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Abstract

The Digital Subscriber Line (DSL) environment is characterized by highly frequency-
selective attenuation and by potentially large crosstalk between users. DSL resource allo-
cation algorithms allow for an efficient use of the DSL network by managing the crosstalk-
induced interference while also taking the frequency-selectivity into account. Previous
resource allocation algorithms were based on worst-case situations. The more recent Dy-
namic Spectrum Management (DSM) resource allocation algorithms are able to constantly
adapt to the channel characteristics. At one end of the DSM algorithms, there is the
low-performing user-level Iterative Water-Filling (IWF) algorithm with low computational
complexity and full distributivity. At the other end, the better-performing network-level
algorithms are not fully distributable and have higher computational complexities.

In this thesis, an overview of the DSL environment and its resource allocation algorithms
is presented. Then, three alternatives with a smaller computational load than the bisection
method used in IWF’s water-filling sub-algorithm are presented. These alternatives include
a novel projection method for a specific case and the novel Generalized Recursive Water-
Filling (GRWF) algorithm for the generalized resource allocation problem.

The Autonomous Spectrum Balancing using Multiple Reference Lines (ASB-MRL) al-
gorithm is then presented as an algorithm capable of bridging the performance gap between
the fully-distributable and low-complexity IWF, and the high-performing network-level al-
gorithms while maintaining the benefits of each. Following that, a set of conditions on the
virtual network formed by the multiple reference lines is produced to ensure that ASB-MRL
allocates the resources in a near-optimal manner.
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Sommaire

L’environnement des lignes d’abonné numérique (DSL) est caractérisé par un affaiblisse-
ment progressif de fréquences et une diaphonie potentiellement large entre utilisateurs.
L’allocation de ressources dans le DSL permet d’utiliser le réseau DSL efficacement en
gérant l’interférence produite par la diaphonie tout en prenant en compte l’affaiblissement
progressif de fréquences. Les algorithmes d’allocation de ressources antérieurs étaient con-
struits sur les principes de la pire éventualité. Plus récemment, la gestion dynamique du
spectre (DSM) a permis aux algorithmes d’allocation de ressources de s’adapter contin-
uellement aux caractéristiques des voies de transmission et cela a permis le développement
de quelques algorithmes. D’un côté, il y a le remplissage d’eau itératif (IWF), un algo-
rithme à faible complexité opérationnelle qui peut être implémenté indépendamment par
chaque utilisateur. D’un autre côté, il y a les algorithmes qui gèrent tous les utilisateurs
afin d’allouer les ressources beaucoup plus efficacement que le IWF. Par contre, ces algo-
rithmes ne peuvent pas être complètement distribués parmi les utilisateurs et ils ont une
plus grande complexité.

Dans ce mémoire de mâıtrise, un aperçu de l’environnement DSL et des algorithmes
d’allocation de ressources est introduit. Ensuite, trois alternatives pouvant s’exécuter plus
rapidement que la méthode par bissection utilisée dans le sous-algorithme du IWF sont
présentées. Parmi ces alternatives, une nouvelle méthode par projection est proposée pour
des cas spéciaux, et une nouvelle méthode se basant sur la récursivité, le remplissage d’eau
récursif généralisé (GRWF), est proposée pour les problèmes d’allocation de ressources
généralisés.

L’algorithme d’équilibre de spectre autonome utilisant plusieurs lignes de référence
(ASB-MRL) est ensuite présenté comme un algorithme capable d’obtenir une performance
similaire aux algorithmes qui gèrent les ressources de tous les utilisateurs. Toutefois, le
ASB-MRL retient les avantages du IWF: la faible complexité et l’implémentation dis-
tribué. Par la suite, un ensemble de conditions sur le réseau DSL virtuel contenant les
lignes de référence est introduit pour s’assurer que le ASB-MRL alloue les ressources de
façon quasi-optimale.
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Chapter 1

Introduction

Digital Subscriber Line (DSL) is a service that allows broadband access to exist concurrently

with analog voice communication over common telephone lines. DSL is attractive as it

reuses the existing telephone line infrastructure thus not requiring large investments for

wire installation. In fact, in 2010, DSL was the most popular broadband connection with

two-thirds of the world’s 485 million broadband connections being over DSL [1]. However,

the telephone line infrastructures were not designed to carry high speed data transmission

and therefore introduce a few factors that inhibit DSL’s performance.

One inhibiting factor is the highly frequency-selective attenuation in the DSL envi-

ronment. This is a property from the twisted-copper pair wires used for telephone lines

and also caused by the signal reflections generated by the bridged-taps used for branching

telephone lines. DSL uses Discrete Multi-Tone (DMT) transmission similar to Orthog-

onal Frequency-Division Multiplexing (OFDM) where the transmission frequency band is

divided into many smaller sub-carriers (also called frequency tones) to approximately trans-

form the frequency-selective broadband channel into a number of frequency-flat narrowband

channels, e.g., in VDSL2, a recent DSL standard, the transmission bandwidth of 17MHz is

divided into 4096 frequency tones [2].

Another factor is the overall channel attenuation of the twisted-copper pair that in-

creases with line length. Under this factor, two telephone lines of unequal lengths will have

very different attenuation levels with the longer line experiencing higher losses than on the

shorter line. This results in the longer line having a much reduced achievable data rate. As

a solution to this problem, Fiber-To-The-Node (FTTN) and Fiber-To-The-Curb (FTTC)
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can be used where part of the twisted-copper pair is replaced with optical fiber. This ef-

fectively creates a hybrid copper-fiber network with the twisted-copper pairs covering the

final few hundred meters on the client-side. Even with a hybrid copper-fiber network, the

savings are still significant as the last-mile telephone infrastructures can be reused while

shortening the twisted-copper line length.

The third factor is the crosstalk caused by electromagnetic coupling between different

telephone lines within a same bundle. Like the channel frequency response, the crosstalk

is also highly frequency selective. Moreover, the total crosstalk onto a telephone line is

cumulative in that it includes the crosstalk from every other telephone line in the same

bundle. This cumulative crosstalk represents a major interference source thus making DSL

crosstalk-limited. Moreover, crosstalk also depends on the line lengths where the crosstalk

magnitude becomes larger with line coupling length and frequency, but also attenuates over

regions without coupling.

The channel response over each frequency tone can have large variations and DMT

takes advantage of the variation by letting each frequency tone have its own modulation

scheme to carry a different bit rate. This is where the resource allocation problem comes

into play by trying to efficiently allocate the transmit power over the frequency tones.

From the resource allocation problem, different objectives can be formulated such as to

maximize the rate achieved over a DSL network, to minimize the power needed to achieve

a set requirement [3], or to maximize the rate of certain DSL users while guaranteeing a

certain quality of service on the others.

Many resource allocation algorithms were proposed to partially or fully meet at least

one of the resource allocation problem objectives. At the lower performing range, there are

the Static Spectrum Management (SSM) algorithms that perform the resource allocation

on a single user while assuming worst-case scenario elements. However, using worst-case

scenarios will produce inefficient results. Up until recently, SSM algorithms were sufficient,

but with the increase in demand for higher data rates for faster file transfer rates and

for applications such as VoIP and IPTV, more efficient resource allocation algorithms are

required.

For a more efficient resource allocation, there are the Dynamic Spectrum Management

(DSM) [4, 5, 6] algorithms that are able to constantly adapt to the channel characteristics.

The DSM algorithms can be characterized as being user-level or network-level, and as being

distributable or not. User-level algorithms perform resource allocation on a single-user
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basis while network-level algorithms jointly optimize every user to allocate the resources

as efficiently as possible. Distributive resource allocation algorithms have the benefit that

they can be fully distributed to each user and implemented at the customer end. Non-

distributive algorithms either have to be performed centrally at a Spectrum Management

Center (SMC) or they can be semi-distributed by using a message passing system to transfer

the algorithm’s variables between the different users.

The most basic DSM algorithm is the fully-distributive user-level Iterative Water-Filling

(IWF) algorithm [7]. Unlike the SSM algorithms which rely on worst-case scenarios, with

IWF, each user generates the most efficient Power Spectral Density (PSD) given the channel

gain and the interference power measured. By adapting to the channel environment, users

applying IWF are able to produce achievable data transmission rates up to 100% over SSM

algorithms [8, 9]. Yet, even if IWF does produce a user-efficient resource allocation, it

does not produce a network-efficient resource allocation. For optimal results, network-level

algorithms that are able to jointly manage every user are required. However, network-level

algorithms have a computational complexity higher than that of IWF. And, as previously

mentionned, network-level algorithms must also be either performed centrally or use a

message passing system between users to exchange the algorithm’s variables.

1.1 Thesis Contributions

In the first part, this thesis proposes an algorithm to reduce the computational load of

the water-filling sub-algorithm in IWF. A projection method that can perform water-filling

in a single iteration in the best case scenario is proposed for the special case where no

PSD mask is used. Then, a generalization on the resource allocation problem for both rate

maximization and for power miniminization is introduced. Using the generalized problem,

the corresponding generalized water-filling solution is derived, and a recursive approach for

finding the total transmit power used and the achievable rate is proposed to finally produce

the Generalized Recursive Water-Filling (GRWF) algorithm. The GRWF algorithm is

capable of performing water-filling within a discrete number of iterations determined only

by the number of frequency tones while having a smaller computational footprint than

other methods. Finally, a discrete bit-loading approach is proposed for the water-filling-

like network-level algorithms.

In the second part, this thesis looks at modifying IWF in order to make it perform
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close to network-level algorithm thus bridging the gap between user-level and network-level

resource allocation algorithms. Using effective water-filling levels, an analysis between

IWF and network-level algorithms is performed and a modification to IWF under the

form of a Lagrange multiplier offset is proposed. With the Lagrange offset, the modified

IWF algorithm has the potential to produce network-like results. The concept of using

multiple reference lines is then introduced as a method for producing the offsets. This

results in the introduction of the Autonomous Spectrum Balancing using Multiple Reference

Lines (ASB-MRL) algorithms as user-level algorithms that optimize over a virtual network.

Through the virtual network, the ASB-MRL algorithms are capable of achieving similar

performances as network-level algorithms while requiring fewer global iterations to converge

and having the same computational complexity as IWF. Then, three conditions on the

virtual network containing the multiple reference lines are developed such that the ASB-

MRL algorithms can consistently produce network-level-like results. Finally, a Monte Carlo

style simulation is performed over two typical types of DSL networks to show the network-

level-like performance capabilities of the ASB-MRL algorithms.

1.2 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents the background

necessary for understanding the topics discussed in this thesis. This includes introducing

the DSL environment and the crosstalk-limited DSL network. Then the system model

used throughout this thesis is presented and the DSL resource allocation problem is formu-

lated. Finally, this chapter describes previous user-level and network-level DSL resource

algorithms and discusses their main differences.

Chapter 3 begins by reviewing the bit-loading approach and proposes the projection

method as an alternative to bisection for finding the water-filling level in the water-filling

algorithm in order to reduce the computational load of the IWF algorithm. After show-

ing that both approaches are only suitable for specific cases, the chapter introduces the

GRWF algorithm by first generalizing the resource allocation used by water-filling, then by

finding a recursive formulation for determining the total transmit power required and the

achievable rate obtained at different discrete water-filling levels, and finally by formulating

a way for using the recursive formulation over a continuous set of water-filling levels. The

GRWF algorithm is then compared to the other water-filling algorithms by determining
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their computational loads. Finally, a bit-loading method for water-filling-like algorithms is

introduced.

Chapter 4 begins by differentiating the sub-optimal IWF and optimal network-level DSL

resource allocation algorithms by comparing the effective water-filling levels they produce.

Using the differences, an extension to the IWF is introduced through the form of a Lagrange

multiplier offset that gives it the potential to perform near-optimally. Then, the concept

of using multiple reference lines is introduced as a method for generating the Lagrange

multiplier offsets and two ASB-MRL algorithms are derived: ASB-DSB and ASB-SCALE.

A relaxation is then performed on the ASB-MRL algorithms to reduce their computational

complexity per iteration to that of IWF. After, three conditions on the set of reference lines

used are formed in order to have ASB-MRL consistently producing near-optimal results.

Finally, an illustrative example is given through a Monte Carlo style simulation over two

different types of DSL networks.

Chapter 5 summarizes this thesis and proposes future research direction from the work

accomplished.
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Chapter 2

DSL Resource Allocation Algorithms1

The Digital Subscriber Line (DSL) system allows for the reuse of plain old telephone sys-

tem (POTS) infrastructures for data transmission through twisted copper pairs. However,

POTS were initially designed for voice communication in the 0 to 4 kHz range and not

for the MHz range used by DSL thus creating many challenges to DSL in the form of

frequency-selective channels and potentially large crosstalk interference. In order to ad-

dress these challenges, various algorithms and techniques have been introduced.

This chapter introduces the DSL channel characteristics and resource allocation algo-

rithms. In Section 2.1, a brief overview of the DSL environment is presented. Then, Section

2.2 talks about the crosstalk-limited DSL network. The system model used throughout this

thesis is given in Section 2.3 and the DSL problems in Section 2.4. Finally, various DSL

resource allocation algorithms are described in Section 2.5.

2.1 Discrete Multi-Tone

The DSL system allows data communication to work alongside with voice communication

by using the higher frequency bands (>25kHz) in the POTS while voice communication uses

the lower frequency band (<25kHz). However, the POTS infrastructure was not initially

designed for data communication over the higher frequency bands where the channel is

highly frequency-selective. This frequency selectiveness is characterized by an attenuation

that increases with frequency. Additionally, the attenuation also increases with the twisted

1Part of Chapter 2 has been presented in [10].
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Fig. 2.1 Channel gain for various line lengths. The highest channel gain
corresponds to a line length of 100m. From the highest channel gain towards
the lowest channel gain, the line length increases by 100m until it reaches
1000m.

copper pair line length. Figure 2.1 plots a few channel gains over the frequency band used

by VDSL2, a recent DSL standard, for lengths varying from 100m to 1000m. The channel

gains were generated using the channel model specified in [11] which corresponds to an

ideal wire and do not include additional attenuations that can be caused by other factors

including wire splitting.

In order to cope with the frequency-selectiveness of the twisted copper pairs, VDSL2

uses Discrete Multi-Tone (DMT) as the transmission technique. This technique is similar to

OFDM where the bandwidth is divided into many orthogonal sub-carriers, called frequency

tones in DMT. By dividing the whole frequency-selective bandwidth, each frequency tone

can be made to seem less frequency-selective and even non frequency-selective with a suf-

ficient number of divisions. The division results in many frequency tones each with their

own channel gain as shown in Figure 2.2. Obviously some frequency tones will have bet-

ter channel gains than others and DMT can benefit from the variability by allowing each

frequency tone to have a different modulation scheme customized for each tone’s potential

spectral efficiency . Thus, with varying modulation schemes, DMT can transmit more bits

over the better frequency tones and ignore the ones with very poor channel gains. On the

other hand, even with the severe frequency-selective channels, the DSL environment has

the benefit of being very slow fading.
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carriers.

2.2 Crosstalk

Another challenge that DSL is faced with is the presence of crosstalk. Because the twisted

copper pairs in POTS are bundled together, each pair can introduce high levels of elec-

tromagnetic interference onto another pair. Figure 2.3 shows the two kinds of crosstalk

that can exist: far-end crosstalk (FEXT) from one end of one pair to the other end of the

other pair, and near-end crosstalk (NEXT) between the same ends of two pairs. Of the two

crosstalk sources, only FEXT remains in VDSL2 as NEXT is prevented by using frequency

division duplex in which the frequency tones are divided into either upstream of down-

stream transmission on every copper pair. The transmission direction used for VDSL2

co-existing with voice communication in North America is summarized in the bandplan

given in Figure 2.4 [11]. The upstream direction corresponds to the transmission from the

customer’s modem towards the Digital Subscriber Line Access Multiplexer (DSLAM) or

the telephone Central Office (CO). The downstream direction corresponds to the opposite,

from the CO to the customer. Note that the bandplan allocates a much larger frequency

range to downstream as the standard gives much more priority towards data downloading

than uploading.

On a pair-to-pair basis, FEXT may not represent a large issue. However, twisted copper

pair bundles may contain up to 25 pairs and bundles can be combined to create even larger
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Fig. 2.4 VDSL bandplan with DS denoting downstream and US for up-
stream.

bundles containing up to 200 pairs. Each additional pair increases the total crosstalk on a

given pair and can represent a significant source of interference resulting in crosstalk-limited

performances over DSL networks.

2.3 System Model

With DMT using orthogonal sub-carriers with approximately no frequency-selectiveness, we

assume that each frequency is free of inter-carrier interference and inter-symbol interference.

Then, the DSL signal model over each frequency tone is presented in Figure 2.5 where N

represents the number of twisted copper pairs, or users, xn the nth transmitter, yn the nth

receiver, and zn the additive noise at the nth receiver which includes thermal noise, alien

crosstalk, and radio frequency interference. For the general kth frequency tone, the model

is formulated as

ynk = znk +
∑

m∈N

hnm
k xm

k
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Fig. 2.5 DSL signal model.

where hnm
k represents the transfer signal gain from transmitter m to receiver n over the kth

frequency tone. The set N represents the set of users and contains {1, 2, . . . , N}. Similarly,

the set K represents the set of frequency tones and contains {1, 2, . . . , K} where K is the

number of frequency tones.

The transmit Power Spectral Density (PSD) for user n on frequency tone k is denoted

as snk and is given by E{|xn
k |

2}/∆f where E{·} represents the expectation function and ∆f

the frequency tone spacing. Similarly, the transfer power gain is defined as Hnm
k , |hnm

k |
2

and the noise power spectral density as σn
k , E{|znk |

2}/∆f .

The total interference power received by user n on frequency tone k is defined as

intnk , σn
k +

∑

m∈N
m6=n

Hnm
k smk

and the total received power as

recnk , σn
k +

∑

m∈N

Hnm
k smk = intnk +Hnn

k smk .

With a sufficient number of users and by assuming that there is no useful information in

the received crosstalk, the interference can be modeled as a Gaussian distribution and the

spectral efficiency, or bit-loading, is

bnk = log2

(

1 +
1

Γ

Hnn
k snk
intnk

)

(2.1)
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where Γ represents the Signal to Noise Ratio (SNR) gap and is calculated using the desired

Bit Error Rate (BER), noise margin, and coding gain. The total sum rate for user n is

obtained by using

Rn = fs
∑

k∈K

bnk (2.2)

where fs represents the DMT symbol rate.

2.3.1 Channel Model

The channel model used throughout this thesis is based on the ANSI standard [11]. In this

model, the direct transfer power gains are based on the RLCG transmission model. On

the other hand, the crosstalk power gain model is based on empirical measurements and is

made such that it represents a 99% worst-case scenario. That is, there is a probability of

99% that the actual crosstalk power gain is inferior to the one calculated by the model.

The additive noise znk is assumed to be from a zero-mean Gaussian distribution with

variance σn
k and in the simulations it is set to a constant -140dBm following the ANSI

standard [11].

2.4 DSL Resource Allocation

The purpose of DSL resource allocation is to make a DSL network as efficient as possible

whether by maximizing the network sum rate or by minimizing the network sum power.

Over time, many algorithms were developed ranging from the early single-user static algo-

rithms to the more recent multi-user dynamic algorithms. The static and dynamic terms

refer to the algorithm’s ability to adapt in a changing network. This section lays out the

objective functions used by the algorithms presented in this thesis and by most other DSL

resource allocation algorithms.

2.4.1 Objective Function

This thesis covers two main types of DSL resource allocation:

1. Rate Adaptive (RA) optimization where the purpose is to maximize the overall sum

rate of the network given a certain power constraint, and
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2. Fixed Margin (FM) optimization where the purpose is to minimize the overall sum

power of the network given a certain minimum rate constraint.

Both RA and FM optimization can be combined into a mixed RA-FM case where the goal

is to maximize the sum rate of a given group of users while still guaranteeing a minimum

rate on the other users. With some algorithms, the solution to the RA case is very similar

to the FM case thus allowing for a mixed RA-FM algorithm to be easily created.

Rate Adaptive Optimization

The optimization problem used by RA optimization is as follows:

max
snk∀k∈K,n∈N

∑

n∈N

ωnRn

subject to ∆f
∑

k∈K

snk ≤ P n , ∀n ∈ N

0 ≤ snk ≤ smask,n
k , ∀k ∈ K, n ∈ N

(2.3)

where P n refers to the maximum allowable total transmit power used by user n, ωn is the

weight of user n representing its maximization priority, and smask,n
k is the maximum PSD

that user n can use on frequency tone k.

Fixed Margin Optimization

The FM case consists of minimizing the network sum power and it is summarized mathe-

matically as follows:

max
snk∀k∈K,n∈N

∑

k∈K
n∈N

−snk

subject to Rn ≥ Rn,target , ∀n ∈ N

0 ≤ snk ≤ smask,n
k , ∀k ∈ K, n ∈ N

(2.4)

where Rn,target corresponds to the the minimum rate that user n must achieve.
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Mixed RA-FM Optimization

In the mixed RA-FM case, each user must be categorized as either being an RA user or

an FM user. The mixed RA-FM optimization will then maximize the sum rate of the RA

users while ensuring that the FM users meet their respective minimum target rate. Letting

RA denote the set containing the RA users and FM for the FM users, then the mixed

RA-FM optimization problem is summarized as follows:

max
snk∀k∈K,n∈N

∑

n∈RA

ωnRn

subject to ∆f
∑

k∈K

snk ≤ P n , ∀n ∈ N

Rn ≥ Rn,target , ∀n ∈ FM

0 ≤ snk ≤ smask,n
k , ∀k ∈ K, n ∈ N .

(2.5)

Note that the RA problem is a special case of the mixed RA-FM problem where all users

are members of the set RA and the set FM is empty.

2.4.2 Other Objective Functions

Aside from RA and FM, another main type of objective function exists and it consists of

maximizing the SNR gap in order to improve the stability of the user’s line to other sources

of interference and has been used by [12, 13, 14] . This type of optimization is also called

margin optimization and often has the following form:

max
snk∀k∈K,n∈N

∑

n∈N

ωnΓn

subject to ∆f
∑

k∈K

snk ≤ P n , ∀n ∈ N

Rn,margin ≥ Rn,target , ∀n ∈ N

0 ≤ snk ≤ smask,n
k , ∀k ∈ K, n ∈ N

with the user’s sum rate now defined as

Rn,margin = ∆f
∑

k∈K

log2

(

1 +
1

Γn

Hnn
k snk
intnk

)

.
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Other objective functions can also exist to achieve different goals by usually using a

different utility in the objective function.

2.5 DSL Resource Allocation Algorithms

There are many algorithms that attempt to solve the DSL resource allocation problems

to various degrees. At the lower end, there are the Static Spectrum Management (SSM)

algorithms that use very simple methods that result in far-from-optimal solutions. Then,

there are the Dynamic Spectrum Management (DSM) algorithms that can continuously

adapt to a changing channel and that can produce user-level optimal results and network-

level (or multi-user) optimal results. This section presents a few SSM and DSM algorithms

and goes more in depth into a few DSM algorithms that will be used throughout this thesis.

2.5.1 Static Spectrum Management

The SSM algorithms, also referred to as DSM level-0 [15], are characterized by their inability

to adapt to a given DSL network. Instead, SSM algorithms are designed to cover most cases

by using a worst-case scenario system.

Noise Reference

The noise reference method sets a user’s PSD such that crosstalk it produces onto a reference

user is equal to some noise reference. The equation equivalent is

snk =
ref noise

Hnm
k

for setting the PSD on frequency tone k for user n with m acting as the reference user.

This algorithm tries to limit the total interference by limiting the crosstalk contribution

from every user. Assuming a network with N identical users, and reference user m being

modeled after user n, then the bit-loading will effectively become

bnk = log2

(

1 +
1

Γ

Hnn
k ref noise/Hnm

k

σn
k + (N − 1)ref noise

)

≈ log2

(

1 +
1

Γ

Hnn
k

(N − 1)Hnm
k

)
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where the crosstalk is assumed to be much greater than the noise variance. From the

above approximation, it is clear that the performance from Noise Reference tightly depends

on Hnm
k . However, Hnm

k is a worst-case crosstalk gain that restricts the algorithm from

achieving better performances in non-worst-case scenarios.

Flat PBO

Flat Power Back-Off (PBO) consists of generating a flat PSD for each user and of adjusting

the PSD level until a desired target rate is obtained, a similar process as in the FM problem.

Thus, Flat PBO solves

Rn = Rn,target, ∀n ∈ N

where

sn1 = sn2 = . . . = snK , ∀n ∈ N .

(2.6)

Although quite simplistic, Flat PBO is able to solve a challenge in DSL networks: the

near-far problem. In its simplest case, the near-far problem arises when users of differ-

ent line lengths are all connected to the same CO. In either transmission direction, the

direct channel gains are more attenuated on the furthest user and less on the nearer user

as previously shown in Figure 2.1. More importantly, in the upstream direction, from the

customer’s modem towards the CO, the crosstalk channel gain from the near user’s trans-

mitter to the far user’s receiver is much greater than that from the far user’s transmitter

to the near user’s receiver. This is because the far user’s PSD has had time to attenuate

before reaching the crosstalk zone where both copper pairs are bundled together. Thus, if

both near and far users were allowed to transmit over the same frequency tones using the

same PSD level, then the near user will generate too much crosstalk towards the far user.

This is depicted on the upper half of Figure 2.6 where the width of the arrows illustrates

the power attenuation over distance. Clearly, the near user with its better direct channel

gain does not need to transmit using a large PSD in order to obtain the same bit-loading

as the far user. Thus, with Flat PBO, the near user reduces its PSD such that both near

and far users can obtain a similar SNR. This reduction by the near user is depicted in the

lower half of Figure 2.6 where the width of the arrows show that the received crosstalk on

both users is now more balanced.

On the downstream direction, Flat PBO is not usually needed if all users are connected
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Fig. 2.6 Near-far effect and PBO example showing the effects of not reduc-
ing a near-user’s upstream total transmit power. The width of the arrows
represent the signal power level.

to the same CO. This is due to both crosstalk and direct channel gains attenuating at the

same time.

Although simple to calculate, Flat PBO’s main disadvantage is its flat PSD does not

optimally use the available spectrum. Since each frequency tone has a different channel re-

sponse and offers different potential spectral efficiency, it is better to use a varying PSD that

puts more power into the frequency tones with a better channel gain and lower interference

and less in the worser frequency tones.

2.5.2 User-Level DSM Algorithms

Unlike SSM, user-level DSM algorithms are able to dynamically adapt the PSD to the vary-

ing channel gains over different frequency tones. Unlike their more complex counterparts,

the multi-user or network-level DSM algorithms, user-level algorithms do not require any
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coordination with other users for the PSD generation. Thus, user-level algorithms usually

have the potential to be fully-distributed.

Iterative Water-Filling

The Iterative Water-Filling (IWF) for DSL [7] is a rather simplistic algorithm where each

user applies the optimal PSD given the interference it measures. This optimal PSD is

obtained using a sub-algorithm called water-filling derived in [16] and each user continuously

performs it until their PSDs converge to an equilibrium.

The water-filling rate maximization procedure works by having each user n solve the

following optimization problem:

max
snk ,k∈K

Rn

such that ∆f
∑

k∈K

snk ≤ P n

0 ≤ snk ≤ smask,n
k .

(2.7)

The water-filling problem has a concave objective function and its feasibility region is in a

convex set, thus meeting the Karush-Kuhn-Tucker (KKT) conditions is sufficient to obtain

a globally-optimal solution [17]. To meet the KKT conditions, Lagrange multipliers are

used in order to incorporate the constraints into the objective function. This gives the

following Lagrangian user n:

Ln = Rn − λn(
∑

k∈K

snk − P n/∆f) +
∑

k∈K

(υn
ks

n
k − µn

k(s
n
k − smask,n

k )).

The Lagrangians λn, υn
k , and µn

k are null when their respective constraints are 0 and positive

when not met. Solving its derivative and isolating snk gives

snk =
1/ ln(2)

λn + µn
k − υn

k

−
Γintnk
Hnn

k

which is equivalent to

snk =

[

an −
Γintnk
Hnn

k

]smask,n
k

0

(2.8)
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where an is a non-negative number that represents the water-filling level and [·]ba bounds

the argument between a and b. The water-filling level is set such that the total transmit

power constraint ∆f
∑

k∈K snk ≤ P n becomes tight.

The same water-filling solution is found when minimizing the power in the following

optimization problem

max
snk ,k∈K

−
∑

k∈K

snk

such that Rn ≥ Rn,target

0 ≤ snk ≤ smask,n
k

(2.9)

by again solving for the KKT conditions.

In the IWF algorithm, each user iteratively applies (2.8) until snk converges. IWF can

perform well on some scenarios and particularly well in DSL networks where all bundled

users are connected to the CO in downstream transmission. In upstream transmission,

IWF falls into the same problem solved by Flat PBO where near users must reduce the

total transmit power they used.

The main computation challenge faced by IWF lies in the water-filling procedure in

which the water-filling level needs to be found. One widely used method to find the level

is by using a bisection approach over a set initially bounded below by 0 and above by a

sufficient large number to cover all cases. At every bisection step, the mean of the boundary

is used as the level and the total transmit power used is calculated. If the total transmit

power is below the maximum, then the tested level is chosen as the new lower bound.

Similarly, if the total transmit power is above the maximum, then the tested level becomes

the new upper bound. However, bisection is costly in that it can require many steps to

reach a given error margin. Other methods for finding the water-filling level are introduced

in Chapter 3.

Autonomous Spectrum Balancing

The Autonomous Spectrum Balancing (ASB) algorithms developed in [18, 19, 20] is given

the potential to perform better than IWF by adding the notion of a reference line. The
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addition of a reference line transforms the user-centric optimization problem for user n into

max
snk ,k∈K

fs
∑

k∈K

(

ωn log2

(

1 +
1

Γ

Hnn
k snk
intnk

)

+ ωref log2

(

1 +
1

Γ

Href,ref
k srefk

σref
k +Href,n

k snk

))

such that Rn ≥ Rn,target

0 ≤ snk ≤ smask,n
k

(2.10)

where ref denotes the reference line.

In [18], the solution required solving a cubic equation at every iteration. In order to

remove this cubic equation need, [20] proposed a method that simply required the user to

iteratively update its PSD using the following:

snk =

[

1

λn + ωrefHref,n
k

(

1

σref
k +Href,n

k snk
− 1

σref
k +Href,n

k snk+Href,ref
k srefk

) −
Γintnk
Hnn

k

]smask,n
k

0

(2.11)

where the normalized Lagrange multiplier λn is found at every iteration such that the total

transmit power constraint Rn ≥ Rn,target tight. If the resulting λn is negative, then it

is set to 0. The update formula in (2.11) is actually a special case of the Autonomous

Spectral Balancing using Multiple Reference Lines developed in Chapter 4 and a more

precise derivation is provided there.

Most of the challenges faced by ASB lies in the choice of the reference line parameters

Href,ref
k and srefk over all frequency tones. One potential method is to make the reference

line represent the worse user in a DSL network which is often the user with the longest line

lengths. Under this interpretation, ASB works by protecting the reference line and it is

this method that is tested in [18]. However, often times, choosing the longest line does not

always give good performance and can even make ASB perform worse than IWF. In order

to remedy this, [21] proposed a method where a Spectrum Management Center (SMC) gen-

erates the reference line information at every iteration by using the actual crosstalk values

between the users. However, using this method requires a message passing system between

the users and the SMC similar to that use by network-level algorithms thus removing the

ability for the algorithm to be fully distributive.
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2.5.3 Network-Level Optimization

The network-level optimization algorithms are the ones that actually attempt to solve

the full RA (2.3), FM (2.4), and (2.5) problems. The network-level algorithms can be

further divided into more groups: globally-optimal algorithms, locally-optimal algorithms,

and near-optimal algorithms. The difference in all types lies in whether the algorithm

can produce a result that is globally optimal over the entire feasible region, that is locally

optimal in a subset of the feasible region, or if the solution is non-optimal, yet giving results

in the same range as the optimal algorithms.

Optimal Spectrum Balancing

The Optimal Spectrum Balancing (OSB) [22] is a globally-optimal algorithm that creates

a dual problem to the RA problem in order to perform an exhaustive search over a smaller

span. It begins by introducing a Lagrange multiplier to the RA problem and produces the

following Lagrangian:

L =
∑

n∈N

ωnRN −
∑

n∈N

λn
(∑

k∈K

snk − P n/∆f
)

(2.12)

where the Lagrange multiplier λn is a non-negative number. Normally, the exhaustive

search will take place in two dimensions and must be performed for every set of λn tried.

Hence, for each λn tried, qNK variables where q is the number of discrete values used

to represent snk . Yet, instead of searching through qNK variables, the OSB method then

decomposes the Lagrangian into a sum over the frequency tones

L =
∑

k∈K

(∑

n∈N

ωnfsb
n
k −

∑

n∈N

λnsnk

)

.

This effectively reduces the search space by separating the problem into K subproblems

that only need to search through every combination of snk for all n. Hence, the dual problem

reduces the exhaustive search complexity from O(eKN) to O(KeN ). The global-optimality

of the result was proven in [23] for the case where the number of frequency tones goes to

infinity. An FM version was presented in [24].
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Iterative Spectrum Balancing

The Iterative Spectrum Balancing (ISB) algorithm was first presented in [25] and further

developed in [26]. ISB is a near-optimal algorithm that further reduces the complexity in

OSB by performing the exhaustive search over each user one at the time. That is, instead

of maximizing over every users at the same time, it forces all the users but one to make

their PSD constant then it performs exhaustive search on the sole user with a non-constant

PSD. This has the ability to reduce the computational runtime in the order of days with

OSB to within the order of minutes. However, since the exhaustive search is now performed

on one dimension at a time, the global optimality can no longer be guaranteed hence the

near-optimal classification.

Other Globally-Optimal Algorithms

OSB and ISB were among the first algorithms that are able to produce results within the

optimal range. Since then, various other optimization methods have been applied towards

solving the RA problem from using geometric programming in [27] to using monotonic

optimization in [28, 29] or using difference of convex programming in [30]. All three meth-

ods for optimization can generate globally-optimal solutions, but like OSB, have a long

computational time. Moreover, techniques for reducing the number of iterations required

for convergence in OSB and ISB have also been developed in [31, 32] but still do not make

either algorithm tractable for DSL networks with many users. On the other hand, the next

two algorithms decrease the computational complexity but at the tradeoff of producing

locally-optimal results.

SCALE

The Successive Convex-Approximation Low complExity (SCALE) [33] is a locally-optimal

algorithm that works by approximating the bit-loading using a lower-bounding concave

function. This effectively transforms the RA problem from a harder difference of convex

problem into an easier concave maximization problem. It was shown in [33] that the lower-

bounding function used is

α log2 z + β ≤ log2(1 + z)
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and that it becomes tight at z0 when choosing α and β to be

α =
z0

1 + z0

β = log2(1 + z0)−
z0

1 + z0
log2 z0.

In order to make this lower bound on the bit-loading concave, a change in variable space

from snk to s̃nk where snk = es̃
n
k is required. This gives the following bit-loading concave lower

bound:

b̃nk = αn
k

(

log2

(
Hnn

k

Γ

)

+
s̃nk
ln 2
− log2

(

σn
k +

∑

m∈N
m6=n

Hnm
k es̃

m
k

))

+ βn
k ≤ bnk

where the log-sum-exponential is a concave function. Using this concave lower bound, the

Lagrangian of mixed RA-FM problem is

L =
∑

n∈RA

ωnR̃n −
∑

n∈N

λn

(
∑

k∈K

snk −
P n

∆f

)

−
∑

n∈FM

µn

(

Rn,target − R̃n

)

where R̃n is the concave lower bound to the rate and is given by

R̃n = fs
∑

k∈K

b̃nk .

Normalizing the Lagrangian to remove the ln 2 factor then taking its derivative over s̃nk
gives

∂L

∂s̃nk
= ωnfsα

n
k − λnes̃

n
k −

∑

m∈RA
m6=n

ωmfsα
m
k H

mn
k es̃

n
k

∑

m∈N
j 6=m

Hmj
k es̃

j
k

−
∑

m∈RA
m6=n

µmfsα
m
k H

mn
k es̃

n
k

∑

m∈N
j 6=m

Hmj
k es̃

j
k

(if n ∈ RA)

∂L

∂s̃nk
= µnfsα

n
k − λnes̃

n
k −

∑

m∈RA
m6=n

ωmfsα
m
k H

mn
k es̃

n
k

∑

m∈N
j 6=m

Hmj
k es̃

j
k

−
∑

m∈RA
m6=n

µmfsα
m
k H

mn
k es̃

n
k

∑

m∈N
j 6=m

Hmj
k es̃

j
k

(if n ∈ FM).

(2.13)

Notice that the Lagrange multiplier for the rate constraint µn has the same function as

the sum rate weight ωn once the Lagrangian is derived and only one version exists for each
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user. As such, µn can be rewritten as ωn for notational simplicity.

The next step in creating the SCALE algorithm is to isolate es̃
n
k in 2.13 then undoing

the change in variable from snk to es̃
n
k in order to produce the following iterative PSD update

formula:

snk =
ωnαn

k

λn +
∑

m∈N
m6=n

ωmHmn
k αm

k

intmk

. (2.14)

Furthermore, by including the non-negative PSD and the PSD mask constraints, the PSD

update formula then becomes

snk =

[
ωnαn

k

λn +
∑

m∈N
m6=n

ωmHmn
k αm

k

intmk

]sn,mask
k

k

. (2.15)

Note that βn
k is not used in the PSD update formula thus only αn

k needs to be calculated

using

αn
k =

SINRn
k

1 + SINRn
k

=
Hnn

k snk
Γrecnk

where SINRn
k is the Signal-to-Interference-plus-Noise ratio (SINR) for user n on frequency

tone k. The PSD update formula works by finding λn such that the total transmit power

constraint becomes tight. If it results in a negative λn, then λn is set to zero. Then, the

ωn for n ∈ FM is set such that the FM users rate target constraint is tight.

In the SCALE algorithm process, each user iteratively updates its approximation by

recalculating αn
k then applies the PSD update formula. However, between every iteration,

each user needs to know all of its outgoing crosstalk gains and the interference measured

by every other user. Hence, a message passing system is required. This message passing

can be done through an SMC that has full channel crosstalk gain knowledge. At the end of

every iteration, each user sends its measured interference and its PSD to the SMC which

combines the necessary elements needed by each user and relays it back to each user before

the next PSD update.

Since the SCALE algorithm works over a continuous PSD, a discretized version of

SCALE was proposed in [34] where the bit-loadings are constrained to integer units. In
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the discretized version, the continuous SCALE is performed then rounded down such that

the resulting bit-loadings are integers. Afterwards, the algorithm performs unit-bit-loading

increase over the more efficient frequency tones until it reaches the total transmit power

constraint.

Distributed Spectrum Balancing

Distributed Spectrum Balancing (DSB) is a locally-optimal algorithm that was first derived

in [35] and further developed in [20]. Unlike SCALE where the proper maximum over a

lower-bound concave set is found, DSB attempts to solve the RA problem by meeting the

KKT conditions. Although the KKT conditions are only sufficient where all locally-optimal

solutions meet it, it does not guarantee the other direction where all solutions meeting it

are not necessarily locally-optimal because the RA problem due to the difference of convex

nature of the RA problem. However, results have shown that it often gives locally-optimal

solutions.

The DSB algorithm works by finding a solution to (2.12) that meets the KKT conditions

in hopes that it is a locally-optimal solution. Instead of the RA case given in [35, 20] the

derivation for the mixed RA-FM case is provided here.

The Lagrangian to the mixed RA-FM problem is

L =
∑

n∈RA

ωnRn −
∑

n∈N

λn(
∑

k∈K

snk − P n/∆f)−
∑

n∈FM

µn(Rn,target − Rn).

Taking its derivative over snk gives

∂L

∂snk
= λn +

∑

m∈RA
m6=n

ωmHmn
k

ln 2

(
1

intmk
−

1

recnk

)

+
∑

m∈FM
m6=n

µmHmn
k

ln 2

(
1

intmk
−

1

recnk

)

+







ωn/ ln 2
intn

k
Hnn

k
/Γ

+ snk
︸︷︷︸

*

if n ∈ RA

µn/ ln 2
intn

k
Hnn

k
/Γ

+ snk
︸︷︷︸

*

if n ∈ FM
.

As in the SCALE case, the Lagrange multiplier µn for the rate constraint plays the same

role as the weight ωn in the sum rate and they are both mutually exclusive on a per-user
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basis. Thus, in order to simplify the notation, ωn will replace µn for the FM users. The next

step involves isolating the snk denoted by an *. This produces the following PSD update

formula:

snk =
ωn

λn +
∑

m∈N
m6=n

ωmHmn
k

(

1
intnk
− 1

recnk

) −
Γintnk
Hnn

k

where the Lagrange multiplier λn includes a normalization by ln 2. With the PSD mask

constraints, the PSD update formula becomes

snk =

[
ωn

λn +
∑

m∈N
m6=n

ωmHmn
k

(

1
intnk
− 1

recnk

) −
Γintnk
Hnn

k

]sn,mask
k

0

. (2.16)

Like with SCALE, the PSD update formula is iteratively applied where at every step, λn is

found such that the total transmit power constraint is tight, or, if that results in a negative

λn, then it is set to zero. The next step is to adjust ωn for the FM users by setting it

such that their target rate constraint it tight. Also like SCALE, DSB requires a message

passing system through an SMC in order to pass around the measured interference, intnk ,

and receive signal power, recnk , between the users.

2.6 Conclusion

This chapter introduced the DSL environment, its challenges, the DSL resource allocation

problem and a host of algorithms that were designed for the DSL resource allocation prob-

lem. The DSL resource allocation algorithms have a tradeoff between performance and

complexity where the simpler algorithms such as PBO and Noise Reference are very easy

to implement but are not able to use the DSL channel to its full potential. On the other

extreme, the network-level algorithms can produce optimal or near-optimal performances

but they require full channel knowledge, have a very high computational complexity in the

case of globally-optimal algorithms, and require a full message passing backbone in the

case of SCALE and DSB. In the middle, the user-level algorithms can be fully distributive

and, at every iteration, only need to measure the interference and knowledge of the direct

channel gains. However, their performance is often sub-optimal. Another tradeoff also ex-

ists in the form of network information required (such as channel gains and user PSD) and
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achievable performance. This is observed with the network-level algorithms requiring full

network information in order to produce near-optimal results. Similarly, ASB can perform

better than IWF with the use of a reference line that provides some information about the

network.
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Chapter 3

Generalized Recursive Water-Filling

(GRWF)

As discussed in Chapter 2, Iterative Water-Filling (IWF) can be summarized as having each

user continuously performing Water-Filling (WF) until an equilibrium is reached. As such,

improving the runtime of WF will improve the overall runtime of IWF. The WF procedure

described in Chapter 2 uses bisection to find the water-fill level, a costly approach because

it converges linearly to the solution. Thus, the desired precision in the solution becomes

tightly linked to the number of bisection steps required. This chapter introduces a WF

algorithm that can remove that link and make the number of steps completely dependent

on the number of frequency tones while still having a smaller computational footprint.

The novel WF algorithm developed in this chapter is based on a recursive approach

that allows it to find the water-filling level within a fixed number of steps using maximum

total transmit power and minimum target rate constraints concurrently. The algorithm

is furthermore generalized for the inclusion of per-tone weights on the bit-loading and on

the sum power which enables its use over frequency tones with different bandwidths. A

second less powerful novel projection method for solving the water-filling problem is also

introduced. For water-filling-like algorithms such as DSB and SCALE, this chapter shows

that a recursive solution similar to GRWF is not possible and thus introduces a bit-loading

method for water-filling-like algorithms.

This chapter begins with the introduction of one previously explored method and one

new method for performing WF in Section 3.1. Following that, Section 3.2 generalizes WF
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problem and derives its solution. Using the generalized solution, a new recursive approach

is developed in Section 3.3 and used to form GRWF algorithm in Section 3.4. Section 3.5

then compares the GRWF to the previously explored algorithms. Finally, Section 3.6 shows

that this recursive formulation cannot be applied to DSB or SCALE even if their update

formula is similar to the WF one.

Two notational changes are made in this chapter only. The first change uses dnk to denote

the power transfer gain to interference plus noise ratio Hnn
k /(Γ(intnk + σn

k )). The second

change omits the n notation to simplify the equations as WF is a single-user algorithm.

Thus, for this chapter only, the bit-loading on tone k is now calculated using

bk = log2 (1 + skdk)

and the WF update formula (2.8) becomes

sk =

[

a−
1

dk

]smask
k

0

where a is the WF level.

3.1 Other WF Methods

Aside from bisection, other methods for performing water-filling were developed prior to

GRWF and two are presented here: the discrete bit-loading [36, 37] and the projection

approach. The former relies on iteratively incrementing the bit-loading by fixed values on

the frequency tone that requires the least power for the increment. The projection approach

transforms the WF problem into an orthogonal projection problem then into a least-square

optimization problem.

3.1.1 Discrete Bit-Loading for WF

The discrete bit-loading approach is an iterative solution to water-filling where, at each

step, we increment the bit-loading on the frequency tone that requires the least power.

The action performed at each iteration for a constant bit-loading increment B can be
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summarized as

bk = bk +B

with

k = argmin
k∈K

sk(bk +B)− sk(bk)

where bk is the bit-loading on tone k, and sk(bk) is the PSD required for achieving bk.

This approach heavily relies on the change in PSD required for incrementing the bit-

loading. It is thus useful to define the change as a function of the current bit-loading as

follows:

∆sk(bk) = sk(bk +B)− sk(bk)

=
1

dk
(2bk+B − 1)−

1

dk
(2bk − 1)

=
2B − 1

dk
2bk .

It is at this point where we see an advantage for using the discrete bit-loading approach.

The change in PSD ∆sk(bk) is simple to calculate. Moreover, updating the change in PSD

when the frequency tone increments its bit-loading by B is as simple as doing

∆sk(bk +B) = ∆sk(bk) 2
B.

Algorithm 3.1 summarizes the discrete bit-loading approach using the constant bit-

loading increment B. In the algorithm, P required is the total transmit power required, and

R is the achievable rate obtained with the generated solution. The first if condition in

Algorithm 3.1 relates to the total transmit power constraint and stops the algorithm when

the rate can no longer be increased without violating the constraint. The second if removes

the index k from the set K if the frequency tone k’s bit-loading can no longer be incremented

without violating the PSD mask constraint. If neither of the constraints are violated, then

the PSD, bit-loading, total transmit power required, and rate obtained are updated.

An illustrative example using Algorithm 3.1 is shown in Fig. 3.1. The example shows

the order in which the frequency tones are updated. The water-fill floor represents the

1/dk terms for different frequency tones. Notice how at each iteration, the frequency tone
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Algorithm 3.1 Discrete Bit-Loading for Water-Filling with Constant Bit-Loading Incre-
ments

K ← {1, 2, . . . , K}
bk ← 0 ∀k ∈ K
sk ← 0 ∀k ∈ K
P used ← 0
R← 0
loop
k ← argmin

k∈K
∆sk(bk)

if P used +∆f ∆sk(bk) ≥ P then
break

else if sk +∆sk(bk) ≥ smask
k then

K ← K \ k
else
sk ← sk +∆sk(bk)
bk ← bk +B
P used ← P used +∆f ∆sk(bk)
R← R + fsB

end if
end loop

with the lowest floor gets updated. In fact, the frequency tone with the lowest floor always

requires the smallest change in PSD ∆sk(bk).

The example in Fig. 3.1 shows the discrete bit-loading approach’s disadvantage. At

every iteration, the approach must find the frequency tone with the lowest floor, which

is the same as finding the one requiring the smallest ∆sk(bk) for a bit-loading increment.

Thus, the algorithm must search through K variables at every iteration. Moreover, the

number of iteration can be relatively high because it is directly linked to the achievable

bit rate. Assuming a 20 Mb/s sum rate, and a unit bit-loading increment, Algorithm 3.1

would require 5000 iterations and will therefore need to perform 5000 searches through K

variables. One remedy is to produce every possible ∆sk(bk) and sorting them before entering

the loop. This will effectively remove the argmin step in the algorithm in exchange of a

sorting process.

The discrete bit-loading approach presented here uses a constant bit-loading increment.

A non-constant increment is also possible and useful for cases when only a few bit-loading

values are allowed, e.g., {1,2,4,8} b/s/Hz. In this scenario, instead of choosing the frequency
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Fig. 3.1 Example of the discrete bit-loading method showing the order it
assigns the bit-loading increments.

tone that requires the least power to increment its bit-loading value, the algorithm chooses

the frequency tone that offers the smallest power-increase-to bit-loading-increment ratio.

The constant bit-loading increment is actually a special case that can ignore the now-

constant denominator in the ratio.

3.1.2 Projection for WF

Unlike the discrete bit-loading approach, the projection approach produces a solution in a

continuous space. This approach starts by noticing that the total transmit power constraint

inequality is tight at the WF solution. This is due to the bit-loading being a monotonic

function. That is, an increase in power always results in an increase in the bit-loading.

Thus, the maximum achievable rate will require the maximum total transmit power. Using

this monotonic property, the WF level can be obtained by directly solving for it in the total



3 Generalized Recursive Water-Filling 32

transmit power constraint as follows:

P

∆f
=
∑

k∈K

sk

= Ka−
∑

k∈K

1

dk
. (3.1)

With (3.1), the water-filling level can be found in one step then the PSD can be generated in

another step. Actually, (3.1) only holds when all K frequency tones have non-zero PSD and

when the PSD mask constraints are met, and this will be addressed shortly. Nevertheless,

solving for a in (3.1) can be reformulated into a orthogonal projection problem. Under this

reformulation, the point (

−
1

dk
,−

1

d2
, . . . ,−

1

dK

)

(3.2)

would be orthogonally projected onto the maximum total transmit power hyperplane de-

fined as

s1 + s2 + . . .+ sK =
P

∆f
.

The orthogonal projection view spawns from observing that sk is a linear function of a.

Therefore, varying an generates a straight line in K-dimensions that passes through the

point (3.2). That line has a slope of (1, 1, . . . , 1) and is therefore normal to the maximum

total transmit power hyperplane.

Obviously, this simplistic case does not apply to most scenarios because it is possible

that some frequency tones will have negative PSD using orthogonal projection. Addi-

tionally, the algorithm must respect the PSD masks. As such, we bound the projection

hyper-plane using the non-zero PSD and the PSD mask constraints to finally arrive with

the following bounded hyper-plane:

s1 + s2 + . . .+ sK =
P

∆f

such that

0 ≤ sk ≤ smask
k ∀k ∈ K.

The question now is how to project the point onto the bounded hyper-plane. Two cases

can arise and both are presented in Fig. 3.2 in a two-tone example. The first case starts
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Fig. 3.2 Water-filling projection example on a 2-dimensional plane using
multiple starting points.

with Point 1. Here, the point can be orthogonally projected onto the plane and still be

within the feasible region. As such, no other step needs to be done and the projection can

be used as the water-filling solution. The second case starts with Point 2. In this case, the

point’s orthogonal projection lies outside the feasible region. The next step is to find the

nearest point on the bounded plane to the projection.

Actually, both cases can be summarized as finding the point on the bounded plane that

is nearest to the point (3.2). Thus, this becomes a minimum distance problem and the

bounded orthogonal projection approach can be rewritten as the following least-squares

optimization problem:

min
snk∀k∈K

∑

k∈K

(

sk +
1

d1

)2

such that
P

∆f
=
∑

k∈K

sk

0 ≤ sk ≤ smask
k ∀k ∈ K.
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Algorithm 3.2 Projection Approach to Unbounded Water-Filling

K ← {1, 2, . . . , K}
repeat

a←
P/∆f+

∑

k∈K
1/dk

∑

k∈K
1

sk ← a− 1
dk
, ∀k ∈ K

for k ∈ K do
if sk ≤ 0 then
sk ← 0
K ← K \ k

end if
end for

until convergence

Needless to say, this approach has to solve a constrained quadratic programming and

is thus more complex and likely more time-consuming than the bisection method. Nev-

ertheless, when no PSD mask is enforced, this projection approach can be simplified into

Algorithm 3.2. The algorithm attempts to the water-filling level a by solving for it in (3.1).

After solving for a, it checks for consistency by checking for negative PSD values. If those

values exist, it removes the frequency tones associated to them and attempts to solve for a

again until the PSD is feasible.

With no PSD mask enforced, the discrete bit-loading approach is no match to the

projection approach. With an enforced PSD mask, the opposite holds since the discrete

bit-loading’s algorithm does not really change and the projection approach will require

quadratic programming. Even though both algorithms can offer an improvement on bisec-

tion, the discrete bit-loading approach has a number of iteration that grows with the desired

rate and the projection approach can result in trying to solve a more complex optimization

problem.

3.2 Generalized Water-Filling

Three methods have been presented up to this point: bisection, which converges linearly

to the solution; discrete bit-loading, which finds the discrete solution to water-filling in a

finite number of steps, but that number of steps can be potentially large; and projection,

which relies on least-squares optimization once PSD mask is involved. Before introducing
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the generalized recursive approach to water-filling, this section will present the generalized

water-filling problem, its solution, and a short analysis on its solution.

The water-filling problem used in the three methods did not consider per-tone weights.

Weights on the bit-loading bk are useful for cases where one might want to penalize or

favorize the bit-loading on certain frequency tones or use different symbol rates for each

frequency tone. Similarly, one may want to penalize or favorize the power usage on certain

frequency tones or use different symbol spacing between different frequency tones.

To include the weights, the single-user version of the Rate Adaptive given by (2.3) is

modified into

max
sk∀k∈K

∑

k∈K

ωk log2 (1 + skdk)

such that
∑

k∈K

χksk ≤ P

0 ≤ sk ≤ smask
k , ∀k ∈ K

where dk represents the 1
Γ

Hn
k n

intnk
term, ωn

k is the capacity’s weighting factor, and χn
k the

total transmit power weighting factor. The symbol rate fs and DMT tone spacing ∆f are

omitted since they can be absorbed by the weighting factors. Likely, to include the weights,

the single-user version of the Fixed Margin problem (2.4) is modified into

min
sk∀k∈K

∑

k∈K

sk
ωk

such that
∑

k∈K

log2 (1 + skdk)

χk
≥ R

0 ≤ sk ≤ smask
k , ∀k ∈ K.

Note that the same weighting factors are used in both RA and FM problems but in different

ways. This will be addressed later.

The following two theorems show the solutions to the RA and FM problems.

Theorem 1. The solution to the generalized RA problem is

sk =

[

a
ωk

χk
−

1

dk

]smask
k

0

(3.3)
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where the variable a is chosen such that the total transmit power constraint inequality is

tight.

Proof. The RA adaptive problem can be solved using its Lagrange function as it was

the case for the non-generalized water-filling problem. The following shows the Lagrange

function where λ is the dual variable associated to total power constraint, νk to the non-

negative power constraint, and µk to the spectral mask.

LRA =
∑

k∈K

ωk log2 (1 + skdk)− λ

(
∑

k∈K

χksk − P

)

+
∑

k∈K

(νksk − µk(sk − smask
k ))

The Lagrange function’s saddle point is given by

0 =
∂LRA

∂sk
=

ωkdk
(1 + skdk) ln 2

− λχk + νk − µk

and solving it produces the following update formula

sk =
ωk

(λχk − νk + µk) ln 2
−

1

dk
(3.4)

where λ is chosen such that the total power constraint inequality is tight, νk and µk are

non-negative values chosen to keep sk within the box constraints when necessary. Thus, νk

and µk can be omitted by performing the following equivalent update formula:

sk =

[

a
ωk

χk
−

1

dk

]smask
k

0

where a is chosen such that the total transmit power constraint is tight and [·]yx is a box

constraint function.

Theorem 2. The solution to the FM problem is

sk =

[

a
ωk

χk

−
1

dk

]smask
k

0

where the variable a is chosen such that the target rate constraint inequality is tight.

Proof. Like the generalized RA problem, the generalized FM problem can also be solved
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with its Lagrange function. The following shows the Lagrange function where λ is the dual

variable associated to target rate constraint, νk to the non-negative power constraint, and

µk to the spectral mask.

LFM = −
∑

k∈K

sk
ωk

− λ

(

R−
∑

k∈K

1

χk

log2 (1 + skdk)

)

+
∑

k∈K

(νksk − µk(sk − smask
k ))

Similar to the generalized RA problem, the saddle point for the FM Lagrange function is

given by

0 = −
1

ωk
+

λ
χk
dk

(1 + skdk) ln 2
+ νk − µk.

This produces a solution slightly different to (3.4) in terms of Lagrange variable placements

sk =

λ
χk

( 1
ωk
− νk + µk) ln 2

−
1

dk

where λ is chosen such that the target rate constraint inequality is tight, νk and µk are

non-negative values chosen to keep sk within the box constraints when necessary. That

procedure is equivalent to doing

sk =

[

a
ωk

χk
−

1

dk

]smask
k

0

where a is chosen such that the target rate constraint is tight.

Theorems 1 and 2 show an interesting result: both generalized RA and RM problems

use the same approach to arrive to their solutions. Both apply (3.3) and select a such that

their total transmit power or target rate constraint becomes active. Moreover, the theorems

also show a link between the weighting factors used in both problems. If χk is removed by

setting it to one, then it is easy to see that the weights ωk in the RA objective function have

an inversely proportional effect on weighted sum in the FM problem’s objective function.

The same analysis can be done on χk by removing ωk.

Another interesting aspect is that only the ωk/χk ratio matters in the update formula

(3.3). Thus, if both RA and FM problems use the same bit-loading weights and the same
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transmit power weights such that both use

R =
∑

k∈K

ωk log2 (1 + skdk)

and

P =
∑

k∈K

χksk,

the ratio would be maintained. In this special case, the only difference between the RA and

FM problem will be the different water-fill level. Three cases can arise and are represented

in Fig. 3.3. In the first case in Fig. 3.3a, the water-fill level generated by the RA problem

is higher than that of the FM problem. In this case, the two levels form a feasible region

shown in grey in which all water-fill levels meet the target rate and the total transmit power

constraints. The second case in 3.3b has both RA and FM water-fill levels at the same

height thus limiting the feasible region to only one solution. Finally, the third case in 3.3c

has the RA water-fill level below the FM one thus there is no feasible solution.

Using both total transmit power and target rate constraints conjointly is at the center

of the power control algorithm in [7]. With the power control algorithm in [7], the modified

IWF algorithm continuously adjusts each user’s total transmit power such that each user’s

rate is equal to their target rates. However, instead of using both constraints simulta-

neously, the algorithm performs water-filling on each user using the total transmit power

constraint only, then, between each water-filling iteration, it increments or decrements the

total transmit power depending on the obtained rates. However, the total transmit power

value was made to never exceed a certain value, the true maximum total transmit power.

This process is wasteful as many iterations can be needed before finding the right total trans-

mit power limits. With the results from Theorems 1 and 2, we know that both constraints

can be used simultaneously. To obtain the same results as the power control algorithm

in [7], the water-filling procedure water-fills until the first constraint is met. That is, we

water-fill until the target rate constraint is met only if the total transmit power constraint

remains unviolated. Otherwise, we water-fill until the total transmit power constraint is

met. Selective Iterative Water-filling (SIW) [38, 39] is another algorithm that requires the

use of both constraints.

A workaround is to form a hard bound system. Whichever constraint acts as the hard

bound will also have priority when there is no feasible region. For example, a hard bound
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Fig. 3.3 Water-Filling using desired rate and total transmit power con-
straints concurrently. R denotes the water-fill level required by the target
rate constraint, and P denotes the highest water-fill level allowed by the to-
tal transmit power constraint. The grey area is the feasible area where any
water-fill level inside will meet the both constraints.

on the total transmit power will guarantee that the transmit power will never exceed a

threshold at the penalty of not always being able to achieve the desired rate.

It is also interesting to note that at high transmit power with no spectral mask, the

relationship between each frequency tone’s PSD will have the same relationship as the

ratios ωk

χk
. Thus, given two frequency tones with one having a weight ωk twice as big as the

other one, the frequency tone with the larger weight will roughly have a PSD twice as high

as the other one at high transmit power.

3.3 Recursive Formulation

The recursive formulation works by trying a finite number of chosen water-filling levels.

The ones of interest are the ones where at sk transitions from inactive to active or from

active to saturated at smask
k . In other words, we are interested in the smallest water-fill level

that will make sk non-zero and the largest water-fill level that will keep sk below smask
k .

Thus, the values are interest are given by

a0k =
χk

ωkdk
, (3.5)
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which corresponds to the water-fill level where sk transitions from inactive to active, and

by

amask
k =

χks
mask
k

ωk

+
χk

ωkdk
=

χks
mask
k

ωk

+ a0k, (3.6)

which corresponds to the water-fill level where sk transitions from active to saturated.

The first step is to produce all of the aforementioned water-fill levels of interest. The

second step is to order the water-fill levels in ascending order. Let aalli be ordered and

contain every element from a0k and amask
k , i.e., aalli now contains 2K ordered elements. Let

the function k = f(i) denote the function that will map i back to the presorted index k.

That is, if a04 becomes aall7 after the combination and ordering process, then f(7) produces

4. Moreover, let N 0
i , {k ∈ K : a0k ≤ aalli , f−1(k) ≤ i} and Nmask

i , {k ∈ K : amask
k ≤

aalli , f−1(k) ≤ i}. With these two sets, we have

{a0k ∀k ∈ N 0
i } ∪ {a

mask
k ∀k ∈ Nmask

i } = {aallk : 1 ≤ k ≤ i, k ∈ Z}.

When i increments by 1 until it reaches 2K, either N 0
i or Nmask

i grows by 1 element.

Additionally, Nmask
i ⊆ N 0

i always holds.

The second step is to find the required power and the obtained rate associated to each

water-fill level in A∗ which are denoted by P ∗
i and R∗

i , respectively, through the use of

recursion. That is, P ∗
i and R∗

i should be a function of aalli , aalli−1, P
∗
i−1, and R∗

i−1 only.

Before going any further, we will establish that P ∗
1 and R∗

1 are both zero because the

water-fill level they are associated to, aall1 , is actually the smallest a0k. That is, below this

water-fill level, all sk are inactive. For further use, we shall also define a new variable Wi

obtained with the following recursive equation:

Wi =
∑

k∈N 0
i \N

mask
i

ωk

=
∑

k∈N 0
i

ωk −
∑

k∈Nmask
i

ωk

= Wi−1 +







ωf(i) if Nmask
i = Nmask

i−1

−ωf(i) if N 0
i = N 0

i−1

with W0 initialized at 0.
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The following propositions show the recursive formula needed to obtain the other values

of P ∗
i and R∗

i using the RA notation for the weighting factors.

Proposition 1. For indices greater than 1, the recursive formula for calculating the required

power given the water-fill level aalli is

P ∗
i = P ∗

i−1 + (aalli − aalli−1)Wi−1. (3.7)

Proof. We begin with the weighted power sum

P ∗
i =

∑

k∈K

χksk

then we replace it with its equivalent form using the sets N 0
i and Nmask

i and substitute sk
with (3.3) and smask

k where appropriate

P ∗
i =

∑

k∈N 0
i \N

mask
i

χk

(

aalli

ωk

χk
−

1

dk

)

+
∑

k∈Nmask
i

χks
mask
k .

The first summation sums over the active and unsaturated sk and the second summation

sums over the saturated sk. To obtain the recursive form, we subtract both sides by P ∗
i−1

as follows

P ∗
i − P ∗

i−1 =
∑

k∈N 0
i \N

mask
i

(

aalli ωk −
χk

dk

)

+
∑

k∈Nmask
i

χks
mask
k

−
∑

k∈N 0
i−1\N

mask
i−1

(

aalli−1ωk −
χk

dk

)

−
∑

k∈Nmask
i−1

χks
mask
k .

After some simplifications, we obtain

P ∗
i − P ∗

i−1 = (aalli − aalli−1)Wi−1 +







aalli ωf(i) −
χf(i)

df(i)
if Nmask

i = Nmask
i−1

χf(i)s
mask
f(i) − aalli ωf(i) −

χf(i)

df(i)
if N 0

i = N 0
i−1

. (3.8)

When Nmask
i = Nmask

i−1 , aalli is actually a0f(i) and a0f(i)ωf(i)−
χf(i)

df(i)
becomes 0. Similarly, when

N 0
i = N 0

i−1, a
all
i takes its value from amask

f(i) and χf(i)s
mask
f(i) − amask

f(i) ωf(i) −
χf(i)

df(i)
becomes 0.
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Thus, the final term in (3.8) can be removed and the recursive formula becomes

P ∗
i = P ∗

i−1 + (aalli − aalli−1)Wi−1.

Proposition 2. For indices greater than 1, the recursive formula for calculating the achieved

rate given the WF level aalli is

(

R∗
i − log2 (a

all
i )Wi−1

)

=

(

R∗
i−1 − log2 (a

all
i−1)Wi−2

)

+







−ωf(i) log2 a
all
i−1 if Nmask

i = Nmask
i−1

ωf(i) log2 a
all
i−1 if N 0

i = N 0
i−1

(3.9)

Proof. We begin with the weighted rate sum

R∗
i =

∑

k∈K

ωk log2 (1 + skdk)

then we replace it with its equivalent form using the sets N 0
i and Nmask

i and substitute sk

with (3.3) and smask
k where appropriate

R∗
i =

∑

k∈N 0
i \N

mask
i

ωk log2

(
aalli ωkdk

χk

)

+
∑

k∈Nmask
i

ωk log2 (1 + smask
k dk).

The first summation shows the contribution from the active and unsaturated sk while the

second summation shows the contribution from the saturated sk. We then decompose the

logarithms as follows

R∗
i =

∑

k∈N 0
i \N

mask
i

ωk log2 (a
all
i )−

∑

k∈N 0
i \N

mask
i

ωk log2

(
χk

ωkdk

)

+
∑

k∈Nmask
i

ωk log2

(
χks

mask
k

ωk

+
χk

ωkdk

)

−
∑

k∈Nmask
i

ωk log2

(
χk

ωkdk

)
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and simplify the equation to

R∗
i = Wi log2 (a

all
i )−

∑

k∈N 0
i

ωk log2

(
χk

ωkdk

)

+
∑

k∈Nmask
i

ωk log2

(
χks

mask
k

ωk
+

χk

ωkdk

)

.

The above equation can be rewritten as

R∗
i = Wi−1 log2 (a

all
i )−

∑

k∈N 0
i−1

ωk log2

(
χk

ωkdk

)

+
∑

k∈Nmask
i−1

ωk log2

(
χks

mask
k

ωk
+

χk

ωkdk

)

+







ωf(i) log2 (a
all
i )− ωf(i) log2

(
χf(i)

ωf(i)df(i)

)

if Nmask
i = Nmask

i−1

−ωf(i) log2 (a
all
i ) + ωf(i) log2

(
χf(i)s

mask
f(i)

ωf(i)
+

χf(i)

ωf(i)df(i)

)

if N 0
i = N 0

i−1

.

In the first case where Nmask
i = Nmask

i−1 , aalli is equivalent to a0f(i) and the fourth and fifth

terms cancel each other out. Similarly, in the second case where N 0
i = N 0

i−1, a
all
i is equiva-

lent to amask
i and the fourth and fifth terms cancel each other out. Hence, the conditional

part always evaluates to 0 and can be omitted.

To obtain the recursive form, we subtract both sides by R∗
i−1 as follows

R∗
i − R∗

i−1 = Wi−1 log2 (a
all
i )−

∑

k∈Nmin
i−1

ωk log2

(
χk

ωkdk

)

+
∑

k∈Nmax
i−1

ωk log2

(
χks

mask
k

ωk
+

χk

ωkdk

)

−Wi−2 log2 (a
all
i−1) +

∑

k∈Nmin
i−2

ωk log2

(
χk

ωkdk

)

−
∑

k∈Nmax
i−2

ωk log2

(
χks

mask
k

ωk
+

χk

ωkdk

)

.

After some simplifications, we obtain

(

R∗
i−log2 (a

all
i )Wi−1

)

=

(

R∗
i−1−log2 (a

all
i−1)Wi−2

)

+







−ωf(i) log2 a
all
i−1 if Nmask

i−1 = Nmask
i−2

ωf(i) log2 a
all
i−1 if N 0

i−1 = N
0
i−2

.

Propositions 1 and 2 show how we can obtain the required power and obtained rate over

a the set A∗ of water-fill levels using recursion. Actually, (3.7) and (3.9) can calculate the

power required and the rate obtained for any water-fill level. It can be shown by expanding

Proposition 1 that the power required for a water-fill level a in between two consecutive
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elements in A∗ such that A∗
i−1 ≤ a∗ ≤ A∗

i and i > 1 is

P required = P ∗
i−1 + (a− A∗

i−1)Wi−1. (3.10)

Similarly, it can be shown by expanding Proposition 2 that the rate obtained for a water-fill

level a in between two consecutive elements in A∗ such that A∗
i−1 ≤ a ≤ A∗

i and i > 1 is

R =

(

R∗
i−1 − log2 (A

∗
i−1)Wi−2

)

+ log2 (a)Wi−1. (3.11)

This leads to the next step in this recursive formulation where the optimal water-fill

level is found. The optimal level can be found by first determining the interval [A∗
i−1, A

∗
i )

that encloses it. Under the RA formulation, we find the smallest index i such that the total

transmit power constraint is violated. Under the FM formulation, we find the smallest

index i such that the desired rate is met. Both cases can benefit from the recursive method

for finding the total transmit power required and the rate obtained. Once the interval is

known, (3.10) and (3.11) can be used to solve for the water-filling level as follows

a∗ =







P−P ∗
i−1

Wi−1
+ A∗

i−1 if RA

exp

(

Rtarget−
(
R∗

i−1−log2 (A
∗
i−1)Wi−2

)

Wi−1

)

if FM
.

With the water-fill level a∗ now known, the final step in this recursive approach is to

calculate the PSD using (3.3). There is one exception that occurs when the interval does

not exist, it means that none of the water-filling levels A∗
i were high enough to make the

power or rate constraint inequalities tight. More importantly, it means that the PSD mask

constraint is the main limiting factor and that the solution is the PSD mask itself.

3.4 Generalized Recursive Water-Filling Algorithm

The section presents the generalized recursive water-filling algorithm that uses total power,

target rate, and power spectral density mask constraints, and variable weights. The al-

gorithm has been designed to perform water-filling until the rate is equal to the target

rate as long as the total transmit power constraint remains unviolated. Under the violated

case, the algorithm will then water-fill until the total transmit power constraint inequality
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is tight. The generalized recursive water-filling algorithm is presented in Algorithm 3.3.

The sort used in the algorithm does not need to be a stable sort, that is, the values of the

magnitude do no need to preserve their original order.

Since Algorithm 3.3 is a generalized case, special cases can be defined. When the target

rate constraint is not required, the target rate can either be set to infinity or one can

remove everything related to the variables R∗
k. Similarly, when the total power constraint

is not required, the maximum total transmit power can either be set to infinity or one can

remove everything related to the variable P ∗
k . When the power spectral density mask is

not required, the mask value can either be set to infinity or one make the set Amax empty.

In fact, for the algorithm to function, only one of the following must be met:

P 6=∞,

or Rtarget 6=∞,

or smask
k 6=∞ ∀k ∈ K.

To better compare the performance of the GRWF approach to the three water-filling

methods previously described (bisection, discrete bit-loading, and projection), a special

case of the GRWF algorithm is presented in Algorithm 3.4. This special case solves the

RA formulation, where the desired rate constraint is removed, and where the weights ωk

are constant at a value of fs for all k and the weights χk are constant at a value of ∆f

for all k. One interesting note is that Wk can now be interpreted as the number of active

frequency tones at step k. By setting the PSD mask to infinity over every frequency tone,

Algorithm 3.4 degenerates into the closed-form water-filling solution introduced in [40].

3.5 Computational Load

The computational complexity of all four water-filling algorithms presented are of order

O(K), with the potential exception of the projection approach due to its least-squares

optimization requirement. Thus, the GRWF, discrete bit-loading, and bisection approaches

have the same computational complexity. The projection approach is more complex and

it will not be included in further comparisons. So, in order to better compare the three

equally-complex algorithms, this section will look at each of their computational load. The

comparison will be performed in two parts. The first will look at the RA formulation with
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Algorithm 3.3 Generalized Recursive Water-Filling Algorithm

i← 1,W0 ← 0, P ∗
1 ← 0, R∗

1 ← 0Rbase
1 ← 0

Amin
k ← χk

ωkdk
, Amax

k ←
χks

mask
k

ωk
+ χk

ωkdk
, ∀k ∈ K

A∗ ← sort(Amin ∪ Amax)
while (R∗

i ≤ Rtarget and P ∗
i ≤ P ) do

i← i+ 1
if i = 2K + 1 then
return sk ← smask

k , ∀k ∈ K
end if
if A∗

i−1 ∈ A
min then

Wi−1 = Wi−2 + ωf(i−1)

Rbase
i ← Rbase

i−1 − log2 (A
∗
i−1)

else
Wi−1 = Wi−2 − ωf(i−1)

Rbase
i ← Rbase

i−1 + log2 (A
∗
i−1)

end if
P ∗
i ← P ∗

i−1 + (A∗
i − A∗

i−1)Wi−1

R∗
i ← Rbase

i +Wi−1 log2 (A
∗
i )

end while
if (R∗

i ≥ Rtarget) and (P ∗
i ≥ P ) then

a∗ ← min (2

(

Rtarget
−Rbase

i
Wi−1

)

,
P−P ∗

i−1

Wi−1
+ A∗

i−1)

else if (Ri∗ ≥ Rtarget) then

a∗ ← 2

(

Rtarget
−Rbase

i
Wi−1

)

else
a∗ ←

P−P ∗
i−1

Wi−1
+ A∗

i−1

end if

return sk ←
[

a∗ ωk

χk
− 1

bk

]smask
k

0
, ∀k ∈ K
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Algorithm 3.4 Rate Adaptive Recursive Water-Filling Algorithm

i← 1,W0 ← 0, P ∗
1 ← 0

Amin
k ← 1

dk
, Amax

k ← smask
k + 1

dk
, ∀k ∈ K

A∗ ← sort(Amin ∪ Amax)
while (P ∗

i ≤ P/∆f) do
i← i+ 1
if i = 2K + 1 then
return sk ← smask

k , ∀k ∈ K
end if
if A∗

i−1 ∈ A
min then

Wi−1 = Wi−2 + 1
else
Wi−1 = Wi−2 − 1

end if
P ∗
i ← P ∗

i−1 + (A∗
i − A∗

i−1)Wi−1

end while
a∗ ←

P/∆f−P ∗
i−1

Wi−1
+ A∗

i−1

return sk ←
[

a∗ − 1
bk

]smask
k

0
, ∀k ∈ K

no weights and will compare bisection, discrete bit-loading, and GWRF; and the second

will look at the generalized case and will compare bisection to GWRF.

3.5.1 Rate Adaptive Water-Filling Algorithm Comparison

In the computational load calculation, 1/dk will be assumed to be a known variable. More-

over, the loop overhead will not be counted. The variable I will be used to denote the

number of iterations. Also, the term vdiscrete will represent the number of bit-loading values

each tone can have. As the discrete bit-loading algorithm keeps track of the bit-loading

while the bisection and GRWF algorithms do not, each approach will have to generate the

final PSD and bit-loading to even out the playing field.

The Recursive Water-Filling approach in Algorithm 3.4 requires K additions at the first

step where Amin and Amax are produced. The sorting algorithm assumed here is Merge

Sort. The number of comparisons needed by the merge sort can be upper bounded by

2K log2(2K). At each iteration, two comparisons are required, one for the total trans-

mit power constraint and the other for determining from which set the water-filling level
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comes from; three additions and subtractions; and one multiplication. Once the water-

filling level interval is determined, two additions and one division are needed to obtain the

water-filling level. Another K additions and 2K comparisons are needed to calculate the

PSD. Calculating the bit-loading requires another K additions, K multiplications, and K

logarithms.

The Discrete Bit-Loading approach considered here will initially sort every possible

change in PSD values. This allows the algorithm to avoid a K-variable search at every

iteration. The sorting algorithm will be used again and the number of comparisons for

the sorting process is upper bounded by Kvdiscrete log2(Kvdiscrete). Each iteration requires

three additions and two comparisons. Note that the rate obtained is not essential and the

addition for keeping track of it can be ignored.

The bisection approach does not need any initialization operations. At each bisection

step, one addition and one multiplication are needed to calculate the water-filling level,

K subtraction and 2K comparisons are needed to calculate the PSD, K − 1 additions are

needed to calculate the total transmit power, and one comparison is needed for the bisection

range reduction. Once the bisection part done, another K additions, K multiplications,

and K logarithms are required to calculate the bit-loading.

The computational load for each approach is summarized in Tables 3.1, 3.2, and 3.3.

Table 3.4 gives the interpretation of the number of iterations required by each approach.

In the GRWF case, the number of iterations is limited by the number of elements in the set

of water-filling levels A∗. For the discrete bit-loading approach using constant bit-loading

increments, the rate obtained is a linear function of the number of iterations. For example,

using unit increments and a symbol rate fs of 4000 Hz, 5000 iterations are required to obtain

a rate of 20Mbit/s. Finally, the water-filling level precision in the bisection approach is a

function of the number of iterations. As for the value of vdiscrete, it depends on the size of the

set of allowable bit-loading values. Given a maximum of 16 b/s/Hz and a unit-bit-loading

increment, vdiscrete is equal to 16.

Comparing the computational load, it is clear that the discrete bit-loading approach

has the advantage of not needing to calculate the bit-loading values from the resulting

PSD thus removing the need to perform the logarithms. However, taking the number of

iterations and the value of vdiscrete into account, the GRWF approach has the advantage of

potentially requiring the least number of arithmetic operations and comparisons.
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Table 3.1 Number of operations needed by the rate adaptive GRWF ap-
proach to obtain the optimal PSD and bit-loading.

GRWF

+/− 3K + 3IGRWF + 2
× IGRWF +K
/ 1

≤,=,≥ 2K log2(2K) + 2IGRWF + 2K
log2 K

Table 3.2 Number of operations needed by the discrete bit-loading approach
to obtain the optimal PSD and bit-loading.

Discrete Bit-Loading

+/− Kvdiscrete + 3Idiscrete
× Kvdiscrete
/ 0

≤,=,≥ 2Idiscrete +Kvdiscrete log2 (Kvdiscrete)
log2 0

Table 3.3 Number of operations needed by the bisection approach to obtain
the optimal PSD and bit-loading.

Bisection

+/− (2K)Ibisection +K
× Ibisection
/ 0

≤,=,≥ (1 + 2K)Ibisection +K
log2 K
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Table 3.4 Interpretation of the number of iterations in Tables 3.1, 3.2, and
3.3.

GRWF 1 ≤ IGRWF ≤ 2K
Discrete Bit-Loading Idiscrete = Robtained/fsB

Bisection a± (maxk∈K ( 1
dk

+ smask
k )−mink∈K ( 1

dk
))/2Ibisection

Table 3.5 Number of operations needed by each Water-Filling approach to
obtain the optimal PSD and bit-loading.

GRWF Bisection

+/− 3K + 5IGRWF + 3 (4K − 1)Ibisection
× 3K + 2IGRWF (1 + 3K)Ibisection
/ 2 0

≤,=,≥ 2K log2(2K) + 3IGRWF + 2K (2 + 2K)Ibisection +K
log2 K + IGRWF KIbisection
2x 1 0

3.5.2 Generalized Water-Filling Algorithm Comparison

It is in the generalized water-filling case with rate constraints that GRWF shines best

relative to bisection. Under this case, the bisection method is heavily penalized with the

overhead added by the rate constraint while the GRWF approach receives much smaller

increases to its computational load. With the bisection approach, K logarithms are required

at each iteration to compare the rate obtained with the target rate. With the GRWF

approach, only one new logarithm is required at each iteration. This means that at most

2K logarithms are required to obtain a final PSD and another K for the corresponding

bit-loading values. The computational load needed to obtain both the PSD sk and the bit-

loading bk for the bisection and the GRWF approaches are summarized in Table 3.5. The

results in Table 3.5 assume that ωk/χk and 1/dk are known, and that the loop overhead is

not counted. The number of iterations I are the same as in the RA case and are provided

in Table 3.4. The biggest saving for the GRWF approach comes from the reduction in the

number of required logarithms by being able to calculate the rate obtained recursively.

3.6 Application of GWRF to Water-Filling-Like Algorithms

The water-filling algorithm can be applied to other algorithms besides IWF. This section

presents other instances where the recursive water-filling approach may or may not be used.
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Up to now, this chapter applied recursiveness to the water-filling problem in order to

improve its performance. The locally-optimal algorithms presented in Chapter 2, DSB and

SCALE, have a water-filling-like spectrum update formula that can be generalized in the

following form:

sk =
ωk

λ+ βk

− κk.

One might wonder if the recursive approach can be applied to the above water-filling-like

update formula, and more particularly to DSB and SCALE specifically. The answer is no.

The recursive approach cannot be efficiently applied to the water-filling-like algorithms

mainly because of the offset βk on the Lagrange dual variable λ. In GRWF, the water-

filling level is found by solving a linear equation. With water-filling-like algorithms, getting

λ requires solving a Kth-order polynomial. For the same reasons, the projection approach

also fails here.

On the other hand, the discrete bit-loading approach can be applied to water-filling-

like algorithms. However, the interpretation of incrementing the frequency tone that can

increase its bit-loading with the least power increase does not hold here. This is due to the

offset βk making a non-flat water-fill level. As such, the next frequency tone that gets to

increase its bit-loading may not necessarily be the most efficient choice in term of power

usage. Thus, instead of looking for the minimal change in PSD, the approach must look

at the Lagrange dual variable itself. The discrete bit-loading approach can be interpreted

as starting off with an infinitely large Lagrange dual variable and gradually shrinking it

until either the total transmit power constraint is met, or until the Lagrange dual variable

becomes 0. The discrete bit-loading approach applied to water-filling-like is summarized in

Algorithm 3.5. Although Algorithm 3.5 is for water-filling-like algorithms, it still applies to

the regular water-filling case and actually generalizes Algorithm 3.1. The change in PSD

∆sk(bk) are the same as ones used in Algorithm 3.1. The variable λk is the value of the

Lagrange dual variable required to obtain a bit-loading of bk on frequency tone k and it is

defined in (3.12).

λk(bk) =







ωkdk
2bk
− βk for DSB

ωkdk
2bk−1

− βk for SCALE

ωkdk
2bk+dkκk−1

− βk for other water-filling-like algorithms

(3.12)
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Algorithm 3.5 Discrete Bit-Loading for Water-Filling-Like Algorithms with Constant
Bit-Loading Increments

K ← {1, 2, . . . , K}
bk ← 0 ∀k ∈ K
sk ← 0 ∀k ∈ K
P used ← 0
Robtained ← 0
loop
k ← argmax

k∈K
λk(bk +B)

if λ < 0 then
break

else if P used +∆f ∆sk(bk) ≥ P then
break

else if sk +∆sk(bk) ≥ smask
k then

K ← K \ k
else
sk ← sk +∆sk(bk)
bk ← bk +B
P used ← P used +∆f ∆sk(bk)
Robtained ← Robtained + fs

end if
end loop

3.7 Conclusion

This chapter overviewed a discrete bit-loading and a projection approach for water-filling

with each method having its own advantage over the traditional bisection given certain

conditions. Then, the generalized water-filling problem was presented and its recursive

formulation derived in order to introduce the GRWF algorithm. The GRWF can solve the

water-filling problem within a fixed number of iterations and can use both maximum total

transmit power and minimum target rate constraints concurrently with little added com-

putational complexity relative to just using the minimum target rate constraint. Finally,

this chapter showed that a similar recursive approach cannot be applied to water-filling like

algorithms such as DSB and SCALE. However, to improve over the bisection method, a bit-

loading approach for water-filling-like algorithms similar to the one for regular water-filling

is introduced.
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Chapter 4

Autonomous Spectrum Balancing

Using Multiple Reference Lines

(ASB-MRL)1

Chapter 3 introduced new water-filling methods that improved the Iterative Water-Filling

(IWF) algorithm’s performance through its complexity. With IWF, each user distributes

its allowable transmit power over the available frequency tones such that it is optimal to

itself. In some cases, this self-optimization can lead to good results. However, in other

cases, IWF can perform poorly and an optimization process that takes every user in the

network into account is needed. This network-level optimization can control all the users

and it also requires full network information but at the cost of needing to perform the algo-

rithm centrally at a Spectrum Management Center (SMC) or semi-centrally with the use

of message-passing system between every user. Examples of centralized algorithms include

Optimal Spectrum Balancing (OSB) [22] and Iterative Spectrum Balancing (ISB) [26], and

examples of semi-centralized includes Distributed Spectrum Balancing (DSB) [20] and Suc-

cessive Convex Approximation for Low-complExity (SCALE) [33]. Of the four algorithms,

only OSB can guarantee globally-optimal results through exhaustive search whereas ISB

gives near-optimal results, and DSB and SCALE produce locally-optimal results. However,

as previously stated, these network-level algorithms cannot be fully distributed because of

their global control requirements. Moreover, their higher performance comes at the cost of

1Part of Chapter 4 has been presented in [41].
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higher complexity.

This chapter introduces a compromise between the user-optimal IWF and the network-

optimal algorithms by introducing a new algorithm that extends IWF by modifying the

underlying water-filling algorithm. Autonomous Spectrum Balancing using Multiple Refer-

ence Line (ASB-MRL) algorithms are then introduced as algorithms capable of exploiting

that extension hence allowing them to produce results similar to the ones produced by

network-level algorithms while keeping a similar complexity to IWF. Unlike the network-

level algorithms, ASB-MRL only requires a centralized initialization phase and can then

be fully distributed to every user. The performance increase seen in ASB-MRL is obtained

by feeding it network information using multiple reference lines. Moreover, the ASB-MRL

algorithms can outperform the single-reference-line ASB due to the multiple reference lines

containing more information about the network than the single one. However, the choice

of reference lines is crucial because they must be able to represent the actual network. As

such, this chapter develops three conditions on the set of reference lines for near-optimal

performances. Finally, this chapter shows through a Monte Carlo style simulation that the

ASB-MRL algorithms can indeed obtain near-optimal performance over randomly gener-

ated DSL networks.

In Section 4.1, a comparison between IWF and the optimal algorithm DSB is made

to assess how they are different in terms of effective water-filling levels. Section 4.2 uses

the differences to introduce an extension to IWF by adding an offset to the Lagrange

multiplier in WF in order to give it the potential to produce near-optimal solutions. The

ASB-MRL algorithms, ASB-DSB and ASB-SCALE, are introduced in Section 4.3 as a

method of generating the Lagrange offsets. Within the same section, the constant offset

ASB-MRL algorithms are also presented. Section 4.4 shows the faster convergence speed

that ASB-MRL algorithms have over network-level algorithms. The conditions for selecting

the reference lines used by ASB-MRL are introduced in Section 4.5. Finally, a Monte Carlo

style simulation over an all-CO network and over a mixed CO-RT network is performed in

order to show ASB-MRL’s capability in achieving near-optimal results.

4.1 IWF and Optimal Algorithms

The IWF algorithm is a simple algorithm because each user only needs to calculate its

water-filling level using the interference it measures and its direct channel gain. On the
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other hand, network-level algorithms require information from all users in order to generate

a solution. In order to gain a better understanding on why the network-level algorithms

can perform better than IWF, this section sets out three examples that highlights their

differences from a water-filling level perspective that will set the basis in the IWF extension.

In all three example, DSB is used as the optimal network-level algorithm.

4.1.1 Example 1: Encouraging Frequency Tones with Low Direct Channel

Gains

This first example looks at the case where the performance gap between IWF and the

locally-optimal algorithm DSB is non-negligible: a network containing 10 identical users

with common start and end points, and with line lengths of 900m, transmitting in the

upstream bands. The Power Spectral Density (PSD) produced by each algorithm is shown

in Figure 4.1. It is quite obvious that DSB allocates more power towards the inferior and

higher frequency tones where the crosstalk channel gains are greater and the direct channel

gains are lower. This results in DSB using more frequency tones than IWF. However, even

though the PSD is not optimal in the user-centric-sense, this push towards the inferior

frequency tones grants DSB a sum rate over all users of 64 Mbps which is a 10% gain over

IWF’s 58 Mbps.

To show the differences in IWF terms, the effective water-filling level and the associated

water-filling floor are also provided in Figure 4.1. The effective water-filling level produced

by DSB effectively shows that the user-optimal flat level is non-network-optimal. Instead, a

slanted level with its higher end over the inferior frequency tones leads towards optimality.

Thus, the push towards inferior frequency tones is a characteristic that the extension on

IWF must have.

Note that it is worth noting that it appears to be possible to join the PSDs, the effective

water-filling levels and bottoms by a smooth and continuous line through the no-transmit

gap between the first upstream band, US1, and the second one, US2. This is no coincidence

because the channel model these examples are based on produces smooth and continuous

channel gains.
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Fig. 4.1 PSD produced by IWF and DSB, and associated effective water-
filling level for each user in a 10-user-homogeneous DSL network with line
length of 900m in the upstream direction. (Notes: the filled PSD is shown
in black, the middle line is the measured interference over direct channel gain
ratio, and the top line the effective water-filling level.)
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4.1.2 Example 2: Frequency-Selective Water-Filling Level

This second example shows that even in cases where the performance gap between IWF

and DSB is small, the differences are still noticeable. This example uses a similar network

as the one used in the first example but with line lengths of 300m and in the downstream

direction. This shorter distance is used because both algorithms will both produce solutions

capable of a sum rate of 501 Mbps. Yet, even with identical sum rates, the PSDs shown in

Figure 4.2 show that DSB is distributing more power towards the very low frequency tones

in DS1 where the direct channel gain is high and crosstalk channel gains are low (superior

frequency tones), and also towards the inferior and higher frequency tones. Hence, DSB

is taking advantage of the superior channels while still attempting to promote the inferior

ones but with no noticeable performance gains. Moreover, the effective water-filling level

from this example shown in Figure 4.2 and the one from the first example show that using

a frequency-selective level has the potential to improve the performance. Thus, the IWF

extension should use a frequency-selective water-filling level.

4.1.3 Example 3: Self Total Transmit Power Restraint

This third example shows another difference between IWF and DSB: self-imposed total

transmit power reduction. This total transmit power reduction can be easily shown using

a network with a near-far effect where near users can produce significant crosstalk towards

the far users. This example uses a network in the upstream direction composed of 10 users

with common end points and with line lengths uniformly distributed between 450 and 900

m. In this kind of near-far network, the crosstalk channel gain from the 450-m user to

900-m user is much greater than that on the opposite direction. This is because the 900-m

user’s signal has to attenuate over 450m before seeing its line has the chance of generating

crosstalk onto the 450-m user’s line. By maximizing the overall throughput of this network,

IWF can only reach a sum rate of 95 Mbps as opposed to DSB’s 119 Mbps. As in the the

first and second examples, the effective water-filling level produced by DSB presents the

same frequency-selective characteristics with slanted level increasing with frequency. What

is more remarkable is total transmit power required by each user. The values are shown in

Table 4.1. With IWF, all users are transmitting using their full allowable total transmit

power of 11.5 dBm. On the other hand, with DSB, the four users with the shortest line

lengths are transmitting below their allowable total transmit power, as much as 14 dB less
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Fig. 4.2 PSD produced by IWF and DSB, and associated effective water-
filling level for each user in a 10-user-homogeneous DSL network with line
length of 300m in the downstream direction. (Notes: the filled PSD is shown
in black, the middle line is the measured interference over direct channel gain
ratio, and the top line the effective water-filling level.)
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Table 4.1 Total transmit power used by each user in example 3.

Total transmit power used
Line length (m) IWF (dBm) DSB (dBm)

450 11.5 -3.4
500 11.5 0.4
550 11.5 4.3
600 11.5 8.5
650 11.5 11.5
700 11.5 11.5
750 11.5 11.5
800 11.5 11.5
850 11.5 11.5
900 11.5 11.5

in the 450-m user’s case. This shows that reducing the transmit power on certain users will

benefit the entire network. Hence, controlling the total transmit power also plays a role in

addition to the frequency-selective water-filling level in increasing the performance.

4.1.4 Example Wrap-Up

In the previous three examples, the effective water-filling level associated to optimal algo-

rithms were not flat and followed a general pattern. This effective water-filling level pattern

has also been observed in all other simulations regardless of network composition. Hence,

using a frequency-selective water-filling level presents a major potential. However, playing

with the water-filling level alone is insufficient. A total transmit power reduction process is

also required particularly when a near-far effect is present in order to prevent a user with

a large crosstalk generation potential from overpowering the other users.

4.2 Extending Water-Filling

Previously, other algorithms have been created using IWF as a backbone while trying

to produce optimal PSD patterns. The Selective Iterative Water-filling algorithm (SIW)

[38] iteratively applies IWF over a reducing set of frequency tones. This iterative process

allows some users to transmit at a higher power over some frequency tones thus leading

to an effective water-filling made up of multiple flat levels. However, this method requires

message passing between users and IWF has to be performed many times until the results
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converge. Multi-Level Water-Filling (MLWF) [42] is another algorithm that tries to produce

optimal PSD patterns. With MLWF, the frequency tones are separated into multiple groups

each with its own water-filling level. MLWF distributes the power between the sections

using a priority scheme in order to replicate the optimal PSD pattern. The drawback of

MLWF is that the optimal frequency tone groups are unknown and must be found through

an iterative searching algorithm and water-filling is performed at every search iteration.

Both MLWF and SIW can only approximate the optimal PSD patterns using multiple flat

water-filling lines hence effectively quantizing effective water-filling level. In the MLWF’s

case, increasing the number of groups in order to better approximate the pattern will only

increase the complexity of the algorithm and the number of iterations for convergence.

This section presents an extension on the water-filling algorithm that will allow IWF

to produce results similar to the ones produced by the network-level algorithms. The

extension achieves this by both modifying the effective water-filling level and introducing

a self-imposed total transmit power constraint.

The water-filling algorithm is quite simple in that it only needs to find that water-filling

level used in the spectral update formula rewritten here:

snk =

[

an −
Γintnk
Hnn

k

]sn,mask
k

0

where an represents the water-filling level and is the inverse of the normalized Lagrange

variable λn, and [·]
sn,mask
k
0 bounds the PSD between 0 and the PSD mask. At first glance,

there are two obvious possible methods for creating a frequency-selective level:

1. adding a frequency-selective offset to the water-filling level an to obtain

snk =
[

an + offsetnk −
Γintnk
Hnn

k

]sn,mask
k

0
,

2. or adding a frequency-selective weight to the water-filling level an to obtain

snk =
[

wn
ka

n −
Γintnk
Hnn

k

]sn,mask
k

0
.

With either method, the effective water-filling level can be modified into any shape desired.

As for implementing the self-constraint on the total transmit power, users will large out-

going crosstalk channel gains can perform the water-filling procedure such that they meet

a target rate instead of using their full allowable total transmit power. However, there still

remains a challenge. The offsets and weights are actually dependent on the total transmit



4 Autonomous Spectrum Balancing Using Multiple Reference Lines 61

DS1 DS2
0

2

4

6

8

10

12
W

F
 fl

oo
r 

an
d 

W
F

 le
ve

l (
nW

/H
z)

Downstream frequency bands

Fig. 4.3 Effective water-filling level for different total transmit power con-
straints.

power used. Figure 4.3 shows this dependence where the effective water-filling level for

various total transmit power values from DSB are displayed. The corresponding network

has 10 users with line lengths of 900m and with common start and end points. In the first

downstream band (DS1), the effective water-filling level does not vary much as the total

transmit power changes. In the second downstream band (DS2), the level changes shape

as the total transmit power increases. This shape change is impossible if using a constant

offset. Similarly, constant weights will also not work. Thus, with either modification, the

user will have to dynamically change the offsets or weights whenever the total transmit

power changes which can become rather problematic with fixed-margin users as their total

transmit power changes in order to reach a target rate.

A better modification is to add a frequency-selective offset ∆λn
k to the Lagrange multi-

plier as follows:

snk =

[
1

∆λn
k + λn

−
Γintnk
Hnn

k

]sn,mask
k

0

. (4.1)

This Lagrange offset has two benefits. The first benefit is that it acts as a self-imposed

PSD mask. When given a sufficiently large total transmit power constraint, the Lagrange
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variable λn will be set to 0 and the following upper bound on the PSD will be obtained:

snk = min

(
1

∆λn
k

−
Γintnk
Hnn

k

, sn,mask
k

)

. (4.2)

Thus, by carefully setting the Lagrange offset, we can prevent a user from over-loading

specific frequency tones. Also, this upper bound is effectively a self-imposed total transmit

power constraint. The second benefit from the Lagrange offset is that it will produce an

effective water-filling level that changes dynamically with the total transmit power used.

At sufficiently low total transmit power constraints, the resulting Lagrange variable λn will

be much larger than the Lagrange offset ∆λn
k and the modified algorithm will revert to

water-filling as shown in the following equation:

snk =
1

∆λn
k + λn

−
Γintnk
Hnn

k

λn≫∆λn
k ,∀k∈K−−−−−−−−−→ snk =

1

λn
−

Γintnk
Hnn

k

.

When using the Lagrange offsets, the effective water-filling level becomes flat at low total

transmit power and approaches the upper bounded PSD defined in 4.2 as the total transmit

power increases. Thus, the effect of the Lagrange offset is to delay the increase of the

effective water-filling over a frequency tone.

In the cases where a user has a target rate to meet but with a self-imposing PSD mask

that does not allow such target rate, a weight can be added to the modified water-filling

to give

snk = min

(
wn

∆λn
k + λn

−
Γintnk
Hnn

k

, sn,mask
k

)

.

The weight has to be increased until the desired target rate is obtained much like in the

DSB FM process discussed in Chapter 2.

There can be many possible ways of generating the Lagrange offset values but this

chapter focuses on the use of multiple reference lines as it is based on optimization and it

can be derived. Other methods include using supervised machine learning processes such

as using decision trees and neural networks to exploit the correlation between the measured

interference, channel characteristics, and resulting Lagrange offsets.
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4.3 ASB-MRL Algorithms

The previous section showed that adding an offset to the Lagrange variable in the water-

filling formulation has the potential of allowing IWF to perform as well as network-level

algorithms. In fact, with the Lagrange offset, the modified water-filling approach is similar

to the DSB approach where the offset containing information about every other user is

generated by a spectrum management center and is then relayed to each user. However, as

mentioned previously about semi-centralized algorithms, this offset relaying has two major

hurdles: the need and use of a message passing system before every PSD update iteration,

and the knowledge of the crosstalk channel gains between every user on every frequency

tone. In order to remove these two hurdles, this section introduces the Autonomous Spec-

trum Balancing using Multiple Reference Lines algorithms (ASB-MRL) which provides a

different way of generating the aforementioned offsets. Once derived, the ASB-MRL algo-

rithms have the same form as (4.1) and their Lagrange offsets are a function of the multiple

reference lines.

4.3.1 Problem Formulation

The use of multiple reference lines requires the introduction of new variables: let F represent

the number of reference lines used, F = {2, 3, . . . , F + 1} be the set of users representing

the reference lines, and n = 1 be the real user performing the optimization. Note that,

like IWF, ASB-MRL is a user-centric algorithm. Thus, the number of reference lines F

can vary between users. A constant F is assumed here but the user-dependent-F version

of the algorithms can be easily derived. Moreover, each reference line that a user sees can

be considered as a virtual user and the combination of the user and the multiple reference

lines forms a virtual network. This means that each reference line has the same kind of

parameters that an actual user would have. Plus, each reference line has a transmit PSD,

and values for the direct and crosstalk channel gains.

This virtual network is effectively the same as an actual network, except that the refer-

ence lines have static variables. Therefore, the objective function that each user wants to

optimize will be similar to the one used by the network-level optimization algorithms but
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with the optimization working only on the real user’s variables as follows:

max
s1k∀k∈K

ω1R
1 +

∑

f∈F

ωfR
f

such that ∆f
∑

k∈K

s1k ≤ P 1

0 ≤ s1k ≤ smask,1
k

(4.3)

where Rf represents reference line f ’s achievable data rate and where user 1 represents the

actual user performing the optimization. However, the formula for Rf ∀f ∈ F differs from

R1. Since user 1 is real, the actual measured interference int1k over each frequency tone k

can be used to calculate the sum rate

R1 = fs
∑

k∈K

log2

(

1 +
1

Γ

H11
k

int1k

)

(4.4)

with int1k being the interference measured on frequency tone k. The virtual users f ∈ F do

not have access to actual measured interference. Instead, the interference on each frequency

tone k observed by each reference line f ∈ F is is considered as the combined crosstalk

contribution from the user and from the virtual network and is calculated a

intfk = Hf1
k s1k + σf

k +
∑

m6=f
m∈F

Hf,m
k smk . (4.5)

The corresponding sum rate for the reference lines f ∈ F is

Rf = fs
∑

k∈K

log2

(

1 +
1

Γ

Hff
k

intfk

)

. (4.6)

It is important to notice that the objective function 4.3 reduces to the same objective

function used by IWF in the special case where the number of reference lines F is null.

That means that the solution for optimizing 4.3 should give the same result as IWF under

the special case. Similarly, in the special case of F = 1, the objective function is identical

to those of ASB [18] and ASB2 [20], two different versions of the single-reference-line ASB.
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4.3.2 ASB-DSB

ASB-DSB is an ASB-MRL algorithm that uses DSB as its base algorithm. This is possible

by recognizing that the optimization problem 4.3 is similar to the rate adaptive problem

solved by DSB. The only difference lies in each reference line’s PSD, sfk∀f ∈ F , being a

constant in the ASB-MRL formulation and an optimization variable in DSB. Nevertheless,

this means that there are fewer variables to optimize and that the DSB spectral update

formula derived in Chapter 2 can be reused.

Adapting the DSB spectral update formula to the ASB-MRL formulation gives ASB-

DSB and is defined as

s1 =

[

ω1

λ1 +
∑

f∈F

(

ωfHf1
k

(

1

intfk
− 1

recfk

)) −
Γint1k
H11

k

]smask,1
k

0

(4.7)

where

recfk = intfk +
Hf1

k

Γ
sfk . (4.8)

As mentioned previously, the special cases of using null and one reference line (F = 0

and F = 1), ASB-DSB should revert to IWF and ASB, respectively. In the null case,

the offset to λ1 disappears and the update formula becomes identical to the one derived

for IWF in Chapter 2. In the case of a single reference line, the update formula becomes

equivalent to the update formula derived for ASB2 in [20]. Therefore, ASB-DSB generalizes

both IWF and ASB2.

4.3.3 ASB-SCALE

So far, most of this chapter has only compared IWF with DSB. The offset on the Lagrange

dual variable is also present in SCALE and all previous analysis still holds. As such, we can

create an ASB-MRL algorithm from SCALE in order to solve for the optimization problem

4.3.

In a similar manner to the process from DSB to ASB-DSB, this transformation also

uses the similarity between the optimization problem used by ASB-MRL and that used

by SCALE. This allows the reuse of SCALE’s spectral update formula in order to develop
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ASB-SCALE. The ASB-SCALE spectral update formula is

s1k =

[

ω1α1
k

λ1 +
∑

f∈F
ωfαf

kH
fn
k

intfk

]

(4.9)

where

α1
k =

H11
k s1k

Γint1k

1 +
H11

k s1k
Γint1k

αf
k =

Hff
k sfk

Γintfk

1 +
Hff

k sfk
Γintfk

.

The difference between α1
k and αf

k∀f ∈ F lies in the source of the observed interference

values where the real user uses measured values and the reference lines calculating theirs.

As in SCALE, the values of α1
k and αf

k do not need to be updated at every iteration.

They should also be initialized to 1 as to represent an infinite signal to interference plus

noise ratio. Similarly, sfk should be initialized to zero. On the second iteration, the reference

line PSDs sfk can take their constant values.

In the special case of zero reference lines, ASB-SCALE does in fact become IWF but

under a different form. Instead of obtaining the IWF spectral update formula derived in

Chapter 2, ASB-SCALE transforms into the RA-WF algorithm derived in [33].

4.3.4 Good Virtual Network Approximation

Up to this point, each user using the ASB-DSB and ASB-SCALE algorithms needs to

calculate K F -dimension linear equations at every iteration for updating their reference

line’s observed interference value, intfk . This leads to a need of constantly updating the

Lagrange variable λ1’s offset.

A simplification can be made to the ASB-MRL algorithms by assuming that the mul-

tiple reference lines already represent the overall network well. Under this assumption, we

can neglect the user’s contribution to the reference line’s interference calculation because

the crosstalk contribution from the other reference lines already represent the crosstalk

composition. That is, the Hf,1
k s1k term can be omitted when calculating intfk . Under this
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Algorithm 4.1 Constant Offset ASB-DSB Algorithm

Get reference line parameters: sfk , H
f,1
k , H1,f

k , Hf,f
k , ∀f ∈ F

intfk ← σf
k +

∑

m6=f
m∈F

Hf,m
k smk , ∀f ∈ F

recfk = intfk +
Hf,1

k

Γ
sfk , ∀f ∈ F

∆λk ←
∑

f∈F (ωfHf,1
k ( 1

intfk
− 1

recfk
))

repeat
Measure interference int1k

Find λ ∈ [0,∞] such that
∑

k∈K

[
ω1

λ+∆λk
−

Γint1k
H1,1

k

]smask,1
k

0
= P 1

if unfeasible then
λ← 0

end if

s1k ← [ ω1

λ+∆λk
−

Γint1k
H1,1

k

]
smask,1
k
0

until convergence

assumption, the Lagrange variable’s offset becomes constant and reduces the overall com-

plexity per iteration of ASB-DSB and ASB-SCALE to that of IWF. Hence, the simplified

version of ASB-DSB and ASB-SCALE use

intfk = σf
k +

∑

m6=f
m∈F

Hfhem
k smk (4.10)

for calculating the reference line’s measured interference. This leads to the constant offset

ASB-DSB in Algorithm 4.1 and the constant offset ASB-SCALE in Algorithm 4.2.

4.4 ASB-MRL with Full Network Topology Information

The previous section provided the ASB-DSB and ASB-SCALE spectral update formula

for using ASB-MRL. Yet, the parameters associated to the reference lines still need to be

known. More specifically, the PSD used by each reference, sfk∀k ∈ K and f ∈ F , and

the crosstalk channel gains between each reference line, Hmf
k ∀k ∈ K and m, f ∈ F , and

between the reference lines and the real user, H1f
k and Hf1

k , are required. Yet, before

venturing towards the choice of reference lines, this section explores the potential of ASB-

MRL algorithms in the simple case where the full network topology is known to each user.
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Algorithm 4.2 Constant Offset ASB-SCALE Algorithm

Get reference line parameters: sfk , H
f,1
k , H1,f

k , Hf,f
k , ∀f ∈ F

recfk = σf
k +

∑

m6=f
m∈F

Hf,m
k smk +

Hf,1
k

Γ
sfk , ∀f ∈ F

αn
k ←

H
f,1
k
Γ

sfk
recfk

, ∀f ∈ F

∆λk ←
∑

f∈F
ωfαf

kH
f,1
k

intfk
repeat
Measure int1k and rec1k
α1
k ←

rec1k−int1k
rec1k

if first iteration then
Use α1

k = αf
k = 1, ∀f ∈ F , k ∈ K

Use ∆λk =
∑

f∈F
ωfHf,1

k

intfk
end if

Find λ ∈ [0,∞] such that
∑

k∈K [
ω1α1

k

λ+∆λk
]
smask,1
k
0 = P 1

if unfeasible then
λ← 0

end if

s1k ← [
ω1α1

k

λ+∆λk
]
smask,1
k
0

until convergence

With the full network topology, each user will know the relative position of every user

within the network hence forming a possible set of reference lines.

In the simplest case, we assume that the full network topology information is known

to each user by giving every other user’s line length and relative position. Under this

assumption and the slow time-varying property of the channel, channel models can be used

to approximate the direct and crosstalk channel gains. Then, depending on how much

information is known about the other users, various approaches can be taken for obtaining

the PSD used by other users. In the worst case, the PSD is not exchanged between the

users. Hence, each user will need to approximate the other user’s PSD. One good way to

approximate it is to simulate the network by applying DSB or SCALE to a virtual network

made from the approximated channel values.

In all cases, using multiple reference lines results in a new variable that is linearly

dependent on the user’s own PSD. Thus, this effectively trades message passing and full

channel knowledge requirement in a locally-optimal solution for a method of approximating
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the channel values and the PSD’s in a near-optimal solution. Additionally, the overall

complexity of algorithm reduces from O(KN2) at every iteration with DSB and SCALE

to O(KN) at every iteration using the variable offset, or O(K) using the constant offset,

and O(KN2) at initialization for ASB-DSB and ASB-SCALE.

By using a channel model that can approximate the network well and with the full

network topology information and user-constraints known, it is very likely that ASB-DSB

and ASB-SCALE can reach a similar performance as their locally-optimal counterparts.

However, using this method can be redundant given all the information since a near-optimal

PSD is already produced when calculating the reference line’s PSD. However, the ASB-MRL

algorithms should still be used because they also take into account the actual measured

interference and direct channel gains.

What is more particular with ASB-DSB and ASB-SCALE is their faster convergence

speed relative to their network-level counterparts, DSB and SCALE. Unlike the network-

level algorithms, these ASB-MRL algorithms have already initialized their Lagrange vari-

able λ1’s offset with approximate values while DSB and SCALE must iteratively update

their Lagrange offsets. To illustrate this faster convergence, the sum rate in the upstream

data transmission for a sample network is plotted against the iteration count. The net-

work consists of 11 users connected to same common CO and with line lengths uniformly

ranging from 500 to 1000m. Figure 4.4 shows the sum rate evolution for ASB-DSB and

DSB while Figure 4.5 shows the sum rate evolution for ASB-SCALE and SCALE. Both

ASB-MRL algorithms are able to reach their peak performance in two iterations while DSB

and SCALE take over 10 iterations.

4.5 Reference Lines

There are many possible ways of building a set of reference lines. In the previous section,

the set of reference lines represented the actual network. However, the full network topology

is not always available. Moreover, it can be advantageous to build a set containing fewer

reference lines in order to simplify the initialization procedure where the Lagrange offset

∆λn
k is calculated. Instead of proposing potentially many different ways to build a set, this

section unveils three conditions on the set of reference lines that, when met, will allow the

ASB-MRL algorithms to achieve near-optimal performances.
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Fig. 4.4 Sum rate versus iteration count for ASB-DSB and DSB.
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Fig. 4.5 Sum rate versus iteration count for ASB-SCALE and SCALE.
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4.5.1 Bit-Loading Coverage Condition

The bit-loading coverage condition exists to try to have a non-zero Lagrange offset ∆λn
k on

as many frequency tones as possible. On regions with null offsets, the ASB-MRL algorithms

will behave like the traditional water-filling. That is, users will be allowed to have a selfish

behavior. To prevent null offset values, the reference lines must transmit on as many

frequency tones as possible. Ideally, one way to meet this condition is by satisfying

∑

f∈F

sfk > 0, ∀k ∈ K.

Often, it is not useful to have a non-zero PSD over every frequency tone. It is quite possible

that in many cases some frequency tones have extremely poor channel characteristics for

all users. Thus, it is pointless to impose the condition on them as it is very unlikely that

a user will ever use them. Similarly, in a far reach network where all users have long line

lengths, it is quite likely that the higher frequency tones are unusable by any user and the

Lagrange offset value over the higher frequency tone regions will have no impact.

4.5.2 Power Restraint Condition

The set of reference lines should represent the virtual network in order to generate a good

Lagrange offset. This representation must not only represent the network through its

channel characteristics, but also through the PSD. The reference lines must have a PSD

that is typical in the type of network they represent.

In real networks, the power restraint condition comes into play in scenarios where strong

and weak users coexist. A strong user is typically one with good direct channel gains, low

incoming crosstalk gains, and high outgoing crosstalk gains. On the other hand, a weak

user is typically the opposite with poor direct channel gains, high incoming crosstalk gains,

and low outgoing crosstalk gains. Thus, if both strong and weak users are allowed to

use their total transmit power in its entirety, then the weak user will be receiving high

interfering signals relative to its own signal while the strong user receives little interference

over its already strong signal. One example of this kind of scenario is the near-far effect

discussed in Chapter 2 and pictured in Figure 2.6. Without proper power restraints, the

near user in Figure 2.6 will generate crosstalk that will overwhelm the far user’s signal

power as demonstrated through the size of the arrows.
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Like in real networks, the strong-weak coexistence also has an importance in the virtual

network since it affects the Lagrange offset. However, the effects of total transmit power

reduction on multiple reference lines are different from that in the single-reference-line

ASB. Similarly, the effects of power restraint on global optimization using algorithms such

as DSB and SCALE are different from user-centric optimization like IWF.

In IWF, each user needs only their direct channel gain and measured interference values

on every frequency tone. If another user, which we shall call the interferer, decides to load

more power over some bandwidth, then the interference measured by the optimizing user

will also increase over the same bandwidth. To adapt to this new interference pattern, the

IWF procedure will reduce the power on the frequency tones with higher crosstalk and

re-allocate the power to the frequency tones with lower crosstalk. The adaptation process

from IWF will happen if the interferer increases its total transmit power over its whole

PSD. Thus, from a frequency tone perspective, an increase of power from the interferer will

translate in the user avoiding that same frequency tone.

The same avoidance issue comes up in ASB where only one reference line is used. Recall

that the spectral update formula using one reference line is

s1k =
ωn

λn +∆λn
k

where

∆λn
k = ωfHf1

k

(
1

intfk
−

1

intfk +Hff
k sfk

)

and n = 1 corresponds to the user performing ASB and n = f the reference line. The

Lagrange offset ∆λn
k is always non-negative. Its derivative over sfk ,

∂∆λn
k

∂sfk
=

ωfHf1
k Hff

k

(intfk +Hff
k sfk)

2
,

is also non-negative when sfk ≥ 0 since all other values are also non-negative. Thus,

increasing the reference line’s PSD sfk will always result in a Lagrange offset increase.

And, as discussed in Section 4.2, increasing the Lagrange offset on a frequency tone will

discourage the user from transmitting over that same frequency tone. Moreover, increasing

the reference line’s PSD over all frequency tones will severely limit the user’s achievable

rate. Therefore, not using proper total transmit power restraints in ASB will overly restrict
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the optimizing user.

In the multiple reference line using ASB-DSB, an increase in the reference line’s PSD

does not always equate to frequency tone avoidance. Recall that the Lagrange offset in the

multiple reference line is given by:

∆λn
k =

∑

f∈F

ωfHf1
k

(
1

intfk
−

1

recfk

)

.

Unlike the single reference line case, increasing the PSD on a given frequency tone k for a

given reference line will not always increase the Lagrange offset because the PSD change

will impact every other reference line’s measured interference. Taking the derivate over the

PSD over one of the reference line gives

∂∆λn
k

∂sfk
=

ωfHf1
k Hff

k

(recfk)
2
−
∑

m∈F
m6=f

ωmHm1
k Hmf

k

(
1

(intmk )
2
−

1

(recmk )
2

)

=
ωfHf1

k Hff
k

(recfk)
2
−
∑

m∈F
m6=f

(22b
m
k − 1)ωmHm1

k Hmf
k

(recmk )
2

(4.11)

where the term bmk is the bit-loading corresponding to the reference line m. The first term is

identical to the one obtained in ASB. The second term comes from the change in interference

measured by the other reference lines and works against the increase from the first term.

This relation shows that increasing one reference line’s PSD can actually encourage the

optimizing user to transmit more. Hence, increasing the PSD on one reference line can

decrease the Lagrange offset thus encouraging the optimizing user to use an even higher

transmit PSD and also over-relaxing the user’s self power restraint.

A similar analysis can be done using the Lagrange offset on ASB-SCALE. Recall that

the Lagrange offset for ASB-SCALE is obtained using

∆λ1
k =

∑

f∈F

ωfαf
kH

fn
k

intfk

=
∑

f∈F

ωfHfn
k Hff

k

intfkrec
f
k

.
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The second step simply rewrites αf
k in terms of intfk and recfk . Taking the derivative over

sfk gives

∂∆λn
k

∂sfk
=

ωfHf1
k Hff

k

(recfk)
2
−
∑

m∈F
m6=f

ωmHm1
k Hmf

k

2intmk +Hmm
k smk

intmk rec
m
k

. (4.12)

Notice the similarities between (4.11) and (4.12). In both cases, a positive change is con-

tributed by the reference line f and a negative change by all other reference lines. Moreover,

the negative component is proportional to the crosstalk gain Hmf
k , from the reference line

that’s increasing its PSD towards every other reference line. Thus, it is quite likely that

increasing the PSD on reference lines with the potential of generating significant crosstalk

towards other reference line will result in encouraging the optimizing user to also increase

its PSD. Hence, reference lines with large outgoing crosstalk power gains must use a more

restrictive total transmit power constraints.

4.5.3 Virtual Network Self-Representation Condition

The ASB-MRL algorithms require the measured interference measured by each reference

line. Under the good virtual network approximation, the contribution to this measured

interference comes from the other reference lines only. Thus, the virtual network needs to

be representative of the network it approximates from the point-of-view of each reference

line.

Figure 4.6 shows an example in which a network contains a mixture of multiple strong

and weak users. The virtual network approximates it by using only one strong and one

weak reference line. When calculating the measured interference, the strong reference line

will only receive crosstalk from the weak one. However, in the actual network, a strong user

will receive crosstalk from both strong and weak users. Even if the good virtual network

approximation is not used, the virtual network self-representation condition will still not

hold. Assuming that the user performing the optimization can be categorized as a weak

user, then the strong reference line will receive crosstalk from a weak user and a weak

reference line. Thus, the virtual network in the example does not contain a good set of

reference lines.

The reference line needing reference-line condition is particularly important when the

virtual network contains a small number of reference lines. Virtual networks containing

many reference lines that also well represent the actual network will usually meet this
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criterion because the measured interference measured by each reference line will have many

diversified crosstalk sources. The problem arises in smaller sets where the crosstalk source

seen by each reference line is misrepresented. One good solution to solve this problem is

to increase the set of reference lines by multiplying it. That is, if the original set contained

one long and one short reference line, then doubling the set will give a virtual network with

two identical long and two identical short reference lines.

To know whether or not it is necessary to multiply the set of reference line, we must

determine if all the reference lines within the set have a well represented interference. The

simplest method is to approximate the effect of repeating a single reference line. If repeating
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reference line f causes the Lagrange offset to increase by

ωfHf1
k

(
1

intfk
−

1

recfk

)

,

which corresponds to its original contribution to the Lagrange offset, then repeating has

no effect on f ’s measured interference. Of course, this is highly unlikely without any

signal level coordination. Thus, this reference line already has a well-represented measured

interference. Note that the original contribution to the Lagrange offset corresponds to

the upper bound on the change on the Lagrange offset. The change can also be negative

showing that the virtual crosstalk sources to f are not representative of the true crosstalk

courses. This can be seen by reformulating the Lagrange offset using the repeating factor

R > 1 for the f ’s reference line as such:

∆λ1
k(R) = RωfHf1

k

(
1

intfk + (R− 1)Hff,crosstalk
k sfk

−
1

recfk + (R − 1)Hff,crosstalk
k sfk

)

+
∑

m∈F
m6=f

ωmHm1
k

(
1

intmk + (R− 1)Hmf
k sfk

−
1

recmk + (R− 1)Hmf
k sfk

)

.

The Hff,crosstalk
k represents the crosstalk from f to its twin. Taking the derivative and

evaluating it at R = 1, for the potential change incurred by doubling the reference line f ,

gives

∂∆λ1
k(R)

∂R

∣
∣
∣
∣
R=1

= ωfHf1
k

(
1

intfk
−

1

recfk

)

− ωfHf1
k Hff,crosstalk

k sfk

(
1

(intfk)
2
−

1

(recfk)
2

)

−
∑

m∈F
m6=f

ωmHm1
k Hmf

k sfk

(
1

(intmk )
2
−

1

(recmk )
2

)

.

The first two terms are of particular interest. They represent the contribution to the

derivative from the reference line being multiplied and its multiples while the third term

is the negative contribution from all other reference lines. With the first two terms, it can

be determined if there is a need to include self-crosstalk on that reference by multiplying

it. If the self-crosstalk gain Hff,crosstalk
k is null, then the second term disappears and the

change induced by the first two terms is identical to the reference line’s contribution to
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the Lagrange offset. Hence, multiplying is not necessary as it will have no effect on the

interference measured by reference line f . On the other hand, if the self-crosstalk gain is

sufficiently large such that

Hff,crosstalk
k sfk

(
1

(intfk)
2
−

1

(recfk)
2

)

>

(
1

intfk
−

1

recfk

)

,

then multiplying will have a noticeable effect on reference line f ’s interference. The larger

the gap in the inequality, the greater the effect on interference. Simplifying the condition

gives

Hff,crosstalk
k >

intfkrec
f
k

(intfk + recfk)s
f
k

.

For cases where the bit-loading bfk is high, that is Hff
k sfk ≫ intfk , the condition approxi-

mately reduces into

Hff,crosstalk
k >

intfk
sfk

. (4.13)

A similar analysis can be performed using the Lagrange offset from ASB-SCALE where

including the repeating factor R on reference line f changes the Lagrange offset into

∆λ1
k(R) =

RωfHf1
k Hff,direct

k

(intfk + (R− 1)Hff,crosstalk
k sfk)(rec

f
k + (R− 1)Hff,crosstalk

k sfk)

+
∑

m∈F
m6=f

ωmHm1
k Hmf

k

(intmk + (R− 1)Hmf
k sfk)(rec

m
k + (R− 1)Hmf

k sfk)
.

Taking its derivative over R and evaluating it at R = 1 gives

∂∆λ1
k(R)

∂R

∣
∣
∣
∣
R=1

=
ωfHf1

k Hff,direct
k

intfkrec
f
k

−
ωfHf1

k Hff,direct
k Hff,crosstalk

k sfk(int
f
k + recfk)

(intfkrec
f
k)

2

−
∑

m∈F
m6=f

ωmHm1
k Hmm

k Hmf
k sfk(int

m
k + recmk )

(intmk rec
m
k )

2
.

Looking at the contribution from reference line f and its multiples, the condition for re-
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peating is
Hff,crosstalk

k sfk(int
f
k + recfk)

intfkrec
f
k

> 1.

Simplifying the condition gives the condition as in the ASB-DSB case:

Hff,crosstalk
k >

intfkrec
f
k

(intfk + recfk)s
f
k

.

To determine if repeating is necessary, the repeating condition, (4.13), is used. Satisfying

it shows that repeating a reference line does significantly affect the contribution from that

line towards the Lagrange offset. If met, then the reference line is repeated. However,

the other reference lines must also be repeated in order to preserve the virtual network

proportions. After repeating the reference line set, the condition should be tested again to

verify if repeating is still necessary.

4.6 Partial Network Topology Simulation Results

This section assesses the performance of the two constant offset ASB-MRL algorithms,

ASB-DSB and ASB-SCALE, using virtual networks containing just a few reference lines.

Two different types of networks are used for the simulations: an all-CO network where

all users connect to the same CO, and a mixed-CO-RT network where some users are

connected to a RT and the remaining to the CO. In the all-CO case, the near-far effect

is observed in the upstream bandwidths due to some users being closer to the CO than

others. Hence, it is expected that ASB-MRL should perform much better than IWF. In

the downstream direction, simpler algorithms like IWF should perform close to optimality.

Thus, the downstream direction will serve as a test to ensure that ASB-MRL does not

under-perform. The mixed-CO-RT has the near-far effect on both the upstream and down-

stream direction. Furthermore, the network composition is much more varied since the lines

originate from two different sources, the CO and the RT. It is in the mixed-CO-RT where

optimal algorithms can really outperform the static spectrum management algorithms.

In both simulation scenarios, 100 random network realizations are generated to test

the ASB-MRL algorithms against their network-level counterparts, DSB and SCALE. The

rate adaptive IWF and ASB are also run in order to make sure that even if the ASB-MRL

algorithms perform poorly with a poorer choice of reference line, they can still improve

upon the other user-level algorithms.
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Table 4.2 DSL simulation parameters.

DMT symbol rate fs 4 kHz
DMT tone spacing ∆f 4.3125 kHz

SNR gap Γ 12.8 dB
Maximum total transmit power P n 11.5 dBm

Wire diameter (gauge) 0.4 mm (26 AWG)
Noise variance σn

k , ∀n ∈ N , k ∈ K -140 dBm

The DSL network parameters presented in Table 4.2 are the ones used for all simulations.

The SNR gap Γ is obtained by using a target symbol error probability of 10−7 or less, a

coding gain of 3dB, and a noise margin of 6dB.

In the results for each algorithm in both simulations, the mean number of iterations

required by the algorithms to be within 98% of the converged sum rate will be provided.

The 98% is preferred over the 99% and the 100% cases as in those cases, the number of

iterations associated to DSB and SCALE are often numbered in the 100s. With DSB and

SCALE, such high number of iterations to convergence is impractical since the interference

must be measured at every step and may take over a minute to perform. This means that

100s of iterations may practically take hours to perform.

4.6.1 All-CO Network Simulation

The all-CO network has 25 users all connected to the same CO. Each user’s line length is

taken from a uniform distribution lower bounded at 500m and upper bounded at 1000m.

The network topology is pictured in Figure 4.7. In this kind of network, it is expected for

IWF to perform relatively well in the downstream because the crosstalk gains attenuate

with the direct channel gains. The upstream has a near-far effect and IWF is expected to

perform rather poorly since it does not use any power back-off strategy.

For ASB, a 1000-m reference line is used in both upstream and downstream cases. The

multiple reference lines used for the ASB-MRL algorithms are chosen as the lower bound

and the upper bound on the all-CO user’s line lengths. That is, a short line of 500m and a

long line of 1000m are chosen as the reference lines. Finally, the power back-off factor on the

multiple reference lines are provided in Table 4.3. The factors were chosen such that a factor

of 10 separates the potentially strong and weak reference lines. In the downstream direction

for the all-CO case, both reference lines are equal since their transmitters are both located

at the CO causing the direct channel and crosstalk gains to attenuate together. Thus both



4 Autonomous Spectrum Balancing Using Multiple Reference Lines 80

Ce
nt
ra
l 

O
ffi
ce25 users

: Modem
Line length of U(500,1000) m

Fig. 4.7 One possible realization of the all-central-office network topology.
Each user has a line length taken from a uniform distribution between 500 and
1000m.

Table 4.3 Power back-off factor used by the multiple reference lines in the
all-CO network.

direction 500m 1000m
upstream 0.01 1

downstream 1 1

reference lines are allowed to transmit at their full total transmit power. In the upstream

case, the near-far effect is present and the 500-m line can generate high amounts of crosstalk

onto the 1000-m line. Hence, the stronger 500-m line is only allowed to use 10% of its total

transmit power.

The reference line PSDs are generated using water-filling assuming no crosstalk and

with the full total transmit power available. The power back-off factor is then applied to

the PSD instead of directly on the total transmit power. This is to ensure that the PSD

covers as many frequency tones as possible as performing water-filling with tighter power

restraints will also likely restrain the PSD reach.

The results for the upstream case are provided in Table 4.4 where the mean and the

standard deviation of the sum rate over all 100 network realizations is given. As expected,

IWF performs poorly due to the presence of the near-far effect. As for the ASB-MRL

algorithms, the results show that ASB-DSB and ASB-SCALE can perform almost as well

as DSB and SCALE even if using only two reference lines. Moreover, the ASB-MRL

algorithms were able to converge to within 98% in about 4-5 times fewer iterations than

the network-level algorithms.

In the downstream case, it was determined that the reference line needing other reference



4 Autonomous Spectrum Balancing Using Multiple Reference Lines 81

Table 4.4 Results for the all-CO network for upstream transmission.

Algorithm Mean sum rate Standard deviation Mean number of
(Mbps) on the rate (Mbps) iterations to 98%

IWF 145.15 9.30 2
ASB 135.45 23.91 2
DSB 178.14 7.06 9.42

ASB-DSB 177.07 7.17 2
SCALE 178.14 7.06 10.75

ASB-SCALE 177.07 7.17 2.43

Table 4.5 Results for the all-CO network for downstream transmission.

Algorithm Mean sum rate Standard deviation Mean number of
(Mbps) on the rate (Mbps) iterations to 98%

IWF 627.92 19.45 2
ASB 631.49 18.45 2
DSB 640.68 19.67 2.76

ASB-DSB 625.89 22.07 2
SCALE 640.72 19.60 17.03

ASB-SCALE 625.92 22.06 3.94

line condition developed in Section 4.5 was not met. In the 500-m reference line’s case, the

condition for repeating was satisfied on most of the frequency tones. Thus, the number of

reference lines was doubled to two 500-m and two 1000-m reference lines. The results for

the downstream case are shown in Table 4.5. As expected, IWF performs relatively well

and in fact better than ASB-SCALE but not by much.

4.6.2 Mixed-CO-RT Network Simulation

The mixed-CO-RT network has 12 users connected to a CO and 13 users connected to an

RT. Each user’s line length is taken from a uniform distribution lower bounded at 300m

and upper bounded at 600m. The network topology is pictured in Figure 4.8. This kind

of network represents the case where an RT is used to reduce the line length of the longer

users. However, by bundling the RT and CO together, the near-far effect now appears in

both up and downstream directions. Thus, it is expected that IWF will perform poorly in

both transmission directions. On the other hand, network-level algorithms will be able to

minimize the near-far effect by performing a better PSD allocation.

For ASB, the weakest possible line is chosen as the reference line. Thus, in the upstream
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Fig. 4.8 One possible realization of the mixed-central-office-remote-terminal
network topology. The distance between the CO and RT is 150m and each user
has a line length taken from a uniform distribution between 500 and 1000m.

case, this corresponds to a 600-m RT line. In the downstream case, the 600-m CO line is

used. The multiple reference lines used for the ASB-MRL algorithms are chosen as the lower

bound and the upper bound on the CO user’s line lengths and on the RT user’s line length.

That is, the virtual network is made up of a CO-300-m line, a CO-600-m line, an RT-300-m

line, and an RT-600-m line. The power back-off factors are given in Table 4.6. Like in the

all-CO simulations, the factors are chosen to limit the total transmit power of the reference

lines with the potential to produce large amount of crosstalk onto the other reference lines.

In the downstream direction, the RT lines can be considered as near users relative to the

CO lines. Hence, both RT lines have their total transmit power reduced by 10. In the

upstream direction, there is the relatively weak RT-600-m line and the relatively strong

CO-300-m line with its transmitter located closest to the other reference line’s receiver.

Each reference line can potentially generated large amount of crosstalk onto the RT-600-

m line. Thus, except for the RT-600-m line, the power back-off factor reduces the total
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Table 4.6 Power back-off factor used by the reference lines in the mixed-
CO-RT network.

direction CO 300m CO 600m RT 300m RT 600m
upstream 0.01 0.1 0.1 1

downstream 1 1 0.1 0.1

Table 4.7 Results for the mixed-CO-RT network for upstream transmission.

Algorithm Mean sum rate Standard deviation Mean number of
(Mbps) on the rate (Mbps) iterations to 98%

IWF 199.23 8.36 2
ASB 128.49 9.18 2
DSB 271.51 6.68 17.83

ASB-DSB 270.65 6.86 2
SCALE 271.51 6.68 19.43

ASB-SCALE 270.65 6.86 3

transmit power by 10 on every line. Similarly, the strong CO-300-m line can produce large

amounts of crosstalk onto the two middle lines, the CO-600-m and RT-300-m lines. Thus,

its total transmit power is further reduced by 10.

The results for the upstream case is provided in Table 4.7 and for the downstream

case in Table 4.8. In both cases, IWF performs poorly as expected due to the near-far

effect. ASB performs much worser than IWF which shows that the weakest possible user

as the sole reference line is not a good choice as the sole reference line. Moreover, the

inability to represent the overall network as a single reference line hinders ASB and may

in fact explain why it performs so poorly next to IWF. The mean sum rate obtained by

ASB-DSB and ASB-SCALE are near the ones obtained by DSB and SCALE. This shows

that the ASB-MRL algorithms can obtain near-optimal results. Moreover, the ASB-MRL

algorithms require 5 times fewer iterations for 98% convergence than their network-level

counterparts. This shows that, even if DSB or SCALE is implemented on a network,

initializing the PSD using the ASB-MRL algorithms can provide significant improvements

in terms of convergence speed.

4.7 Conclusion

This chapter compared IWF and DSB to highlight the differences between the IWF and

the optimal network-level algorithms from a water-filling viewpoint. The highlights showed
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Table 4.8 Results for the mixed-CO-RT network for downstream transmis-
sion.

Algorithm Mean sum rate Standard deviation Mean number of
(Mbps) on the rate (Mbps) iterations to 98%

IWF 792.59 13.42 2
ASB 612.35 36.23 2
DSB 869.31 18.32 12.24

ASB-DSB 870.90 17.73 2
SCALE 872.08 17.53 29.44

ASB-SCALE 870.94 17.70 3.03

that network-level algorithms produce frequency-selective water-filling levels unlike the flat

water-filling level from the user-level IWF. Furthermore, it showed that stronger users

must not user their full maximum total transmit power, a process similar to that of Flat

PBO. Using these highlights, an extension to IWF through the form of an added Lagrange

multiplier offset on the water-filling procedure was introduced as a way of giving IWF the

potential to achieve near-optimal performances.

The concept of multiple reference lines was introduced as a method capable of generating

the Lagrange offset values. Using the multiple reference lines, two ASB-MRL algorithms

were developed: ASB-DSB and ASB-SCALE. A relaxation on the ASB-MRL algorithms

was given under the well-represented-network approximation and allowed the use of con-

stant offsets. This has the effect of reducing ASB-MRL’s per-iteration complexity from

O(KN) to O(K), the same as IWF.

The chapter then looked at using the real network’s topology to produce the virtual

network. From this method, the sum rate versus the iteration number was plotted for a

particular network and showed that the ASB-MRL algorithms can converge much faster

than their network-level counterparts. Then, instead of going into the many ways of choos-

ing the reference lines to represent a DSL network given what kind of network information

is available, this chapter provided three conditions of a good set of reference lines.

Finally, a Monte Carlo style simulation over an all-CO network and a mixed-CO-RT

network was performed and showed that the ASB-MRL algorithms can produce near-

optimal results by only using a few reference lines that generalized the overall network.
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Chapter 5

Conclusion

5.1 Summary

In the first part, this thesis introduced two new methods for performing the water-filling

algorithm. The first method relies on projection which is capable of converging to the

water-filling solutions in one to K iterations when no PSD mask is present. The GRWF

algorithm is the second method and was derived for the generalized water-filling problem

where the sum bit-loading and the sum power are weighted. It was shown that both general-

ized rate adaptive and fixed margin problems result in the same solution and hence GRWF

was designed to work using both minimum target rate and maximum total transmit power

constraints concurrently. The GRWF algorithm was then shown to have a computational

complexity depending only on the number of frequency tones thus allowing to converge

within a discrete number of iterations. At the same time, it was shown that its computa-

tional load is smaller than the other water-filling methods. Finally, a discrete bit-loading

method for the water-filling-like algorithms such as DSB and SCALE was introduced.

In the second part, this thesis concentrated on bridging the gap between user-level and

network-level algorithms. Through an analysis of the differences between IWF and network-

level algorithms through effective water-filling level comparison, a suitable modification on

IWF able to produce network-level results was proposed under the form of a Lagrange

multiplier offset variable. The virtual network and the multiple reference lines forming it

was proposed as a method for producing the offset variables. From this, a new resource

allocation problem over a virtual network was introduced and two Autonomous Spectrum

Balancing using Multiple Reference Lines (ASB-MRL) algorithms were developed: ASB-
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DSB and ASB-SCALE. A relaxation on the ASB-MRL algorithms in the form of a good

virtual network approximation was proposed to allow the use of constant Lagrange offsets.

This has the benefit of reducing ASB-MRL’s per-iteration computational complexity to

that of IWF. Then, three conditions on a good set of reference lines were proposed. The

first condition encouraged the reference PSD to cover as many frequency tones as possible

in order to prevent localized water-filling. The second condition showed that proper total

transmit power restraint on reference lines with large outgoing crosstalk gains is essential.

The third condition showed that a virtual network must also be representive of the actual

network in terms of crosstalk sources to each reference line. Finally, a Monte Carlo style

simulation over two different types of DSL network was performed to show the capabilities

of the ASB-MRL algorithms to perform near-optimally while also requiring fewer iterations

for convergence than their network-level counterparts.

5.2 Future Research Directions

This section presents potential research directions that this thesis has not yet covered.

In Chapter 3, the discrete bit-loading for water-filling-like algorithms was shown to be

better than using bisection on DSB, SCALE, and the ASB-MRL algorithms. However, the

discrete bit-loading approach requires a number of iterations that increases with both the

number of frequency tones and the number of bit-loading levels. A future research direction

is to further reduce the computational load of water-filling-like algorithms.

In Chapter 4, the information contained in the choice of multiple reference lines was

used to generate the Lagrange multiplier offset variables used in the modified IWF. An-

other generation method of potential interest is the use of machine learning to extract any

correlation that exists between the measured interferences, channel gains, frequency tone

numbers, and Lagrange offsets. Using only this information, no parameters such as the set

of reference lines would need to be set at initialization allowing for easier integration into

a DSL network.

Also in Chapter 4, a set of criteria on the reference lines was provided in order to have

ASB-MRL producing near-optimal results. A future research direction is to create a set

of systematic methods for generating the virtual network with each method depending on

the amount of available information about the actual network.

Finally, DSL networks may also use vectored transmission in which crosstalk is cancelled
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using signal coordination at the central office or at the remote terminal. However, vectoring

has a very high computational complexity that grows with the number of vectored users.

As a tradeoff, mixtures of vectored and non-vectored have been recently proposed in [43, 44]

where some groups of users are vectored together to cancel some crosstalk. It would be

an interesting avenue to adapt and apply ASB-MRL over mixtures of vectored and non-

vectored networks.
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