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le INTRODUCTION TO THE PROBLEM

The subjecf of statistics is concerned with making
decisions or inferences about a given population from a
representative sample of the populationes Whenever data
has been collected for such a purpose, it may be neces=
sary or desirable to subject it to a critical examination
to decide whether or not the sample is representative of
the population in question so that any conclusions will
be valide The results of such an inspection may lead
one to suspect the consistency of the sample, to feel
that certain observations have been subject to abnormal
errors of some kind and thus that the data, as it stands,
does not truly represent the population. When such doubts
exist, the following choice of procedures comes to mind,

le Suppress the doubt, Proceed with inference or
estimation techniquese This is clearly undesirable as
sample suspicions must lead one to gquestion any results
from the samples

2a Répeat the experiment partially or completelye.

In practice this would probably be impossible due to economic
considerationse Further, unless we have great experience

in the particular field, we cannot be sure that further re=-
sults would be any more consistent than the original, If
only the 'doubtful! readings are to be repeated we still

have the problem of defining exactly the word 'doubtful',



3¢ The intuitive temptation is to reject observa-
tions which have unusually large residual magnitudes and
to use the remainder as a sample of lower order for esti=
mation, decision-making purposes, etce As in (2) the
problem is, "where do we draw the line between normal and
tunusually large! residual magnitudes?®

The problem in certain cases may be easily solved
by the simple application of common sense and(or) experi~
mental knowledgee We here guote Rider [5]: 'In the
final analysis it would seem that the question of the
rejection or retention of a discordant observation reduces
to a question of common senses Certainly the judgement
of an experienced observer should always be allowed con-
siderable influence in reaching a decisions!

Such a solution to the problem would tell us nothing
about the effect which rejecting observations has on the
subsequent inferences or estimatess

The accompanying table lists the residuals of fifteen
obgservations of the vertical semi~diameter of Venuse This
example has almost become classic in any discussion of

rejection of observationss
-1,30 +e48 + 463 -22 +,18

- 014»[& "'0214- - 013 "-05 "’039
+l.01 +.06 "l.ho +.20 +.10




The residual magnitudes 1401 and l.40 appear large com=
pared with the remainder and one is tempted (in the in-
terests of obtaining a more accurate estimate of the
semi-diameter) to reject one or both of the observations
yielding these residualse

When a visual inspection using common sense and
experience fails to expose suspicious elements or yields
further doubt, it may be appropriate to perform some sort
of analytical inspection using probability arguments and
possibly to formulate and apply an analytical rejection
rule to one's observations before finally accepting the
samples, Rider continues 'This judgement can undoubtedly
be aided by the application of one or more tests based on
the theory of probability but any test which requires an
inordinate amount of calculation seems to be hardly worth
while, and the testimony of any criterion which is based
on a complicated hypothesis should be accepted with extreme
cautione!

This thesis is concerned with such analytical inspec~=
tions and rejection rulese More specifically, it is
intended to compare two 'classical'! approaches to the
problem, namely significance testing and rejection rate
considerations with a recent technique, that of linking
one'!s rejection criterion to the effect which it has on

the resulting estimate(s)-



Terminology

An observation with an unusually large residual
magnitude will be termed an OUTLIER,

An observation which has been affected by some
abnormal error and is not to be grouped with the remaining

data for decisions or inferences will be called SPURIOUS,

2, GRUBBS' SIGNIFICANCE TESTS

In 1950 Frank Es Grubbs published a paper in which
he developed significance tests of certain hypotheses
concerning spurious readingse He pointed out that generally
an observer will suspect a certain number of readings, some
of which will be deemed unusually large and the remainder
unusually smalles He assumes that the observer will wish
to decide whether or not the suspicious elements should
be rejected by means of some significance teste Such an
assumption has been made often by statisticians seeking
means of dealing with outliers. We describe Grubbs! work
to illustrate the significance testing approach,
(i) For testing the largest observation in a sample of

n from a normal population, Grubbs suggests the statistic:

n=1

) (x5 92

o (x;~x )
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where the xi are the order statistics from a sample of

n, and
n n-1
T .4 2 T e = 2
x- n Xi e Xn T n=1% ot B
1 i=1

A similarly defined statistic S?_/S2 can be used for
testing the smallest observations
(ii) For testing whether the two largest observations

are too large, the statistic suggested is:

n=2
2 ; :( - )2
n-1l,n j=1\%*i"%p~1,n
s n
D (xpmn)
X,~X
i=1 1
ne2
where ; = 1 x
- - ’ N
n-1l,n ne=2 121 1

and a similarly defined statistic S§,2ISZ can be used

to test the two smallest readingse Clearly we could
generalise the statistics for higher numbers of suspicious
elementses Grubbs admitted that the powers of the above
tests had not been determined for various models but pointed
out the intuitive appeal of his guantitiess In his paper
some sanmple distributions of these statistics are derived,
some percentage points computed and some examples given

of the application of his work to reaching decisions on

rejections We give here a brief summary of his researchs



2.1 DRistribution of the difference betwecen the cxiremg
and mean: Noymal theory

The joint pedef of the order statistics is

n
(2.1) dF(xl, one, xn) - —nd exp ’-;3 Z::xf
26

(f2rs)" iml
dxl---dxn
where x, < X, sne < xn
n ne-l
- TP LI
X.,~X - X, ~X + (X _ =X
{=1 1 j=1 1 n
n=1
where xn - T;%TT Z;: xi
n n=1
Z(::i-?)z - (x=x,x,-x)% + (x-3)?
i=] i=]1

n—1 n-1
-ZT— (x;-x,)% + 2 iZ-I(;n_;)(xi-;n) + (n-1)(x,-3)?
+ (xn;;)2-

The crossed term vanishes and

n=-1 n
(n-l)(EHQ;)z - —éﬂ=li;§ {nz;: xi-(n—l)zzjxi :
1

n“ (n-
- =L [z -x}% .




n n-1
2{? -2 - =-\2 . n - 2
Therefore - (xi-x) (xn x) — +2 ; (xi xn2 B

Thus, repeating this process, we find that

n
2. -2 __n., _=2,1=l <3 )2 B2 -3 2
Z::xi nx n—l(xn x)" + n-2(xn-l xn) * n_3(xn_2 xn,n—l)
1
X, tXAtX X, +x
+ see 4 %(XB - .—%—2)2 + %(xz - —1-'5-2)2 'Y

n
We substitute this identity for Z:?xf in the probability
1

element (241) and consider the orthogonal transformation

J2.1,6CE = -xy + X,
J3-2,673 = -xy = ox, + 2x3

(2.2) 3

J&(n-l)éﬁg it B R SR L (n--l)xn

VM6”L*1 = x) + x, + x4 see + x 1t X,

The transformation has [J| = 6" and it turns out that

after integrating out ‘7n+1 the density function of

"72000771‘ is

n
1
— exv{ -4) 7
(/2m) im2
UL N
subject to 0 < 42 < ® and 1/';_‘_3”71. > ﬂr-l'

(See KeRe Nair [4])

(203) AP (7,70 e7,) -



x =x!

r’r
We now make the transformation 1ﬁ£§l ﬁl = s - U

CE; here is mean of x;, X,, ses, xr) and define

u
F (u) = f dF(un)-
0
After integrating out the other variables one obtains

n fu 1 ﬁ%'g 1 nx
Fn(u) = nyﬁ 0 —A/_'Z—? € Fxv--l n-l) dx ;
thus the functions can be successively generated from the

first, which is

u

2
F2(u) - % ,,ro e-x dxe

F2(u) is a well=known and tabulated function denoted by
exf us Grubbs computed extensive tablesg of Fn(u) for
n =2 to 25 and for values of u at .05 intervals in
(Op L4e90) together with percentage points at 10, 5, 1, 5
percent levels.

Note: the distribution of (anEn) can be obtained
very easily from the above distribution by the use of the
formula:

(Xn“in) = ﬁi (Xn“;)o

2,2, Distribution of sﬁ/s2 and S§132

From equation (2.3) we have the joint distribution

of the ’T's is given by:



n
e R { 307

d42d7éo--dﬂn .
Grubbs used the polar transformation

M, = T 5in@ sin® _,***5ind sind

3
1]3 = r sinOnsinOn_lo'OsinehcosG3
17# = r sinOnsinGn_l'"sin9500894
(2e4) .
[ ]
17n-l = r sinencosgn_l
¢7n = r cosGn
Then n n
Zﬂf ='Z(xi-i)2 = r2
i=2 i=1
and ne~1 n-1
Zﬂf = Z(xi'-'x'n)z = rzsinzen .
i=2 i=]
(245) Therefore si/s2 - sinzen.

The Jacobian of the transformation is

r"25in""36 sin™ % _ esesin’e sin0, sine,.

P 4

Therefore integrating out r in (0, oo)

dF(Qn, gn-l’ ece, 94) 93) =

ol (n=3)/2 ((@=1y_. n=3 2. .
(2W)(n-1)/2 2 rﬂ( > )sin Gn-o-sln Osslnohden,o..,dQB.
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The restrictions on “1i's were

— & — —-—
172>0 Vr-2 ﬂr>1,r-l r>3.

Therefore the new sample space is given by

- - 13
tanOn <Ifr;§3 secOnml when n > 4 since

71n-1

tanGncoan~l =

n
and O < 93 < 7l 3
. . n (n=3)/2 n=1
Now write kn (zv)zi;l)lz 2 rﬂ( ) e
7/3 3 th-2 fn-
i n-3 see 2 i oo am
Then k I I f sin Gn sin OSSIHOAdOn dO3 1

(246)

where 1, = tam.-l ff% sech .

Grubbs then considered special cases n = 3, 4, ese etc,

in turne He defined

- -1 /_x_
mr tan T2
M= tan"1 V(r=2)r L = sec'l1/1§2 tan®

He reversed the order of integration in (2.6), remembering
that the varying Lr are monotonice

For n = 3
i3

k30d93-1.



11

e
- - .= -1
Thus P(e3 < @) kBIOdOB 0< &< M = tan /3
For n =
C
k
- - —A .
P(Oh < Q) T Ioslnehdgh when 0< @< m,

3

7l 3
- ar
P(e, < 9) = I 51n9 dO + k I I san de_de
A 3 3774

when mh <8< Mh.

For a sample of n

@=Ly (°
Pl < @) = 7%'%;%552; Osinn-BendGn when 0 < 0 < m e
2

This may be shown to be equal to

- & A-g .L)
P(e < @) ) Isingg(z ¢ 0<@&<m

where Ip(m, n) is the incomplete Beta function given by:

P
J xm-l(l~x)n-ldx
O

1
foxm-l(l-x)nﬁldx

and

- 1
P, <) =3 I /(2(n1)) (ng '5)

J f n-lf n=2 IWIB ne3
+ k see sin © **e3ind do, e*redo
nm Ln Ln-l Lh n L3 n

when m < @< M,
n n

The required distribution follows using equation (2.5)e

The theory developing the distribution of S?/S2 is similar,
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Grubbs computed tables of percentage points of these
statisticse He then continued to determine the distribu-
tions of his proposed statistics for the simultaneous
testing of the two largest or smallest observations,

From the above equations (2e4) it is clear that

B

im=2 1

ne2

2 2 . 2 , 2
E::hi = r gin Gn51n en—l'
im=2

Therefore

—3‘%=l = sinzensinzen_l.
S
Grubbs then made the following transformation in equation
(246)
sinAn = sinGnsinGn_l
Ai.ei 3212:1—1.
After a quite complex evaluation of Jacobian and limits we

obtain an expression of the form
knj'--ff(AB, cee, A )dA *tda, = 1

and by reversing integration orders, etces, distributions

of A A,sce) can be found in a way similar to that above.
34 n
2

2 2 2
n,n—lls and SlZIS s Some

Hence the distributions of S

percentage points were tabulated by Grubbs.
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243 Example and Commentsg

Crubbs applied his theory to the data given in the
introduction paragraphe The statistics Sf/S2 is applied
to test the least observation, ieses that having residual
-1s40, and it was found that the observation would be re=-
jected at the 5 percent significance leveles Considering
the remainder as a sample of 14 observations and testing
the largest, Grubbs found that this observation would be
retained at 5 percent levels He remarks that it would
have been of interest to test the largest and smallest
observations simultaneously by means of the statistic
sin/s2 (with obvious notation)e Although he hinted at
a method for determination of this sample distribution,
no percentage points were computed,

One would be interested to compare tests of the two
largest observations in a sample of n, first by use of
the statistic Si-l,nlsz' secondly by repeated application
of the statistic Silsz to samples of n and n = 1 res-
pectivelysq
. 1/32' siz

indeed Grubbs hints at generalisations to simultaneous

2

The use of such statistics S /s (and

n,n-

treatment of r suspicious elements by such statistics as

82 lSz) seems of doubtful validity since one suffi-
1,2,....:

ciently extreme observation can cause several unusually high

residualsse
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3« ANOTHER EXAMPLE OF THE SIGNIFICANCE APPROACH

In a paper soon to be published, Professor S, S,
Wilks, Princeton University, discusses significance tests
for multidimensional outlierse

Suppose we have a k~dimensional random variable

(X4 ®**, X,) and a sample of order n from it:

11 X21 o X

X12 *a22 * e %o
[ [ ] [ ] L ] [ ] L ]
XIn *2n * ** X

Suppose the means of the columns are X, , X, , ®%¢, X, o
1. 2. k.

Then the scatter matrix is (A) where

n .
Aij = ;(xi{,-?ti.)(xj‘c-ij.) (i, ] =1, eese, k)

(A) is a k¥ x ¥ matrixe

Suppose we wish to test whether the nth observation
ig outlying or not; then we delete this observation and
compute the new scatter matrix (A') of the remaining (n-1)
observationse

The statistic r is then defined by:

|
r = detéAs
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For a homogeneous sample from a normal parent population,
Wilks found that this statistic has a Beta=distribution
and would reject the n'® reading if r < A where A is
some constant determined by the size of the test.

Suppose we now take a special case of Wilks'! method,
namely k = 1, ises we are dealing with a one-~dimensional
random variablee Then we test the significance of an

observation xj by the statistic

n
2 E::(xiAE.)z
_ ifd J

S,
—
(x,-%)2
i=1 T
n
(3-1) i?. . iﬂ(xi'-ij)z
S2 n
iZH(xi-ijﬁ + Br(x,-9)?

(See Identity in Paragraph 2, Page 7 )

Note there is great similarity between the above and Grubbs!
statistic for testing extreme observationss We are here,
however, not considering order statistics but simply testing
the significance of an observation assumed to be from a

certain parent population (here assumed normal),.

From (3.1) we have
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(3-2) 332-132 = 4

-2
L. (ﬁx)

n

(n--l)Z:(xi--Ej):‘2
ikj

n

Now 2 :(xiJEj)zléz is the sample variance of (n-1)
ifj

observations and therefore has a Xéi_z probability distri-
bution under the hypothesis of no spurious observation,
Mn(x.~%)
+
6y n=1

is an N(O, 1) random variable under the

2
n(x~%)

-#) has a Xf distri-
6" (n=-1

null hypothesise Therefore
butions Also the above gquadratic forms may be expressed,
one as the square of a linear combination of the sample
(xl, ses, xn) and the other as a sum of squares of linear
combinations of the x; (see Paragraph 2.1)s Further,
all these linear combinations are independent == proved
for the case of sample size three in paragraph 5, pagel8 .«
Thus the above forms are independent and
n
n(xj4§)2 i*j(fi;;i)z
6*(n-1) | ¢ (n-2)

has an Fl,n-2 distributions

From (3s+2) our rejection criterion reads:

|

* AF < kl

Reject if r = 1
1‘ n"2
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{kl constant depending on size of test, A constant
depending on n}
Since r is a decreasing function of F the rule may be
formulated: Reject if the observed value of

Fi,n-2 > K2
{kz constant determined by size}

The above treatment appears to sidestep the distribu-

tion difficulties encountered by Grubbss

Le CRITERIA BASED ON REJECTION RATES

Many statisticians in the past who have been concerned
with outlying observations and rejection criteria, have taken
rejection rates or the proportion of observations rejected
in the long run as their major considerationes We illustrate
such methods with a rule devised by Ea Js Stone as early
as 1868,

Stonet's hypothesis was that for a given observer and
group of observations there will exist some number m which
will be such that on the average one observation in every
m will be subject to some gross error and ought to be
discardede The number m was originally called 'Modulus
of Carelessnesse! Stone formulated his rejection rule as
follows:

Calculate k such that the probability that a reading

shall deviate from the mean by k6 is 1/m,
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Then reject any observations such that the absolute
value of its deviation is greater than kés In this way,
argued Stone, we shall be rejecting at precisely 'the
correct rate'! to eliminate errorse The rule is fairly
simple to work with using normal theory and Stone tabulated
gsome corresponding values of k and m,

Rider states that the law can be interpreted as
giving the rejection criterion when we are to reject if
the probability of the corresponding error is less than
l/me This statement eliminates any question of moduli of
carelessnesss

This method is possibly the simplest using rejection
ratess There have been several refinements and other
attempts based on rejection ratese One slight change in
Stone's criterion due to Edgeworth may be described as
follows:

Suppose Pr{ldeviationl > k6} = SU(k)-

Then Stone would urge:
Reject all observations such that |d| > ko
where yﬂ(k) = ]/mg
Edgeworth suggested the alternative:
Reject all observations such that |d| > k& where
{1 =W} =1~ 1/n,
The rejection rate technique seems to have a certain amount

of intuitive appeal in certain cases where m 1is reasonably
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accurately knowns One can foresee trouble if the estimate
of m is poore As mentioned in Paragraphs 2 and 5, another
source of trouble is that one sufficiently extreme observa=-
tion can distort several other residuals to the extent where

one would suspect the parent observationse

5 ANSCOMBE'S METHOD

The last major point of view to be exposed in this
thesis is that of Professor Fe. Je« Anscombe, whose paper is
dealt with in detail belows The above treatments of rejec~
tion rules are, in his opinion, somewhat misguided, the
principal notion in his work being illustrated as follows:

An experimental scientist who is setting out to
estimate certain parameters, applies a routine rejection
rule primarily to safeguard the accuracy of his experimente.
Thus, rejection rules should not be thought of as signifi-
cance tests as is the case in Grubbs'! work, Paragraph 2,
and Wilks?! research, Paragraph 3, and rejection rates are
of no more than incidental intereste If the experiment
had been conducted simply to investigate the guantity of
spurious observations to be expected in any given sample
or just how wild the spurious readings are, then clearly
significance tests and rejection rates are relevants From
this reasoning, the principal factor influencing the choice
of a rejection rule in any particular experiment where

parameter estimate(s) are desired, should be the effect
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which the chosen rule has on the accuracy of the resulting
estimate(s)e

Anscombe suggests the analogy that a rejection rule
can be likened to a householder's fire~insurance policy.
The questions to be answered before selecting such a policy
are:

le What is the premium payable?

2« What is the protection given?

3« What danger is there of a fire?
The last item corresponds in the analogy to significance
testing for spurious observations and computation of rejec=-
tion rates as mentioned aboves Anscombe points out that
"a householder satisfied that fires DO occur does not bother
much about (3) providing that the premium is moderate and
the protection good.®

To complete the analogy it remains to define 'premium?
and 'protectiont's Anscombe uses the estimate variance as
his measure of these, and states that any other definition
of expected loss could be employede The premium payable
is defined as "The percentage increase in the variance of
estimation errors due to using the rejection rule when in
fact all observations come from a homogeneous sources® -The
protection given is "The reduction in variance (or mean
squared error) due to the rule, when spurious readings are

present.®
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No ion
In the following theory the notation used is that
shown below:
Observations: Yi¥preey,
Residuals: Z,%2,%%%2
Sample Size: n
Degrees of Freedom of Residuals: V
Estimates: These are denoted by the symbol ' A' eags
an estimate of parameter @ is denoted '8!
Pedefs of Normal Random Variable: é(y) = e-u2/2/J§;
Cumulative Distribution Function of Standard Normal Random
Variable: Pr(Y < y) = ﬁ(y)

Sample Mean: y = Z I_{yiln

We now present a more detailed survey of parts of
Professor Anscombe's work, the principle of which has been
discussed aboves The introduction of the ideas of premiunm
and protection facilitates investigations and comparisons
of any suggested rejection rules. The paper makes the
following assumptions:

(i) The factor(s) causing a spurious observation
will not affect any other observation, ie.ees the observations
are independente Further, the degree of the spuriousness
does not depend on the value that should have been observeds

(ii) Computation costs can be ignoreds If we were

not prepared to concede this point, the premium would have
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to include extra computational costs resulting from use
of the rejection rules

(iii) The rejection rule is impartiales We have no
prior information concerning the parameters to be estimatedes
This assumption will be illustrated when we consider complex
patterns of data belowe

The theory is applied to normal distributions through-
out and the rejection criterion is based on the magnitude
of residuals in each casees Firstly we consider possible
spurious observations in a simple sample from which one
parameter (population mean) is to be estimated; the variance
is assumed knowns The case n = 3 1is developed in detail,
The techniques are then applied to complex patterns of data,
ieee we investigate the effect of rejection rules on a sample
drawn for the estimation of several parameters in a complex
system (variances are again assumed known) together with
some problems which influence the procedures Anscombe, in
his paper, makes some mention of the method when 62 is

unknowne We do not consider this case here,

5.1 Simple Sample

We are given a sample of size n (> 3) which is thought
to be from N(u, 62) where 6&° is known and it is desired
to estimate pe Possibly one or more of the y; are spurious
coming from a different source and should be rejecteds In

order to do this we formulate the following rejection rules:
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Rule ©

For given C, reject all ¥y such that ]zil > Cde
Estimate | from the mean of the retained observationse.

This rule appears reasonable at first sight but when
one considers that one sufficiently wild observation can
cause a number of residuals to exceed C in absolute
value, it is clear that such a rule could (with high
probability) reject several 'innocent! observationss Thus
we formulate Rule 1, which can reject only one observation,
that having the greatest |zil.

Suppose M 1is the suffix of the observation having

1.e. Z = max Z. i = l .... Il.

We suppose that observations are recorded sufficiently

accurately that no two Izi]'s are equale

Rule )

For given C, reject Yy if IzM| > Cs, otherwise no
rejectionses Estimate P from the mean of the remaining
observations,

Thus we have:

A -
b=y it |z, < ce
z
- M
=y - o1 if IzMI > Cé.

In this simple case residual degrees of freedom is equal

to (n—l). Hence V = n « 1 and
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A= ZIM .
b=y -5 it |zy| > co.

We can extend Rule 1 to reject more than one observation
and at the same time avoid the difficulties of Rule O by

the following formulation:

Rule 2

Apply Rule l4 If an observation is rejected, consider the
remaining observations as a sample of size (n-=1l) and apply
Rule 1 again and so one Estimate P by the mean of the
retained observations,

Note that if n = 2, Izll = |22|° Hence if an
attempt is made to apply Rule 1 to a sample of only two
observations either there are no rejections or both
observations are rejecteds Thus Rule 2 applied to n
observations (n > 3) leads to the rejection of 0O or 1
or 2 or **e or (n~2) or all n observationse

It is of course possible to change the value of C
in successive applications of Rule la This is simply a
matter of choice depending on what protection one requires
and how much premium one is willing to paye

For example, in a special case to be considered below
we take

N
where ta is independent of r.
We now develop the necessary theory to determine the

premium and protection for the application of Rule 1,
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511 Rule le No Spurious Obgervationg =~=— Cglculation of

Premium

We calculate the proportional increase in variance of
a due to the unnecessary application of the rejection rule.
The joint distribution of the residuals is independent of
the distribution of Ye Therefore y and zy are indepen-

dent random variablesa

n

2, =y, - ¥ 1 Zy +(n"1>y

. . - = - A

i i n j=1 j n i
3

The Yy (i = ], seas, n) are independent, hence, using the
theorem on sums of independent normal random variables,

z; is a normal random variables.

The mean of z, = = = E:j E(y.) + -l E(yi)

i n j=1 j n

Jfi

e o (n=Dp  (n=D)p _ 0,
n

n

and var(zi) E(z?)

&’ E:jz<yj) o (222) %562

J+i

2
% (=1? + )} - 4

(%)1/2 Zi is an N(O, 1) random variables
S

Therefore
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We now define a random variable T as the following func~-

tion of Z o

T =0 if  Jzyl < co
n z .
T == (3) 2y if |zy| > co
(.3
Since there are no spurious observations Zy has distri=-

bution as given above,
(542) Therefore E(T) = O,

Then, since under Rule 1 we reject O or 1 observations, we

have:
=7+ "_QITTE
(nv)

and 3' and T are independenta

Therefore E(fI) = E(F) + —<E(D) | EGF) = p

A
so that P 1is an unbiased estimate of .

@) - e - v
2
=401« 2E() - (@)
using (542)e

= fi{l + Ei%zl}

The premium payable, p, is the proportional increase in

var(l}:).
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2
dzlnil + Ei%Ll} - 62/n

Therefore p = 2
6”In

2
(543) . Therefore p = ﬁ%'—l .

Suppose PrileI < z} = F(z)
and the probability density function of T is g(T) in

~< T < oe Then

2 2
E(r7) _ 1 2 =1 | nzl
= 5 J_QT g(r)ar = 2 | & afF ()]
Vo
(50&) JQ 2 4F
-—-—B—- z2 == dz .
v262 c z
Now a rejection occurs if IZMI > Ce

Therefore Pr{Rejection} = Pr{IzM| > C}
= ] - Pr{leI < ¢}
= 1 « F(C)e
Thus we have that, in the long run, the proportion of obserx—-

vations rejected, iwes the rejection rate

(505) =< {1-FO)} .
Special Cage n =3
2

We consider 6 = 1, This assumption makes no difference
to proportional variance increasess We have observations
Yie You y3 from N(u, 1) and corresponding residuals
3

satisfying ;E: z, = O

Z12 Zhse Z
1 2 3 3
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Define x) = (22 - zl) 1/,/2

= (22, = z, = zl) 1/,/6

This implies that x; and x, are N(O, 1) variables and

are independentes To show this we notice that
x =;’-{y -Y -G, -D =L v, - yy)
1 2 2 1 J2 2 1/°*

Similarly X, = éz {2y3 =¥y - Yl}.
Therefore, using theory of linear combinations of indepen«=
dent normal random variables, we have that X and X,
are N(O, 1) variabless Since the means of x; and x5
are zero,

cov(xl, x2) = E(xlxz)

= E{/120y -y 1) (2y5-y,-y T o

Since the yi's are independent and identically normally
distributed,

Cov(yi, yj) = 0 (i # 3)

1 2 2 -
Cov(xl, x2) -I;{var(yl) var(yz)} Oe
Since for normal variables cov(xi, xj) = 0 implies x
and xj are independent, we have that X and x, are

independent as hypothesiseds
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Alx‘
8
o A ‘X,
Figure 5.1
3
Since %;; z; = O we derive
R P B W A
J2 76 72 6 7

Therefore |21| < z implies =~z <‘f; +.fg < g

J2 /6

]zzl < z implies =3z <_f; -‘fg <z

J2 /6
, . 2x
|z3| < z implies ~z <272 <z
/6
All these conditions are satisfied if no rejection
occurs when C = z and geometrically the conditions imply
that (xl, x2) lies inside a regular hexagon in the x;, x,
plane, centre the origin (See Fige 5el)e The vertices and

midpoints of sides are distant 3z/2 and 2/3/2 from the

centre respectively,
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The probability that an observed (xl, x2) lies in an

area dxldx2 is the probability element:

dx.dx.e

12 1.2
1\ % 2%1_"2%2
€ 19%2

72#
Transforming to polar co—ordinates:
X =1 cos®
Xy = T 5in®
the new probability element becomes

A2 A2
1 2F rdrde = <8 2" dC%rz).

21 © 2T
The probability that (xl, x2) lies outside the hexagon is
equal to the probability that |zm| > 2z, which is 1 = F(z)
(see Page 27)e To find this probability we integrate the
probability element over the exterior, E, of the hexagon,

From the symmetry of the figure it is clear that we can

split this integral into six egual parts and obtain:

jﬂlégg ‘%12 12
1 - F(z) =6 o 2r:t dQEr )
where R 1is the length of the segment OP (see figure 5.2),

O the centre of the hexagon and P an interior point of

the side ABs
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w3 _1
Therefore 1 = F(z) = '3‘f 2 de

Applying the sine rule to AAOP in figure 5.2 we see that

R - Z
sinm/3 sin(2m/3-0)
or R = z{"g‘-sec(""éI - 9)
Figure 52
i3 diz seczﬁz—g)
Therefore 1 - F(z) = j‘f b de,.

Now make the transformation ¢ = % - © (6 measured from ON),

mlé .,3.223902¢
Then 1 =~ F(z) = 3‘f b débe
-1r/6

If tand = t, then db = 4t/ (1 + tz) and
U3 =22 (1et?)

(546) 1= F(z) = 2 J — —
-1//3 (1 + t°)




32

The rejection rate using (5e5) is
i o
311 = F()]
13 =2c*(1442)
d

i £ —dt
7 = .
(5.7) T 13 (14t%)

From (5e4) the premium payable

00
PSLJQZZMdZ
2 dz

v C

Differentiating (546) under the integral sign with respect

to 2z and multiplying by z2 we obtain:

1/,/3 2,2 (14¢2)
2 M Il/A/B 22e L" 2.3.2 dt.
o © 1’:/3 -"122(1*‘1:2)
Then f 22 -‘ifi—iﬂ dz = f %f 2% 4 243z dte
C c -1/,/3

Inverting the order of integration and making the substitu-
tion A = ~%(1+t2), and the transformation u = hzz we

obtain

© l/,\/3

22 SE) g, . 3 du
fc d I;/VB Ty f

s,
- -13; f MR Ly —dt
-11,/3 M o(1+t?)
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l/JB H%Cz(l+t2)
T =113 3(1+t

Therefore, from (5e4)

3 2ar)
L c dz

1//3 “3 2
‘3 I %C (1+t%) . 3£3 _df

Therefore, (5+8) p
) T 113 (1+t?) & f (1+®)

Using an IBM 650 Digital Computer, the values of C
were computed which lead to premiums of 5, 4, 2, 1, and 1/2
percent respectivelys The values obtained are tabulated
in section 53¢ Very good agreement was found between values
computed by the author and those published in Professor
Anscombe's papers

The latter also computed the premium using the empiric
formula given below for which there appears to be no rigorous

justificationas
(549) p = {2t 6(t,) + al

where o = 2¢ C},

The values of C obtained above were inserted in this
approximate formulation and the values of p computed and

tabulated (section 5e3).
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5¢12 Rule 1 One Spurious Observgtion =-— Calculation of
P;otggtiog

In this case it is clear that, should the rejection
rule fail to reject the spurious observation we shall have
a biased estimate for pe The protection criterion is the
value of E(f - p)z, iees the protection is defined as
the proportional decrease in E(i - u)z due to the appli=-
cation of the rejection rules

It is convenient to consider the spurious observation
(say yn) as a member of the population N(u + a6, 62)
while the y,, 1 = 1, see, (n=1) are independent observa-

tions from N(u, 62).

Now ;‘%. yi*

and y, and y_  are independent -- assumption (i), Page 2l
and of course ;‘ is a normal variables

The mean of y = E(y)

=]

1
- E(y,) += E(y_)
=1 i n n

=
[

e {n-1)p *‘jp*a6)
n n

P
3 Jo

:p,-i-

and the variance of y is 62/n as in the case of no
spurious observations dealt with in paragraph (5.11)s ¥

and the residuals are independent,
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Define a new random variable 8 as follows:
S = adé/n if IzMI < Co

(5410) '
S = a6/n = z,/n-1 if |2)| > Co.

It follows that S and y are independent, Then, under

Rule 1,

N j—

b= (y - Q%) + Se

Therefore E(fi-p)? = EF - 44 - u)? + £(s®) + 28{s(y-2%-y)].

The last term is zero since y and S are independent and

E(y - 3% ~ W) = Oy Therefore, since

2
- as _ 2 _ S
E(y s - b) -
A 2 6° 2
(5411) E(p-p)< = =+ E(8%).

If we had ignored the existence of the spurious observation
and estimated | with Y the variance of the estimate would

have been

2
2
E(@-p)? = EG-w)? = E{(F - 88 - ) + 29}
(5¢12) 2 2
- S a
nil + n} .
From (5e11) and (5s12) we calculate the protections The
rejection rate is given by the same formula as in the case

of no spurious observations, isees equation (5e¢5)e
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Special Case n = 3

We consider 62 = 1, noting that this assumption has
no effect on the proportional variance decrease due to apply=-
ing the rejection rules As in the case of no spurious obser=

vation we define
1
*1 7 Jz(zz“zl)
X, = —i(Zz -Z.~%,)
2 )6 %3 72 7190

In this case y;, vy, are from N(w, 1) and y3 is from
N(p + a, 1), all the observations being independents Then,
by a proof similar to the previous one, (page28) we have

x; 1is an N(O, 1) variable but x, 1is distributed as
N(%a.' l).

Cov(xyax,) = E{(x;) (xp=f2a)}
= LI (rpmy ) H (2ymy oy ) 1 /6-2al/61]
- FAZE(r,my)) (2y;=y,my -20)]
- TRl (r,my)) @y gmy,my )} - BsE(y,my))

- r/-%z-{zE(yB)(yz-yl) + E(yf-yg)}

FRE(r5)E(r,my)) = O
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For normal variables cov(xl,xz) = 0 implies that XX,
are independents The joint pedef of X1e Xy is therefore:

l¢ 2 2
1 e"é‘ixl*'(xz"ga) }.

(5013) T

Let |zM| = We Then (page 35) S is a function of W,
say h(W)e Suppose we denote the Pr{leI < z} = F(z)

but note that in this case F(z) depends on aa.

E(s?) = E[{n(W)}?]

= .r{h(w)}zdF(W)
0

2 * 2
= ﬂzp(c) + f {2 - £g§l} dF (w)
n cn n

where P(w) has the property that fz(w) = w2.
Thus

2 2
£(s?) = 33F(c) + &5(1-F(c))
n. n

- =B fc Io(w)dF(W) + ‘2—1'72' fcwzdF(W)

n=-1

and also when w> C > O, P(w) = We

2 2 2
Therefore E(Sz) = 35 + %; f c&%_ - 2aw)dF(w)e
n Cc

Using this equation and (5411) and (5.,12) we see that the

protection, R, is given by
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* 2
R = ———3—3- f (2aw - 5%—)dF(w)
v(n+a®) ¢

and when n = 3, V = 2

* 2
R = ———3—3— f (2aw - 3%—)dF(w)
2(3+a°) ¢

or returning to our original variable (quite valid in w > O)

Gorw) k== [ (202 - Mar(a) .
2(3+a ) ¢

As a check for this formula we see that if a = O
we get the equation (544) for the premium with a change of
signe This is to be expected since under the hypothesis
of no spurious observation, protection and premium are
numerically equale It remains to calculate F(z)es As in
the case of no spurious observation, the probability that
(xl, x2) lies inside the hexagon of Fige 5.1, page 29, is
equal to F(z)e Thus to determine F(z) we integrate the
probability element (5413) over the interior of the hexagone
Using an IBM 650 Digital Computer, the author, using values
of C which gave 5, 4, 2, 1, 1/2 percent premiums in the
null case, computed R the protection for values of a
equal to 1/2, 1, 2, 3. The values are tabulated in 5.3
Integration and computational notes are given in the appen~-

dixe
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513 Rule 2 n_= 3: No Spurious Obgervation

The calculation of premium and protection under Rule

2 are more difficult. For general applications Anscombe
suggested the use of Monte Carlo techniqueses We simply
outline the geometric solution when n = 3 and there are
no spurious observations (62 is assumed to be unity).

Suppose M = 3 so that |z3| > 'zll, Izzl

3

if lz3| > C, and |z;-z,| < 2C,.

’~ -

b=y it |=z,| <¢C
_ 3
y 3

gt

There is no estimate if |z3| > C, and |z =2,| > 2c,.

. . - < . .
Here the condition Izl z2l S 202 is equivalent to
lzil § C, (i = 1, 2) and is thus the rejection criterion
at the second application of Rule 14 We recall that apply=-

ing Rule 2 here we reject O, 1 or all 3 observations

when xq = (zz-zl) 7‘%‘

X, = (2z3-zz—zl) 7%

|z3| > C implies (xl, x2) lies outside the hexagon in

3
Fige 5sle Izl-z2| >2C, implies (xl, x2) lies inside one
of six similar sectors of angle /3 and vertices distant
2C,/2 from the origin as shown in Fige 53 (Page £#0 ).

The sectors lie inside or outside the hexagon depending on
the sign of 03 - 2C2 s Since no observation is spurious,

the joint density function of (xl, x2) is a spherical
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normal, centre the origin and the probability of rejecting

the whole sample is

1J" - 1,

27 BdGe d@ir )

where B is the area outside the hexagon and inside the
sectorse After a determination of the integral of the
probability density over A, the area exterior to both
the hexagon and the sectors, we can calculate the variance
of § subject to the condition that not all observations

are rejected and hence obtain a measure of the premium in

a way similar to that used for Rule 1,

o~ —
/ N

Figure 543
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5e2 omplex P ng of D

We now generalise the above, somewhat, and consider
the problem of rejection rules to complex systems of datas.
Such considerations clearly have wide application in the
design of experimentss Hence we assume that the observa~
tions (if none are spurious) constitute samples from
independent normal distributions of common (known) variance
62 and means which are given linear functions of certain
unknown parameters; it being the purpose of the experiment
to estimate these parameters by the method of least squares
~= which method we note is equivalent to maximum likelihood
estimation under normal distribution theorye If we assume
that this estimation has been effected, we can compute
residualss

The first point made by Anscombe is that, in general,
the distribution and in particular the variance of a residual
z, depends on 1is This leads to severe~complications in
any attempted outlier analysis and for the sake of simplicity
we consider below only such designs which have residuals
with equal variances, iece 62V/n. All ordinary factorial
designs with eqgual replications, balanced incomplete block
designs and Latin Squares have this propertys

Another important factor which»influences the theory
is correlation between the various residualses In some
designs there exist pairs of residuals having correlation

coefficients equal to # l¢ As an illustration of this,
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Anscombe considers the 3 x 3 Latin Square design in which
the residuals are equal in sets of threes Twenty=seven
pairs have correlation coefficient equal to =~1/2 and the
remaining nine have‘P = le Suppose we are of the opinion
that one residual value is excessively larges Then this
suspected 'maverick'! appears three times in the list of
residuals and we are faced with the problem of deciding
which one of the three observations, having this residual
value, to reject from the sample, remembering that estimates
of row, column and treatment effects will differ greatly
according to which observation we chosé to rejects One of
thelmain assumptions, paragraph (five) was that our rejec=
tion rules were to be impartiale If we adhere rigidly to
this supposition, we cannot reject one observation from the
three in preference to the other twoe If all three were
rejected, we would have too few observations left for the
estimation and thus would probably 'reject'! the whole experi-
ments In practice an experimenter might well use some small
piece of prior information in order to break such a deadlocka
If, therefore, we wish to apply a rejection rule based on
residuals to the observations from a certain experiment,

the latter should be designed in such a way that there are
no pairs of residuals having correlations # ls. This may

be extended as illustrated by the following statement: The
probability of rejecting an 'innocent' observation rather

than the true spurious reading is high if the correlation
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between their residuals is thigh's Clearly a more
thorough investigation would be necessary to define the
word 'high'! in this statements Professor Anscombe gives
details of residual correlations for particular designss
We now give some more notation and matrix theory necessary
for the discussion of the rejection rules.

Represent the observations {yi} by the n x 1 c¢olumn
vector vy

There are n = V parameters (unknown) which we denote
by a vector © [(n=-v) x 1]

Let the coefficient matrix be the n x (n=v) dimen-
sioned matrix A such that if no observation is spurious

E(y) = R®

and y has a spherical normal distributions Since the
observations are independent A has rank n = V,

We define the matrix V Dby the eguation

T

(5415) afa = v7!

Suppose after least squares estimation of @, the residuals

z are given by the matrix equation
(5016) zZ = Qya

Then
T
Q'In"'AVA.

To see this consider the sum of squares of residuals
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ieee (v - 80)T(y - BO).

Pal
Therefore the equation giving least squares estimate @ 1is

(y - A6)$A = 0 (Equivalent to n = Vv linear

equations)

N
Therefore y A = 18)%a
N\
eTa T = yT&
N\
o7 = yIAV  [using (5e15)]
A
e = VATy [using fact that V is
symmetric]
A
Then z = y - A®

=y - AVATy = (In - AVAT)y, hence Qe
Note @ 1is n x n and symmetrice

Further

T T T

Q0 = (I-AVAT) (I-aVAT) = I+avaTavaT-2avaT = I+avAT-24VA
from (5415)

= Q¢ Therefore Q 1is idempotent,

The y; are independent but the z; satisfy n -~ V¥
linear relations which gives us that the rank of {Q is V.
The variance—covariance matrix of the residuals
(using the fact that residual means are zero) is:
E(z27) = Eloy(ey)’} = E(eyyR) = QE(ryT)q
- 06°1q = 62 = Q6°
(since Q idempotents)
If all residuals have same variance v62/n it is clear

that each element in the principal diagonal of Q@ is equal

to V/n.
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Considering, then, only patterns such that when no
observations are spurious, residual variances are equal
and residual correlation coefficients are not tclose' to
+ 1, we proceed to formulate rejection rules. We use the
statements of Rule O and Rule 1, as on page &3 , but the
last sentence of each is amended to read:

tEstimate the unknown parameters from the retained
observations by the method of least sguares's |

It will generally be necessary to effect this process
in two stagess Firstly, estimates of missing observations
or those held to be spurious are computed, then the actual
parameter estimation is effected.

Suppose yj has to be pre—estimateds If we use any
arbitrary value of this observation in the least squares
parameter estimation let the corresponding residuals be
{zi}. Now replace yj by yj - 77 where it is the purpose
to estimate 77.

Substituting in (5416) the residuals become {z{} where
' = — |
(5417) z 4 zg ‘ﬂqij (The qij are elements of Q)

Minimising the sum of squares of these new residuals, we

obtain an estimate of 77 given by

)
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Note next that since Q 1is symmetric and idempotent

Z:qz.. = q,, = Vv/n (using our assumptions)
1 i} i

and 2 :z.q . = z q .2 g..Y
. ij 1 ij X ik’k

= Z:j{y Z:;q..q- !
X k T 13 ik

C g g

N
(5.18) Therefore ’7 = C%)zj

Therefore providing that no other observation is spurious,
by using the original data with yj - C%)zj substituted

for yj, We shall obtain the correct least squares esti=

mates of the unknown parameterse
Using (5417) and (5.18) the new residuals are
Z4 Z3 T v®i9;

From the var~cove matrix 062 we have cov(zizj) = qij62

‘Therefore the correlation coefficient g%j) of z, and

is given by

%3
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cov z.2 62
i~1 - qij = 4 G .o
{var Z, var z.}llz ivg s VO }1/2 v i
o J n n
Thus we can write
t ‘ C e s , ' _
Zj = 2; = %P (note that if i Is 2z o)
(5.19) vé(')=(1-2)-"-‘53
. ar\z; Pij/! Th

Thus we have a method of adaption of the Simple Sample
rejection Rule 1 to more complex patternss We cannot use
the above theory to apply Rule 1 to the new residuals and
thus extend Rule 2 to complex patterns because (5¢19)
shows that the equivariance residual assumption is no
longer valide We here quote Professor Anscombe, "Provided
the correlations are small, it may seem reasonable == it
is certainly simplest —-—= to take no account of the changes
in variance in formulating the rule which would run:

Apply Rule les If an observation is rejected compute
the revised residuals and apply Rule 1 again and so on.
Finally compute the least squares estimates of the unknown
parameters from the retained observationsa.®

It remains to find a criterion by means of which the
prermium and protection for the rejection rule can be de~
finedes In order to do this the parameters are split into
two groups, those 'of interest! and the remainderes It is

clear that the experiment may have been performed solely
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to estimate a certain set of parameters from the model
while we are not particularly 'interested! in the remainder,
Our critical statistic will be the determinant of the
variance~covariance matrix of the parameters of interesta
We note that an orthogonal transformation exists which

will diagonalize this variance=~covariance matrix, iees

the covariances of parameter estimates can be made zero;
the product of variances of estimates after the trans-
formation being equal to the determinant of the original
matrix, and hence the use of this statistice Thus a
possible (one car suggest many others) definition of the
premium charged by the rejection rule is the proportional
magnification of the determinant of the variance~covariance
matrix of the parameters of interestes The corresponding
protection given by the Rule is the proportienal decrease
of the value of this determinant when spurious readings

are presenta,




53 XResults: £ o mbe! h
n = 3, Rule 1,
C Premium Approxe R~Rate* 1/R=- Protection When a =
Premium Rate o5 1 2 3

2439038 + 05 « 05336 « 00319 3135 ~e04135 ~-«02874 -+0009827 +,0004662
2¢ 46002 « 04 e 04242 «002,43 411.,0 ~+03390 -e02463 -+ 001206 +,0004095
2.66184 «02 « 02088 « 00107 938.8 -¢01826 -e01505 -9 001455 +,,0002675
2.84623 «01 «01032 « 000475 2107 ~2009977 =,009015 =,001342 +.,0001673
3.01727 2005 L00512 000214 4667 ~+005202 =,005312 ~,001098 +,00009915

|

# ReRate indicates Rejection Rate

The signs in the protection tabulation show that in the case considered

no saving in variance is to be obtained by the application of the defined rejection

rules when a = o5, 1, or 2 A slight gaving is seen to exist when a = 3.

This saving would be increased if higher values of a were considered,

6%
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APPENDIX: INTEGRATION AND COMPUTATION: PROFESSOR

ANSCOMBE'S PAPER

The computation of the premium from equation (5.8),
rage 33 , was straightforward numeric integration using
Simpson's Rules The results, isee values of C which
give rise to 5, 4, 2, 1, 1/2 percent premiums respectively,
are tabulated (page h9)- For comparison, the approximate
premiums using these values of} C calculated from
Anscombe's empiric formula equation (5.9), page 33, are
also listeds

To compute the protections for varying values of a
using these values of C was more difficult and a brief

account of the method used is given heres As stated on

page 38 ,

A2, 12 )2
F(z, a) = '[\‘(‘24# e 2{11 (xz-ﬁa }dxldxzo
I

Where I is the interior of the hexagon, figure 5.1, we
write F(z, a) to make it clear that in the case where
spurious observations occur, F(z) depends also on ae

Then

1.2 Z_\2
F(z, a) = 2]]‘ E% e 2{x1+(12ﬂ/;;) }dxldxz
Il

dl{ 2+(x ﬂ%z;)Z}
+ 2III E% e 271 2713 dxldxz,
2
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where Il and I2 are the regions bounded by the interior

of the hexagon anrd the first and fourth guadrants respec—

tivelys See figure 5elke

A X
8
%,
A ™
%,
C
Figure 5.4

We make the transformations

Neofpes beaf}

Then the equations of the lines AB, AC are respectively,

x 4/3 (2b—x )
J3(2b+x )
Therefore b 1 2 (2b-x )/JB 2
(x,=7) 2 -3x
F(b, 1) ='};foe2 21 dxy fo o ¥ tax
) )2 (2p+x,)1/3 _1.2
2] . f e 2J{l“"xl'
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Therefore

b 1 2
F(b.ﬂ ) = 7%; j; e 272 erf{zguxg> dx2

JB
0 1 2
“=(x,~"7)
272 2b+
+ —l—ﬁ Ib e erf( Jéxa) dxz'

In second integral substitute x, = =t4 Then

2

b
F(b, ) .ﬁl?fo e g> dx,,

1 2
“2(xm ) [2b-x
76

, (-t- n)zerf(

* 7w e %%) (~dt)e

Changing the variable back to X, and combining the

integrals we have

b 1 2 1 2
f 2b= (=T 5 (xy=7)
F(b, 77) = ﬁr—y_f JO erf( ‘\/6xg> {e +e dX2-

b A2 di172 -
= 3é= f\ erf 32::2 e 2x2e 2 (exéﬂ +e xzj)dx
T 0 76 2

b 1’2
= fg- I erf(ff:fg> e e coshx27]dxz.
0 J6

roh
el

N

nols
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Transforming this back to terms of a and =z

_a? JWJE 1.2
(a1) F(z, a) =<¢§ e 3 2cosh fzax e 2 2ers z=X2 | dx..
T ° 372 d% 2
The protection, R, from equation (5.14), page 38, is

given by

(a2) R=——L—f (2az-3L) i..(m). dz.e
2(3+a ) ¢

From (Al) differentiating under the integral sign

2 2
i ,31_
l1§:‘§l W e 3 [%g e hcosh az erf g
l1 2 2
“WJ% =xo=(z=x,1,/6)
+-7% JO cosh %ax2 272 2 dx2 .
This may be reduced to
I _313 z/2
&Eéf‘ﬂl = E%Qne 3 4cosh az f e P dp
0
(83) 2 2
K- NN ¢ z/2 2
+'ﬁ%2 e 3 hcosh‘az I cosh ap e =P dps
0

Thus from (A2) and (A3) we see that to calculate the pro-

tection we have to compute an integral of the form:
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®© z/2 :zl2
(A4) R = f; f(z)dz {ql(Z) fo v,(p)dp + g,(z) Jo vz(p)dp.}

where the functions £f(z), gl(z), gz(z), vl(p), v2(p) also

depend on aa -If
z/2 z/2
g, (2) Io vi(Pldp + g,(2) f; vo(p)dp = k(z).

We then have an integral of the form

(a5) R = f;f(z)k(z)dz.

We first read into the computer a pair of values (a, C)e

It was decided to make the approximation

® 6C

I £f(z)k(z)dz = f £f(z)k(z)dz
C C

noting that the integrand converges to zero rapidly as

z gets larges We shall obtain an estimate of the error

[ fa)e(a)az.
6C

Simpson?s Rule for numeric integration generalised over

n equal intervals h reads

nh

J at)ax = Bla(o) + uatu) + 29(2n) + wee v acl(am1im)

+ q(nh)}
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where n is evens Since we are concerned with a double
integral we shall expect a double sum in the numeric evalua=-
tions

z/2

I; Vi(P)dp =‘%{vi(0) + hvi(h) + soe

(n6) &_ Z =

+ 4v, (Bon) + vi(z)}. i =1, 2
For integrations over p we used h = C/100, We sum up
values of the function f(z)k(z) between =z = C and
z = 6C at intervals of h'! weighted with appropriate

Simpson's Rule weights, i.ecs,

Z:f(z)k(z) = £(C)k(C) + LE(C+h?')K(C+ht) + ses
+ LFf(6C~h?)k(6C~ht) + £(6C)k(6C),

Note that the k(z)'s contain integrals over p which
depend on ze In order to generate the successive k(C),
k(C+h?') etce, it is not necessary to repeat the whole
process as given by (R6)e If h' = Lh it is possible to
add three terms only to the sum in (A6) to obtain the new

integral:
z/2
(A6) fo v,(p)dp = %{vi(o) + 4y (R) + soe + 4vi¢§'h)

1 i =
+ vi(z)} i 1, 2

(z+41) 2 ﬁ}/éﬁzh

and vi(p)dp =

v, (p)dp
0 )
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- %ivi(O) * 4vi(n) + ees * 4v, (3-h)

+ 2vi(-§) + hvi(‘g'l'h) + vi(§+2h)} i=1, 2

It is apparent that the sum in the new integral is formed

by adding on the terms
& & &
vl(z)t vi(z + h)l vi(2 + 2h)

weighted with 1, 4, 31 respectivelyes Similarly we can
obtain the integrals of the vi(p) i=1, 2 in

(o, g + rh) from those over (O, g + (r=-2)h) by the
addition of only three suitably weighted terms. We
make use of thisg fact in the computation. A flow chart
for the computation using the expression as in (&4)

followse



Fiow CHART For PROTECTION COMPUTATION .

S7

6C Z,
£ -g(z){ f a( 9(2);(P) + 9u(2) 2(P) ) dp JI dz

READ SumMis0 K= | 5 ‘Is ?
> S5uMm2: 0 |» > P:P+H —>—pPz C_24
A,C,H SUMd: 0 Pz~H <2
[ N v v v
Sumizsumy + G (P) < K=l K= |
mz:umz + oy (P) |72
A
\ 2
[svmi smi+4u (P) K32 | Compute
‘ k:3 [<—] w(P)
Sumz :Sumz + 4U;(P) Uy (P) Koy
A Keg Ne
50 :Sum1 + 205 (P) x:=3
| Sume:Sumz +2uy(P) k=2 [~¢ h Y Z2:C-yH
< oR = -
X3« @)~ > | 38 . v
{9.(1) Som | + < P2 Z/‘t Sumi z SUMI 4 o;(P) s
%(x) Svmz2 } ? [ [Sumz s 8umz + uy(P) I3 ¢
.
J, ‘L Sustiz SUM 4 Qo (P) £:Z+4H
_ v Sumz : Suma 4+ R (P) ! T2
o Ay Led Y
z z = b
P:=P-H I
S
Y Y Y Pe P4H < T= < <
126
‘2
)
”n 4 =
" v ] N=| | >
n ]
x + |
N :’ ? r
n"
T s "
1713 2| |2 2 .
" . " Compube :
mn L F
T 13 . 4H
5 o a ProTacTion ..3_ Sum3
1y JL

PuncH A, C, ProTecnon
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We now obtain an estimate of the error incurred in the
calculation of protection by the above computation because

we used the approximation

6C o
I £(z)k(z)dz = f £(z)x(z)dsz
o c

iswee, We require an estimate of

f £(z)k(z)dz »
6C

Considering (A3) and (A4), let

z/2
E = f £(z)dz {ql(z) f v,(p)dp
6C 0

%/ 2
+ g,(z) fo vz(p)dp} .

Now vl(p), vz(p) are of the order of e-pza Since

we considex values of =z > 6C in the integration over 1z,

we assume that integrals over p from O to z/2 may be

all approximated by integrals over (0O, ®) so that approxi-

mately
E = Iécf(z)dz {Io(gl(z)vl(p) + g,(2z)v,(p))dp }-

The inner integral can then be simply evaluated and is

egqual to

2
a-

d(cosh az + Zenhcosh'sf)
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where d is a constante Thus our estimate beconmes

(see (A2) and (A3))

2
a

(cosh az + 2e hcosh‘ﬂg)dz,

Fo

* 2
E = Df (2az - 32—)e
6C

where D is another constanta
This may now be split into four integrals by expanding
the integrande Each of these may be evaluated fairly simply.

The four integrals are of the following form:

(]
I, =¢C f ze cosh az dz
1 1l 6C

N N S

. -
I. =¢C f ze cosh & 44
2 2% 2

Fo

z2e cosh az dz

c

I; = G4

o

L]

6

I, =¢C fP zze- cosh 2% 4z
b W e 2
It is only necessary to evaluate I1 and 13 as 12 and Ih
follow from these respectively by replacing a by a/2.

The final estimate obtained after neglecting a set
-27¢2

of terms which were of the order of e cosh 6aC (in

the worst case this expression is approximately equal to

~100
e ) was:
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2 2
g 32a7+1) oo (3=2a7) .

4(a®+3) L 4(a243) 2
; 2 2
+-‘.5_§2—f§.lerfv +.3.(.2;J—lerfvh__%
4 (a%+3) 3 4(a®+3)

where v, = ,./3(3C + a/3), v, =./3(3C ~ al/3)
vy = J3(3C + alé), v, " J3(3C = af6).

This error is very small, in fact so small that it makes
no significant difference to the computed values of the
protections

If the above error estimate were repeated, integrating
with respect to 2z over (C, 4C) instead of (C, 6C) the
error will still be negligible and thus it was concluded
that it is sufficient to integrate over (C, 4C) and elimi=-
nate the error (found from the fact that protection is
numerically equal to premium already computed under the
null hypothesis a = O) by decreasing H in the double
summation using Simpson's Rules We used H = C/300 in the
revised program and obtained accuracy approximately 99.5

percents The maximum error recorded was «56 percent,
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