in terms of recognition
or interpretation, than admissible ones using simpler and less reliable KSs.

Admissible algorithms may be impractical with certa.in KSs due to time
and memory constraints. An SUS or an ASR has to run in close to real­
time and, more important, has to use an amount of memory within the
limits of real technology. Actual non-admissible search algorithms use prun­
ing thresholds during search. Candidate partial hypotheses with a score
below a threshold are discarded before completion. Some of those hypothe­
ses may raise their relative score and even become the bl~st ones if allowed
to reach completion. Reducing the selectivity of this process results in a
increased amount of computation per spoken sentence and in an increase of
central memory required. Technology is making available faster processors
and larger memories, but since large vocabulary systems continue to increase
the number and sizes of knowledge sources coupIed to the search process,
technology alone will not obviate the need to achieve real-time performance
by trading off admissibility for speed. Furthermore, there are algorithms
based on long-history language models (LMs), such as island-driven parsers,
which have to work on already generated word hypotheses in order to avoid
intractable theoretieal complexity [CorrazzaEtAI91]. Generation of word hy­
potheses is an intermediate search phase in which hard decisions are made,
ruling out candidates that a successive parsing stage could rescore as most
proInising. This approach adds motivation for the use of non-admissible
search algorithms.

As the objective of ASR or SUS search is not admissibility, but perfor­
mance, it is worth investigating non-admissible search algorithms, based on
a cascade of processes with each process applying one or more specifie KSs
in a multi-step search. Most of the popular approaches so far use a language
model (L~I) to generate lattices or sub-vocabularies. L~ls are obtained by
analysis of large corpora of text and result are biased by the topics covered
in the corpora and the preferences of the writers. In general the L~I of a
speaker is Dot the one derived by the analysis of available corpora. Even the
lexicon is often not completely known.

For these reasons it appears useful to consider a way of generating a sub­
vocabulary of words that cao be present in a spoken sentence, starting from
units that are not topie nor even vocabulary dependent, but are a complete
set of basic units of a given language. Good unit candidates are phonemes
and syllables.

It is possible to characterize a complete set of syllables in a language and
drive the generation of syllabic hypotheses \Vith a KS made of a network of
aU the possible syllables in the language. This network is complete because it
represents aIl possible sequences of what can be said in a language and has a
size that is tractable in terms of computation time and memory requirements.
Furthermore, it introduces more constraints on the search space than a pure
network of phonemes.

With good syllable models, it is possible to generate a lattice of syllable
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hypotheses about a spoken sentence. This lattice can he prunoo with addi­
tional segmental acoustic analysis and he usoo to generate word hypotheses.
It is also possible to detect from the lattice hesitations, corrections, and other
spontaneous speech phenomena, and to find which alternate pronunciation
of a word is likely to have been used by the speaker. Ward hypotheses may
belong to a sub-vocabulary and be used to predict other sub-vocahularies
using analysis of word associations. Words from the new sub-vocabularies
can then be hypothesized from the syllable lattice.

In practice t the value of syllable lattices for sub-vocabulary generation
can evaluated based on:

1. Word density, the ratio of the sub-vocabulary size to the number of
words of the spoken sentence,

2. Word error rate (WER), the probability that a pronounced word is not
in the sub-vocahulary,

3. Recognition accuracy in terms of word error rate of the complete search
process.

9.2 Using Syllable Lattice or Sequences for
Word Hypothesization

Another application of the syllable approach is to dictionaries. eurrent tech­
niques for managing speaker variability include averaging the acoustic pa­
rameters over large training corpora, and introducing multiple lexical repre­
sentations ioto the system [LjoljeEtA195], [DemoriSnowGaller95]. Inspection
of the causes of errors in classical, left-tû-right word-fitting algorithms reveal
that often the correct word is not introduced into the maximum likelihood
sequence, or into the word lattice, because certain phonemes used to repre­
sent the word in the dictionary have not heen articulated. Any attempt to
re-estimate the acoustic parameters for the canonical phonemes on this data
leads to a corruption of the model.

Adaptation at the lexicallevel is the correct way to compensate for this
variability. New pronunciations may he learned through observation, or de­
veloped by linguists, but this may he impractically slow work for the de­
velopment of new ASR applications. Sorne method is needed to generalize
about the kinds of distortions typically produced with respect to canonical
pronunciations, and generate new pronunciations automatically. This chap­
ter proposes such a method. 1 In contrast with [DemoriSnowGaller95], this
method hypothesizes different pronunciations at run-time, as an knowledge
source integrated with the search procedure.

l The algorithms described here have been previously published by R. Demori and the
author in the 1996 ICASSP proceedings.
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The proposed algorithm uses a Viterbi decoder ta generate a lattice of
syllable-like units as a first stage preceding the generation of words. Alter­
natively, the n best sequences of syllabic segments can he generated. These
segments consist of consonant c1usters terminating in a vowel, and are gen­
erated in the standard way using a syllahic grammar with syllable higrams,
and hackoff probabilities for uncommon sequences.

The pseudo-syllable is a good intermediate unit from which to carry out
word hypothesization. Although phonemes may be deleted as an effect of
speaker habit in continuous speech, some forro of a syllable, however short­
ened or distorted, is likely ta be detected if the underlying word has been
articulated in an intelligible way. A study of the Switchboard corpus, for
which the phonemes were transcribed by hand, revealed a 12% deletion rate
for phones compared with less than 1% for syllables [GanapathEtAI97]. AIso,
with syllable data or smaller subword units, one can reason about the under­
lying utterance in a way not easily performed when the only information is
a list or lattice of possible words. In the latter case, there is little chance for
recovery if the correct word has been deleted from the list of candidates. Fi­
nally, the longer acoustic context of the syllahle makes it more suitable than
smaller units for exploiting parameter trajectories and other longer duration
temporal and spectral variations.

Word hypothesization from syllables has been explored by sorne researchers.
In [DentonTaylor92] the approach is discarded because syllabification errors
cause a performance drop when the system is scaled up to larger vocabularies.
In contrast, the system described in [LjoljeEtAI95] uses a syllable-graph gen­
erator in a multi-stage system designed to constrain the search space for very
large (60,000 ward) tasks. Bath rnethods lacked explicit ways for managing
syllabification in the presence of variable pronunciation.

The method introduced here is based on fitting the set of approximately
10,000 English syllables ta the signal in arder to produce a lattice of hy­
potheses segmented by time. It is necessa::'Y to first define the syllables, and
then produce a reliable method of translating words of the task vocabulary
into sequences of these syllable.

For simplicity we define a unit called the pseudo-syllable segment (PSS)
[DemoriEtAl95]. It consists of zero or more consonants followed by a vowel.
The PSS must he a legal sequence in the modeled vocabulary. For complete­
ness of the word-PSS translation algorithm, ward fragments are introduced
to model consonant cluster word-endings.

The choice of these units is motivated by sorne particular advantages it of­
fers to the segmentation behavior of the result lattice. A segment ending in a
vowel will he characterized by an internaI rise and steep descent in total signal
energy. The corresponding portion of lattice can he re-scored by an acoustic
measure specifically defined to disarnbiguate vowels. A lattice segment can
be pruned of probable errors involving plosives or fricatives. The plosive
is easily characterized by a near-zero drop in signal energy, corresponding
to the glottal stop, followed by a sharp explosion of energy characterizing
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Figure 9.1: A syllable phonotactic model

the release. The fricative is characterized by a distinctly high ratio of high­
frequency ta law-frequency spectral energy. These measures can he used to
past-process the PSS lattice by removing probable errors introduced by the
Mel or PLP features. They can also re-introduce phonemes that the HMMs
missed. This algorithm to improve on the weaknesses of the first-pass is a
departure from and potent.ial improvement on the classical approach.

A lattice segment containing a ward fragment can he used to spot word
endings. The lattice-to-word mapping of the second pass should be con­
strained so that the phonemes of these fragments are matched to word end­
ings alone. Rescaring can he applied ta fragments as well, in order ta increase
lattice accuracy, and eventually the completeness of the word network gen­
erated in the second pass.

9.3 The Phonotactic Model for
Syllable-Mediated Search

\Vord generation is performed with a kind of model called the syllable phono­
tactic model. Figure 9.1 gives an example of a three phoneme syllable mode!.
The phonotactic model is a hidden ~larkov model which contains statistics
about phoneme symhols only, ie. lexical, not acoustic, information. The
statistics S(P), d(P) model confusions of phoneme p within the context of a
given syllable. S(p) is a discrete probability distribution modeling the sub­
stitution probahilities for phoneme p. d(P) is the scalar probahility of the
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symbol being deleted during enunciation of the syllable. This model assumes
that the beginning or ending phone of the syllable may missed but not bath.
The model can be enriched by adding an extra parallel state-transition path
for each of the constituent phonemes tied to the probability distribution of
phoneme insertions in that stage of the syllable. d(Pi) constitutes the tran­
sition probability for the associated transition. Path transition probabilities
are normalized by associating ta transitions with a symbol distribution func­
tion S(Pi) the transition probability 1 - d(Pi)

9.3.1 Initialization

Probabilities of substitutions, insertions and deletions are initial1y estimated
in a context-independent way based on frequency counts from a labeled cor­
pus such as TIMIT. A beam search is performed on the data set in arder ta
generate a phoneme lattice for each signal and compare it with the correct
labels. For each symbol i a frequency count Iii is computed each time the
symbol j is found in the lattice in a segment of the signal corresponding to
·i. Use of the phoneme lattice rather than ma.ximum likelihood sequences
provides a richer set of substitution counts reftecting both weaknesses of the
acoustic models and pronunciation variability.

The phonotactic model for each syllable in the lexicon is initialized using
these global statistics as follows:

(9.1)

d(pd == 1 - À

where Iii is the normalized substitution frequency count obtained above for
phone Pi with respect to ideal phone Pi' À is a heuristic factor designed
to give initially greater probability si(pd to the canonical phoneme than ta
deletions or context-independent substitutions. f is a small quantum to allow
substitutions not observed in the training data.

9.3.2 Training

The syllable models may be trained using the following simple technique. As
training data are made available, syllable-dependent statistics are averaged
with context-independent ones weighted by the relative proportions of the
data. First, the word transcription of a training sentence is converted ta
an idealized (canonical) syllable transcription. Then, the phonotactic mod­
eis corresponding to this sequence are fitted to the syllable output of the
phoneme-based decoder by computing the optimal Viterbi alignment of the
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models to the observed syUables. By using the ideal syllable transcription,
rather than the syllables actually pronounced according to TIMIT or sorne
other hand-labeled corpus, the phonotactic model is constrained to our pur­
pose: to learn about lexical distortion of syllables in speech, rather than to
just model acoustic-phonetic variabilityat a different level.

If the syllable observations consist of a lattice, this lattice is converted
to a network, and the models are aligned with the network. If no fit is
possible (for example, the length of aH n best sequences is different than the
target sequence) the sample is discarded. For each observed syllable, and
each phoneme in the correct phonotactic model, a counter is incremented for
the inclusion, substitution, or deletion of the canonical phoneme according
to the observation. After aIl data have been observed, these new frequency
counts f:j are normalized and used to modify the values of equation 9.1 as
follows:

where the c(n) is a count of how many instances syllable n appeared in the
training set, and the update weight (} depends on the number of training
instances. Then the procedure is repeated until no further changes in the
alignments are seen.

9.4 From Syllables to Words

9.4.1 Synchronous Phonotactic Search

The phonotactic models are applied to the syllable sequences in order to pro­
duce scored word hypotheses. The method used is the standard Viterbi beam
search. The output likelihood of this procedure is a measure P(fVjklltVj ) of
the degree of distortion exhibited \Vith respect to the canonical representation
of the scored word ~Vj.

The global search procedure associates to ward hypotheses the score
P(~VjklltVj)Pr(ltVj), that is a combination of the language model and word
distortion probabilities. It finds at the same time the most plausible pronun­
dation.

Once the word lattice is generated as described, interpretation can take
place from the lattice using a scoring system that scores concepts and relative
acoustic evidence for associated words. Dictation is performed by finding the
ma..ximum likelihood sequence among words that survive the first stages of
search. The best sequence is based on a combined measure incorporating
n-gram statistics, the acoustic scores for the words in the lattice with the hy­
pothesized pronunciations, and the lexical score produced by the phonotactic
models. This is done in a pipeline of three processes: syllables produced us­
ing simple acoustic models, words hypothesized with phonotactic models,
and best sequence realized using detailed (triphone) acoustic models.
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An advantage of the new approach is that ulllike fast-match algorithms it
uses an essential computation (the lexical distortion measure) to prune the
initial search space.

9.4.2 Sorne Experiments

Experiments were conducted to measure the usefulness of word lattices pro­
duced from syllable hypotheses in the framework of the previous section. A
standard word lattice was generated by a single pass decoder, using context­
independent phoneme HMMs (described in [DemoriGaller95]), word bigrams
and beam search. Different size beams were tested in order to provide an
ROC curve describing the tradeoff between lattice density (mean number lat­
tice entries per actual word) and global error rate. A similar curve was then
produced using the syllable-phonotactic approach. This two-pass method
employed the same phoneme acoustic models to generate a sequence of syl­
lables under the control of a syllable bigram network, and then applied the
symbol-generating phonotactic models to the syllables in order to generate a
lattice of words. The latter pass was mediated with the same word bigrams as
in the standard method. Results indicated that the density and WER were
higher for syllables than for the standard lattice. For better results more
work is needed to improve the training of the syllable phonotactic models.

9.5 Filtering the Syllables

A major weakness of the standard algorithms is the inability to hypothesize
the correct ward sequence if a word is missing from the lattice. In these
systems the only way to prevent the problem is to increase the lattice density
to ensure the correct words are nearly always generated [LjoljeEtAI95]. This
increases the computational cost of the final pass search.

The method propos('d here offers an advantage because it is possible to
reason about the syllahle data and re-introduce missing hypotheses. The sig­
nal can he rescored with new segmental parameters before word hypotheses
are generated. If this is weIl done, a better \VER-density figure of merit can
be expected.

9.5.1 Heuristic and Reasoning Methods

Subword phonetic or syllable data provide an opportunity for reasoning about
the signal in a way that is not possible when the only information is a set
of word candidates. Heuristic rules can be employed to hypothesize ward
sequences that would have been ruled out by the combination of acoustic
knowledge with task-dependent n-grams.

In the following sentence fragment (from ATIS2)

... (pause) as early in as (uh) in the morning as
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the hesitation word "uh" occurs as a gesture signaling the speaker's in­
tention to restart a flawed locution. This kind of spontaneous speech phe­
nomenon will stymie a word network algorithm in two ways: the garbage
word may be poorly modeled or confused with a real word, and the sequence
of ungrammatical words will be pmned by low word-pair probabilities.

Two simple heuristic mIes were conceived for application to the syllable
hypothesis set:

1. A sequence described as

... sylli, sylli+b [uhl-um], pause, sylli

occurring within an 1-2 second window is tagged as a possible restart
event. Words extending through sylli are re-inserted into this segment
of the word lattice produced by the syllable-to-word algorithm.

2. Similarly, the sequence sylli, pause, Sylli occurring within a specifie
window is tagged as a hesitation. The same for repeated syllable pairs
within a larger window.

These rules can be tested experimentally by means of a simple eache
scheme in which syllables and syllable pairs are saved within the prescribed
window.

9.5.2 Rescoring the Syllable Segments with New Seg­
mentaI Features

By reasoning about PSS duration and parameter evolution, non-speech events
and hesitations can be detected and used ta filter and drive word hypothesis
generation. Proposed segmental features include: duration, spectral slopes
in frequency and in time, a description of a curve in the space of ~[el co­
efficients [Thomson95}, and spectral peaks in the maxima of energy. The
spectral features introduced in section 8.4.2 would also be usefu!. High 0 31

is strong evidence for fricatives. An energy peak/valley pattern indicates
the vowel termination within a pseudo-syllable, and a long duration segment
without this pattern is likely a non-speech event. Syllable hypotheses within
snch segments are safely removed from the lattice.

9.6 OOV Event Detection

Another potential application of the syilable method is for detection of out­
of-vocabulary (OOV) events. The idea is to perform two searches in parallel:
the first, a standard L~[ approach using a well-modeled snbvocabulary and
n-grams, and the second, a syllable grammar. Words are annotated with
the likelihood a(tend) - a(tstart) produced by the forward algorithm, and this
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value is compared with the likelihood of the maximum likelihood syllable se­
quence, appropriately weighted to compensate for the differently constrained
search space. If the syllable sequence probability exceeds that of the compet­
ing word hypothesis by a value exceeding a certain threshold, this is marked
as an OOV event.

9.7 Discussion

The difficulties inherent to large vocabulary ASR systems are slowly being
overcome by the application of many knowledge sources in parallel. The syl­
lable model offers severa! advantages to system builders trying to integrate
disparate knowledge sources. It is general enough to model a vocabulary
in a domain-independent way. It provides enough contextual data to allow
sophisticated reasoning and filtering algorithms to attack various difficult
sub-problems. And it can he used to develop additional knowledge about
pronunciation variability in a data-driven way. The phonotactic models can
he used to hypothesize multiple pronunciations for frequently misrecognized
words. This would constitute an automatic method for development of opti­
mized lexical dictionaries.

The use of syllahle context is being explored by a number of researchers,
who have round more evidence that the syllable approach is promising. In
[CookRobinson98] a neural network is used ta detect syllable ansets with
92% effectiveness. This information is used to preselect one of two sets of
phone models for the decoder ta employ: an ordinary context independent
phone model, or a syllable-onset version of the mode!. The introduction
of this test decreased the word error rate 8.6% on the Broadcast News
corpus. At leSI (the International Computer Science lnstitute) a hybrid
H~IM/neural-net recognition system was designed with syllable recognition
units, and compared with a baseline system using phoneme units. Although
the syllable system was less accurate, a combined system that merged N-best
results derived from each was able to achieve a 19% relative error reduction
over the baseline recognizer [\VuEtAI98] .
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Chapter 10

Design of a Fast Search Engine

It is now possible to perform, within certain parameters, large vocabulary
speech recognition in real-time on a personal computer, and achieve an ac­
ceptable word error rate. It still remains a challenge, however, to make a
speech engine as efficient as possible, in terms of both computation time and
memory usage. If anything efficiency has become more relevant than ever.
ln the past the goal of research was to demonstrate that the computer speech
recognition was a solvable problem. If it could be achieved in the laboratory
at N times real-time, then real-time would become possible when N times
faster hardware arrived, even without further algorithm improvement.

Today speech recognition is a commercial technology finding its way into
the marketplace. In the future many, perhaps most, applications may be in
cornmon appliances and consumer devices. Cost will become the important
factor determining whether a product is sold with it or without it. This
makes it critical to build a speech engine that can add value to an existing
product without the extra cost of a fast microprocessor or expensive memory
chips. A speech interface that can be irnplemented using an inexpensive DSP
board confers a commercial advantage on the manufacturer who licenses or
owns it. Not surprisingly, detailed implementation descriptions for speech
engines do not often appear in the technical literature.

This chapter is a sort of "how-to" for building a fast and compact decoder
for a simple one-pass recognition task. The requirements of the front-end
module are omitted. (The front-end computes a small vector of features,
frame-synchronously, in better than real time. In sorne of the experiments
discussed in this thesis the vector consists of 18 PLP-based floating point
coefficients (section 5.4.5); in others 38 ~IFCC coefficients (section 5.4.6).
The feature vector computation has a cast roughly on the order of computing
an FFT. After the vector is handed off to the decoding module, the front­
end can rense its data structures. Neither the computational burden nor
memory usage associated with the front-end is significant compared to the
requirements of the decoder.)

Beginning with a general scheme based on the algorithms of chapter 6,
we trade off generality for efliciency, removing data structures and computa-
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tionaI steps that are unnecessary, and design a system tailored to the search
domain which employs a minimal amount of storage and wastes very few
CPU clock cycles. At the end of the chapter a figure illustrates the absolute
improvement achieved when the two schemes are implemented and verified.

10.1 A General Speech Engine

•

•

Figures 10.1 and 10.2 present the data structures required in a speech engine
under the assumptions of

• continuous mixture density models, using Gaussian probability density
functions, which are tied to the H~n"l transitions (not the states),

• a general H~IM representation supporting transitions between any two
states, including backward or skip transitions,

• a directed graph, or finite state network language representation, sup­
porting transitions between any two of the nodes, which represent
speech units (H~IMs),

• a recognition grammar complex enough to require beam search,

• and a statically embedded language model, with probabilities attached
to arcs of the graph.

This language representation allows cycles, and therefore can generate
sequences of speech units of unbounded length. In practice, either the va..
cabulary size must be smaIl or the language model must be simple. A bigram
language model for n words would require O(n2 ), transitions; trigrams would
require O(n3 ) transitions, and so on. In this sense the first decoder described
here is not general. It could not be used for large vocabularies in continuous
speech without adding efficient mechanisms for the application of long range
contexts at the levels of both the acoustic model and the language model.
It also does not provide for the modeling of acoustic and word contexts that
were not seen in the training data, e.g. unseen triphones.

It is nevertheless a straightforward implementation of a Viterbi decoder
that could he used for isolated word recognition of any vocabulary size, or
continuous speech recognition with limited vocabulary size, Le. a lexicon
that can be processed in one pass of recognition in real time. This framework
is chosen for its simplicity to illustrate the development of a truly efficient
decoder. At the end of the discussion we will reintroduce the issues of large
vocabulary continuous speech recognition, and indicate how they can be dealt
with using the very fast and small core speech engine we will develop in this
chapter as a basis for a more complex system.
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Figure 10.1: The decoder's static data structures.

10.1.1 Static Data Structures

The data structures in figure 10.1 are static, or permanent. They are used
ta describe the acoustic and language models.

The first two structures represent the continuous Gaussian mixture den­
sities. The number of Gaussian components to a multivariate probability
density function (pdf) is fixed, since a vector with the same dimension (Le.
the same number of features) is computed for each frame of speech by the
front-end. Each pdf has d Gaussians, where d is the dimension of the feature
vector. For each Gaussian there is a mean value and a variance, stored as
ftoating point values, and these are stored in the first data structure, the
distribution aTTay. Each mixture contains s densities, where scan vary from
model-state to model-state. This provides for different size mixtures. The
components of a mixture are stored contiguously, 50 that the mixture can be
represented with a starting index and an ending index inta this array. The
second structure is the mixture table. Each mixture is represented by three
values: the start index pointing to the distribution array, the mixture size,
and the mixture weight.

The third structure, the model, represents an H~I~I as an array of tran­
sitions, and contains the source state from, the destination state to, the
transition probability, and an index ta the mixture table.

The fourth and fUth structures are the modellist and the word list (Le.
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dictionary). The size of each hidden Markov model, in number of states, is
a one--byte value stored with each entry in the modellist. It is still realistic
ta assume that there are no more than 64k (about 65,000) HMM units and
64k words in the dictionary. This allows the other structures ta use two-byte
values ta identify the models and words.

Assume for convenience of memory estimation that all words in the dic­
tionary are stored in arrays of 32 bytes or less. (Of course, a prefix tree
representation of the dictionary would use memory more efficiently.) Simi­
lady, the HMM unit names pointed ta by name-ptr in the modellist are ascii
strings stored in arrays of not more than 32 bytes.

The sixth structure is the finite state network, and represents the recogni­
tion grammar and language model. It is an array of transitions corresponding
to arcs of the graph. This array contains the source node from, the desti­
nation node to, and the transition probability. In the case of an intra-word
transition the probability is 1; an inter-ward transition has a probability
taken from the language model. A transition entry also contains an index ta
the model List, and an index to the word List. The word index defaults ta -1
if the HlV1M not a word-ending unit.

This set of structures is one of many ways the static data can be de­
scribed. Pointers can be replaced with array indices and vice-versa, depend­
ing on how substructures are allocated. HMM transition probabilities and
the corresponding mixture identifiers can be stored in a matrix, or sepa­
rate matrices, referenced by HMM state. This would eliminate the need for
from and to fields, but for typical feed-forward acoustic HlVINI topologies the
matrix representation would be sparse.

Let 9 be the number of Gaussian distributions, ·m be the number of
mixtures, h be the number of HNINI units, w be the number of words, th
be the number of transitions per HNI~I, and tn be the number of network
transitions. We have already restricted the number of H~IM states to less
than 256, so that a byte is sufficient for the From and To values in the model
structure. A similar restriction can be imposed on mixture size. It follows
that the data structures described above would require

89 + 9m + (10th + 9 + 32)h + 32w + 16tn (10.1)

•

bytes of memory. Note that m <= 9 and in most cases th « 256. The
memory cost is therefore of order O(g+h+tn ), i.e. it depends on the number
of distributions, H~l~I models, and network transitions. In large vocabulary
systems, the number of distributions is constrained with clustered training
algorithms to limit the amount of computation that must be performed at
run-time. In these systems, the network size tends to have the dominant
memory requirement, followed by the model space, with the distributions
having the least impact.
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10.1.2 Dynamic Data Structures

The data structures in figure 10.2 are used for run-time computation. They
are used to explore the search space as each frame of a given signal is handed
off to the decoder. This process can be viewed as expanding the next column
of the 'Vïterbi trellis (fig. 6.2). The dynamic data structures are reinitialized
(or reallocated) after each frame, each black of frames, or each signal is
processed, depending on the structure.

The first structure, the TColumn, is a place holder for the maximum
incoming and outgoing Iikelihood for each node of the search grammar. The
input field is used to initialize the first state of each HMM that begins at
a given node of the network. This value will correspond to the maximum
likelihood hypothesis that reached this Dode in the previous frame. The
output field is used to store the maximum likelihood among aH HMM final
states connected to this node. This value will correspond to the maximum
likelihood hypothesis to reach the Dode in the eurrent frame.

The second structure is the Hypothesis array. This structure contains a
list of active hypotheses (recall that we assume beam search). Each active
hypothesis corresponds to an HMM unit somewhere in the network in which
at least one state survived the beam applied in the previous frame. An H~Il\J1

may be simultaneously active in many different places in the network. For
every one of these there is an entry in the array, representing a different
sequence of models, or hypothesis, that has survived the pruning process
this far during the forward pass of the Viterbi algorithm.

The Hypothesis structure actually contains pointers to two parallel arrays:
an in array and an out array which are used, much like TColumn, for carry­
ing values between consecutive frames. The arrays are indexed by network
transition IDs (equivalent ta the indices for these transitions in the static
Network array.) Each entry of the in/out arrays contains space for a pointer.
When the Hrvlrvl for the network transition is made active, a subarray is alla­
cated, and its pointer is stored in the corresponding entry in the Hypothesis
in array. A matching substructure is allocated for the out array. Othenvise
the pointers are NULL. The subarray is indexed by HNl~l-state number. 1t
contains an accumulated likelihood place holder prab and an accumulated
time value elapsed for each state of the HrvnvL

The frame computation is as follows. For each active model-state, the
in probability is added to the emission probability for each outgoing Hrvlrvl­
transition, and the result is stored in the out probability for the destination
state of the HMM-transition. (Addition is performed because we are comput­
ing in the log-likelihood domain.) It is stored there only if its value is greater
than the value that is there already. At the end of the frame computation
for this unit the maximum likelihood among incoming H1'IM-transitions to
each destination state is stored there.

Elapsed is the total duration, in frames, of the hypothesis. Since one
frame has been consumed by the model, when the likelihood is carried for-
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Figure 10.2: The decoder's dynamic data structures.
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ward, the value of elapsed is incremented by 1, and carried forward as weil.
The likelihood and elapsed values computed in the previous frame are in­
puts to the current frame computation. The values computed in the current
frame are stored in the Out substructure for the next frame. The "classical"
implementation swaps the Out structure with the In structure at the end of
the current frame computation, in arder to prepare the new inputs. Then
the new Out structure is reinitialized. (Actually, only the probabilities must
be zeroed out.)

The last structure, BackPointer Trellis, stores the trellis information
needed to trace the winning path backwards when the last frame, either
of the signal or a block of frames, has been computed. These data must
be preserved untH the last frame computation. They consist of a network
transition identifier and a value elapsed-time for each winning hypothesis
at each network node in each frame. During the back-track procedure, the
BackPointer structure is dereferenced by frame-time and by network-node.
Network-trans identifies the preceding H1'llVl unit in the winning sequence,
and the network-node the unit came from. Elapsed-time indicates the time
the sequence entered that HlVl1vr. \Vhen the back-track uncovers frame-time
T = 0, the entire sequence has been recovered.

Let f be the maximum number of frames, tn be the number of network
transitions, lVn he the number of network nodes, s be the number of states
per H!vIM, and ..4 be the average number of hypotheses ta survive the beam
each frame. As before, we restrict the number of HMt\1 states to he a byte
value. The frame connts can be reasonably restricted to a two-byte value.
The reusable data structures then require

8Nn + (8 + 4tn ) + 12sA + 6Nnf (10.2)

•

bytes of memory. Note that by dynamically allocating the HMM computation
subarrays as needed, we make the third tenu of sum 10.2 dependent on the
beam width, instead of the total network size.

For any graph it is the case that O(Nn ) <= O(tn). For smaller networks
a large beam will be used sa that .4 "'J tn . In large vocabulary search, we use
a beam such that A << tn. In either case the dynamic memory cost is of
order D(tn!), Le. it depends on network size (measured in total number of
transitions) and ma~mum signal (or block) length. As vocabulary size in­
creases the memory cost of the network representation becomes prohibitively
large, indicating where much of the optimization will come from in the next
section.

10.1.3 The Search Aigorithm

The following pseudo-code will perform a Viterbi beam search using the data
structures described above:
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,- initialize -,
FRAME (-- 0
TCOLUMN.IN[O] (-- 1
HYPOTHESIS.IN[O] [0] .ELAPSED (-- 0

,- process frames one by one -,
repeat

for each active transition T in NETWORK
HYPOTHESIS.IN[T] [O].PROB (-- TCOLUMN.IN[T->FROM]
MODEL (-- NETWORK[T] .UNIT
for each transition TRANS in MODEL

SOURCE (-- MODEL[TRANS].FROM
DEST (-- MODEL[TRANS).TO
CONTRIBUTION • COMPUTE_MIXTURE (MODEL. TRANS)
TEMP (-- HYPOTHESIS.IN[T] [SOURCE].PROB + CONTRIBUTION
if TEMP is vithin the beam and TEMP > HYPOTHESIS.OUT[T] [DEST] .PROB

HYPOTHESIS.OUT[T][DEST].PROB (-- TEMP
HYPOTHESIS.OUT[T] [DEST] .ELAPSED (-­

HYPOTHESIS.IN[T][SOURCE).ELAPSED + 1
if DEST is final state in MODEL and TEMP > TCOLUMN.OUT[T->TO]

TCOLUKN.OUT[T->TO] (-- TEMP
BACKPTR.OUT[FRAME] [T->TO] .TRANSITION (-- T
BACKPTR. OUT [FRAME] [T->TO].ELAPSED (--

HYPOTHESIS.OUT[T][DEST].ELAPSED
endif

endif
enclfor

enclfor
swap TCOLUMN. IN, TCOLUMN. OUT
svap HYPOTHESIS. IN. HYPOTHESIS. OUT
FRAME (-- FRAME + 1

until last frame received

,- find winning node in last frame ./
MAX • -MAXFLOAT
for each NODE in netvork

if TCOLUMN.OUT[NODE] > MAX
MAX (-- TCOLUMN.OUT[NODE]
WINNER (-- NODE

endif
enclfor

/. follov back-pointers to recover recognition sequence ./
NODE (-- WINNER
vhile FRAME > 0

T (-- BACKPTR[FRAME][NODE).TRANSITION
output{NETWORK[T] .UNIT)
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FRAME <-- FRAME - BACKPTR[FRAME] [NODE] •ELAPSED
NODE <-- NETWORK[T].FROM

endvhile

10.1.4 Analyzing the Computational Cost

The algorithm can he analyzed in terms of numher of operations, given j
frames of signal, th transitions per H~lM, and A active hypotheses on average
per frame. Details of the heam computation, while not insignificant, are
omitted.

In the analysis, the following abbreviations apply:

• ASN: an assignment, or data store, operation

• CMP: a comparison operation

• INT: an integer math operation

• FLT: an Hoating-point math operation

The mixture density size (number of Gaussians) times the dimension of the
pdf (the size of a feature vector) is dd. The first black of pseudo-code, "ini­
tialize", consists of 3 ASN operations. The second block, "process frames~',

consists of approximately

f[Tn(INT + CMP) + 7ASN + INT] + j.4(5ASN + 2CMP)

+j Ath[4ASN + 4CMP + 1.5INT + (3 + 4ddFLT)] (10.3)

operations. The final block of pseudo-code, "follow back-pointers", consists
of f (4ASN +1NT) operations. Clearly, the computation for each frame de­
pends on three quantities: the size of the network, the number of Gaussians,
and the size of the search beam. For a small network with large mixtures,
and a wide search beam, the computation is dominated by the floating point
operations of the mixture density computation in the third term of approxi­
mation 10.3.

10.2 Optimizations

•

The decoder described in the previous section can be optimized in many ways,
by trading off its generality for improvements in mernory and time. Sorne
of these tradeoffs are obvious, other less 50. We will restrict the recognition
problem to the following:

1. Isolated word recognition.

2. Fixed word-sequence continuous speech recognition. Examples: spelled
name recognition for caU routing; phrase recognition.
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Figure 10.3: A minimal tree representation for the network.

These kinds of tasks can have a different network representation: trees in­
stead of graphs. From this simplification we can derive many new efficiencies.
The network, as we have seen, dominates the memory space of the decoder.
By eliminating cycles we can use a minimal tree representation for the net­
work (figure 10.3), which reduces the memory requirements of the static data
structure, and eliminates the need for sorne of the dynamic structures.

Figure 10.3 describes the topology of the illustrated tree with a compact
array containing a breadth-first representation. Each 510t in the array repre­
sents anode lVi • It contains the array index of the first child node attached
to Ni' The remaining child nodes are those array slots that sequentially fol­
low the first child. The last child of Ni is denoted by the setting the most
significant bit of the value contained in the slot. (In the figure the set bit
is illustrated by a black dot.) If anode has no children, the corresponding
array slot cantains a distinguishing special value (denoted null in the figure),
which functions as a null pointer.
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Figure 10.4: A simple feed-forward HMM topology.

A tree contains a single path from leaf ta root. This means each leaf
corresponds to, and identifies exactly one speech sequence. No back-track is
required to recover the recognized string, only a pointer from the leaf node
to the lexicon of the decoder. Eliminating the back-track procedure removes
the need for the expensive BackPointer structure, which as seen in SUffi 10.2,
requires an allocation of memory proportional to network size and signal
length.

Another restriction we introduce is a restriction of H~nvI topologies to
a simple feed-forward structure, as in figure IDA. The HM~I topology is
completely described by the number of states. The transitions are implicit.
Every state emits a self-transition and a fonvard transition. The same mix­
ture is tied to the incoming transition and the self-transition of each state.
In the figure, there is a dotted self-transition attached to the first and final
states. This is because these two implied transitions are not computed; in
practice they do not exist. Similarly, there is no mixture tied to the incoming
transition to the final state, because this transition is non-emitting, and does
not consume a frame.

The loss of generality is less serious than it might seem. In practice these
simple topologies are the ones most often used for acoustic modeling, and as
seen in chapter 8, the improvements gained by deviating from them are small.
As we shall see, the added efficiency gained from a regular topology speeds
up search enough to more than offset whatever might be 10st in accuracy.

10.2.1 Static Data Structures

The computational inefficiency of the network and HMM representation in
section 10.1 derives in large part from the need to endlessly traverse the
language and model graph structures during the decoding process. Simplifi­
cation and regularization of these structures eliminates much of this repeti­
tive lookup process, and it eliminates extra data elements that support the
lookup process.

The simplified static data structures are illustrated in figure 10.5. The
Distribution, and Mixture tables are unchanged. The Network structure no
longer needs to store the From data, since the tree is always traversed down­
wards. The Model structure does not need From or To information. The
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topology is completely defined by the number of states which is stored in the
one-byte variable size in the Model List (figure 10.1) .

Let 9 be the number of Gaussian distributions, m be the number of
mixtures, h he the number of HMM models, Sh he the number of states per
HMM, and tn he the number of network transitions. It follows that the static
data structures now require

8g + 9m + (12sh + 9 + 32)h + 32w + 12tn (10.4)

•

•

bytes of memory. Compare sum 10.4 to 10.1. The network cost is reduced
25%. Since Sh is roughly half the number of transitions for a given unit's
topology, the memory cost of the Hl\1M representations is reduced as weil.
Even greater space saving is accomplished with respect to the dynamic struc­
tures.

10.2.2 Data Structures for Simplified Search

The modifications to the dynamic data structures are motivated by a sim­
ple objective: we wish ta store the dynamic data with the hypotheses that
accumulate during search. In doing so we will allocate an amount of search­
related memory directly proportional ta the width of the search beam (Le.
the number of active hypotheses) and not to the size of the language-network
model.

A second advantage emerges from the restrictions on the network and
model topologies. Because there are no backward transitions, it is possible
ta compute the likelihoods of network-nodes and model-states in order and
in place. There is no need for an In and Out place holder, and no need
for these structures to he swapped at the end of a frame computation. In
contrast, when computing likelihoods over a graph with cycles, you must
preserve a11 the input likelihoods until the end of the frame computation. As
long as there are still transitions left to process, sorne of these rnay depend
on previously encountered input values.

The dynamic data structures are modified in the fol1owing ways:

• There is no TColumn structure. An input value for the next column of
the trellis is stored with the Hypothesis data that depend on it.

• There is no BackPointer structure. \Vhen a leaf Dode is reached, it
points directly to the recognized sequence.

• Each hypothesis is stored with just one suharray which holds the state
likelihoods of the corresponding HMM unit. This suharray is processed
in reverse arder, from the last state ta the first, sa that an input state
likelihood is overwritten only after the destination state is computed.

• A hypothesis is stored with an identifier corresponding ta a node in the
Network array. This node is a destination node of a transition in the
network tree.
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Figure 10.6: The new search algorithm is driven by the active Hypothesis
structure.

Since the network is a tree, each node has exactly one input transition.
Thus the destination node is sufficient to denote the transition. The search
algorithm references this node in Network in order to identify the HNI~I unit
that feeds into it, and the child nodes connected to it. This lookup step is the
only time during the forward processing that the network array is checked.

The new Hypothesis structure is illustrated in figure 10.6. It contains fields
for network node identifier, and the input likelihood values for each state of
the corresponding model. State 0 stores the incoming likelihood, computed
in the previous frame, for the network node. There is also a value bestscore
used for the beam threshold computation. The data structure requires

(8 + 4s)A (10.5)

•

bytes of memory, where s is the number of H~fM states and A is the average
number of active hypotheses. Contrast this \Vith the memory estimate 10.2.

10.2.3 The Search Algorithm

The search algorithm works by processing a list of hypotheses, allocating
the memory space for the dynamic data within this list, and reusing the the
allocated space for a hypothesized network transition from one frame to the
next. Both time and memory are directly proportional to the quantity of
active hypotheses. That is why the resulting decoder is much more efficient.

The algorithm processes the list of active hypotheses twice. The first pass
computes the new output likelihoods, and finds the best one for the purpose
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of computing a beam threshold. The second pass compares each final-state
likelihood to the beam threshold. If it falls within the beam, the network
structure is userl to determine which units are connected to the output of this
hypothesis model. Each of these is added to the list of hypotheses, if it is not
there aIready. Then the likelihood is copied ta the initial-state placeholder
for each of the connected units. The second pass also takes care of removing
hypotheses from the active list, as follows. The best non-final state likelihood
for a hypothesis model is compared ta the heam threshold, and if it does not
lie within the beam, then this hypothesis is removed from the liste If it does
lie within the heam, then this hypothesis remains in the list sa it can he
processed in the following frame.

The pseudo-code for the new search procedure is as follows:

/. initialize ./
NUM_HYPOTHESES (-- 1
HYPOTHESIS[O].NODE (-- 1
HYPOTHESIS[O].PROB[O] (-- 1

/. process frames one by one ./
repeat

for each hypothesis 1
HYPOTHESIS[I].BESTSCORE (-- -MAXFlOAT
MODEl (-- NETWORK[HYPOTHESIS[I] .NODE] .UNIT
for each state STATE in MODEL from last to second

CONTRIB (-- COMPUTE_MIXTURE (HODEL, STATE)
Ri (-- HYPOTHESIS[I].PROB[STATE-l]+MODEL[STATE] .IN_TRANS_PROB+CONTRIB
R2 (-- HYPOTHESIS[I].PROB(STATE]+MODEL[STATE] .SELF_TRANS_PROB+CONTRIB
TEMP (-- MAX(Rl, R2)
HYPOTHESIS[I].PROB[STATE] (-- TEMP
1. The following keeps a maximum likelihood over the states

of this hypothesis model. All though not shown here, an
optimal value over all states computed for the frame is
also preserved */

HYPOTHESIS[I].BESTSCORE (-- MAX(HYPOTHESIS[I].BESTSCORE, TEMP)

endfor
endfor
for each hypothesis I

if HYPOTHESIS[I].BESTSCORE is not within the beam
REMOVE(I)

else
NODE (-- HYPOTHESIS[I] .NODE
LAST (-- index of last state of NETWORK[NODE] .UNIT
if HYPOTHESIS[I).PROB[LAST] is within the beam

for each node CHILD in NETWORK[NODE].TO linked list
if CHIlD is active in some hypothesis J

HYPOTHESIS[J].PROB[O] (-- HYPOTHESIS[I].PROB[LAST]
else
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NEWHYP <-- ADD (CHILD)
HYPOTHESIS[NEWHYP].PROB[O] <-- HYPOTHESIS[I].PROB[LAST]

endif
endfor

endif
endif

endfor
until last frame received

/* find winning node in last frame */
MAX • -MAXFLD!T
for each hypothesis 1 in list

NODE <-- HYPOTHESIS[I].NODE
LAST (-- index of last state in NETWORK[NODE].UNIT
if HYPOTHESIS[NODE].PROB[LAST] > MAX

MAX (-- HYPOTHESIS[NODE].PROB[LAST]
WINNER (-- NODE

endif
endif

endfor

/* output answer */
output NETWORK[WINNER] .WORD

The ADDO and REMOVE() list modifying functions should employ bi­
nary lookup of an ordered hypothesis list, to achieve an O(A log .4) rather
than an O(A2

) computational overhead. This can he achieved by use of a
red-black tree or a B-tree structure for the Hypothesis data. This adds 8 bytes
of pointer data for each Hypothesis entry. \Ve tolerate these space and time
costs when A « iV, where N is the size of the Network. If this assumption
does not hold for a particular recognition task, we can trade off memory in
the Network structure for more efficient (linear-time) processing of the active
Hypothesis list: a pointer can be store with each network node to the cor­
responding Hypothesis entry. In this case insertions and update operations
would be applied by adding the appropriate hypotheses to a second list, a
simple array to he processed in the fol1owing frame. Hypotheses pruned from
the active list would he simply deallocated.

10.2.4 Analyzing the Computational Cost

In contrast to the general decoder sketched out in the first part of this chapter,
the new algorithm has no fixed network cast. AlI three blacks of pseudo­
code have either a constant number of operations or a computational cost
dependent on the number of active hypotheses. As before, the algorithm can
be analyzed in terms of number of operations. Let f he the number of frames
of signal, Sh the number of states per HMM, and A the active hypotheses on
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Problem Decoder Memory Speed
Size Version Usage (x Real-Time)

3,000 words General 12,860k 0.12
3,000 words Tree-based 1,152k 0.067

30,000 words General 210M 0.97
30,000 words Tree-based 8,708k 0.12

Table 10.1: Time/memory comparison of general and optimized decoders.

average per frame. The mLxture density size times the number of coefficients
is dd, and the average branching factor of the network tree is bf.

The first block of pseudo-code, "initialize", consists of 3 ASN operations.
The second block, "process frames", consists of approximately

f A(2ASN + 2FLT + 2CMP + sh(10FLT + 5ASN + 2CMP + 4ddFLT)

+bf(INT + 2CMP + 2ASN + 2(log A)(INT + CMP + ASN))]

operations. The final block of pseudo-code, which retrieves the winning node,
consists of A(4ASN + FLT + CAtlP) operations. Clearly, the computation
for each frame depends strongly on only two quantities: the number of Gaus­
sians, and the size of the search beam. The ordering of the hypotheses in
a list necessitates O(log A) operations to fiod, add or remove them. If we
disregard constants we find the algorithm has complexity O(A log A); Le.
it depeods entirely on the search beam width and not on the size of the
language.

The efficiency of this algorithm compared to the initial, general impie­
mentation is made dear in table 10.1. The two decoders were tested on
grammars of up ta 30,000 spelled street names. The tests ran on a Pentium­
II workstation, with a 450 mHz dock and 256 megabytes of memory. The
test data consisted of 160.1 seconds of speech. For the large test (30,000
names) the search algorithm achieved a recognition accuracy of 94.6%. The
optimized engine performed the same search in one eighth the time, while
reducing memory requirements from 210 to less than 9 megabytes.

10.2.5 Enhancements for Continuons Speech

The stripped down speech engine of this chapter is easily modified for contin­
uous recognition tasks, while preserving most of its inherent efficiencies. The
case of continuously spoken utterances from a language of fixed sequences is
exemplified by spelled word recognition. This language can he implemented
as a tree with one modification: each node of the tree has an implicit looped
silence model between it and its successors. The regularity of this language
allows us to compute it without the considerable overhead of inserting aIl
these extra nodes in the Network structure. Whenever anode enters the ac­
tive hypothesis list, a corresponding looped silence model is added to the list
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as weIl. The identity of the silence hypothesis is unique in (Network Node
id, Unit id) .

For generallanguage recognition, we restore the data and computational
overhead associated with the BackPointer structure. What is required is
a lattice of hypothesized ward endings in signal-time from which to trace
the best or N-best sequences. Aiso the initializing of hypothesis model-state
zero is more complicated; the very best incoming likelihood and its history
must be selected among a11 incoming transitions. But we continue to benefit
from the efficiencies of the simple HMM topology, the in place computation
of state likelihoods, and the elimination of costly, repetitive processing of
network transition anays and model transition arrays.

Finally, the reader should note that very large vocabulary continuous
speech recognition requires more sophisticated recognition algorithms, often
based on multiple passes of search. Each such pass will require its own set
of optimizations. However, a form of the decoder described here can serve
as an efficient first-pass search engine for a fast match, generating a phone
lattice or word graph from subword H~lrvls .
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Chapter Il

Spelled Letters: Aigorithms
and Application

This chapter is about robustness improvements that were made to a real,
working continuous speech recognition system. A speaker-independent speech
recognizer for continuously spelled names, implemented for a switchboard
call-routing task, was analyzed for sources of enor. 1 The results of a field
trial indicated that most errors were due to (1) extraneous speech, and (2)
end-point detection errors.

To attack the second problem, a strategy is proposed for improving the
system tolerance for speech with pauses. To deal with the first, and more
intractable problem, a new algorithm is introduced for spotting spelled-word
sequences in a signal containing extraneous speech. Experimental results
in the laboratory show that with the letter-spotting aigorithm, the name re­
trieval enor-rate is reduced by 60.7% on signaIs with extraneous speech, from
an absolute error rate of 75.8% to 29.8%. On clean speech the absolute error
rate increases from 4.5% to 5.5%. On data collected during a follow-up trial
of the working system, name retrieval error decreases by 54.1% from 23.3%
ta 10.7%, an improvement solely due to the new letter-spotting algorithm. 2

Il.1 Introduction

•

The initial system studied in this chapter is a multi-pass H~IM-based decoder
for spelled-name recognition over the telephone, described in [JunquaEtAI95]
(see aIso [Junqua97]). This system is called SmarTspelL™. The first pass

1The system served as a telephone autoattendant at Speech Technology Laboratory ­
Panasonic Technologies Limited, in Santa Barbara, California. It was active from about
1994 to 1997. By 1998 it had been replaced by a whole-name recognizer. In the new
system spelled name recognition served as a fall-back procedure.

2This algorithm is the subject of a patent filing entitled "Speech Recognition System
Employing Multiple Grammar Networks," by Michael Galler and Jean-Claude Juoqua,
filed April 16, 1997 (H07-1222) in the U.S., and filed in Japan, Taiwan and China (H07­
1222) .
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employs a bigram language model and a Viterbi beam search to produce
the N..best (typically 20) hypothesized letter sequences. In the second pass,
the sequences are compared to a dictionary and a dynamic-programming
match is used to select the N-best names in the name directory, based on
statistics for letter..confusion. A third pass of recognition is then performed in
which the acoustic parameters of the signal are fitted to the HMM sequences
representing the N-best names from the directory. In this final pass a full
Viterbi search is performed on the reduced set of candidate narnes. In this
way an accurate, efficient search is produced by filtering the search space
with different constraints through various stages.

The recognizer was integrated with the telephone switch at a corporate
business office. 3 Several months of field tests were logged in which caliers
used the system to direct their calls to company staff members. CalIers were
asked to confirm the correctness of the recognition output with ayes/no
response. CaUs were recorded, logged, and later transcribed to determine
the source of errors.

Figure 11.1 presents the collected performance statistics. According ta
the experimental data, the two most common sources of error were pauses
interposed in the letter sequence, causing a premature detection of end­
of-speech, and extraneous speech, usually at the beginning, e.g. "Smith
[pause] s-m-i-t-h" Other major sources of error include low signal energy
collected through speaker-phones, and other effects of channel mismatch be­
tween training and test conditions.

11.2 Related Work

11.2.1 CalI Routing

The work described here involves a number of different issues, including
call-routing by name recognition, spelled-word recognition, word-spotting
techniques, rejection of noise and extraneous speech, and the design of user
interfaces for telephone-based speech recognition systems. Speech-operated
auto-attendants are now being deployed by many institutions. A number
of systems have been introduced experimentally for call-routing that invoive
speaker-independent, large-directory, whole-name recognition [SmithBates93],
[YamamotoEtAI94], [BilliEtA195]. Sorne systems have employed hybrid schemes
that attempt to manage errors through dialogue, prompts, and user-feedback
[JohnstonEtAI96], [KellnerEtA196], and a mixture ofwhole-name and spelled­
letter fallhack [JohnstonEtAI96]. In contrast with these systems, [FraserEtAI96]
attempts ta perform call-routing for small directories on small, inexpensive

3The implementation of SmarTspelLTM together with its design as an autoattendant
was the subject of U.S. Patent #5,799,065 (H07-1221), entitled "Call Routing Deviee
Employing Continuous Speech", by Jean-Claude Junqua and Michael Galler, approved
August 25,1998.
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Figure 11.1: Call recognition and error rates.

hardware, based on whole-name recognition.
The system described here can be seen as a competitor to these systems

because it manages name recognition using a small set of acoustic modeis
that run quickly on simple hardware. Also, because of the extra information
exploited in the lexical comparison to the dictionary in this multi-pass algo­
rithm, the recognition accuracy is better than for conventional systems which
put aIl the spelled names into a network [Junqua97}. It can aiso be seen as a
complementary technology, or fall-back procedure that can be empIoyed by
the Iarger, whole-word systems.

11.2.2 Robustness Issues

A key robustness issue addressed here is the problem of Out-Of-Vocabulary
(OOV) rejection. Although the user instructions are very simple (para­
phrase): '4Please spell the name of the persan you want to caIl" , users have
a tendency to pronounce the whole name anyway. \Vell known techniques
exist to deal \Vith this problem, based on the use of tiller models and multiple
grammars [RoseEtAI95], [RahimEtAI95}. However, in this work the integra­
tion of those techniques with the multi-pass spelled name search is original.
-1 Other techniques recently introduced for OOV rejection and keyword-

"The work described here has been preyiously published by the author, with c<rauthor
Junqua, in the 1997 ICASSP proceedings.
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spotting are based on on-line garbage modeling [BourlardEtAl94]. These
techniques, while not explored in this thesis, are strongly complementary to
the algorithms introduced here.

11.3 Data Description

The database userl in these experiments is a subset of the speech telephone
corpus collected at Oregon Graduate Institute (aGI) [ColeEtAI91]. Over
four thousand people telephoned in response to public requests. They were
prompted by a recorded voice to spell their first and last names, with and
without pauses, together with other information. 60 pre-Iabeled repetitions of
the alphabet (which did not belong ta the test set as defined in the OGI CD­
ROM) and more than 1200 different caUs were used for training the Hrvll\fs.
558 caUs \Vere used for the validation set, and 491 cails for the basic test
suite. The purpose of the validation data was ta optimally tune the system's
parameters before running it on the test set. As every speaker belongs only ta
one set (training, validation or test) the experiments conducted are speaker­
independent.

AH data in these three sets were last names spoken without pauses, and
none of them contained extraneous speech, line noise or speech related effects
such as lip-smack or breath noises (as transcribed in the database). These
three sets were subsets of the corresponding training, test and validation sets
defined in the aGI CD-ROrvI. They \Vere used in the design of the base
system, whose evaluation lead to the further enhancements of this chapter.

In order to test the multiple-grammar l letter-spotting algorithm intro­
duced here, two new data sets were assembled from the aGI corpus. The
first consists of 521 signaIs containing extraneous speech, in which the pro­
nounced name precedes the spelled name. In addition, a set of 159 spelled
names containing non-speech utterances and noises was used for a laboratory
evaluation of the improved system.

During the first field trial 403 caUs were recorded over the telephone.
Roughly half were in-house transfers using the digital PBX, and half were
made from outside the company through the telephone network. These data
were also used to evaluate the initial recognition system.

11.4 Enhanced Robustness by Pause-handling

Many errors \Vere caused by the premature detection of end-of-speech by the
Voice Activity Detection (VAD) algorithm. These events were triggered when
the speaker hesitated either during the spelling of a name, or between sorne
introductory utterance and the subsequent utterance of spelled letters. The
VAD algorithm is implemented as a state machine with 4 states: non-speech,
speech-in-pragress, end-af-speech, and false-alarm (a non-speech event).
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State changes are triggered by changes in signal energy, computed adap­
tively at run-time. Frames of speech data detected by the VAD are passed
from the front-end to the recognition module, which computes the forward
probabilities frame-synchronously. The packtrack phase of the Viterbi recog­
nition process is triggered by a VAD-detected end-of-speech. In real caUs
vaUd speech segments are often interspersed with pauses which, in the origi­
nal system, caused the VAD to trigger the recognition process prematurely.

The spelled-name recognition algorithm was modified to allow signals con­
taining pauses to be recognized. In the modified system, the VAD continues
to classify and segment the raw signal as before; however, the recognition
module employs a timeout of its own to decide whether an input has termi­
nated. The new algorithm aUows up to two seconds of silence bet,veen letters
before determining the final endpoint was reached. During this interval, it
proceeds through the stages of recognition, preparing a tentative output. If
the VAD determines the speaker has resumed speaking before the timeout,
the second or third pass of recognition aborts and the forward algorithm of
the first pass resumes until the next pause is detected. When two seconds of
non-speech have elapsed, the tentative response is confirmed and delivered,
and recording stops.

In the original field test [JunquaGaller96], 7.4% of caUs were interrupted
due to the problem of slow or interrupted speech. With the modified system
described above, less than 2% of caUs are subject to this kind of errar.

Il.5 Modeling of Extraneous Speech and Noise

Il.5.1 Improved Robustness with Letter-Spotting

A modified recognition strategy was proposed for dealing with the other
major source of error. Extraneous speech is managed with a word-spotting
strategy (Figure 11.2.) An initial experiment employed a network with tiller
to produce aIl the N-best sequences of letters for the dictionary alignment.
However, for input signaIs which do not contain extraneous speech this al­
gorithm increased the instances in which the alignment procedure failed ta
produce the right name in its N-best liste This was caused by the increased
number of unit errors present in the input sequences, due to the additional
complexity of the language model.

A more successful strategy was to fit the signal to two different networks.
The first network consists of a fi11er H~I~l, followed by silence, followed by the
letter models. This network tries to spot the best letter sequence following an
initial extraneous noise, word, or phrase. The second network assumes only
letters are spoken, and tries to fit the whole signal to the best letter/pause
sequence. In bath cases the transitions between letter HM~lS are weighted
by bigram probabilities. Each of these two recognition passes produces an
N-best list of sequences. In the next stage of recognition, the sequences are
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Figure 11.2: Network for letter-spotting.

aligned against the name dictionary to retrieve the most likely names with
respect to the confusion statistics on letters.

Two alignments are made to compare letter sequences to the names in
the dictionary. Since the network without a tiller model is used, the input
to one alignment procedure is guaranteed ta include the best sequences that
the letter models can produce for a signal not containing extraneous speech.
If the signal does contain extraneous speech, the network containing tiller is
more likely to produce a sequence acoustically similar to the actual spelled
nanle, and the input to the second alignment procedure will contain that
sequence. In the new algorithm, the output of each alignment produces 10
hypothesized names, and these are combined into a list of 20 candidates.
In the final pass a dynamic grammar is generated consisting of the best
candidates from the dictionary, with an optional initial filler mode!. A Viterbi
acoustic recognition pass, using detailed wide-beam search, is performed with
this grammar ta select the most likely name.

11.5.2 Filler Models and Networks

Different kinds of flller models were constructed and tested. One consisted
of a single speech unit trained on all non-silent segments of the NTIMIT
8kHz training corpus, followed by a silence unit. The tiller unit was a left-ta­
right model containing 8 states, with 8 Gaussian distributions per mixture
density. The grammar containing this sequence segments the input utterance
into an initial, extraneous burst of speech, followed by a silence, and ending
with a sequence of letters. This network is motivated by analysis of the error
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Data Size Original Letter-spotting
Set System Error System Error
names 491 4.5% 5.5%
only
names with 521 75.8% 29.8%
extr. speech
names with 159 28.3% Il.3%
noise
field trial 403 23.3% 10.7%
data

Table Il.1: Name retrieval experiments - Results.

data, in which a spelled name was often preceded byan introductory word
or phrase, and then by a pause of sorne duration.

The second kind of tiller tried was a looped-phoneme network trained on
NTIMIT. This network modestly increased the nurnber of correct outputs
from the dictionary but at a cost of increased computation. Because of the
success of the simple tiller model as seen below, this approach \Vas dropped.

11.5.3 Noise Modeling

A final variation on the tiller network was tried, in which the tiller models
described above were replaced with a small set of noise models, lip-smack,
breath-noise, and line-noise, trained on the OGI database. These 4-state, 16
distribution models were added to the letter-recognition network, and tested
for accuracy in detection of extraneous noise or speech in the spelled-name
data. The performance of the tiller-hased letter-spotting \Vas compared to
this method of using models trained for specifie noises.

11.6 Experimental Results

•

The results for the original and modified name recognition algorithms are
summarized in table 11.1. The results are presented as name-retrieval error,
or the percentage of recordings for which the wrong name was selected at the
end of the final pasSe

The original system was shown to achieve a 4.5% retrieval error rate
(on 491 OGI test signaIs) for a 3,388 word dictionary. When tested on
a separate subset of 521 OGI signais consisting of extraneous-speech plu.s
spelled-name data, the same system had an error rate of 75.8%. When the
letter-spotting algorithm was tested on the spelled names, recognition error
increased from 4.5% to 5.5%. However, on the extraneous speech data, the
error rate decreased by 60.7% from 75.8% to 29.8%. On the noisy signais,
there was a similar 60.1% error reduction.
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Data Letter-spotting Letter-spotting
Set with Filler Model with Noise Models
names with 29.8% 56.0%
extr. speech
names with 11.3% 11.3%
noise

Table 11.2: Error rates of letter-spotting by tiller and by noise models.

Of particular interest was the comparison between the tiller model and the
noise model performance on data containing noise, as seen in table 11.2. As
should be expected, the tiller performed much better than the noise models
at detecting extraneous speech. But the tiller model performed equally weIl
in name retrieval as the noise-modeling network in detecting speech with
noise. However, better performance may be achievable with more precise
noise models.

11.7 Conclusions

•

•

Through the careful examination of the performance of a speech recognition
service on live data, it is possible to identify the most serious issues of robust­
ness. Often these problems can be greatly alleviated by small adjustments
to the user interface. In other cases new and better algorithms are needed.
The multiple grammar-in-parallel approach is effective at improving the ro­
bustness of a recognition system when extraneous utterances will appear in
a small but significant percentage of voice inputs to the system. It is better
than a standard keyword-spotting algorithm, because it generates multiple
N-best lists in parallel: one list that assumes canonical voice inputs, and one
or more lists for degenerate cases assumed to contain extraneous speech or
ill-formed utterances. In this way a combined set of candidates is produced
which will contain the best hypotheses under either assumption. The final
pass of search can then find the right candidate with a high probability of
success. Further improvements to the spelled-name recognizer of this chapter
are described in [RigazioJunquaGaller98]. The goal of this later work was to
improve the discriminative power of the letter models, particular among the
confusable E-set of the alphabet. These remain a challenge for accurate dis­
crimination, particularly over the bandwith-limited telephone channel. Tech­
niques of discriminative training were developed to simultaneously optimize
for discriminative power the HM~I state-weights for the letter models, the
statistical language model on the letters, and the heuristic weighting of the
language model. 5

5Further improvements were the the subject of a U.S. Patent entitled 14l\'lethod and Ap­
paratus Using Probabilistic Language Madel Based on Confusahle Sets for Speech Recog­
nition", by Luca Rigazio, Junqua and Galler, filed March 23, 1998 (H09-0921) .
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Chapter 12

Enhancements of Speech
Production in Esophageal
Speakers

This chapter describes an experimental rnedical application of speech recog­
nition technology. Esophageal speakers are patients who, generally because
of cancer, have had part or most of their larynx surgically removed. Lacking
glottal tissue, esophageal speakers are trained during post-operative reha­
bilitation to produce a voice source by bringing about a vibration of the
esophageal superior sphincter. They must fill the esophagus with an injec­
tion of air before every utterance, thus creating an air reservoir to drive the
vibration. The resulting gulping noise is disconcerting for both the speakers
and listeners. This chapter describes a method for the autornatic recognition,
and suppression by electronic means, of the injection noise which occurs in
esophageal speech.

12.1 Introduction

•

People who have had laryngectomies can be retrained to speak with a variety
of techniques, sorne involving prosthetic devices. The artificial larynx, a
hand-held device which introduces a source vibration into the vocal tract by
vibrating the throat externally, is the easiest for patients to master, but does
not produce airflow. Without that flow the intelligibility of consonants is
diminished. Tracheo-esophageal speech uses a prosthesis to divert outgoing
lung air into the esophagus, bringing about a vibration of the esophageal
superior sphincter. This method does produce airflow for consonants and
pennits utterances of normal duration. However, it requires a surgieaIly
produced connection between the esophagus and the trachea, and is not
suitable for sorne patients.

Esophageal speech, which requires speakers to insulJlate, or inject air
inta the esophagus [WeinbergBosna70], limits the possible duration between
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air injection gestures, and is associated with an undesired audible injection
noise, sometimes referred to as an "injection gulp". The effect of this noise
is magnified because esophageal speakers (like tracheo-esophageal speakers)
evidence low vocal intensity [RobbinsEtAl84}, and frequently need amplifi­
cation. This noise is undesirable for two reasons: (1) listeners and speakers
find it objectionable and (2) in sorne speakers it can be mistaken for a speech
segment, diminishing intelligibility. This research reports on work to de­
tect the injection noise, with the aim of eliminating amplification during its
production.

The algorithms proposed here are original solutions for a problem that
has Dot been previously addressed, although considerable work has been un­
dertaken to enhance other aspects of esophageal speech. (For examples, see
[Qi90], (QiEtAI95], [~latsuiHara99]).

12.2 The Proposed Deviee

•

•

Air injection is required prior ta the start of every utterance, and typically
occurs again after every pause before an utterance continues. Consider a
device which is used to amplify the esophageal speaker's speech. It is possible
to switch amplification on aCter injection noise has occurred and subsided,
50 that the following utterance alone is transmitted. vVe can then switch
amplification off after a period of silence has occurred, in anticipation of the
next injection noise. A gain control is set to either one or zero depending on
whether injection noise has been detected with an associated silence. This
device (figure 12.1), which could be in a speaker's external prosthesis, or
integrated with a telephone, acts to automatically remove undesired injection
noise, and transmit actual speech without interruption.

12.3 Detection of Noise by HMMS

12.3.1 Feature analysis

We first proposed relatively straightforward speech recognition and word­
spotting methods for detection of injection noise. l We treated the injection
noise as a word to he spotted within an utterance spoken by an esophageal
speaker. The basic scheme is shown in figure 12.2.

The signal is digitally sampled at 20 kHz. One copy of the signal is pre­
emphasized and is used for processing, wbile a second copy is switched on or

lThis research emerged as a collaboration between the author, and the linguist Dr.
Hector Javkin, then of the University of California, Santa Barbara. Dr. Javkin introduced
me to the problem and acquired the data for the study. \Ve jointly proposed ASR methods,
and 1 implemented them and evaluated the results. Together with the linguist Dr. Nancy
Niedzielski, who hand-Iabeled the data in the study, we published our experimental results
in the 1997 ICASSP conference proceedings.
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Figure 12.2: Detecting the "gulp" with H~INI-based word-spotting.
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off depending on the analysis. Every 10 ms. a 256-point FFT computation is
perfonned on a 20 ms. window of speech samples. The first 12 Mel-frequency
cepstral coefficients (MFCC) are calculated; these form the first part of the
feature vector for a speech frame.

This spectral information is supplemented by additional information about
rate of change of spectral features, consisting of the derivatives (Le. differ­
ence cepstra). AlI together r 24 Mel-based cepstral coefficients are extracted
from each window of the speech signal.

Time waveform analysis supplements the cepstral analysis. Specifically, a
measure of signal energy is computed, along with the energy rate-of-change,
based on a linear regression of 9 successive samples. The speech vector
is further augmented with two extra feature points based on sorne special
characteristics of the injection noise. \Vhen a voiced speech signal begins,
it produces a negative pressure pulse. The injection noise, on the other
hand, begins with a positive pressure pulse. The difference between the
initial negative pressure pulse of speech and the initial positive pulse of the
injection gulp is used as an additional cue for detecting the injection gulp.

A combination of a microphone, amplifiers and an analog converter is
used to provide a non-inverted signal. This is done either by utilizing an
even number of inverting amplifiers or by testing for an inverted signal and
adding an inverting amplifier if necessary.

One of the features used to detect the polarity difference between injec­
tion noise and speech we calI amplitude summation (AS). Amplitude sum­
mation, camputed once per 10 ms. speech window r is a way to detect the
initial deviation from zero in the speaker's signal. The digitized waveform is
summed over intervals ranging from 1 to 20 milliseconds, depending on an
adjustment for individual speakers. The probability that an injection gulp
has occurred is greater when a positive value over a given threshold accurs
in the summed signal. This threshold can be adjusted, depending on the
associated microphones and amplifiers used to record the signal.

A second measure for detecting the polarity is obtained by differencing
the center-clipped signal. To remove low-amplitude ambient noise, the signal
is center clippeù. The remaining signal is then differenced, to obtain the
first derivative, which is then smoothed with a running average. A positive
value on the result, immediately following a zero value, tends to indicate
the presence of injection noise, while a negative value tends to indicate the
presence of speech.

The three measures of signal energy, energy rate of change, and am­
plitude summation are added to the 24 rvIel coefficients, to make up the
complete observation vector. Thus, the acoustic front-end program creates
a 27-component observation vector to represent the features of each speech
frame.
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12.3.2 Decoding

A hidden Markov model (H~IM)-based speech decoder is used to find the
optimal alignment of the speech signal with a set of speech tokens. 2 Two
methods are described.

In method one, five speech tokens are used, including silence, gulp, noise1,
noise2 and speech. (The two 'noise' tokens were not fully explained, but
appear to be artifacts of esophageal speech.) In method two, the speech
token is replaced by a set of nnits representing the basic phonemes of the
language. This method has more discriminative power for increased accuracy,
but requires more computation.

Each token is modeled with an H~I~1. The number of nodes in the HMM
units varies from 3, in the case of simple models such as silence, to as many as
seven for certain phonemes. The number of Gaussian densities per mbcture
may be varied from 6 to 18 or more, depending on the limits placed on
computation time by the envisioned application.

In the first implementation, five continuous mixture-density speaker-dependent
HMMs were trained on a subset of a corpus of esophageal speech data, seg­
mented and pre-Iabeled by hand. The H.lVI~ls contained from 3 to 7 states,
with 8 Gaussian densities per mixture. The training procedure was initialized
by training two models on an 8 kHz database of normal speakers: a speech
model and a silence model. The distributions of these H~IMs were then used
ta initialize the three other units. The five H~I~[s were then re-trained on
the training half of the esophageal speech signaIs for a given speaker, 42
recordings in aIl, using Baum-\Velch re-estimation. This stage of speaker­
dependent training consisted of two iterations of isolated segment training
and two iterations of embedded training.

The H~I~I decoder program decodes the speech signal frame-synchronously,
with a 10 ms. frame rate. Each signal is processed by a front-end program
into a vector of speech frames, as described in section 12.3.1. The Viterbi
algorithm is used to estimate the conditional probabilities of the feature vec­
tors, given each of the speech token models.

Those segments for which the injection noise (gulp) token have been la­
beled as most likely present, are classified as gulps within the speech signal.
The remaining esophageal speech segments are transmitted, with a short
processing delay, and amplified. When an injection gulp is detected, ampli­
fication is set to zero, 50 that it is suppressed.

2This procedure is the subject of a U.S. patent (pending) entitled "Enhancement of
Esophageal Speech by Injection Noise Rejection" by Hector Javkin, Michael Galler and
NaIley Niedzielski.
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Number of Speech Units 239
Number of Injection Gulps 72
Gulp Detection Error-Rate 33.3%
Speech Misclassification Error 5.4%

Table 12.1: HMM results for injection noise detection.

12.4 Results of Detection of Noise by HMMS

The injection noise method was applied to a test set of utterances on which
the HMMs were not trained, but from the same speaker. The results are
reported in table 12.1. Two thirds of injection noise, or gulp, events were
detected successfully on the speaker. Of valid speech segments, 5.4% of them
were at least partially incorrectly aligned with the gulp token (speech mis­
classification error). These results were obtained on 40 test sentences of one
speaker. Although it is likely that these results can be improved by the use
of more training data and further tuning of the recognition algorithm, sorne
of the spectral characteristics of the injection noise led to the exploration of
a different approach.

A different method for injection noise detection has been developed, based
on the observation that the noise, which is produced by a gesture with a
closed vocal tract, has a strong, low-frequency emphasis. This characteristic
appears to be due to a double closure in the vocal tract of at least sorne
speakers, which strongly attenuates high frequencies.

This algorithrn uses a faster computation, and has a higher injection­
noise detection rate on the limited data available. Through fine-tuning, it
may be further improved. The data is sampled at 8 kHz. A 256-point
FFT is computed every 10 ms. and smoothed by a morphological JUter
([PitasVenetsanopoulos90], (Hansen94]) with a 10 point sliding window, re­
moving aIl but the gross features of the spectral curve. Figure 12.3 shows
the magnitude spectrum from the center of an injection noise segment, and
the result of the morphological filter applied to the spectrurn. Figure 12.4
shows the magnitude spectrum from the center of the consonant 1dl (the
segment spectrally closest to an injection noise segment ) and the output of
the morphological filter (MF).

The mean and the derivative of the filtered spectrum are computed. The
location and value of the two largest peaks are identified. A signal segment
is identified as injection noise if the following criteria are met:

1. The largest peak is lower in frequency than the second largest peak.

•

•

12.5 Detecting Esophageal Injection Noise by
Morphological Filtering
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Figure 12.3: 256-point FFT from the center of an injection noise segment,
and the result of passing the FFT through the morphological filter.
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Figure 12.4: 256-point FFT from the center of a Idl segment and the result
of passing the FFT through the morphological filter .
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Number of Speech Units 235
Number of Injection Gulps 79
Gulp Detection Error-Rate 17.7%
Speech Misclassification Error 15.7%

Table 12.2: Morphological filter experiment: results on data set 1.

Number of Speech Units 242
Number of Injection Gulps 72
Gulp Detection Error-Rate 16.7%
Speech Misclassification Error 17.4%

Table 12.3: ~Iorphological filter experiment: results on data set 2.

2. AIl points above 2 kHz are less than the mean.

The second method 3 was tested on both the training and test data sets
used for the H~INls in the first method. Again, results were encouraging,
although the speech misclassification error was unacceptably high.

The results obtained this far were achieved with relatively untuned algo­
rithrns. Furthermore, no attempt has been made at present ta combine sorne
of the features used in the HMM-based method with those used with the
method based on rnorphological filtering. Such a combination would likely
reduce the error. On the basis of these results and the likelihood that they
cao be improved, injection gulp rejection could work in a way totally trans­
parent to the user, by means of an electronic switch that would only turn
amplification on after a gulp and a following short silence have occurred.
Whenever a speaker paused, the amplification would be turned off, waiting
for the injection gulp before turning it on again. 1t could, in theory, work
without any delay in the output signal.

Adjustments have to be made for speakers who use multiple gulps in arder
to sufficiently insuffiate the esophagus. If a speaker consistently used double
or triple gulps, the method could be tuned to reject them. However, speech
with varying numbers of gulps could be problematic.

The methods and application described here deal with only one aspect
of esophageal speech. Research has continued in ways to improve other as­
pects as weIl. For example, Japanese researchers have attempted to im­
prove the overall quality of the speech by resynthesizing the voicing source of
esophageal speech using formant-based analysis and re-synthesis. Subjective

3The subject of another U.S. patent filing, docket no. MATI-A244 filed April 16, 1997,
entitled uEsophageal Speech Injection Noise Detection and Rejection" by Hector Javkin,
Michael Galler, Nancy Niedzielski, and Robert Boman.

•

•

12.6 Discussion
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ratings by speech therapists scored the the synthesized speech higher than
the original [MatsuiHara99].
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Part IV

Conclusion
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Chapter 13

Perspectives

13.1 Trends in Speech Recognition Research

•

•

To know the state of speech science in 1999, and the steady ferment of activity
within the speech research community, we need look at the recent published
work of a relatively small number of research groups that have long made
contributions to the state of the art. These groups include AT&T labs; Ger­
many's Aachen University of Technology; the Cambridge, Massachusetts firm
BBN Technologies; P.C. Woodland's and Tony Robinson's research groups
at Cambridge University; Carnegie ~Iellon University's Interactive System
Laboratories; the Newton, Nlassachusetts firm of Dragon Systems; IBhtI's
Thomas \Vatson Research Center; the French LI~'lSI-CNRS Spoken Lan­
guage Processing group; ~IIT's Spoken Language Systems Group; and the
firm SRI International of ~Ienlo Park, California. This list is not exhaustive.
The Oregon Graduate Institute, rCSI at Berkeley, and several govemment
funded research institutes including ATR in Japan, IRST in Italy, and CRIhtl
in Quebec, also belong in the list of groups making important contributions
to the field over a long period of time.

In addition, the electronic giants Philips, Nlotorola, Nlatsushita, and Sony,
the Belgian firm Lernout and Hauspie, Finland's Nokia, the V.S. firm Nuance
Communications and the Microsoft Research Group are notable for their
speech recognition and synthesis technology, although for business reasons
most of these companies are not prolific publishers of original research work.

By examining recent work of these groups it is possible to generalize about
the techniques and areas of study which are being most actively pursued in
1999. \Vhat follows is a broad, if not exhaustive, survey of current themes,
and subjects of interest in speech recognition research.

Managing robustness issues. Researchers have gained a great deal of
hard experience in dealing with the mismatch between training conditions
and test conditions. Every practitioner has had the experience of transferring
a successful recognizer from its development environment to try it in a new
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room, with new speakers, and perhaps a different microphone, with results
often much less than we hope. This is the "robustness" issue.

We now have a toolkit of reliable techniques for channel normalization and
adaptation. Systems that employ cepstral feature analysis invariably apply
the technique of Cepstrum Mean Normalization (CMN). An average MFCC
vector (section 5.4.6) is computed over a whole input sentence or segment,
and subtracted from each of the frames in the segment. This serves to re­
duce the effects of constant channel characteristics. The same normalization
can he applied in perceptuallinear predictive (PLP) analysis [Hermansky90].
PLP analysis convolves a set of critical band filters with the speech spectrum.
These modify the spectrum according to perceptual rneasurernents of the au­
ditory system and lead to PLP-Cepstra feature sets. In [WoodlandEtA197]
and [BakisEtA197] there is evidence that PLP alone is more robust to envi­
ronmental rnismatch than rvIFCC. Cepstral filtered PLP or Mel-filtered PLP
is more robust than either. C~IN can be applied to both these feature sets.
Cepstral variance normalization has also been tried with sorne success in
conversational speech [HainEtAI99].

Cepstral Mean Norrnalization can reduce the word error rate on ATIS
by an absolute 1.1% [BocchieriEtA195]. If a constant bias is observed in the
training or test recordings, another small improvernent can be achieved by
removing this bias before speech analysis.

Channel variation in telephone speech is effectively managed with the
use of RASTA filtering. The wlFCC feature vector is not robust in the pres­
ence of channel distortions and background noise. RA.STA filtering is an
additional front end operation which, combined with tvlFCC or PLP analy­
sis, actively reduces channel effects and distortion due to background noise
[HermanskyEtA195]. In the log power spectral domain channel distortions
are additive. However rnost channels are stationary, or very slowly varying,
and impart a near constant offset on the time series of short-time log power
spectral vectors. Applying a sharp eut-off highpass filter to each of the spec­
tral bins, across time, removes this slowly varying offset and supresses the
channel distortion.

The RASTA 6lter is also able to partially mask the effects of background
noise. The assumption is that the speech portion of a signal is relatively
stationary compared to the noise. By lowpass filtering the time series of
log spectral vectors the effects of noise are reduced. To combine both the
highpass and lowpass advantages of filtering the vector stream RA.STA is
implemented as an UR (infinite-duration impulse response) bandpass filter.
The designers of a 1264 isolated word recognition task, a telephone autoat­
tendant, achieved a 7.2% improvement in recognition by adding the RASTA
filter to the front end analysis [AzzopardiEtAI98].

AlI the techniques above attack the robustness problem by reducing the
effects of noise during the front-end signal analysis. In addition to normal­
ization methods and noise-robust feature extraction, there is also a vigor­
ous literature exploring how to compensate within the recognition unit for
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mismatched conditions. The same techniques that have been developed for
speaker adaptation are applied to environmentaI adaptation. Good results
have aIso been achieved with GaIes' method called Parallel Model Combina­
tian (PMC) [GalesYoung93], in which additive and convolutional noise are
explicitly modeled and used to transform the initially clean HMM model
space.

The innovation of sub-band based speech recognition. Studies of auditory
perception have long suggested that human beings decode information from
different frequency subbands independently [Allen94). This suggests that a
correct linguistic interpretation is possible if sorne subbands contain correct
information even if other subbands are corrupted by noise. To put it dif­
ferenUy, the hurnan auditory mechanism May be capable of de-emphasizing
unreliable sub-bands, or performiug "missing feature" compensation. In the
last three years a nurnber of researchers have been exploring sub-band based
recognition in hybrid HMM/ANN (artificial neural network) systems. In
this work, the full auditory frequency band has been divided up into an
arbitrary number of sub-bands, e.g. 2, 4 or 7. Each of these bands are
independently subjected ta feature analysis, and phonerne probabilities are
computed for each. The results are then recombined at sorne segmental
level, using dynamic programming or a neural net, in order ta produce a
single hypothesis. The evidence is that sub-band recognition is as least as
effective as full-band recognition on clean speech. In a test on clean speech
from the Switchboard corpus, the multi-band recognizer reduced the error
rate from 63.6% to 61.4% [BourlardDupont97]. Adlnittedly, the baseline sys­
tem performs badly enough that it is hard to draw conclusions. But other
studies also round that the sub-band recognizer is at least as good as its
full-band counterpart on clean speech - see [TibrewalaHermansky97]. Ad­
ditionally, the multi-band recognizer degrades more gracefully when noise is
localized in parts of the spectrum. However, when noi~,e is present across aIl
the sub-bands, the sub-band decoder may underperform a baseline system
[TibrewalaHermansky97], [0kawaEtAI98].

Intriguingly, multi-band recognition also offers the potential of combining
information at multiple time resolutions.

The introduction of vocal tract length normalization (VTLN). Differences
in vocal tract length of speakers results in a warping of the frequency a.xis
in observed formant energy displacements. These differences contribute to
speaker feature variability, and are obviously correlated with gender, and
age (children vs. adults). A common, if brute force approach to manage
this variability is to train gender-dependent models, and when training data
permits, age-dependent models. VTLN tries to compensate directIy for these
differences by warping the frequency axis such that formant locations remain
stationary across speakers. VTLN has been shown to achieve a 1.4% absolute
reduction in ward error rate on a gender balanced subset of the Switchboard
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corpus [BillaEtAl99]. Dragon Systems did a study to contrast the benefits of
VTLN with conventional gender-training on the Broadcast News corpus.
They round an identical 2.2% absolute reduction in the baseline 39.0% word
error rate [WegmannEtAI99]. Combining the two techniques provides a fur­
ther small improvement, but this improvement vanishes when unsupervised
rapid adaptation is applied to models trained with either technique alone.

The importance of including fast unsupervised speaker adaptation in the
final recognition pass. The evolution of speech recognition has traced an
arc from initial systems, which were aIl speaker-dependent, to the speaker­
independent systems that predominated until recentIy. At present the circle
has closed; a strong component of speaker adaptation is added to every
prominent research system. The motivation for this new emphasis springs
from two realizations. First, the training of speaker-independent modeis
mixes many kinds of variability in an undifferentiated way, as if they repre­
sented the same dimension in feature space. For example, two speakers may
characteristically pronounce a phoneme differently within a given phonetic
context, yet the mixtures of a single triphone are required to represent both
variations. Second, adding more samples from new training data will not
solve this problem. Rather than better separate the cluster from its neigh­
bors in model-state space, more training may only further smear the cluster
through the space.

We have discussed techniques for channel normalization, for both con­
stant channel characteristics, and slowly varying ones. Also normalization
techniques for background noise, for the speaker's sex, and vocal tract length.
If follows that however brief the segment to be recognized, a good speaker­
independent system will have the capacity to normalize for the current speaker's
vocal characteristics. What is needed is a method of rapid unsupervised
speaker adaptation before the final output hypothesis is formulated.

The list of important large vocabulary projects incorporating rapid un­
supervised speaker adaptation in sorne recognition pass is inclusive: BBN's
Byblos, Dragon's Broadcast News transcriber, Cambridge University's
HTK, Carnegie !vIellon's Janus speech engine, IB~I's LVCSR, and LIMSI's
large vocabulary recognizer aIl make use of it.

The BBN system is a good case study [BiIlaEtA199]. Recognition on data
from the Switchboard and English Callhome corpora is carried out in five
stages:

1. A speaker's gender and VTL parameter are estimated by standard mod­
eling techniques.

2. Transcriptions are generated with speaker independent models.

3. NIa.ximum Likelihood Linear Regression (~ILLR) is used ta adapt the
means and variances based on these imperfect transcriptions.
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4. New N-best transcriptions are generated with the speaker adapted
models.

5. The results of stage 4 are rescored with more detailed language models
to find the single best transcription.

A typical improvement due to unsupervised adaptation, as measured on
the Broadcast News corpus, reduces the word error rate from 39.9% to
37.7% [WegmannEtA.l99]. Similar results are achieved on telephone speech
[PeskinEtAI99] .

Fast likelihood computation. A small speech decoder for embedded appli­
cations, based on design principles described in Chapter 10, distills the neces­
sary work down to little more than a repetitive series of emission probability
calculations. The speed of the decoder will thus depend on the Gaussian
computations. At the other end of the scale, a large research system will tar­
get vocabularies on the order of 20, 000 to 60,000 words, and run up to 500
times real time to achieve maximum accuracy. In spite of earlier successes
with such tasks as read speech and dictation, researchers continue ta grapple
with a heavy computational burden as the scope and ambition of the recog­
nition problem expands to include real conversational speech, typified by the
Switchboard and CallHome corpora. These research systems may employ on
the order of 140,000 Gaussian or Laplacian densities [NeyEtA198] to achieve
accurate recognition. BBN reports that in their BYBLOS decoder, when a
wide search beam is employed for maxinlum accuracy 93% of the work in
the second pass is Gaussian computation. \Vhen a tight beam is employed
for efficiency, 76% of the first pass and 94% of the second pass is busy with
calculating likelihoods [DavenportEtAI99].

Early efforts at speeding up this step were based on vector quantization
(VQ) of the speech feature space. The Gaussian means were grouped into
clusters, using K-means or similar algorithms. The centroids of the clusters
formed a codebook, and for each frame of speech, a distance computation
was performed between the input feature vector and each of the codewords.
This would identify the cluster to which the vector belonged, and likelihood
computations were only be performed for distributions belonging ta the clus­
ter.

~Iy own early experiments proved the accuracy/speedup tradeoff does Dot
favour this simple VQ approach. Similarly, others have shown that applying
Linear Discriminant Analysis (LDA) to find the most significant components
of the feature vector for selecting the most relevant distributions had a poor
error/ speed tradeoff. However, the VQ method can provide a "'coarse prese­
lection of the prototype vectors of the densities". In [NeyEtA198] the systems
computes only those prototype vectors located inside a hypercube centered
at the input feature vector, and achieves 75% reduction in recognition time
for a 20,000 word vocabulary with little loss in accuracy.
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In 1997 researchers at IBM T.J.Watson Center proposed a decision-tree

procedure to quantize the feature space. The space is hierarchically divided
inta disjoint regions separated by the intersection of hyperplanes. In each of
these regions resides a subset of the allophone set. In training the decision
tree, the data at each node is repartitioned into two child nodes such that the
average entropy of the allophone distributions at the new nodes is minimized.
TraversaI of the decision tree is efficient, requiring an inner product calcula­
tion of the hyperplane with the feature vector at each node. Execution time
is reduced by 95% with insignificant 10ss of accuracy [PadmanabhanEtA19i].
A simpler and nearly as robust variation of the decision-tree method repar­
titions the nodes with binary clustering [DavenportEtAI99].

13.2 Open Problems and Future Directions

•

•

We who toil in the field of computer speech recognition are full of reasons
why the full problem is sa very difficult to solve. Speech and reason are the
two faculties which make us human - they are that fundamental. It is not
even clear that they can exist separately; that a thought can exist apart from
the language, however personal, ephemeral and silent, that the mind uses to
conjure it. How can anything be more difficult for us than the processing of
language?

On a prosaic level, we list aU the sources of variability that preclude a
simple algorithm for correctIy mapping recorded speech ta texte This familiar
list inc1udes the imprecision of human vocal production, the variability due to
differences in vocal tract, in dialect, in emotional context, in speaking style~

in characteristics of transmission channel. There are the natural disfluencies
of conversational speech, with its hesitations, restarts, and abundance of
non-speech utterances. Then there are the effects of noise, both speech and
non-speech, which may overlap or obscure the signal of interest. People can
focus in on one particular speech signal amid many.

There are huge and open-ended vocabularies to deal with, inconsistencies
in pronunciation, bath valid and invalid ones, and an infinity of plausible
utterances. Finally, when a fragment of speech is correctly decoded ioto a
sequence of phonemes, there may not be a unique mapping ta texte lt may
require syntactic, semantic and contextual linguistic information to make the
translation to the right sequence of words.

Robustness in communication is achieved by a large expansion in band­
width. Speech is an example: the underlying sound patterns have a band­
with of perhaps 30 Hz, but vocal tract encodes them in an 8 kHz bandwith
[Atal99]. This large redundancy compensates for the imprecision of speech
production and the distortions introduced by the communication channel.
Clearly the human auditory/mental apparatus is marvelously robust in mak­
ing sense of a speech signal. Humans can accurately recognize speech that is
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degraded by environmental acoustics and noise, speech reproduced through
bandwidth- limited and noisy transmission channels, channels with erratic
linear frequency response, as weil as speech that is high-pass and/or low-pass
filtered [LippmannCarlson97].

So we might tum the question around like this: why is human speech
recognition so easy? How do we process so effectively the systematic vari­
abilities encoded in that highly redundant signal?

Martin Russell argued in a 1997 IEEE Workshop that data-driven mod­
eling of speech with HMMs attempts to characterize the surface structure of
speech and only superficially models its underlying mechanisms.

Variability, which might be explicable with reference to this deeper
level, manifests itself as as intricate and complex change in the
surface structure. Faced with this surface complexity and no
framework for modeling the underlying causality, the simplest so­
lution, which is adopted in HM~Is, is to assume that this surface
variation is random.

1believe this point of view is not controversial in the speech fratemity. In
spite of all the successes, computer speech recognition is in a primitive state
and we know this. The systems that work today may perform impressive
tasks, but that competence has been bought with simple mechanisms for
learning ta classify sounds base on massive (and painstakingly assembled)
collections of labeled data.

Future breakthroughs will involve the discovery of intermediate levels
at which to model descriptions of the speech process. They will integrate
multi-resolutional trajectories of speech parameters, sorne of which are yet
unknown. A larger proportion of parameters in the speech model will he
explicitly estimated with the help of new underlying rnodels of speech pro­
duction and perception; fewer parameters will be empirically estimated.

The future speech engine rnay still incorpor~te large amounts of linguis­
tic information, but the core decoder will be engjneered more simply and
campactly. And it rnay at last achieve the same generality as exhibited by
a hearing child. It will be able ta recognize ail sorts of speech, from het­
erogeneous sources, filtered in a variety of ways, without the need for extra
training or adaptation.
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