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Abstract 

In this dissertation, we review the pbysics associated with surfaces and intcrfac<,s 

in equilibrium and non-equilibrium. Our emphasis will he on interfaces that arc 

driven far away from equilihrium with special interest in the pbcnorncllon of kinct.ic 

roughening. Models which descrihe non-cquilibrium interfaces will bc illtrod\l('cd 

and analyzed using techniques such as the Renormalization Group, Monte Carlo 

simulations, and direct integration of the equation of motion. Differcnt interface 

relaxation meehanisms will he discussed with a focus on surface diffusion, which 

is believed to be the domina.nt eireet in Molecular Bearn Epitaxy. Th('se interface 

growth models generate self-affine structures with va.ious correlations sat.isfying a 

dynamic scaling law. We compute the scaling exponents and functions. Finally, we 

st udy the eireet of quenched impurities on the dynamics 'Jf a driven int<'ffa.cc with 

a conservation law. The impurity eirect leads to anomalous sealing CXpOll('nts and 

qualitatively changes the interface dynamics. Our results are summarizetl in two 

articles to he published: Refs. (Govind and Guo, 1992; Covind, Guo and Crant, 

1992). 
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Résurné 

Dans ('(·tte dissert.ation, nous passons en revue la physique associeé aux surfaces et 

aux interfaccs aussi bien en état d' équillbre que hors d'équilibre. Nous étudions plus 

~JH~dall·IIH'Jlt., les interfaces qui sont dans un état eloigné de l'équilibre en portant 

1111 Întni·t. particulier au phénomène de cinétique rugueuse. Les modèles décrivant les 

illt.er fa('l'~ hors d'équilibre seront introduits et analysés à l'aide de techniques tels le 

groupe de r('normalisation, les simulations de Monte Carlo, et l'intégration numérique 

dl' l'i'quatioll dl' mouvement.. Nous discutons deux mécanismes de relaxation et. con

~idl~f('rolls l'effet de diffusion de surface que l'on croit prédominant dans les expériences 

dl' "Mol('cular B('am Epitaxy". Ces modèles de croissance d'interfaces produisent 

dl's surfaces à géométrie affine, dont les corrélations satisfont aux lois d'échelle dy

na.miques. Nous calculons ces fonctions ainsi que les exposant.s critiques. Finale

IIU'lIt, IIOUS ét.udions l'effet d 'impurités sur la dynamique d'interfaces hors d'équilibre, 

("ollt.rôlp(, par une loi de conservation. Les impuretés changent qualitativement la dy

namique l't produiscnt des exposants d'échelle anormaux. Nos résultats seront publiés 

(Ia.ns deux articles: Refs. (Govind et Guo, 1992; Govind, Guo et Grant, 1992). 
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Introduction 

Interfaces play a very important role in physics, chemistry, engineering, biological sys

tems, etc. They have fascinated scientists for mally years, who have tried 1.0 unravel 

their various properties. We shall only be looking at interfaces as they occur in con

densed matter systems such as the surfaces of solids, liquids... In condensed matter 

physics, the study of interfaces in conjunction with tbe physics of phru;e transi tiOJlS 

have produced many interesting results. The roughening transition is one br;lutifu] 

example. This problem has been the centre of intense study for a number of years 

beginning with the work of Burton, Cabrera and Frank(1951)(BurtoJl, Cabrera and 

Frank, 1951), who conjectured the existence of a roughelling transition in an (~qui1ib

rium interface. The problem has since been studied by a large numbcr of authors and 

as it stands has been weIl understood. 

Interfaces are rarely found in equilibrium. They occur mainly in non-eqllilihrillm 

systems sucb as snowHakes, sorne quenched crystals, surfaces of dendrites, etc. This 

makes their study much more complicated than tbe more straight for ward equilibrium 

situation. Since a lot of attention has been channeled into systems near or at cqui1ib

~ium, systems far away from equilibrium were largely neglected. These syl'ltems arc 

more realistic as they include many more physically relevant paramcters, for cxamplc 

it has been found that driven systems have a hlgher roughening temperaturc when 

compared to systems that are not. 

1 
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Over the la..,t few years many models have been constructed to investigate non

equilibrium interfaces in finer detail. The single significant contribution in the last 

decade has been the work of Kardar, Pari si and Zhang (1986) (Kardar, Parisi and 

Zhang, 1986; Medina et a!., 1989) who developed a non-linear stochastic differential 

cqud.tion to model a growing interface driven by an external flux of particles. We 

shall get back to the KPZ equation and understand it in greater detaillater on in 

the chapter. Non-equilibrium interface problems have also been addressed from a 

numerical viewpoint using Langevin simulations(Guo, Grossmann and Grant, 199080; 

Amar and Family, 1990), Monte Carlo techniques(Kim and Kosterlitz, 1989; Roland 

and Guo, 1991; Guo, Grossmann and Grant, 1990b; Sarma and Tamborenea, 1991) 

and other numerical rnodels like cluster growth rnodels , etc(Vold, 1959; VoId, 1963; 

Mcakin and Family, 1986; Ramanlal and Sander, 1985; Krug and Spohn, 1990; Vic

sck, 1989; Family and Vicsek, 1991). The remainder of the chapter is organized as 

follows: wc sball consider free interfaces in equilibrium and interface fluctuations, 

interfaces in the presence of external fields will then be considercd. Wc shall conclude 

this introductory chapter with a discussion of sorne non-equilibrium growth pro cesses, 

the ullderstanding of which will be our focus for the remainder of thls dissertation. A 

note about notation used, spatial dimension d would be referred to as dl + l, where 

dl is the interface dimension. 

1.1 Free interfaces in equilibrinm and interface 

ft net nations 

An interface in the strict sense is the boundary between two bulk phases say A and B 

cocxisting in equilibrium(Wortis, 1985). Equilibrium implying that the bulk phases 

A and B be scparated in a phase diagram by a first-order phase boundary and that all 

tbe relevant parameters be adjusted such that the system always lies on thls bound

ary Fig. 1.1. Single interfaces may be studied both in the presence and absence of 

external fields (Cree interfaces). In writing down a theoretical model there are various 
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Figure 1.1: TypicaJ phase diagram oC a gU-lIolid-liquid Iystem. AIl the phase boundaries IIhown are 
fÏrst order. 

approaches one may adopt, the three main on es being, 

(a). models purely based on the microscopies and using a microscopie Hamiltonian. 

(b). density functional theories 

(c). interface Hamiltonians whlch are basically functionals of the local departure from 

the interface. 

On scales larger than the molecular size but smaller than the overall size of the sys

tem, interfaces do not have a fuced shape. Fluctuations present in the system make 

them undulate and these shape fluctuations lead to an interfacial roughness. These 

undulations do not preserve the total area of the interface and are in general gov

erned by an interfacial tension or stiffness. In the case of a liquid-vapour system these 

excitations or fluctuations represent capillary modes. For a crystal-vapour interface, 

these shape fluctuations are constructed from microscopie steps or ledges which sep

arate atomically flat terraces on the surface. At finite temperatures T > 0, interfaces 

ftuctuate to increase their entropy. Interracial fluctuations may also l)e caused by 

the presence of quenched random impurities in the system. In this case the interface 

ftuctuates to adapt its shape to the background randomness in an effort to minimize 
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Figure 1.2: A boundary line in Il = 1 + 1 dimensions. 

its energy. 

Studying interfaces thereCore basically bolls down to studying interface fluctua

tions discusseo in the previous paragraph. As already mentioned interfaces may be 

studied from a microscopie, density lunctional and interfacial Hamiltonian viewpoint. 

In principle each of these approaches should very well be capable oC handling inter

facial fluctuations as well. It huns out that most methods are often very difficult to 

handle and the effective interracial Hamiltonian method is the one most eommonly 

used. 

We shall begin our 'interfacial fluctuations' voyage with an understanding of a 

simplified model- the liquid-vapour interface(Ma, 1980). For simplicity we shall start 

with a two-dimensional system, assurning that the energy of the boundary between 

the liquid and vapour phases is proportional to its length we have, 

Hl = I/L (1.1) 

where Hl is the inter facial energy, 1/ is the surface tension and Lis the length of the 

interface, Fig. 1.2. 
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Using the above figure, 

(1.2) 

If the gradients are small i.e. for slowly varying steps, ~: « 1 we may expand the 

term in the square brackets to first order, 

Fourier decomposing z(x), 

Substituting (1.4) into (1.3) we find, 

Using the eqmpartition theorem, 

where we have set the Boltzmann constant to 1. 

Defining 8z = z(x) - z(x') as a measure of tllC wandering of the interface, 

i.e, 

< (âz)2 >= 2 < Z2 > -2 < z(x)z(x') > 

T 1+00 
1 = (-) dk k2 [1 - cos k(x - x')] 

1rl1 -00 • 

= 2T (/z _ X'I) 
11 

(1.3) 

(1.4) 

( 1.5) 

(1.6) 

(1. 7) 

(1.8) 

(1.9) 

For Ix-x'I f'V Lo, < (~Z)2 >'" (T/v)Lo. The thickncss of the interfacc f'V « (8z)2 > 

)1/2 thus goes as ..fïo, diverging as Lo -+ 00. The boundary line is thercfore 'rough' 

and not 'smooth'. In technical terms these long wavelength modes that make the 

interface 8losh back and forth are called Goldstone modes. 
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The above discussion may be easily carried over to higher dimensions. In three 

spatial dimensions for example one has a two dimensional surface. The energy in this 

case would now be proportiollal to the area of the interface. 

Hr=vA (1.10) 

where, 

(1.11) 

Using the same assumptions as before we have, 

(1.12) 

Therefore < (Az)2 >1/2 goes as, 

T ln Ir - r'i 
'" -

1f'1I a 
(1.13) 

where a is approximately the interatomic distance. For large Ir - r'l, the interface 

is therefore rough no matter how low the temperature is. The model of the Cree 

interface that we have analyzed so far makes the implicit assumption that the material 

in question is a continuous one, and that the interface is elastic in nature. This 

description turns out to be quite accurate in describing the liquid-vapoUI system. 

Howcver, if we had a crystal-vapoUI system the discreteness of the lattice would have 

to be incorporated. We shall examine tbis in a later section. Another important 

factor that was neglected in the preceding discussion was the effect of gravity. This 

and the effects of other external fields would be considered in the next section. 

1.2 Interfaces and external fields 

80 far we have only cOllsidered Cree surfaces. The next thing to do would be to intro

duce an external field and study how interfaces and their fluctuations respond(Fisher, 

1989). These external fields may be 
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(a). slowly varying 

(b). periodic 

(c). quasi-periodic 

(d). random 

We shall study the effect of each one of these fields in brier. 

1.2.1 Slowly varying fields 

7 

The gravitational and van der Waalsian forces are two examples of slowly varying 

fields. We shall only consider the gravitational force here, the van der Waals force 

may be treated in a similar manner. Gravit y as we all know is a very wcak forre , 

it nevertheless is responsible in keeping a liquid-vapour interface horizontal. Whcn a 

liquid surface rises by an amount z, it produccs hydrostatic pressure pgz, where p is 

the difference PI - P, ,PI being the density of the liquid and Pi the density of the gas. 

Hence, the energy associated with it would be PI.t. This extra contribution would 

have to be added to the Cree interface Hamiltonian Hr wc discussed in the prcvious 

section (Buff, Lovett and Stillinger, 1965). Therefore, 

Il J z2p2g2 
Hl = L! +"2 cPr[(Vz}2 + v ] (1.14) 

The average density profile ma.y be calculated using the equilibrium distribution, 

H(z) 
P(z) ,.... eXP[-r]' 

The width < (Âz)2 >1/2 is consequently given by, 

where Le is the capillary length, 

(1.15) 

(1.16) 

(1.17) 

and P = PI '" P, .1 is the length seale such that the correlations over distances smaller 

than 1 are no longer deseribed by eapillary wave theory. This capillary wave model 
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thus predicts that the interfacial width divergf's when g -+ 0, 

(1.18) 

This divergence occurs despite the stabilizing effect of the surface tension. The analy

sis on the van der Waals force is exactly the same as in the gravitational case(Bedeaux, 

1985). 

1.2.2 Periodic potential 

Let us now consider an interface which separates a periodic crystalline phase with 

lattice constant ao from another phase. In this situation, the interface feeIs an effective 

potcntial V(z) due to the underlying periodicity of the crystallattice. The potential 

could be of tbe form 

V(z) = -Acos(kz) (1.19) 

where A is a constant inversely proportional to temperature (A = ~) and k = ::. 

Having defined the potential, we can now construct an effective Hamiltonian to de

scribe the interfacial configuration. 

Hr(z) = f (~~2 + V(z) (1.20) 

where T = r. 
i' 

The ab ove model is identical to the sine-Gordon Hamiltonian and in 2 + 1 di

mensions leads to a roughening transition at a finite temperature T,. (Chui and 

Wccks, 1976; Weeks, 1984)which has becn shown to be of the Kosterlitz-Thouless 

(KT)(Kosterlitz, 1974) type. It was found that for temperatures T > T", the periodic 

potential V( z) is irrelevant and the surface is always rough, while for temperatures 

T < T,. the potential is relevant and causes the interface to remain smooth. When 

T -+ T,. Crom below, we encounter a phase transition from the smooth to the rough 

phase. Howevcr, in d = 1 + 1 the above periodic potential is totally irrelevant for 

all finite T > 0, the surface is always rough. We thus have no phase transition in 

d = 1 + 1 dimension. 



INTRODUCTION 9 

1.2.3 Quasi-periodic potential 

Suppose the crysta.lline phase under consideration was quasi-periodic rather than 

periodk. We would have to define a new potential, for example 

(1.21) 

where t- is an irrational number. The interface Hamiltouiau as beCore would be 

(1.22) 

It has beelJ. shown recently by Lipowsky and others (Lipowsky and Hcnlcy, 1988; 

Henley and Lipowsky, 1987; Garg and Levine, 1987)tbat in d = 2 + 1 the above 

Hamiltonian leads to a smooth interface for all T < 00. In d = 1 + 1 how('ver, 

the behaviour is non-universal and depends on tbe precise Conn oC the quasi-periodic 

potential. For the potential considered above, oue gets a second order roughening 

transititlIl in d = 1 + 1. In general they (Lipowsky and Henley) found very differcnt 

interfacial behaviours for random and ideal quasi-crystals, the ideally tiled case had 

a roughness that was lesser than the random case in both two and three dimellsions. 

1.2.4 Random potential 

When a system contains quenched random impurities, thcse objects may in gener .... } 

be modeled using random fields or bonds(Grinstein and Ma, 1982; Villain, 1982; 

Nattermann and Renz, 1988; Huse, Henley and Fisher, 1985; Kardar, 1985; Husc and 

Henley, 1985). An interface, when it interacts with such an cnvironment wou}d try 

to adapt its shape to the effective random background potcntial in order to minimise 

its energy and consequently increases its roughncss at finite T (T > 0). Thcrc arc 

other problems as weIl that can be studied when one has .. random potential such a.~ 

the localization-delocalization of an interface. When one has an attractive potential 

V., the interface in the random environment may be localizcd and a.CJ one dccrcases 

the strength of this potential the interface delocalizes itself. As belore the interracial 
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fluctuations may be described using an effective Hamiltonian, 

(1.23) 

In principle one Cà.n conceive of many other situations. Before we move on, an impor

tant point of note is that all the above models share the common property of being 

effective interface Hamiltonians. Effective interface Hamiltonians in principle should 

be dcrived by a systematic coarse graining of a more Cundamentallattice model. This 

procedure is however very difficult to implement in actual practice. One thus resorts 

to more phenomenological methods like symmetries in the problem to construct tbe 

Hamiltonian. In the effective Hamiltonian description, details on length scales smaller 

than the bulk correlation length are lost. We shaU review one of the most widely used 

lattice models -the Solid-on-Solid(SOS) model in the next section. 

1.3 Interfaces using Solid-on-Solid models 

Lattice models used to describe interfaces Corm a bridge between the discrete models 

that d('a} with the entire system and the continuum models that deal only with the 

interface. These discrete models conta.in information regarding quantities such as 

the transition temperature and they help one study and understand the interactions 

b<,tween the various microscopie parameters better. The most commonly used oC 

all discrett' lattice models a.re the solid-on-solid (SOS) models(Weeks, 1984; Binder, 

1983). Bcfore getting into the intricacies of SOS models, we shall first consider the 

Ising model. The Ising model as we all know consists of a. square lattice with a spin 

S,) = ± 1 aUacht.>d to each lattice point. The Hamiltonian can thus be written as, 

(1.24) 
" " 

wht'Ie JI and J'l are positive coupling constants in the horizontal and vertical direc

tions rcspcctively . We could choose our boundary conditions in such a way that the 

top half remains all spin up and the bot tom aU spin down at T = o. As we increase 

the trmperature from zero, fluctuations start appearing on the interface and as we 
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Figure 1.3: C.onfigurationl of the Ising and SOS approximation to the Ising modrl at fillite T. Notice 
the ablence of overhangl and bubblel in the SOS IYltem. 

increase the temperature further overhangs and bubbles appear in the system. The 

connection betwecn the Ising and the SOS Clodels may be made if one neglects the 

overhangs and bubbles inorder that t.he fluctuations from the T = 0 configura.tion 

remains single-valued. The energy of an SOS interface may then be writtcn as, 

L 

H,- J2 E Iz_ - Z_-11 (1.25 ) 
'=1 

where we have neglected a constant piece and L stands for the length of the system. 

Having written out the Hamiltonian, one can easily write out a partition function, 

H 
z = Eexp(--) 

Ij T 
(1.26) 

whlch may be evaluated using transfer matrices, recursion relations, direct surnmation 

etc. The SOS Hamiltonian has also been recently used to study the phcnomcna of 

wetting(Fisher, 1984; Kroll, 1981). Generalising equation.( 1.25) 

H = JE Iz_ - Z_-11' (1.27) 

-The above generalisation of the SOS Hamiltonian envelops within it a large number of 

different cases corresponding to different p's. The discrete Gaussian case corresponds 
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ta p = 2, The rc&tricted salid-an-salid model(RSOS)(Kim and Kasterlitz, 1989) ta 

p = 00 and the anisotropie Ising madel to p = 1. The above model when analyzed 

in d = 1 + 1 dimensions (1 interface dimension) does not show any phase transition 

at finite temperaturcs: the interface is always rough. A well defined transition or 

roughcning temperature howevel' exists in d=2+1 dimensions(Mon et al., 1988). The 

ahovc discussion was merely an introduction to the idea behind most SOS models. A 

large number oC them may be solved exactly with and witho'lt interactions. As Cor 

the remainillg that cannot be tackled analytically, they have been studied numerically 

Ilsing MNlte Carlo simulations. So Car we have studled models that are basically 

govcrned by a Hamiltonian. The Hamiltonian as we very well know helps describe only 

the 'statie' properties oC a system. In other words one can understand the equilibrium 

propel tics very well with a well defined Hamiltonian. The next pertinent question is: 

what happens when there are growth processes involved which are characterised by 

a dynamics that is far away from equilibrium ? Such systems cannot be described 

Ilsing a Hamiltonian. 

1.4 Non-equilibrium growth pro cesses 

In nature there are a large number of non-equilibrium pro cesses that give cise to 

interfaces far from cquilibrium. Wc shall review a few of them in brief in this section. 

1.4.1 Sputter Deposition 

As we all know coatiugs play an important role in many daily life applications. Typical 

t~xamplrs are Teflon coats on utensils, coatings on sunglasses etc. Sputter deposition 

that wc shall describe here is just one way a coating can be made. This method 

iuvolvcs the deposition of energetic atoms or ions onto a growing surface. The incom

ing atoms travel along ballistic trajectories, mostly along the normal to the substrate. 

The atoIlls or ions once they deposit themselves on the surface move around till they 

find a suitable site where they coalesce and form tiny microcrystallites. These micro-
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ZONE. ZONE b ZONE c 

Figure 1.4: Schematic diagram showing the various zones. 

crystallites are very small ü the temperature is low, this results in the amorphous na

ture of the film for any deposition rate(Vossen and Kern, 1978; Bruinsma, Karunasiri 

and Rudnick, 1990). The non-equilibrium nature of these fùms causes tllem to de

velop very complicated surface morphologies whlch can be classified according to the 

structure zone model(SZM) developed by Movchan and Demchishin(Movchan and 

Demchlshin, 1969). The model distinguishes three different zones. 

(a). columnar 

(b). surface diffusion mediated zone 

( c). bulk diffusion and recrystallization zone 

depending on the ratio ::... where T is the temperature of the substrate and Tm is the 

melting temperature of the bulle adsorbed material. The boundarics of thcse zones 

are regions of low adatom density and they play a significant role in determining the 

transport and mechanica! properties of the material. It turns out that if tempcraturcs 

are elevated beyond a certain maximum temperature, bulk diffusion of matter sets 

in and results in thermal roughening making the process higbly sensitive to te npera

ture. Closely related to the sputter deposition pro cess is the sputter erosion process. 

It is intact the inverse process. The evolution of macroscopic features during erosion 
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Figure 1.5: Actual configuration. of .putter depo6ited film •. 

a.nd etching have been extensively studied and it has been observed that the surface 

is covcrcd with con es and ridges. 

1.4.2 The Molecular Beam Epitaxial Process 

Molecular Bearn Epitaxy (MBE) is a method of growing thin films, that distinguishes 

itself from other vacuum evaporation techniques in that one has a more control over 

tha bcam and the deposition conditions(Chang and Ploog, 1985). As a result, the 

films grown this way have much better electrical and optical properties than ones 

grown by conventional means. This technique has been used to fabricate semicon

ductor l met al, insulator thin films etc. The MBE growth process involves the reaction 

of one or more thermal beams of atoms or molecules with a crystalline surface under 

bigh vacuum conditions at temperatures around 900 - 1l00K which is much lower 

than the temperatures required for a chemical vapour deposition process. The im

portant feature of a MBE process is that the growth rate of the crystal remains a 

constant for a wide temperature range. The typical MBE growth process my be split 

iuto two parts. The fust step involves the deposition of the atom onto the substrate, 

and the second involves its incorporation. The second step is normaUy achieved by 
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Figure 1.6: Typical MBE growtÏl Ihowing the cry.ta.! growing in An oaciUatory manDer. 

surface diffusion over the surface to a suitable growth site, a step or a kink. Since 

the atom always chooses a step or a lcink, the step ftow is an important growth mech

anism. At tbe above mentioned temperatures where MBE is normally performed, 

the incoming atoms and the substrate have difl'erent temperatures. This results in a 

typical non-equilibrium situation, which gives rise to flux or current causing the atom 

to move around on the surface. In other words, if the time in which th~ atom has to 

find itself a suitable site in the 'energetic sense' is quite small, the lihlihood of it find

ing one would be rather slim. Typically the atom makes a large number of attempts 

belore it settles down on the surface, making the relaxation time rather large, thus 

delaying the onset of equilibrium. It bas been observed using reflection high energy 

electron diffraction (RHEED) that at tempe ratures that are Cairly high, and when 

the surface is parallel to a high symmetry orientation, the roughness of the surface 

oscillates and exhibits minima. separated by maxima with the minima corresponding 

to the successive completion of layers. The continuum models that we shall develop 

in the next chapter will not account for this oscillatory behaviour in the roughness 

but will give us a picture of the interface roughness over larger length Bcales. 
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1.4.3 Interfaces resulting from the imIniscible displacement 

of viscous liquids in porous media or in the presence 

of a quenched random medium 

Recent experiments(Rubbio et al., 1989; Rubbio et al., 1990; Martys, Cieplak and 

Robbins, ) conducted on the time evolution oC the geometry oC rough interfaces gen

erated by fluids flowing through a porous medium have shown that these interfaces 

exhibit dynamic scaling and self-affine structures. This displacement oC one ftuid 

by the other depends intimately on the viscosities and the wetting properties oC the 

media involved. In these experiments the displacing liquid is chosen such that it 

preferentially wets the medium, the liquid thus moves through smaller pores at lower 

pressures than those required to move through larger ones. This causes certain sec

tions of the interface to move more easily and consequently more rapidly tban others. 

The fluid interface is said to be pinned at the larger pores. We shall investigate this 

phenomenon in greater detail in Chapter 5. 

In Chapter 2, we shall review the scaling property oC growing interfaces and physi

cal aspect of various relaxation mechanisms that attempt to bring a growing interface 

back to equilibrium. Models both discrete and continuum will be developed to illus

trate these ideas. Chapter 3 will provide an illustration of the Renormalization Group 

method as applied to staties and dynamics. We shall then go on to apv~y both nu

merical and exact analytic techniques to study a certain surface diffusion dominated 

continuum model(Govind and Guo, 1992) in Chapter 4. The effects of quenehed im

purities on the dynamies of interfaces(Govind, Guo and Grant, 1992) will be taken 

up in Chapter 5. \Ve shall end with a conclusion in Chapter 6. 



Chapter 2 

Models of Dynamically Growing 

Rough Interfaces 

Dynamically growing interfaces have been successfully studied over the past severa} 

years using various models, numerical as weIl as phenomenological equations of mo

tion (Kardar, Parisi and Zhang, 1986; Villain, 1991; Wolf and Villain, 1990; Edwards 

and Wilkinson, 1982; Sun, Guo and Grant, 1989; Lai and Sarma, 1991; Golubovic 

and Bruinsma, 1991). In this chapter, before we review suitable examples from both 

approachs, we shall first study an important property inherent to all non-equilibrium 

growing interfaces, the scaling property. This property as we shall see later would en

able us use powerful field theoretic techniques commonly used in critical phenomena, 

to study these interface problems. 

2.1 Scaling properties of growing interfaces 

Studies on growing interfaces have revealed that these objects have fractallike forms 

and evolve into a steady-state having no characteristic length and time scaies. Tech

nically such a system would be termed as 'scale-invariant'. The dynamicai sca1ing 

aspect has been studied by a large number of authors over the last decade. We shall 

highlight the formalism due to Family and Vicsek(Family and Vicsek, 198.5) which is 

17 
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based on the scaling oC the interCace width. Any interface in general may be described 

using the interfacial height h(z, t) measured from the t = 0 position (initial fiat inter

face). A limitation of this description is that the height must be single-valued (free 

{rom bubbles, overhangs, etc). We may define an average height at sorne arbitrary 

time tas, 

~ h(z, t) 
< h(z, t) >= L4-1 (2.1) 

The interCacial height fluctuations from the above average value gives us a measure 

of the interracial thickness or the width. The width or thickness is then defined as, 

(2.2) 

which is essentially the standard deviation oC the height fluctuations. Empirical stud

ies on interface fluctuations have revealed the inherent scale-\nvariant nature of in

terface growth. These studies have shown that one can in general expect the width 

W(L, t) to grow in time as sorne power of t. 

W(L, t) "J tfJ (2.3) 

whcre the exponent {J helps characterise correlations in time. Correlations in space 

on the other hand are constrained by the linear size of the system, L. Once the 

correlations have reached this length, they cannot extend further, the interface at 

this point attaîns a steady-state value and is characterised by a constant value for the 

width. The interface bt'ing scale invariant can once again be described by a power 

law but 1l0W in L, 

W(L, t ...... 00) '" LO/ (2.4) 

where a is normally referred to as the 'wandering' or 'roughness' exponent(Fisher, 

1986). Rough surfaces normally have 0 < a < 1. An a = 0 is characteristic of two 

dimensional surfaces in tbermal equilibriurn and sorne other non-equilibrium systems 

sucb as critical faceting, etc. In this case the power law is replaced by a 'log' like 

, 
i 
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behaviour, 

W '" (log L )QI • (2.5) 

Interfaces with cr = 1 have at least in equ:Iibrium cases been associated with tIte 

breakdown of two-phase coexistence at the lower critical dimension(Huse, Hcnley 

and Fisher, 1985; Fisher, 1986). In tbis case, one would have to abandon the single

valuedness of the interfacial height h(:z:, t) and allow the possibility oC bubblcs and 

overhangs. An SOS description of the problem would consequelltly breakdown. There 

have a number of investigations regarding non-equilibrium cases as weIl. 

Combining equations.( 2.3) a.nd ( 2.4) we can get a homogenity relation Cor dy

namicaI scaling, 

(2.6) 

where z = ~, tbis exponent helps describe the scaling oC the correlations in the 

tra.nsverse direction of the surface. The exponents cr and f3 may also be defined using 

the height difference correlation function O(:z:, t) given by, 

O(x, t) =< [h(x, t) - h(O,O)}2 >z,t (2.7) 

(2.8) 

for :c ~ L, and 

C(O, t) ~ t2fJ (2.9) 

for small times. 

2.2 Numerical Models 

Numerical models differ from continuum ones in that they are actuaI expcriments 

performed on a computer. In other words the actuaI physicaI process is mirnickcd 
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Figure 2.1: Interface grown by ra.ndom deposition or pa.rticles. 

using simple rules. These models are useful as they deal with the fundamental build

ing blocks governing the process. In this section we shall discuss sorne extensively 

studied numerical models, that have helped shed light on the fundamentals or the 

non-equilibrium crystal growth process thus paving the way for continuum descrip

tions that we will discuss in the next section. We shall review three models. 

(a). random deposition models 

(b). ballistic deposition 

(c). the eden model 

2.2.1 Surface growth by random deposition (RD) 

This model(Vold, 1959; VoId, 1963) is simulated by raining particles duwn on to a 

substrate: a point is randomly selected above the substrate and a particle is allowed to 

fall vertically down aIong a straight line from here. The result of this is the formation 

of long columns. Since tbe particles are dropped at random, we bave no correlations 

among tbe columns. The width W(L, t) '" t1/ 2 regardless of the dimension in wruch 

the experiment is perf'ormed. The width in other words performs a random wa.lk. 



.. 

r 

MODELS OF DYNAMICALLY GROWING .... 21 

Figure 2.2: A ba.llistically grown interface. 

2.2.2 Ballistic deposition (BD) 

The particles in this model are released from randomly chosen launching points and 

move along parallel straight lines till they encounter the aggregate to which they 

attach themselves. The angle oC incidence oC the launched particles may be varied. 

In actua.l practice, one defines a substrate length L. The launching points are chosen 

at random at a height just above the maximum of the deposit. The launchcd particle 

travels ruong a straight tine, the moment it makes contact with another pa.rticle in 

the substrate, it becomes a part oC the collection already deposited. This mode} 

shows non-trivial scaling in contrast to the to the random deposition model, a.nd the 

growing aggregate has a number of holes and overhangs present in it. The width 

W(L, t) scales like t 1/' in time and goes as L1/2 with the size of the system(JulIien 

and Meakin, 1987). The diJference in exponents can be attributed to the fact that 

growth in the BDM takes place normal to the local interface where as it takcs place 

normal to the original substrate in the RD case. 
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Figure 2.3: Compact .trudure oC the Eden mode!. 

2.2.3 Eden Model (EM) 

Eden(Eden, 1961) in 1961 introduced this model to study the dynamics of tumor 

growtb. The growth algorithm in this case consists in choosing a single perimeter 

site at random and filling it with a probablity of k, where N is the number of 

perimeter sites available. ThereCore in a given time step each nearest neighbour 

of the cluster has tbe same probablity of being fi.lled. This growth modelleads to 

compact d dimensional objects tbat have a non-trivial surface structure. Compact, 

meaning tbat tbere are no overbangs and bubbles. Many difl'erent versions of this 

model bave been studied(Jullien and Botet, 1985; Freche, Staufl'er and Stanley, 1985) 

we shall mcrely quote results here. 

(a). d = 2, {3 = 0.33 and a = 0.5. 

(b). d = 3, {3 = 0.22 and a = 0.33. 

(c). d = 4, {3 = 0.15 and a = 0.24. 
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2.3 Continuum equations of crystal growtb 

Phenomenological or continuum approaches are normally based on langevin cquations 

of motion. In constructing these equations only the esscntial terms relevant to the 

physical pro cess are considered. Loosely speaking these equations can in priuciple be 

derived by a systematic coarse graining of certain discrete models like those discussed 

in the previous section. However, this procedure as already mentioned is difIkult 

to implement. We shall not use this approach, but instead use one which looks at 

things from a 'macroscopic' perspective. As we have alrcady seen, films are normally 

grown using techniques like vapour deposition, MBE etc. In other words, by de

positing atoms onto a substrate in a controlled manner. If these deposited atollls are 

somehow prevented from moving around on the substrate, the surface would bccome 

extremely rough and this would result in the amorphisation of the material and thus 

form bad crystals. The recovery mechanisms that help us get around this prohlcm 

are, 

(a).desorption or evaporation 

(b) .surface diffusion 

(c). volume diffusion 

(d).vacancy formation in the superficiallayers 

to name a few. Of these only surface diffusion and surface desorption will be con

sidered. It will be implicitly assumed that the average surface is orthogonal to the 

direction of increasing height. 

2.3.1 Desorption or evaporation dynamics 

Consider an curve y{z) between two points A and B, to be a portion of the interfa.ce 

between a solid and a fluid phase (Mullins, 1963; Mullins, 1957; Mu11ins, 1959; IJandau 

and Lifshitz, 1967). The Cree energy F(z) in one dimension as we have already scen 

can then be written as, 

F = LB (lds, 
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= LB (1";1 + il2dz. (2.10) 

whcrc il = *. Let us now pcrturb the y(x) by a small amount,i.e 

y'(x) = y(z) + 6y(z) (2.11) 

the variation 6y is considered small. The variations at the end-points 6y(A) and 

6y(B) are taken to he zero and I: 6y(z) = O. Using calculus of variations, it can he 

shown that the corresponding variation in the Cree energy 6F is, 

fBdG 
6F = lA dil 6i1dz , 

rBdG d 
= lA dil dx 6ydz, 

= _ fB ~ dG 6ydz. 
lA dz diJ 

aftcr intcgrating hy parts, with G(iJ) = (1(iJ)~1 + il2)t. We also have, 

1 fB 
6F = 0 lA p,6ydz. 

(2.12) 

(2.13) 

where p, is the chemical potential, 0 is the atomic volume and 6~z is the numher 

of atoms tllat get includcd whcn wc makc the infinitesimal change in the interra

cial function y(z). We thus have two expressions for the change in the free energy. 

Suhtracting one from the other wc get, 

and substituting back for C(iI), 

d dG 
JI. = - 0 dx dil ' 

p, = -Od~(d~«(1(Y)(1+il2)t». 
Using, 

du 1 du 
diJ = 1 + iJ2 d8' 

wllcre (} = arctan iJ, therefore, 

~(1 y 
JI. = -0(0' + d82 ) (1 + l?)f ' 

rPt1 
= 0(0' + d82 )K 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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where K is the curvature at the point in question reckoned positive when thr the 

surface is concave, J1. = 0 evidently corresponds to a fiat surface (K = 0). The 

above expression clearly holds only for orientations at whicb the second dl'rivative 

of u exists(it does not hold for cusps). We cOllld gcneralise the above l'xprl'ssion for 

dimensions greater than d = 1 + 1. For two different principal Cllrvatures Kt and K'JI 

the above expression may be generalised to, 

f1lu iJlu 
Il- = O[(u + d8

t
2 )K1 + (u + d8

2
2 )K2] (2.18) 

fi u is isotropic, as in a liquid, the angular derivativcs vauish rcsultillg ill, 

(2.19) 

which is the classical Gibbs-Thomson formula. Recalling the dcfiuition of the cllrva-

ture, 

(2.20) 

and for smaU gradients, 

(2.21) 

Therefore, 

(2.22) 

In other words, the chemical potential is proportion al to the Cllrvatllre. Assuming 

the chemical potential of the vapour (JLv) to be a constant, the term in the dyuamical 

equatioll due to desorption cau be written as, 

(2.23) 

where Il- as already described is the local chemical potential at a point. Clearly, the 

chemical potential cannot contain powers proportional to the first derivatives. If this 

were 50 the above dynamical equation would imply a direction depcndent growth 

which is unphysical. Combining the last two equations we get, 

for the deposition process. 

ah = vv2h 
8t 

(2.24) 
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2.3.2 Surface Diffusion 

In the case of surface diffusion, the transport of material along the surface is given in 

tenns of the Einstein-Nernst equation for the drift velocity v by the expression(Landau 

and Lifshitz, 1967; Mullins, 1963; MuBins, 1957; Mullins, 1959; Landau and Lifshitz, 

1967), 

] ex -Vp. (2.25) 

where the derivative is taken along the surface because the slope is small. Since JI. is 

proportional to the local curvature of the surface, the above equation becomes 

(2.26) 

a.nd since the total mass is conserved in the process, the part of the dynamical equation 

that is due to surface diffusion would thereby obey a continuity equation 

ah 
-ex-v·] at 

substituting for the current J we get, 

(2.27) 

(2.28) 

2.3.3 Linear Model with Surface Diffusion and Desorption 

If both desorption and surface diffusion are present in the system, they must both be 

add{'d to the dYllamical equation describing the rate of change of the height. 

(2.29) 

Notice that all the microscopie details are hidden in the constants Il and (J. The 

above approach is a phenomenological one in that it takes only the essential physics 

iuto account ta describe the process. Equation.( 2.29) is a good approximation when 

wc dou 't have a beam of incoming particles. In the presence of a beam, the simplest 
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modification would be to add the beam fluctuations to the above equatioll resultil1g 

in, 

(2.30) 

where 

< ll(x, t) >= 0, (2.:n) 

< ll(x, t)l1(X', t') >'" c5(x - x')c5(t - t') 

This equation is a generalisation of a model cOllsidered by Ed wards and Wilkinson 

(EW)(Edwards and Wilkinson, 1982) who treated the case (J = O. Equation.(2.30) 

being lincar, can be analyzed exactly. 

Fourier transforming equation.( 2.30), 

(2.32) 

where 

(2.33) 

We could analyze this transformed equation further by a change of variables name]y, 

4>(t) = h
9
(t)ea(q), 

h9(t) = 4>(t)e- a(Q)' 

with this definition equation.( 2.32) becomes 

Integrating the above equation we have, 

The correlation function is therefore, 

(2.34) 

(2.35) 

(2.:i6) 
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Transforming back and using f > t we have, 

The f'qual time correlation function is, 

Taking the limit t --+ 00 after inverting the Fourier transform results in, 

< (h(x, t) - h(O, t»2 >'" lnl{(~) 
u 

and in the limit 1 --+ 00, where 1 is a measure of the system size. 

1 1I2t 
< (h(x, t) - h(x, 0»2 >'" -ln(-) 

1/ U 

In the limit of CT --+ 0 we recover the results of EW namely, 

< (h(x, t) - h(O, t»2 > ..... 1-(';") 

28 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

In the t ...... 00 limit implying that ct = 3'2 c1 and for 1 --+ 00, we get /3 = 3.d. On the 

other hand, wh en Il = 0, a = 5;( These results are consistent with the fact that 

growing interfaces evolve into rough surfaces. We shall next study these equations in 

the prescncc of non-linear tcrms. 

2.3.4 The Kardar-Parisi-Zhang equation 

The EW stochastic equation was generalized to include non-linearities by Kardar, 

Parisi and Zhang (KPZ) (Kardar, Parisi and Zhang, 1986; Medina et al., 1989) 

(2.43) 

we have already studied the relevance of the linear terms in the above equation. The 

term that makes the equation non-linear is (V h)2. This term cannot be obtained 

from any Hamiltolùan and has a kinetic origin. It can however be derived from a 

weak gradient expansion, as we shall see shortly. Assuming that growth takes place 
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h 

x 

Figure 2.4: A picture showing the increment in h aa the local growth OCCUri normal to the interface. 

normal to the local interface. Using Fig. 2.4, the increment at a point on the interface 

due to the deposition of a particle ,may be written as, 

(2.44) 

If the gradients are small, 

ah V)2 
8t Nl1+ï(Vh + .... (2.45) 

where v is the velocity normal ta the interface. H we transform the problem inta 

a co-moving frame, the velocity term can be transformed away. The noise term is 

assumed to be Gaussian in nature and its correlations are defincd as be!ore. The 

KPZ equation is arrived at by putting aU these ingredients together. 

A pedestrian analysis of the KPZ equation 

(a). The KPZ equation is invariant under translations h -+ h + constant. 

(b). The sign of the coefficient of the driving term i.e À is irrelevant as it can be 

changed by the transformation h -+ -h and À --+ -À which leaves tbe equation 

invariant. 
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(c). It can he shown that the critical dimension de of the model is 2+ 1, which implies 

that the non-linear term is important at least in dimensions d :5 2 + 1. Dividing the 

non-linear term by the linear term we get, 

(2.46) 

The above ratio diverges for large ,. The argument also suggests that the non-linear 

term is more relevant when compared to the linear term. 

(d). A power counting ancÙysis shows that all higher order non-linear terms that May 

be added to the KPZ equation are irrelevant in the long wavelength limit and can 

thus be ignored. 

(e). Considering the non-linear term alone in the absence of any thermal fluctuations, 

we can estimate the relaxation time of a mound of material on the surface, i.e 

(2.47) 

(2.48) 

Prom the scaling properties of rough surfaces, we have h '" T~ and' '" T'!. Using these 

relations in the above expression for the relaxation time T, one gets at a hyperscaling 

relation among the exponents, 

o+z=2 (2.49) 

This scaling relation is true oilly when À :f:. O. The above argument has heen based on 

the non-trivial assumption that the coefficient À is not renormalized hy the noise. It 

can be shown as will he in the next chapter that tbis interesting property is intimately 

connected to the GallIean invariance of the KPZ equation. The exponents predicted 

by the KPZ equation are in excellent agreement those of the Eden model in 2 spatial 

dimensions, these two models are thus in the same universality class at least in d = 

1 + 1. Results in d = 2 + 1 are however uncertain as far as the KPZ equation goes, 

because this equation does not have a stable infrared fixed point as wc shall see in 
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the next chapter in dimensions d ~ 2 + 1. 

(f). The KPZ equation can he mapped to two other use fuI equations. Using the 
. ill!.!l. Hopf-Cole transformatIOn P(z, t) = e JI' we obta.m, 

(2.50) 

which is a diffusion equation with a time-dependent random potential. The fUIlction 

P(x, t) may he regarded as a sum of Boltzmann weights of all the static configurations 

of a directed polymer(Huse, Henley and Fisher, 1985). A second transformation v = 
- Vh, turns the equation into the randomly forced Burgers equation for a vorticity

free velo city field (Burgers, 1974), 

âv ,\ ~ 04 2 ~ !( ) ât + V' Vv = IIV V + x, t (2.51) 

2.3.5 Growth equations without desorption 

So far we have discussed the significance of desorption and its significance Oll the 

relaxation of a crystal through linear as weIl as non-linear equations. From the 

previous discussion it is clear that the KPZ equation neglects higher order tenus 

as they don't play an important role in the long wavelength limit. The next qucstion 

is : what happens at short wavelengths? To understand this, higher order terms 

would have to be included. The simplest thing would he to reintroduce tbe (J tcrfT'. 

Let us start hy turning off the 11 or desorption term. This lcads to, 

ôh 4 () -- = -(1V h + TI z t ât ' , (2.52) 

this equation heing linear can he studied exactly as was done in tbe prcviolls section. 

One could generalize the ahove equation to inc1ude non-linear terms too. A power 

counting analysis shows that non-linear terms proportional to V2(V'h)2, (V'2h)2 and 

V . (V h)3 are all relevant in dimensions d ~ 4 + 1. Thus in principle we could con

struct three different non-linear equations with each of tbese terms. One motivation 

behind studying an equation using surface diffusion as the sole relaxation term is 

the following: it is known that in the temperature range where MBE is normaJ]y 

---------
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Figure 2.5: Diagra.m ebowing the direction or the ftow of a.tome on the ludace. 

conducted, relaxation occurs via rapid surface diffusion and that relaxation due to 

the desorption is negligibly small. Another important fact is that under ideal MBE 

growtb conditions, it is tbought that mass on the surface is conserved. In constructing 

a growth equation with a conserved quantity, the simplest way to accomplisb it is to 

write down the following equation, 

ah 
lJt = -V· J + 'l(x, t). (2.53) 

Morcovcr, if the current J is considered to be made up of a linear and non-linear 

part, this puts re:;trictions on the type of non-tinear term that may be chosen. The 

following equation was proposed by Lai and Das Sarma{Lai and Sarma, 1991) and 

'Volf and Villa.in(Wolf and Villain, 1990) , 

ah 
Ot = -uv4h + ÂV

2(Vh)2 + 'l(x, t), (2.54) 

to account for MBE growth. We could get more insight about the physical process in 

question by considering the following. It bas been experimentally observed that atoms 

landing at a kink on the surface prefer moving about on tbe same layer Fig. 2.5, ratber 

than jumping onto a lower layer. This is because there is an effective potential barrier 
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Figure 2.6: The potentiaJ interpretatioD of an interface .tep. 

at the kink(Schwoebel, 1969; Roland and Gilmer, 1991i Fink and Erlich, 1986), sec 

Fig. 2.6. One could approximate a kink by say, h '" tanh(:z:). Fig. 2.7 shows a number 

oC its derivatives. It is clear from this simple observation that sites near the bottom of 

a kink tend to grow more than the top and that sites with very steep gradients a.re not 

Cavourable for growth ruling out Fig. 2.7d as a possible non-linearity. Coming back to 

a discussion of terms in equation.( 2.54), the surface diffusion term secms consistent 

with the facts. Regarding the non-linear term, Fig. 2.7c, it may be interpreted as 

the term that takes into account the atoms that break away !rom the kink sites at 

higher temperatures. The other possible non-linear term Fig. 2.7e seems to mimic the 

same physics but it is inconsistent with the demands of the continuity relation. We 

shall exa.mine this equation in more detail in a later cha.p'~er. It tUrDS out that aU the 

exponents of equation. ( 2.54) may be evaluated using arguments à la Flory. As before 

wc cau estimatc the relaxation time T of a mound of material of lincar dimension 1 

due to the above dynamics, 

T~ h' 
0'+11 

(2.55) 
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V'i 

• 

V'(Vi)' 

• 

Figure 2.7: A qualitative delcription ol the local IUrf'a.ce .hape and ib varioUI deriva.tive •. 

One can also estimate the number of atoms n deposited in time 1', 

n ~ 14-1 !:...F. 
1'0 

(2.56) 

where F is the fluctuation in the incoming beam of particles and 1'0 is the total time 

of dcposition. It is the fluctuation in this number that causes the material to accrue 

into a mound. The fluctuation in the number is given by the square root of the 

above equation.( 2.56). This quantity should also be equal to the number of particles 

deposited in a total time l' i.e the total volume divided by the volume of an individual 

atom wh.ich can be taken to be unity. Therefore, 

(2.57) 

h is the height of the deposit. Equating the above relations we have, 

14- t Toh2 ~ 1
4 

CT + vh 
(2.58) 

Le, 

(2.59) 
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This argument tells us that the coefficient (1 do es Dot influence the relaxation time for 

large lengthscales. Frùm equation.( 2.59) we clearly see that the width diverges for 

large linear dimensions l, in other words the surface is rough Cor dimensions d $ 5. The 

exponent a can be easily shown to be 5;". A simple substitution shows that z = 1j1, 
resulting in the hyperscallng relation a + z = 4. This relation can be sbown to stem 

from a particular symmetry exhibited by equation.(2.54)(Sun, Guo and Grant, 1989). 

AIl the above exponents may be derived from a more rigourous renormalizatioll group 

analysis (Lai and Sarma, 1991). Compared to the KPZ equation where the surface 

roughness increases due to the non-lincar term, the roughness here scems to decrcase. 

2.3.6 Surface diffusion and shadowing 

The microstructure associated with sputter deposition that we saw in tlle previous 

chapter is believed to be due to shadowing meaning that a particular site is entirely 

shadowed by the presence of very high 'mountains' of material near it, see Fig. 2.8 If 

the growth is by isotropic sputtering, then the growth rate oC a site is approximately 

proportional to the exposure angle 8 of the site in question(Bruillsma, Karunasiri and 

Rudnick, 1990). This shadowing mechanism leads to unstable structures resulting in 

surface rougherung. Thus the growth rate at a particular site is strongly inHuenccd 

by the surface structure of nearby and not so nearby regions. This feature makes 

the problem non-local. If the incoming atoms are collimated into a beam in the 

normal direction see Fig. 2.8, tbis non-Iocality is not pronounced. This is the case 

with MBE, a deposition process we have already seen in the previous chapter. For a 

spread in incident angles, this effect is very strong and is tbe cause of the intricatc 

microstructure we see in the case of sputter deposition. 

The shadow model is thus based on the idea that global shadowing is the desta

bilising mechanism of growth in sputtering. The instabilities caused by shadowing 

are annealed to a certain extent by surface rela.<ation t(· ms like surface diffusion 

and desorption. In this section we shall only focus on how shadowing competes with 

surface diffusion as tbis is the most dominant term at smalllengthscales. As before 
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Figure 2.8: Diagram •• howing tbe non-local .badowing efl'ed and deposition by MBE. 

we can write down our model for the rate of change of the height variable, 

(2.60) 

the first term as we very well know by now is due to surface diffusion, the second 

term is the shadowing term which takes into account all the incoming directions. The 

non-local nature of (J makes the above model a Cormidable mathematical problem Cor 

analytic work. The problem can however be tackled numerically(Bales and Zangwill, 

1989i Karunasiri, Bruinsma and Rudnick, 1989; Yaa, Roland and Guo, 1992). Results 

from tbis analysis seem to show a columnar structure for the surface at late times, 

see Fig.(2.9). The shadowing problem has also been studied using the Monte Carlo 

approach(Roland and Guo, 1991) and results show a mountainous landscape. This 

Shadow model seems to provide us with a reasonable explanation Cor the microstruc

ture observed in the sputtering process. 

ln tbis chapter we have reviewed models both numerical and phenomenological 

and have studied some simple ways of dt>wng with them like the Flory analysis. This 

argument that we used ta analyze one oC our equations cannot always be applied. 

The method infact breaks down in certain situations. In the next chapter we shall 
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Figure 2.9: ColumDu landacape u a reault oC Ihadowing. 

study a more rigourous method of approaching these non-lin car problems namely the 

Renormalization Group analysis. We shall illustrate the method by applying it to the 

KPZ equation. 
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Chapter 3 

Interfaces and the 

Renorlllalization Group 

3.1 Introduction 

IIaving gotten ourselves acquainted with the general elements of static and dynamic 

interfaces in Chapters 1 and 2, we shall in this chapter study the renormalization 

group and how it could be uscd to analyze equilibrium and non-equilibrium interface 

problcms. BeCore getting into the actual renormalization group method, we shall first 

rcview certain key concepts from critical phenomena which would be of use to us 

later. The term critical phenomena in simple language refers to the thermodynamic 

properties of a system near the critical temperature Tc of a second order phase tran

sition. Typical examples of such a transition are the gas-liquid transition and the 

paramagnetic- ferromagnetic phase transition. 

For an illtroductory review, we shall use the ferromagnetic system. As we all 

know, it is the unpaired electrons that are responsible for the magnetization of a 

matNial. In tenns of energy, these electrons prefer aligning themselves in the same 

direction to lower the net energy due to the spin exchange interaction, which is 

causcd as a result of the combined effect of the Coulomb interaction and the Pauli 

exclusion principle. When we lower the temperature to T = 0, all spins tend to align 
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themselves and in this configuration, the system has a net maglletization and is said 

to have a ferromaglletic property. As one raises the temperature to fini te T, the spins 

get randomised and the magnetizatioll is reduced. Illcreasing the teUlpcrature further 

drastically reduces the spins aligned and at T = Tc th'Ïs magnetizatioll falls to zero 

and one has a paramagnetic material. In other words for T < Tc, order domillates, 

while for T > Tc disorder has the upper hand. Around 7' '" Tc, there are large rcgions 

of aligned and misaligned spins. When these regions become large, the time required 

for ordering and disordering becomes proportionately long. As a result, spins are 

flipped around at random without any spatial or temporal coherence. 

Critical phenomena may be classified as static or dynamîc dcpcnding on whcther 

one is dealing with equilibrium or the approach to equilibrium properties of a system. 

Statics normally deal with quantities like the specifie heat, susceptibility, magnetiza

tion, etc and dynarnies with the relaxation times, diffusion etc. 

It has been observed experimentally that at temperatures very close to Tc quan

tities such as the magnetization, suseeptibility, specifie heat, etc go as powers of the 

temperature. These powers to which the temperature is raised are callcd critical 

exponents. These exponents help describe the nature of the singularities in various 

measurable quantities at the critical point. Defining a redueed tcmperature t = TT.~' 

In the limit t -+ 0 any thermodynamic quantity can be decomposed iuto a reg\llar 

part which remains finite and a singular part that may be divergent or have di\'l~r

gent derivatives. It is this singular part that is assumed to be proportional to &ome 

power(generally fractional} of the reduced temperature for exarnple, the heat capac

ity C '" /tl- or , the suseeptibility X rv Itl-7 , etc. The significance of these critical 

exponents lie in their universality. A large number of experirnents have shown that 

widely different systems exhibit the same critical exponents, these systems arc said 

to belong to the same universality class, a magnet for example may have the same 

eritical exponents as a gaseous system near the critical point, in other words details 

such as atomic interactions become irrelevant near Tc. The onJy quantity of rclevance 

being the correlation length which diverges at the transition ternpcraturc. Anothcr 
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interesting aspect of these exponents is the fact that they exhibit scaling laws that 

are universal. 

3.1.1 Scaling 

Scaling as the name implies tells us how physical quantities change with respect to 

length scales. AIl one has to do is express the dimension of the quantity in question 

in terms of a standard unit of length, scaling then tells us how this quantity varies. 

Thus, a dimensionless quantity will be invariant in this scheme. A large number of 

important scaling laws may be derived for various thermodynamic functions around 

tbe critical temperature Tt; by making the assumption that the correlation length is 

the on]y characteristic length of the system in terms of which all other lengths must 

be mcasured. Scaling when combined with the experimental fact that the correlation 

length ( diverges at T '" Tc leads to the conclusion that the system is invariant under 

scale transformations and that it has no characteristic length. Thus the system looks 

alike at all lcngth scales. We shall soon see that this idea actually forms the basis 

upon which the whole concept of renormalization rests. 

3.1.2 The Renormalization Scheme 

In physics it is fairly easy to find systems that have many degrees of freedom in a region 

the size of a correlation length, critical phenomena is no exception. These systems 

behave differently when compared to systems that have a few degrees of freedom in 

one correlation length. Ordinarily one may describe a system completely using an 

interaction Hamiltonian, which encompasses within it all the necessary interactions. 

This is however true only when the correlation length is small. In critical phenomena. 

however, degrees of freedom tend to interact with eachother giving rise to the collective 

behavi')ur we observe. The interaction Hamiltonian becomes a secondary object in 

this case. These systems become fairly difficult to handle precisely due to these 

interactions among the degrees of freedom. Renormalization provides us with a way 
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to handle these interactions. This approach may be summarized in two steps(Wilson 

and Kogut, 1974; Wilson, 1971), 

(a). averaging out fast oscillations, in other words oscillations that are of lcngt.b scales 

far smaller than the correlation length near the critical point, thereby reducing tbc 

degrees of freedom. 

(b). helps account for the cooperative behaviour among tbe degrees of frcedom. 

The above steps are achieved by subjecting the system to a group of transforma.tions 

that are in generallinear (but maybe non-linear in certain cases), the effective number 

of the degrees of freedom are reduced in a step wise manner. These transforma.tions 

are applied repeatedly till the spacing between the rcduced degrees of freedom is 

roughly of order correlation length. The system is said to have reaclled a 'fix<,d point' 

at this stage, any further transformation at this point would yield the sa.IllC results, 

the system in other words cannot be rescaled anymore. In the next and subsequent 

section, we shall see how this technique rnay be used to analyze interfaces both statie 

and dynamic. 

3.2 Renormalization as applied to static inter

faces 

In this section we shall briefly review sorne ways effective interface Hamiltonialls may 

be studied using the renormalization scheme. As discussed in chapter 1, interfacial 

configurations may be described using a single-valued variable cjJ(z, t). The Hamilto

nian then has the general form, 

(3.1 ) 

where Ho(cjJ) is the free part of the Hamiltonian and H,(<fJ) is the part that has ail 

the interactions bullt into it and in g~neral could be sorne potential V(z). As bcCore 

the renormalization scheme may be broken down into a few crucial steps, we shaH 

deal with each one of them in brief. First, the fluctuating interface function <fJ( z) is 

---------------
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broken down into fast and slow varying parts, 

(3.2) 

This decomposition of the fast and slow modes is done in such a way that the free 

part of the Harniltonian Ho(iP) aIso decomposes into a fast and slow part (Wilson, 

1971; Wilson and Kogut, 1974; Fisher and Huse, 1986; Halpin-Healy, 1989; Jasnow, 

1986; Forgacs, Lipowsky and Nieuwenhuizen, 1991). 

(3.3) 

The next step involves integrating out the fast variables or fluctuations of the 

ft uct uating fUIlction 4>( x ). The integration of the fast variables gives rÏse to an effective 

Hamiltonian H'(4)d for the slow oscillations. From the above equations we cao then 

write, 

(3.4) 

The averaging over the fast fluctuations is usually done using a suit able weight func

tion (normally corresponding to the free interface Hamiltonian or Harmonie weight). 

The ncw effective Hamiltonian generated as a result of the averaging may not preserve 

the form of tbe original one. The averaging procedure introduces extra terms and 

one would have to deal with them or give physical arguments for their irrelevance. 

In general, the above procedure may not be an easy one technically, the degree of 

difficulty dcpcnding directly on the type of potential in use. The final step involves 

the resC'aling of the spatial coordinates by a suitable factor in an effort to bring the 

problem back to its original form. This procedure is carricd out again and again till 

olle rcaches a condition wh en the terms no longer renormalizc i.e, application of the 

transformation gellerates the same terms as the previous step. The potential at this 

st.age is said to be renormalized. 
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3.3 Dynamical Renormalization 

3.3.1 Introduction 

The effective interface Hamiltonians that we considered in tbe introductory chaptcr 

are insufficient wben it cornes to describing the dynamics. In this case onc bas to 

specify an equation of motion for the order parameter for example, say ~(z, t). The 

equation of motion describing the dynamics of this quantity is theu sim ply given by 

the time dependent Ginzburg-Landau equation(TDGL), 

8rp(x, t) _ _ D6H ( ) 
at - 6tP + 11 x, t , (3.5) 

where H(q,) is the Hamiltonian describing the static propertics of </>(x, t) and 11(X, t) 

is the thermal noise in the system which is assumed to be Gaussianly dislribuled. As 

we can clearly see, equation.( 3.5) is basically a Langevin equation. Depending on 

whether the order parameter is conserved or non-conserved, equations of tlle ahove 

type may be c1assified into model B or mode} A(Hohenberg and HaJperin, 1977). A 

renormalization analysis on the above equation yicIds both the static and dynamic 

properties of the syetem. Other tban technical differences, the reIlormalizatioJl anal

ysis in dynamics is basically the same as in statics. Two widely used Cormalisms are, 

(a). the lagrangian formulation of Martin-Siggia-Rose (MSR)(Martin, Siggia and 

Rose, 1973; Bausch, Janssen and 'Vagner, 1976; Amit, 1984) whicb a]]ows one to 

calculate all the dynamic correlations using rigorous methods from field theory, 

(b). the momentum-sbell renormalization of Ma, which essentially hc1ps 'peel' off the 

fast modes in a systematic manner(Ma, 1980; Ma and Mazenko, 1975). 

The above dynamical formulation is directIy rclated to the fact that one can find a 

Hamiltonian that describes the static properties of tbe system. 1t is thcrerore )imited 

to explaining critical dynamics, near equilibrium. Wc shall in the next section revicw 

a Cormulationdue to Forster, Nelson and Stephen(Forster, Nelson and Stephen, 1977), 

that would enable us analyze systems that are far away from equilibrium liuch as the 

KPZ equation and other related ones. 

1 .. 
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3.3.2 Momentum-shell renormalization group analysis of the 

KPZ equation 

A variant of the momentum-shell renormalization technique of Ma was used by 

Forster, Nelson and Stephen(Forster, Nelson and Stephen, 1977) in their analysis of 

the randomly forced Burgers equation which as we may recall from chapter 2 can be 

mapped to the KPZ equation by a simple transformation(Kardar, Parisi and Zhang, 

1986j Medina et al., 1989). It has been shown by Kardar et al that their analysis was 

valid for the KPZ cquation as weIl. The momentum-shell method they used basically 

comprised two main steps: 

(a). integrating out the large k's 

(b). rescaling the remaining k's to restore the original k-space 

We shall now sketch the method of Kardar et al . Starting with the KPZ equation, 

(3.6) 

We first Fourier transform the above equation, using the following definitions of the 

transform and its inverse. 

(3.7) 

where A is a lower cut-off on the wavelength, as one cannot probe lengths sholter 

tban the lat tice constant. 

The inverse may be defined as 

l dd-l k j+oo dw ~ ~ 
h(i, t} = -h(k w)ed: z+iw' 

Jr<A (211" )d--l -00 27r' , 

l dd-l k j+oo dw ~ ~ ~ 
11(i, t) = -11(k w)e'h+iw,. 

1:<A (211")d-l -00 27r ' (3.8) 

Substit.utiug these definitions into the KPZ equation we get, 

~ -4 À ~ 1'" ~ h(k,w) = h"{k,w) - -2Go(k,w) q. (k - Q)h(q, O)h(k - q,w - 0), 
Il,n 

(3.9) 
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• 
h(II,CIl) 

h(q,ny 

-~.~-,L.-
<&(11,(1) h(lI-q,CIl-O) 

Figure 3.1: Diagrammatic lepresentation oC equation.(3.9). 

< 7J(k,w) >= 0, 

The hare propagator or Green's function is given by, 

.. 1 
Go(k,w)=-. k2 ' 

-IW + V 

45 

(3.10) 

(3.11) 

We next decompose aU the fluctuations in the problem as fast and slow hefore 

carrying out the integration over all the fastmodes. AU the averagcs are per(ormcd 

over the stochastic noise defined hy equation.( 3.10). The correction to the response 

(unction G( k, w) to lowest order in perturbation theory can then he shown to he, see 

Fig. 3.1, 

... .. -,\ 2 2 ... 
G(k,w) = Go(k,w) + 4( 2) Go(k,w) 

x ~,O (2!)d q· (k -?Jq. kGo(k - q,w - n)Go(q, O)Go { -q, -n)2D(q, 0) 

+0(..\4), (3.12) 

the factor of four stemming Crom the various possible noise contractions. Fig. 3.2 

diagrammatically represents the above lowest-order (one-loop) correction to the re

sponse function, the noise spectral density functioD and the effective vertex (unction. 
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Figure 3.2: (a) the response function, (b) the noise spectral density function, (c) the vertex function. 
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To first order the surface tension 1/ then renormalizcs 88, 

= [1 + X
2 

Ktl-l ( -1(tl-3) _ 1)1 
1/,. li 4(d-l) e (3.13) 

Similarly we have, 

-2 
D = D[l - >. Ktl-l ( -1(.1-3) - 1)] 

,. 4(d-3) e (3.14) 

The coupling constant>. does not renormalize due to Galilean invariallce(Kardar, 

Parisi and Zhang, 1986). Therefore, 

>.,. = >. (3.15) 

In the above equations K tl- 1 = 1!jl r(tl;l) is a constant of illtcgration corre-
2"-1 .. 

sponding to a (d - 1) dimensional surface and X2 = ~p. Raving intcgrated away the 

large k's, we must now rescale our coordinates to restore the original k space. We 

therefore perform the following transformations, 

To ensure that the height variable h still satisfies the KPZ equation wc perform the 

following rescalings which ensure this, 

h'(k',w') = e-zl-Cd+a-l)lh(k,w), 

(3.16) 

Using these expressions we obtain, 

D(l) = e(I-2a-cHl)1 D"., 
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~(l) = e(J:-2+o)I~,.. 

Treating 1 as infinitesimal one gets the following recursion relations, 

-2 
dlJ(l) = (1)[ _ 2 À K"_13 - d] 

dl v Z + 4 d-l 

-2 
dD(I) = D(l)[z _ d + 1 _ 2a + À Kef-Il 

dl 4 

d>'(l) - = ~(l)[z - 2 + al 
dl 

The flow equation for the effective coupling constant X is therefore, 

48 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

to leading order in X. It can be shown that the 'critical dimension 1 de = 2 + 1 for the 

KPZ equation which implies that for d ~ 2 + l, the non-linear term in the equation 

hecomes irrelevant and one shou!d get back linear results. At d = 2 + 1 however, the 

strong coupling fixed point cannot he probed using the perturbation theory hecause 

the X3 
term in t'quation.(3.21) remains positive always, making the equation diverge 

for large X. There however exists a strong coupling fixed point in d = 1 + l, at this 

fixed point settil1g the recursion relations (equations.(3.18),(3.19) and (3.20» to zero, 

one gets the exponents f3 = l, Q = land z = ~ which agree very weil with numerical 

simulations on the Eden mode!. There has however, been much work on the numerical 

sicle in d = 2 + I(Guo, Grossmann and Grant, 1990a; Amar and Family, 1990; Kim 

and Kosterlitz, 1989; Guo, Grossmann and Grant, 1990b) using both Langevin and 

Monte Carlo simulations. 
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Chapter 4 

N umerical St udy of a Model for 

Driven Interface Dynalllics 

In this chapter we shall study the consequence of adding the non-lincar tenn corre

sponding to Fig.(2.7e), i.e (V2h)2 to the following linear equation governed by surface 

diffusion. 

(4.1 ) 

The equation as a result becomes, 

(4.2) 

This model differs from the non-linear model of Lai-DasSarma-Villain in the type of 

non-linearity used. It is clear eventhough the above equation cannot be written in 

the form of a continuity current, the non-linearity nevertheless helps mimic accrual 

of atoms at a kink thereby making equation.(4.2) a likely candidate to dcscribe a 

non-linear growth process dictated by surface diffusion, the MBE growth process for 

example. 

It turns out that if one considers linear equation.(4.l) as an expansion on the local 

curvature of the interface (K - V2 h). Then equation.( 4.1) givcs a local growth rate, 

(4.3) 

49 
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Using the above equation as an expansion as already mentioned, if we expand upto 

the simplest non-linearity in K we get, 

(4.4) 

The extra piece is essentially the same non-linear term as in Fig.(2.7e). This growth 

rate is very similar to that of the weil known local model for dendritic growth(Kessler, 

Koplik and Levine, 1988; Pelee, 1988) which assumes that the local growth rate may 

be written as, 

v ,..., IIK - uV2 K + ).K'l + ...... (4.5) 

The difference between the above two equations lies in the first term, this term com

bined with the second leads to the Mullins-Sekerka. instability (Mullins and Sekerka, 

1963; MulUns and Sekerka., 1964) which gives rise to the situation that lumps of ma

terial on tbe surface tend to grow faster. . This equation has a band of unstable 

modes which can be shown by a linear stability analysis(Pelce, 1988). The K2 term 

is associated with the undercooling, which enhances the growth rate and also breaks 

the symmetry between the interior and exterior. Most of the work on the local model 

has been focussed on the steady state pattern that the equation generates. If one 

dccides to study the dynamical scaling of sueh an interface, one may turn off the 

Mnllins-Sekerka instability by making the assurnption that the growth has already 

occured for a long time(Govind and Guo, 1992). The eqnation thus simplifies to, 

(4.6) 

idcllt.ical to equation.(4.2). Assuming that there are fluctuations in the system, the 

above equation can then be written as, 

(4.7) 

This scrves as a second motivation for studying equation.( 4.2). 
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4.1 Renormalization Group analysis 

We shall use the same renormalization scheme (the momentum-shcll method) that 

was used to analyze the KPZ equation in chapter 3. Using the definitions of the 

trans!orm and its inverse from chapter 3, we first Fourier transform t'quation.( 4.2), 

... ... ,\... f'" ... 
h(k,w) = hO(k,w) + -2 Go(k,w) la f(k - flh(q,n)h(k -- q,w - 0), 

9,0 
(4.8) 

< "1(k,w) >= 0, 

(4.9) 

The bare propagator or Green 's function is given by, 

... 1 
Go(k,w)=-. k4 ' 

-tW + CT 

and 

(4.10) 

The diagrammatic representation of the above expression is identical to Fig.(:3.l4). 

Infact all the diagrams that were used to renormalize the various cOIll,ta.nt.s in the 

KPZ equation may be used here as well. The fluctuations in the problern a.re thcn 

decomposed as fast and slow before the fast modes are integrated out. Ail the avcra.gt~s 

are performed over the stochastic noise defined by equation.( 4.9). The correction to 

the response function G(k,w) to lowest order in perturhation thcory ('an t11('11 be 

shown to be, see Fig.( 3.1), 

~ ... À 22 -
G(k,w) = Go(k,w) + 4(2") Go(k,w) 

x f (1)dq'l{k - ij)2fPGo(k - q,w - O)Go{iO)Go{ -Ii, -n)2D(tl,O) 19,0 211' 
+0(,\4), (4.11) 
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the factor of four stcmming from the various co:nbinations of the noise contractions. 

The diagrams being exactly identical to the on es used to analyze the KPZ equation, 

it is relatively straight for ward to show to first order that q renormalizes as, 

( 4.12) 

Similarly we have, 

( 4.13) 

The coupling constant À renormalizes in this case as there is no Galilean invariance 

in the problem. We found, 

(4.14) 

In the above equations K d - 1 = 1 .. 1 rel;t) is a constant of integration corre-2.-1",,-

sponding to a (d - 1) dimension al surface. As before we restore the full k space using 

the following transformations, 

w/ = ezlw, 

h'(k/,w/) = e-zl-(ll+a-l)lh(k,w), 

( 4.15) 

Using thcse expressions we obtaln, 

D(l) = e(J-2a-cl+1)1 Dr' 

( 4.16) 
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Treating 1 as infinitesimal one gets the following recursion relations, 

( 4.17) 

-2 
dD(I) = D(l)[z _ d + 1 _ 20 + .\ KcI-lj 

dl 4 
( 4.18) 

-2 
d:\(l) \(1)[ 4 À Kd-l] 
-d-l- =" z - +a+ -4- (4.19) 

where l2 = ":P. The flow equation for the effective coupling constant 'X is thcn givC'n 

by, 

d'X(l) _ fi - dT K ~\3 
dl - 2 ,,+ 01-1 4'" ( 4.20) 

to leading order in 'X. From the above equation we clearly see that ab ove the critical 

dimension de = 4 + 1, one gets a stable fixed point at 'X = 0 and the result z = 4 

is obtained. However, below the critical dimension, no stable non-trivial fixed point 

can be found. There is also no simple hyperscaling relation betwccn the cxponcnts z 

and a. A similar situation exists in d = 2 + 1 for the KPZ equatioll. The first ordpr 

perturbative calculation in this case thereCore does not allow us to probe a strong 

coupling fixed point in any physically relevant dimension. 

The above calculation was also carried out usillg corrc1atcd noise w hcrcby the 

noise correlations become, 

(4.21) 

The calculation being identical to the uncorrelated case, one obtains the following 

recursion relations that depend on the noise exponent p, 

-2 
d(1(l) = (1)[ _ 4 À Kd-l] 

dl (1 Z + 4 ' ( 4.22) 

dD(l) -;u = D(l)!z - d + 1 - 2a + 2p], (4.23) 
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and 

d'>'(l) -2 ---;u = '>'(I)[z - 4 + 0: +.>. Kif-Il· (4.24) 

Notice that the recursion relation for D results solely from scaling arguments implying 

that the correlated noise doesn 't renormalize it as it does in the uncorrelated case. 

Further the the effective coupling constant X renormalizes as, 

(4.25) 

Thus we sec that the spatially correlated noise changes the cri tic al dimension of the 

model (the critical dimension being a (unction of p in this case). Unfortunately the 

coefficient of the X3 term still remains positive which prevents the model frOID having 

a sta.ble fixed point. 

4.2 Nuulerical analysis 

Sincc the RG analysis did not lead to a strong coupling stable fixed point, a numerical 

intcgration of the problem was resorted to(Govind and Guo, 1992). The integratton 

mcthod that was used was the central finite difference and the Euler method. This 

method is perhaps the simplest numerical algorithm used widely over the years to 

solve diffcrential equations. It consists in approximating the temporal and spatial 

dcrivativcs as(Abramowitz and Stegun, 1975), 

~h(x, t) _ h(x, t + Ât) - h(x, t - ôt) 
Bt 2dt 

( 4.26) 

and 

ôh(x, t) _ h(x + ~x, t) - h(x - âx, t) 
8x - 2Ôx ( 4.27) 

Makillg use of thcse relations, equation.( 4.2) may be written as, 

h(x, t + dt) = h(x, t) + 
Â 1(_ ) h(x + 2dx, t) - 4h(x + ÂX, t) + 6h(x, t) - 4h(x - ÂX, t) + h(x - 2Âx, t) 

t (J (ÂX)f 

( ~)(h(x + ÂX, t) - 2h(x, t) + h(x - ÂX, t))2 ( )] 
+ 2 (dx)2 +17 x,t ( 4.28) 
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There are however certain conditions that the Euler rnethod must satisfy for its 

stability. Typically the values of .6:z:, and ~t must be chosen such that 

~X« L, (4.29) 

and 

At« t (4.30) 

where Land t are the length and time seales associated with the problcm. Siul'c 

these quantities are not totally independent of eachother, .6x amI .6t cannot hc ('ho

sen arbitrarily and care must be taken in choosing them in sueIt a way t.hat. Illllllcl'Ïl'a.l 

instabilities are avoided. The noise terrn 1](x, t) was simulatcd using a suit.ahle Galls

sian random number generator which was tested to avoid any possible correlations 

among the numbers generated. In our simulations we used ~:z: = 1 and 6.t = 0.01. 

A small Âx irnplies that more points are taken into account. We have chcckp<.J t.hat 

a smaller time step does not change the results in any important rnallller. To obta.ill 

reasonable statistics, aU the averages were performed over 100 indepcn<.Jcnt runs. 

4.2.1 Results in two spatial dimensions 

We now report results from our simulations in d = 1 + 1 dimensions. The cquation 

was solved using L = 512, At = 0.01 , Âx = 1 for values of À bctwcen 10 and 50. 

Fig.(4.1) shows a log-log plot between the width and the time. The slope of the 

straight line gives the value of {3. For the largest 2 values of À, {3 wa.c; f01Jnd 1.0 be 

0.39 ± 0.03. The roughening exponent a: was obtained by integrating the equatÎon till 

a steady state was reached for different values of system size L (sec Fig.( 4.2)). The 

slope of the line yields a value of a = 1.4. 

4.2.2 Results in three spatial dimensions 

The equation was also integrated in the physically relevant d = 2+ 1 dimensions, uliing 

exactly the same values for Ax and At as in the d = 1 + 1 case. Tbe widtb W a.'i a. 
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TIME 

Figure 4.1: The mterface width Was a function of time t in d = 1 + 1. Each eurve corresponds to 
an average of 100 inde pendent runs on a system of sile L = 512. Lower to higher curves correspond 
to A = 10,25,40,50 respectively. The slope for the largest 2 values of .\ give {J = 0.39. 
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Figure 4.2: A log-log plot of the width W vs L at very large times. The slope gives a value of 
a = 1.4. 
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Figure 4.3: The interface width Was a function of' time , in d = 2 + 1. Each cune corrt'spollds to 
an average of 100 independen\ runs on a system of sile L = 50. The CUlVes correspond to ~ ::= 30,50 
respectively. The slope yields a value {J = 0 22. 

{unction of time t was studied using values of À = 30,50 respectivcly (sec Fig.(4.3)). 

The value of {3 was found to be 0.22 for both the curves shown in the figure. {3 was ah,o 

determined using the two point correlation (unction G(t) =-< (h(z,t+T)- h(z, t))2 >, 

since G( t) '" t 2
{J at intermediate times and was found to be 0.21 ± 0.02 fOIlSil>tf'lIt 

to within error bars. The roughening exponent was detcrmined in exactly the saille 

way as in the d = 1 + 1 case, Fig.( 4.4) shows a plot of the width W as a fUflction of 

the system size L. Wc obtained a value of ct = 0.82 ± 0.03. Fig.( 4.5) shows (t profile 

of the interface generated alter a time t = 1000. This is to be comparcd wlth the 

interface shown in Fig.(4.6) which corresponds to the KPZ equation. 

4.3 Summary and Discussion 

In tbis chapter, we have proposed and studied a physically meaningCul rnodcl relevant 

in describing kinetic roughening phenornena in the hydrodynamic limit of a growing 

interface where surface relaxation is conholled by surface diffusion. The modd may 

be relevant in describing the roughening of the tip of a large dendrite(Maurer et al., 
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Figure 4.4: A log-log plot of the widtL li' Vii L at ve!y liuge tîmes. The blope gives a value ol 
Q = 0.82. 
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Figure 4.5: Typical Ihape of a audace generated Ly the 1!!odel \VI! investigated in tbis chapter aIter 
t = 1000. 
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Figure 4.6: TypicaJ shape oC a surface generated by the KPZ l1lodel .(trr , = 1000. 

Figure 4.7: Picture showing the roughening of the tip of a large dendrite (Maurf'r et al, 1989). 
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1989) (see Fig.(4.7). We see that the presence of the non-linear term reduces the 

value of the cxponent 0 when compared to the llnear theory(o = 1.5), but is still 

higher than the Ct = 1 in d = 1 + 1. The width W(L~--<OO} - Lo-1 diverges for large 

L as a result, indicating a breakdown of the SOS condition discussed in an earller 

chaptcr. This feature exists in other models as well where relaxation is controlled 

hy surface diffusion. In d = 2 + 1 dimensions however, 0 is reduced from the llnear 

rcsult of Ct = 1 to a smaller value due to the non-linear term. This 0 is still quite 

large implying that surfaces generated as a result of the dynamics dictated by these 

equations are extremcly rough. These equations are tberefore insufficient in trying 

to accollnt for growth hy MBE which as we have already discussed helps generate 

surfaces that are extremely smooth. One therefore has to modify these equations 

suitahly. A different non-linearity may he used, it however turns out that all other 

non-linear terms other than those disussed are irrelevant. Another possihility would 

he to include a conserved noise (Sun, Guo and Grant, 1989), which could arise from 

the t'Xtreme accurate collimation of the heam used to deposit atoms on the substrate. 

Oue could think of other posslhilities too such as using a multiplicative noise. These 

btatus of rcscarch in this area is still very preliminary and further analysis needs 

to be done. ft would he interesting to see how these continuum equations have to 

be moditi<'d in order that one gets exponents doser to reality. Further from the 

profiles of the interfaces in d = 2 + 1 shown in Figs. (4.5) and (4.6), it is clear that 

surface diffusion is not a very efficient mechanism in smoothing out large wavelength 

fluctuations whereas relaxation due to surface desorption is better at smootrung out 

thes(' undulatiol1s. However, the surface in the former case is much smoother on 

sll1<lller lcngth scales compared to the latter. In conclusion we note that models 

wit h surface diffusion and non-consel ved noise seem to give rather large f0ughening 

(>XpOlll'ut values. It will he interesting to see what other effects can help alter the 

ab ove situation. 
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Chapter 5 

The Effects of Impurities on 

Driven Interfaces 

The previous four chapters were devoted to the general understanding of interCace 

dynamics, through continuum and lattice models. We must rcmcmbcr that thosc 

were only models and one can establish their validity only by comparing thcir prc

dictions with experimental result!!. To date very few experimeuts have act.ually b,'cll 

performed to study kinetic roughening phenomena. This may be aUrihutcd to a 

number of factors, foremost among them being technical difficulty. Ther<' bavI! nev

ertheless been sorne measurements on ftuid flow through porous media(Rubbio et al., 

1989; Rubbio et al., 1990; Martys, Cieplak and Robbins, ; Horvath, Family and 

Vicsek, 1991; Buldyrev et al., 1992) which have revealed rougltening cxponcnts that 

are vastly different from those predicted by theoretical modcls{Kardar, Parisi and 

Zhang, 1986; Kim and Kosterlitz, 1989). It is obvious that the standard modcls 

haven't taken something essential into account. The missing ingredicnt has to he the 

effect of quenched impurities, the random pore sizes that tend to piIl the ad vancing 

fluid front, causing it to rougben rurther. lndeed, the experimentally measllred rollgh

ening exponent Q is much larger than the theoretically predicted value. ThcrcCore in 

constructing meal1jngful models this aspect bas to be taken care 0(. ln this chapter 

we shall review various models, lattice and continuum that take this iuto account and 
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we shall condude with a discussion of our findings of the effect of quenched impurities 

on the driven dynamics of an interface with a conservation law. 

5.1 Review of models with quencbed noise 

As we have rurcady seen in the introductory chapter, a quenched random impurity 

rnay be model1ed theoretically using random fields and bonds(Grinstein and Ma, 1982; 

VilJain, 1982; Kardar, 1985) whereby one writes down an intt>rface Hamiltonian with 

a random potential V. This gives us information about the statie properties. For 

dynamic properties as already mentioned, we would have to start with a continuum 

cquation. A simple way by which we may indu de these quenched impurities is by 

rnodifying the noise term. For example, consider a linear model, 

(5.1) 

wh cre the quenched noise correlations are given by, 

'(5.2) 

The above mode} being linear can be aaalyzed exactly, it yields a {3 = 0.75 compared 

to a {3 = 0.25 if the noise were not quenched (reter chapter 2). This property is 

sharcd by other linear models as weil. As far as a non-linear analysis goes there has 

bren some recent work by Zhang and others(Zhang, 1990), who have tried to bridge 

the differcllce bctwcen theory and experiment by introducing a power law distributed 

instead of the more conventional Gaussian distributed noise into the KPZ equation. 

Zhang for ex ample assumed the following distribution for for the noise 'f/, 

P('f/) '" _1_ 
'f/l+v (5.3) 

with 'f/ > 1. Tltese authors have found noise dependent roughening exponents thus 

settiug to llougbt aIl daims about the universality of these values. This discussion 

however lcaves open the question as to what is the physical reason behind these 

llon-universal expollents and the strange noise distribution given byequation.(5.3). 
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In a recent paper Jensen and Procaccia(Jensen and Procaccia, 1991) have tried 

to answer this question using a generalised version of the Kim-Kosterlitz growth al

gorithm (Kim and Kosterlitz, 1989)(a model that corresponds to tht' lattice vNsion 

of the KPZ equation) to inc1ude the effects of a qllenched ra:1dom background whkh 

would tend to pin the interface as it propagates forward. Tbese autbors round anoma

lous exponents consistent with the predictions of Zhang and others. The rougbt'ning 

exponent a was found to be ~ 0.85 far higher than the ~ 0.5 obtained from tbe un

modified KK modcl proving that pinning do es indeed rougben the interface fllrther. 

5.2 Effect of quenched impurities on the drivcn 

dynamics of an interface witb a conservation 

law 

In all the models studied so far, the interface advances through the random ba.ck

ground potential. This aImost never happens in solid systems. In this section W(' shaH 

study the effects of a quenched impurity on a driven interface (thus non-cquilihrium) 

which does not advance on average: the average position of the interface }wÎng fix(·d 

by a conservation law. Therefore, the interface aIthough in non-cquilihrillm, can only 

fluctuate around its initial position. The interface being fixcd(avcragc po:,ition), thus 

experiences the same set of random impurities. We sball see later how one may t."ke 

this feature into account. A realistic example is a surface bcing damaged by radi

ation with impurities trapped near the surface. The total llurnber of atoms in the 

system is conserved but the system is far away from eqllilibrium. BeCore we gd into 

the Ieal discussion, we shall briefly review a few conserved models, latticc as wc}) as 

continuum. 



" , 

THE EFFECTS OF IMPURITIES ON DRIVEN INTERFACES 64 

5.2.1 Models for Conserved Surface Dynamics 

Continuum Model 

Jt is weil known that the presence of a conservation law vastly changes the roughening 

dynamics of a system far from equilibrium. A weIl known model is one due to Sun,Guo 

and Grant(SGG)(Sun, Guo and Grant, 1989) in which the local growth rate of t.he 

interfacial height, h(x) is proportional to the divergence of a current. Therefore one 

has, 

(5.4) 

the noise-noise correlations being given by, 

(5.5) 

and Il, ~, D are constants already defined in chapter 2. Adynamie renormalization 

group analysis on the above equation, yields scaling exponents 0: = i, f3 = 111 and 

z = 131 • These exponents also satisfy the scaling relation 

a+z=4 (5.6) 

in aU dimcnsions. These exponents being very different from those of the KPZ equa

tion show tllat this model belongs to a different universality class. Since the growth 

rate is proportiûnal to the divergence of a current, it is obvious that the total volume 

under the interface is always conserved. This model may correspond to the recon

struction of a laser damaged surface as mentioned above. The model being dominated 

by surface diffusion may also be relevant for the MBE growth ,?rocess discussed in 

Chaptcrs 2 and 4, there are reasons to expect this because of the small value of the a 

(sec above) gCI1<,rated by the mode!. This is another motivation to study a conserved 

l110del in the presence of quenched impurities. 

Lattice l\1odel 

Since th(' average position of the interface is fi.xed in time, it is quite trieky to fonnulate 

a lattiee or microscopie model which must not only take care of this aspect but also 
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break detailed balance in an appropriate manner so that the non-equilihrium nature 

of the model !:; preserved. Indeed such a Jattice mode! was proposed by Rarz et 

a1(Racz et al., 1991) recently. Their model is basically a conserved variant of the 

restricted solid on solid model of Kim and Kosterlitz( Kim and Kostl'rlitz, 19~9) anù 

their algorithm goes as follows: 

(a). Pick a site at random 

(b). Increase its height by one and check if the height restriction is satisfied (Ih( i) + 
.1- h(i± 1)1 $ H). 

(c). If the above condition is not satisfied, go to step (1) and initiate the proet'ss 

again. 

(d). If the condition is satisfied, this site is a potential site for an incft'i\w by the 

amount ~. The next thing is to find a suitable neighbour for a dccrcasc so tltat 10n\.1 

conservation is maintained. To do this, check both the ncarest ncighbours of the 

relevant site to see if any or both of them are capable of being decrei\scd and at the 

same time keeping the height restriction condition of step (2) intact. 

(e). If only one of the nearest neighbours is capable of being dCCfeélsc'cJ, choo~e il and 

decrease its height by ~. 

(f). If both are capable of being decreased, choose one at randolll a.nd }>('rforlll tilt' 

decrease. 

(h). If none can be found go back to step (1). 

The conservation law is pretty obvious in the above sct of rules. Thcse growth filles 

can be shown to break detailed balance explicitly(Racz et al., 1991 )(sce Fig.(5.\ ». If 

Pa, Pb and Pc are the steady state probablities of states a,b and c and Pab,P/x: and Pea 

are the transition probablities between thcsc states, thcn cJf·tailcd halall(,c requircl> 

that, 

(5.7) 
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which lcads to the condition, 

(5.8) 

whcre we have used the fact that P, = Pc by periodic boundary conditions. However, 

from Fig. (5.1), we see that the right hand side of the above equation equals 1 whereas 

the left hand si de equals ~ clearly showing the violation of detailed balance. 

Studif's on this model have shown that the ratio j- plays an important role in 

dctcrmining the universality class the mode! describes. At precisely ~ = h the mode! 

yidds cxponents consistent with the SGG mode!. For values greater and lesser than l, 
the modcl exhibits a smooth and grooved phase with exponents vastly different from 

those of the SGG mode} respectively(Racz et al., 1991). One can indeed construct a 

J'ather int <!resting phase diagram corresponding to various values of this ratio. 

5.2.2 Effect of quenched impurities 

To study the effects of quenched impurities on a conserved system, we hol.ve generalised 

the above lattice model to take this into account(Govind, Guo and Grant, 1992). The 

impuritics are reprcsented by random pinning strengths on each lattice site (i, j). No 

site cau be occupied or emptied until its pinning strength is reached. The pinning 

strellgths are mode!ed by integer random numbers chosen between zero and some 

largest I1umber MmG& drawn from a uniform distribution, in other words each site 

(i,j) has a pinning strength 0 ~ M,(i,i) S MmG&. Having defined the pinning 

indices, we now define two registers at each lattice site: a forward register R,(i,i) 

and a backward register R.(i,j). The forward register R,(i,j) keeps track of the 

I1umbcr of occupying or growth attempts at a site and the backward register Rb{i,i) 

keeps track of the number of emptying attempts at a site. When an attempt is 

made to occupy a site, the rorward register is increased by unity. Occupation of this 

site if, pt.'fmitted oIlly if RJ(i,i} ~ M,(i,j). Similarly a decrease or emptying of a 

site is possible only if R6{i,j) ~ M,(i,i). Of course, all increases or decreases are 

subjt'rted to the height restriction condition already mentioned. Once all the hcights 

• 
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Figure 5.1: Transition probablit;ea between variOUII configurations ahowing tbe breaking of d,.tlÛled 
balance i.e, ~ 1= ): in the ateady .tate 
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are updated, the registers are all re-set to zero. We have checked that we recover 

a11 the rcsults of Racz et al if ail the pinning strengths are the same throughout the 

lattice. This serves to check our code. However, wh en the pinning l'trengths are 

random , very differcl1t results are obtained. 

All the simulations were done systems with 256 lattice sites. pinning tends to 

slow down the dynamics of the system, we ran the system proportionately longer for 

those simulations with high pinning values 50 that one deposits the same number of 

particles when compared to the zero pinning or no impurity case. 

Rcsults and Discussion 

We now present our findings for simulations in 2 spatial dimensions. Since the model is 

very sensitive to the value of the ~, we first set this ratio to l which as we have aIready 

secn corresponds to the SGG model. The exponent /3 was caIculated for various 

values of the pinning strengths. Fig.(5.2) shows many different curves corresponding 

to varions values of pinning strengths. The plot of /3 vs the reciprocal of the maximum 

pinning stI,~ngth M maz is however more informative (see Fig.(5.3)). As we can see, 

fJ sccms to ;ncrcase for increasing pinning strength but begins to saturate for very 

large pinning values. Notice tbat tbe exponents corresponrung to the SGG model are 

rctricvcd when the pinning is very small. We have aIso determined the roughening 

or wandcring cxponellt ct using the steady state structure factor S(k) defined by 

< h h el A:(1-1) > S(k) = __ a '=--__ 
L 

(5.9) 

whcre h, and h, are the heights at lattice sites i and j at very long times. The width 

~v is rclatcd to this quantity through 

(5.10) 

from which the exponent ct may be extracted. Fig.(5.5) shows that ct aIso saturates for 

large pinning strengths. Table (5.1) summarises all the above results in a nutshell. 

The intcresting feature one cau immediately sec is that the hyper-scaling relation 
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Figure 5.2: Log-Log plot of the width W VI the time Cor va.r:iOUI values oC the pinning Itrength. 
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Figure 5.3: Plot .howing /3 &ga.in.t the redprocal oC the pinning Itrength. Notice that {J Il1turate. 
Cor very large valuei oC pinning . 
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FIgure 5.4: Typic&l interface profiles witb and without the effech of pinning {or ~ = l case 
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Figure 5.5: Plot Ihowing a ag&Ïnst the reciprocal of the pinning strengtb . 
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a + ~ = 4 seerns to be satisfied to within errors for aU tlle M"'tlz vallle'S, altbougb the' 

exponents have different values now. Simulations wcre also carrifd out using ~ = ~, 

M mlJz I1(Mmaz ) a(MmlJz ) z(Mmu ) a+z 

10 0.100 0.35 3.5 3.85 
'-

20 0.121 0.425 3.512 3.937 
--

30 0.146 0.485 3.321 3.806 

40 0.156 0.541 3.467 4.00 

50 0.162 0.563 3.470 4.03 
- ---

Table 5.1: Growth exponents (J, a as a. function of the maximum piulling strt"lIgth corrt"bpfJlldillg to 
. ~ 1 

a ratlO Ti = i' 

which corresponds to a smooth phase with a very small roughcning exp<Hu'nt in tlH' 

absence of pinning(Racz et al., 1991). As before we find that hoth f3 élnd 0: satu rate 

for very large pinning values (see Figs. (5.7),(5.8) and (5.9)). Table (5.2) &lJfIlS IIp 

these results, notice that there is no surn relation satisfied in this ('a.'w. W(> all>o l>e(' 

that the value of z jumps from a value of ~ 2, to rnuch largcr values. The z ~ 2 r('gime 

as we ail know corresponds to a regime where the laplacian (\72 h) dominatcs. It i~ Ilot 

very clear at this point as to what controls the relaxation dynamics once the pinning 

is turned on. There is definitely no V 2h term, bccause this terrIl wou]d certainly 

dominate ail the other terms in the long wavelength limit leading to a z ~ 2. The 

fact that the z is very different from 2 indicates a different dynarnics. Figs.(5.4) and 

(5.6) show typical interface configurations with and without pinning for hoth Â ~= ~ 

as weil as à = l. Notice Fig.(5.4) which conesponds to the 6. = l case, wc clearly see 

that the interface is roughened to a greater extent in the presence of impuritic& whcn 

compared to the pure case, notice the larger hills and valleys in the case of the piJlIH!d 



THE EFPEG'TS OF IMPURITIES ON DR/VEN INTERFACES 72 

10 10 

-~ 

-10 -10 
... J. __ ! __ J.----L __ ..L-_.L-J 

o 80 160 240 o 80 160 240 

Figure 5.6: Typical interface profiles with and without the eftects oC pinning Cor ~ = i case 

Figure 5.7: Log-Log plot of the width W VI the time for variOU8 values of the pinning strength. 
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Mm4z a(MmAz} f3(MmAz ) z(Mm4z } 

0 0.12 0.054 2.22 

10 0.345 0.102 3.41 

20 0.44 0.121 3.63 

30 0.553 0.128 4.32 

40 0.605 0.130 4.65 
f-" 

50 0.626 0.131 4.77 

Table 5.2: Growth exponentll {J, cr &8 a {unction oC the maximum pinrung strength corresponding to 
• .1 1 

a ratio H :: j' 

pinIled case. These correspond to the fact that certain sections of the interface get 

pinllcd due to the presence of the background impurity and certain sections don't. 

The interface trics to adfapt to the random surrounding causing it to make large 

('xcurliions thus increasing the roughness. The above study should thloW light on the 

roughelling dynamics of a driven recollstructing surface in the presence of a quenched 

ÎllIpurityand may be the MBE growth process in the presence of impurities. 



Chapter 6 

Conclusion 

6.1 Summary 

In this thesis we have reviewed various physical propcrties of interfaces in hoth t'quilib

rium and nonequilibrium conditions with emphasis on the latter. The kindic rollgh

ening phenomenon of driven interfaces has been studied through l>ev('ral t}u'ort'l.Ï<'al 

models. Techniques such as the Renormalization group, Monte Carlo &iJJlulation, and 

direct numerical integration were reviewed and used. Difft'rent physim) !o.yst(,lIls may 

have different surface relaxation mechanisms such as the surface diffu!o.ion or dCM;rp

tion which can lead to drastically different surface morphologies at large times. The 

physical origin of these effects were reviewed and we have focusscd our att<mtion on 

models with surface diffusion as the dominant effect, this is believed to control the 

growth properties of thin films grown by Molecular Bearn Epitaxy. 

We have proposed and studied a non-linear model for driven interface dynl1rnics far 

from equilibrium which is relevant to MBE growth and the roughcnillg of a growing 

dendrite. The surface evolves into a self-affine structure with scale invariant corre

lations. We have evaluated the scaling exponents and functions nurnerica.lly in both 

d = 1 + 1 and d = 2 + 1 dimensions. For MBE growth, it has been found experirncn

tally that the surface roughness is usually small implying a ratber sma)] roughening 

exponent a. However, all the previous theoretical models for this process produced 
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rather large (X, 50 large that in sorne cases the solid-on-solid condition is violated. We 

laave tricd to look into this problem hy using different nonlinearities in hydrodynamic 

f~qlJatiolls. While the value of ais indeed reduced somewhat from those of the linear 

theory, it is still too high to quantitatively account for the experimental findings. 

Since TJIost nonlinearities are irrelevant for the scaling behavior in the hydrodynamic 

limit, and the only relevant ones bcing those that were studied here and in Ref. (Wolf 

and Villain, 1990; Lai and Sanna, 1991), we may conclude that a nonlinearity would 

Ilot ahle to account for the small values of ex and new avenues have to be explored to 

!>olve this puzzle. In this regard we note that the only way out would he to modify the 

lIoi:,e term in the hydrodynamic equations. An the theoretical models studied so far 

use additive noise. Experience with stochastic processes however tells us that external 

noise is u:,ually multiplicative rather than additive. This therefore may provide an 

('xplallation and lead to smallel' values of ex. It was also round that (Sun, Guo and 

Grant, HJS9) a conserved noise pro duces a small a. Thus in the MBE process, one 

lIlay sp('culate that the beam flucutations are very small and that the noise is largely 

iutt'fnal in origin and hence may be conscrved. This scenario however can on1y be 

verified ('xperimentally and remains an intcresting possibility. 

Wc have also di!)cussed effects of quenched random impurities on tbe roughoning 

dynamics of a system with a conservation law. There have been many investigations 

in this regard but these can on1y be applied to fluid systems where the fiuid interface 

advallces through a random background. Our study is relevant to solid surfaces 

which arc driven out of equilibrium and have impurities trapped near the surface. The 

conservation law fixes the average interface position, the interface thus experienccs the 

saille set of impurities. The hreaking of det.ai1ed balance ensures that our model is out 

of ('quilihrium. We have lIlodeled the random background by putting random pinning 

st.rcngths at each lattice site. The interface tries to adapt its shape to this random 

background resulting in a rougher structure. Anomalous roughening exponents were 

round depending on the pinning strength of the random quenched background. In 

sorne rases, the expOllents satisfy the same scaling relatio~s as that without the 
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quenched impuritiesj and in sorne others they don't. In aU situations, the qu('ncl\{'d 

impurity changes the dynamic universality class the model belongs to. Finally, wc 

note that if the MBE growth is indeed describable by a conserwd noise as mcntiollcd 

above, then this study will provide direct information 011 what happens if impuritics 

are present in the growth process . 
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