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Abstract 

Traditionally, geostatistical simulations of mineral deposits are done by using methods based on 

two-point spatial statistics, such as variograms. However, second-order spatial statistics are not 

sufficient to capture critical and common features from mineral deposits, such as connectivity of 

extreme values and curvilinear patterns, which in turn drive a mine production sequence. As a 

way to overcome these important limitations, multiple-point simulation (MPS) methods have 

been developed. 

In this thesis, a MPS method based on wavelet analysis and on pattern recognition is described in 

detail. The idea in wavelet analysis applied to image compression is to decompose an image in 

two types of information: 1) average type information of the nearby pixels, called approximate 

sub-band of the image; and 2) how these pixels depart from local average. Usually, the sub-band 

image is a sufficient representation of the whole image, and can be used for several applications 

instead of the whole image. The simulation method used herein works as follows: first, it scans a 

training image with a template to generate a pattern database; then this database has its 

dimension reduced by applying discrete wavelet transform, so the approximate sub-band image 

of the patterns are obtained; after that, the patterns are divided into classes using k-means 

clustering algorithm, considering the approximate sub-band image; finally, the grid is simulated 

by comparing the conditioning data event in each node with the classes prototypes and choosing 

a pattern from that class. The practical intricacies and the contributions of this approach are 

tested and analyzed through an application at Olympic Dam copper deposit, which is located in 

South Australia and is the fourth largest producer of this commodity in the world. Both material 

types and copper grades were simulated in this case study. The categorical training image is 

generated through geological interpretation, and the continuous training image is generated by 

using low-rank tensor completion. 

Olympic Dam’s simulation results show that the method used herein can be applied successfully 

to relatively complex and large deposits. Additionally, the results suggest that care must be taken 

when generating the training image, since it plays a very important role in the simulation 

process. The resulting simulated realizations are analyzed and validated in terms of histograms, 
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variograms and high-order statistics, the latter being performed by using high-order spatial 

cumulants.  
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Résumé 

Traditionnellement, les simulations géostatistiques des gisements minéraux sont effectuées en 

utilisant des méthodes fondées sur les statistiques spatiales utilisant deux points, comme les 

variogrammes par exemple. Toutefois, les statistiques spatiales du second ordre ne sont pas 

suffisantes pour capturer les caractéristiques essentielles et communes des gisements minéraux 

telles que la connectivité des valeurs extrêmes et les motifs curvilignes, caractéristiques qui ont 

un impact sur la planification des opérations et de la production de la mine. Pour pallier à ces 

importantes limitations, les méthodes de simulation à points multiples ont été développées. 

Ce mémoire décrit d’une façon détaillée une méthode de simulation à points multiples basée sur 

l’analyse par ondelettes et la reconnaissance des formes. L’idée à la base de l’analyse par 

ondelettes lorsqu’appliquée à la compression de l’image est de décomposer l’image selon : 1) la 

quantité d’information moyenne des pixels voisins, dite sous-bande approximative de l’image 

(approximate sub-band of the image); et 2) l’écart entre les pixels et la moyenne locale. Souvent, 

dans plusieurs applications, la sous-bande de l’image constitue une représentation suffisante de 

l'image et peut substituer l'image entière. La méthode de simulation utilisée dans ce mémoire se 

résume comme suit: d'abord, l'image de formation (training image) est scannée pour générer la 

configuration de la base de données. Ensuite, la dimension de cette base de données est réduite 

en appliquant une transformée en ondelettes discrète ce qui permet d’obtenir la sous-bande 

approximative de l'image des modèles. Par la suite, les modèles sont partitionnés en classes en 

utilisant l’algorithme des k-moyennes tout en tenant compte de la sous-bande approximative de 

l'image. Finalement, la grille est simulée en comparant les données conditionnelles en chaque 

nœud aux prototypes de la classe et en choisissant un modèle de cette classe. Les contributions 

ainsi que les complexités pratiques inhérentes à cette approche ont été testées et analysées à 

travers une application à la mine de cuivre Olympic Dam, située au sud de l’Australie et 

considérée comme étant le quatrième plus grand producteur de cuivre dans le monde. Aussi bien 

les types de matériaux que les teneurs en cuivre ont été simulés dans cette étude de cas. L'image 

de formation catégorique (categorical training image) a été générée via l’interprétation 

géologique, alors que l'image de formation continue (continuous training image) a été générée à 

l'aide des techniques de « low-rank tensor completion ». 
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Les résultats de simulation de la mine Olympic Dam montrent que la méthode utilisée dans ce 

mémoire peut être appliquée avec succès à des gisements relativement complexes et de grande 

taille. De plus, les résultats suggèrent qu’il faut générer avec soin l’image de formation (training 

image) vu son importance dans le processus de simulation. Les réalisations simulées ont été 

analysées et validées en termes d'histogrammes, variogrammes, et statistiques d'ordre élevé, ces 

dernières étant effectuées en utilisant les cumulants spatiales d'ordre élevé (high-order spatial 

cumulants). 
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Chapter 1 

Introduction 

Mining projects typically require intensive capital investments based on a series of 

decisions which have to be made without having full knowledge of the deposit being 

considered. In the past, this inherent uncertainty was ignored in the orebody modeling 

and mine planning stages, causing most of the forecasts to be unrealistic. Very often, the 

profit and production targets were not met, as the plan suggested. This happens because 

the planning and scheduling are performed based on one estimated model of the deposit, 

which is a smooth representation of the reallity, since it is constituted by the mean of all 

the possible grades in the different locations of the deposit taken separately.  

These limitations suggested that only one estimated model of the deposit does not 

provide means for decisions to be made in a robust way. In order to overcome these 

problems, this uncertainty can now be modeled through stochastic geostatistical 

simulations. Rather than estimates of averages grades in the deposit, simulations are 

generated by directly drawing alternative realizations from the multivariate cumulative 

distribution function of the random field (RF) that characterizes the deposit, so 

constituting equally probable scenarios of this RF. Therefore, geostatistical simulation 

creates a basis for decision makers to take uncertainty into account. As consequence, the 

resulting plans are more robust, the risk in the project is better managed and plans are 

more realistic and more likely to be achieved. Stochastic simulations have been used 

since a long time now (Journel, 1974) and stochastic mine planning methods have been 

under development for the last decade (Godoy, 2003; Ramazan and Dimitrakopoulos, 

2007; Dimitrakopoulos, 2011). Because orebody modeling is the basis for all the 

planning to be done, it is very important that they provide a reliable representation of the 

deposit being studied. Traditionally, geostatistical simulations are done through 

approaches based on two-point statistics only. However, these methods are not able to 

characterize important featured of mineral deposits, such as complex patterns and spatial 

connectivity of extreme values. In order to overcome these limitations, multiple-point 
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simulation (MPS) techniques were developed and an application of one MPS method, 

which is based on discrete wavelet transform, is shown in this thesis. 

Despite being a great advance in the orebody modeling and mine planning fields, these 

methods are just starting to be used in mine projects. Although stochastic orebody models 

and mine planning brings a lot of advantages, they also add complexity to these stages. 

Because of that, several methods for both geostatistical simulations and mine planning 

have to be developed and efficiency is a crucial feature of these new implementations. 

1.1 Goal and Objectives 

The main goal in this thesis is to apply an efficient wavelet based multiple-point 

geostatistical spatial method in an actual mineral deposit. This way, it is possible to learn 

practical intricacies and contributions of such method for orebody modeling. More 

specifically: 

 Review the literature on geostatiscal simulations, from earlier two-point based 

methodologies to newer developments, such as approaches based on multiple-

point and high-order statistics. 

 Describe the multiple-point simulation method based on wavelet analysis tested 

herein. 

 Apply the method to Olympic Dam copper deposit in Southern Australia, showing 

all its intricacies, especially in the training image generation. 

 State conclusions and suggest future work. 

1.2 Thesis Outline 

Chapter 1 provides an introduction to the thesis, together to its goals, objectives and 

outline. 

Chapter 2 presents the literature review on geostatistical simulations and also 

contextualizes simulations in the mine project framework. 

Chapter 3 describes the multiple-point simulation method based on wavelet 

decomposition used in this thesis. The methods to generate the training images are also 

described in the chapter. 
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Chapter 4 contains the application of methods presented in Chapter 3 to the Olympic 

Dam deposit in South Australia, along with some information about the deposit. 

Chapter 5 contains the conclusions and related future work to be developed. 
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Chapter 2 

Literature Review 

The mine production chain is characterized by a sequence of operations, which comprises 

the extraction of material from a deposit and several processing streams, where the 

materials are sent to depending on their type and grade. Traditionally, the planning stage 

of mining and process is done based on single estimated, or average type, models of the 

deposit, therefore not taking uncertainty into account (Lerchs and Grossman, 1965; 

Johnson, 1969; Piccard, 1976; Dagdelen and Jonhson, 1986; Whittle, 1988; Hustrulid and 

Kuchta 1995; Tolwinski and Underwood, 1996; Cacceta and Hill, 2003; Boland et. al. 

2009). In those approaches, the goal is to maximize the discounted cash flow of the 

project, but because only one model of the deposit is used as input, all attributes of the 

deposit are deemed to be known. As consequence, many operating mines do not meet the 

planned net present value (NPV) and production targets. 

Although there are many sources of uncertainty when dealing with orebody modelling 

and mine planning, geological uncertainty is seen as the main reason why projects do not 

meet their expectations (eg. Vallee, 2000; Baker and Giacomo, 2001). The use of 

conditional simulation to generate orebody models, which can further be used to analyse 

risk in mining projects, is shown in David et al. (1974), Ravenscroft (1992), Dowd (1994, 

1997), and Dimitrakopoulos, et al. (2002). Later, some methods to optimize open pit 

mine production and schedule stochastically were developed (Godoy, 2003; Ramazan 

and Dimitrakopoulos, 2007; Menabde et.al., 2007; Leite and Dimitrakopoulos; 2007 and 

2009; Boland et al., 2008; and Lamghari and Dimitrakopoulos, 2012; Dimitrakopoulos 

and Ramazan, 2013). In these approaches several equi-probable scenarios of the orebody 

are used as input to the optimization, and the goal is not only maximizing project’s NPV, 

but also minimizing deviations from production targets. More recently, there are works 

on global optimization of mining complex (Whittle, 2010), in which mine, processing 

and transportation are considered simultaneously in the model (Montiel, 2014; 

Goodfellow, 2014). 
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Since geological uncertainty has a major impact on open pit mine production and 

scheduling, it is important generate a representative model of the orebody. Traditionally, 

this is done through simulation methods based on second-order statistics. However, these 

methods are not able neither to capture complex pattern in geological environment nor to 

reproduce spatial connectivity of extreme values. In order to overcome these limitations, 

multiple point simulation (MPS) methods are developed. This thesis is devoted to show 

an application of a MPS method based on discrete wavelet transform, termed wavesim . 

But first, some other relevant simulation techniques are reviewed in this chapter, such as 

second-order and then MPS methods. 

2.1 Variogram-based Simulation Methods 

Spatial uncertainty is typically modeled by generating multiple realizations of the joint 

distribution (random field) of a given attribute, a process known as geostatistical 

simulation (Matheron, 1973; Journel, 1974; David, 1977, 1988; Goovaerts, 1997). 

Differently to modeling in petroleum reservoir, where the flow is what needs to be 

modeled, in orebody modeling the location and the connectivity of the grades, especially 

the high ones, have to be well understood, so that the planning and scheduling stages can 

be done successfully. This is possible through geostatistical simulation. 

By using stochastic geostatistical simulation, severe limitations related to working with 

estimated models are overcome. The main ones are: having only one representation of the 

deposit; the conditional bias, which is the underestimation of high values and 

overestimation of low values; and treating each block separately, even if they should be 

treated jointly. As many realizations of the deposit are made available through simulation 

techniques, a quantitative measure of uncertainty is provided. Very important 

characteristics of stochastic simulations are: honoring data values in their locations; 

reproducing declustered data histogram; and reproducing covariance model. As it will be 

discussed latter in this chapter, multiple-point simulation methods reproduce also high-

order statistics which the deposit is believed to have. It is important to state that the 

random field used to model the deposit must be ergodic and second-order stationary so 

that two-point simulation methods can be applied. 
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Two-point geostatistical simulation relies on the sequential simulation framework 

(Rosenblatt, 1952; Kolmogorov, 1956). In this approach, in each node to be simulated, a 

conditional cumulative probability function (ccdf) has to be generated considering both 

initial hard data set and previously simulated nodes. For doing that, first consider the 

distribution of the random field (RF) { (  )        }, where ui define different 

locations in the study area, conditioned to the data set { (  )        }, as follows 

(Rosenblatt, 1952): 

 (                     |( ))      { (  )            |( )} (2.1) 

Equation (2.1) can be decomposed using equation (2.2) so that the spatial law of the RF 

can be written as a product of univariate conditional distributions. 

 (                     |( ))   { (     )|( )} 

  { (     )|(   )}       

  { (     )|(     )} 

(2.2) 

Since a conditional cumulative distribution function (ccdf) can be generated for all of the 

nodes in the grid, one at a time, it is possible to randomly draw a value for each of them.  

In summary, sequential simulation is implemented as follows: 

1. Define random path. 

2. Generate a ccdf for a given node. 

3. Draw a value from ccdf in Step 2, which become conditioning datum for further 

drawings. 

4. Repeat Steps 2 and 3 until all nodes are simulated. 

5. Repeat Steps 1 to 4 to generate more realizations. 

2.1.1 Sequential Gaussian Simulation 

Sequential Gaussian Simulation (SGS) (Goovaerts, 1997; Isaaks, 1990) is a commonly 

used method which requires that the ccdf’s follow the Gaussian distribution. Two 

additional steps are needed in addition of ones shown above: in the start, the data set is 

transformed into standard normal scores; and after the simulation process is complete, the 
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simulated values are back-transformed from Gaussian to data space. In this approach, 

mean and variance are estimated through kriging, for each node. Then, these two 

parameters are used to build a normal distribution which defines the ccdf of any given 

node. 

Equivalent method to SGS is the simulation through LU decomposition (Davis, 1987). In 

this method, the covariance matrix is decomposed in lower and upper triangular matrices 

using the so called Cholesky decomposition and the realizations are generated by 

multiplying the lower one with a vector of independent and normally distributed random 

numbers. Each row of the resulting vector corresponds to one node in the simulation grid; 

so, if implemented row by row it is equivalent to the sequential Gaussian simulation. This 

method is extremely efficient, but it is only able to handle very small grids, and also 

assume a Gaussian RF. 

Dimitrakopoulos and Luo (2004) proposed the generalized sequential Gaussian 

simulation (GSGS), which is a hybrid between the two previously mentioned Gaussian-

based methods: a random path is defined to visit a group of nodes at a time, which is 

simulated at once using LU. Therefore, it is able to deal with large grids in a more 

efficient way than SGS. In order to perform the simulation in groups, in GSGS the 

random field is decomposed into groups of nodes, rather than in single nodes, as in SGS. 

Despite of these advantages, GSGS still generates realizations on point support. Thus, in 

order obtain realizations in block support, the nodes discretizing each block have to be 

averaged out in a post-processing step. 

A simulation method which generates realization directly in block support is shown in  

Godoy (2003), termed direct block simulation (DBSIM). The idea is similar to GSGS: 

first, a group of nodes are simulated using LU; then these nodes are averaged to obtain 

the value for the block; and finally the values of the nodes are discarded, only the block 

value is kept for further conditioning. In order to do this, the assumption made is that the 

random fields related to point and block supports are jointly Gaussian. This framework 

was extended to simulate multiple correlated variables (Boucher and Dimitrakopoulos, 

2009a). In this method, the variables are first orthogonalized through 
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minimum/maximum autocorrelation factor (MAF) and after the simulation is done, the 

independent factors are back-transformed to the data space. 

2.1.2 Sequential Indicator Simulation 

Sequential indicator simulation (SIS) differs to SGS only on the generation of the ccdf in 

each node. In this approach, the ccdf is generated as follows (Journel, 1989a): first, K 

threshold values are defined; then indicator transformation is performed for conditioning 

information regarding each of the K threshold; and finally, the ccdf can be generated by 

using the transformed values and indicator kriging. The advantages of SIS over SGS are: 

data does not need to follow Gaussian distribution and it reproduces better the continuity 

of extreme values. However, it is computationally more expensive and still does not take 

high-order statistics into account. 

2.1.3 Limitations 

Two-point statistics is not enough to model some complex cases shown by mineral 

deposits, such as non-linear features and spatial connectivity of extreme values. The latter 

is a severe limitation, since high grades drive the profitability of mining projects and high 

permeability values indicate the direction of flow in petroleum reservoirs. Limitations of 

variograms-based simulation methods are discussed in Journel (2005) and Journel (2007). 

An example of this is presented in Figure 1, which was taken from Journel (2007). It 

shows that structures with very different spatial patterns can share very similar 

histograms and variograms. Because of that inability of simulation methods based on 

two-point statistics to model common features in mineral deposits, development of 

techniques which make use of high-order statistics was necessary.  
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Figure 1- Different patterns, same statistics up to order two. Figure taken from Journel (2007). 

2.2 Multiple-point Simulation Methods 

2.2.1 Probabilistic Framework 

Since all multiple point simulation (MPS) (Journel and Alabert, 1989) methods make use 

of training image (TI), it is important to define it. Training image is a conceptual 

rendering of the major variations that may exist in the area being studied. It may be based 

on actual data, or on other exhaustive data set considered to be representative of the area 

being modeled. In any of the two situations, it does not need to have the same dimensions 

of the area to be represented or to be constrained to available data; however it should 

present similar pattern of spatial continuity to the actual phenomenon (Strebelle, 2000; 

Zhang, 2006). 

Multiple point statistics (MPS) was first incorporated in a geostatistical simulation 

framework by Guardiano and Srivastava (1993) through an algorithm called extended 

normal equation simulation (enesim). Also based on the sequential simulation paradigm, 

at each node of the realization grid, enesim retrieves a conditioning neighbourhood 

comprising a multiple-point data event (i.e., samples and previously simulated nodes) 

defined over an n-configuration template of (0, h1…, hn). So, let Ak defines the 
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occurrence of category sk in u and D defines the occurrence of data event dn constituted 

by n conditioning data, as follows: 

   {
     ( )    
              

    and    {
     (  )               

                                              
 

(2.3) 

the exact probability of Ak conditioned to D is given by the simple kriging expression: 

    {    |   }   {  }   [   { }] (2.4) 

where     is the observed data event,  { }      {   } is the probability of the data 

event to occur, and  {  }      { ( )    } is the prior probability of category k occurs 

in location u. Then, the single normal equation providing the single kriging weight λ is: 

    { }     {    } (2.5) 

from where the weight λ can be calculated: 

  
 {   }   {  } { }

 { }(   { })
 

(2.6) 

and replacing equation 2.6  in equation 2.4: 

    {    |   }   {  }  
 {   }   {  } { }

 { }
 

                                         
 {  }

 { }
 
    {        }

    {   }
 

(2.7) 

The denominator can be determined by counting the amount of replicates of conditioning 

data event D in the training image and the numerator is the amount of replicates, among 

the previous ones, associated with the category sk. The equations from 2.3 to 2.7 are taken 

from Strebelle (2002). The central node is, then, simulated by drawing a value from this 

conditional distribution. As one may note, in enesim the whole TI needs to be scanned 

again every time a grid node has to be simulated. Therefore, due to its high computational 

complexity and CPU cost, the proposed approach of Guardiano and Srivastava (1993) 

remained impractical for several years. A significant improvement on this original 
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algorithm, which allowed the practical simulation of large models, was accomplished 

through the development of snesim in Strebelle (2002), which is the first structured 

multiple-point statistics algorithm for the simulation of categorical variables. The same 

basic ideas of enesim are kept in snesim, however, the computational complexity is 

drastically reduced by computing the conditional probabilities prior to the simulation. 

Instead of repeatedly scanning the TI for each conditioning data-event, it stores all 

probabilities in a search-tree structure by a single-time scanning of the TI with a global 

template. The introduced data structure allows fast retrieval of all required conditional 

probabilities by the time of the simulation. Such drastic improvement in running time 

came along with a high RAM memory requirement to build the search trees. In an 

extreme case, where all possible data events defined by the global template are present in 

the TI, the number of patterns to be stored is M
N
, where M is the number of categories 

and N the size of the global template. In practice, however, the TIs do not have all that 

amount of patterns, which allows the practical implementation of such data structure.  In 

addition, snesim uses a pixel-based sequential simulation approach, which makes the 

conditioning to hard data easy. Besides the potential prohibitive memory costs for the 

applications in large mineral deposits, snesim presents the following shortcomings: (a) it 

cannot handle simulation of continuous variables; (b) snesim typically captures stationary 

features of the training image; (c) when the probability of a data event is not found in the 

search-tree, the furthest node is dropped, which incurs in some loss of conditioning 

information; (d) which is the most important one: it is training image driven, as all MPS 

methods. 

In order to reduce memory requirements of snesim, instead of using a search-tree, 

Straubhaar et al. (2011) proposed a list structure for storing multiple-point statistics 

inferred from the TI. Each element of the list is designed to store a pair of vectors (d, c), 

where d stores a spatial pattern from the TI and c stores the associated counters for the 

different categories at the central node. After being built, the list is sorted based on a 

reference category, in order to allow a fast search for desired data events during the 

simulation. This new list structure requires much less memory than the original search-

tree. In addition, it allows parallelizing the retrieval of conditional probabilities. Despite 

these improvements, the algorithm behaves similar to the previously introduced snesim. 
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Boucher et. al., (2014) applied snesim for the simulation of contacts only in geological 

environments. 

2.2.2 Pattern-based Approaches 

All the pattern based approaches present one common feature: unlike the previous 

probabilistic methods, not only a central node value is drawn from a local conditional 

distribution, but a local pattern is pasted accordingly to its ‘similarity’ to the conditioning 

information. Because of that, the measure of similarity, which is done through distance 

measure function, plays a very important role in pattern based approaches. An example of 

such distance measure function is the L2-norm, defined as: 

 (   )  ∑{   [
 

     
∑( ( )   ( ))

 

     

   

]}

 

   

 (2.8) 

Where x and y represent the conditioning data event and pattern respectively, ω is the 

weight for different conditioning data types (hard data and previously simulated nodes, 

for example) and ntype is the amount of data of each type. 

 Zhang et. al. (2006) and Zhang (2006) proposed a new algorithm, called filtersim. In this 

algorithm, the training image (TI) is treated as a collection of patterns, which are 

meaningful geological entities defined over a multiple point configuration (a template). 

Scanning the TI with a given template results in a pattern database, which can be seen as 

multiple pieces of a jigsaw puzzle that needs to be put together in a logical fashion during 

the stochastic simulation. Each of the patterns of the database is characterized by a series 

of filter scores, which are real values resulting from the application of some positional 

linear filters. Then, the patterns are grouped into classes according to some similarity 

criterion regarding their filter scores (e.g., by using k-means clustering) and each class is 

labeled by a prototype, which is simply the pixel-by-pixel average of all patterns in the 

given class. After these pre-processing steps, a sequential simulation takes place. At each 

node location, the multiple-point conditioning data event is retrieved, but it is only 

compared to each of the classes’ prototypes. Then, a random pattern is drawn from the 

class with the closest prototype found and it is patched on the realization grid. An inner 
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part of the pattern is frozen for the next sequence of simulation (i.e., besides the central 

node, a surrounding is simultaneously simulated). The outer part is pasted on the grid as 

‘soft data’, assisting on similarity calculations, but the corresponding nodes are re-visited 

along the random path, hence re-simulated. In Filtersim, because the data event may 

contain information with difference importance (i.e., samples, inner and outer patches), 

weights are given for the similarity calculation between the data event and the prototypes. 

An interesting point in filtersim is the feature of randomly drawing patterns from a class, 

which introduces a major stochasticity to the process. Besides, this method solves the 

great burden associated to RAM usage from snesim proposed by Strebelle (2002), 

because in fact, the pattern database extracted from the TI is never explicitly built, it 

remains in the TI and only the locations of each pattern are indexed. Despite the 

numerous improvements, the dependence on linear filters for the patterns classification is 

one of the main pitfalls of Filtersim. Different geological domains may require the usage 

of different filters, since their capability to correctly exploit the differences between the 

patterns is intrinsically related to the structures and geometries of the patterns themselves. 

So, it becomes cumbersome in practice to define the appropriate filters to use.    

Arpat (2005) and Arpat and Caers (2007) proposed a simulation algorithm called 

simulation with patterns (simpat). In simpat, the pattern database is generated as in 

fultersim; however, the simulation process is different. The sequential simulation 

paradigm is also used to generate a realization but, at each node location, a data event is 

compared to all patterns from the pattern database. Then, the most similar pattern is 

entirely pasted on the realization grid. The simulation proceeds until all nodes of the grid 

have been visited. In this method, the function used to measure similarity between data 

event and patterns have a great impact on the quality of the simulation. Arpat (2005) 

suggests the use of Minkowski metrics, such as Euclidean and Manhattan distances, since 

they are commonly used in Earth’s sciences applications. For categorical simulations, the 

author also suggests the use of these metrics coupled with a “proximity transform”, which 

transform binary images to continuous images, by mapping the proximity of each node of 

the grid to the target object. The main issues concerning such approach are: (a) the large 

computational complexity associated with the similarity searches, because it actually 

compare the retrieved data event to all patterns in a TI, leading to a poor CPU 
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performance; and (b) the fact that the randomization of the process is mostly linked on 

the definition of the random path, hence the realizations are likely to be merely shuffles 

of the TI. 

Honarkhah (2011) and Honarkhah and Caers (2010) propose a framework where a 

distance-based method is used to represent patterns of the TI as points in an arbitrary 

space, such that the dissimilarities between the patterns is related to the distances between 

the points in that space. First, a dissimilarity matrix between the several patterns is 

calculated using a distance function such as the Euclidean distance. Then, 

multidimensional scaling (Cox and Cox, 2010) is used to transform the dissimilarity 

matrix into a set of coordinates such that the Euclidean distances obtained from these 

coordinates approximate as well as possible the original distances. Once the high-

dimensional data (patterns) are represented in a lower-dimensional space (preserving the 

intrinsic dissimilarities), a clustering algorithm is used to group the patterns into classes. 

For this purpose, Honarkhah (2011) and Honarkhah and Caers (2012) suggest the 

application of kernel k-means which works on a high-dimensional feature space. 

Applying k-means in the feature space increases the capability of the algorithm for 

dealing with non-linear and complex structures. The main drawback concerning such 

distance-based framework is its computational complexity. Both the application of 

multidimensional scaling and kernel k-means becomes very computationally costly for 

large datasets. Honarkhah and Caers (2010) give several solutions to tackle such issues 

by either adapting these algorithms or by using some pre-processing step to reduce the 

dimensionality of the problem. 

Mustapha et. al. (2014) introduced an algorithm in which the spatial patterns are first 

mapped from their high-dimensional space to a set of real values that are further 

classified in a partitioning step (CDFSim). In this later process, the real values are plotted 

in a two dimension Cartesian coordinate system with their respective values in the y-axis 

and their locations in the x-axis.  Then, each value is scaled by the total sum and the 

obtained values are reordered in increasing order. From these new values, a cumulative 

distribution is built, with the ordinate-values bounded between zero and one. Afterwards, 

‘quantiles’ can be used to split the values into different classes (e.g., if two classes are 
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desired, patterns mapped with values below 0.5 threshold belong to a given class and the 

values above to another). Another option is to find the center of each of those intervals 

and retrieve the closest patterns to them. Then, these patterns are used as classes’ 

centroids and the other patterns are grouped in the class of the closest centroid, measured 

using Euclidean distances between the patterns in their original space. Such method is 

potentially faster than k-means based algorithms because the centroids of classes are only 

defined a single time rather than iteratively until convergence is reached. The downside 

of such approach is that summarizing patterns in one dimensional space may hide 

important dissimilarities arising from complex structures in the spatial patterns.    

Mariethoz et. al. (2010) proposed a direct sampling (DS) method which, as opposed to 

storing and counting the configurations found in the TI (snesim), directly samples the TI 

in a random manner, conditioned to the data event. Contrary to the other methods 

inspired on simpat, in DS the shape and size of the templates are not predefined. DS 

proceeds as following: (i) a random path is defined to sequentially visit each of the nodes; 

(ii) at a given node location, n neighbouring information within a search radius is 

retrieved; (iii) this data event (neighbourhood) defines a set of lag vectors (multi-pixel 

configuration) that is used to randomly scan the TI, seeking for similar patterns. 

Whenever a pattern whose dissimilarity falls below a given threshold is found, the 

algorithm stops the search and the central node is simulated. If such a pattern is not found 

after a given number of iterations, the closest pattern found so far is retrieved for the 

simulation of the central node. 

An important accomplishment of DS is that, reproduction of large scale structures is 

inherent of its process, without the need of a multiple grid implementation, since in the 

beginning of the simulation the search radius tend to be much larger than in the end, in 

order to retrieve the same amount of n neighbouring information. A faster version of DS 

is accomplished in Rezaee et. al., (2013) where a bunch of nodes are simultaneously 

patched with the central node being simulated.  The Direct Sampling algorithm is similar 

to simpat but potentially increases it CPU performance. However, it accounts with a large 

number of parameters that need to be set and tuned for providing reasonable realizations. 
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Aiming to provide realizations with a better continuity, a patchwork simulation method 

(PSM) is proposed by Faucher et. al. (2013) where simulation is carried out on a moving 

squared template that, because of the unilateral path, overlaps an L-shape area of 

previously simulated sites, which are the data events to be compared with the patterns of 

the TI database. For the candidate patterns which are most similar to the data event, one 

is randomly drawn accordingly to a transition probability, and only its bottom-right 

region is patched on the realization grid. An important achievement of this approach is 

the adjustment of the transition probabilities in order to enforce the reproduction of 

histograms during the simulation process, instead of assigning equal probabilities for 

each of the closest patterns to be randomly drawn. 

There are also methods based on other types of frameworks, which are not described 

here, such as object-based simulation (Haldorsen and Lake, 1984) and iterative 

approaches (Bratvold et. al., 1994; Tyler et. al., 1992). 

2.2.3 Dealing with Stationarity and Long-range Structures in MPS Methods 

Over the years, a series of general improvements were proposed and they are extendable 

to multiple of the MPS algorithms previously shown. For example, when snesim was 

developed by Strebelle (2000), the author proposed an extension of the multiple-grid 

simulation, first introduced by Tran (1994) for variograms-based approaches. A number 

G of nested and increasingly finer grids are sequentially simulated, with templates 

proportionally re-scaled to the spacing of the nodes. Such strategy allows capturing for 

large-scale training structures at coarse grid levels, which improves the quality of the 

realizations. Strebelle and Cavelius (2014) add the idea of intermediate subgrids to allow 

the simulation of a higher number of nodes during coarse levels and using data templates 

that preferentially include previously simulated nodes. Arpat (2005) coupled the 

multiple-grids with the idea of dual templates, for populating the finer grids during the 

simulation of coarse grids. Such idea is interesting because, in pattern based MPS 

methods, it is often desired to have a fully known data event, which allows similarity 

calculations in a low dimensional space (e.g., Filtersim (Zhang et. al., 2006); and 

Wavesim (Chaterjee et. al., 2011, 2012). Strebelle and Zhang (2005) brought a series of 

ways to deal with non-stationary features (e.g., rotation and affinity), especially for the 
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context of snesim. For doing so, multiple search-trees must be built in order to allow the 

characterization of multiple domains of stationary. Similarly for pattern-based MPS, 

Honarkhah and Caers (2012) present two different ways of considering the spatial 

coordinate of the patterns during the dissimilarity calculation, thereby only drawing 

patterns locally from the training image rather than globally (i.e., hypothesis of local 

stationarity).  Therefore, in such extension, the TI and the realization grid must be of the 

same sizes. A location dependent strategy to deal with non-stationarity is also 

implemented in Wavesim for the case study detailed in Chapter 3. 

2.2.4 High-order Simulation Based on Spatial Cumulants 

Also to reduce the high dependency on the TI, seen in most of the MPS methods, 

Mustapha and Dimitrakopoulos (2010) introduced a MPS framework based on spatial 

cumulants. Cumulants, which can be written as a function of moments, bring an attractive 

way for characterizing non-Gaussian random process (Rosenblatt, 1985). 

Dimitrakopoulos et al. (2010) have shown that high-order spatial cumulants, calculated 

through the definition of a spatial template, can be used to capture complex geological 

features and geometrical shapes of the natural phenomena. Through the visualisation of 

cumulant maps it is possible to identify and characterize redundancy, orientation and a 

series of other features of the spatial process. The deeper understanding about the 

relationship between cumulants as mathematical entities and their ability to characterize 

geological patterns led the same authors to develop a high-order simulation method based 

on spatial cumulants, termed hosim (Mustapha and Dimitrakopoulos, 2010), which is also 

based on a sequential simulation paradigm. The core modification is during the 

estimation of the local conditional probabilities. Consider the following relation: 

 (  |(  ))   
              (            )

    (  )
 (2.9) 

where    {       } are the conditioning data,    is the node to be simulated and: 
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    (  )  ∫               (            )    
 

  (2.10) 

The numerator in equation 2.9 can be obtained through a series of orthonormal 

polynomials weighted by Legendre cumulants: 
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(2.11) 

where  ̅ ( ) is the normalized m
th

-order Legendre polynomial and L denotes the 

Legendre cumulants. If a maximum order of approximation ω is defined, 

   (           ) can be approximated through the following relation: 
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The Legendre cumulants are calculated by using the following equation: 

       ∫    
̅̅̅̅ (  )    

̅̅ ̅̅ (  )  (     )       
  

 (2.13) 

All the equations from 2.9 to 2.13 were taken from (Mustapha and Dimitrakopoulos, 

2010). Hosim is data driven, as opposed to the other high-order simulation methods, 

which are training image driven. This means that hosim tries to first infer the multiple-

point statistics from the data, only relying on the TI when a small amount of replicates 

are found.  

2.2.5 Validating Simulated Realizations 

The simulated realizations of Olympic Dam copper deposit, presented in Chapter 4, are 

validated in terms of histograms, variograms and high-order statistics. The latter is 

analyzed through high-order spatial cumulants (hosc) (Dimitrakopoulos et. al., 2010), 

whose use for validating simulation results is shown in De Iaco and Maggio (2011). 
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Cumulants are an extension of the covariance function, and are able to describe non-

Gaussian stationary and ergodic random fields, since they can capture complex spatial 

patterns and their connectivity in geological environments (De Iaco and Maggio, 2011). 

All the statistics from the simulated realizations are compared to both the training image 

and data set. 
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Chapter 3 

Multiple-Point Simulation Based on Wavelet Analysis  

The wavelet transformation based simulation method of Chatterjee et. al. (2011, 2012) is 

outlined in this section, pointing at the differences between categorical and continuous 

simulations, where appropriate. It consists in four main steps: 1) generation of the pattern 

database, 2) Dimensional reduction of the pattern database by using discrete wavelet 

transform, 3) Classification of the pattern database, and 4) Simulation based on the 

patterns. Each of these steps are described in more detail in this chapter. 

3.1 Pattern Database Generation 

The training image is usually discretized in a regular grid Gti and, for each location u ∊ Gti 

in this grid, ti(u) represents the value of this node in the training image. Besides, tiT(u) 

indicates a multiple-point vector, which is defined over a spatial template T centered in 

node u, i.e: 

   ( )  {  (    )   (    )     (    )     (     )} (3.1) 

where hα are the vectors which define the geometry of the template containing nT nodes, 

and α = {1, 2, … , nT}. The vector h1 = 0 represents the central node of the template. 

Figure 2 shows an example of a template. In order to generate the pattern database, a 

template size and geometry has to be first determined, according to the definition 

presented above. Then, the training image is scanned using this template, and each 

pattern is generated by centering it in each of the nodes in the training image. It is 

important to observe that, after a pattern is obtained, its location does not matter 

anymore. 

For categorical simulation, in some cases, the process has to be performed for many 

categories. The way to deal with this is to generate one training image for each category, 

using indicator variables transformation. For example, say there are M categories to be 

simulated. The indicator variable Im (u), m = 1, … , M, u ∊ Gti is defined as: 
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(3.2) 

Therefore, each location is represented by a vector of binary values, where the m
th

 

element is 1 if that node belongs to category m, and 0 otherwise. Thus, for each node, 

there will be exactly one element equal to 1. In the other hand, for the continuous case, 

there is no need to transform the values. The patterns are stored exactly as they appear in 

the training image. Figure 3 shows the pattern database related to the template defined in 

Figure 2, for a two-category training image. 

 

Figure 2 - Example of a spatial template. Figure taken from Honarkhah and Caers (2010). 

if u belongs to category m 

otherwise 
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Figure 3 - Generation of the pattern database. Figure taken from Honarkhah and Caers (2010). 

3.2 Pattern Database Decomposition 

After the pattern database is generated, it has to be divided into classes, so that the 

simulation can be performed. However, if it is done to the original patterns, this 

classification can be extremely computational expensive, and the time it would take for 

large cases could be prohibitive. Hence, before being divided into classes, the patterns 

have their dimension reduced, so that the classification step can be done efficiently. This 

same idea is used in filtersim (Zhang, 2006; Zhang, Switzer and Journel 2006; Wu, 

Zhang and Journel, 2008), where the dimension reduction was done by applying some 

filters to each of the patterns, and the classification was carried out based on the filter 

scores. In the two-dimensional case, 6 x M filters are used and in three-dimensional case, 

9 x M filters are used to classify the patterns, where M is the number of categories in the 

training image. In the case of wavesim, the dimension reduction is performed through 

wavelet analysis. 

Wavelet transformation is widely used, and its main applications are in signal processing 

and in data compression. Bénéteau and Fleet (2011) present an intuitive introduction to 

this subject, and Mallat (1998) shows it in more detail. The idea in wavelet analysis 

applied to image compression is to decompose an image in two kinds of information: 1) 
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average type information of the nearby pixels, called approximate sub-band of the image; 

and 2) how these pixels depart from local average. Both of them together keep all the 

information about the image, but the first one keeps most of its variability. Hence, the 

approximate sub-band is usually an enough representation of the complete image for 

several applications and can be used instead of the original image. The advantage of 

using the sub-band image instead of the original one is related to less memory 

requirements and efficiency, in computational terms. Figure 4 shows an image and its 

first and second scale wavelet decomposition. In 2D cases, the approximate sub-band 

images are calculated by averaging each 2x2 squares, and the second kind of information 

mentioned above is how the values of each of the directions (horizontal, vertical and 

diagonal) depart from that average. That is why there are 4 resulting images after each 

scale of decomposition. Besides, as one can see Figure 4 the second scale decomposition 

is obtained by applying wavelet analysis to the approximate sub-band after first scale 

decomposition.  

In a more formal way, define  ̃   as being the following matrix: 
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The wavelet decomposition of a 2D image AMxN is given by: 
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where B, V, H and D are the 4 components resulting from the wavelet decomposition, as 

shown in Figure 4. Equations 3.3 to 3.8 were taken from Bénéteau and Fleet (2011), and 

they can easily be extended to 3D cases. 

The idea presented in matricial form in equation 3.3 to 3.8 can be translated to a 

summation, as in equation 3.9, which states that a pattern     with dimensions     can 

be decomposed as: 
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 (3.9) 

where D = {LH, HL, HH}, L and H are low-pass and high-pass filters,       ⁄ , J is 

the number of scales, N = p when p is even and N = (p+1) when p is odd, ϕj is the scaling 

function and ψj
B
 are the wavelet functions. The coefficients      and       are calculated 

by taking the inner products between a pattern (   ) and scaling (  ) and wavelet 

functions (  
 ), respectively, according to the following expressions: 

     ⟨      ⟩ 

    
  ⟨      

 ⟩ 
(3.10) 

Wavesim uses the Haar wavelet basis function, which is defined as follows: 
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Recall that, for categorical simulation, M training images are generated from the original 

one through indicator transformation, where M is the number of categories. The 

dimension of the approximate sub-band for a M categories image will be: 

   (
 

  
)
 

    (3.12) 

where d is the dimension of the image, and j is the number of scales. As the size of the 

original image is (      ) the reduction factor is 2
jd

. 

 

Figure 4 - Original image (top), image after one scale wavelet decomposition (left) and after two 

scale decomposition (right). Image taken from Bénéteau and Fleet (2011). 

3.3 Classification of the Pattern Database 

The classification of the pattern database is performed based on the approximate sub-

band of the patterns, which had their dimensionality reduced according to j in the last 

section. This way, the classification can be done much more efficiently. The algorithm 

used here is the k-means clustering. The K-means clustering technique aims to divide M 

points in N dimensions into k clusters, in such a way that the within cluster variance is 

minimized (Hartigan and Wong, 1979). Some advantages of this algorithm is being easy 

to program and computationally economical. Besides Hartigan and Wong (1979), 

MacQueen (1967) and Ding and He (2004) provide good description and information 

about k-means clustering. 
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First, the number (k) of clusters needs to be provided. Then, k patterns are chosen 

randomly from the pattern database to be the initial centroids of the classes. Subsequently 

the database is entirely visited, and each pattern is compared to the initial centroids; the 

class corresponding to the most similar centroid is the chosen one for that pattern. Then, 

the k new centroids are calculated by averaging all elements within each of the classes. 

This is done iteratively, until the position of the centroids do not change anymore, which 

is when the final configuration of the clusters is achieved. At each iteration, the objective 

is to minimize the following function: 
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where ti
(j)

 represents patterns i classified in cluster j, cj is the centroid of class j and 

‖  
( )
   ‖

 

 is the squared Euclidean distance between ti
(j)

and cj. So Z is the sum over all 

distances between the patterns and their respective class centroid. When this process is 

completed, each class is labeled by its prototype, which is the average over all patterns in 

that class (same as centroid). 

3.4 Simulation 

After the pattern database is divided into classes, the simulation itself can be performed. 

This algorithm makes use of the sequential simulation paradigm (Goovaerts, 1997) and it 

comprises two main steps, for each node in the random path: 

1. Finding the best match class, by measuring the similarity between conditioning data 

event and classes prototypes; 

2. Drawing a pattern from the chosen cluster to be pasted back onto the simulation 

grid. 

First of all, a random path has to be defined, in such a way that all nodes in the grid are 

visited. Then, the same template used to scan the training image to generate the pattern 

database is placed on a node, so that the conditioning data event related to that location 

can be obtained. This data event has to be compared to each of the class prototypes, in 
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order to choose the most similar one. In this work, this is done through a distance 

function called L2-norm, defined as: 
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where x is the conditioning data event, y is the class prototype, ntype is the amount of data 

of a given data type and ωi is the weight associate of data type i. Three data types are 

considered here: hard data, previously simulated node inside inner patch and previously 

simulated node outside inner patch. The weight associated with hard data is the highest, 

and the one associate with previously simulated node outside inner patch is the lowest. 

When a pattern is pasted onto the simulation grid, the user can choose to freeze an 

innermost portion of it, which will not be visited afterwards, whereas the nodes outside 

this innermost portion will be revisited and consequently, re-simulated. This innermost 

part is called inner patch. 

As the process goes and more nodes are simulated, a situation where all nodes inside the 

conditioning data event are informed may happen. For these cases, distances between 

data event and prototypes are calculated based on their sub-band coefficients, obtained 

through wavelet decomposition. For these cases, the following distance function is used: 
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where napprox is the amount of sub-band coefficients, and  x
approx

 and y
approx

 are the 

approximate sub-band coefficients of the data event and of the prototype class, 

respectively. If there is a hard data within the conditioning data event, equation (3.14) 

will be used even if all nodes are informed. After the distance between a conditioning 

data event and each of the classes prototypes are calculated, the most similar one i.e., the 

one holding the lowest value for equation (3.14) or equation (3.16) depending on the 
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case, is chosen. So now, step number 2 mentioned above (drawing a pattern from chosen 

cluster) can be performed. 

For categorical simulation, a cumulative distribution function (cdf) relative to the central 

node is built for that class. Then, a Monte-Carlo sampling is done in that ccdf in order to 

choose the category of the central node only. After that, a pattern is chosen randomly 

among the ones which have the central nodes belonging to the same category drawn in 

the Monte-Carlo sampling. For the continuous simulation, a pattern is chosen randomly 

from the best matched class; no cdf is generated. The chosen pattern is finally pasted 

back onto the simulation grid, and the inner patch defined by the user is frozen. This 

procedure is repeated until all the nodes defined in the random path are simulated. 

In summary, the simulation method using wavelet analysis described herein has the 

following steps: 

1. Generate the pattern database by scanning the training image with a given template. 

2. Decompose the patterns using wavelet analysis. 

3. Group these patterns into classes using k-means algorithm. 

4. Calculate the prototypes of each class. 

5. Define random path to visit all nodes to be simulated. 

6. Compare data event to prototypes. 

7. Choose a pattern from best matched. 

8. Past it back onto simulation grid. 

9. Repeat steps 6 to 8 until all nodes are simulated. 

10. Repeat steps 5 to 9 to generate multiple realizations. 

3.5 Generation of Training Images 

Multiple Point Simulation methods are training image driven. Therefore, a training image 

cannot present very different features (or statistics) compared to the conditioning data, 

otherwise the simulated realizations will have poor reproduction of both training image’s 

and samples’ statistics. In this section, the methods used to generate both categorical and 

continuous training images in the case studies will be shown. 
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3.5.1 Categorical Training Image 

The generation of categorical training images may be based on different kinds of 

information, depending on what will be simulated and the information the practitioner 

has in hands. When modeling petroleum reservoirs, for example, the following 

information can be used: outcrops, photographs of present day deposits or depositional 

systems, drawings from experts, geological interpretation, etc. (Strebelle, 2000 and 

2002). Boucher (2009) discusses the importance of training images for capturing various 

features of the area to be modeled, as well as some intricacies in its generation.  

In mining, categorical training images are usually generated through a geological 

interpretation using drill hole data and geological background information (Jones et. al., 

2013; Boucher et al., 2013; and Goodfellow et al. 2012), as was the case of this work. 

Exhaustive information may also be used as in Osterholt and Dimitrakopoulos (2007), in 

which case information from a previously mined area from the same mine was available. 

3.5.2 Continuous Training Image 

The continuous training image used in the case study was generated using a Low Rank 

Tensor Completion (LRTC) method (Yahya, 2011, and Liu et.al. 2013). The goal of 

tensor completion methods is to determine values for missing elements, considering all 

the information available, and not only the neighboring ones, through its rank. However, 

rank constraint optimization problems are non-convex. Because of that, usually the trace 

norm is used to approximate the rank of a tensor, consisting in a convex relaxation 

version of the minimization problem. 

The tensor completion optimization can be formulated as follows: 

    ∑  ‖ ( )‖ 

 

   

 
 

(3.17) 

            

where   ‖ ( )‖ is the trace norm of tensor X, α are constants satisfying ∑     
 
    and 

     and  ( ) represents the unfolded tensor along each mode. In this problem, the 
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matrices  ( ) share the same entries and as a result, they cannot be optimized directly. 

Therefore, additional matrices          are introduced and the problem can be relaxed: 

    ∑  ‖ ( )‖  
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(3.18) 

            

where      and ‖ ‖  is the Frobenius norm operator of a matrix. As this problem is 

convex, but non-differentiable, the block coordinate descent (BCD) can be used for its 

optimization. The basic idea of BCD is to optimize a group (block) of variables while the 

rest are fixed. The variables are divided in     blocks:              . 

The optimal solution of X with all the other variables fixes is given by: 
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and the solution to this problem is: 
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Finally,    is given by solving the following problem: 
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Hence, the optimal    is given by   ( ( )), where   ( ) is the shrinkage operator and 

      ⁄ . 
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Chapter 4 

Simulation of Olympic Dam Copper Deposit, South Australia 

4.1 The Deposit 

Olympic Dam deposit is part of Gawler Craton, and it is located in Australia, in the center 

of the province South Australia, approximately 520 km NNW of Adelaide. It is a very 

large (6 km x 3 km x 800 m) polymetallic orebody, containing Cu, U, Au and Ag. 

Nowadays, it is the fourth largest producer of copper and the largest producer or uranium 

(“Olympic Dam Mine”, InfoMine Inc.). In this case study, only copper will be considered 

in the simulation. Olympic Dam is a huge breccia complex, hosted by deformed and 

highly brecciated granite, which is slightly older than the mineralization. It is covered by 

300 meter layer of flat-lying sedimentary rocks. This deposit is a copper-gold type of 

mineralization: it presents a complex copper mineral zoning pattern, centered on a 

structurally controlled barren quartz-hematite breccia. There are two types 

mineralization: 1) the strata-bound bornite-chalcopyrite-pyrite one, confined to the 

Olympic Dam formation, and 2) chalcocite-bornite in lenses and cross-cutting veins in 

both Olympic Dam and neighboring formations. Moving outward/downward, the 

following copper minerals are more common: chalcocite-bornite, bornite, chalcopyrite-

bornite, chalcopyrite and chalcopyrite-pyrite, where the highest grades are usually 

associated with bornite ± chalcopyrite. Sulfide mineral assemblages in the Olympic Dam 

deposit are demonstrably in equilibrium with ubiquitous hematite (Fe2O3) alteration of 

the granite host rock that is thought to be older than the sulfide deposition. The 

disappearance of chalcocite in favor of chalcopyrite and subsequently bornite for pyrite 

mark the locations where these reactions proceed to completeness (Roberts and Hudson, 

1983, Skirrow et al., 2007, Belperio and Freeman, 2004, and Hahn, 2008). 
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4.2 Simulation of Material Types 

4.2.1 Data Set and Training Image 

The drill hole data set consists of 5-m composites and the total of sulfides is calculated as 

the sum of the following minerals: chalcocite (Cu2S), bornite (Cu5FeS4), chalcopyrite 

(CuFeS2) and pyrite (FeS2).  As mention before, the sulfides are zoned from inner bornite 

± chalcocite through bornite ± chalcopyrite to outer chalcopyrite ± pyrite.  The mineral 

content is calculated based on copper and sulfide sulfur assays, and they are believed to 

be at the same level of accuracy as the underlying assays.  Sulfide-bearing intervals are 

defined as greater than or equal to 0.05 % of total sulfides, which is a somewhat arbitrary 

threshold value. Table 1 shows how the material types to be simulated are defined. In this 

table, BN, CC, PY and CPY mean, respectively, bornite, chalcocite pyrite and 

chalcopyrite. Domains 1 and 2 are the most important. Domain 3 also contains important 

amount of copper and, finally, domain 0 is mostly waste.  

Table 1 - Definition of material types used to classify data into categories. BN, CC, PY and CPY 

mean, respectively, bornite, chalcocite pyrite and chalcopyrite. 

Geological Domain Definition 

0 Total Sulfides < 0.10% 

1 (BN+CC) ≥ 0.05 and (PY+CPY) < 0.05 

2 (BN+CC) ≥ 0.05 and (PY+CPY) ≥ 0.05 

3 (PY+CPY) ≥ 0.05 and (BN+CC) < 0.05 

 

Figure 5 shows the samples within the study area. The colors correspond to the 

definitions in Table 1. The training image is generated through a geological 

interpretation, as mentioned in Section 3.1, using the data in Figure 5. Figure 6 shows 

three sections of the training image generated, whereas Figure 7 displays the spatial 

configuration of material types 1 and 2, so that it is possible to see the spatial complexity 

of these units. The training image is discretized in a grid of 15m x 15m x5m, resulting in 

120 x 150 x 170 nodes in X, Y and Z directions, respectively and a total of 2,813,670 

nodes. The deposit to be simulated is discretized the same way as the training image. 
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Figure 5 - Drillhole samples of Olympic Dam copper deposit, colored according to material types 

defined in Table 1. 

 

Figure 6 - Cross-sections of the training image (X = 96, Y = 118 and Z = 51). 
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a) 

 

b) 

Figure 7: Spatial visualization of wireframes representing domains 1 and 2, in the training image: 

a) domain 1; and b) domain 2. 
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4.2.2 Simulation Results 

The number of clusters and template sizes are defined through trial and error. It is 

important to note that, the larger the template and the number of clusters, the better the 

results tend to be, however the run time of the algorithm becomes longer. Hence, the 

values to be used for these parameters are the ones showing the best trade-off between 

quality of results and computational time. Table 2 shows the parameters that were chosen 

through testing to simulate Olympic Dam deposit’s material types. 

Table 2 - Parameters used in simulation. 

Parameter Value 

Template 11 x 11 x 5 

Inner Patch 5 x 5 x 3 

Number of Clusters 500 

Number of Realizations 20 

 

Template, inner patch and number of clusters are defined in sections 2.1, 2.4 and 2.3, 

respectively. Figure 8 displays 3 sections of two simulated realization. These sections are 

the same ones shown for the training image in Figure 6. Comparison between training 

image and simulations section shows that both present the same regional configuration: 

same categories tend to appear in the same regions. However, as expected, the simulated 

realizations are less smooth, presenting more variable patterns. Figure 9 shows the 

histogram of the 3 mineralized categories in the 20 simulations, compared to training 

image and declustered samples. According to Figure 9, simulations reproduce well the 

proportions of the 3 material types. It also shows the effect of the training image on the 

simulations’ histograms. Since in this case study, there are a relatively large amount of 

hard data,  the simulations reproduced data’s histogram as opposed to training image’s 

one. Figure 10, Figure 11 and Figure 12 show the direct variogram for the 3 material 

types, in 3 directions: East-West (EW), North-South (NS) and vertical. The cross-

correlograms between these 3 material types for EW, NS and vertical directions are 

displayed in Figure 13, Figure 14 and Figure 15. All results suggest a reasonable 

reproduction of training image’s and samples’ variograms and cross-variograms by the 
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simulated realizations of the 3 material types at Olympic Dam. As the simulation was 

performed with a training image driven method, it was expected that simulations’ 

variograms were closer to training image’s ones. However, as there are a large amount of 

samples in this case study, they are more similar to data’s variograms. Validations are 

also performed in terms of high-order statistics, which are analyzed through cumulant 

maps, as shown in De Iaco and Maggio (2011). In order for the cumulant maps to be 

calculated, spatial templates have to be defined. In this case, an L-shape template was 

used to calculate 3
th

 order cumulant {(1,0,0); (0,1,0)} and for the 4
th

 one, the template 

{(1,0,0); (0, 1, 0); (0,0,1)} was used. Figure 16 and Figure 17 show cumulant maps 

calculated considering material types 1, 2 and 3. As it may be noted, the simulations’ 

cumulant maps can be seen as being “in between” samples’ and training image’s ones: 

they show a similar general pattern to latter, but with lesser continuity, due to influence 

of the former. 
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Figure 8 - Two simulations of material types. The sections are the same than in Figure 6. 
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Figure 9 - Histogram of 20 material types’ simulations compared to data and training image. 

 

Figure 10 -Variograms of 20 simulations of material types (light blue line), samples (black dot) 

and training image (red line), for material type 1. 
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Figure 11 - Variograms of 20 simulations of material types (light blue line), samples (black dot) 

and training image (red line), for material type 2. 

 

Figure 12 - Variograms of 20 simulations of material types (light blue line), samples (black dot) 

and training image (red line), for material type 3. 
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Figure 13 - Cross-correlograms of 20 simulations of material types (light blue line), samples 

(black dot) and training image (red line), for material types 1 and 2. 

 

Figure 14 - Cross-correlograms of 20 simulations of material types (light blue line), samples 

(black dot) and training image (red line), for material types 1 and 3. 
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Figure 15 - Cross-correlograms of 20 simulations of material types (light blue line), samples 

(black dot) and training image (red line), for material types 2 and 3. 
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                                     (a)                                                                                 (b) 

 

                                       (c)                                                                               (d) 

Figure 16 - Third-order cumulant maps for a) samples; b) training image; c) and d) two 

realizations. Direction of cumulant: {(1,0,0); (0,1,0)}.   
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Figure 17 - Fourth-order cumulant maps for a) samples; b) training image; c) and d) two 

realizations. Direction of cumulant: {(1,0,0); (0, 1, 0); (0,0,1)}. 

4.3 Simulation of Copper Grades 

4.3.1 Data Set and Training Image 

Having defined material types of Olympic Dam deposit through categorical simulation, 

copper grades are simulated within these boundaries, using the same wavelet based 

method. Figure 18 and Table 3 show, respectively, the histograms and statistics of copper 
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grade for each material type, separately. Material types 1 and 2 are the richest ones; type 

3 also contains high copper grade samples; and finally type 0 is mostly waste and, as 

result, it is not simulated. 

 

Figure 18 - Declustered copper grade histograms for each geological domain. 

Table 3 - Statistics of copper grade per domain. 

Statistics Cat0 Cat1 Cat2 Cat3 

Mean 0.104 0.733 0.741 0.453 

Stand. Dev. 0.372 1.137 1.012 0.614 

Variance 0.139 1.292 1.023 0.377 

Kurtosis 67.301 7.318 5.854 5.250 

Skewness 7.655 2.567 2.249 2.139 

Minimum 0.005 0.005 0.005 0.005 

Maximum 4.58 7.66 6.866 4.08 

10th Perc. 0.007 0.020 0.024 0.010 

25th Perc. 0.014 0.109 0.123 0.071 

50th Perc. 0.030 0.200 0.256 0.180 

75th Perc. 0.059 0.858 0.993 0.621 

90th Perc. 0.114 2.184 2.125 1.259 
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The training image used in this case study is generated through low rank tensor 

completion (Liu et.al., 2013), as described in Section 3.2. The algorithm works better for 

higher density of samples, hence the training image was generated based on the densest 

sampled part of the deposit, as shown in Figure 19. Figure 20 displays 3 cross-sections of 

the training image. Its dimensions in X, Y and Z direction are 80, 80 and 111, 

respectively. The continuous simulation is performed as follows. To simulate material 

type 1, for example, only patterns which lie inside the wireframe related to this material, 

as defined in Figure 7 (a), are taken from the training image. Then, these patterns are 

pasted on the simulation grid, but only on the nodes which lie inside the simulated 

wireframe related to this material type, according to the simulation of material types in 

the previous section. The same procedure is then repeated to simulate copper grades for 

categories 2 and 3.  

 

Figure 19 - Data set colored regarding copper grade. Samples used to build training image is 

highlighted. 
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Figure 20 - Cross-sections of the continuous training image (X = 0, Y = 0 and Z = 0). 

4.3.2 Simulation Results 

The parameters used to simulate the copper grades within each material type are 

displayed in Table 4. As in the simulation of material types, the simulation grid is 

discretized by 15m x 15m x 5m, resulting in 120 x 150 x 170 nodes in X, Y and Z 

directions respectively, and a total of 2,813,670 nodes. 

Table 4 - Parameters used for the copper simulations. 

Parameter Value 

Template 11 x 11 x 9 

Inner Patch 5 x 5 x 5 

Number of Clusters 500 

Number of Realizations 3 

The template size and the number of clusters to be used are defined based on trial and 

error. Several values are tested, their results are analyzed and the values of these 

parameters which present the best trade-off between good quality results and 
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computational time are chosen. The tendency is that, the bigger the template and number 

of clusters, the better the results are and the longer it takes to run. Figure 21, Figure 22 

and Figure 23 show cross-sections in X, Y and Z directions respectively for 2 simulations, 

at point support. The 3 material types are being displayed together. The gray color 

corresponds to the category 0, which was not simulated. It is possible to see that, despite 

of presenting different shapes, due to be related to different categorical simulations, the 

copper simulations above tend to present the same spatial pattern; i.e. coincident rich and 

poor areas. Figure 24, Figure 25 and Figure 26 display the histograms of the 3 simulated 

realizations compared to training image and hard data, for material types 1, 2 and 3, 

respectively. They show that the simulated copper realizations present very similar 

histograms, compared to both samples and training image. It is noteworthy that the 

histograms of samples and training image are very similar: it is important to multiple-

point simulation techniques, including the method used herein, that the training image 

presents similar statistics to the hard data. Otherwise, the simulated realizations may 

show conflicting features. Figure 27, Figure 28 and Figure 29 show the copper grades 

variograms in the east/west, north/south and vertical directions for material types 1 and 2 

and 3, respectively. Simulated realizations show good reproduction of samples’ and 

training image’s variograms. Here, it is possible to note, again, the tendency of 

realizations to present their variograms in between the ones of samples and training 

image. Besides, the variograms of training image and samples are very similar to each 

other. Figure 30 and Figure 31 show, cumulant maps of copper grade regarding each 

material type for samples, training image and two simulated realizations.  They show 

how similar realizations’ maps are compared to training image’s ones, but with less 

continuity. This is due to the influence of more discontinuous samples’ maps over their 

cumulant maps. When comparing samples’ cumulant maps to simulation’s and training 

image’s ones, it is important to recall that the samples contains much less replicates for 

each lag. This may cause it to have some local artifacts, such as the discontinuities seen 

in the Figure 30 and Figure 31, which probably would not happen if more data were 

available. 
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Figure 21 - Cross-section (X = 40) showing realizations of copper grades (%), for 2 simulations. 

 

Figure 22 - Cross-section (Y = 120) showing realizations of copper grades (%), for 2 simulations. 
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Figure 23 - Horizontal view (Z = 80) showing realizations of copper grades (%), for 2 

simulations. 

 

Figure 24 - Copper histogram of material type 1. Comparison between training image, hard data 

and simulations. 
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Figure 25 - Copper histogram of material type 2. Comparison between training image, hard data 

and simulations. 

 

Figure 26: Copper histogram of material type 3. Comparison between training image, hard data 

and simulations. 
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Figure 27 - Copper grade variograms of 3 simulations (light blue line), samples (black dot) and 

training image (red line) for material type 1. 

 

Figure 28 - Copper grade variograms of 3 simulations (light blue line), samples (black dot) and 

training image (red line) for material type 2. 
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Figure 29 - Copper grade variograms of 3 simulations (light blue line), samples (black dot) and 

training image (red line) for material type 3. 
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       (a)                                                                           (b)  

 

     (c)                                                                           (d)  

Figure 30 - Copper grade third-order cumulant maps of a) training image; b) and c) two 

realizations. Direction of cumulant: {(1,0,0); (0,1,0)}.Distance in meters. 
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Figure 31 - Copper grade fourth-order cumulant maps of a) training image; b) and c) two 

realizations. Direction of cumulant: {(1,0,0); (0,1,0); (0,0,1)}. 
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Chapter 5 

Conclusions and Future Work 

In this thesis, a multiple-point statistics (MPS) simulation method for mineral deposits, 

which is based on wavelet analysis, is presented and tested in a full field case study, at 

Olympic Dam Copper Deposit, in South Australia. 

 Firstly, the literature review about main two-point statistics simulation methods used in 

the past and how they evolved to the new MPS methods is described. Past work 

mentioned in this chapter compared these techniques and show a better performance of 

the latter to model orebodies. 

Then, the MPS simulation method based on wavelet analysis used herein and the 

techniques used to generate both categorical and continuous training images are 

described. Finally, the application of the simulation method to Olympic Dam copper 

deposit located in Southern Australia is presented, in order to evaluate both volumetric 

and grades uncertainty. Olympic Dam presents 4 different material types and the training 

image used to simulate the orebody model is obtained through geological interpretation. 

Then, 3 of those categorical realizations are retained for the simulation of copper grades, 

which is performed considering one material type at a time. The continuous training 

image was generated through low rank tensor completion. The result is a set of 

equiprobable orebody models which accounts for volumetric and grade uncertainty. The 

validation of the simulations’ results is performed for low order statistics (histograms and 

variograms) and also for high-order statistics, through third and fourth-order spatial 

cumulant maps. This validation suggested that method tested herein can be successfully 

applied to real sized deposits, since Olympic Dam was discretized in 2,813,670 nodes. In 

all the cases, the statistics of the realizations were compared to both training image’s and 

samples’ statistics. This comparison showed an interesting point, which is common to all 

multiple point simulation methods, since they are training image driven: the statistics 

values of the realization tend to be in between training image’s and data’s ones. Because 

of that, conflicting information between training image and data samples has a negative 
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impact on the simulation’s results. Therefore, the training image has to be representative 

of the deposit to be simulated. 

In order to improve the efficiency of the simulation method presented herein, parallel and 

graphics processing unit (GPU) programming are to be tested. Besides, for simulating 

continuous variables, the results can be improved by calculating the histogram of values 

and storing the bins the values of each location in the pattern belongs to, instead of 

storing the values themselves. 

 



 

58 

 

List of References 

Albor FR, Dimitrakopoulos R (2009) Stochastic mine design optimisation based on simulated annealing: 

pit limits, production schedules, multiple orebody scenarios and sensitivity analysis. Min. Technol. 

(Trans. Inst. Min. Metall. A), 118, (2), 80–91. 

Arpat G, and Caers J (2007) Conditional simulation with patterns. Mathematical Geology 39 (2):177-203. 

Arpat GB (2005) Sequential simulation with patterns. PhD thesis, Stanford University, Stanford, CA, 

USA. 

Baker CK, Giacomo S M (2001) Resources and reserves: their uses and abuses by the equity markets. In 

Edwards, A. C. (Ed.), Mineral Resource and Ore Reserve Estimation – The AusIMM Guide to Good 

Practice (pp 666–676). Melbourne, Australia: AusIMM. 

Bastrakov, EN, Skirrow, RG, Davidson, GJ (2007) Fluid evolution and origins of iron oxide Cu-Au 

prospects in the Olympic Dam district, Gawler Craton, South Australia. Economic Geology, 102(8), 

1415-1440. 

Belperio A, Freeman H (2004) Common geological characteristics of Prominent Hill and Olympic Dam-

implications for iron oxide coppergold exploration models. Australian Institute of Mining Bulletin, 

Nov-Dec. Issue, 67-75. 

Bénéteau C, Van Fleet  PJ (2011) Discrete wavelet transformations and undergraduate education. Notices 

of the AMS 58.05. 

Boland N, Dumitrescu I, Froyland G (2008) A multistage stochastic programming approach to open 

pitmine production scheduling with uncertain geology. Optimization Online.Retrieved from 

www.optimizationonline.org/DBHTML/2008/10/2123.html 

Boland N, Dumitrescu I, Froyland G, Gleixner AM (2009). LP-based disaggregation approaches to 

solving the open pit mining production scheduling problem with block processing selectivity. 

Computers & Operations Research, 36, (4), 1064–1089. 

Boucher A, Dimitrakopoulos R (2009a)  Block simulation of multiple correlated variables. Mathematical 

Geosciences, 41(2), 215-237. 

Boucher A (2009b) Considering complex training images with search tree partitioning. Computers & 

Geosciences, 35(6): 1151-1158. 

http://www.optimizationonline.org/DBHTML/2008/10/2123.html


 

59 

 

Boucher A. Costa JF, Rasera LG, Motta E (2014) Simulation of geological contacts from interpreted 

geological model using multiple-point statistics. Mathematical Geosciences, 1-12. 

Bratvold RB, Holden L, Svanes T, Tyler K, (1994) STORM: integrated 3D stochastic reservoir modeling 

tool for geologists and reservoir engineers. SPE Paper Number 27563, pp. 242–261. 

Caccetta L, Hill SP (2003) An application of Branch and Cut to open pit mine scheduling. Journal of 

Global Optimization, 27, (2-3), 349-365. 

Caers J (2011) Modeling Uncertainty in the Earth Science, Willey-Blackwell, Chichester, UK. 

Caers J, Zhang T (2004) Multiple-point geostatistics: a quantitative vehicle for integrating geologic 

analogs into multiple reservoir models. Memoirs – American Association of Petroleum 

Geologists, 383-394. 

Chatterjee S, Mustapha H, Dimitrakopoulos, R (2011) Geologic heterogeneity representation using high‐

order spatial cumulants for subsurface flow and transport simulations. Water Resources 

Research, 47(8). 

Chatterjee S, Dimitrakopoulos R, Mustapha H (2012) Dimensional reduction of pattern-based simulation 

using wavelet analysis, Mathematical Geosciences 44: 343-374. 

Cox TF, Cox MA (2010) Multidimensional scaling. Boca Raton (Florida), CRC Press. 

Dagdelen K, Johnson TB (1986) Optimum open pit mine production scheduling by lagrangian 

parameterization. In Proc. 19th Internat. Appl. Comput. Oper. Res. Mineral Indust. Sympos. 

(APCOM) (pp. 127-142). Littleton, CO: SME. 

David M. (1977) Geostatistical ore reserve estimation. Amsterdam: Elsevier. 

David M (1988) Handbook of applied advanced geostatistical ore reserve estimation. Amsterdam, 

Elsevier 

David M, Dowd P, Korobov S (1974) Forecasting departure from planning in open pit design and grade 

control. In Proc. 12th Internat. Appl. Comput. Oper. Res. Mineral Indust. Sympos. (APCOM) (pp. 

F131-F142). Golden, CO. 

Davis MD (1987) Production of conditional simulations via the LU triangular decomposition of the 

covariance matrix. Mathematical Geology, 19, 91-98. 

De Iaco S, Maggio S (2011) Validation techniques for geological patterns simulations based on variogram 

and multiple-point statistics. Mathematical Geosciences, 43(4), 483-500. 



 

60 

 

Dimitrakopoulos R, Farrelly CT, Godoy M (2002) Moving forward from traditional optimization: grade 

uncertainty and risk effects in open pit design, Min. Technol. (Trans. Inst. Min. Metall. A), 111(1), 

82–88 

Dimitrakopoulos R, Luo X (2004) Generalized sequential Gaussian simulation on group size n and 

screen-effect approximations for large field simulations. Mathematical Geology, 36, (5), 567-591. 

Dimitrakopoulos R, Mustapha H, and Gloaguen E (2010) High-order statistics of spatial random fields: 

Exploring spatial cumulants for modeling complex non-Gaussian and non-linear phenomena. 

Mathematical Geosciences 42(1):65-99. 

Dimitrakopoulos R (2011) Stochastic optimization for strategic mine planning: a decade of 

developments. Journal of Mining Science, 47(2): 138-150. 

Ding C and He X (2004) K-means clustering via principal component analysis. Proc. of Int'l Conf. 

Machine Learning (ICML 2004): 225-232. 

Dowd P (1994) Risk assessment in reserve estimation and open pit planning, Min. Technol. (Trans. Inst. 

Min. Metall. A), 103, 148–154. 

Dowd P (1997) Risk in minerals projects: analysis, perception and management, Min. Technol. (Trans. 

Inst. Min. Metall. A), 106, 9–18. 

Faucher C, Saucier A, Marcotte D (2013) A new patchwork simulation method with control of the local-

mean histogram. Stochastic Environmental Research and Risk Assessment, 27(1), 253-273. 
Godoy M (2003) The effective management of geological risk in long-term production scheduling of 

open pit mines, Ph.D. thesis (unpublished), University of Queensland, Brisbane, Australia. 

Goodfellow R, Albor Consuegra F, Dimitrakopoulos R, Lloyd T (2012) Quantifying multi-element and 

volumetric uncertainty, Coleman McCreedy deposit, Ontario, Canada. Computers & Geosciences, 42, 

71-78. 

Goodfellow R, Dimitrakopoulos R (2013) Mining supply chain optimization under geological 

uncertainty. Retrieved from Les Cahiers du GERAD website: http://www.gerad.ca/fichiers/cahiers/G-

2013-54.pdf 

Goodfellow R (2014) Unified modelling and simultaneous optimization of open pit mining complexes 

with supply uncertainty. Thesis (Ph.D.) - Montreal: McGill University Libraries 

Goovaerts P (1997) Geostatistics for natural resources evaluation (Applied Geostatistics Series). Oxford 

University Press, Oxford. 

http://www.gerad.ca/fichiers/cahiers/G-2013-54.pdf
http://www.gerad.ca/fichiers/cahiers/G-2013-54.pdf


 

61 

 

Guardiano F, Srivastava R (1993) Multivariate geostatistics: beyond bivariate moments. In A. Soares 

(Ed.), Geostatistics Troia. Vol. 1 (pp. 133-144). Kluwer Academic Publications. 

Hahn T (2008) The Olympic Dam Cu-U-Au-REE Deposit, Australia. Retrieved from: http://www.geo.tu-

freiberg.de/oberseminar/os07_08/Thomas%20Hahn.pdf. 

Haldorsen HH, Lake LW (1984) A new approach to shale management in field-scale models. SPE 

Journal, April, pp.447–457. 

Hartigan, JA, Wong, MA (1979) Algorithm AS 136: A K-means clustering algorithm. Journal of the 

Royal Statistical Society, Series C (Applied Statistics) 28 (1): 100–108. 

Honarkhah M, Caers J (2010) Stochastic simulation of patterns using distance-based pattern 

modeling. Mathematical Geosciences, 42(5), 487-517. 

Honarkhah M (2011) Stochastic simulation of patterns using distance-based pattern modeling. Ph.D. 

thesis, Stanford University, Stanford, CA, USA. 

Honarkhah M, Caers J (2012) Direct pattern-based simulation of non-stationary geostatistical 

models. Mathematical Geosciences, 44(6), 651-672. 

Huang T, Lu DT, Li X, Wang L (2013) GPU-based SNESIM implementation for multiple-point statistical 

simulation. Computers & Geosciences, 54, 75-87. 

Hustrulid W, Kuchta M (1995) Open pit mining planning and design. AA Balkema, Rotterdam. 

Isaaks EH (1990) The Application of Monte Carlo methods to the analysis of spatially correlated data, 

Ph.D. Thesis, Stanford U., 213 pp. 

Johnson T (1969) Optimum production scheduling. In Proceedings of the 8th International Symposium on 

Computers and Operations Research (pp. 539–562). Salt Lake City. 

Jones P, Douglas I, Jewbali A (2013) Modeling combined geological and grade uncertainty: application 

of multiple-point simulation at the Apensu gold deposit, Ghana. Mathematical Geosciences, 45(8), 

949-965. 

Journel AG (1974) Geostatistics for conditional simulation of ore bodies. Economic Geology, 69(5), 673-

687. 

Journel AG, Huijbregts CJ (1978) Mining geostatistics. London: Academic Press. 

Journel AG, Alabert FG (1988) Focusing on spatial connectivity of extreme-valued attributes: Stochastic 

indicator models of reservoir heterogeneities. SPE paper, 18324. 

http://en.wikipedia.org/wiki/Journal_of_the_Royal_Statistical_Society
http://en.wikipedia.org/wiki/Journal_of_the_Royal_Statistical_Society


 

62 

 

Journel AG (1989a) Fundamentals of geostatistics in five lessons (Vol. 8). Washington, DC: American 

Geophysical Union. 

Journel AG, Alabert F (1989b) Non‐Gaussian data expansion in the Earth Sciences. Terra Nova, 1(2), 

123-134. 

Journel AG (2005) Beyond covariance: the advent of multiple-point geostatistics. In Geostatistics Banff 

2004 (pp. 225-233). Springer Netherlands. 

Journel AG (2007) Roadblocks to the evaluation of ore reserves - the simulation overpass and putting 

more geology into numerical models of deposits. In R. Dimitrakopoulos (Ed.), Orebody Modelling and 

Strategic Mine Planning - Uncertainty and Risk Management International Symposium (pp. 29–32). 

Burwood: AusIMM. 

Kolmogorov AN (1956) Foundations of the theory of probability. New York: Chelsea Publishing Co. 

Lamghari A, Dimitrakopoulos R (2012) A diversified tabu search approach for the open-pit mine 

production scheduling problem with metal uncertainty. European Journal of Operational Research, 

222, 642-652. 

Leite A, Dimitrakopoulos R (2007) Stochastic optimization model for open pit mine planning: application 

and risk analysis at a copper deposit. Min. Technol. (Trans. Inst. Min. Metall. A), 116, (3), 109-118.  

Leite A, Dimitrakopoulos R (2009) Production scheduling under metal uncertainty – Application of 

stochastic mathematical programming at an open pit copper mine and comparison to conventional 

scheduling. In R. Dimitrakopoulos (Ed.), Orebody Modeling and Strategic Mine Planning (pp. 35-39). 

AusIMM. 

Lerchs H, Grossmann IF (1965) Optimum design of open-pit mines. Canad. Inst. Mining Bull., 58, 47-54. 

Liu J, Musialski P, Wonka P, Ye J (2013) Tensor completion for estimating missing values in visual 

data. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(1), 208-220. 
Lloyd SP (1982) Least square quantization in PCM, IEE Transactions on Information Theory, 2, (2), 129-

137. 

MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. 

Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 

University of California Press, 1:281-297. 

Mallat S. (1998) A wavelet tour of signal processing, Academic Press, San Diego, CA. 



 

63 

 

Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple‐point 

geostatistical simulations. Water Resources Research, 46(11). 

Matheron G (1973) The intrinsic random functions and their applications. Advances in Applied 

Probability, 5(3), 439-468. 

Menabde M, Froyland G, Stone P, Yeates G (2007) Mining schedule optimisation for conditionally 

simulated orebodies. In R. Dimitrakopoulos (Ed.), Orebody Modelling and Strategic Mine Planning - 

Uncertainty and Risk Management International Symposium (pp. 379–384). Burwood: AusIMM. 

Montiel L, Dimitrakopoulos R (2013) An extended stochastic optimization method for multi-process 

mining complexes. Retrieved from Les Cahiers du GERAD website: www.gerad.ca/fichiers/cahiers/G-

2013-56.pdf. 

Montiel L (2014) On globally optimizing a mining complex under supply uncertainty: integrating 

components from deposits to transportation systems. Thesis (Ph.D.) - Montreal: McGill University 

Libraries. 

Mustapha H, Chatterjee S, Dimitrakopoulos R (2014) CDFSIM: efficient stochastic simulation through 

decomposition of cumulative distribution functions of transformed spatial patterns. Mathematical 

Geosciences, 46(1), 95-123. 

Mustapha H, Dimitrakopoulos R (2010) High-order stochastic simulations for complex non-Gaussian and 

non-linear geological patterns, Mathematical Geosciences, 42 (5). 

Osterholt V, Dimitrakopoulos R (2007) Simulation of wireframes and geometric features with multiple-

point techniques: application at Yandi iron ore deposit. Orebody modelling and strategic mine 

planning, AusIMM, Spectrum Series, 14, 95-124. 

Picard JC (1976) Maximal closure of a graph and applications to combinatorial problems. Management 

Science, 22, (11), 1268-1272. 

Ramazan S, Dimitrakopoulos R (2007) Stochastic optimization of long term production scheduling for 

open pit mines with a new integer programming formulation. In R. Dimitrakopoulos (Ed.), Orebody 

Modelling and Strategic Mine Planning - Uncertainty and Risk Management International Symposium 

(pp. 359–365). Burwood: AusIMM. 

Ramazan S, Dimitrakopoulos R (2013) Production scheduling with uncertain supply: A new solution 

to the open pit mining problem. Optimization and Engineering, 14, (2), 361–380. 

http://www.gerad.ca/fichiers/cahiers/G-2013-56.pdf
http://www.gerad.ca/fichiers/cahiers/G-2013-56.pdf


 

64 

 

Ravenscroft P (1992) Risk analysis for mine scheduling by conditional simulation. Min. Technol. (Trans. 

Inst. Min. Metall. A), 101, 104–108. 

Rezaee H, Mariethoz G, Koneshloo M, Asghari O (2013) Multiple-point geostatistical simulation using 

the bunch-pasting direct sampling method.Computers & Geosciences, 54, 293-308. 

Roberts DE, Hudson GRT (1983) The Olympic Dam copper-uranium-gold deposit, Roxby Downs, South 

Australia. Economic Geology, 78(5), 799-822. 

Rosenblatt M (1952) Remarks on a multivariate transformation. The Annals of Mathematical Statistics, 

470-472. 

Rosenblatt M (1985) Stationary sequences and random fields. Birkhaüser, Boston. 

Skirrow RG, Bastrakov EN, Barovich K, Fraser GL, Creaser RA, Fanning CM, Raymond OL, Davidson 

GJ (2007) Timing of iron oxide Cu-Au-(U) hydrothermal activity and Nd isotope constraints on metal 

sources in the Gawler Craton, South Australia. Economic Geology, 102(8), 1441-1470. 

Straubhaar J, Renard P, Mariethoz G, Froidevaux R, Besson O (2011) An improved parallel multiple-

point algorithm using a list approach. Mathematical Geosciences, 43(3), 305-328. 

Strebelle S (2000) Sequential simulation drawing structures from training images. PhD thesis, Stanford 

University. 

Strebelle S (2002) Conditional simulation of complex geological structures using multiple point statistics. 

Mathematical Geology, 34 (1): 1-21. 

Strebelle S, Cavelius C (2014) Solving speed and memory issues in multiple-point statistics simulation 

program SNESIM. Mathematical Geosciences, 46(2), 171-186. 

Strebelle S, Zhang T (2005) Non-stationary multiple-point geostatistical models, Geostatistics Banff 

2004 (pp. 235-244). Springer Netherlands. 

Tolwinski B, Underwood R (1996). A scheduling algorithm for open pit mines. IMA Journal of 

Mathematics Applied in Business & Industry, 7, 247-270. 

Tran TT (1994) Improving variogram reproduction on dense simulation grids. Computers & 

Geosciences, 20(7), 1161-1168. 

Tyler K, Henriquez A, Georgsen F, Holden L, Tjelmeland H (1992a) A program for 3d modeling of 

heterogeneities in a fluvial reservoir. In 3rd European Conference on the Mathematics of Oil 

Recovery, Delft, June, pp. 31–40. 



 

65 

 

Vallee M (2000) Mineral resource + engineering, economic and legal feasibility. CIM bulletin, 93, 

(1038), 53-61. 

Whittle J (1988) Beyond optimization in open-pit design. In K. Fytas (Ed.), Proc. Computer Applications 

in the Mineral Industries (pp. 331– 337. 115). Quebec City: Balkema. 

Whittle J (2010) The global optimizer works-what next. The Australasian Institute of Mining and 

Metallurgy, Spectrum Series, 17. 

Wu J, Zhang T, Journel A (2008) Fast FILTERSIM simulation with score-based distance, Mathematical 

Geosciences, 40(7): 773-788. 

Yahya WJ (2011) Image reconstruction from a limited number of samples: A matrix completion 

based approach. Montreal: McGill University Libraries. 

Zhang T, Switzer P, Journel AG (2006) Filter-based classification of training image patterns for spatial 

simulation. Mathematical Geology, 38(1): 63–80. 

Zhang T (2006) Filter-based training pattern classification for spatial pattern simulation. Ph.D. thesis, 

Stanford University. 

 

 


