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la INTRODUCTION TO THE PROBLEM 

The subject of statistics is concerned with making 

decisions or inferences about a qiven population from a 

representative sample of the population. Whenever data 

has been collected for such a purpose, it may be neces­

sary or desirable to subject it to a critical examination 

to decide whether or not the sample is representative of 

the population in question so that any conclusions will 

he valida The results of such an inspection may lead 

one to suspect the consistency of the sample, to feel 

that certain observations have been subject to abnormal 

errors of some kind and thus that the data, as it stands, 

does not truly represent the population. When auch doubts 

exist, the following choice of procedures comes to mind. 

1. Suppress the doubt. Proceed with inference or 

estimation techniques. This is clearly undesirable as 

sample suspicions must lead one to question any results 

from the sample. 

2. Repeat the experiment partially or oompletely. 

In practice this would probably be impossible due to economie 

considerations. Further, unless we have great experience 

in the particular field, we cannot be sure that further re­

sulta would be any more consistent than the original. If 

only the 'doubtful' readinqs are to be repeated we still 

have the problem of defining exactly the word 'doubtful'• 
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3• The intuitive temptation is to reject observa­

tions which have unusually large residual magnitudes and 

to use the remainder as a sample of lower order for esti­

mation. decision-making purposes, etc. As in (2) the 

problem is, •where do we draw the line between normal and 

'unusually large' residual magnitudes?• 

The problem in certain cases may be easily solved 

by the simple application of common sense and(or) experi­

mental knowledge. We here quote Rider [5]: 'In the 

final analysis it would seem that the question of the 

rejection or retention of a discordant observation reduces 

to a question of common sense. Certainly the judgement 

of an experienced observer should always be allowed con­

siderable influence in reaching a decision.' 

Such a solution to the problem would tell us nothing 

about the effect which rejecting observations has on the 

subsequent inferences or estimates. 

The accompanying table lists the residuals of fifteen 

observations of the vertical semi-diameter of Venus. This 

example has almost become classic in any discussion of 

rejection of observations. 

-.22 

-.05 

+.20 



3 

The residual magnitudes 1.01 and 1.40 appear large com­

pared with the remainder and one is tempted (in the in­

terests of obtaining a more accurate estimate of the 

· semi-diameter) to reject one or both of the observations 

yielding these residuals. 

When a visual inspection using common sense and 

experience fails to expose suspicious elements or yields 

further doubt, it may be appropriate to perform some sort 

of analytical inspection using probability arguments and 

possibly to formulate and apply an analytical rejection 

rule to one's observations before finally accepting the 

sample. Rider continues 'This judgement can undoubtedly 

be aided by the application of one or more tests based on 

the theory of probability but any test which requires an 

inordinate amount of calculation seems to be hardly worth 

while, and the testimony of any criterion which is based 

on a complicated hypothesis should be accepted with extreme 

caution.' 

This thesis is concerned with such analytical inspec­

tions and rejection rules. More specifically, it is 

intended to compare two 1 classical 1 approaches to the 

problem, namely significance testing and rejection rate 

considerations with a recent technique, that of linking 

one's rejection criterion to the effect which it has on 

the resulting estimate(s). 
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Terminology 

An observation with an unusually large residual 

magnitude will be termed an OUTLIER. 

An observation which has been affected by some 

abnormal error and is not to be grouped with the remaining 

data for decisions or inferences will be called SPURIOUS. 

2. GRUBBS' SIGRIFICANCE TESTS 

In 1950 Frank E. Grubbs published a paper in which 

he developed significance tests of certain hypotheses 

concerning spurious readings. He pointed out that generally 

an observer will suspect a certain number of readings, some 

of which will be deemed unusually large and the remainder 

unusually small. He assumes that the observer will wish 

to decide whether or not the suspicious elements should 

be rejected by means of some significance test. Such an 

assumption has been made often by statisticians seeking 

means of dealing with outliers. We describe Grubbs' work 

to illustrate the significance testing approach. 

(i) For testing the largest observation in a sample of 

n from a normal population, Grubbs suggests the statistic: 

n-1 

s2 L - 2 (xi-x ) 
n ;! n - -s2 

, 
n 

L -2 (x1-x) 
1 
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where the xi are the order statistics from a sample of 

n, and 

x 

n 

• .l L x
1
• • 

n 1 

n-1 

• ...Ln lL xl.. 
- . 1 l• 

A similarly defined statistic 

testing the smallest observation. 

• 

can be used for 

(ii) For testing whether the two largest observations 

are too large, the statistic suggested is: 

8 2 
n-l,n -82 

where 1 
x --n-l,n n-2 

and a similarly defined statistic can be used 

to test the two smallest readings. Clearly we could 

generalise the statistics for higher numbers of suspicious 

elements. Grubbs admitted that the powers of the above 

tests had not been determined for various models but pointed 

out the intuitive appeal of his quantities. In his paper 

some sample distributions of these statistics are derived, 

some percentaqe points computed and some examples given 

of the application of his work to reaching decisions on 

rejection. We give here a brief summary of his research. 
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2.1 Distribution of the differenge between the extreme 

tnd mean: Normal theorx 

The joint pedef of the order atatiatics is 

(2.1) 

n 
\ -2 
L(:.:.-x) 
i•l l 

- 2 
+ (x -x) 

n 

where xn • (n!l) 

n n-1 

~ -2\ ---2 L (x.-x) • L (x1-x +:x: -:x:) 
i•l 1 i•l n n 

n-1 

\ - 2 • G (x.-x ) 
1 l. n 

The crossed term vanishes and 

- 2 + (:x: -x) 
n 

- - 2 + (n-1) (x -x) 
n 

- 2 + (:x: -:x:) • 
n 

( n-1) (-x --x) 2 ( p-1 ) l ~ ( ) f- ] 2 n • 2 2 n!__ :x:.- n-1 L_ xi 
n (n-1) 1 1 1 
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Thus, repeating this process, we find that 

n 

[ x~-nx2 • ~(xn-"i) 2 

1 

... _ ,( - )2 
+~x -x 

n-2 n-1 n 

We substitute this identity for 

.... _? - )2 
+~x -x 

n-J ( n-2 n, n-1 

in the probability 

element (2.1) and consider the orthogonal transformation 

~.6~2 • -xl + x2 

J5:2,613 • -x1 - x2 + 2x3 

• • • 
• •• - x + 

n-1 

The transformation has jJj • 6n and it turns out that 

after integrating out 1n+l the density funotion of 

1 •••"'7 is 2 n 

(2.J) 

d'?2d13 • • •d'Jn; 

subject to 0 < 12 < œ and ~ "'1r > 1r-l• 

(See K.R. Nair [4]) 



-:x -:x' 
.~ r r 

We now mate the transformation 1~1 '1r • ---~--

8 

- u r 

here is mean of :x ) 
r 

and define 

u 

Fn{u) • J dF(u ). 
0 n 

After inteqratinq out the other variables one obtains 

F ( u) • n 1t::JC.l 
n fn-1 

thus the functions can be successively qenerated from the 

first, which is 

F2 (u) is a well-known and tabulated function denoted by 

erf u. Grubbs computed extensive tables of F (u) 
n 

for 

n • 2 to 25 and for values of u at .05 intervals in 

(0, 4.90) toqether with percentaqe points at 10, 5, 1, a5 

percent levels. 

Note: the distribution of (:x -x ) can be obtained n n 

very easily from the above distribution by the use of the 

formula: 

Distribution of s2/s2 
n 

and 

From equation (2.3) we have the joint distribution 

of the ~'s is qiven by: 



dF(1 • 'Tf, •••, '1 ): ni 
2 3 n (j2ii-} n-1 exp [- l. t 1'f ~ ] 2 i•2 ~ 

Grubbs used the polar transformation 

(2.4} 

Th en 

and 

(2.5) 

~2 • r sin9nsinQn-l•••sin9
4
sin93 

"7 3 • r sin9nsinQn-l•••sin94 cosQ.3 

"'7
4 

,.. r sin9nsinQn-l•••sin95cos9
4 

• • • 
~ • r sinQ cosQ 1 •t n-1 n n-

~ n • r cosQn 

Therefore 

• r 2 

2 • 20 r s1n ., • n 

• 2n s1n ., • 
n 

The Jacobian of the transformation is 

rn-2sinn-.3g sinn-49 
1
•••sin3e

6
sin2Q · G n n- 5s:Ln 4• 

Therefore inteqratinq out r in (0, oo) 

dF(en, Qn-1' •••, Q4' 6.3) • 

9 
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The restrictions on ~i's were 

r > 3 • 

Therefore the new samp1e space is given by 

tane < r;L2 sece 1 when n > 4 since n 1 "ii'=2 n-

tane cose 1 n n-
rr n-1 --~n 

and 0 < e
3 
< v/3• 

Now write k ,, 2(n-3)/ 2 r(n-
2

1 ). 
n • ( 2.,) n-1 )/2 

V/3 t3 tn-2 tn-1 

Then knJO JO •••Jo fo sinn-Jen•••sin
2e5sine4den•••de

3
-l 

(2.6) 

where t • tan- 1 fr:;ïll secG • 
r 1~ r 

Grubbs then considered special cases n • 3, 4, ••• etc. 

in turne He defined 

m • tan- 1 W-r "1 r:2 

He reversed the order of integration in (2.6), remembering 

that the varying tr are monotonie. 

For n • 3 
V/3 

k3JO dQ3 • 1 • 



Q 

Thus P(Q
3 
< G) = k

3
I0dQ

3 
For n • 4 

- -1 0 < Q < M
3 

• tan J3 

when 0 < Q < m
4 

11 

Q 'IT/3 

+ k4Jm
4
JL

4 
oine4de3de4 

wh en m 
4 

< G < M
4 

• 

For a samp1e of n 

r<n-1) e 
P ( 0 -< a) .. -D. ---::2..,_ J i n-3 o do 

'V' 'V J r ·"'-';) os n 'V 'V n 1r (~) n n 
2 

This may be shown to be equa1 to 

wh en O<Q<m. 
n 

O<G<m 
n 

where Ip(m, n) is the incomplete Beta function given by: 
p J oxm-1 (1-x)n-ldx 

1 

f m-1( )n-1 
0 x 1-x dx 

and 

wh en m <Q<M. 
n n 

The required distribution fo1lows using equation {2.5). 

The theory developing the distribution of is similare 
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Grubbs computed tables of percentage points of these 

statistics. He then continued to determine the distribu-

tions of his proposed statistics for the simultaneous 

testing of the two largest or smallest observations. 

From the above equations (2.4) it is clear that 

2 
• r 

2 . 2..... . 20 r s~n ~ s~n ~ 1 • 
n n-

Therefore 

Grubbs then made the following transformation in equation 

(2.6) 

sinâ • sinQ sinQ 1 n n n-

3 < i < n - 1. 

After a quite complex evaluation of Jacobian and limits we 

obtain an expression of the form 

k f ... ff(â ••••• â )dâ •••dâ - 1 n 3 n n 3 

and by reversing integration orders, etc., distributions 

of can be found in a way similar to that above. 

Hence the distributions of s2 /S2 
n,n-1 

and Some 

percentage points were tabulated by Grubbs. 
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2.3 Ex~mple and Comments 

Grubbs applied his theory to the data qiven in the 

introduction paragraph. The statistics is applied 

to test the least observation, i.e. that having residual 

-1.40, and it was found that the observation would be re-

jected at the 5 percent significance level. Considering 

the remainder as a sample of 14 observations and testing 

the largest, Grubbs found that this observation would be 

retained at 5 percent level. He remarks that it would 

have been of interest to test the largest and smallest 

observations simultaneously by means of the statistic 

s 2 /82 (with obvious notation). Althouqh he hinted at l,n 

a method for determination of this sample distribution, 

no percentage points were computede 

One would be interested to compare tests of the two 

larqest observations in a sample of n, first by use of 

the statistic s2 /82 secondly by repeated application n-l,n • 

of the statistic 82 /82 to samples of n and n - 1 rea­n 
pectivelye 

The use of auch statistics (and 

indeed Grubbs hints at generalisations to simultaneous 

treatment of r suspicious elements by auch statistics as 

s2
1 2 /82 ) seems of doubtful validity since one suffi­
• •••••r 

ci~ntly extreme observation can cause several unusually high 

residuals. 
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3• A..NOTHER EXAMPLE OF THE SIG.NIFICA.NCE APPROACH 

In a paper soon to be published, Professor s. s. 

Wilks• Princeton University, discusses significance tests 

for multidimensional out liers. 

Suppose we have a k-dimensional random variable 

(xl, •••• xk) and a sample of order n from i t: 

xli x21 • • • xk1 

x12 :x:22 • • • xk2 

• • • • • • 

x ln x2n • • • :x:kn 

Suppose the means of the columns are x1 •• x 2.• •••• xk.• 

Then the scatter matrix is (A) where 

(i, j • 1, •••• k) 

(A) is a k x k matri:x:. 

Suppose we wish to test whether the nth observation 

is outlying or not; then we delete this observation and 

compute the new scatter matrix (A') of the remaining (n-1) 

observations. 

The statistic r is then defined by: 

r • 
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For a homogeneous sample from a normal parent population, 

Wilks found that this statistic has a Bata-distribution 

and would reject the nth reading if r <À where À is 

sorne constant determined by the size of the test. 

Suppose we now take a special case of Wilks' method, 

namely k • 1, i.e. we are dealing with a one-dimensional 

random variable. Then we test the significance of an 

observation by the statistic 

n 

{).1) 82 fu (x; -"iJ )2 
.:J. • 
s2 n 

[ (xi-xj)2 + -D-(x .-x) 2 

i;.j n-1 J 

{See Identity in Paragraph 2, Page 7 ) 

Note there is great similarity between the above and Grubbs' 

statistic for testing extreme observations. We are here, 

however, not considering order statistics but simply testing 

the significance of an observation assumed to be from a 

certain parent population (here assumed normal). 

From ()el) we have 
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n 

L {xi-"i.. )2/62 
ifaj J 

is the samp1e variance of (n-1) Now 

observations and therefore has a ~!2 probabi1ity distri-
Y..n-2 

bution under the hypothesis of no spurious observation. 

is an N(O, 1) random variable under the 

nul1 hypothesis. Therefore 
n {xj-"i.) 2 

62 {n-1) 
has a )(~ distri-

bution. Also the above quadratic forms may be expressed, 

one as the square of a 1inear combination of the sample 

(x1, •••, xn) and the other as a sum of squares of linear 

combinations of the x 1 (see Paragraph 2.1). Further, 

all these linear combinations are independent -- proved 

for the case of samp1e size three in paragraph 5, pageZS • 

Thus the above forma are independant and 

has an F distribution. 1,n-2 

From (3.2) our rejection criterion reads: 

Reject if r • 1 + ÀF < k 1 1,n•2 
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{kl constant depending on size of test, À. constant 

dependinq on n} 

Sin ce r is a decreasinq function of F the rule may be 

formula.ted: Reject if the observed value of 

F > k l,n-2 2 

{k2 constant determined by size} 

The above treatment appears to sidestep the distribu-

tion difficulties encountered hy Grubbs. 

4• CRITERIA PASED ON REJECTION RATES 

Many statisticians in the past who have heen concerned 

with outlyinq observations and rejection criteri~ have taken 

rejection rates or the proportion of observations rejected 

in the long run as their major consideration. We illustrate 

such methods with a rule devised by E. J. Stone as early 

as 1868. 

Stone 1 s hypothesis was that for a given observer and 

group of observations there will exist some number m which 

will be such that on the average one observation in every 

m will he subject to some gross error and ought to be 

discardede The number m was oriqinally called 1 Modulus 

of Carelessness.• Stone formulated his rejection rule as 

follows: 

Calculate k such that the probability that a readinq 

shall deviate from the mean hy k6 is 1/m. 
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Then reject any observations such that the absolute 

value of its deviation is greater than ko. In this way, 

argued Stone, we shall be rejecting at precisely 'the 

correct rate' to eliminate errors. The rule is fairly 

simple to work with using normal theory and Stone tabulated 

some corresponding values of k and m. 

Rider states that the law can be interpreted as 

giving the rejection criterion when we are to reject if 

the probability of the corresponding error is less than 

1/m. This statement eliminates any question of moduli of 

carelessness. 

This method is possibly the simplest using rejection 

rates. There have been severa! refinements and other 

attempts based on rejection rates. One slight change in 

Stone's criterion due to Edgeworth may be described as 

follows: 

Suppose Pr{ !deviation! > k6} • yJ(k). 

Then Stone would urge: 

Reject all observations such that ldl > ko 

where 1j/(k) • 1/m. 

Edgeworth suggested the alternative: 

Reject all observations such that jdl > ko where 

{ 1 • y.'( k) } n • 1 - 1/ m • 

The rejection rate technique seems to have a certain amount 

of intuitive appeal in certain cases where m is reasonably 
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accurately known. One can foresee trouble if the estimate 

of m is poor. As mentioned in Paragraphs 2 and 5, another 

source of trouble is that one sufficiently extreme observa­

tion can distort several other residuals to the extent where 

one would suspect the parent observations. 

5 ANSCOMBE'S METHOD 

The last major point of view to be exposed in this 

thesis is that of Professor F. J. Anscombe, whose paper is 

dealt with in detail below. The above treatments of rejec­

tion rules are, in his opinion, somewhat misguided, the 

principal notion in his work being illustrated as follows: 

An experimental scientist who is setting out to 

estimate certain parameters, applies a routine rejection 

rule primarily to safeguard the accuracy of his experiment. 

Thus, rejection rules should not be thought of as signifi­

cance tests as is the case in Grubbs' work, Paragraph 2, 

and Wilks' research, Paragraph 3, and rejection rates are 

of no more than incidental interest. If the experiment 

had been conducted simply to investigate the quantity of 

spurious observations to be expected in any given sample 

or just how wild the spurious readings are, then clearly 

significance tests and rejection rates are relevant. From 

this reasoning, the principal factor influencing the choice 

of a rejection rule in any particular experiment where 

parameter estimate(s) are desired, should be the effect 
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which the chosen rule has on the accuracy of the resulting 

estimate(s). 

Anscombe suggests the analogy that a rejection rule 

can be likened to a householder's fire-insurance policy. 

The questions to be answered before selecting such a policy 

are: 

1. What is the premium payable? 

2. What is the protection given? 

3• What danger is there of a fire? 

The last item corresponds in the analogy to significance 

testing for spurious observations and computation of rejec­

tion rates as mentioned above. Anscombe points out that 

na householder satisfied that fires DO occur does not bother 

much about (3) providing that the premium is moderate and 

the protection good.u 

To complete the analogy it remains to define 'premium' 

and 'protection'• Anscombe uses the estimate variance as 

his measure of these, and states that any other definition 

of expected loss could be employed. The premium payable 

is defined as "The percentage increase in the variance of 

estimation errors due to using the rejection rule when in 

fact all observations come from a homogeneous source•" The 

protection given is "The reduction in variance (or mean 

squared error) due to the rule, when spurious readings are 

present.• 
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Notation 

In the followinq theory the notation used is that 

shown below: 

Observations: 

Residuals: 

Sample Size: n 

Degrees of Freedom of Residuals: v 

Estimates: These are denoted by the symbol 'A' e.g. 

n f~t an estimate of parameter • is denoted v 

P.d.f. of Normal Random Variable: ~(y) • e-u2 / 2 /~2v 
Cumulative Distribution Function of Standard Normal Random 

Variable: Pr(Y <y) = i(y) 

Sample Mean: y= L: ~y 1 /n 

We now present a more detailed survey of parts of 

Professer Anscombe's work 6 the principle of which has been 

discussed above. The introduction of the ideas of premium 

and protection facilitates investigations and comparisons 

of any suqqested rejection rules. The paper makes the 

following assumptions: 

(i) The factor(s) causing a spurious observation 

will not affect any other observation, i.e. the observations 

are independant. Further, the degree of the spuriousness 

does not depend on the value that should have been observed. 

(ii) Computation costs can be ignored. If we were 

not prepared to concede this point, the premium would have 
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to include extra computational costs resulting from use 

of the rejection rule. 

(iii) The rejection rule is impartial. We have no 

prior information concerning the parameters to be estimated. 

This assumption will be illustrated when we consider complex 

patterns of data below. 

The theory is applied to normal distributions through­

out and the reject~on criterion is based on the magnitude 

of residuals in each case. Firstly we consider possible 

spurious observations in a simple sample from which one 

parameter (population mean) is to be estimated; the variance 

is assumed known. The case n • 3 is developed in detail. 

The techniques are then applied to complex patterns of data, 

i.e. we investigate the effect of rejection rules on a sample 

drawn for the estimation of several parameters in a complex 

system (variances are again assumed known) together with 

some problems which influence the procedure. Anscombe, in 

his paper, makes some mention of the method when ~ is 

unknown. We do not consider this case here. 

5.1 ~~m~;h~ sam~l~ 

We are given a sample of size n (> .3) which is thought 

to be from N((.L, d2) where d'2 is known and it is desired 

to estima te I-L• Possibly one or more of the yi are spurious 

coming from a different source and should be rejected. In 

order to do this we formulate the following rejection rules: 
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Rule 0 

For given c, reject all y 1 such that lzil > C6. 

Estimate ~ from the mean of the retained observations. 

This rule appears reasonable at first sight but when 

one considera that one sufficiently wild observation can 

cause a number of residuals to exceed C in absolute 

value, it is clear that auch a rule could (with high 

probability) reject severa! 'innocent' observations. Thus 

we formulate Rule 1, which can reject only one observation, 

that having the greatest jzil• 

Suppose M is the suffix of the observation having 

the greatest lz1 1 

1 zMJ • max 1 z . 1 
i 1 

1 • 1, • • • • n. 

We suppose that observations are recorded sufficiently 

accurately that no two jz
1

jts are equal. 

Rule 1 

For given c, reject if otherwise no 

rejections. Estimate ~ from the mean of the remaining 

observations. 

Thus we have: 

"" -~ • y 

• y 

In this simple case residual degrees of freedom is equal 

to (n-1). Hence v • n - 1 and 
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A -
iJ. - y 

We can extend Rule 1 to reject more than one observation 

and at the same time avoid the difficulties of Rule 0 by 

the followinq formulation: 

Rule 2 

Apply Rule 1. If an observation is rejected• consider the 

remaininq observations as a sample of size (n-1) and apply 

Rule 1 aqain and so on. Estimate iJ. by the mean of the 

retained observations. 

Note that if n a 2, 

attempt is made to apply Rule 1 to a sample of only two 

observations either there are no rejections or both 

observations are rejected. Thus Rule 2 applied to n 

observations (n > 3) leads to the rejection of 0 or 1 

or 2 or ••• or (n-2) or all n observations. 

It is of course possible to chanqe the value of C 

in successive applications of Rule 1. This is simply a 

matter of choice dependinq on what protection one requires 

and how much premium one is willinq to pay. 

For example, in a special case to be considered below 

we take 

- t . J .J:.::.l a. l' r 

where ta. is independent of r. 

We now develop the necessary theory to determine the 

premium and protection for the application of Rule 1. 
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5.11 ~ 1. No Spurious Observations -- Calculation of 

Premium 

We calculate the proportional increase in variance of 

A 
~ due to the unnecessary application of the rejection rule. 

The joint distribution of the residuals is independant of 

the distribution of Y• Therefore y and zM are indepen­

dant random variables. 

1 . --n 

The (i • 1, •••, n) are independant, hence, using the 

theorem on sums of independant normal random variables, 

z1 is a normal random variable. 

The mean of z. -l 

--
and var(zi) 

E(y.) + 
J 

J!::l 
n E(yi) 

(n-1)~ + (n-1)~ • o, 
n n 

Therefore (~) 112 zi is an N(O, 1) random variable. 
tf 
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We now define a random variable T as the following func-

tion of 

T • -
1/2 

(.ll) ~ 
\1 (j 

if 

Binee there are no spurious observations zM has distri­

bution as given above. 

(5 .2) Therefore E(T) • o. 

Then, since under Rule 1 we reject 0 or 1 observations, we 

have: 

and y and T are independant. 

Therefore 

A 

E(~) • E(Y) + O'E(T) • E(Y) • lJ. 
(nv)l/2 

so that lJ. is an unbiased estimate of lJ.• 

var(iJ,) • varG') + var(. 
6 f12 } 

l<nv) 

• ~Ll + ~{E(T2 ) - (E(T)) 2 }] n \1 

2 2 
.JC{l + E(T )} 

n v using (5.2). 

The premium payable, p, is the proportional increase in 

~ 
var(iJ.)• 
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2 
cs2 Jn{l + E(T )} 2 

- 6 ln 
Therefore 

v 
p -

6 2 /n 

(5 ·3) Therefore p • &:(I2 l 
v • 

Suppose Pr{)zMI < •l • F(z) 

and the probability density funotion of T is g(T) in 

-œ < T < oo • The n 

1 --li 

Nowa rejeotion ooours if lzMI > c. 

Therefore Pr{Rejeotion} • Pr{lzMI > c} 

- 1- Pr[lzMI < c} 

• 1 - F(c). 

Thus we have that, in the long run, the proportion of obser-

vations rejeoted, i.e. the rejeotion rate 

• ~ {1- F(C)} • n 

Special Case n • 3 

We consider 6
2 • 1. This assumption makes no difference 

to proportional variance increases. We have observations 

yl, y2, y3 from N((.L, 1) and corresponding residuals 

t zl, z2, z3 satisfying zi • o. 
i=l 
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Defi ne x 1 • (z2 - z 1 ) l/J2 

x2 • (2z3 - z 2 - z 1 ) l/J6 • 

This implies that and are N(O, 1) variables and 

are independent. To show this we notice that 

-1-2 {y2 {yl -y)} 1 
- yl). xl - y- - J2 (y2 

Similarly x2 -.L {2y3 - y2 - yl}. J6 
Therefore, usinq theory of linear combinations of indepen-

dent normal random variables, we have that and 

are N{O, 1) variables. Since the means of x1 and x2 

are zero, 

cov(x1 , x2 ) • E(x1x2 ) 

- E{(l/Jl2Xy2-yl)(2y3-y2-yl)} • 

Since the y.' s 
1 

are independent and identically normally 

distributed, 

Cov(y1 , yj) • 0 {i ;. j) 

Cov(x1 , x2 ) • -1-{var{yi) - var(y~)J • o. 
jï2 

Since for normal variables oov(x1 , xj) • 0 implies x1 

and are independent, we have that and are 

independent as hypothesised. 
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Since L 
zi • 0 

1•1 

-xl-~ zl - ; z2 
J2 J6 

Therefore 

r----+--.-,.8 

0 A 

Figure 5.1 

we derive 

-.:..-~ 2x2 ; z3 • • 
J2 J6 J6 

implies -z < .:_. + ~ < z 
J2 J6 

implies x x -s < .:1- .3, < z 
J2 J6 

implies •z < 2 x2 < z • 
J6 
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All these conditions are satisfied if no rejection 

occurs when C • z and qeometrically the conditions imply 

that (x1, x2 ) lies inside a regular hexagon in the x 1, x2 

plane, centre the oriqin (See Fiq. 5.1). The vertices and 

midpoints of sides are distant ~2 and ~3/2 from the 

centre respectively. 
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The probability that an observed (x1, x2 ) lies in an 

area dx1dx2 is the probability element: 

Transforming to polar co-ordinates: 

sinQ 

the new probability element becomes 

The probability that (x1, x2 ) lies outside the hexagon is 

equal to the probability that lz J > z, which is 1 - F(z) m 

(see Page 27). To find this probability we integrate the 

probability element over the exterior, E, of the hexagon. 

From the symmetry of the figure it is clear that we can 

split this integral into six equal parts and obtain: 

where R is the length of the segment OP (see figure 5.2), 

0 the centre of the hexagon and P an interior point of 

the side AB. 



'lT/3 JR2 

Therefore 1 - F(z) • ; JO e 2 dG 
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Applying the sine rule to âAOP in figure 5.2 we see that 

R 
sin'lf/3 .. sin2'1f/3-G) 

or R • z{f sec <f - G) 

B 

Figure 5.2 

Therefore J
'lT/3 ...l 2 2 ('Lr.) .1 4z sec 6 • 

1 - F(z) • 1T 0 e dG. 

Now mate the transformation ~ • f - G (~ measured from ON). 

J
'lf/6 _l 2 2.~: .1 4z sec , 

• 1T e d~. 
-'lf/6 

Then 1 - F(z) 

If tan~ • t, then d~ • dt/(1 + t 2 ) 

(5 .6) 
l/J3 

1 - F(z) • .1 J 
1T -l/J3 

and 

• 



The rejection rate using (5.5) is 

(5. 7) .. 

.l{l - F(C)} 
3 

.! IliJ3 

'If -l/J3 

From (5.4) the premium payable 
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• 

Differentiatinq (5.6) under the integral siqn with respect 

to z and multiplying by z 2 we obtain: 

1/ J3 _1 2 ( + 2) 
2 dF(z) ~ f 2 4z 1 t 

z dz • 4'ff ~l/J3 z e 2.3.z dt. 

Th en f• s· ~~w Jl/,J3 2 -14z2(l+t2, ) 2 gF(z} ...,.... 
z dz dz • 4'ff z e 2.3.z dt. 

c c -li,J3 

Inverting the order of integration and making the substitu-

tion À • -!{l+t 2), 

obtain 

and the transformation 2 u • À.Z we 

- fl/,J3 --I 2 dF(z) .l dt J ueu 
z dz dz • ( 2) - du 

C 'If -1/,j3 l+t ÀC2 À. 



Therefore, from (5.4) 

p J
œ 

.,..l 
4 c 

Therefore, (5.8) p 

z2 g,F(z) dz 
dz 
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Using an IBM 650 Digital Computer, the values of C 

were computed which lead to premiums of 5, 4, 2, 1, and 1/2 

percent respectively. The values obtained are tabulated 

in section 5•3• Very good agreement was found between values 

computed by the author and those published in Professer 

Anscombe's paper. 

The latter also computed the premium using the empiric 

formula given below for which there appears to be no rigorous 

justification. 

(5. 9) 

The values of C obtained above were inserted in this 

approximate formulation and the values of p computed and 

tabulated (section 5.3). 
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5.12 Rule 1. One Spurious Observation -- Calculation of 

Protection 

ln this case it is clear that,. should the rejection 

rule fail to reject the spurious observation we shall have 

a biased estimate for ~· The protection criterion is the 

value of E(~ - ~)2, i.e. the protection is defined as 

the proportional decrease in E(~ - ~) 2 due to the appli-

cation of the rejection rule. 

It is convenient to consider the spurious observation 

(say 

while 

ti ons 

Now 

Y ) as a member of the population 
n 

the yi" i - 1,. •••• (n-1) are 

from N(~,. 62). 

n-1 

y -.!. L yi + Yn 
n • i•l n 

independent observa-

and yi and yn are independant -- assumption (i),. Page 21 

and of course y is a normal variable. 

The mean of y • E(i) 

n-1 

= .l L E(y.) 
n i•l l 

+ .l E (y ) 
n n 

• (n-1)~ + (~+a6) 
n n 

• Il.+~ r- n ,. 

and the variance of y is 62 /n as in the case of no 

spurious observations dealt with in paragraph (5.11). y 

and the residuals are independant. 



35 

Define a new random variable s as follows: 

s - aô/n if lzMI < C6 
(5 .10) 

s - a6/n - z 1 n-1 if lzKI > Cd'. 
M 

It follows that S and y are independant. Then, under 

Rule 1, 

Therefore 

A - A6 
~ • (y - ~) + s. 

n 

The last term is zero since y and S are independant and 

E(Y -~ 
n 

~) • o. Therefore, since 

(5 .11) 

If we had ignored the existence of the spurious observation 

and estimated ~ with y the variance of the estimate would 

have been 

From (5.11) and (5.12) we calculate the protection. The 

rejection rate is given by the same formula as in the case 

of no spurious observations, i.e. equation (5.5). 



Special Case n • 3 

We consider 6 2 • 1, noting that this assumption has 

no effect on the proportional variance decrease due to apply-

ing the rejection rule. As in the case of no spurious obser-

vation we define 

1 
xl • J2(z2-zl) 

1 
x2 • J6(2z3-z2-zl). 

In this case are from N (!J., 1) and is from 

N(!J. + a, 1), all the observations being independant. Then, 

by a proof similar to the previous one, (page ZS) we have 

is an N(O, 1) variable but is distributed as 

N (ffa, l)a 

Cov(x1 ,x2 ) • E{(x1 )(x2-~a)J 

= 
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For normal variables cov(x1,x2 ) • 0 implies that x1x2 

are independent. The joint p.d.f of x1 , x2 is therefore: 

{5 .lJ) 

Let lzMI • w. Then (page 35) S is a function of W, 

say h{W). Suppose we denote the Pr[jzHI < z} • F(z) 

but note that in this case F(z) depends on a. 

E(S2 ) • E[{h(W)} 2] 

• 

- J {h(w)} 2dF(w) 
0 

2 • 2 
• ~F(C) + J {~ - L1xl} dF(w) 

n2 C n n-1 

where pCw) has the property that p2 (w) 

Th us 
2 2 

E(s2 ) • ~F(C) + ~(1-F(C)) 
n n 

• 
- -":--1 ) J Olw)dF(w) + 

1 
2 n(n-1 C 1 • (n-l) 

and a1so when w > C > o. pCw) • w. 

Therefore 
2 • 2 

E(S2 ) • ~ + .L J (Jl!L. - 2aw)dF(w). 
n2 nV C v 

Using this equation and (5.11) and (5.12) we see that the 

protection• R, is given by 



• 2 
R • n 2 J (2aw - ~)dF(w) 

v(n+a ) C 

and when n • 3, V • 2 

• 2 
R • 3 J (2aw - ~)dF(w) 

2(3+a2 ) C 

or returning to our original variable (quite valid in w > 0) 

2. 
~)dF(z) • 

As a check for this formula we see that if a • 0 

we get the equation (5.4) for the premium with a change of 

sign. This is to be expected since under the hypothesis 

of no spurious observation, protection and premium are 

numerically equal. It remains to calcu1ate F(z). As in 

the case of no spurious observation, the probability that 

(x1, x2 ) lies inside the hexagon of Fig. 5.1, page 29 1 is 

equal to F(z). Thus to determine F(z) we integrate the 

probabi1ity element (5.13) over the interior of the hexagon. 

Using an IBM 650 Digital Computer, the author, using values 

of C which gave 5, 41 2, 1, 1/2 percent premiums in the 

nul1 case, computed R the protection for values of a 

equal to 1/2, 1, 2, 3• The values are tabulated in 5•3• 

Integration and computational notes are given in the appen-

dix. 
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5.1.3 Rule 2. n • ): No Spurious Observat~on 

The calculation of premium and protection under Rule 

2 are more difficult. For general applications Anscombe 

suggested the use of Monte Carlo techniques. We simply 

outline the geometrie solution when n • .3 and there are 

no spurious observations (62 is assumed to be unity). 

There is 

He re the 

Jz1 1 < c2 > 

A 

~ - y if 

.. y - .!1 if 
2 

1 z.31 < c.3 
Jz

3
J > c 3 and lz 1-z2 J < 2c2 • 

no estima te if l z3 1 > c 3 
and lzl-z2J > 2C2 • 

condition Jzl-z2j < > 2c2 is equivalent to 

(i • 1, 2) and is thus the rejection criterion 

at the second application of Rule 1. We recall that apply-

ing Rule 2 here we reject 0, 1 or all .3 observations 

wh en 

1 z3 J > c.3 implies (xl, x2) lies outside the hexagon in 

Fig. 5.1. /z 1-z2 1 >2C2 implies (xl, x2) lies inside one 

of six similar sectors of angle 'Tf J .3 and vertices distant 

2Czl2 from the origin as shown in Fiq. 5 • .3 (Page /pO). 

The sectors lie inside or outside the hexaqon depending on 

the sign of c 3 - 2c2 • Since no observation is spurious, 

the joint density function of (x
1

, x
2

) is a spherical 
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normal, centre the origin and the probability of rejecting 

the whole sample is 

1 2 

J -r 
d~e 2 

B 

where B is the area outside the hexagon and inside the 

sectors. After a determination of the integral of the 

probability density over A. the area exterior to both 

the hexagon and the sectors. we can calculate the variance 
A 

of ~ subject to the condition that not all observations 

are rejected and hence obtain a measure of the premium in 

a way similar to that used for Rule 1. 

Figure 5e3 
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5.2 Complex Patterns of Data 

We now generalise the above, somewhat, and consider 

the problem of rejection rules to complex systems of data. 

Such considerations clearly have wide application in the 

design of experimenta. Hence we assume that the observa­

tions (if none are spurious) constitute samples from 

independent normal distributions of common (known) variance 

6 2 and means which are given linear functions of certain 

unknown parameters; it being the purpose of the experiment 

to estimate these parameters by the method of least squares 

which method we note is equivalent to maximum likelihood 

estimation under normal distribution theory. If we assume 

that this estimation has been effected,we can compute 

residuals. 

The first point made by Anscombe is that, in general, 

the distribution and in particular the variance of a residual 

zi depends on i. This leads to severe complications in 

any attempted outlier analysis and for the sake of simplicity 

we consider below only such designs which have residuals 

with equal variances, i.e. 6 2 v/n. All ordinary factorial 

designs with equal replications, balanced incomplete block 

designs and Latin Squares have this property. 

Another important factor which influences the theory 

is correlation between the various residuals. In some 

designs there exist pairs of residuals having correlation 

coefficients equal to z 1. As an illustration of this, 
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Anscombe considers the 3 x 3 Latin Square design in which 

the residuals are equal in sets of threea Twenty-seven 

pairs have correlation coefficient equal to -1/2 and the 

remaining nine have f • 1. Suppose we are of the opinion 

that one residual value is excessively large. Then this 

suspected 'maverick' appears three times in the list of 

residuals and we are faced with the problem of deciding 

which one of the three observations, having this residual 

value, to reject from the sample, remembering that estimates 

of row, column and treatment effects will differ greatly 

accordinq to which observation we chose to rejecta One of 

the main assumptions, paraqraph (five) was that our rejec-

tion rules were to be impartial. If we adhere riqidly to 

this supposition, we cannot reject one observation from the 

three in preference to the other two. If all three were 

rejected, we would have too few observations left for the 

estimation and thus would probably 'reject' the whole experi-

ment. In practice an experimenter might well use some small 

piece of prior information in order to break such a deadlock. 

If, therefore, we wish to apply a rejection rule based on 

residuals to the observations from a certain experiment, 

the latter should be designed in such a way that there are 

no pairs of residuals having correlations z 1. This may 

be extended as illustrated by the followinq statement: The 

probability of rejectinq an 'innocent' observation rather 

than the true spurious reading is high if the correlation 
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between their residuals is 'high'• Clearly a more 

thorough investigation would be necessary to define the 

word 'high' in this statement. Professor Anscombe gives 

details of residual correlations for particular designs. 

We now give sorne more notation and matrix theory necessary 

for the discussion of the rejection rules. 

Represent the observations {yi} by the n x l column 

vector Y• 

There are n - V parameters {unknown) which we denote 

by a vector Q [(n-v) x 1] 

Let the coefficient matrix be the n x (n-v) dimen-

sioned matrix A such that if no observation is spurious 

E{y) =AG 

and y has a spherical normal distribution. Since the 

observations are independant A has rank n - v. 

We define the matrix V by the equation 

Suppose after least squares estimation of e, the residuals 

z are given by the matrix equation 

(5.16) 

Th en 

z • Qy. 

T Q•I -AVA. n 

To see this consider the sum of squares of residuals 
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T (y - AG) (y - AG). 

"" Therefore the equation giving least squares estimate G is 

"' T (y - AG) A • 0 (Equivalent to n - v linear 

equations) 

Therefore yTA 

~TATA 

aT 

• (AG) TA 

T 
• y A 

• yTAV (using (5.15)] 

a 
A 

• VATy [using fact that V is 

symmet ri c] 

Then z • y - AG 

• y- AVATy • (I - AVAT)y, hence Qe n 

Note Q is n x n and symmetric. 

Further 

QQ • ( I-AVA T) ( I-AVA T) • I+AVA TA VA T_2A VAT • I+AVA T_2A VAT 

from (5.15) 

• Q. Therefore Q is idempotent. 

The yi are independant but the z1 satisfy n - V 

linear relations which gives us that the rank of Q is v. 

The variance-covariance matrix of the residuals 

(using the fact that residual means are zero) is: 

E(zzT) • E{Qy{Qy)TJ • E{QyyTQ) • QE(yyT)Q 

• Q62 IQ • 62 QQ • Q62 

(since Q idempotent.) 

If all residuals have same variance v62/n it is clear 

that each element in the principal diagonal of Q is equal 

to v/ n. 
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Considering, then, only patterns such that when no 

observations are spurious, residual variances are equal 

and residual correlation coefficients are not 'close' to 

~ 11 we proceed to formulate rejection rules. We use the 

statements of Rule 0 and Rule 1, as on page a3 1 but the 

last sentence of each is amended to read: 

'Estimate the unknown parameters from the retained 

observations by the method of least squares'• 

It will generally be necessary to effect this process 

in two stages. Firstly, estimates of missing observations 

or those held to be spurious are computed, then the actual 

parameter estimation is effected. 

Suppose yj has to be pre-estimated. If we use any 

arbitrary value of this observation in the least squares 

parameter estimation let the corresponding residuals be 

{z1 }. Now replace yj by yj - ~ where it is the purpose 

to estima te 'Y} • 

Substituting in (5.16) the residuals become {zi} where 

(5 .17) Z 
l.
'. • z i - '1'1q . • . 1 l. J (The qij are elements of Q) 

Minimising the sum of squares of these new residuals, we 

obtain an of '7 given by 

• 

i 
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Note next that since Q is symmetric and idempotent 

(using our assumptions) 

and [ z. qi . .. [ qi . L. qikyk 
i 1 J i J k 

(5 .18) "" Therefore ~ • (-;) z j 

Therefore providing that no other observation is spurious 1 

by using the original data with yj - (-;)zj substituted 

for We shall obtain the correct !east squares esti-

mates of the unknown parameters. 

Using (5.17) and (5.18) the new residuals are 

From the var-cov. matrix Q62 we have cov(z1 zj) • 

Therefore the correlation coefficient (p1 j) of z 1 

zj is qiven by 



2 co v z.z. q~J6 
a 

{var z.}l/2 fv6 2 ev62 }112 
zi var 

J 

Th us we 

(5.19) 

n 

can write 

t (note zi - zi zjpij 

2 
var(zi') = (1- p2 

) ~ ij n 

n 

that 
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-~ v qij. 

if i j, ' a 0) = zi 

Thus we have a method of adaption of the Simple Sample 

rejection Rule 1 to more complex patterns. We cannot use 

the above theory to apply Rule 1 to the new residuals and 

thus extend Rule 2 to complex patterns because (5.19) 

shows that the equivariance residual assumption is no 

longer valid. We here quote Professer Anscombe, "Provided 

the correlations are sma11, it may seem reasonable -- it 

is certainly simplest -- to take no account of the changes 

in variance in formulatinq the rule which would run: 

Apply Rule 1. If an observation is rejected compute 

the revised residuals and app1y Rule 1 again and so on. 

Finally compute the least squares estimates of the unknown 

parameters from the retained observations." 

It remains to find a criterion by means of which the 

premium and protection for the rejection rule can be de-

fined. In order to do this the parameters are split into 

two groups, those 1 of interest' and the remainder. It is 

clear that the experiment may have been performed so1e1y 



to estimate a certain set of parameters from the model 

while we are not particularly 'interested' in the remainder. 

Our critical statistic will be the determinant of the 

Tariance-covariance matrix of the parameters of intereat. 

We note that an orthogonal transformation exista which 

will diagonalise this variance•covariance matrix, i.e. 

the covariances of parameter estimates can be made zero; 

the product of variances of estimates after the trans­

formation being equal to the determinant of the original 

matrix, and hence the use of this statistic. Thus a 

possible (one can suggest many others) definition of the 

premium charqed by the rejection rule is the proportional 

maqnification of the determinant of the variance-covariance 

matrix of the parameters of interest. The correspondinq 

protection qiTen by the Rule is the proportional decrease 

of the value of this determinant when apurious readinqs 

are present. 



5.3 Resu1ts: frofessor Anscombe's Theorx 

n • 3• Rule 1. 

* 1/R- Il Protection Wh en a • c Premium Approx. R-Rate 
Premium Rate 

.5 1 2 3 

2.39038 .05 .05336 .00319 313·5 -.04135 -.02874 -.0009827 +.0004662 

2.46002 .04 .04242 .00243 411.0 -.03390 -.02463 -.001206 +.0004095 

2.66184 .02 .02088 .00107 938.8 -.01826 -.01505 -.001455 +.0002675 

2.84623 .o1 .01032 .000475 2107 -.009977 -.009015 -.001342 +.0001673 

3.01727 .005 .00512 .000214 4667 -.005202 -.005312 -.001098 +.00009915 

* R-Rate indicates Rejection Rate 

The siqns in the protection tabulation show that in the case considered 

no savinq in variance is to be obta.ined by the application of the defined rejection 

rules when a • .5, 1, or 2. A sliqht savinq is seen to exist when a. • 3• 

This savinq would be increased if hiqher values of a. were considered. 

.f:­

...0 
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The computation of the premium from equation (5.8), 

page 33 , was straightforward numeric integration using 

Simpson's Rule. The results, i.e. values of C which 

give rise to 5, 4, 2, 1, 1/2 percent premiums respectively, 

are tabulated (page 49). For comparison, the approximate 

premiums using these values of C calculated from 

Anscombe's empiric formula equation (5.9), page 33, are 

also listed. 

To compute the protections for varying values of a 

using these values of C was more difficult and a brief 

account of the method used is given here. As stated on 

page 38 , 

F(z, a) 

Where I is the interior of the hexagon, fiqure 5.1, we 

write F(z, a) to make it clear that in the case where 

spurious observations occur, F(z) depends also on a. 

Th en 

F(z, a) • 
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where I 1 and I 2 are the regions bounded by the interior 

of the hexaqon and the.first and fourth quadrants respec-

tiTely. See fiqure 5e4• 

Fiqure 5.4 

We make the transformations 

Then the equations of the lines AB, AC are respectiTely, 

x1 • Jt(2b-x2 ) 

x2 • Jt(2b+x2 ) 



Therefore 

0 1( )2 
-L J 2 x2- '1 (2b+x ) + P5"1f e erf 2 
~NU -b J6 

In second integral substitute x2 • -t. Then 

...-1(-t- 71 )
2 

( ) 
+ ~ e 

2 
erf 

2
j'6t (-dt). 

Changing the variable back to x2 and combining the 

integrals we have 

b 

• -l.., J erf(2b-x&) 
J21i 0 J6 ) 

b • # J erf(2b-x2) 
0 J6 

52 
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Transforminq this back to terms of a and z 

(Al) 

The protection, R, from equation (5.14), paqe 38, is 

qiven by 

• 2 
(A2) R • 

3 J ( 2 az - Jf ) 
2 (,3+a2 ) C 

dF(;.a) 
dz dz. 

From (Al) differentiatinq under the inteqral siqn 

This may be reduced to 

2 2 

ÔF(a,a) • E:J2. 
_.__~ 

e 3 4 cosh 
oz ,. 

(A3) 2 2 

erf ~ 
2 

a; 
Jz/2 2 -p e 

0 
dp 

2 
+ !::1.1 

...,.L.. -~ z/2 
e 3 4cosh ..U J cosh ap e-p dp. ,. 2 0 

Thus from (A2) and (A.3) we see that to calculate the pro-

tection we have to compute an inteqral of the form: 
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where the functions f(z). g 1 (z), g2 (z), v1 (p). v2 (p) also 

depend on a. If 

z/2 z/2 

g1 (z) J v1 (p)dp + g 2 (z) J v2 (p)dp • k(z). 
0 0 

We then have an integral of the form 

• 
(A5) R • J f(z)k(z)dz. 

c 

We first read into the computer a pair of values (a, c). 

It w.as decided to make the approximation 

f
• 6C 

f(z)k(z)dz • J f(z)k(z)dz 
c c 

notinq that the integrand converges to zero rapidly as 

z gets large. We shall obtain an estimate of the error 

«> 

J f(z)k(z)dz. 
6C 

Simpson's Rule for numeric integration generalised over 

n equal intervals h reads 

nh 

Jo q(x)dx • !{q{O) + 4q(h) + 2q(2h) + ••• + 4~(n-l)h) 
+ q{nh)} 
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where n is even. Since we are concerned with a double 

integral we shall expect a double sum in the numeric evalua-

ti on. 

r;/2 

f
0 

v1 (p)dp • ~{v1 (o) + 4v1 (h) + ••• 

(A6) + 4v1 ('}h) +vi(~)}. i • 1, 2 

For integrations over p we used h • C/100. We sum up 

values of the function f(z)k(z) between z • C and 

z • 6C at intervals of h' weiqhted with appropriate 

Simpson's Rule weights, i.e., 

~f(z)k(z) • f(C)k(C) + 4f(C+h 1 )k(C+h 1 ) + ••• 
+ 4f(6C-h 1 )k(6C-h') + f(6C)k(6c). 

Note that the k(z)'s contain integrais over p which 

depend on z. In order to generate the successive k(C}, 

k(C+h 1 ) etc., it is not necessary to repeat the whole 

process as given by (A6}. If h' • 4h it is possible to 

add three terms only to the sum in (A6) to obtain the new 

integral: 

z/2 

f v1 (p)dp • ~{v.(O) + 4v.(h) + ••• + 4v1.(~2 h) (A6) 
0 3 1 1 

and 

{z+4h)/ 2 

f V. (p)dp 
0 l. 

fz/2/t-2h 

• v. (p}dp 
0 l. 
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• ~3 {v.(O) + 4v.(h) + ••• + 4v.(~2-h) l l l 

It is apparent that the sum in the new integral is formed 

by addinq on the terms 

weiqhted with l, 4 1 l respectively. Similarly we can 

obtain the inteqrals of the v1 (p) i • 1, 2 in 

(0, ~ + rh) from those over (0, 1 + (r-2)h) by the 

addition of only three auitably weiqhted terma. We 

make use of this fact in the computation. A flow chart 

for the computation usinq the expression as in (A4) 

follows. 
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1(23 "" u-,(P) 
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~ " 
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...--
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We now obtain an estimate of the error incurred in the 

calculation of protection by the above computation because 

we used the approximation 

6C • 

J f(z)k(z)dz • J f(z)k(z)dz 
c c 

i.e., we require an estimate of 

• 
J f(z)k{z)dz • 

6C 

Considering (A3) and (A4) 1 let 

E • 

are of the order of 
2 -p 

e • Binee 

we consider values of z > 6C in the integration over z, 

we assume that integrals over p from 0 to z/2 may be 

all approximat èd by i ntegrals over (0, .) so th at approxi-

mat ely 

The inner integral can then be simply evaluated and is 

equal to 
2 a. -

d(cosh az + 2e 4cosh ~) 



where d is a constant. Thus our estimate becomes 

(see (A2) and (A3)) 

2 2 a 
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E • f• 2 -~ 
D (2az - ~)e 4(cosh 

6C 
az + 2e'4cosh ~)dz, 

where D is another constant. 

This may now be split into four integrais by expanding 

the inteqrands Each of these may be evaluated fairly simply. 

The four integrais are of the followinq form: 

2 . ~ 
Il • c

1
J ze- 4cosh az dz 

6C 
2 . ~ 

12 • c 2f ze- 4cosh ~ dz 
6C 

2 . -~ 
I • c3f z2 e 4cosh az dz 

3 6c 

2 

r 2 -~ 
c4 z e 4cosh ~ dz 

6C 
I • 

4 

It is only necessary to evaluate 11 and 1
3 

as 12 and r
4 

follow from these respectively by replacinq a by a/2. 

The final estimate obtained after neqlectinq a set 

-27C2 
of terms which were of the order of e cosh 6aC (in 

the worst case this expression is approximately equal to 

-lOO) e was: 
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v
3 

• J3(3C + a/6), v4 • J3(3C • a/6). 

This error is very small, in fact so small that it makes 

no siqnificant difference to the computed values of the 

protection. 

If the above error estimate were repeated, integrating 

with respect to z over (C, 4C) instead of (c, 6C) the 

error will still be negligible and thus it was concluded 

that it is sufficient to integrate over (C, 4C) and elimi­

nate the error (found from the fact that protection is 

numerically equal to premium already computed under the 

null hypothesis a • 0) by decreasing H in the double 

summation using Simpson 1 s Rule. We used H • C/300 in the 

revised proqram and obtained accuracy approximately 99.5 

percent. The maximum error recorded was .56 percent. 
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