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A B S T R A C T

Parkinson's disease (PD) is a neurodegenerative disorder characterized by a wide array of motor and non-motor
symptoms. It remains unclear whether neurodegeneration in discrete loci gives rise to discrete symptoms, or
whether network-wide atrophy gives rise to the unique behavioural and clinical profile associated with PD. Here
we apply a data-driven strategy to isolate large-scale, multivariate associations between distributed atrophy
patterns and clinical phenotypes in PD. In a sample of N¼ 229 de novo PD patients, we estimate disease-related
atrophy using deformation based morphometry (DBM) of T1 weighted MR images. Using partial least squares
(PLS), we identify a network of subcortical and cortical regions whose collective atrophy is associated with a
clinical phenotype encompassing motor and non-motor features. Despite the relatively early stage of the disease in
the sample, the atrophy pattern encompassed lower brainstem, substantia nigra, basal ganglia and cortical areas,
consistent with the Braak hypothesis. In addition, individual variation in this putative atrophy network predicted
longitudinal clinical progression in both motor and non-motor symptoms. Altogether, these results demonstrate a
pleiotropic mapping between neurodegeneration and the clinical manifestations of PD, and that this mapping can
be detected even in de novo patients.
Introduction

Parkinson's disease (PD) is a neurodegenerative disorder character-
ized by progressive and widespread neuronal loss associated with
intracellular aggregates of α-synuclein giving rise to the classical Lewy
pathology (Goedert et al., 2013; Poewe et al., 2017). PD has been
traditionally known as a motor disease with bradykinesia, rigidity, and
tremor as the cardinal symptoms, and preferential loss of dopamine
neurons of the substantia nigra. The motor symptoms have been the main
target for diagnosis and treatment (Kalia and Lang, 2015). However, it is
now clear that PD is a more complex disorder involving several
non-motor manifestations that both precede and follow the initial
appearance of motor symptoms. The non-motor aspects of PD involve
several clinical domains including autonomic, limbic, olfactory, and
cognitive (Chaudhuri et al., 2006; Poewe, 2008). A 15-year follow-up
study shows cognitive decline and dementia in up to 80% of surviving
PD patients (Hely et al., 2005). Over time, PD diagnostic criteria have
been modified toward a multifaceted characterization in response to the
insufficiency of the narrowmotor definition of PD (Postuma et al., 2016).
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The increasing attention to non-motor aspects of the disease has allowed
detection of more diverse clinical patterns in PD. For example, recent
studies have subcategorized PD patients based on the dominance of
motor, rapid eye movement sleep behavior disorder (RBD), autonomic,
and cognitive deterioration (Fereshtehnejad et al., 2015, 2017).
Post-mortem and neuroimaging studies have emphasized the preferential
loss of dopamine neurons in the substantia nigra (Halliday and McCann,
2010). However, post-mortem studies have also shown that the patho-
logical process is neither initiated in nor confined to the substantia nigra,
gradually ascending from the olfactory tracts and medulla to the
midbrain and cortical layers (Braak et al., 2003; Goedert et al., 2013).

Neuroimaging studies in PD have evolved in the past 30 years (Politis,
2014). The main focus of early studies was on dopaminergic innervation,
using single photon emission computed tomography (SPECT) or positron
emission tomography (PET). However, the availability of new higher
resolution whole-brain neuroimaging techniques such as magnetic
resonance imaging (MRI), metabolic imaging with 18F-FDG PET, and
resting or task state functional MRI have provided the opportunity to
investigate the non-dopaminergic aspects of PD (Politis, 2014; Tuite and
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Table 1
Demographic and clinical information for individuals with Parkinson's disease from the
PPMI used in this study. BP Sys¼ Systolic Blood Pressure. GDS¼Geriatric Depression
Scale. QUIP¼Questionnaire for Impulsive-Compulsive Disorders. RBD¼ REM sleep
behaviour disorder. SCOPA¼ Scales for Outcomes in PD-Autonomic. STAI¼ State-Trait
Anxiety Inventory. UPDRS¼ Unified Parkinson's Disease Rating Scale. SBR¼ striatal
binding ratio. MoCA¼ Montreal Cognitive Assessment. HVLT¼ Hopkins Verbal Learning
Test. LNS¼ letter-number sequencing. All error terms used are standard deviations.

Category Measure Value

General Information Number 229
Sex (Male/Female/%) 146/83
Age (years) 60.8� 9.1
Education (years) 15.5� 2.8
Handedness – Right/Left/Ambidextrous 209/15/5
Symptom duration (months) 7� 7

Non-motor scores BP Sys drop (mm Hg) 4� 11
Epworth Sleepiness Score 5.9� 3.6
GDS Score 2.3� 2.5
QUIP total 0.3� 0.6
RBD Score 3.5� 2.7
SCOPA AUT Score 9.4� 6
STAI Total Score 64.2� 18.3
UPSIT Score 12.8� 17.6
UPDRS part I 5.5� 4
SBR 1.4� 0.4
UPDRS part II 5.8� 4.0
UPDRS part III 21.9� 9

Cognitive scores MoCA Score 27.4� 2.2
Benton 12� 2.8
HVLT total recall 47.1� 11.8
HVLT delayed recall 47.2� 12.1
HVLT retention Score 50� 11.6
HVLT Recognition 50� 13
LNS 11.4� 2.8
Semantic Fluency Score 50.9� 10
Symbol Digit Score 45.3� 8.7

CSF biomarker scores Total Tau (pg/ml) 44.8� 19.1
pTau (pg/ml) 15.4� 10.2
Alpha synuclein (ng/ml) 1.8� 0.7
Amyloid beta 42 (pg/ml) 362� 93
Hoehn and Yahr scale 1.6� 0.5
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Dagher, 2013; Yousaf et al., 2017). Structural analysis using MRI
(including T1, T2, and diffusion weighted MRI) was initially inconclu-
sive, or only sensitive enough to capture disease related differences in
late stages of PD once dementia had set in. More recently, with larger
sample sizes and higher resolution imaging, it has been possible to study
de novo PD patients using MRI (Heim et al., 2017; Zeighami et al., 2015).
However, these studies mostly focus on brain related differences between
PD and healthy control populations, or on a single aspect of the disease
(e.g. dementia or motor symptoms) as post hoc analysis. To our knowl-
edge, no studies have attempted to model the relationship between brain
atrophy and presence and severity of the entire constellation of motor
and non-motor symptoms in PD simultaneously. Such an approach might
also make it possible to disambiguate different domains or modes of the
disease within one PD population and their relationship with brain
morphometric measures.

Here we use a multivariate method to relate the motor and non-motor
aspects of PD to system-wide atrophy patterns. We use data from 235
newly diagnosed PD patients and 117 age- and sex-matched healthy
controls from the Parkinson's Progression Markers Initiative (PPMI)
database (www.ppmi-info.org/data), an observational, multicenter lon-
gitudinal study designed to identify PD progression biomarkers (Marek
et al., 2011). We use deformation-based morphometry (DBM), which is
based on local nonlinear subject-to-template deformations as a measure
of structural brain alterations (Ashburner et al., 2000; Aubert-Broche
et al., 2013; Chung et al., 2001; Penny et al., 2011), and partial least
squares (PLS) (McIntosh and Lobaugh, 2004; McIntosh and Misic, 2013;
Wold, 1966) to capture the relationship between brain atrophy patterns
and disease-related clinical measures. Furthermore, we explore the
extent to which brain atrophy patterns can predict disease progression by
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examining longitudinal changes across different measures of disease
severity.

Methods

PPMI dataset

Data used in the preparation of this article were obtained from the
Parkinson's Progression Markers Initiative (PPMI) database (www.ppmi-
info.org/data). For up-to-date information on the study, see www.ppmi-
info.org. PPMI is a cohort of people with de-novo idiopathic PD (Marek
et al., 2011). Individuals were eligible for recruitment if they were at
least 30 years old, diagnosed with PD within the last 2 years, had at least
two signs or symptoms of Parkinsonism (tremor, bradykinesia and ri-
gidity), a baseline Hoehn and Yahr Stage of I or II, and did not require
symptomatic treatment within six months of the baseline visit. The PPMI
is a multi-center international project and the institutional review boards
approved the protocol at all participating sites. Participation was
voluntary and all individuals signed the written informed consent prior
to inclusion.

We obtained data from the baseline visit 3T high-resolution T1-
weighted MRI scans in compliance with the PPMI Data Use Agreement.
For clinical data, any participant with >20% missing values at baseline
was excluded. Overall, MRI and clinical data were included for 229 drug-
naïve participants with PD (6 subjects failed MRI quality control) and
117 healthy sex- and age-matched controls (78 male, age¼ 59.2� 11.3
years). All subjects including patients and healthy controls were part of
the PPMI dataset. Healthy controls were eligible if they were aged >30
years, had no history of neurological disease and no first degree relative
with PD (Marek et al., 2011).

For each subject, we also obtained demographic and clinical infor-
mation as well as cerebrospinal fluid (CSF) and SPECT biomarker values
from the dataset in May 2016 (accession date). General information
consisted of age at disease onset, gender, years of education, handedness
and disease duration. Clinical and laboratory markers are described
below.

Brain imaging data analysis

MRI data consisted of 1� 1� 1mm 3T T1-weighted scans obtained
from the PPMI database. All scans were pre-processed through an in-
house MR image processing pipeline, using image de-noising (Coupe
et al., 2008), intensity non-uniformity correction (Sled et al., 1998), and
image intensity normalization using histogram matching. The pre-
processed images were first linearly (using a 9-parameter rigid registra-
tion) and then nonlinearly registered to a standard brain template (MNI
ICBM152) (Collins and Evans, 1997; Collins et al., 1994). Using the ob-
tained nonlinear transformations, deformation based morphometry
(DBM) was performed to calculate local density changes as a measure of
tissue expansion or atrophy. For more detail on the processing steps
please see Zeighami et al. (2015). We obtained a single deformation brain
map for each subject. The value at each voxel is equal to the determinant
of the Jacobian of the transformation matrix obtained from nonlinear
registration of participants’ T1 MR images and MNI-ICBM152 brain
template. The DBM values reflect regional brain deformations and can be
used as indirect measures of brain atrophy (Cardenas et al., 2007; Chung
et al., 2001; Leow et al., 2006; Studholme et al., 2004).

Clinical measures

PD-related motor, cognitive and non-motor clinical manifestations
were assessed at baseline and each follow-up visit (Table 1).

We also included Genetic Risk Score in the PLS analysis. This is a
single surrogate indicator that summarizes 30 risk alleles for PD (Nalls
et al., 2015). All clinical assessments were repeated in follow-up visits
(minimum¼ 1 year, mean¼ 2.7 years). In order to evaluate disease
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Fig. 1. Partial Least Square (PLS) Analysis flowchart.
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progression, we created a putative global composite outcome (GCO) as a
single indicator by combining z-scores of the most clinically relevant
motor and non-motor measures of disease severity including Movement
Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS)
parts I, II, and III, Schwab and England activities of daily living (SE-ADL)
score, and Montreal Cognitive Assessment (MoCA) score as described
previously (Fereshtehnejad et al., 2017).

Biomarkers

The striatal binding ratio (SBR), a marker of dopaminergic denerva-
tion in caudate and putamen, was obtained by SPECTwith the DAT tracer
123I-Ioflupane at baseline and follow-up. Cerebrospinal fluid (CSF) bio-
markers consisting of amyloid-beta (Aβ1-42), total Tau (T-tau), phos-
phorylated tau (P-tau181) and α-synuclein were also included in our
analysis. Information for all variables is summarized in Table 1.

Partial least squares analysis

Partial least squares (PLS) is an associative, multivariate method for
relating two sets of variables to each other (Abdi and Williams, 2010;
McIntosh and Lobaugh, 2004; McIntosh and Misic, 2013; Wold, 1966).
The analysis seeks to find weighted linear combinations of the original
variables that maximally covary with each other. Here, the two variable
sets were voxel-wise brain atrophy (as measured by DBM) and clinical/
demographic measures (Table 1). The respective linear combinations of
these variables can be interpreted as atrophy networks and their asso-
ciated clinical phenotypes.

Singular value decomposition: The imaging and clinical data were
organized in two matrices, X (DBM) and Y (clinical), with participants in
the rows of the matrices and variables in the columns (Fig. 1). Both
matrices were first z-scored by subtracting the mean from each column
(variable) and dividing by the standard deviation. The atrophy-clinical
covariance matrix was then computed, representing the covariation of
all voxel deformation values and clinical measures across participants.
Since the data are z-scored, the atrophy-clinical covariance is effectively
a correlation matrix. The resulting matrix was then subjected to singular
value decomposition (SVD) (Eckart and Young, 1936):
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X'Y ¼ UΔV0

such that

U'U ¼ V'V ¼ I.

The decomposition yields a set of mutually orthogonal latent vari-
ables (LVs), where U and V are matrices of left and right singular vectors,
and Δ is a diagonal matrix of singular values. Each latent variable is a
triplet of the ith left singular vector, the ith right singular vector and the
ith singular value. The number of latent variables is equal to the rank of
the covariance matrix, which is the smaller of its dimensions or the
dimension of its constituent matrices. In the present study, the number of
clinical measures (k¼ 31) is the smallest dimension, so the rank of the
matrix and the total number of latent variables is equal to 31. If there are
v voxels, the dimensions of U, V, and Δ are v� k, k� k, and k� k,
respectively.

Each singular vector weights the original variables in the multivariate
pattern. Thus, the columns of U and V weight the original voxel defor-
mation values and clinical measures such that they maximally covary.
The weighted patterns can be interpreted as a set of maximally covarying
atrophy patterns and their corresponding clinical phenotypes. Each such
pairing is associated with a singular value from the diagonal matrix,
proportional to the covariance between atrophy and behavior captured
by the latent variable. Specifically, the effect size associated with each
latent variable (proportion of covariance accounted for) can be naturally
estimated as the ratio of the squared singular value to the sum of all
squared singular values (McIntosh and Lobaugh, 2004).

Significance of multivariate patterns: The statistical significance of
each latent variable was assessed by permutation tests. The ordering of
observations (i.e. rows) of data matrix X was randomly permuted
(N¼ 500 repetitions), and a set of “null” atrophy-behavior correlation
matrices were then computed for the permuted brain and non-permuted
clinical data matrices. By permuting the order of patients, the procedure
effectively destroys any dependencies between atrophy and behavior.
These “null” correlation matrices were then subjected to SVD as
described above, generating a distribution of singular values under the
null hypothesis that there is no relationship between brain deformation



Fig. 2. Covariance explained and permutation p-values for all latent variables in the PLS
analysis. LV-I is selected for further analysis based on the variance explained and clinical
interpretability of the results. PLS ¼ Partial Least Squares.
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and clinical measures. Since singular values are proportional to the
magnitude of a latent variable, a non-parametric P value can be estimated
for a given latent variable as the probability that a permuted singular
value exceeds the original, non-permuted singular value. Of note, the
permutation test generates a composite set of p-values from a single
multivariate test, implicitly embodying control of type II error.

Contribution and reliability of individual variables: The contribu-
tion of individual variables (voxels or clinical measures) was estimated
by bootstrap resampling. Participants (rows of data matrices X and Y)
Fig. 3. First latent variable (LV-I) obtained from the PLS analysis. a) Brain pattern bootstrap
pattern. The effect size estimates are derived from SVD analysis and the Confidence Intervals
dividual subjects' Brain versus Clinical PLS score.
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were randomly sampled with replacement (N¼ 500), generating a set of
resampled correlation matrices that were then subjected to SVD. This
procedure generated a sampling distribution for each individual weight
in the singular vectors. A “bootstrap ratio” was calculated for each voxel
as the ratio of its singular vector weight and its bootstrap-estimated
standard error. Thus, large bootstrap ratios can be used to isolate vox-
els that make a large contribution to the atrophy pattern (have a large
singular vector weight) and are stable across participants (have a small
standard error). If the bootstrap distribution is approximately normal, the
bootstrap ratio is equivalent to a z-score (Efron and Tibshirani, 1986).
Bootstrap ratio maps were thresholded at values corresponding to the
95% confidence interval.

Patient-specific atrophy and clinical scores: To estimate the extent to
which individual patients express the atrophy or behavioural patterns
derived from the analysis, we calculated patient-specific scores. Namely,
we projected the weighted patternsU and V onto individual-patient data,
yielding a scalar atrophy score and clinical score for each patient, anal-
ogous to a principal component score or factor score:

Atrophy score¼XU

Clinical score¼YV

To investigate the predictive utility of the PLS model, we correlated
patient-specific atrophy and clinical scores with longitudinal measures of
disease progression. These included the Global Composite Outcome
(GCO) and SE-ADL scores as measures of general disease severity, MoCA
for cognition, MDS-UPDRS III for motor, and MDS-UPDRS I for non-
motor aspects of disease.
ratios in MNI space (x¼�6, y¼�12, y¼�8, z¼�14, z¼�6, z¼ 0) b) Clinical scores
(CI) are calculated by bootstrapping, hence the CI are not necessarily symmetrical. c) in-



Table 2
Peak coordinates in MNI-ICBM152 space for brain PLS scores using bootstrap ratios. PLS ¼
Partial Least Squares. B-ratio¼ Bootstrap ratio. MNI: Montreal Neurological Institute.
Structures are ordered within regions by z coordinate.

Region B-
ratios

Structure MNI coordinates

Brainstem 4.9 Medulla �6,-42,-58
3.6 Pons �3,-30,-47
4.7/
4.5

Substantia Nigra 9,-14,-13/-7,-14,-
13

5.1/
4.4

Subthalamic nucleus 8,16,-10/-8,-16,-
10

Cerebellum 5.6/
4.8

Cerebellum 32,-64,-34

4.8 Cerebellum �26,-64,-32
Subcortical 4.2/4 Hippocampus 23,-9,-25/-22,-9,-

26
4.1/
4.2

Amygdala 20,-4,-23/-25,-4,-
24

5.6/
5.1

Nucleus Accumbens 10,12,-6/-8,12,-10

5.7/
6.0

Globus Pallidus Internal Segment 22,-6,-4/-22,-8,-4

5.4/
4.7

Putamen 24,12,-6/-24,12,-4

8.6/
7.7

Ventrolateral/Ventroposterior
Thalamus

12,-26,-2/-10,-24,-
2

7.3/
4.7

Caudate 10,14,-2/-10,14,3

Cortical 3.2 Fusiform gyrus 22,8,-48
3.7 Medial temporopolar region �22,10,-44
3.4 Medial/Inferior frontal gyrus 50,8,-38
3.2/
3.3

Anterior/medial Orbital Gyrus 23,49,-14/-23,43,-
18

6.4/
5.8

Periaqueductal Gray 6,-32,-12/-4,-32,-
12

5.3/
2.8

Fusiform gyrus 26,-66,-8/-24,-64,-
9

3.7 Fusiform gyrus �22,-66,-4
5.0 Inferior Frontal gyrus �30,32,6
3.4 Medial frontal gyrus 44,52,12
3.6 Lateral occipital cortex �24,-78,20
3.7 Parietal Operculum 70,-30,22
2.6 Cingulate gyrus 11,22,31
2.8 Middle Frontal gyrus 24,33,32
3 Superior Frontal gyrus 26,-4,68
2.7 Cingulate gyrus �8,-26,76
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Results

PLS analysis

The PLS analysis revealed six statistically significant latent variables
relating clinical measures in PD and their corresponding brain atrophy
patterns (permuted p< .0001, p< .005, p< .05, p< .05, p< .005,
p< .05). These patterns respectively account for 17.5, 9, 8.2, 6, 4.6, and
4.5% (total of 50%) of the shared covariance between clinical and brain
atrophy measures. Based on the variance explained and clinical inter-
pretability of the results, we focus on and discuss the first latent variable
(LV-I) in greater detail (Fig. 2).
Clinical features and biomarkers patterns

The biomarkers and clinical features (Fig. 3) contributing to LV-I are
composed of: higher PD-related severity (motor and non-motor) as
measured by UPDRS scores, lower striatal dopamine innervation
measured by SPECT, lower cognitive performance (mainly memory-
related), lower amyloid beta level in CSF, and more severe anxiety,
depression, and sleep disorder. We also found the previously reported
effects of age (worse with age) and gender (males worse). More specif-
ically, age was the strongest contributor to LV-I (R¼ 0.69, 95% CI
[0.59,0.74]) followed by motor signs measured by UPDRS-III (R¼ 0.35,
73
95% CI [0.35,0.52]) and autonomic disturbances (SCOPA-AUT)
(R¼ 0.27, 95% CI [0.25,0.45]). Male gender (R¼ 0.23, 95% CI
[0.07,0.34]) and symptom duration (R¼ 0.19, 95% CI [0.10,0.32]) were
other significant contributors to LV-I. Impaired visuospatial (Benton Line
Orientation) (R¼�0.25, 95% CI [-0.40,-0.18]) and executive function
(Letter-Number Sequencing) (R¼�0.25, 95% CI [-0.38,-0.16]) were the
strongest cognitive features of LV-I, followed by the global cognitive
status measured by MoCA (R¼�0.21, 95% CI [-0.35,-0.12]), impaired
speed/attention domain (Symbol-Digit Matching) (R¼�0.19, 95% CI
[-0.35,-0.11]) and memory deficit (HVLT) (R¼�0.13, 95% CI [-0.28,-
0.05]). CSF concentration of amyloid-beta (R¼�0.17, 95% CI [-0.31,-
0.03]) and severity of dopaminergic denervation (SBR) (R¼�0.15, 95%
CI [-0.32,-0.06]) were the only biomarkers that significantly contributed
to LV-I, while genetic risk score (R¼�0.09, 95% CI [-0.23,0.04]) and
CSF α-synuclein (R¼�0.01, 95% CI [-0.15,0.14]) failed to reach sig-
nificance levels.

LV-II to LV-IV are shown in the supplementary materials (supple-
mentary Figs. 1-3). Briefly, LV-II (supplementary Fig. 1) represents fea-
tures of a more benign phenotype of PD with a higher tremor score,
higher dopamine innervation as measured by SPECT, better memory
function (measured by HVLT total recall), and less severe behavioral
symptoms, sleep disorders, and autonomic disturbances. By contrast, LV-
III (supplementary Fig. 2) indexes more prominent postural and gait
disabilities (PIGD Score) and more severe mood and behavioral symp-
toms, RBD, and autonomic disturbances. This LV also includes impaired
visuospatial cognitive functions and more severe hyposmia as measured
by the UPSIT.

Atrophy network in de novo PD patients

The corresponding brain pattern for the clinical and demographic
measures in LV-I involved discrete cortical regions located in multiple
parts of the frontal lobes, fusiform gyrus, cingulate gyrus and insular
cortex, and subcortical regions including thalamus and basal ganglia
(putamen, caudate, and nucleus accumbens), hippocampus and amyg-
dala, brainstem (substantia nigra, red nucleus, subthalamic nucleus,
pons, and areas of medulla that overlap with the dorsal motor nucleus of
the vagus and nucleus of the solitary tract), and cerebellum (Table 2,
Fig. 3 a.).

Fig. 3c shows an example of how the putative atrophy network and
the associated clinical phenotype relate to each other. For each weighted
pattern, we estimated patient-specific scores by projecting the patterns
onto individual patients’ data (see Methods). The resulting scalar values
(termed atrophy scores and clinical scores), reflect the extent to which an
individual patient expresses each pattern. By definition, the two scores
are correlated (r¼ 0.7), i.e. patients with greater atrophy in the network
in Fig. 3a, also tend to conform more closely to the clinical phenotype in
Fig. 3b. Patients who score highly on both likely have more severe pa-
thology, and we illustrate this by coloring the points (individual patients)
by their UPDRS III scores. Individuals withmore pronounced atrophy and
clinical variable severity also tend to score highly on UPDRS III, a mea-
sure of motor symptoms.

Atrophy pattern in Parkinson's disease and aging

Aging is the largest risk factor for both development and progression
of PD (Hindle, 2010). PD-related and age-related brain alterations could
happen independently; however, it is more likely that the two phenom-
ena interact in PD (Collier et al., 2011). From a modeling and analysis
perspective the interdependency between the two factors makes it
difficult if not impossible to disentangle the two processes without losing
the disease related effect from the data.

Nonetheless, to ensure the disease specificity of the findings, the PLS
analysis was repeated after removing the effect of aging from the atrophy
maps, by regressing out age effects on deformation calculated based on
the healthy subjects in the same dataset (N¼ 117). This analysis was



Fig. 4. Covariance explained and permutation p-values for all latent variables in PLS analysis before and after regressing out healthy aging in the deformation maps.
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similar to previous studies with confounding age effects in diseased
populations (Scahill et al., 2003; Franke et al., 2010; Dukart et al., 2011;
Moradi et al., 2015). The brain-clinical relationship as identified using
PLS remained significant after controlling for normative aging. Overall,
the directionality and significant contributors of the age removed LV
(AR-LV) patterns remained similar after regressing out the effect of age.
We found eight statistically significant LVs relating clinical measures in
PD and their corresponding brain atrophy patterns (AR-LV-I to AR-LV-VI
permuted p< .0001, AR-LV-VII and AR-LV-VIII permuted p< .05). These
patterns respectively account for 12, 11, 8, 6.6, 6, 5, 4.7, 4, and 3.6%
(total of 55%) of the shared covariance between clinical and brain at-
rophy measures (Fig. 4).

Here we focus on the first two LVs since the others remain intact to
the effect of regressing out normative aging (Fig. 4).

AR-LV-I and AR-LV-II explain more than 20% of the covariance be-
tween brain atrophy and clinical measure included in this analysis. AR-
LV-I (Fig. 5) is similar to LV-I except that age no longer features. It cap-
tures the male gender effect, memory-specific cognitive impairment,
RBD, as well as certain mood/affective behavioral scores such as the GDS
(measuring depression), QUIP (measuring impulse control disorder), and
STAI (measuring anxiety disorder) that are absent in LV-I (without con-
trolling for brain normative aging).

For AR-LV-II (Fig. 5), the significant contributors and their overall
directionality are analogous to LV-I, except for CSF measures and gender.
The most important contributor in AR-LV-II is age, which suggests that
aging contributes to brain alteration in PD beyond the normative aging
process. The increase in contribution of motor symptoms (as measured by
UPDRS-III) and phenotype (as measured by PIGD) is in line with the
significant impact of symptom duration and pathological aging within
this LV. In sum, the first two LVs of the age-regressed analysis appear to
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capture separate portions of the first LV from the non-age-regressed
analysis. The AR-LV-III and AR-LV-IV are shown in supplementary
Figs. 4-5.

Atrophy pattern at first visit correlates with longitudinal disease progression

Baseline LV-I score was significantly related to longitudinal wors-
ening in several clinical measures after an average of 2.7 years (Fig. 6).
Participants with greater expression (atrophy) of the LV-I brain pattern at
baseline had significantly greater deterioration in the GCO (r¼ 0.22,
p< .001) and in activities of daily living, measured by the SE-ADL (which
was not included in the PLS analysis) (r¼ - 0.20, p¼ .003). We also
assessed the correlation between LV-I score at baseline and changes in
single clinical measures in different categories. Higher expression of the
Brain LV-I pattern was significantly correlated with decline in cognition
demonstrated by the decrease in MoCA score (r¼�0.28, p< .0001).
However, the association between baseline LV-I expression and changes
in motor signs (UPDRS-III) (r¼ 0.13, p¼ .052) or non-motor symptoms
(UPDRS-I) (r¼ 0.12, p¼ .08) marginally failed to reach significance.

Discussion

The present study links multiple domains of clinical and biomarker
features of PD to the underlying brain atrophy pattern using a single
integrated analysis in a recently diagnosed population. In this de novo
cohort, in addition to higher age, a wide range of motor and non-motor
features were linked to brain atrophy. We hope the PLS approach used
here provides a means to investigate the complex combination of motor
and non-motor features of PD in relation to patterns of brain atrophy, as
well as the intricate interplay between normal versus pathological aging.



Fig. 5. First (left) and second (right) latent variable (AR-LV-I and II) obtained from PLS analysis after regressing out healthy aging. Clinical scores pattern (the effect sizes are estimated
using SVD analysis and the Confidence Intervals (CI) are calculated by bootstrapping). PLS¼ Partial Least Squares. SVD¼ Singular Value Decomposition.
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Our findings suggest that a broadly distributed spatial pattern of brain
atrophy is present in the early stages of PD, which covaries with motor,
cognitive and other non-motor manifestations. This is somewhat at odds
with the previous literature, where de novo PD is seldom associated with
detectable brain atrophy. The participants in this cohort were all drug-
naïve and within less than one year of diagnosis. A possible explanation
for the greater ability of the multivariate approach to detect atrophy is
that the course of PD may be stereotyped and the disease relatively
widespread by the time early motor symptoms appear (Braak et al.,
2003). Using all the voxels in the brain in a single analysis may confer
greater sensitivity to deformation in a disease with a consistent spatial
distribution. Although the first LV was associated with almost all the key
clinical features of PD, we also describe two other LVs that capture
smaller amounts of covariance (8–9% vs 17% for the first LV). These
appear to respectively index a more benign clinical phenotype (trem-
or-dominant) with atrophy in motor areas and a more severe phenotype
(postural instability – gait disorder) associated with brainstem and
cortical atrophy. These patterns may indicate different potential modes
of disease propagation, as evidenced in dementia using eigenvalue
decomposition (Raj et al., 2012).

PD studies using brain imaging to date have almost always focused on
differences between PD and healthy controls, or on a particular symptom
manifestation (such as dementia) to study brain alterations. As a multi-
variate approach, PLS enables us to investigate brain alterations in PD
subjects without a need for a control group and to consider multiple
clinical aspects of the disease simultaneously.

We used our standard image analysis pipeline to calculate DBM as a
measure of brain alterations. This pipeline (Aubert-Broche et al., 2013)
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has been previously used for several multi-center and multi-scanner
studies and it has been shown to produce robust results by removing
site-specific biases (Boucetta et al., 2016; Sanford et al., 2017; Zeighami
et al., 2015). Also, in an earlier study, we provided evidence that DBM
was a more sensitive measure of atrophy than VBM, especially for
subcortical areas (Zeighami et al., 2015).

While the presence of atrophy early in the course of the disease is
rarely reported, the direction of associations between atrophy and
different clinical features and biomarkers is consistent with the literature.
As one notable example, older age of onset and male gender were asso-
ciated with greater expression of the PD-related pattern that was later
demonstrated to correlate with faster progression. This is in line with
previous reports of poorer prognosis of PD in older male patients (Post
et al., 2011). Also, key non-motor features such as RBD, somnolence,
autonomic disturbance and mood disorders contributed to the latent
variable, consistent with the prognostic importance of these manifesta-
tions in other PD cohorts (Fereshtehnejad et al., 2015). Cognitive deficit,
even though mild in severity, was also a significant correlate of brain
atrophy. Although definite cognitive impairment was an exclusion cri-
terion in PPMI, mild cognitive impairment still significantly correlated
with the pattern of atrophy. Up to one fifth of the early PD populations
meet the criteria for mild cognitive impairment, which is a strong pre-
dictor of earlier onset of dementia and poor prognosis (Pedersen et al.,
2013, 2017). It is noteworthy that visuospatial and executive functioning
more prominently contributed to the pattern of atrophy than the other
cognitive domains. This is consistent with other studies of cognitive
impairment in PD compared to Alzheimer's disease (Watson and Lever-
enz, 2010; Wu et al., 2012). The patterns of brain atrophy and related



Fig. 6. Baseline atrophy is associated with longitudinal clinical progression. Individual patients' atrophy score (expression of the atrophy network from the PLS model) is correlated with
longitudinal change in clinical measures of disease severity. PLS¼ Partial Least Squares. MoCA¼ Montreal Cognitive Assessment. GCO¼Global Composite Outcome. UPDRS¼ Unified
Parkinson's Disease Rating Scale. SE ADL¼ Schwab and England ADL score (overall activities of daily living).
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motor, autonomic and cognitive deficits identified in LV-I are consistent
with each other: autonomic and sleep dysfunction are explained by
brainstem atrophy, and cognitive deficits in the domains of attention,
memory, and executive function are consistent with the involvement of
frontal lobes, medial temporal lobes, and posterior visual areas.

PD- and age-related brain alterations can happen independently,
however, it is more plausible that aging and neurodegeneration interact
(Collier et al., 2011). To distinguish between normative and pathological
aging and their effects in our analyses, we regressed out the effect of
normative aging – obtained from healthy subjects in the same dataset -
from brain deformation maps of the PD patients. In contrast to the
non-age-regressed results, two significant distinct patterns emerged.
First, affective and sleep-related symptoms were more prominent con-
tributors in the absence of any significant contribution of age and
symptom duration. This aligns with the prodromal phase of PD during
which the majority of the non-motor features reach high severity and
precede the appearance of motor symptoms (Pfeiffer, 2016). The main
exception is autonomic disturbance (SCOPA score and BP Sys drop),
which usually worsens alongside PD progression. This is manifested in
the second age-regressed LV, which may represent the pathological aging
phenomenon in PD.

Even though, the effect of normative aging was regressed out in this
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complementary analysis, age and symptom duration remained as prom-
inent contributors of the AR-LV-II atrophy pattern. Overall, this second
age-regressed LV may represent pathological or accelerated aging in PD,
as it also featured greater motor severity and more dopaminergic
denervation (as measured by SPECT SBR).

Using PLS, we obtained a disease related atrophy map that included
brainstem (medulla in the area of the dorsal motor nucleus of the vagus,
red nucleus and substantia nigra), basal ganglia (including putamen,
caudate, pallidum and subthalamic nucleus), cortical regions, as well as
cerebellar regions. These findings are consistent with the earlier stages of
Braak's description of disease spread (Braak et al., 2003), as well as our
previously published PD atrophy network map, based on this dataset
(Zeighami et al., 2015). It is notable that atrophy was also identified in
frontal regions, belonging to Braak Stage V (Braak et al., 2003), and not
usually thought to be affected at the time of diagnosis. In that report,
Braak et al. only noted frontal cortex Lewy pathology in patients at
Hoehn and Yahr stage III or greater, which typically occurs at least 24–36
months after diagnosis (Zhao et al., 2010). This raises the possibility that
brain atrophy may precede the arrival of synucleinopathy possibly due to
tissue loss secondary to deafferentation.

One of the main strengths of the proposed approach is the ability to
detect brain-clinical manifestations of the disease at an early stage. We
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further show that the PLS scores relate to disease progression in the
follow up visits. These results provide an opportunity to develop a simple
comprehensive measure per subject which can be used as a prognostic
biomarker of the disease. This approach could also have value in
assessing prodromal disease populations, identified through genetic
testing or the presence of RBD.We suggest that it could also be applicable
to other neurodegenerative or neurodevelopmental diseases.

The findings from this study should be considered in light of some
limitations. Using PLS provides the opportunity to comprehensively
investigate brain-clinical relations. However, we lose specificity as to
how each particular clinical manifestation potentially relates to a specific
brain region, rather than the atrophy pattern as a whole. Such individual
relationships need to be addressed in future studies using independent
PD cohorts. While we investigated the relationship between baseline
findings and longitudinal clinical changes, future studies also need to
investigate longitudinal brain alterations in PD and how they relate to
disease progression.

In this study, we have taken advantage of PLS as a multivariate
approach to investigate the collective relationship between brain alter-
ations reflected in DBM measures and various aspects of the disease re-
flected in clinical measurements. We used data consisting of people with
early diagnosed, drug-naïve PD who were followed for an average of 2.7
years from PPMI, a global multi-center study. While 2.7 years is a rela-
tively short-term follow-up, the atrophy pattern was significantly asso-
ciated with the longitudinal rate of decline in several clinical measures.
In other words, high-scoring participants with more atrophic patterns at
baseline experienced faster progression on the global single indicator of
all symptom categories as well as the cognitive measure. Taken together,
this study provides a new framework for studying neurodegenerative
diseases with multi-faceted clinical measures and the interactions be-
tween brain alterations and disease manifestations. In addition, the sin-
gle collective score summarizing the disease burden for each individual
subject can be used as a potential biomarker for both diagnostic and
prognostic purposes.
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