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Abstract

The problem of estimating the inverse covariance or precision matrix for graphical models

under a high-dimensional setting is a well-known challenge in modern statistics. Nu-

merous theoretical and applied works have been proposed to date, particularly when

the data are fully observed and follow a multivariate normal distribution. However, in

the presence of measurement errors, such as additive or multiplicative errors, different

surrogate estimates have been suggested in the literature to obtain unbiased estimates of

the true covariance matrix.

Unfortunately, these surrogate estimators may not necessarily be positive semi-definite,

leading to a non-convex objective function. To address this issue, the surrogate estimators

can be projected onto the nearest positive semi-definite matrix, transforming the objective

function into a convex problem. While consistency bounds for tail deviations of the

estimated and true covariance matrix have been well-studied for fully observed data with

sub-Gaussian distributions or bounded moments, such bounds have not been established

for the presence of measurement errors.

Therefore, the first part of this thesis focuses on developing consistency bounds for

random variables that are sub-Gaussian or have bounded moments in the presence of

additive or multiplicative measurement errors. We also perform simulation studies and

real data analysis to compare the performance of the covariance projection method with

existing methods for precision matrix estimation for corrupted data.
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Next, we address the problem of joint estimation of regression coefficients and precision

matrix in the presence of missing data, a common issue in genetics. We restrict our attention

to the scenario where both the data and measurement error are sub-Gaussian. We employ

similar techniques to project the surrogate estimate of the sample covariance matrix to

ensure convexity of the objective function and derive consistency bounds. Additionally,

we conduct simulation studies to compare our method with existing approaches.
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Abrégé

Le problème de l’estimation de la matrice inverse de covariance ou de précision pour

les modèles graphiques dans un cadre à haute dimension est un défi bien connu des

statistiques modernes. De nombreux travaux théoriques et appliqués ont été proposés

à ce jour, en particulier lorsque les données sont entièrement observées et suivent une

distribution normale multivariée. Toutefois, en présence d’erreurs de mesure, telles que

des erreurs additives ou multiplicatives, différentes estimations de substitution ont été

proposées dans la littérature pour obtenir des estimations non biaisées de la véritable

matrice de covariance.

Malheureusement, ces estimateurs de substitution ne sont pas nécessairement semi-

définis positifs, ce qui conduit à une fonction objective non convexe. Pour résoudre ce

problème, les estimateurs de substitution peuvent être projetés sur la matrice semi-définie

positive la plus proche, ce qui transforme la fonction objective en un problème convexe.

Alors que les limites de cohérence pour les écarts de queue de la matrice de covariance

estimée et réelle ont été bien étudiées pour les données entièrement observées avec des

distributions sub-gaussiennes ou des moments limités, de telles limites n’ont pas été

établies en présence d’erreurs de mesure.

Par conséquent, la première partie de cette thèse se concentre sur le développement

de bornes de cohérence pour les variables aléatoires qui sont sous-gaussiennes ou qui ont

des moments limités en présence d’erreurs de mesure additives ou multiplicatives. Nous

réalisons également des études de simulation et des analyses de données réelles afin de
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comparer les performances de la méthode de projection de la covariance avec les méthodes

existantes d’estimation de la matrice de précision pour les données corrompues.

Ensuite, nous abordons le problème de l’estimation conjointe des coefficients de ré-

gression et de la matrice de précision en présence de données manquantes, un problème

courant en génétique. Nous limitons notre attention au scénario où les données et l’erreur

de mesure sont sub-gaussiennes. Nous utilisons des techniques similaires pour projeter

l’estimation de substitution de la matrice de covariance de l’échantillon afin de garantir la

convexité de la fonction objective et de dériver des limites de cohérence. En outre, nous

menons des études de simulation pour comparer notre méthode aux approches existantes.
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Chapter 1

Introduction

Estimation of the inverse covariance matrix, also known as the precision matrix, is one

of the fundamental problems in modern multivariate statistics. Many fields such as

economics, finance, genomics, medical imaging, health science, social networks etc. require

precision matrix estimation as a part of the practical research problems. While covariance

matrix encodes marginal correlations between the variables, the precision matrix reveals

conditional correlations between pairs of variables given the remaining variables (under

certain distributional assumptions). The estimation problem becomes challenging when

the dimension of the precision matrix is large, specifically when the number of variables p

greatly exceeds the sample size n. One of the particular interests in estimating a precision

matrix in the literature lies in the key assumption of sparsity, that is, obtaining an estimate

of the precision matrix in which some elements are zero. Different penalized maximum

likelihood techniques have been proposed in recent years to consistently estimate the

precision matrix. When data are fully observed, these type of estimators have become a

standard tool for estimating graphical models under sparsity conditions. We give details

in Chapter 2.

Most of the theoretical and applied works in estimating the precision matrix in high-

dimensional setting are focused on data that are fully observed under the assumption
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that they are drawn independently and identically from some underlying distribution.

This is often unrealistic since in real world data, we often find covariates that are mea-

sured inaccurately or have missing values. For example, sensor network data (Slijepcevic

et al., 2002) tend to be both noisy due to measurement error and partially missing due

to failures or drop-outs of sensors, gene expression data (Purdom and Holmes, 2005)

and high-throughput sequencing (Benjamini and Speed, 2011) also tend to be noisy due

to measurement error. Another common example of corrupted data are when we have

missing data which can happen due to non-response in many different fields.

In the case of fully observed or clean data, theoretical properties of precision matrix

estimation had been studied rigorously in the literature. In Chapter 2, we discuss them

in detail. Ravikumar et al. (2011) studied the theoretical properties of estimating both

the covariance matrix Σ∗ and its inverse Θ∗ = (Σ∗)−1 under given n i.i.d. observations

{X1, . . . , Xn} of a zero mean random vector X ∈ Rp for uncontaminated data. In this

work no specific distributional assumptions are imposed specifically on X itself, but in

terms of the tail behaviour of the maximum deviation of the sample and population

covariance matrices. In Chapter 3 we extend this idea in the case when the data are

corrupted by measurement error. Specifically, we look at two types of measurement error

scenarios, additive and multiplicative, and derive the deviation bounds under different

tail conditions, specifically, exponential-type tail and polynomial-type tail. It is well

known that if methods developed for clean data are applied on corrupted data, they

would lead to misleading inferences. Many unbiased surrogate estimates have been

proposed in literature that can take into account of this measurement error issue (Loh

and Wainwright, 2012) in a regression setting. The challenges when data are corrupted

or not fully observed are that the estimated covariance matrix does not remain positive

semi-definite, especially when p > n, and the estimated covariance matrix is guaranteed to

have negative eigenvalues. As a result, the objective function does not remain convex and

consequently becomes unbounded from below. Loh and Wainwright (2012) proposed to
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estimate the precision matrix using a nodewise regression (Meinshausen and Bühlmann,

2006) method for graphical models with an additional constraint on the estimator. Fan

et al. (2019) generalized this idea to the penalized likelihood formulation of the Gaussian

graphical model with an additional constraint on the precision matrix parameter. We

discuss each method in detail in Chapter 2 and 3. These methods are non-convex in nature

with an additional side constraint and that require an initial guess about the operator norm

of the true parameter of interest. Compared to this method, we propose to project Σ̂ to its

nearest positive semi-definite matrix, thereby guaranteeing the objective function to be

convex. Hence we can avoid performing any non-convex analysis. This idea is established

in a regression setting with measurement error being present in the data in Datta and Zou

(2017). We develop the theoretical deviation bounds for precision matrix estimation in a

graphical model setting for different measurement error scenarios and also compare the

empirical results with several other existing methods to estimate precision matrix with

corrupted data in Chapter 3. Finally, we provide an example of a real data analysis to

demonstrate the application of the method developed in Chapter 3.

Next, in Chapter 4, we study multivariate regression with multiple responses regressed

on a single set of prediction variables where the responses would contain noisy obser-

vations. Here the goal is twofold; estimating the sparse regression coefficient matrix

accounting for correlation of the response variables through estimating the precision ma-

trix of the errors. We discuss the existing approaches to handle this type of problem in

Chapter 2 when there is no corruption in the data. Specifically, we assume sub-Gaussian

tail behaviour of the maximum deviation of the sample and population covariance matri-

ces of the response, predictors and the measurement error variables, respectively. In terms

of contamination, we only consider the case when there is missing data in the response

variables. In a high-dimensional setting, penalized estimators of the coefficient matrix are

obtained with an assumption that the coefficient matrix is elementwise sparse and the

precision matrix of the error is also sparse. Similar to Chapter 3, we run into the estimation
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problem of the covariance matrix of the error to be non-positive semi-definite. We provide

a three stage solution for the estimation and employ the idea of projecting the estimated

covariance of the error to its nearest positive semi-definite matrix, thereby preserving

the convexity of the objective function. We develop theoretical guarantees under these

assumptions in Chapter 4 and also perform simulation studies to demonstrate our method

comparing with another existing method.

The thesis is organized as follows. In Chapter 2, we provide a literature review of

estimating the precision matrix under clean data and corrupted data assumptions under

sparsity assumptions in high-dimensional setting. We also provide a literature review of

the joint estimation of conditional graphical model with multiple responses under both

clean and unclean data assumptions. In Chapter 3 and 4, we provide the theoretical basis

for our work. We also provide some examples of real data analysis under each of the

considered setups in Chapter 3 and 4. Finally, we provide a discussion of all our findings

in Chapter 5, and in Chapter 6 a general conclusion and future research directions are

discussed.
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Chapter 2

Literature Review

In this chapter, we provide an extensive summary of precision matrix estimation in sparse

high-dimensional settings. First we discuss the classical methods that are available to

estimate sparse precision matrices. We also discuss the literature that has studied different

convergence rates under different distributional assumptions. Next, we provide a thorough

literature review of sparse precision matrix estimation when there is noise present in the

data. Finally, we discuss the literature on estimating the coefficient matrix and precision

matrix in a multivariate response linear regression model in the presence of noisy data.

2.1 Classical Methods of Precision Matrix Estimation

Assuming multivariate normality of the observations, the sparsity pattern of the precision

matrix determines conditional dependence relationships between the variables. More

precisely, if we have n independent observations from a p-dimensional zero mean Gaussian

random vector X := (X1, . . . , Xp)
>, then the density parameterized by the precision matrix

Θ∗ := (Σ∗)−1 � 0 can be written as

f(x1, , . . . , , xp; Θ
∗) =

1√
(2π)p det (Θ∗)−1

exp
{
− 1

2
x>Θ∗x

}
. (2.1)
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The conditional independence relationship can be characterized by an undirected graph

G := (V,E), where the vertex set V := {1, . . . , p} corresponds to the p variables in X , and

the edge set E describes the conditional independence between any pair Xj and Xk in

X (j, k ∈ V ). If Xj ⊥⊥ Xk|X\{j,k} that Xj is conditionally independent of Xk given X\{j,k},

where X\{j,k} := {Xi : i 6= j, k}, we say that X is Markov with respect to G. The goal of

covariance selection is to identify the edges in the set E. Under the Gaussian assumption

for X , it is a well-known result that the zero pattern of the precision matrix Θ∗ := (Σ∗)−1

corresponds the edge structure E of the underlying graph. We say that Xj and Xk are

conditionally independent given the remaining variables precisely if and only if Θ∗jk = 0

(Lauritzen, 1996).

As discussed in Pourahmadi (2011), as the number of parameters grows rapidly with

the number of variables, the problem relies heavily on regularization. When the sample

size n is larger than p, the sample covariance matrix Σ̂ is the maximum likelihood estimator

of the p×p covariance matrix Σ and it optimally converges to Σ at the rate n−1/2. However,

when p� n, the sample covariance estimate behaves poorly since the eigenstructure of

the matrix gets distorted in the sense that the largest sample eigenvalue will be biased

upward and the smallest sample eigenvalue would be biased downward (Johnstone, 2001;

Johnstone and Lu, 2009). Imposing regularization therefore has become a standard way to

improve the estimator.

In this section, we discuss classical methods that are developed in literature to estimate

precision matrix in a sparse setting. When the sample is drawn from a multivariate normal

distribution, one of the most widely used approach is neighbourhood selection (Meinshausen

and Bühlmann, 2006). The neighbourhood Nj of a node j ∈ V consists of all nodes

k ∈ V \{j} such that (j, k) ∈ E. This regression-based approach provides a sparse estimate

of the precision matrix or a Gaussian graphical model by fitting separate Lasso (Tibshirani,

1996) regression to each variable, using the others as predictors. Let Xj be the jth column

of X ∈ Rn×p and X−j ∈ Rn×(p−1). For each variable j, we solve the following optimization

6



problem

θ̂(λn) = arg min
θ∈Rp−1

( 1

2n
‖Xj −X−jθ‖2 + λn‖θ‖1

)
(2.2)

where λn > 0. Then we obtain the neighbourhood estimate N̂j = {k ∈ V \{j}|θ̂k 6= 0}.

This step returns the neighbourhood estimate of each variable. These estimators might

be inconsistent, meaning that for a given pair of distinct vertices (j, k), it may be the case

that k ∈ N̂j whereas j /∈ N̂k. To resolve this, we need to combine the estimates to form an

edge estimate Ê using the OR rule or the AND rule. The OR rule declares that (j, k) ∈ ÊOR

if either k ∈ N̂j or j ∈ N̂k and the AND rule declares that (j, k) ∈ ÊAND if either k ∈ N̂j

and j ∈ N̂k. This procedure consistently estimates the precision matrix even in the case

when the number of variables grow as rapidly as the sample size. However, it does not

guarantee to produce a positive definite estimate Θ̂. Wainwright (2019) detailed graph

selection consistency under the incoherence condition on the population which enforces

the requirement that there should be no edge variable that is not included in the graph

that is highly correlated with variables within the true edge-set.

Since the idea of Meinshausen and Bühlmann (2006) is simple, it has inspired several

other improved sparse estimators of the precision matrix using a penalized likelihood

approach with a Lasso penalty on the off-diagonal elements (Banerjee et al., 2008; Friedman

et al., 2008; Peng et al., 2009; Rocha et al., 2008; Rothman et al., 2008; Yuan and Lin, 2007).

They consider maximizing the penalized log-likelihood over a non-negative definite matrix

Θ

log det(Θ)− tr(SΘ)− λ�Θ�1 (2.3)

where tr is the trace operator, λ is the penalty parameter and �Θ�1 =
∑

ij |θij| is the `1-

norm, that is, the sum of the absolute values of the elements of the positive definite matrix

Θ. Some authors have omitted the diagonal entries from the penalty and only take the sum

of the off-diagonal elements. The objective function in (2.3) is convex. Banerjee et al. (2008)

uses a block coordinate descent to solve this problem and Friedman et al. (2008) proposed
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a coordinate descent approach. Among these methods, Friedman et al. (2008)’s graphical

Lasso is a remarkably fast algorithm that provides a sparse covariance estimator and is

guaranteed to be positive definite. Witten et al. (2011) presented a necessary and sufficient

condition that uses a block diagonal screening rule to speed up computations considerably.

These conditions were also discovered by (Mazumder and Hastie, 2012) independently.

The R package glasso (version 1.7) currently implements this block diagonal screening

rule for their Algorithm 2 (Witten et al., 2011).

Rothman et al. (2008) studied convergence rates under the Frobenius norm loss and

showed that the rate depends on how sparse the true precision matrix is. Particularly, they

showed that consistent estimates can be achieved in Frobenius and spectral norm at the

rate O(
√

((s+ p) log p)/n), where n, p and s are the number of observations, number of

nodes and the number of true edges, respectively. They used a fast iterative algorithm to

compute the estimator which depends on the Cholesky decomposition of the inverse but

produces permutation-invariant estimator.

Yuan (2010) proposed a method for estimating Θ∗ by replacing the Lasso selection by a

Dantzig selector, where they first estimated the ratio between the off-diagonal elements

ωij and the corresponding diagonal element ωii for each row i, and then estimated the

diagonal elements ωii given the estimated ratios. They also obtained the error bounds on

�Θ̂−Θ∗�1 when the columns of Θ∗ are bounded in `1 for sub-Gaussian distributions.

The Lasso penalty produces biases in the estimators asymptotically due to the linear

increase of the penalty on regression coefficients, even in a simple regression setting (Fan

and Li, 2001). Lam and Fan (2009) studied the theoretical properties of sparse precision

matrices estimation and found that the bias presented in the Lasso penalty also arises for

sparse precision matrix estimation. They studied the estimation of the precision matrix

based on regularizers that are more general than the `1-norm. For the `1 regularization

case, the obtained the same Frobenius and spectral norm rates as Rothman et al. (2008)

and showed that it succeeds in recovering the zero-pattern of Θ∗ under some scaling of
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the number of observations n and the number of true edges s. In general, to tackle the bias

issue for `1 regularization, non-convex penalties are considered under the same normal

likelihood model, for example, Smoothly Clipped Absolute Deviation (SCAD) penalty

(Fan et al., 2009; Fan and Li, 2001) and adaptive Lasso penalty (Zou, 2006).

We closely followed but then significantly extended the theoretical development in

Ravikumar et al. (2011) while developing our proposed method and therefore these

conditions are explained in more detail in Chapter 3. Ravikumar et al. (2011) showed that

even in the case of non-Gaussian X this estimator is meaningful since it corresponds to

minimizing an `1-penalized log-determinant Bregman divergence which does not require

X to be multivariate Gaussian. A function is defined to be of Bregman type if it is strictly

convex, continuously differentiable and has bounded level sets (Bregman, 1967; Censor

et al., 1997). A Bregman divergence of the form

Dg(A ‖ B) = g(A)− g(B)− 〈∇g(B), A− B〉

is induced by functions satisfying these conditions. Since g has to be strictly convex,

Dg(A ‖ B) ≥ 0 for all A and B, with equality holding if and only if A = B. The log-

determinant barrier function is a Bregman function and the Bregman divergence is given

by

Dg(A ‖ B) = − log det(A) + log det(B)− 〈〈B−1, A− B〉〉

for any strictly positive definiteA andB. Since estimating the precision matrix is essentially

conducted by minimizing

min
Θ�0
{〈〈Θ,Σ∗〉〉 − log det(Θ)}

with a possible addition of a off-diagonal `1-regularization term on Θ defined as �Θ�1,off =∑
i6=j |Θij|, i, j = 1, , . . . , , p, and the true covariance matrix Σ∗ replaced by its empirical

estimate such as the sample covariance matrix. Given the regularization constant λn > 0,
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the precision matrix can be solved by the `1-regularized log-determinant

Θ̂ = arg min
Θ�0

{〈〈Θ,Σ∗〉〉 − log det(Θ) + λn�Θ�1,off}. (2.4)

They show that since this objective function corresponds to the Bregman divergence, it can

be used without assuming that X is multivariate Gaussian. When the data are generated

from a multivariate Gaussian distribution, the divergence coincides with the `1-regularized

maximum likelihood. As discussed earlier, therefore, the precision matrix becomes more

interpretable in terms of conditional independence in that case.

Ravikumar et al. (2010) analyzed the `1-regularized logistic regression method for

Ising model selection. In another work, Ravikumar et al. (2011) obtained the convergence

rates in the elementwise `∞ norm and spectral norm, under more restrictive conditions,

such as mutual incoherence or irrepresentable conditions for more general non-Gaussian

distributions and under a variety of tail conditions. In this work, Ravikumar et al. (2011)

analyzed the performance of the precision matrix estimator under high-dimensional

scaling, where the number of nodes in the graph p, the number of edges s, and the

maximum node degree (maximum number of non-zeros per row) d, are allowed to grow

as a function of the number of observations n. They identified key quantities that measure

model complexity such as the `∞-operator norm of the true covariance matrix Σ∗, the

Hessian of the log-determinant of the objective function, Γ∗ = (Θ∗)−1 ⊗ (Θ∗)−1, the sub-

matrix Γ∗SS where S indexes the graph edges, a mutual incoherence or irrepresentability

measure on the Hessian matrix Γ∗ which is similar to the condition imposed on Σ∗ in case

of Lasso (Wainwright, 2009; Zhao and Yu, 2006) and the rate of decay on the probabilities

of the deviation bound between the estimated and true covariance matrix.

Their work establishes consistency of the precision matrix estimator Θ̂ in an element-

wise maximum-norm sense. They showed that the rate depends on the tail behaviour of

the entries of the deviation between the estimated and the true covariance matrix. Con-
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vergence rates in Frobenius and spectral norms are derived for the special cases when

X is sub-Gaussian and when X has bounded 4mth moment. Specifically, for the sub-

Gaussian case, they showed consistency of the estimator under the spectral norm at rate

�Θ̂ −Θ∗�2 = O(
√

min{d2 log p, (s+ p) log p}), with high probability when d, s and p are

the maximal degree, number of edges and number of nodes of the graph, respectively.

When X has bounded 4mth moment, they obtained consistency of the estimator under the

spectral norm at rate �Θ̂ −Θ∗�2 = O(dp1/2m/
√
n)}, which turned out to be slower than

exponential-type tail behaviour indicating that the logarithm dependence on the model

size p is linked to particular tail behaviour of the distribution of X . They also compared

their convergence rates with past research (Lam and Fan, 2009; Rothman et al., 2008) and

found equivalent results when maximal node degree d2 ≥ s and improvements when

d = o(
√
s). Finally, they showed that the estimator Θ̂ correctly specifies the zero pattern of

the precision matrix Θ∗, with probability converging to one.

Cai et al. (2011) introduce a method of constrained `1-minimization for inverse matrix

estimation (CLIME). They studied the estimation of the precision matrix Θ∗ which is

not restricted to a specific sparsity pattern which can be used to recover a wide class

of matrices in both theory and application. In particular, they showed that when the

population distribution has either exponential-type of polynomial-type tails, the rate

of convergence between the estimator and the true s-sparse precision matrix under the

spectral norm is s
√

log p/n. For the specific case of Gaussian graphical models, they

compared their work with Ravikumar et al. (2011) that assumes incoherence condition,

which is stringent and difficult to check in practice. Cai et al. (2011) established that similar

theoretical results can be obtained without assuming the incoherence condition.

In the Bayesian literature, the graphical Lasso has also been studied (Marlin et al.,

2012; Marlin and Murphy, 2009). The Bayesian graphical Lasso was developed by Wang

(2012), where they imposed a Laplace prior on the off-diagonal entries and an exponential

prior on the diagonal entries of the precision matrix independently. They defined the
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graphical Lasso estimator to be equivalent to the maximum a posteriori estimation of

their chosen model. They have also explored the distributional properties of the graphical

Lasso prior distributions. Another work with similar flavour tackling this problem had

been derived by Khondker et al. (2013) with difference in algorithmic techniques from

Wang (2012). Banerjee and Ghosal (2015) proposed an adjustment with a mixture of a

point mass and a Laplace prior to induce exact sparsity, and also derived the optimal

posterior contraction rate with respect to the Frobenius norm. In another work, Banerjee

and Ghosal (2014) assumed a banding structure on the precision matrix and derived the

posterior contraction rate with a G-Wishart prior. Some useful computational methods

to make efficient posterior calculation have been proposed by Lenkoski and Dobra (2011)

and Mohammadi and Wit (2015).

2.1.1 Tuning Parameter Selection

The appropriate choice of the tuning parameter is critical in order to ensure that the oracle

property of the penalized estimator is satisfied. In the context of precision matrix, one

desirable property of the estimator is the oracle property as defined in Fan and Li (2001).

They demonstrated the oracle properties of precision matrix estimator in Fan et al. (2009).

The oracle property consists of two conditions, namely, sparsity which means that the true

zero entries of the precision matrix are estimated as zero with probability tending to one,

and asymptotic normality, which implies that the estimators of the non-zero entries of the

precision matrix have the same limiting distribution as the maximum likelihood estimator,

knowing the true sparsity pattern. The sparsity condition is referred to as sparsistency by

Lam and Fan (2009).

It is challenging to select the tuning parameter λ, which controls sparsity in Θ in a

high-dimensional setting. For penalized likelihood methods, cross-validation (CV) for the

selection of the tuning parameter which is based on a resampling scheme is widely used.

Cross-validation requires fitting the model based on different subsets of the observations
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multiple times, which increases the computational complexity of this approach. The other

common approach to select optimal tuning parameter is based on information criteria. In

this section, we discuss the existing standard methods for selecting the tuning parameter λ

in precision matrix estimation. Lian (2011) studied the choice of tuning parameter selection

when estimating sparse precision matrices using the penalized likelihood approach. They

showed that generalized approximate cross-validation (Craven and Wahba, 1978) for

tuning parameter selection is more computationally efficient than the traditional methods.

For consistency in the selection of nonzero entries in the precision matrix, they used a

Bayesian information criterion and showed that it produces consistent model selection in

the Gaussian model.

Cross-Validation:

Cross-validation (CV) is a nonparametric methods for estimating prediction error for

selecting the tuning parameter in their non-concave penalized likelihood methods. In a

K-fold cross-validation, the data are split into training data and validation data, where the

training data are used to train the model and it is tested on the validation data. First, it

involves randomly dividing the data into K equally sized parts or “folds" and denote the

samples in the kth fold by Nk for k = 1, , . . . , , K. Typical choices of K are 5 or 10. For each

fold, the model is fitted to the K − 1 parts of the data which constitute the training data

set and the cross-validation score is calculated on the kth part of the data. This process

is repeated K times, with each of the K parts used exactly once as the validation data,

and the K estimates of cross-validation score are then combined. The case K = n is called

leave-one-out cross-validation. For the ith observation, the fit is computed using all the

data except the ith.

In a graphical model setting to estimate the precision matrix, the observed log-likelihood

is used as loss function. We can define the observed log-likelihood of an observation Xi

given a precision matrix estimate Θ̂ as `(Xi; Θ̂) = log f(Xi, Θ̂) and calculate the cross-
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validation score which we maximize as

CV (λ) =
∑
k

∑
i∈Nk

`(Xi; Θ̂
(k)

λ ). (2.5)

Then we find the best λ̂ that maximizes CV (λ). Finally, using the chosen λ̂, a final estimator

of the precision matrix is calculated using all the data.

The Akaike Information Criterion:

Another existing method for choosing the tuning parameter in penalized likelihood ap-

proaches is the Akaike information criterion (AIC) (Akaike, 1973). It was derived as an

estimator of the Kullback-Leibler (KL) divergence and it aims to minimize the KL diver-

gence between the true distribution and the estimate from a candidate model. The model

selection rule has the form of “in-sample performance plus penalty" and is defined as in

precision matrix estimation context

AIC(λ) = −2`n(Θ̂λ) + 2
∑
i<j

I(θ̂ij,λ 6= 0)

where `n(Θ̂λ) is the multivariate Gaussian log-likelihood, evaluated at Θ̂λ which is the

penalized maximum likelihood estimator of Θ for a specific given λ. I(·) is an indicator

function which counts the number of non-zero elements among the p(p− 1)/2 off-diagonal

entries in the upper half of the matrix. The optimal value of the tuning parameter in this

case is taken to be the minimizer of the criterion.

Bayesian Information Criterion:

Another model selection criterion is the Bayesian Information Criterion (BIC) developed

by Schwarz (1978). Yuan and Lin (2007) used BIC to select the tuning parameter with

the `1 penalty in the estimation of the precision matrix. The BIC arises from the Bayesian
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approach to model selection; choosing the model with minimum BIC is equivalent to

choosing the model with largest (approximate) posterior probability. In the context of

precision matrix estimation, it is defined as

BIC(λ) = −2`n(Θ̂λ) + log n
∑
i<j

I(θ̂ij,λ 6= 0) (2.6)

where `n(Θ̂λ) is defined similarly as in the definition of AIC. The optimal value of the

tuning parameter is taken to be the minimizer of the criterion. BIC uses a stronger penalty

than AIC and as n goes to infinity, the BIC will select the true model with probability one

if it is one of the models being considered.

For penalized regression estimation of Θ, Gao et al. (2012) studied the selection of

tuning parameter using BIC. They showed consistency of BIC in model selection for using

SCAD penalty or adaptive Lasso penalties in precision matrix estimation problem for a

fixed p. This refers to sparsistency, that is, BIC with SCAD penalty identifies the sparsity

pattern of the true precision matrix with probability approaching to one when n is large.

They also showed that a modified BIC with an extra penalty on the dimension p of the

precision matrix is consistent when the true edges are included in a bounded subset, if

p tends to infinity at a certain rate with the sample size. The modified BIC proposed by

Gao et al. (2012) is equivalent to the extended BIC (EBIC) selection criteria proposed by

Foygel and Drton (2010) when γ = 1. Foygel and Drton (2010) adapted EBIC for precision

matrix estimation problems from Chen and Chen (2008) who studied it for Gaussian linear

models. For some γ > 0, EBIC is defined as

EBIC(λ) = −2`n(Θ̂λ) +
{

log n+ 4γ log p
}∑

i<j

I(θ̂ij,λ 6= 0).

Chen and Chen (2008) showed that the traditional BIC is likely to be inconsistent when p

is of a larger order than
√
n.
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The work by Gao et al. (2012) compared empirical performance of BIC and EBIC to cross-

validation and through simulation studies showed that BIC performs better for sparse

precision matrix estimation. One should choose a tuning parameter selection procedure

based on one’s statistical goal. BIC and EBIC tends to perform better due to their selection

consistency properties when the goal is to correctly identify the zeros and non-zeroes of the

precision matrix. If the goal is to achieve better prediction performance, cross-validation

and AIC are better options since they are both estimators of the KL divergence and are

asymptotically equivalent under certain assumptions.

Stability Approach to Regularization Selection (StARS):

The previously mentioned tuning parameter selection methods such as K-fold cross-

validation, AIC, and BIC work well for low-dimensional problems with good theoretical

properties, but they are not best suited for high-dimensional settings. Liu et al. (2010)

proposed the method named Stability Approach to Regularization Selection (StARS) which

is a stability-based method for choosing the regularization parameter in high-dimensional

inference for undirected graphs. In this method, the least amount of regularization is

used which simultaneously results into a sparse precision matrix and makes the graph

reproducible under random sampling. Specifically, the process starts with large regular-

ization which corresponds to an empty and highly stable graph and gradually decreases

the amount of regularization until there is small dissonance between the graphs across

the subsamples. The authors showed that under mild condition, StARS achieve sparsis-

tency in terms of graph estimation. That is, the procedure selects all true edges with high

probability even when the graph size diverges with the sample size.
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2.2 Literature Review for Precision Matrix Estimation with

Corrupted Data

In the previous section we have discussed existing methods that are available to estimate

conditional dependence graphs and precision matrix for fully observed data under sparsity

conditions. Penalized likelihood estimation is a common approach to tackle such problems.

In this section, we review the literature for precision matrix estimation in the presence of

measurement error, specifically, when the data are contaminated with additive error or

multiplicative error. Errors-in-variables models have been extensively studied in regres-

sion settings (Carroll et al. (2006); Hwang (1986); Iturria et al. (1999); Xu and You (2007)

and references therein). However, these works were not tackling the high-dimensional

scenarios where the number of variables p is much larger than sample size n.

One of the special cases of multiplicative measurement error model is the case of

missing data (Little and Rubin, 2019). One simple ad hoc approach would be to use only

the complete cases which results into a substantial decrease in sample size. Another ad hoc

method would impute the missing values by the corresponding mean and use traditional

models to solve for the precision matrix, in a graphical model setup. More systematic

approaches based on likelihoods are also popular in terms of imputing missing data (Little

and Rubin, 2019; Schafer, 1997). Städler and Bühlmann (2012) developed an Expectation

Maximization (EM)-based method for sparse inverse covariance matrix estimation in the

missing data regime in the multivariate normal case, and used this result to derive an

algorithm for sparse linear regression with missing data. They showed that estimation

of mean values and covariance matrices becomes difficult when the data are incomplete

and no explicit maximization of the likelihood is possible. Their algorithm maximizes

a `1-penalized observed log-likelihood, where the missing data are imputed using EM

algorithm. Loh and Wainwright (2012) pointed out that the EM approach proposed by

Städler and Bühlmann (2012) becomes possibly non-convex with missing or noisy data
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which will lead to optimization problems. As a consequence it becomes difficult to establish

theoretical guarantees for the algorithmic counterpart.

Among other notable studies for precision matrix estimation for data with missing

values are Kolar and Xing (2012) and Lounici (2014). Lounici (2014) established theoretical

results for non-asymptotic bounds for the estimation of covariance matrix involving the

Frobenius and spectral norms which are valid for any setting of the sample size, probability

of a missing observation and the dimensionality of the covariance matrix. Kolar and Xing

(2012) proposed a two stage method that directly estimates a large dimensional precision

matrix from data with missing values. To get an estimate of the precision matrix they form

an unbiased inverse probability weighting (IPW) estimator of the covariance matrix from

available data and then use it as a plug-in estimator in the penalized maximum likelihood

objective function for a multivariate Gaussian distribution. The elements of the covariance

matrix are calculated in such a way that takes into account of the missing values naturally

while using only the observed samples. They also provided rates of convergence for this

estimator in the spectral norm, Frobenius norm and elementwise maximum norm. They

compared their results with the EM-based method (Städler and Bühlmann, 2012) and

showed that it performs favourably.

As mentioned earlier, in a high-dimensional setting, undirected graphs can be estimated

using penalized methods defined in (2.4). The true covariance matrix Σ∗ is unknown and

typically replaced by the sample covariance matrix estimator Σ̂ = X>X/n as an input.

When the data are not corrupted, this estimator is at least positive semi-definite and the

optimization problem remains convex under `1 regularization. In this setting, it can be

shown that for λ > 0 a unique optimum Θ̂ exists with bounded eigenvalues and that

the iterates for any descent algorithm will also have bounded eigenvalues (Hsieh et al.,

2014). In case of noisy or missing data, the most natural choice of the sample covariance

matrix is no longer positive semi-definite and is guaranteed to have negative eigenvalues,
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therefore, making the objective functions non-convex. Moreover, the objective function is

unbounded from below when Σ̂ has a negative eigenvalue.

The noise-corrected non-convex approach in a regression setting was proposed and

analyzed by Loh and Wainwright (2012, 2017). They discussed unbiased surrogate esti-

mators of the sample covariance matrix in both multiplicative and additive noise cases,

one of which has also been studied by Xu and You (2007) in case of additive noise in n > p

case. The unbiased surrogate estimate is not positive semi-definite and therefore Loh and

Wainwright (2012) optimized a non-convex objective function and studied the statistical

error associated with any global optimum. We discuss the surrogate estimates for each

type of measurement error in detail in Chapter 3. Loh and Wainwright (2012) proposed

an algorithm based on projected gradient descent which optimizes a Lasso type objective

function with an additional side constraint on the `1-norm of the regression coefficients.

They proved that the algorithm will converge in polynomial time to a small neighbour-

hood of the set of all global minimizers. In this work, they provided non-asymptotic

bounds that hold with high probability. They also showed an application to graphical

model where they estimate the precision matrix using nodewise regression (Meinshausen

and Bühlmann, 2006) incorporating an additional constraint on the regression coefficients

of the objective function. They generalized this work and obtained theoretical results

for regularized M -estimators where both loss and penalty functions are allowed to be

non-convex (Loh and Wainwright, 2013, 2017). They established that the graphical Lasso

using non-convex penalties can be modified to accommodate noisy or missing data by

using the unbiased surrogate estimates for the sample covariance estimate. A related

corrected form of the Dantzig selector was proposed by Rosenbaum and Tsybakov (2010)

in case of sparse regression models.

An alternative approach to the unboundedness of the objective function with non-

positive semi-definite input is to project the input matrix Σ̂ to the positive semi-definite

cone and then use that as a plug-in estimate for the objective function in (2.4). Specifically,
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we can project Σ̂ to its nearest positive semi-definite matrix Σ as,

Σ̃ = arg min
Σ�0

�Σ− Σ̂�max

where � · �max is the elementwise maximum norm. Σ̃ is known as the Convex Conditioned

Lasso (CoCoLasso) estimate as proposed by Datta and Zou (2017). Since the input projected

matrix is positive semi-definite, consequently the objective function is convex. The projec-

tion can be implemented using an alternating direction method of multipliers (ADMM)

method (Boyd et al., 2011) as shown by Datta and Zou (2017). This method can handle a

general class of corrupted datasets including the cases of additive or multiplicative mea-

surement error and random missing data. It is well known that Lasso enjoys theoretical

and computational benefits of convexity, and this also holds for CoCoLasso as well. In

Datta and Zou (2017), they derived statistical error bounds for the CoCoLasso estimate and

established asymptotic sign-consistent selection properties of CoCoLasso. Their method is

advantageous compared to Loh and Wainwright (2012) because the latter did not provide

sign-consistency results for the non-convex approach. Another advantage of this method is

that it does not require any prior knowledge of the parameters, unlike Loh and Wainwright

(2012), since their approach assumes a constraint on the parameter. They also proposed a

calibrated cross-validation method for tuning the regularization parameter in their regres-

sion setup. Our proposed methodology and theoretical development fundamentally relies

on this idea and will be demonstrated in Chapter 3 in detail.

Fan et al. (2019) generalizes the idea of Loh and Wainwright (2012) for sparse precision

matrix estimation with corrupted data and developed an ADMM algorithm for efficient es-

timation. Their approach proposes using non-convex regularizers such as SCAD (Fan and

Li, 2001) and minimax concave penalty (MCP) (Zhang, 2010) along with a `1-regularizer.

They compared their proposed method empirically with other existing methods including

the projection method (Datta and Zou, 2017) and argued that when the penalties are
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non-convex the unboundedness of the objective function still remains and their method

deems useful even for such projected methods. In their paper, they consider the objective

function

Θ̂ ∈ arg min
Θ�0,�Θ�2≤R

{tr(Σ̂,Θ)− log det(Θ) + gλ(Θ)} (2.7)

where �Θ�2 is the spectral norm of the true precision matrix, Σ̂ is a surrogate unbiased

estimator accounting for the type of measurement error and gλ is a separable (entry-wise)

sparsity inducing penalty function. Σ̂ may not be positive semi-definite in the presence

of measurement error, resulting in an unbounded objective function. In their proposed

non-convex approach solved with the ADMM algorithm, they focus on the estimator of the

precision matrix using the operator norm as a side constraint. In this chapter, we compare

our proposed method empirically with the method proposed by Fan et al. (2019).

There are some Bayesian approaches that tackle the problem of precision matrix es-

timation in the presence of measurement error. Byrd et al. (2021) proposed a Bayesian

estimator to estimate sparse precision matrices that corrects for measurement error. With

the assumption that the variance of the measurement error is known, they treated the

unobservable outcomes as missing data and proposed a method to impute them and

iteratively estimate the precision matrix. They combined the imputation-regularized opti-

mization algorithm (Liang et al., 2018) and Bayesian regularization for graphical models

with unequal shrinkage (Byrd et al., 2021) to formulate a new procedure and prove its

consistency. Their method had desirable results compared to other naive approaches.

Shi et al. (2021) established a fully Bayesian framework to handle measurement error

and established a general result which provides sufficient conditions under which the

posterior contraction rates that hold in the no-measurement-error case carry over to the

measurement-error case.

Recently, methods have been developed for a more general type of missing dependence

structure unlike the simpler cases where every variable of each sample is independently

subject to missingness with equal probability. For high-dimensional precision matrix

21



estimation, Park et al. (2021) studied the theoretical properties of the deviation of the IPW

estimators that correct for bias due to missingness under general missing dependency. They

provided optimal convergence rates of the estimator based on the elementwise maximum

norm, even when the assumptions such as known mean and/or missing probabilities are

relaxed.

Öllerer and Croux (2015) proposed different high-dimensional precision matrix esti-

mators that are robust to cellwise contamination. They proved that replacing the sample

covariance matrix in the graphical Lasso with an elementwise robust covariance matrix

leads to an elementwise robust, sparse precision matrix estimator computable in high-

dimensions. Loh and Tan (2018) studied cellwise contamination for sparse precision matrix

estimation from a statistical consistency point of view. They provided high-dimensional

error bounds for the precision matrix estimators that reveal the interplay between the

dimensionality of the problem and the degree of contamination permitted in the observed

distribution.

2.3 Literature Review for Joint Estimation of Regression

Coefficients and Precision Matrix Estimation

In the previous section we discussed the literature for estimating sparse linear regression

with a single response variable in a high-dimensional setting when the covariates were

corrupted (Datta and Zou, 2017; Loh and Wainwright, 2012). Imagine that instead of

having one response variable, now we have multiple responses. Let us first consider the

case when we have fully observed data. Specifically, suppose that we have n independent

and identically distributed observations from some joint distribution of Y and X . In matrix

notation, we can rewrite (4.1) as a model of n stacked observations

Y = XB∗ + ε,
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where X = [x1, . . . ,xn]> ∈ Rn×p and Y = [y1, . . . ,yn]> ∈ Rn×q denote the data matrices, in

which each row xi ∈ Rp and yi ∈ Rq corresponds to an observation drawn i.i.d. from a

distribution for X and Y respectively, and ε = [ε1, . . . , εn]> ∈ Rn×q denotes the matrix of

random noises. We aim to estimate the true coefficient matrix B∗ ∈ Rp×q and Σ∗εε where

Σ∗εε ∈ Rq×q represents the covariance structure of Y conditional on X .

This problem can be formulated as the sparse multivariate regression with correlated

errors and can be solved by `1-penalization methods. The model has both high-dimensional

regression coefficient matrix and high-dimensional covariance matrix. In the literature

such models have been studied to estimate multivariate regression with correlated errors.

Rothman et al. (2010) has proposed to jointly estimate B∗ and Θ∗εε := (Σ∗εε)
−1 by minimizing

the negative log-likelihood with `1 penalization as follows:

(Θ̂, B̂) = arg min
Θ�0,B

tr

[
1

2n
(Y −XB)>(Y −XB)Θ

]
− 1

2
log det(Θ) + λΘ�Θ�1,off + λB�B�1,1

where �Θ�1,off =
∑

j′ 6=j |Θjj′ |, �B�1,1 =
∑

j,k |Bjk|, and λΘ, λB ≥ 0 are tuning parameters

controlling the sparsity in Θ̂ and B̂, respectively. They called this method multivariate

regression with covariance estimation (MRCE). Their approach involved a penalized

likelihood and they proposed an efficient algorithm and a fast approximation by simulta-

neously estimating the regression coefficients and the covariance structure. Their work

was computational in nature and no theoretical results were provided. They showed

that the optimization problem is only convex if B∗ is estimated with a fixed Θεε and vise

versa. When the components of the error vector ε are strongly correlated they showed that

employing a one-step method to estimate B∗ is improved by incorporating an estimate of

Θεε.

Yin and Li (2011) developed a coordinate descent algorithm that iteratively updates the

regression coefficients and the precision matrix based on `1-penalization. They provided

asymptotic results on estimation bounds and consistency. In another study (Yin and
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Li, 2013), they proposed a two-stage estimation procedure to first identify the relevant

covariates that affect the means by a joint `1 penalization. Then they use the estimated

regression coefficients to estimate the mean values in a multivariate sub-Gaussian model

in order to estimate the sparse precision matrix through a `1-penalized log-determinant

Bregman divergence. They also established convergence rates in elementwise maximum

norm, Frobenius norm and spectral norm when both p and q are larger than n.

Cai et al. (2013) took a similar approach to estimate covariate adjusted precision matrix,

but without making a multivariate normal assumption on the error distribution. They

provided the rates of convergence and the estimation bounds for the estimates of both the

regression coefficient matrix and the precision matrix in various matrix norms, allowing

both p and q to diverge with n.

Another work by Wang (2015), proposed a method that decomposes the multivariate

regression problem into a series of penalized conditional log-likelihood of each response

conditional on the covariates and other responses. The use the adaptive Lasso penalty

(Zou, 2006) to facilitate the sparse estimation of both the sparse multivariate regression

coefficient matrix and the precision matrix. They showed that the proposed estimators

possess asymptotic consistency and normality in diverging dimensions.

For the multivariate regression case, in a situation when we observe only strictly

increasing transformations of the continuous responses and covariates, Zhao and Genest

(2019) proposed an estimation of the joint dependence between all the observed variables

characterized by an elliptical copula and used non-parametric estimators of the input

matrix for the covariates. The coefficient matrix was assumed to be either elementwise

sparse or row-sparse along with sparsity assumption on the precision matrix. Their

method follows a one-step procedure similar to Rothman et al. (2010) in three stages and

also considers cases when the estimated covariance structure for the covariates are not

positive semi-definite, thereby the objective function at that step to be non-convex. They

used the projection method proposed by Datta and Zou (2017) to convert the optimization
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problem to be convex for further analysis. They also established the theoretical properties

of their estimators.

Our theoretical analysis adopts the framework by Zhao and Genest (2019) assuming

that the responses, covariates and the errors are sub-Gaussian. We assume that the

responses are partially observed and contains missing data, but the covariates are fully

observed. In Chapter 4 we show that due to the presence of missing data, the input matrix

may not be positive semi-definite and the objective function might become unbounded

from below. We assume that the true regression coefficients are elementwise sparse and

propose a three stage estimation of the regression coefficients and the precision matrix.

Since the estimated error covariance does not remain positive semi-definite, we first replace

the empirical sample covariance for the error with an unbiased surrogate estimate for

missing data and then project the estimator onto the nearest positive semi-definite cone

(Datta and Zou, 2017). As a result, the overall objective function becomes convex. We

also establish the theoretical guarantees in terms of elementwise maximum norm. Our

theoretical results will have some resemblance to their work which will be shown in

Chapter 4.

2.4 Summary

In this chapter, we reviewed the existing classical methods in the literature for estimating a

sparse precision matrix in a high-dimensional setup. We focused mainly on the works that

are based on penalized likelihood framework. We discussed various tuning parameter

selection procedures along with the computational algorithm for the classical methods.

Next, we studied the literature that are developed to estimate the sparse precision matrix

in the presence of measurement error that includes presence of additive error and missing

data. Finally, we discussed literature that studied how to jointly estimate the sparse
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precision matrix and the regression coefficients from a multivariate regression setup in the

presence of missing data.
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Chapter 3

Precision Matrix Estimation in the

Presence of Corrupted Data

In this chapter we develop estimators of the precision matrix when the observed data

are corrupted by measurement error. We provide the key theoretical results concerning

consistency and give rates of convergence. We also provide simulation studies and a real

data example to demonstrate the proposed method.

3.1 Introduction

Given n independent observations of a p-dimensional random vector X := (X1, . . . , Xp)
>,

we wish to estimate the conditional independence relationships betweenX1, . . . , Xp, which

can be characterized by an undirected graph G := (V,E), where the vertex set V :=

{1, . . . , p} corresponds to the p variables in X , and the edge set E describes the conditional

independence between any pair Xj and Xk in X (j, k ∈ V ). Denote by Xj ⊥⊥ Xk|X\{j,k}

that Xj is conditionally independent of Xk given X\{j,k}, where X\{j,k} := {Xi : i 6= j, k}.

We say that X is Markov with respect to G if

Xj ⊥⊥ Xk|X\{j,k} for all (j, k) /∈ E. (3.1)

27



Denote the inverse covariance or precision matrix Θ∗ := (Σ∗)−1. Under the Gaussian

assumption of X , it is a well-known result that the zero pattern of Θ∗ corresponds the

edge structure E of the underlying graph, i.e. (3.1) holds if and only if Θ∗jk = 0. This

estimator is sensible even for non-Gaussian X since it corresponds to minimizing an

`1-penalized log-determinant Bregman divergence which does not necessarily require X

to be multivariate Gaussian (Ravikumar et al., 2011).

Suppose that we are given an n× p data matrix X = (x1, . . . ,xn)>, in which each row

xi ∈ Rp corresponds to an observation drawn i.i.d. from a distribution. When n� p, we

can estimate Σ∗ using the sample covariance estimator

S =
1

n
X>X, (3.2)

When n < p, the sample covariance estimate will be singular. Therefore, it is common to

consider a regularized approach such as the graphical Lasso estimator

Θ̂ = arg min
Θ�0

tr(SΘ)− log det(Θ) + λn‖Θ‖1,off . (3.3)

When the data are contaminated by measurement errors, we observe a corrupted

matrix Z = (z1, . . . , zn)> instead of the original matrix X. We can view Z as some function

of the true matrix X and the measurement error matrix. The measurement error process

can be modeled in various ways. If the random error is additive, we observe zi = xi + wi,

where wi is a random error independent of xi. If the measurement error is multiplicative,

we observe zi = xi � wi, where � is the elementwise multiplication operator and wi is

the multiplicative error independent of xi. The missing data setup can be viewed as a

special case of multiplicative errors, where wij , i.e. the jth component of wi, follows a

Bernoulli(1− πj) distribution and wij’s are independent for j ∈ {1, . . . , p}.
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If the measurement error issue is simply ignored, we would consider directly minimiz-

ing the objective function

tr(SZΘ)− log det(Θ) + λn‖Θ‖1,off

where SZ = (1/n)Z>Z is the sample covariance matrix of the corrupted data. Alternatively,

Loh and Wainwright (2012) use Z to construct unbiased estimates Σ̂ for Σ∗. For example,

consider the additive measurement errors wi’s are i.i.d. with mean zero and variance-

covariance σ2
W Ip. Here σ2

W is known. Loh and Wainwright (2012) proposed the following

unbiased estimate for S when the data are corrupted

Σ̂ =
1

n
Z>Z− σ2

W Ip = SZ − σ2
W Ip. (3.4)

We can see that it is unbiased since

E
[

1

n
Z>Z

]
=

1

n
X>X + σ2

W Ip.

Note that if σ2
W Ip = 0, it reduces to the clean data case. It is natural to consider minimizing

tr(Σ̂Θ)− log det(Θ) + λn‖Θ‖1,off (3.5)

to get an estimate of Θ.

However, unlike S = (1/n)X>X which is always positive semi-definite, the estimate

Σ̂ is not necessarily positive semi-definite. This could lead to a non-convex objective

function in (3.5). Moreover, when Σ̂ has negative eigenvalues, the objective function (3.5)

is unbounded from below. In order to overcome these issues, Loh and Wainwright (2012)

proposed an additional constraint on the estimator ‖β‖1 ≤ b0

√
s for the regression setting,

where b0 is some constant and the value of s is given. They used this method to estimate the
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inverse covariance for Gaussian graphical models by considering the node-wise regression

problem

Xj = X−jβ
(j) + ε(j),

where Xj denotes the vector X with jth entry removed, ε(j) is a vector of i.i.d. Gaussian

and ε(j) ⊥⊥ X−j . Then the inverse covariance can be estimated using the relationship

Θj,−j = −(Σjj −Σj,−jβ
(j))−1β(j).

Fan et al. (2019) generalized this idea to the global likelihood formulation for the

Gaussian graphical model. They consider minimizing the following objective function

Θ̂ = arg min
Θ�0,�Θ�2≤R

tr(Σ̂Θ)− log det(Θ) + λn‖Θ‖1,off , (3.6)

subject to the additional constraint on the operator norm of the true precision matrix. They

showed that if the value of R is properly chosen, an ADMM algorithm can converge to the

global minimum of (3.6).

Compared to these methods, we propose to project Σ̂ to its nearest positive semi-

definite matrix, thereby guaranteeing the estimator to be convex. Hence we can avoid

performing any non-convex analysis. Since there are no additional constraints to satisfy

in the convex analysis, another advantage of our method is that it does not require the

knowledge of an initial estimate of ‖β‖1 or �Θ�2 to obtain a bound for ‖β‖1 or �Θ�2,

respectively.

Notation and Definitions. For a matrix A, we denote by A � 0 when A is positive

semi-definite. Let �A�1 be the operator norm induced by `1 norm for vectors, which can be

computed by �A�1 = maxj
∑

i | aij |, i.e. the maximum absolute column sum of the matrix.

Denoted by �A�2, the operator norm that can be computed as the greatest singular value

of A, i.e. �A�2 = maxj σj(A). Let �A�∞ be the operator norm induced by an `∞ norm,

which can be computed by �A�∞ = maxi
∑

j | aij |, i.e. the maximum absolute row sum of
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the matrix. Let �A�1,1 =
∑

i,j | aij | be the elementwise `1-norm, �A�F =
√∑

i,j | aij |2 be

the Frobenius norm, and �A�max = maxi,j | aij | be the elementwise maximum norm. Let

Λmin(A) and Λmax(A) denote the smallest and largest eigenvalues of A. For two matrices

A = (aij) and B = (bij), we define A � B = (aijbij) as their elementwise product, and

A�B = (aij/bij) as their elementwise division. We assume that all variables are centered

so that the intercept term is not included in the model and the design matrix X has

normalized columns, that is, (1/n)
∑n

i=1 x
2
ij = 1 for every j = 1, . . . , p.

A sub-Gaussian random variable Z with the parameter τ > 0 satisfies the tail probability

bound Pr(|Z| ≥ t) ≤ 2 exp(−t2/2τ 2) for all t ≥ 0; a 4mth moment-bounded random variable

Z with the parameter Km > 0 satisfies the condition E(Z4m) ≤ Km with m ∈ Z+.

3.2 Methodology

From the earlier discussion, we know that the estimate Σ̂ is often not positive semi-definite.

To overcome this technical difficulty, by following (Datta and Zou, 2017), we can project Σ̂

to its nearest positive semi-definite matrix. Specifically,

Σ̃ = arg min
Σ�0

�Σ− Σ̂�max. (3.7)

Then we define the Convex conditioned Graphical Lasso (CoGlasso) estimate as

Θ̂ = arg min
Θ�0

tr(Σ̃Θ)− log det(Θ) + λn�Θ�1,off . (3.8)

We aim to derive the elementwise `∞-norm for the statistical error of the CoGlasso

estimate from the truth. To do so, we need to bound the statistical error between the

projected covariance matrix Σ̃ for the unclean data defined in (3.7) and the true covariance
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matrix Σ∗. We can decompose the error as follows:

�Σ̃−Σ∗�max = �Σ̃− S + S−Σ∗�max,

where S is the estimated sample covariance matrix if there is no corruption in the data.

Using triangular inequality, we can write

�Σ̃−Σ∗�max ≤ �Σ̃− S�max + �S−Σ∗�max. (3.9)

In the following section, we define conditions that are required to characterize the closeness

between two random matrices in terms of the elementwise maximum norm that would

essentially provide us the probabilistic bounds for the terms in (3.9).

3.3 Tail Conditions

We define the following closeness condition (Ravikumar et al., 2011) between two random

matrices.

Definition 1. [Closeness condition] Two (random) matrices Σ(1) and Σ(2) satisfy the close-

ness condition if there exists a constant v∗ ∈ (0,∞] and a function f : N× (0,∞)→ (0,∞)

such that for any j, k = 1, . . . , p the following probability bound holds:

Pr(�Σ(1) −Σ(2)�max ≥ δ) ≤ p2

f(n, δ)
for all δ ∈

(
0,

1

v∗

]
. (3.10)

When v∗ = 0 the inequality holds for any δ ∈ (0,∞). We will consider two types of tail

functions, namely,

a) Exponential-tail function: when f(n, δ) = C exp(cnδa), for some positive constant C

and c and exponent a > 0.
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b) Polynomial-tail function: when f(n, δ) = c∗n
mδ2m, for some positive integer m ∈ N

and scalar c∗ > 0.

Example 1. By Lemma 1 of Ravikumar et al. (2011): When zero mean and normalized

random vector (X1, . . . , Xp) is sub-Gaussian with parameter σX , for n i.i.d. samples, the

associated sample covariance S obtained from the clean data and the true covariance Σ∗

satisfies the closeness condition with exponential-tail function f(n, δ) = (1/4) exp(cnδ2)

with C = 1/4 and c = [64(1 + 4σ2
X)2]−1.

Example 2. By Lemma 2 of Ravikumar et al. (2011): When zero mean and normalized

random vector (X1, . . . , Xp) has 4mth bounded moments, for n i.i.d. samples, the sample co-

variance S and the true covariance Σ∗ satisfies the closeness condition with polynomial-tail

function f(n, δ) = c∗n
mδ2m, with c∗ = [22mCm(Km + 2)]−1 and Cm as a constant depending

only on m.

As n increases, we can expect that the elementwise tail probability bound 1/f(n, δ) would

decrease, or equivalently the tail function f(n, δ) would increase. Therefore, f is required

to monotonically increase in n, so that for each fixed δ > 0, the inverse function can be

defined as

n̄f (δ, r) := arg max {n | f(n, δ) ≤ r} , (3.11)

which is the largest n such that f(n, δ) ≤ r, where r ∈ [1,∞). Similarly, we expect that f is

monotonically increasing in δ, so that for each fixed n, the inverse function in the second

argument can be defined as

δ̄f (n, r) := arg max {δ | f(n, δ) ≤ r} , (3.12)

which is the largest δ such that f(n, δ) ≤ r. Now, if we can find a n such that n > n̄f (δ, r),

that would imply that f(n, δ) > r, for some δ > 0. Consequently, since f is a monotone
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function, this would imply that δ̄f (n, r) ≤ δ. Therefore, we can write

n > n̄f (δ, r) for some δ > 0 =⇒ δ̄f (n, r) ≤ δ. (3.13)

The inverse functions n̄f and δ̄f are important because they help to describe the behaviour

of the estimators.

In case of Example 1, if X is multivariate Gaussian, then the deviation of the sample

covariance matrix has an exponential-type tail function with a = 2. Therefore, it can be

shown by some calculations that the associated inverse functions take the following forms:

δ̄f (n, r) =

√
log(4r)

cn
, and n̄f (δ, r) =

log(4r)

cδ2
.

In Example 2, for the polynomial-type tail function it can be shown that the inverse tail

functions take the forms

δ̄f (n, r) =
(r/c∗)

1/2m

√
n

, and n̄f (δ, r) =
(r/c∗)

1/m

δ2
.

By applying the closeness condition to S and Σ∗, it can be shown that we can bound the

second term in (3.9) as demonstrated in Example 1 and 2 for exponential and polynomial-

type tails. The details of the proofs can be found in Lemma 1 and 2 in Ravikumar et al.

(2011). Therefore, we only need to provide probabilistic bounds for the first term in (3.9).

Deriving the bounds for these components separately will lead us to deriving a bound for

Σ̃−Σ∗ .

In the following sections we start with deriving a bound for the first quantity �Σ̂−S�max

in terms of a closeness condition for cases when the underlying random variables are (i)

sub-Gaussian, and (ii) have bounded moments. Then we provide a probability bound to

ensure that Σ̃ approximates Σ̂ and put all the components together in Theorem 1.
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3.4 Two Types of Measurement Errors

Given n independent observations of a p-dimensional random vector X := (X1, . . . , Xp)
>,

we want to estimate the conditional dependence relationships between X1, . . . , Xp. With

the presence of contamination, we do not directly observe X , we instead use a surrogate

estimator Σ̂ to estimate the covariance matrix based on the contaminated data Z.

3.4.1 Surrogate Estimators

Additive error. Following Loh and Wainwright (2012) and Xu and You (2007), we assume

the observed matrix can be written Z = X + W, where the rows of X are i.i.d. with zero

mean, finite covariance Σ∗. Here W = (w1, . . . ,wn)> is a matrix of additive measurement

errors, with rows being i.i.d. with zero mean, finite known covariance ΣW . Also assume

that any row of X is independent to any row of W. One can find an unbiased estimator of

Σ∗ as

Σ̂addi =
1

n
Z>Z−ΣW .

In the following two lemmas, we show that the surrogate estimators Σ̂addi is sufficiently

“close” to the covariance estimator S. We consider two different distribution assumptions

for X and W: sub-Gaussian and moment-bounded. The proofs of the lemmas are provided

in Section 3.9.

Lemma 1. [Additive, sub-Gaussian errors.] Suppose that the rows of X and W are i.i.d. sub-

Gaussian with parameter σ2
X and σ2

W , respectively. The associated surrogate estimator Σ̂addi and

covariance for clean data S satisfy the closeness condition (3.10) with the function f(n, δ) =

C exp(cnδ2ξ−1), where C and c are universal constants and ξ = max(σ4
W , σ

2
W , σ

2
Xσ

2
W , σXσW )

and δ0 are positive functions depending on σ2
X and σ2

W such that for every δ ≤ δ0 the bound holds.

When δ is sufficiently small, specifically for δ ≤ min(σXσW , σ
2
W ), Σ̂addi and S satisfy the closeness

condition with ξ = max(σ4
W , σ

2
Xσ

2
W ).
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Lemma 2. [Additive, moment-bounded errors.] Consider that the rows of X and W are i.i.d. 4mth

moment-bounded with parameter Km,X and Km,W , respectively. Σ̂addi and S satisfy the closeness

condition with the function f(n, δ) = c∗n
mδ2m, where c∗ is a universal constants

c∗ =
[
Cm24m {6m + 2(1 +Km,X)(1 +Km,W ) +Km,W + (1 + 2m)}

]−1
,

and the bound holds true for every δ ≥ 0.

Multiplicative error and missing data. We can also consider the case when the errors are

multiplicative. We assume the observed matrix is Z = X�W where W = (w1, . . . ,wn)>

is a matrix of multiplicative errors where each row wi ∈ Rp of W is independent and

identically distributed with known mean E(W ) = µW ∈ Rp and covariance ΣW . In

addition, µW and ΣW are assumed to have positive entries. Under these assumptions, Loh

and Wainwright (2012) proposed to use the unbiased estimators

Σ̂mult =
1

n
Z>Z� E(WW>) =

1

n
Z>Z�

(
ΣW + µWµ

>
W

)
. (3.14)

Data that are missing at random can be viewed as a special case of the multiplicative er-

ror model. Assume that xij , the jth component of xi, is missing at random with probability

πj . In other words, for each observation zi, we independently observe the jth component

zij = xij with probability 1 − πj , and zij = 0 with probability πj . This can be modeled

by introducing Bernoulli random variables wij = I(xij is not missing) ∼ Bernoulli(1− πj)

as the (i, j)th entry of W in the previous multiplicative error model. If the value of πj is

unknown, it can be estimated by using the proportion of missing entries in jth column of

X. Followed by (3.14), the estimator becomes

Σ̂miss =
1

n
Z>Z� E(WW>),
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with

E[WW>]ij =


(1− πi)(1− πj), i 6= j,

(1− πi), i = j.

Lemma 3. [Multiplicative, sub-Gaussian errors.] Σ̂mult and S satisfy the closeness condi-

tion with the function f(n, δ) = C exp(cnδ2ξ−1) and ξ = max(σ4
Wσ

4
X , σWσX , σ

4
X , σ

2
X) under

the sub-Gaussian assumptions for the rows of X and W, respectively. When δ is sufficiently

small, specifically for δ ≤ min(σ2
Xσ

2
W , σ

2
X), Σ̂mult and S satisfy the closeness condition with

ξ = max(σ4
Xσ

4
W , σ

4
X).

Lemma 4. [Multiplicative, moment-bounded errors.] Consider that the rows of X and W are i.i.d.

4mth moment-bounded with parameter Km,X and Km,W , respectively. Σ̂mult and S satisfy the

closeness condition with the function f(n, δ) = c∗n
mδ2m and the parameter c∗ where

c∗ =

[
Cm22m

{
1

m2m
min

(
2 +Km,XKm,W

)
+Km,X

}]−1

.

3.5 Consistency Bounds

3.5.1 Rates in Elementwise `∞-norm

Next, we derive the consistency bounds on the deviation of Θ̂ from the true precision

matrix Θ∗. To do so, we require bounds on the deviation between the projected sample

covariance Σ̃ and the true covariance Σ∗.

The proofs of consistency of Θ̂ and its error in elementwise `∞-norm is extended

from the proofs of Graphical Lasso (Ravikumar et al., 2011) to incorporate measurement

error and missing data cases. The following results depend on the quantities defined in

Ravikumar et al. (2011),

κΣ∗ = �Σ∗�∞ =
(

max
i=1,...,p

p∑
j=1

Σ∗ij

)
(3.15)
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corresponding to the `∞-operator norm of the true covariance matrix Σ∗, the inverse of the

sub-block of the Hessian Γ∗, defined as

Γ∗SS = (Θ∗−1 ⊗Θ∗−1)SS ∈ R(s+p)×(s+p) (3.16)

where s denote the number of edges and p denote the number of nodes in the graph and

the parameter

κΓ∗ = �(Γ∗SS)−1�∞. (3.17)

Here, S is an augmented set that includes all the off-diagonal entries of the true precision

matrix and the diagonal elements, that is, the true edges as well as the diagonal elements.

Therefore, the cardinality of S, |S| = s + p. We denote the complement of S as Sc corre-

sponding to all the pairs for which the true precision matrix have zero entries. We assume

that the Hessian satisfies the following type of mutual coherence or irrepresentability

condition:

(C1) Mutual Incoherence Condition. There exists some α ∈ (0, 1] such that

max
e∈Sc

�Γ∗eS(Γ∗SS)−1�1,1 ≤ 1− α (3.18)

The intuition behind this condition is that it controls the influence that the non-edge

terms, indexed by Sc can have on the terms representing edges that are indexed by S.

In other words, this assumption enforces the requirement that there should be no edge

variable that is not included in the graph that is highly correlated with variables within

the true edge-set.

The proofs of estimation consistency and elementwise `∞-norm are based on the tech-

nique called the primal-dual witness method which was used previously for the analysis

of Lasso (Wainwright, 2009) and graphical Lasso (Ravikumar et al., 2011). The method

requires to construct a pair (Θ̃, Z̃) of symmetric matrices, where Θ̃ � 0 as a primal optimal

solution and Z̃ as the corresponding dual optimum. This pair satisfies the optimality
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conditions associated with the convex problem (3.8) with high probability. When the

primal-dual witness method succeeds, the estimator Θ̂ inherits various optimality prop-

erties in terms of its distance to the truth Θ∗ from Θ̃. The matrix Z̃ must belong to the

sub-differential of the norm � · �1,off , evaluated at Θ̃, such that

Z̃ij =


0, i = j,

sgn(Θ̃ij), i 6= j and Θ̃ij 6= 0

∈ [−1,+1], i 6= j and Θ̃ij = 0.

The primal-dual witness condition requires that the uniqueness of the solution of the

`1-regularized log-determinant problem (stated in Lemma 8) where the projected sample

covariance Σ̃ is used as an input to take care of the measurement errors. We also need to

verify the strict dual feasibility condition in step (d) for the primal-dual witness condition

to hold and it is stated in Lemma 9. Some additional useful notations to prove Lemma 9

which will also be used in Theorem 1 are defined as follows.

Let W ∈ Rp×p be the effective noise in the projected sample covariance matrix Σ̃,

W = Σ̃−Σ∗ = Σ̃− (Θ∗)−1. (3.19)

Next, we use ∆ = Θ̃−Θ∗ to measure the discrepancy between the primal witness Θ̃

and the truth Θ∗. Note that, by definition of Θ̃, ∆Sc = 0.

Finally, let R(∆) denote the difference of the gradient of the log-determinant function,

i.e.,∇{− log det Θ̃} = Θ̃
−1

, from its first-order Taylor expansion around Θ∗. Therefore, the

remainder term takes the form

R(∆) = Θ̃
−1
− (Θ∗)−1 + (Θ∗)−1∆(Θ∗)−1 (3.20)
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The Lemmas 8 and 9 are stated and proved in in Section 3.9. With the Lemmas and

required terminologies in place, the primal-dual witness condition can be defined as

follows:

Definition 2. [Primal-dual Witness Condition.] Based on Lemma 8, we can construct the

primal-dual witness solution (Θ̃, Z̃) as follows.

a) We determine the matrix Θ̃ by solving the restricted log-determinant problem

Θ̃ = arg min
Θ�0,Θ=Θ>,ΘSc=0

{
〈〈Θ, Σ̃〉〉 − log det(Θ) + λn�Θ�1,off

}
.

By construction, we have Θ̃ � 0 and Θ̃Sc = 0.

b) We choose Z̃ as a member of the sub-differential of the regularizer � · �1,off , evaluated

at Θ̃.

c) For each (i, j) ∈ Sc, we replace Z̃ij with the quantity

Z̃ij =
1

λn

{
−Σ̃ij + Θ̃

−1

ij

}
,

ensuring that the constructed matrices (Θ̃, Z̃) satisfy the optimality conditions (3.48).

d) We verify the strict dual feasibility condition

|Z̃ij| < 1 for all (i, j) ∈ Sc.

Steps (a)-(c) are necessary conditions to obtain a pair (Θ̃, Z̃) that satisfy the optimality

condition, but they do not guarantee that Z̃ is an element of the sub-differential ∂�Θ̂�1,off .

By construction, Z̃ in S satisfy the sub-differential conditions, since Z̃S is a member of

the sub-differential [∂�Θ̂�1,off ]S . In addition, the strict feasibility condition is a necessary

condition to ensures two things; the first being that Z̃Sc is indeed within the sub-differential
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and the second being that no false inclusion condition holds for Θ̃. In a linear regression

setup, the strict dual feasibility condition is also used to ensure the uniqueness of the

solution. However, in the graphical model setup this condition is not required to ensure

uniqueness as we have noticed in Lemma 8. But, we still require this condition |Z̃Sc | < 1

to be satisfied because otherwise Θ̃Sc might still be non-zero if |Z̃Sc | = 1. This is because

when Θ̂Sc = 0, it implies no false inclusion, that is, the graph includes no false edges,

which is equivalent to saying that the solution has its support set Ê contained within the

true support set E. On the other hand, if Θ̂Sc 6= 0 would imply that no false inclusion

condition is violated, that is, the support set of the solution Ê would not be contained

within the true support set E.

With the required terms and conditions defined above, next we state the main theorem

to bound the deviation of Θ̂ from the true precision matrix Θ∗ in terms of elementwise

norm. In addition, Theorem 1 depends on Lemmas 10 and 11 which are stated and proved

in Section 3.9. In the statement of the following theorem, the choice of the regularization

parameter λn is specified in terms of a user-defined parameter γ > 2. With growing γ, the

rate of convergence in probability gets faster, but consequently a restriction is imposed on

the sample size. The rates in Theorem 1 differ from the classical graphical Lasso results

presented in Ravikumar et al. (2011) in terms of the quantities δ̄f∗(n, pγ) and n̄f∗(δ, p
γ),

which varies in our setup depending on the distributional assumptions on X and W and

the type of measurement errors under consideration. The specific forms of δ̄f∗(n, pγ) and

n̄f∗(δ, p
γ) for each scenario are given in Remarks.

Theorem 1. Consider a distribution satisfying the incoherence condition (3.18) with parameter

α ∈ (0, 1], and (random) estimators obtained from that distribution satisfying the closeness

conditions (1). Let Θ̂ be the unique solution of the CoGlasso program with regularization parameter

λn = (8/α)δ̄f∗(n, p
γ) for some γ > 2. Then if the sample size is lower bounded as

n > n̄f

(
1

max {v∗, 6(1 + 8/α)2dmax {κΣ∗κΓ∗ , κ3
Σ∗κ

2
Γ∗}}

, pγ
)

(3.21)
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Then with probability at least 1− (1/pγ−2)→ 1, we have the following:

a) The estimate Θ̂ satisfies the elementwise `∞-norm bound

�Θ̂−Θ∗�max ≤
{

2κΓ∗

(
1 + (8/α)

)}
δ̄f∗(n, p

γ). (3.22)

b) It specifies an edge set E(Θ̂) that is a subset of the true edge set E(Θ∗), and includes all

edges (i, j) with | Θ∗ij |>
{

2κΓ∗

(
1 + 8/α

)}
δ̄f∗(n, p

γ).

We can simplify the probability bounds for each particular case and give expressions

for the tail function and their associated inverse functions for δ̄f∗(n, pγ) ≤ δ. Recall that,

from the Definition 1, if the rows of X and W are multivariate Gaussian, then the deviation

bound for the sample covariance matrix has an exponential-type tail function with a = 2.

Remark 1 and 3 are simplified for the particular case of exponential-type tail function for

the deviation bounds when the rows of X and W are multivariate Gaussian.

Remark 1. The rows of X and W are both sub-Gaussian and the measurement error is

additive: we have for a particular case when the rows of both X and W are multivariate

Gaussian

Pr(�Σ̃−Σ∗�max ≥ δ) ≤ p2(4 + C)

4C
exp

{
−cnδ2 min

(
1

16σ2
Xσ

2
W

,
1

16σ4
W

,
1

256c(1 + 4σ2
X)2

)}

with the tail function defined as

f∗(n, δ) =
4C

4 + C
exp

{
cnδ2 min

(
1

16σ2
Xσ

2
W

,
1

16σ4
W

,
1

256c(1 + 4σ2
X)2

)}

and associated inverse functions taking the forms

δ̄f∗(n, p
γ) =

√√√√√√√
log

(
(4 + C)pγ

4C

)
cnmin

(
1

16σ2
Xσ

2
W

,
1

16σ4
W

,
1

256c(1 + 4σ2
X)2

) ,
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and

n̄f∗(δ, p
γ) =

log

(
(4 + C)pγ

4C

)
cδ2 min

(
1

16σ2
Xσ

2
W

,
1

16σ4
W

,
1

256c(1 + 4σ2
X)2

) .
Remark 2. The rows of X and W both have bounded moments and the measurement error

is additive: we have

Pr(�Σ̃−Σ∗�max ≥ δ) ≤ p224m

nmδ2m

(
1

c∗
+ Cm(Km + 2)

)

with c∗ = [Cm24m {6m + 2(1 +Km,X)(1 +Km,W ) +Km,W + (1 + 2m)}]−1 and the tail func-

tion defined as

f∗(n, δ) =

{
24m

nmδ2m

(
1

c∗
+ Cm(Km + 2)

)}−1

and associated inverse functions taking the forms

δ̄f∗(n, p
γ) =

(
24m

(
1
c∗

+ Cm(Km + 2)
)
pγ
)

1/2m

√
n

and

n̄f∗(δ, p
γ) =

(
24m

(
1
c∗

+ Cm(Km + 2)
)
pγ
)

1/m

δ2
.

Remark 3. The rows of both X and W are sub-Gaussian and the measurement error

is multiplicative: we have for a particular case when the rows of both X and W are

multivariate Gaussian

Pr(�Σ̃−Σ∗�max ≥ δ) ≤ p2(4 + C)

4C
exp

{
−cnδ2 min

(
1

16σ2
Xσ

2
W

,
1

16σ4
X

,
1

256c(1 + 4σ2
X)2

)}

with tail function defined as

f∗(n, δ) =
4C

4 + C
exp

{
cnδ2 min

(
1

16σ2
Xσ

2
W

,
1

16σ4
X

,
1

256c(1 + 4σ2
X)2

)}

43



and associated inverse functions taking the forms

δ̄f∗(n, p
γ) =

√√√√√√√
log

(
(4 + C)pγ

4C

)
cnmin

(
1

16σ2
Xσ

2
W

,
1

16σ4
X

,
1

256c(1 + 4σ2
X)2

)

and

n̄f∗(δ, p
γ) =

log

(
(4 + C)pγ

4C

)
cδ2 min

(
1

16σ2
Xσ

2
W

,
1

16σ4
X

,
1

256c(1 + 4σ2
X)2

) .
Remark 4. The rows of X and W both have bounded moments and the measurement error

is multiplicative: we have

Pr(�Σ̃−Σ∗�max ≥ δ) ≤ p224m

nmδ2m

(
1

c∗
+ Cm(Km + 2)

)

with c∗ = [Cm22m{ 1
m2m

min
(2 +Km,XKm,W ) +Km,X}]−1 and with tail function defined as

f∗(n, δ) =

{
24m

nmδ2m
(

1

c∗
+ Cm(Km + 2))

}−1

and associated inverse functions taking the exact forms as the bounded moment additive

error case with c∗ defined as mentioned.

Proof. In this proof, first we want to bound the quantity �W�max = �Σ̃−Σ∗�max. Recall

that using the definition of the closeness condition for Σ̃ and Σ∗ of the decay function f ,

we have the probability bound

Pr(�Σ̃−Σ∗�max ≥ δ) ≤ p2

f∗(n, δ)
for all δ ∈

(
0,

1

v∗

]
.
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Setting δ = δ̄f∗(n, p
γ),we get

Pr(�Σ̃−Σ∗�max ≥ δ̄f∗(n, p
γ)) ≤ p2

f(n, δ̄f∗(n, p
γ))

=
1

pγ−2
.

The last equality follows by the definition of the inverse function δ̄f for a fixed n, and

therefore f(n, δ̄f∗(n, p
γ)) = δ̄−1

f∗

{
δ̄f∗(n, p

γ)
}

= pγ. Therefore, we need to condition on the

event �W�max ≤ δ̄f∗(n, p
γ) for further analysis.

Now, let us denote A as the event that �W�max ≤ δ̄f∗(n, p
γ). We verify that the assump-

tion

max {�W�max, �R(∆)�max} ≤
αλn

8

of Lemma 9 holds. Recall the choice of regularization parameter λn = (8/α)δ̄f∗(n, p
γ)),

we have �W�max ≤ δ̄f∗(n, p
γ) ≤ αλn/8. Hence �W�max ≤ αλn/8. Next we show that

the condition also holds for �R(∆)�max. To do that we show that the condition required

for Lemma 11 holds under the specified conditions on n and λn. From our choice of

regularization constant λn = (8/α)δ̄f∗(n, p
γ),

2κΓ∗ {�W�max + λn} ≤ 2κΓ∗
{
δ̄f∗(n, p

γ) + (8/α)δ̄f∗(n, p
γ)
}

= 2κΓ∗

(
1 + (8/α)

)
δ̄f (n, p

γ),

for all δ̄f∗(n, pγ) < 1/v∗. From the monotonicity of the inverse tail function (3.13), we have

that if n > n̄f∗(δ, p
γ) for some δ > 0, then δ̄f∗(n, p

γ) ≤ δ. Therefore, by using the lower

bound on the sample size for all δ̄f∗(n, pγ) < 1/v∗, we get

δ̄f∗(n, p
γ) ≤ δ ≤ 1

6(1 + (8/α))2dmax {κΣ∗κΓ∗ , κ3
Σ∗κ

2
Γ∗}

.

Consequently, we have

2κΓ∗ {�W�max + λn} ≤ 2κΓ∗

(
1 + (8/α)

)
δ̄f∗(n, p

γ)
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≤
2κΓ∗

(
1 + (8/α)

)
6(1 + (8/α))2dmax {κΣ∗κΓ∗ , κ3

Σ∗κ
2
Γ∗}

≤ 1

3d
(

1 + (8/α)
)

max {κΣ∗ , κ3
Σ∗κΓ∗}

≤ 1

3dmax {κΣ∗ , κ3
Σ∗κΓ∗}

= min

{
1

3κΣ∗d
,

1

3κ3
Σ∗κΓ∗d

}
(3.23)

Therefore, the assumptions of Lemma 11 are satisfied and we can apply this lemma to

conclude that

�∆�max = �Θ̂−Θ∗�max ≤ 2κΓ∗ {�W�max + λn} ≤ 2κΓ∗

(
1 + (8/α)

)
δ̄f∗(n, p

γ). (3.24)

Using inequalities (3.23) and (3.24), we see that the assumption �∆�max ≤ 1/(3κΣ∗d) of

Lemma 10 holds. Plugging in the upper bound for �∆�max to the result of Lemma 10 we

get

�R(∆)�max ≤
3

2
d�∆�2

maxκ
3
Σ∗

≤ 3

2
dκ3

Σ∗4κ
2
Γ∗

(
1 + (8/α)

)2(
δ̄f∗(n, p

γ)
)2

≤
{

6dκ2
Γ∗κ

3
Σ∗

(
1 + (8/α)

)2

δ̄f∗(n, p
γ)

}
δ̄f∗(n, p

γ)

≤
{

6dκ2
Γ∗κ

3
Σ∗

(
1 + (8/α)

)2

δ̄f∗(n, p
γ)

}
αλn

8

≤ αλn
8
,

where the final inequality follows from the condition on the sample size (3.21), and the

monotonicity property (3.13), since

δ̄f∗(n, p
γ) ≤ δ ≤ 1

6dκ2
Γ∗κ

3
Σ∗(1 + (8/α))2

,
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so,

6dκ2
Γ∗κ

3
Σ∗(1 + (8/α))2δ̄f∗(n, p

γ) ≤ 1.

Hence, it is shown that the assumption (3.50) of Lemma 9 holds and we can conclude

that the primal-dual witness construction succeeds with high probability. This would

imply that the witness matrix Θ̃ is equal to the solution Θ̂ to the original log-determinant

problem (3.8) with high probability. Then the estimator Θ̂ satisfies the `∞-bound (3.24)

of Θ̃ as claimed in Theorem 1(a). Part (a) guarantees that Θ̂ is uniformly close to Θ∗

in an elementwise sense. We also have Θ̂Sc = Θ̃Sc = 0, as claimed in Theorem 1(b).

Since the above was conditioned on the event A, these statements hold with probability

Pr(A) ≥ 1− (1/pγ−2).

In the final part of the proof we derive specific forms for the function δ̄f∗(n, pγ) for the

event A for different distributional assumptions of X and W. Recall from (3.9) that using

triangular inequality, we have

�Σ̃−Σ∗�max ≤ �Σ̃− S�max + �S−Σ∗�max.

Next, we show that we can approximate �Σ̃− S�max by �Σ̂− S�max. By the definition of

Σ̃, �Σ̃− Σ̂�max ≤ �S− Σ̂�max. Combining this with the triangular inequality, we have

�Σ̃− S�max ≤ �Σ̃− Σ̂�max + �Σ̂− S�max ≤ 2�Σ̂− S�max.

Thus

Pr(�Σ̃− S�max ≥ δ) ≤ Pr(�Σ̂− S�max ≥ δ/2). (3.25)

When the rows of X and W are both sub-Gaussian and the measurement error is additive,

we have

Pr(�Σ̃− S�max ≥ δ) ≤ p2

C
exp

{
−cnmin

(
δ2

4σ2
Xσ

2
W

,
δ2

4σ4
W

,
δ

2σXσW
,
δ

2σ2
W

)}
.
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By (1) and (3.9) we have

Pr
{
�S−Σ∗�max ≥ δ

}
≤ p2

4
exp

{
− nδ2

64(1 + 4σ2
X)2

}
.

To put the pieces together we can write, for δ > 0,

Pr(�Σ̃−Σ∗�max ≥ δ)

≤ Pr(�Σ̃− S�max + �S−Σ∗�max ≥ δ)

(i)
≤ Pr

{
max

(
�Σ̃− S�max, �S−Σ∗�max

)
≥ δ/2

}
= Pr

{
(�Σ̃− S�max ≥ δ/2) ∪ (�S−Σ∗�max ≥ δ/2)

}
≤ Pr(�Σ̃− S�max ≥ δ/2) + Pr(�S−Σ∗�max ≥ δ/2)

≤ p2

C
exp

{
−cnmin

(
δ2

16σ2
Xσ

2
W

,
δ2

16σ4
W

,
δ

4σXσW
,
δ

4σ2
W

)}
+
p2

4
exp

{
− nδ2

256(1 + 4σ2
X)2

}
≤ p2

C
exp

{
−cnmin

(
δ2

16σ2
Xσ

2
W

,
δ2

16σ4
W

,
δ

4σXσW
,
δ

4σ2
W

,
δ2

256c(1 + 4σ2
X)2

)}
+
p2

4
exp

{
−cnmin

(
δ2

16σ2
Xσ

2
W

,
δ2

16σ4
W

,
δ

4σXσW
,
δ

4σ2
W

,
δ2

256c(1 + 4σ2
X)2

)}
≤ p2(

1

C
+

1

4
) exp

{
−cnmin

(
δ2

16σ2
Xσ

2
W

,
δ2

16σ4
W

,
δ

4σXσW
,
δ

4σ2
W

,
δ2

256c(1 + 4σ2
X)2

)}
≤ p2(4 + C)

4C
exp

{
−cnmin

(
δ2

16σ2
Xσ

2
W

,
δ2

16σ4
W

,
δ

4σXσW
,
δ

4σ2
W

,
δ2

256c(1 + 4σ2
X)2

)}

Inequality (i) is due to the relationship A + B+ | A − B |= 2 max(A,B), which implies

A+B ≤ 2 max(A,B). If we consider the particular case when the rows of both X and W

are multivariate Gaussian, the above expression simplifies to

Pr(�Σ̃−Σ∗�max ≥ δ) ≤ p2(4 + C)

4C
exp

{
−cnδ2 min

(
1

16σ2
Xσ

2
W

,
1

16σ4
W

,
1

256c(1 + 4σ2
X)2

)}
.

(3.26)
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Let us define the tail function obtained from this bound as

f∗(n, δ) =
4C

4 + C
exp

{
cnδ2 min

(
1

16σ2
Xσ

2
W

,
1

16σ4
W

,
1

256c(1 + 4σ2
X)2

)}
.

Setting δ̄f∗(n, pγ) ≤ δ, some further calculations show that the associated inverse functions

defined in (3.11) and (3.12) take the form

δ̄f∗(n, p
γ) =

√√√√√√ log
(

(4+C)pγ

4C

)
cnmin

(
1

16σ2
Xσ

2
W

,
1

16σ4
W

,
1

256c(1 + 4σ2
X)2

) ,

and

n̄f∗(δ, p
γ) =

log
(

(4+C)pγ

4C

)
cδ2 min

(
1

16σ2
Xσ

2
W

,
1

16σ4
W

,
1

256c(1 + 4σ2
X)2

) .
When the rows of X and W both have bounded moments and the measurement error is

additive, we have,

Pr(�Σ̃− S�max ≥ δ) ≤ p222m

c∗nmδ2m

with c∗ = [Cm24m {6m + 2(1 +Km,X)(1 +Km,W ) +Km,W + (1 + 2m)}]−1. By (1) and (3.9)

we have

Pr
{
�S−Σ∗�max ≥ δ

}
≤ p222mCm(Km + 2)

nmδ2m
.

To put the pieces together, for δ > 0,

Pr(�Σ̃−Σ∗�max ≥ δ) ≤ p224m

c∗nmδ2m
+
p224mCm(Km + 2)

nmδ2m

≤ p224m

nmδ2m

(
1

c∗
+ Cm(Km + 2)

)
(3.27)
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with f∗(n, δ) = {(24m)/(nmδ2m)( 1
c∗

+ Cm(Km + 2))}−1. Therefore, the associated inverse

functions for δ̄f∗(n, pγ) ≤ δ,

δ̄f∗(n, p
γ) =

(
24m

(
1
c∗

+ Cm(Km + 2)
)
pγ
)

1/2m

√
n

and

n̄f∗(δ, p
γ) =

(
24m

(
1
c∗

+ Cm(Km + 2)
)
pγ
)

1/m

δ2
.

When the rows of X and W are both sub-Gaussian and the measurement error is multi-

plicative, we have,

Pr(�Σ̃− S�max ≥ δ) ≤ p2

C
exp

{
−cnmin

(
δ2

4σ4
Xσ

4
W

,
δ2

4σ4
X

,
δ

2σ2
X

,

√
δ√

2σ2
Xσ

2
W

)}
.

For δ > 0,

Pr(�Σ̃−Σ∗�max ≥ δ)

≤ p2

C
exp

{
−cnmin

(
δ2

16σ4
Xσ

4
W

,
δ2

16σ4
X

,
δ

4σ2
X

,

√
δ

2
√
σ2
Xσ

2
W

)}

+
p2

4
exp

{
− nδ2

256(1 + 4σ2
X)2

}
≤ p2(4 + C)

4C
exp

{
−cnmin

(
δ2

16σ4
Xσ

4
W

,
δ2

16σ4
X

,
δ

4σ2
X

,

√
δ

2
√
σ2
Xσ

2
W

,
δ2

256c(1 + 4σ2
X)2

)}

If we consider the particular case when the rows of both X and W are multivariate

Gaussian, the above expression simplifies to

Pr(�Σ̃−Σ∗�max ≥ δ) ≤ p2(4 + C)

4C
exp

{
−cnδ2 min

(
1

16σ2
Xσ

2
W

,
1

16σ4
X

,
1

256c(1 + 4σ2
X)2

)}
(3.28)
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with tail function defined as

f∗(n, δ) =
4C

4 + C
exp

{
cnδ2 min

(
1

16σ2
Xσ

2
W

,
1

16σ4
X

,
1

256c(1 + 4σ2
X)2

)}
.

Setting δ̄f∗(n, pγ) ≤ δ, the associated inverse functions take the form

δ̄f∗(n, p
γ) =

√√√√√√ log
(

(4+C)pγ

4C

)
cnmin

(
1

16σ2
Xσ

2
W

,
1

16σ4
X

,
1

256c(1 + 4σ2
X)2

)

and

n̄f∗(δ, p
γ) =

log
(

(4+C)pγ

4C
)
)

cδ2 min

(
1

16σ2
Xσ

2
W

,
1

16σ4
X

,
1

256c(1 + 4σ2
X)2

) .
When the rows of X and W both have bounded moments and the measurement error is

multiplicative, we get for δ > 0,

Pr(�Σ̃−Σ∗�max ≥ δ) ≤ p224m

nmδ2m

(
1

c∗
+ Cm(Km + 2)

)
(3.29)

with c∗ = [Cm22m{ 1
m2m

min
(2 +Km,XKm,W ) +Km,X}]−1. We get

f∗(n, δ) =

[
24m

nmδ2m

( 1

c∗
+ Cm(Km + 2)

)]−1

.

Therefore, the functional form of the associated inverse functions are exactly the same as

the bounded moments additive error case with c∗ defined as mentioned.

3.5.2 Model Selection Consistency

The following theorem provides sufficient conditions to link the sample size n and the

minimum value

θmin := min
(i,j)∈E(Θ∗)

| Θ∗ij | (3.30)
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that allows us to study model selection consistency. Let us define the event that the

estimator Θ̂ has the same edge set as Θ∗, that is, CoGlasso recovers the full edge set

correctly and recovers the correct signs on these edges as well.

M(Θ̂; Θ∗) :=
{

sgn(Θ̂ij) = sgn(Θ∗ij) ∀(i, j) ∈ E(Θ∗)
}
. (3.31)

Theorem 2. Under the same conditions as Theorem 1, suppose that the sample size satisfies the

lower bound

n > n̄f

 1

max
{

2κΓ∗

(
1 + (8/α)

)
θ−1

min, v∗, 6(1 + (8/α))dmax {κΣ∗κΓ∗ , κ3
Σ∗κ

2
Γ∗}
} , pγ

 .

(3.32)

Then the estimator is model selection consistent with high probability as p→∞, specifically

Pr(M(Θ̂; Θ∗)) ≥ 1− 1

pγ−2
. (3.33)

If we compare the restrictions imposed on the lower bounds on the sample sizes of

Theorem 1 and 2, we can see that Theorem 2 differs only in terms of the additional quantity

2κΓ∗(1 + 8/α)/θmin. This quantity acts as a constraint on how quickly the minimum can

decay as a function of (n, p). The proof of the theorem is given in Section 3.9.

The following corollary can be established similar to Ravikumar et al. (2011) in terms

of the Frobenius and spectral norm. The proof of the corollary is provided in Section 3.9.

Corollary 1. [Rates in Frobenius and Operator Norm.] Under the same assumptions as Theorem

1, with probability at least 1− (1/pγ−2), the estimator Θ̂ satisfies

�Θ̂−Θ∗�F ≤
{

2κΓ∗

(
1 + (8/α)

)} (√
s+ p

)
δ̄f∗(n, p

τ ) (3.34)

and

�Θ̂−Θ∗�2 ≤
{

2κΓ∗

(
1 + (8/α)

)}
min

{√
s+ p, d

}
δ̄f∗(n, p

τ ). (3.35)
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Notice that the Corollary differs from the classical graphical Lasso results provided

in Ravikumar et al. (2011) in terms of the quantity δ̄f∗(n, pτ ), which varies depending on

the distributional assumptions on X and W and the type of measurement errors under

consideration. Recall that, the expressions of δ̄f∗(n, pτ ) for particular cases are derived in

the proof of Theorem 1.

3.6 Simulation

To test our method, we would utilize two types of data generating scenarios which would

result in indefinite covariance estimators. For the additive measurement error, we would

use the Kronecker sum type model used in a graphical model estimation setting by Park

et al. (2017) and in a regression setting by Rudelson and Zhou (2017). For multiplicative

errors, we would use the missing data model described in Loh and Wainwright (2012).

3.6.1 Additive Model

Following Fan et al. (2019) and Rudelson and Zhou (2017), we use the Kronecker sum

type covariance to generate the corrupted and observable data matrix Z based on the

clean but unobservable data matrix X. Let the data matrix that we want to generate

be defined as Z = X0A
1/2 + B1/2W0, where the first component contains the signal

and has independent sub-Gaussian row vectors and the second component contains the

random noise matrix with independent columns but dependent rows. Here, A1/2 and

B1/2 are the unique square root of the positive definite matrix A ∈ Rp×p and B ∈ Rn×n,

respectively and represent the covariance structures of X0 and W0, respectively. We

generate X0,W0 ∈ Rn×p as independent mean-zero sub-Gaussian random matrices. Note

that W0 and X0 are independent.

Our primary interest is to estimate the precision matrix with sparse off-diagonal entries,

Θ∗ = A−1. As shown in Rudelson and Zhou (2017), that the covariance model becomes
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unidentifiable if one of the traces of A or B is not assumed known. We assume that the

trace of A is a known constant, that is, tr(A) = p, and we construct and estimator for tr(B)

as

t̂r(B) =
1

p

(
�X�2

F − ntr(A)
)

+
and define τ̂B =

1

n
t̂r(B) ≥ 0

where (a)+ = a ∨ 0 and �X�2
F =

∑
i

∑
j x

2
ij .

In the true model, τB is the variance of the noise variable. We normalize B in the

covariance generation process to make sure the assumption tr(B) = nτB holds. Therefore,

the surrogate covariance estimate for A is given by as shown in Rudelson and Zhou (2017)

Σ̂KS =
1

n
Z>Z− t̂r(B)

n
Ip.

Note that, when p > n, this estimator is guaranteed to not be positive semi-definite.

Covariance models:

To generate data from the above mentioned simulation settings, we consider the following

covariance models for A and B. For the precision matrix, Θ∗ = A−1 = (ωij) and Π =

B−1 = (νij). respectively. Following Rudelson and Zhou (2017), we choose A from the

following models:

• AR(1) model: To obtain a chain graph for the precision matrix A−1, we set the form

of the covariance, A =
{
ρ|i−j|

}
i,j

.

We choose B from the following covariance models. Note that τB = tr(B)/n.

• Erdös-Rényi random graph: We consider a type of Erdös-Rényi random graph for

Π = B−1. We start by settingΠ = cIn×n where c is a constant. Next, we randomly

select n log n edges and update Π as follows: for each new edge (i, j), a weight

w > 0 is chosen uniformly at random from [wmin, wmax] where wmax > wmin > 0; we
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subtract w from νij and νji and increase νii and νjj by w. This maintains the positive

definiteness ofΠ . Then we rescale B to have a certain desired trace parameter τB.

3.6.2 Missing Data Model

Following Loh and Wainwright (2012) we use the missing data model with missing-

completely-at-random (MCAR) observations to estimate our graphical model. Let X0 ∈

Rn×p be an independent mean-zero sub-Gaussian random matrix. Let W ∈ {0, 1}n×p with

Wij ∼ Bernoulli(1− πj). This means that the entries of the jth column of the data matrix

is observed with probability πj . Note that W is independent of X. We can generate the

observed matrix as X = X0A
1/2 and the unobserved matrix Z = X�W where � denotes

the Hadamard, or elementwise product. Then the surrogate estimate for A can be given by

the estimator Σ̂miss defined in (3.14). Since the off-diagonal entries are divided by smaller

values, Σ̂miss will not necessarily be positive semi-definite.

Covariance models:

For the missing data model, we considered two types of precision matrix for Θ∗, based on

the chain graph and the Erdös-Rényi random graph. The construction of the matrices are

similar to as it is explained above.

Tuning parameter selection

In practice, the parameter λ must be tuned for all the models. Two methods are used,

namely, cross validation and BIC criterion to tune the models as decribed in Chapter 2.

• Cross-validation: We performed a five-fold cross-validation method to tune λ. We

estimate the precision matrix Θ̂ from the training set and validate it on the test

set. We calculate the cross-validation score given in (2.5) for each fold described in

Section 2.1.1. The observed log-likelihood was used as the loss function. Then we
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find the best λ̂ that maximizes CV (λ). Finally, using the chosen λ̂, a final estimator

of the precision matrix is calculated using all the data. We used used a sequence of

equally spaced values for the tuning parameter in the logarithmic scale from [−2, 2]

to perform the cross-validation.

• BIC: We used the BIC criterion as defined in (2.6) to tune the penalty parameter

λ. The optimal value of the tuning parameter is taken to be the minimizer of the

criterion. We used a sequence of equally spaced values for the tuning parameter in

the logarithmic scale from [−2, 2] to perform the cross-validation.

Methods comparison

We compared our results with two other methods. The first method is the ADMM al-

gorithm described in Fan et al. (2019) Algorithm 1 solving for the non-convex objective

function. The algorithm required the knowledge of an upper bound for the true precision

matrix, that is, �Θ�2 ≤ R. In the simulations, we chose the value of R to be two times the

magnitude of the spectral norm of the true precision matrix.

The second method is a nodewise regression where we adapted the algorithm for

graphical model following Meinshausen and Bühlmann (2006); Yuan and Lin (2007). This

method is slightly naive in a sense that we used the R package glmnet to perform the

column by column Lasso regressions in the first step of the algorithm directly on the

noisy data. Specifically, we can perform p Lasso-type regressions to obtain estimates β̂j

and form estimates âj , where β̂j are the estimated coefficients from the Lasso regression

and âj = −(Σ̂jj − Σ̂j,−jβ̂j)
−1 based on the surrogate estimate of Σ. Since the unbiased

surrogates could be unbounded from below and not be positive semi-definite due to

noisy data, we projected the estimate to the nearest positive semi-definite cone. Next, we

formed Θ̃j,−j = âjβ̂j and Θ̃jj = −âj . In the last step, we symmetrize the results to obtain

Θ̂ = arg minSp �Θ− Θ̃�max, where Sp is the set of symmetric matrices.
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For the nodewise regression method, we only used cross-validation to choose the

tuning parameter. For our proposed method CoGlasso and the ADMM approach (Fan

et al., 2019), we tuned λ with both cross-validation and BIC criterion.

Performance metrics

• We calculated relative Frobenius, spectral, nuclear and `1 norm for the statistical error

of the estimation, which is defined as �Θ̂ −Θ∗�norm/�Θ∗�norm. We also calculated

the false positive rate (FPR), false negative rate (FNR) and the true positive rate (TPR)

as defined below:

FPR =
FP

TN + FP
; FNR =

FN

FN + TP
; TPR =

TP

FN + TP

where TP is the number of true positives (true non-zero edges that are estimated

as such), TN is the number of true negatives (true zero edges that are recognized

as such), FP is the number of false positives (true zero edges that are estimated as

non-zero) and FN is the number of false negatives (true non-zero edges that are

estimated as zero). All the results are averaged across 100 replications.

3.6.3 Simulation Results

Additive error case:

We generated the true precision matrix Θ∗ as a chain graph with parameter ρ such that

ΣX = Θ∗−1 ∼ AR(1) with ρ = {−0.7,−0.5,−0.3} with two different samples sizes, n =

{160, 240}, two different variance parameter for the noise, τB = {0.3, 0.5} and the number

of parameters p = 400. The covariance structure for the noise, ΣW = Π−1, that is, it is

chosen from an Erdös-Rényi random graph such that Π ∼ ER with n log(n) randomly
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selected edges in Π construction with partial correlation randomly chosen from a uniform

distribution Unif(0.6, 0.8). Table 3.1-3.12 present the results of the additive error cases.

Table 3.1: Scenario A: p = 400, n = 160, ρ = −0.7, τB = 0.3

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.639 0.743 0.594 0.976 0.028 0.000 1.000

BIC 0.673 0.761 0.630 0.915 0.014 0.001 0.999
ADMM CV 1.201 1.380 1.178 2.594 0.371 0.000 1.000

BIC 1.791 1.746 1.890 9.383 0.840 0.000 1.000
Nodewise CV 0.594 1.784 0.539 2.205 0.015 0.001 0.999

Table 3.2: Scenario B: p = 400, n = 160, ρ = −0.7, τB = 0.5

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.718 0.803 0.675 1.034 0.022 0.003 0.997

BIC 0.718 0.803 0.675 1.034 0.022 0.003 0.997
ADMM CV 1.149 1.395 1.095 2.638 0.339 0.002 0.998

BIC 1.784 1.750 1.884 9.337 0.842 0.000 1.000
Nodewise CV 0.732 2.469 0.613 2.851 0.018 0.004 0.996

Table 3.3: Scenario C: p = 400, n = 240, ρ = −0.7, τB = 0.3

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.586 0.695 0.537 0.837 0.013 0.000 1.000

BIC 0.540 0.668 0.490 0.895 0.029 0.000 1.000
ADMM CV 1.308 1.394 1.317 2.640 0.466 0.000 1.000

BIC 1.669 1.645 1.741 7.700 0.777 0.000 1.000
Nodewise CV 0.482 0.728 0.461 0.978 0.015 0.000 1.000

Table 3.4: Scenario D: p = 400, n = 240, ρ = −0.7, τB = 0.5

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.678 0.768 0.633 0.905 0.011 0.000 1.000

BIC 0.642 0.749 0.594 0.975 0.023 0.000 1.000
ADMM CV 1.251 1.401 1.234 2.654 0.434 0.000 1.000

BIC 1.656 1.650 1.727 7.711 0.779 0.000 1.000
Nodewise CV 0.574 0.729 0.546 0.938 0.018 0.000 1.000
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Table 3.5: Scenario E: p = 400, n = 160, ρ = −0.5, τB = 0.3

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.603 0.717 0.553 1.117 0.025 0.053 0.947

BIC 0.629 0.727 0.579 0.990 0.009 0.109 0.891
ADMM CV 0.638 1.262 0.560 2.663 0.096 0.009 0.991

BIC 1.684 1.753 1.694 10.493 0.767 0.000 1.000
Nodewise CV 0.587 2.073 0.516 2.609 0.018 0.061 0.939

Table 3.6: Scenario F: p = 400, n = 160, ρ = −0.5, τB = 0.5

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.673 0.775 0.618 1.212 0.025 0.108 0.892

BIC 0.698 0.784 0.643 1.077 0.007 0.252 0.748
ADMM CV 0.653 1.318 0.569 2.748 0.088 0.025 0.975

BIC 1.702 1.765 1.719 10.590 0.795 0.000 1.000
Nodewise CV 0.684 2.388 0.577 2.885 0.019 0.132 0.868

Table 3.7: Scenario G: p = 400, n = 240, ρ = −0.5, τB = 0.3

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.546 0.657 0.501 0.896 0.009 0.018 0.982

BIC 0.546 0.657 0.501 0.896 0.009 0.018 0.982
ADMM CV 0.479 1.062 0.419 1.956 0.089 0.000 1.000

BIC 1.583 1.700 1.545 10.503 0.744 0.000 1.000
Nodewise CV 0.476 0.720 0.446 1.057 0.018 0.007 0.993

Table 3.8: Scenario H: p = 400, n = 240, ρ = −0.5, τB = 0.5

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.610 0.722 0.558 1.129 0.022 0.034 0.966

BIC 0.627 0.729 0.576 1.038 0.012 0.064 0.936
ADMM CV 0.768 1.266 0.665 2.910 0.113 0.004 0.996

BIC 1.579 1.700 1.560 9.853 0.721 0.000 1.000
Nodewise CV 0.557 0.754 0.515 1.045 0.021 0.025 0.975

Overall, tuning parameter selection with cross-validation tends to perform well in all of

the scenarios. In the case of additive error, CoGlasso clearly performs better than the non-

convex approach of the analysis. When the partial correlation in the true precision matrix

is set to be stronger, we can see that CoGlasso and nodewise regression perform well, and

the ADMM method performs better only in the case of moderate partial correlation in the
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Table 3.9: Scenario I: p = 400, n = 160, ρ = −0.3, τB = 0.3

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.545 0.685 0.472 1.009 0.004 0.753 0.247

BIC 0.553 0.692 0.477 0.782 0.000 0.992 0.008
ADMM CV 0.430 0.676 0.383 1.561 0.040 0.356 0.644

BIC 1.545 1.654 1.483 11.768 0.827 0.014 0.986
Nodewise CV 0.619 3.227 0.454 3.787 0.010 0.679 0.321

Table 3.10: Scenario J: p = 400, n = 160, ρ = −0.3, τB = 0.5

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.609 0.742 0.531 1.151 0.006 0.831 0.169

BIC 0.614 0.739 0.534 0.826 0.000 0.997 0.003
ADMM CV 0.466 0.734 0.413 1.625 0.035 0.478 0.521

BIC 1.496 1.639 1.432 10.583 0.758 0.031 0.969
Nodewise CV 0.636 2.584 0.502 3.094 0.010 0.749 0.251

Table 3.11: Scenario K: p = 400, n = 240, ρ = −0.3, τB = 0.3

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.488 0.628 0.425 0.904 0.004 0.578 0.422

BIC 0.491 0.629 0.428 0.860 0.003 0.645 0.355
ADMM CV 0.378 0.614 0.336 1.479 0.047 0.165 0.835

BIC 1.404 1.610 1.311 10.435 0.688 0.007 0.993
Nodewise CV 0.444 0.781 0.390 1.215 0.013 0.463 0.537

Table 3.12: Scenario L: p = 400, n = 240, ρ = −0.3, τB = 0.5

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.559 0.694 0.484 1.036 0.004 0.723 0.277

BIC 0.564 0.696 0.487 0.890 0.001 0.875 0.125
ADMM CV 0.417 0.674 0.370 1.570 0.041 0.272 0.728

BIC 1.431 1.622 1.345 10.610 0.726 0.012 0.988
Nodewise CV 0.512 0.778 0.444 1.128 0.013 0.577 0.423

true precision matrix. When partial correlation is weaker, all the methods perform poorly.

As expected, with increasing sample size, performance of the methods improve. With a

larger effect of additive noise the performance metrics deteriorate, as expected. Nodewise

regression performs comparably well along with the CoGlasso, which is expected since

we are employing the same projection method in the nodewise regression as in CoGlasso.
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Missing data case:

Following the missing data simulation setup as Fan et al. (2019), we used sample sizes

n = {80, 130, 250, 700}, with corresponding probability of being missing, Pmiss = 1− πj =

{0.1, 0.3, 0.5, 0.7}, respectively to keep the effective sample size to be around 62 to 65. In

all the settings the effective sample size is calculated as n× (1− Pmiss)
2 is kept constant.

We kept p = 400 for all scenarios and generated the true precision matrix Θ∗ from two

different setups.

Setup 1:

The true precision matrix is generated from a chain graph with strong partial correlation

ρ = −0.7. The results are shown in Table 3.13 - 3.16.

Table 3.13: Scenario M: p = 400, n = 80, Pmiss = 0.1

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.599 0.695 0.561 0.884 0.027 0.001 0.999

BIC 0.645 0.724 0.609 0.842 0.011 0.004 0.996
ADMM CV 0.577 0.687 0.540 1.063 0.097 0.000 1.000

BIC 2.132 1.942 2.335 13.925 0.996 0.000 1.000
Nodewise CV 1.017 7.229 0.589 7.701 0.008 0.004 0.996

Table 3.14: Scenario N: p = 400, n = 130, Pmiss = 0.3

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.701 0.781 0.659 0.940 0.027 0.003 0.997

BIC 0.728 0.796 0.689 0.892 0.011 0.011 0.989
ADMM CV 0.631 0.745 0.589 1.061 0.075 0.002 0.998

BIC 1.934 1.883 2.033 13.824 0.942 0.000 1.000
Nodewise CV 0.665 1.665 0.620 2.057 0.013 0.014 0.986
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Table 3.15: Scenario O: p = 400, n = 250, Pmiss = 0.5

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.774 0.833 0.734 0.917 0.012 0.020 0.980

BIC 0.775 0.834 0.736 0.914 0.010 0.021 0.979
ADMM CV 0.621 0.758 0.576 1.164 0.085 0.012 0.988

BIC 1.604 1.750 1.614 11.261 0.736 0.001 0.999
Nodewise CV 0.740 0.813 0.703 0.897 0.017 0.023 0.977

Table 3.16: Scenario P: p = 400, n = 700, Pmiss = 0.7

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.805 0.857 0.766 0.916 0.008 0.032 0.968

BIC 2.533 3.177 2.419 19.441 0.737 0.003 0.997
ADMM CV 0.666 0.799 0.618 1.095 0.056 0.025 0.975

BIC 1.360 1.649 1.321 9.451 0.630 0.005 0.995
Nodewise CV 0.798 0.850 0.760 0.910 0.024 0.019 0.981

Setup 2:

The true precision matrix is generated from an Erdös-Rényi random graph with p ∗

0.1 randomly selected edges with partial correlation randomly chosen from a uniform

distribution Unif(0.6, 0.8). The results are shown in Table 3.17 - 3.20.

Table 3.17: Scenario Q: p = 400, n = 80, Pmiss = 0.1

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.673 0.761 0.400 0.811 0.005 0.395 0.605

BIC 0.695 0.762 0.413 0.811 0.000 0.894 0.105
ADMM CV 0.725 0.852 0.433 0.888 0.506 0.149 0.851

BIC 8.705 1.919 11.959 11.417 0.998 0.000 1.000
Nodewise CV 1.340 3.518 0.545 2.614 0.004 0.004 0.996

Table 3.18: Scenario R: p = 400, n = 130, Pmiss = 0.3

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.731 0.824 0.435 0.863 0.003 0.477 0.523

BIC 0.741 0.824 0.443 0.864 0.000 0.848 0.152
ADMM CV 0.725 0.853 0.434 0.889 0.525 0.153 0.847

BIC 7.901 1.919 10.055 11.492 0.973 0.000 1.000
Nodewise CV 0.762 1.328 0.414 1.150 0.004 0.011 0.989
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Table 3.19: Scenario S: p = 400, n = 250, Pmiss = 0.5

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.769 0.858 0.484 0.891 0.000 0.702 0.298

BIC 0.770 0.858 0.485 0.891 0.000 0.796 0.204
ADMM CV 0.728 0.855 0.440 0.890 0.514 0.192 0.808

BIC 6.487 1.919 7.568 9.665 0.830 0.001 0.999
Nodewise CV 0.714 0.806 0.449 0.840 0.003 0.014 0.986

Table 3.20: Scenario T: p = 400, n = 700, Pmiss = 0.7

Method Criteria Frobenius Spectral Nuclear `1 FPR FNR TPR
CoGlasso CV 0.785 0.874 0.512 0.904 0.000 0.858 0.142

BIC 7.177 2.781 7.822 12.395 0.809 0.003 0.997
ADMM CV 0.733 0.859 0.446 0.894 0.400 0.230 0.770

BIC 5.786 1.919 6.343 9.016 0.818 0.002 0.998
Nodewise CV 0.760 0.850 0.495 0.880 0.003 0.027 0.973

In the missing data scenario, all the methods perform well when the underlying struc-

ture of the precision matrix is a chain graph even in an increasing degree of missingness

introduced in the data. However, when we assume the underlying structure of the preci-

sion matrix to have Erdös-Rényi graph structure, only nodewise regression performs well.

Even with a small proportion of missing data present in the data, false positive rate and

the false negative rate are not comparable to the chain graph scenario.

We report some additional simulation results to check the scalings predicted by the

theory. Based on Theorem 1, we can show that in the additive error case with sub-Gaussian

tails, the elementwise maximum norm should decay at the rate O(
√

log p/n). In Figure 3.1

and 3.2, we plotted the elementwise maximum norm error against the original sample size

n and the rescaled sample size n/ log p and showed that the curves align in the presence of

additive noise and missing data, respectively. We generate a chain structured graph where

all the nodes are arranged in a linear chain with each node having degree 2 (except the

two ends). We generated the precision matrix with the diagonal entries of Θ∗ are set equal

to 1, and all entries corresponding to links in the chain are set equal to 0.1. We generated

the matrix X as a zero-mean sub-Gaussian with covariance ΣX = (Θ∗)−1. For the additive
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n oi s e c a s e, w e g e n e r at e d t h e c o r r u pt e d m at ri x Z = X + W wit h Σ W = ( 0 .2) 2 I o r i n t h e

mi s si n g d at a c a s e w e g e n e r at e d Z wit h 2 0 % mi s si n g d at a i n e a c h c ol u m n of X . We s e e

g o o d a g r e e m e nt wit h t h e t h e o r eti c al p r e di cti o n s.

3. 7 R e al D at a A n al y si s

I n t hi s s e cti o n w e p r e s e nt a n e x a m pl e of e sti m ati n g t h e p r e ci si o n m at ri x f o r r e al g e n e

e x p r e s si o n d at a w hi c h w a s c oll e ct e d t o di sti n g ui s h a cti v e t u b e r c ul o si s ( T B) p ati e nt s f r o m

l at e ntl y i nf e ct e d a n d h e alt h y i n di vi d u al s. We p e rf o r m e d o u r m et h o d o n a r e al g e n e

e x p r e s si o n d at a s et o bt ai n e d f r o m Si n g h a ni a et al. ( 2 0 1 8). U si n g mi c r o a r r a y a n al y si s, B e r r y

et al. ( 2 0 1 0) fi r st i d e nti fi e d a w h ol e bl o o d 3 9 3 t r a n s c ri pt si g n at u r e f o r a cti v e T B. L at e r a

c o n fi r m at o r y a n al y si s c o n d u ct e d b y Si n g h a ni a et al. ( 2 0 1 8) f o u n d a 3 7 3- g e n e s si g n at u r e

of a cti v e t u b e r c ul o si s u si n g R N A- S e q t h at di s c ri mi n at e s a cti v e t u b e r c ul o si s f r o m l at e ntl y

i nf e ct e d a n d h e alt h y i n di vi d u al s.
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p ati e nt s a n d 1 2 h e alt h y c o nt r ol s) a n d c o nt ai n s 1 4 1 5 0 g e n eti c m a r k e r s f r o m a c o h o rt st u di e d

i n L o n d o n. T h e g e n e e x p r e s si o n i s p r e p r o c e s s e d i nt o l o g( c o u nt s) p e r milli o n (i. e. l o g- c p m)

a n d i s a v ail a bl e i n t h e R p a c k a g e d e a r s e q . F o r t h e s a k e of d e m o n st r ati n g o u r m et h o d, w e

r a n d o ml y s el e ct e d 2 0 0 g e n eti c m a r k e r s. Fi r st w e p e rf o r m e d a g r a p hi c al L a s s o al g o rit h m

u si n g t h e R p a c k a g e g l a s s o a n d e sti m at e d t h e p r e ci si o n m at ri x. T h e n w e r a n d o ml y
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a n al y si s, w e s c al e d t h e c ol u m n s of t h e d at a s o t h at ( 1/ n ) n
i= 1 x 2

i j = 1 f o r e v e r y c ol u m n.

Si n c e t hi s i s a n ill u st r ati o n a n d p e rf o r m e d o n r a n d o ml y s el e ct e d g e n eti c m a r k e r s, t h e

p a rti al c o r r el ati o n s o bt ai n e d c o ul d n ot b e v ali d at e d wit h t h e e xi sti n g bi ol o gi c al i nf o r m ati o n.

H o w e v e r, it i s s h o w n t o d e m o n st r at e t h e m et h o d ol o g y e st a bli s h e d i n t hi s C h a pt e r. T h e

pl ot o n t h e t o p i n Fi g u r e 3. 3 a p p e a r t o b e s p a r s e r t h a n t h e o n e c r e at e d wit h n o mi s si n g d at a

( b ott o m). We p e rf o r m e d a 5-f ol d c r o s s- v ali d ati o n t o t u n e t h e r e g ul a ri z ati o n p a r a m et e r i n
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Figure 3.3: Plot of the partial correlation matrix for complete data for 200 randomly

selected genetic markers using graphical Lasso method (top). Plot of partial correla-

tion matrix with 10% missing data for 200 randomly selected genetic markers using

CoGlasso method (bottom).
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both the cases. We used used a sequence of equally spaced values for the tuning parameter

in the logarithmic scale from [−2, 2] to perform the cross-validation. For the clean graphical

Lasso the regularization parameter was chosen to be 0.01. For the missing data case, the

regularization parameter was chosen to be 0.1 based on a 5-fold cross-validation, therefore,

resulting into a sparser graph.

3.8 Discussion and Conclusion

In this chapter, we have studied the estimation of precision matrix in the presence of

additive and multiplicative noise in a high-dimensional setting. We have derived theo-

retical deviation bounds for the estimated precision matrix from the truth in elementwise

maximum norm for two types of tail deviation conditions in two types of measurement

error settings. In terms of the upper bound on statistical convergence rates, our method

shares many theoretical properties with classical graphical Lasso in the clean case and

provides specific rates in element-wise `∞-norm for different distributional assumptions

on the signal and noise variables under different types formulation of measurement errors.

It is easy to implement and guarantees a convex solution to the problem.

We have performed simulation studies for different types of measurement error intro-

duced in the model. In terms of additive error, all the methods performed comparably.

Specifically, CoGlasso tends to give smaller false positive rate compared to the ADMM

method when the partial correlation is stronger in the additive case. When the partial

correlation is weaker, the performance of all the methods worsened, particularly, the

false negative rate of CoGlasso performed poorly. Similar trends were visible in terms of

the relative Frobenius, spectral, nuclear and `1 norm. With stronger to moderate partial

correlation among the nodes in the chain graph, nodewise regression performed similarly

to CoGlasso.
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In case of missing data, in a simpler covariance structure such as a chain graph, Co-

Glasso performs comparatively better than the non-convex approach, especially in terms of

false positive rates. With more complex form of covariance structure such as Erdös-Rényi

graph, both the methods tend to perform poorly with increasing missingness introduced

into the data. However, even with a deteriorating false negative rate, CoGlasso provided

better false positive rates compared to the ADMM method. The nodewise regression tend

to outperform both the methods.

In terms of tuning the regularization parameter, cross-validation method performed

better than the BIC criterion. The convergence of the ADMM algorithm depended on the

assumption of the side-constraint and added difficulty to the convergence of the estimator.

Compared to that, CoGlasso did not depend on any prior information and therefore, was

straightforward to implement.

3.9 Technical Details

Lemma 5. Let Z = (Z1, Z2, . . . , Zn)> where Zi’s are independent sub-Gaussian random variables

with sub-Gaussian parameter at most τ 2. If Z is a sub-Gaussian random vector then Z − E(Z) is

also sub-Gaussian; the weighted sums of the centered Zi’s are also sub-Gaussian and satisfy the

probabilistic bound

Pr
{
| v>(Z − E(Z)) |> t

}
≤ 2 exp

(
− ct2

τ 2‖v‖2
2

)
∀t > 0 (3.36)

where c is an universal constant. If Z is centered and the weights ‖v‖2
2 = 1, then the bound can be

simplified to

Pr
(∣∣∣ n∑

i=1

vi (Zi − E(Zi))
∣∣∣ ≥ t

)
≤ 2 exp

(
−ct

2

τ 2

)
Proof. By Lemma 2.6.8 (Vershynin, 2018) and general Hoeffding inequality from Theorem

2.6.3 Vershynin (2018).
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Lemma 6. (Datta and Zou, 2017) Let Zi = (Xi, Yi)
> for i = 1, . . . , n denote independent and

identically distributed two-dimensional vectors with zero mean, covariance ΣXY = (σXY )2×2 and

sub-Gaussian parameter τ 2. Then there exist absolute constants C and c such that, we have

Pr

{
1

n

∣∣∣ n∑
i=1

vi(XiYi − σXY )
∣∣∣ ≥ δ

}
≤ 1

C
exp

[
−cnmin

( δ2

τ 4‖v‖2
2

,
δ

τ 2‖v‖∞

)]
. (3.37)

When δ is small enough, that is, when δ ≤ τ 2‖v‖2
2/‖v‖∞, we can simplify the probabilistic bound

as

Pr

{
1

n

∣∣∣ n∑
i=1

vi(XiYi − σXY )
∣∣∣ ≥ δ

}
≤ 1

C
exp

[
− cnδ2

τ 4‖v‖2
2

]
.

Proof. We have

1

n

n∑
i=1

vi(XiYi − σXY )

=
1

4n

n∑
i=1

vi

{(
Xi + Yi

)2

−
(
σXX + σY Y + 2σXY

)}
− 1

4n

n∑
i=1

vi

{(
Xi − Yi

)2

−
(
σXX + σY Y − 2σXY

)}

=
1

2n

n∑
i=1

vi

{(
1√
2

(
Xi + Yi

))2

− 1

2

(
σXX + σY Y + 2σXY

)}

− 1

2n

n∑
i=1

vi

{(
1√
2

(
Xi − Yi

))2

− 1

2

(
σXX + σY Y − 2σXY

)}

=
1

2n

n∑
i=1

vi

{(
a>1 Zi

)2 − E
{(
a>1 Zi

)2
}}
− 1

2n

n∑
i=1

vi

{(
a>2 Zi

)2 − E
{(
a>2 Zi

)2
}}

.

Here, a1 = (1/
√

2, 1/
√

2)> and a2 = (1/
√

2,−1/
√

2)>. So, (a>1 Zi)
2 = (1/2)X2

i + (1/2)Y 2
i +

XiYi and E[(a>1 Zi)
2] = (1/2)(σXX +σY Y + 2σXY ). Similarly, (a>2 Zi)

2 = (1/2)X2
i + (1/2)Y 2

i −

XiYi and E[(a>2 Zi)
2] = (1/2)(σXX + σY Y − 2σXY ). As ‖ak‖2

2 = 1, a>k Zi is sub-Gaussian with

parameter at most τ 2 for k = 1, 2, followed by Lemma 5. Next, we use the relationship be-

tween sub-Gaussian and sub-exponential random variables from Lemma 5.14 of Vershynin

(2010), which states that a random variable Z is sub-Gaussian if and only if Z2 is sub-

69



exponential. We also use the Remark 5.18 from Vershynin (2010) which states that if Z is

sub-exponential, then so is Z −E(Z). Hence, we see that for k = 1, 2, (a>k Zi)
2−E{(a>k Zi)2}

is sub-exponential with parameter at most cτ 2 where c is an absolute constant. Therefore,

vi{(a>1 Zi)2 − E{(a>1 Zi)2}} is sub-exponential with parameter at most cτ 2‖v‖∞. Since we

have a linear combination of sub-exponential random variables, we can directly apply

Proposition 5.16 and Corollary 5.17 from Vershynin (2010) which provide a tail bound for

the sums of independent centered sub-exponential random variables. We have

Pr

[
1

n

∣∣∣ n∑
i=1

vi(XiYi − σXY )
∣∣∣ ≥ δ

]

≤ Pr

[
1

2n

∣∣∣ n∑
i=1

vi

{(
a>1 Zi

)2 − E
{(
a>1 Zi

)2
}} ∣∣∣+

1

2n

∣∣∣ n∑
i=1

vi

{(
a>2 Zi

)2 − E
{(
a>2 Zi

)2
}} ∣∣∣ ≥ δ

]

≤ 1

C
exp

[
−cnmin

( δ2

τ 4‖v‖2
2

,
δ

τ 2‖v‖∞

)]
.

Now, when δ is sufficiently small, that is, when

δ2

τ 4‖v‖2
2

≤ δ

τ 2‖v‖∞
implying δ ≤ τ 2‖v‖2

2

‖v‖∞
,

the simplified probabilistic bound would be

Pr

{
1

n

∣∣∣ n∑
i=1

vi(XiYi − σXY )
∣∣∣ ≥ δ

}
≤ 1

C
exp

[
− cnδ2

τ 4‖v‖2
2

]
.

Lemma 7. Let Σ(1) and Σ(2) be two p× p dimensional (random) matrices. The tail bound for the

elementwise-max norm of the deviation, for some δ > 0, can be upper bounded in terms of their

elementwise absolute deviation, that is

Pr(�Σ(1) −Σ(2)�max ≥ δ) ≤ p2 max
i,j

Pr
(
| Σ(1)

ij −Σ
(2)
ij |≥ δ

)
.
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Proof. We can write the elementwise-max norm as,

Pr(�Σ(1) −Σ(2)�max ≥ δ) ≤ Pr
(

max
i,j
| Σ(1)

ij −Σ
(2)
ij |≥ δ

)
≤ Pr

(
∪i,j | Σ(1)

ij −Σ
(2)
ij |≥ δ

)
(i)
≤

p∑
i=1

p∑
j=1

Pr
(
| Σ(1)

ij −Σ
(2)
ij |≥ δ

)
≤ p2Pr

(
| Σ(1)

ij −Σ
(2)
ij |≥ δ

)
.

Inequality (i) is due to Boole’s inequality.

Proof of Lemma 1

Proof. Recall that, for an additive measurement error model, we assume the observed

matrix is Z = X + W. Let ΣW = (σW,jk)p×p, the covariance matrix of the measurement

error W for the additive model. Given S as the sample covariance matrix for the data

without any corruption, we have

Σ̂addi − S =
1

n
Z>Z−ΣW − S

=
1

n
(X + W)>(X + W)> −ΣW −

1

n
X>X

=
1

n
X>X +

1

n
X>W +

1

n
W>X +

1

n
W>W −ΣW −

1

n
X>X

=
1

n
X>W +

1

n
W>X +

1

n
W>W −ΣW . (3.38)

LetXj andWk be the jth and the kth column of X and W, respectively, where j, k = 1, . . . , p.

Therefore by (3.38), we have,

Σ̂addi,jk − Sjk =
1

n
W>
j Xk +

1

n
W>
k Xj +

1

n
W>
j Wk − σW,jk.
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In order to bound this, we would now bound each term in (3.38) separately. We have that

Wj = (W1j,W2j, . . . ,Wnj)
> and Xk = (X1k, X2k, . . . , Xnk)

> are independent, zero-centered

sub-Gaussian random variables where each entry has a parameter at most σ2
W and σ2

X ,

respectively, for all j and k. We also assumed that Xk and Wj are independent.

For any random variable Y and α > 0, let us define the quasi-norm

‖Y ‖ψα = inf

{
t > 0 : E

[
exp

(
|Y |α

tα

)
≤ 2

]}
.

Here we define inf ∅ =∞. This is a generalization of sub-Gaussianity and sub-exponentiality.

The random variable with finite exponential Orlicz norm ‖ · ‖ψα corresponds to the α-sub-

exponential tail decay family which can be defined as

Pr(|Y | ≥ t) ≤ 1

C
exp(−ctα), ∀t ≥ 0 (3.39)

where C and c are constants. We have two special cases of Orlicz norms: α = 1 corresponds

to the family of sub-exponential distributions and α = 2 corresponds to the family of sub-

Gaussian distributions.

According to the Lemma 2.7.7 in Vershynin (2018) if Wj and Xk are sub-Gaussian ran-

dom variables then their product would be a sub-exponential random variable. Therefore,

for two generic random variables X and W the following inequality in terms of the Orlicz

norm would hold

‖XW‖ψ1 ≤ ‖X‖ψ2‖W‖ψ2 . (3.40)

We can also observe from Lemma 5.5 of Vershynin (2010) that there exist universal constants

m1, m2, M1 and M2 such that m1‖X‖2
ψ2
≤ σ2

X ≤M1‖X‖2
ψ2

and m2‖W‖2
ψ2
≤ σ2

W ≤M2‖W‖2
ψ2

hold. Since the inner product of Xk and Wj is sub-exponential in the first term in (3.38),

therefore, following Corollary 5.17 from Vershynin (2010), the sum of independent, cen-
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tered sub-exponential random variables have the following probabilistic bound:

Pr
(∣∣∣ 1
n

n∑
i=1

WijXik

∣∣∣ ≥ δ
)

≤ 1

C
exp

[
−cnmin

(
δ2

{maxi ‖WijXik‖ψ1}
2 ,

δ

maxi ‖WijXik‖ψ1

)]

≤ 1

C
exp

[
−cnmin

(
δ2

{maxi ‖Xik‖ψ2‖Wij‖ψ2}
2 ,

δ

maxi ‖Xik‖ψ2‖Wij‖ψ2

)]

=
1

C
exp

[
−cnmin

(
δ2

maxi ‖Xik‖2
ψ2
‖Wij‖2

ψ2

,
δ

maxi ‖Xik‖ψ2‖Wij‖ψ2

)]

≤ 1

C
exp

[
−cnmin

(
δ2

σ2
Xσ

2
W

,
δ

σXσW

)]

where c and C are universal constants. When δ ≤ σXσW , the bound can be simplified to

Pr
(∣∣∣ 1
n

n∑
i=1

WijXik

∣∣∣ ≥ δ
)
≤ 1

C
exp

[
− cnδ2

σ2
Xσ

2
W

]
.

A similar bound can be formed for the second term in (3.38) as

Pr
(∣∣∣ 1
n

n∑
i=1

WikXij

∣∣∣ ≥ δ
)
≤ 1

C
exp

[
−cnmin

(
δ2

σ2
Xσ

2
W

,
δ

σXσW

)]
.

When δ ≤ σXσW , the bound can be simplified to

Pr
(∣∣∣ 1
n

n∑
i=1

WikXij

∣∣∣ ≥ δ
)
≤ 1

C
exp

[
− cnδ2

σ2
Xσ

2
W

]
.

Next, to bound the third term in (3.38) let us inspect the correlated sub-Gaussian sequences,

Zi = (Wij,Wik)
>. Here Zi’s are independent and identically distributed vectors with zero

mean and covariance ΣW = (σW,jk)p×p and sub-Gaussian parameter σ2
W . We can directly

apply Lemma 6 to bound (WijWik)/n− σW,jk for vi = 1

Pr
( 1

n

∣∣∣ n∑
i=1

(
WijWik − σW,jk

)∣∣∣ ≥ δ
)
≤ 1

C
exp

[
−cnmin

( δ2

σ4
W

,
δ

σ2
W

)]
.
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When δ ≤ σ2
W , the bound can be simplified to

Pr
( 1

n

∣∣∣ n∑
i=1

(WijWik − σW,jk)
∣∣∣ ≥ δ

)
≤ 1

C
exp

[
− cnδ2

σ4
W

]
.

To upper bound for the elementwise max norm we can apply Lemma 7. Hence,

putting these three pieces together, we see that Σ̂addi and S satisfy the closeness con-

dition in (3.10) with ξ = max(σ4
W , σ

2
W , σ

2
Xσ

2
W , σXσW ). For a sufficiently small δ, specifi-

cally for δ ≤ min(σXσW , σ
2
W ), Σ̂addi and S satisfy the closeness condition in (3.10) with

ξ = max(σ4
W , σ

2
Xσ

2
W ).

Proof of Lemma 2

Proof. Recall that, for an additive measurement error model, we assume the observed

matrix is Z = X+W. Let Σjk = (σX,jk)p×p and ΣW = (σW,jk)p×p be the covariance matrices

of X and the measurement error W, for the additive model, respectively. Let Xj and Wk

be the random variables corresponding to the jth and the kth column, respectively, where

j, k = 1, . . . , p. Here, we assume that each column Xj and Wk are each independently and

identically distributed with bounded moments

E
[
X4m
j

]
≤ Km,X and E

[
W 4m
k

]
≤ Km,W .

Here m is a positive integer and Km,X , Km,W ∈ R+. We also assumed that Xj and Wk for

any j and k are independent. Given S as the sample covariance matrix for the data without

any corruption, we have

Σ̂addi − S =
1

n
X>W +

1

n
W>X +

1

n
W>W −ΣW .
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The jkth element of this matrix can be written as

Σ̂addi,jk − Sjk =
1

n

n∑
i=1

XijWik +
1

n

n∑
i=1

WijXik +
1

n

n∑
i=1

WijWik − σW,jk

=
n∑
i=1

{
1

n
XijWik +

1

n
WijXik +

1

n
WijWik −

1

n
σW,jk

}

Let us define the random variable T (i)
jk as

T
(i)
jk =

1

n
XijWik +

1

n
WijXik +

1

n
WijWik −

1

n
σW,jk

and note that they have mean zero. By applying Chebyshev’s inequality, we obtain,

Pr

[∣∣∣ n∑
i=1

T
(i)
jk

∣∣∣ > δ

]
= Pr

( n∑
i=1

T
(i)
jk

)2m

> δ2m



≤
E
[(∑n

i=1 T
(i)
jk

)2m
]

δ2m
. (3.41)

Now, applying Rosenthal’s inequality (Rosenthal, 1970) to obtain that there exists a constant

Cm, depending only on m, such that

E

( n∑
i=1

T
(i)
jk

)2m
 ≤ Cm max

(
n∑
i=1

E[(T
(i)
jk )2m],

(
n∑
i=1

E[(T
(i)
jk )2]

)m)

≤ Cm

(
n∑
i=1

E[(T
(i)
jk )2m] +

(
n∑
i=1

E[(T
(i)
jk )2]

)m)
. (3.42)

Turning to each individual expectation, we have

E[(T
(i)
jk )2m]

= E

[(
1

n
XijWik +

1

n
WijXik +

1

n
WijWik −

1

n
σW,jk

)2m
]
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(i)
≤ 24m

[
E

{(
1

n
XijWik

)2m
}

+ E

{(
1

n
WijXik

)2m
}

+ E

{(
1

n
WijWik

)2m
}

+
1

n2m
σ2m
W,jk

]
(ii)
= 24m

[
1

n2m
E[X2m

ij ]E[W 2m
ik ] +

1

n2m
E[X2m

ik ]E[W 2m
ij ] +

1

n2m
E
{

(WijWik)
2m}+

1

n2m
σ2m
W,jk

]
(iii)
≤ 24m

n2m

[{
1 + E(X4m

ij )
}{

1 + E(W 4m
ik )
}

+
{

1 + E(X4m
ik )
}{

1 + E(W 4m
ij )
}

+
√

E(W 4m
ij )E(W 4m

ik ) + σ2m
W,jk

]
(iv)
≤ 24m

n2m

[
(1 +Km,X)(1 +Km,W ) + (1 +Km,X)(1 +Km,W ) +Km,W + σ2m

W,jk

]

=
24m

n2m

[
2(1 +Km,X)(1 +Km,W ) +Km,W + σ2m

W,jk

]

where inequality (i) follows because of the relationship

(
k∑
i=1

ai)
n ≤ kn−1(

k∑
i=1

ani ) ≤ kn(
k∑
i=1

ani ).

Specifically since

(a+ b+ c+ d)2m ≤ 24m−2
{
a2m + b2m + c2m + d2m

}
≤ 24m

{
a2m + b2m + c2m + d2m

}
.

The first and the second term in equality (ii) is due to independence between X and W .

The first and the second term in inequality (iii) follows from the relationship E(|X|k) ≤

1 +E(|X|n) for some positive integer k and n where k < n for a generic random variable X .

The third term in inequality (iii) follows from the Cauchy-Schwartz inequality. Inequality

(iv) follows from the assumed moment bound on E[W 4m
j ] and E[X4m

j ]. Now, for m = 1, we

have

E[(T
(i)
jk )2] >

24

n2

[
3 + σ2

W,jk

]
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and hence

(
n∑
i=1

E[(T
(i)
jk )2]

)m

>

[
24n

n2

{
3 + σ2

W,jk

}]m
(i)
≤ 2m24mnm

n2m

[
3m + σ2m

W,jk

]

=
25mnm

n2m

[
3m + σ2m

W,jk

]

where inequality (i) uses the relationship (a + b)m ≤ 2m(am + bm). Combined with the

earlier bound (3.42)

E

( n∑
i=1

T
(i)
jk

)2m


≤ Cm

[
24mn

n2m

{
2(1 +Km,X)(1 +Km,W ) +Km,W + σ2m

W,jk

}

+
25mnm

n2m

{
3m + σ2m

W,jk

}]
(i)
≤ Cm24mnm

n2m

[
2(1 +Km,X)(1 +Km,W ) +Km,W + σ2m

W,jk + 2m3m + 2mσ2m
W,jk

]

≤ Cm24m

nm

[
2m3m + 2(1 +Km,X)(1 +Km,W ) +Km,W + σ2m

W,jk(1 + 2m)

]

Inequality (i) holds since n ≤ nm. Substituting back to the Chebyshev’s inequality in (3.41)

yields the tail bound

Pr

[∣∣∣ n∑
i=1

T
(i)
jk

∣∣∣ > δ

]

≤ Cm24m

nmδ2m

[
2m3m + 2(1 +Km,X)(1 +Km,W ) +Km,W + σ2m

W,jk(1 + 2m)

]
(i)
≤ Cm24m

nmδ2m

[
6m + 2(1 +Km,X)(1 +Km,W ) +Km,W + (1 + 2m)(max

i
σ2m
W,ii)

]
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=
Cm24m

nmδ2m

[
6m + 2(1 +Km,X)(1 +Km,W ) +Km,W + (1 + 2m)

]

where in inequality (i) the elementwise variance of W is replaced by the maximum ele-

mentwise variance maxi σW,ii of ΣW , which simplifies to 1 since the data are normalized.

To upper bound for the elementwise max norm we can apply Lemma 7. Hence the claim is

established.

Proof of Lemma 3

Proof. Recall that, for a multiplicative measurement error model, we assume the observed

matrix is Z = X�W where W = (w1, . . . ,wn)> is a matrix of multiplicative errors where

each row wi ∈ Rp of W is independent and identically distributed. Let E(W ) = µW ∈ Rp

be the known mean and ΣW = (σW,jk)p×p be the known population covariance matrix of

the measurement error W for the multiplicative model. Given S as the sample covariance

matrix for the data without any corruption, we have

Σ̂mult − S =
1

n
Z>Z� (ΣW + µWµ

>
W )− 1

n
X>X

=
1

n
(X�W)>(X�W)� (ΣW + µWµ

>
W )− 1

n
X>X. (3.43)

Let Wj and Xk be the jth and the kth column of W and X each with n elements, re-

spectively, where j, k = 1, . . . , p. We have that Wj = (W1j,W2j, . . . ,Wnj)
> and Xk =

(X1k, X2k, . . . , Xnk)
> are independent, sub-Gaussian random variables where each entry

has a parameter at most σ2
W and σ2

X , respectively, for all j and k. We also assumed that Wj

and Xk are independent. Followed by (4.40), we have,

Σ̂mult,jk − Sjk =
1

n

n∑
i=1

XijWijXikWik

µjµk + σW,jk
− 1

n

n∑
i=1

XijXik.
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Since the errors are multiplicative, in order to have all the Zij’s to be close to the respective

Xij’s, we need to upper bound both Xij and Wij . To have a meaningful expression for

Σ̂mult, we also need to impose a positive lower bound for the entries µW and ΣW + µWµ
>
W .

We impose the following regularity conditions for the multiplicative setup:

Pr
(

max
i,j
| Xij |<∞

)
= 1,

min
j,k

E(WjW
>
k ) = mmin > 0,

min
j
µj = µmin > 0,

max
j
µj = µmax <∞ (3.44)

where mmin, µmax and µmin are constants. Under these regularity conditions, we have by

triangle inequality

∣∣∣Σ̂mult,jk − Sjk

∣∣∣ ≤ ∣∣∣ 1
n

n∑
i=1

XijWijXikWik

µjµk + σW,jk
− 1

n

n∑
i=1

XijXik

∣∣∣
≤ 1

minj,k E(WjW>
k )

∣∣∣ 1
n

n∑
i=1

XijWijXikWik

∣∣∣+
1

n

∣∣∣ n∑
i=1

XijXik

∣∣∣
≤ 1

mmin

∣∣∣ 1
n

n∑
i=1

XijWijXikWik

∣∣∣+
1

n

∣∣∣ n∑
i=1

XijXik

∣∣∣. (3.45)

In order to bound this, we would now bound each term in (3.45) separately. For brevity,

we denote the two terms on the right hand side of (3.45) by T1 and T2, respectively. For

the first term, we have a product of four sub-Gaussian random variables, namely, Xj , Xk,

Wj and Wk. To find the distribution of this product we can apply the result introduced in

Lemma A.1 in Götze et al. (2021) which states that for a random vector X = (X1, . . . , Xk)

with marginals having α-sub-exponential tails the following relationship holds

www k∏
i=1

Xi

www
ψα
k

≤
k∏
i=1

‖Xi‖ψα.
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Therefore, for k = 4 and α = 2, we obtain that the product of four centered sub-

Gaussians is a centered 1
2
-sub-exponential and the relationship ‖XjXkWjWk‖ψ1/2

≤

‖Xj‖ψ2‖Xk‖ψ2‖Wj‖ψ2‖Wk‖ψ2 holds. Next, we apply Corollary 1.4 from Götze et al. (2021)

which gives the probabilistic tail bound for the sum of independent, centered 1
2
-sub-

exponential random variables with K = maxi ‖XijXikWijWik‖ψ1/2
. Therefore we get for

t > 0

Pr

[∣∣∣ n∑
i=1

XijWijXikWik

∣∣∣ ≥ t

]
≤ 1

C
exp

[
−cmin

(
t2

K2
,

√
t√
K

)]

=
1

C
exp

[
− cmin

(
t2{

maxi ‖XijWijXikWik‖ψ1/2

}2 ,

√
t√

maxi ‖XijWijXikWik‖ψ1/2

)]

≤ 1

C
exp

[
− cmin

(
t2

{maxi (‖Xij‖ψ2‖Wij‖ψ2‖Xik‖ψ2‖Wik‖ψ2)}2 ,

√
t√

maxi (‖Xij‖ψ2‖Wij‖ψ2‖Xik‖ψ2‖Wik‖ψ2)

)]

=
1

C
exp

[
− cmin

(
t2

maxi ‖Xij‖2
ψ2
‖Wij‖2

ψ2
‖Xik‖2

ψ2
‖Wik‖2

ψ2

,

√
t√

maxi ‖Xij‖ψ2‖Wij‖ψ2‖Xik‖ψ2‖Wik‖ψ2

)]

≤ 1

C
exp

[
−cmin

(
t2

σ4
Xσ

4
W

,

√
t√

σ2
Xσ

2
W

)]
.

The last inequality is due to the implication from Lemma 5.5 of Vershynin (2010) that for

two generic sub-Gaussian random variables X and W there exist universal constants m1,

m2, M1 and M2 such that m1‖X‖2
ψ2
≤ σ2

X ≤ M1‖X‖2
ψ2

and m2‖W‖2
ψ2
≤ σ2

W ≤ M2‖W‖2
ψ2

hold. Now setting t = δnmmin, we get,

Pr

[
1

nmmin

∣∣∣ n∑
i=1

XijWijXikWik

∣∣∣ ≥ δ

]
≤ 1

C
exp

[
−cmin

(
δ2n2m2

min

σ4
Xσ

4
W

,

√
δnmmin√
σ2
Xσ

2
W

)]
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≤ 1

C
exp

[
−c
√
nmmin min

(
δ2

σ4
Xσ

4
W

,

√
δ√

σ2
Xσ

2
W

)]
.

Therefore, we obtain the probability bound for the first term in (3.45) where ξ =

max (σ4
Wσ

4
X , σWσX). When δ ≤ σ2

Xσ
2
W , the bound can be simplified to

Pr
( 1

nmmin

∣∣∣ n∑
i=1

XijWijXikWik

∣∣∣ ≥ δ
)
≤ 1

C
exp

[
−
c
√
nmminδ

2

σ4
Xσ

4
W

]
.

The term T2 contains product of two sub-Gaussian random variables and therefore

would follow sub-exponential by Lemma 2.7.7 from Vershynin (2018). Furthermore,

following Corollary 5.17 from Vershynin (2010), the sum of independent, centered sub-

exponential random variables have the following probabilistic bound:

Pr
(∣∣∣ 1
n

n∑
i=1

XijXik

∣∣∣ ≥ δ
)
≤ 1

C
exp

[
−cnmin

(
δ2

σ4
X

,
δ

σ2
X

)]

with ξ = max (σ4
X , σ

2
X). When δ ≤ σ2

X , the bound can be simplified to

Pr
(∣∣∣ 1
n

n∑
i=1

XijXik

∣∣∣ ≥ δ
)
≤ 1

C
exp[−cnδ

2

σ4
X

].

To upper bound for the elementwise max norm we can apply Lemma 7. Putting

these two pieces together, we see that Σ̂mult and S satisfy the closeness condition in

(3.10) with ξ = max (σ4
Wσ

4
X , σWσX , σ

4
X , σ

2
X). For a sufficiently small δ, specifically for

δ ≤ min(σ2
Xσ

2
W , σ

2
X), Σ̂mult and S satisfy the closeness condition in (3.10) with ξ =

max(σ4
Xσ

4
W , σ

4
X).

Proof of Lemma 4

Proof. For a multiplicative measurement error model, we assume the observed matrix

is Z = X �W where W is a matrix of multiplicative error. Let Σ∗jk = (σX,jk)p×p and

ΣW,jk = (σW,jk)p×p be the covariance matrices of X and the measurement error W, for the
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multiplicative model, respectively. Let Xj and Wk be the random variables representing

the jth and the kth column, respectively, where j, k = 1, . . . , p. Here, we assume that

each column Xj and Wk are each independently and identically distributed with bounded

moments

E
[
X4m
j

]
≤ Km,X and E

[
W 4m
k

]
≤ Km,W .

Here m is a positive integer and Km,X , Km,W ∈ R+. We also assumed that Xj and Wk for

any j and k are independent. Given S as the sample covariance matrix for the data without

any corruption, we have

Σ̂mult − S =
1

n
(X�W)>(X�W)� (ΣW + µWµ

>
W )− 1

n
X>X.

The jkth element of this matrix can be written as

Σ̂mult,jk − Sjk =
1

n

∑n
i=1 XijWijXikWik

µjµk + σW,jk
− 1

n

n∑
i=1

XijXik

=
n∑
i=1

{
1

n

XijWijXikWik

(µjµk + σW,jk)
− 1

n
XijXik

}
.

Let us define the random variable T (i)
jk as

T
(i)
jk =

1

n

XijWijXikWik

(µjµk + σW,jk)
− 1

n
XijXik

and note that they have mean zero. Applying the regularity conditions defined in (3.44),

we have,

T
(i)
jk =

XijWijXikWik

nmmin

− 1

n
XijXik
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where mmin is a constant and it is defined in the proof of Lemma 3. By applying Cheby-

shev’s inequality, we obtain,

Pr

[∣∣∣ n∑
i=1

T
(i)
jk

∣∣∣ > δ

]
≤ Pr

( n∑
i=1

T
(i)
jk

)2m

> δ2m



≤
E
[(∑n

i=1 T
(i)
jk

)2m
]

δ2m
. (3.46)

Now, applying Rosenthal’s inequality (Rosenthal, 1970) to obtain that there exists a constant

Cm, depending only on m, such that

E

( n∑
i=1

T
(i)
jk

)2m
 ≤ Cm max

(
n∑
i=1

E[(T
(i)
jk )2m],

(
n∑
i=1

E[(T
(i)
jk )2]

)m)

≤ Cm

(
n∑
i=1

E[(T
(i)
jk )2m] +

(
n∑
i=1

E[(T
(i)
jk )2]

)m)
. (3.47)

Turning to each individual expectation, we have

E[(T
(i)
jk )2m] = E

[{
1

n

XijWijXikWik

mmin

− 1

n
XijXik

}2m]
(i)
≤ 22m−1E

[{
1

mminn
XijWijXikWik

}2m

+

{
1

n
XijXik

}2m]

≤ 22m

[
1

m2m
minn

2m
E[X2m

ij W
2m
ij X2m

ik W
2m
ik ] +

1

n2m
E[X2m

ij X
2m
ik ]

]
(ii)
≤ 22m

n2m

[
1

m2m
min

E[X2m
ij X

2m
ik ]E[W 2m

ij W 2m
ik ] + E[X2m

ij X
2m
ik ]

]
(iii)
≤ 22m

n2m

[
1

m2m
min

√
E[X4m

ij ]E[X4m
ik ]
√

E[W 4m
ij ]E[W 4m

ik ] +
√

E[X4m
ij ]E[X4m

ik ]

]
(iv)
≤ 22m

n2m

[
1

m2m
min

Km,XKm,W +Km,X

]
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where inequality (i) follows because of the relationship (
∑k

i=1 ai)
n ≤ kn−1(

∑k
i=1 a

n
i ). Specif-

ically, since (a+ b)2m ≤ 22m(a2m + b2m). The first term in inequality (ii) follows since X and

W are independent. The terms in inequality (iii) follows from Cauchy Schwartz inequality.

Inequality (iv) follows from the assumed moment bounds on E[X4m
j ] and E[W 4m

j ]. Now

for m = 1, we have

E[(T
(i)
jk )2] >

22

n2

[
1 +

1

m2
min

]
.

Hence,

(
n∑
i=1

E[(T
(i)
jk )2]

)m

.

[
22n

n2

{
1 +

1

m2
min

}]m
(i)
≤ 23mnm

n2m

{
1 +

1

m2m
min

}

where inequality (i) uses the relationship (a + b)m ≤ 2m(am + bm). Combined with the

earlier bound (3.42), we have

E

( n∑
i=1

T
(i)
jk

)2m
 ≤ Cm

[
22mn

n2m

{
1

m2m
min

Km,XKm,W +Km,X

}
+

23mnm

n2m

{
1 +

1

m2m
min

}]
(i)
≤ Cm22mnm

n2m

[
1

m2m
min

Km,XKm,W +Km,X +
2

m2m
min

]

≤ Cm22m

nm

[
1

m2m
min

(
2 +Km,XKm,W

)
+Km,X

]

Inequality (i) holds since n ≤ nm. Substituting back to the Chebyshev’s inequality in (3.46)

yields the tail bound

Pr

[∣∣∣ n∑
i=1

T
(i)
jk

∣∣∣ > δ

]
≤ Cm22m

nmδ2m

[
1

m2m
min

(
2 +Km,XKm,W

)
+Km,X

]

To upper bound for the elementwise max norm we can apply Lemma 7. Hence the claim is

established.
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Consistency of Θ̂ and its error in elementwise `∞- norm:

For completeness, we now present the results required to show the consistency of Θ̂. The

framework for the proofs are adopted from Ravikumar et al. (2011).

Lemma 8. For any λn > 0 and the projected sample covariance Σ̃ with strictly positive diagonal

elements, the `1-regularized log-determinant problem has a unique solution Θ̂ characterized by

Σ̃− Θ̂
−1

+ λnẐ = 0 (3.48)

where Ẑ is an element of the sub-differential ∂�Θ̂�1,off .

Proof. If λn > 0, then the CoGlasso objective function can be written in an equivalent

constrained form using Lagrangian duality as follows:

min
Θ∈Sp++,�Θ�1,off≤C(λn)

{
〈〈Θ, Σ̃〉〉 − log det(Θ)

}
(3.49)

for some C(λn) <∞. The behaviour of the objective function for sequences with possibly

unbounded diagonal entries is the only possible concern, since the off-diagonal elements

remain bounded within the `1-ball, since, �Θ�1,off ≤ C(λn). The diagonal entries would be

positive since any Θ in the constraint set is positive-definite. We can show this by using

the standard basis vector ei defined by ei = 1 at the ith position and zero otherwise for

i = 1, 2, . . . , p. Since Θ is positive definite, then x>Θx > 0 for any non-zero vector x ∈ Rp.

Then e>i Θei = Θii > 0, for all i = 1, 2, . . . , p, showing that the diagonal elements are indeed

positive for a positive definite symmetric matrix.

Next, we can upper bound the term log det Θ using Hadamard’s inequality (Horn and

Johnson, 2012) for positive definite matrices which states that det Θ ≤
∏p

i=1 Θii. Therefore,

we can write log det Θ ≤
∑p

i=1 log Θii. Since the off-diagonal elements are bounded within

the `1-ball, so we only need to show that the following function involving the diagonal

85



elements is coercive, that is,

p∑
i=1

ΘiiΣ̃ii − log det Θ ≥
p∑
i=1

{
ΘiiΣ̃ii − log Θii

}
.

diverges to infinity for any sequence indexed by t, ‖Θt
11, . . . ,Θ

t
pp‖2 → +∞, as long as

Σ̃ii > 0 for each i = 1, . . . , p. Therefore, the minimum is attained. Here, −
∑p

i=1 log Θii is

termed the logarithmic-determinant barrier function and it is strictly convex since Θii > 0.

By the strict convexity of the log-determinant barrier, the minimum would be unique.

For the regularized form, the matrix Θ̂ ∈ Sp++ is optimal if and only if the zero matrix

belongs to the sub-differential of the objective, or equivalently if and only if there exists a

matrix Ẑ in the sub-differential of the off-diagonal norm � · �1,off evaluated at Θ̂ such that

Σ̃−Θ̂
−1

+λnẐ = 0, as claimed, by standard optimality conditions for convex programs.

The following lemma provides sufficient condition to show that step (d) from the

primal-dual witness condition, the strict dual feasibility holds, so that �Z̃�max < 1.

Lemma 9. [Strict dual feasibility.] Suppose that

max {�W�max, �R(∆)�max} ≤
αλn

8
(3.50)

Then the vector Z̃Sc constructed in step (c) of primal-dual witness condition satisfies �Z̃Sc�max < 1,

and therefore Θ̃ = Θ̂.

Proof. We can re-write the stationarity condition (3.48) using (3.19) and (3.20) as

0 =Σ̃− Θ̃
−1

+ λnZ̃ (3.51)

=Σ̃− Θ̃
−1

+ Θ̃
−1
− (Θ∗)−1 + (Θ∗)−1∆(Θ∗)−1 −R(∆) + λnZ̃

=Σ̃− (Θ∗)−1 + (Θ∗)−1∆(Θ∗)−1 −R(∆) + λnZ̃

=(Θ∗)−1∆(Θ∗)−1 + W −R(∆) + λnZ̃
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This can be re-written as a linear equation by “vectorizing” the matrices. Let us use the

notation vec(A) or equivalently Ā for the vector version of the set or matrix A, obtained

by stacking up the rows of A into a single column vector.

vec((Θ∗)−1∆(Θ∗)−1) = ((Θ∗)−1 ⊗ (Θ∗)−1)∆̄ = Γ∗∆̄.

Equation (3.51) can be decomposed into two blocks of linear equations in terms of the

disjoint decomposition S and Sc as follows:

Γ∗SS∆̄S + W̄S − R̄S + λn
¯̃
ZS = 0 (3.52)

Γ∗ScS∆̄S + W̄Sc − R̄Sc + λn
¯̃
ZSc = 0, (3.53)

since by construction ∆Sc = 0. We can solve for ∆̄S from (3.52) as follows, since Γ∗SS is

invertible:

∆̄S = (Γ∗SS)−1
{
−W̄S + R̄S − λn

¯̃
ZS

}
.

Substituting this into (3.53), we can solve for Z̃Sc as follows:

¯̃
ZSc =

1

λn

{
−Γ∗ScS∆̄S − W̄Sc + R̄Sc

}
=

1

λn

{
−Γ∗ScS(Γ∗SS)−1

{
−W̄S + R̄S − λn

¯̃
ZS

}
− W̄Sc + R̄Sc

}
=

1

λn
Γ∗ScS(Γ∗SS)−1(W̄S − R̄S) + Γ∗ScS(Γ∗SS)−1 ¯̃

ZS −
1

λn
(W̄Sc − R̄Sc).

Next, we take `∞-operator norm on both sides and apply the triangular inequality

‖ ¯̃
ZSc‖∞ ≤

1

λn
‖Γ∗ScS(Γ∗SS)−1(W̄S − R̄S)‖∞ + ‖Γ∗ScS(Γ∗SS)−1 ¯̃

ZS‖∞

+
1

λn
(‖W̄Sc‖∞ + ‖R̄Sc‖∞)

(i)
≤ 1

λn
�Γ∗ScS(Γ∗SS)−1�∞(‖W̄S‖∞ + ‖R̄S‖∞) + ‖Γ∗ScS(Γ∗SS)−1‖∞‖

¯̃
ZS‖∞

87



+
1

λn
(‖W̄Sc‖∞ + ‖R̄Sc‖∞)

(ii)
≤ (1− α)

λn
(‖W̄S‖∞ + ‖R̄S‖∞) + (1− α) +

1

λn
(‖W̄Sc‖∞ + ‖R̄Sc‖∞)

≤ (1− α) +
2

λn
(‖W̄‖∞ + ‖R̄‖∞)− α

λn
(‖W̄‖∞ + ‖R̄‖∞)

(iii)
≤ (1− α) +

α

2
− α2

4

≤ 1− α +
α

2

< 1,

as claimed. Inequality (i) holds because of sub-multiplicative property of operator norms,

‖Ax‖∞ ≤ �A�∞‖x‖∞. Inequality (ii) is due to the mutual incoherence condition (3.18)

and the fact that ‖ ¯̃
ZS‖∞ ≤ 1, by construction. The third inequality utilizes the assumption

made in the statement of Lemma 9.

The following lemma is to relate the behaviour of the remainder term (3.20) to the

deviation ∆ = Θ̃−Θ∗.

Lemma 10. [Control of Remainder.] Suppose that the elementwise `∞-bound �∆�max ≤ 1/(3κΣ∗d)

holds. Then the matrix J =
∑∞

k=0(−1)k((Θ∗)−1∆)k satisfies the `∞- operator norm �JT�∞ ≤ 3/2,

and moreover, the matrix

R(∆) = (Θ∗)−1∆(Θ∗)−1∆J(Θ∗)−1, (3.54)

has elementwise `∞-norm bounded as

�R(∆)�max ≤
3

2
d�∆�2

maxκ
3
Σ∗ . (3.55)

Proof. With ∆ = Θ̃−Θ∗, the remainder term can be rewritten as follows:

R(∆) = (Θ∗ + ∆)−1 − (Θ∗)−1 + (Θ∗)−1∆(Θ∗)−1.
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Using matrix expansion of the first term in the expression of the remainder term, we get

(Θ∗ + ∆)−1 = (Θ∗(I + (Θ∗)−1∆))−1

= (I + (Θ∗)−1∆)−1(Θ∗)−1

=
∞∑
k=0

(−1)k((Θ∗)−1∆)k(Θ∗)−1

= (Θ∗)−1 − (Θ∗)−1∆(Θ∗)−1 +
∞∑
k=2

(−1)k((Θ∗)−1∆)k(Θ∗)−1

= (Θ∗)−1 − (Θ∗)−1∆(Θ∗)−1 + (Θ∗)−1∆(Θ∗)−1∆J(Θ∗)−1,

where J =
∑∞

k=0(−1)k((Θ∗)−1∆)k.

To prove the bound for the remainder term, let ei denote the unit vector with 1 in

position i and zeros elsewhere. We have,

�R(∆)�max = max
i,j
| e>i (Θ∗)−1∆(Θ∗)−1∆J(Θ∗)−1ej |

(i)
≤ max

i,j
‖e>i (Θ∗)−1∆‖∞‖(Θ∗)−1∆J(Θ∗)−1ej‖1

= max
i
‖e>i (Θ∗)−1∆‖∞max

j
‖(Θ∗)−1∆J(Θ∗)−1ej‖1

(ii)
≤ max

i
‖e>i (Θ∗)−1‖1�∆�max max

j
‖(Θ∗)−1∆J(Θ∗)−1ej‖1

(iii)
≤ �(Θ∗)−1�∞�∆�max�(Θ∗)−1∆J(Θ∗)−1�1

(iv)
= �(Θ∗)−1�∞�∆�max�(Θ∗)−1JT∆(Θ∗)−1�∞

≤ κΣ∗�∆�max�(Θ∗)−1�2
∞�J>�∞�∆�∞

≤ κ3
Σ∗�∆�max�J>�∞�∆�∞

where the first inequality follows from Hölder’s inequality. The second inequality follows

since for a vector u ∈ Rp, ‖u>∆‖∞ = maxj |
∑

i ui∆ij |≤ �∆�max |
∑

i ui |≤ ‖u‖1�∆�max.

The third inequality uses the fact that �A�∞ = maxi
∑

j | aij |, i.e. the maximum absolute

row sum of the matrix and �A�1 = maxj
∑

i | aij |, i.e. the maximum absolute column
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sum of the matrix. The fourth inequality follows from the relationship �A�1 = �A>�∞.

The last line following by using the definition of κΣ∗ = �(Θ∗)−1�∞.

Since J =
∑∞

k=0(−1)k((Θ∗)−1∆)k and using the submultiplicativity of � · �∞ matrix

norm, we have,

�J>�∞ ≤
∞∑
k=0

�∆(Θ∗)−1�k∞ =
1

1− �∆(Θ∗)−1�∞
≤ 1

1− �(Θ∗)−1�∞�∆�∞
≤ 1

2/3
=

3

2
,

because �(Θ∗)−1�∞�∆�∞ < 1/3 from (3.56). We can verify that by applying submulti-

plicativity of the � · �∞ matrix form to the term (Θ∗)−1∆. For any p× p matrices, we can

write

�(Θ∗)−1∆�∞ ≤ �(Θ∗)−1�∞�∆�∞ ≤ κΣ∗d�∆�max

(i)
<

1

3
, (3.56)

where d is the maximum number of non-zeros in any row/column of ∆ and κΣ∗ = �Σ∗�∞.

We also used the fact �∆�∞ ≤ d�∆�max. This is true because

�∆�∞ = max
i

∑
j

| aij |≤ max
i

(d.max
j
| aij |) = dmax

i,j
| aij |= d�∆�max.

Inequality (i) follows from the assumption stated in the lemma that �∆�max ≤ 1/3κΣ∗d.

Therefore, we have

�R(∆)�max ≤
3

2
κ3

Σ∗�∆�max�∆�∞

≤ 3

2
d�∆�2

maxκ
3
Σ∗ ,

since �∆�∞ ≤ d�∆�max, as ∆ has at most d non-zeros per row/column. Hence the proof

is complete.

To prove the sufficient condition for `∞-bounds, the next lemma provides control on

the deviation ∆ = Θ̃−Θ∗, measured in elementwise `∞ norm.
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Lemma 11. [Control of the Error Deviation.] Suppose that

r = 2κΓ∗ {�W�max + λn} ≤ min

{
1

3κΣ∗d
,

1

3κ3
Σ∗κΓ∗d

}
(3.57)

where κΓ∗ = �(Γ∗SS)−1�∞, κΣ∗ = �Σ∗�∞ and W = Σ̃−Σ∗. Then we have the elementwise `∞

bound

�∆�max = �Θ̃−Θ∗�max ≤ r. (3.58)

Proof. As proved in Lemma 8, we can conclude that the regularized problem (3.49) has a

unique optimum Θ̃. We proceed by noting that Θ̃Sc = Θ∗Sc = 0, so that �∆�max = �∆S�max.

We get the zero-gradient condition by taking partial derivatives of the Lagrangian of the

regularized problem with respect to the unconstrained elements ΘS , since the partial

derivatives are zero at the optimum

G(ΘS) = −Θ−1
S + Σ̃S + λnZ̃S = 0, (3.59)

where Θ is the p× p matrix with entries in S equal to ΘS and entries in Sc equal to zero.

The zero-gradient condition is necessary and sufficient to achieve an optimum of the

Lagrangian problem and therefore the problem has Θ̃S as the unique solution.

To bound ∆ = Θ̃ −Θ∗, we want to show that there exists a solution ∆ to the zero-

gradient condition (3.59) that is contained within the ball

B(r) = {ΘS | �ΘS�max ≤ r} , with r = 2κΓ∗ {�W�max + λn} . (3.60)

Then, by the uniqueness of the optimal solution, we can conclude that Θ̃−Θ∗ belongs to

B(r). To do so, let us first define the error deviation in vectorized form, ∆̄S =
¯̃
ΘS − Θ̄

∗
S .

Next, let us define a continuous map F : ∆S 7→ F (∆S) such that its fixed points are
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equivalent to zeros of this gradient expression via

F (∆̄S) = ∆̄S − (Γ∗SS)−1(Ḡ(Θ∗S + ∆S)), (3.61)

where Ḡ denotes the vectorized form of G. We have, by construction, F (∆̄S) = ∆̄S holds if

and only if G(Θ∗S + ∆S) = G(Θ̃S) = 0. We can now apply Brouwer’s fixed point theorem

which states (Ortega and Rheinboldt, 2000) that for any continuous function f mapping a

compact convex set to itself there is a point x0 such that f(x0) = x0.

Since F is continuous and B(r) is convex and compact, by Brouwer’s fixed point

theorem, this inclusion implies that there exists some fixed point ∆̄S ∈ B(r). Therefore,

we can claim that F (B(r)) ⊆ B(r), that is, F indeed has a fixed point inside B(r). By

uniqueness of the zero gradient condition and hence fixed points of F , it can be concluded

that �Θ̃S −Θ∗S�max ≤ r.

Let ∆ ∈ Rp×p denote the zero-padded matrix which is equal to ∆S on S and zero on Sc.

We can rewrite the zero-gradient expression by adding and subtracting [(Θ∗)−1]S

G(Θ∗S + ∆S) = −[(Θ∗ + ∆)−1]S + Σ̃S + λnZ̃S (3.62)

= −[(Θ∗ + ∆)−1]S + (Σ̃S − [(Θ∗)−1]S) + [(Θ∗)−1]S + λnZ̃S

= −[(Θ∗ + ∆)−1]S + [(Θ∗)−1]S + WS + λnZ̃S,

by using the definition of W = Σ̃−Σ∗.

Next, we can write the vectorized form of the remainder term (3.20), restricting the

entries to S as

R̄S = vec((Θ∗ + ∆)−1 − (Θ∗)−1))S + vec((Θ∗)−1∆(Θ∗)−1)S

= vec((Θ∗ + ∆)−1 − (Θ∗)−1))S + ((Θ∗)−1 ⊗ (Θ∗)−1)SS∆̄S

= vec((Θ∗ + ∆)−1 − (Θ∗)−1))S + Γ∗SS∆̄S.
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This expression is equal to the vectorized form of expansion (3.54) where the entries

are restricted to S. Therefore,

vec((Θ∗ + ∆)−1 − (Θ∗)−1))S + Γ∗SS∆̄S = vec(((Θ∗)−1∆)2J(Θ∗)−1)S (3.63)

=⇒ vec((Θ∗ + ∆)−1 − (Θ∗)−1))S = vec[((Θ∗)−1∆)2J(Θ∗)−1]S − Γ∗SS∆̄S

We can rewrite (3.61), combined with (3.63) and (3.62),

F (∆̄S) = ∆̄S − (Γ∗SS)−1(Ḡ(Θ∗S + ∆S))

= ∆̄S + (Γ∗SS)−1vec
{

(Θ∗ + ∆)−1 − (Θ∗)−1)−WS − λnZ̃S

}
S

= ∆̄S + (Γ∗SS)−1
{

vec[((Θ∗)−1∆)2J(Θ∗)−1]S − Γ∗SS∆̄S

}
− (Γ∗SS)−1

{
W̄S + λn

¯̃
ZS

}
= ∆̄S − (Γ∗SS)−1Γ∗SS∆̄S + (Γ∗SS)−1

{
vec[((Θ∗)−1∆)2J(Θ∗)−1]S

}
− (Γ∗SS)−1

{
W̄S + λn

¯̃
ZS

}
= (Γ∗SS)−1

{
vec[((Θ∗)−1∆)2J(Θ∗)−1]S

}
− (Γ∗SS)−1

{
W̄S + λn

¯̃
ZS

}
. (3.64)

Notice, that for any ∆S ∈ B(r), by sub-multiplicativity of the � · �∞ we have

�(Θ∗)−1∆�∞ ≤ �(Θ∗)−1�∞�∆�∞ ≤ κΣ∗d�∆�max,

where �∆�max and �∆�∞ denote the elementwise `∞-norm and `∞-operator norm re-

spectively with d being the maximum number of non-zero entries per row/column of

∆.

Now, we can apply the results of Lemma 10 to the error deviation. By definition of the

radius r and the assumed upper bound defined in (3.57), we have

�∆�max ≤ r ≤ 1

3κΣ∗d
.
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We can take `∞-norm on both sides of (3.64), use the triangular inequality and submulti-

plicativity property of matrix operator norms to calculate our desired bound. Beginning

with the second term, we have

‖(Γ∗SS)−1
{

W̄S + λn
¯̃
ZS

}
‖∞ ≤ �(Γ∗SS)−1�∞(‖W̄S‖∞ + λn)

≤ κΓ∗(‖W̄‖∞ + λn)

=
r

2
,

where the inequality follows from the assumed upper bound in (3.57).

To show the bound for the first term, we have

‖(Γ∗SS)−1
{

vec[((Θ∗)−1∆)2J(Θ∗)−1]S
}
‖∞ ≤ �(Γ∗SS)−1�∞‖vec[((Θ∗)−1∆)2J(Θ∗)−1]S‖∞

≤ κΓ∗‖R̄S‖∞

≤ κΓ∗�R(∆)�max

(i)
≤ κΓ∗

3

2
d�∆�2

maxκ
3
Σ∗

≤ 3

2
dκ3

Σ∗κΓ∗r
2,

where the first inequality follows by applying the bound from Lemma 10. Since r ≤

1/3dκ3
Σ∗κΓ∗ by assumption (3.57), we conclude that

‖(Γ∗SS)−1
{

vec[((Θ∗)−1∆)2J(Θ∗)−1]S
}
‖∞ ≤

3

2
dκ3

Σ∗κΓ∗
1

3dκ3
Σ∗κΓ∗

r ≤ r

2
.

Therefore, putting the pieces together, we can establish that

�∆�max = �Θ̃−Θ∗�max ≤ 2κΓ∗ {�W�max + λn} .
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A guarantee on the sign consistency of the primal witness matrix Θ̃ can be achieved by

lower bounding the minimum value Θ∗min with a combination of Lemma 11.

Lemma 12. [Sign Consistency of Oracle Estimator.] Suppose the conditions of Lemma 11 holds

and further that the minimum absolute value Θ∗min of non-zero entries in the true concentration

matrix Θ∗ is lower bounded as

| Θ∗min |≥ 4κΓ∗(�W�max + λn) (3.65)

then sgn(Θ̃S) = sgn(Θ∗S) holds.

Proof. We have, from the bound (3.58), | Θ̃ij −Θ∗ij |≤ r, ∀(i, j) ∈ S. Therefore, combining

the definition of r, we can write

| Θ̃ij −Θ∗ij |≤ 2κΓ∗(�W�max + λn).

This yields that for all (i, j) ∈ S, the estimate Θ̃ij cannot differ enough from Θ∗ij to change

sign.

Proof of Theorem 2

Proof. Using the lower bound on sample size n (3.32) and the monotonicity condition

(3.13), we can write

δ =
1

2κΓ∗

(
1 + (8/α)

)
θ−1

min

≥ δ̄f∗(n, p
γ)

=⇒ 1

2κΓ∗

(
1 + (8/α)

)
θ−1

minδ̄f∗(n, p
γ)
≥ 1

=⇒ 1

2κΓ∗

(
1 + (8/α)

)
δ̄f∗(n, p

γ)
≥ θ−1

min

=⇒ θmin ≥ 2κΓ∗

(
1 + (8/α)

)
δ̄f∗(n, p

γ) > 4κΓ∗

(
1 + (8/α)

)
δ̄f∗(n, p

γ).
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Therefore, from Theorem 1 we have the equality Θ̃ = Θ̂, and also that �Θ̂ −Θ∗�max ≤

θmin/2 with probability at least 1 − 1/pγ−2. We can apply Lemma 12 which guarantees

that sgn(Θ̃ij) = sgn(Θ∗ij) for all (i, j) ∈ E. To conclude, we establish that with probability

at least 1 − (1/pγ−2), the sign consistency condition sgn(Θ̂ij) = sgn(Θ∗ij) holds for all

(i, j) ∈ E.

Proof of Corollary 1

Proof. Theorem 1 guarantees that with probability at least 1− (1/pγ−2) that �Θ̂−Θ∗�max ≤

2κΓ∗

(
1 + 8/α

)
δ̄f∗(n, p

τ ). Recall that Θ∗ has at most s + p non-zero elements, where,

s =| E(Θ∗) | denotes the total number of off-diagonal non-zeros in Θ∗ and p is the number

of diagonal elements. Since the edge set Θ̂ is a subset of the edge set of Θ∗, we can conclude

that

�Θ̂−Θ∗�F =

 p∑
i=1

(Θ̂ii −Θ∗ii)
2 +

∑
(i,j)∈E

(Θ̂ij −Θ∗ij)
2

1/2

≤
√
s+ p�Θ̂−Θ∗�max

= 2κΓ∗

(
1 + (8/α)

)
δ̄f∗(n, p

τ )
√
s+ p.

The inequality follows from the fact that �A�F ≤
√
d�A�max, if the matrix A has d non-zero

elements.

Notice that for a symmetric matrix, we have

�Θ̂−Θ∗�2

(i)

≤ �Θ̂−Θ∗�∞
(ii)

≤ d�Θ̂−Θ∗�max (3.66)

where the first inequality follows from the equivalence relationship between the l2 and

l∞-operator norm and the second inequality follows from the fact that for a matrix A,

�A�∞ ≤ d�A�max, where d is the maximum number of non-zero elements per row/column.
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Since the Frobenius norm upper bounds the operator norm, therefore, as claimed, we have

�Θ̂−Θ∗�2 ≤
{

2κΓ∗

(
1 + (8/α)

)}
min

{√
s+ p, d

}
δ̄f∗(n, p

τ ).
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Chapter 4

Joint Estimation of Regression

Coefficients and Precision Matrix in

Noisy Data

In Chapter 3, we were only interested to inspect the graphical structure of the p-dimensional

vector X := (X1, ..., Xp)
> ∈ Rp. In this Chapter, we introduce a q-dimensional random

vector as responses Y := (Y1, ..., Yq)
> ∈ Rq and want to inspect the conditional relationship

of Y given X in the presence of missing data in the responses.

4.1 Introduction

Consider a q-dimensional Gaussian random vector Y := (Y1, ..., Yq)
> ∈ Rq and a p-

dimensional deterministic covariate vector X := (X1, ..., Xp)
> ∈ Rp. We assume that

Y and X have been centered, thus the intercept term is omitted. Assuming that the under-

lying random variables Y come from a multivariate Gaussian distribution, we can form a

linear relationship between Y and X as

Y = B∗>X + ε (4.1)
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where B∗ ∈ Rp×q is the matrix of regression coefficients and ε ∈ Rq is the random error

assumed to follow a multivariate Gaussian distribution with mean zero and covariance

Σ∗εε ∈ Rq×q. The model in (4.1) implies that the regression function has the form E(Y |X) =

B∗>X and also Cov(Y |X) = Σ∗εε.

Suppose we have n independent and identically distributed observations from some

joint distribution of Y and X denoted by D(Y,X). In matrix notation, we can rewrite (4.1)

as a model of n stacked observations

Y = XB∗ + ε, (4.2)

where X = [x1, . . . ,xn]> ∈ Rn×p and Y = [y1, . . . ,yn]> ∈ Rn×q denote the data matrices,

and ε = [ε1, . . . , εn]> ∈ Rn×q denotes the matrix of random noises. We assume that the

design matrix X has normalized columns, that is, (1/n)
∑n

i=1 x
2
ij = 1 for every j = 1, . . . , p.

Typically, the goal is to estimate the coefficient matrix B∗ and the covariance Σ∗εε. Before

stating the ways to solve this problem, let us define some notations that we will use

throughout the chapter.

Notation and Conventions: In this chapter, we will denote a random variable by an

uppercase letter and an data matrix with uppercase bold letter, for example, A is a random

variable and A is a data matrix.

For a matrix A, we denote by A � 0 when A is positive semi-definite. Let �A�1 be

the operator norm induced by `1 norm for vectors, which can be computed by �A�1 =

maxj
∑

i | aij |, i.e. the maximum absolute column sum of the matrix. Denoted by

�A�2 the operator norm that can be computed as the greatest singular value of A, i.e.

�A�2 = maxj σj(A). Let �A�∞ be the operator norm induced by `∞ norm, which can be

computed by �A�∞ = maxi
∑

j | aij |, i.e. the maximum absolute row sum of the matrix.

We also introduced the following elementwise matrix norm. Let �A�1,1 =
∑

i,j | aij | be

the elementwise `1-norm, �A�F =
√∑

i,j | aij |2 be the Frobenius norm, and �A�max =
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maxi,j | aij | be the elementwise maximum norm. Let Λmin(A) and Λmax(A) denote the

smallest and largest eigenvalues of A.

For two matrices A = (aij) and B = (bij), we define A � B = (aijbij) as their

elementwise product, and A � B = (aij/bij) as their elementwise division. For any

a ∈ N = {1, 2, . . .}, we denote [a] = {1, . . . , a} as sample indices. For instance, if I is an

index set, we write, I ⊂ [q] or I ⊂ [p]× [q]. If a ∈ Rp and if I ⊂ [p], we use aI to denote the

same vector as a but with elements [p]\I set to zero. We denote the (k, l)th element of a

matrix M by (M)kl, its kth row by (M)k• and lth column by (M)•l.

Let Q be a generic Euclidean space. Let M and N be any conformable matrices or

vectors in Q. Let us define the inner product 〈·, ·〉 as 〈M,N〉 = tr(M>N). For a norm R

defined on Q, the dual normR∗ can be defined by

R∗(M) ≡ sup
N∈Q\{0}

〈M,N〉
R(N)

.

4.1.1 Model Setup

To jointly estimate B∗ and Σ∗εε, Rothman et al. (2010) proposed a method called multivariate

regression with covariance estimation (MRCE) to estimate B∗ and Θ∗εε := (Σ∗εε)
−1 by

minimizing the negative log-likelihood with `1 penalization as follows:

(Θ̂, B̂) = arg min
Θ�0,B

tr

[
1

2n
(Y −XB)>(Y −XB)Θ

]
− 1

2
log det(Θ) + λΘ�Θ�1,off + λB�B�1,1

(4.3)

where �Θ�1,off =
∑

j′ 6=j |Θjj′ |, �B�1,1 =
∑

j,k |Bjk|, and λΘ, λB ≥ 0 are tuning parameters

controlling the sparsity in Θ̂ and B̂, respectively. In the case of fully observed data,

Equation (4.3) can be efficiently solved when the error vector ε is uncorrelated. When Σ∗εε

is assumed to be diagonal, that is, all off-diagonal elements of Σ∗εε are zeros, the objective

function in (4.3) can be solved by a series of separate standard Lasso problems, equivalent

to performing q separate penalized least square regressions. Rothman et al. (2010) showed
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that the estimation accuracy can be improved by exploiting the additional information

when the response variables are correlated.

When there are many predictors and responses, prediction with a multivariate regres-

sion model becomes challenging since it is required to estimate pq parameters. When the

responses are correlated, the assumptions of sparsity on both B∗ and the off-diagonal

elements of Θ∗εε becomes necessary to be able to estimate the additional O(q2) parameters

in Θ∗εε. When n � p or s ≡ |S| � pq, where S = {(j, k)|B∗jk 6= 0} is the support of

B∗, assuming sparsity in B∗ and Θ∗εε considerably reduces variability in the estimation.

Under the multivariate normal assumption, the precision matrix has the interpretation

of a conditional Gaussian graphical model (Lauritzen, 1996), since a zero off-diagonal

element implies conditional independence among the covariates. Since Θ∗εε captures the

conditional dependencies among the response variables, the resulting network structure

becomes highly interpretable.

The standard methods proposed in the literature to solve the problem in (4.3) are

established when the data are fully observed. A detailed review of those works are

presented in Section 2.3 of Chapter 2. However, in practical applications, the data may be

corrupted or missing such that the responses or the covariates are only partially observed.

A naive way to handle missing data could be to delete all the cases that contain missing

values either listwise or pairwise and work with the complete cases only. However, that

would result into decreased statistical power, substantial information loss and may lead to

biased estimates when the data are not missing completely at random (MCAR).

Other ad hoc imputation based methods are also available in literature where the

missing observations are imputed by the corresponding mean along with more systematic

approaches based on likelihoods (Little and Rubin, 2019; Schafer, 1997). Städler and

Bühlmann (2012) developed an Expectation Maximization (EM)-based method for sparse

inverse covariance matrix estimation, which can be used in missing data scenarios. The

challenge with classical approaches is that they do not often scale to high-dimensional
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problems and it becomes difficult to provide theoretical guarantees to their algorithmic

counterparts. Errors-in-variables regressions (Hwang, 1986; Xu and You, 2007) had been

extensively studied in literature. Loh and Wainwright (2012) studied the case when the

observed covariates are corrupted in univariate regression (q = 1) under high-dimensional

settings when p � n. They proposed an unbiased surrogate estimate of the sample

covariance matrix based on Xu and You (2007) and provided a non-convex solution

proving that under some restricted eigenvalue conditions and deviation bounds, the

projected gradient descent method converges to a near-global minimizer. One criticism

of such a non-convex solution is that it depends on an additional side constraints that

requires knowledge on some unknown constants a priori that we actually want to estimate.

The convergence rates and the computational results depend on this assumption and

therefore, it makes this approach difficult to use in practice.

Datta and Zou (2017) proposed the convex conditioned Lasso (CoCoLasso) by defining

a nearest positive semi-definite matrix projection operator for square matrix that makes the

underlying optimization problem to be convex. It is well known that there are theoretical

and computational benefits of convexity, which makes this approach more lucrative.

Unlike the non-convex approach by Loh and Wainwright (2012), the projected surrogate

estimator of the sample covariance matrix is guaranteed to be positive semi-definite,

thereby ensuring the convexity of the problem.

4.1.2 Unbiased Surrogate Estimators with Corrupted Responses

In this work, we extend the results of Loh and Wainwright (2012) to the case of multiple

responses but using the projected surrogate estimates of the sample covariance matrix as

proposed by Datta and Zou (2017) instead of a non-convex approach. We propose to solve

(4.3) when the data are not fully observed and contains missing data. We propose a three

step estimation to the problem defined in (4.3) when the data are corrupted and may be

missing completely at random (MCAR) in a high-dimensional setting.
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Multiplicative noise

In this section we establish the general formulation of the model for missing data, since

missing data are a special case of multiplicative error. Let Y ∈ Rn×q be the unobserved

response variables and W ∈ Rn×q is a noise matrix with (i, j)th element wij ≥ 0, so that

we have an observed response data matrix Z = Y �W. We assume that the rows wi• of

W are drawn independently and identically from some multivariate distribution having

strictly positive entries in the first and the second-order expectations µW = E[W ] ∈ Rq and

E[WW>] ∈ Rq×q. For simplicity, we assume that the mean and covariance of W are known

or can be estimated from the data.

We can expand the quadratic terms and rewrite (4.3) as

(Θ̂, B̂) = arg min
Θ�0,B

tr

[
1

2
(Syy − 2Ŝ>xyB + B>SxxB)Θ

]
− 1

2
log det(Θ) + λΘ�Θ�1,off + λB�B�1,1,

(4.4)

where Syy = 1
n
Y>Y, Sxy = 1

n
X>Y and Sxx = 1

n
X>X are empirical covariance matrices,

which are unbiased estimators of Σ∗yy = E[Y Y >], Σ∗xy = E[XY >] and Σ∗xx = E[XX>],

respectively. Since we do not observe the clean data matrix Y and only observe the

corrupted version Z of the response matrix, we cannot directly estimate Θ∗εε and B∗ using

(4.4) because Syy and Sxy are biased estimates. Following Loh and Wainwright (2012) we

can calculate the alternative unbiased surrogate estimator Ŝyy and Ŝxy by calculating the

sufficient statistics:

Ŝyy :=
1

n
Z>Z� E[WW>], Ŝxy :=

1

n
X>Z� [E[W ], ...,E[W ]]>. (4.5)
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Then the estimates of Θ∗εε and B∗ can be obtained by solving the following optimization

problem:

(Θ̂, B̂) = arg min
Θ�0,B

tr[
1

2
(Ŝyy − 2Ŝ>xyB + B>SxxB)Θ]− 1

2
log det(Θ) + λΘ�Θ�1,off + λB�B�1,1.

(4.6)

To incorporate the missing data case in the objective function of the fully observed case

(4.4), the empirical covariance matrices Syy and Sxy have been replaced with their unbiased

surrogates Ŝyy and Ŝxy. Notice that Sxx remains unchanged since we are assuming that the

covariate matrix X is fully observed.

Missing data

Since the missing data case is a special case of the multiplicative measurement errors, we

construct a missing complete at random scenario where the entries wij of W are assumed

to be independent Bernoulli (1− ρj), ∀j = 1, ..., q random variables with values

wij =

 1 with probability 1− ρj,

0 otherwise.
(4.7)

That is, each element of Y in the jth column has probability ρj of being missing. We

observe zij = yij with probability 1− ρj and zero otherwise. Under the missing completely

at random assumption, E[W ] and E[WW>] have the following specific forms:

E[W ] = [(1− ρ1), · · · , (1− ρq)]>, E[WW>]ij =

 (1− ρi)(1− ρj) if i 6= j,

(1− ρi) if i = j.
(4.8)

The problem reduces to the standard MRCE model (Rothman et al., 2010) for fully observed

data when ρ = (ρ1, . . . , ρq)
> = 0. However, in practice, ρmay not be known and must be
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estimated empirically from the data. Loh and Wainwright (2012) suggested estimating ρj

using ρ̂j , where ρ̂j is the empirical missing probability of the jth column.

4.2 Estimation

4.2.1 First Stage Estimation of the Coefficient Matrix B∗

In the first stage, we assume that there is no correlation among the response variables, that

is, we assume the precision matrix to be an identity matrix (Θ = I). This assumption lets

us to perform a column-by-column estimation of B∗. Assuming that B∗ is elementwise

sparse, we obtain a preliminary estimator B̂(1) by regularizing the least squares problem

with `1 penalty:

B̂(1) = arg min
B

tr(B>SxxB/2− Ŝ>xyB) + λB�B�1,1, (4.9)

where Ŝxy is an unbiased estimator of E[XY >] defined in (4.5). This loss function is

convex because X is fully observed and therefore Sxx is positive semi-definite. Define

B̂(1) = [β̂1, . . . , β̂q] with lth column as β̂l = (β̂l1, . . . , β̂lp)
> ∈ Rp. We can compute each

column of B̂(1), by considering (4.9) as a column-by column solution of multiple penalized

least squares problems with univariate response.

Let us define the least square Lasso loss function Ll : Rp → R for each l = 1, . . . , q, i.e.

for the lth column of B∗ by setting for arbitrary β ∈ Rp,

β̂l = arg min
β∈Rp

Ll(β) + λlR(β), (4.10)

where Ll(β) = β>Sxxβ/2 −
{

(Ŝxy)•l

}>
β where (Ŝxy)•l denotes lth column of Ŝxy. and

R : Rp → R withR(·) = ‖ · ‖1 is the penalty function. Hence the problem can be solved by

various efficient algorithms for the standard Lasso.
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4.2.2 Estimation of the Precision Matrix Θ∗εε

In the second stage of the estimation, we estimate Θ∗εε by the solution to the graphical

Lasso problem

arg min
Θ∈Rq×q :Θ�0

{
〈Θ, Ŝεε〉 − log det(Θ) + λΘ�Θ�1,off

}
, (4.11)

where Ŝεε := Ŝyy − B̂(1)>SxxB̂
(1) is a plug-in estimate of the covariance, in which Ŝyy is

an unbiased surrogate estimator of E[Y Y >] and B̂(1) is estimated in the first step. This

should lead to an improved estimate of the regression coefficients in the third stage of the

estimation since we take into account the dependence structure of the precision matrix.

Since we are interested to estimate the precision for the responses which is prone to

having missing data, as discussed in Chapter 3, the objective function may no longer

be convex since the input estimator of the covariance matrix Ŝεε may not be positive

semi-definite. We can illustrate this phenomenon for a specific situation. Suppose that

all columns of responses have the same probability ρ ∈ [0, 1] of being missing, hence Ŝyy

has a certain form so that Ŝyy = Z̃>Z̃/n − ρjdiag(Z̃>Z̃/n), in which z̃ij = zij/(1 − ρj). In

fact, when n� q, Ŝyy is guaranteed to have a large number of negative eigenvalues even

if under a moderate missingness, given the fact that Z̃>Z̃/n has rank at most n, so the

subtracted diagonal matrix may cause Ŝyy to have negative eigenvalues. As a result, a

non-positive semi-definite estimate of the covariance matrix Ŝεε makes the the objective

function in (4.11) non-convex and unbounded from below.

To avoid the non-convex objective function and to ensure the positive semi-definiteness

of the covariance matrix, we can easily project Ŝεε onto the semi-definite cone (Datta and

Zou, 2017) to produce an update S̃εε and substitute for Ŝεε in (4.11). We can define a nearest

positive semi-definite matrix projection operator for any square matrix Ŝεε that

S̃εε := argmin
K�0

�Ŝεε −K�max, (4.12)
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where K is a positive semi-definite matrix and � · �max is the elementwise maximum norm.

As established in Chapter 3, this is nothing but the CoGlasso estimate and can be obtained

as a solution to the objective function

Θ̂εε = arg min
Θ∈Rq×q :Θ�0

{
〈Θ, S̃εε〉 − log det(Θ) + λΘ�Θ�1,off

}
(4.13)

where S̃εε := Ŝyy − B̂(1)>SxxB̂
(1). Since Sxx is positive semi-definite by construction,

therefore S̃εε is guaranteed to be positive semi-definite by definition. The problem in (4.13)

can be solved using our CoGlasso algorithm.

4.2.3 Second Stage Estimation of the Coefficient Matrix B∗

In the last stage of estimation, we utilize the estimated precision matrix Θ̂εε in the previous

stage to get a refined estimate of B∗. Solving for B̂(2) with a fixed plug-in estimate Θ̂εε is

equivalent to finding the solution to the objective function

B̂(2) = arg min
B

tr[(B>SxxB/2− Ŝ>xyB)Θ̂εε] + λB�B�1,1. (4.14)

The problem in (4.14) can be solved using a proximal gradient descent algorithm, specifi-

cally an iterative soft-thresholding algorithm (ISTA) in this particular case of an `1-penalty.

4.3 Theoretical Properties

4.3.1 Recovery Rate for B̂(1)

The following assumption is imposed on the population covariance matrix to mildly

control the error of the lasso solution. Under unfavorable settings, where the loss function

is flat around its minimizer, it is not necessarily true that a small loss difference implies

a small error. Especially, in high-dimensional settings, we can only hope to obtain some
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form of restricted curvature of the loss function in certain directions, specifically, along the

cone set C(Sl) defined below, under a sufficiently large sample size.

Assumption 1 (Restricted eigenvalue condition.). Define the cone set

C(Sl) =
{
δ ∈ Rp : ‖(δ)Scl ‖1 ≤ 3‖(δ)Sl‖1

}
.

We assume the following restricted eigenvalue condition (Page 208, Wainwright, 2019) for Sxx

over C(Sl),

0 < κl = min
δ 6=0, δ∈C(Sl)

δ>Sxxδ

‖δ‖2
2

.

We would require the following Lemmas to prove Proposition 1. Without loss of

generality, we can write the lth column of the true regression coefficient matrix as β∗l =

(β∗>Sl ,0
>)> and the corresponding X = ((X)•Sl , (X)•Scl ). Hence, the true model for the lth

column of Y can be written as (Y)•l = (X)•Slβ
∗
Sl

+ (ε)•l.

Lemma 13. Assume that each row of the error matrix ε ∈ Rn×q and each row of multiplicative error

matrix W ∈ Rn×q are two sub-Gaussian random vectors where each elements of the vectors follow

the sub-Gaussian distribution with parameters σ2
ε and σ2

W respectively. Under this assumption,

the elementwise max norm of the deviation between Ŝxy and Sxy satisfies the following probability

bound for any t ≤ t
(1)
0 with t(1)

0 = σεσWXmax/µmin,

Pr[�Ŝxy − Sxy�max ≥ t] ≤ pqC exp

(
− cnµ2

mint
2

σ2
WX

2
max max(s2

maxX
2
maxB

2
max, σ

2
ε)

)
,

where µmin = minj(1−ρj) > 0,Xmax = maxi,k |Xik| <∞,Bmax = maxk,j |β∗kj|, smax = maxj sj ,

for j ∈ {1, . . . , q}. Let (Ŝxy)•l and (Sxy)•l be the lth columns of Ŝxy and Sxy, respectively, then we

have

Pr[‖(Ŝxy)•l − (Sxy)•l‖∞ ≥ t] ≤ pC exp

(
− cnµ2

mint
2

σ2
WX

2
max max(s2

maxX
2
maxB

2
max, σ

2
ε)

)
,
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Lemma 14. Assume that each row of the error matrix ε ∈ Rn×q is a sub-Gaussian random vector

where each element of the vector follows the sub-Gaussian distribution with parameter σ2
ε . Under

this assumption, the elementwise max norm of the deviation between Sxy and SxxB
∗ satisfies the

following probability bound

Pr(�Sxy − SxxB
∗�max ≥ t) ≤ pqC exp

[
− cnt2

σ2
εX

2
max

]

and

Pr(‖(Sxy)•l − Sxxβ
∗
l ‖∞ ≥ t) ≤ pC exp

[
− cnt2

σ2
εX

2
max

]
where (Sxy)•l and β∗l are the lth columns of Sxy and B∗, respectively, and Xmax = maxi,k |Xik| <

∞.

Proposition 1. We assume that the lth column of the true coefficient matrix from (4.1), β∗l has

support Sl ⊆ {1, . . . , p} with cardinality sl := |Sl|, meaning that β∗lj = 0 for all j ∈ Scl , where Scl

denotes the complement of Sl. Let us consider that Assumption 1 on the parameter κl > 0 hold. We

assume that the tuning parameter λl in (4.10) satisfies

λl ≥ 2Xmax max [σW smaxXmaxBmax/µmin, σWσε/µmin, σε]

√
log p

n
. (4.15)

Then any estimate β̂l from (4.10) satisfy the following bounds

‖β̂l − β∗l ‖2 ≤ 3
√
slλl/κl, and ‖β̂l − β∗l ‖1 ≤ 4

√
sl‖β̂l − β∗l ‖2 = 12slλl/κl

with a probability at least 1− C exp(−c log p).

Proof. From the definition of (4.10), we have

L(β̂l)− L(β∗l )

=
β̂
>
l Sxxβ̂l

2
− β

∗
l
>Sxxβ

∗
l

2
−
{

(Ŝxy)•l

}>
(β̂l − β∗l )− (β̂l − β∗l )>Sxxβ

∗
l + (β̂l − β∗l )>Sxxβ

∗
l
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=
β̂
>
l Sxxβ̂l

2
+
β∗l
>Sxxβ

∗
l

2
− β̂

>
l Sxxβ

∗
l −

{
(Ŝxy)•l

}>
(β̂l − β∗l ) + (β̂l − β∗l )>Sxxβ

∗
l

=
1

2
(β̂
>
l Sxxβ̂l + β∗l

>Sxxβ
∗
l − 2β̂

>
l Sxxβ

∗
l )− ((Ŝxy)•l − Sxxβ

∗
l )
>(β̂l − β∗l )

(i)
=

1

2
[(β̂l − β∗l )>Sxx(β̂l − β∗l )]− ((Ŝxy)•l − Sxxβ

∗
l )
>(β̂l − β∗l )

=
1

2
[δ>Sxxδ]− ((Ŝxy)•l − Sxxβ

∗
l )
>δ

where δ = β̂l − β∗l and equality (i) follows by completing the square. Since β̂l is the

solution of (4.10)

L(β̂l) + λl‖β̂l‖1 ≤ L(β∗l ) + λl‖β∗l ‖1.

Plugging in L(β̂l)− L(β∗l ) yields

1

2
[δ>Sxxδ] + λl‖β̂l‖1 ≤ ((Ŝxy)•l − Sxxβ

∗
l )
>δ + λl‖β∗l ‖1

≤ ‖δ‖1‖(Ŝxy)•l − Sxxβ
∗
l ‖∞ + λl‖β∗l ‖1 (4.16)

The second inequality follows from Hölder’s inequality. In order to obtain an upper bound

for the left-hand side, we first bound the quantity ‖(Ŝxy)•l−Sxxβ
∗
l ‖∞. Using the triangular

inequality, we get

‖(Ŝxy)•l − Sxxβ
∗
l ‖∞ ≤ ‖(Ŝxy)•l − (Sxy)•l‖∞ + ‖(Sxy)•l − Sxxβ

∗
l ‖∞.

The first term can be bounded by applying Lemma 13 by setting t = λl/4. We see that for

λl ≤ 4t
(1)
0 , we have

Pr[‖(Ŝxy)•l − (Sxy)•l‖∞ ≥ λl/4] ≤ pC exp

(
− cnµ2

minλ
2
l

σ2
WX

2
max max(s2

maxX
2
maxB

2
max, σ

2
ε)

)
.

The second term can be bounded by applying Lemma 14 by setting t = λl/4

Pr(‖(Sxy)•l − Sxxβ
∗
l ‖∞ ≥ λl/4) ≤ pC exp

[
− cnλ2

l

σ2
εX

2
max

]
.
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Define the event E1 = {‖(Ŝxy)•l − (Sxy)•l‖∞ ≥ λl/4} and E2 = {‖(Sxy)•l −Sxxβ
∗
l ‖∞ ≥ λl/4},

and the “good” event G(λl) = {λl/2 ≥ ‖(Ŝxy)•l − Sxxβ
∗
l ‖∞}. Then by Boole’s inequality

Pr(G(λl)) = Pr(‖(Ŝxy)•l − Sxxβ
∗
l ‖∞ < λl/2)

≥ Pr(E c1 ∩ Ec2) = Pr [(E1 ∪ E2)c] = 1− Pr [(E1 ∪ E2)]

≥ 1− Pr(E1)− Pr(E2)

≥ 1− pC exp

(
− cnµ2

minλ
2
l

σ2
WX

2
max max(s2

maxX
2
maxB

2
max, σ

2
ε)

)
− pC exp

[
− cnλ2

l

σ2
εX

2
max

]
≥ 1− 2pC max

{
exp

(
− cnλ2

l

σ2
WX

2
max max(s2

maxX
2
maxB

2
max, σ

2
ε)/µ

2
min

)
, exp

[
− cnλ2

l

σ2
εX

2
max

]}
= 1− 2pC exp

(
− cnλ2

l

max [σ2
WX

2
max max(s2

maxX
2
maxB

2
max, σ

2
ε)/µ

2
min, σ

2
εX

2
max]

)
= 1− pC exp

(
− cnλ2

l

X2
max max [σ2

W s
2
maxX

2
maxB

2
max/µ

2
min, σ

2
Wσ

2
ε/µ

2
min, σ

2
ε ]

)
(4.17)

Returning to (4.16), when the “good” event G(λl) holds, we have

1

2
[δ>Sxxδ] ≤ ‖δ‖1‖(Ŝxy)•l − Sxxβ

∗
l ‖∞ + λl(‖β∗l ‖1 − ‖β̂l‖1)

≤ λl
2
‖δ‖1 + λl(‖β∗l ‖1 − ‖β∗l + δ‖1). (4.18)

Now since (β∗l )Scl = 0, we have ‖β∗l ‖1 = ‖(β∗l )Sl‖1, and using the reverse triangle inequality

‖β∗l + δ‖1 = ‖(β∗l )Sl + δSl‖1 + ‖δScl ‖1 ≥ ‖(β∗l )Sl‖1 − ‖δSl‖1 + ‖δScl ‖1.

Substituting these relations into inequality (4.18) yields

1

2
[δ>Sxxδ] ≤ λl

2
‖δ‖1 + λl(‖β∗l ‖1 − ‖β∗l + δ‖1).

≤ λl
2
‖δ‖1 + λl(‖β∗l ‖1 − ‖(β∗l )Sl‖1 + ‖δSl‖1 − ‖δScl ‖1)

=
λl
2

(‖δSl‖1 + ‖δScl ‖1) + λl(‖δSl‖1 − ‖δScl ‖1)

(i)
=

3λl
2
‖δSl‖1 −

λl
2
‖δScl ‖1 (4.19)
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≤ 3λl
2
‖δSl‖1 ≤

3

2

√
slλl‖δSl‖2

This allows us to apply the restricted eigenvalue conditition to δ, which ensures that

κl‖δ‖2
2 ≤ δ>Sxxδ. Combining this lower bound with our earlier inequality yields

κl
2
‖δ‖2

2 ≤
1

2
[δ>Sxxδ] ≤ 3

2

√
slλl‖δSl‖2 ≤

3

2

√
slλl‖δ‖2

and rearranging yields the bound

‖β̂l − β∗l ‖2 ≤ 3
√
slλl/κl.

Returning to equality (i) in (4.19), we can now show that the condition for C(Sl) holds

0 ≤ 1

2
[δ>Sxxδ] ≤ 3λl

2
‖δSl‖1 −

λl
2
‖δScl ‖1.

Hence ‖δScl ‖1 ≤ 3‖δSl‖1. Now, we can also derive the `1-norm bound for the estimation

error.

‖β̂l − β∗l ‖1 = ‖δ‖1

= ‖δSl‖1 + ‖δScl ‖1

≤ ‖δSl‖1 + 3‖δSl‖1 ∀δ ∈ C(Sl)

≤ 4‖δSl‖1

≤ 4
√
sl‖δSl‖2

≤ 12slλl/κl.

When we set

λl/2 ≥ λ0/2 := Xmax max [σW smaxXmaxBmax/µmin, σWσε/µmin, σε]

√
log p

n
(4.20)
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in inequality (4.17), then

Pr(Gl) = Pr(‖(Ŝxy)•l − Sxxβ
∗
l ‖∞ ≤ λl/2)

≥ Pr(‖(Ŝxy)•l − Sxxβ
∗
l ‖∞ ≤ λ0/2)

≥ 1− pC exp

(
−cn(Xmax max [σW smaxXmaxBmax/µmin, σWσε/µmin, σε])

2(log p/n)

X2
max max [σ2

W s
2
maxB

2
max/µ

2
min, σ

2
Wσ

2
ε/µ

2
min, σ

2
ε ]

)
= 1− pC exp (−c log p)

= 1− C exp (log p− c log p)

= 1− C exp((1− c) log p)

= 1− C exp(−c log p) (4.21)

With slight abuse of the notation, we define a new constant −c that is equal to 1− c. Notice

that the lower bound λ0 of λl in (4.20) must satisfy the condition assumed in (4.41)

λ0/2 := Xmax max [σW smaxXmaxBmax/µmin, σWσε/µmin, σε]

√
log p

n
≤ t

(1)
0 := XmaxσWσε/µmin

which implies that sample size n must be sufficiently large such that

√
log p

n
≤ XmaxσWσε/µmin

Xmax max [σW smaxXmaxBmax/µmin, σWσε/µmin, σε]

=
1

max(smaxBmaxXmax/σε, 1, µmin/σW )

= min(σε/(smaxBmaxXmax), σW/µmin, 1)

Therefore, Lemma (13) can be applied as in (4.17) of this proof.

4.3.2 Recovery Rate for the Estimator Θ̂εε

We can express the deviation between the projected estimate S̃εε and the truth Σ∗εε in

terms of the deviation between the surrogate estimate and the truth using the following
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inequality. Note that by the definition of S̃εε, �S̃εε − Ŝεε�max ≤ �Ŝεε −Σ∗εε�max, since Σ∗εε is

positive semi-definite as well. Combining this with the triangular inequality, we have

�S̃εε −Σ∗εε�max ≤ �S̃εε − Ŝεε�max + �Ŝεε −Σ∗εε�max ≤ 2�Ŝεε −Σ∗εε�max. (4.22)

Following Ravikumar et al. (2011), we define the maximum degree or row cardinality

of Θ∗εε as

dp = max
l∈[q]

card [{l′ ∈ [q]\ {l} : (Θεε)ll′ 6= 0}] ,

and let κΣ∗εε = �Σ∗εε�∞. We further let S = {(l, l′) ∈ [q]× [q] : (Θεε)ll′ 6= 0}, Sc = [q]× [q]\S,

and Γ = Σ∗εε ⊗Σ∗εε ∈ Rq2 × Rq2 . For any two subsets T and T ′ of [q2], let (Γ)TT ′ denote the

card(T )× card(T ′) matrix with rows and columns of Γ indexed by T and T ′, respectively.

Then we set κΓ = �(Γ)−1
SS�∞. Finally, set

∆ = σ2
W max

{
X2

maxB
2
maxs

2
max/mmin, XmaxBmaxsmaxσ

2
ε/mmin, σ

2
ε/mmin

}√ log(q2)

n

+X2
max

(
max
l∈[q]

12slλl/κl

)2

+X2
maxsmaxBmax max

l∈[q]
12slλl/κl + σεXmaxsmaxBmax

√
log(q2)

n

+ σ2
ε

√
log(q2)

n
.

The details of deriving ∆ is shown in Lemma 16. To derive the recovery rate for the

estimator Θ̂εε, let us introduce the irrepresentability condition introduced in Assumption

1 in Ravikumar et al. (2011) for graphical Lasso without any corrupted data.

We would require the following assumption and the Lemmas to prove Proposition 2.

Assumption 2 (Irrepresentability condition). There exists α ∈ (0, 1] such that

max
e∈Sc

�(Γ){e}S(Γ)−1
SS�1 ≤ 1− α.

Lemma 15. Assume that each row of random error matrix ε ∈ Rn×q and each row of multiplica-

tive error matrix W ∈ Rn×q follow the sub-Gaussian distribution with parameters σ2
ε and σ2

W
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respectively, then the elementwise max norm of the deviation between Ŝyy and Syy satisfies the

probability bound for any t ≤ t
(2)
0 with

t
(2)
0 := min(X2

maxB
2
maxs

2
maxσ

2
W/mmin, XmaxBmaxsmaxσ

2
Wσ

2
ε/mminn

1/3, σ2
Wσ

2
ε/mminn

1/3)

Pr(�Ŝyy−Syy�max ≥ t) ≤ 4q2C

{
exp

(
− cnt2m2

min

σ4
W max {X4

maxB
4
maxs

4
max, X

2
maxB

2
maxs

2
maxσ

4
ε , σ

4
ε}

)}
.

where mmin = minj,k E(WjW
>
k ) > 0, Xmax = maxi,k |Xik| < ∞, Bmax = maxk,j |β∗kj|, smax =

maxj sj , for j ∈ {1, . . . , q}.

Lemma 16. Assume that each row of the error matrix ε ∈ Rn×q and each row of multiplicative error

matrix W ∈ Rn×q are two sub-Gaussian random vectors where each elements of the vectors follow

the sub-Gaussian distribution with parameters σ2
ε and σ2

W respectively. Under this assumption, the

elementwise max norm of the deviation between Ŝεε and Σ∗εε satisfies the following condition

Pr(�Ŝεε −Σ∗εε�max ≤ ∆) ≥ 1− C exp(−c log q2)− C exp(−c log(pq)),

where ∆ is defined as follows

∆ = σ2
W max

{
X2

maxB
2
maxs

2
max/mmin, XmaxBmaxsmaxσ

2
ε/mmin, σ

2
ε/mmin

}√ log(q2)

n
(4.23)

+X2
max

(
max
l∈[q]

12slλl/κl

)2

+X2
maxsmaxBmax max

l∈[q]
12slλl/κl + σεXmaxsmaxBmax

√
log(q2)

n

+ σ2
ε

√
log(q2)

n
.

Proposition 2. Suppose that, for all l ∈ [q], κl > 0, λl in (4.10) satisfies (4.15) and n is sufficiently

large to ensure that Proposition (1) applies. Further, assume that Assumption (2) is satisfied and

that n is sufficiently large to ensure that

6

(
1 +

8

α

)
2 max

(
κΣ∗εε , κΓ, κ

3
Σ∗εε
, κ2

Γ

)
dp ×∆ ≤ 1. (4.24)
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Finally, suppose that the tuning parameter λΘ in (4.11) satisfies

λΘ =
8∆

α
. (4.25)

Then with probability at least

1− C exp(−c log q2)− C exp(−c log(pq)) (4.26)

the estimator Θ̂εε satisfies

�Θ̂εε −Θ∗εε�max ≤
{

2κΓ(1 +
8

α
)

}
∆ := ∆∞(Θ∗εε) (4.27)

and

�Θ̂εε −Θ∗εε�2 ≤ dp∆∞(Θ∗εε) := ∆1(Θ∗εε). (4.28)

Proof. Since Ŝεε is not necessarily positive semi-definite, we can produce an update S̃εε

as described in Datta and Zou (2017) by projecting it onto the nearest semi-definite cone

and substituting Ŝεε by S̃εε. Then, Ŝεε would satisfy an inequality analogous to (4.22).

Specifically,

�S̃εε −Σ∗εε�max ≤ 2�Ŝεε −Σ∗εε�max ≤ 2∆.

Applying Lemma 16, we obtain �S̃εε − Σ∗εε�max ≤ 2∆ occurs with probability 1 −

C exp(−c log q2) − C exp(−c log(pq)). The conclusion of this Proposition follows from a

slight variation of Theorem 1 from Ravikumar et al. (2011) where the observed sample

was uncontaminated and one could calculate the sample covariance matrix Σ̂εε with

�Σ̂εε−Σ∗εε�max ≤ δ̄f (n, p
τ ). In our case, Σ̂εε is replaced by S̃εε and δ̄f (n, pτ ) = 2∆. Suppose

S̃εε satisfies the error bound �S̃εε − Σ∗εε�max ≤ 2∆ on the intersection of events, that is,

B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5 defined in Lemma 16 and if the tuning parameter λΘ satisfies (4.25),
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then by Theorem 1 from Ravikumar et al. (2011), we have

�Θ̂εε −Θ∗εε�max ≤
{

2κΓ(1 +
8

α
)

}
∆ := ∆∞(Θ∗εε).

We can also show that (4.28) holds as follows

�Θ̂εε −Θ∗εε�2 ≤
√
dpdp�Θ̂εε −Θ∗εε�max = dp�Θ̂εε −Θ∗εε�max ≤ dp∆∞(Θ∗εε) := ∆2(Θ∗εε)

and

�Θ̂εε −Θ∗εε�1 ≤
√
dp�Θ̂εε −Θ∗εε�2 =

√
dp∆2(Θ∗εε) := ∆1(Θ∗εε).

4.3.3 Recovery Rate for B̂(2)

Let L(·; Sxx,Sxy,Θ) : Rp×q → R be the loss functions to estimate B∗ which depend on

matrices Sxx ∈ Rp×p, Sxy ∈ Rp×q and Θ ∈ Rq×q. Let B ∈ Rp×q be any arbitrary matrix and

set

L(B; Sxx,Sxy,Θ) = 〈B>SxxB/2− S>xyB,Θ〉

= vec(B)>(Θ⊗ Sxx) vec(B)/2− tr(ΘS>xyB). (4.29)

The quantity Sxx in (4.29) will be replaced by the estimate of Σ∗xx from the data since there

is no missingness in X. The quantities Sxy and Θ will be replaced by the surrogate and the

estimates of Σ∗xy and Θ∗εε, respectively. For brevity, we write, L(·; Sxx,Sxy,Θ) as L in the

following derivations.

We consider the element-wise sparsity of B∗. A matrix B∗ is called element-wise sparse

if its support set S ⊂ Rp×q is such that s = card(S)� pq. In order to obtain an element-wise

sparse estimator of B∗, it is natural to regularize the least squares program with the � · �1,1
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penalty of B,

B̂(2) = arg min
B∈Rp×q

{
L(B; Sxx, Ŝxy, Θ̂εε) + λB�B�1,1

}
, (4.30)

where λB > 0 is a tuning parameter.

Next, we establish the restricted eigenvalue (RE) condition for the loss function. Fol-

lowing Negahban et al. (2012), let us define, for all ∆ = B−B∗ ∈ Q,

EL(∆,B∗) = EL(∆,B∗; Sxx,Sxy,Θ
∗
εε)

= L(B∗ + ∆; Sxx,Sxy,Θ
∗
εε)− L(B∗; Sxx,Sxy,Θ

∗
εε)− 〈∇BL(B∗; Sxx,Sxy,Θ

∗
εε),∆〉

= 〈∆>Sxx∆,Θ∗εε〉/2

= vec(∆)>(Θ∗εε ⊗ Sxx) vec(∆)/2,

where

∇BL(B; Sxx,Sxy,Θ
∗
εε) = SxxBΘ∗εε − SxyΘ

∗
εε

To derive the recovery rate for the estimator B̂(2) we need the following assumption on the

RE condition for the loss function.

Assumption 3. The loss function L(·; Sxx,Sxy,Θ∗εε) satisfies the RE condition

EL(∆,B∗) ≥ κ�∆�2
2 ∀∆ ∈ C(S). (4.31)

with constant κ > 0 over the cone set C(S) = {M ∈ Rp×q : �(M)Sc�1,1 ≤ 3�(M)S�1,1}.

Theorem 3. Suppose that Assumption 3 and the assumptions of Proposition 2 hold. Further

suppose that for s = card(S), where S ⊂ Rp×q is the support set

a) Assume κ′ ≥ κ > 0, where κ′ is defined as

κ′ = κ− �Sxx�2∆1(Θ∗εε) (4.32)
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b) The tuning parameter λB in (4.30) satisfies

λB/2 ≥ (λ0/2)(�Θ̂εε −Θ∗εε�1 + �Θ∗εε�1), (4.33)

then with probability 1− qC exp(−c log p), the estimator B̂(2) satisfies

�B̂(2) −B∗�F ≤ 3
√
sλB/κ

′, �B̂(2) −B∗�1,1 ≤ 12sλB/κ
′. (4.34)

Proof. The proof relies partly on Proposition 3 stated below. The proposition verifies that

the empirical loss function at this stage satisfies the RE condition..

Proposition 3. Suppose that Assumption 3 and the assumptions of Proposition 2 hold. Then the

empirical loss L(·; Sxx, Ŝxy, Θ̂εε) satisfies RE condition with curvature κ′ introduced in (4.32) and

tolerance function equal to zero over the cone set C(S).

Proof. We fix arbitrary ∆ ∈ C(S). we have

EL(∆,B∗; Sxx, Ŝxy, Θ̂εε) = vec (∆)>Θ∗εε ⊗ Sxx vec (∆)/2

+ 〈∆>Sxx∆, Θ̂εε −Θ∗εε〉/2 (4.35)

For the first term, by Assumption 3,

vec (∆)>Θ∗εε ⊗ Sxx vec (∆)/2 ≥ κ�∆�2
F

For the second term, we have

∣∣∣〈∆>Sxx∆, Θ̂εε −Θ∗εε〉
∣∣∣ =

∣∣∣〈Sxx∆,∆(Θ̂εε −Θ∗εε)〉
∣∣∣

(i)
≤ �Sxx∆�F × �∆(Θ̂εε −Θ∗εε)�F
(ii)
≤ �Sxx�F�∆�F × �∆�F�Θ̂εε −Θ∗εε�F
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(iii)
≤ �Sxx�2�Θ̂εε −Θ∗εε�2�∆�2

F , (4.36)

where inequality (i) follows from Hölder’s inequality, inequality (ii) follows from the

submultiplicative property of the Frobenius norm and inequality (iii) follows from the fact

�A�F = �A�2 since the trace of a matrix is equal to the sum of its eigenvalues.

Therefore, (4.35) can be bounded as

EL(∆,B∗; Sxx, Ŝxy, Θ̂εε) ≥ κ�∆�2
F − (�Sxx�2�Θ̂εε −Θ∗εε�2�∆�2

F )/2 (4.37)

For the regularized Lasso problem, since ∆ ∈ C(S), and therefore, we can write

�∆�1,1 = �∆S�1,1 + �∆Sc�1,1 ≤ 4�∆S�1,1 ≤ 4
√
s�∆�F . (4.38)

Combining (4.37) and (4.38), we conclude that

EL(∆,B∗; Sxx, Ŝxy, Θ̂εε) ≥
{
κ− (�Sxx�2�Θ̂εε −Θ∗εε�2)/2

}
�∆�2

F

≥ (κ− �Sxx�2∆1(Θ∗εε)/2)�∆�2
F (4.39)

If the assumptions of Proposition 2 are satisfied, then (4.27) and (4.28) also hold. Then we

can further bound the right-hand side of (4.39) from below. This concludes the proof of

Proposition 3.

Next, we want to apply Theorem 7.13 from Wainwright (2019). To do so, first, we check

if the conditions mentioned in Proposition 1 holds. We set,

M :=
{
∆ ∈ Rp×q : (∆)kl = 0 ∀(k, l) ∈ Sc

}
.

Then B∗ ∈ M, and the penalty R is decomposable with respect to (M,M⊥). Next, by

Proposition 3 and the assumption on κ′, over the cone set C(S), the loss L(·; Sxx, Ŝxy, Θ̂εε)
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satisfies RE condition with tolerance function equal to zero and curvature κ′ = κ −

�Sxx�2∆1(Θ∗εε) > 0. Finally, the dual norm ofR isR∗(·) = � · �max, and

R∗
{
∇BL(B∗; Sxx, Ŝxy, Θ̂εε)

}
= �SxxB

∗Θ̂εε − ŜxyΘ̂εε�max

= �(Ŝxy − SxxB
∗)(Θ̂εε −Θ∗εε) + (Ŝxy − SxxB

∗)Θ∗εε�max

≤ �(Ŝxy − SxxB
∗)(Θ̂εε −Θ∗εε)�max + �(Ŝxy − SxxB

∗)Θ∗εε�max

(i)
≤ �Ŝxy − SxxB

∗�max�Θ̂εε −Θ∗εε�∞ + �Ŝxy − SxxB
∗�max�Θ∗εε�∞

= �Ŝxy − SxxB
∗�max(�Θ̂εε −Θ∗εε�∞ + �Θ∗εε�∞)

= �Ŝxy − SxxB
∗�max(�Θ̂εε −Θ∗εε�1 + �Θ∗εε�1)

≤ (λ0/2)(�Θ̂εε −Θ∗εε�1 + �Θ∗εε�1)

Inequality (i) follows from the fact �AB�max ≤ �A�∞�B�max and equality (ii) follows from

the relationship �A�1 = �A>�∞. Denote CΘ = �Θ̂εε −Θ∗εε�1 + �Θ∗εε�1, and choose

λ0/2 := Xmax max [σW smaxXmaxBmax/µmin, σWσε/µmin, σε]

√
log p

n

then we have

Pr(R∗{∇BL(B∗; Sxx, Ŝxy, Θ̂εε)} ≤ (λ0/2)CΘ)

≥ Pr(�Ŝxy − SxxB
∗�maxCΘ ≤ (λ0/2)CΘ)

= Pr(�Ŝxy − SxxB
∗�max ≤ λ0/2)

= Pr(max
l
‖(Ŝxy)•l − Sxxβ

∗
l ‖∞ ≤ λ0/2)

= Pr(∩l{‖(Ŝxy)•l − Sxxβ
∗
l ‖∞ ≤ λ0/2})

= 1− Pr(∪l{‖(Ŝxy)•l − Sxxβ
∗
l ‖∞ ≥ λ0/2})

(i)
≥ 1−

q∑
l=1

Pr(‖(Ŝxy)•l − Sxxβ
∗
l ‖∞ ≥ λ0/2)

121



= 1− qC exp(−c log p)

Inequality (i) follows from the tail probability bound in (4.21). The conclusion from (4.34)

follows from Theorem 7.13 in Wainwright (2019) with probability 1− qC exp(−c log p).

4.4 Simulation

In this study, we focus on estimating the precision matrix and the regression coefficients in

three stages as explained in Section 4.2. We can summarize the algorithm in the following

pseudo code.

Algorithm 1: Pseudocode for the estimation of B∗ and Θ∗

Stage I:

Step 1: Keeping Θ fixed, estimate B̂(1) from (4.9) by performing a column by
column estimation of B∗.

Stage II:

Step 2: Calculate S̃εε, a positive semi-definite estimate of Ŝεε using (4.12).

Step 3: Estimate Θ̂εε from (4.13) using plug-in estimates of B̂(1) and S̃εε
calculated in Step 1 and 2.

Stage III:

Step 4: Calculate the refined estimate, B̂(2), the second stage estimation of B∗

using (4.14) by plugging in Θ̂εε from Step 3.

In Stage I, we performed a projected gradient descent to get the initial estimate B̂(1) of

B∗ for each column of Y. Since Y is corrupted due to missingness in the data, we used the

surrogate estimates defined in (4.5) to perform column by column Lasso regression using

projected gradient descent method. In Stage II, we used the CoGlasso method introduced

in Chapter 3 to estimate Θ̂εε after plugging in B̂(1). In the last stage, we performed an
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iterative soft-thresholding algorithm (ISTA) after plugging in Θ̂εε to estimate the updated

version of B̂(2).

We used a simple simulation setting to demonstrate our method. We choose three

simulation settings with n = 300 and q = 20 with enlarging p = (50, 100, 300). We

generated the covariance structure of X, Σxx as an AR(1) process with ρX = 0.7. We

generated the true precision matrix Θ∗εε as a chain graph with partial correlation, ρE =

(−0.1,−0.5,−0.7,−0.9). To obtain an elementwise sparse model on B∗, we first generated

a p× q matrix B̃∗ so that in each of its columns, 80% of its p elements (chosen at random

within each column) are equal to zero; the remaining 20% of the entries of B̃∗ were drawn

from the uniform distribution on [-1, 1]. We generated the samples of (X,Y) from a zero

mean multivariate Gaussian distribution with covariance matrices Σxx and Σεε = (Θ∗εε)
−1,

respectively. Then we introduced 10% missingness completely at random in each column

of Y.

The metrics that we chose to compare are false positive rate and false negative rate

for the Stage II estimator of the precision matrix defined in Chapter 3 in Section 3.6.2. To

measure the performance of the updated estimator for B∗, we calculated the prediction

error, PE, as

PE(B̂(2),B∗) = tr{(B̂(2) −B∗)>Σxx(B̂
(2) −B∗)}

and squared error, SE, as

SE(B̂(2),B∗) = �B̂(2) −B∗�2
F .

We compared the performances of the estimators where the Stage II precision matrix was

calculated using CoGlasso method and the non-convex ADMM algorithm. We are referring

to the two methods as Convex and NC respectively in the following tables. Note that,

Stage I and Stage II of the algorithm is the same and we only varied how we calculate the

precision matrix in Stage II for this comparison. We tuned the regularization parameters in
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each stage from a equally spaced range of λs in a logarithmic scale between [-2,2]. All the

results are averaged across 100 replications.

Table 4.1: Scenario S1: n = 300, p = 50, q = 20, Pmiss = 0.1

ρE Method FPR FNR PE SE
-0.1 Convex 0.00 1.00 2.45 5.46

NC 0.02 0.95 2.44 5.45
-0.5 Convex 0.08 0.06 2.83 6.16

NC 0.23 0.02 2.81 6.11
-0.7 Convex 0.19 0.00 3.19 6.63

NC 0.42 0.00 3.19 6.63
-0.9 Convex 0.30 0.01 4.34 8.49

NC 0.64 0.00 4.44 8.69

Table 4.2: Scenario S2: n = 300, p = 100, q = 20, Pmiss = 0.1

ρE Method FPR FNR PE SE
-0.10 Convex 0.00 1.00 5.97 14.52

NC 0.02 0.98 5.90 14.36
-0.50 Convex 0.01 0.69 6.90 16.63

NC 0.11 0.27 6.78 16.27
-0.70 Convex 0.17 0.03 7.73 17.81

NC 0.46 0.01 7.63 17.56
-0.90 Convex 0.91 0.01 10.12 21.75

NC 0.91 0.01 10.12 21.75

Table 4.3: Scenario S3: n = 300, p = 300, q = 20, Pmiss = 0.1

ρE Method FPR FNR PE SE
-0.10 Convex 0.00 1.00 29.48 101.54

NC 0.16 0.84 29.25 100.75
-0.50 Convex 0.00 1.00 32.17 109.62

NC 0.34 0.59 31.80 107.88
-0.70 Convex 0.01 0.92 37.12 123.23

NC 0.76 0.14 36.12 118.74
-0.90 Convex 0.38 0.07 46.44 135.84

NC 0.99 0.00 45.68 134.19
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Both the methods tend to perform comparably in all the scenarios. We can clearly see

that the prediction error and squared error are increasing as the number of covariates

increase.

4.5 Discussion and Conclusion

In this chapter, we have studied the theoretical properties of estimating the regression

coefficients and the precision matrix in the presence of missing data from a multivariate

regression setup. We proposed a three step estimation procedure to efficiently estimate the

parameters of the model. We also performed some simulations to illustrate the method.

Note that, we have not compared our methods with the state-of-the-art methods in all

stages. The results shown only vary in the second stage for the precision matrix matrix

estimation where our method was compared with the non-convex approach of estimating

precision matrix proposed by Fan et al. (2019) using an ADMM algorithm. Both the

methods tend to perform similarly in this case. We have only considered a chain graph

structure of the precision matrix corresponding to the error. Therefore, there are further

scope of testing out our model numerically for more complicated graph structures with

varying sparsity.

4.6 Technical Details

Proof of Lemma 13

Proof. Recall that, for a multiplicative measurement error model, we assume the observed

matrix is Z = Y �W where W = (w1, . . . ,wn)> is a matrix of multiplicative error. Given

Sxy = 1
n
X>Y as the matrix that represents the covariance between X and uncontaminated
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Y, we have

Ŝxy − Sxy =
1

n
X>Z� [E[W ], ...,E[W ]]> − 1

n
X>Y

=
1

n
X>(Y �W)� [1q − ρ, . . . ,1q − ρ]> − 1

n
X>Y. (4.40)

Let Yij be the ith row and jth column of Y for j = 1, . . . , q and k = 1, . . . , p, also Wij and

Xik are defined similarly. Followed by (4.40), we have,

(Ŝxy)kj − (Sxy)kj =
1

n(1− ρj)

n∑
i=1

YijWijXik −
1

n

n∑
i=1

YijXik

=
1

n(1− ρj)

n∑
i=1

YijWijXik −
1

n(1− ρj)

n∑
i=1

YijXikEWij

=
1

n(1− ρj)

n∑
i=1

YijXik(Wij − EWij),

with EWij = 1− ρj . Now we plug in the true model Yij =
∑

k′∈Sj Xik′β
∗
k′j + εij and get

∣∣∣(Ŝxy)kj − (Sxy)kj

∣∣∣
=

∣∣∣∣∣ 1

n(1− ρj)

n∑
i=1

(

sj∑
k′=1

Xik′β
∗
k′j + εij)Xik(Wij − EWij)

∣∣∣∣∣
=

1

(1− ρj)

[∣∣∣∣∣ 1n
n∑
i=1

sj∑
k′=1

β∗k′jXik′Xik(Wij − EWij)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

εijXik(Wij − EWij)

∣∣∣∣∣
]

≤ 1

µmin

[∣∣∣∣∣ 1n
n∑
i=1

sj∑
k′=1

β∗k′jXik′Xik(Wij − EWij)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

εijXik(Wij − EWij)

∣∣∣∣∣
]

≤ 1

µmin

smaxBmaxX
2
max

∣∣∣∣∣∣∣∣∣∣
1

n

n∑
i=1

(Wij − EWij)︸ ︷︷ ︸
T1

∣∣∣∣∣∣∣∣∣∣
+Xmax

∣∣∣∣∣∣∣∣∣∣
1

n

n∑
i=1

εij(Wij − EWij)︸ ︷︷ ︸
T2

∣∣∣∣∣∣∣∣∣∣


where Xmax = maxi,k |Xik| < ∞, Bmax = maxk,j |β∗kj|, µmin = minj µj = minj 1 − ρj . We

find bounds for T1 and T2 separately. For T1, applying Theorem 2.6.3 general Hoeffding
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inequality on page 27 of Vershynin (2018), we get

Pr(|T1| ≥ t)

= Pr

[∣∣∣∣∣
n∑
i=1

1

n
(Wij − EWij)

∣∣∣∣∣ ≥ t

]

≤ 2 exp

{
− ct2

K2
W

∑n
i=1(1/n)2

}
(i)
≤ 2 exp

{
− cm1t

2

σ2
W

∑n
i=1(1/n)2

}
(ii)
≤ 2 exp

{
−cnt

2

σ2
W

}

where KW = maxi,j ‖Wij − EWij‖ψ2 . Inequality (i) is due to the implication of Lemma 5.5

of Vershynin (2010) that for sub-Gaussian random variable Wij−EWij there exist universal

constants m1 and M1 such that m1‖Wij − EWij‖2
ψ2
≤ σ2

W ≤M1‖Wij − EWij‖2
ψ2

hold. It can

be simplified to inequality (ii) since m1 is a constant and consequently gets absorbed into

the universal constant c.

Now we will find the bound for T2. Follow by Lemma 2.7.7 of Vershynin (2018), we

notice that εij(Wij − EWij) as the product of two independent, centered sub-Gaussian

random variables follows sub-exponential distribution since

‖εij(Wij − EWij)‖ψ1 ≤ ‖εij‖ψ2‖Wij − EWij‖ψ2 .

Also we can see that εij(Wij − EWij) is centered since

E[εij(Wij − EWij)] = EεijE(Wij − EWij) = 0

with Now apply Theorem 2.8.2 of Vershynin (2018), we get

Pr(|T2| ≥ t)
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= Pr

[∣∣∣∣∣
n∑
i=1

1

n
εij(Wij − EWij)

∣∣∣∣∣ > t

]

≤ 2 exp

{
−cmin

(
t2

maxi ‖εij(Wij − EWij)‖2
ψ1

∑n
i=1(1/n)2

,
t

maxi ‖εij(Wij − EWij)‖ψ1 maxi(1/n)

)}
(i)
≤ 2 exp

{
−cmin

(
nt2

maxi ‖εij‖2
ψ2
‖Wij − EWij‖2

ψ2

,
nt

maxi ‖εij‖ψ2‖Wij − EWij‖ψ2

)}

≤ 2 exp

{
−cnmin

(
t2

σ2
εσ

2
W

,
t

σεσW

)}

where inequality (i) is again due to Lemma 5.5 of Vershynin (2010) that there exist universal

constants m1, M1, m2 and M2 such that m1‖Wij − EWij‖2
ψ2
≤ σ2

W ≤M1‖Wij − EWij‖2
ψ2

and

m2‖εij‖2
ψ2
≤ σ2

ε ≤M2‖εij‖2
ψ2

hold.

We can combine the pieces together as follows:

Pr
[∣∣∣(Ŝxy)kj − (Sxy)kj

∣∣∣ ≥ t
]

≤ Pr

[
smaxBmaxX

2
max

µmin

|T1|+
Xmax

µmin

|T2| ≥ t

]
= Pr

[
smaxBmaxX

2
max|T1|+Xmax|T2| ≥ tµmin

]
(i)
≤ Pr

[
2 max

{
smaxBmaxX

2
max|T1|, Xmax|T2|

}
≥ tµmin

]
= Pr

[
max

{
smaxBmaxX

2
max|T1|, Xmax|T2|

}
≥ tµmin/2

]
= Pr

[(
smaxBmaxX

2
max|T1| ≥ tµmin/2

)
∪ (Xmax|T2| ≥ tµmin/2)

]
= Pr

[(
|T1| ≥ tµmin/(2smaxBmaxX

2
max)

)
∪ (|T2| ≥ tµmin/(2Xmax))

]
≤ Pr

[
|T1| ≥ tµmin/(2smaxBmaxX

2
max)

]
+ Pr [|T2| ≥ tµmin/(2Xmax)]

= C exp

{
−cn µ2

mint
2

s2
maxσ

2
WX

4
maxB

2
max

}
+ C exp

{
−cnmin

(
µ2

mint
2

σ2
εσ

2
WX

2
max

,
µmint

σεσWXmax

)}
(ii)
= C exp

{
−cn µ2

mint
2

s2
maxσ

2
WX

4
maxB

2
max

}
+ C exp

{
−cn µ2

mint
2

σ2
εσ

2
WX

2
max

}
≤ 2C max

{
exp

(
−cn µ2

mint
2

s2
maxσ

2
WX

4
maxB

2
max

)
, exp

(
−cn µ2

mint
2

σ2
εσ

2
WX

2
max

)}
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≤ C exp

(
−cn µ2

mint
2

σ2
WX

2
max max(s2

maxX
2
maxB

2
max, σ

2
ε)

)

Inequality (i) is due to the relationship A + B + |A − B| = 2 max(A,B), which implies

A+B ≤ 2 max(A,B). Equality (ii) follows by assuming that t ≤ t
(1)
0 with

t
(1)
0 = σεσWXmax/µmin. (4.41)

Applying the union bound to find an upper bound for the elementwise max norm, we get,

Pr[�Ŝxy − Sxy�max ≥ t] ≤ Pr

[
max
j,k

∣∣∣(Ŝxy)kj − (Sxy)kj

∣∣∣ ≥ t

]
≤
∑
j,k

Pr
[∣∣∣(Ŝxy)kj − (Sxy)kj

∣∣∣ ≥ t
]

≤ pqC exp

(
−cn µ2

mint
2

σ2
WX

2
max max(s2

maxX
2
maxB

2
max, σ

2
ε)

)
.

Proof of Lemma 14

Proof. Given the definition of Sxy

Sxy − SxxB
∗ =

1

n
X>Y − 1

n
X>XB∗ =

1

n
X>(XB∗ + ε)− 1

n
X>XB∗ =

1

n
X>ε (4.42)

Hence if we consider the kth row and jth column of this difference for j = 1, . . . , q and

k = 1, . . . , p, it is

(Sxy)kj − (SxxB
∗)kj =

1

n

n∑
i=1

εijXik
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We can bound it by applying Theorem 2.6.3 general Hoeffding inequality on page 27 of

Vershynin (2018)

Pr

[∣∣∣ n∑
i=1

(Xik/n)εij

∣∣∣ ≥ t

]
< 2 exp

{
− ct2

(maxi ‖εij‖ψ2)2
∑n

i=1(Xik/n)2

}
< 2 exp

{
− cnt2

σ2
εX

2
max

}
.

Applying the union bound, we get

Pr(�Sxy − SxxB
∗�max ≥ t) ≤ pqC exp

[
− cnt2

σ2
εX

2
max

]

and

Pr(‖(Sxy)•l − Sxxβ
∗
l ‖∞ ≥ t) ≤ pC exp

[
− cnt2

σ2
εX

2
max

]
.

Proof of Lemma 15

Proof. Recall that, for a multiplicative measurement error model, we assume the observed

matrix is Z = Y �W where W = (w1, . . . ,wn)> is a matrix of multiplicative error. Let

ΣW be the known population covariance matrix of the measurement errors W for the

multiplicative model. Given Syy as the sample covariance matrix for the data without any

corruption, we have

Ŝyy − Syy =
1

n
Z>Z� (ΣW + µWµ

>
W )− 1

n
Y>Y

=
1

n
(Y �W)>(Y �W)� (ΣW + µWµ

>
W )− 1

n
Y>Y

=
1

n
(Y �W)>(Y �W)� E[WW>]− 1

n
Y>Y, (4.43)

where the last line is due to the fact that E[WW>] = Cov(W ) +E[W ]E[W>] = ΣW +µWµ
>
W .
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Let Yij and Yik be the ith row and jth and kth column of Y for i = 1, . . . , n and

j, k = 1, . . . , q, and Wij and Wik can be defined similarly. Let Xik′ and Xik′′ be the ith row

and k′th and k′′th column of X for k′, k′′ = 1, . . . , p. Then we can express the (k, j) element

of (Ŝyy − Syy) as

(Ŝyy)kj − (Syy)kj =
1

n

n∑
i=1

YijWijYikWik

E(WjWk)
− 1

n

n∑
i=1

YijYik

where E(WjWk) = (E[WW>])jk. Now by plugging in the true model

Yij =
∑
k′∈Sj

Xik′β
∗
k′j + εij,

Yik =
∑
k′′∈Sk

Xik′′β
∗
k′′k + εik

we get

(Ŝyy)kj − (Syy)kj

=
1

E(WjWk)

[
1

n

n∑
i=1

(
∑
k′∈Sj

Xik′β
∗
k′j + εij)(

∑
k′′∈Sk

Xik′′β
∗
k′′k + εik)WijWik

− 1

n

n∑
i=1

(
∑
k′∈Sj

Xik′β
∗
k′j + εij)(

∑
k′′∈Sk

Xik′′β
∗
k′′k + εik)E(WjWk)

]

=
1

E(WjWk)

[
1

n

n∑
i=1

(
∑
k′∈Sj

Xik′β
∗
k′j + εij)(

∑
k′′∈Sk

Xik′′β
∗
k′′k + εik)(WijWik − E(WjWk))

]
.

Since both Wij and Wik are sub-Gaussian with parameter σ2
W , their product WijWik is

sub-exponential with

‖WijWik‖ψ1 ≤ ‖Wij‖ψ2‖Wik‖ψ2 .

Therefore,

Uikj := WijWik − E(WjWk)
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is a centered sub-exponential random variable, which has

‖Uikj‖ψ1 = ‖WijWik − E(WjWk)‖ψ1 = C‖WijWik‖ψ1 ≤ C‖Wij‖ψ2‖Wik‖ψ2 .

Hence

∣∣∣(Ŝyy)kj − (Syy)kj

∣∣∣
≤ 1

E(WjWk)

∣∣∣∣∣ 1n
n∑
i=1

{
Uikj

∑
k′∈Sj

∑
k′′∈Sk

Xik′β
∗
k′jXik′′β

∗
k′′k

+ Uikj
∑
k′∈Sj

Xik′β
∗
k′jεik + Uikj

∑
k′′∈Sk

Xik′′β
∗
k′′kεij + Uikjεijεik)

}∣∣∣∣∣
≤ 1

mmin

{
X2

maxB
2
maxs

2
max

∣∣∣∣∣
n∑
i=1

(1/n)Uikj︸ ︷︷ ︸
T1

∣∣∣∣∣+XmaxBmaxsmax

∣∣∣∣∣
n∑
i=1

(1/n)Uikjεik︸ ︷︷ ︸
T2

∣∣∣∣∣
+XmaxBmaxsmax

∣∣∣∣∣
n∑
i=1

(1/n)Uikjεij︸ ︷︷ ︸
T3

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

(1/n)Uikjεijεik︸ ︷︷ ︸
T4

∣∣∣∣∣
}

where mmin = minj,k |E(WjWk)| > 0, smax = maxj sj , Xmax = maxi,k |Xik| < ∞, and

Bmax = maxk′,j |β∗k′j|. Notice that in the above formula, within each term, we have multiple

products of sub-Gaussian random variables. Now we bound terms T1, T2, T3 and T4,

separately.

Term T1 is the average of n independent, mean zero, sub-exponential random variables.

Therefore

Pr (|T1| ≥ t) = Pr

(∣∣∣∣∣
n∑
i=1

(1/n)Uikj

∣∣∣∣∣ ≥ t

)

≤ 2 exp

[
−cnmin

(
t2

maxi ‖Uikj‖2
ψ1

,
t

maxi ‖Uikj‖ψ1

)]

≤ C exp

[
−cnmin

(
t2

maxi ‖Wij‖2
ψ2
‖Wik‖2

ψ2

,
t

maxi ‖Wij‖ψ2‖Wik‖ψ2

)]
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≤ C exp

[
−cnmin

(
t2

σ4
W

,
t

σ2
W

)]

Now we look at term T2 and T3. We need to bound the product Uikjεik. We know that

sub-Gaussian variable εik is sub-exponential, since

Pr (|εik| ≥ t) ≤ 2 exp(−t2/σ2
ε) ≤ 2 exp(−t/σ2

ε).

We can use Lemma A.1 of Götze et al. (2021), which states that the product of D sub-

exponential random variables has a α/D-sub-exponential tail with the Orlicz norm

∥∥∥ D∏
i=1

Xi

∥∥∥
ψ α
D

≤
D∏
i=1

‖Xi‖ψα. (4.44)

Specifically, in our case D = 2 and α = 1 in (4.44), we obtain that the product of two

sub-exponential is a 1/2-sub-exponential with

‖Uikjεik‖ψ1/2
≤ ‖Uikj‖ψ1‖εik‖ψ1 = ‖Wij‖ψ2‖Wij‖ψ2‖εik‖2

ψ2
.

Meanwhile, we know Uikjεik is centered due to E(Uikjεik) = E(Uikj)E(εik) = 0 and inde-

pendence of Uikj and εik. We apply Corollary 1.4 of Götze et al. (2021)

Pr (|T2| ≥ t) = Pr

(∣∣∣∣∣
n∑
i=1

(1/n)Uikjεik

∣∣∣∣∣ ≥ t

)

≤ 2 exp

−cmin

 nt2

‖Uikjεik‖2
ψ1/2

,
n1/2t1/2

‖Uikjεik‖1/2
ψ1/2


≤ 2 exp

(
−cmin

(
nt2

‖Wij‖2
ψ2
‖Wij‖2

ψ2
‖εik‖4

ψ2

,
n1/2t1/2

‖Wij‖1/2
ψ2
‖Wij‖1/2

ψ2
‖εik‖ψ2

))

≤ 2 exp

(
−cmin

(
nt2

σ4
Wσ

4
ε

,
n1/2t1/2

σWσε

))
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The bound for term T3 is the same

Pr (|T3| ≥ t) = 2 exp

(
−cmin

(
nt2

σ4
Wσ

4
ε

,
n1/2t1/2

σWσε

))
.

Now we look at term T4, in which εijεik as the product of two sub-Gaussian is sub-

exponential with

‖εijεik‖ψ1 ≤ ‖εij‖ψ2‖εik‖ψ2

Therefore, we can view Uikjεijεik as the product of two sub-exponential random variables

with

‖Uikjεijεik‖ψ1/2
≤ ‖Uikj‖ψ1‖εijεik‖ψ1 ≤ ‖Wij‖ψ2‖Wik‖ψ2‖εij‖ψ2‖εik‖ψ2 .

Pr (|T4| ≥ t) = Pr

(∣∣∣∣∣
n∑
i=1

(1/n)Uikjεijεik

∣∣∣∣∣ ≥ t

)

≤ 2 exp

−cmin

 nt2

‖Uikjεijεik‖2
ψ1/2

,
n1/2t1/2

‖Uikjεijεik‖1/2
ψ1/2


≤ 2 exp

(
−cmin

(
nt2

‖Wij‖2
ψ2
‖Wik‖2

ψ2
‖εij‖2

ψ2
‖εik‖2

ψ2

,
n1/2t1/2

‖Wij‖1/2
ψ2
‖Wik‖1/2

ψ2
‖εij‖1/2

ψ2
‖εik‖1/2

ψ2

))

≤ 2 exp

(
−cmin

(
nt2

σ4
Wσ

4
ε

,
n1/2t1/2

σWσε

))
.

Define the event

A1 =

{
X2

maxB
2
maxs

2
max

mmin

|T1| ≥ t/4

}
A2 =

{
XmaxBmaxsmax

mmin

|T2| ≥ t/4

}
A3 =

{
XmaxBmaxsmax

mmin

|T3| ≥ t/4

}
A4 =

{
1

mmin

|T4| ≥ t/4

}
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and the event G = {|(Ŝyy)kj − (Syy)kj| < t}. Then by Boole’s inequality

Pr(G) = Pr(|(Ŝyy)kj − (Syy)kj| < t)

≥ Pr(Ac1 ∩ Ac2 ∩ Ac3 ∩ Ac4)

= Pr[(A1 ∪ A2 ∪ A3 ∪ A4)c]

≥ 1− Pr[(A1 ∪ A2 ∪ A3 ∪ A4)]

≥ 1− Pr(A1)− Pr(A2)− Pr(A3)− Pr(A4)

≥ 1− Pr

{
|T1| ≥

tmmin

4X2
maxB

2
maxs

2
max

}
− Pr

{
|T2| ≥

tmmin

4XmaxBmaxsmax

}
− Pr

{
|T3| ≥

tmmin

4XmaxBmaxsmax

}
− Pr {|T4| ≥ tmmin/4}

≥ 1− C exp

(
−cmin

(
nt2m2

min

X4
maxB

4
maxs

4
maxσ

4
W

,
ntmmin

X2
maxB

2
maxs

2
maxσ

2
W

))
− C exp

(
−cmin

(
nt2m2

min

X2
maxB

2
maxs

2
maxσ

4
Wσ

4
ε

,
n1/2t1/2m

1/2
min

X
1/2
maxB

1/2
maxs

1/2
maxσWσε

))

− C exp

(
−cmin

(
nt2m2

min

X2
maxB

2
maxs

2
maxσ

4
Wσ

4
ε

,
n1/2t1/2m

1/2
min

X
1/2
maxB

1/2
maxs

1/2
maxσWσε

))

− C exp

(
−cmin

(
nt2m2

min

σ4
Wσ

4
ε

,
n1/2t1/2m

1/2
min

σWσε

))

Now, we can further simplify the terms involved inside the exponentiation of the right

hand side of the above inequality if we assume t satisfies some additional conditions.

Specifically, if t ≤ t
(a)
0 := X2

maxB
2
maxs

2
maxσ

2
W/mmin, then we have

nt2m2
min

X4
maxB

4
maxs

4
maxσ

4
W

≤ ntmmin

X2
maxB

2
maxs

2
maxσ

2
W

.

If t ≤ t
(b)
0 := XmaxBmaxsmaxσ

2
Wσ

2
ε/(n

1/3mmin), then

nt2m2
min

X2
maxB

2
maxs

2
maxσ

4
Wσ

4
ε

≤ n1/2t1/2m
1/2
min

X
1/2
maxB

1/2
maxs

1/2
maxσWσε

135



and if t ≤ t
(c)
0 := σ2

Wσ
2
ε/(n

1/3mmin), then

nt2m2
min

σ4
Wσ

4
ε

≤ n1/2t1/2m
1/2
min

σWσε

Therefore, if we assume that

t ≤t(2)
0 := min(t

(a)
0 , t

(b)
0 , t

(c)
0 )

= min(X2
maxB

2
maxs

2
maxσ

2
W/mmin, XmaxBmaxsmaxσ

2
Wσ

2
ε/mminn

1/3, σ2
Wσ

2
ε/mminn

1/3)

then the lower bound for Pr(G) can be simplified as

Pr [G]

≥ 1− C exp

(
− cnt2m2

min

X4
maxB

4
maxs

4
maxσ

4
W

)
− C exp

(
− cnt2m2

min

X2
maxB

2
maxs

2
maxσ

4
Wσ

4
ε

)
− C exp

(
− cnt2m2

min

X2
maxB

2
maxs

2
maxσ

4
Wσ

4
ε

)
− C exp

(
−cnt

2m2
min

σ4
Wσ

4
ε

)
≥ 1− 4C max

{
exp

(
− cnt2m2

min

X4
maxB

4
maxs

4
maxσ

4
W

)
, exp

(
− cnt2m2

min

X2
maxB

2
maxs

2
maxσ

4
Wσ

4
ε

)
, exp

(
−cnt

2m2
min

σ4
Wσ

4
ε

)}

≥ 1− 4C

{
exp

(
− cnt2m2

min

max {X4
maxB

4
maxs

4
maxσ

4
W , X

2
maxB

2
maxs

2
maxσ

4
Wσ

4
ε , σ

4
Wσ

4
ε}

)}

≥ 1− 4C

{
exp

(
− cnt2m2

min

σ4
W max {X4

maxB
4
maxs

4
max, X

2
maxB

2
maxs

2
maxσ

4
ε , σ

4
ε}

)}
.

Applying the union bound, we get

Pr(�Ŝyy−Syy�max ≥ t) ≤ 4q2C

{
exp

(
− cnt2m2

min

σ4
W max {X4

maxB
4
maxs

4
max, X

2
maxB

2
maxs

2
maxσ

4
ε , σ

4
ε}

)}
.

Proof of Lemma 16
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Proof. The deviation �Ŝεε −Σ∗εε�max can be decomposed and upper bounded as

�Ŝεε −Σ∗εε�max = �Ŝyy − B̂(1)>SxxB̂
(1) −Σ∗εε�max

= �Ŝyy − Syy + Syy − B̂(1)>SxxB̂
(1) −Σ∗εε�max

= �Ŝyy − Syy + (1/n)Y>Y − B̂(1)>SxxB̂
(1) −Σ∗εε�max

≤ �Ŝyy − Syy�max + �(1/n)(XB∗ + ε)>(XB∗ + ε)− B̂(1)>SxxB̂
(1) −Σ∗εε�max

≤ �(Ŝyy − Syy)�max︸ ︷︷ ︸
T1

+ �B̂(1)>SxxB̂
(1) −B∗>SxxB

∗�max︸ ︷︷ ︸
T2

+ �(2/n)ε>XB∗�max︸ ︷︷ ︸
T3

+ �(1/n)ε>ε−Σ∗εε�max︸ ︷︷ ︸
T4

,

by applying a series of triangular inequalities. In the following, we bound each term on

the right hand side of the above inequality separately. The first term T1 can be bound by

applying Lemma 15 by setting

t1 := σ2
W max

{
X2

maxB
2
maxs

2
max/mmin, XmaxBmaxsmaxσ

2
ε/mmin, σ

2
ε/mmin

}√ log(q2)

n

≤ t
(2)
0 := min(t

(a)
0 , t

(b)
0 , t

(c)
0 )

we obtain the following tail bound

Pr(T1 ≤ t1)

≥Pr(�Ŝyy − Syy�max ≤ t1)

≥1− C exp(−c log q2)

The second term T2 can be simplified as follows:

�(B̂(1)>SxxB̂
(1) −B∗>SxxB

∗)�max = �(B̂(1) −B∗)>Sxx(B̂
(1) −B∗) + 2[(B̂(1) −B∗)>SxxB

∗]�max

≤ �(B̂(1) −B∗)>Sxx(B̂
(1) −B∗)�max
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+ 2�(B̂(1) −B∗)>SxxB
∗�max.

We treat each term on the right hand side in sequence. Starting with the first term, we have

�(B̂(1) −B∗)>Sxx(B̂
(1) −B∗)�max

(i)
≤ �(B̂(1) −B∗)>�∞�Sxx(B̂

(1) −B∗)�max

≤ �(B̂(1) −B∗)>�∞�(B̂(1) −B∗)>S>xx�max

≤ �(B̂(1) −B∗)>�∞�(B̂(1) −B∗)>�∞�Sxx�max

(ii)
= �B̂(1) −B∗�1�B̂(1) −B∗�1�Sxx�max

= �Sxx�max�B̂(1) −B∗�2
1

≤ X2
max�B̂(1) −B∗�2

1

= X2
max

(
max
l∈[q]
‖β̂l − β∗l ‖1

)2

≤ X2
max

(
max
l∈[q]

12slλl/κl

)2

Inquality (i) follows from that for two matrices A and B

�AB�max = max
i,k
|
∑
j

AijBjk|

≤ max
i,k
|
∑
j

Aij(max
j
|Bjk|)|

= max
i
|
∑
j

Aij|max
j,k
|Bjk|

= max
k

[max
j
|Bjk|] max

i
|
∑
j

Aij|

= �A�∞�B�max,

and equality (ii) follows from the relationship �A�1 = �A>�∞. Since by Proposition 1

Pr(‖β̂l − β∗l ‖1 ≤ 12slλl/κl) ≥ 1− C exp(−c log p),
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Hence

Pr

[
�(B̂(1) −B∗)>Sxx(B̂

(1) −B∗)�max ≤ X2
max

(
max
l∈[q]

12slλl/κl

)2
]

≥ Pr

[
X2

max

(
max
l∈[q]
‖β̂l − β∗l ‖1

)2

≤ X2
max

(
max
l∈[q]

12slλl/κl

)2
]

= Pr

[
max
l∈[q]
‖β̂l − β∗l ‖1 ≤ max

l∈[q]
12slλl/κl

]
= Pr

[
∩ql=1{‖β̂l − β

∗
l ‖1 ≤ max

l∈[q]
12slλl/κl}

]
= Pr

[[
∪ql=1{‖β̂l − β

∗
l ‖1 ≥ max

l∈[q]
12slλl/κl}

]c]
= 1− Pr

[
∪ql=1{‖β̂l − β

∗
l ‖1 ≥ max

l∈[q]
12slλl/κl}

]
≥ 1−

q∑
l=1

Pr

[
‖β̂l − β∗l ‖1 ≥ max

l∈[q]
12slλl/κl

]

≥ 1−
q∑
l=1

Pr
[
‖β̂l − β∗l ‖1 ≥ 12slλl/κl

]
≥ 1− qC exp(−c log p)

= 1− C exp(−c log(pq)).

Next, applying Proposition 1 again, we get

�(B̂(1) −B∗)>SxxB
∗�max ≤ �(B̂(1) −B∗)>Sxx�max�B∗�1

≤ �(B̂(1) −B∗)>�∞�Sxx�max�B∗�1

≤ �B̂(1) −B∗�1�Sxx�max�B∗�1

≤ X2
maxsmaxBmax�B̂(1) −B∗�1

= X2
maxsmaxBmax

(
max
l∈[q]
‖β̂l − β∗l ‖1

)
≤ X2

maxsmaxBmax max
l∈[q]

12slλl/κl
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with probability

Pr

[
�(B̂(1) −B∗)>SxxB

∗�max ≤ X2
maxsmaxBmax max

l∈[q]
12slλl/κl

]
≥ Pr

[
X2

maxsmaxBmax max
l∈[q]
‖β̂l − β∗l ‖1 ≤ X2

maxsmaxBmax max
l∈[q]

12slλl/κl

]
≥ Pr

[
max
l∈[q]
‖β̂l − β∗l ‖1 ≤ max

l∈[q]
12slλl/κl

]
= Pr

[
∩ql=1{‖β̂l − β

∗
l ‖1 ≤ max

l∈[q]
12slλl/κl}

]
= 1− Pr

[
∪ql=1{‖β̂l − β

∗
l ‖1 ≥ max

l∈[q]
12slλl/κl}

]
≥ 1−

q∑
l=1

Pr

[
‖β̂l − β∗l ‖1 ≥ max

l∈[q]
12slλl/κl

]

≥ 1−
q∑
l=1

Pr
[
‖β̂l − β∗l ‖1 ≥ 12slλl/κl

]
≤ 1− C exp(−c log(pq)).

Now, we bound the third term T3. Let us consider the jth row and kth column for

j, k = 1, . . . , q,

∣∣∣∣∣
(

2

n
ε>XB∗

)
jk

∣∣∣∣∣ =

∣∣∣∣∣ 2n
n∑
i=1

∑
k′∈Sk

Xik′β
∗
k′kεij

∣∣∣∣∣ ≤
∣∣∣∣∣2XmaxsmaxBmax

n∑
i=1

(1/n)εij

∣∣∣∣∣ .
Since εij is sub-Gaussian with parameter σ2

ε , we can bound it by applying Theorem 2.6.3

general Hoeffding inequality on page 27 of Vershynin (2018)

Pr

[∣∣∣ n∑
i=1

(1/n)εij

∣∣∣ ≥ t

]
< 2 exp

{
− ct2

(maxi ‖εij‖ψ2)2
∑n

i=1(1/n)2

}
< 2 exp

{
−cnt

2

σ2
ε

}
.
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Hence,

Pr

[∣∣∣ n∑
i=1

(2XmaxsmaxBmax/n)εij

∣∣∣ ≥ t

]
< 2 exp

{
− cnt2

σ2
εX

2
maxs

2
maxB

2
max

}
.

Applying the union bound, we get

Pr(�(2/n)ε>XB∗�max ≥ t) ≤ q2C exp

{
− cnt2

σ2
εX

2
maxs

2
maxB

2
max

}
.

By setting

t2 := σεXmaxsmaxBmax

√
log(q2)

n

we get the tail bound for T3

Pr(�(2/n)ε>XB∗�max ≤ t2) ≥ 1− C exp(−c log(q2)).

Now, we bound T4. For the jth row and kth column of (1/n)ε>ε−Σ∗εε, we have

((1/n)ε>ε−Σ∗εε)jk =
n∑
i=1

(1/n)[εijεik − E(εjεk)]

where εij and εik are sub-Gaussian with parameter σ2
ε . Their product εijεik is sub-exponential

with

‖εijεik‖ψ1 ≤ ‖εij‖ψ2‖εik‖ψ2 .

Therefore, define

Vikj := εijεik − E(εjεk)

as a centered sub-exponential random variable, which has

‖Vikj‖ψ1 = ‖εijεik − E(εjεk)‖ψ1 = C‖εijεik‖ψ1 ≤ C‖εij‖ψ2‖εik‖ψ2 .
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Therefore

Pr

(∣∣∣∣∣
n∑
i=1

((1/n)ε>ε−Σ∗εε)jk

∣∣∣∣∣ ≥ t

)
= Pr

(∣∣∣∣∣
n∑
i=1

(1/n)Vikj

∣∣∣∣∣ ≥ t

)

≤ 2 exp

[
−cnmin

(
t2

maxi ‖Vikj‖2
ψ1

,
t

maxi ‖Vikj‖ψ1

)]

≤ C exp

[
−cnmin

(
t2

maxi ‖εij‖2
ψ2
‖εik‖2

ψ2

,
t

maxi ‖εij‖ψ2‖εik‖ψ2

)]

≤ C exp

[
−cnmin

(
t2

σ4
ε

,
t

σ2
ε

)]
≤ C exp

[
−cn t

2

σ4
ε

]

The last inequality holds if we assume that t is chosen satisfying t ≤ t
(3)
0 := σ2

ε . Therefore,

applying union bound, we get

Pr(�(1/n)ε>ε−Σ∗εε�max ≥ t) ≤ q2C exp

[
−cn

(
t2

σ4
ε

)]
.

Define,

t3 := σ2
ε

√
log(q2)

n

the requirement t3 ≤ t
(3)
0 implies that

√
log(q2)
n
≤ 1 must be satisfied. Hence, we get the tail

bound for T4

Pr(�(1/n)ε>ε−Σ∗εε�max ≤ t3) ≥ 1− C exp(−c log(q2)).

Define the event

B1 =
{
�Ŝyy − Syy�max ≤ t1

}
B2 =

{
�(B̂(1) −B∗)>Sxx(B̂

(1) −B∗)�max ≤ X2
max

(
max
l∈[q]

12slλl/κl

)2
}

B3 =

{
�(B̂(1) −B∗)>SxxB

∗�max ≤ X2
maxsmaxBmax max

l∈[q]
12slλl/κl

}
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B4 =
{�(2/n)ε>XB∗�max ≤ t2

}
B5 =

{�(1/n)ε>ε−Σ∗εε�max ≤ t3
}
,

and

∆ = t1 +X2
max

(
max
l∈[q]

12slλl/κl

)2

+X2
maxsmaxBmax max

l∈[q]
12slλl/κl (4.45)

t2 + t3

= σ2
W max

{
X2

maxB
2
maxs

2
max/mmin, XmaxBmaxsmaxσ

2
ε/mmin, σ

2
ε/mmin

}√ log(q2)

n

+X2
max

(
max
l∈[q]

12slλl/κl

)2

+X2
maxsmaxBmax max

l∈[q]
12slλl/κl + σεXmaxsmaxBmax

√
log(q2)

n

+ σ2
ε

√
log(q2)

n

and the eventH = {�Ŝεε −Σ∗εε�max < ∆}. Then by Boole’s inequality

Pr(H) = Pr(�Ŝεε −Σ∗εε�max ≤ ∆)

≥ Pr(�Ŝyy − Syy�max + �(B̂(1) −B∗)>Sxx(B̂
(1) −B∗)�max

+ �(B̂(1) −B∗)>SxxB
∗�max + �(2/n)ε>XB∗�max + �(1/n)ε>ε−Σ∗εε�max ≤ ∆)

≥ Pr(B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5)

= Pr[(Bc1 ∪ Bc2 ∪ Bc3 ∪ Bc4 ∪ Bc5)c]

≥ 1− Pr[(Bc1 ∪ Bc2 ∪ Bc3 ∪ Bc4 ∪ Bc5)]

≥ 1− Pr(Bc1)− Pr(Bc2)− Pr(Bc3)− Pr(Bc4)− Pr(Bc5)

≥ 1− C exp(−c log q2)− C exp(−c log(pq))− C exp(−c log(pq))

− C exp(−c log(q2))− C exp(−c log(q2))

= 1− C exp(−c log q2)− C exp(−c log(pq))
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Chapter 5

Discussion

In this chapter, we summarize and discuss the work developed in the earlier chapters

of this thesis. In Chapter 2 we provided a comprehensive literature review of the works

that lead to Chapter 3 and 4. Specifically, we discuss the classical literature and methods

developed for precision matrix estimation in a high-dimensional setting when the data

are fully observed. Next, we discussed the consequences of having measurement error

being present in the data, in additive form or multiplicative form. Specifically, when there

is additive noise or missing data which is a special case of multiplicative measurement

error, the objective function tends to be unbounded from below and the problem does not

remain convex anymore. Moreover, the sample covariance matrix may not remain positive

semi-definite either and as a consequence, might have zero or negative eigenvalues. Many

approaches have been suggested to tackle this problem. A noise-corrected non-convex

approach is popularly used to estimate the precision matrix where unbiased surrogate

estimates are proposed while the objective function still remains non-convex, but an

additional side constraint is added to it and solved using projected gradient descent

method (Fan et al., 2019; Loh and Wainwright, 2012).

In this thesis, we have proposed an approach to estimate the precision matrix in

the presence of corrupted data while preserving the convexity of the objective function.
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Inspired by the CoCoLasso methods in the regression setting in the presence of noisy data

(Datta and Zou, 2017), we proposed the CoGlasso algorithm to estimate the precision

matrix by projecting the unbiased surrogate estimate of the sample covariance matrix to

the nearest positive semi-definite cone and use it as a plug-in estimate in the objective

function which essentially converts an unbounded objective function problem to a convex

optimization problem. The idea of projecting the surrogate covariance matrix has been

proposed before in estimating precision matrix when the data are corrupted, but the

theoretical guarantees have not been studied properly in this setting for high-dimensional

data. On the other hand, the theoretical guarantees for the fully observed data scenario for

precision matrix estimation have been extensively studied in Ravikumar et al. (2011).

In this thesis, in Chapter 3, we have laid down the framework of our method and

performed a rigorous theoretical study along with deviation bounds of the estimated

precision matrix from the truth in elementwise maximum norm under four different

scenarios. We have considered two different tail conditions for both the unobserved data,

X and the measurement error, W, namely, exponential-type and polynomial-type tails. We

also considered the cases when the measurement error is additive as well as when there is

missing data for two different tail conditions, resulting into four distinct scenarios. The

main result of this chapter is presented in Theorem 1. In this theorem, we can see that the

deviation bound between the estimated and the true precision matrix looks similar to the

clean data case as shown in Ravikumar et al. (2010). However, the bound varies by the

quantity δ̄f∗(n, pγ), for the aforementioned four scenarios and we provided expressions

for this quantity when X and W follows a multivariate Gaussian case (exponential-type

tail with a = 2) and in the case of polynomial tails. To prove Theorem 1, we required to

prove Lemmas 1, 2, 3 and 4. To our knowledge, the proofs of these Lemmas and parts of

Theorem 1 where we modified the steps to incorporate the deviation between the surrogate

estimate for the corrupted data to the sample covariance matrix for the clean data are

original contributions of this thesis.
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In our work, following Ravikumar et al. (2010), we derived the consistency bounds

under the mutual incoherence condition. Assuming the sizes of the entries in the true

covariance matrix, κΓ∗ and the inverse Hessian, κΣ∗ and the incoherence parameter, α

defined in Section 3.5.1 to be constants as a function of the sample size, n, number of nodes,

p and the number of maximum number of non-zero elements per row/column, d, we have

the elementwise `∞ bound �Θ̂−Θ∗�max = O(δ̄f∗(n, p
γ)), so that the inverse tails functions

δ̄f∗(n, p
γ) defined in the Remarks under Theorem 1 specify the rate of convergence in the

elementwise `∞-norm. We also derived the model selection consistency bound in Theorem

2, which does not differ from the clean case scenario as shown in Ravikumar et al. (2010)

other than in terms of the expression of δ̄f∗(n, pγ). The rates in terms of the Frobenius and

spectral norm are also established in this chapter. For completeness, we also provided

consistency results in the Technical Details section, however these results were similar to

the results shown in Ravikumar et al. (2010) for the clean graphical Lasso case.

We assumed the irrepresentability condition or mutual incoherence condition for the

graphical Lasso problem with measurement error similar to Ravikumar et al. (2011). This

is a necessary assumption to establish the model selection consistency of the estimator.

However, it is a strong assumption and hard to check in practice. Some alternative

approaches to that can be explored to impose rather weaker conditions for this estimation

problem. For example, Johnson et al. (2012) proposed two greedy approaches which

learn the full structure of the model with high probability given just O(d log p) samples,

whereas graphical Lasso requiresO(d2 log p) samples. They also showed that their imposed

restricted eigenvalue and smoothness conditions were weaker than the irrepresentable

condition. Zhang and Zou (2012) proposed the D-trace loss for the estimation of precision

matrix under slightly different irrepresentability condition and compared their work with

Ravikumar et al. (2011). The choice of irrepresentability condition is an open problem

even in the fully observed data. The aforementioned works deal with complete data case,
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therefore, it would be an interesting direction to study these techniques to impose a weaker

condition for the corrupted data scenarios.

Our CoGlasso approach, is easy to understand and implement, has solid theoretical

foundations and shares many properties with the clean graphical Lasso method which is

well studied in literature. Specifically, our algorithm can be solved using any graphical

lasso algorithm, such as GLASSO (Friedman et al., 2008) and QUIC (Hsieh et al., 2014).

Therefore, the numerical stability of these algorithms are shared by our proposed method.

We have assumed that the certain parameters of the measurement error model are

known for the purpose of simplification of our model. However, in practice, they may

not be known and an estimate based on the data would be required to proceed with the

methodology. Moreover, our assumed measurement error structure is quite simplified

but in practice, more complex model based measurement error models might be required.

As demonstrated in Loh and Wainwright (2012), one simplified method is to assume that

the covariance structure of the measurement error, ΣW is estimated from independent

observations of the noise and the sample covariance matrix is used as an estimate of

the unknown covariance structure. They also showed that the theoretical guarantees

continue to hold under such estimation. More sophisticated ways to estimate the unknown

parameters in different measurement error models are well studied by Carroll et al. (2006).

Specifically, an estimator can be formed for ΣW by assuming that we observe ki replicate

measurements of the corrupted observations Zi1, . . . , Zik for each xi and form an estimator

Σ̂W =

∑n
i=1

∑ki
j=1(Zij − Z̄i•)(Zij − Z̄i•)>∑n

i=1(ki − 1)
.

Based on this estimator, we can form the surrogate estimators and proceed with the analysis.

Sensitivity analysis of the estimators can be performed by considering different degrees

of mismeasurement. Another alternative Bayesian approach can be taken by imposing a
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prior distribution on the parameter. However, this must be carefully studied under the

context of our problem since our methodological development is mainly frequentist.

Comparing the convex and non-convex approaches, we noticed that the two methods

are fairly competitive. When the signal is stronger, the projected methods tend to perform

better in terms of model selection compared to the non-convex method (Fan et al., 2019).

In terms of norm error, with strong signal of the data, CoGlasso performs significantly

better than the non-convex approach. When the signal is weaker, the performace of both

the methods deteriorate. Specifically, CoGlasso tend to produce a high false negative

rate whereas the alternative non-convex approach tend to produce a high false positive

rate. One of the reasons that could deteriorate the performance of CoGlasso could be

that it depends on the positive semidefinite projection of the surrogate estimator of the

sample covariance matrix and therefore pays a cost in terms of efficiency due to the loss of

information in the projection.

We have demonstrated the superior performance of our method over the non-convex

approach in Fan et al. (2019) by simulation studies for a number of simulation settings.

This could be due to the fact that no additional prior information of the true parameter is

required for our method as opposed to the non-convex type approaches. The non-convex

approach depends on some crucial information on the hidden parameters to satisfy the

restricted eigenvalue condition and in order to have the desirable bounds. In terms of

algorithm, both the non-convex methods proposed in Loh and Wainwright (2012) and Fan

et al. (2019), use iterative algorithms which heavily depend on the choice of such hidden

parameters as well as some knowledge of the step sizes for the iterations, which makes the

convergence process complicated. Despite the theoretical guarantees, the implementation

remains difficult for such non-convex approaches (Datta and Zou, 2017).

From the simulation study, we see that the method performs well when the graph is

very sparse, for example when the true precision matrix represented a chain graph, in

both additive error and missing data setting. However, when the graph becomes denser,
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our method tended to give a high false negative rate. However, the other method we

compared with tends to show poor performance in the case of a denser graph as well.

We have utilized a few simulation settings to demonstrate our method in this thesis,

however, the theory we proposed allows for more general settings. We have only shown

simulations when the data are multivariate Gaussian. Many other settings where the data

are not sub-Gaussian can be explored in the simulation settings. We have only explored

two types of graph structures in this thesis, namely the chain graph and the Erdös-Rényi

graphs. A set of more complicated settings for the precision matrix can be explored both

in terms of the graph structure of the original problem, or by adding a more complicated

structure for the noise. A more extensive comparative study can be performed to see how

our method performs compared to classical ways to solve missing data problems such as

imputations or EM-algorithm based techniques. We demonstrated our method using a

real data in the missing data scenario which has a similar sample size and the dimension

as shown in the simulation settings. Since the underlying graph structure of the problem

is unknown, it was difficult to compare the performance of the proposed methods to the

truth.

In order to tune the regularization parameters, we used the cross-validation and the

BIC criterion, however, only cross-validation technique seemed to have performed well.

It would be interesting to study the role of BIC and propose a modification of the BIC

criterion for these corrupted data scenarios, especially when some portion of the data are

missing. Since the BIC criterion penalizes the negative log likelihood on the number of

observations used in the analysis, it seems natural to impose some sort of adjustments in

the penalty part when we do not observe the whole data.

The theme of precision matrix estimation in the presence of noisy data are shared

between the two chapters, even though it has been specifically developed in Chapter 3.

In Chapter 4, we have explored a multivariate regression setting when the covariates are

fully observed and there is missing data in the responses only when the random error and
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the measurement error are assumed to be obtained from sub-Gaussian distributions. In

Chapter 2, we provided a thorough literature review of the methods developed to jointly

estimate precision matrix and the regression coefficients for multivariate regression in a

high-dimensional setting. The regression case of a single response variable with corrupted

covariates in sparse high-dimensional setting is well studied (Datta and Zou, 2017; Loh

and Wainwright, 2012). For the multivariate regression problem with correlated errors, the

problem can be solved by `1-penalization methods. In the case of fully observed data, the

most prominent computational approach, popularly known as MRCE, to jointly estimate

the precision matrix and regression coefficients is developed by Rothman et al. (2010).

There are multiple approaches to solving the joint estimation problem in the fully observed

data case and theoretical guarantees of many of these approaches had been studied in

literature which we have discussed in Chapter 2.

We looked at a multivariate regression problem when there is missing data in the

responses only. We assume that the responses are correlated and therefore an estimate

of the precision matrix is of interest along with the regression coefficients. The problem

with missing data may lead the empirical covariance matrix of the error to not be positive

semi-definite and consequently the objective function may become unbounded from below

and non-convex. We tackle the problem of non-convex objective function by converting it

to a convex problem at a stage. To do so, first we replace the empirical estimate with an

unbiased surrogate estimate that takes into account of the proportion of missing data, and

then we project it onto the nearest positive semi-definite cone proposed by Datta and Zou

(2017). As a result, the overall problem becomes convex and enjoys many nice properties

of a convex optimization problem.

Although, not a missing data in responses scenario, but a similar type of solution to a

different problem has been studied by Zhao and Genest (2019) which motivated us to adapt

their approach to find the solution of our problem. They looked at the estimation of the joint

dependence between all the observed variables (responses and covariates) characterized
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by an elliptical copula and used non-parametric estimators of the input matrix for the

covariates. As a result of the underlying structure, their estimated covariance for the

covariates were not positive semi-definite and therefore the objective function became

non-convex. They used the projection method proposed by Datta and Zou (2017) to convert

the optimization problem to be convex for further analysis. They also established the

theoretical properties of their estimators. Our method shares many similarities with the

work by Zhao and Genest (2019), especially in terms of the steps of solving the problems,

but also has many dissimilarities in terms of plug-in estimates, events of interest discussed

in Section 4.3 and theoretical bounds. In our work, we assume the responses, covariates

and the errors to have sub-Gaussian distributions.

Specifically, we assumed that there is no correlation among the response variables in

the first stage of the estimation and performed a column-by-column Lasso estimation for

each response variable and the fully observed covariates. No projection was necessary at

this stage since there is no missing data in the covariates. However, we could not use any

standard solver such as the R package glmnet directly that treats the responses as fully

observed. Instead, we performed a projected gradient descent algorithm and provided the

unbiased surrogate estimate (Loh and Wainwright, 2012) of the covariance between the

observed covariates and each column of the corrupted response as an input. This stage

provided us with a preliminary estimate of the regression coefficients. We proved the

recovery rate of the first stage estimation of regression coefficients in Section 4.3.1. We

assumed that the true covariance matrix of the covariates satisfy the restricted eigenvalue

condition as required for classical Lasso estimation. To our knowledge, the proofs of

Lemmas 13 and 14 are original contributions to knowledge which we required to prove

Proposition 1. Proposition 1 is adapted for our problem from the Proposition 3.1 of Zhao

and Genest (2019) and serves as an original contribution to the knowledge in this field.

In the next step, we used the CoGlasso algorithm established in Chapter 3 to estimate

the precision matrix of the error of the model. The empirical covariance matrix of the error
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is a function of the empirical covariance matrix of the responses, empirical covariance

matrix of the covariates and the initial estimates of the regression coefficients estimated

in the first stage. Since the responses are corrupted by missing data, we replaced the

empirical covariance estimate with an unbiased surrogate estimate as proposed in Loh

and Wainwright (2012), we used the estimated regression coefficients as a plug-in estimate

and used the empirical covariance estimate for the covariates directly since those were

fully observed. The estimated covariance matrix of the error may not be positive semi-

definite since it is a function of a non-positive semi-definite matrix due to missingness,

therefore, we project it to the nearest positive semi-definite cone to get a positive semi-

definite input for the CoGlasso objective function. This step provided us with an estimate

of a precision matrix that takes into account of the overall correlation structure of the

error. We provided the recovery rate for the precision matrix estimator in Section 4.3.2

in elementwise maximum and operator norm. Following the theoretical development of

CoGlasso estimator, we made the mutual incoherence assumption, which is also known as

irrepresentability condition and proved Lemmas 15 and 16 to prove Proposition 2. Similar

to the first stage, the proof of Proposition 2 is similar to the Proposition 4.2 of Zhao and

Genest (2019) in terms of steps taken, but required different events of interest and resulted

in different probabilistic bounds.

In the final step, we estimated a refined and final version of the regression coefficients

by using the precision matrix estimate as a plug-in estimate from the previous stage

by solving a `1-penalized regression problem. This stage only required the empirical

covariance matrix of the covariates and the surrogate estimate for the covariance between

the covariates and the responses as inputs. We performed an iterative soft-thresholding

algorithm (ISTA) to get the final estimates of the regression coefficients. The recovery

rates of the final estimate of regression coefficients are established in Section 4.3.3 in

terms of Frobenius and `1-norm. We required that the loss function satisfies the restricted

eigenvalue condition. We proved Theorem 3 using Proposition 3 which is similar in

152



flavour to Theorem 5.2 in Zhao and Genest (2019), but different in terms of the underlying

events of interest and probabilistic bounds. To our knowledge, in the case of missing

data in the responses for multivariate regression problems, our method is an original

contribution to the existing field of work. We provide a step by step method to estimate

the regression coefficients and precision matrix jointly that is easy to implement and comes

with theoretical guarantees.

We also performed modest simulations to demonstrate the three-step method. We have

not compared our methods with the state-of-the-art methods in all stages. The results

shown only vary in the second step for the precision matrix matrix estimation where our

method was compared with the method proposed by Fan et al. (2019) using the ADMM

algorithm. We also have not studied different covariance structures for the precision

matrix, for example, by varying the sparsity of the graph structures. These are some of the

areas that can be explored in future.

To close the discussion, we want to emphasize that our contribution in this work

is essentially by filling in the theoretical gap that existed in these types of projection

based methods to estimate precision matrix in a noisy setting. Specifically, in Chapter

3, we have extended the theory on precision matrix estimation in the presence of two

types of measurement errors. Our theory is established on top of the results proposed

by Ravikumar et al. (2011) for the fully observed data, but it is significantly different in

a sense that we have contributed to bridge the gap between estimation of undirected

graphical model in the presence of measurement error for two different tail conditions

imposed on the distribution of the data. We have used the idea of projection proposed

by Datta and Zou (2017), originally shown in the case of penalized Lasso regression in

the presence of measurement errors in the data. We have extended the problem for the

graphical Lasso problem for corrupted data. We have also borrowed inspiration from the

method proposed by Loh and Wainwright (2012), who perform a non-convex analysis in a

nodewise-regression setup for the graphical Lasso in a measurement error model setup.
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We contrast with this work in a sense that we have proposed a convex solution to the

problem using the graphical Lasso objective function using a projection based method.

In Chapter 4, our contribution is novel and significant in a sense that to our knowledge,

all the existing conditional graphical Lasso type problems are solved for full observed data.

Therefore, we propose a convex solution to the joint estimation of the regression coefficients

and the precision matrix in the presence of missing data, both in terms of proposing an

algorithm as well as providing the theoretical guarantee for the estimation. We certainly

borrowed inspiration and tools from Zhao and Genest (2019) for the theoretical derivations,

but the problem solved in this thesis is completely different from the Zhao and Genest

(2019) paper, therefore establishing the significance of our work.
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Chapter 6

Conclusion and Future Work

The broad objective of this study was to develop and explore techniques to analyze high-

dimensional data in a graphical model setting in the presence of corrupted data. We

have proposed methods to solve problems of graph discovery (undirected) and also in a

multivariate regression setting where the responses could be corrupted, thereby estimating

the regression coefficients and the precision matrix jointly. We provided results to show

theoretical guarantees for the two research problems that we studied in the previous two

chapters along with some practical applications using synthetic data.

For Chapter 3, in terms of future work, both theoretical and computational aspects can

be studied for Ising model type graph structures. Another direction to explore theoretically

would be other types of penalties that are non-convex, such as Smoothly Clipped Absolute

Deviation (SCAD) or minimax concave penalty (MCP). Fan et al. (2019) showed some of

the computational aspects of such comparison but did not provide a rigorous theoretical

work. As we have seen from the simulation studies, that the criterion for tuning parameter

selection can certainly be improved for different types of measurement error, specifically

for missing data scenarios, since only cross-validation seemed to have performed well.

Theoretical guarantees can be studied by specifically imposing restrictions in the number

of true edges, s, that is, by changing the sparsity pattern of the graphs.
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In Chapter 4, both theoretical and simulation studies can be performed by imposing

measurement error into both the covariates and the responses. Since we only explored the

missing data scenario for the responses under sub-Gaussian assumptions, the work can be

easily extended to additive noise setup as well as for polynomial-type tail conditions. In

terms of the distribution of the data, other dependence structures among the covariates

and/or response would be interesting to investigate in the presence of noisy data as an

extension of Chapter 4. Another direction that can be explored is when the responses are

time to event data and prone to censoring.

In this thesis, the general development of the estimation of the graph structure was

formulated for undirected graphs. For directed acyclic graphs (DAGs), the problem of

estimating the precision matrix has been studied in the literature from both frequentist and

Bayesian point of view (Castelletti et al., 2018; Datta et al., 2019; Shojaie and Michailidis,

2010). Extending this case to incorporate the case when the data contain measurement

error in a causal structural learning is worth investigating. Moreover, the joint estimation

of the regression coefficients along with the precision matrix in a multivatiate regression

setup when the responses and/or the covariates have an underlying causal structure is an

intriguing and open problem. Another possible extension of the joint estimation in the

multivariate regression problem under a directed acyclic graphs setting could be in the

presence of measurement errors.

Finally, all the proposed methods can be applied in real life data in different domains

where the data may have measurement errors of the two types that we discussed in this

thesis. We performed all the simulation in R 4.2.1 using multiple servers of Compute

Canada clusters. A natural next step is to create R packages for efficient implementation of

the two algorithms proposed in the two main chapters of this thesis.
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