High-dimensional Graphical Models for Noisy

Data

Shomoita Alam
Department of Mathematics and Statistics, McGill University, Montreal
April, 2023

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Doctor of Philosophy

©Shomoita Alam, 2023



ii



Abstract

The problem of estimating the inverse covariance or precision matrix for graphical models
under a high-dimensional setting is a well-known challenge in modern statistics. Nu-
merous theoretical and applied works have been proposed to date, particularly when
the data are fully observed and follow a multivariate normal distribution. However, in
the presence of measurement errors, such as additive or multiplicative errors, different
surrogate estimates have been suggested in the literature to obtain unbiased estimates of
the true covariance matrix.

Unfortunately, these surrogate estimators may not necessarily be positive semi-definite,
leading to a non-convex objective function. To address this issue, the surrogate estimators
can be projected onto the nearest positive semi-definite matrix, transforming the objective
function into a convex problem. While consistency bounds for tail deviations of the
estimated and true covariance matrix have been well-studied for fully observed data with
sub-Gaussian distributions or bounded moments, such bounds have not been established
for the presence of measurement errors.

Therefore, the first part of this thesis focuses on developing consistency bounds for
random variables that are sub-Gaussian or have bounded moments in the presence of
additive or multiplicative measurement errors. We also perform simulation studies and
real data analysis to compare the performance of the covariance projection method with

existing methods for precision matrix estimation for corrupted data.



Next, we address the problem of joint estimation of regression coefficients and precision
matrix in the presence of missing data, a common issue in genetics. We restrict our attention
to the scenario where both the data and measurement error are sub-Gaussian. We employ
similar techniques to project the surrogate estimate of the sample covariance matrix to
ensure convexity of the objective function and derive consistency bounds. Additionally,

we conduct simulation studies to compare our method with existing approaches.
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Abrégé

Le probleme de l'estimation de la matrice inverse de covariance ou de précision pour
les modeles graphiques dans un cadre a haute dimension est un défi bien connu des
statistiques modernes. De nombreux travaux théoriques et appliqués ont été proposés
a ce jour, en particulier lorsque les données sont entierement observées et suivent une
distribution normale multivariée. Toutefois, en présence d’erreurs de mesure, telles que
des erreurs additives ou multiplicatives, différentes estimations de substitution ont été
proposées dans la littérature pour obtenir des estimations non biaisées de la véritable
matrice de covariance.

Malheureusement, ces estimateurs de substitution ne sont pas nécessairement semi-
définis positifs, ce qui conduit a une fonction objective non convexe. Pour résoudre ce
probléme, les estimateurs de substitution peuvent étre projetés sur la matrice semi-définie
positive la plus proche, ce qui transforme la fonction objective en un probléme convexe.
Alors que les limites de cohérence pour les écarts de queue de la matrice de covariance
estimée et réelle ont été bien étudiées pour les données entierement observées avec des
distributions sub-gaussiennes ou des moments limités, de telles limites n’ont pas été
établies en présence d’erreurs de mesure.

Par conséquent, la premiere partie de cette thése se concentre sur le développement
de bornes de cohérence pour les variables aléatoires qui sont sous-gaussiennes ou qui ont
des moments limités en présence d’erreurs de mesure additives ou multiplicatives. Nous

réalisons également des études de simulation et des analyses de données réelles afin de
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comparer les performances de la méthode de projection de la covariance avec les méthodes
existantes d’estimation de la matrice de précision pour les données corrompues.

Ensuite, nous abordons le probleme de l'estimation conjointe des coefficients de ré-
gression et de la matrice de précision en présence de données manquantes, un probleme
courant en génétique. Nous limitons notre attention au scénario ot les données et 'erreur
de mesure sont sub-gaussiennes. Nous utilisons des techniques similaires pour projeter
l'estimation de substitution de la matrice de covariance de ’échantillon afin de garantir la
convexité de la fonction objective et de dériver des limites de cohérence. En outre, nous

menons des études de simulation pour comparer notre méthode aux approches existantes.
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Contribution to Original Knowledge

Chapter 3:

In this chapter, we introduced the Convex Condition Graphical Lasso (CoGlasso) algorithm
for estimating the precision matrix in a high-dimensional setting with measurement error,
assuming exponential and polynomial-type tail conditions. We presented the distribu-
tional properties of the estimators, described the estimation techniques, and established
theoretical guarantees under the assumptions made. Theorem 1 provided the elementwise
maximum norm bound for the estimation error of the precision matrix for four different
scenarios with different tail conditions and measurement error types. Lemmas 1, 2, 3, and
4 were original contributions required to prove Theorem 1. We also conducted extensive

simulations and provided a real dataset illustration of the proposed method.

Chapter 4:

In this chapter, we proposed a three-step estimation technique for jointly estimating
the precision matrix and regression coefficients in a conditional graphical Lasso setting
with missing data. We presented the estimation techniques and established theoretical
guarantees for all stages of the estimation. Propositions 1, 2, and 3, and eventually Theorem
3, required the use of Lemmas 13, 14, 15, and 16, which were original contributions. We
also provided an algorithm for executing the estimation and demonstrated the proposed

method using several synthetic simulation scenarios.
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Chapter 1

Introduction

Estimation of the inverse covariance matrix, also known as the precision matrix, is one
of the fundamental problems in modern multivariate statistics. Many fields such as
economics, finance, genomics, medical imaging, health science, social networks etc. require
precision matrix estimation as a part of the practical research problems. While covariance
matrix encodes marginal correlations between the variables, the precision matrix reveals
conditional correlations between pairs of variables given the remaining variables (under
certain distributional assumptions). The estimation problem becomes challenging when
the dimension of the precision matrix is large, specifically when the number of variables p
greatly exceeds the sample size n. One of the particular interests in estimating a precision
matrix in the literature lies in the key assumption of sparsity, that is, obtaining an estimate
of the precision matrix in which some elements are zero. Different penalized maximum
likelihood techniques have been proposed in recent years to consistently estimate the
precision matrix. When data are fully observed, these type of estimators have become a
standard tool for estimating graphical models under sparsity conditions. We give details
in Chapter 2.

Most of the theoretical and applied works in estimating the precision matrix in high-

dimensional setting are focused on data that are fully observed under the assumption



that they are drawn independently and identically from some underlying distribution.
This is often unrealistic since in real world data, we often find covariates that are mea-
sured inaccurately or have missing values. For example, sensor network data (Slijepcevic
et al., 2002) tend to be both noisy due to measurement error and partially missing due
to failures or drop-outs of sensors, gene expression data (Purdom and Holmes, 2005)
and high-throughput sequencing (Benjamini and Speed, 2011) also tend to be noisy due
to measurement error. Another common example of corrupted data are when we have
missing data which can happen due to non-response in many different fields.

In the case of fully observed or clean data, theoretical properties of precision matrix
estimation had been studied rigorously in the literature. In Chapter 2, we discuss them
in detail. Ravikumar et al. (2011) studied the theoretical properties of estimating both
the covariance matrix ¥* and its inverse ®* = (X*)~! under given n i.i.d. observations
{X1,...,X,} of a zero mean random vector X € RP for uncontaminated data. In this
work no specific distributional assumptions are imposed specifically on X itself, but in
terms of the tail behaviour of the maximum deviation of the sample and population
covariance matrices. In Chapter 3 we extend this idea in the case when the data are
corrupted by measurement error. Specifically, we look at two types of measurement error
scenarios, additive and multiplicative, and derive the deviation bounds under different
tail conditions, specifically, exponential-type tail and polynomial-type tail. It is well
known that if methods developed for clean data are applied on corrupted data, they
would lead to misleading inferences. Many unbiased surrogate estimates have been
proposed in literature that can take into account of this measurement error issue (Loh
and Wainwright, 2012) in a regression setting. The challenges when data are corrupted
or not fully observed are that the estimated covariance matrix does not remain positive
semi-definite, especially when p > n, and the estimated covariance matrix is guaranteed to
have negative eigenvalues. As a result, the objective function does not remain convex and

consequently becomes unbounded from below. Loh and Wainwright (2012) proposed to



estimate the precision matrix using a nodewise regression (Meinshausen and Biihlmann,
2006) method for graphical models with an additional constraint on the estimator. Fan
et al. (2019) generalized this idea to the penalized likelihood formulation of the Gaussian
graphical model with an additional constraint on the precision matrix parameter. We
discuss each method in detail in Chapter 2 and 3. These methods are non-convex in nature
with an additional side constraint and that require an initial guess about the operator norm
of the true parameter of interest. Compared to this method, we propose to project 3 to its
nearest positive semi-definite matrix, thereby guaranteeing the objective function to be
convex. Hence we can avoid performing any non-convex analysis. This idea is established
in a regression setting with measurement error being present in the data in Datta and Zou
(2017). We develop the theoretical deviation bounds for precision matrix estimation in a
graphical model setting for different measurement error scenarios and also compare the
empirical results with several other existing methods to estimate precision matrix with
corrupted data in Chapter 3. Finally, we provide an example of a real data analysis to
demonstrate the application of the method developed in Chapter 3.

Next, in Chapter 4, we study multivariate regression with multiple responses regressed
on a single set of prediction variables where the responses would contain noisy obser-
vations. Here the goal is twofold; estimating the sparse regression coefficient matrix
accounting for correlation of the response variables through estimating the precision ma-
trix of the errors. We discuss the existing approaches to handle this type of problem in
Chapter 2 when there is no corruption in the data. Specifically, we assume sub-Gaussian
tail behaviour of the maximum deviation of the sample and population covariance matri-
ces of the response, predictors and the measurement error variables, respectively. In terms
of contamination, we only consider the case when there is missing data in the response
variables. In a high-dimensional setting, penalized estimators of the coefficient matrix are
obtained with an assumption that the coefficient matrix is elementwise sparse and the

precision matrix of the error is also sparse. Similar to Chapter 3, we run into the estimation



problem of the covariance matrix of the error to be non-positive semi-definite. We provide
a three stage solution for the estimation and employ the idea of projecting the estimated
covariance of the error to its nearest positive semi-definite matrix, thereby preserving
the convexity of the objective function. We develop theoretical guarantees under these
assumptions in Chapter 4 and also perform simulation studies to demonstrate our method
comparing with another existing method.

The thesis is organized as follows. In Chapter 2, we provide a literature review of
estimating the precision matrix under clean data and corrupted data assumptions under
sparsity assumptions in high-dimensional setting. We also provide a literature review of
the joint estimation of conditional graphical model with multiple responses under both
clean and unclean data assumptions. In Chapter 3 and 4, we provide the theoretical basis
for our work. We also provide some examples of real data analysis under each of the
considered setups in Chapter 3 and 4. Finally, we provide a discussion of all our findings
in Chapter 5, and in Chapter 6 a general conclusion and future research directions are

discussed.



Chapter 2

Literature Review

In this chapter, we provide an extensive summary of precision matrix estimation in sparse
high-dimensional settings. First we discuss the classical methods that are available to
estimate sparse precision matrices. We also discuss the literature that has studied different
convergence rates under different distributional assumptions. Next, we provide a thorough
literature review of sparse precision matrix estimation when there is noise present in the
data. Finally, we discuss the literature on estimating the coefficient matrix and precision

matrix in a multivariate response linear regression model in the presence of noisy data.

2.1 Classical Methods of Precision Matrix Estimation

Assuming multivariate normality of the observations, the sparsity pattern of the precision
matrix determines conditional dependence relationships between the variables. More
precisely, if we have n independent observations from a p-dimensional zero mean Gaussian
random vector X := (X,...,X,)", then the density parameterized by the precision matrix

O" := (X*)~! = 0 can be written as

f@r,, .o, ,2,0%) = NG exp{ 2xT® x} (2.1)




The conditional independence relationship can be characterized by an undirected graph
G := (V, E), where the vertex set V := {1,...,p} corresponds to the p variables in X, and
the edge set I describes the conditional independence between any pair X; and X in
X (ke V). If X; L Xi| X\ that X; is conditionally independent of X, given X\ x},
where X\ = {X; : i # j,k}, we say that X is Markov with respect to G. The goal of
covariance selection is to identify the edges in the set £. Under the Gaussian assumption
for X, it is a well-known result that the zero pattern of the precision matrix ©* := (X£*)™!
corresponds the edge structure E of the underlying graph. We say that X, and X, are
conditionally independent given the remaining variables precisely if and only if ©7;, = 0
(Lauritzen, 1996).

As discussed in Pourahmadi (2011), as the number of parameters grows rapidly with
the number of variables, the problem relies heavily on regularization. When the sample
size n is larger than p, the sample covariance matrix ¥ is the maximum likelihood estimator
of the p x p covariance matrix ¥ and it optimally converges to X at the rate n~'/2. However,
when p >> n, the sample covariance estimate behaves poorly since the eigenstructure of
the matrix gets distorted in the sense that the largest sample eigenvalue will be biased
upward and the smallest sample eigenvalue would be biased downward (Johnstone, 2001;
Johnstone and Lu, 2009). Imposing regularization therefore has become a standard way to
improve the estimator.

In this section, we discuss classical methods that are developed in literature to estimate
precision matrix in a sparse setting. When the sample is drawn from a multivariate normal
distribution, one of the most widely used approach is neighbourhood selection (Meinshausen
and Biithlmann, 2006). The neighbourhood N of a node j € V consists of all nodes
k € V\{j} such that (j, k) € E. This regression-based approach provides a sparse estimate
of the precision matrix or a Gaussian graphical model by fitting separate Lasso (Tibshirani,
1996) regression to each variable, using the others as predictors. Let X, be the jth column

of X € R™” and X_; € R™ -1 For each variable j, we solve the following optimization



problem

N ' 1
6(\,) = argmin <%HXJ — X,j9H2 + )\nHeHl) (2.2)

feRP-1

where )\, > 0. Then we obtain the neighbourhood estimate /\/7J = {k € V\{j}|0: # 0}.
This step returns the neighbourhood estimate of each variable. These estimators might
be inconsistent, meaning that for a given pair of distinct vertices (j, k), it may be the case
that k € ./\7] whereas j ¢ /\/Tk To resolve this, we need to combine the estimates to form an
edge estimate E using the OR rule or the AND rule. The OR rule declares that (j, k) € Eor
if either k € //\\/} orj € /\/7,C and the AND rule declares that (j, k) € EAND if either k € /\//}]
and j € N;. This procedure consistently estimates the precision matrix even in the case
when the number of variables grow as rapidly as the sample size. However, it does not
guarantee to produce a positive definite estimate o. Wainwright (2019) detailed graph
selection consistency under the incoherence condition on the population which enforces
the requirement that there should be no edge variable that is not included in the graph
that is highly correlated with variables within the true edge-set.

Since the idea of Meinshausen and Bithlmann (2006) is simple, it has inspired several
other improved sparse estimators of the precision matrix using a penalized likelihood
approach with a Lasso penalty on the off-diagonal elements (Banerjee et al., 2008; Friedman
et al., 2008; Peng et al., 2009; Rocha et al., 2008; Rothman et al., 2008; Yuan and Lin, 2007).
They consider maximizing the penalized log-likelihood over a non-negative definite matrix
e

log det(®) — tr(S®) — AIOI; (2.3)

where tr is the trace operator, ) is the penalty parameter and [|®]l; = ), i |6;;] is the ¢;-
norm, that is, the sum of the absolute values of the elements of the positive definite matrix
©. Some authors have omitted the diagonal entries from the penalty and only take the sum
of the off-diagonal elements. The objective function in (2.3) is convex. Banerjee et al. (2008)

uses a block coordinate descent to solve this problem and Friedman et al. (2008) proposed



a coordinate descent approach. Among these methods, Friedman et al. (2008)’s graphical
Lasso is a remarkably fast algorithm that provides a sparse covariance estimator and is
guaranteed to be positive definite. Witten et al. (2011) presented a necessary and sufficient
condition that uses a block diagonal screening rule to speed up computations considerably.
These conditions were also discovered by (Mazumder and Hastie, 2012) independently.
The R package glasso (version 1.7) currently implements this block diagonal screening
rule for their Algorithm 2 (Witten et al., 2011).

Rothman et al. (2008) studied convergence rates under the Frobenius norm loss and
showed that the rate depends on how sparse the true precision matrix is. Particularly, they

showed that consistent estimates can be achieved in Frobenius and spectral norm at the

rate O(y/((s + p)logp)/n), where n, p and s are the number of observations, number of
nodes and the number of true edges, respectively. They used a fast iterative algorithm to
compute the estimator which depends on the Cholesky decomposition of the inverse but
produces permutation-invariant estimator.

Yuan (2010) proposed a method for estimating ®* by replacing the Lasso selection by a
Dantzig selector, where they first estimated the ratio between the off-diagonal elements
w;; and the corresponding diagonal element w;; for each row i, and then estimated the
diagonal elements w;; given the estimated ratios. They also obtained the error bounds on
|||@ — ©7|l; when the columns of ®* are bounded in ¢; for sub-Gaussian distributions.

The Lasso penalty produces biases in the estimators asymptotically due to the linear
increase of the penalty on regression coefficients, even in a simple regression setting (Fan
and Li, 2001). Lam and Fan (2009) studied the theoretical properties of sparse precision
matrices estimation and found that the bias presented in the Lasso penalty also arises for
sparse precision matrix estimation. They studied the estimation of the precision matrix
based on regularizers that are more general than the /;-norm. For the ¢, regularization
case, the obtained the same Frobenius and spectral norm rates as Rothman et al. (2008)

and showed that it succeeds in recovering the zero-pattern of ®* under some scaling of



the number of observations n and the number of true edges s. In general, to tackle the bias
issue for ¢, regularization, non-convex penalties are considered under the same normal
likelihood model, for example, Smoothly Clipped Absolute Deviation (SCAD) penalty
(Fan et al., 2009; Fan and Li, 2001) and adaptive Lasso penalty (Zou, 2006).

We closely followed but then significantly extended the theoretical development in
Ravikumar et al. (2011) while developing our proposed method and therefore these
conditions are explained in more detail in Chapter 3. Ravikumar et al. (2011) showed that
even in the case of non-Gaussian X this estimator is meaningful since it corresponds to
minimizing an ¢;-penalized log-determinant Bregman divergence which does not require
X to be multivariate Gaussian. A function is defined to be of Bregman type if it is strictly
convex, continuously differentiable and has bounded level sets (Bregman, 1967; Censor

etal., 1997). A Bregman divergence of the form

Dy(A'|| B) = g(A) — g(B) = (Vg(B),A = B)

is induced by functions satisfying these conditions. Since g has to be strictly convex,
Dy(A | B) > 0 for all A and B, with equality holding if and only if A = B. The log-
determinant barrier function is a Bregman function and the Bregman divergence is given
by

Dy(A || B) = —logdet(A) + logdet(B) — (B~', A — B)

for any strictly positive definite A and B. Since estimating the precision matrix is essentially
conducted by minimizing

min{ (0, ") — logdet(®)}

©>0

with a possible addition of a off-diagonal ¢;-regularization term on © defined as |O|l; o =
> iz |9il,4,5 = 1,,...,,p, and the true covariance matrix 3" replaced by its empirical

estimate such as the sample covariance matrix. Given the regularization constant \,, > 0,



the precision matrix can be solved by the /;-regularized log-determinant

© = argmin{(©, *) — log det(©) + Al Ol ot }- (2.4)

0>0

They show that since this objective function corresponds to the Bregman divergence, it can
be used without assuming that X is multivariate Gaussian. When the data are generated
from a multivariate Gaussian distribution, the divergence coincides with the ¢;-regularized
maximum likelihood. As discussed earlier, therefore, the precision matrix becomes more
interpretable in terms of conditional independence in that case.

Ravikumar et al. (2010) analyzed the ¢;-regularized logistic regression method for
Ising model selection. In another work, Ravikumar et al. (2011) obtained the convergence
rates in the elementwise /., norm and spectral norm, under more restrictive conditions,
such as mutual incoherence or irrepresentable conditions for more general non-Gaussian
distributions and under a variety of tail conditions. In this work, Ravikumar et al. (2011)
analyzed the performance of the precision matrix estimator under high-dimensional
scaling, where the number of nodes in the graph p, the number of edges s, and the
maximum node degree (maximum number of non-zeros per row) d, are allowed to grow
as a function of the number of observations n. They identified key quantities that measure
model complexity such as the /,,-operator norm of the true covariance matrix X*, the
Hessian of the log-determinant of the objective function, I'* = (0*)~! @ (©*)~!, the sub-
matrix I'gg where S indexes the graph edges, a mutual incoherence or irrepresentability
measure on the Hessian matrix I'* which is similar to the condition imposed on 3" in case
of Lasso (Wainwright, 2009; Zhao and Yu, 2006) and the rate of decay on the probabilities
of the deviation bound between the estimated and true covariance matrix.

Their work establishes consistency of the precision matrix estimator © in an element-
wise maximum-norm sense. They showed that the rate depends on the tail behaviour of

the entries of the deviation between the estimated and the true covariance matrix. Con-
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vergence rates in Frobenius and spectral norms are derived for the special cases when
X is sub-Gaussian and when X has bounded 4mth moment. Specifically, for the sub-

Gaussian case, they showed consistency of the estimator under the spectral norm at rate

|||@ — O, = (9(\/min{d2 log p, (s + p) log p}), with high probability when d, s and p are
the maximal degree, number of edges and number of nodes of the graph, respectively.
When X has bounded 4mth moment, they obtained consistency of the estimator under the
spectral norm at rate |||@ — ®*l, = O(dp*/?™/\/n)}, which turned out to be slower than
exponential-type tail behaviour indicating that the logarithm dependence on the model
size p is linked to particular tail behaviour of the distribution of X. They also compared
their convergence rates with past research (Lam and Fan, 2009; Rothman et al., 2008) and
found equivalent results when maximal node degree d*> > s and improvements when
d = o(+/s). Finally, they showed that the estimator o) correctly specifies the zero pattern of
the precision matrix ®*, with probability converging to one.

Cai et al. (2011) introduce a method of constrained /;-minimization for inverse matrix
estimation (CLIME). They studied the estimation of the precision matrix ®* which is
not restricted to a specific sparsity pattern which can be used to recover a wide class
of matrices in both theory and application. In particular, they showed that when the
population distribution has either exponential-type of polynomial-type tails, the rate
of convergence between the estimator and the true s-sparse precision matrix under the
spectral norm is s\/logp/n. For the specific case of Gaussian graphical models, they
compared their work with Ravikumar et al. (2011) that assumes incoherence condition,
which is stringent and difficult to check in practice. Cai et al. (2011) established that similar
theoretical results can be obtained without assuming the incoherence condition.

In the Bayesian literature, the graphical Lasso has also been studied (Marlin et al.,
2012; Marlin and Murphy, 2009). The Bayesian graphical Lasso was developed by Wang
(2012), where they imposed a Laplace prior on the off-diagonal entries and an exponential

prior on the diagonal entries of the precision matrix independently. They defined the
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graphical Lasso estimator to be equivalent to the maximum a posteriori estimation of
their chosen model. They have also explored the distributional properties of the graphical
Lasso prior distributions. Another work with similar flavour tackling this problem had
been derived by Khondker et al. (2013) with difference in algorithmic techniques from
Wang (2012). Banerjee and Ghosal (2015) proposed an adjustment with a mixture of a
point mass and a Laplace prior to induce exact sparsity, and also derived the optimal
posterior contraction rate with respect to the Frobenius norm. In another work, Banerjee
and Ghosal (2014) assumed a banding structure on the precision matrix and derived the
posterior contraction rate with a G-Wishart prior. Some useful computational methods
to make efficient posterior calculation have been proposed by Lenkoski and Dobra (2011)

and Mohammadi and Wit (2015).

2.1.1 Tuning Parameter Selection

The appropriate choice of the tuning parameter is critical in order to ensure that the oracle
property of the penalized estimator is satisfied. In the context of precision matrix, one
desirable property of the estimator is the oracle property as defined in Fan and Li (2001).
They demonstrated the oracle properties of precision matrix estimator in Fan et al. (2009).
The oracle property consists of two conditions, namely, sparsity which means that the true
zero entries of the precision matrix are estimated as zero with probability tending to one,
and asymptotic normality, which implies that the estimators of the non-zero entries of the
precision matrix have the same limiting distribution as the maximum likelihood estimator,
knowing the true sparsity pattern. The sparsity condition is referred to as sparsistency by
Lam and Fan (2009).

It is challenging to select the tuning parameter A\, which controls sparsity in © in a
high-dimensional setting. For penalized likelihood methods, cross-validation (CV) for the
selection of the tuning parameter which is based on a resampling scheme is widely used.

Cross-validation requires fitting the model based on different subsets of the observations
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multiple times, which increases the computational complexity of this approach. The other
common approach to select optimal tuning parameter is based on information criteria. In
this section, we discuss the existing standard methods for selecting the tuning parameter A
in precision matrix estimation. Lian (2011) studied the choice of tuning parameter selection
when estimating sparse precision matrices using the penalized likelihood approach. They
showed that generalized approximate cross-validation (Craven and Wahba, 1978) for
tuning parameter selection is more computationally efficient than the traditional methods.
For consistency in the selection of nonzero entries in the precision matrix, they used a
Bayesian information criterion and showed that it produces consistent model selection in

the Gaussian model.

Cross-Validation:

Cross-validation (CV) is a nonparametric methods for estimating prediction error for
selecting the tuning parameter in their non-concave penalized likelihood methods. In a
K-fold cross-validation, the data are split into training data and validation data, where the
training data are used to train the model and it is tested on the validation data. First, it
involves randomly dividing the data into K equally sized parts or “folds" and denote the
samples in the kth fold by NV, for k = 1,, ..., K. Typical choices of K are 5 or 10. For each
fold, the model is fitted to the K — 1 parts of the data which constitute the training data
set and the cross-validation score is calculated on the kth part of the data. This process
is repeated K times, with each of the K parts used exactly once as the validation data,
and the K estimates of cross-validation score are then combined. The case K = n is called
leave-one-out cross-validation. For the ith observation, the fit is computed using all the
data except the ith.

In a graphical model setting to estimate the precision matrix, the observed log-likelihood
is used as loss function. We can define the observed log-likelihood of an observation X;

given a precision matrix estimate © as 0(Xy; (:)) = log f(X;, (:)) and calculate the cross-
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validation score which we maximize as
CVN) =YD UX;0,). (2.5)

Then we find the best \ that maximizes C'V (). Finally, using the chosen ), a final estimator

of the precision matrix is calculated using all the data.

The Akaike Information Criterion:

Another existing method for choosing the tuning parameter in penalized likelihood ap-
proaches is the Akaike information criterion (AIC) (Akaike, 1973). It was derived as an
estimator of the Kullback-Leibler (KL) divergence and it aims to minimize the KL diver-
gence between the true distribution and the estimate from a candidate model. The model
selection rule has the form of “in-sample performance plus penalty" and is defined as in

precision matrix estimation context

AIC(N) = =20,(©,) + 2 1(Bi;5 #0)
i<j
where Kn((:) ») is the multivariate Gaussian log-likelihood, evaluated at e) \» which is the
penalized maximum likelihood estimator of © for a specific given . I(-) is an indicator
function which counts the number of non-zero elements among the p(p — 1)/2 off-diagonal
entries in the upper half of the matrix. The optimal value of the tuning parameter in this

case is taken to be the minimizer of the criterion.

Bayesian Information Criterion:

Another model selection criterion is the Bayesian Information Criterion (BIC) developed
by Schwarz (1978). Yuan and Lin (2007) used BIC to select the tuning parameter with

the ¢, penalty in the estimation of the precision matrix. The BIC arises from the Bayesian
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approach to model selection; choosing the model with minimum BIC is equivalent to
choosing the model with largest (approximate) posterior probability. In the context of

precision matrix estimation, it is defined as

BIC(\) = —20,(©,) +logn > (B, # 0) (2.6)
1<j
where £,,(8,) is defined similarly as in the definition of AIC. The optimal value of the
tuning parameter is taken to be the minimizer of the criterion. BIC uses a stronger penalty
than AIC and as n goes to infinity, the BIC will select the true model with probability one
if it is one of the models being considered.

For penalized regression estimation of ®, Gao et al. (2012) studied the selection of
tuning parameter using BIC. They showed consistency of BIC in model selection for using
SCAD penalty or adaptive Lasso penalties in precision matrix estimation problem for a
tixed p. This refers to sparsistency, that is, BIC with SCAD penalty identifies the sparsity
pattern of the true precision matrix with probability approaching to one when n is large.
They also showed that a modified BIC with an extra penalty on the dimension p of the
precision matrix is consistent when the true edges are included in a bounded subset, if
p tends to infinity at a certain rate with the sample size. The modified BIC proposed by
Gao et al. (2012) is equivalent to the extended BIC (EBIC) selection criteria proposed by
Foygel and Drton (2010) when v = 1. Foygel and Drton (2010) adapted EBIC for precision
matrix estimation problems from Chen and Chen (2008) who studied it for Gaussian linear

models. For some v > 0, EBIC is defined as

EBIC()\) = —20,(©,) + { logn + 4y logp} > " 1(Bi;0 #0).

1<j

Chen and Chen (2008) showed that the traditional BIC is likely to be inconsistent when p

is of a larger order than \/n.
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The work by Gao et al. (2012) compared empirical performance of BIC and EBIC to cross-
validation and through simulation studies showed that BIC performs better for sparse
precision matrix estimation. One should choose a tuning parameter selection procedure
based on one’s statistical goal. BIC and EBIC tends to perform better due to their selection
consistency properties when the goal is to correctly identify the zeros and non-zeroes of the
precision matrix. If the goal is to achieve better prediction performance, cross-validation
and AIC are better options since they are both estimators of the KL divergence and are

asymptotically equivalent under certain assumptions.

Stability Approach to Regularization Selection (StARS):

The previously mentioned tuning parameter selection methods such as K-fold cross-
validation, AIC, and BIC work well for low-dimensional problems with good theoretical
properties, but they are not best suited for high-dimensional settings. Liu et al. (2010)
proposed the method named Stability Approach to Regularization Selection (StARS) which
is a stability-based method for choosing the regularization parameter in high-dimensional
inference for undirected graphs. In this method, the least amount of regularization is
used which simultaneously results into a sparse precision matrix and makes the graph
reproducible under random sampling. Specifically, the process starts with large regular-
ization which corresponds to an empty and highly stable graph and gradually decreases
the amount of regularization until there is small dissonance between the graphs across
the subsamples. The authors showed that under mild condition, StARS achieve sparsis-
tency in terms of graph estimation. That is, the procedure selects all true edges with high

probability even when the graph size diverges with the sample size.
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2.2 Literature Review for Precision Matrix Estimation with
Corrupted Data

In the previous section we have discussed existing methods that are available to estimate
conditional dependence graphs and precision matrix for fully observed data under sparsity
conditions. Penalized likelihood estimation is a common approach to tackle such problems.
In this section, we review the literature for precision matrix estimation in the presence of
measurement error, specifically, when the data are contaminated with additive error or
multiplicative error. Errors-in-variables models have been extensively studied in regres-
sion settings (Carroll et al. (2006); Hwang (1986); Iturria et al. (1999); Xu and You (2007)
and references therein). However, these works were not tackling the high-dimensional
scenarios where the number of variables p is much larger than sample size n.

One of the special cases of multiplicative measurement error model is the case of
missing data (Little and Rubin, 2019). One simple ad hoc approach would be to use only
the complete cases which results into a substantial decrease in sample size. Another ad hoc
method would impute the missing values by the corresponding mean and use traditional
models to solve for the precision matrix, in a graphical model setup. More systematic
approaches based on likelihoods are also popular in terms of imputing missing data (Little
and Rubin, 2019; Schafer, 1997). Stadler and Biithlmann (2012) developed an Expectation
Maximization (EM)-based method for sparse inverse covariance matrix estimation in the
missing data regime in the multivariate normal case, and used this result to derive an
algorithm for sparse linear regression with missing data. They showed that estimation
of mean values and covariance matrices becomes difficult when the data are incomplete
and no explicit maximization of the likelihood is possible. Their algorithm maximizes
a (1-penalized observed log-likelihood, where the missing data are imputed using EM
algorithm. Loh and Wainwright (2012) pointed out that the EM approach proposed by

Stadler and Bithlmann (2012) becomes possibly non-convex with missing or noisy data
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which will lead to optimization problems. As a consequence it becomes difficult to establish
theoretical guarantees for the algorithmic counterpart.

Among other notable studies for precision matrix estimation for data with missing
values are Kolar and Xing (2012) and Lounici (2014). Lounici (2014) established theoretical
results for non-asymptotic bounds for the estimation of covariance matrix involving the
Frobenius and spectral norms which are valid for any setting of the sample size, probability
of a missing observation and the dimensionality of the covariance matrix. Kolar and Xing
(2012) proposed a two stage method that directly estimates a large dimensional precision
matrix from data with missing values. To get an estimate of the precision matrix they form
an unbiased inverse probability weighting (IPW) estimator of the covariance matrix from
available data and then use it as a plug-in estimator in the penalized maximum likelihood
objective function for a multivariate Gaussian distribution. The elements of the covariance
matrix are calculated in such a way that takes into account of the missing values naturally
while using only the observed samples. They also provided rates of convergence for this
estimator in the spectral norm, Frobenius norm and elementwise maximum norm. They
compared their results with the EM-based method (Stddler and Biithlmann, 2012) and
showed that it performs favourably.

As mentioned earlier, in a high-dimensional setting, undirected graphs can be estimated
using penalized methods defined in (2.4). The true covariance matrix ¥* is unknown and
typically replaced by the sample covariance matrix estimator S = XTX/n as an input.
When the data are not corrupted, this estimator is at least positive semi-definite and the
optimization problem remains convex under ¢, regularization. In this setting, it can be
shown that for A > 0 a unique optimum © exists with bounded eigenvalues and that
the iterates for any descent algorithm will also have bounded eigenvalues (Hsieh et al.,
2014). In case of noisy or missing data, the most natural choice of the sample covariance

matrix is no longer positive semi-definite and is guaranteed to have negative eigenvalues,
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therefore, making the objective functions non-convex. Moreover, the objective function is
unbounded from below when ¥ has a negative eigenvalue.

The noise-corrected non-convex approach in a regression setting was proposed and
analyzed by Loh and Wainwright (2012, 2017). They discussed unbiased surrogate esti-
mators of the sample covariance matrix in both multiplicative and additive noise cases,
one of which has also been studied by Xu and You (2007) in case of additive noise inn > p
case. The unbiased surrogate estimate is not positive semi-definite and therefore Loh and
Wainwright (2012) optimized a non-convex objective function and studied the statistical
error associated with any global optimum. We discuss the surrogate estimates for each
type of measurement error in detail in Chapter 3. Loh and Wainwright (2012) proposed
an algorithm based on projected gradient descent which optimizes a Lasso type objective
function with an additional side constraint on the ¢;-norm of the regression coefficients.
They proved that the algorithm will converge in polynomial time to a small neighbour-
hood of the set of all global minimizers. In this work, they provided non-asymptotic
bounds that hold with high probability. They also showed an application to graphical
model where they estimate the precision matrix using nodewise regression (Meinshausen
and Bithlmann, 2006) incorporating an additional constraint on the regression coefficients
of the objective function. They generalized this work and obtained theoretical results
for regularized M-estimators where both loss and penalty functions are allowed to be
non-convex (Loh and Wainwright, 2013, 2017). They established that the graphical Lasso
using non-convex penalties can be modified to accommodate noisy or missing data by
using the unbiased surrogate estimates for the sample covariance estimate. A related
corrected form of the Dantzig selector was proposed by Rosenbaum and Tsybakov (2010)
in case of sparse regression models.

An alternative approach to the unboundedness of the objective function with non-
positive semi-definite input is to project the input matrix 3 to the positive semi-definite

cone and then use that as a plug-in estimate for the objective function in (2.4). Specifically,
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we can project 3 to its nearest positive semi-definite matrix ¥ as,

3 = arg min I3 — Sl
>0

where || - [lmax 1S the elementwise maximum norm. > is known as the Convex Conditioned
Lasso (CoCoLasso) estimate as proposed by Datta and Zou (2017). Since the input projected
matrix is positive semi-definite, consequently the objective function is convex. The projec-
tion can be implemented using an alternating direction method of multipliers (ADMM)
method (Boyd et al., 2011) as shown by Datta and Zou (2017). This method can handle a
general class of corrupted datasets including the cases of additive or multiplicative mea-
surement error and random missing data. It is well known that Lasso enjoys theoretical
and computational benefits of convexity, and this also holds for CoCoLasso as well. In
Datta and Zou (2017), they derived statistical error bounds for the CoCoLasso estimate and
established asymptotic sign-consistent selection properties of CoCoLasso. Their method is
advantageous compared to Loh and Wainwright (2012) because the latter did not provide
sign-consistency results for the non-convex approach. Another advantage of this method is
that it does not require any prior knowledge of the parameters, unlike Loh and Wainwright
(2012), since their approach assumes a constraint on the parameter. They also proposed a
calibrated cross-validation method for tuning the regularization parameter in their regres-
sion setup. Our proposed methodology and theoretical development fundamentally relies
on this idea and will be demonstrated in Chapter 3 in detail.

Fan et al. (2019) generalizes the idea of Loh and Wainwright (2012) for sparse precision
matrix estimation with corrupted data and developed an ADMM algorithm for efficient es-
timation. Their approach proposes using non-convex regularizers such as SCAD (Fan and
Li, 2001) and minimax concave penalty (MCP) (Zhang, 2010) along with a ¢,-regularizer.
They compared their proposed method empirically with other existing methods including

the projection method (Datta and Zou, 2017) and argued that when the penalties are
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non-convex the unboundedness of the objective function still remains and their method
deems useful even for such projected methods. In their paper, they consider the objective
function

© € argmin {tr(E,O) — logdet(®) + ¢\(O©)} (2.7)
©x0,lI®ll2<R

where [|®l]|; is the spectral norm of the true precision matrix, Sisa surrogate unbiased
estimator accounting for the type of measurement error and g, is a separable (entry-wise)
sparsity inducing penalty function. p) may not be positive semi-definite in the presence
of measurement error, resulting in an unbounded objective function. In their proposed
non-convex approach solved with the ADMM algorithm, they focus on the estimator of the
precision matrix using the operator norm as a side constraint. In this chapter, we compare
our proposed method empirically with the method proposed by Fan et al. (2019).

There are some Bayesian approaches that tackle the problem of precision matrix es-
timation in the presence of measurement error. Byrd et al. (2021) proposed a Bayesian
estimator to estimate sparse precision matrices that corrects for measurement error. With
the assumption that the variance of the measurement error is known, they treated the
unobservable outcomes as missing data and proposed a method to impute them and
iteratively estimate the precision matrix. They combined the imputation-regularized opti-
mization algorithm (Liang et al., 2018) and Bayesian regularization for graphical models
with unequal shrinkage (Byrd et al., 2021) to formulate a new procedure and prove its
consistency. Their method had desirable results compared to other naive approaches.
Shi et al. (2021) established a fully Bayesian framework to handle measurement error
and established a general result which provides sufficient conditions under which the
posterior contraction rates that hold in the no-measurement-error case carry over to the
measurement-error case.

Recently, methods have been developed for a more general type of missing dependence
structure unlike the simpler cases where every variable of each sample is independently

subject to missingness with equal probability. For high-dimensional precision matrix
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estimation, Park et al. (2021) studied the theoretical properties of the deviation of the IPW
estimators that correct for bias due to missingness under general missing dependency. They
provided optimal convergence rates of the estimator based on the elementwise maximum
norm, even when the assumptions such as known mean and/or missing probabilities are
relaxed.

Ollerer and Croux (2015) proposed different high-dimensional precision matrix esti-
mators that are robust to cellwise contamination. They proved that replacing the sample
covariance matrix in the graphical Lasso with an elementwise robust covariance matrix
leads to an elementwise robust, sparse precision matrix estimator computable in high-
dimensions. Loh and Tan (2018) studied cellwise contamination for sparse precision matrix
estimation from a statistical consistency point of view. They provided high-dimensional
error bounds for the precision matrix estimators that reveal the interplay between the
dimensionality of the problem and the degree of contamination permitted in the observed

distribution.

2.3 Literature Review for Joint Estimation of Regression
Coefficients and Precision Matrix Estimation

In the previous section we discussed the literature for estimating sparse linear regression
with a single response variable in a high-dimensional setting when the covariates were
corrupted (Datta and Zou, 2017; Loh and Wainwright, 2012). Imagine that instead of
having one response variable, now we have multiple responses. Let us first consider the
case when we have fully observed data. Specifically, suppose that we have n independent
and identically distributed observations from some joint distribution of Y and X. In matrix

notation, we can rewrite (4.1) as a model of n stacked observations

Y = XB* + ¢,
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where X = [x;,...,%,| € R"?Pand Y = [yy,...,y.| € R" denote the data matrices, in
which each row x; € R” and y; € R? corresponds to an observation drawn i.i.d. from a
distribution for X and Y respectively, and € = [y, ...,&,|" € R"? denotes the matrix of
random noises. We aim to estimate the true coefficient matrix B* € RP*? and 3. where
37, € R?7 represents the covariance structure of Y conditional on X.

This problem can be formulated as the sparse multivariate regression with correlated
errors and can be solved by ¢;-penalization methods. The model has both high-dimensional
regression coefficient matrix and high-dimensional covariance matrix. In the literature
such models have been studied to estimate multivariate regression with correlated errors.
Rothman et al. (2010) has proposed to jointly estimate B* and ©?, := (X.)~! by minimizing

the negative log-likelihood with /; penalization as follows:

(©,B) = argmin tr _n(Y —~XB)' (Y -XB)O| — 5 log det(®) + Ao llOll1 o + AslIBIl1 1
©-0,B

where (Ol o = Zj,# 19,51, IBll11 = Zj,k |Bjk|, and A\e, Ap > 0 are tuning parameters
controlling the sparsity in © and B, respectively. They called this method multivariate
regression with covariance estimation (MRCE). Their approach involved a penalized
likelihood and they proposed an efficient algorithm and a fast approximation by simulta-
neously estimating the regression coefficients and the covariance structure. Their work
was computational in nature and no theoretical results were provided. They showed
that the optimization problem is only convex if B* is estimated with a fixed ©.. and vise
versa. When the components of the error vector ¢ are strongly correlated they showed that
employing a one-step method to estimate B* is improved by incorporating an estimate of
...

Yin and Li (2011) developed a coordinate descent algorithm that iteratively updates the

regression coefficients and the precision matrix based on /;-penalization. They provided

asymptotic results on estimation bounds and consistency. In another study (Yin and
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Li, 2013), they proposed a two-stage estimation procedure to first identify the relevant
covariates that affect the means by a joint ¢; penalization. Then they use the estimated
regression coefficients to estimate the mean values in a multivariate sub-Gaussian model
in order to estimate the sparse precision matrix through a /;-penalized log-determinant
Bregman divergence. They also established convergence rates in elementwise maximum
norm, Frobenius norm and spectral norm when both p and ¢ are larger than n.

Cai et al. (2013) took a similar approach to estimate covariate adjusted precision matrix,
but without making a multivariate normal assumption on the error distribution. They
provided the rates of convergence and the estimation bounds for the estimates of both the
regression coefficient matrix and the precision matrix in various matrix norms, allowing
both p and ¢ to diverge with n.

Another work by Wang (2015), proposed a method that decomposes the multivariate
regression problem into a series of penalized conditional log-likelihood of each response
conditional on the covariates and other responses. The use the adaptive Lasso penalty
(Zou, 2006) to facilitate the sparse estimation of both the sparse multivariate regression
coefficient matrix and the precision matrix. They showed that the proposed estimators
possess asymptotic consistency and normality in diverging dimensions.

For the multivariate regression case, in a situation when we observe only strictly
increasing transformations of the continuous responses and covariates, Zhao and Genest
(2019) proposed an estimation of the joint dependence between all the observed variables
characterized by an elliptical copula and used non-parametric estimators of the input
matrix for the covariates. The coefficient matrix was assumed to be either elementwise
sparse or row-sparse along with sparsity assumption on the precision matrix. Their
method follows a one-step procedure similar to Rothman et al. (2010) in three stages and
also considers cases when the estimated covariance structure for the covariates are not
positive semi-definite, thereby the objective function at that step to be non-convex. They

used the projection method proposed by Datta and Zou (2017) to convert the optimization
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problem to be convex for further analysis. They also established the theoretical properties
of their estimators.

Our theoretical analysis adopts the framework by Zhao and Genest (2019) assuming
that the responses, covariates and the errors are sub-Gaussian. We assume that the
responses are partially observed and contains missing data, but the covariates are fully
observed. In Chapter 4 we show that due to the presence of missing data, the input matrix
may not be positive semi-definite and the objective function might become unbounded
from below. We assume that the true regression coefficients are elementwise sparse and
propose a three stage estimation of the regression coefficients and the precision matrix.
Since the estimated error covariance does not remain positive semi-definite, we first replace
the empirical sample covariance for the error with an unbiased surrogate estimate for
missing data and then project the estimator onto the nearest positive semi-definite cone
(Datta and Zou, 2017). As a result, the overall objective function becomes convex. We
also establish the theoretical guarantees in terms of elementwise maximum norm. Our
theoretical results will have some resemblance to their work which will be shown in

Chapter 4.

2.4 Summary

In this chapter, we reviewed the existing classical methods in the literature for estimating a
sparse precision matrix in a high-dimensional setup. We focused mainly on the works that
are based on penalized likelihood framework. We discussed various tuning parameter
selection procedures along with the computational algorithm for the classical methods.
Next, we studied the literature that are developed to estimate the sparse precision matrix
in the presence of measurement error that includes presence of additive error and missing

data. Finally, we discussed literature that studied how to jointly estimate the sparse
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precision matrix and the regression coefficients from a multivariate regression setup in the

presence of missing data.
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Chapter 3

Precision Matrix Estimation in the

Presence of Corrupted Data

In this chapter we develop estimators of the precision matrix when the observed data
are corrupted by measurement error. We provide the key theoretical results concerning
consistency and give rates of convergence. We also provide simulation studies and a real

data example to demonstrate the proposed method.

3.1 Introduction

Given n independent observations of a p-dimensional random vector X := (Xy,...,X,)",
we wish to estimate the conditional independence relationships between X1, ..., X, which
can be characterized by an undirected graph G := (V, E), where the vertex set V :=
{1,...,p} corresponds to the p variables in X, and the edge set £ describes the conditional
independence between any pair X; and X in X (j,k € V). Denote by X; 1L X;|X\(;x}
that X is conditionally independent of X, given X\, 1}, where X\(;ry := {X; 1 i # j, k}.
We say that X is Markov with respect to G if

Xj A Xk’X\{j,k} for all (], k) §§ E. (31)
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Denote the inverse covariance or precision matrix ®* := (X*)~!. Under the Gaussian
assumption of X, it is a well-known result that the zero pattern of ®" corresponds the
edge structure F of the underlying graph, i.e. (3.1) holds if and only if ©®7; = 0. This
estimator is sensible even for non-Gaussian X since it corresponds to minimizing an
¢;-penalized log-determinant Bregman divergence which does not necessarily require X
to be multivariate Gaussian (Ravikumar et al., 2011).

Suppose that we are given an n x p data matrix X = (xy,...,x,)', in which each row
x; € R? corresponds to an observation drawn i.i.d. from a distribution. When n > p, we

can estimate X* using the sample covariance estimator

S = lXTX, (3.2)
n

When n < p, the sample covariance estimate will be singular. Therefore, it is common to

consider a regularized approach such as the graphical Lasso estimator

© = argmin tr(SO) — log det(®) + A, ||O|| 1.0 (3.3)
©x0

When the data are contaminated by measurement errors, we observe a corrupted
matrix Z = (zy,...,2,) " instead of the original matrix X. We can view Z as some function
of the true matrix X and the measurement error matrix. The measurement error process
can be modeled in various ways. If the random error is additive, we observe z;, = x; + w;,
where w; is a random error independent of x;. If the measurement error is multiplicative,
we observe z;, = x; © w;, where © is the elementwise multiplication operator and w; is
the multiplicative error independent of x;. The missing data setup can be viewed as a
special case of multiplicative errors, where w;j, i.e. the jth component of w;, follows a

Bernoulli(1 — 7;) distribution and w;;’s are independent for j € {1,...,p}.
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If the measurement error issue is simply ignored, we would consider directly minimiz-

ing the objective function
tr(Sz0) — log det(®) + A\, [|©|| 1.0t

where S = (1/n)Z"Z is the sample covariance matrix of the corrupted data. Alternatively,
Loh and Wainwright (2012) use Z to construct unbiased estimates 3 for ¥*. For example,
consider the additive measurement errors w;’s are i.i.d. with mean zero and variance-
covariance of,1,. Here o}, is known. Loh and Wainwright (2012) proposed the following

unbiased estimate for S when the data are corrupted

~ 1
Y=-72Z"Z-0}41,=S; -0} 1, (3.4)
n

We can see that it is unbiased since

1 1
E|-Z"Z| = - X"X+021,.
{n 1 n +owly

Note that if 03, I, = 0, it reduces to the clean data case. It is natural to consider minimizing

tr(20) — log det(©) + A [|O| 1.0 (3.5)

to get an estimate of ©.

However, unlike S = (1/n)X "X which is always positive semi-definite, the estimate
S is not necessarily positive semi-definite. This could lead to a non-convex objective
function in (3.5). Moreover, when X has negative eigenvalues, the objective function (3.5)
is unbounded from below. In order to overcome these issues, Loh and Wainwright (2012)
proposed an additional constraint on the estimator ||3||; < by+/s for the regression setting,

where b is some constant and the value of s is given. They used this method to estimate the
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inverse covariance for Gaussian graphical models by considering the node-wise regression
problem

X; = X_jﬂ(j) + W),

where X; denotes the vector X with jth entry removed, V) is a vector of i.i.d. Gaussian
and €0 | X_;. Then the inverse covariance can be estimated using the relationship
0 = —(Zj; — X;;89)7'8V.

Fan et al. (2019) generalized this idea to the global likelihood formulation for the

Gaussian graphical model. They consider minimizing the following objective function

© = argmin tr(Z0O) — logdet(©) + A\ [|O||1.0t, (3.6)
O0x0,0ll2<R

subject to the additional constraint on the operator norm of the true precision matrix. They
showed that if the value of R is properly chosen, an ADMM algorithm can converge to the
global minimum of (3.6).

Compared to these methods, we propose to project S to its nearest positive semi-
definite matrix, thereby guaranteeing the estimator to be convex. Hence we can avoid
performing any non-convex analysis. Since there are no additional constraints to satisfy
in the convex analysis, another advantage of our method is that it does not require the
knowledge of an initial estimate of ||3]|; or [I®]l, to obtain a bound for ||5||; or lI®ll2,

respectively.

Notation and Definitions. For a matrix A, we denote by A > 0 when A is positive
semi-definite. Let | A[l; be the operator norm induced by ¢; norm for vectors, which can be
computed by [|All; = max; >, | a;; |, i.e. the maximum absolute column sum of the matrix.
Denoted by [|A[l, the operator norm that can be computed as the greatest singular value
of A, ie. [Afl, = max;o;(A). Let [|lAll be the operator norm induced by an /,, norm,

which can be computed by [|Afloc = max; > i | a;; |, i.e. the maximum absolute row sum of
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the matrix. Let lIAll; 1 = Zij | a;; | be the elementwise ¢;-norm, [|Allr = , /Zij | ai; |? be

the Frobenius norm, and [|A lly.x = max; ; | a;; | be the elementwise maximum norm. Let
Amin(A) and Apax(A) denote the smallest and largest eigenvalues of A. For two matrices
A = (a;;) and B = (b;;), we define A ® B = (a;;b;;) as their elementwise product, and
A © B = (a;j/b;;) as their elementwise division. We assume that all variables are centered
so that the intercept term is not included in the model and the design matrix X has
normalized columns, thatis, (1/n) Y " | z7; = 1forevery j =1,...,p.

A sub-Gaussian random variable Z with the parameter 7 > 0 satisfies the tail probability
bound Pr(|Z| > t) < 2exp(—t?/272) for all t > 0; a 4mth moment-bounded random variable

Z with the parameter K,, > 0 satisfies the condition E(Z*") < K,,, withm € Z™.

3.2 Methodology

From the earlier discussion, we know that the estimate ¥ is often not positive semi-definite.
To overcome this technical difficulty, by following (Datta and Zou, 2017), we can project by

to its nearest positive semi-definite matrix. Specifically,

Y = argmin |E — lmax- (3.7)
=0

Then we define the Convex conditioned Graphical Lasso (CoGlasso) estimate as

© = argmin tr(X0) — log det(©) + A\, [1Ol1 1. (3.8)
©>0

We aim to derive the elementwise /..-norm for the statistical error of the CoGlasso
estimate from the truth. To do so, we need to bound the statistical error between the

projected covariance matrix ¥ for the unclean data defined in (3.7) and the true covariance
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matrix 3. We can decompose the error as follows:

I1E = S e = 1 =S+ S — Z*lmas

where S is the estimated sample covariance matrix if there is no corruption in the data.

Using triangular inequality, we can write

12 = S lmax < I1E = Sllmax + 1S — = lmas. (3.9)

In the following section, we define conditions that are required to characterize the closeness
between two random matrices in terms of the elementwise maximum norm that would

essentially provide us the probabilistic bounds for the terms in (3.9).

3.3 Tail Conditions

We define the following closeness condition (Ravikumar et al., 2011) between two random

matrices.

Definition 1. [Closeness condition] Two (random) matrices ") and X satisfy the close-
ness condition if there exists a constant v, € (0, c0] and a function f : N x (0, 00) — (0, 00)

such that for any j, k = 1, ..., p the following probability bound holds:

2
1
Pr(|=® — x@ > §) < for all =1. 1
r(|l llmax > 9) < 9 orall § € (0, UJ (3.10)

When v, = 0 the inequality holds for any ¢ € (0, 00). We will consider two types of tail

functions, namely,

a) Exponential-tail function: when f(n,d) = C exp(cnd®), for some positive constant C'

and c and exponent a > 0.



b) Polynomial-tail function: when f(n,d) = ¢,n™¢*", for some positive integer m € N

and scalar ¢, > 0.

Example 1. By Lemma 1 of Ravikumar et al. (2011): When zero mean and normalized
random vector (Xi, ..., X,) is sub-Gaussian with parameter o, for n ii.d. samples, the
associated sample covariance S obtained from the clean data and the true covariance ¥~
satisfies the closeness condition with exponential-tail function f(n,d) = (1/4) exp(cnd?)

with C' = 1/4and ¢ = [64(1 + 40%)?] 7.

Example 2. By Lemma 2 of Ravikumar et al. (2011): When zero mean and normalized
random vector (X7, ..., X,) has 4mth bounded moments, for n i.i.d. samples, the sample co-
variance S and the true covariance X" satisfies the closeness condition with polynomial-tail
function f(n,d) = c,n™§*™, with ¢, = [22"C,,(K,, + 2)]7! and C,, as a constant depending

only on m.

As n increases, we can expect that the elementwise tail probability bound 1/ f(n, ) would
decrease, or equivalently the tail function f(n,d) would increase. Therefore, f is required
to monotonically increase in n, so that for each fixed § > 0, the inverse function can be
defined as

ng(0,r) :=argmax{n | f(n,0) <r}, (3.11)

which is the largest n such that f(n, ) < r, where r € [1, 00). Similarly, we expect that f is
monotonically increasing in §, so that for each fixed n, the inverse function in the second

argument can be defined as

d¢(n,r) :=argmax{d | f(n,0) <r}, (3.12)

which is the largest ¢ such that f(n,d) < r. Now, if we can find a n such that n > n¢(d,r),

that would imply that f(n,d) > r, for some § > 0. Consequently, since f is a monotone
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function, this would imply that d;(n, ) < §. Therefore, we can write

n > ng(d,r) forsomed >0 = df(n,r) <4 (3.13)

The inverse functions 71; and §; are important because they help to describe the behaviour
of the estimators.

In case of Example 1, if X is multivariate Gaussian, then the deviation of the sample
covariance matrix has an exponential-type tail function with a = 2. Therefore, it can be
shown by some calculations that the associated inverse functions take the following forms:

- log(4r)

B log(4r
d¢(n,r) = — and ng(0,r) = C§2 )

In Example 2, for the polynomial-type tail function it can be shown that the inverse tail

functions take the forms

_ 1/2m
S,y = LT A =

(r/e)!™
NG .

52

By applying the closeness condition to S and 3*, it can be shown that we can bound the
second term in (3.9) as demonstrated in Example 1 and 2 for exponential and polynomial-
type tails. The details of the proofs can be found in Lemma 1 and 2 in Ravikumar et al.
(2011). Therefore, we only need to provide probabilistic bounds for the first term in (3.9).
Deriving the bounds for these components separately will lead us to deriving a bound for
DIEED I

In the following sections we start with deriving a bound for the first quantity || S-S [
in terms of a closeness condition for cases when the underlying random variables are (i)
sub-Gaussian, and (ii) have bounded moments. Then we provide a probability bound to

ensure that 3 approximates S and put all the components together in Theorem 1.

34



3.4 Two Types of Measurement Errors

Given n independent observations of a p-dimensional random vector X := (Xy,...,X,)",
we want to estimate the conditional dependence relationships between X3, ..., X,. With
the presence of contamination, we do not directly observe X, we instead use a surrogate

estimator 3 to estimate the covariance matrix based on the contaminated data Z.

3.4.1 Surrogate Estimators

Additive error. Following Loh and Wainwright (2012) and Xu and You (2007), we assume
the observed matrix can be written Z = X + W, where the rows of X are i.i.d. with zero
mean, finite covariance X*. Here W = (wy,...,w,)' is a matrix of additive measurement
errors, with rows being i.i.d. with zero mean, finite known covariance Xy;. Also assume
that any row of X is independent to any row of W. One can find an unbiased estimator of
" as

N 1+

Yddi = —4 7 — Xy

n

In the following two lemmas, we show that the surrogate estimators f]addi is sufficiently
“close” to the covariance estimator S. We consider two different distribution assumptions
for X and W: sub-Gaussian and moment-bounded. The proofs of the lemmas are provided

in Section 3.9.

Lemma 1. [Additive, sub-Gaussian errors.] Suppose that the rows of X and W are i.i.d. sub-
Gaussian with parameter o3, and o3, respectively. The associated surrogate estimator Sadai and
covariance for clean data S satisfy the closeness condition (3.10) with the function f(n,d) =
C exp(cnd?¢™1), where C and c are universal constants and £ = max(oyy,, 0%, 0% 0%, OxOW)
and &y are positive functions depending on 0% and o3, such that for every § < &y the bound holds.

A~

When ¢ is sufficiently small, specifically for 6 < min(oxow, o), Laaa; and S satisfy the closeness

condition with £ = max(oy,, 0% 0%).
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Lemma 2. [Additive, moment-bounded errors.] Consider that the rows of X and W are i.i.d. 4mth
moment-bounded with parameter K,, x and K, w, respectively. ﬁaddi and S satisfy the closeness

condition with the function f(n,d) = c,n™6*™, where c, is a universal constants

¢ = [Cn2 {6™ + 2(1 + Kpx) (1 + Kpw) + Ko + (142"} 7",

and the bound holds true for every 6 > 0.

Multiplicative error and missing data. We can also consider the case when the errors are
multiplicative. We assume the observed matrix is Z = X © W where W = (wy,...,w,)"
is a matrix of multiplicative errors where each row w; € R? of W is independent and
identically distributed with known mean E(W) = puw € RP and covariance Xy. In
addition, py and Xy are assumed to have positive entries. Under these assumptions, Loh
and Wainwright (2012) proposed to use the unbiased estimators
St = %ZTZ OQEWWT) = %ZTZ O (Zw + pw iy ) - (3.14)
Data that are missing at random can be viewed as a special case of the multiplicative er-
ror model. Assume that z;;, the jth component of x;, is missing at random with probability
7. In other words, for each observation z;, we independently observe the jth component
zij = x;; with probability 1 — 7;, and z;; = 0 with probability 7;. This can be modeled
by introducing Bernoulli random variables w;; = I(z;; is not missing) ~ Bernoulli(1 — ;)
as the (i, j)th entry of W in the previous multiplicative error model. If the value of 7; is
unknown, it can be estimated by using the proportion of missing entries in jth column of

X. Followed by (3.14), the estimator becomes

PN 1
2miss = _ZTZ © ]E(WWT)7
n
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with

T (]_—71'1')(]_—71']'), Z#],

(1 - 7Ti), 1= j
Lemma 3. [Multiplicative, sub-Gaussian errors.] f]mult and S satisfy the closeness condi-
tion with the function f(n,d) = Cexp(cnd?¢™1) and ¢ = max(ojy, 0%, owox, 0%, 0%) under
the sub-Gaussian assumptions for the rows of X and W, respectively. When ¢ is sufficiently
small, specifically for 6 < min(0%02,,0%), S and S satisfy the closeness condition with

& = max(c% oy, 0%).

Lemma 4. [Multiplicative, moment-bounded errors.] Consider that the rows of X and W are i.i.d.
4mth moment-bounded with parameter K,, x and K, w, respectively. it and S satisfy the

closeness condition with the function f(n,d) = c.n™6%™ and the parameter c, where

-1
1
Cm22m {m2m <2 + Km,XKm,W> + Km,X}] .

3.5 Consistency Bounds

Cy =

3.5.1 Rates in Elementwise /,.-norm

Next, we derive the consistency bounds on the deviation of © from the true precision
matrix ®*. To do so, we require bounds on the deviation between the projected sample
covariance X and the true covariance X*,

The proofs of consistency of © and its error in elementwise /,,-norm is extended
from the proofs of Graphical Lasso (Ravikumar et al., 2011) to incorporate measurement
error and missing data cases. The following results depend on the quantities defined in

Ravikumar et al. (2011),

7777 P

p
pe = I3l = (max > 7) (3.15)
j=1
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corresponding to the /. -operator norm of the true covariance matrix ¥, the inverse of the

sub-block of the Hessian I'*, defined as
Iis= (0" @0 )gy € REFD*EH) (3.16)

where s denote the number of edges and p denote the number of nodes in the graph and
the parameter

rre = 1(Ths) ™ Moo (3.17)

Here, S is an augmented set that includes all the off-diagonal entries of the true precision
matrix and the diagonal elements, that is, the true edges as well as the diagonal elements.
Therefore, the cardinality of S, |S| = s + p. We denote the complement of S as 5S¢ corre-
sponding to all the pairs for which the true precision matrix have zero entries. We assume
that the Hessian satisfies the following type of mutual coherence or irrepresentability

condition:
(C1) Mutual Incoherence Condition. There exists some « € (0, 1] such that
max 775 (T5s) My < 1-a (3.18)

The intuition behind this condition is that it controls the influence that the non-edge
terms, indexed by S¢ can have on the terms representing edges that are indexed by S.
In other words, this assumption enforces the requirement that there should be no edge
variable that is not included in the graph that is highly correlated with variables within
the true edge-set.

The proofs of estimation consistency and elementwise /,.-norm are based on the tech-
nique called the primal-dual witness method which was used previously for the analysis
of Lasso (Wainwright, 2009) and graphical Lasso (Ravikumar et al., 2011). The method
requires to construct a pair (é, 2) of symmetric matrices, where © > 0asa primal optimal

solution and Z as the corresponding dual optimum. This pair satisfies the optimality
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conditions associated with the convex problem (3.8) with high probability. When the
primal-dual witness method succeeds, the estimator © inherits various optimality prop-
erties in terms of its distance to the truth ©* from ©. The matrix Z must belong to the

sub-differential of the norm || - ll1 o, evaluated at é, such that

p

0, i =]

Zij = {sgn(®,;;), i+#jand @ #£0

€[-1,+1], i#jand ©; = 0.

\

The primal-dual witness condition requires that the uniqueness of the solution of the
(,-regularized log-determinant problem (stated in Lemma 8) where the projected sample
covariance ¥ is used as an input to take care of the measurement errors. We also need to
verity the strict dual feasibility condition in step (d) for the primal-dual witness condition
to hold and it is stated in Lemma 9. Some additional useful notations to prove Lemma 9
which will also be used in Theorem 1 are defined as follows.

Let W € RP*? be the effective noise in the projected sample covariance matrix 3,

W=X-%"=3%— (0. (3.19)

Next, we use A = © — @* to measure the discrepancy between the primal witness ©
and the truth ©*. Note that, by definition of ©, Ag. = 0.

Finally, let R(A) denote the difference of the gradient of the log-determinant function,
ie., V{—logdet®} = é_l, from its first-order Taylor expansion around ©*. Therefore, the

remainder term takes the form

(@) + (@) tA(O")! (3.20)
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The Lemmas 8 and 9 are stated and proved in in Section 3.9. With the Lemmas and

required terminologies in place, the primal-dual witness condition can be defined as

follows:

Definition 2. [Primal-dual Witness Condition.] Based on Lemma 8, we can construct the

primal-dual witness solution (0, Z) as follows.

a) We determine the matrix © by solving the restricted log-determinant problem

®=  argmin {((@,i»—logdet(@)+/\n|||@|||170ﬁr}.
0>-0,0=0T 04:=0

By construction, we have © - 0and © ge = 0.

b) We choose 7 as a member of the sub-differential of the regularizer || - I, o, evaluated

at ©.

¢) For each (i, ) € S¢, we replace Z;; with the quantity

ensuring that the constructed matrices (8, Z) satisfy the optimality conditions (3.48).

d) We verify the strict dual feasibility condition

Z;| < 1 for all (¢, j) € S°.

Steps (a)-(c) are necessary conditions to obtain a pair ((:), Z) that satisfy the optimality
condition, but they do not guarantee that 7 is an element of the sub-differential al”@”ll’oﬂ‘.
By construction, Zin S satisfy the sub-differential conditions, since Zs is a member of
the sub-differential [8"'@"'1705]5. In addition, the strict feasibility condition is a necessary

condition to ensures two things; the first being that Z . is indeed within the sub-differential
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and the second being that no false inclusion condition holds for ©. In a linear regression
setup, the strict dual feasibility condition is also used to ensure the uniqueness of the
solution. However, in the graphical model setup this condition is not required to ensure

<1

uniqueness as we have noticed in Lemma 8. But, we still require this condition |2 ge
to be satisfied because otherwise Oge might still be non-zero if Zs:| = 1. This is because
when O4. = 0, it implies no false inclusion, that is, the graph includes no false edges,
which is equivalent to saying that the solution has its support set E contained within the
true support set £. On the other hand, if ©g. # 0 would imply that no false inclusion
condition is violated, that is, the support set of the solution E would not be contained
within the true support set E.

With the required terms and conditions defined above, next we state the main theorem
to bound the deviation of © from the true precision matrix ®* in terms of elementwise
norm. In addition, Theorem 1 depends on Lemmas 10 and 11 which are stated and proved
in Section 3.9. In the statement of the following theorem, the choice of the regularization
parameter )\, is specified in terms of a user-defined parameter v > 2. With growing v, the
rate of convergence in probability gets faster, but consequently a restriction is imposed on
the sample size. The rates in Theorem 1 differ from the classical graphical Lasso results
presented in Ravikumar et al. (2011) in terms of the quantities &, (n,p?) and 7y, (d,p7),
which varies in our setup depending on the distributional assumptions on X and W and
the type of measurement errors under consideration. The specific forms of 4, (n, p?) and

ny, (0, p7) for each scenario are given in Remarks.

Theorem 1. Consider a distribution satisfying the incoherence condition (3.18) with parameter
a € (0,1], and (random) estimators obtained from that distribution satisfying the closeness
conditions (1). Let © be the unique solution of the CoGlasso program with reqularization parameter

A = (8/a)dy, (n,p7) for some y > 2. Then if the sample size is lower bounded as

! V) (3.21)

.
nen (maX{U*,6(1—I—S/Q)deaX{Hz*/ir*,K%*K%*}}’p
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Then with probability at least 1 — (1/p"~?) — 1, we have the following:

a) The estimate © satisfies the elementwise {.-norm bound

16 — Ol < {200+ (1+ (3/0)) } 81 (n, 7). (3.22)

~

b) It specifies an edge set E(©) that is a subset of the true edge set E(©"), and includes all

edges (i, j) with | ©; |> {2@* (1 + 8/a> } 51, (n, 7).

We can simplify the probability bounds for each particular case and give expressions
for the tail function and their associated inverse functions for 6, (n,p?) < §. Recall that,
from the Definition 1, if the rows of X and W are multivariate Gaussian, then the deviation
bound for the sample covariance matrix has an exponential-type tail function with a = 2.
Remark 1 and 3 are simplified for the particular case of exponential-type tail function for

the deviation bounds when the rows of X and W are multivariate Gaussian.

Remark 1. The rows of X and W are both sub-Gaussian and the measurement error is
additive: we have for a particular case when the rows of both X and W are multivariate

Gaussian

2
Pr(IIE — Sy > 6) < 20 oxp { —cné , ,
x(l I ) a0 TP M\ 160202, 160, 256¢(1 + 402 )?

with the tail function defined as

fmd) = A€ . 1 1 1
«(n,0) = exp }{ cnd” min , ,
1+ P 160%02," 160, 256¢(1 + 40% )2

and associated inverse functions taking the forms

<(4 + C’)p”)
log | ———
5. (n, p") = ic
f* 7p ] 1 1 1 Y
min
- 160%02," 1608, 256¢(1 + 40% )2
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and

log (—(4 Zg)pv)

_ "
o) c0? min ! ! ! |
1603 0%, 1607, 256¢(1 + 40%)?

Remark 2. The rows of X and W both have bounded moments and the measurement error

is additive: we have

224m

Pr(”li - E*lllmax > 5) < P (C_ + Cm(Km + 2))

— — nm52m

with ¢, = [C.2" {6™ +2(1 + K x)(1 + Knw) + Knw + (1 + Qm)}rl and the tail func-

f*(n,é):{ 2 (Cl*+Cm(Km+2))}_1

nm52m

tion defined as

and associated inverse functions taking the forms

am (1 1/2m
o7, (n,p") = <2 <C* " Cm(\[/{; * 2)> pw)

and
<24m (i 4O (K + 2)) p’v) 1/m
02 '

Remark 3. The rows of both X and W are sub-Gaussian and the measurement error
is multiplicative: we have for a particular case when the rows of both X and W are
multivariate Gaussian

2
~ . p*(4+C) 2 . 1 1 L
P 2 - 2 max Z 5 S o (5 ’ ’
(Il I ) ac TP M\ 160202, T60L ' 256¢(1 + 0% )2

with tail function defined as

fe(n,0) 1€ 6% min ! ! !
«(n,0) = exp § cn : :
" 1+0°7P 160% 03, 160% " 256¢(1 + 40%)?
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and associated inverse functions taking the forms

4 %
log (( +C)p )
. ) iC
07.(n,p7) = 1 1 1
MM 1652 02 " 160% " 2560(1 + 402 )2
XYW X X

and

log (—(4 —Zg)pv)

ﬁf* (57 pfy) =

cd? min 1 1 1
160% 0%, 160% " 256¢(1 + 40%)?
Remark 4. The rows of X and W both have bounded moments and the measurement error

is multiplicative: we have

- 224m 1
Pr(IE — S llnax > 6) < © (— + O (K + 2))

with ¢, = [C,2°"{ =7 (2 + Ko x Kiw) + K x }] ! and with tail function defined as

min

24m

(l + Co (K + 2))}

nmo2m e,

n0) = {

and associated inverse functions taking the exact forms as the bounded moment additive

error case with ¢, defined as mentioned.

Proof. In this proof, first we want to bound the quantity [|W [lyax = |||i — X lmax. Recall
that using the definition of the closeness condition for 3 and X* of the decay function f,

we have the probability bound

IN

P forall 6 € (O, l] .

*

Pr(IZ — S llmax > 6)
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Setting § = 4. (n, p7),we get

2

~ _ p 1

Pr(IX — X lmax > 07, (n,p7)) < _ = .
( . p7) f(n, o, (n,p7))  pr2

The last equality follows by the definition of the inverse function §; for a fixed n, and
therefore f(n, 0y, (n,p?)) = 6, {0r.(n,p")} = p7. Therefore, we need to condition on the
event [[W .y < 6y, (n, p?) for further analysis.

Now, let us denote A as the event that [|W [l.x < 6. (n,p7). We verify that the assump-

tion
ay,

max { W lmax, 1 2(A) llmax } < 3

of Lemma 9 holds. Recall the choice of regularization parameter \, = (8/a)d;, (n,p")),
we have [[Wllha < Sf* (n,p?) < a\,/8. Hence [Wllnax < a),/8. Next we show that
the condition also holds for [| R(A)llmax. To do that we show that the condition required

for Lemma 11 holds under the specified conditions on n and \,. From our choice of

regularization constant \,, = (8/a)éy, (n, p?),
2k (W lhnas + Mo < 26p {37, (0, 57) + (8/0)d. (n,p7) } = 260 (1+ (8/2) ) (m,p7),

for all 64, (n,p”) < 1/v,. From the monotonicity of the inverse tail function (3.13), we have
that if n > 7y, (6, p?) for some § > 0, then &y, (n,p?) < 4. Therefore, by using the lower

bound on the sample size for all &, (n,p) < 1/v., we get

1
6(1+ (8/))?d max {Ks= ke, KK}

Or.(n,p") <0 <
Consequently, we have

26 (Wl + A} < 26p- (14 (8/0) ) 3y, (n, 7)
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2K <1 + (8/04))
<
~ 6(1 + (8/a))?dmax {ksrkr, .k}
1
<
3d<1 + (8/a)) max {Ky+, K. Kre }
1
~ 3dmax {kx+, K& kp }

= min { ! ! } (3.23)

3ks+d’ 3Ky kr+d

Therefore, the assumptions of Lemma 11 are satisfied and we can apply this lemma to
conclude that

I Allmax = 10 — ©llnax < 26 {IW llinax + A} < 26 (1 + (8/(1))5]2 (n,p”).  (3.24)

Using inequalities (3.23) and (3.24), we see that the assumption [|Allmax < 1/(3x5+d) of

Lemma 10 holds. Plugging in the upper bound for [| A|lma.x to the result of Lemma 10 we

get
3 2 3
HR(A) s < SANAI, 3
< Sangeard (14 8/0) (5 (n07))
S @Ry 2k o f T P
2_ _
< {oaetr (14 5/) 5. 0,57 b 3 007)
2 .3 25 Y aAn
< {6 (14 (8/0)) O (np7) p 2
a,
< )
- 8

where the final inequality follows from the condition on the sample size (3.21), and the

monotonicity property (3.13), since

1
<
T 6drE. ke (14 (8/a))?

s, (n,p?) <4
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SO,

6dkp-rg- (14 (8/a))?dy, (n,p7) < 1.

Hence, it is shown that the assumption (3.50) of Lemma 9 holds and we can conclude
that the primal-dual witness construction succeeds with high probability. This would
imply that the witness matrix O is equal to the solution O to the original log-determinant
problem (3.8) with high probability. Then the estimator O satisfies the (,,-bound (3.24)
of © as claimed in Theorem 1(a). Part (a) guarantees that O is uniformly close to ®*
in an elementwise sense. We also have ©®g5. = @4 = 0, as claimed in Theorem 1(b).
Since the above was conditioned on the event A, these statements hold with probability
Pr(A) = 1 — (1/p72).

In the final part of the proof we derive specific forms for the function d,, (n, p?) for the
event A for different distributional assumptions of X and W. Recall from (3.9) that using

triangular inequality, we have

1% = Z*lmax < IE = Sllmax + IS — = lmax-

Next, we show that we can approximate |||§] — Sllmax by |||f] — Sllmax- By the definition of

i, |||i — §|||max < IS — illlmax. Combining this with the triangular inequality, we have

1 = Sllmax < 1% = Slmax + 1 = Slimax < 205 = Sllmax.

Thus
Pr(IZ = Slimax = ) < PrIZ = Sllmax = 6/2). (3.25)

When the rows of X and W are both sub-Gaussian and the measurement error is additive,

we have

Q<=

Pr(IZ — Sllmax = 0) <

. 52 52 0 )
exp { —cnmin :
P 403(0‘24,’ 40{44,’ 200w’ 20‘2,[,
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By (1) and (3.9) we have

2 2
. P no
P - Z max Z S - .
r{'”s I 5} 1 eXp{ 64(1 + 403()2}

To put the pieces together we can write, for § > 0,

Pr(IIZ — Z*lmax > 0)
< Pr(IE = Sllmas + IS = = llax > 0)
< pr {masx (1 = Sllax, 1S = = llax ) > 6/2}
= Pr{ (% = Sllyax = 8/2) U (IS = Z'llyax = 3/2)}

< Pr(IIZ — Sllmax = 6/2) + Pr(IIS — =¥ llnax > §/2)
. , PLAY - B
P {—cn — (1603(0‘2,[,’ 160y, doxow’ 40124/) }

p2 n52

e {_256(1 T 402 )2 }
exp {—cn min ( i i i 0 i ) }
160% 03, 1607, doxow’ 403, 256¢(1 + 40%)?
P , P - B 5?

e {_C” i (1603(0124,7 160% doyow’ 40, 256c(1 + 4a§()2) }
< ]92(l + 1) exp {—cn min < > » 0 0 52 ) }
-0 4 160%03, 1607, doxow’ 403, 256¢(1 + 40%)?

2 2 2 2
< p—(4 +C) exp {—cn min ( 0 0 0 0 0 ) }

- 4C 160% 0%, 1603, doxow 4o, 256¢(1 + 40%)?

IN

QIR

<

Inequality (i) is due to the relationship A + B+ | A — B |= 2max(A, B), which implies
A+ B < 2max(A, B). If we consider the particular case when the rows of both X and W

are multivariate Gaussian, the above expression simplifies to

2 A
P N ax > 5 < — ‘T ex (5 ; 9 ’
1‘(|||E - llmax > ) = e p cno- min 1602)70‘21, 1604“, 2560(1 + 402;()2

(3.26)
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Let us define the tail function obtained from this bound as

s — € . 1 1 1
«(n,0) = exp { cnd” min , , .
1+077P 160%02, " 1608, 256¢(1 + 40% )2

Setting o, (n,p”) < 6, some further calculations show that the associated inverse functions

defined in (3.11) and (3.12) take the form

log <—(4Z%)pw )

_ N
5f* (n7 p ) ) 1 1 1 bl
cnmin
160302, 1607, 256¢(1 + 40%)?

and
(4+C)p"Y
log (—4Cp >

62 mi
com <160§(0‘2,V7 1607, 256¢(1 + 403()2)

When the rows of X and W both have bounded moments and the measurement error is

additive, we have,
p2 22m
Cy nm 6 2m

Pr(IE — Sllimax > 0) <

with ¢, = [Crn2 {6™ + 2(1 + Ky x)(1 4+ Kpw) + Know + (1+2™}]7". By (1) and (3.9)

we have
p?2*mC, (K, + 2)
nm52m :

Pr{lIS = ='lls > 0} <
To put the pieces together, for § > 0,

. 224m 224mCm Km 2
Pr(IE = £l > 6) < 2 b (Fo +2)

— — C*nm52m nm(SQm
2094m
p°2 1
< — o (o + 2 3.27
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with f.(n,8) = {(2"")/(n™6*™)(+ + Cn(Ky + 2))} ', Therefore, the associated inverse

functions for 4, (n,p?) <4,

e 1/2m
o7, (n,p") = <2 ( + Cm(\f/fﬁm + 2)) pv)

and
(24m (i + Co (Ko + 2)) p7> 1/m

When the rows of X and W are both sub-Gaussian and the measurement error is multi-

plicative, we have,

Pr(l|Z = Sllmax = 6) <

Q.

, 52 62 9 Vo
exp § —cn min .
P dosoy, 4oy’ 20% 7, /20% 0%

For d > 0,

Pr(lIZ — X llmax > 0)

P> , 52 R Vo
< — exp { —cnmin ) ) )
- C 16050y, 1605 405" 24/0% 02,
N p2 7152
4 7P 7 256(1 + 402)2

< M exp 4 —cnmin > i 0 ) i
- 4C P 16050y,  160% " 405" 2 /0% 02, 256¢(1 + 4ok )?

If we consider the particular case when the rows of both X and W are multivariate

Gaussian, the above expression simplifies to

2
I P24+ C) 2 1 1 1
Pr(lI8 — £ llmax > 6) < ——=—>exp 3 —cnd 160t
r(l I ) 10 TPV 160202, 160% 7 256¢(1 + 0% )2

(3.28)
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with tail function defined as

P o 1 1 1
«(n,0) = exp { cnd” min , , )
1+07P 160%02," 160% " 256¢(1 + 40% )2

Setting d;, (n, p?) < §, the associated inverse functions take the form

log (—(42%) m)

_ N
cn min
160%. 0%, 160% " 256¢(1 + 40%)?

and
) log ((44;((/;)17 ))
ny, (57 p’y) =

cd? min 1 1 1

160%03, 160% " 256¢(1 + 40%)?
When the rows of X and W both have bounded moments and the measurement error is
multiplicative, we get for 6 > 0,

224m

Pr(IE = Z* oy > 6) < = (i + Co( Ko + 2)) (329)

- nmy2m \ ¢,

with ¢, = [C,,2*™{

— (2 + Koy x Kw) + K x )71 We get

o O(Ko + 2))} o

Therefore, the functional form of the associated inverse functions are exactly the same as

the bounded moments additive error case with ¢, defined as mentioned. O]

3.5.2 Model Selection Consistency

The following theorem provides sufficient conditions to link the sample size n and the
minimum value

Opin := min C)y 3.30
(i,j>eE<e*>| 2 (3:30)
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that allows us to study model selection consistency. Let us define the event that the
estimator © has the same edge set as ®", that is, CoGlasso recovers the full edge set

correctly and recovers the correct signs on these edges as well.

~

M(©;0%) = {Sgn(@ij) —sen(@F)  V(i,j) € E(@*)} . (3.31)

Theorem 2. Under the same conditions as Theorem 1, suppose that the sample size satisfies the

lower bound

1

n > 'Flf 7p,y :
max {2/@* (1 + (8/@))9;11111, Vs, 6(1 + (8/))d max {kx= K+, K%*Ii%}}
(3.32)

Then the estimator is model selection consistent with high probability as p — oo, specifically

(3.33)

If we compare the restrictions imposed on the lower bounds on the sample sizes of
Theorem 1 and 2, we can see that Theorem 2 differs only in terms of the additional quantity
2kr+(1 + 8/)/bmin. This quantity acts as a constraint on how quickly the minimum can
decay as a function of (n, p). The proof of the theorem is given in Section 3.9.

The following corollary can be established similar to Ravikumar et al. (2011) in terms

of the Frobenius and spectral norm. The proof of the corollary is provided in Section 3.9.

Corollary 1. [Rates in Frobenius and Operator Norm.] Under the same assumptions as Theorem

1, with probability at least 1 — (1/p"~?), the estimator e satisfies

16 — Ol < {26r- (1+ (8/0) } (V5 +0) 8. (n.p7) (3.34)
and
10 — |, < {2@* (1 v (8/a)> } min {\/5 ¥ p,d} 5, (n, p"). (3.35)
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Notice that the Corollary differs from the classical graphical Lasso results provided
in Ravikumar et al. (2011) in terms of the quantity d;, (n, p”), which varies depending on
the distributional assumptions on X and W and the type of measurement errors under
consideration. Recall that, the expressions of &, (n, p") for particular cases are derived in

the proof of Theorem 1.

3.6 Simulation

To test our method, we would utilize two types of data generating scenarios which would
result in indefinite covariance estimators. For the additive measurement error, we would
use the Kronecker sum type model used in a graphical model estimation setting by Park
et al. (2017) and in a regression setting by Rudelson and Zhou (2017). For multiplicative

errors, we would use the missing data model described in Loh and Wainwright (2012).

3.6.1 Additive Model

Following Fan et al. (2019) and Rudelson and Zhou (2017), we use the Kronecker sum
type covariance to generate the corrupted and observable data matrix Z based on the
clean but unobservable data matrix X. Let the data matrix that we want to generate
be defined as Z = X,A'/? + BY/?W,, where the first component contains the signal
and has independent sub-Gaussian row vectors and the second component contains the
random noise matrix with independent columns but dependent rows. Here, A'/2 and
B'/? are the unique square root of the positive definite matrix A € R?*? and B € R™*",
respectively and represent the covariance structures of X, and W, respectively. We
generate Xy, Wy € R"*? as independent mean-zero sub-Gaussian random matrices. Note
that W, and X, are independent.

Our primary interest is to estimate the precision matrix with sparse off-diagonal entries,

©* = A~!. As shown in Rudelson and Zhou (2017), that the covariance model becomes
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unidentifiable if one of the traces of A or B is not assumed known. We assume that the
trace of A is a known constant, that is, tr(A) = p, and we construct and estimator for tr(B)

as

~

(|||X|||fm - ntr(A))+ and define 75 = ~G(B) > 0

n

~ 1
tr(B) = —
p

where (a); =aV0and IX[I7 = >, > xfj
In the true model, 75 is the variance of the noise variable. We normalize B in the
covariance generation process to make sure the assumption tr(B) = nrz holds. Therefore,

the surrogate covariance estimate for A is given by as shown in Rudelson and Zhou (2017)

1

o tr(B
ZKS — _ZTZ o r( )
n

n

I

D

Note that, when p > n, this estimator is guaranteed to not be positive semi-definite.

Covariance models:

To generate data from the above mentioned simulation settings, we consider the following
covariance models for A and B. For the precision matrix, ® = A™! = (w;;) and IT =
B! = (v;). respectively. Following Rudelson and Zhou (2017), we choose A from the

following models:

e AR(1) model: To obtain a chain graph for the precision matrix A~!, we set the form

i = { pli-=il
of the covariance, A = {pl"~ }”
We choose B from the following covariance models. Note that 75 = tr(B)/n.

¢ Erdos-Rényi random graph: We consider a type of Erdds-Rényi random graph for
IT = B~'. We start by setting II = cl,, ., where cis a constant. Next, we randomly
select nlogn edges and update IT as follows: for each new edge (7, ), a weight

w > 0 is chosen uniformly at random from [Wmin, Winax] Where Wy > Wmin > 0; we
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subtract w from v;; and v;; and increase v;; and v;; by w. This maintains the positive

definiteness of IT. Then we rescale B to have a certain desired trace parameter 75.

3.6.2 Missing Data Model

Following Loh and Wainwright (2012) we use the missing data model with missing-
completely-at-random (MCAR) observations to estimate our graphical model. Let X, €
R™? be an independent mean-zero sub-Gaussian random matrix. Let W € {0, 1}"”* with
W,; ~ Bernoulli(1 — 7;). This means that the entries of the jth column of the data matrix
is observed with probability 7;. Note that W is independent of X. We can generate the
observed matrix as X = X(,A'/? and the unobserved matrix Z = X ® W where ® denotes
the Hadamard, or elementwise product. Then the surrogate estimate for A can be given by
the estimator f]miss defined in (3.14). Since the off-diagonal entries are divided by smaller

values, X,,iss will not necessarily be positive semi-definite.

Covariance models:

For the missing data model, we considered two types of precision matrix for ", based on
the chain graph and the Erdos-Rényi random graph. The construction of the matrices are

similar to as it is explained above.

Tuning parameter selection

In practice, the parameter A must be tuned for all the models. Two methods are used,

namely, cross validation and BIC criterion to tune the models as decribed in Chapter 2.

* Cross-validation: We performed a five-fold cross-validation method to tune A\. We
estimate the precision matrix © from the training set and validate it on the test
set. We calculate the cross-validation score given in (2.5) for each fold described in

Section 2.1.1. The observed log-likelihood was used as the loss function. Then we
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find the best A that maximizes C'V (\). Finally, using the chosen ), a final estimator
of the precision matrix is calculated using all the data. We used used a sequence of
equally spaced values for the tuning parameter in the logarithmic scale from [—2, 2]

to perform the cross-validation.

¢ BIC: We used the BIC criterion as defined in (2.6) to tune the penalty parameter
A. The optimal value of the tuning parameter is taken to be the minimizer of the
criterion. We used a sequence of equally spaced values for the tuning parameter in

the logarithmic scale from [—2, 2] to perform the cross-validation.

Methods comparison

We compared our results with two other methods. The first method is the ADMM al-
gorithm described in Fan et al. (2019) Algorithm 1 solving for the non-convex objective
function. The algorithm required the knowledge of an upper bound for the true precision
matrix, that is, [|®|l2 < R. In the simulations, we chose the value of R to be two times the
magnitude of the spectral norm of the true precision matrix.

The second method is a nodewise regression where we adapted the algorithm for
graphical model following Meinshausen and Bithlmann (2006); Yuan and Lin (2007). This
method is slightly naive in a sense that we used the R package glmnet to perform the
column by column Lasso regressions in the first step of the algorithm directly on the
noisy data. Specifically, we can perform p Lasso-type regressions to obtain estimates Bj
and form estimates @;, where B\j are the estimated coefficients from the Lasso regression
and a; = —(ijj - fzj,_j/é})—l based on the surrogate estimate of 3. Since the unbiased
surrogates could be unbounded from below and not be positive semi-definite due to
noisy data, we projected the estimate to the nearest positive semi-definite cone. Next, we
formed ©;_; = @, EJ and ©;; = —a;. In the last step, we symmetrize the results to obtain

O — argming, [|© — (:)Illmax, where S? is the set of symmetric matrices.
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For the nodewise regression method, we only used cross-validation to choose the
tuning parameter. For our proposed method CoGlasso and the ADMM approach (Fan

et al., 2019), we tuned \ with both cross-validation and BIC criterion.

Performance metrics

* We calculated relative Frobenius, spectral, nuclear and ¢; norm for the statistical error
of the estimation, which is defined as |||(:) — O™ llnorm /1Ol norm- We also calculated
the false positive rate (FPR), false negative rate (FNR) and the true positive rate (TPR)

as defined below:

FP EFN TP

FPR= ——+—=; FNR=————; TPR=—>—-
i TN + FP’ R FN 4+ TP’ i FN 4+ TP

where TP is the number of true positives (true non-zero edges that are estimated
as such), T'N is the number of true negatives (true zero edges that are recognized
as such), F'P is the number of false positives (true zero edges that are estimated as
non-zero) and F'N is the number of false negatives (true non-zero edges that are

estimated as zero). All the results are averaged across 100 replications.

3.6.3 Simulation Results
Additive error case:

We generated the true precision matrix ©* as a chain graph with parameter p such that
Yx = @' ~ AR(1) with p = {-0.7, 0.5, —0.3} with two different samples sizes, n =
{160, 240}, two different variance parameter for the noise, 75 = {0.3,0.5} and the number
of parameters p = 400. The covariance structure for the noise, Xy = I}, that is, it is

chosen from an Erdos-Rényi random graph such that IT ~ ER with nlog(n) randomly
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selected edges in IT construction with partial correlation randomly chosen from a uniform

distribution Uni f(0.6,0.8). Table 3.1-3.12 present the results of the additive error cases.

Table 3.1: Scenario A: p = 400,n = 160,p = —0.7, 73 = 0.3

Method  Criteria Frobenius Spectral Nuclear ¢, FPR FNR TPR

CoGlasso CVv 0.639 0.743 0.594 0976 0.028 0.000 1.000
BIC 0.673 0.761 0.630 0.915 0.014 0.001 0.999
ADMM CVv 1.201 1.380 1.178 2594 0.371 0.000 1.000
BIC 1.791 1.746 1.890 9.383 0.840 0.000 1.000
Nodewise CVv 0.594 1.784 0.539 2.205 0.015 0.001 0.999

Table 3.2: Scenario B: p = 400,n = 160, p = —0.7,75 = 0.5

Method Criteria Frobenius Spectral Nuclear ¢, FPR FNR TPR

CoGlasso Cv 0.718 0.803 0.675 1.034 0.022 0.003 0.997
BIC 0.718 0.803 0.675 1.034 0.022 0.003 0.997
ADMM Ccv 1.149 1.395 1.095 2.638 0.339 0.002 0.998
BIC 1.784 1.750 1.884 9.337 0.842 0.000 1.000
Nodewise Ccv 0.732 2.469 0.613 2.851 0.018 0.004 0.996

Table 3.3: Scenario C: p = 400,n = 240, p = —0.7,73 = 0.3

Method Criteria Frobenius Spectral Nuclear ¢, FPR FNR TPR

CoGlasso CVv 0.586 0.695 0.537 0.837 0.013 0.000 1.000
BIC 0.540 0.668 0490 0.895 0.029 0.000 1.000
ADMM CVv 1.308 1.394 1317 2.640 0.466 0.000 1.000
BIC 1.669 1.645 1.741 7.700 0.777 0.000 1.000
Nodewise CVv 0.482 0.728 0461 0978 0.015 0.000 1.000

Table 3.4: Scenario D: p = 400,n = 240,p = —0.7,73 = 0.5

Method  Criteria Frobenius Spectral Nuclear ¢,  FPR FNR TPR

CoGlasso Cv 0.678 0.768 0.633 0.905 0.011 0.000 1.000
BIC 0.642 0.749 0.594 0975 0.023 0.000 1.000
ADMM Ccv 1.251 1.401 1234 2.654 0.434 0.000 1.000
BIC 1.656 1.650 1.727 7711 0.779 0.000 1.000
Nodewise Cv 0.574 0.729 0.546 0.938 0.018 0.000 1.000
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Table 3.5: Scenario E: p = 400,n = 160, p = —0.5, 73 = 0.3

Method Criteria Frobenius Spectral Nuclear ¢,  FPR FNR TPR
CoGlasso Ccv 0.603 0.717 0.553 1.117 0.025 0.053 0.947
BIC 0.629 0.727 0.579  0.990 0.009 0.109 0.891
ADMM Ccv 0.638 1.262 0.560 2.663 0.096 0.009 0.991
BIC 1.684 1.753 1.694 10.493 0.767 0.000 1.000
Nodewise CVv 0.587 2.073 0.516 2.609 0.018 0.061 0.939

Table 3.6: Scenario F: p = 400,n = 160, p = —0.5,73 = 0.5

Method Criteria Frobenius Spectral Nuclear ¢ FPR FNR TPR
CoGlasso Cv 0.673 0.775 0.618 1.212 0.025 0.108 0.892
BIC 0.698 0.784 0.643 1.077 0.007 0.252 0.748
ADMM Ccv 0.653 1.318 0.569 2.748 0.088 0.025 0.975
BIC 1.702 1.765 1.719 10.590 0.795 0.000 1.000
Nodewise CV 0.684 2.388 0.577  2.885 0.019 0.132 0.868

Table 3.7: Scenario G: p = 400,n = 240, p = —0.5,73 = 0.3

Method Criteria Frobenius Spectral Nuclear ¢, FPR FNR TPR
CoGlasso Ccv 0.546 0.657 0.501 0.896 0.009 0.018 0.982
BIC 0.546 0.657 0.501 0.896 0.009 0.018 0.982
ADMM Ccv 0.479 1.062 0419 1.956 0.089 0.000 1.000
BIC 1.583 1.700 1.545 10.503 0.744 0.000 1.000
Nodewise aY 0.476 0.720 0.446  1.057 0.018 0.007 0.993

Table 3.8: Scenario H: p = 400,n = 240, p = —0.5,73 = 0.5

Method Criteria Frobenius Spectral Nuclear ¢, FPR FNR TPR

CoGlasso Ccv 0.610 0.722 0.558 1.129 0.022 0.034 0.966
BIC 0.627 0.729 0.576 1.038 0.012 0.064 0.936
ADMM Ccv 0.768 1.266 0.665 2910 0.113 0.004 0.996
BIC 1.579 1.700 1.560 9.853 0.721 0.000 1.000
Nodewise Ccv 0.557 0.754 0.515 1.045 0.021 0.025 0.975

Overall, tuning parameter selection with cross-validation tends to perform well in all of
the scenarios. In the case of additive error, CoGlasso clearly performs better than the non-
convex approach of the analysis. When the partial correlation in the true precision matrix
is set to be stronger, we can see that CoGlasso and nodewise regression perform well, and

the ADMM method performs better only in the case of moderate partial correlation in the
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Table 3.9: Scenario I: p = 400,n = 160, p = —0.3, 73 = 0.3

Method Criteria Frobenius Spectral Nuclear ¢,  FPR FNR TPR
CoGlasso Ccv 0.545 0.685 0472  1.009 0.004 0.753 0.247
BIC 0.553 0.692 0.477 0.782 0.000 0.992 0.008
ADMM Ccv 0.430 0.676 0.383 1.561 0.040 0.356 0.644
BIC 1.545 1.654 1.483 11.768 0.827 0.014 0.986
Nodewise CvV 0.619 3.227 0454 3.787 0.010 0.679 0.321

Table 3.10: Scenario J: p = 400,n = 160, p = —0.3, 73 = 0.5

Method Criteria Frobenius Spectral Nuclear ¢ FPR FNR TPR
CoGlasso Cv 0.609 0.742 0.531 1.151 0.006 0.831 0.169
BIC 0.614 0.739 0.534  0.826 0.000 0.997 0.003
ADMM Ccv 0.466 0.734 0413 1.625 0.035 0.478 0.521
BIC 1.496 1.639 1432 10.583 0.758 0.031 0.969
Nodewise CV 0.636 2.584 0.502 3.094 0.010 0.749 0.251

Table 3.11: Scenario K: p = 400, n = 240, p = —0.3,73 = 0.3

Method Criteria Frobenius Spectral Nuclear ¢, FPR FNR TPR
CoGlasso Ccv 0.488 0.628 0425 0.904 0.004 0.578 0.422
BIC 0.491 0.629 0428 0.860 0.003 0.645 0.355
ADMM Ccv 0.378 0.614 0.336 1.479 0.047 0.165 0.835
BIC 1.404 1.610 1.311 10.435 0.688 0.007 0.993
Nodewise aY 0.444 0.781 0.390 1.215 0.013 0.463 0.537

Table 3.12: Scenario L: p = 400, n = 240,p = —0.3,73 = 0.5

Method Criteria Frobenius Spectral Nuclear ¢, FPR FNR TPR
CoGlasso Ccv 0.559 0.694 0484 1.036 0.004 0.723 0.277
BIC 0.564 0.696 0.487 0.890 0.001 0.875 0.125
ADMM Ccv 0.417 0.674 0370 1.570 0.041 0.272 0.728
BIC 1.431 1.622 1.345 10.610 0.726 0.012 0.988
Nodewise a8y 0.512 0.778 0444 1128 0.013 0.577 0.423

true precision matrix. When partial correlation is weaker, all the methods perform poorly.
As expected, with increasing sample size, performance of the methods improve. With a
larger effect of additive noise the performance metrics deteriorate, as expected. Nodewise
regression performs comparably well along with the CoGlasso, which is expected since

we are employing the same projection method in the nodewise regression as in CoGlasso.
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Missing data case:

Following the missing data simulation setup as Fan et al. (2019), we used sample sizes

n = {80, 130, 250, 700}, with corresponding probability of being missing, P =1 — 7, =

{0.1,0.3,0.5,0.7}, respectively to keep the effective sample size to be around 62 to 65. In
all the settings the effective sample size is calculated as n x (1 —

We kept p = 400 for all scenarios and generated the true precision matrix ®* from two

different setups.

Setup 1:

The true precision matrix is generated from a chain graph with strong partial correlation

p = —0.7. The results are shown in Table 3.13 - 3.16.

Table 3.13: Scenario M: p = 400, n = 80, P = 0.1

Poiss)? is kept constant.

Method Criteria Frobenius Spectral Nuclear ¢, FPR FNR TPR
CoGlasso Ccv 0.599 0.695 0.561 0.884 0.027 0.001 0.999
BIC 0.645 0.724 0.609 0.842 0.011 0.004 0.996
ADMM Cv 0.577 0.687 0.540 1.063 0.097 0.000 1.000
BIC 2.132 1.942 2335 13.925 0.996 0.000 1.000
Nodewise Ccv 1.017 7.229 0.589 7.701 0.008 0.004 0.996
Table 3.14: Scenario N: p = 400, n = 130, Ppiss = 0.3
Method Criteria Frobenius Spectral Nuclear ¢, FPR FNR TPR
CoGlasso Ccv 0.701 0.781 0.659 0.940 0.027 0.003 0.997
BIC 0.728 0.796 0.689 0.892 0.011 0.011 0.989
ADMM Ccv 0.631 0.745 0.589 1.061 0.075 0.002 0.998
BIC 1.934 1.883 2.033 13.824 0.942 0.000 1.000
Nodewise Ccv 0.665 1.665 0.620 2.057 0.013 0.014 0.986
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Table 3.15: Scenario O: p = 400, n = 250, Ppiss = 0.5

Method Criteria Frobenius Spectral Nuclear ¢, FPR FNR TPR
CoGlasso Cv 0.774 0.833 0.734 0917 0.012 0.020 0.980
BIC 0.775 0.834 0.736  0.914 0.010 0.021 0.979
ADMM Cv 0.621 0.758 0576 1.164 0.085 0.012 0.988
BIC 1.604 1.750 1.614 11.261 0.736 0.001 0.999
Nodewise a8y 0.740 0.813 0.703 0.897 0.017 0.023 0.977

Table 3.16: Scenario P: p = 400,n = 700, P = 0.7

Method Criteria Frobenius Spectral Nuclear ¢,  FPR FNR TPR

CoGlasso Cv 0.805 0.857 0.766 0916 0.008 0.032 0.968

BIC 2.533 3.177 2419 19.441 0.737 0.003 0.997

ADMM Cv 0.666 0.799 0.618 1.095 0.056 0.025 0.975

BIC 1.360 1.649 1.321 9451 0.630 0.005 0.995

Nodewise CV 0.798 0.850 0760 0910 0.024 0.019 0.981
Setup 2:

The true precision matrix is generated from an Erdds-Rényi random graph with p *
0.1 randomly selected edges with partial correlation randomly chosen from a uniform

distribution Unif(0.6,0.8). The results are shown in Table 3.17 - 3.20.

Table 3.17: Scenario Q: p = 400, n = 80, P = 0.1

Method Criteria Frobenius Spectral Nuclear ¢,  FPR FNR TPR
CoGlasso Cv 0.673 0.761 0400 0.811 0.005 0.395 0.605
BIC 0.695 0.762 0413 0.811 0.000 0.894 0.105
ADMM Ccv 0.725 0.852 0433 0.888 0.506 0.149 0.851
BIC 8.705 1919 11959 11.417 0.998 0.000 1.000
Nodewise CV 1.340 3.518 0.545 2.614 0.004 0.004 0.996

Table 3.18: Scenario R: p = 400, n = 130, P = 0.3

Method Criteria Frobenius Spectral Nuclear ¢,  FPR FNR TPR
CoGlasso Y 0.731 0.824 0435 0.863 0.003 0477 0.523
BIC 0.741 0.824 0443 0.864 0.000 0.848 0.152
ADMM Cv 0.725 0.853 0434 0.889 0.525 0.153 0.847
BIC 7.901 1919  10.055 11.492 0.973 0.000 1.000
Nodewise Cv 0.762 1.328 0.414 1.150 0.004 0.011 0.989
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Table 3.19: Scenario S: p = 400, n = 250, P = 0.5

Method Criteria Frobenius Spectral Nuclear ¢,  FPR FNR TPR

CoGlasso CVv 0.769 0.858 0.484 0.891 0.000 0.702 0.298
BIC 0.770 0.858 0.485 0.891 0.000 0.796 0.204
ADMM Cv 0.728 0.855 0.440 0.890 0.514 0.192 0.808
BIC 6.487 1.919 7.568 9.665 0.830 0.001 0.999
Nodewise Ccv 0.714 0.806 0.449 0.840 0.003 0.014 0.986

Table 3.20: Scenario T: p = 400, n = 700, P = 0.7

Method Criteria Frobenius Spectral Nuclear ¢ FPR FNR TPR
CoGlasso Cv 0.785 0.874 0.512 0.904 0.000 0.858 0.142
BIC 7.177 2.781 7.822 12.395 0.809 0.003 0.997
ADMM Ccv 0.733 0.859 0.446 0.894 0.400 0.230 0.770
BIC 5.786 1.919 6.343  9.016 0.818 0.002 0.998
Nodewise CV 0.760 0.850 0.495 0.880 0.003 0.027 0.973

In the missing data scenario, all the methods perform well when the underlying struc-
ture of the precision matrix is a chain graph even in an increasing degree of missingness
introduced in the data. However, when we assume the underlying structure of the preci-
sion matrix to have Erdds-Rényi graph structure, only nodewise regression performs well.
Even with a small proportion of missing data present in the data, false positive rate and
the false negative rate are not comparable to the chain graph scenario.

We report some additional simulation results to check the scalings predicted by the
theory. Based on Theorem 1, we can show that in the additive error case with sub-Gaussian
tails, the elementwise maximum norm should decay at the rate O(y/log p/n). In Figure 3.1
and 3.2, we plotted the elementwise maximum norm error against the original sample size
n and the rescaled sample size n/ log p and showed that the curves align in the presence of
additive noise and missing data, respectively. We generate a chain structured graph where
all the nodes are arranged in a linear chain with each node having degree 2 (except the
two ends). We generated the precision matrix with the diagonal entries of ®" are set equal
to 1, and all entries corresponding to links in the chain are set equal to 0.1. We generated

the matrix X as a zero-mean sub-Gaussian with covariance X x = (©*)~!. For the additive
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Figure 3.1: Plots of the error |II@) — O |l max against the sample size n (left) and rescaled
sample size n/log p (right) in the case of a chain structured precision matrix when the

error is additive. Each point represents an average of 100 trials.

noise case, we generated the corrupted matrix Z = X + W with Xy = (0.2)?] or in the
missing data case we generated Z with 20% missing data in each column of X. We see

good agreement with the theoretical predictions.

3.7 Real Data Analysis

In this section we present an example of estimating the precision matrix for real gene
expression data which was collected to distinguish active tuberculosis (TB) patients from
latently infected and healthy individuals. We performed our method on a real gene
expression data set obtained from Singhania et al. (2018). Using microarray analysis, Berry
et al. (2010) first identified a whole blood 393 transcript signature for active TB. Later a
confirmatory analysis conducted by Singhania et al. (2018) found a 373-genes signature
of active tuberculosis using RNA-Seq that discriminates active tuberculosis from latently

infected and healthy individuals.
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Figure 3.2: Plots of the error |II@) — O |l max against the sample size n (left) and rescaled
sample size n/log p (right) in the case of a chain structured precision matrix when the

error is multiplicative. Each point represents an average of 100 trials.

The dataset includes gene expression of 54 patients (21 active TB patients, 21 latent TB
patients and 12 healthy controls) and contains 14150 genetic markers from a cohort studied
in London. The gene expression is preprocessed into log(counts) per million (i.e. log-cpm)
and is available in the R package dearseq. For the sake of demonstrating our method, we
randomly selected 200 genetic markers. First we performed a graphical Lasso algorithm
using the R package glasso and estimated the precision matrix. Then we randomly
deleted 10% observations from each genetic marker to mimic a missing completely at
random scenario and applied the CoGlasso algorithm for missing data. For the sake of our
analysis, we scaled the columns of the data so that (1/n) }_;", #7; = 1 for every column.

Since this is an illustration and performed on randomly selected genetic markers, the
partial correlations obtained could not be validated with the existing biological information.
However, it is shown to demonstrate the methodology established in this Chapter. The
plot on the top in Figure 3.3 appear to be sparser than the one created with no missing data

(bottom). We performed a 5-fold cross-validation to tune the regularization parameter in
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Figure 3.3: Plot of the partial correlation matrix for complete data for 200 randomly
selected genetic markers using graphical Lasso method (top). Plot of partial correla-
tion matrix with 10% missing data for 200 randomly selected genetic markers using
CoGlasso method (bottom).
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both the cases. We used used a sequence of equally spaced values for the tuning parameter
in the logarithmic scale from [—2, 2] to perform the cross-validation. For the clean graphical
Lasso the regularization parameter was chosen to be 0.01. For the missing data case, the
regularization parameter was chosen to be 0.1 based on a 5-fold cross-validation, therefore,

resulting into a sparser graph.

3.8 Discussion and Conclusion

In this chapter, we have studied the estimation of precision matrix in the presence of
additive and multiplicative noise in a high-dimensional setting. We have derived theo-
retical deviation bounds for the estimated precision matrix from the truth in elementwise
maximum norm for two types of tail deviation conditions in two types of measurement
error settings. In terms of the upper bound on statistical convergence rates, our method
shares many theoretical properties with classical graphical Lasso in the clean case and
provides specific rates in element-wise ¢.,-norm for different distributional assumptions
on the signal and noise variables under different types formulation of measurement errors.
It is easy to implement and guarantees a convex solution to the problem.

We have performed simulation studies for different types of measurement error intro-
duced in the model. In terms of additive error, all the methods performed comparably.
Specifically, CoGlasso tends to give smaller false positive rate compared to the ADMM
method when the partial correlation is stronger in the additive case. When the partial
correlation is weaker, the performance of all the methods worsened, particularly, the
false negative rate of CoGlasso performed poorly. Similar trends were visible in terms of
the relative Frobenius, spectral, nuclear and ¢; norm. With stronger to moderate partial
correlation among the nodes in the chain graph, nodewise regression performed similarly

to CoGlasso.
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In case of missing data, in a simpler covariance structure such as a chain graph, Co-
Glasso performs comparatively better than the non-convex approach, especially in terms of
false positive rates. With more complex form of covariance structure such as Erdos-Rényi
graph, both the methods tend to perform poorly with increasing missingness introduced
into the data. However, even with a deteriorating false negative rate, CoGlasso provided
better false positive rates compared to the ADMM method. The nodewise regression tend
to outperform both the methods.

In terms of tuning the regularization parameter, cross-validation method performed
better than the BIC criterion. The convergence of the ADMM algorithm depended on the
assumption of the side-constraint and added difficulty to the convergence of the estimator.
Compared to that, CoGlasso did not depend on any prior information and therefore, was

straightforward to implement.

3.9 Technical Details

Lemma 5. Let Z = (Zy, Zs, ..., Z,)" where Z;'s are independent sub-Gaussian random variables
with sub-Gaussian parameter at most T2. If Z is a sub-Gaussian random vector then Z — E(Z) is
also sub-Gaussian; the weighted sums of the centered Z;'s are also sub-Gaussian and satisfy the
probabilistic bound

Pr{|v(Z—-E(2)) |>t} <2exp <—i) vVt >0 (3.36)

7(vll3

where c is an universal constant. If Z is centered and the weights ||v||3 = 1, then the bound can be
simplified to
pe(|S w2 - E(z) | = 1) <2 o
r( > (Z—E(Z) | > ) <2ew (-
Proof. By Lemma 2.6.8 (Vershynin, 2018) and general Hoeffding inequality from Theorem

2.6.3 Vershynin (2018). O
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Lemma 6. (Datta and Zou, 2017) Let Z; = (X;,Y;)" fori = 1,...,n denote independent and
identically distributed two-dimensional vectors with zero mean, covariance Xxy = (0xy )ax2 and

sub-Gaussian parameter 72, Then there exist absolute constants C and c such that, we have

p 1‘i (XY, )| =6 <1, i i 0 ) (3.37)
r<— V(XY — o > < —exp |—cnmin , . .
nl < Xy c P IVIE 2V

When § is small enough, that is, when § < 72||v||3/||V || s, we can simplify the probabilistic bound

as
1w 1 cnd?
Pro = | S u(XYi —ox)|[ 26 p < —exp |- 1
{n 2 o) } el
Proof. We have

n

1
— Z Uz‘(XiYi - UXY)
n —

1
1 2
ZEZ%{(XH-Yi) - (UXX+Uyy+QOxY)}

=1
n

— ﬁ > v {(Xl — Y2>2 — (UXX +oyy — 2UXY)}
:%;m{<%<)ﬁ+¥;>) _%(UXX+0'YY+20XY>}

S { G Sl -2}
:% ‘ V; {(aIZi)Q —E{(afZi)z}} — %z::vz {(CL;—Zz‘)Q —E{(a;Zi)z}}.

Here, a; = (1/v/2,1/v/2)" and ay = (1/v2,~1/v/2)". So, (a] Z;)? = (1/2)X? + (1/2)Y? +
X,Y; and E[(a] Z;)?] = (1/2)(0xx + oyy + 20xy). Similarly, (a] Z;)? = (1/2)X? 4 (1/2)Y? —
X;Y;and E[(ay Z;)?] = (1/2)(0xx + oyy — 20xy). As ||ai|? = 1, a] Z; is sub-Gaussian with
parameter at most 72 for k = 1, 2, followed by Lemma 5. Next, we use the relationship be-
tween sub-Gaussian and sub-exponential random variables from Lemma 5.14 of Vershynin

(2010), which states that a random variable Z is sub-Gaussian if and only if Z? is sub-
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exponential. We also use the Remark 5.18 from Vershynin (2010) which states that if Z is
sub-exponential, then so is Z — E(Z). Hence, we see that for k = 1,2, (a] Z,)* — E{(a} Z;)?}
is sub-exponential with parameter at most ¢c7? where c is an absolute constant. Therefore,
vi{(a] Z;)* — E{(a] Z;)*}} is sub-exponential with parameter at most c72||v||.. Since we
have a linear combination of sub-exponential random variables, we can directly apply
Proposition 5.16 and Corollary 5.17 from Vershynin (2010) which provide a tail bound for

the sums of independent centered sub-exponential random variables. We have
1 n

Pr [ﬁ’ ;vi(XiY; — ny)‘ >0

| S {@z) ~E{(2)"}} |+ 5| S u{(@12) - E{(a12)"}}| 2 5]
i=1 1=1

- 1 { ) < 5 ) )}
< —exp |—cnmin , .
C THvIE 72V

< Pr

Now, when ¢ is sufficiently small, that is, when

2 20112
0 d implying § < M

Vlleo

TVIE T P IVie

the simplified probabilistic bound would be

1| — 1 cnd?
Pr —‘ v (X;Y; — O'X)/)‘ >0, < —exp [——] )
{n 2 el
]

Lemma 7. Let & and £ be two p x p dimensional (random) matrices. The tail bound for the
elementwise-max norm of the deviation, for some 6 > 0, can be upper bounded in terms of their

elementwise absolute deviation, that is

Pr(ISY) = SOl > 6) < pPmaxPr( | 5 - £ > 6).
2Y)
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Proof. We can write the elementwise-max norm as,

Pr(IE® = 5@y > 8) < Pr(max | B - 5 > 4)

1,7
<Pr(uy | 2 - = > 9)
) v 1) _ @
= ZZPI"( R g 5)

i=1 j=1

< p2Pr< =5 -2 1 5>.
Inequality (i) is due to Boole’s inequality. O

Proof of Lemma 1

Proof. Recall that, for an additive measurement error model, we assume the observed
matrix is Z = X + W. Let Xy = (0w,jx)pxp, the covariance matrix of the measurement
error W for the additive model. Given S as the sample covariance matrix for the data

without any corruption, we have

A~

1
Yoadi —S=-Z"Z-%y —S

n
1 1
=——X+W) (X+W) —Zy - -X'X
n n
1+ - - - 1o+
= XX+ X"W4+-WX+-WW-3,, - - X'X
n n n n n
1 1 1
= X"W+-WX+-WW-3x,. (3.38)
n n n

Let X; and W, be the jth and the kth column of X and W, respectively, where j, k = 1,...,p.
Therefore by (3.38), we have,

A~

1 1 1
Paddijk — Sjk = EVVJTXI@ + EW/:XJ + EW]'TWIC — OW,jk-
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In order to bound this, we would now bound each term in (3.38) separately. We have that
W; = (Wi, Waj, ..., W,;) T and Xy = (Xix, Xok, ..., Xar) | are independent, zero-centered
sub-Gaussian random variables where each entry has a parameter at most o7, and 0%,
respectively, for all j and k. We also assumed that X}, and W, are independent.

For any random variable Y and a > 0, let us define the quasi-norm

YOL
Y]y, = inf {t >0:E {exp (%) < 2] } )

Here we define inf @ = oo. This is a generalization of sub-Gaussianity and sub-exponentiality.
The random variable with finite exponential Orlicz norm || - ||, corresponds to the a-sub-

exponential tail decay family which can be defined as

1
Pr(|Y]>1) < c exp(—ct®), vVt >0 (3.39)

where C' and c are constants. We have two special cases of Orlicz norms: o = 1 corresponds
to the family of sub-exponential distributions and a = 2 corresponds to the family of sub-
Gaussian distributions.

According to the Lemma 2.7.7 in Vershynin (2018) if W, and X}, are sub-Gaussian ran-
dom variables then their product would be a sub-exponential random variable. Therefore,
for two generic random variables X and W the following inequality in terms of the Orlicz
norm would hold

[XW sy < [ X N [ Wl (3.40)

We can also observe from Lemma 5.5 of Vershynin (2010) that there exist universal constants
mq, Mo, M1 and MQ SUCh that m1||Xl|12/)2 S O'g( S ]\41”)(”12)[)2 and m2||W||,L2/)2 S 0'12/‘/ S M2||W||12/12
hold. Since the inner product of X; and W; is sub-exponential in the first term in (3.38),

therefore, following Corollary 5.17 from Vershynin (2010), the sum of independent, cen-

72



tered sub-exponential random variables have the following probabilistic bound:

>0)

1 n
SO

< 1 exp | —cn min ( i 0 )]
c {max; ||Wi; Xig|lp, }> max; [|Wi; Xiglly,

< 1 exp | —cnmin ( i 0 )]
¢ {macx; || Xin oo | Wijlls 7 100 (| Xl Wi [l
1| _ 52 5

B <m Xl TV, 12, max, HXmenmjum)]

< lexp —cnmin (5—2 L)}
C I %03, oxow

where c and C' are universal constants. When 6 < ooy, the bound can be simplified to

( ZWZ]sz >§>§é [_%]

A similar bound can be formed for the second term in (3.38) as

1 . 5 )
( > 6) < — —cnmin | ——, —— | | .
c° oxO OXOW

When § < oyow, the bound can be simplified to

Pe(l >0) < gow [~ 7]

OxOw
Next, to bound the third term in (3.38) let us inspect the correlated sub-Gaussian sequences,

Z Wszz]

ZVVzk:

Z; = (Wi;, Wi,)". Here Z;'s are independent and identically distributed vectors with zero
mean and covariance Xy = (oW jx)pxp and sub-Gaussian parameter o7;,. We can directly

apply Lemma 6 to bound (W;;W;;,)/n — ow i for v; =1

(—‘ Z (Wi — owan )| 2 8) < é [—cn min (5—42 %)] .

Ow Ow
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When ¢ < 6%, the bound can be simplified to

e (4] 3208, o] 26) b 2]
=1

To upper bound for the elementwise max norm we can apply Lemma 7. Hence,
putting these three pieces together, we see that f)addi and S satisfy the closeness con-

dition in (3.10) with ¢ = max(o}y, 03, 0% 0%, oxow). For a sufficiently small d, specifi-

A~

cally for 6 < min(oxow,od,), Xaqa and S satisfy the closeness condition in (3.10) with

& = max(oyy,, 0% 0% ). O

Proof of Lemma 2

Proof. Recall that, for an additive measurement error model, we assume the observed
matrixis Z = X+ W. Let X, = (0x k) pxp and Xy = (ow,jk)pxp be the covariance matrices
of X and the measurement error W, for the additive model, respectively. Let X; and W},
be the random variables corresponding to the jth and the kth column, respectively, where
J,k=1,...,p. Here, we assume that each column X, and W), are each independently and

identically distributed with bounded moments
E[X/"] <Knx and  E[W™] < Kpnw.

Here m is a positive integer and K, x, K,, w € R". We also assumed that X, and W), for
any j and £ are independent. Given S as the sample covariance matrix for the data without

any corruption, we have

~ 1 1 1
Y. —S=-"X"W+-W'X+-W'W-3,.
n n n
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The jkth element of this matrix can be written as

A~

Eaddi,jk jk — Z ngVVzk + = Z Vszsz + — Z VV@]VVzk OwW,jk

=1 =1

1
—Z{ =X Wi + Winm WUWM awjk}

Let us define the random variable Tj(,? as

i 1 1 1 L
T = =~ XyWa + =Wy Xix + ~ Wi Wi — ~own
n n n "

and note that they have mean zero. By applying Chebyshev’s inequality, we obtain,

n 2m
] p (Z T;;)) L
=1

[iz)

- 52m

Pr

>
=1

(3.41)

Now, applying Rosenthal’s inequality (Rosenthal, 1970) to obtain that there exists a constant

Cy, depending only on m, such that

n 2m m
(Z T](;)> < O, max (ZE T(l 2m) <ZE ) )
i=1
o (Z B[(T))*") + (Z E[(J;S?)?]) ) . (3.42)
i=1 1=1
Turning to each individual expectation, we have

E[(T}))*™]

J

=K

1 1 1 1 o
(_XijWik + —Wi Xap, + —Wi; Wiy, — —UW,jk) ]
n n n n
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E { (%Xﬂmk)m} +E { (%Winik)Qm} oE { (%Wijw"k)zm}

1
2m
+ n2m UWJk

(i 1 m 1 m m m ! ‘
B 9m [nQ ]E[sz]E[Wﬁc ]+ nQ—mE[X?k ]E[VVE ]+ _E{ WiiWir) 2 }+ zma‘z/VJk]

(iii) 94m
2 — {1+ EX) "} {1+ EW;M} + {1+ EX {1+ EW™)}

+ EWEMEWET) + o3

(iv) 24m
< -
n2m

(14 Kpnx)(1+ Kpw) + (1 + Kox)(1+ Kpw) + Kpw + a%{,"Jk]

24m

= 201+ Ko x)(1+ Knw) + Ko + 0375,

where inequality (i) follows because of the relationship

k k k

O a) < k(Y an) < k(Y al).

Specifically since
(a+b+c+d)*™ <22 {a®" + 0" + "+ &P} <2 @ VP T+ P

The first and the second term in equality (ii) is due to independence between X and W'.
The first and the second term in inequality (iii) follows from the relationship E(| X|*) <
1+ E(]X|") for some positive integer k£ and n where k& < n for a generic random variable X.
The third term in inequality (iii) follows from the Cauchy-Schwartz inequality. Inequality
(iv) follows from the assumed moment bound on E[W /] and E[X™]. Now, for m = 1, we
have

(1)y2 2t
BTV <

3+ a%v,jk]
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and hence

(i E[(Tj(]?y]) : < [2:—?{3 + aﬁ,,jk}] :

i om 24mnm
< =

3™+ U%k]

— n2m
B 25mnm 3m N om
— T em Tw.jk

where inequality (i) uses the relationship (a + )™ < 2™(a™ 4 ™). Combined with the

earlier bound (3.42)

n 2m
E (Z T}?)
i=1

24mp,
25mnm . o
+ —am {3 + Umjk}]
0 C,,2mpm
S = |20+ Ko x) (14 Konw) + Kow + 07 + 273" + zmgggfjk]
Cp2tm | - .

Inequality (i) holds since n < n™. Substituting back to the Chebyshev’s inequality in (3.41)

yields the tail bound
re| [ o1
1=1
Cp2tm [ 2 "
< gz | 280 214 Ko x)(1 + Kpw) + Ko + o5, (1 4+ 2™)
M ,,20m [ - N -
S g |67+ 2004 Ko x)) (L4 Konw) + Ko + (1+27) (max o777,
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B Cm24m

nm52m

6" +2(1+ Kpx)(14+ Kpw) + Knw + (1 +2™)

where in inequality (i) the elementwise variance of I is replaced by the maximum ele-
mentwise variance max; oyw,; of Xy, which simplifies to 1 since the data are normalized.
To upper bound for the elementwise max norm we can apply Lemma 7. Hence the claim is

established. n

Proof of Lemma 3

Proof. Recall that, for a multiplicative measurement error model, we assume the observed
matrix is Z = X © W where W = (wy, ..., w,,) " is a matrix of multiplicative errors where
each row w; € R? of W is independent and identically distributed. Let E(W) = py € R?
be the known mean and Xy = (0w jx)pxp be the known population covariance matrix of
the measurement error W for the multiplicative model. Given S as the sample covariance

matrix for the data without any corruption, we have

. 1 1
Yo — S = EZTZ O (Zw + pw gy ) — EXTX
1 1
= -~(XoW) (XoW)o (Sw+mruy) - ~X'X. (3.43)

Let W, and X, be the jth and the kth column of W and X each with n elements, re-
spectively, where j,k = 1,...,p. We have that W; = (Wy;, Wa;,...,W,;)" and X, =
(X1k, Xog, - .., Xnr) | are independent, sub-Gaussian random variables where each entry
has a parameter at most o}, and 0%, respectively, for all j and k. We also assumed that W;

and X, are independent. Followed by (4.40), we have,

& 1= X Wi XaWie 1O
2rnult,jlc - Sjk = - Z A Rl L ; ZX’L]XM
=1

n= il owik
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Since the errors are multiplicative, in order to have all the Z;;’s to be close to the respective
X,j’s, we need to upper bound both X;; and W;;. To have a meaningful expression for

3, ut, We also need to impose a positive lower bound for the entries uy and Xy + puw -

We impose the following regularity conditions for the multiplicative setup:

Pr(max | Xi; < oo> =1,

i.j
m}an(W W) = M > 0,
g,

mjin i = Mmin > 0,

mMax flj = fhmax < 0O (3.44)
J
where Muyin, ftmax and fimin are constants. Under these regularity conditions, we have by
triangle inequality

A~

2mul‘c,jk - S]k

Xz Wiy XaWi 1
<’— Ml b k__ZXz‘ink
u]uk+UW]k n -

‘ ZXZ]Wl_]X’LkWZk

“Z
+E‘;XX

<
~ min; E( VVT/VT

<

(3.45)

= Z Xii Wi X Wik

Mmin ' M

In order to bound this, we would now bound each term in (3.45) separately. For brevity,
we denote the two terms on the right hand side of (3.45) by T} and 75, respectively. For
the first term, we have a product of four sub-Gaussian random variables, namely, X;, X},
W; and W;,. To find the distribution of this product we can apply the result introduced in
Lemma A.1 in Gotze et al. (2021) which states that for a random vector X = (X,..., Xx)

with marginals having a-sub-exponential tails the following relationship holds

H k
i=1

k
< Il
111% )
(A
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Therefore, for £ = 4 and o = 2, we obtain that the product of four centered sub-
Gaussians is a centered j-sub-exponential and the relationship || X; X W;Willy, , <
X5 o | Xk o | Wi W], hOlds. Neext, we apply Corollary 1.4 from Gétze et al. (2021)
which gives the probabilistic tail bound for the sum of independent, centered 1-sub-
exponential random variables with K = max; || X;; X Wi Wik ||y, pe Therefore we get for

t>0

> ¢

= 1 [ 2Vt
Pr [‘ ZXijl/VinikVVik < —exp |—cmin ( i)}

i=1 c K VK
I ( t*
= 5 eXp | —cmin 29
i {maxi HXijWinikWikH1/}1/2}
)
\/maxi HXZ‘J'M/inikM/z’kH%/z
Slexp —cmin( i 27
C {max; ([| X [l Wi llo | Xne oo | Wkl ) }
. )
\/maxi (11X g Wi o || X Nl o Wik )
| | t*
- 5 R (maxi ||‘XVZ]||121)2||VV1]||12p2||*Xrlk||z2p2”V[/Z’f“?//’z7
4 )
/12 [ X5 Wi [l | Xl W[
Slexp —cmin( r vt )] .
C oxow \/okaod,

The last inequality is due to the implication from Lemma 5.5 of Vershynin (2010) that for
two generic sub-Gaussian random variables X and W there exist universal constants m;,
ma, My and M; such that m, || X |7, < 0% < M||X]7, and mo|W]|7, < of, < My||[W]3,
hold. Now setting ¢t = dnmun, we get,

- 2.2 2 '
Pr [ 1 ZXijWinikWik > (5] < éeXp [—cmin <5 nemg .. \/m>]

4
NIMmin i—1

4 2 2
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1 . & Ve
< —exp | —Ccy/NMpyin Min TR .
C OxOw \/0%0%,

Therefore, we obtain the probability bound for the first term in (3.45) where { =

max (of0%, owox). When § < 6%0%;,, the bound can be simplified to

1 - 1 CA/NMemin 02
Pr<nmmin ;XijVVinikVVik > 5) < o P [— T

The term 75 contains product of two sub-Gaussian random variables and therefore
would follow sub-exponential by Lemma 2.7.7 from Vershynin (2018). Furthermore,
following Corollary 5.17 from Vershynin (2010), the sum of independent, centered sub-

exponential random variables have the following probabilistic bound:

n 2
Pr(‘% ;Xinik > 6) < éexp [—cn min (5_31(7 %)}

with £ = max (6%, 0% ). When § < 0%, the bound can be simplified to

u

To upper bound for the elementwise max norm we can apply Lemma 7. Putting

1 cnd?
> < — —
_5) < C’exp[ p ].

1 n
- ;‘ Xi; Xin

these two pieces together, we see that imult and S satisfy the closeness condition in
(3.10) with ¢ = max (of,0%, owox,0%,0%). For a sufficiently small §, specifically for

A~

6 < min(c%0d,,0%), Tmue and S satisfy the closeness condition in (3.10) with § =
max (o5 oy, oy )- O

Proof of Lemma 4

Proof. For a multiplicative measurement error model, we assume the observed matrix
is Z = X ® W where W is a matrix of multiplicative error. Let 3% = (0x j1)pxp and

Sw ik = (ow,jk)pxp De the covariance matrices of X and the measurement error W, for the
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multiplicative model, respectively. Let X; and W), be the random variables representing
the jth and the kth column, respectively, where j,k = 1,...,p. Here, we assume that
each column X; and W), are each independently and identically distributed with bounded
moments

E[X/"] <Knx and  E[W™] < Kpw.

Here m is a positive integer and K, x, K,, w € R". We also assumed that X, and W), for
any j and £ are independent. Given S as the sample covariance matrix for the data without

any corruption, we have

~ 1 1
Zte =8 = (X © W) (X0 W) (Sw + pw i) — EXTX.

The jkth element of this matrix can be written as

& LY XiWiy XaWa 1
S e it — Sji = _Zz_l gWijAikVVik - ZX“XAI“
=1

no ikt oWk

(1 X W X W 1
zz{_ Wiy X Wi ——Xinik}.
= n (Wjpe + owjk)  n

Let us define the random variable Tj(,? as

T = - IR X X,
n (Mjluk + UW,jk) n

and note that they have mean zero. Applying the regularity conditions defined in (3.44),

we have,
o XyWyXaWa 1
Tj(k:) =R —XijXik

NMmin
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where m;, is a constant and it is defined in the proof of Lemma 3. By applying Cheby-

shev’s inequality, we obtain,

Pr

n n 2m
‘ Sl > 5] < Pr (Z 7}??) > §°m
=1

e[(e.78)’]

< o . (3.46)

Now, applying Rosenthal’s inequality (Rosenthal, 1970) to obtain that there exists a constant

C,,, depending only on m, such that

(i:T;,?) < (), max (ZE T(l 2m) (ZE ) )
Cn (Z BT + (Z E[(J;S?)?]) ) 6w

Turning to each individual expectation, we have

E[(T)))*"] =E

n Mmin

2m 2m
1 1
{ Xz‘jWinik:VVik} + {_Xinik} ]
MminT n

. 1
om, 2myyr2m y-2m 2m xr2m
<2 [WEP% Wi Xt Wil + o BLXG" X ]]

2m
1 X, Wiy X Wa 1
{— e ’“——Xinik}
n

2 i

min

Q 22m 1 m m m m m m
= m [mmE[ij XM EWET WA + E[X2" X }]
(i) 92m

n=m an
< 77/2_m 2m Km,XKm,W + Km,X
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where inequality (i) follows because of the relationship (Zle a;)" < k"t (Zle al). Specif-

ically, since (a + b)*™ < 2*™(a®™ + b*™). The first term in inequality (ii) follows since X and
W are independent. The terms in inequality (iii) follows from Cauchy Schwartz inequality.

Inequality (iv) follows from the assumed moment bounds on E[X "] and E[WW}"]. Now

1+ !
m2. |’

min

" aa Y [2%n 1 ]"
(ZE[@%)?}) S [F{ng, H
=1 min
0 23mnm 1
S n?m 1 + m2m

where inequality (i) uses the relationship (a + b)™ < 2™(a™ + ™). Combined with the

for m = 1, we have

22
"2

E[(T)°] < ~

Hence,

earlier bound (3.42), we have

22mp, 1 23mpm 1
nQ—m{mWKm’XKm7W + Km,X} + n2m {1 + m2m }]

min min

n 2m
o (Sr) | <cn
i=1

W C,22mpm |1 2
S om [ o°m Km,XKm,W + Km,X + W]
n min min
C,22m | 1
S [ 2 <2 + Km,XKm,W> + Km,X]
n'" mmniln

Inequality (i) holds since n < n™. Substituting back to the Chebyshev’s inequality in (3.46)

yields the tail bound
~ Crn22™| 1
pri| T > 0] < [QO (2 ' Km’XKm’W) ' Km’X]
i=1 min

To upper bound for the elementwise max norm we can apply Lemma 7. Hence the claim is

established. O
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Consistency of ® and its error in elementwise /.- norm:

For completeness, we now present the results required to show the consistency of ©. The

framework for the proofs are adopted from Ravikumar et al. (2011).

Lemma 8. For any A, > 0 and the projected sample covariance X with strictly positive diagonal

elements, the (-regularized log-determinant problem has a unique solution © characterized by

-0 +MZ=0 (3.48)
where Z is an element of the sub-differential 8|||@|||1,Oﬁ.

Proof. If A, > 0, then the CoGlasso objective function can be written in an equivalent

constrained form using Lagrangian duality as follows:

min @7i — log det(® 3.49
@es$+,|u@|u1,off<cun){« ) g det( )} (3.49)

for some C'()\,) < co. The behaviour of the objective function for sequences with possibly
unbounded diagonal entries is the only possible concern, since the off-diagonal elements
remain bounded within the ¢;-ball, since, [|®ll; .+ < C'(A,,). The diagonal entries would be
positive since any © in the constraint set is positive-definite. We can show this by using
the standard basis vector ¢; defined by e; = 1 at the i*" position and zero otherwise for
i=1,2,...,p. Since O is positive definite, then 2" ©z > 0 for any non-zero vector = € RP.
Then e/ O¢; = ©;; > 0, foralli = 1,2, ..., p, showing that the diagonal elements are indeed
positive for a positive definite symmetric matrix.

Next, we can upper bound the term log det ® using Hadamard’s inequality (Horn and
Johnson, 2012) for positive definite matrices which states that det ® < [["_, ©,;. Therefore,
we can write logdet @ < >~?_ log ©;;. Since the off-diagonal elements are bounded within

the ¢;-ball, so we only need to show that the following function involving the diagonal
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elements is coercive, that is,

i=1 =1

diverges to infinity for any sequence indexed by ¢, ||©},,...,0] [|» = 400, as long as

3 > 0 for each i = 1,...,p. Therefore, the minimum is attained. Here, — > ?_, log ©;; is
termed the logarithmic-determinant barrier function and it is strictly convex since ®;; > 0.
By the strict convexity of the log-determinant barrier, the minimum would be unique.

For the regularized form, the matrix O c S% | is optimal if and only if the zero matrix
belongs to the sub-differential of the objective, or equivalently if and only if there exists a

matrix Z in the sub-differential of the off-diagonal norm || - [l; .« evaluated at © such that

>-6 +AnZ = 0, as claimed, by standard optimality conditions for convex programs. [J

The following lemma provides sufficient condition to show that step (d) from the

primal-dual witness condition, the strict dual feasibility holds, so that |||Z|||mX < 1.

Lemma 9. [Strict dual feasibility.] Suppose that

a,

8

max { MW llmax, 1 2(A) llmax } < (3.50)

Then the vector Z se constructed in step (c) of primal-dual witness condition satisfies |||Z gellmax < 1,

and therefore © = o.

Proof. We can re-write the stationarity condition (3.48) using (3.19) and (3.20) as

0=2-0  +\Z (3.51)

S0 10 — (01 () IAO) ! — R(A) + \Z

=3 — () + (0" TAO) T — R(A) + N\ Z

=(@")'A(O") '+ W - R(A) + \,Z

86



This can be re-written as a linear equation by “vectorizing” the matrices. Let us use the
notation vec(A) or equivalently A for the vector version of the set or matrix A, obtained

by stacking up the rows of A into a single column vector.

vee((©)TA(@Y) ) = (@) @ (@) H)A =T"A.

Equation (3.51) can be decomposed into two blocks of linear equations in terms of the

disjoint decomposition S and S¢ as follows:
F*SSAS + WS — RS + )\nis =0 (3.52)

I oAg + W — Rge + A\Zge = 0, (3.53)

since by construction Ag. = 0. We can solve for Ag from (3.52) as follows, since 'y is
invertible:

As = (Tis) " {~Ws + Rg — MZs}

Substituting this into (3.53), we can solve for Zse as follows:

= 1 _ _ _
Zge = ™ {-T4sAs — Wge + Rge }

1 * * — X N > X N
= {—1“3cs(Fss) ! {—WS +Rs — AnZS} W + RSC}
1 * * — X D * * 17 1 X D

Next, we take /,,-operator norm on both sides and apply the triangular inequality

HZSC

1 * * — X N * * —17
o < )\_HF cs(T55) '(Ws = Rg) oo + IT6cs(Tss) ' Zs |l

1 _ _
+ )\_<||W5°||oo + HRSC OO)

) 1 * * — X N * * — >
< 1 IT5es(Tss) ™ oo ([Wslloo + [Rislloc) + [T5es(Ts) ™ Mool |Zs oo

n
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+ (Wl + Rl
< “;n‘“)<r|ws|roo #Rslle) + (1= @) + 3-(1Wse o + [ R )
< (1= )+ (I Wike + [Rll) = 1 (I Wl + [ R
(ii) 2
<(1-a)+ % — %
<l—-a+ 5
<1,

as claimed. Inequality (i) holds because of sub-multiplicative property of operator norms,
|AX][oo < Ao ||X||co- Inequality (ii) is due to the mutual incoherence condition (3.18)
and the fact that || Z slleo <1, by construction. The third inequality utilizes the assumption

made in the statement of Lemma 9. O

The following lemma is to relate the behaviour of the remainder term (3.20) to the

deviation A = © — ®".

Lemma 10. [Control of Remainder.] Suppose that the elementwise {-bound || Allmax < 1/(3kx+d)

holds. Then the matrix J = "2 (—1)*((©*) "t A)¥ satisfies the (.- operator norm || Il < 3/2,

and moreover, the matrix
R(A) = (0" TA(O@") TAJ(O") !, (3.54)
has elementwise {~,-norm bounded as
IR(A) lmax < dIIIAIII e (3.55)
Proof. With A = © — ©*, the remainder term can be rewritten as follows:

R(A)=(©"+A)" —(©) " +(0)A(@)"
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Using matrix expansion of the first term in the expression of the remainder term, we get

(O +A) = (0 (1+(©)'A)!

=(I+(©)a)7 (e
Z A)f (e
_ (@*)—1 . (@*) IA @* -1 + Z ) (@*)

k=2

— (9*)—1 _ (@*)—1A(®*)—1 + (@*)—IA(G*)—lAJ(G*)—l

where J = Y77 (—1)*((©")1A)*.
To prove the bound for the remainder term, let e; denote the unit vector with 1 in

position i and zeros elsewhere. We have,

IR(A) lmax = maxye (O TA(O)TTAJ(O) e |
Q)
< max |[le] (") ' Al [|(©F) T AT(O) ey
z’.]

= max ||€¢T(9*)_1A|!oomﬁx I(©") " AJ(O") ¢y

(ii)
< max e (©) 7 [ A e max || (©7) 7 AJ(O7) e

(iii)

< (O Mool Al max l(OF) T AT (©F) Iy
OO ol Allmaxl(©F) 1 ITA(O) Yl
< K I AN max 1 (OF) T I NI T oo ll Alllso

.
< Rz Al max 1T o Il Al o

where the first inequality follows from Holder’s inequality. The second inequality follows
since for a vector u € R?, [[u’ Al = max; | >, uilij |< I AN max | Doy wi [< lulli 1A max-
The third inequality uses the fact that | Al = max; ) i | ai; |, i.e. the maximum absolute

row sum of the matrix and [|A|l; = max; ), | a;; |, i.e. the maximum absolute column
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sum of the matrix. The fourth inequality follows from the relationship [|A[l; = AT llso-
The last line following by using the definition of ks = [|(©*) !l .
Since J = Y 77 (=1)*((©*)"'A)* and using the submultiplicativity of || - [l., matrix

norm, we have,

1 1 3

> 1
1T e <) NA(OF)HE = . < . <=,
kz_% (©°) =A@ )l ~ 1= (O UlullAllee ~ 2/3 2

because [1(0*) Ml Allw < 1/3 from (3.56). We can verify that by applying submulti-

plicativity of the || - loc matrix form to the term (©@*)~'A. For any p x p matrices, we can
write
*\ — S\ — @ 1
1(O*) " Alles < (O) Mol Al < ks dll Allimax < 3 (3.56)
where d is the maximum number of non-zeros in any row/column of A and rx+ = |X* .

We also used the fact [|[Alloo < dllAllmax. This is true because

AN = Hliaxz | ai; |< mzax(d. max | aij |) = drr%z}x | aij |= dll Allmax-
j b2

Inequality (i) follows from the assumption stated in the lemma that [| Allmax < 1/3k5+d.

Therefore, we have

3
HR(A) Nmax < = K33 Il Allmascll Alloo
2

3
< 5d|||A|||2 K,

max
since Al < dll Allmax, as A has at most d non-zeros per row /column. Hence the proof
is complete. O

To prove the sufficient condition for /,.-bounds, the next lemma provides control on

the deviation A = ©® — ©*, measured in elementwise /., norm.
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Lemma 11. [Control of the Error Deviation.] Suppose that

1 1
= 2K+ W max )\n S I ) 3.57
where ks = 1(Teg) oo, fxr = NI oo and W = > — *. Then we have the elementwise (-,
bound
A lmax = 10 — O llipax < 7 (3.58)

Proof. As proved in Lemma 8, we can conclude that the regularized problem (3.49) has a
unique optimum 0. We proceed by noting that e) ge = O%. = 0, so that | Allmax = 1A sllmax-
We get the zero-gradient condition by taking partial derivatives of the Lagrangian of the
regularized problem with respect to the unconstrained elements ®g, since the partial

derivatives are zero at the optimum
G(O5) = —O5' + g + M\ Zg = 0, (3.59)

where © is the p x p matrix with entries in S equal to ®¢ and entries in S¢ equal to zero.
The zero-gradient condition is necessary and sufficient to achieve an optimum of the
Lagrangian problem and therefore the problem has O as the unique solution.

Tobound A = © — ©®*, we want to show that there exists a solution A to the zero-

gradient condition (3.59) that is contained within the ball
B(r) = {Os | 1Osllmax <7},  withr = 2kp {I/W llmax + An} - (3-60)

Then, by the uniqueness of the optimal solution, we can conclude that Q-0 belongs to
B(r). To do so, let us first define the error deviation in vectorized form, Ag = E:)S — (:)*S.

Next, let us define a continuous map F' : Ag — F(Ag) such that its fixed points are
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equivalent to zeros of this gradient expression via
F(Ag) = As — (Tss) " (G(O% + Ag)), (3.61)

where G denotes the vectorized form of G. We have, by construction, F(Ag) = Ag holds if
and only if G(©% + Ag) = G(Og) = 0. We can now apply Brouwer’s fixed point theorem
which states (Ortega and Rheinboldt, 2000) that for any continuous function f mapping a
compact convex set to itself there is a point z, such that f(x) = .

Since F is continuous and B(r) is convex and compact, by Brouwer’s fixed point
theorem, this inclusion implies that there exists some fixed point Ag € B(r). Therefore,
we can claim that F(B(r)) C B(r), that is, " indeed has a fixed point inside B(r). By
uniqueness of the zero gradient condition and hence fixed points of F, it can be concluded
that 05 — O llmax < 1-

Let A € RP*P denote the zero-padded matrix which is equal to Ag on S and zero on S°.

We can rewrite the zero-gradient expression by adding and subtracting [(©*) |5

G(O5 + Ag) = —[(O" + A) Vs + Es + MZs (3.62)
= —[(©" + A) s + (Zs = [(©")s) + [(©) s + AuZs

= (@ +A) Vs +[(©) s + Wy + A Zs,

by using the definition of W = ¥ — &*,
Next, we can write the vectorized form of the remainder term (3.20), restricting the

entries to S as

Rg = vec((@* + A)™' — (©*) 1)) g + vec((@*) TA(O") )4
= vec((@ + A)H = (0")))s + ((©) ' @ (0%) )ssAsg

=vec((@* + A)' — (@) 1)g + TigAs.
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This expression is equal to the vectorized form of expansion (3.54) where the entries

are restricted to S. Therefore,

vec((@* + A) 1 — (@) 1)g + TigAg = vee(((OF) TA)PI(OF) )4 (3.63)

= vec((©" + A)™ — (©7)7))s = vec[((©") T A)?J(O7) |5 — TysAs
We can rewrite (3.61), combined with (3.63) and (3.62),

F(As) = As — (Tg) 7 (G(OF + Ag))
= As+ (Tss) vee {(0° +A) 7 — (0)7) = Wy — MZs} s
— Ac+ (i) {vecl(07) T APIO) s - TisAs) — (Thg) ™ { Wi + A Zs
_ A (D) "ThoAs + (The)~! {vecl((©7) ' A)23(©7) s}
— (i) { W + \Zs |

= (D) {vec[((©7) L A)2I(©") Vg ) — (Tg)” {v‘vs + Anis} . (3.64)
Notice, that for any Ag € B(r), by sub-multiplicativity of the || - [l.. we have
H(©*) ' Alle < (O*) Mol Alloo < ks dll Allmax,

where [[A[lm.x and [[Afl denote the elementwise /,,-norm and {.,-operator norm re-
spectively with d being the maximum number of non-zero entries per row/column of
A.

Now, we can apply the results of Lemma 10 to the error deviation. By definition of the

radius r and the assumed upper bound defined in (3.57), we have

AN max <7 <
e 3ﬁg*d
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We can take (,-norm on both sides of (3.64), use the triangular inequality and submulti-
plicativity property of matrix operator norms to calculate our desired bound. Beginning

with the second term, we have

1T56)™ { W + MZs | llse < WT55) " ool Wsllow + An)

where the inequality follows from the assumed upper bound in (3.57).

To show the bound for the first term, we have

[(Tss) ™ {vec[((©) AP T(O) s} lloo < M(T5s) ™ Mloo|[vec[(©7) T A)2T(O) " s]lo

RSHOO

< Kr*

< K+ IR(A) llmax

max

() 3
< Kr*§d|||A|||2 Ky

where the first inequality follows by applying the bound from Lemma 10. Since r <

1/3dk3,. kr- by assumption (3.57), we conclude that

1

3dK3. ks

(T35 {recl((©7)*AI(O7) s} I < Sdirr r<t

Therefore, putting the pieces together, we can establish that

I Allnax = 10 — O llinax < 260+ {IW llnax + A}t -
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A guarantee on the sign consistency of the primal witness matrix © can be achieved by

lower bounding the minimum value ©;,; with a combination of Lemma 11.

Lemma 12. [Sign Consistency of Oracle Estimator.] Suppose the conditions of Lemma 11 holds

*
min

and further that the minimum absolute value ©;,, of non-zero entries in the true concentration

matrix O is lower bounded as

then sgn(©g) = sgn(©%) holds.
Proof. We have, from the bound (3.58), | éij — O} |< 7, V(i,j) € S. Therefore, combining
the definition of r, we can write

| ©j — 05 < 260 (W llmax + An)-

This yields that for all (7, j) € S, the estimate éij cannot differ enough from ©;; to change

sign. [

Proof of Theorem 2

Proof. Using the lower bound on sample size n (3.32) and the monotonicity condition

(3.13), we can write

1 _
6= > 5. (n, ")
26 (1+ (8/0) )0,
= ! — > 1
26 (14 (8/0) ) 0. (n,p7)
— 1 > Ornin

2Kk (1 + (8/a))5f*(n7p’y)

= Opin > 2K+ (1 + (8/04))5_f*(n,p7) > 4K (1 + (8/a)>5f*(n,p7).
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Therefore, from Theorem 1 we have the equality e = @, and also that |||@ — O Mlpax <
Omin/2 With probability at least 1 — 1/p?~2. We can apply Lemma 12 which guarantees
that sgn(@)ij) = sgn(@;;) for all (i, j) € E. To conclude, we establish that with probability
at least 1 — (1/p"2), the sign consistency condition sgn(@ij) = sgn(©;;) holds for all

(i,7) € E. O

Proof of Corollary 1

Proof. Theorem 1 guarantees that with probability at least 1 — (1/p"~2) that [|© — ©* [l yax <
2K (1 + 8/ a) 1. (n,p7). Recall that ©* has at most s + p non-zero elements, where,
s =| E(®") | denotes the total number of off-diagonal non-zeros in ®* and p is the number
of diagonal elements. Since the edge set © is a subset of the edge set of ®*, we can conclude

that

1/2
p

10— ©%llr= |} (©:—©})°+ ) (6; -0}

i=1 (.)€ E

< V5T pllO — O [lmax
— 2np (14 (8/a) )3y (n, 0 )V5 T p,

The inequality follows from the fact that Al » < Vid Al masx, if the matrix A has d non-zero
elements.

Notice that for a symmetric matrix, we have

~ (ONEPN (@)~
10 —O%ll; <lI® — O%lls < dll© — O llnax (3.66)

where the first inequality follows from the equivalence relationship between the [, and
l-operator norm and the second inequality follows from the fact that for a matrix A,

ANl < dll Allmax, where d is the maximum number of non-zero elements per row /column.
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Since the Frobenius norm upper bounds the operator norm, therefore, as claimed, we have

10 — ©°ll; < {26+ (1+ (8/0)) b min {/5Fp.d} dy. (n,p").
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Chapter 4

Joint Estimation of Regression
Coefficients and Precision Matrix in

Noisy Data

In Chapter 3, we were only interested to inspect the graphical structure of the p-dimensional
vector X := (Xi,...,X,)" € R”. In this Chapter, we introduce a ¢g-dimensional random
vector as responses Y := (Y7,...,Y,)" € R? and want to inspect the conditional relationship

of Y given X in the presence of missing data in the responses.

4.1 Introduction

Consider a ¢-dimensional Gaussian random vector Y := (V;,...,Y,)" € R? and a p-
dimensional deterministic covariate vector X := (Xi,...,X,)" € R?. We assume that
Y and X have been centered, thus the intercept term is omitted. Assuming that the under-
lying random variables Y come from a multivariate Gaussian distribution, we can form a

linear relationship between Y and X as

Y =B""X +¢ (4.1)
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where B* € RP*? is the matrix of regression coefficients and ¢ € R? is the random error
assumed to follow a multivariate Gaussian distribution with mean zero and covariance
3. € R%9. The model in (4.1) implies that the regression function has the form E(Y|X) =
B*" X and also Cov(Y|X) = X7..

Suppose we have n independent and identically distributed observations from some
joint distribution of Y and X denoted by D(Y, X). In matrix notation, we can rewrite (4.1)

as a model of n stacked observations
Y = XB* +¢, 4.2)

where X = [x1,...,%,]' € R”Pand Y = [yy,...,y,] € R™ denote the data matrices,
and € = [g1,...,&,|" € R"* denotes the matrix of random noises. We assume that the
design matrix X has normalized columns, that is, (1/n) > | 27, = 1 forevery j = 1,...,p.
Typically, the goal is to estimate the coefficient matrix B* and the covariance X7_. Before
stating the ways to solve this problem, let us define some notations that we will use

throughout the chapter.

Notation and Conventions: In this chapter, we will denote a random variable by an
uppercase letter and an data matrix with uppercase bold letter, for example, A is a random
variable and A is a data matrix.

For a matrix A, we denote by A > 0 when A is positive semi-definite. Let [|All; be
the operator norm induced by ¢; norm for vectors, which can be computed by [|All; =
max; » . | a;; |, i.e. the maximum absolute column sum of the matrix. Denoted by
llAll; the operator norm that can be computed as the greatest singular value of A, i.e.
IAll; = max; 0;(A). Let [|Allo be the operator norm induced by /., norm, which can be
computed by [[A[lo = max; ) ; | a;; |, i-e. the maximum absolute row sum of the matrix.
We also introduced the following elementwise matrix norm. Let [|A|l;; = Zz ; | a;; | be

the elementwise ¢;-norm, |Allp = />, ; | a;; |? be the Frobenius norm, and [| Al max =
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max; ; | a;; | be the elementwise maximum norm. Let A,,(A) and Apax(A) denote the
smallest and largest eigenvalues of A.

For two matrices A = (a;;) and B = (b;;), we define A ® B = (a;;b;;) as their
elementwise product, and A @ B = (a;;/b;;) as their elementwise division. For any
a € N={1,2,...}, we denote [a] = {1,...,a} as sample indices. For instance, if  is an
index set, we write, I C [g] or I C [p] x [¢]. If a € R? and if I C [p], we use a; to denote the
same vector as a but with elements [p]\/ set to zero. We denote the (k,)th element of a
matrix M by (M), its kth row by (M), and Ith column by (M),,.

Let Q be a generic Euclidean space. Let M and N be any conformable matrices or
vectors in Q. Let us define the inner product (-, -) as (M, N) = tr(M'N). For a norm R

defined on Q, the dual norm R* can be defined by

M) = sy MUN)
& (M> B NGQ\P{O} (N) ‘

4.1.1 Model Setup

To jointly estimate B* and X}

ege’

Rothman et al. (2010) proposed a method called multivariate
regression with covariance estimation (MRCE) to estimate B* and O}, := (X..)"! by

minimizing the negative log-likelihood with ¢; penalization as follows:

(@, ]§) = aég;)nén tr in(Y ~XB)'(Y -XB)®| - %log det(®) + Aall®ll1on + AslIBIl1,1

. (4.3)
where (1Ol o = Zj,# 1©,1, IBll1 1 = Ej,k |Bjk|, and Ae, Ag > 0 are tuning parameters
controlling the sparsity in © and B, respectively. In the case of fully observed data,
Equation (4.3) can be efficiently solved when the error vector ¢ is uncorrelated. When 337,
is assumed to be diagonal, that is, all off-diagonal elements of 37, are zeros, the objective
function in (4.3) can be solved by a series of separate standard Lasso problems, equivalent

to performing ¢ separate penalized least square regressions. Rothman et al. (2010) showed
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that the estimation accuracy can be improved by exploiting the additional information
when the response variables are correlated.

When there are many predictors and responses, prediction with a multivariate regres-
sion model becomes challenging since it is required to estimate pg parameters. When the
responses are correlated, the assumptions of sparsity on both B* and the off-diagonal
elements of ®, becomes necessary to be able to estimate the additional O(¢*) parameters

in ®,. Whenn < pors = |S| < pg, where S = {(j, k)|Bj, # 0} is the support of

|B)
B*, assuming sparsity in B* and ©?, considerably reduces variability in the estimation.
Under the multivariate normal assumption, the precision matrix has the interpretation
of a conditional Gaussian graphical model (Lauritzen, 1996), since a zero off-diagonal
element implies conditional independence among the covariates. Since ®;, captures the
conditional dependencies among the response variables, the resulting network structure
becomes highly interpretable.

The standard methods proposed in the literature to solve the problem in (4.3) are
established when the data are fully observed. A detailed review of those works are
presented in Section 2.3 of Chapter 2. However, in practical applications, the data may be
corrupted or missing such that the responses or the covariates are only partially observed.
A naive way to handle missing data could be to delete all the cases that contain missing
values either listwise or pairwise and work with the complete cases only. However, that
would result into decreased statistical power, substantial information loss and may lead to
biased estimates when the data are not missing completely at random (MCAR).

Other ad hoc imputation based methods are also available in literature where the
missing observations are imputed by the corresponding mean along with more systematic
approaches based on likelihoods (Little and Rubin, 2019; Schafer, 1997). Stiddler and
Biihlmann (2012) developed an Expectation Maximization (EM)-based method for sparse
inverse covariance matrix estimation, which can be used in missing data scenarios. The

challenge with classical approaches is that they do not often scale to high-dimensional
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problems and it becomes difficult to provide theoretical guarantees to their algorithmic
counterparts. Errors-in-variables regressions (Hwang, 1986; Xu and You, 2007) had been
extensively studied in literature. Loh and Wainwright (2012) studied the case when the
observed covariates are corrupted in univariate regression (¢ = 1) under high-dimensional
settings when p > n. They proposed an unbiased surrogate estimate of the sample
covariance matrix based on Xu and You (2007) and provided a non-convex solution
proving that under some restricted eigenvalue conditions and deviation bounds, the
projected gradient descent method converges to a near-global minimizer. One criticism
of such a non-convex solution is that it depends on an additional side constraints that
requires knowledge on some unknown constants a priori that we actually want to estimate.
The convergence rates and the computational results depend on this assumption and
therefore, it makes this approach difficult to use in practice.

Datta and Zou (2017) proposed the convex conditioned Lasso (CoCoLasso) by defining
a nearest positive semi-definite matrix projection operator for square matrix that makes the
underlying optimization problem to be convex. It is well known that there are theoretical
and computational benefits of convexity, which makes this approach more lucrative.
Unlike the non-convex approach by Loh and Wainwright (2012), the projected surrogate
estimator of the sample covariance matrix is guaranteed to be positive semi-definite,

thereby ensuring the convexity of the problem.

4.1.2 Unbiased Surrogate Estimators with Corrupted Responses

In this work, we extend the results of Loh and Wainwright (2012) to the case of multiple
responses but using the projected surrogate estimates of the sample covariance matrix as
proposed by Datta and Zou (2017) instead of a non-convex approach. We propose to solve
(4.3) when the data are not fully observed and contains missing data. We propose a three
step estimation to the problem defined in (4.3) when the data are corrupted and may be

missing completely at random (MCAR) in a high-dimensional setting.
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Multiplicative noise

In this section we establish the general formulation of the model for missing data, since
missing data are a special case of multiplicative error. Let Y € R"*? be the unobserved
response variables and W € R"*? is a noise matrix with (7, j)th element w;; > 0, so that
we have an observed response data matrix Z =Y © W. We assume that the rows w;, of
W are drawn independently and identically from some multivariate distribution having
strictly positive entries in the first and the second-order expectations p,;, = E[IV] € R? and
E[WWT] € R?*9. For simplicity, we assume that the mean and covariance of W are known
or can be estimated from the data.

We can expand the quadratic terms and rewrite (4.3) as

(©,B) = arg min tr §(syy —-25,,B+B'S,,B)O®| - 5102 det(©) + Xoll®ll1or + A5lIBIlL1,
=0,

(4.4)

where S, = 1Y'Y, S,, = :X"Y and S,, = XX are empirical covariance matrices,
which are unbiased estimators of ¥} = E[YY '], ¥} = E[XY '] and X}, = E[XX],
respectively. Since we do not observe the clean data matrix Y and only observe the
corrupted version Z of the response matrix, we cannot directly estimate ®;, and B* using
(4.4) because S,,, and S,,, are biased estimates. Following Loh and Wainwright (2012) we
can calculate the alternative unbiased surrogate estimator §yy and §xy by calculating the

sufficient statistics:

o 1 o 1
S,y = EZTZ QEWW'], S,, = EXTZ o [EW],...,E[W]]". (4.5)
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Then the estimates of ®7, and B* can be obtained by solving the following optimization

problem:

(©,B) = arg min tr[§(syy -2S,,B+B'S,,B)6] - 3 log det(©) + Ao ll®ll1 ot + ApliBll1 1.
=0,

(4.6)

To incorporate the missing data case in the objective function of the fully observed case
(4.4), the empirical covariance matrices S,,, and S,, have been replaced with their unbiased
surrogates §yy and §xy. Notice that S,, remains unchanged since we are assuming that the

covariate matrix X is fully observed.

Missing data

Since the missing data case is a special case of the multiplicative measurement errors, we
construct a missing complete at random scenario where the entries w;; of W are assumed
to be independent Bernoulli (1 — p;),Vj = 1, ..., ¢ random variables with values

1 with probability 1 — p,,

Wiy — P Yoo 4.7)

0 otherwise.
That is, each element of Y in the jth column has probability p; of being missing. We
observe z;; = y;; with probability 1 — p; and zero otherwise. Under the missing completely
at random assumption, E[IW] and E[WW '] have the following specific forms:

1—p)(1—p;) ifi+#j,
BV] = (1= pu)ee (1= o)), Bww T}y — 4 Pl HEL g

(1= pi) ifi = j.

The problem reduces to the standard MRCE model (Rothman et al., 2010) for fully observed

data when p = (p1,...,p,)" = 0. However, in practice, p may not be known and must be
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estimated empirically from the data. Loh and Wainwright (2012) suggested estimating p;

using p;, where p; is the empirical missing probability of the jth column.

4.2 Estimation

4.2.1 First Stage Estimation of the Coefficient Matrix B*

In the first stage, we assume that there is no correlation among the response variables, that
is, we assume the precision matrix to be an identity matrix (® = I). This assumption lets
us to perform a column-by-column estimation of B*. Assuming that B* is elementwise
sparse, we obtain a preliminary estimator B(") by regularizing the least squares problem

with ¢, penalty:
BY = arg min tr(B'S,.B/2 - S.,B) + AslIBIl 1, (4.9)

where §$y is an unbiased estimator of E[XY "] defined in (4.5). This loss function is
convex because X is fully observed and therefore S,, is positive semi-definite. Define
B = [Bl, o ,Bq] with /th column as Bz = (Bll, o ,Blp)T € RP. We can compute each
column of B, by considering (4.9) as a column-by column solution of multiple penalized
least squares problems with univariate response.

Let us define the least square Lasso loss function £; : R?» — R foreach ! =1,...,¢,i.e.

for the Ith column of B* by setting for arbitrary 8 € R?,

Bz = arﬁg flg)in Li(B) + NR(B), (4.10)

. T . .
where £,(8) = 6TSmﬁ/2 — {(Sxy).l} B where (S,,). denotes /th column of S,,. and
R : RP — R with R(-) = || - || is the penalty function. Hence the problem can be solved by

various efficient algorithms for the standard Lasso.
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4.2.2 Estimation of the Precision Matrix ©}_

In the second stage of the estimation, we estimate ®_, by the solution to the graphical

Lasso problem

arg min {<@, S..) — log det(©) + Mo |||@|||1,oﬁ} , 4.11)

OcR1%9:0>~0

where S,. = S,, - BOTS,,BY is a plug-in estimate of the covariance, in which S, is
an unbiased surrogate estimator of E[YY '] and B® is estimated in the first step. This
should lead to an improved estimate of the regression coefficients in the third stage of the
estimation since we take into account the dependence structure of the precision matrix.

Since we are interested to estimate the precision for the responses which is prone to
having missing data, as discussed in Chapter 3, the objective function may no longer
be convex since the input estimator of the covariance matrix §8g may not be positive
semi-definite. We can illustrate this phenomenon for a specific situation. Suppose that
all columns of responses have the same probability p € [0, 1] of being missing, hence §yy
has a certain form so that S,,, = Z7Z/n — p;diag(Z"Z/n), in which %; = z;/(1 — p;). In
fact, when n < ¢, §yy is guaranteed to have a large number of negative eigenvalues even
if under a moderate missingness, given the fact that ZTZ/n has rank at most 7, so the
subtracted diagonal matrix may cause §yy to have negative eigenvalues. As a result, a
non-positive semi-definite estimate of the covariance matrix §55 makes the the objective
function in (4.11) non-convex and unbounded from below.

To avoid the non-convex objective function and to ensure the positive semi-definiteness
of the covariance matrix, we can easily project S.. onto the semi-definite cone (Datta and
Zou, 2017) to produce an update gag and substitute for §55 in (4.11). We can define a nearest

positive semi-definite matrix projection operator for any square matrix S.. that

S.. := argmin ISe. — Kllmax (4.12)
K>0
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where K is a positive semi-definite matrix and || - [Imax is the elementwise maximum norm.
As established in Chapter 3, this is nothing but the CoGlasso estimate and can be obtained

as a solution to the objective function

(:)gg = argmin {(@7 ggg) —log det(®) + Ao |||@|”170ﬁ”} (4.13)
OcRIX1:@-0
where S.. = §yy — BMWTS, B, Since S,, is positive semi-definite by construction,

therefore S, is guaranteed to be positive semi-definite by definition. The problem in (4.13)

can be solved using our CoGlasso algorithm.

4.2.3 Second Stage Estimation of the Coefficient Matrix B*

In the last stage of estimation, we utilize the estimated precision matrix @)ae in the previous
stage to get a refined estimate of B*. Solving for B® with a fixed plug-in estimate O.. is

equivalent to finding the solution to the objective function
B® = argmin tr[(B"S,,B/2 — S] B)O..] + AslIBll,:. (4.14)
B

The problem in (4.14) can be solved using a proximal gradient descent algorithm, specifi-

cally an iterative soft-thresholding algorithm (ISTA) in this particular case of an /;-penalty.

4.3 Theoretical Properties

4.3.1 Recovery Rate for B

The following assumption is imposed on the population covariance matrix to mildly
control the error of the lasso solution. Under unfavorable settings, where the loss function
is flat around its minimizer, it is not necessarily true that a small loss difference implies

a small error. Especially, in high-dimensional settings, we can only hope to obtain some
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form of restricted curvature of the loss function in certain directions, specifically, along the

cone set C(.5;) defined below, under a sufficiently large sample size.

Assumption 1 (Restricted eigenvalue condition.). Define the cone set

C(S) = {0 R : [|(9)s¢llr < 3[I(d)sll1 }-
We assume the following restricted eigenvalue condition (Page 208, Wainwright, 2019) for S,
over C(S)),

80, 6eC(sy) ||0]]3

We would require the following Lemmas to prove Proposition 1. Without loss of
generality, we can write the /th column of the true regression coefficient matrix as 3; =
( EZT, 0")" and the corresponding X = ((X)as,, (X)ss¢). Hence, the true model for the ith

column of Y can be written as (Y )s = (X)es5,85, + (€)al-

Lemma 13. Assume that each row of the error matrix e € R"*? and each row of multiplicative error
matrix W € R"*? are two sub-Gaussian random vectors where each elements of the vectors follow
the sub-Gaussian distribution with parameters o? and o3, respectively. Under this assumption,
the elementwise max norm of the deviation between §xy and S,,, satisfies the following probability

bound for any t < tél) with tél) = 00w Xmax/ bmin,

S enp? s t2
Pr“"Smy — Smy”lmax > t] < qu exp (_ Hmin )> 7

o2, X2, max(s2, X2, B2 . o2

max max max max’ €

where fii, = min;(1—p;) > 0, Xpax = max; i, | Xj,| < 00, Biax = maxy, |ﬂ2]], Smax = MaX; Sj,

forj € {1,...,q}. Let (Syy)e and (Syy)e be the Ith columns of S,, and S.,, respectively, then we

have
2 42
~ enpi s b
P Sii)el — (Szi)ellloe = t] < pC — min ,
r[H( y) : ( y) l” - ] = P2 e ( UI%‘/XI%IaX IIIaX(SI%laXXI%laXBI%IaX’O—g)>
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Lemma 14. Assume that each row of the error matrix e € R"*? is a sub-Gaussian random vector
where each element of the vector follows the sub-Gaussian distribution with parameter o*. Under
this assumption, the elementwise max norm of the deviation between S,, and S,,B* satisfies the

following probability bound

Sy — Sy B e > £) < ent?
Pl"(||| zy — Dzx ”lmax = t) = pqc €xXp | — O-ngznaX
and
* C’I’Lt2
Pr(H(Swy)'l - wa/gl HOO Z t) Spc’e)(p _Ung%aX

where (S, )e and B] are the Ith columns of S, and B*, respectively, and X ,ax = max; j, | X;i| <

Q.

Proposition 1. We assume that the Ith column of the true coefficient matrix from (4.1), 3] has
support Sy C {1,. .., p} with cardinality s, = |S)|, meaning that 3;; = 0 for all j € Sf, where S}
denotes the complement of S;. Let us consider that Assumption 1 on the parameter ; > 0 hold. We

assume that the tuning parameter )\, in (4.10) satisfies

/1
>\l Z 2Xmax max [O'WSmameameax/,umina UWJE/Mmina 05] oep . (415)
n

Then any estimate B, from (4.10) satisfy the following bounds

18, — Billa < 3vEN/ki,  and ||, — Bl < 458, — Bill2 = 12510/

with a probability at least 1 — C exp(—clogp).

Proof. From the definition of (4.10), we have

L(B) — L(B;)

~T —~
SI:E *TSII ! Q T * 2 * * 2 * *
- /6[ 2 /6[ - IBl 2 Bl - {(Sxy)OZ} (Bl - Bl) - (/Bl - 61 )Tsm;,@l —+ (Bl — /Gl )TSxx/Bl
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~T ~
Sl‘ﬂ’»‘ *TSCMC ’ 3 * S T~ * a3 * *
- Bl 2 /6[ + l D) /Bl - IBITS$$IBI - {(Sxy)ol} (/81 - ﬁl) + (ﬂl - /31 )TSWBZ

- %(//B\l—rsxzb\l + /B?Tsmcﬁgk - QBlTSzx/BT) - ((/S\Iy)'l - Sxmﬁ?)—r(/@l - '67)
p 1, ~ 3 S 3

® 5B = B))"Sua(By — )] — ((Say)et = SuafB)) (B, — B7)

= %Wsma] — ((Say)et — SuulB)) "0

where § = 3, — B; and equality (i) follows by completing the square. Since B, is the
solution of (4.10)

LB+ MBIl < L(87) + MlIB |-

Plugging in £(8,) — £(3}) yields

1 2 Q * *
510" 8e8] + MBIt < ((Say)et = S2aB) "6 + MIB; |1

< [18]11[1(Szy)et = SaaBilloc + MilIB; 1 (4.16)

The second inequality follows from Holder’s inequality. In order to obtain an upper bound
for the left-hand side, we first bound the quantity || (§xy).l — S.20] ||o- Using the triangular

inequality, we get
||(§$y)°l - Szxﬁ?”% < H(Sﬂcy)-l - (Sﬂcy>0l||oo + H(Szy)ol - SMB;HOO

The first term can be bounded by applying Lemma 13 by setting ¢t = );/4. We see that for

N < 4tél), we have

Pr[[|(Say)et — (Say)etlloe > N/4] < pC ey N
r zy)el zy)ellloo Z A =~ pL €exp J%,X2 max(52 X2 B2 0’2) .

max max max max?’ - €

The second term can be bounded by applying Lemma 14 by setting t = \; /4

cnA?
Pr(||(Say)et = SeaBi lloo > Ai/4) < pCexp [— L }

o2 X?

max
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Define the event &; = {||(/S\$y).l — (Say)etlloe = Ni/4} and E = {[|(Suy)et — Suzf3 ||oc > Ni/4},
and the “good” event G(\;) = {\;/2 > || (/S\xy).l — 8220/ ||« }- Then by Boole’s inequality

Pr(G(\)) = Pr(|(Suy)et — SuaBilloc < Ni/2)
Z Pl"(glc N 526) = Pr [(81 U 52)6] =1—-Pr [(81 U 52)]

>1—Pr(&) — Pr(&)

2 2 2
I lipin A7 cnA;
>1—pCexp| — —pCexp | —
=P p( a%VX;axmax<s%mX;axBaax,af)) b p[ o2X2,

>1—2pCmaxqe enA; oAy
— max X — exX —
- P\ o X2 max (2, X2, B2 02) 1k ) | 02X,

max max max max’ 3

L o0 cnA?
=1- exp | —
PP max 03, X2, max(s2 , X2, B2, 02) /12, 02 X2 ]

max max max~—— max’ € max

2
— 1 — pCexp ( cnA; ) (4.17)

T yv2 2 2 2 2 2 2 9/,2 2
X max [UWS X Bmax/umin7 Jwaa /:umin’ ga]

max max max

Returning to (4.16), when the “good” event G(\;) holds, we have

1 ~ " % =
510" 82x8] < 8[111|(Ssy)et = SuaBilloo + MullIB7 11 = 18]11)
>\ * *
< G181+ 2187 12— 1187+ 8). (4.18)
Now since (3;)s: = 0, we have || 3/ [|; = [|(8;)s, |1, and using the reverse triangle inequality

187 + 01l = (Br)s, + 0l + 051l = [[(B)silln = 195, [l + [0 -

Substituting these relations into inequality (4.18) yields

1 )\ * *
5[5T3m5] < §l||5||1 + M8l = 1187 + 8llh).-

)\ * *
< G181+ M8 1 = 185l + 185,11 = 185¢12)
A
= S8l + 18sgl12) + (185, ~ 185¢11)
i) 3A A
& 2850 — 105t (4.19)
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3\

3
< 7“551”1 < 5\/3_1)%“55;”2

This allows us to apply the restricted eigenvalue conditition to 4, which ensures that

k1|63 < 67S,,6. Combining this lower bound with our earlier inequality yields

K 1 3 3
613 < 167S008] < 5 vENIs < 5 vEN]S]

and rearranging yields the bound

18, — Billa < 3v/E\/ ki

Returning to equality (i) in (4.19), we can now show that the condition for C(S;) holds

3\
2

1 A
02 5067808] < 265,01 — 16

Hence [[ds¢[1 < 3[/d5,[[1- Now, we can also derive the /;-norm bound for the estimation

error.

18, — Bl = 1]

= [16,[[1 + 195

1

< [ds [l + 3105l V8 € C(S)

< 465,111
< 4511852
S 128[)\[/%[.
When we set
log p
)\l/2 Z >\0/2 = Xmax max [O-Wsmameameax/Mmina O-WO-E/Mmim 05] (420)
n
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in inequality (4.17), then

Pr(G)) = Pr([[(Say)et — SuuBBilloo < Ni/2)
> Pr(|[(Say)et — SuaB oo < Ao/2)

>1—pCexp (—

Cn(Xmax max [O-Wsmameameax/ﬂmin7 O-WO-E/Mmina US])2(10g p/n)
X2 max [012/1/82 B?nax/“ilin? U%/Ug/u?nin7 0-3]

max max

=1—pCexp (—clogp)
—1—Cexp(logp — clogp)
=1—Cexp((1—-c)logp)

=1— Cexp(—clogp) (4.21)

With slight abuse of the notation, we define a new constant —c that is equal to 1 — c. Notice

that the lower bound A of \; in (4.20) must satisfy the condition assumed in (4.41)

1
)\0/2 = Xrnax max [O-WSmameameax/,umim O-WO-E/,LLmiIU 0-6} ﬂ S t(()l) = Xmaxo-Wo-e//JJmin
n

which implies that sample size n must be sufficiently large such that

/ logp < XmaXUWUa/Mmin
n - max Max [UWSmameameax/Mmina O-Wo-s/,umin; 06]

1

maX(Smameameax/o-ea 1a Mmin/UW)

- min(06/<5mameameaX>7 O-W/,U/mina ]-)

Therefore, Lemma (13) can be applied as in (4.17) of this proof. O

4.3.2 Recovery Rate for the Estimator (:)56

We can express the deviation between the projected estimate S.. and the truth ¥, in

terms of the deviation between the surrogate estimate and the truth using the following
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inequality. Note that by the definition of §€8, |||§65 — /S\ga Mmax < |||§€6 — 27 llmax, since 37, is

positive semi-definite as well. Combining this with the triangular inequality, we have

ISe: — =% Mmax < NSec — Seellmax + ISee — E Mmax < 2MSee — =5 lmax. (4.22)

Following Ravikumar et al. (2011), we define the maximum degree or row cardinality
of ®, as
d, = maxcard [{I' € [g]\ {I} : (@) # 0}],

l€ld]
and let kx: = IX  llo. We further let S = {(I,1') € [¢] x [q] : (O )w # 0}, 5¢ = [q] x [¢]\S,
and T = X @ 7. € R” x R”. For any two subsets T and 7" of [¢?], let (T');7 denote the
card(T") x card(7”) matrix with rows and columns of I indexed by 7" and 7", respectively.

Then we set kr = [|(T') gslloo- Finally, set

1
A= O-W max { maxB2 max® max/mmlna XmameaXSmaxa /mm1n7 g/mmln} Og )
2 ’ 2 log(g?)
+ X [ max 1250 /K | + X[ s Smax Bmax max 125;\; /K + 02 X max Smax Bmax
l€[q] 1€(q) n
2 [log(q?)
€ n :

The details of deriving A is shown in Lemma 16. To derive the recovery rate for the
estimator ©.., let us introduce the irrepresentability condition introduced in Assumption
1 in Ravikumar et al. (2011) for graphical Lasso without any corrupted data.

We would require the following assumption and the Lemmas to prove Proposition 2.

Assumption 2 (Irrepresentability condition). There exists o € (0, 1] such that
max I(T) ey s (T) gl < 1 -

Lemma 15. Assume that each row of random error matrix € € R"*? and each row of multiplica-

tive error matrix W € R™ follow the sub-Gaussian distribution with parameters o? and o3,
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respectively, then the elementwise max norm of the deviation between §yy and S, satisfies the

probability bound for any t < té2) with

2) ._ 2 2 2 2 1/3 2 2 1/3
to m1n<XmameaX maXUW/mmin7 XmameaxSmaxUWUg /mminn / 7UW05 /mminn / )
2
~ cnt
2 mm
Pr(ISyy — Syyllmas > 1) < 4°C exp( o (X1 SR T ) .
UW max max "~ max max’ max "~ max maxo-evo-e

where My, = min; E(VVJWJ) > 0, Xpax = max; j | Xik| < 00, Bypax = maxy |B;;j|, Smax =

max; s;, for j € {1,...,¢}.

Lemma 16. Assume that each row of the error matrix e € R™*? and each row of multiplicative error
matrix W € R™ 9 are two sub-Gaussian random vectors where each elements of the vectors follow
the sub-Gaussian distribution with parameters o2 and o3, respectively. Under this assumption, the

elementwise max norm of the deviation between S.. and 37 satisfies the following condition
Pr(lSze = Silluax < A) 2 1= Cexp(—clog®) — Cexp(—clog(py)).

where A is defined as follows

1
A - OW max { maxBfnax max/mmma XmameaxSmaxU /mmlny /mmln} Og ) (423)
2 ’ 2 log(q?)
+ X (max 1250 /k; |+ X7 Smax Bmax max 128, /K + 0 Ximax Smax Bmax
l€(q] lelq] n
4 o2 log(q?) '

€ n

Proposition 2. Suppose that, for all | € [q], k; > 0, \; in (4.10) satisfies (4.15) and n is sufficiently
large to ensure that Proposition (1) applies. Further, assume that Assumption (2) is satisfied and

that n is sufficiently large to ensure that

8
6 (1 + —) 2 max (/{g;e, K, s ,/f%) d, x A <1 (4.24)
a E€
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Finally, suppose that the tuning parameter \g in (4.11) satisfies

A
o = OB (4.25)
«
Then with probability at least
1 — Cexp(—clog¢*) — Cexp(—clog(pq)) (4.26)
the estimator (:)ag satisfies
~ 8
16~ B2 b < {26014 5) b A= A (02 427
and
1. — ©%II2 < dyA(OL) = A(O7). (4.28)

Proof. Since S.. is not necessarily positive semi-definite, we can produce an update S..
as described in Datta and Zou (2017) by projecting it onto the nearest semi-definite cone
and substituting S.. by S... Then, S.. would satisfy an inequality analogous to (4.22).
Specifically,

1Sz = Zellmax < 20Sec = Biellmax < 2A.

Applying Lemma 16, we obtain |||§€6 — 3 llmax < 2A occurs with probability 1 —
C exp(—clog ¢*) — Cexp(—clog(pq)). The conclusion of this Proposition follows from a
slight variation of Theorem 1 from Ravikumar et al. (2011) where the observed sample
was uncontaminated and one could calculate the sample covariance matrix 256 with
|||§]€5 — 3 llmax < 64(n,p7). In our case, 255 is replaced by S.. and 5¢(n,p™) = 2A. Suppose
§5€ satisfies the error bound |||§€‘E — 37 llmax < 2A on the intersection of events, that is,

By N By N B3 N By N Bs defined in Lemma 16 and if the tuning parameter \g satisfies (4.25),

116



then by Theorem 1 from Ravikumar et al. (2011), we have
5 . 8 .
|||@55 - ®5€|l|max S {2/{1"(1 + a)} A = AOO(Qaa)
We can also show that (4.28) holds as follows
16.. — O%Lll2 < \/dpdpllOc: — O llimax = dpllOce — O llmax < dpAsg(O7,) = Ay(O)

and

18- — O%Ily < /A IO — OF_lly = /dyAy(OF.) = Ay(O7).

4.3.3 Recovery Rate for B

Let £(;S.z,Suy, ©) : RP*9 — R be the loss functions to estimate B* which depend on
matrices S, € RP*?, S, € RP*7and © € R™9. Let B € RP* be any arbitrary matrix and

set

L(B;S;s,5.y,0) = (B'S,;B/2 -5, B,©)

= vec(B)T(© ® S,;) vee(B) /2 — tr(©S,, B). (4.29)

The quantity S,, in (4.29) will be replaced by the estimate of X’ from the data since there

is no missingness in X. The quantities S,, and ©® will be replaced by the surrogate and the

*
ege’

estimates of 37 and ©, respectively. For brevity, we write, £(-; S;., Szy, ©) as £ in the
following derivations.
We consider the element-wise sparsity of B*. A matrix B* is called element-wise sparse

if its support set S C RP*¢is such that s = card(S) < pg. In order to obtain an element-wise

sparse estimator of B*, it is natural to regularize the least squares program with the || - lll; ;
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penalty of B,

A~

B® = argmin {E(B; I /S\wy, @55) + A |||B|||1,1} ; (4.30)

BERPX4
where A\g > 0 is a tuning parameter.
Next, we establish the restricted eigenvalue (RE) condition for the loss function. Fol-

lowing Negahban et al. (2012), let us define, forall A = B — B* € Q,

gﬁ(A, B*) = 5,C(A, B*; Sazxa Sxyv Gze)
= L(B* + A;S,.,S4y, ©%) — L(B*;S,s, Suy, ©F.) — (VBL(B*; S4s, Suy, ©F), A)
= (A'S,,A,07)/2

= vec(A) (O © S,,) vec(A) /2,

where

VB‘C(B; SWC? Sﬂfy’ 925) - SxxB@:E - SxyGZe

To derive the recovery rate for the estimator B we need the following assumption on the

RE condition for the loss function.

Assumption 3. The loss function L(-;S,,, S.y, ©Z,) satisfies the RE condition
EL(A,B*) > kllAlIZ VYA € C(S). (4.31)

with constant k > 0 over the cone set C(S) = {M € RP*7 : [[(M)gell11 < 3l(M)slli1}-

Theorem 3. Suppose that Assumption 3 and the assumptions of Proposition 2 hold. Further

suppose that for s = card(S), where S C RP*9 is the support set

a) Assume k' > k > 0, where £’ is defined as

"i/ =K — |||S:px|"2A1<@:5) (432)
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b) The tuning parameter \g in (4.30) satisfies
AB/2 > (M/2)(1O.. — O%LII + 1©%L1I1), (4.33)
then with probability 1 — ¢C exp(—clogp), the estimator B® satisfies

IB® — B*llr <3vsAg/r,  IIB® —B*|l;; < 12sAg/x'. (4.34)

Proof. The proof relies partly on Proposition 3 stated below. The proposition verifies that

the empirical loss function at this stage satisfies the RE condition..

Proposition 3. Suppose that Assumption 3 and the assumptions of Proposition 2 hold. Then the
empirical loss L(; Sy, /S\my7 C:)Es) satisfies RE condition with curvature «' introduced in (4.32) and

tolerance function equal to zero over the cone set C(S).

Proof. We fix arbitrary A € C(S). we have

EL(A,B*:S,.,S,,, 0..) = vec (A)TO%, © S, vee (A)/2

+(ATS,,A,0.. — 07,)/2 (4.35)
For the first term, by Assumption 3,
vec (A)TOF ®S,, vec (A)/2 > kl|All%
For the second term, we have

<ATSx1A7 @55 - G:g>

~ |84, AO.. - ©2))
@) ~
< NSz Allr x NA(O.: — O )llr

(i) ~
< ISazllllANE < NANFNO.: — Ol 7
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(iii

) ~
< N1S2ll2ll®c — OL NN A, (4.36)

where inequality (i) follows from Hoélder’s inequality, inequality (ii) follows from the
submultiplicative property of the Frobenius norm and inequality (iii) follows from the fact
ANl 7 = lAll; since the trace of a matrix is equal to the sum of its eigenvalues.

Therefore, (4.35) can be bounded as
EL(A,B";S,,, 8., 0:) > kAL — (ISs O — OLILIIANG) /2 (437)
For the regularized Lasso problem, since A € C(S), and therefore, we can write
HANL = NAsl1 4+ NAsell: < 4lAsl < 4VsIA . (4.38)
Combining (4.37) and (4.38), we conclude that

EL(A,B*S,,,S,,,0..) > {m — (ISualloll®.e — @:E|||2)/2} N

> (K — ISz ll2A1(O%) /2) I Al (4.39)

If the assumptions of Proposition 2 are satisfied, then (4.27) and (4.28) also hold. Then we
can further bound the right-hand side of (4.39) from below. This concludes the proof of

Proposition 3. =

Next, we want to apply Theorem 7.13 from Wainwright (2019). To do so, first, we check

if the conditions mentioned in Proposition 1 holds. We set,
M={AeR™ :(A)y=0 V(kI)eS5Y}.

Then B* € M, and the penalty R is decomposable with respect to (M, M=). Next, by

Proposition 3 and the assumption on ', over the cone set C(.5), the loss L(-; S, §my, @55)
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satisfies RE condition with tolerance function equal to zero and curvature v = s —

S22 ll2A1(®%,) > 0. Finally, the dual norm of R is R*(:) = II - llmax, and

R {VBL(B":Sur, 2y O:2) } = 19,80 — 81y Ol
= 0(Say — SeaB")(Occ — ©2) + (S — S2eB") O lnax
< (Say — S2B*) (O — O linax + 1(Say — S2B*) O lmas
C 181y — S0sB lhaelB. — O lloe + 82y — SuaB IOl
= ISsy — SeeB lhnax (182 — O%Lllow + 1O%ll)
= ISsy — SeeB lnax (102 — OLII + N1OZ1I1)

< (X/2) (18 — O%_II1 + IO%1I)

Inequality (i) follows from the fact [ABllmax < llAlloolIBllmax and equality (ii) follows from
the relationship [|All; = |A" [l«. Denote Co = 10.. — O Il + O ll1, and choose

/1
/\0/2 = Xmax max [O-Wsmameameax/,UJmim O-WO-a//lmina Ua} oep
n

then we have

Pr(R*{VBﬁ(B*; Sazs §xy7 éaa)} < ()‘0/2)09)
> Pr(lSsy — SeeB* llmaxCo < (M0/2)Co)
= Pr(ISsy — SzaB lhinax < Ao/2)

= Pr(max 1(Say)et = SaxBi lloo < Xo/2)

— Pr(nu{[|(Say)et — SzaBi oo < Xo/2})

— 1 — Pr(U{|(Say)et — SzaBilloe = Xo/2})

) a .
> 1= Pr(l(Say)er — SaxBBilloe = Xo/2)
=1
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=1—qCexp(—clogp)

Inequality (i) follows from the tail probability bound in (4.21). The conclusion from (4.34)
follows from Theorem 7.13 in Wainwright (2019) with probability 1 — ¢C exp(—clogp). O

4.4 Simulation

In this study, we focus on estimating the precision matrix and the regression coefficients in
three stages as explained in Section 4.2. We can summarize the algorithm in the following

pseudo code.

Algorithm 1: Pseudocode for the estimation of B* and ©*
Stage I:

Step 1: Keeping O fixed, estimate BW from (4.9) by performing a column by
column estimation of B*.

Stage 11:

Step 2: Calculate S..,a positive semi-definite estimate of S.. using (4.12).

Step 3: Estimate @)55 from (4.13) using plug-in estimates of B® and §55
calculated in Step 1 and 2.

Stage I11:

Step 4: Calculate the refined estimate, ]§(2), the second stage estimation of B*
using (4.14) by plugging in ©.. from Step 3.

In Stage I, we performed a projected gradient descent to get the initial estimate BW of
B* for each column of Y. Since Y is corrupted due to missingness in the data, we used the
surrogate estimates defined in (4.5) to perform column by column Lasso regression using
projected gradient descent method. In Stage II, we used the CoGlasso method introduced

in Chapter 3 to estimate ©.. after plugging in BW. In the last stage, we performed an
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iterative soft-thresholding algorithm (ISTA) after plugging in .. to estimate the updated
version of B®.

We used a simple simulation setting to demonstrate our method. We choose three
simulation settings with n = 300 and ¢ = 20 with enlarging p = (50,100,300). We
generated the covariance structure of X, ¥, as an AR(1) process with px = 0.7. We
generated the true precision matrix ®, as a chain graph with partial correlation, pp =
(—0.1,-0.5,—0.7, —0.9). To obtain an elementwise sparse model on B*, we first generated
a p x ¢ matrix B* so that in each of its columns, 80% of its p elements (chosen at random
within each column) are equal to zero; the remaining 20% of the entries of B* were drawn
from the uniform distribution on [-1, 1]. We generated the samples of (X,Y) from a zero
mean multivariate Gaussian distribution with covariance matrices ¥, and 3., = (©%.)~!,
respectively. Then we introduced 10% missingness completely at random in each column
of Y.

The metrics that we chose to compare are false positive rate and false negative rate
for the Stage II estimator of the precision matrix defined in Chapter 3 in Section 3.6.2. To
measure the performance of the updated estimator for B*, we calculated the prediction
error, PE, as

PE(B®,B*) = tr{(B® — B")T%,,(B® — B*)}

and squared error, SE, as

SE(B®,B*) = [IB® — B*||2.

We compared the performances of the estimators where the Stage II precision matrix was
calculated using CoGlasso method and the non-convex ADMM algorithm. We are referring
to the two methods as Convex and NC respectively in the following tables. Note that,
Stage I and Stage II of the algorithm is the same and we only varied how we calculate the

precision matrix in Stage II for this comparison. We tuned the regularization parameters in
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each stage from a equally spaced range of As in a logarithmic scale between [-2,2]. All the

results are averaged across 100 replications.

Table 4.1: Scenario S1: n = 300,p = 50, ¢ = 20, Py = 0.1

pe Method FPR FNR PE SE
-0.1 Convex 0.00 1.00 245 5.46
NC 0.02 095 244 545

-0.5 Convex 0.08 0.06 283 6.16
NC 023 0.02 281 6.11

-0.7 Convex 0.19 0.00 3.19 6.63
NC 042 0.00 319 6.63

-0.9 Convex 030 0.01 434 849
NC 064 000 4.44 8.69

Table 4.2: Scenario S2: n = 300, p = 100, g = 20, P = 0.1

pe Method FPR FNR PE SE
-0.10 Convex 0.00 1.00 597 14.52
NC 0.02 098 590 14.36

-0.50 Convex 0.01 0.69 690 16.63
NC 0.11 027 678 16.27

-0.70 Convex 0.17 0.03 7.73 17.81
NC 046 001 7.63 17.56

-090 Convex 091 0.01 10.12 21.75
NC 091 0.01 1012 21.75

Table 4.3: Scenario S3: n = 300, p = 300, g = 20, Py = 0.1

pe Method FPR FNR PE SE
-0.10 Convex 0.00 1.00 29.48 101.54
NC 0.16 0.84 29.25 100.75

-0.50 Convex 0.00 1.00 32.17 109.62
NC 034 059 31.80 107.88

-0.70 Convex 0.01 0.92 37.12 123.23
NC 076 0.14 36.12 118.74

-090 Convex 0.38 0.07 4644 135.84
NC 099 0.00 45.68 134.19
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Both the methods tend to perform comparably in all the scenarios. We can clearly see
that the prediction error and squared error are increasing as the number of covariates

increase.

4.5 Discussion and Conclusion

In this chapter, we have studied the theoretical properties of estimating the regression
coefficients and the precision matrix in the presence of missing data from a multivariate
regression setup. We proposed a three step estimation procedure to efficiently estimate the
parameters of the model. We also performed some simulations to illustrate the method.
Note that, we have not compared our methods with the state-of-the-art methods in all
stages. The results shown only vary in the second stage for the precision matrix matrix
estimation where our method was compared with the non-convex approach of estimating
precision matrix proposed by Fan et al. (2019) using an ADMM algorithm. Both the
methods tend to perform similarly in this case. We have only considered a chain graph
structure of the precision matrix corresponding to the error. Therefore, there are further
scope of testing out our model numerically for more complicated graph structures with

varying sparsity.

4.6 Technical Details

Proof of Lemma 13

Proof. Recall that, for a multiplicative measurement error model, we assume the observed
matrixis Z =Y ©® W where W = (wy, ..., w,) " is a matrix of multiplicative error. Given

Sey = =X Y as the matrix that represents the covariance between X and uncontaminated
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Y, we have

1 1
Sey = —X"Zo [EW],..EW]]" - -X"Y
Y n n

)

Ty
1 1
:EXT(YGW)®[1q—p,...,1q—p]T—EXTY. (4.40)

Let Y;; be the ith row and jth columnof Y forj=1,...,gand k =1,...,p, also W;; and

i are defined similarly. Followed by (4.40), we have,

- S YW - Z XuEW,

ﬁzym Wi — EWy),
J =1

with EW;; =1 — p;. Now we plug in the true model Y;; = >, oo XawBj,; + €55 and get

‘(gxy)kj - (Sxy)k;j

1 LI .
1— p. Z(Z Xik’ﬁk/j —+ 51])sz(WU — EI/V”)
n( p]) i=1 k'=1

1 n
1 Z Z 5k/ Xiw X Wiy — EWy) | + | = Z €ij Xir(Wij — EWy5)
- 'OJ i=1 k'= N3
1|1 i} 1 &
< —lh Z Z By Xt X (Wig — EWyg)| + |~ > eig Xia(Wiy — EWiy)
o i=1 k'=1 i=1
< Bunax X2 12n:(w EW;;)| + X. 12 (W;; — EW;;)
~ SmaxDPmax max | _ 7 ] max | €ij iy g
Hmin n J J n VANARY) J
i T Ty

where KXpax = max; g |sz’ < 00, Bpax = max,; |ﬁ23’/ Mmin = minj My = M 1 - Pj We

tind bounds for 7T and 75 separately. For T}, applying Theorem 2.6.3 general Hoeffding
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inequality on page 27 of Vershynin (2018), we get

Pr(|T1| > t)

i

=2 {‘st zzwm?}

2 ) { cmqt? }
< 2exp{ — -
oty > i (1/n)?

(ii) cnt?
<2expq———
Ow

n

> (W, ~ EWy)

=1

where Ky = max; ; [|[W;; — EW;;|y,. Inequality (i) is due to the implication of Lemma 5.5
of Vershynin (2010) that for sub-Gaussian random variable V;; — EW;; there exist universal
constants m; and M, such that m, ||W;; — EW;||7, < o3, < M;||[W;; — EWj]|7, hold. It can
be simplified to inequality (ii) since m, is a constant and consequently gets absorbed into
the universal constant c.

Now we will find the bound for 75. Follow by Lemma 2.7.7 of Vershynin (2018), we
notice that ¢;;(W;; — EW;;) as the product of two independent, centered sub-Gaussian

random variables follows sub-exponential distribution since
lleis(Wis — EWi)lluy < llewjllo, [Wis — EWijll,
Also we can see that ¢;;(IW;; — EW;;) is centered since
Elei;(Wi; — EWy)] = Eey E(Wy; — EWy;) = 0

with Now apply Theorem 2.8.2 of Vershynin (2018), we get

Pr(|T3| = 1)
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Z —eij (Wi — EWj5)

|3 g

t? t
< 2exp cmin = ,
{ <maXz lei(Wij = EWi) (13, 225, (1/n)?" max; [lei;(Wi; — EWig)lly, maXz‘(l/n)> }

nt? nt
—cmin ORR
max; [l ]|7, Wiy — EWi 17, " max; [y, |Wi; — EWijlly,

t
< 2exp {—cnmln (2— —> }
o20%, o.ow

where inequality (i) is again due to Lemma 5.5 of Vershynin (2010) that there exist universal
constants 1, M, my and M, such that m, |[W;; — EW[|7 < o3, < M;[|[Wy; — EWy][7, and
mo|leiill}, < 02 < Malleyll7, hold.

We can combine the pieces together as follows:

Pr { (Say)kj — (Say)is| > t}
maXBmaXX Xmax
< Pr {S max || 4 T zt}
Nmin min

= Pr [SmameafonaX|T1‘ + Xmax|T2’ > tﬂmin]
2 PI' 2 max {SmameaxXﬁlaX’Tl|7 Xmax’T2|} 2 t,uminj|
= Pr [max { SmaxBmax X max |11 |, Ximax|T2|} > ftmin/2]

[

[
= Pr [ (Smax Bmax Xonax| T1| = thimin/2) U (Xmax| To| > thimin/2)]
= Pr[(IT1] = thtmin/ (25max Brax X na)) U (12| = Hhtmin/ (2Xmax))]
[

S PI‘ ‘ ‘ > t,Lme/ 25mameaxXr2naX>:| + PI' HT2| Z tﬂmin/(QXrnaxﬂ

o :U’mmt2
B CeXp {_Cn maxUWX4 B2 }

max — max

. lummt2 Hmint
+ C'exp < —cnmin
P { ( 202 X2 Gsanmax

max

2 t2 2 t2
Do exp {—cn Hmin } + Cexp {—cn—umm }

2 2X4 B2 22X2

max W max’~ max max

:U’mth l'[/l'l’lll'lt2
< 2C' max {exp <—cn82 2 X1 B > , €Xp (—an

max max max max
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max max max~— max’ €

ILLQ ) t2
< C _ min
=P < CnUIQ/VX2 max(s2, X2, B2 02))

Inequality (i) is due to the relationship A + B + |A — B| = 2max(A, B), which implies

A+ B < 2max(A, B). Equality (ii) follows by assuming that ¢ < t{" with
t((]l) = 00w Xmax/ min- (4.41)

Applying the union bound to find an upper bound for the elementwise max norm, we get,

7,k
< ZPr [ (Say)kj — (Sayis| = t]
7.k
2 42
lumint
< pqCexp (—cn > )
U‘Z/VXI%laX ma’X(SIQIlaXXI%laXBIQIlaX’ O‘g)

Proof of Lemma 14

Proof. Given the definition of S,
* 1 T 1 T * 1 T * 1 T * 1 T
Sey —S::B"'=—X'Y--XXB"=-X (XB"+¢)--X'XB"=-X'¢ (4.42)
n n n n n

Hence if we consider the kth row and jth column of this difference for j = 1,...,q and

k=1,...,pitis

* BN
(Smy)kj - (SmmB )kj = ﬁ Zginik
i=1
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We can bound it by applying Theorem 2.6.3 general Hoeffding inequality on page 27 of
Vershynin (2018)

ct?

> t] < 2exp {‘ (max; [leislv.)? Zz‘:l(Xm/nV}

9 cnt?
< 2expy — e .
€

max

Pr [‘ i(Xik/n)eij

Applying the union bound, we get

S, — S1uB lla > 1) < ent”
Pr(lS.y — SzaB™llmax > t) < pgC exp —m
and
. cnt?
Pr(H(Sxy).l - S!L':E/Bl HOO Z t) S pC €xXp _O'ng%aX

Proof of Lemma 15

Proof. Recall that, for a multiplicative measurement error model, we assume the observed
matrixis Z = Y © W where W = (wy,...,w,)' is a matrix of multiplicative error. Let
2w be the known population covariance matrix of the measurement errors W for the
multiplicative model. Given S, as the sample covariance matrix for the data without any

corruption, we have

" 1 1
Syy — Syy = EZTZ (%) (ZW —+ /jw/,l,%) — EYTY
1 1
=—(Yo W) (YO W) (Sw + pwiiy) — EYTY
1 1
=~(Y® W) (YOW)oEWW'] - EYTY, (4.43)

where the last line is due to the fact that E[WW | = Cov(W) +E[W]E[W ] = Ty + pw iy
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Let Y;; and Yj; be the ith row and jth and kth column of Y fori = 1,...,n and
J.k=1,...,q,and W;; and W;;, can be defined similarly. Let X, and X;;~ be the ith row
and £'th and £”th column of X for &', k” =1, ..., p. Then we can express the (k, j) element
of (S,, — S,,) as

a1 1 Y;ijY;szk

where E(W,;W},) = (E[]WW T]);x. Now by plugging in the true model

Yij = Z Xiw By + €45

k'eS;

Yir = Z Xk By, + ik

k" €Sy,

we get

~

(Syy)kj - (Syy)k’j

1 1 —
]E(W Wk)[ Z Z szlﬂk/ "‘51] Z szll/Bk/lk—i_gzk)Wz]WZk

=1 k'eS; k" €Sy

- % DO XiwBiy i) (Y Xow By + é‘z’k)E(WjWk)]

i=1 k‘IESj k'"eSy,

1 1 &
“E(W, Wk)[ Z Z Xiw By + €i5)( Z X B + i) (WijWig — E(I/ijk))]~

=1 K'eS; k'"eSy,

Since both W;; and W, are sub-Gaussian with parameter o3, their product W;; W, is
sub-exponential with

IWiiWiklle < W[l | Wi || -

Therefore,

Uik:j = VVz‘jVVz'k - ]E<W]Wk)
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is a centered sub-exponential random variable, which has

|Uikjllgy = [[WiiWix — EW;Wi)|ly, = ClIWiiWik|ly, < ClIWij | Wik || -

Hence
’(Syy)kj - (Syy)kj
1
< s o{ v X 3 Xt Kt
k k'€S; k" eS),
+ Uik Z Xiw B €k + Uing Z Xk Brn€ij + Uik:jgijgik)}‘
k'esS; k" €S
1 n n
< o {XB | (1)U | + Ko Bns| D (1/m)0 |
i i=1 i=1
T T
n
+Xmameax8max Z 1/” ikj€ij + Z(l/n) ikj€ij€ik }
=1 i=1
Ty Ty
where My, = min;, [E(W;Wy)| > 0, Spmax = max; s;, Xmax = max; | X < oo, and

Binax = maxy j |55 ; |. Notice that in the above formula, within each term, we have multiple

products of sub-Gaussian random variables. Now we bound terms 73, T3, 15 and T,

separately.

Term 7' is the average of n independent, mean zero, sub-exponential random variables.
Therefore

Pr(Th| > 1) = ( )

t? t
< 2exp | —cnmin 5
[ (maxi |Uiks[3, " max; ||Uikj||¢1>]

< Cexp

zk]

, 12 t
—C7 1M1n
(maxi [Wisll7, [Wikl[7, " max; ||Wij||w2||Wz‘k||¢2>]
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2
t t

<Cexp |—cnmin ( —, —-
ow w

Now we look at term 75 and 75. We need to bound the product U;;;e;,. We know that

sub-Gaussian variable ¢;;, is sub-exponential, since
Pr (Jei| > t) < 2exp(—t*/0?) < 2exp(—t/a?).

We can use Lemma A.1 of Gotze et al. (2021), which states that the product of D sub-

exponential random variables has a o/ D-sub-exponential tail with the Orlicz norm

H I
i=1

Specifically, in our case D = 2 and a = 1 in (4.44), we obtain that the product of two

D
i < TT 1%l (4.44)
L0 B

sub-exponential is a 1/2-sub-exponential with

WUikj€irlloys < NUikslls ll€inllon = 1Wis oo IWis s, l€in 15, -

Meanwhile, we know Uy e is centered due to E(Ujx;eir) = E(Usk;)E(gi) = 0 and inde-

pendence of U;,; and ¢;,. We apply Corollary 1.4 of Gotze et al. (2021)

)

nt2 n1/2t1/2

n

> (1/n)Usgeun

i=1

Pr(|Ty| > t) = Pr (

< 2exp | —cmin
||Uikj5ik||12pl/2 ’ |]Uikj<€ik“11/12/2

nt2 1/2t1/2
—cmin
IWisllZ Wil e, Wil 2 IWis 22 i o,

Tltz 1/2t1/2
—cmin
( (UWU4 oW o ) >

I/\

| /\
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The bound for term T3 is the same

t2 1/2t1/2
Pr(|T5] > t) = 2exp (—cmin( Z ,n ))

oot owo.

Now we look at term T}, in which ¢;;¢;, as the product of two sub-Gaussian is sub-

exponential with

leijeirllen < ll€ijll llEin |y,

Therefore, we can view Uj;€;;€, as the product of two sub-exponential random variables
with

|Uikjeis€irlly, o < WUikjllnll€is€inllor < NIWisllwa Wikl s 1351 1€ Nl 5o -

Pr (|Ty| > ¢) ( >t>

2 nl/241/2
< 2exp | —cmin

1/n ikj€ij€ik

nt

1Uikjeiseally, .’ !lekafuffzkle/Q

nt2 l/2t1/2
< 2exp | —cmin
IWis 1%, IWaellg, Neas G, il G, Wil 2N Wall 2 el 2 el
nt? n1/2t1/2
<2 (—cmm( PR ))
oOwos OwOe

Define the event

X2 B2
./41 — { max m.ax max |T | > t/4}
Xmameax max
Ay = { i |Ty| > t/4}
Mmin
Xmameax max
Ay = { e )| > t/4}
Ay = { — |Tu| > t/4}
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and the event G = {|(S,,)x; — (Syy)x;| < t}. Then by Boole’s inequality

Pr(G) = Pr(|(Syy)ks — (Syp)is| < 1)
> Pr(AS N AN AS N AS)
= Pr(A; U Ay U A3 U Ay
>1—Pr[(A; UAy UA;U A
> 1 —Pr(A1) — Pr(Az) — Pr(A;s) — Pr(A4)

tmmin tmmin
>1-Pr{|Ty| > —Prolhf 2
- r {| 1| = 4X2 B2 &2 } ! {' 2| - 4XmaXBmax5max }

max max -~ max

tmmin

| >
4Xmax Bmax Smax

nt?m?

>1 C . min ntmmin
- exX —Cc1min
- P X4 B st ot X2 B2 S0k

—PI‘{|T3 } —Pr{|T4| Ztmmin/4}

max~— max - max max~— max -~ max

1/2
. ' nt*m?. n!/22m L
— CUexp | —cmin X2 B2 &2 oA 47 172 p1/2 1/2
maxmax®max’ WYe XmameaXSmaxUWUE
1/2
. ' nt*m?2. n!/22m >
— Cexp | —cmin X2 B2 &2 oA 47 172 p1/2 1/2
maxmax®max¥ We XmameaxsmaxUWUe
nt2m2 . nl/241/2,1/2
— Cexp | —cmin TR e

oot T owo.

Now, we can further simplify the terms involved inside the exponentiation of the right
hand side of the above inequality if we assume ¢ satisfies some additional conditions.

Specifically, if t < t(()“) = X2, B2 s o& /mnum, then we have

max max -~ max

2,2
nt=mey i, NEMyin

X2 Bt o st oot~ X2, B2 s o0&

max~— max ~max max~— max - max

Ift < t(()b) ‘= Xnax BmaxSmax0 02/ (' *mp ), then

2,2 1/241/2,,1/2
nt ms i, < nt  meygy
2 2 2 4 4 — 1/2 1/2 1/2
XmameaXSmaXUWUE Xm/;lerxl/axsnl/axUWUE
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and if t < t{” = 02,62/(n"3mu), then

2,2 1/241/2,,,1/2
nt myi, <P t mo
4 54 =
OWwOoe OWwO0e

Therefore, if we assume that

t <t® = min(t', ¢ 1)

: 2 2 2 2 2 2 1/3 2 2 1/3
- mlIl(X B S UW/mmina XmameaxSmaXUWUE /mminn / y OwO¢ /mminn / )

max max - max

then the lower bound for Pr(G) can be simplified as

Pr [G]
ent*m? . ent*m? .
=1-Cexp (_X4 B: st o} —Cexp X2, B2 2 okol
max-—~ max°“max"~ W max —~ max®max” W"e

2,2 2,2
_Coexp [ — ent ma, _ Cex ety
P\ X2 B2 52 b ot P o
S5 axOwO0e OWwoe:

max max ~ max

S 1_4C ent*m? . ent*m? . ent*m? .
—4C max § exp | — ,exp | — JeXp | ————
- P\TX: Bt o1 5 P\Tx2_p2_2 ool P ool

max—~ max“max"~ W max~— max - max &g

cnt?m?

>1—4C o min
- {exp( max { X2, Bl st O X2 B2 52 U{‘;Vagl,aévaﬁ})}

ax-— max - max max~— max - max

S 1_ 40 ent*m? .
— exp | — :
- P oy max { XA Bl oSt s X2ax BaoxS2ax 02, 04}

max*~ max’ max max-max- €’

Applying the union bound, we get

Pr(l1S,, — Syyllmax > £) < 462CY e cnt?mz
- max >~ X — .
vy vy q p Uév max {X4 BY ot X2 B2 g2 4 ag}

max max~ max’ maxXx — max-max~ €’

]

Proof of Lemma 16
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Proof. The deviation IS.. — 37 llmax can be decomposed and upper bounded as

ISz — = Mmax = 1S,y — BOTS,,BY — % [0y
= ISy, — Syy + Syy — BUTS,.BY — 5 flmax
= ISy, — Syy + (1/)YTY = BOTS,,BY — ¥ [l 0y
< WIS,y — Syyllmax + N(1/n)(XB* + &) (XB* + &) — BOTS,,BY — 7 [l ax

S ”l (gyy - Syy)”lmax +l"]§(l)—rsxx]§(1) - B*TSxxB*mma)E

~~
T T

+11(2/n)e " XB llmax + 1(1/n)e "€ = 37 lnas,

vV vV
T35 T,

by applying a series of triangular inequalities. In the following, we bound each term on
the right hand side of the above inequality separately. The first term 7 can be bound by
applying Lemma 15 by setting

log(
tl A O’W max { maxBfnaX max/mmlrU XmameaxSmaxU /mm1n7 5/ mln} g )

<t = min(t{", 1), 1)
we obtain the following tail bound

PI‘(Tl S tl)
>Pr(lIS,, — Syyllmax < 1)

>1 — Cexp(—clog ¢?)
The second term 7, can be simplified as follows:

NBYTS,,BY — BTS,,B")lmax = I(BY — B)TS,,(BY — B*) + 2[(BY — B*)TS,, B*]llimax

< NBY = B*) TS, (BY — B*)llmax
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+20(BY — B)"S0s B lnas-
We treat each term on the right hand side in sequence. Starting with the first term, we have

IBY — B8, (B — B )l £ HBY - B clS e (BY — Bl
< NBD =B oll(BY — B*)TS llmax
< NBY = B) ol (BY = B*) oo S llmax
DYPBO = B IBY — Bl S llmas
= 1S ua lmax IBO — B2

< X2 _IBY — B2

max

l€lq]

2
X2, (max 1B, - am)

2
< X2, (m?)]( 1251)\l//<;l>

le[q

Inquality (i) follows from that for two matrices A and B

IABIox = max| Y Ay By

T
<maX\ZA” max] x|
= max | ZAM max | Bj|

i , jik

j

= max[max| k] max | Z Al
= I Al 1Bl max,

and equality (ii) follows from the relationship [|A|l; = A T lo. Since by Proposition 1

Pr(|3, — Bi| < 12s0\i/k1) > 1 — Cexp(—clogp),
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Hence

Pr

> Pr

= Pr

= Pr

= Pr

2
|||(]§(1) — B*)TSmm(ﬁ(l) — B llmax < X2, (Ilné[l}]( 128[)\1//‘6[) ]
€lg

X (maxl1By - G711 ) < X (1260
1€(q) 1elql

max ||Bl — B/|l1 < max 1231)\l/m]
| l€ld] l€(q]

Ly (1B - Bilh < 12500/
L q

VLI~ Bl 2 maxi2en/m)] |

— 1= Pr | UL 1B, ~ B 2 max 2500 |
q

q
>1- ;Pr {Hﬁl — B > %?12%/@}

q
> 1= Pr|lB, = Bl = 12s00/ki|
=1

> 1 —qC exp(—clogp)

=1 — Cexp(—clog(pq)).

Next, applying Proposition 1 again, we get

(B — B*) 7S, B llmax < 1B — B*) TS 4 llmax IB* Il

< BY = B e 1S ua llmaxB* 11
< IB® = B* 1 11S s llmax 1B* 1l

< X2 SnaxBmaxBY — B[l

max

= Xiaxsmameax <max 18, — B?Hl)
l€lq]

< X2 Smax Bumax max 12s;\; /Ky
l€(q]
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with probability

max

Pr ”l(ﬁ(l B*)Tsxm‘B*”lmax S X2 Smameax rln?'x 1281Al//{l:|
€lq]
> Pr Xiaxsmameax max ||Bl — B/l < Xiaxsmameax max 1231/\1/,%;}
l€(q] lelq]

> Pr |max |8, — B} < max 1251)\1//@}
| l€ld] l€(q]

= Pr |, (1B, - il < 1250/
L q
= 1= Pr UL 1B~ Bill 2 max 12500 |

>1—ZPI‘|:|,BZ ,Bl||1>mé[i}](1281>\l/l-€l:|

=1

>1- ZPr 1B, = Bill > 12800/
=1

< 1 — Cexp(—clog(pq)).

Now, we bound the third term 73. Let us consider the jth row and kth column for

j?k:17“'7q1

(), -

Since ¢;; is sub-Gaussian with parameter a , we can bound it by applying Theorem 2.6.3

n

2XmaXSmameax (1/71)52] :

=1

§ E sz’ k’kgw >~

i=1 k'eSy,

general Hoeffding inequality on page 27 of Vershynin (2018)

a [\ 2 1meu] = t] <20 o oo P

cnt?
<2exp{——5¢-
0-6
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Hence,

Pr [‘ Z<2XmaxsmameaX/n)€ij

=1

S cnt?
>t <2exp X o 1P .
3

maXxX - max max

Applying the union bound, we get

. . ) ent?
Pr((2/n)e " XB*llnax > t) < ¢*C exp {_anglaxsglangm}‘
By setting
1 2
t2 = UaXmaXSmameax Og(q )
n

we get the tail bound for 73
Pr(ll(2/n)e " XB* llmax < t2) > 1 — Cexp(—clog(q?)).

Now, we bound 7. For the jth row and kth column of (1/n)e"e — X?_, we have

ee’

(1/n)eTe =22 = Y (1/n)[eiein — Elgjer)]

=1

where ¢;; and ¢, are sub-Gaussian with parameter o2. Their product ¢;;;, is sub-exponential
with

leijeinller < ll€isllenllEirllws-

Therefore, define

Vikj = €ij€i — E(ejeg)

as a centered sub-exponential random variable, which has

| Vikillen = lleizen — E(gjer)lle, = Clleyinllvn < Clleilgs g lws-
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Therefore

.

n

Y ((1/n)e'e =)

SR

)

zk]
i=1 i1
<2 i £ ¢
< 2exp | —cnmin
max; || Vigsll7, " max; || Viejlly,
[ , 2 t
< (C'exp | —cnmin 5 5
I max; ||l ][7, [leaxlly,  maxi ([€ijllv, 1€ |4
[ [t
< Cexp |—cnmin ( —, —
L O-E 0-5
- 2
< Cexp —cn—4]
o
The last inequality holds if we assume that ¢ is chosen satisfying ¢ < té3) = 052- Therefore,

applying union bound, we get

Pr(ll(1/n)e'e — ¥ llmax > t) < ¢°Cexp {—cn (2—24)] :

£

Define,

log(q?)

t3—0'

the requirement ¢5 < t(()3) implies that 4/ log( ®) < 1 must be satisfied. Hence, we get the tail
bound for T,
Pr(ll(1/n)e"e — B llmax < t3) > 1 — Cexp(—clog(q?)).

Define the event

— {8y — Syl < tl}

2
{m(B“) B*)7S,,(BY — B)lax < X2, (rlnﬁcmsmm) }
€lq

— max

{ |||( B*>TSxmB* |||max < X2 Smameax rln?X 128l)‘l//€l}
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By = {I(2/n)e XB*llmax < t2}

Bs = {ll(1/n)e"e — E: llmax < t3},

and
2
A=t + X2 . (max 123l)\1//{l) + X2 SmaxBmax max 125,/ (4.45)
le[q] le(q]
ty + t3
2 2 log )
= oW max{ maxB maxS max/mmlna XmameaXSmaXU /mmlnv a/ mln}
2 log(q?)
+ Xﬁlax (max 123;)\1//@) + anaxsmameax max 125\ / ki + 0 XmaxSmax Bmax
l€(q] lelq) n
n 0_62 IOg(QQ)
n
and the event H = {Illgae — 37 lImax < A}. Then by Boole’s inequality
Pr(H) = Pr(lISec — = llmax < A)
> Pr(|||§yy Syyllmax + I(BY = B*)TS,.(BY — B*)lmax
+ I(BY = B*) TS, B* llmax + 1(2/n)e XB* llnax + 1(1/n)e € — Z*llmax < A)
2 Pr(Bl N BQ N 83 N 84 N 85)
= Pr[(B¢ U BS U BS U BS U BY)Y
>1—Pr[(BfUBsUB;UB;UB:)|
> 1—Pr(BY) — Pr(B5) — Pr(BS) — Pr(B5) — Pr(B%)
> 1~ Cexp(—clogg®) — Cexp(—clog(pg)) — Cexp(—clog(pqg))
— Cexp(—clog(¢?)) — C exp(—clog(q?))
=1 - Cexp(—clogq®) — Cexp(—clog(pg))
O
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Chapter 5

Discussion

In this chapter, we summarize and discuss the work developed in the earlier chapters
of this thesis. In Chapter 2 we provided a comprehensive literature review of the works
that lead to Chapter 3 and 4. Specifically, we discuss the classical literature and methods
developed for precision matrix estimation in a high-dimensional setting when the data
are fully observed. Next, we discussed the consequences of having measurement error
being present in the data, in additive form or multiplicative form. Specifically, when there
is additive noise or missing data which is a special case of multiplicative measurement
error, the objective function tends to be unbounded from below and the problem does not
remain convex anymore. Moreover, the sample covariance matrix may not remain positive
semi-definite either and as a consequence, might have zero or negative eigenvalues. Many
approaches have been suggested to tackle this problem. A noise-corrected non-convex
approach is popularly used to estimate the precision matrix where unbiased surrogate
estimates are proposed while the objective function still remains non-convex, but an
additional side constraint is added to it and solved using projected gradient descent
method (Fan et al., 2019; Loh and Wainwright, 2012).

In this thesis, we have proposed an approach to estimate the precision matrix in

the presence of corrupted data while preserving the convexity of the objective function.
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Inspired by the CoCoLasso methods in the regression setting in the presence of noisy data
(Datta and Zou, 2017), we proposed the CoGlasso algorithm to estimate the precision
matrix by projecting the unbiased surrogate estimate of the sample covariance matrix to
the nearest positive semi-definite cone and use it as a plug-in estimate in the objective
function which essentially converts an unbounded objective function problem to a convex
optimization problem. The idea of projecting the surrogate covariance matrix has been
proposed before in estimating precision matrix when the data are corrupted, but the
theoretical guarantees have not been studied properly in this setting for high-dimensional
data. On the other hand, the theoretical guarantees for the fully observed data scenario for
precision matrix estimation have been extensively studied in Ravikumar et al. (2011).

In this thesis, in Chapter 3, we have laid down the framework of our method and
performed a rigorous theoretical study along with deviation bounds of the estimated
precision matrix from the truth in elementwise maximum norm under four different
scenarios. We have considered two different tail conditions for both the unobserved data,
X and the measurement error, W, namely, exponential-type and polynomial-type tails. We
also considered the cases when the measurement error is additive as well as when there is
missing data for two different tail conditions, resulting into four distinct scenarios. The
main result of this chapter is presented in Theorem 1. In this theorem, we can see that the
deviation bound between the estimated and the true precision matrix looks similar to the
clean data case as shown in Ravikumar et al. (2010). However, the bound varies by the
quantity d;, (n, p?), for the aforementioned four scenarios and we provided expressions
for this quantity when X and W follows a multivariate Gaussian case (exponential-type
tail with a = 2) and in the case of polynomial tails. To prove Theorem 1, we required to
prove Lemmas 1, 2, 3 and 4. To our knowledge, the proofs of these Lemmas and parts of
Theorem 1 where we modified the steps to incorporate the deviation between the surrogate
estimate for the corrupted data to the sample covariance matrix for the clean data are

original contributions of this thesis.
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In our work, following Ravikumar et al. (2010), we derived the consistency bounds
under the mutual incoherence condition. Assuming the sizes of the entries in the true
covariance matrix, kr+ and the inverse Hessian, xx+ and the incoherence parameter, o
defined in Section 3.5.1 to be constants as a function of the sample size, n, number of nodes,
p and the number of maximum number of non-zero elements per row /column, d, we have
the elementwise /., bound |||@ — O lipax = O8 7.(n,p7)), so that the inverse tails functions
d1,(n,p") defined in the Remarks under Theorem 1 specify the rate of convergence in the
elementwise /,.-norm. We also derived the model selection consistency bound in Theorem
2, which does not differ from the clean case scenario as shown in Ravikumar et al. (2010)
other than in terms of the expression of d;, (n, p?). The rates in terms of the Frobenius and
spectral norm are also established in this chapter. For completeness, we also provided
consistency results in the Technical Details section, however these results were similar to
the results shown in Ravikumar et al. (2010) for the clean graphical Lasso case.

We assumed the irrepresentability condition or mutual incoherence condition for the
graphical Lasso problem with measurement error similar to Ravikumar et al. (2011). This
is a necessary assumption to establish the model selection consistency of the estimator.
However, it is a strong assumption and hard to check in practice. Some alternative
approaches to that can be explored to impose rather weaker conditions for this estimation
problem. For example, Johnson et al. (2012) proposed two greedy approaches which
learn the full structure of the model with high probability given just O(dlog p) samples,
whereas graphical Lasso requires O(d? log p) samples. They also showed that their imposed
restricted eigenvalue and smoothness conditions were weaker than the irrepresentable
condition. Zhang and Zou (2012) proposed the D-trace loss for the estimation of precision
matrix under slightly different irrepresentability condition and compared their work with
Ravikumar et al. (2011). The choice of irrepresentability condition is an open problem

even in the fully observed data. The aforementioned works deal with complete data case,
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therefore, it would be an interesting direction to study these techniques to impose a weaker
condition for the corrupted data scenarios.

Our CoGlasso approach, is easy to understand and implement, has solid theoretical
foundations and shares many properties with the clean graphical Lasso method which is
well studied in literature. Specifically, our algorithm can be solved using any graphical
lasso algorithm, such as GLASSO (Friedman et al., 2008) and QUIC (Hsieh et al., 2014).
Therefore, the numerical stability of these algorithms are shared by our proposed method.

We have assumed that the certain parameters of the measurement error model are
known for the purpose of simplification of our model. However, in practice, they may
not be known and an estimate based on the data would be required to proceed with the
methodology. Moreover, our assumed measurement error structure is quite simplified
but in practice, more complex model based measurement error models might be required.
As demonstrated in Loh and Wainwright (2012), one simplified method is to assume that
the covariance structure of the measurement error, Xy is estimated from independent
observations of the noise and the sample covariance matrix is used as an estimate of
the unknown covariance structure. They also showed that the theoretical guarantees
continue to hold under such estimation. More sophisticated ways to estimate the unknown
parameters in different measurement error models are well studied by Carroll et al. (2006).
Specifically, an estimator can be formed for ¥y by assuming that we observe k; replicate

measurements of the corrupted observations Z;1, ..., Z;, for each z; and form an estimator

S Sy 35 (Zig = Zia)(Zij — Zia)T
v Z?:l(ki - 1) '

Based on this estimator, we can form the surrogate estimators and proceed with the analysis.
Sensitivity analysis of the estimators can be performed by considering different degrees

of mismeasurement. Another alternative Bayesian approach can be taken by imposing a
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prior distribution on the parameter. However, this must be carefully studied under the
context of our problem since our methodological development is mainly frequentist.

Comparing the convex and non-convex approaches, we noticed that the two methods
are fairly competitive. When the signal is stronger, the projected methods tend to perform
better in terms of model selection compared to the non-convex method (Fan et al., 2019).
In terms of norm error, with strong signal of the data, CoGlasso performs significantly
better than the non-convex approach. When the signal is weaker, the performace of both
the methods deteriorate. Specifically, CoGlasso tend to produce a high false negative
rate whereas the alternative non-convex approach tend to produce a high false positive
rate. One of the reasons that could deteriorate the performance of CoGlasso could be
that it depends on the positive semidefinite projection of the surrogate estimator of the
sample covariance matrix and therefore pays a cost in terms of efficiency due to the loss of
information in the projection.

We have demonstrated the superior performance of our method over the non-convex
approach in Fan et al. (2019) by simulation studies for a number of simulation settings.
This could be due to the fact that no additional prior information of the true parameter is
required for our method as opposed to the non-convex type approaches. The non-convex
approach depends on some crucial information on the hidden parameters to satisfy the
restricted eigenvalue condition and in order to have the desirable bounds. In terms of
algorithm, both the non-convex methods proposed in Loh and Wainwright (2012) and Fan
et al. (2019), use iterative algorithms which heavily depend on the choice of such hidden
parameters as well as some knowledge of the step sizes for the iterations, which makes the
convergence process complicated. Despite the theoretical guarantees, the implementation
remains difficult for such non-convex approaches (Datta and Zou, 2017).

From the simulation study, we see that the method performs well when the graph is
very sparse, for example when the true precision matrix represented a chain graph, in

both additive error and missing data setting. However, when the graph becomes denser,
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our method tended to give a high false negative rate. However, the other method we
compared with tends to show poor performance in the case of a denser graph as well.

We have utilized a few simulation settings to demonstrate our method in this thesis,
however, the theory we proposed allows for more general settings. We have only shown
simulations when the data are multivariate Gaussian. Many other settings where the data
are not sub-Gaussian can be explored in the simulation settings. We have only explored
two types of graph structures in this thesis, namely the chain graph and the Erdos-Rényi
graphs. A set of more complicated settings for the precision matrix can be explored both
in terms of the graph structure of the original problem, or by adding a more complicated
structure for the noise. A more extensive comparative study can be performed to see how
our method performs compared to classical ways to solve missing data problems such as
imputations or EM-algorithm based techniques. We demonstrated our method using a
real data in the missing data scenario which has a similar sample size and the dimension
as shown in the simulation settings. Since the underlying graph structure of the problem
is unknown, it was difficult to compare the performance of the proposed methods to the
truth.

In order to tune the regularization parameters, we used the cross-validation and the
BIC criterion, however, only cross-validation technique seemed to have performed well.
It would be interesting to study the role of BIC and propose a modification of the BIC
criterion for these corrupted data scenarios, especially when some portion of the data are
missing. Since the BIC criterion penalizes the negative log likelihood on the number of
observations used in the analysis, it seems natural to impose some sort of adjustments in
the penalty part when we do not observe the whole data.

The theme of precision matrix estimation in the presence of noisy data are shared
between the two chapters, even though it has been specifically developed in Chapter 3.
In Chapter 4, we have explored a multivariate regression setting when the covariates are

fully observed and there is missing data in the responses only when the random error and
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the measurement error are assumed to be obtained from sub-Gaussian distributions. In
Chapter 2, we provided a thorough literature review of the methods developed to jointly
estimate precision matrix and the regression coefficients for multivariate regression in a
high-dimensional setting. The regression case of a single response variable with corrupted
covariates in sparse high-dimensional setting is well studied (Datta and Zou, 2017; Loh
and Wainwright, 2012). For the multivariate regression problem with correlated errors, the
problem can be solved by ¢;-penalization methods. In the case of fully observed data, the
most prominent computational approach, popularly known as MRCE, to jointly estimate
the precision matrix and regression coefficients is developed by Rothman et al. (2010).
There are multiple approaches to solving the joint estimation problem in the fully observed
data case and theoretical guarantees of many of these approaches had been studied in
literature which we have discussed in Chapter 2.

We looked at a multivariate regression problem when there is missing data in the
responses only. We assume that the responses are correlated and therefore an estimate
of the precision matrix is of interest along with the regression coefficients. The problem
with missing data may lead the empirical covariance matrix of the error to not be positive
semi-definite and consequently the objective function may become unbounded from below
and non-convex. We tackle the problem of non-convex objective function by converting it
to a convex problem at a stage. To do so, first we replace the empirical estimate with an
unbiased surrogate estimate that takes into account of the proportion of missing data, and
then we project it onto the nearest positive semi-definite cone proposed by Datta and Zou
(2017). As a result, the overall problem becomes convex and enjoys many nice properties
of a convex optimization problem.

Although, not a missing data in responses scenario, but a similar type of solution to a
different problem has been studied by Zhao and Genest (2019) which motivated us to adapt
their approach to find the solution of our problem. They looked at the estimation of the joint

dependence between all the observed variables (responses and covariates) characterized
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by an elliptical copula and used non-parametric estimators of the input matrix for the
covariates. As a result of the underlying structure, their estimated covariance for the
covariates were not positive semi-definite and therefore the objective function became
non-convex. They used the projection method proposed by Datta and Zou (2017) to convert
the optimization problem to be convex for further analysis. They also established the
theoretical properties of their estimators. Our method shares many similarities with the
work by Zhao and Genest (2019), especially in terms of the steps of solving the problems,
but also has many dissimilarities in terms of plug-in estimates, events of interest discussed
in Section 4.3 and theoretical bounds. In our work, we assume the responses, covariates
and the errors to have sub-Gaussian distributions.

Specifically, we assumed that there is no correlation among the response variables in
the first stage of the estimation and performed a column-by-column Lasso estimation for
each response variable and the fully observed covariates. No projection was necessary at
this stage since there is no missing data in the covariates. However, we could not use any
standard solver such as the R package glmnet directly that treats the responses as fully
observed. Instead, we performed a projected gradient descent algorithm and provided the
unbiased surrogate estimate (Loh and Wainwright, 2012) of the covariance between the
observed covariates and each column of the corrupted response as an input. This stage
provided us with a preliminary estimate of the regression coefficients. We proved the
recovery rate of the first stage estimation of regression coefficients in Section 4.3.1. We
assumed that the true covariance matrix of the covariates satisfy the restricted eigenvalue
condition as required for classical Lasso estimation. To our knowledge, the proofs of
Lemmas 13 and 14 are original contributions to knowledge which we required to prove
Proposition 1. Proposition 1 is adapted for our problem from the Proposition 3.1 of Zhao
and Genest (2019) and serves as an original contribution to the knowledge in this field.

In the next step, we used the CoGlasso algorithm established in Chapter 3 to estimate

the precision matrix of the error of the model. The empirical covariance matrix of the error
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is a function of the empirical covariance matrix of the responses, empirical covariance
matrix of the covariates and the initial estimates of the regression coefficients estimated
in the first stage. Since the responses are corrupted by missing data, we replaced the
empirical covariance estimate with an unbiased surrogate estimate as proposed in Loh
and Wainwright (2012), we used the estimated regression coefficients as a plug-in estimate
and used the empirical covariance estimate for the covariates directly since those were
fully observed. The estimated covariance matrix of the error may not be positive semi-
definite since it is a function of a non-positive semi-definite matrix due to missingness,
therefore, we project it to the nearest positive semi-definite cone to get a positive semi-
definite input for the CoGlasso objective function. This step provided us with an estimate
of a precision matrix that takes into account of the overall correlation structure of the
error. We provided the recovery rate for the precision matrix estimator in Section 4.3.2
in elementwise maximum and operator norm. Following the theoretical development of
CoGlasso estimator, we made the mutual incoherence assumption, which is also known as
irrepresentability condition and proved Lemmas 15 and 16 to prove Proposition 2. Similar
to the first stage, the proof of Proposition 2 is similar to the Proposition 4.2 of Zhao and
Genest (2019) in terms of steps taken, but required different events of interest and resulted
in different probabilistic bounds.

In the final step, we estimated a refined and final version of the regression coefficients
by using the precision matrix estimate as a plug-in estimate from the previous stage
by solving a /;-penalized regression problem. This stage only required the empirical
covariance matrix of the covariates and the surrogate estimate for the covariance between
the covariates and the responses as inputs. We performed an iterative soft-thresholding
algorithm (ISTA) to get the final estimates of the regression coefficients. The recovery
rates of the final estimate of regression coefficients are established in Section 4.3.3 in
terms of Frobenius and /;-norm. We required that the loss function satisfies the restricted

eigenvalue condition. We proved Theorem 3 using Proposition 3 which is similar in
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flavour to Theorem 5.2 in Zhao and Genest (2019), but different in terms of the underlying
events of interest and probabilistic bounds. To our knowledge, in the case of missing
data in the responses for multivariate regression problems, our method is an original
contribution to the existing field of work. We provide a step by step method to estimate
the regression coefficients and precision matrix jointly that is easy to implement and comes
with theoretical guarantees.

We also performed modest simulations to demonstrate the three-step method. We have
not compared our methods with the state-of-the-art methods in all stages. The results
shown only vary in the second step for the precision matrix matrix estimation where our
method was compared with the method proposed by Fan et al. (2019) using the ADMM
algorithm. We also have not studied different covariance structures for the precision
matrix, for example, by varying the sparsity of the graph structures. These are some of the
areas that can be explored in future.

To close the discussion, we want to emphasize that our contribution in this work
is essentially by filling in the theoretical gap that existed in these types of projection
based methods to estimate precision matrix in a noisy setting. Specifically, in Chapter
3, we have extended the theory on precision matrix estimation in the presence of two
types of measurement errors. Our theory is established on top of the results proposed
by Ravikumar et al. (2011) for the fully observed data, but it is significantly different in
a sense that we have contributed to bridge the gap between estimation of undirected
graphical model in the presence of measurement error for two different tail conditions
imposed on the distribution of the data. We have used the idea of projection proposed
by Datta and Zou (2017), originally shown in the case of penalized Lasso regression in
the presence of measurement errors in the data. We have extended the problem for the
graphical Lasso problem for corrupted data. We have also borrowed inspiration from the
method proposed by Loh and Wainwright (2012), who perform a non-convex analysis in a

nodewise-regression setup for the graphical Lasso in a measurement error model setup.
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We contrast with this work in a sense that we have proposed a convex solution to the
problem using the graphical Lasso objective function using a projection based method.
In Chapter 4, our contribution is novel and significant in a sense that to our knowledge,
all the existing conditional graphical Lasso type problems are solved for full observed data.
Therefore, we propose a convex solution to the joint estimation of the regression coefficients
and the precision matrix in the presence of missing data, both in terms of proposing an
algorithm as well as providing the theoretical guarantee for the estimation. We certainly
borrowed inspiration and tools from Zhao and Genest (2019) for the theoretical derivations,
but the problem solved in this thesis is completely different from the Zhao and Genest

(2019) paper, therefore establishing the significance of our work.
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Chapter 6

Conclusion and Future Work

The broad objective of this study was to develop and explore techniques to analyze high-
dimensional data in a graphical model setting in the presence of corrupted data. We
have proposed methods to solve problems of graph discovery (undirected) and also in a
multivariate regression setting where the responses could be corrupted, thereby estimating
the regression coefficients and the precision matrix jointly. We provided results to show
theoretical guarantees for the two research problems that we studied in the previous two
chapters along with some practical applications using synthetic data.

For Chapter 3, in terms of future work, both theoretical and computational aspects can
be studied for Ising model type graph structures. Another direction to explore theoretically
would be other types of penalties that are non-convex, such as Smoothly Clipped Absolute
Deviation (SCAD) or minimax concave penalty (MCP). Fan et al. (2019) showed some of
the computational aspects of such comparison but did not provide a rigorous theoretical
work. As we have seen from the simulation studies, that the criterion for tuning parameter
selection can certainly be improved for different types of measurement error, specifically
for missing data scenarios, since only cross-validation seemed to have performed well.
Theoretical guarantees can be studied by specifically imposing restrictions in the number

of true edges, s, that is, by changing the sparsity pattern of the graphs.
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In Chapter 4, both theoretical and simulation studies can be performed by imposing
measurement error into both the covariates and the responses. Since we only explored the
missing data scenario for the responses under sub-Gaussian assumptions, the work can be
easily extended to additive noise setup as well as for polynomial-type tail conditions. In
terms of the distribution of the data, other dependence structures among the covariates
and /or response would be interesting to investigate in the presence of noisy data as an
extension of Chapter 4. Another direction that can be explored is when the responses are
time to event data and prone to censoring.

In this thesis, the general development of the estimation of the graph structure was
formulated for undirected graphs. For directed acyclic graphs (DAGs), the problem of
estimating the precision matrix has been studied in the literature from both frequentist and
Bayesian point of view (Castelletti et al., 2018; Datta et al., 2019; Shojaie and Michailidis,
2010). Extending this case to incorporate the case when the data contain measurement
error in a causal structural learning is worth investigating. Moreover, the joint estimation
of the regression coefficients along with the precision matrix in a multivatiate regression
setup when the responses and/or the covariates have an underlying causal structure is an
intriguing and open problem. Another possible extension of the joint estimation in the
multivariate regression problem under a directed acyclic graphs setting could be in the
presence of measurement errors.

Finally, all the proposed methods can be applied in real life data in different domains
where the data may have measurement errors of the two types that we discussed in this
thesis. We performed all the simulationin R 4.2 .1 using multiple servers of Compute
Canada clusters. A natural next step is to create R packages for efficient implementation of

the two algorithms proposed in the two main chapters of this thesis.
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