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Abstract

There are many existing modeling approaches for longitudinal data that have been

established based on a balanced data structure satisfying various assumptions. Some of

these approaches are described in order to show how they perform when the ideal of a

perfectly repeated structure is compromised by irregular data. A better understanding of

the extent of this problem can be helpful before carrying out any longitudinal data

analysis. A study on the pharmacokinetics of remifentanil is used as an illustration.
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Résumé

Plusieurs approches ont été proposées pour la modélisation de données longitudinales issues

d’un plan équilibré et satisfaisant divers postulats. Certaines d’entre elles sont présentées

afin d’étudier leur comportement lorsque l’idéal d’une structure parfaitement répétée est

compromis en raison d’irrégularités dans les données. Une meilleure compréhension du

problème peut s’avérer utile avant d’effectuer une analyse de données longitudinales. Une

étude sur la pharmacocinétique du rémifentanyl illustre le propos.
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Chapter 1

Introduction

Longitudinal data consist of measurements recorded on the same set of individuals over

time. This is in contrast to cross-sectional data, which only capture variables for a number

of subjects at a given time. Longitudinal data host the benefit of assessing changes within

subjects over time, while a cross-sectional study does not.

A famous example of longitudinal study is the Framingham Heart Study (FHS). It extends

over several decades and utilizes longitudinal methods in order to identify and understand

which factors or attributes of interest contribute to cardiovascular disease (CVD). Moreover,

the FHS study is known for being a rich, longitudinal trans-generational study, that has

provided many insights in developing strategies for prevention and early detection [1].

The first objective of this project is to give an overview of statistical methods for perfectly

repeated measurements in a longitudinal study. The intent is to circumscribe and highlight
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the usefulness of considering longitudinal data. In turn, this will then help to inform the

issue that may occur when deviating from a perfect repeated measurement study. These

deviations are found in many applied health science studies, where it is common to observe

missingness or irregularity within the data.

The second objective of this project is to bring awareness of the importance of checking

for irregularity or missingness before selecting the appropriate outcome approach. As will

be seen, testing for irregularity in the data is critical before blindly using modeling

methods designed for perfectly repeated measurement. A data illustration concerning the

pharmacokinetics of Remifentanil will be used to this end.

As mentioned above, the defining feature of a longitudinal study design is that the

measurements of the response are taken on the same subject over several visit times, often

called occasions. It may be, however, that the number of repeated observations, and their

timing, vary widely across subjects within a study. Pullenayegum et al. [13] point out that

while there are techniques that can help overcome the resulting bias, the assumptions

about the nature of the dependence between visit times and outcome processes generally

differ across methods, as do model assumptions. As a result, no single method can handle

all plausible visit scenarios. Instead, careful modeling of the visit process can better inform

the choice of analytical method for the outcomes.
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1.1 Longitudinal Data vs Cross-Sectional Study

The underlying feature that can define a longitudinal study is that measurements of the same

individuals are taken repeatedly through time. After collection of data on these measurement

occasions, the objective of a longitudinal study is to characterize the change in response over

time, and also to examine the covariates that influence change.

Considering this unique feature of having repeated measures on individuals, it is possible

to obtain the within-individual change. That is, a longitudinal study design allows the

assessment of within-subject changes in the response over time. In contrast, in a cross-

sectional study, where the response is measured on a single occasion, researchers can only

study the between-subject differences in the response. This implies that a cross-sectional

study is only capable of comparisons among sub-populations that can happen to be different

in age, say, but will not necessarily provide any information about how individuals change

during the duration of the study.

Consider the following example that will illustrate the key distinguishing differences

between a longitudinal study and a cross-sectional study. It is important to highlight the

distinction between the two methods in order to grasp the possibilities offered by a

longitudinal design. Body fat in girls is understood to increase just before or around

menarche, leveling off four years after menarche. Suppose that the investigators behind

this study are interested in determining the increase in body fat in girls after menarche. In

a cross-sectional design, researchers could separate the subjects into two distinct groups: a



1. Introduction 4

group of 10-year-old girls (a pre-menarcheal cohort) and a group of 15-year-old girls (a

post-menarcheal cohort). Once they have been separated, the investigators might obtain

measurements of body fat on the girls in the two separate groups.

In a cross-sectional design, the statistician may want to use a two-sample (unpaired)

t-test, in order to compare average body fat in the two groups. This will not provide an

estimate of the change in body fat as girls age from pre-menarche to post-menarche. It is

important to note that the effect of growing or aging is inherently a within-subject effect

and cannot be studied unless repeated measurements are taken on individuals. Thus, this

illustrates one of the limiting aspects of a cross-sectional design: it does not obtain measures

of how individuals change with time. This example also illustrates that there are many

characteristics that may differentiate the girls in the two different groups, that can possibly

alter the relationship between age in girls and body fat in the study [7].

A longitudinal study design measures a single cohort of girls on two separate occasions,

say at the age of 10 and at the age of 15. By obtaining repeated measurements on the

same individuals, one can provide an estimate of the change in body fat as girls age through

menarche. Our response in this illustration is the difference in body fat percentage within

each girl; it can be studied using, say, a paired t-test. A longitudinal study will allow each girl

in the study to behave as their own control, so that changes in precent body fat throughout

the study are estimated free of any between-individual variation in body fat. Overall, this

example depicts the value of collection of longitudinal data if possible, in order to study
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more accurately possible change in time for subjects.

Another distinctive feature of longitudinal data is that they are clustered [7]. The

clusters are composed of the repeated measurements obtained on the same individual at

different occasions. It is common to witness positive correlation for observations within a

cluster. In the analysis of longitudinal studies, therefore, it is important to account for this

correlation. Longitudinal data also exhibit some temporal order, meaning that the ordering

of the repeated measures has some important implications on the analysis. It can easily be

surmised that as the distance of time intervals between the occasions increases, we may

experience a decrease in the correlation.

1.2 Regression Models for Correlated Responses

With great advancements in technology, it has become possible for statisticians to further

their methods in analyzing longitudinal and clustered data. In fact, based on a regression

paradigm, a broad class of models has now been developed that are designed to deal with

correlated data. It must be noted that the use of the term “regression model” is not limited

to the uses of standard linear regression for a continuous random variable. Instead, the

use of this term more broadly refers to the development of any model that is designed

to describe the dependence of the mean of a response variable on its set of covariates.

This is obviously accomplished in the form of a regression equation. More specifically, the

regression parameters are used to express how the mean of the response variable depends on



1. Introduction 6

its covariates, given in some form of regression equation.

For example, consider the case of a continuous response modeled by a linear regression,

where the regression coefficients express the dependence of the mean of the outcome in terms

of a linear combination of the covariates. Another example to consider is in the linear logistic

model for a binary response, where the regression coefficients express the dependence of the

log odds of a positive response in terms of a linear combination of the covariates. Another

feature of the regression modeling approach is its ability to incorporate a mixture of both

continuous and discrete explanatory variables in an effortless manner.

Regression models are formulated in a way that allows the researchers to have

interpretations that bear directly on the scientific question of main interest. The regression

paradigm allows for a very flexible approach for analyzing data on repeated measurements,

more specifically longitudinal data. These models can also provide a parsimonious

description of how the mean response in a longitudinal study changes with time, and also

how these changes are related to the features of interest. Therefore, the use of regression

models is primarily geared towards describing the discernible patterns of change in the

response over time and, via the regression coefficients, their relation to the features.
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Chapter 2

Basic Concepts

2.1 Longitudinal Data: Basic Concepts

Longitudinal analysis is concerned with estimating how individuals change throughout the

duration of a study and observing how different factors may influence the heterogeneity

among the subjects and how they change over time.

2.1.1 Objectives of Longitudinal Analysis

Longitudinal studies allow researchers to enhance their understanding of the development

and persistence of disease. They do a great job of acknowledging the natural heterogeneity

among individuals in terms of how diseases may develop or progress. There is general belief

in the science community that this natural sense of heterogeneity sources from genetic,
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environmental, social, and behavioral factors. A longitudinal study allows the discovery of

individual characteristics that can illustrate these inter-individual differences in changes in

health over time.

In a study done on identical twins, Wong et al. [18] measured DNA methylation across

the promoter regions of the dopamine receptor 4 gene (DRD4), the serotonin transporter

gene (SLC6A4/SERT), and the X-linked monoamine oxidase A gene (MAOA) using DNA

sampled at both ages 5 and 10 years in 46 MZ twin-pairs and 45 DZ twin-pairs; the total

sample size was n = 182. Their data suggest that the differences are apparent already in

early childhood, given that they are genetically identical individuals. This is a key example

that demonstrates that however close two individuals can be genetically, there may always

exist this natural sense of heterogeneity between individuals. Thus, each individual should

be followed separately throughout the study.

In a longitudinal study, we are given the ability to directly assess changes in the

response variable over time, as the study participants are measured repeatedly throughout

the duration of the study. By obtaining measurements for the same subject repeatedly

through time, a longitudinal study can answer the fundamental questions concerning the

assessment of within-individual changes in the response. The idea behind within-individual

change must be explained and conceptualized to understand the main objective behind a

longitudinal study. It can be simply thought of as “change scores” or “difference scores,”

e.g., the difference between post-treatment and pre-treatment of the response.
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The main objective of a longitudinal analysis is to describe trends in within-individual

changes in the mean response, and to relate these changes to selected features (e.g., treatment

group). This simple notion of expressing within-individual change extends naturally from

“difference scores” to more general “response trajectories” over time. Therefore, we want to

assess and describe the within-individual changes in the response over time, based on the

comparison of the measurements taken on the same individual earlier in the study and at

the end.

A longitudinal analysis of within-individual changes takes place in two conceptually

distinct stages [7], viz.

a) the within-individual change in the response is characterized in terms of some

appropriate summary of the changes in the repeated measurements on each

individual over the course of the study (e.g., using “difference scores” or some form of

“response trajectories”);

b) these estimates of within-individual changes are then related to inter-individual

differences in selected covariates.

These two stages of analysis can then be combined in a statistical model for longitudinal

data. That is, a single statistical model for longitudinal data can be used to accomplish both,

capturing the within-individual change over time and relating within-individual changes in

the response to the selected covariates. It is prudent to acknowledge that the assessment of

within-individual changes in the response over time can only be achieved with the use of a
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longitudinal design. A cross-sectional study simply cannot estimate how individuals change

over time, because the response is measured only at a single occasion.

Something to not take for granted here, in a longitudinal design, is that each subject

inherently behaves as their own control. This is achieved by comparing each individual’s

responses at two or more occasions, thereby allowing longitudinal analysis to remove the

unavoidable, extraneous sources of variability that naturally exist among individuals. The

key point is to realize that there is natural heterogeneity among individuals, that appear

in many extraneous variables. However, these extraneous variables are not of any scientific

interest per se. Nevertheless, they can potentially have an impact on the response variable.

It is valuable to note here that these extraneous factors may not even have been measured

in the study.

The magic behind a longitudinal design is that any extraneous factors that influence

the response (regardless of whether they have been measured) are eliminated out when an

individual’s responses are compared at two or more occasions. In summary, a longitudinal

analysis is the assessment of within-individual changes in the response and also the

explanation of systematic differences among individuals in their changes.

2.2 Defining Features of Longitudinal Data

In a study that utilizes a longitudinal design, the participants, or more generally the units

being studied, are referred to as individuals or subjects. In many of the longitudinal
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designs in practice, the individuals are mainly human subjects; however, in some others,

the individuals may be animals. As mentioned earlier, a longitudinal design is composed of

repeated measures on the individuals of interest at different time occasions. We refer to a

study as “balanced” over time when all individuals have the same number of repeated

measurements that were obtained at a common set of occasions.

In health sciences, an almost inescapable feature of longitudinal study is that some

individuals will miss their scheduled visit or date of observation. This concern is

highlighted, e.g., by Pullenayegum et al. [13], who emphasize that when data are collected

longitudinally, measurement times often vary among patients. Note that this is especially

the case when the repeated measurements extend over a relatively long study period. In

some studies, this would imply that observations be made some time before or after the set

occasion time. This will then result in a sequence of observation times that are no longer

common to all individuals in the study, due to mistimed measurements. When this

happens, the data are said to be “unbalanced” over time. That is, the term “unbalanced

data” refers to repeated measurements that are not obtained at a common set of occasions.

This is a frequent occurrence when the longitudinal study involves retrospectively collected

data (e.g., longitudinal data collected from medical record databases).

Missing data is another common challenge that is often tackled by those leading a

longitudinal study. Indeed, missing data are the rule, not the exception, in longitudinal

studies in the health sciences. This takes into consideration that not always will subjects
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complete the study, or show up for all scheduled visits. When some observations are

missing, the data are inherently unbalanced over time, given that not all individuals have

the same number of repeated measurements, obtained at a common set of occasions.

However, in order to distinguish missing data from any other kind of unbalanced data, we

refer to it as being “incomplete.” This distinction can be of value, as it emphasizes the fact

that an intended measurement on a subject could not be obtained.

A consequence of missing and/or unbalanced data is that additional attention is

required in order to recover within-individual change. These ramifications for the analysis

of longitudinal data that are incomplete go beyond whether a statistical method is

sufficient to handle unbalanced longitudinal data. Anytime there is a case with incomplete

data, some loss of information entails. Thus, there is a price to be paid in terms of

efficiency or the precision with which changes over time can be estimated.

Besides causing inefficiency, it can also be seen that in some circumstances, missing

data can introduce bias in the estimates of change. As longitudinal data in health sciences

are rarely balanced and complete, they require examining them with closer detail. There

currently exists methods used to quantify and assess the extent of irregularity that are

demonstrated by Lokku et al. [11].

Another fundamental feature that is apparent in the statistical analysis on repeated

measures on the same individual in a longitudinal design is that they usually are positively

correlated. Correlated observations are a positive feature which can be advantageously
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used, because they provide more precise estimates of the rate of change than one that is

obtained from an equal number of independent observations of different individuals.

However, it is important to note that a longitudinal design violates a fundamental

assumption of independence between observations, the cornerstone to many standard

regression techniques. More will be discussed on how a longitudinal design can combat this.

2.3 Notation

Let Yij denote the response variable for individual i ∈ {1, . . . , N} at occasion j ∈ {1, . . . , n}.

If the repeated measures on the subjects are assumed to be equally separated in time, this

notation will hold. A more precise notation will be used in order to illustrate the different

number of repeated occasions by each individual i, namely ni. Just for simplicity, assume that

the notation presented in this section will be expressed using an equal number of repeated

measurements, with the same time occasions. Given that we have n repeated measures of the

response variable on the same subject, we can now express it as an n × 1 (column) response

vector, denoted by Yi = (Yi1, . . . , Yin)⊤, where ⊤ denotes transposition.

The mean response is the primary focus in the analysis of longitudinal data [7], and in

particular the changes that occur in the mean response over n measurement occasions. For

each i ∈ {1, . . . , N}, we will denote the mean or expectation of each response by

µi = E(Yi1 + · · · + Yin)/n.
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Additionally, in many longitudinal studies the main goal is to not only study the mean

response change in time, but also its relation to the covariates over time. In order to allow

the mean response and, in particular, the changes in the mean response, to vary from subject

to subject as a function of individual-level covariates, we must make use of the double letter

subscripts, viz. µij = E(Yij).

Here, the expectation can be understood as a long-run average over a large sub-population

of subjects who share similar values of covariates at the jth occasion. The quantity µij is

often referred to as the conditional mean response at the jth occasion. This notation allows

change over time in the mean response, denoted by the dependence of µij on the subscript j.

Additionally changes in the mean response can also be related to individual-level covariates,

denoted by the dependence of µij on the subscript i.

Next, we can consider the correlation or dependence among the n repeated measures

on the same subject. It is important to highlight that in a longitudinal analysis setting,

a fundamental assumption from standard regression techniques is violated. That is, in a

longitudinal analysis we experience a positive feature of correlation among the n repeated

measures. In the setting where more than a single observation is obtained on the same

subject, the assumption of independent observations is simply not attainable.

This feature can be more easily described in the following way: the response of an

individual on one occasion is very likely to be predictive of the response on the same

individual taken at a future occasion. A simple example of this occurs when a subject who
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experiences a high LDL cholesterol level on one occasion will very likely again experience a

high LDL cholesterol level taken on the following occasion. That is, repeated measures on

the response for the same subject will result in past responses naturally being predictive of

future responses [7]. The dependence among the repeated measures on the same subject

can be characterized by their correlation, with a quantitative response variable of interest.

Correlated observations help provide a more precise estimate of the rate of change or the

effects of the covariates on the rate of change, than of that obtained from an equal number

of independent observations of different individuals. As mentioned, this is a positive

feature that can be used to our advantage when dealing with longitudinal data.

2.4 Dependence and Correlation

In order to simplify the discussion of dependence and correlation with a longitudinal setting,

let us consider a simple longitudinal design, one that is balanced and complete. That is,

one with n repeated measurements of the response variable, also made at a common set of

occasions on N individuals. If we denote the conditional mean of Yij by µij = E(Yij), then

the conditional variance of Yij is defined as

σ2
j = E{Yij − E(Yij)}2 = E(Yij − µij)2.



2. Basic Concepts 16

While µij provides a measure of the location of the centre of the distribution of Yij, the

conditional variance is used to provide a measure of the spread of the values of Yij around

their conditional mean. Note that we have implicitly assumed that the variance can vary

from occasion to occasion; this is illustrated by the use of a single-letter subscript, j. In

principle, the variance can also be allowed to depend on individual-level covariates, which

would then require the use of double subscripts [7].

Next we define a measure of the dependence among responses in a longitudinal study.

The conditional covariance between the responses taken at two different occasions, say Yij

and Yik, can be denoted by the following:

σjk = E{(Yij − µij)(Yik − µik)}.

The equation above is utilized to provide a measure of the linear dependence between the

two responses taken at both occasions j and k. The magnitude of the covariance depends not

only on the degree of dependence, but also on their units of measurement. If the researchers

were to make any changes in the measurement scales, then that would result in possibly

significant changes in the value of the covariance. In order to provide a measure of linear

dependence between Yij and Yik which is in some sense free of the variability resulting from

the measurement units, Pearson’s correlation is widely used.



2. Basic Concepts 17

The conditional correlation between Yij and Yik is denoted by

ρjk = E
{(

Yij − µij

σj

)(
Yik − µik

σk

)}
,

where σj and σk are the conditional standard deviations of Yij and Yik, respectively. Unlike

the covariance, the correlation is a measure of linear dependence that is free of any units

or scales of measurement [7]. As can easily be seen, this can be achieved by dividing each

variable by its own respective standard deviation.

With longitudinal data, it can be expected that repeated measures on the same

individuals are positively correlated. The n repeated measures that are collected on subject

i are collected into a (column) vector Yi = (Yi1, . . . , Yin)⊤. We can then define the

variance-covariance matrix to be the following two-dimensional array of conditional

variances and covariances, viz.

cov



Yi1

Yi2

...

Yin


=



var(Yi1) cov(Yi1, Yi2) · · · cov(Yi1, Yin)

cov(Yi2, Yi1) var(Yi2) · · · cov(Yi2, Yin)
... ... ... ...

cov(Yin, Yi1) cov(Yin, Yi2) · · · var(Yin)


,

where cov(Yij, Yik) = σjk. Note that here we have implicitly assumed that the variances and

covariances are constant across individuals.
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Note that we often refer to the variance-covariance matrix of Yi as the covariance matrix

of Yi or simply cov(Yi). Thus it can be shown that

cov(Yi) =



σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

... ... ... ...

σn1 σn2 · · · σ2
n


.

It is now convenient to define the correlation matrix, corr(Yi), in terms of a similar

two-dimensional array, viz.

corr(Yi) =



1 ρ12 · · · ρ1n

ρ21 1 · · · ρ2n

... ... ... ...

ρn1 ρn2 · · · 1


.

We can see a defining feature in both the correlation and covariance matrix mentioned

above: it is that both of them display matrices that are symmetric. For example, examining

the correlation matrix, it can be seen that

corr(Yij, Yik) = ρjk = ρkj = corr(Yik, Yij).
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Let it be noted also that the diagonal elements in the correlation matrix are all equal to

1, because they denote the correlation of a variable with itself.

With longitudinal data, the usual assumptions for standard regression do not hold.

More specifically, repeated observations on the same subject are not independent and, more

importantly, the variance is not usually constant over the study period. Longitudinal data

analysis will consider the heterogeneity of variance over time by allowing the elements on

the main diagonal of the covariance matrix to differ. The lack of independence among the

repeated measurements is accounted for by allowing the off-diagonal elements of the

covariance and correlation matrices to be non-zero.

2.5 Sources of Correlation in Longitudinal Data

It is worth it to pause and wonder why longitudinal data are usually positively correlated.

Many of the practical experiences gained from longitudinal data, arising from the biological

and health sciences, have led to the following empirical observations about the nature of

correlation among repeated measures on the same individual:

1. the correlations are positive;

2. the correlations often decrease with increasing time separation;

3. correlations between repeated measures rarely approach 0 (even in cases where they

are taken many years apart);



2. Basic Concepts 20

4. the correlation between a pair of repeated measures taken very closely together in time,

rarely approaches 1.

The aforementioned empirical observations have led researchers [7] to identify potentially

three sources of variability that can influence the correlation among repeated measures on

the same individual, namely

a) between-individual heterogeneity;

b) within-individual biological variation;

c) measurement error.

In fact, citing from Garcia and Marder [8]:

“ignoring the different sources of correlation in longitudinal studies has severe

consequences: higher false positive rates and invalid confidence intervals from

underestimated standard errors.”

Thus it is critical to consider the different sources of correlation that exists in each unique

study, respectively.

2.5.1 Between-Individual Heterogeneity

It can be seen in any longitudinal study that some individuals have the propensity to

consistently respond higher than the average, while others may consistently respond below
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average. Therefore, one of the sources of a positive correlation in longitudinal studies is the

heterogeneity or variability in the response variable that is seen between individuals in the

population. Simply put, each individual’s underlying propensity to respond — whether it

be “high,” “medium,” or “low” and whether it be due to genetic, environmental, social, or

behavioral factors (or some combination of those factors) — is still shared by all of the

repeated measurements taken from the same individual.

In other words, it can be expected that a pair of repeated measures from one individual

will be more similar than single observations obtained from two randomly selected

individuals. This is one reason supporting the intuition of a positive correlation among

repeated measures.

There can also be heterogeneity among individuals in their response trajectories over time.

For example, when considering a longitudinal design, given a treatment or intervention that

should lead to an “improvement” or “increase” in the response variable, different individuals

show different levels of responsiveness, resulting in invariably different gains over time.

Changes in the response over time as a result of a treatment or intervention is not

expected to be uniform across all individuals. Therefore, an important source of variability in

longitudinal data, which has direct impact on the correlation among the repeated measures,

is the between-subject variation in the response.
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2.5.2 Within-Individual Biological Variation

Another source of variability that has an impact on correlation among repeated

longitudinal responses is the within-individual biological differences. More specifically, the

inherent biological variability of many health outcomes is a very important source of the

variability on the correlation measures. These fluctuations may be due to many possible

health related changes in a subject’s life. For example, an individual’s diet or perhaps

circadian rhythm can cause fluctuations. This variability is sometimes referred to as the

inherent within-individual biological variability.

The underlying idea is to notice that there may exist some underlying biological processes

(or some combination of them) that causes changes through time in a relatively smooth and

continuous fashion. This will result in random deviations from an individual’s underlying

response trajectory, which are likely to be more similar, especially when the measurements are

obtained in close proximity with respect to time [7]. Moreover, consistent random deviations

cannot be assumed to be independent.

To better grasp this notion of within-individual biological variation, consider the

following example. If a subject were to have their blood pressure measured repeatedly at

30-minute intervals, the corresponding adjacent measurements will be more highly

correlated than if the measurements were to be taken weeks apart. Similarly, if an

individual were to record their weight on a daily versus weekly basis, the resulting

outcomes that are recorded daily will also be more highly correlated. This will result in the
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correlation matrix having a distinctive structure, such that the correlation is decreasing as

the time separation between the repeated measurement occasions increases. Therefore,

inherent within-individual biological variability in the response variable over time may

result in the aforementioned unique correlation structure.

2.5.3 Measurement Error

The last source of variability that is found among longitudinal data is random measurement

error. For some common health outcomes, such as height and weight, the variation due

to measurement error can almost be ignored from the analysis. However, for many other

outcomes, the variability as a result of measurement error can result in substantial effects.

Measurement error is an unavoidable component that exists across all studies, even if they

are not longitudinal. Thus a coefficient of reliability has been utilized as a way to express the

precision of the measurement procedure. A study was completed by van Smeden et al. [17],

in which the authors debunk common myths in epidemiology studies on the prevalence of

measurement error on the study. They demonstrated that it is invariant to a large sample

size and that measurement error can still occur, regardless of sample size. Furthermore, they

also demonstrated that measurement error can affect all types of epidemiological research.

Thus measurement error is inevitable and cannot simply be dismissed.

Our understanding of reliability, in the statistics community, refers to the extent to which

replicate measurements, taken under similar conditions, are similar. Given that most of the
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responses in a resulting longitudinal study will contain measurement error, a question that

arises is the potential impact of the measurement error on the analysis. In general, the effect

of unreliability is to “attenuate” or shrink the correlation among the repeated measures

towards zero.

As an example, if a measure on the response variable is known to contain measurement

error and has a reliability of 0.8 in the population of interest, then we must attenuate the

correlation among any pair of repeated measures by a factor of 0.8. Therefore, the larger

the variance of the measurement errors, the greater the attenuation of the correlation among

repeated measures. Clearly, measurement error has an impact on our overall analysis of

longitudinal data.

2.5.4 A Final Note

Earlier in Section 2.5, four empirical observations were listed about the correlation among

repeated measures in a longitudinal design. Now we can consider how the three

aforementioned sources of variability in a longitudinal study can account for the four

empirical observations made within many health studies.

First, it was noted that in longitudinal studies, we may experience positive correlations

among the repeated measures. Both between- and within-individual biological variation in

the response over time result in the positive correlations among repeated measures. The

two aforementioned sources of variability behave in conjunction, in order to induce positive
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correlation among the repeated measures. It was also noted that as time separation between

measurements increases, the correlation tends to decrease. This also is a direct consequence

of the inherent within-individual biological variation and/or between individual heterogeneity

of response trajectories over time.

The third empirical observation was that the correlations between repeated measures

rarely approach zero, even if taken many years apart. This is a direct consequence of between-

subject heterogeneity in their underlying propensity to respond.

Our last observation is to the effect that the correlation between a pair of repeated

measurements rarely approaches 1, even if taken very closely in time [7]. This final

observation results directly from the presence of measurement error. In other words,

regardless of how close the measurement occasions are, the correlation between any pair of

repeated measurements is constrained by the reliability of the measurement procedure.

Therefore, understanding the correlation between observations, and where their natural

sources of variability stem from, is useful in considering a longitudinal design.
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Chapter 3

Modeling the Mean:

Analyzing Response Profiles

3.1 Linear Models for Longitudinal Data

It is convenient to group the ni repeated measures of the response variable for individual i ∈

{1, . . . , N} into an ni×1 (column) vector, viz. Yi = (Yi1, . . . , Yini
)⊤. The vectors Y1, . . . , YN of

responses for the N subjects are assumed to be mutually independent. Associated with each

response, Yij, there is a p×1 vector of covariates, more formally given, for each i ∈ {1, . . . , N}

and j ∈ {1, . . . , ni}, by Xij = (Xij1 , . . . , Xijp)⊤. That is, Xi1 is a p×1 vector whose elements

are the predictors value associated with the response variable for the ith subject at the first

measurement occasion. Similarly, Xi2 is a p × 1 vector whose elements are the predictors
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value associated with the response variable for the ith subject at the second measurement

occasion, and so on [7].

Until now, it has been assumed that each individual in the study will have a vector, Yi,

of repeated responses and that associated with each repeated measure, there is a vector of

p predictors. For convenience of notation, we can group together the vector of p covariates

into a matrix Xi. Now we can consider a linear regression model in order to analyze the

changes in the response over time and then further relate the changes to the predictors of

interest in the study.

Consider the regression model defined, for all i ∈ {1, . . . , N} and j ∈ {1, . . . , ni}, by

Yij = β1Xij1 + · · · + βpXijp + ϵij,

in which β1, . . . , βp are considered to be unknown regression coefficients relating the mean

of Yij to its corresponding predictors.

This can then be further broken down into ni separate regression equations for the

response, viz.

Yi1 = β1Xi11 + · · · + βpXi1p + ϵi1 = X⊤
i1β + ϵi1,

...

Yini
= β1Xini1 + · · · + βpXinip + ϵini

= X⊤
ini

β + ϵini
.
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Here, we are considering ϵij to be random errors with a zero mean, used to represent the

deviations of the responses from their predicted means. Thus until now, there have been

no further assumptions, other than observing the patterns of change in the mean response

and finding ways to relate that to our predictors. Finally, using vector matrix notation, the

regression model that has been developed until now is given by

Yi = Xiβ + ϵi,

where for each i ∈ {1, . . . , N}, ϵi = (ϵi1, . . . , ϵin)⊤ is an ni ×1 vector of random errors that are

associated with the corresponding elements of the responses with respect to the ith subject.

In turn, we can see that the response vector is comprised of two key components. First

exists the “systematic component Xiβ,” and second exists the “random component ϵi.” Thus

any assumptions that are made on the shape of the random errors will then translate into

assumptions about the shape of the conditional distribution of Yi given Xi. The vector of

continuous responses is assumed to have a conditional multivariate Gaussian distribution

with mean response vector

E(Yi | Xi) = µi = Xiβ

and covariance given by Σi = cov(Yi | Xi).

This looks very familiar to the traditional regression settings that are conventionally

used. However, recall that while observations from different individuals are assumed to be
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independent of one another, we cannot make the same assumption on repeated measurements

on the same individual. This lack of independence is captured by the off-diagonal elements in

the covariance matrix. It is understood that any departure from independence of observations

or assumption of constant variance of the errors can have a major impact on the analysis

of a linear regression problem [7]. However, in longitudinal data analysis there are very

similar results which suggest that it is the assumptions about dependence among the errors

and, ultimately, assumptions about the variances and covariances that will have the greatest

impact on statistical inference.

3.2 Modeling the Mean

When modeling the mean of a vector of longitudinal responses, there are two main approaches

to be considered. They are described below.

1. Analysis of Response Profiles (ARP)

a) This approach allows for arbitrary patterns in the mean response over time (more

“within” flexibility).

b) There is no specific time trend that is assumed.

c) The times of measurement are regarded as levels of a discrete factor.

d) This approach is most favorable when all individuals are measured at a common

set of occasions, and usually the number of occasions is very small.
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2. Parametric or Semi-Parametric Curves

a) This approach assumes a parametric curve (e.g., linear or quadratic trend) for the

mean response over time.

b) It can reduce the number of parameters within the model.

c) Parametric curves describe the mean responses as an explicit function of time.

This notion contains the fact that time can be adjusted for as a covariate either

as a discrete or continuous factor. Thus, in contrast to ARP, there is no necessity

to require that all individuals in the study have a common set of measurement

occasions, nor even the same number of repeated measurements.

Recall that one of the key features of longitudinal data is that repeated measures are

obtained on the same subjects over time, and those resulting responses on that same

individual are considered to be correlated. In order to yield valid inferences from

longitudinal data, it is prudent to properly account for the covariance among repeated

measures. Additionally, modeling the covariance carefully and correctly is often a

requirement for obtaining valid estimates of the regression parameters, especially when

there are missing data. In general, there are three broad approaches to modeling the

covariance among repeated measures:

a) unstructured covariance;

b) covariance pattern models;
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c) random-effect covariance structures.

3.2.1 Maximum Likelihood for Correlated Responses

We assume that the model being presented can be expressed in terms of a general linear

regression model for the mean response vector, E(Yi | Xi) = Xiβ, where its response vector,

Yi, is assumed to have a conditional distribution that is multivariate Gaussian, with

covariance matrix cov(Yi | Xi) = Σi = Σi(θ), where θ is a q × 1 vector of covariance

parameters.

More specifically, with balanced data (i.e., n1 = · · · = nN = n), where an

“unstructured” covariance matrix has been assumed, the elements of θ are the n variances,

and n(n − 1)/2 pairwise covariances. When there are ni repeated measures on the same

individual i ∈ {1, . . . , N}, we cannot simply make an assumption that these repeated

measures are independent.

Next, consider the joint probability density function for the vector of repeated measures.

In order to obtain a maximum likelihood estimation of β, it is first assumed that Σi or θ is

known. To obtain the Maximum Likelihood (ML) estimate of β, we must find the value that

will maximize the log-likelihood function. Given that Yi is assumed to have a conditional

distribution that is multivariate Gaussian, we will maximize the following log-likelihood

ℓ = −k

2 ln(2π) − 1
2

N∑
i=1

ln |Σi| − 1
2

{ N∑
i=1

(yi − Xiβ)⊤Σ−1
i (yi − Xiβ)

}
,
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where k = n1 + · · · + nN , which represents the total number of observations. Therefore, the

estimator of β that will minimize the above expression, which is also known as the generalized

least squares estimator (GLS), can be expressed as

β̂ =
( N∑

i=1
X⊤

i Σ−1
i Xi

)−1 N∑
i=1

X⊤
i Σ−1

i yi.

The initial assumptions that were imposed on Σi and θ are unrealistic and now we must

consider how we can loosen those assumptions, within our setting of longitudinal data [7].

First, it is important to highlight a few key properties of the GLS estimate of β. Most

notably, any choice of Σi will result in an unbiased estimate of β when taking into

consideration a correct mean specification. Also, in large samples, the sampling

distribution of β̂ can be shown to be multivariate Gaussian, with mean β and covariance

cov(β̂) =
N∑

i=1
X⊤

i Σ−1
i Xi.

Here, it is understood that by “large sample” is meant that the sample size, N , grows larger

while the number of repeated measures and model parameters stay fixed.

Moreover, although it can be shown that the GLS estimator of β is unbiased for any

choice of Σi, it can also be shown that the most efficient GLS estimator of β is in fact the

one that uses the true value of Σi. However, in practice Σi(θ) is typically estimated from the

data at hand. It is also important to note that maximum likelihood estimates of θ proceed
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similarly as β. Once the maximum likelihood estimate of θ has been obtained, then we

can simply substitute the estimate Σi(θ), say Σ̂i = Σi(θ), into the generalized least squares

estimator, resulting in

β̂ =
( N∑

i=1
X⊤

i Σ̂−1
i Xi

)−1 N∑
i=1

X⊤
i Σ̂−1

i yi.

The latter estimate of β, using the ML estimate of Σi, surprisingly has the same properties

as when Σi is actually known. This suggests that in large samples, β̂ is a consistent estimator

of β. Furthermore, if the distribution of the errors, ei is assumed to be normal, or even based

on further loosened assumptions, such as ei follows a symmetric distribution, then β̂ is also

an unbiased estimator of β. Secondly, the sampling distribution of β̂ , when the ML estimate

of Σi is used, will be approximately multivariate normal with a mean β and covariance of

cov(β̂) =
( N∑

i=1
X⊤

i Σ−1Xi

)−1
.

This extends one step further, such that the properties of β̂ hold in large samples, even when

the assumption of Yi following a multivariate normal is not satisfied, provided that the data

are complete.

In conclusion, there is no apparent penalty with respect to the sampling distribution of

β̂ from needing to estimate Σi from the longitudinal data at hand. A very important note

to bear in mind, is that this is a large-sample property of β̂, such that as N → ∞. Due to

the limitations of the magnitude of data that can be collected during a typical longitudinal
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study, we can expect the properties of the sampling distribution of β̂ to be adversely affected.

An alternative approach to maximum likelihood estimation, known as Restricted

Maximum Likelihood estimation (REML), is a valid approach. REML is an approach to be

considered, since the maximum likelihood estimation of Σi has a well-known bias in finite

samples, such as underestimating the diagonal values of Σi. The objective in REML

estimation is to separate the data that are being used for estimation of Σi from those used

for estimation of β. This will result in the REML estimator to be less seriously biased than

the ML estimate of Σi. However, it should be understood that as the sample size, N , gets

substantially larger than p (the dimension of β), the difference between the ML and REML

estimation becomes less noticeable.

3.3 Modeling the Mean: Analysis of Response Profiles

Analysis of response profiles is a method used to model the patterns in the mean response

over time. This method imposes a minimal structure or restriction on the mean responses

over time on the covariance among the repeated measures. The analysis of response profiles

is mainly used in applications where the longitudinal design is balanced, and also having a

common set of measurements that were obtained among the subjects. The main objective

of analysis of response profiles is to be able to characterize the mean change in the response

over time in the groups. Furthermore, analysis of response profiles is also used to determine

if the shapes of the mean response profiles differ among groups (i.e., treatment vs placebo).
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Next it is important to understand the consequences of longitudinal data hypotheses

concerning response profiles. Given a sequence of n repeated measurements on a distinct

number of groups of subjects, there are three main questions regarding response profiles that

can be further investigated [7]. They are as follows.

1. Are the mean responses between the groups similar, i.e., are the mean response profiles

parallel also between the groups ?

• This is a question that is concerned with group × time interaction effect.

2. Assuming that the population mean response profiles are parallel, are the means

constant over time, in the sense that the mean response profiles are flat?

• This is a question that is concerned with the time effect.

3. Assuming that the population mean response profiles are parallel, do the mean response

profiles for the groups coincide?

• This is a question that is concerned with the group effect.

3.3.1 Example of Analysis of Response Profiles

Next we can consider how to implement the analysis of response profiles in the general linear

model specified, for each i ∈ {1, . . . , N}, by

E(Yi | Xi) = µi = Xiβ
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for appropriate choices of Xi. Consider the following example, where there exist two groups,

a treatment and a placebo, and they are measured at three occasions. Let n be the number of

repeated measures and N to be the total number of subjects. The model for this longitudinal

design with G = 2 groups and n = 3 measurement occasions will require G × n parameters

for the G mean response profiles.

Group 1 2 3

Treatment (t) µ1(t) µ2(t) µ3(t)

Placebo (p) µ1(p) µ2(p) µ3(p)

For the first group (Treatment group), let the design matrix be

Xi =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


.

Then for the second group (Placebo), let the design matrix be

Xi =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.
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Then in terms of the model E(Yi | Xi) = µi = Xiβ, where β = (β1, . . . , β6)⊤, this can

then be further categorized between the two groups, as follows:

Treatment:

µ(T ) =



µ1(t)

µ2(t)

µ3(t)


=



β1

β2

β3


.

Placebo:

µ(P ) =



µ1(p)

µ2(p)

µ3(p)


=



β4

β5

β6


.

As a result, the hypotheses about the change in mean response profiles in the two

groups had been previously expressed in terms of µ, but can now be re-expressed in terms

of hypotheses with respect to the components of β. More specifically as an illustration, if

we are looking to test the hypothesis of no group × time interaction effect, it can be

expressed as

H0 : β1 − β4 = β2 − β5 = β3 − β6.

When we fail to reject the hypothesis of parallel response profiles, it is common to further

investigate the hypotheses concerning the main effects of time/group. This is dependent on

the relevance of the design of the study when initially starting.
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Suppose that the analysis of response profiles can be expressed in terms of the linear

model, where β is a p × 1 vector of regression coefficients (with p = G × n). Furthermore,

once the covariance of Yi has been determined, estimates of the group × time interaction, and

the main effects of time and group are then possible to find, using the maximum likelihood

estimation of β.

In the analysis of response profiles, the covariance of Yi is generally assumed to be

unstructured with little to no constraints on the n(n + 1)/2 covariance parameters. A

condition to consider is that the covariance matrix must yield a symmetric matrix that is

positive definite. While the repeated measures can be highly correlated, there must be no

redundancy. The condition further ensures that no linear combination of the responses can

have a negative variance. Given REML (Restricted Maximum Likelihood) or ML

(Maximum Likelihood) estimates of β, and their standard errors, the test of group × time

interaction and the main effects can be simply carried out using multivariate Wald tests.

In conclusion, it is fair to state that the analysis of response profiles is a conceptually

straightforward way to analyze data. However, it does require for the longitudinal study to

be balanced, and the timing of the repeated measurements to remain common among all

subjects, for it to remain straightforward. This is certainly a limitation to many applied

health and medical studies. The main feature of analysis of response profiles is that it

allows for arbitrary patterns on the mean response over time, and arbitrary patterns in the

covariance over time. This results in this method having a certain amount of robustness,
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due to the fact that the potential risks of bias due to misspecification of the models of the

mean and covariance are minimal.

There also exist important drawbacks to consider about the use of analysis of response

profiles in a longitudinal design, especially when it is not balanced. In particular, the analysis

of response profiles ignores the time ordering of the repeated measures taken on the subjects

[7]. Moreover, in the analysis of response profiles, the number of estimated parameters (G×n

mean parameters, and n(n + 1)/2 covariance parameters) will grow rapidly with respect to

the number, n, of measurement occasions. Consequently, it is not hard to see why this

method may be preferred only in special settings, more specifically those where the total

number of subjects, N , is relatively large in comparison to the number, n, of measurement

occasions.

3.4 Modeling the Mean: Parametric Curves

In our previous approach of modeling the mean in a longitudinal design, analysis of response

profiles was effectively imposing no structure on the underlying mean response trend over

time. There are two major drawbacks that limit the usefulness of using analysis of response

profiles within a longitudinal design. The first is that a statistical test of the null hypothesis

of no Group × Time interaction is a global test and cannot really produce insightful results,

but rather only a broad assessment of whether the mean response profiles are the same

between the different groups.
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Consider the following situation, where there are two groups (treatment vs placebo) and

the subjects are all measured at a common set of measurements. For each i ∈ {1, . . . , N}

and j ∈ {1, . . . , ni}, let

E(Yij) = β1 + β2Timeij + β3Groupi + β4Groupi × Timeij,

where

Groupi =


1 if i ∈ treatment,

0 if i ∈ placebo.

Then, the null and alternative hypotheses can be expressed as H0 : β4 = 0 vs H1 : β4 ̸= 0.

If H0 is rejected, we are still left unable to indicate the specific ways in which the mean

responses differ between the placebo and treatment. This will result in further analysis.

The second drawback that limits the usefulness of analysis of response profiles is that it

completely ignores the time-ordering of the repeated measurements [7]. The use of analysis

of response profiles is unable to detect that the repeated measurements can be considered

as observations of some continuous, underlying response process over time.

Therefore, the analysis of response profiles uses a saturated model for the mean response

over time, which results in a fit that is almost perfect, thereby not allowing the method to

describe the most noteworthy aspect of the changes of the mean response over time. This

would in turn make prediction not possible to be obtained. More specifically, in terms of
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some pattern that can be described or explained in some substantive or theoretical manner.

In contrast, when introducing the use of fitting parametric or semi-parametric curves to

longitudinal data, it can certainly be justified both on statistical and substantive grounds.

Naturally in many application of longitudinal studies, one can observe that the true

underlying mean response process is likely to change over time in a relatively smooth,

monotonically increasing or decreasing pattern, at least during the duration of the study

itself. We can see that from a statistical perspective, the fitting of a parsimonious model

for the mean response can result in statistical tests of covariate effects (e.g., treatment ×

time interactions) that have proved to have a greater power than seen in analysis of

response profiles.

3.4.1 Polynomial Trends in Time

This approach is useful to model the means as an explicit function of time. It is also useful

to handle highly unbalanced designs in a relatively simply manner. In this model, the slope

for time can have a direct interpretation, in terms of a constant change in the mean response

over time for a single unit of change.

Once again, consider the hypothetical two-group study comparing a novel treatment and

a control (i.e., placebo). We can adopt the following linear trend model if the mean response
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changes are in an approximately linear fashion, viz.

E(Yij) = β1 + β2Timeij + β3Groupi + β4Groupi × Timeij,

where

✓ Groupi = 1 if the ith individual was assigned to treatment;

✓ Groupi = 0, if the ith individual was assigned otherwise (in control/placebo group);

✓ Timeij denotes the measurement time for the jth measurement, on the ith individual.

Groupi requires a single index since any given subject does not change treatment groups

over the duration of the study. Also, it is useful to note the use of two indices for Timeij,

because we are implicitly allowing for the fact that there may exist mistimed measurements

(i.e., Timeij ̸= Timei′j, where i and i′ denote two different subjects). Furthermore, the model

for the mean for subjects assigned to the control group (Groupi = 0) can be expressed as

E(Yij) = β1 + β2Timeij.

Additionally, the model for the mean for subjects assigned to the novel treatment group

can be expressed as (Groupi = 1), viz.

E(Yij) = (β1 + β3) + (β2 + β4) Timeij.
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Thus each group’s mean response is assumed to change linearly over time. The parameter

estimates have the following interpretations:

✓ β1 is the intercept in the control group (“reference group”), while β1+β3 is the intercept

within the treatment group. Both intercepts for each of the two respective groups have

similar interpretation in terms of the mean response when Timeij = 0. More generally,

β1 is interpreted as the mean response when all other covariates are set to zero.

✓ The slope of change in the mean response per unit change in time is β2 within the

control group, and β2 + β4 within the corresponding treatment group. The main

objective of a longitudinal design is typically concerned with a comparison of the

changes in the mean response over time; this can directly be translated into a

comparison of slopes. Thus if β4 = 0, then the two groups do not differ in terms of

changes in the mean response over time.

When changes in the mean response do not appear to be linear over time, it is possible to

take into consideration higher-order polynomial trends. In a quadratic trend model, changes

in mean response are not constant, as they were in a linear trend model over the period

of the study. Alternatively, the rate of change in the mean response for a quadratic trend

depends on time. More specifically, the rate of change in the mean response depends on

whether the focus is on changes that occur early or late in the study. This implies that the

rate of change must be expressed in terms of two parameters.
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Reconsider the hypothetical scenario with the two-group study comparing placebo and

treatment. Assuming that the changes in the mean response can be approximated by some

quadratic trends, one can formulate the model as

E(Yij) = β1 + β2Timeij + β3Time2
ij + β4Groupi

+ β5Groupi × Timeij + β6Groupi × Time2
ij.

The model for the mean for subjects assigned to the control group (Groupi = 0) can then

be expressed as

E(Yij) = β1 + β2Timeij + β3Time2
ij.

Additionally, the model for the mean for subjects assigned to the novel treatment group

(Groupi = 1) can be expressed as

E(Yij) = (β1 + β4) + (β2 + β5)Timeij + (β3 + β6)Time2
ij.

Depending on Timeij, the mean response changes at a different rate when considering

quadratic trend models. It is also important to consider that a quadratic trend will

experience a turning point where the trend changes, i.e., it can be from an increasing trend

over time to a decreasing trend over time or vice versa. When taking into consideration

higher-order polynomials trend models, there exists a natural hierarchy of effects that
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imposes few implications for testing hypotheses with regards to linear, quadratic, and

higher-ordered polynomial trends. More specifically, higher-ordered terms should be tested

before lower-ordered terms [7]. If found to be appropriate, the higher-ordered terms should

then be removed from the model.

3.4.2 Linear Splines

With the introduction of higher-order polynomials in time, there are many non-linearities

apparent within longitudinal data that can simply be accommodated for. However, it is

valuable to note that as the degree of the polynomial increases, we lose interpretability of our

regression coefficients. In some applications of longitudinal data, we can see that it is difficult

to model accurately the change in the mean response over time when only characterized by

first- or second-degree polynomials. This is most often the case in circumstances where the

mean response increases (or decreases) rapidly for some duration, and then more slowly

thereafter or vice versa. When this pattern of change is present, we can consider using linear

spline models instead.

Linear splines offer a very useful and flexible approach to modeling non-linear trends that

cannot be approximated by simple polynomials in time. The foundational idea behind linear

splines is quite simple. In fact, the time axis is divided into a series of segments; then for

each respective segment, consider a model for the trend over time. This leads to piece-wise

linear trends which may have different slopes but which are joined or tied together at fixed
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times. The locations in which the lines meet are also known as knots.

The advantage of this model is that it allows the mean response to increase or decrease as

time proceeds. Furthermore, the sign and magnitude of the regression slope can vary from

one segment to the next.

Once again, we return to the two-group hypothetical study between a treatment and

placebo group. If the mean response changes in a piece-wise linear way, we can fit the

following linear spline model with knot at t∗:

E(Yij) = β1 + β2Timeij + β3(Timeij − t∗)+ + β4Groupi

+ β5Groupi × Timeij + β6Groupi × (Timeij − t∗)+,

where x+ = max(x, 0), known as a truncated line function, is defined as a function that

equals x when x is positive and is equal to zero otherwise. Thus,

(Timeij − t∗)+ =


(Timeij − t∗) when Timeij > t∗,

0 when Timeij ≤ t∗.

So in this model, the means for the subjects in the placebo (control) group are

E(Yij) = β1 + β2Timeij + β3(Timeij − t∗)+,
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which can be further expressed in terms of the mean response prior to and after t∗, viz.

E(Yij) =


(β1 − β3t

∗) + (β2 + β3)Timeij when Timeij > t∗,

β1 + β2Timeij when Timeij ≤ t∗.

Thus, in the control group:

a) Slope prior to t∗: β2;

b) Slope after t∗: β2 + β3.

Similarly the means for the subjects in the treatment group can be given as follows:

E(Yij) = (β1 + β4) + (β2 + β5)Timeij + (β3 + β6)(Timeij − t∗)+.

Once again, when it is further expressed in terms of the mean response prior to and after

t∗, one gets [7]:

E(Yij) =


{(β1 + β4) − (β3 + β6)t∗} + (β2 + β3 + β5 + β6)Timeij when Timeij > t∗,

(β1 + β4) + (β2 + β5)Timeij when Timeij ≤ t∗.

Then in terms of group comparisons, the null hypothesis of no group differences in

patterns of change over time can be expressed as H0 : β5 = β6 = 0.
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Figure 3.1: Spline regression by group for Treatment (black) and Placebo (red) with knot
at Time = 0 for both groups

Comparisons of the groups before and after t∗ are also possible. In the aforementioned

example, we only considered the case of a single knot. However, further applications can be

extended to include more knots, joining the line segments. More generally, it is convenient

to consider that a spline model with k knots will produce k + 1 line segments with k + 1

corresponding slopes. Thus, it is possible to accommodate complex non-linear patterns for

the changes in the mean response by including a sufficient and effective number of variables

(Timeij − t∗)+, with knots located at t∗
k, for k ∈ {1, . . . , K}. However, in many longitudinal
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applications, the data can be sufficiently approximated by simple piece-wise linear models

with at most one or two knots that are located at precisely selected locations. Choosing such

locations for each respective knot is not always an easy task; it may require careful subject

matter expert input.

Through the use of both parametric and semi-parametric modeling, both polynomial

trends and spline models can be expressed in terms of the general linear regression model,

µi = Xiβ. Furthermore, once the covariance of Yi has been specified, the use of restricted

maximum likelihood estimation of β and the construction of confidence intervals and tests

of hypotheses can be achieved. Recall that in the use of analysis of response profiles, the

covariance of Yi is assumed to be unstructured with no constraints on the covariance

parameters, other than yielding a symmetric matrix and one that is positive-definite.

However, through the use of parametric or semi-parametric modeling, more parsimonious

models for the covariance can be considered. The use of parametric curves is most

appealing in circumstances where the longitudinal design is dealing with inherently

unbalanced data over time. In conclusion, given models for both the mean and covariance,

REML estimates of β, and their standard errors (based on the estimated covariance of β̂),

can be obtained.
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Chapter 4

Modeling the Covariance

The most defining feature of longitudinal data is that they are correlated. This further

demonstrates the level of importance behind appropriately modeling the covariance or the

time dependence between repeated measure obtained on the same subjects. If an appropriate

model is selected for the covariance, that may then lead to correct standard errors, valid

inferences about the regression parameters can be made. By accounting for this important

feature of longitudinal data, we can increase the precision in which the regression parameters

can be estimated. This is due to the fact, that positive correlation among repeated measures

reduces the variability of the estimate of change within the subjects. Furthermore, in settings

where there are missing data, correct modeling of the covariance is required in order to obtain

valid estimates and inferences.
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In longitudinal data, our primary objective is to model the conditional mean response

over time and the conditional covariance among repeated measures. Although we model

these two aspects separately, it is important to note that they are in fact interrelated. This

interdependence occurs because the vector of residuals (observed responses minus fitted

responses) depends on the specification of the model for the conditional mean. Therefore,

any misspecification of the model for the mean can potentially result in a different choice

when selecting to model the covariance. Accordingly, it is important to consider this

interdependence when developing a modeling strategy with longitudinal data.

Longitudinal data not only have the feature of being correlated, but in fact for the most

part they are also positively correlated. This is something that can be taken advantage of.

Consider a simple longitudinal design that is interested in the change in a particular health

measure that was obtained before and after receiving some health intervention. Since we

only have two repeated measurements, the analysis will be focused on the difference scores,

say Yi2 − Yi1, for each subject. Then the variability of the difference scores can be given by

var(Yi2 − Yi1) = var(Yi1) + var(Yi2) − 2 cov(Yi2, Yi1)

= σ2
1 + σ2

2 − 2σ12 = σ2
1 + σ2

2 − 2ρ12σ1σ2,

where ρ12 is the correlation among the pair of responses, Yi1 and Yi2.
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However, suppose that an alternate study was designed to assess the impact of this

particular health intervention. This time a cross-sectional design is adopted, where the

study participants are randomly assigned among two groups. One group will receive the

intervention, while the other is the control group receiving a placebo. The variance of the

difference between the responses of any two individuals, when one is randomly selected from

treatment and the other from the control group, is given by

var(Yi2 − Yi1) = var(Yi1) + var(Yi2) = σ2
1 + σ2

2.

Therefore, if the correlation is said to be positive among the repeated measures, then the

variability of the within-individual differences will always be smaller than the variability of

between-individual differences. Thus in a longitudinal design that consists of data that

exhibit a relatively strong positively correlated data, then the variability of the

within-individual differences can be substantially smaller than that for corresponding

between-individual differences. The covariance among repeated measures is not usually the

primary aspect behind modeling in a longitudinal design; however, it must not be

ignored [7]. Furthermore, the positive correlation in longitudinal data allows us to estimate

changes in the mean response, and their relations to the covariates, with much better

precision than if the data happened to be uncorrelated.
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4.1 Unstructured Covariance

In a setting where the study design only requires a relatively small number of measurement

occasions and all subjects are measured at a common set of occasions, it may be reasonable to

allow a covariance structure to be arbitrary, with all of its elements unconstrained. The only

requirement of the matrix that exists is that it is symmetric and positive definite. When

no explicit structure has been assumed for the covariance among repeated measures, the

resulting covariance matrix is referred to as “unstructured.”

With n measurement occasions, the unstructured covariance matrix has n(n + 1)/2

parameters, which is comprised of n variances at each occasion and the n(n − 1)/2 pairwise

covariances, viz.

cov(Yi) =



σ2
1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

... ... . . . ...

σn1 σn1 . . . σ2
n


. (4.1)

The advantage that lies in assuming an unstructured covariance model is that no

assumptions are needed to be made about the variances and covariances [7]. However, it is

easy to notice one of its potential drawbacks by observing equation (4.1). It is evident that

the number of covariance parameters to be estimated will grow rapidly with respect to the

number of measurement occasions. This then will further lead to unstable results in

estimation, especially when the number of covariance parameters that need to be estimated
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is large relative to the sample size.

Therefore, it can be seen that the setting best to use an unstructured covariance is

when N is relatively large compared to the number of covariance parameters, n(n + 1)/2.

Furthermore, an unstructured covariance structure is not favorable within a setting that

consists of mistimed measurements, or more generally measurements made at irregular

intervals. In conclusion, when the sample size is not large enough or the longitudinal data

is subject to irregular data, imposing some structure on the covariance may be favorable.

4.2 Covariance Pattern Models

There is a fine balance that is desired upon imposing structure on a covariance matrix.

Imposing too little structure on the covariance can result in weaker inferences concerning the

regression coefficients. When some structure is introduced and imposed on the covariance,

it is then possible to improve estimation efforts of the regression coefficients, β. However,

finding the balance is key, since imposing too much structure may lead to a potential risk of

model misspecification. This could ultimately result in misleading inferences concerning β.

This is the classic trade-off between bias and precision when modeling a covariance.

Structure can be developed into the covariance by adopting a covariance pattern model.

Covariance pattern models were originally developed for time series data. Many of the models

for time series data result in relatively parsimonious models for the covariance that can also

be used in longitudinal studies. Below, we will describe the most widely used covariance
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pattern models for longitudinal data.

4.2.1 Compound Symmetry

Historically this is one of the first covariance pattern models used for analysis of correlated

measurements. A compound symmetry covariance structure assumes that the variance is

constant across occasions, say σ2 and corr(Yij, Yik) = ρ, for all j and k. That is,

cov(Yi) = σ2



1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ

... ... ... . . . ...

ρ ρ ρ . . . 1



with the constraint that ρ ≥ 0. A compound symmetry covariance is very parsimonious,

with only two parameters regardless of the number, n, of measurement occasions. However,

it is important to notice that it makes a strong assumption, that the correlation between

any pair of measurements is the same regardless of the time interval between the

measurement occasions [7]. This is an unappealing feature in longitudinal data, given that

with increasing time separation between measurement occasions the correlations are

expected to decay. Furthermore, it is unrealistic to assume constant variance across time in

many longitudinal applications.
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Interestingly, the compound symmetry covariance can also be considered as a random

effects model. The theoretical justification is as a result of the mean response being thought

to depend on a combination of both population parameters, β and also a single individual-

specific random effect, bi, viz.

Yij = X⊤
ij β + bi + ϵij,

where bi is considered a random effect and ϵij is a within-individual measurement error.

Thus averaged over the random effect, this will create a compound symmetry structure on

the covariance matrix such that ρ ≥ 0; for details, refer to [7].

4.2.2 Toeplitz

The Toeplitz covariance pattern makes the assumption that any pair of responses that are

equally separated in time have the same correlation. In a longitudinal design when the

covariance matrix takes on the Toeplitz form, it is assumed that the variance is constant

across occasions, say σ2, and corr(Yij, Yik) = ρk, for all j and k. That is,
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cov(Yi) = σ2



1 ρ1 ρ2 . . . ρn−1

ρ1 1 ρ1 . . . ρn−2

ρ2 ρ1 1 . . . ρn−3

... ... ... . . . ...

ρn−1 ρn−2 ρn−3 . . . 1



.

The Toeplitz structure assumes that the correlation among responses taken on adjacent

occasions is constant, ρ1. This suggests that a Toeplitz form should only be considered

within a setting that consists of measurement occasions being taken at equal intervals of

time [7]. Finally, we note that the Toeplitz covariance has n parameters (one variance

parameter, and n − 1 correlation parameters). A special case of the Toeplitz structure is the

(first-order) autoregressive covariance.

4.2.3 Autoregressive

The autoregressive model for the covariance assumes that the variance is constant across

occasions, say σ2 and corr(Yij, Yik) = ρk, for all j and k, and for any ρ ≥ 0. That is,
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cov(Yi) = σ2



1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

ρ2 ρ 1 . . . ρn−3

... ... ... . . . ...

ρn−1 ρn−2 ρn−3 . . . 1



.

The autoregressive covariance is also very parsimonious and only has two parameters,

regardless of the number of measurement occasions, unlike the Toeplitz form. The

autoregressive model for the covariance has a Toeplitz form. Once again, this form is only

desirable in settings where the measurement occasions are at equal intervals (or

approximately equal) of time. However, unlike the Toeplitz form, the autoregressive model

experiences a decline in the correlations over time, as separation between the pairs of

repeated measures increases.

In conclusion, the compound symmetry, Toeplitz, and autoregressive covariances all

assume that the variance is constant across occasions. However, this assumption can be

relaxed to further incorporate covariance pattern models with heterogeneous variances, i.e.,

var(Yij) = σ2
j ; see [7].

As an example, consider the following autoregressive covariance model with heterogeneous

variance, viz.
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cov(Yi) =



σ2
1 ρσ1σ2 ρ2σ1σ3 . . . ρn−1σ1σn

ρσ2σ1 σ2
2 ρσ2σ3 . . . ρn−2σ2σn

ρ2σ3σ1 ρσ3σ2 σ2
3 . . . ρn−3σ3σn

... ... ... . . . ...

ρn−1σnσ1 ρn−2σnσ2 ρn−3σnσ3 . . . σ2
n



.

Note that within the aforementioned example, there are n + 1 parameters (n variance

parameters, and one correlation parameter).

4.2.4 Banded

The banded covariance patterns make the assumption that the correlation is zero beyond

some specified interval. For example, a banded covariance pattern with a band size of 3 will

imply that corr(Yij, Yik) = 0 for k ≥ 3. In fact it is possible to apply a banded pattern to

any of the covariance models mentioned thus far. In general, banding makes quite a strong

assumption about how quickly the correlation decays to zero with some increasing time

separation between the measurement occasions. Through empirical observations made from

many longitudinal data applications, there have been very few instances in health sciences

where the correlation decays to zero, even in studies with lengthy follow-up periods.
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4.2.5 Exponential

In a longitudinal design where the measurement occasions are not equally spaced over time,

the formulation of the autoregressive covariance model can be generalized with the following

approach.

Let ti1, . . . , tin denote the observation times for the ith individual. Also assume that

the variance is constant across measurement occasions, say σ2 and corr(Yij, Yik) = ρ|tij−tik|,

for ρ ≥ 0. In other words, the correlation between any pair of repeated measurements

will decrease exponentially with the time separations between them. This can further be

re-expressed in the following way:

cov(Yij, Yik) = σ2ρ|tij−tik| = σ2 exp(−θ|tij − tik|),

where θ = − ln(ρ) or ρ = exp(−θ) for θ ≥ 0. A feature that must be considered about the

exponential covariance pattern model is that it assumes a correlation of 1 if measurements

are repeatedly made at the same occasion [7]. This is an unrealistic assumption, because

it is considering measurements to be made with no measurement error. Additionally, this

model considers the correlation to decay quite rapidly as the time separation between the

measurements increases. This is also an unappealing feature to many longitudinal designs.
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4.2.6 Hybrid Models

By combining the autoregressive and compound symmetry models, it is possible to overcome

a lot of the unappealing features of the models that have been discussed above. Consider a

model for the covariance in which

cov(Yi) = Σ1 + Σ2,

where

Σ1 = σ2
1



1 ρ1 ρ1 . . . ρ1

ρ1 1 ρ1 . . . ρ1

... ... ... . . . ...

ρ1 ρ1 ρ1 . . . 1


and

Σ2 = σ2
2



1 ρ
|ti1−ti2|
2 ρ

|ti1−ti3|
2 . . . ρ

|ti1−tin|
2

ρ
|ti2−ti1|
2 1 ρ

|ti2−ti3|
2 . . . ρ

|ti2−tin|
2

ρ
|ti3−ti1|
2 ρ

|ti3−ti2|
2 1 . . . ρ

|ti3−tin|
2

... ... ... . . . ...

ρ
|tin−ti1|
2 ρ

|tin−ti2|
2 ρ

|tin−ti3|
2 . . . 1



.

In this model, one has

var(Yij) = σ2
1 + σ2

2, cov(Yij, Yik) = ρ1σ
2
1 + ρ

|tij−tik|
2 σ2

2,
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and

corr(Yij, Yik) = ρ1σ
2
1 + ρ

|tij−tik|
2 σ2

2
σ2

1 + σ2
2

.

Finally, this implies that the correlation between a measure that has been replicated (taken

at same measurement occasion) on a subject is (ρ1σ
2
1 +σ2

2)/(σ2
1 +σ2

2). This measure is clearly

less than 1, when ρ1 < 1. Lastly as the time separation increases, the correlation no longer

will decay to zero, but will instead experience a minimum of ρ1σ
2
1/(σ2

1 + σ2
2); see [7].

As mentioned, compound symmetry is also considered as a random effects model, thus

in our hybrid model the same argument can be made with respect to Σ1. Re-writing the

compound symmetry covariance to have a random effects model, one gets

Σ1 =



σ2
b + σ2

ϵ σ2
b σ2

b . . . σ2
b

σ2
b σ2

b + σ2
ϵ σ2

b . . . σ2
b

σ2
b σ2

b σ2
b + σ2

ϵ . . . σ2
b

... ... ... . . . ...

σ2
b σ2

b σ2
b . . . σ2

b + σ2
ϵ



.

In conclusion, this new consideration of our hybrid model in which we are combining an

autoregressive and random effects compound symmetry models, can lead to a new

interpretation of the total variance. It can be decomposed into the sum of three sources of

variability captured in Yij, where σ2
2 is the autoregressive variance, σ2

b is the

subject-to-subject variability and lastly, σ2
ϵ the measurement error source of variability.
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4.3 Choosing a Covariance Model

Recall the choice of models for the mean and covariance are interdependent. This illustrates

the importance of following a sensible choice of models for both aspects of longitudinal

data. Confidence intervals and tests of hypotheses concerning the regression coefficients, β,

depend critically on the correct model being specified for the covariance. This will result in

us naturally looking to choose a suitable model for the covariance as our first step.

The choice of model for the covariance requires a “maximal” model for the mean that

will then minimize any potential misspecification of the model for the mean. The choice of a

maximal model in a longitudinal study where there is a balanced design and a small number

of discrete covariates (i.e., treatment assignment, exposure levels, or some characteristics

of the subjects) is relatively simply. This is due to the fact that it is possible to choose a

maximal model that includes the main effects of time (our within-subject factor), and all

other main effects, in addition to their two-way and higher-order interactions. However, in

a longitudinal study that has many covariates, in which some of them may be quantitative

rather than discrete, the choice of maximal model is somewhat less obvious. In this case,

it may not be realistic to consider a saturated model for the mean response. In summary,

there is no real clear blueprint to follow when choosing the maximal model, especially when

there are many covariates that can be included in the model. The maximal model for the

mean ideally consists of one that excludes higher-order interactions.
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Given a maximal model for the mean, a sequence of covariance pattern models can then

be fitted to the data at hand. The choice between the models will be made by comparing

the maximum likelihoods for each of the fitted covariance pattern models. When we obtain

any pair of models that are nested, we can utilize a likelihood ratio test statistic to compare

between the “Full” and “Reduced” model. Suppose two covariance models are said to be

nested, when the “reduced” model is a special case of our “Full model,” so that when we say

the reduced model holds, then it is necessary that the full model also holds.

The likelihood ratio test for the two nested covariance models can be constructed by

comparing the maximized REML log-likelihoods, say ℓ̂Full and ℓ̂Reduced, for the “Full” and

“Reduced” model, respectively. Note that the use of REML is preferred as an alternate to

maximum likelihood because it reduces the well-known finite-sample bias in the estimation

of the covariance. Then the likelihood test can be given as

G2 = 2
(
ℓ̂Full − ℓ̂Reduced

)
,

and comparing the statistic to percentiles of the χ2 distribution with degrees of freedom

∆Full−Reduced equal to the difference between the number of covariance parameters in the full

and the reduced model.

In general, likelihood ratio tests provide a valid method for comparing nested models for

the covariance [7]. However, in certain settings the likelihood ratio test may no longer be
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valid; this depends on the nature of the null hypothesis. This implies that testing a null

hypothesis that is “on the boundary of the parameter space,” which is equivalent to the null

hypothesis that the variance is zero, then the usual conditions for a likelihood ratio test no

longer hold.

A likelihood ratio test such that the null hypothesis is that a variance is zero is considered

to be on the boundary of the parameter space. Recall that this is due to the fact that

variances are bounded from zero to infinity. A consequence of this result is that the usual

null distribution for the likelihood ratio test is no longer valid. This is due to the fact that

the resulting null distribution for the likelihood ratio test is no longer χ2 with degrees of

freedom ∆Full−Reduced, but instead the null is a mixture of chi-squared distributions [7].

Therefore, when testing a null hypothesis that is on the boundary of the parameter space,

the usual null distribution will no longer hold, resulting in the selection of a model for the

covariance that is too parsimonious, if not approached cautiously.

Usually in longitudinal designs we are often more interested in comparing non-nested

models for the covariance. In order to achieve this, an alternate approach is the Akaike

Information Criterion (AIC). According to AIC, given a set of competing models for the

covariance, one should select the model that will minimize the following:

AIC = −2(maximized log-likelihood) + 2(number of parameters) = −2(ℓ̂ − c),
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where ℓ̂ is the maximized REML log-likelihood, and c is the number of covariance parameters.

Another criterion is the Bayesian Information Criterion (BIC). According to the BIC,

given a competing set of competing models for the covariance, one should select the model

that will minimize

BIC = −2(maximized log likelihood) + ln N∗(number of parameters)

= −2{ℓ̂ − ln(
√

N∗c)},

where N∗ is the number of subjects; see [7].

An illustration of using different methods for selecting the covariance structures for

ecological studies is presented by Barnett et al. [2]. Ecological data sets often use repeated

sampling in a longitudinal design. Thus, choosing the correct covariance structure is an

important step in the analysis of such data, as the covariance describes the degree of

similarity among the repeated observations. In particular, these authors utilized three

methods for choosing the covariance which were: the Akaike information criterion (AIC),

the quasi-information criterion (QIC), and the deviance information criterion (DIC).

The objective of this study was to determine the optimal criterion for model selection

in ecological data. It was demonstrated that the three information criteria of interest have

identical form and shared a common goal, to balance the model fit and complexity. It is

important to note that the number of parameters is fixed for AIC, based on the actual
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number of parameters. In contrast, for QIC and DIC an effective number of parameters was

estimated. In conclusion it was recommended to use DIC because it adjusts for correlated

parameters when using an unstructured covariance model.

In conclusion, we are able to see that the objective of correctly selecting our covariance

pattern model is an attempt to account for all potential sources of variability that impact

the covariance among obtained measurements on the same individual. Recall that some of

the covariance pattern models discussed are only appropriate when the repeated measures

are collected at equal intervals and cannot handle data subject to irregularity in the

measurements obtained between each individual, such as the Toeplitz, autoregressive, and

banded covariance pattern models.
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Chapter 5

Linear Mixed Effects Model

The underlying idea behind a linear mixed effects model is that some subset of the regression

parameters may vary from one individual to another. As a result, it is important to account

for the sources of natural heterogeneity in the population. Individuals in the population are

assumed to have their own subject-specific mean response trajectories over time. So now, in

linear mixed effects models a subset of the regression parameters are now being considered as

random. The mean response is then modeled as some combination of population parameters,

β, and subject-specific effects that are unique to that particular subject. The population

characteristics are regarded as being shared by all individuals within the study. In linear

mixed effects models, population characteristics are referred to as fixed effects, while subject-

specific effects are referred to as random effects. It is formally known as a linear mixed effects

model due to the fact that it will contain a mix of both fixed and random effects.
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The linear mixed effects model assumes that the responses will depend on a combination

of fixed and random effects. This will further lead to a model for the marginal mean,

expressed as E(Yi | Xi) = Xiβ. In turn, the introduction of random effects induces covariance

among the repeated measures and cov(Yi | Xi) = Σi will have a distinctive random effects

structure. The covariance structures in the previous sections cannot explicitly distinguish

between the sources of variability for between-subject and within-subject. Given that we

can distinguish between random and fixed effects in linear mixed models, one can then allow

the analysis of between-subject and within-subject sources of variation in the longitudinal

responses; see [7].

It is also possible to predict how individual response trajectories change over time, in

addition to modeling the mean response change. There are some very appealing features of

linear mixed effects models, one of which is their incredible flexibility in accommodating any

degree of unbalance within the dataset. In addition, they have the ability to account for the

covariance among the repeated measures in a relatively parsimonious manner.

The underlying idea of a linear mixed effects models is to inherently allow some subset of

the regression parameters to randomly vary from subject to subject. In the following model

composition of linear mixed effects, suppose that there are N individuals on whom we have

collected ni repeated measures with the response variable Yij measured at time tij. Thus the

longitudinal data can be unbalanced over time.
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As a result, using vector and matrix notation, the linear mixed effects model can be

expressed in the following way:

Yi = Xiβ + Zibi + ϵi, (5.1)

where

✓ β is a p × 1 vector of fixed effects,

✓ bi is a q × 1 vector of random effects,

✓ Xi is a ni × p matrix of covariates,

✓ Zi is a ni × q matrix of covariates, in which q ≤ p.

The matrix Zi of covariates is a known design matrix linking the vector bi of random

effects to Yi. Furthermore for many applications involving longitudinal data, it is possible

to see that the columns of Zi are a subset of the columns of Xi. In particular, the subset

of regression parameters from β that vary randomly are determined by the columns of Xi

that comprise Zi. This simply means that any component of β can be allowed to vary, by

inducing the columns of Xi comprised of the random effects, in Zi, the design matrix for the

random effects.

Furthermore, the vectors bi of random effects are assumed to be independent of the

covariates, Xi. The vector of random effects is taken to come from a multivariate normal
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with mean 0 and covariance matrix G. In turn, the random effects given in Equation (5.1)

will have an interpretation in terms of how the subset of regression parameters for the ith

subject will deviate from those in the population.

In linear mixed effects models, it is important to note the distinction between the

conditional and marginal means of Yi. As a result, the conditional or subject-specific mean

of Yi given bi is

E(Yi | bi) = Xiβ + Zibi. (5.2)

In contrast, the marginal mean of Yi, when averaged over the distribution of the random

effects, bi, is

E(Yi) = µi = E{E(Yi | bi)} = E(Xiβ + Zibi)

= Xiβ + ZiE(bi) = Xiβ. (5.3)

Also consider the ni × 1 vector ϵi of errors, which are assumed to be independent of

bi and to follow a multivariate normal distribution with mean 0 and covariance matrix,

Ri. Traditionally, it is also assumed that Ri is the diagonal matrix σ2Ini
, such that Ini

denotes the ni ×ni identity matrix. This is often referred to as the conditional independence

assumption, where given the random effects, bi, the measurement errors are independently

distributed with a common variance of σ2. This implies that ϵij and ϵik are uncorrelated,

with equal variance [7]. These can be thought of as sampling or measurement errors.
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In general it is possible to allow correlation among the ϵijs, by assuming one of the

covariance pattern models discussed in Chapter 4. However, the introduction of the

aforementioned covariance pattern models can raise two potential complications:

(i) The ϵijs will no longer have a simple interpretation of sampling error, in turn changing

the interpretation of the bis. This further implies that the ϵijs include a component of

model misspecification at the individual level.

(ii) In many longitudinal applications, there may be insufficient information to support

the estimation of both G and Ri separately. This will result in subtle issues of model

identification in the non-diagonal covariance matrix Ri.

Consider the following hypothetical example that is comparing a two-study group of

treatment and control (placebo). If the mean response changes in an approximately linear

fashion over time, but with the means of the intercepts and slopes depending on their group,

then the following linear mixed effects model can be considered:

Yij = β1 + β2tij + β3 Groupi + β4tij × Groupi + b1i + b2itij + ϵij,

where

Groupi =


1 if assigned to treatment,

0 if assigned to placebo.
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In this model the design matrix, Xi, has the following form for the control group:

Xi =



1 ti1 0 0

1 ti2 0 0
... ... ... ...

1 tini
0 0


.

Meanwhile the design matrix for the treatment group can be given as

Xi =



1 ti1 1 ti1

1 ti2 1 ti2

... ... ... ...

1 tini
1 tini


.

Additionally we can note that in this example, the design matrix Zi has the same form

for both the control and treatment group, namely

Zi =



1 ti1

1 ti2

... ...

1 tini


.



5. Linear Mixed Effects Model 74

Now we can take into consideration the covariance among the components of Yi with

randomly varying intercepts and slopes. Let var(b1i) = g11, var(b2i) = g22, and cov(b1i, b2i) =

g12. If we also assume that Ri = cov(ϵi) = σ2Ini
, then

var(Yij) = var(X⊤
ij β + Z⊤

ij bi + ϵij)

= var(Z⊤
ij bi + ϵij)

= var(b1i + b2itij + ϵij)

= var(b1i) + t2
ijvar(b2i) + var(ϵij) + 2cov(b1i, b2i)

= g11 + t2
ijg22 + σ2 + 2tijg12.

(5.4)

Similarly, it can be shown that

cov(Yij, Yik) = cov(X⊤
ij β + Z⊤

ij bi + ϵij, X⊤
ikβ + Z⊤

ikbi + ϵik)

= cov(Z⊤
ij bi + ϵij, Z⊤

ikbi + ϵik)

= cov(b1i + b2itij + ϵij, b1i + b2itik + ϵik)

= var(b1i) + (tij + tik)cov(b1i, b2i) + tijtikvar(b2i)

= g11 + (tij + tik)g12 + tijtikg22.

(5.5)

Thus, we get this resulting model for the longitudinal data, in which the covariance matrix

can be expressed as a function of time, tij; see [7].
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5.1 Random Effects Covariance Structure

Consider the following linear mixed effects model, where

Yi = Xiβ + Zibi + ϵi,

and Ri = cov(ϵi) describes the covariance among the repeated observations, in particular

focusing on the conditional mean response profile of a specific subject. It is the covariance

of the ith individual’s deviation away from that same subject’s mean response profile. In

a linear mixed effects model, the conditional mean (5.2) of Yi given bi can be distinguished

from the marginal mean (5.3) of Yi. In a similar fashion, we can also distinguish between

marginal and conditional covariances. Thus the conditional covariance of Yi given bi is

cov(Yi | bi) = cov(ϵi) = Ri.

Meanwhile, the marginal covariance is given by

cov(Yi) = cov(Xiβ + Zibi + ϵi) = cov(Zibi) + cov(ϵi)

= Zicov(bi)Z⊤
i + Ri = ZiGZ⊤

i + Ri.

An important consideration that should be made is in the case when Ri = cov(ϵi) = σ2Ini
.

Given that our expression of covariance remains as follows, cov(Yi) = ZiGZ⊤
i + σ2Ini

, it is
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possible to note that it is in fact not a diagonal matrix; see [7]. As a result, cov(Yi) will

in general have non-zero off-diagonal elements, in turn accounting for the correlation that

exists among the repeated measures.

In conclusion, it has been observed that the introduction of random effects, bi, induces

correlation among the components of Yi. Another property of linear mixed effects model is

that cov(Yi) is described in two components. That is, in linear mixed effects models one

can carry out an explicit analysis of between-subject (G) and within-subject (Ri) sources of

variation in the response. Lastly, it has been observed that the marginal covariance of Yi is

a function of the times of measurement, as demonstrated in Equations (5.4) and (5.5). It

is also important to distinguish that these induced random effects covariance structures do

not require a balanced longitudinal design, whereas the other covariance structures seen in

Chapter 4 require a balanced design. As a result, this makes the use of linear mixed effects

models well suited for dealing with inherently unbalanced data.

Finally, unlike many of the covariance pattern models listed in Chapter 4 that make

a strong assumption about the homogeneity of the variance over time, the random effects

covariance structure will allow the variance or covariance to fluctuate as a function of the

times of measurements.
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5.2 Two-Stage Random Effects Formulation

The linear effects model that was presented in Equation (5.1) can be motivated by a two-

stage random effects formulation of the model.

5.2.1 Stage 1

In Stage 1 of this two-step formulation, the subjects are assumed to have their own unique

individual-specific mean response trajectory. Moreover, the repeated measures on each

subject follow regressions model that have the same set of covariates but with distinct

regression coefficients for each subject. This can be expressed in the form Yi = Ziβi + ϵi,

where

a) ϵi can be thought of as measurement or sampling error, in which ϵi ∼ N (0, σ2
ni

);

b) the dimension of βi is q, regardless of the number, ni, of longitudinal responses;

c) these individual-specific regression coefficients represent the ith subject’s “true”

regression coefficients;

d) the matrix Zi represents how a subject’s mean response changes over time and/or how

the mean response changes with other time-varying covariates.

Consider the following longitudinal study, which assumes that individual-specific

trajectories are linear in time. Then the first-stage model can be expressed in the following
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way: 

Yi1

Yi2

...

Yini


=



1 ti1

1 ti2

... ...

1 tini



β1i

β2i

+



ϵi1

ϵi2

...

ϵini


. (5.6)

The goal in the first stage is to fit separate linear regression models to the data for

each subject. However, it is assumed that these regressions will involve the same set, Zi,

of covariances. This further highlights that given a sufficient number of repeated measures

obtained on each individual, it should be possible to estimate βi and σ2, while using only

the data obtained on that ith individual.

Lastly, a feature of this first-stage formulation is that the matrix of covariates Zi is said to

contain only time-varying covariates (i.e., within-individual covariates), with the exception

of a column of 1’s for the intercept terms; see [7]. Therefore, any time-invariant (between-

individual) covariates (e.g., gender, treatment group, etc.) cannot be included in Zi because

their effects will simply be absorbed by the intercept term. Instead, in the second stage of

this formulation, we introduce time-invariant covariates.

5.2.2 Stage 2

In Stage 2, we now make the assumption that the subject-specific effects, βi, are random.

Given that our βis are considered as random variables, they must then have some probability
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distribution, with a mean and covariance. In turn, the population parameters in the second-

stage of this formulation are the mean and the covariance of the βis. More specifically,

variation in βi from one subject to another is modeled as a function of a set of time-invariant

covariates; see [7]. Furthermore, the mean of βi can be expressed as a function of a set of

time-invariant covariates, namely Ai, such that

E(βi) = Aiβ,

where Ai is a q × p matrix. Any remaining variation in βi that cannot be explained by Ai is

given by

cov(βi) = G.

Finally, a specification of the model for the mean and covariance of βi will in turn complete

the second stage. It is important to note that β denotes a fixed parameter; meanwhile, βi

denotes a random variable.

Returning to the example used throughout this discussion, where we have a hypothetical

two-group study (treatment vs placebo). Once again, if we assume that the subject-specific

changes are linear in fashion over time, then the first stage of the model can be given by

(5.6). In the second stage, we can now allow the mean of βi to depend on group, viz.

E(β1i) = β1 + β3 Groupi,
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E(β2i) = β2 + β4 Groupi.

In this model, β1 can be interpreted as the mean intercept for the control group, while β1+

β3 is the mean intercept for the treatment group. Accordingly, β3 represents the treatment

group difference in the mean intercept. Similarly, β2 can be interpreted as the mean slope or

rate of change in the mean response over time within the placebo (control) group. Meanwhile,

β2+β4 represents the mean slope or rate of change within the treatment group. Furthermore,

it can be understood that β4 has interpretation as a treatment group difference rate of change

in the mean response over time.

Continuing with the formation of the two-stage random effects structure, the design

matrix Ai has the form

Ai =

1 0 Groupi 0

0 1 0 Groupi

 ,

in which the model for the control group can be expressed as

E

β1i

β2i

 =

1 0 0 0

0 1 0 0





β1

β2

β3

β4


=

β1

β2

 .
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Similarly, for the treatment group, the model for the mean can be expressed as

E

β1i

β2i

 =

1 0 1 0

0 1 0 1





β1

β2

β3

β4


=

β1 + β3

β2 + β4

 .

Furthermore, in the two-stage formulation, recall that it is also assumed that the

remaining residual variation in βi, which cannot be explained by the group effect, is given

by

cov(βi) = G =

g11 g12

g21 g22

 ,

where g11 = var(β1i), g22 = var(β2i) and g12 = g21 = cov(β1i, β2i).

In order to yield our desired linear mixed effects model for Yi, we now combine the

two components of this two-stage formulation. However, this formation may encounter

some restrictions. We can rewrite the subject-specific effects, βi as, βi = Aiβ + bi, where

bi ∼ N [µ = 0, cov(Bi) = G]. In this case, bi represents the ith subject’s deviation from

the population mean response. Combining the two components of the two-stage model

formulation results in

Yi = Ziβi + ϵi = Zi(Aiβ + bi) + ϵi = (ZiAi)β + Zibi + ϵi = Xiβ + Zibi + ϵi,
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where ZiAi = Xi. Also when averaged over the random effects bi, one has

E(Yi) = E{(ZiAi)β + Zibi + ϵi} = (ZiAi)β = Xiβ

and also cov(Yi) = ZiGZ⊤
i + σ2Ini

.

In the two-stage formulation, the design matrix Zi appears in both models for the

marginal mean and covariance; see [7]. The model formed here as a result of this two-stage

formulation is quite similar to the models introduced at the beginning of this chapter for

linear mixed effects. However, there remains one critical difference between the two.

The two-stage model places a constraint on the choice of the design matrix for the fixed

effects. More specifically, the two-stage formulation requires that the design matrix for the

fixed effects has a particular structure, in which Xi = Zi × Ai, where Ai contains only the

time-invariant (between-subject) covariates, and Zi only contains the time-varying (within-

subject) covariates.

The underlying objective of many longitudinal data applications is focused on the fixed

effects, β. These regression parameters have interpretations with respect to changes in the

mean response over time, and on their relations to the covariates at hand. In contrast,

some longitudinal studies may want to predict subject-specific response profiles. Due to

the advantageous feature of a linear mixed effects model, which distinguishes between fixed

and random effects, we can also predict individual-specific response trajectories over time.
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This implies that in a linear mixed effects model, it is possible to obtain predictions on

subject-specific effects, bi, or of the subject-specific response trajectory, Xiβ + Zibi.

5.3 Fixed Effects vs Random Effects Model

A substantial aspect of the use of regression models is the control for confounding variables.

Recall that in longitudinal studies, randomization cannot be used; in turn greater caution

must be placed on the measurement and control of important confounding variables. In

many standard regression applications, the models allow the assessment of the effects of the

covariates in which we have scientific interest in, while statistically adjusting (or controlling)

for the confounding variables.

However, it is evident that there are some limitations for this type of adjustment for

confounding variables. First, no matter how many confounding variables have been

accounted for in the regression model, there will always exist open criticism that some

critical confounding variables have been eliminated. Secondly, even if it were possible to

include all of the confounding variables that may influence the study, it is inherently

difficult or too expensive to measure. In order to overcome these limitations within a

longitudinal design, fixed effects models were developed.

The underlying idea behind a fixed effects model is the control of all potential confounding

variables that remain stable across the repeated measures obtained and whose effects on the

response are assumed to be constant across time. Fixed effects models require two features
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of the data, for their application to longitudinal data, namely

1. two or more repeated measures on the response;

2. values of the covariates of main scientific interest must vary over measurement

occasions, for at least some subset of the sample.

The first requirement is quite trivial and is met, by definition, by all longitudinal studies.

The second requirement suggests that fixed effects models will be best applied in settings

where the main covariates of scientific interest are time-varying. In contrast, it can be seen

that fixed effects models are not useful in settings where it is also of interest to estimate the

effects of time-invariant covariates.

5.3.1 Statistical Formulation of Linear Fixed Effects Model

In order to accommodate for unbalanced data over time, we assume that there are ni

repeated measures of the response on the ith subject and that each Yij is observed at time

tij. Associated with each response Yij, there is a p × 1 vector of covariates. The vector of

covariates can be further partitioned into two main types of covariates, time-varying

covariates (within-subject effects) and time-invariant covariates (between-subject effects).

For the formulation of the linear fixed effects model, let Xij denote the q×1 vector of time-

varying covariates and Wij to denote the (p−q)×1 vector of time-invariant covariates. For the

time-invariant covariates, Wij, we can drop the notation to Wi, given that for j ∈ {1, . . . , ni}
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the same values of the covariates are replicated. This results in the linear fixed effects model

to be given by

Yij = X⊤
ij β + Wiγ + αi + ϵij,

where the αis are the time-invariant effects (fixed effects) representing stable characteristics

of the subjects, that were not otherwise accounted for by the inclusion of time-invariant

effects, Wi. Additionally, the model assumes that ϵijs are normally distributed with a mean

of 0 and a covariance given by σ2
ϵ .

This model formulation may strangely appear to resemble the model formulation for linear

mixed effects. However, in the formulation of the fixed effects model, the αis are considered

to be fixed effects; meanwhile in the linear mixed effects models the αi are considered to

be random. It can be advantageous to compare the underlying model assumptions, when

comparing between a fixed effects model and a mixed effects model. The fixed effects model

makes the following assumptions about the relationships between Xij, Wi, αi, and ϵij:

• Xij is strictly exogenous, i.e., Xij is assumed to be completely independent of the

random errors, not only ϵij but also for ϵij′ , for j ̸= j′. This assumption implies that

the current value of Yij given Xij does not predict the subsequent value of Xi,j+1.

• The fixed effects model allows the αis to be correlated with Xij.

It is the second assumption that really creates the distinction between a fixed effects model

and a linear mixed effects model. This is due to the fact that in linear mixed effects, it is also
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assumed that Xij is strictly exogenous. However, an additional assumption is made, in which

the αis are considered as random rather than fixed effects, and are independent of Xij (and

independent of Wi and ϵi). In conclusion, the mixed effects model requires the additional

assumption that the random subject effects are uncorrelated with Xij for all measurement

occasions, where j ∈ {1, . . . , ni}; see [7]. Additionally, the most notable feature of a fixed

effects model is that it only provides estimates of regression parameters for time-varying

covariates. Moreover, the effects of time-invariant covariates cannot be estimated in the

fixed effects model formulation, due to its perfect collinearity with αi.

5.3.2 Selecting a Modeling Outcome

In order to appropriately choose the method of modeling that will be applied to a

longitudinal study, it is necessary to understand the way in which the data were collected.

More specifically, it is prudent to capture the visit timing variability from subject to

subject within a study. If there are perfectly repeated measurements, then one of the

aforementioned methods of modeling the mean and covariance will be applicable and can

provide statistically sound analysis.

However, there are many instances where a study statistician will have to manage missing

data and data that are subject to irregularities. This is a very common feature of many

longitudinal studies. For example a patient that is experiencing more severe symptoms

of illness may require more visits or result in missed visits. This inherently creates an
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unbalanced data structure. In the TMS data example provided by Garcia et al. [8], the

authors studied approaches to longitudinal data analysis in neurodegenerative diseases: it

can be seen that longitudinal studies experience varying participation frequency and the total

number of scheduled visits will vary between individuals. This is in particular highlighted

among those individuals with “high” or “medium” disease category, who may have limited

mobility, resulting in missed or mistimed scheduled visits.

In longitudinal data the observation times of each subject are often assumed to be

independent of the outcomes. According to Chen et al. [5], there are many studies in which

this assumption is violated, and hence the standard inferential approaches may lead to

biased inference. This highlights the importance of the step of examining the data

structure before performing any analysis. If for a linear mixed effects model, model

misspecification can lead to biased parameter estimates and incorrect inferences, then the

addition of the data balance not taken into consideration, and investigated before selecting

modeling approach, may also be introducing an even larger amount of bias. Thus, it is

meaningful to investigate the balance of the data first, in order to reduce any bias before

specifying the correct model for the mean and covariance structure.
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Chapter 6

Study of the Influence of Visit

Irregularity in a Longitudinal Design

Irregular visits are a common feature of observational longitudinal data, thus resulting in

variability in the timings of visits across individuals. Visit irregularities require additional

attention as they can be associated with the outcome trajectory and have the potential to

lead to biased results, if not addressed appropriately. As mentioned in previous chapters,

as important as it is to consider missing data as a part of the modeling strategy, it is also

as equally important to assess visit irregularity within a study. Furthermore, investigating

the magnitude of irregularity can help determine whether specialized models are needed to

handle irregular visits.
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The exploration of irregular visits is a new area of research to which Dr. Lokku contributed

with a thesis in which he provided visual and numerical measures in order to help quantify

the extent of irregularity [11]. The visual and numerical measures of irregularity he proposed

are created based on bins constructed across the study duration. The bin widths can vary,

and the mean proportions of individuals with 0, 1 and more than 1 visit per bin are plotted.

This structured approach allows for a deeper visual understanding of visit irregularity across

individuals across the duration of the study.

The ideal scenario is to achieve perfect repeated measures. Given the bins, this would

imply that the mean proportion of individuals with 1 visit per bin is 1, while the mean

proportions of individuals with 0 or > 1 visits are 0. There is a distinction to be made

between experiencing missingness and irregularity within a longitudinal study, which can

also be seen in relation to the construction of the bins. Missingness has to do with individuals

with 0 visit per bin across the study, while irregularity is reflected in both individuals with

0 and more than 1 visits per bin. This highlights the impact of measuring and quantifying

the extent of irregularity before performing any longitudinal analysis to the study.

To numerically assess the extent of visit irregularity, one can use the area under the curve

(AUC) with respect to constructed bins of the mean proportions of individuals with 0 visit

per bin plotted against the mean proportions of individuals with > 1 visit per bin. In order

for AUC to effectively quantify the extent of irregularity, the curve should be increasing as

irregularity increases [11]. Furthermore, the AUC must remain invariant to sample size and



6. Study of the Influence of Visit Irregularity in a Longitudinal Design 90

follow up length (this refers to the time duration between visit times across individuals). It

is important to note that the AUC is not invariant to missingness; in fact, the curve will

increase with respect to missingness increasing as well.

In conclusion, these visual and numerical measures lead to a more informed modeling

approach prior to considering the longitudinal landscape. Irregularity and missingness are

an inherent part of natural variation that occurs in collecting data on repeated measurements,

and thus they should be carefully considered in the modeling the outcome. With more and

more health data becoming available, it is critical to assess the magnitude of irregularity, in

order to perform specialized methods for irregular data, to ensure we have minimized the

potential risk of any associated bias as a result of irregularity.

It is quite costly and time-consuming to perform randomized controlled trials, whence

the readily increasing availability of observational longitudinal data. In addition, a common

trend within health care is the aggregation of the Big Data that is being collected from

multiple sources. Electronic health records across multiple places like hospitals, clinics, and

laboratories are aggregated among individuals and used as Big Data. This is a very powerful

feature for determining any population-level hypothesis of interest.

At the same time, however, there is a loss in overall data quality as a result of how

much information is being collected at high frequency [15]. The underlying concern of data

quality required for Bid Data modeling is not getting the attention it deserves. An example

of this is in the Ontario Drug Benefit Program [9], which studied the trends for information
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on opioid prescriptions for those prescribed. In this particular example, it is common to

observe individuals that provide unrepresentative information about their usages to

professional health care workers. This ultimately results in a set of challenges, including

data missingness and irregular observations across each individual. These examples

illustrate the importance of addressing the irregularity and missingness within

observational longitudinal data; failing to do so could lead to significant bias. Therefore,

specialized methods for dealing with irregular data should be considered within these

particular settings.

6.1 Study Objective

The objective of this data demonstration is to illustrate measures for quantifying the extent

of visit irregularity within an observational longitudinal study. These measures are intended

to provide direction for whether specialized methods for dealing with irregular data are

necessary or if the data should be treated as repeated measures.

It is necessary to provide first a visual measure of understanding the irregularity captured

within the data. This will be completed by visual plotting the measures of irregularity based

on bins across the duration of the study. In certain settings where the bin width is not obvious

nor stated within the study protocol, we can vary the bin widths and plot the respective

mean proportions of individuals with 0, 1 and > 1 visit per bin. The second section of the

data investigation entails providing a single numerical measure for quantifying the extent
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of irregularity that rises with increasing irregularity (visits with > 1 visit per bin). This

is achieved by plotting the mean proportion of individuals with 0 visit per bin against the

mean proportion of individuals with more than 1 visit per bin, while using the AUC as a

numerical measure quantifying the extent of irregularity.

A common feature in observational longitudinal data is that often it features visit times

that vary across individuals. Furthermore, it can potentially lead to timings of the visits

and the frequency of visits to be associated with the outcome of the study. This in turn

suggests that visit irregularity has the potential to lead to biased results and thus should be

considered in the analyses of outcome trajectories [12]. It can be seen that when the visit

process has not been accounted for, it could lead to misleading results.

An example of this was found in a study [4] in which the authors estimated the

prevalence of pneumonia amongst Kenyan mothers with HIV-1 to be 2.89% when not

taking into consideration the visit process. Later it was seen that the same estimate was

decreased substantially to 1.48% after taking into consideration the visit process. This

underscores the value in studying the visit process or intensity.

Observational data that are collected in aggregation across all electronic medical records

of subjects are expected to be susceptible to irregular visit patterns among the individuals.

The problem of visit irregularity is comparable to missing data, the key difference being that

missing data occur when a scheduled visit is missed and no measurement is recorded, whereas

with visit irregularity it is observed as an imbalance of visit patterns across individuals. Visit



6. Study of the Influence of Visit Irregularity in a Longitudinal Design 93

irregularity is often most present in settings where there is an absence of a study-wide follow-

up schedule. Representing missingness statistically often involves visit times that are fixed

by the study design (protocol), and whether the visit occurs is a random variable. With visit

irregularity, however, the timings of the visits itself are considered as random.

Studies that feature missingness have also be known to causes biases within the

analysis. However, this has led to more developed methods for missing data patterns being

recommended [3]. This is often achieved by examining the frequency of subjects with

missing values for each variable of interest within the study, in which the severity of

missingness can be assessed to determine if methods for missing data patterns are

necessary. If some of the data are missing at random (or missing completely at random),

then there are approaches available to model longitudinal data where missingness applies.

Techniques such as inverse-probability weighting (estimation of regression coefficients

when some regressors are not always observed – James Robins) are often used [14]. As

irregularity can lead to biased results, it should be also further explored. Within a lot of

practical settings, scheduled visits are intended to be perfect repeated measures, but the

timings of scheduled visits vary across all subjects, visits may be missed by the subject or

there are unscheduled visits. Irregularity captures this variability observed across subjects

and allows for judgment on whether to use appropriate analyzing techniques when dealing

irregular data.
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It must be noted that it is difficult to determine at which point the data are no longer

treated as repeated measures and are examined using different techniques for irregular data.

In fact, a study performed by Farzanfar et al. [6] demonstrated how infrequent irregularity

is reported or analyzed in practice. Of the 44 qualifying studies, it was shown that 86%

of the studies did not account for irregularity. To further emphasize this point, there was

only one study in which specialized methods were used when interacting with irregular data.

Thus the aim of is to present an intuitive visual measure for irregularity and a measure

to quantify the extent of irregularity, which will better allow future researchers to consider

checking irregularity in order to select an appropriate statistical approach for the outcome.

6.2 Data: Remifentanil

The pharmacokinetics of the Remifentanil dataset is used here to demonstrate the importance

of assessing irregularity before selecting the appropriate statistical approach for the outcome

[10]. Intravenous infusion of Remifentanil (a strong analgesic) was applied to a total of 65

subjects at different rates over varying time periods.

Concentration measurements of Remifentanil were taken as the parameter of interest,

along with several covariates, thereby creating the Remifentanil data frame with 2107 rows

and 12 columns. This data set is part of R package MEMSS.

It must be noted that within this data demonstration, there is no protocol available to

inform us of the common set of scheduled measurement occasions for all subjects. A
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Figure 6.1: Visit timings for the 65 individuals from the Remifentanil Study

clinical research protocol will usually contain information such as data recording

requirements, statistical considerations and more.

6.2.1 Illustrating the Measures of Irregularity

The visit timings for all 65 subjects from the beginning of the study are presented in

Figure 6.1 above.
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From Figure 6.1, we are able to see that we did not achieve a perfectly repeated measures

study for Remifentanil. This is because all the observations across each subject are not lining

up vertically, as they would if there were perfect repeated measures. Note the x-axis “Time”

is referring to time from beginning of infusion in minutes. However, we are still able to

capture the visit timings via this measure based on the frequency of visits per subject.

It is evident from the abacos plot that there was variability in visit timings across the

65 subjects. Furthermore, it can also be seen that there were subjects that had 0 visits at

other people’s scheduled times. This is a starting basis for a visual measure for illustrating

the variability across visit times which may signify irregularity.

Recall that this pharmacokinetics of Remifentanil data have no preexisting protocol,

which in turn does not allow for bin widths defined according to the prespecified visit times

scheduled for each subject. Observing Figure 6.2 below demonstrates a method for visually

assessing the number of bins that are constructed. In fact, if we wanted to treat the data like

a repeated measures study, then we would be choosing the number of bins to be 25. This is

where we can roughly see the curve of one observation per bin reach its maximum.

The second curve just below in Figure 6.2 represents the Area Under the Curve (AUC)

plot, whose value is 0.122. Since this particular study has no pre-specified protocol, that

results in a high AUC, which in turn demonstrates high irregularity across visits for subjects

throughout the study.
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By construction, the AUC is bounded between 0 to 0.5. When the AUC = 0 this implies

perfectly repeated measures. As a result, we can see that the AUC value of 0.122 signifies

that there is some sense of irregularity that exists within this observational dataset. This

is aligned with the abacos plot, in which we were also able to visually identify that there is

irregularity across visits for subjects within the study. In conclusion, it can be seen from the

visual measures that the data could be viewed as repeated measures subject to a degree of

irregularity and missingness.

6.2.2 Visit Process Model

In order to appropriately determine a valid modeling approach for the outcome, a more

in-depth assessment is needed of the underlying assumptions with respect to the

relationship between the outcome (lag concentration) and the visit process. It is essential

to assess any potential predictors of visit intensity/frequency, because the standard

approach of longitudinal data could be invalid if such predictors exist. A semi-parametric

Cox proportional hazards regression model using the Anderson–Gill formulation was thus

fitted in order to identify any predictors of visit intensity. The available baseline

characteristics that are assessed at the individual-level, include concentration (lag

concentration), age, and weight.

The concentration measure in the visit model were lagged by one visit for each individual

(i.e., parameter name, lag concentration). This is due to the fact that we can only use the
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Figure 6.2: The mean proportions of individuals with 0, 1 and >1 visit per bin from the
Remifentanil data

value at previous time points to predict current visit intensity. Model selection was done by

fitting a regression model with the aforementioned predictors and subsequently determining

the predictors that have a statistically significant influence on the model, namely those with

p-value < 0.05 in the final model. This analysis was performed using the coxph function

in R, version 3.1.0, with cluster robust standard errors [16]. Table 6.2 below presents the

results from the model which included the aforementioned predictors.
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Variable Time-
Varying

Hazard
Ratio

Standard
Error

p-value

Lag Concentration Yes 1.0011914 0.0008113 0.0402
Age at Baseline No 0.9845204 0.0012125 < 0.0010
Weight at Baseline No 0.9986470 0.0016023 0.3443

Table 6.1: Visit process modeling results including all predictors of interest and the
concentration measurement at the previous visit for the Remifentanil Study

Based on Table 6.2, it was suggested that an increase in lag concentration predictor was

associated with more frequent visits. As a result, there is some correlation between the

outcome and the visit process that is being considered. Additionally, increasing age was

demonstrated to be associated with an decrease in the frequency of visits. The following

section will describe how to model the study outcome, based on the visit process modeling

results in conjunction with the measures of irregularity obtained earlier.

6.2.3 Modeling the Outcome

In order to determine which approach of modeling is most suitable, one must study the

relationship between the outcome and the visit process modeled in Section 6.2.2. The analysis

of visit intensity was aligned with the visual measures of irregularity and the AUC was also

consistent in demonstrating that the data can indeed be viewed as repeated measures subject

to both missingness and variable scheduled times among the individuals of interest.

The modeling of the visit process resulted in identifying an association between visit

intensity and the concentration (lag) at the previous visit, as well as age, thus suggesting
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that the visits between individuals are at best VAR (visiting at random). Likelihood-based

methods (e.g., standard mixed effects model) are considered as invalid because the visit

intensity model showed an association to its covariates that were not intended to be included

in the outcome model.

As a result of identifying predictors of visit intensity, the visit process cannot be VCAR

(Visiting completely at random). VCAR would further imply that the visit process and

outcomes are completely independent. In the analysis of Remifentnil we have at best VAR

(visiting at random), which can imply that they are conditionally independent. The AUC

analysis indicated that the sources of irregularity were as a result of missingness and variable

visit timings. Thus, we can consider methods such as inverse-intensity weighted generalized

estimating equations, under the assumption that the data are VAR.

The data set for Remifentanil has demonstrated signals of it being subject to irregular

data. This suggests that we can consider specialized methods for irregular longitudinal data

such as the inverse-intensity weighted generalized estimating equations, that can account

for predictors of visit intensity, in addition to analyzing the outcome with the presence of

missingness.

When selecting a modeling approach to assess the trend in the mean outcome over time,

the use of inverse-intensity weighted generalized estimating equations is valid, such that there

are no latent predictors of visit intensity that would be correlated to the outcome. This

analysis was performed using R, version 3.1.0. The inverse-intensity weighted generalized
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Model Approach Estimate
(Time)

Standard
Error

p-value

IIW GEE −0.9204 0.04179 < 0.001
Naive −0.9907 0.0693 < 0.001

Table 6.2: Modeling results comparing the IIW GEE model to a naive model

estimating equations (IIW GEE) approach was using the iiwgee function [12]. In addition,

a “naive” model was considered, in which the visit process was not accounted for. Thus,

this second model is blind to the irregularity that the data have been subject to. Table 6.2

above compares the results between modeling through both approaches.

In either approach, it can be seen that the mean concentration decreased over time (p-

value < 0.001). The inverse-intensity weighted generalized estimating equations approach

yielded in a slightly higher coefficient estimate.

In Figure 6.3, we can observe that the behavior, earlier in time, of the naive general

estimating equation (green line) overestimates the mean concentration. As the study

continues, we can then observe another change, in which the naive general estimating

equation (green line) is now underestimating the mean concentration towards the end of

the study. This implies that at different time points of the study, the naive fitted method is

either overestimating or underestimating the mean concentration. This in turn shows that

not taking into consideration the irregularity of the data can lead to biased results when

modeling the outcome. In conclusion by taking an additional step, in assessing visually and

numerically the extent of irregularity we are able to make a sound decision in modeling the
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Figure 6.3: The mean proportions of individuals with 0, 1 and >1 visit per bin from the
Remifentanil data

outcome approach, thereby allowing us to consider specialized methods that are developed

to deal with data irregularity.

6.2.4 Conclusion

This data demonstration was used to illustrate the importance of using the measures of

irregularity, exploring visit frequency/intensity in order to select the most valid modeling

approach for a longitudinal outcome, which can in turn minimize the potential for biased
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results. In this study the visual measures of irregularity in Figure 6.1 and the AUC both

indicated that there was some variability in the visit timings between individuals, including

missed visits. This in turn suggested to model the visit process of the concentration level at

the previous visit, age, and weight at baseline, and indicated that age and lag concentration

are associated with the visit intensity.

This finding was important, as it was able to rule out the use of more standard approaches

such as standard mixed effects model. Ignoring the visit process and modeling the outcome

using the unadjusted generalized estimating equations leads to biased results. Thus by taking

these appropriate steps and measures, we can correctly use inverse-intensity weighting to

correct for the potential bias caused as a result of the data being subject to irregularities.
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Chapter 7

Conclusion

The ultimate objective of this thesis project was to provide an introduction to longitudinal

data analysis while developing a sound modeling approach to a longitudinal study. This

includes the introduction of complementary measures that can improve the overall modeling

approach and help to recognize the choice of an appropriate model for the interdependent

covariance and mean, in a longitudinal study.

Furthermore, prior to considering any modeling approach, it is necessary to examine the

raw captured data themselves. It is crucial to confirm that the data are balanced, to check

whether there are missing observations or if, as commonly observed, visit irregularities occur.

The demonstration of these visual and numerical measures will lead to a significantly more

informed modeling approach when considering the mean and covariance.
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Bringing overall awareness of these highlighted features in this project will lead to a

more concrete statistical longitudinal study, which will have less bias and result in more

sound contributions to applied and health science studies. These approaches are quite

simple to implement prior to beginning any longitudinal analysis and can achieve

tremendous improvement in the modeling outcome.
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Appendix - R Code for Chapter 6:

Remifentanil Data



RemiFentanil Data Demonstration

Kasra Vakiloroayaei

2023-11-13

#Packages utilized to complete demonstartion
#install.packages("lme4")
#install.packages("MEMSS")
#install.packages("IrregLong")
#install.packages("nlme")
#install.packages("survival")
#install.packages("data.table")
#install.packages("geepack")
#install.packages("gee")

#Header of the raw data from the MEMMSS Package, analyzing Remifentanil.
library(lme4)

## Warning: package 'lme4' was built under R version 4.2.3

## Loading required package: Matrix
library(MEMSS)

## Warning: package 'MEMSS' was built under R version 4.2.3

##
## Attaching package: 'MEMSS'

## The following objects are masked from 'package:datasets':
##
## CO2, Orange, Theoph
data(Remifentanil)
head(Remifentanil)

## ID Subject Time conc Rate Amt Age Sex Ht Wt BSA LBM
## 1 1 1 0.00 NA 71.99 107.9850 30.58 Male 171 72 1.8393 56.5075
## 2 1 1 1.50 9.51 71.99 35.9950 30.58 Male 171 72 1.8393 56.5075
## 3 1 1 2.00 11.50 71.99 37.4348 30.58 Male 171 72 1.8393 56.5075
## 4 1 1 2.52 14.10 71.99 35.9950 30.58 Male 171 72 1.8393 56.5075
## 5 1 1 3.02 16.70 71.99 43.9139 30.58 Male 171 72 1.8393 56.5075
## 6 1 1 3.63 17.10 71.99 30.2358 30.58 Male 171 72 1.8393 56.5075
library(IrregLong)

## Warning: package 'IrregLong' was built under R version 4.2.3
library(nlme)

## Warning: package 'nlme' was built under R version 4.2.3
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##
## Attaching package: 'nlme'

## The following object is masked _by_ '.GlobalEnv':
##
## Remifentanil

## The following objects are masked from 'package:MEMSS':
##
## Alfalfa, Assay, BodyWeight, Cefamandole, Dialyzer, Earthquake,
## ergoStool, Fatigue, Gasoline, Glucose, Glucose2, Gun, IGF,
## Machines, MathAchieve, Meat, Milk, Muscle, Nitrendipene, Oats,
## Orthodont, Ovary, Oxide, PBG, Phenobarb, Pixel, Quinidine, Rail,
## RatPupWeight, Relaxin, Remifentanil, Soybean, Spruce,
## Tetracycline1, Tetracycline2, Wafer, Wheat, Wheat2

## The following object is masked from 'package:lme4':
##
## lmList
library(survival)

## Warning: package 'survival' was built under R version 4.2.3
library(data.table)

## Warning: package 'data.table' was built under R version 4.2.3
library(geepack)

## Warning: package 'geepack' was built under R version 4.2.3
library(gee)

## Warning: package 'gee' was built under R version 4.2.3
###Format Data
Remifentanil$event <- 1-as.numeric(is.na(Remifentanil$conc))
tmax = 80
data <- Remifentanil
data <- data[data$event==1,]
data$time = data$Time
data$Time = NULL
data <- data[data$time<=tmax,]
data$id <- as.numeric(data$ID)

###Create lag conc variable
data$conc.lag = c(NA)
for(i in 2:length(data$conc))
{

data$conc.lag[i] = data$conc[i-1]
}

for(i in 1:length(unique(data$id)))
{

data$conc.lag[data$id == unique(data$id)[i]][1] = NA
}

###Create lag time variable
data$time.lag1 = c(NA)
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for(i in 2:length(data$time))
{

data$time.lag1[i] = data$time[i-1]
}

for(i in 1:length(unique(data$id)))
{

data$time.lag1[data$id == unique(data$id)[i]][1] = NA
}

head(data)

## ID Subject conc Rate Amt Age Sex Ht Wt BSA LBM event time id
## 2 1 1 9.51 71.99 35.9950 30.58 Male 171 72 1.8393 56.5075 1 1.50 1
## 3 1 1 11.50 71.99 37.4348 30.58 Male 171 72 1.8393 56.5075 1 2.00 1
## 4 1 1 14.10 71.99 35.9950 30.58 Male 171 72 1.8393 56.5075 1 2.52 1
## 5 1 1 16.70 71.99 43.9139 30.58 Male 171 72 1.8393 56.5075 1 3.02 1
## 6 1 1 17.10 71.99 30.2358 30.58 Male 171 72 1.8393 56.5075 1 3.63 1
## 7 1 1 16.80 71.99 69.8303 30.58 Male 171 72 1.8393 56.5075 1 4.05 1
## conc.lag time.lag1
## 2 NA NA
## 3 9.51 1.50
## 4 11.50 2.00
## 5 14.10 2.52
## 6 16.70 3.02
## 7 17.10 3.63

#Visual Measures of Irregularity
abacus.plot(n=length(unique(data$id)), time="time", id="id", data=data, tmin=0, tmax=tmax, xlab.abacus = "Time", ylab.abacus = "Subject", pch.abacus = 16, col.abacus = 1 )
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counts$counts

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 0 0 0 0 0.000000000 0.00000000 0.004395604 0.003846154
## [2,] 0 0 0 0 0.003076923 0.01538462 0.043956044 0.090384615
## [3,] 1 1 1 1 0.996923077 0.98461538 0.951648352 0.905769231
## [,9] [,10] [,11] [,12] [,13] [,14]
## [1,] 0.005128205 0.004615385 0.008391608 0.01153846 0.04378698 0.04175824
## [2,] 0.124786325 0.133846154 0.184615385 0.21538462 0.22011834 0.26813187
## [3,] 0.870085470 0.861538462 0.806993007 0.77307692 0.73609467 0.69010989
## [,15] [,16] [,17] [,18] [,19] [,20] [,21]
## [1,] 0.04307692 0.0750000 0.0561086 0.08974359 0.09797571 0.1023077 0.1216117
## [2,] 0.32000000 0.3201923 0.4153846 0.40940171 0.43724696 0.4753846 0.4879121
## [3,] 0.63692308 0.6048077 0.5285068 0.50085470 0.46477733 0.4223077 0.3904762
## [,22] [,23] [,24] [,25] [,26] [,27] [,28]
## [1,] 0.1167832 0.1290970 0.1378205 0.1569231 0.1650888 0.1777778 0.1978022
## [2,] 0.5454545 0.5785953 0.5878205 0.5858462 0.6301775 0.6188034 0.6065934
## [3,] 0.3377622 0.2923077 0.2743590 0.2572308 0.2047337 0.2034188 0.1956044
## [,29] [,30] [,31] [,32] [,33] [,34] [,35]
## [1,] 0.2042440 0.2107692 0.2357320 0.2432692 0.2615385 0.2719457 0.2953846
## [2,] 0.6228117 0.6220513 0.6119107 0.6149038 0.6102564 0.6054299 0.5819780
## [3,] 0.1729443 0.1671795 0.1523573 0.1418269 0.1282051 0.1226244 0.1226374
## [,36] [,37] [,38] [,39] [,40] [,41] [,42]
## [1,] 0.3102564 0.3301455 0.33319838 0.34280079 0.35153846 0.36285178 0.38241758
## [2,] 0.5709402 0.5596674 0.56923077 0.56765286 0.57500000 0.56060038 0.54175824
## [3,] 0.1188034 0.1101871 0.09757085 0.08954635 0.07346154 0.07654784 0.07582418
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## [,43] [,44] [,45] [,46] [,47] [,48]
## [1,] 0.39713775 0.41538462 0.42495726 0.43511706 0.4490998 0.44615385
## [2,] 0.52701252 0.50594406 0.50222222 0.49397993 0.4818331 0.49743590
## [3,] 0.07584973 0.07867133 0.07282051 0.07090301 0.0690671 0.05641026
## [,49] [,50] [,51] [,52] [,53] [,54]
## [1,] 0.45306122 0.46923077 0.46334842 0.48875740 0.49259797 0.49886040
## [2,] 0.49513344 0.47815385 0.49592760 0.45887574 0.46153846 0.45811966
## [3,] 0.05180534 0.05261538 0.04072398 0.05236686 0.04586357 0.04301994
## [,55] [,56] [,57] [,58] [,59] [,60]
## [1,] 0.49594406 0.51675824 0.51417004 0.53050398 0.53663625 0.53615385
## [2,] 0.47356643 0.44340659 0.45721997 0.43289125 0.42842243 0.43717949
## [3,] 0.03048951 0.03983516 0.02860999 0.03660477 0.03494133 0.02666667
## [,61] [,62] [,63] [,64] [,65] [,66]
## [1,] 0.54375788 0.55781638 0.55897436 0.56129808 0.57325444 0.57482517
## [2,] 0.43177806 0.41091811 0.41391941 0.41971154 0.39952663 0.40349650
## [3,] 0.02446406 0.03126551 0.02710623 0.01899038 0.02721893 0.02167832
## [,67] [,68] [,69] [,70] [,71] [,72] [,73]
## [1,] 0.57979334 0.5828054 0.59152731 0.60087912 0.5973998 0.60405983 0.6177028
## [2,] 0.40022962 0.4013575 0.39264214 0.37714286 0.3898158 0.38461538 0.3595364
## [3,] 0.01997704 0.0158371 0.01583055 0.02197802 0.0127844 0.01132479 0.0227608
## [,74] [,75] [,76] [,77] [,78] [,79]
## [1,] 0.61559252 0.62317949 0.62611336 0.624975025 0.63471400 0.63933788
## [2,] 0.37193347 0.36020513 0.35951417 0.366833167 0.35147929 0.34819864
## [3,] 0.01247401 0.01661538 0.01437247 0.008191808 0.01380671 0.01246349
## [,80] [,81] [,82] [,83] [,84] [,85]
## [1,] 0.642115385 0.643684710 0.64990619 0.65579240 0.655128205 0.66244344
## [2,] 0.348461538 0.349097816 0.33958724 0.33290083 0.338644689 0.32796380
## [3,] 0.009423077 0.007217474 0.01050657 0.01130677 0.006227106 0.00959276
## [,86] [,87] [,88] [,89] [,90] [,91]
## [1,] 0.664758497 0.670380195 0.674300699 0.673984443 0.679145299 0.684530854
## [2,] 0.327906977 0.320070734 0.316083916 0.320484010 0.314017094 0.306001691
## [3,] 0.007334526 0.009549072 0.009615385 0.005531547 0.006837607 0.009467456
## [,92] [,93] [,94] [,95] [,96] [,97]
## [1,] 0.686789298 0.690488007 0.692962357 0.693927126 0.699679487 0.701982554
## [2,] 0.305685619 0.301736973 0.300163666 0.300890688 0.293269231 0.291831879
## [3,] 0.007525084 0.007775021 0.006873977 0.005182186 0.007051282 0.006185567
## [,98] [,99] [,100]
## [1,] 0.705808477 0.708469308 0.7109231
## [2,] 0.287284144 0.285003885 0.2830769
## [3,] 0.006907378 0.006526807 0.0060000
counts$auc

## [1] 0.1224512

#IIW GEE Analysis of Concentration
###Model visit process
coxph(Surv(time.lag1,time,event)~conc.lag + Age + Wt+ cluster(id), data = data)

## Call:
## coxph(formula = Surv(time.lag1, time, event) ~ conc.lag + Age +
## Wt, data = data, cluster = id)
##
## coef exp(coef) se(coef) robust se z p
## conc.lag 0.0011907 1.0011914 0.0008113 0.0005805 2.051 0.0402
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## Age -0.0156006 0.9845204 0.0012125 0.0008732 -17.865 <2e-16
## Wt -0.0013540 0.9986470 0.0016023 0.0014316 -0.946 0.3443
##
## Likelihood ratio test=183.9 on 3 df, p=< 2.2e-16
## n= 1861, number of events= 1861
## (65 observations deleted due to missingness)
###Model outcome process
miiwgee <- iiwgee(conc ~ time, Surv(time.lag,time,event)~conc.lag + Age + Wt + cluster(id), id="id",time="time",event="event",data=data, invariant="id",lagvars=c("time","conc"),maxfu=tmax,lagfirst=0,first=TRUE)
summary(miiwgee$geefit)

##
## Call:
## geeglm(formula = formulagee, family = family, data = data, weights = useweight,
## id = iddup, corstr = "independence")
##
## Coefficients:
## Estimate Std.err Wald Pr(>|W|)
## (Intercept) 46.36395 2.92154 251.8 <2e-16 ***
## time -0.92044 0.04179 485.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation structure = independence
## Estimated Scale Parameters:
##
## Estimate Std.err
## (Intercept) 600.6 202.8
## Number of clusters: 65 Maximum cluster size: 44
#summary(miiwgee$phfit)

### Compare to Results Without Weighting (i.e Naive model)
m <- geeglm(conc ~ time , id=id, data=data, corstr = 'exchangeable')
summary(m)

##
## Call:
## geeglm(formula = conc ~ time, data = data, id = id, corstr = "exchangeable")
##
## Coefficients:
## Estimate Std.err Wald Pr(>|W|)
## (Intercept) 48.2255 3.5631 183 <2e-16 ***
## time -0.9907 0.0693 205 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation structure = exchangeable
## Estimated Scale Parameters:
##
## Estimate Std.err
## (Intercept) 763 310
## Link = identity
##
## Estimated Correlation Parameters:
## Estimate Std.err
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## alpha 0.651 0.102
## Number of clusters: 65 Maximum cluster size: 44
#m <- geeglm(conc ~ time , id=id, data=data)###Independence

time <- (1:tmax)
unweighted <- cbind(rep(1,tmax),time)%*%m$coefficients
weighted <- cbind(rep(1,tmax),time)%*%miiwgee$geefit$coefficients

plot(data$time,data$conc,xlim=c(0,tmax),pch=16)
lines(time,unweighted,type="l", col= 3)
lines(time,weighted,col=2)
legend (40,60,legend=c("Incorrect GEE","IIW GEE"),col=3:2,bty="n",lty=1)
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