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ABSTRACT 

This thesis addresses the problem of automatically constructing a visu al represen­

tation of an unknown environment that is useful for robotic navigation, localization 

and exploration. There are two main contributions. First, the concept of the visual 

map is developed, a representation of the visual structure of the environment, and 

a framework for learning this structure is provided. Second, methods for automati­

cally constructing a visual map are presented for the case when limited information 

is available about the position of the camera during data collection. 

The core concept of this thesis is that of the visual map, which models a set of 

image-domain features extracted from a scene. These are initially selected using a 

measure of visual saliency, and subsequently modelled and evaluated for their utility 

for robot pose estimation. Experiments are conducted demonstrating the feature 

learning process and the inferred models' reliability for pose inference. 

The second part of this thesis ad dresses the problem of automatically collecting 

training images and constructing a visual map. First, it is shown that visual maps 

are self-organizing in nature, and the transformation between the image and pose 

domains is established with minimal prior pose information. Second, it is shown that 

visu al maps can be constructed reliably in the face of uncertainty by selecting an 

appropriate exploration strategy. A variety of such strategies are presented and these 

approaches are validated experimentally in both simulated and real-world settings. 



RÉSUMÉ 

Cette thèse adresse le problème de construire automatiquement une représentation 

visuelle d'un environnement inconnu qui soit utile pour la navigation, la localisa­

tion et l'exploration robotique. Il y a deux contributions principales. Premièrement, 

le concept de carte visuelle, une représentation de la structure visuelle d'un envi­

ronnement, est développé, et une méthodologie pour apprendre cette structure est 

fournie. Deuxièmement, plusieurs méthodes pour construire automatiquement une 

carte visuelle sont presentées, pour le cas où l'information disponible sur la position 

de la caméra pendant la collecte de données est limitée. 

L'idée centrale de cette thèse est celle de la carte visuelle qui modélise un ensemble 

de caractéristiques du domaine de l'image, extraites à partir d'une scène. Celles­

ci sont initialement choisies à partir d'une mesure de salience visuelle, et ensuite 

modelésisées et évaluées pour leur utilité quant à l'évaluation de la pose du robot. 

Des expériences sont presentées, montrant l'apprentissage des caractéristiques et la 

fiabilité des modèles impliqués pour l'inférence de la pose d'un robot. 

La deuxième partie de cette thèse adresse le problème de rassembler automa­

tiquement des images échantillons et de construire une carte visuelle. Tout d'abord, 

il est démontré que les cartes visuelles s'organisent automatiquement par nature. De 

plus, la transformation entre l'image et le domaine de la pose est etablie avec une 

information préalable minimale sur la pose. Ensuite, nous démontrons comment les 

cartes visuelles peuvent tre construites de manière robuste malgrè l'incertitude de 

l'environement en choisissant une stratégie d'exploration appropriée. Un nombre de 



RÉSUMÉ 

ces stratégies sont présentées et ces approches sont validées expérimentalement dans 

un contexte simulé et réel. 

IV 
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CHAPTER 1 

Introduction 

1. The Visual Map: A Robot's "Mind's Eye" 

This thesis presents a method to enable a robot to develop its "mind's eye". 

That is, it addresses the problem of representing the visu al world, and using that 

representation to interact with the environment. In particular, we will apply the visual 

representation, otherwise known as a Visual Map, to the task of robotic localization­

that is, allowing a robot to answer the question "Where am I?", by comparing what 

it sees in the world with its "mind's eye" representation of what it expects to see. An 

answer to the "localization problem" is a fundamental building block in solving the 

problems of robotic navigation and autonomy. 

An important goal in developing a visual representation will be that of solving 

the problem of how a robot can automatically learn such a representation without 

human assistance. While in sorne instances a visual representation could be supplied 

by a human operator (such as a computer-aided design (CAD) drawing of a building 

or a road map), there are a variety of contexts in which a human-built representation 

is insufficient. For example, CAD drawings do not explicitly represent the presence 

of furniture, road maps will not mark lanes or routes closed for construction, and 

the satellite-based global positioning system (GPS) will not operate indoors, under 

water, or at large distances from Earth. 



1.1 THE VISUAL MAP: A ROBOT'S "MIND'S EYE" 

Beyond producing the ability for a robot to navigate using vision, there are a wide 

variety of applications where producing a visual representation of the environment is 

important. For example, automatic inspection of hazardous environments, such as 

radioactive waste disposaI facilities, deep-sea salvage and monitoring operations, and 

planetary exploration aIl depend on the transmission of meaningful visual information. 

In each of these scenarios, there is not only a need for the robot to construct the 

representation, but also to explore the environment autonomously. 

1.1. The Localization Problem. In constructing a visual representation, 

our primary goal is to en able a robot to estimate its position in the environment. The 

remainder of this section will provide an overview of the state of the art in position 

estimation methods and motivate the design choices that constitute the visu al map 

representation. 

The localization problem is important to a robotic agent for a variety of reasons, 

not the least of which is that of the need to know where it is before it can decide how 

to get where it wants to go. A naive approach to measuring robot position involves in­

tegrating information from odometers that measure wheel rotations or joint motions. 

However, odometers have no model of the external world and cannot measure the 

local effects of wheel slippage or the global effects of transport due to maintenance or 

other events. Even under highly controlled circumstances, over time a pose estimate 

derived from odometry can drift away from the true pose such that the error grows 

without bound. Figure 1.1 illustrates this problem using a simple simulation of a 

robot whose actions result in normally distributed, zero-mean, 2% variance error at 

each time step as it attempts to trace a series of concentric squares (the trajectory 

traced with a series of '+' symbols). The actual trajectory taken by the robot is 

traced with a series of ,*, signs. Clearly, the robot's odometry-based representation 

of position diverges rapidly from the true trajectory. This divergence is quantified in 

the lower graph, which plots absolute error between the two trajectories versus time. 

Over time, this divergence can grow without bound. 

2 
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1.1 THE VISUAL MAP: A ROBOT'S "MIND'S EYE" 

In order to correctly localize in the world, humans resort to external references. 

For example, as they approach a door, humans judge their relative position to it, 

employ hand-eye coordination to reach for the door-knob, and ensure that they have 

passed through the door before they close it behind them. In a larger environment, 

they might judge their position relative to the edges of a sidewalk, their distance along 

the sidewalk and the particular street that they are following, aIl using external eues. 

Finally, at a much larger scale, they might measure bearings to distant landmarks, 

such as buildings and trees, mountains, or even stars, to determine their place in the 

world. 

Similarly, a robot must sense external eues or features of the environment and de­

termine its position from them. There is an almost infinite variety of features to select 

from and it is worthwhile to consider the most corn mon selections used by modern 

robotic platforms. Among these are features derived from range- or distance-sensing 

devices, the detection of artificial landmarks, and features dependent on specifie as­

sumptions about sens or configuration and the properties of the world. 

There is an extensive body of research on position estimation from geometrically 

determined landmarks. Such landmarks are usually sensed using range sensors that 

return distance and bearing to each landmark, and estimating pose is a simple matter 

oftriangulation [136,2,137,68,78,74,83,36]. However, extracting and matching 

corresponding landmarks from a range sensor is a non-trivial task, even to the point 

that most early work on the problem assumed known correspondence. Furthermore, 

most range sens ors , such as laser range-finders and sonar transducers are active or 

energy-emitting sensors, emitting sound or light into the environment, which is an 

undesirable property in a wide variety of applications. In addition, active range 

sensors can be monetarily expensive devices. Passive range sensors, such as stereo 

cameras, require careful calibration and depend on assumptions concerning object 

reflectance in or der to achieve accurate pixel correspondence between images [49, 

50, 51, 56, 62, 87, 92, 15~. 

4 



1.1 THE VISUAL MAP: A ROBOT'S "MIND'S EYE" 

As an alternative to determining a set of natural features of the environment, 

sorne approaches install a set of artificial landmarks and use them for pose estima­

tion. Perhaps the best known example of pose estimation from artificial landmarks 

is the satellite-based Global Positioning System (GPS), which enables an object on 

Earth to determine its position using time-of-fiight information and triangulation 

based on radio signaIs from a network of satellites in orbit at an altitude of about 

20,OOOkm [48]. Other examples of artificiallandmarks include bar codes, specialized 

targets, embedded magnetic tracks, or coloured markers [71, 9, 52, 106]. In sorne 

instances, the robot will deploy these targets as it explores an unknown environment, 

but in most cases the robot is dependent on a human operator installing them a pri­

ori. The chief disadvantage of such systems is the requirement of a hum an presence, 

which is largely impossible in many contexts, such as space or undersea exploration, 

search and rescue in a danger zone, or other hazardous environments, as weIl as the 

constraints imposed by Iandmark visibility. For example, GPS fails wh en line of sight 

is not maintained with at least four orbiting satellites. 

Finally, a smaIl class of pose estimation approaches exploit special assumptions 

about the world, or the sensor. For example, autonomous vehicles that can navigate 

roadways make domain-specifie assumptions about the structure of the roadway and 

the behaviours of other vehicles on the road [141]. Other methods exploit special 

environmental properties and camera configurations, such as a map constructed as 

a mosaic of the ceiling in an indoor environment [20]. Several approaches, such 

as photogrammetry or methods employing omnidirectional cameras, make concrete 

assumptions about the imaging geometry and often rely on careful calibration of the 

apparatus [149, 85]. A useful discussion of an of the approaches mentioned here can 

be found in Dudek and Jenkin [27]. 

1.2. Local Features. A core ide a in this thesis is that locally computed image 

features, as opposed to global image properties, are best suited to solving inference 

tasks. Local features provide resistance to the dynamics of operational environments, 

where moving people, furniture and illumination can an affect the sensor image and 

5 



1.1 THE VISUAL MAP: A ROBOT'S "MIND'S EYE" 

corrupt globally derived measures. One goal of this work is the inference of which local 

image features are most stable and resistant to changes in the scene. There are also 

arguments to be made for improved computational efficiency when employing local 

features. This fact is evident in biological vision systems which attend to a small set 

of features in the world in order to construct an internaI representation [58J. 

1.3. Probabilistic Reasoning. The vast majority of position estimation 

systems take a probabilistic approach to representing both sensor outputs and the 

computed position estimate. Among the most common representations are particle 

filters, Kalman Filters, and grid decompositions, exemplified by the works of Dellaert, 

et al., Smith, et al., and Moravec, respectively [21, 132, 83]. The reasons for taking 

a probabilistic approach are grounded in the fact that the world and the sensors that 

operate in it are stochastic in nature, and that the same observations from the same 

position are rarely repeated. Furthermore, it is often the case that different parts 

of the world will pro duce similar observations- consider similarities between trees of 

the same species, intersections in downtown Manhattan, the rooms in a hotel, and 

the aisles in a warehouse. In practice, resolving ambiguities in a robot's position is a 

hard problem [29], and wh en a robot's position is estimated it is important to provide 

information about how precise that estimate is and whether alternative hypotheses 

exist about where the robot might be. 

The current inventory of pose estimation solutions and their related environment 

representations suggests the enumeration of a set of open problems with respect to 

methodology and representation. In particular, this thesis aims at developing a rep­

resentation and approach to the problem that 

(i) employs a passive sensor, such as a camera, 

(ii) does not depend on assumptions about the structure or other properties of 

the environment, 

(iii) does not depend on explicit, and often expensive, calibration of the sensing 

apparatus, 

6 



1.1 THE VISUAL MAP: A ROBOT'S "MIND'S EYE" 

FIGURE 1.2. This sixteenth century map of North America, produced by 
Tomaso Porcacchi, illustrates the difficulty of simultaneous localization and 
mapping (SLAM) [94). The obvious distortion of the eastern seaboard is 
due to the chicken-and-egg nature of the problem. 

(iv) does not require any explicit assumptions concerning the imaging geometry 

of the sensor, 

(v) does not depend on modifications to the environ ment , 

(vi) exploits local image features rather than global image properties, 

(vii) employs a probabilistic approach, and 

(viii) can be learned automatically from the environment. 

1.4. Learning and Exploration. The question of how to automatically learn 

a representation of the world, the last problem stated above, has been considered by 

a variety of researchers (e.g. [64, 31, 144]). These methods are almost universally 

concerned with minimizing uncertainty in the inferred structure. The problem of un­

certainty minimization is compounded by the chicken-and-egg nature of the mapping 

7 



1.2 PROBLEM STATEMENT AND OBJECTIVES 

problem- how does the robot update its map if it do es not know where it is, and how 

does the robot determine where it is if the map is incomplete (Figure 1.2)? While 

the tools and methods that have been developed in the robotics context are useful, 

in most cases they are bound to a particular sensing modality (specifically, range 

sens ors ) and furthermore very little attention has been paid to the problem of how 

to explore continuous pose spaces beyond the application of simple heuristics1 . That 

is, how should the robot move through the world so as to minimize uncertainty and 

maximize the knowledge that it gains? To that end, this thesis is also motivated by 

the need to consider the robot's trajectory as an important factor in simultaneously 

maximizing map accuracy and coverage. The primary interest is in determining ex­

ploration policies that are best suited for developing a visual representation of the 

world, particularly in consideration of the lack of tools and approaches to mapping 

using vision. 

To briefly summarize the requirements and goals for a complete approach to map 

construction: 

Sensing: Passive device, inexpensive. 

Representation: Minimize assumptions about device and world. 

Methodology: Principled data collection, probabilistic framework. 

This thesis will present an approach that meets all of the stated requirements by 

applying a machine learning approach to modelling the visual world with a camera. 

2. Problem Statement and Objectives 

This thesis answers three questions. First, how can the visu al properties of a large­

scale scene be modelled reliably such that the models we build are useful for robotic 

navigation and position estimation? Second, how can such models be constructed 

automatically, particularly when only limited prior information is available concerning 

the position of the robot as it collects training data? Finally, given solutions to the 

IThere is, however, a rich body of literature on exploring discrete state spaces, such as breadth-first, 
depth-first and A* search [14]. 
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first two questions, what exploration strategies are best suited for a moving robot to 

collect observations of a scene and construct accurate models on-line? 

The objectives of this thesis are to answer these questions while exploiting as­

sumptions about the world and about the robot that are as general as possible. Specif­

ically, we will not commit to a specific optical geometry (for example, a perspective­

projection pinhole camera versus an omnidirectional camera), nor will we require 

careful calibration of the camera's intrinsic properties or its extrinsic properties with 

respect to how it is mounted on the robot. Furthermore, we will not make any 

assumptions concerning the geometric and illumination properties of the scene be­

ing modelled. Finally, recognizing that there is a wide diversity of approaches to 

representing uncertainty, this thesis aims to present a framework that is compatible 

with a variety of probabilistic state representations, including particle filtering, grid 

representations and Kalman Filters. 

In achieving these objectives, a framework for computing solutions to the ques­

tions at hand will be developed, with a discussion of the motivation for each compo­

nent. The solutions will in turn be validated experimentally. 

3. Contributions 

The main contributions of this thesis deal with visual maps, how they are repre­

sented, and how they can be constructed. In particular, there are four main contri­

butions: 

(i) The first complete framework for visual feature learning, entailing four 

stages: selection, tracking, modelling, and evaluation; 

(ii) The first visual feature representation and model for large-scale space that 

does not rely on assumptions concerning feature or camera geometry. 

(iii) An original framework whereby a visual map can be inferred, taking into 

account a spectrum of possible a priori information concerning the robot's 

knowledge of its pose as it collects training images, varying from extremely 

limited to very strong priors; and 
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(iv) The first quantitative examination of the impact that a robot's exploratory 

trajectory has on the on-line construction of a map of an unknown environ­

ment, and an empirical evaluation of the trajectory properties that lead to 

accurate maps. 

In addition to the primary contributions, there are a variety of secondary contri­

butions. Among these contributions are: 

® The design and implementation of an extensive and flexible software pack­

age that implements aH the components of the visual mapping and explo­

ration frameworks; 

® The development of a generative approach to feature modelling, whereby 

it becomes possible to predict visu al feature observations as a function of 

pose; 

GD The development of two specific feature models, each of which is tuned to 

meet a complementary set of computational requirements; 

GD An original method for feature tracking that takes into account a model of 

visual attention to provide priors for matching locations, and exploits an 

evolving model of feature appearance in order to increase the domain over 

which a feature can be accurately tracked; 

® An empirical evaluation of which quantitative attributes of a feature are 

best suited for feature modelling. 

® An empirical evaluation of the visual mapping framework versus approaches 

to appearance-based robot pose estimation that exploit global image struc­

ture; 

® The application of the generative feature model to the inference of camera 

pose using a variety of uncertainty representations, including a discretized 

posterior distribution representation for global pose estimation, and an Ex­

tended Kalman Filter for approximating the posterior given a strong prior. 

e A consideration of sorne of the limitations of visual maps and the develop­

ment of mechanisms for addressing these limitations in a real-world setting. 
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In particular, an approach to working in high-dimensional configuration 

spaces using a low-dimensional representation; 

@ Extensive experimental results demonstrating all aspects of both the map­

ping and exploration frameworks. 

The visual mapping framework is related to work that is presented in my Master's 

thesis [115], and it is important to delineate the boundary between this thesis and that 

one. In the prior work the approaches to feature modelling and pose inference were 

dependent upon crucial assumptions about feature behaviour as a function of pose, 

namely, that each feature behaved as a one-to-one mapping from observation to pose, 

an assumption which generally fails in large environments. For example, the position 

of a feature in the camera image might be identical under a sideways translation 

followed by a compensating rotation. Additionally, the pose estimates were arrived 

at without the intermediate step of feature generation, making the models difficult 

to evaluate, and imposing certain constraints on inferred pose posterior distributions 

(i.e. that they are composed solely of Gaussian mixture models). A new approach 

to computing a pose estimate will be presented in Section 3.5. Finally, my Master's 

thesis did not examine the inference of the poses of the training images (Chapter 4), 

nor did it consider the simultaneous localization and mapping problem (Chapter 5), 

but rather depended on the availability of ground truth for constructing the map. 

4. Statement of Originality 

Portions of the results presented in this thesis work have appeared previously 

in, or are currently in submission to peer-reviewed journals or conference proceed­

ings [126, 127, 125, 129, 128, 130, 124, 100, 101, 123, 122, 116, 118, 120, 

121, 119, 117]. In sorne cases, 1 have co-authored papers with Ioannis Rekleitis and 

Evangelos Milios that employ the visual map representation in the context of testing 

Ioannis' research on collaborative approaches to robot localization and exploration. 

In those works the distinction between our individual contributions is explicit. 
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My published work also contains results that are not reported in this thesis. 

In most cases, new results are presented here duplicating the original experiments 

(Chapter 3), but using improvements to the original algorithms presented in the 

published work. In addition, for the purposes of clarity, Section 3.6 presents results 

from [125] comparing the performance of the visual map approach with principal 

components analysis (PCA), but omits results from the same work that compare the 

approach with an ad-hoc localization method. This decision was made on the basis 

that the ad-hoc method is not known to the community and its inclusion would not 

further the objectives of the thesis. Finally, 1 have published work related to the 

software infrastructure underlying the experimentation. To report those results here 

would also distract from the main goals of the thesis. 

5. Outline 

The remainder of this thesis will be organized as shown below. Due to the variety 

of the sub-problems that are examined, in lieu of a monolithic literature review, the 

prior work on each major sub-problem will be presented in the chapter in which the 

respective problem is considered. This approach is meant to improve the continuity 

and readability of the text. The outline of the thesis is as follows: 

Chapter 2: A presentation of the visual map representation, including an 

outline and discussion of the following topics: 

@ Background material on probabilistic representations, 

@ Visual attention, 

@ nacking, 

@ Modelling visu al features, and 

® Evaluating visual features. 

Chapter 3: An Implementation of the visual map representation and exp er­

imental results illustrating its application to a variety of visu al tasks. 

12 



1.5 OUTLINE 

Chapter 4: Mapping with limited pose information. This chapter examines 

the problem of learning a visual map when the pose information associated 

with the training images is incomplete. 

Chapter 5: A presentation of simultaneous localization and mapping using 

the visual mapping framework. We will concentrate on the question of se­

lecting exploration trajectories which are best suited to building an accurate 

map. 

Chapter 6: Implementation details and experimental results addressing the 

problem of selecting exploration trajectories. 

Chapter 7: Discussion of the work and future directions for exploration. 

Following the presentation of the visual mapping framework in Chapters 2 and 3, 

the basic themes of the subsequent chapters revolve around the issue of what prior 

information is available concerning the robot's exploratory trajectory. Figure 1.3 

depicts this spectrum of information, by plotting the exploratory poses of the robot, as 

determined by the mapping process. On the right, the robot has complete information 

about its pose as it explores a grid and can infer the visual feature models directly 

(Chapter 2). On the left, the robot has very limited information about where it was 

when it collected its training images and so the mapping problem involves inferring the 

set of training poses as well as the visual representation (Chapter 4). In the middle, 

the robot has sorne model of uncertainty about its pose as it explores (represented by 

the ellipse at each position), and it must reliably infer the map, taking into account 

this information (Chapter 5). 
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FIGURE 1.3. The spectrum of prior information available for map construc­
tion. Weak, or limited ground-truth pose information requires inference of 
the poses of training images, whereas strong priors (known training poses) 
provide rigid constraints for inferring the map. In the middle, trajectory in­
formation can provide sorne constraints on the training image poses. Refer 
to the text for further details. 
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CHAPTER 2 

Visual Maps 

1. Overview 

This chapter presents the visual mapping framework- a method for learning a set 

of models that are suitable for representing image-domain features. The first half of 

the chapter will cover background material that will motivate the development of the 

framework, including a discussion of the concept of modelling the environment using 

a generative approach, and how such models are applicable to inference problems, 

such as robot localization. An overview of how generative models fit into the bigger 

picture of robot navigation and exploration will be presented. This discussion will 

lead into the development of the visual mapping framework itself and how generative 

feature models can be inferred and represented. 

The visu al mapping approach is motivated by a model of how biological systems 

pro cess visual information. The approach entails the automatic selection of features 

using a visual attention mechanism, as well as the synthesis of models of their visual 

behaviour. We will develop a generative model that smoothly interpolates observa­

tions of the features from known camera locations1
. The uncertainty of each model 

will be computed using cross-validation, which allows for a priori evaluation of the 

feature attributes that are modelled. This presentation of the learning framework will 

1 In Chapter 4 we will consider an alternative model aimed at computing approximate models when 
computation time is a critical factor. 
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provide the basis for the implementation and experimentation presented in subsequent 

chapters. 

2. Previous Work 

The purpose of constructing a visual representation in this thesis is to facilitate 

robotic tasks, such as localization. We will concentrate on approaches to the robot 

localization problem, addressing representational issues as they arise. 

2.1. Geometrie Representations. Many early solutions to the pose es-

timation problem assume that the problem of landmark detection, and sometimes 

even recognition, is solved. These methods employ a computational geometry ap­

proach that triangulates range and bearing information for a set of landmarks in 

order to arrive at a pose estimate. Triangulation methods are based on traditional 

methods in cartography and navigation, which use the angles or bearings measured 

between the lines of sight to known landmarks in the environment. The semi­

nal triangulation-based approaches in the domain of mobile robotics rarely involve 

real-world implementation, allowing the researcher to ignore the problems of land­

mark detection and recognition, which are often issues that are domain- and sensor­

dependent [136, 2, 137J. 

c 

(a) (b) 

FIGURE 2.1. Pose constraints C and q, given bearings to (a) two landmarks 
Pl and P2, and (b) three landmarks Pl, P2, and P3. The constraints represent 
the space of possible robot poses given the associated bearing measurements. 
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Given only the angle a measured between two distinguishable landmarks, the 

pose of the observer is constrained to the arc of a circle, as shown in Figure 2.1 (a). 

In the case where there are three landmarks, providing bearing measurements al and 

a2, the pose is constrained to a single point, lying at the intersection of two circles 

(Figure 2.1(b)), provided that no two landmarks are coincident. When there are four 

or more landmarks, the system is overdetermined, or may have no solution [136, 63]. 

This result provides a basis for severallocalization solutions under a variety of condi­

tions. For instance, Sugihara provides a consideration of the problem of localization 

when the observed landmarks are indistinguishable [136]. That work seeks out a 

computationally efficient method for fin ding a consistent correspondence between de­

tected landmarks and points in a map. This correspondence method is improved 

upon by A vis and Imai [2]. Both of these results presuppose the reliable extraction 

of landmarks from sens or data and the accuracy of the bearing measurements - only 

minor consideration is given to the problem of using uncertain bearings. 

Sutherland and Thompson approach triangulation methods from the perspective 

that the landmark correspondence problem has been solved, but the bearings to 

observed landmarks cannot be precisely known [137]. It is shown that informed 

selection of the set of landmarks to be used in the map can help to minimize the area 

of uncerlainty, that is, the area in which the robot may self-locate for any given error 

range in visual angle measure. Figure 2.2 shows the area of uncertainty computed 

for a bounded error range in the cases of a) two and b) three observed landmarks. 

Sutherland and Thompson demonstrate that the size of the area of uncertainty can 

vary significantly for different configurations of landmarks. The goal of their work is 

to select landmarks whose configurations minimize the area of uncertainty. 

Betke and Gurvits also consider the problem of localization from uncertain bear­

ings. They are concerned primarily with the efficient computation of a position es­

timate from an overdetermined set of bearings [6]. They derive a complex-domain 

representation of the positions of the landmarks that linearizes the relationship be­

tween the constraining equations and allows the system to be solved in time linear in 
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(a) (b) 

FIGURE 2.2. Pose constraints R given bounded uncertainty on bearings to 
(a) two landmarks, and (b) three landmarks. 

the number of landmarks, provided that certain constraints on the formation of the 

landmarks are met. 

AH of the triangulation methods considered above make a strict set of assumptions 

about the environment and the robot. In every case, the robot is provided with 

an accurate a priori map of the positions of known landmarks, and in sorne cases 

assumes the ability to unambiguously distinguish between the observed landmarks. 

In addition, it is assumed that the robot can always reliably detect landmarks in the 

sens or data. An important aspect of these solutions is the observation that sensor 

measurements are not always accurate, and hence it is most reasonable to seek out a 

solution which minimizes the uncertainty of the position estimate. 

2.2. Appearance-based Representations. An alternative to explicit geo-

metric representations of the world is that of employing an appearance-based repre­

sentation, which computes a compact description of the manifold of observations as 

a function of pose. Dudek and Zhang used a neural network to compute a represen­

tation for pose estimation from vision data [32, 33]. Nayar et al. and Pourraz and 

Crowley have examined an appearance-based model of the environment based on prin­

cipal components analysis (PCA). They perform localization by interpolation in the 

manifold of training images projected into a low-dimensional subspace [95, 16, 84]. 
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Formally, the low-dimensional subspace is determined to be the first k principal com­

ponents Uk of the matrix Z, whose columns correspond to a set of training vectors. 

Each training vector is defined by a training image sampled from the pose space of 

the robot, whereby the image is "unrolled" into a vector by sorting the pixels in a 

raster-scan order. If U is defined to be the orthonormal matrix determined by the 

singular values decomposition (SVD) of Z: 

(2.1) 

then Uk is defined as the k columns of U corresponding to the largest eigenvalues 

contained in the diagonal matrix 2:: [96, 39]. It should be noted that PCA depends 

on global image properties and as such is susceptible to occlusions and other image 

degradations. 

Sorne appearance-based methods exploit specifie sensor configurations and as­

sumptions concerning the geometry of the environment. For example, Dellaert et al. 

represent the visual world as a planar mosaic, constructed by imaging the ceiling in an 

indoor environment [20]. Such a representation affords a straightforward derivation 

of the observation model. To reduce the corn pl exit y of the distribution, the sensor 

image is represented by a single intensity measurement corresponding to a pixel near 

the centre of the image. 

\:vhile these approaches demonstrate the utility of appearance-based modelling, 

they can suffer due to the dependency of the result on global sensor information and 

the assumptions they make concerning the structure of the environment. 

Several researchers have also considered local feature models for localization. Re­

cent work by Se et al. [109], applies a scale- and rotation-invariant feature detector 

to determine feature matches, and then localize using a least-squares pose estimate 

based on the geometrically determined positions of the features from the output of 

a stereo camera. The feature detector locates maximal responses in a difference-of­

Gaussian pyramid constructed from the input image. Similar approaches have se en 

success in the tasks of place recognition (recognizing a scene from an ensemble) in 
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work by Dudek and Jugessur [28], and in object recognition, such as those used by 

Lowe, Schmid and Shokoufandeh et al. [73, 107, 114J. These approaches omit any 

explicit geometry computation and instead rely on the appearance models determined 

by the feature detector to locate matches. An important aspect of these works is the 

task of recognizing pseudo-invariants under changes in viewing conditions. In partic­

ular, the attention operators developed are insensitive to changes in scale and planar 

rotation. For the localization problem, it is not only important to be able to rec­

ognize pseudo-invariants, but to be able to parameterize the efIects that changes in 

pose have on the feature. While this thesis considers only translation invariance, these 

prior results indicate the feasibility of readily modelling other parameterizations. 

2.3. Active Localization. Both geometric and appearance-based localiza-

tion approaches define methods for computing pose estimates from an observation 

taken at a single instance in time. There is a large class of results concerned with 

localizing a robot over time as it takes observations while moving through the environ­

ment. Smith, et al., and Leonard and Durrant-Whyte applied Extended Kalman Fil­

ter (EKF) methods to localize a robot from successive range measurements [133, 68], 

and Fox et al. developed Markov Localization, which can track robot pose in situa­

tions where the probability distribution over robot pose is multi-modal [36]. These 

results will be discussed in greater depth later in the thesis. Seiz et al also looked 

at exploration methods for resolving the robot's position [110J. A key result in the 

problem of active localization, demonstrated by Dudek, et al., is that unambigu­

ously determining a robot's pose in a known environment with minimum travel is an 

NP-hard problem [29]. 

2.4. Visual Attention. The concept of visual attention is central to our 

visual mapping framework. Visual attention, or selective attention, entails preferen­

tially selecting a subset of image neighbourhoods, based on their content, that are a 

priori considered potentially useful for visual perception. This selection process acts 

as a first-order filter for conserving limited computational resources- the visual world 
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is simply too rich to take in an at once. In fact, current psychophysical research sug­

gests that the human brain pro cesses only a tiny fraction of the information that hits 

the retina and that the perception of a rich and complete visual world is due to the 

brain "filling-in" most of the scene by applying assumptions about the consistency of 

the scene under observation [151, 88]. 

Research on mammalian visu al attention suggests that a key attribute of the loci 

of attention is that they are different from their surrounding context [58, 108, 150]. 

Several featural dimensions have been identified that lead to pre-attentive "pop-out" 

and, presumably, serve to drive short term attention [148]. Feature maps used by 

human attention may include those for colour, symmetry, edge density, or edge orien­

tation, among others, sorne ofwhich have been implemented computationally [54, 98]. 

Other research demonstrates that attentional processing is characterized by visual sac­

cades to areas of high curvature, or sharp angles [86]. In the computational domain, 

several researchers have investigated a variety of attention operators. For example, 

Kelly and Levine exploit regions of high edge symmetry as loci of attention [57], 

Harris and Stephens, and Lucas and Kanade implemented corner detectors based on 

shared principles of maximizing the locality of the image gradient [43, 75]. The latter, 

often referred to as the Kanade-Lucas-Tomasi (KLT) operator, was later popularized 

by Shi and Tomasi [43, 1131. Finally, Bourque and Dudek have demonstrated that 

the behaviour of an edge-density attention operator on simple stimuli resembles that 

predicted by the psychophysicalliterature [8]. It is this latter work which forms the 

basis for the operator employed in this thesis. 

The subsequent sections will provide the background for developing a probabilis­

tic representation of the environment, followed by an overview of the feature learning 

framework. In particular, we will present the feature model, our approach to feature 

detection and tracking, and finally a method for evaluating the inferred feature mod­

e1s. This willlead into the following chapter which will present experimental results 

illustrating the utility of the framework for several inference tasks. 
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3. Generative Models and Bayesian Inference 

This thesis approaches probabilistic inference problems from the context of devel­

oping a generative model of the environment. In order to facilitate the development 

of the concept of generative models, consider a mapping F : 3im 
-+ Rn from sorne set 

of parameters to another, that describes sorne phenomenon: 

z = F(w) (2.2) 

where z E Rm and w E Rn. F(·) might correspond to the physicallaws governing the 

phenomenon, and the parameters w can be considered as an instance of the event. 

The vector z then corresponds to an observation of the phenomenon. Often it is 

convenient to fix sorne subset m of the input parameters w that describes invariant 

or intrinsic properties of the world (for example, daytime illumination is due to the 

sun, as opposed to sorne other star), and allow other parameters, denoted as q, 

to vary. For example, in computer graphics a rendered image is a function of many 

parameters: the objects in the virtual scene, the illumination of the scene, the intrinsic 

parameters of the virtual camera, such as focal length, and the extrinsic parameters 

of the camera, such as its position and orientation in the scene. One can describe the 

rendered image z with the function 

z = F(m,q) 

Fm(q) 

(2.3) 

(2.4) 

where q describes the position and attitude of the camera, and m describes aH the 

remaining parameters of the scene. Using the generating function FmU, we can vary 

q along sorne trajectory and generate a fly-through of the virtual world described by 

m. 

In the real-world, most observed phenomena are stochastic- the number of pho­

tons that strike a photographic film or CCD in sorne time frame is random and it is 

nearly impossible to exactly describe FmU for an arbitrary scene, except in the most 
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constrained circumstances. For example, consider the impact of a partly cloudy day 

on illumination, or the parametric description of aIl of the trees, bushes and rocks 

in a forest (if that seems easy, be sure to take into account the season, or perhaps 

the impact of a caterpillar infestation). Therefore, sensor observations usually repre­

sent samples from an observation model p(zlw), or in the case of a model with sorne 

fixed parameters p(zlq, m), that is related in sorne way to FmU. As we will regard 

m, and therefore Fm(-) as an invariant entity, we will usually just write p(zlq). In 

the computer graphies example, p(zlq) is a probability distribution over images that 

describes the likelihood that our rendering engine produced image z, given that the 

virtual camera is placed at position q. If we produce images with a deterministic 

rendering engine, the conditionallikelihood p(zlq) is a delta function: 

{ 

1 if z = Fm ( q) 
p(zlq) = 

o otherwise 
(2.5) 

In the real world, and in the absence of a more informative sensor model, the 

observation model might be approximated by a Gaussian distribution 

(2.6) 

where exp ( x) = eX, a 2 is a variance describing the uncertainty ofthe observation, and 

k = (aV21f)-l is a normalizing constant to ensure the total probability sums to one. 

The stochastic nature of the world presents serious problems for a mobile robot 

that wants to use an image to determine its pose, configuration, or position2
. Sup­

posing that photons behaved deterministically, and that a robot could be equipped 

with a "perfect" camera, the complexity of modelling the real world's interactions 

with the camera is enormous. However, supposing that the robot had a reasonably 

accurate model ofthe observation distribution p(zlq), it is possible to infer the proba­

bility distribution p( qlz) over possible poses of where the robot might be using Bayes' 

2" or state. Throughout this thesis, 1 will refer to this entity exclusively as the pose of the robot, 
a vector q in sorne pose- (or configuration-, or state-) space C E 3im

. 
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Law [139, 26]: 

( 1 ) 
- p(zlq)p(q) 

p q z - p(z) . (2.7) 

The distribution p( qlz) is referred to as the a posteriori (or, the posterior) prob­

ability distribution of pose q, given an observation z, and p( q) is referred to as the 

a priori distribution over pose, otherwise known as the prior, which describes any 

information the robot had about its pose independent of the observation z. The dis­

tribution p(z) is referred to as the evidence. The evidence is constant with respect to 

q and so is usually ignored as a normalizing factor3 . 

4. Robot Localization and Navigation 

Equation 2.7 describes the key insight to the localization problem- that is, how 

to infer a robot's pose given an observation. The posterior distribution p(qlz) couid 

be a delta function, Gaussian, or muiti-modai over q. What is significant is that 

the solution is exact- with accurate descriptions of any prior information and the 

interaction of the sensor with the world, we can describe aU of the information we 

have about the robot's pose. Even if the posterior is not a delta function, or even 

unimodal, it can be used to make inferences about the outcomes of future actions, and 

therefore to plan, inevitably to acquire more information that might further constrain 

the pose distribution. 

Despite the fact that the posterior is unlikely to ever evaluate to a delta function, 

it is clear that Bayes' Law is a powerful inferential tool, and that in the presence of 

uncertainty, it is always safer (for the robot, and for the environment) to work with 

a probability distribution. One example of how the posterior can be applied is in the 

context of active localization. Suppose at time t the robot has a representation of its 

pose p(qlt), it executes sorne action u, and subsequently acquires an observation z. 

3The evidence does play a role, however, in evaluating the accuracy of the model m. Recall that for 
brevity we dropped the intrinsic mode! parameters m from the distributions, and that p( z) is more 
accurately expressed as p(zlm). 
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After executing the action u, the pose distribution can be described as 

p(qlu) = 1 p(qlu, q')p(q'lt)dq' 
q'EC 

(2.8) 

where C is the configuration space of the robot and p( qlu, q') is a probability distri­

bution describing the (stochastic) effect of action u on the robot's pose (recall that 

wheels slip, odometers are inexact, et cetera). 

Subsequently, the robot takes an observation z. We can apply Equation 2.7, 

substituting p(qlu) as the prior: 

p(qlt + 1) - p(qlz, u) (2.9) 
p(zlq, u)p(qlu) (2.10) -

p(zlu) 

p(zlq)p(qlu) (2.11) 
p(z) 

where we assume that p(zlq, u) = p(zlq) by a Markov assumption that the observation 

depends only on pose and not how the robot arrived at that pose, and also that 

p(zlu) = p(z), a more fragile assumption that the distribution of possible observations 

is unaffected by the robot's actions. In most situations, p(z) will be constant relative 

to the quantity of interest (that is, q). 

Given a series of actions and observations, it is possible to determine the posterior 

p(qlt) for any t by applying Equations 2.8 and 2.11 recursively. This pro cess is known 

as Markov Localization [36], named as such because the sequence of actions and 

observations form a Markov chain where the out come of each action at time t + 1 is 

dependent only on the pose of the robot at time t and the action it executes. 

Markov Localization, and its Gaussian approximation, the Kalman Filter [133, 

68], have been widely deployed and are considered the de Jacto standards for robotic 

navigation applications (e.g. [41]). The update equations provide a recipe for mapping 

actions and observations to probability distributions over pose-space. The necessary 

ingredients for implementing these update equations on a fini te-precision computer 

are: 
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• A plant model p( qju, q/) that describes the outcome of a robot's action; 

• a method for computing an approximation of the integral in Equation 2.8; 

• the observation model p(zjq); and 

• for navigation, a method for choosing u at each Ume step. 

For continuous pose spaces, Equation 2.8 can only be approximated on a finite­

precision computer, and there are a number of methods available for finding approx­

imate solutions. Among the more common are approaches that approximate the 

probabilîty distributions as Gaussian with a mean and covariance (the Kalman Fil­

ter and its cousin, the Extended Kalman Filter) [133], or as a fini te set of weighted 

particles (the particle filter, e.g. [53]), versus approaches that approximate the pose 

distributions by discretizing the pose-space into a finite, bounded set of bins [83]. In 

addition, a number of researchers have addressed the problem of modelling the plant 

model p( qju, q') for various robot drive mechanisms, and we will not consider that 

problem further [11, 99]. 

The remaining unknowns: the observation model p(zjq), and the navigation (or 

exploration) policy, are the focus of this thesis. The next few sections develop an 

observation model for a camera sens or and demonstrate its utility for localization 

and navigation, with particular attention paid to inferring the observation model 

given a set of exemplar observations. 

5. Visual Maps 

The remainder of this chapter will describe a technique for learning a set of 

image-domain models of selected features in a scene, and then illustrate how the 

learned models can be used to approximate an observation model p(zjq). The models 

will capture the appearance and image-domain geometry of features as a function 

of camera pose, effectively learning a generating function FmU that approximates 

Fm(') for each feature. It is precisely these generating functions that will constitute 

the robot's "mind's eye", enabling it to visualize the features as a function of pose. 
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The learned functions will be evaluated so as to deliver likelihood estirnates of future 

observations, and provide a rnechanisrn for selecting reliably rnodelled features. 

5.1. Problem Statement. 

problem: 

Given: 

Formally, this chapter addresses the following 

® J = {Zj}, an ensemble of images of an environment, and 

® Q = {<lj}, ground truth pose information indicating the pose of the 

camera from which each image was acquired. 

Compute: a feature-based visual representation of the environment that en­

ables: 

(i) Extraction, modelling and evaluation of visual features of the environ­

ment from J. 

(ii) Recognition of modelled features in new images. 

(iii) Prediction of a feature observation zr, given a pose q, and 

(iv) Evaluation of the feature observation likelihood p(zilq), for an obser­

vation Zi and pose q. 

This work is the first to employ generic image-domain feature models that do not 

rely on assumptions concerning feature or camera geometry. Image features, rather 

than global image properties, are explicitly employed because they provide robust­

ness to limited illumination variation, partial occlusion due to scene dynamics and 

possiblyeven small changes in camera parameters. Furthermore, the computational 

complexity of high-level inference is mitigated by using only subregions of an image, 

a feature that evolutionary biology has exploited with remarkable success. These 

claims will be supported by the experimental results presented in Chapter 3. 

An important aspect of feature modelling is the selection and evaluation of the 

features themselves. l will approach this problem by employing a model of visual 

saliency ta initially select candidate features, and track them across an ensemble of 

training images. Given these tracked feature observations, a set of feature models are 
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constructed and subsequently evaluated and filtered. The result is a set of feature 

models that have been determined to be reliable for tracking and localization. 

Earlier, we demonstrated how robot pose can be inferred from an image using 

Bayes' Law. As an illustrative example, Figures 2.3 a) and c) depict images from a 

laboratory environment from two known poses qo = 0 and ql = 1 in a one-dimensional 

pose space. Given the image z in Figure 2.3 b), taken from an unknown pose q which 

lies somewhere on the line connecting qo and ql, the task of localization is to compute 

a probability distribution p( qlz) and, ideally, a q* which maximizes the likelihood of 

the image according to Equation 2.7. 

The chief difficulty in producing a posterior distribution is that of computing the 

observation likelihood p(zlq). Given the enormous complexity of the visual world, 

and the equivalent computational complexity involved in managing a global model of 

the world, it seems reasonable to rely instead only on sorne subset of the perceptually 

relevant parts of the scene. In fact, this is a well-established characteristic of the 

human visual system, particularly as it applies to task-driven perception [104, 3]. 

A set of models of local image features can be used to compute the likelihood of 

observations of these features from a particular pose. 

Formally, pose inference based on the observation of a set of image features can 

be accomplished by assuming that the observation model p(zlq) is approximated by 

the joint likelihood of the set of feature observations {Zi} conditioned on pose q: 

(2.12) 

where we assume the formula is an approximation because we are ignoring any infor­

mation that might be present in parts of the image other than those occupied by the 

detected features. The definition of the feature observation vector Zi will be presented 

in Section 9. 

Deferring for the moment any discussion of precisely how the joint likelihood is 

computed, let us assume that it is sorne function of a set of probability distributions 
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(a) 

(b) 

(c) 

FIGURE 2.3. Images from three successive poses along a line: a) known pose 
q = 0, b) q unknown, c) known pose q = 1. The value of q at b) must be 
inferred from a) and c). 
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2.5 VISUAL MAPS 

M = {pC Zi 1 q)} that are instantiated over the set of features4
. Furthermore, if we 

can construct a generating function FH') that can compute a maximum likelihood 

observation of a feature as a function of pose: 

(2.13) 

then, aH other factors being constant, the distribution p(zilq) can be represented 

as sorne fun ct ion of the observation Zi and the prediction z:. The visual mapping 

framework provides a mechanism for constructing an approximation to Equation 2.13 

based on a set of feature observations, and for subsequently computing the observation 

likelihood p(zilq)· 

The framework operates by automatically selecting potentially useful features 

{fi} from a set of training images of the scene taken from a variety of camera poses (i.e. 

samples of the pose-space of the robot). The features are selected from each image on 

the basis of the output of a visual attention operator and are tracked over the training 

images. This results in a set of observations for each feature, as they are detected 

from different positions. The application of an attention operator allows one to focus 

on the local behaviours of features, which themselves may be easier to model and 

more robust than global image properties. For a given feature fi, the modelling task 

then becomes one of learning the imaging function Fi (. ), parameterized by camera 

pose, that gives rise to the imaged observation Zi of fi according to Equation 2.135 . 

Clearly, the imaging function is also dependent on scene geometry, lighting con­

ditions and camera parameters, which are difficult and costly to recover [135]. Tradi­

tionai approaches to the problem of inferring Fi(') have either focused on recovering 

geometric properties of the feature under strict surface or illumination constraints 

4This amounts to an assumption of conditional independence, since we do not consider joint distri­
butions such as P(Zl,z2Iq). 
5The reader should note the distinction between a feature fi (sorne visual phenomena), and a feature 
observation Zi corresponding to sorne measured property of .fi, usually conditioned on the pose of 
the camera. 
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(e.g. [4]), or developed appearance-based representations derived from the entire im­

age. This thesis bridges the gap between these approaches by modelling both image­

domain geometry and appearance in a single framework. 

The next section will present the feature learning framework, followed by an 

elaboration of its components. 

6. The Learning Framework 

DETECT ... MATCH 

FIGURE 2.4. Learning framework: An ensemble of images is collected (top 
rectangles) sampling views of the scene from poses qi. Candidate features 
fi are extracted and matched, and subsequently modelled using a generative 
model Fi(')' Refer ta text for further details. 

The visual map learning framework constitutes a method for extracting a set of 

useful feature models from an ensemble of training images. The approach operates 

as follows (Figure 2.4): 

ALGORITHM 2.1. 
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2.7 FEATURE DETECTION 

(i) The robot explores the environment, collecting images l = {Zj} from a 

sampling of known positions Q = {qj}. 

(ii) Compute ZOJ a subset of images corresponding to training poses that span 

the explored pose space. 

(iii) Compute a set of candidate features {fi} from the images in Zo using a 

model of saliency 1J! (Section 2.1). 

(iv) For each extracted feature fi 

(a) Initialize a generative feature model Fi (-) . 

(b) For each training image Zj 

(i) Evaluate F(~) to determine a matching template if for fi 

(ii) Locate an optimal match i* to if in the image Zj (Section 2.8). 

(iii) If a match is found, update the generative model Fi(') with the 

new information (i*,~) (Section 2.9). 

(c) Evaluate the quality of the model for fi and remove it from the map if 

it fails to meet certain criteria (Section 2.11). 

A key point to note is that we are currently considering image ensembles for 

which ground-truth pose information is available. It is assumed that a mechanism is 

available for accurate pose estimation during the exploratory stage (such as assistance 

from a second observing robot [103], or the utilization of an expectation-maximization 

approach to map building [143]). This assumption will be relaxed in later chapters. 

The matching and model update stages are interleaved, so as to facilitate match­

ing over a wide range of feature appearance. This approach results in an anytime 

algorithm and the map can be used for localization before it is completed. 

7. Feat ure Detection 

Potential features are initially extracted from a subset of the training images 

using a model of visual saliency. The initial image subset is defined to be the set of 

images that uniformly sample the training poses such that no two images are closer 
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together in pose space than sorne user-defined threshold. The threshold itself depends 

on the average spacing between training images in the pose space. 

In previous work conducted with Polifroni [130], we considered the use of several 

alternative interest operators in the context of constructing visual maps. The conclu­

sions from that work indicated that a wide variety of feature detectors can be applied 

to the visual mapping probIem, and that stability and uniqueness are the important 

factors in extracting usefui features (see aiso [113]). 

In the results presented in this thesis, we employa measure of local edge density 

as the attention operator, as defined below. The edge map from a given image is 

convolved with a Gaussian kernel and local maxima of the convolution are selected 

as salient features. The Gaussian convolution diffuses the presence of an edge to 

nearby pixels, thereby contributing to those pixels' local measure of edge density. 

More formally, given an image z, the Canny edge magnitude map is computed, and 

convolved with a wide Gaussian kernel, resulting in an edge density function 'li (x) , 

where x = [u v]T is an image location. For the local maxima computation, define 

X = {'Y/x E I} as the set of pixel locations in the image 1, and the initial set of 

features, Mo = {argmaxxEx 'lI(x)}, that is, the pixel location in the image where the 

saliency function 'li is maximal. The algorithm proceeds iteratively. Define the set of 

candidate locations at the ith iteration to be 

(2.14) 

where CJ is the standard deviation of the Gaussian mask used to define 'li, and the set 

of features at the ith iteration to be 

Mi = M i - 1 U {arg max W(x)} 
XEUi 

(2.15) 

Iteration halts when maxXEUi W(x) faUs below a threshold which is defined as t = 

j..lD + kCJD, representing a user-defined k standard deviations from the mean density. 

Once the set of feature points has been computed, the local image neighbourhood 

surrounding each point is presumed to contain useful information, and these feature 
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windows, along with their positions, are returned as the output of the operator. 

Figure 2.5 depicts the selected features from an image as superimposed squares over 

the original, and the convolved edge map. It should be noted that the scale of the edge 

operator (1 pixel) is significantly smaller than the size of the convolution operator6 . 

Empirical experience with this operator suggests that it is stable and reliable for 

candidate feature selection. However, in sorne circumstances the edge density operator 

may not localize the feature with sufficient precision (for example, along the long line 

defined by a door frame). In such cases, a more precise operator, such as the KLT 

operator or other measure of saliency may be required (e.g. [97, 113, 147, 55]). 

6Throughout this thesis, a Gaussian convolution operator with a width of 8 pixels is used, yielding 
feature windows that are 33 by 33 pixels in size. The value of k in the detector threshold t is set to 
1.0. 
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(a) 

(b) 

FIGURE 2.5. Detected features in an image. a) The convolved edge map or 
density function, and b) the detected feature imposed on the input image as 
squares. 
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8. Feature Matching 

Once an initial set of features has been extracted, the next phase involves match­

ing the detected features over the entire training image set. Each training image 

is searched in sequence for each feature. The camera pose ~ of any given training 

image Zj is known and therefore one can construct a generative model of the feature 

(Section 2.9) to predict the intensity window if of the feature for the pose of the 

training image being searched. Define the best match to if in the image to be the 

image sub-window ix centred at position x* that has maximal correlation p with the 

predicted image if, where pis defined as 

(' ) ix . if 
p lx = cose = Ilixllllifll (2.16) 

The problem of maximizing Equation 2.16 can be computationally expensive for 

large feature windows, even when the camera pose corresponding to the input image 

is known. This is especially true when no assumptions are made about imaging and 

scene geometry- as the camera moves through the scene, a feature might move an 

arbitrary number of pixels in an arbitrary direction through the image from one frame 

to the next. For example, given the size of the local intensity window that is used 

for matching (33 by 33 pixels), searching a 240 by 320 pixel image involves 76,800 

evaluations of Equation 2.16, which in turn costs about 6537 floating point operations, 

or a total of 5.02 x 108 operations, notwithstanding potential savings from various 

optimizations. 

In order to reduce the computational cost of matching, we exploit our a priori 

knowledge that the matching template is derived from a model that was originally 

extracted using a measure of visu al saliency w. The implication of this is that the 

visu al saliency map provides a prior distribution over the image as to regions that 

are likely to be good matches to the template. Assuming that the saliency map 

can be efficiently computed (which is the case for an edge-density operator, where 

the Gaussian convolution operator is separable), it is possible to select potential 

matches by sampling image locations from a probability density function 1> which is 
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proportional to the saliency measure: 

<I>(x) = k\Il(x) (2.17) 

where k is defined such that LXEI k\II = 1 and l is the set of pixel locations in the 

image. 

The mat ching algorithm operates as follows: 

ALGORITHM 2.2. 

(i) Sample an image location x from l with pro ba bilit y <I>(x). 

(ii) Perform gradient ascent in the image neighbourhood ofx, until Equation 2.16 

is locally maximized. 

(iii) Repeat from step 1 until the cumulative probability of all the image points 

examined exceeds some threshold. 7 

(iv) Return the image location x* and local intensity neighbourhood i* that re­

sulted in maximal correlation. 

Consider a cumulative saliency function \II* defined by summing the saliency of 

pixel locations in an image sorted in decreasing order of saliency. We will say that 

an image has n per cent saliency if fifty per cent of the maximal value of \II* is 

achieved when n per cent of the sorted pixel locations have been added. In general, 

for structured environments most images will have low n per cent saliency. If we 

assume that generally n < 25, then the cost of matching, compared to global search, 

is reduced by at least 75%, discounting the costs of applying the attention operator 

and subsequent importance sampling. In practice, n can be considerably lower. For 

an edge density operator, and using the example ab ove , the total cost of operation 

is about 0.25 x 5.02 x 108 operations for the correlation and 5.07 x 106 operations 

for the edge density computation. In addition, sampling will require approximately 

7In practice, a threshold of 50% is used. 
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3.8 X 106 operations. This yields a total cost of approximately 1.5 x 108 fioating point 

operations. 

When the sub-window maximizing Equation 2.16 is determined, the correspond­

ing intensity neighbourhood and image position [i* x*]T is added to the feature model 

for f. \\Then every training image has been considered, a set of matched features is 

obtained, each of which is comprised of a set of observations from different camera 

poses. Figure 2.6 depicts one such set, where each observation is laid out at a grid 

intersection of an overhead view of the pose space corresponding to the location from 

which it was obtained; grid intersections where there is no observation correspond 

to locations in the pose space where the feature was not found in the corresponding 

training image. Note that the generative nature of the matching mechanism allows 

the appearance of the feature to evolve significantly over the pose space. 

9. The Generative Feature Model 

Let us now turn our attention to the problem of inferring a generative feature 

model. We are interested in learning a pose-dependent model of a scene feature, 

given a set of observations of the feature from known camera positions. 'Ve require 

that the model will be capable of producing maximum-likelihood virtual observations 

(predictions) ofthe feature from previously unvisited poses. It will also be capable of 

estimating the likelihood p(zilq) of an observation Zi of feature fi, given the pose q 

from which it might be observed. 

An observation z of a feature f will be represented by the vector 

z = [: ] (2.18) 

where x represents the parameters that specify the [u v] position of the local-intensity 

window i in the image and the intensity window itself is expressed as a vector by 

"unrolling" it in raster-scan order. While this thesis considers only the position of 

the feature in the image plane as the space of possible feature transformations- one 
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(a) 

(b) 

FIGURE 2.6. a) A set of observations of an extracted scene feature. The grid 
represents an overhead view of the pose space of the camera, and feature 
observations are placed at the grid intersection corresponding to the pose 
where they were observed. Note that the observations capture variation in 
feature appearance. The lower-left thumbnail is highlighted in the scene, as 
depicted in Figure b), below. 
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can also consider rotation and scaling, or any other measurement derived from the 

observation. The observation z is a vector-valued function F(·) of the pose of the 

camera q. The goal is to learn an approximation F(.) of this function, as expressed 

in Equation 2.4. In this thesis, robot poses are assumed to be vectors in a two­

dimension al space q = [x y]T E ~2, corresponding to a camera moving through 

a planar environment at a fixed, but arbitrary, orientation. We will address the 

problem of orientation recovery in later chapters. 

The approach to learning F(·) is to model each element of the feature vector 

Z E ~k as a linear combination of radial basis functions (RBFs), each of which is 

centred at a particular robot pose determined by the set of training poses. A radial 

basis function 1S any function that exhibits radial symmetry about sorne central point. 

In this thesis, an exponentially decaying RBF G(·,·) is used: 

(2.19) 

where qc represents the centre of the RBF, and the response of the RBF is measured 

as a function of q. The width, or influence, of the RBF is defined by a. Figure 2.7 

illustrates the response of an RBF centred at the origin and with a set to one over a 

two-dimensional pose space. 

Given a set of observations, a set of weights Wi E ~k can be computed such 

that a linear combination of RBF's interpolates the observations, approximating the 

function that generated the observations. Formally, given a set of observations from 

known poses (Zi' Qi), a predicted observation Z from pose q is expressed as 

n 

Z = F(q) = I: WiG(q, Qi) (2.20) 

where n is the number of training poses. 

The computation of the weight vectors Wi is weIl understood in the context of 

regularization and interpolation theory and is described elsewhere [145, 93, 45]. In 

brief, assuming m observations, n RBF centres, and observation dimensionality k, 

the optimal weights W = [Wij] E ~nxk are the solution to the linear least squares 
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FIGURE 2.7. Radial basis function response as a function of pose. 

(G+ÀI)W = Z (2.21) 

where the elements Gij of the design matrix G E lRnxn correspond to Equation 2.19 

evaluated at observation pose i and RBF centre j, l E lRmxn is an identity matrix, 

and row i of matrix Z E lRmxk corresponds to training observation a pose i. When À 

is 0 and G-1 exists, the computed weights result in a network whereby Equation 2.20 

interpolates the observations exactly. Note that in general for n < m, the solution will 

be over-determined and the presence of noise and outliers as weIl as the complexity of 

the underlying function being modelled can result in an interpolation which is highly 

unstable. The solution can be stabilized by adding a diagonal matrix of regularization 
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parameters )..! to the design matrix G. In this work, these regularization parameters 

and the RBF width () are set by hand at the outset8
. 

If the design matrix employs every observation pose as a centre for a RBF, the 

computational cost of computing the weights for n observations is that of an O(n3
) sin­

gular value decomposition of an n by n matrix, followed by an O( n) back-substitution 

for each element of the feature vector z. For computational savings, at the cost of 

reduced accuracy, the number of RBF centres can be limited to a subset of the ob­

servation poses. In practice, we limit the maximum number of centres to 25, and 

select the centres from the observation poses by ensuring that they coyer the pose 

space uniformly. The drawback to this approach is that features that are visible over 

a large portion of the pose space may be limited in terms of accuracy. 

Figure 2.8 depicts three generated instances of the same feature from different 

poses. The predicted feature image i is plotted at the predicted image location x. 

N ote the variation in both appearance and position of the feature in the image. 

10. Visibility 

As the robot or other observer moves through the environment, features will 

move in and out of view due to both camera geometry and occlusion. Therefore it 

is valu able to explicitly model feature visibility; that is, whether or not a particular 

feature is visible from a particu1ar location in pose-space. This information aids the 

task of loca1ization and is important for the prob1em of reconstructing the scene. The 

same regularization framework presented in the previous section is employed to learn 

a visibility likelihood function p( visible(f) Iq), training the function with the binary­

valued observability of each feature from each visited pose in the training set9 . This 

information is a1so useful for deciding where to collect new training examples. 

SPor the experiments presented here, À = 0.01 and (j = 2D / V2M where D is the maximal distance 
between any two poses in the training set and M is the number of training poses. Furthermore, 
while ridge regression can be employed to compute the optimal regularization parameters, experience 
indicates that this approach is not necessary for the distributions of measurements that are being 
interpolated [47]. 
9The computed RBF model could pro duce likelihood values less than zero or greater than one- these 
outputs are clamped when they occur. 
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11. Model Evaluation 

Given an observation Zi of feature li, we can compute the likelihood that it came 

from pose q, p(zilq) by computing a maximum likelihood observation z* using the 

generative model (Equation 2.20) and comparing the actual and predicted observa­

tions using some distance metric ~ z, z* ». It is not clear, however, how a metric 

in the space of observations should be defined (recall that an observation is a com­

bination of pixel intensities and transformation parameters). Nor is it clear that the 

observation space is smooth or continuous. Furthermore, how does the likelihood 

behave as a function of the metric? In the absence of a more elaborate sensor model, 

the computed feature models are evaluated using leave-one-out cross-validation, and 

the feature observation likelihood p(zilq) is modelled as a Gaussian with a covariance 

R defined by the cross-validation covariance [90, 153, 59]. The Gaussian model 

represents a first-order approximation of the underlying stochastic process that leads 

to feature observations. 

Cross-validation operates by constructing the model with one observation point 

excluded, predicting that data point using the construction and measuring the differ­

ence between the actual point and the prediction. By iterating over several (ideally 

an) of the training data, and computing the covariance R of the resulting errors, we 

can build up a measure of how well the model fits the data and, more importantly, 

how weIl we might expect it to predict new observations. 

Given the high dimensionality of the observation space, the covariance R com­

puted over a Euclidean metric over the observation space will be rank-deficient lO . 

This poses problems for numerical stability in the presence of noisy observations. 

To overcome this problem, the cross-validation covariance R is computed over the 

3-space defined by 

_ [ IIi - i* 112 ] 
Ze -

x-x* 
(2.22) 

lOIf the observation space is n dimensional, and there are k observations where k < n, then the k 
cross-validation error vectors lie in a manifold that spans at most a k dimensional space. 
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where i* and x* are the intensity and image position components of the maximum­

likelihood prediction computed from 

(2.23) 

where P/-(qj) is the RBF model for the feature trained with observation j removed 

and subsequently evaluated at pose ~. The cross-validation covariance R is then 

defined as 

1~ T 
R= k ~zeze 

j=l 

(2.24) 

where k is the number of observations of the feature and Ze is measured for each 

removed observation j. 

Given R, the observation likelihood function p(zi/q) is then expressed as a Gauss­

ian distribution: 

(2.25) 

where c = ((21r)MIRI)-1/2, M is the dimensionality of the transformed observation 

space, 1 RI is the determinant of R, and exp ( x) = eX. 

The covariance R is not only useful as a model parameter, but is also a useful 

measure of model fit. Trained features whose model covariance has a large determi­

nant can be eliminated from the set of features on the basis that the feature is not 

modelled well and will not be useful for feature reconstruction or robot localizationll . 

12. Discussion 

At this point, we have defined all of the elements involved in learning a set of gen­

erative models of visual features from an ensemble of training images collected from 

known robot poses. The models en able the representation of an observation model 

p(zlq), which is useful for pose inference and scene reconstruction. The learning 

framework operates by selecting candidate features using a visual saliency operator, 

llAnother useful measure is the cross-validation error, e = L:j IlzeW. However e depends also on 
the number of observations k, and empirical experience indicates that IRI is more reliable. 
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mat ching image features over a set of training images, and learning a generating func­

tion parameterized by the pose of the camera which can produce maximum likelihood 

feature observations. A radial basis function network is trained for modelling each 

feature. The system also models the uncertainty of the generated features, allowing 

for Bayesian inference of camera pose. 

The visual mapping framework enables a robot to explore its environment, ac­

quiring an ensemble of observations with a metrically calibrated pose estimate, and 

then pro duce a set of generative models of visual features extracted from the obser­

vations, selecting those features that appear to be stable. An important property 

of the framework is that it minimizes a priori assumptions about the features being 

modelled, thus enabling the capture and representation of a wide variety of visual 

phenomena while employing an arbitrary imaging apparatus. 

The next chapter will present an implementation of the learning framework in a 

variety of visu al environments and examine its properties when applied to a variety 

of visual tasks. 
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(a) 

(b) 

(c) 

FIGURE 2.8. A single feature as generated and rendered from three different 
camera positions. 
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CHAPTER 3 

Visual Maps: Applications and 

Experimental Results 

1. Overview 

The real benefit of constructing a generative model is the ability to predict obser­

vations from an arbitrary pose. This ability enables a wide variety of tasks, including 

model evaluation, scene reconstruction from previously unvisited poses, and robot 

navigation and localization. This chapter will present experimental results illustrat­

ing the Implementation of the visual mapping framework, and consider applications 

of the framework to these problems. Specifically, the problems of model evaluation, 

scene evaluation, scene reconstruction, and localization will be considered. We will 

also compare the performance of the mapping framework with that of a common 

method that infers pose from global image properties. 

2. Model Evaluation 

The first experiment will evaluate the feature model, both in terms of what at­

tributes are used in the feature representation, and in terms of the reliability of the 

generative framework used to interpolate the observations. The cross-validation error 

associated with a particular learned feature represents a measure of the reliability 

of the model and the feature it has tracked. In order to examine the reliability of 



3.2 MODEL EVALUATION 

TABLE 3.1. Training set statistics for Scenes l, II and III. 

Attribute Scene 
1 II III 

Training images 256 121 121 
Pose space (cm) 30x30 10x10 200x200 

Ground truth accuracy (cm) 0.05 0.05 0.5 
Sample spacing (cm) 2 1 20 

Features 123 124 125 

the representation- that is, the attributes that are modelled generatively, the feature 

models are cross-validated over individual attributes, such as the image position x, 

intensity image i, and the edge distribution e of i. 

FIGURE 3.1. Images from Scene 1 used for evaluating feature attributes. 
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FIGURE 3.2. Images from Scene II used for evaluating feature attributes. 

The learning framework was applied to three scenes and the resulting models 

were evaluated. Figures 3.1, 3.2 and 3.3 depict a selection of training images from 

the scenes under consideration and Table 3.1 indicates number of training images, 

pose-space geometry and approximate accuracy of the ground-truth pose information 

for each scene. In aU three cases, the pose space was a square grid in which the robot 

collected samples at uniform intervals. In addition, the orientation of the camera 

was held constant. Scenes 1 and II were obtained using a camera mounted on the 

end-effector of a gantry robot arm, with a positioning accuracy of approximately 

0.05cm. Scene III was collected using a camera mounted on a Nomad 200 robot 

(Figure 3.4). A laser-pointer was mounted on the robot to point at the floor and the 

robot's position was measured by hand based on the position of the laser point on the 
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3.2 MODEL EVALUATION 

FIGURE 3.3. Images from Scene HI used for evaluating feature attributes. 

fioor. Notwithstanding human error, the accuracy of these measurements is about 

0.5cm. 

As an illustrative example, the distribution of feature cross-validation covariances 

for Scene III is depicted in Figure 3.5. Of 125 modelled features, 56 contained more 

than four observations. For each of these, the cross-validation covariance R was 

computed, along with its determinant. Each bar in the histogram corresponds to the 

number of features for which log IRI falls within the range defined by the horizontal 

axis. 

Figure 3.6 depicts the five best features modelled for Scene III, according to the 

determinant of the cross-validation covariance. Each image represents an overhead 

view of the pose space and the feature observations are plotted at their corresponding 
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3.2 MODEL EVALUATION 

FIGURE 3.4. The Nomad 200 mobile robot 

poses. Similarly, Figure 3.7 depicts the five worst features, an of which were rejected 

by the learning framework. Note that the more reliable features tend to track weil 

over small regions of the pose space, whereas the unreliable features demonstrate 

failures in tracking whereby different parts of the scene were matched to the same 

feature, resulting in significant modelling errors. 
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FIGURE 3.5. The distribution of feature cross-validation covariances for 
Scene III. Each bar tabulates the number of features out of .56 for which 
log IRI faIls into the range defined by the horizontal axis. 

TABLE 3.2. Mean cross-validation error by feature attribute. 

Feature Attribute Scene 
l II III 

Position x (pixels~) 1.7 x 101 1.4 x 10~ 3.3 X lOi 
Intensity Distribution i (intensity2) 2.1 x 103 5.2 X 103 2.5 X 103 

Edge Distribution e (intensity2) 1.7 x 104 2.2 X 104 1.3 X 104 

Table 3.2 summarizes the quality of the Position, Intensity, and Edge Distribution 

attributes mentioned above for the three scenes under consideration, based on the 

mean cross-validation error. The results are also depicted graphically in Figure 3.8. 

For any given feature, the image position, intensity distribution and edge distribution 

of the features were each used to generate a separate model and cross-validation errar. 

Tabulated are the mean cross-validation error of these properties over an observed 
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3.2 MODEL EVALUATION 

FIGURE 3.6. The five best features modelled for Scene III, by determinant 
of the cross-validation covariance. Each small thumbnail corresponds to an 
observation of the feature from the pose corresponding to the thumbnail's 
position in the image. Dark regions correspond to poses where the feature 
was not observed. 
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FIGURE 3.7. The five worst features modeUed for Scene III, by determinant 
of the cross-validation covariance. Each smaU thumbnail corresponds to an 
observation of the feature from the pose corresponding to the thumbnail's 
position in the image .. 

54 



3.3 SCENE EVALUATION 

Log mean cross-validation errer by Fealure Attributs 

10 

FIGURE 3.8. Log of the cross-validation error e by attribute for each scene. 
Units are in log pixels for image position, and ln intensities E [0,6] for the 
appearance and edge distribution. 

features. Therefore, the smaller the value, the more reliable the attribute can be 

considered to be. 

It is interesting to note that the image position of the feature in the image is in 

general the most accurately modelled whereas the edge distribution is poorly mod­

elled. The order-of-magnitude difference between the position error and the intensity 

distribution error is due in part to the significant difference in the dimensionality of 

the attributes. One can conclu de that for the purposes of inference, in most circum­

stances the image position will be the most useful attribute. 

3. Scene Evaluation 

In addition to measuring feature quality, it is also possible to evaluate the ability 

of the model to represent the environment as a function of pose. This is accomplished 

by computing a quality estimate for the subset of features observable from a given 
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FIGURE 3.9. A priori training reliability R as a function of pose for scene 
III. The camera faces in the negative y direction. 

position. At each training pose q, we can compute a measure of reliability 

(3.1) 

where r is the set of features which are observed from pose q, and 1 Rf; 1 is the determi­

nant of the feature cross-validation covariance Rfi. Note that for poses other than the 

training poses, a similar measure can be computed by weighting the terms of Rq by 

their visibility likelihood, p( visible(f) Iq). The determinant of the feature covariance 

is an indication of how weak the pose constraint for a given feature may be. Clearly, 

Rq E (0,00) and larger values should predict more reliable pose estimates. Figure 3.9 

plots Rq as a function of pose for Scene III. In this plot, the orientation of the camera 

is fixed to face in the negative y direction while the robot moves over a 2m by 2m 

pose space. Note that the reliability is particularly low for small values of y. This 

is due ta the fact that images in that region of the pose space change dramatically 

un der small changes in pose, leading ta difficulty in tracking the features. 

56 



3.4 SCENE RECONSTRUCTION 

4. Scene Reconstruction 

FIGURE 3.10. Robots employed for data collection. The three-plane target 
mounted on the exploring robot is sensed by the stationary robot, allowing 
for the computation of pose estimates for the explorer. The pose estimates 
are employed as an approximation to ground-truth, both for training and 
evaluating the vision-based localizer. 

Given a set of trained features and a particular pose q, one can generate a max­

imum likelihood reconstruction of the scene features. Given the generated obser­

vations, the full image is reconstructed by positioning each feature according to its 

predicted transformation and mapping the generated intensity image in the image 

neighbourhood: 

(3.2) 

In this experiment a large image neighbourhood (61 by 61 pixels) is modelled for 

each feature in order to predict as much of the image as possible. Where predicted 

feature windows overlap, the pixel intensity !(x) is determined by selecting the pixel 
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intensity corresponding to the feature that maximizes the weighting function 

p( visible(J) Iq) -~ 
v = e 20-

IRfl 
(3.3) 

where Rf is the cross-validation covariance for the feature, 6.x is the Euclidean dis­

tance Ilx - x* 112 between the pixel x and the predicted position of the feature x*, and 

(J = 30 pixels 1S a parameter describing the region of influence of each feature in the 

image. This winner-takes-all strategy selects a feature whose pixel prediction has the 

highest confidence, and paints the pixel with that prediction. 

FIGURE 3.11. Images from Scene IV used for demonstrating scene reconstruction. 

For this experiment, a new training set, Scene IV, was collected (Figure 3.11). 

This environment was explored by taking 291 training images at uniform intervals 

of approximately 25cm over a 3.0m by 6.0m pose space. A second observing robot 
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FIGURE 3.12. Ground truth poses of the Scene IV training set, as measured 
by the robot tracker 

equipped with a laser tracking system was deployed to estimate the ground-truth 

position of the exploring robot to an accuracy of approximately 4cm. The implemen­

tation of the laser tracking system is described in [103, 102]. The observer employed 

a laser range-finder to accurately determine the exploring robot's pose from the range 

and orientation of a three-plane target mounted on the exploring robot (Figure 3.10). 

For the purposes of this scene, the robot attempted to take training images at the 

same global orientation. However, uncertainty in the robot's odometry, as weIl as 

the observing robot's estimate, led to sorne variation in this orientation from pose to 

pose. The set of ground truth training poses is depicted in Figure 3.12. 

Given the training set, a visual map was constructed, extracting 325 feature 

models from the scene. Subsequently, a set of images was rendered from user-selected 

poses using the scene reconstruction method. Figure 3.13a shows a training image 

from the scene, and Figure 3.13b depicts the reconstruction of the scene from a nearby 

59 



3.5 LOCALIZATION 

FIGURE 3.13. a) Training image b) A reconstruction of the scene, as pre­
dicted from a nearby camera pose. 

pose. Several other reconstructed frames of the scene are depicted in Figure 3.14. 

Note that the reconstruction cannot predict pixels for which there is no visible feature 

model, and as such, the lower edge of the image is left unshaded. It may be that these 

regions can be shaded by extrapolating from the nearby texture using Markovian 

reconstruction methods [34, 37]. 

5. Localization 

This section will examine the ability of the feature learning framework to pro duce 

a map that is useful for pose inference. Given a set of feature models, the task of 

robot localization can be performed by applying Bayes' Law, as per Equation 2.7. 

When a pose estimate is desired, an observation is obtained and optimal matches 

Z = {Zi} to the learned features are detected in the image using the method de­

scribed in Section 2.8. Each feature observation Zi then contributes a probability 

density function p(zilq), which is defined as the product of the distribution due to 

the maximum likelihood prediction of the model p(zilq, visible(f)) (Equation 2.25) 

and the feature visibility likelihood p( visible(f) Iq): 

p(Zilq) = p(zilq, visible(fï))p(visible(fï)lq)· (3.4) 
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FIGURE 3.14. More reconstructed frames from Scene IV. 
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3.5 10CALIZATION 

Assuming conditional independence between the individu al feature observations, 

the probability of an observed image is defined to be the joint likelihood of the indi­

vidual observations: 
n 

(3.5) 
i=l 

In the absence of informative priors, the pose q* that maximizes the joint like­

lihood of the observations is considered to be the maximum likelihood position of 

the robot. It is not clear, however, that the conditional independence assumption 

holds for features derived from a single image and, furthermore, outliers can lead to 

catastrophic cancellation of the joint distribution. Instead, let us assume that for any 

feature observation there is a high probability e that it is an outlier. In this case, the 

probability of an observation can be redefined as a mixture of a uniform distribution 

and the observation likelihood: 

(3.6) 

where C is the area of the pose space [79]. 

Under this interpretation, for e close to 1, Equation 3.5 can be approximated by 

a Taylor series expansion: 

n n 

IIp'(zilq) ~ (ejc)n + (ejCt- 1(1 - e) LP(Zilq) (3.7) 
i=l i=l 

Hence, maximizing Equation 3.7 is equivalent to maximizing the mixture model de­

fined as the sum of the individu al feature likelihoods, and, ignoring the additive 

constants, the joint likelihood is approximated with this sum: 

n 

p(zlq) ~ LP(zdq) (3.8) 
i=l 

This model takes an extreme outlier approach whereby it is assumed that there 

is a high probability that any given feature observation is an out lier . Experience 

indicates that the mixture model provides resistance to out lier matches without the 

need for computing a full joint posterior, as l will demonstrate in the next section. 
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3.5 LOCALIZATION 

For further reading on the application of a summation model in place of a product, 

refer to the tutorial by Minka [79J. 

In the following experiments, the performance of the learning framework and 

feature models will be evaluated in terms of their performance in the task of robot 

localization. The experiments involved Scenes l, II, III and IV, depicted in Fig­

ures 3.1, 3.2,3.3 and 3.11, respectively. For each scene, a set of initial features were 

extracted from a smaH subset of the training images, determined to be a uniform 

sampling of the pose space such that no two images in the subset were less than a 

scene-dependent threshold apart1 . From this set of initial features, the models were 

trained as described in Chapter 2. Those models with large cross-validation error, or 

with too few observations to construct a useful model, were removed, resulting in a 

set of reliable feature models. For all four scenes, the intensity i and position x of the 

features were modelled and employed for localization. However, in the case of Scene 

l, it was found that the feature intensity distribution i was not informative enough in 

the "looming direction" 2 and degraded the localization results considerably. This out­

come could derive from a variety of factors, such as a low signal-to-noise component 

in the intensity model as a function of pose, or perhaps over-smoothing the model 

with respect to the regularization parameter À. As a result, the results for Scene l 

were computed a second time wherein only the feature position x was employed to 

compute localization estimates. These results are reported as Scene lb. Note that 

both the intensity and position attributes were employed for the remaining scenes. 

To validate localization performance using the learned models, for each scene an 

additional set of images was collected from random poses, constrained to lie anywhere 

within the training space. These validation images were used to compute maximum­

likelihood (ML) estimates of the camera's position using Equation 3.8, and these 

estimates were compared against the ground truth pose information. 

ll5cm, l5cm, lm and lm for Scenes l, II, III and IV, respectively. 
2The direction parallel to the optical axis of the camera. 
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3.5 LOCALIZATION 

The ML estimates themselves were computed by exhaustive search over a multi­

resolution discretization of the training space, selecting the q that maximized Equa­

tion 3.8. In particular, the training space was discretized into a 40 by 40 grid covering 

the entire training space and Equation 3.8 was evaluated at each position in the grid. 

Subsequently, at the maximal grid location a new 10 by 10 grid was instantiated over 

a neighbourhood spanning 7 by 7 grid positions in the larger grid and Equation 3.8 

was evaluated over the new grid. This pro cess iterated recursively to a resolution of 

1 % of the intervals between training poses, and the maximal grid pose at the highest 

resolution was returned. Note that a more efficient estimator, such as Monte Carlo 

sampling, could be easily deployed for applications where computational resources 

are limited. 

In practical settings, one is not al ways interested in the ML pose estimate, but 

sometimes in the entire probability distribution over the pose space, which can provide 

information about alternative hypotheses in environments which exhibit significant 

self-similarity. Figure 3.15 depicts the a posteriori pose distributions computed for a 

selection of the Scene III validation images. Each frame in the Figure represents the 

evaluation of Equation 3.8 computed over a uniform discretization of the 2m by 2m 

pose space, where darker regions correspond to more likely poses. Figure 3.16 depicts 

another pose distribution, derived from a Scene IV validation image, in greater detail. 

The distribution is presented modulo a normalizing constant. The figure clearly 

indicates a region where the pose is more probable, as weIl as a second, less probable 

region. The second region may be due to a mis-classified feature (a failure in the 

mat ching stage), or sorne self-similarity in a trained feature. 

Given that each ML estimate has a numericallikelihood, it is possible to reject 

pose estimates that do not meet a particular confidence threshold. In this way, 

several estimates in the validation sets were rejected. Interestingly, the majority of 

these estimates were associated with images that were obtained when the robot was 

very close to objects in the scene it was facing, where it was difficult to reliably track 

features at the selected training sample density. This behaviour coincides with that 
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3.5 LOCALIZATION 

FIGURE 3.15. A posteriori pose distributions for a selection of the Scene 
III validation images. Each image represents an overhead view of the 2m by 
2m pose space. Darker regions correspond to more likely poses. Note that 
several of the distributions are not Gaussian or unimodal. 

predicted by our a priori evaluation of a similar scene, as exhibited in Figure 3.9, 

where the reliability measure degrades when the robot approaches the objects in the 

scene. 

Figures 3.17, 3.18, 3.19, 3.20 and 3.21 plot for each scene the location of the 

unrejected ML estimates for the validation images ('x') against the ground truth 

camera position ('0') by joining the two points with a line segment for each scene. 

The length of each line segment corresponds to the magnitude of the error between 

the corresponding pose estimate and ground truth. The mean absolute error, mean x 
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FIGURE 3.16. An example a posteriori pose distribution for a validation 
image from Scene IV. 

600 

and y direction errors (corresponding to sideways and looming motion, respectively), 

minimum and maximum errors and number of retained estimates for each validation 

set IS tabulated in Table 3.3. The larger error in the y (looming) direction corresponds 

to the fact changes in observations due to forward and backward motion are not as 

pronounced as changes due to side-to-side motion. This is a well-known result in the 

ego-motion literature [17]. This is particularly apparent in the results from Scene 1. 
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TABLE 3.3. Summary of Localization Results for Scenes l, II, III and IV. 

Scene 
l lb II III IV 

Training images 256 256 121 121 291 
Pose space (cm) 30x30 30x30 lOxlO 200x200 300x600 
Ground truth accuracy (cm) 0.05 0.05 0.05 0.5 4.0 
Sample spacing (cm) 2 2 1 20 25 
Validation Images 100 100 20 29 93 
Valid Pose Estimates 99 100 19 28 89 
Mean Error (cm) 3.05 0.37 0.19 6.8 17 
Mean x Error (cm) 0.57 0.09 0.04 3.6 7.7 
Mean y Error (cm) 3.0 0.35 0.17 5.1 14 
Minimum Error (cm) 0.08 0.020 0.035 0.64 0.49 
Maximum Error (cm) 18.8 1.6 0.73 13.1 76 
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Localization results for Scene Il 
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Localization results for Scene III 
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FIGURE 3.20. Localization results for Scene III: the set of maximum­
likelihood pose estimates ('x') plotted against their ground truth estimates 
('0'). Mean error: 6.8cm 
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Localization resulls for Scene IV 
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It lS interesting to note that for Scenes Ib,II,III and IV the mean localization 

error scales roughly linearly with the sample spacing in the training set (which in 

turn scaled roughly linearly with the size and distance of the objects in the scene 

from the camera). As the sample spacing grows, however, feature tracking becomes 

more difficult and outliers become more significant. Conversely, at smaller scales, a 

lack of significant variation in feature behaviour can also produce outliers due to a 

flattening of the inferred probability distribution over pose, as was observed in Scene 

1. While this was remedied for Scene lb by eliminating the feature attribute that led 

to the errors, the question of how to automatically detect which feature attribut es 

will be useful remains open3
. An interesting direction for future work will be to 

adaptively collect training examples, varying the sam pIe spacing appropriately as the 

feature behaviour varies. 

6. Comparison with Principal Components Analysis 

The final experiment examines the performance of the visu al mapping framework 

versus the approach developed by Nayar, et al. based on principal components anal­

ysis (PCA) [84]. PCA-based localization computes the principal directions of the 

subspace spanned by the training images which are interpreted as vectors in a high­

dimension al space, and represents images as linear combinat ions of these principal 

directions (Section 2.2.2). Note that PCA is a global approach in that the entire 

image is used as input to the localization framework. 

A localization framework using PCA can be defined by first computing a PCA 

subspace for the set of training images, and then constructing an interpolation func­

tion Zk = F( q) that approximates the subspace projection Zk of an image as a function 

of pose q. For the purposes of this experiment, the interpolation fundion is deter­

mined by computing a Delaunay triangulation of the training poses [25], and for an 

arbitrary pose q, finding the face of the triangulation that q fans into and computing 

3The attribute evaluation performed in Section 2 of this chapter is an indicator of model accuracy 
and stability, which only partly addresses this question. 

73 



3.6 COMPARISON WITH PRINCIPAL COMPONENTS ANALYSIS 

Zk using bilinear interpolation between the projections of the corresponding training 

imageé. 

The observation likelihood function is then defined as 

p(zlq) = k exp (-O.51Iz - F( q) 112) (3.9) 

where k is a normalizing constant and z is the subspace projection of the observed 

image. With this likelihood function, the probability distribution p( qlz) can be com­

puted using Equation 2.7. 

In order to provide the localization methods with training images and ground 

truth pose estimates, the Scene III training set was used. Recall that the orientation 

of the robot was fixed. The same set of training images was provided to both the 

PCA and visual mapping framework for preprocessing and training, and the running 

times for this phase were recorded. In order to optimize the visual map for speed, a 

triangulation-based feature model was employed (Section 4.4), and feature appearance 

was ignored in computing the model covariances and evaluating Equation 2.25 (that is, 

modelling and localization took into account only the image position of the modelled 

features). 

For verification, initially the set of 29 Scene III verification images was employed. 

Note that these verification images were collected under the same illumination con­

ditions and observed the same static scene as the training images. These images 

constitute our Normal verification set. In addition, a set of occluders, consisting of 

black tiles, were randomly painted into the images to generate an Occlusion verifi­

cation set (Figure 3.22). The mean area of occlusion in each image was 32%. This 

set was generated in or der to evaluate local versus globallocalization methods in the 

face of outliers in the image. 

6.1. Experimental Results. Table 3.4 depicts the localization results for the 

29 images in the Normal verification set. The mean localization error, maximum error, 

and omine and on-Hne running times are depicted for each method. The maximum 

4The details of this method will be presented in greater detail in the next chapter. 
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FIGURE 3.22. A selection of images from the Occlusion verification set. 

errors are reported in lieu of a standard deviation sinee the errors are bounded from 

below by 0, and hence the mean and maximum errors provide more informative 

statistics on the tails of the distributions. Note that PCA presents a large omine 

computational cost, but at the gain of very fast on-line cost- whereas the visual 

mapping framework presents sorne efficiency in training, while it is more expensive to 
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TABLE 3.4. Results for the Normal set. 

Mean Max 'Iotal Un-lme Un-tme 
Error Error Training Preprocessing Localization 
(cm) (cm) Time (s) (s/image) (s/image) 

PCA 6.06 12.4 2170 0.234 0.208 
Visual Map 8.49 23.09 1581 145 19.8 

TABLE 3.5. Results for the Occlusion set. 

Mean Max 
Error Error 
(cm) (cm) 

PCA 96.3 222 
Visual Map 12.1 48.6 

run on-line, primarily due to the need for feature matching and the cost of operating 

the generative models over the discretized pose space. 

Table 3.5 depicts the results for the Occlusion verification set. The visual map­

ping method demonstrates a small degradation in performance, whereas PCA fails 

completely. These results confirm the utility of feature-based methods at providing 

robustness to dynamics in the environment, such as the movement of people and 

furniture. 

The me an localization errors for the two experiments are summarized in Fig­

ure 3.23. While PCA is quite stable un der normal conditions, the global method 

degrades considerably in the face of occlusions. Conversely, the visu al mapping frame­

work is performs slightly worse under normal conditions but provides robustness in 

the face of occlusion. It should be noted, however, that visu al maps do incur signifi­

cant overhead in terms of the cost of feature matching. These experiments were run 

without any prior information about feature matches, and the cost of matching can 

be reduced considerably with useful priors, which are often available in the context 

of active localization. A more complete examination of the performance of PCA, 

visual maps, and other methods under a variety of adverse imaging conditions can be 

found in [125]. The full details of that work have been omitted here as they compare 
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Mean Localization Error for Varying Imaging Conditions 
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FIGURE 3.23. Summary of localization performance under differing imaging conditions. 

the landmark-based localization approach against an ad-hoc global method whose 

elaboration would be tangential to the goals of this thesis. 

7. Discussion 

This chapter presented a set of experiments demonstrating the feature learning 

framework. The experimental results demonstrate the remarkable precision of the 

feature models when applied to the task of pose estimation, as weIl as other tasks, 

such as scene reconstruction. The results illustrate the stability and smoothness of the 

resulting posterior distribution over camera pose, and we were able to detect most 

outliers by thresholding the likelihood of the ML estimates. However, important 

issues are raised with respect to the density of training samples. In order to capture 
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aspects of the scene that change significantly, one must sample at higher densities. 

Conversely, in sorne instances features change too slowly to be informative for pose 

estimation. Furthermore, a method is required in order to provide ground truth pose 

Ïnformation for the training images. The next chapter will examine the problem of 

inferring the feature models and the ensemble of training poses when only a small 

number of training poses are known. 
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CHAPTER 4 

Self-Organizing Visual Maps 

1. Overview 

The previous chapter presented a framework for learning a set of feature mod­

els from an ensemble of images acquired from known robot poses. This chapter will 

examine the problem of automatically inferring a set of feature models while simul­

taneously determining the spatial distribution (in pose space) of the images in the 

training ensemble, even with only limited a priori information about the training 

poses. Beyond robotic applications, examples of such ensembles include camcorder 

and archivaI footage where some images can be easily localized but most can not (or 

would be too time consuming to determine). \iVhile the solution to this problem can 

be viewed as an instance of robot mapping it can also be used in other contexts where 

low-dimensional features can be extracted and correlated from high-dimensional mea­

surements. 

The approach taken to this problem is to use the visual mapping framework to 

initially select and match visual features from the ensemble without updating the 

appearance models, and to then localize the images by first assembling the small sub­

set of images for which pose information is available (or, for a moving robot, where 

odometric confidence is high), and sequentially inserting the remaining images, local­

izing each against the previous estimates, and taking advantage of any priors that 



4.2 PROBLEM STATEMENT 

are available. Experimental results validating the approach will be presented, demon­

strating metrically and topologically accurate results over two large image ensembles, 

even given only four initial ground truth poses. 

While the self-organizing approach described here depends to a large extent on 

adequate coverage of the pose space, the last part of this chapter will develop a 

method for organizing the input ensemble even wh en coverage is sparse. Furthermore, 

a mechanism will be provided for incorporating odometric information for the case 

that it is available. 

2. Problem Statement 

We are interested in building a visual map of an unknown environment from an 

ensemble of observations and limited pose information. Formally, 

Given: 

• l, an ensemble of images of an environment, 

• Q, ground truth pose information indicating the pose of the camera 

from which a subset of images in l were acquired, and 

• A, optionally, additional prior information providing relative ordering 

information of the ensemble, or robot control trajectory information. 

Compute: 

• A visual map of the environment, and 

CIl Q', the set of camera poses of images in l for which ground truth is 

unavailable. 

In the abstract, the goal is to examine the extent to which we can organize a 

set of measurements from an unknown environment to pro duce an embedding of the 

measurements in pose space with little or no knowledge of where in the environment 

the measurements were obtained. A primary assumption is that, at most, we have 

limited prior trajectory information, so as to bootstrap the pro cess- the source of this 

information might be from the first few odometry readings along a trajectory, the 

general shape of the trajectory, information from an observer, or from a localization 
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method that is expensive to operate, and hence 1S only applied at a small subset of 

the observation poses. While metric accuracy is of interest, the primary aim is to 

recover an embedding of the ensemble in pose space. That is, metrically adjacent 

poses in the world are topologically adjacent in the resulting map. 

The question of how to bootstrap a spatial representation, particularly a vision­

based one, also appears to be relevant to other research areas in computer vision 

and even ethology. Several authors have considered the use of self-organization in 

autonomous agent navigation [138, 5, 23, 111], often with impressive results. For 

example, Takahashi et al. construct a self-organizing map from odometric data and 

use reinforcement learning to train the robot to navigate between distant nodes in 

the inferred graph. This thesis is among the first work to demonstrate how to auto­

matically build a complete map of a real (non-simulated), large-scale (that is, human 

scale), unknown environment using only monocular vision. 

We will approach the problem in the context of the visual map representation. To 

construct a map, two steps are involved: first, reliable features are selected and corre­

spondences are found across the image ensemble. Second, the quantitative behaviours 

of the features as functions of pose are exploited in order to compute a maximum­

likelihood pose for each image in the ensemble. While other batch-oriented mapping 

approaches are iterative in nature [143, 60], it will be demonstrated that if accurate 

pose information is provided for a small subset of images, the remaining images in the 

ensemble can be localized without the need for further iteration and, in sorne cases, 

without regard for the order in which the images are localized. 

The following section will examine prior work related to the problem; in par­

ticular, approaches to self-organizing maps, and the simultaneous localization and 

mapping problem. We will then proceed to present how the visu al mapping frame­

work is applied to organize the input ensemble. Finally, we will examine experimental 

results on a variety of ensembles, demonstrating the accuracy and robustness of the 

approach. 
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3. Previous Work 

The construction of self-organizing spatial maps (SOM's) has a substantial history 

in computer science. In particular, Kohonen developed a number of algorithms for 

covering an input space with a network of weighted computational units that are 

distributed in a mesh [60, 61]. The units are initialized to have random weights and 

as the input training vectors are introduced to the network, maximally responding 

units have their weights adjusted toward the input, along with a local neighbourhood 

of units defined according to a neighbourhood function which decreases in size over 

time. If we consider the feature observations Zi from Chapter 2, and sort them into a 

set of vectors z(t), indexed by time t and the unit weights at each unit are defined by 

a vector II1i(t) , where i is the index ofthe unit, and II1ï(t) has the same dimensionality 

as the observations, then the update equation for the neighbourhood of the maximally 

responding unit at time t is defined to be 

(4.1) 

where ex is a learning rate parameter. 

After a certain number of iterations, the unit that responds maximally to input 

vector i is labelled with that vector, and once aU vectors have been assigned to a unit 

the distribution of labels defines an ordering of the input vectors. 

While spatial coverage is used as a metaphor, the problem of representing a data 

space in terms of self-organizing features has numerous applications ranging from text 

searching to audition [146J. The problem of spanning an input space with feature 

detectors or local basis functions has found wide application in machine learning, 

neural nets, and allied areas. In much of this algorithmic work, particularly as it 

pertains to Kohonen maps, the key contributions have been related to convergence 

and complexity issues. In fact, one significant difficulty with SOM's is the lack of 

evidence that in high-dimensional cases the algorithm has a steady, or absorbing, 

state [15J. 
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The issue of automated mapping has also been addressed in the robotics com­

munity. One approach to fully automated robot mapping is to interleave the map 

synthesis and position estimation phases of robot navigation, a process known as 

simultaneous localization and mapping (SLAM), or sometimes concurrent mapping 

and localization (CML). As it is generally applied, this entails incrementally building 

a map based on geometric measurements (e.g. range measurements derived from a 

laser range-finder, sonar or stereo camera) and intermittently using the map to cor­

rect the robot's position as it moves [70, 157, 19]. Results in these areas will be 

considered in greater depth in the subsequent chapters. 

When the motion of a robot can only be roughly estimated, a topological rep­

resentation becomes very attractive. Kuipers and Byun use repeated observation of 

a previously observed landmark to instantiate cycles in a topological map of an en­

vironment during the mapping pro cess [67, 65, 66]. The robot navigates between 

nodes using a set of control mechanisms and the locally defined "landmarks" are based 

on the observed local maxima of sorne distinctiveness measure of the environment. 

Simhon and Dudek apply this idea of distinctiveness to the problem of constructing 

map of visually distinctive places in the environment, to each of which is attached a 

local metric map [131]. 

The idea of performing SLAM in a topological context was also been examined 

theoretically. Dudek et al. demonstrated that for a graph-like world where nodes have 

no distinctive characteristics other than a consistent edge ordering, correct graph 

inference is impossible without the aid of a marker that can be dropped and later 

retrieved when it is re-encountered, permitting the robot to recognize when it has 

closed a cycle [31]. Deng and Mirzaian examined the same problem and developed a 

set of competitive algorithms utilizing a set of n identical markers [24]. 

When trajectory information is available, the probabilistic fusion of uncertain 

motion estimates and observations has been examined by several authors (e.g., [132, 
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42, 74]). These results deal exclusively with observations derived from range sen­

sors. The use of expectation maximization (EM) has recently proven quite successful 

although it still depends on estimates of successive robot motions [22, 112, 142, 12]. 

EM is a post-processing method that operates iteratively, alternating an E-step, 

in which the current map is assumed to be correct and the set of observations is 

localized against the map, followed by an M-step in which the map is reconstructed 

based on the assumption that the localized poses are correct. The process repeats 

until the map reaches a steady state. Unfortunately, convergence is so far guaranteed 

only for a specifie family of exponential probability distributions, and the pro cess is 

susceptible to fin ding local maxima in the probability distribution. While outside the 

scope of this thesis, the results from this chapter can in turn be employed as a reliable 

prior for subsequent EM-style post-processing. 

A closely related problem in computer vision is that of close-range photogramme­

try, or structure-from-motion (SFM) [72, 91, 44, 18], which involves recovering the 

ensemble of camera positions, as weIl as the full three-dimensional geometry of the 

scene that is imaged. SFM operates by computing a least-squares minimization of 

the projection error of a set of features for which correspondence has been established 

between images. In the case where a para-perspective camera model is assumed, the 

problem is linear and the solution can be computed directly. For more realistic camera 

models, the problem is non-linear and is computed using an iterative pro cess known 

as bundle-adjustment [149]. 

The key difference between the SFM problem and inferring pose with a visual map 

is that a solution to the SFM problem is dependent on explicit assumptions about 

the optical geometry of the imaging apparat us. In the visual mapping framework we 

have avoided committing to any such assumptions, and as such the self-organizing 

behaviour exhibited in the experimental results is equally applicable to exotic imaging 

hardware, such as an omnidirectional camera. A second major difference between this 

work and the SFM problem is that SFM depends on image features that correspond to 

well-defined points in three-dimensional space, whereas the visual mapping framework 
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can handle features derived from more exotic visu al phenomena, such as intersections 

of occlusion boundaries in depth. 

4. An Alternative Feature Model 

Effective pose inference requires accurate models for performing localization. In 

order to build a map on-line, as new observations are added the models must be 

updated. In the context of visu al mapping, model update, and particularly cross­

validation is an expensive operation. Computing a feature model from n observations 

costs O(n3 ) time, due to the need for singular values decomposition required to solve 

Equation 2.21. Similarly, cross-validation costs nO((n - 1)3) = O(n4
), as the model 

must be fully recomputed for each observation. If the model is updated and cross­

validated with the addition of each new observation, the total complexity is given 

by 
n 

t = L (c1i 3 + C2i4) = O(n5
). (4.2) 

i=l 

Equation 4.2 describes the running time for the complete construction of an 

RBF model with full cross-validation updates after each observation insertion. While 

there are methods for adding and removing rows and columns from a singular value 

decomposition (as is the case in cross-validation and model updating), and other 

techniques exist for taking advantage of the symmetric structure of the matrix, these 

techniques can save at most one degree of computational complexity [39]. 

In order to reduce the cost of model updating, this chapter and the following 

chapt ers will employa feature model which represents a more efficient approximation 

to the generating function Fm(-). The benefits of this model will be that observa­

tion insertion and removal will be O(log n), facilitating n log( n) model construction 

and cross-validation. The drawback to employing this model is that it will be some­

what susceptible to outlier observations. Of course, once the complete map has been 

constructed, it is possible to apply the more stable RBF -based mode!. 
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z2 

z=F(q) 

z1 
z 

2 

q 

qO 

\ Pose space L-______________________________________________ ~ 

FIGURE 4.1. The approximate model based on a Delaunay triangulation of 
the pose space. F( q) is evaluated by computing the face f that contains q, 
and interpolating between the observations associated with the vertices of 

f. 

The basic premise of the model approximation is depicted in Figure 4.1. An in­

terpolation model is constructed by computing a Delaunay triangulation of the set of 

observation poses and performing interpolation at the pose q by locating the face f of 

the triangulation that contains q and employing bilinear interpolation of the observa­

tions associated with the vertices of that face in order to generate a predicted z* [25]. 

The triangulation mechanism is implemented using a hierarchical data structure that 

facilitates insertions and lookups into the triangulation in O(1og n) expected time and 

deletions in O(log log n) expected time [13]. 

Interpolation operates as follows: 

ALGORITHM 4.1. 

(i) Given input q locate the face f that q falls into. If the face does not contain 

the infinite vertex, goto 4, otherwise 
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(ii) For neighbouring faces to f that do not contain the infinite vertex find the 

face f' that minimizes 11411, where 4 corresponds to the coordinates of q 

relative to the basis defined by the vertices of f'1 

(iii) Set f = f'. 

(iv) Compute the coordinates 4 = [x yf of q relative to the coordinate basis 

defined by the face f (see below). 

(v) Compute z* = X(Z2 - Zl) + Y(Z3 - Zl) as the linear combination of observa­

tions Zl, Z2) and Z3 corresponding to the coefficients 4· 

For poses ql, q2,and q3, defining the vertices of the selected basis face J, the 

coordinates q are determined from q as 

(4.3) 

where q2 - ql and q3 - ql define the columns of A. This basis defines the position of 

q as a linear combinat ion of the vectors q2 - ql and q3 - ql· 

While other, more stable, interpolation algorithms may exist, in practice the 

triangulation model provides a good local approximation to the generating fun ct ion 

F(·), provided that there are no out lier observations in the training set. Even in the 

presence of a small number of outliers, their effects will be limited to local regions 

of pose space. Finally, it should be noted that the triangulation model provides a 

reasonably stable extrapolation mechanism, a feature that RBF models are unreliable 

at producing. Stable extrapolation is a key requirement for incrementally growing the 

space over which a feature can be reliably modelled. 

5. Self-Organization 

We now turn to the problem of inferring the poses of the training images when 

ground truth is unavailable, or only partially available. The self-organization process 

involves two steps. In the first step, image features are selected and tracked, and in 

the second step the set of images is localized. 

IThe purpose of this step is to locate a face that provides maximal stability for interpolation. 
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5.1. Tracking. Tracking proceeds by considering the images in an arbitrary 

order (possibly, but not necessarily, according to distance along the robot's trajec­

tory). Given the input image set Z = Zi, the tracking algorithm operates as follows: 

ALGORITHM 4.2. 

(i) Apply an edge-density feature detector -W to the first image Zl E Z (Sec­

tion 2.7). 

(ii) fnitialize a tracking set Tj for each detected feature. 

(iii) Define T = T j . 

(iv) fnitialize E = Zl. 

(v) For each subsequent image Zi, do 

(a) Search Zi for matches to each Tj ET (Section 2.8). 

(b) Add successful matches to their respective tracking sets Tj . Gall the set 

of successful matches M. 

(c) Apply -W is applied to the image and let S be the set of detected features. 

(d) fflMI < IS!' then2 

(i) New tracking sets T j are initialized by elements selected from S. 

The elements are selected first on the basis of their response to the 

attention operator, and second on the basis of their distance from 

the nearest image position in M 3
. Gall this new set of tracking 

sets Ts . 

(ii) For each Zk E E search for matches to the new tracking sets in Ts 

(Section 2.8), and add the successful matches to their respective 

tracking set. 

(iii) T = TU Ts 

(e) E = EU Zi 

21XI refers ta the cardinality of the set X. 
3In this way, features in S which are close ta previous matches are omitted, and regions of the image 
where features exist but mat ching failed receive continued attention. 
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The template used for by any particular tracking set is defined as the local ap­

pearance image of the first feature added to the set. Matching is considered successful 

when the normalized correlation of the template with the local image under consid­

eration exceeds a user-defined threshold (Section 2.8). 

When tracking is completed, we have a set of feature correspondences across the 

ensemble of images. The pro cess is O(kn) where k is the final number oftracked sets, 

and n is the number of images. 

5.2. Localization. Once tracking is complete, the next step is to determine 

the position of each image in the ensemble. For the moment, consider the problem 

wh en there is a single feature that was tracked reliably across aU of the images. If we 

assume that the motion of the feature through the image is according to a monotonic 

mapping from pose to image, then the topology of a set of observation poses will be 

preserved in the mapping from pose-space to image-space. 

While the mapping itself is nonlinear (due to perspective projection), it can be 

approximated by associating actual poses with a small set of the observations and 

determining the local mappings of the remaining unknown poses by constructing an 

interpolant over the known poses. The algorithm proceeds as follows: 

ALGORITHM 4.3. 

(i) Initialize S = {(q, z)}, the set of (pose, observation) pairs for which the 

pose is known. 

(ii) Compute ÎiK), the parameterization of S as defined by the feature leaming 

framework. 

(iii) For each observation Zj with unknown pose, 

(a) Use Fic-) as an interpolant to find the pose q* that maximizes the 

probability that q* produces observation Zi. 

(b) Add (q*, Zj) to Sand update Fi(') accordingly. 
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For a parameterization model based on a Delaunay triangulation interpolant, 

updating the model Fl) takes O(logn) expected time, where n is the number of 

observations in the model. The cost of updating the covariance associated with each 

model is O(k log n), where k is the number of samples omitted during cross-validation. 

In addition, the cost of finding the most likely pose with Fl) is O( m log n), 

where m corresponds to the number of poses that are evaluated (finding a face in the 

triangulation that contains a point q can be performed in logn time.). Given n total 

observations, the entire algorithm takes O( n( m + k + 1) log n) time. Both m and k 

can be bounded by constants, although k is typically chosen to be n. 

In practice, of course, there is more than one feature detected in the image en­

semble. Furthermore, in a suitably small environment, sorne might span the whole 

set of images, but in most environments, most are only visible in a subset of images. 

Finally, matching failures might introduce a significant number of outliers to indi­

vidual tracking sets. Multiple features, and the presence of outlier observations are 

addressed by the localization framework; the maximum likelihood pose is computed 

by maximizing Equation 3.8, and the effects of outliers in a tracked set are reduced 

by their contribution to the covariance associated with that set. 

When it cannot be assumed that the environment is small enough such that one or 

more feature spans it, we must rely on stronger a priori information to bootstrap the 

process. For example, we might require the initial known poses to be close together, 

ensuring that they share common features for parameterization. In addition, we 

might take advantage of knowledge of the order in which images were acquired along 

a trajectory, ensuring that as one feature goes out of view, new ones are present 

against which to localize. 

The following section will present experimental results on two image ensembles. 

6. Experimental Results 

6.1. A Small Scene. The first experiment will demonstrate the procedure 

on Scene III (Figure 3.3, repeated in Figure 4.2), a relatively compact pose space. 
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FIGURE 4.2. Scene III, repeated. 

Recall that the ensemble of 121 images was collected over a 2m by 2m environment, 

at 20cm intervals, and that ground truth was measured by hand, accurate to 0.5cm. 

Given the ensemble, the images were sorted at random and tracking was per­

formed as described in Section 4.5.1, resulting in 91 useful tracked features. (A 

tracked feature was considered useful if it contained at least 4 observations). The 

localization stage proceeded by first providing the ground truth information to four 

images selected at random. The remaining images were again sorted at random and 

added, without any prior information about their pose, according to the methodology 

described in the previous section. Figure 4.3 depicts the set of inferred poses versus 

their ground truth positions. The four 'holes' in the data set at (20,200), (40,140), 

(60,0), and (140,0) correspond to the four initial poses for which ground truth was 

supplied. For the purposes of visualization, Figure 4.4 plots the original grid of poses, 

and beside it the same grid imposed upon the set of pose estimates computed for the 

ensemble. 

In order to quantify the distortion in the resulting map, the lengths of the mapped 

line segments corresponding to the original grid were measured, and the average and 

standard deviation in the segment lengths was recorded. For the ground-truth mesh, 
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FIGURE 4.3. Self-organizing pose estimates plotted versus ground truth for 
Scene III. 

the average and standard deviation segment length was 20em and Oem, respeetively 

(assuming perfeet ground truth). In the inferred map, the mean segment length was 

24.2em and the standard deviation was 11.5em. These results demonstrate that the 

resulting map was slightly dilated and with variation in the segment lengths of about 

11.5em or 58% of 20em on average. 

While there is clearly sorne warping in the mesh, for the most part the topology 

of the poses is preserved. It is interesting to note that the mesh is distorted most as 
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1 

FIGURE 4.4. Ground truth, and the map resulting from the self-organizing 
pro cess for Scene III. 
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FIGURE 4.5. Scene IV 

the y-axis increases, corresponding to looming forward with the camera and, as such, 

where the nonlinearity of the camera geometry is most pronounced. 

6.2. A Larger Scene. For the second experiment, we consider a larger pose 

space, Scene IV, depicted in Figure 4.5. For this experiment, a section of the training 

images closest to the wall were removed from the training set after it was found that 

they had insufficient feature matches to make reasonable inferences. The resulting 

training set consisted of 252 images, spaced at 25cm intervals. Recall that ground 

truth for the set was measured using a pair of robots, one of which used a laser 

range-finder to observe the pose of the moving robot [101]. 

As in the previous experiment, tracking was performed over the image ensemble 

and a set of 49 useful tracked features were extracted. In this instance, the larger 

interval between images, sorne illumination variation in the scene and the larger num­

ber of input images presented significant challenges for the tracker, resulting in the 

sm aller number of tracked features. 

Given the size of the environment, no one feature spanned the entire pose space. 

As a result, it was necessary to impose constraints on the a priori ground-truth, and 

the order in which the input images were considered for localization. In addition, a 
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weak prior p( q) was applied as each image was added in order to control the distortion 

in the mesh. 

Rather than select the initial ground-truth images at random, ground truth was 

supplied to the four images closest to the centre of the environment. The remainder 

of the images were sorted by simulating a spiral trajectory of the robot through 

the environment, intersecting each image pose, and adding the images as they were 

encountered along the trajectory. Figure 4.6 illustrates the simulated ground-truth 

trajectory through the ensemble. Finally, given the sort order, as images were added 

it was assumed that their pose fell on an annular ring surrounding the previously 

estimated poses. The radius and width of the ring was defined to be at least 25cm 

away from the previously estimated poses, where 25cm corresponds to the interval 

used to collect the images. The computed a priori distributions over the first few 

images input into the map are depicted in Figure 4.7. The intent of using these priors 

was to simulate a robot exploring the environment along trajectories of increasing 

radius from a home position. 

As in the previous section, Figure 4.8 plots the original grid of poses, and beside 

it the same grid imposed upon the set of pose estimates computed for the ensemble. 

Again, the positive y-axis corresponds to looming forward in the image, and as such 

the mesh distorts as features accelerate in image space as the camera approaches 

them. Note however, that as in the first experiment, the topology of the embedded 

poses is preserved for most of the grid. Quantitatively, the mean segment length in 

the original grid is about 25cm, whereas the mean length in the inferred map is 37.9cm 

with a 20.7cm standard deviation. In this case, the dilation is more pronounced and 

there is a wider variation in the segment lengths, due primarily to the looming effects. 

7. Sparse Pose Spaces and Loop Closing 

For many image ensembles, the trajectory of the camera moves along a I-D curve 

in 3-space. In these cases, while image features behave smoothly as a function of 
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Ground Truth Trajectory 
300~------'-------~--------'-------'--------'--------' 

200 

100 

~ 0 
c 
o 

-.;:; 
"in 
o 
~ -100 

-200 

-300 

-400L-------~------~--------~------~------~~----~ 
50 100 150 200 250 300 350 

X position (cm) 

FIGURE 4.6. Ground truth simulated trajectory. 

FIGURE 4.7. Evolution of the annular prior p(q) over the first few input 
images. Each thumbnail illustrates p( q) over the 2D pose space at time ti. 

pose, it is generally difficult to model their general behaviour without providing ad­

ditional constraints, or making restrictive assumptions. This section will consider 

the problem of inferring the spatial distribution of an image ensemble derived from 

a I-D trajectory through space where weak odometric information is available. The 

method will operate by inferring proximity between images in pose space based on 

a measure of their similarity that is computed from the co-visibility of features, and 
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FIGURE 4.8. Ground truth, and the map resulting from the self-organizing 
process for the environment depicted in Figure 4.2. 
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conditioned on the odometric input. The inference process will be iterative, stochas­

tically generating possible out cornes from the odometric input and evaluating them 

using a cost function based on the similarity measure. Experimental results will then 

be presented, illustrating the convergence and correctness of the method. 

7.1. Image Similarity. A simple measure for deterrnining whether two im-

ages derive from the same region of pose space is to compute the correlation of their 

visible features. If the set of features observed in image Ii is Zi and the set of fea­

tures observed in image Ij is Zj, then the correlation Pij between the images can be 

computed as 
IZi n Zjl2 

Pij = IZillZjl 

where IXI is the set cardinality operator. 

(4.4) 

Note that Pij E [0,1], takes on a value of 0 when the two images have no features 

in common, and 1 when the two images share aU the same features. Given that there 

is a non-zero probability that sorne features will be out lier matches, and that sorne 

image pairs might have very few total features, Pij is thresholded on the cardinality 

of the intersection of the feature sets (the numerator of Equation 4.4), and set to zero 

when the threshold is not reached. Another way of thinking about the thresholding 

mechanism is to say that when there is insufficient evidence to support the conclusion 

that two images are similar, we will assume that they are not. 

For a concrete example, Figure 4.9b) plots the correlation matrix :::: = [Pij J for 

a sequence of images extracted from the Scene IV training set. The trajectory of 

poses corresponding to the image sequence is plotted in Figure 4.9a), starting in the 

lower 1eft corner and ending in the centre of the loop. Each element Pij of the matrix 

corresponds to the similarity between images Ii and Ij along the trajectory. The 

bright diagonal corresponds to the fact that an image's similarity with itself is always 

1. 

7.2. Conditioning on a Motion Model. The correlation matrix:::: provides 

a measure of the likelihood that any two images derive from nearby poses. In sorne 
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FIGURE 4.9. Similarity matrix for image sequence whose pose-space trajec­
tory is plotted below. Brightness corresponds to higher similarity. 
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circumstances, :::: may be insufficient to adequately differentiate between different 

parts of the world, due to self-similarities and outlier feature matches. One method 

for improving the correlation measure is to incorporate odometric information, when 

it is available. For example, suppose we are provided with A, the sequence of (noisy) 

actions performed by the robot. Define the sequence Aj as the sequence of actions 

starting immediately after image Ii is acquired and ending immediately before image 

Ij is acquired. 

Given a sequence Aij and a starting pose qi, we can compute the probability 

distribution of the pose of the robot at the end of the sequence p( ql Aij ), and therefore 

compute the probability that the pose ~ is equal to qi, p(~ = qiIAij). For a 

robot with a translation/rotation motion model, the distribution is likely to be non­

Gaussian. However, the Extended Kalman Filter (EKF), which linearizes the motion 

model, can be applied to compute a Gaussian approximation for p(~ = qiIAj ). The 

EKF is presented in greater detail in the next chapter. 

Using the probability distribution p(~ = qiIAj), we can compute a new similar­

ity measure, conditioned on the a priori likelihood that poses i and j are proximal: 

(4.5) 

and define the matrix 8 = [Bij ] to be the similarity matrix conditioned on the action 

sequence. The cost of computing 8 is O(n2 ) where n is the number of actions, due 

to the need to compute each EKF for Aj. 

For the image sequence whose ground-truth trajectory is presented in Figure 4.9, 

a noisy control sequence was simulated by running a Monte Carlo simulation that 

tracked the actual pose of the robot and sampled the input actions based on the 

robot's stochastic odometry model. The simulated action sequence A is illustrated in 

Figure 4.10. 

Given the simulated action sequence A, the similarity matrix depicted in Fig­

ure 4.9 was conditioned on the EKF estimate computed from A. The resulting matrix 
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FIGURE 4.10. The simulated action sequence, computed using Monte Carlo 
simulation from the ground-truth trajectory depicted in Figure 4.9. 

is normalized and depicted in Figure 4.11. Note that now a single image pair stands 

out as being highly proximal, with neighbouring images also indicating proximity. 

7.3. Trajectory Inference. Given 8 and the action sequence A, trajectory 

inference takes place by optimizing a cost function C defined over pose sequences and 

the similarity matrix. Let Q = {qi} be a sequence of poses. The cost of Q is given 

by 

C(Q, 8) = L L Ilqi - <I:iWeij 

j 

(4.6) 

While one could optimize C by selecting an initial Q and performing gradient 

descent over the set of poses, such an approach would fail to ensure that the optimal 

pose sequence is a reasonable outcome from the action sequence A. Instead, an iter­

ative Monte Carlo mechanism is employed whereby, given an initial sequence Q, an 
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FIGURE 4.11. Conditioned similarity matrix using control trajectory plotted 
at right. 

action Ai is selected at random, a new outcome for that action is sampled stochasti­

cally from a motion model for the robot, and the sequence Q is adjusted according to 

the new outcome, producing a new sequence Q'. Adjusting Q will involve adjusting 

every pose occurring after the sampled action A. If the cost ofthe adjusted sequence 

QI is less than the original sequence, Q is set to the new sequence, otherwise Q' is 

rejected. The algorithm iterates indefinitely, stopping when a sufficient amount of 

time has passed without generating an out come that improves the cost of Q. 

Figure 4.12 depicts the evolution of the pose trajectory at iterations 1, 10, 100, 

1000 and 10000. From this sequence, it is apparent that convergence occurs within 
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FIGURE 4.12. Inferred trajectory after 1, 10, 100, 1000, and 10000 iterations. 

about 1000 iterations, or about ten seconds on a 1.6GHz Pentium 4 computer. While 

the resulting trajectory is not identical ta ground truth (Figure 4.9), it should be 

noted that the simulated input is derived from a very noisy robot odometry model, 

which limits the constraints that the action sequence can impose on the result. Clearly 

there lS a trade-off involved between constraining the odometry model and enabling 

sufficient flexibility in the Monte Carlo optimization ta close the Ioop. 
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8. Discussion 

This chapter presented an approach to spatially organizing images of an unknown 

environment using little or no a priori positional knowledge. The repeated occur­

rences of visual features in the images allows us to accomplish this. The visu al map 

of the environment that is produced is topologically correct and also demonstrates 

a substantial degree of metric accuracy. The result can be described as a locally 

conformaI mapping of the environment. This representation can then be readily used 

for path execution, trajectory planning and other spatial tasks. 

While several authors have considered systems that interleave mapping and po­

sition estimation, this work is among the first to do this based on monocular image 

data. In addition, unlike prior work which typically uses odometry to constrain the 

localization pro cess , mapping can be accomplished with essentially no prior estimate 

of the position the measurements are collected from. On the other hand, if sorne 

positional prior is available we can readily exploit it. In the second example shown 

we exploited such a prior. Even in this example, it should be noted that the data 

acquisition trajectory was one that did not include cycles. 

The absence of a requirement for an informative a priori distribution over position 

(i.e. an explicit odometry mode!) makes this approach suit able for unconventional 

mapping applications, such as the integration of data from walking robots or from 

manually collected video sequences. The ability to do this depends on the repeated 

occurrence of visual features in images from adjacent positions. This implies that 

successful mapping depends on stable feature tracking between successive frames. 

For environments with large cycles, the latter part of this chapter demonstrated 

how the co-visibility of features can be exploited along with odometric information 

to pro duce a co st function over trajectories. A mechanism was then presented for 

inferring a closed loop while maintaining consistency with the control inputs. Con­

sistency with the control input is a feature that can be lost in applications that rely 

solely on the observations to register the most likely map. Clearly, these results can 
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be combined with the results from the first half of the chapter to achieve greater 

accuracy in the inferred map. 

Having demonstrated the mapping capabilities of the visual mapping framework, 

the following chapters will apply the framework to an examination of simultaneous 

localization and mapping, and will posit the question of how a robot's exploration 

trajectory impacts the accuracy of the map that it builds. 
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CHAPTER 5 

Simultaneous Localization and Mapping: 

Evaluating Exploration Strategies 

1. Overview 

This chapter considers the effect of exploration policy in the context of the au­

tonomous construction of a visual map of an unknown environment. The problem is 

an instance of simultaneous localization and mapping (SLAM), whereby odometric 

uncertainty presents the problem of introducing distortions into the map which are 

difficult to correct without costly on-hne or post-processing algorithms. The prob­

lem is further compounded by the parameter-free nature of the triangulation-based 

feature representation, which is designed to accommodate a wide variety of visual 

phenomena without assuming a particular imaging platform. This path of least com­

mit ment precludes the exploitation of constraints provided by assumptions about 

scene and camera geometry. The representation also presents a requirement for a rel­

atively dense sampling of observations of the environ ment in order to produce reliable 

models. 

The goal of this chapter is to develop an on-line policy for exploring and collect­

ing observations of an unknown environment which minimizes map distortion while 

maximizing coverage. As was observed in the self-organizing case, there is a ten­

deney for the inferred feature models to lead to errors in the map, as the nonlinear 
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effects of imaging geometry accumulate. Rather than applying costly post-hoc expec­

tation maximization approaches to improve the output, an extended Kalman fllter 

(EKF) is used to localize each observation once, and the exploration policy becomes 

an important factor in ensuring that sufficient information is available to localize the 

successive observations. This chapter will present the approach taken to the problem, 

and experimental results will be presented in the following chapter. 

2. Introduction 

The previous chapter presented an approach to constructing a visual map when 

limited prior information is available about the camera positions of the training im­

ages. In many robotic contexts, such as that presented in Section 4.7, it is usually 

possible to provide stronger priors, such as an estimate ofthe robot's trajectory based 

on control inputs. This chapter will consider the problem of automatically explor­

ing an environment and constructing a visual map. In particular, we are interested 

in selecting an exploration strategy which minimizes map uncertainty on-line. Such 

uncertainty is accumulated by errors in odometric sensing and modelling errors and 

biases, and can grow unbounded over time. This work differs from other exploration 

techniques in that the map representation is implicit in nature; that is, there is no 

explicit representation or recovery of the geometry of the interaction between camera 

and environment. As such, it is not immediately suited to standard Kalman fllter, or 

expectation maximization techniques, which usually estimate the state of the robot 

and the positions of a set of landmarks in a global frame of reference [69, 158, 143]. 

The approach taken here is aimed using a purely on-line exploration paradigm to 

pro duce a map that lS suit able for robotic navigation. Of course, in many contexts 

it might be desirable to post-pro cess such a map to further optimize its accuracy, 

but the current work is motivated by the supposition that even in such cases a good 

initial map is helpful. We will examine a variety of exploratory trajectories, both in 

simulation and using a real robot, and present experimental results. 
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The reader will recall that visual maps encode visual landmarks in the image 

domain and do not require camera calibration, enabling the encoding of a wide variety 

of visual phenomena, including exotic phenomena such as specularity, shadowing 

and atmospheric hazing, using arbitrary imaging geometry. The challenge posed by 

such a representation is that, unlike geometric landmarks, it is not well-suited to 

filters which aim to compute maximum-likelihood parameterizations. This poses an 

interesting challenge for autonomous mapping- how to maximize the map likelihood 

without an explicit representation. It should also be noted that, by definition, the 

visual map representation makes no prior assumptions about imaging geometry, so a 

further challenge is to infer the correct map without linearizing away the nonlinear 

interactive properties of the environment and sensor. Finally, the representation also 

poses the requirement for a relatively dense sampling of observations covering the 

pose space. This presents additional challenges in that the exploratory trajectory can 

be quite long, even in a small environment. 

With these challenges in mind, the goal is to develop a technique for maximizing 

coverage of a relatively small pose space in order to generate an accurate visual map. 

The mapping process can be made more robust by composing a large map using a 

set of smaller sub-maps (e.g. [65, 131, 152, 12]). These principles are applicable 

to the mapping context described here, but can be viewed as a secondary stage of 

processing and control. 

The subsequent sections will examine previous work on the SLAM problem and 

then go on to establish a framework for exploration and discuss several candidate 

exploration policies. The following chapter will present experimental results based 

on both simulation and validation in the real world using a variety of candidate 

exploration policies, and discuss their implications. 

3. Previous Work 

The problem of simultaneous localization and mapping, also known as concurrent 

mapping and localization (CML) has received considerable attention in the robotics 
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community [133, 68, 143, 151, 1, 35, 155, 10, 89, 81J. The state of the art in 

SLAM can be broadly subdivided into one of two approaches (and various hybrids). 

One family of methods collects measurements and incrementally builds the map while 

the robot moves (Le. in an on-hne fashion), whereas the other family ofmethods post­

processes the trajectory and observation data in an off-line fashion. 

Early approaches to SLAM involved approximating the probability distribution 

describing the pose of the robot as a Gaussian distribution with mean q and covariance 

P. Smith, et al. and Leonard and Durrant-Whyte pioneered this approach in which 

the map is represented as a set of landmarks derived from a range sensor, and a 

Kalman filter is employed to propagate the pose distribution according to a plant, 

or motion model describing the uncertain outcome of the robot's actions, and an 

observation model describing the relationship between poses and observations [133, 

68J. 

Formally, the plant model describes the motion of the robot due to an action u(t) 

at time t: 

q(t + lit) 

P(t + lit) 

F(q(t), u(t)) 

\7 F P(tlt)\7 FT + Q(t) 

(5.1) 

(5.2) 

where F is a function that describes the outcome of an action in the absence of noise, 

\7 Fis the Jacobian of F evaluated at q, and Q is the covariance of the action noise 

model1 

While the plant model describes the uncertain outcome of actions, the observation 

model provides the ability to improve the pose estimate by relating sens or observations 

to pose. For an observation z(k + 1) define the innovation v(t + 1) and associated 

IThe reader should take note that the plant model F(q, u) is a distinctly different function from the 
visual map observation model il: = F(q). Throughout this chapter, the function h(q) denotes the 
observation model. 

109 



5.3 PREVIOUS WORK 

covariance S ( t + 1) as 

v(t + 1) z(t + 1) - h(q(t + lit)) 

S(t + 1) = E [v(t + l)vT (t + l)J 

- V'hP(t + 1It)V'hT + R(t + 1) 

(5.3) 

(5.4) 

(5.5) 

where h(·) is a generative model describing the expected observation as a function of 

pose q, Ris a covariance matrix describing the sensor noise model, and E[x] indicates 

the expectation of the random variable x. V'h is the Jacobian of h(·). The innovation 

describes the extent to which the current observation differs from what the robot 

expects to see from its current pose estimate. 

Given the innovation v(t+ 1), and covariance S the pose estimate can be updated 

by first computing the Kalman gain W (t + 1): 

W(t + 1) = P(t + Ilt)V'hTS-1(t + 1) (5.6) 

and applying W to transform the innovation into a pose displacement: 

q(t + lit + 1) = q(t + lit) + W(t + l)v(t + 1) (5.7) 

and covariance 

P(t + lit + 1) = P(t + lit) - W(t + l)S(t + l)WT(t + 1). (5.8) 

For nonlinear F and/or h(·), the update equations serve only as a first-order 

approximation and the filter is referred to as an Extended Kalman Filter. 

The robustness of the Kalman filter can be improved by partitioning the observa­

tion z into a set of separate landmark observations Zi and removing those observations 

for which the innovation is too large, according to the log of their likelihood: 

(5.9) 
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Estimates whose log-likelihood exceeds a user-defined threshold on g2 are removed: 

(5.10) 

The retained estimates are subsequently recombined into an observation vector and 

the pose estimate computed as above. In the case of a range-sensor landmark-based 

approach, the observation model is equivalent to computing a least-squares triangu­

lation, taking into account the sensitivity of the observation due to viewpoint. 

It should be noted that this EKF approach assumes a fixed map. Most modern 

applications of the EKF to SLAM minimize the total uncertainty of the robot pose 

and the individual landmark positions, where the vector q describes the full state of 

the world: robot pose and landmark position, all with associated covariances [69, 41]. 

While there is a related increase in computational cost, it is mitigated somewhat by 

the fact that most of the linear systems involved, S(t + 1) in particular, are sparse. 

While the EKF is computationally elegant, it is a first-order approximation and 

can diverge from the true distributions being modelled. In response, sorne researchers 

have employed particle filters to represent the underlying distributions [20, 53]. The 

particle filter is appealing in that with enough samples any arbitrary probability dis­

tribution can be represented. In practise, limited computation al resources impose 

constraints on the number of samples, and as such the particle filter can suffer from 

issues similar to the divergence of the Kalman Filter. The observation that Sis sparse 

led Montemerlo et al. to develop a particle filter-based approach called FastSLAM 

that factorizes the underlying probability density functions, taking advantage of the 

decoupling between sub-matrices in S [80, 81]. This approach scales logarithmi­

cally in the number of landmarks, a significant improvement over the quadratic-time 

Kalman Filter update. 

The second family of methods for SLAM involves first collecting measurements 

and then post-processing them in a batch. The standard post-processing method is to 

employ Expectation Maximization (EM), again to minimize the total uncertainty of 

robot poses and landmark positions (Section 4.3) [22, 143]. One goal of this chapter 
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is to develop an on-hne exploration method which maximizes the accuracy of the map 

without resort to expensive map updating. 

Of particular relevance to this chapter is the problem of planning a trajectory 

for minimizing uncertainty while maximizing the utility of the observed data. This 

question has been examined in other domains. For exampIe, MacKay considered the 

problem of optimally selecting sample points in a Bayesian context for the purposes 

of inferring an interpolating function [77]. Whaite and Ferrie employed this approach 

as motivation for their "curious machine", a range-finder object recognition system 

that selected new viewing angles in order to maximize the information gained about 

a parameterized model of object shape [154]. Arbel and Ferrie further applied this 

approach to appearance-based object models, selecting the viewing angle that max­

imized the ability to discriminate between objects [1]. It is important to note that 

MacKay, in particular, and Ferrie et al., to a 1esser extent, provide analytical results 

defining optimal exploration trajectories based on a strict set of assumptions about 

the objects being modelled and the distribution of their best-fit parameters. For gen­

erai representations of the environment, and for visual maps in particular, it may be 

impossible or at least very difficult to extrapolate those analytical results to strong 

conclusions about ideal exploration methods. 

The exploration problem has also received sorne attention in the robotics com­

munity. Moorehead et al., considered the problem of maximizing information gain 

from multiple sources in order to control an exploratory robot [82], Taylor and Krieg­

man examined a variety of exploration strategies for constructing a topological visual 

representation of the environment [140], and Stachniss and Burgard demonstrated 

an exploration mechanism exploiting the ide a of coverage [134]. Finally, Roy et 

al. applied the principle of minimizing uncertainty to the problem of robotic path 

planning, instantiating the problem as a partially observable Markov decision pro­

cess [105]. The tendency of the path planner is to compute routes where sensor noise 

is expected to be low and pose constraints are expected to be high, the result being 

that the robot tends to follow the boundaries of obstacles and walls. 
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4. Problem Statement 

Formally, this chapter considers the following problem: 

Given: r, a set of policies for exploring an unknown environment and col­

lecting image data. 

Execute: each policy in r, constructing a visual map as data is collected and 

updating robot pose from the constructed map. 

Evaluate: each policy based on the coverage and accuracy of the resulting 

visual map. 

The following sections will present the approach to exploration that we will em­

ploy, followed by a presentation of the exploration policies under consideration. 

5. Exploration Framework 

We will adapt the EKF localization framework described above and developed in 

the seminal papers by Smith et al. and Leonard and Durrant-Whyte as the basis for 

the exploration framework used in this thesis [133, 68]. While the work by Leonard 

and Durrant-Whyte employed "geometric beacons" derived from range sensors as 

landmarks, the visual map representation instead employs feature observations in 

the visual domain. It should be noted that, unlike EKF implementations which 

encode both robot pose and globallandmark position parameters, the only parameters 

maintained in this implementation are those of the robot pose. 

Throughout the experiments described in this and the next chapter, we will em­

ploy the triangulation-based feature model described in Section 4.4. Given the EKF 

formulation described in the previous section, the following discussion will coyer only 

those aspects of the implementation that are particular to this work. 

At each time step t, the robot executes an action u(t), and takes a subsequent 

observation z. The plant model is updated from u according to Equation 5.1, and 

a set of matches to known features Zi are extracted from the observed image using 

the mechanism described in Section 2.8. Given that the visu al map assumes a 2D 
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configuration space, (that is, fixed orientation) sorne rehearsal procedure will be re­

quired to align the camera prior to taking an observation- we will consider this issue 

in further detail in presenting the experimental results. 

For each successfully matched feature, a predicted observation Zi is generated 

using the current visual map, and the innovation Vi(t + 1) is computed 

Zi(t + 1) - hi(t + 1, q) 

Zi (t + 1) - Zi (t + 1, q) 

(5.11 ) 

(5.12) 

where Zi(t + 1) is the predicted observation of feature i according to the learned 

generative model. 

The innovation covariance requires estimation of the Jacobian of the predicted 

observation given the map and the plant estimate. This is defined as the matrix of 

partial derivatives of the observation given the pose: 

~ ~ 
oqO oqn 

V'h= (5.13) 

~ ~ 
oqO oqn 

We compute this Jacobian using the triangulation-based model by computing the 

slope of the pl anar patch defined by the observations associated with the face of the 

pose triangulation containing q. 
The innovation covariance follows the standard model defined in Equation 5.5 

and repeated here: 

(5.14) 

where P is the pose covariance following the action u, and R is the cross-validation 

covariance associated with the learned feature model. It is important to note that 

R serves several purposes- it is simultaneously an overall indicator of the quality of 

the interpolation model, as well as the reliability of the matching phase that led to 
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the observations that define the model; finally it also accommodat es the stochastic 

nature of the sensor. 

5.1. Outlier Detection. Feature correspondence takes place once an ob-

servation image is obtained. However, there may be outlier matches that must be 

filtered out. As such, the gating procedure described by Equation 5.10 is employed, 

with the additional constraint that the gating parameter 9 is computed adaptively. 

Specifically, we accept feature observations that meet the constraint 

(5.15) 

where 

(5.16) 

gbase is a user defined threshold, and 9 and (J g are the average and standard deviation 

of the set of gating values computed for each feature observation (that is, the left­

hand side of Equation 5.15)2. This selection of 9 allows the filter to correct itself 

when several observations indicate strong divergence from the predicted observations­

indicating a high probability that the filter has diverged and affording the opportunity 

to correct the error. 

5.2. Map Update. Given the set of gated feature observations Z = {Zl" .. ,zn}, 

the EKF is updated according to the standard formulation, whereby the set of filtered 

innovation measurements is compounded into a single observation vector 

Z= (5.17) 

and the Kalman gain W is computed according to Equation 5.6. Combined with 

the plant model, a pose estimate il and associated covariance Pare obtained from 

Equations 5.7 and 5.8. Once an updated pose estimate is available, the successfully 

2Throughout the experimentation gbase = 5.0. 
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matched features are inserted into the visual map, using the estimated pose as their 

observation pose. It should be noted that we also in sert those observations that were 

removed by the gating procedure into the map. This approach is taken because it 

serves to increase the cross-validation covariance associated with the mis-matched 

feature, thereby reducing its influence for future localization. As such, at the end 

of the exploration procedure, only those features that serve to match reliably and 

facilitate reliable localization can be selected and retained. 

The next section will consider the problem of selecting exploration trajectories 

that result in an accurate map using the EKF framework. 

6. Exploration Policies 

Exampkt Trajectory lOf iros sirnul concentric 
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FIGURE 5.1. SeedSpreader and Concentric policies. 

We are interested in comparing candidate robot exploration policies with the goal 

of balancing two competing interests: coverage and accuracy. In other words, we want 

to build the largest, most accurate map possible in a finite amount of time. Given 

that there are an infinite number of possible exploration trajectories, we will restrict 

our consideration to a set of policies which are either intuitively satisfying or serve 

to illustrate an extreme case. The particular policies we will examine are described 
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FIGURE 5.2. FigureEight and Random policies. 
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FIGURE 5.3. Triangle and Star policies. 

below. They are SeedSpreader, Concentric, FigureEight, Random, Triangle and 

Star. An example of each trajectory is depicted in Figures 5.1, 5.2, and 5.3. 

SeedSpreader. The robot follows a seed-spreader pattern through the envi­

ronment [76]. A variation on this approach is employed by oscillating in a zig-zag 

motion as the robot moves along the path. This is performed in order to ensure that 

the visual map spans two dimensions, even along the first pass of the seed spreader. 
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Specifically, for each sweep of the seed spreader, the robot takes ten steps, rotating to 

60 degrees, translating 20cm, rotating to -60 degrees and translating another 20cm. 

At the end of the sweep, the robot rotates 180 degrees and reverses course. 

Concentric. The robot traces a series of concentric circles out from its starting 

point, reversing direction for alternating circles. Each circle is decomposed into line 

segments of 20cm in length, indicating a rotation and a 20cm translation by the robot, 

and the interval between concentric circles is also 20cm. 

FigureEight. Like the Concentric pattern, the robot traces a set of concentric 

circles, but in a series of growing figure-eights, bringing the robot close to its starting 

point with each pass. In this case, the radius of each successive '8' increases by 20cm, 

and, like the Concentric pattern, the curves are decomposed lnto segments 20cm in 

length. 

Random. The robot takes a random step in a random direction at each time step. 

The random step is normally distributed with a mean of 20cm and standard deviation 

of lOcm. 

Triangle. The robot traces a series of concentric equilateral triangles, taking 

observations at fixed intervals of 20cm along each side. The advantage of this approach 

lS that the ideal set of observation poses covers the pose space in a uniform tiling. 

The length of the sides of the triangles increases by 40cm for each successive triangle. 

Star. The robot oscillates along a set of rays emanating from its starting point. 

The rays grow in length at 20cm increments over time such that the set of observation 

poses is roughly the same as that for Concentric. 

7. Parameterized Trajectories 

In addition to the heuristically determined trajectories, it is valuable to consider a 

family of parametrically defined trajectories that satisfy sorne of the desirable proper­

ties of the heuristic set. Recent work in mathematics suggests that a wide variety of 

trajectories and shapes can be expressed with a simple parametric function [38]. We 

will examine an analytic family of trajectories, parameterized over a single parameter, 
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FIGURE 5.5. Sample trajectories for a variety of values of n. 

that aims to capture the variety of properties that are important for accurate and 

efficient exploration. The specifie parametric curve under consideration is expressed 

as the distance T of the robot from the origin as a function of time: 

kt 
Tn(t) = ---

2 + sin nt 
(5.18) 
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FIGURE 5.6. Sample trajectories for a variety of values of n. 

where k is a dilating constant that is fixed for the experiments and n parameterizes the 

curve in order to control the frequency with which the robot moves toward the origin. 

Sorne examples of the curve for a variety of values of n are shown in Figures 5.4, 5.5 

and 5.6. Note that in the extreme cases, the curve never moves toward the origin 

(n = 0), or will do so with very high frequency (n --+ (0). Also of interest are integral 

values of n, where the curve never self-intersects, and has n distinct lobes. Finally, 

note that from an efficiency standpoint, the new space covered as a function of t 

decreases roughly monotonically as n increases, since for larger n the robot spends 

an increasing amount of time in previously explored territory. 

The next chapter will present experimental results illustrating the performance 

of the exploration framework for the various candidate trajectories. 
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CHAPTER 6 

Evaluating Exploration Strategies: 

Experimental Results 

1. Overview 

This chapter presents an experimental analysis of the exploratory policies consid­

ered in the previous chapter. The results from the heuristically determined policies, 

which are presented in both simulated and real environments, will provide further 

motivation for the parametrically determined policy and will demonstrate that with 

an effective policy an accurate map can be constructed. 

2. Implementation 

2.1. Exploration Model. In aU cases, the exploration model follows a Plan, 

Act, Observe, Update loop, planning a motion based on the exploration policy and 

the covered trajectory, executing the action, taking an observation, and updating the 

Kalman Filter and visual map (Figure 6.1). A single action is either a rotation or a 

translation, and new images are obtained only after a translation. Furthermore, while 

the filter is al ways updated after obtaining a new image, the image is only added to 

the visual map if there are no previous images from nearby poses in the map. When 

the robot traverses previously explored territory, it localizes without updating the 

map. 
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Plan 

Update Act 

Iaoa ___ Observe ....... - ... 

FIGURE 6.1. The Plan, Act, Observe, Update cycle. At each time step, 
the robot formulates a plan and executes it (Plan, Act). It subsequently 
acquires an observation and updates its knowledge about the world- its map, 
and its pose estimate (Observe, Update). The loop repeats indefinitely. 

2.2. Safety. In aIl robotic applications, special attention must be devoted to 

the safety of the robot and other agents in the environment. Given that the visual 

map does not encode geometric information, obstacle inference and avoidance requires 

careful consideration. For the experiments presented here, a sonar ring mounted on 

the robot acts as a virtual bumper, using the last sonar observation to determine 

whether an intended action is safe or unsafe to execute. 

3. Experimental Results: Heuristic Trajectories 

3.1. Simulation. The experimental setup for the simulated experiments is 

as follows: a simulated robot is placed in a rectilinear room of dimensions 1200cm 

by 600cm. The camera model is simulated by texture-mapping the walls and ceiling 

with real images of our laboratory, and rendering the scene based on the ground­

truth pose of the robot and a model of a simple perspective camera. It is assumed 

that the camera has the ability to align itself using a procedure which is external 

ta the robot drive mechanism, possibly using a compass and pan-tilt unit or an 

independent turret, such as that which is available on a Nomad 200 robot (Figure 3.4). 

Using this procedure, wh en an image observation is required, the camera snaps two 

images, one along the global x axis and one along the global y axis, and returns the 

composite image (Figure 6.3). Figure 6.2 illustrates a typical image returned by the 
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FIGURE 6.2. Simulated camera view. 

camera in one direction in the simulated environment. While the environment may 

seem somewhat unrealistic, particularly with respect to the lack of obstacles, we are 

concerned primarily with the performance of the visual mapping framework under 

idealized conditions- in this context the visual features should be straightforward to 

extract and model and the resuIts will reflect the effects of the exploratory policy. 

The simulated robot has a ring of sixteen evenly spaced sonar sensors for detecting 

collisions, and the robot's odometry model is set to add normally distributed zero­

mean, 1% standard deviation error to translations and normally distributed zero­

mean, 2% standard deviation error to rotations. 

Each exploratory policy was run in the simulated environment, executing actions 

and taking observations until one of two conditions was met: either the visual map 

contained two hundred images, or the robot was un able to execute its action safely. 

The starting pose of the robot was selected to be the centre of the room, except in 

the case of the SeedSpreader, which started in the corner. 

The results of the experiments are tabulated in Table 6.1. For each policy the 

mean deviation between the fiIter pose estimate and ground truth and the mean 

deviation between odometry and ground truth are reported. Also recorded is an 
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FIGURE 6.3. Example composite observations: A single observation entails 
acquiring images in two orthogonal directions. 
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TABLE 6.1. Summary of exploration results by exploration policy. 

Mean Mean 
Exploration Maximal 

Filter Odometric 
Method Error Error 

Efficiency Distance 

(cm) (cm) 
(imagesjstep) from 0 (cm) 

SeedSpreader 26.4 43.7 0.178 373 
Concentric 9.57 4.95 0.496 183 
FigureEight 5.09 6.87 0.411 242.9 
Random 8.46 93.4 0.475 347 
Triangle 30.1 12.0 0.480 173 
Star 1.63 23.8 <0.001 152 

estimate of the space explored per unit time (exploration efficiency), expressed as the 

total number of observation images inserted into the visual map divided by the total 

number of actions executed by the robot. A small value indicates that the robot spent 

most of its time in previously explored space. Finally, the maximal distance achieved 

from the robot's starting pose is reported. 

Figure 6.4a) summarizes the mean filter error and mean odometry error for each 

method and Figure 6.4b) summarizes the exploration efficiency, expressed as the 

number of images inserted into the map per robot action. Note that while most of 

the methods inserted images at a near-optimal rate (after each rotate-translate pair 

of actions), the Star policy is highly inefficient as it repeatedly traverses previously 

explored terrain. 

Figures 6.5, 6.6, and 6.7 depict propagation of error versus ground truth for the 

filter and odometer for each policy, sampled at intervals of ten time steps. In each 

figure, the curve marked by '+' corresponds to the filter error and the curve marked 

by '0' corresponds to the odometry error. It is clear from these results that the 

Star policy produced the most accurate map, and the Random policy performed very 

weIl relative to the accumulated error. While the good performance of the Random 

policy is likely due to the fact that it occasionally re-traverses old territory, it is no 

doubt an unsuitable choice for task-driven robotics. It is perhaps surprising that the 

Concentric and FigureEight policies do not perform more accurately. The principal 
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(a) Mean filter error and odometric error. 
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(b) Exploration efficiency. 

FIGURE 6.4. a) Mean filter error and odometry error for each method. b) 
Exploration efficiency for each method. 
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cause is that as the circles get wider, errors from the inner circles are amplified by 

the linearization of the filter, and add bias ta the localization estimates. In addition, 

the errors become highly correlated between successive observations, whereas such 

correlations are avoided using the Star method by re-localizing with respect ta a 

reliable reference point (the centre of the star). Finally, note the sudden and extreme 

divergence of the Triangle method, a result of divergence in the filter as the robot 

fai!ed to correctly turn the corner of one of the points of the triangle. 
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FIGURE 6.5. Filter ('+') and odometry ('0') error plotted versus time for 
SeedSpreader and Concentric. 
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FIGURE 6.6. Filter ('+') and odometry ('0') error plotted versus time for 
FigureEight and Random. 
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FIGURE 6.7. Filter ('+') and odometry ('0') error plotted versus time for 
Triangle and Star. 
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TABLE 6.2. Final pose errors by exploration policy for the real robot. Ali 
results are in cm, and an ideal result is (0,0). 

Actual 
Actual Odometer Odometer 

Method 
Final 

Pose Pose Pose Pose 
(x,y) Error (x, y) Error 

Concentric (6,-14) 15 (55,20) 59 
Star (21,2) 21 (171,133) 217 

3.2. Real world performance. For the real-world experiments, the expIa-

ration framework was implemented on a Nomadics Super Scout mobile robot. The 

Scout platform employs a differential drive mechanism for steering and is particularly 

prone to rotation errors. The robot was equipped with a monocular camera and a 

KVH C100 compass. The compass was employed to align the camera- while local 

variations in magnetic field made the compass useless for navigation, the variations 

were repeatable as a function of pose and degraded smoothly enough that the robot 

could be steered to face in the direction of a particular heading when an image was 

captured. Nonetheless, sorne noise was observed in observation orientation, and this 

noise presented itself in relatively large cross-validation errors for the x image position 

of any given landmark. At each location the robot used the compass to acquire an 

image in a fixed direction. The robot commenced exploration from the centre of an 

open space in our lab (Figure 6.8a)). A sample image from the robot's camera is 

shown in Figure 6.8b). 

Two experiments were run on the robot, employing the Concentric and Star 

exploration policies respectively. Exploration continued until 100 images were inserted 

into the map. Since the ground truth trajectory was not available, when exploration 

terminated the robot was instructed to navigate back to its starting position. The 

discrepancy between the final position and the starting position was measured by 

hand. Figure 6.9 depicts the filter trajectory for each method. 

The discrepancy between the robot 's starting and en ding positions and the mag­

nitude error are shown in Table 6.2, and are depicted graphically in Figure 6.10. In 
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(a) The robot (lower left) in the environment. 

(b) Robot's eye view of the scene 

FIGURE 6.8. The real-world environment and robot's eye view. 
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FIGURE 6.9. Filter trajectory for each method. 

Pose Error (deviation from Origin) 
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III Actual Pose 
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III Odometric Pose 
Error (cms) 

FIGURE 6.10. Pose errors for real robot. 

aH cases, the robot started at pose (0,0), and ended the trajectory by homing until 

the filter indicated a pose within 3cm of the origin. Depicted in the table are the 

actual ending pose (measured by hand), and the ending pose reported by the ro­

bot's odometer. AH measurements are in centimetres. The filter easily out-performed 

odometry in both cases. However, it should be noted that this method of evaluation 
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does not examine the accuracy of the entire map. An examination of Figure 6.9b) 

suggests that the Star method did occasionally lead to divergence between the filter 

and ground-truth, which was later corrected when the robot returned to the origin. 

Future work should employa tracker or other device to accurately measure the entire 

trajectory. 

4. Experimental Results: Parametric Trajectories 

The out come of the initial experiments motivate a second examination of the 

problem using a parameterized family of exploratory trajectories. In particular, we 

will examine the spiral-shaped trajectory defined in Equation 5.18, parameterized in 

a way that controls the frequency with which it oscillates toward the origin. We 

will consider the properties of the generated map, including accuracy and coverage, 

dependent on the trajectory parameterization. 

The experiments in the previous section demonstrated that the visual map repre­

sentation, and in particular its interpolation-based approach to representing features 

poses a difficult challenge for accurate map construction. The feature models will 

tend to locally linearize feature behaviour, biasing the pose estimates computed in 

the update stage. Furthermore, once the model is updated it specializes in the neigh­

bourhood of the updated pose, resisting the accommodation of new information. As 

such it is often the case that the model will rely too heavily on the accuracy of the 

training data, further justifying the goal of selecting an exploratory trajectory that 

ensures a high standard of accuracy at the outset. In particular, what is required is 

a training trajectory whose uncertainty is minimized relative to the bias introduced 

by the models. 

The primary results from the previous experiments indicated that the most ac­

curate exploratory policy, the Star policy, was also the most inefficient. By contrast, 

the most efficient policy, Concentric, while not the least accurate of the policies 

examined, demonstrated a clear tendency to propagate and amplify errors over time, 
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resulting in a map that was accurate near the home position but increasingly inac­

curate as the circles grew. These two policies can be thought of as lying at opposite 

extremes of our parameterized function- at one end, the robot returns to the home 

position at a maximal frequency, and at the other the robot never returns. The goal 

of this experiment is to find a reliable middle-ground between the needs for accuracy 

and efficiency. 

4.1. Setup. The experiments presented in this section examine the paramet­

ric trajectory defined in Equation 5.18 by applying the trajectory for a variety of 

parameter settings and evaluating the resulting maps. The same Extended Kalman 

Filter-based approach was employed as for the previous experiments. The experiments 

were run in the simulated environment in order to obtain accurate ground truth, and 

the same odometric error model was applied, with normally distributed zero-mean, 1% 

standard deviation error added to translations and normally distributed zero-mean, 

2% standard deviation error added to rotations. 

The experiments were conducted as follows: for values of n E [0.0,8.0] at incre­

ments of 0.1, the robot was placed at the centre of the room, and the trajectory r n (t) 

was executed over five degree increments in t for 1000 time steps (whereby one time 

step involved a rotation followed by a translation). The constant k in Equation 5.18 

was set to 20cm. At each pose, an observation was obtained and the Kalman Filter 

was updated. The visual map was updated whenever the filter indicated that the 

robot was more than 6.7cm from the nearest observation in the visual map. The 

ground-truth pose, the filter pose and the control inputs were recorded for each pose 

along the trajectory. 

4.2. Results. The top graph of Figures 6.11, 6.12, and 6.13 depict a selec-

tian of the ground-truth trajectory ('0') platted against the filter trajectory C+') for 

selected values of n. The disparity between the two trajectories is an indicator of the 

accuracy of the visual map, since the poses of the images inserted into the visual map 

correspond ta the filter poses. Given that small rotation errors near the beginning of 
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the trajectory can lead to large errors at the edges of the map, even if the map itself 

is conformal, the orientation of the filter trajectory was rotated around the starting 

pose to find the best fit against the ground-truth. 

The bottom graph of Figures 6.11, 6.12, and 6.13 depict the filter error versus 

ground truth ('+') and the odometry error versus ground truth ('0') over time for the 

corresponding values of n. From these figures, one can observe that for sorne values of 

n, odometry out-performs the filter, whereas for other values the filter tracks ground 

truth more accurately. 

For each value of n it is possible to compute the mean filter and odometric error 

over the entire trajectory. Figure 6.14a) plots the mean error values for odometry 

and the filter as a function of n. It is interesting to note that as n increases the 

odometry error tends to increase, due to the increasing total magnitude of rotations 

performed by the robot, but the filter error remains roughly constant. This suggests 

that mapping accuracy is roughly independent of the choice of n. Note, however, the 

prominent spikes in the filter error corresponding to neighbourhoods of integer values 

of n. These values correspond to trajectories that never self-intersect, or demonstrate 

a high degree of parallelism with nearby sweeps. As such, it appears that errors will 

propagate significantly or the filter may even diverge when insufficient constraints are 

available between neighbouring paths1 . The lone exception to this trend is the value 

for n = O. In this particular case, however, the small amount of rotation at each time 

step leads to a well-constrained plant model in the Kalman Filter. 

Finally, Figure 6.14b) depicts the length of each trajectory as a function of n. 

The trajectory length is an approximate measure of the inefficiency of the trajectory 

for exploration, since the radius of the convex hull of the explored space is bounded 

from above by ktmax , where k is the scaling constant in Equation 5.18 and tmax 

is the maximal time value, a constant across the experiments. Periodic minima in 

the trajectory length correspond to points where the exploration was terminated 

prematurely because the robot was unable to safely continue to execute its policy. In 

IThis is an instance analogous to the well-known aperture problem encountered in photometrie 
stereo[46]. 
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aH of these cases, the filter estimate had diverged significantly from ground truth. As 

expected, increasing values of n lead to increased inefficiency. 
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FIGURE 6.11. Top: Filter (+) vs ground truth (0) trajectories for n = 0.6. 
Bottom: Filter error (+) and odometry error (0) versus time for n = 0.6. 
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ijcai 3: Filler Trajaclory versus Ground Truth Trajectory 
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FIGURE 6.12. Top: Filter (+) vs ground truth (0) trajectories for n = 3.0. 
Bottom: Filter error (+) and odometry error (0) versus time for n = 3.0. 
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FIGURE 6.13. Top: Filter (+) vs ground truth (0) trajectories for n = 4.5. 
Bottom: Filter error (+) and odometry error (0) versus time for n = 4.5. 
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6.5 DISCUSSION 

5. Discussion 

This chapter has experimentally examined the problem of automatically con­

structing a visu al map of the environment, with particular attention paid to selecting 

an exploration policy that balances accuracy with efficiency. The simulation results 

on the heuristic set of policies indicate that this particular balance is difficult to strike, 

as the best way to improve accuracy is to select a highly inefficient method. We also 

examined results using a real robot and, while the lack of ground truth presents a dif­

ficulty in evaluating the results, the homing strategy indicated that the resulting map 

was useful for navigation and far more accurate than odometry-based navigation. 

The outcome of the experiments suggest that sorne balance can be struck be­

tween maintaining map accuracy and exploration efficiency. The parametric family 

under consideration is in general a suitable choice for exploration in that for most 

parameterizations the error in the generated map is small relative to odometric error. 

However, it was interesting to note a subset of parameterizations that systematically 

led to divergence. A somewhat surprising result was that mapping error was rela­

tively small for the simple spiral trajectory corresponding to n = Q. While this can be 

explained in part by the small amount of accumulated odometric error, it runs con­

trary to the findings from the Concentric policy. Nonetheless, a working hypothesis 

is that if the exploration were to continue over a longer time interval, the filter will 

eventually diverge. Furthermore, the potential for the presence of obstacles in a real 

environment would impose circumnavigation requirements which could introduce the 

kinds of odometric errors that might lead to divergence. As such, the conclusions 

are that it is worth the additional effort of "re-homing" the robot from time to time, 

corresponding to employing a larger value of n. 

An important aspect of the exploratory trajectories considered in this work is that 

they are computed independently of the state of the robot's map or the uncertainty 

in the filter. An obvious direction for future investigation is to determine a locally 

optimal trajectory, given the current map and filter state. Furthermore, while it is 

beyond the scope of this thesis, the family of curves studied pose the problem that the 
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robot needs to determine a central starting position at the outset, not to mention that 

the rotational symmetry of the curves make them less suit able for irregularly shaped 

environments. One potential solution to this problem is to partition the environment 

and build a separate visual map for each partition. These issues are 1eft open for 

future development. 
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CHAPTER 7 

Conclusion 

This thesis has considered the problem of automatically constructing a visual repre­

sentation of an unknown environment. The central idea is to learn the generating 

function that maps camera pose to image features, enabling a robot to develop its 

"mind's eye". The task of choosing which features to represent was decided by first 

applying a visual attention mechanism, followed by a post hoc evaluation of the sys­

tem's ability to represent the features that were extracted and tracked. The generat­

ing functions were learned using a variety of interpolation mechanisms. Considerable 

attention was paid to the problem of feature evaluation and several applications of 

the representation to inference problems in robotics were presented. Sorne of the 

key features of the visual map representation include sensor independence, so that 

the framework is equally applicable to a variety of camera geometries, and environ­

ment independence, in that the features do not depend on assumptions that the 

observations derive from three-dimensional points but can model arbitrary repeated 

visu al phenomena. Experimentally, the feature learning framework demonstrated re­

markable precision in estimating robot pose, and significant robustness against scene 

occlusions. While the framework imposes certain requirements for pose-space cover­

age and dimensionality, there are a variety of scenarios where these requirements are 

naturally defined by the task. For example, coverage is a necessary requirement in 

automated inspection applications. 



7.1 FUTURE WORK 

Where the visual map representation caUs for ground truth pose information 

provided with the training images, we examined a variety of scenarios in which a 

visual map can be constructed with only limited, or highly uncertain ground truth 

information. In Chapter 4, an embedding of the image domain in pose space was 

computed from an image ensemble, and in Chapters 5 and 6 we considered the problem 

of inferring an accurate map by controlling the uncertainty of the robot's pose as it 

collects training images. The experimental results demonstrated that real-time on­

line map construction is possible and that, if the exploration trajectory is chosen 

wisely, the resulting map is highly accurate. These results have obvious implications 

beyond the visual mapping paradigm as mapping with any sensor model involves 

dealing with the issue of uncertainty management. 

1. Future Work 

While a broad variety of problems have been covered with respect to the auto­

matic construction of visual maps, there remain sever al open problems and unan­

swered questions. These are divided primarily between the problem of representation 

and the problem of data collection. 

With respect to the visu al map representation, an obvious extension is to model 

other feature attributes. In particular, feature shape, scale and orientation can play 

an informative role in pose inference and reduce residuals in the appearance model. 

These attributes can be readily incorporated into the existing framework, although 

they do pose issues with respect to computational cost, particularly in dynamically 

generating appearance templates for feature tracking. 

A key issue with respect to the feature modelling framework is the requirement 

for complete coverage of the pose space, and the subsequent limitation imposed on the 

dimensionality of the pose space. While this is a legitimate concern, relaxing these 

constraints will inevitably require new assumptions concerning the behaviour of the 

features being modelled. For example, if we assume that the modelled features cor­

respond explicitly to three-dimensional points in space, we can construct a compact 
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model that requires a small number of observations to model its image-domain posi­

tionai behaviour (modelling appearance, however, remains difficult). One reasonable 

approach to this trade-off between assumptions is to incorporate a model evaluation 

scheme that selects an appropriate model based on the evidence supporting its ac­

curacy. In this way, a compact representation can be applied to three-dimensional 

points and more general representations can be applied to other phenomena. 

Probably the most difficult task for any robotics application is that of un ambigu­

ous data association. While it is not reflected in the text, a significant portion of the 

research and development effort that went in to this work involved developing track­

ing and matching methods that were robust. One important advantage of the visual 

mapping framework is that when matching pro duces outliers, the cross-validation 

and a posteriori distribution estimation mechanisms provide a significant degree of 

robustness. That being said, robust, unambiguous data association will probably 

continue to be an important research direction, not only in the visual domain but 

in other sensing domains as weIl. The sampling technique based on visual attention 

presented in this thesis is an important step forward in leveraging low-level vision 

operators towards producing higher level visual cognition. 

An open question with respect to the visual mapping framework is that of repre­

senting very large environments with thousands of features. Additional mechanisms 

beyond the feature evaluation methods presented here might be required to select 

features based on how informative they are globally about the environment, as weIl 

as spatial priors indicating which trajectories and regions of the environment are of 

interest. Such a mechanism would enable the system to select a minimal set of fea­

tures that coyer the explored space, as weIl as tune the explored space to meet the 

robot's task-determined objectives. 

With respect to the feature representation and its relationship to visual attention 

and other feature detectors, an interesting avenue for study would be the development 

of an attention operator that can learn to extract the most informative localized visual 

features based on training from an ensemble of images. One would require that, once 
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trained, such an operator would be able to rapidly extract highly stable features of 

the scene. 

With respect to autonomous exploration, this thesis has only scratched the sur­

face of a problem that is only beginning to draw attention in the robotics community. 

The general trend in robotic exploration is to apply heuristics to the data collec­

tion problem, and even my own work begins with a set of assumptions concerning 

the kinds of exploratory trajectories that are suit able for constructing an accurate 

map. Among the unanswered questions are those of discriminating between errors 

due to actuator and odometer noise versus modelling and sensing noise, determining 

a general approach for data-driven exploration that accounts for both kinds of noise, 

and finally determining a framework that explicitly accounts for variation in model 

choice. As current technology in concurrent mapping and localization matures, these 

questions will play an increasingly dominant role in the deployment of autonomous 

robotic systems. 

2. Final Thoughts 

Visualization is a key component of human navigation and inference systems. The 

visual mapping framework takes steps toward mimicking the mind's eye phenomenon 

that enables hum ans to visualize objects and places based on assumptions about their 

invariance. AU of this is made possible by taking a generative approach to represent­

ing the world. As computational resources increase, we can expect the expressiveness 

of these models to increase similarly. There is little doubt that these systems will 

have sufficiently rich internaI representations so as to enable robotic agents to out­

perform their human counterparts, even at generic tasks in arbitrary environments. 

The visual mapping framework represents a solid foundation for the development of 

these representations, and as the enumeration of future directions suggests, there is 

enormous promise for its future development. 

Visual maps represent a cornerstone for robotic visual cognition. The develop­

ment of the mapping framework allows robots to enter new, unknown environments 
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and acquire a visual representation in real-time. This approach opens new avenues to 

robotic exploration, interaction with hum ans , and even robotic creativity. Whether 

it is operating in the domain of space exploration or in a busy warehouse, the visu al 

mapping framework provides the fiexibility to enable a new generation of robots to 

perform their tasks with reliability and precision. 
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APPENDIX A 

The Visual Mapping Software 

Architecture 

The visu al mapping architecture consists of several programs that implement various 

components of the framework. The first four components are highly parallelized and 

can be run on a networked cluster of PC's. The main programs are as follows. 

1. Visual Maps 

1.1. landmark. 

Synopsis: Extracts features from input images. Default mode is to compute 

edge-density based features. Also computes KLT [75J, and interfaces with 

several other operators. 

Input: a set of portable graymap images (PGM). 

Output: foo. clist A file containing the list of features extracted from each 

Image. 

1.2. batch_track. 

Synopsis: Tracks features across an image ensemble. 

Input: foo. clist, containing a list of extracted candidate features. 

Output: f 00 . gml, containing a list of feature models. 

1.3. computeJ5ynthcert. 



A.l VISU AL MAPS 

FIGURE A.l. The rdgui user interface. 

Synopsis: Evaluates a set of feature models and removes unreliable models. 

Input: foo. gml, containing a list of feature models. 

Output: foo. gml, containing a filtered list of feature models. 

1.4. cluster _loe. 

Synopsis: Computes pose estimates given a set of images and a set of feature 

models. 

Input: img_i. pgm, A set of PGM images for which a pose distribution is 

desired, and foo. gml, containing a list of feature models. 

Output: img_i. prob containing a discretized probability distribution of where 

the image was observed from and img_i. res, containing the maximum­

likelihood estimate. 
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FIGURE A.2. The Robodaemon user interface. 

2. Mapping and Exploration 

In addition to the feature learning framework, there are a number of programs 

that implement specifie applications: 

2.1. selforg_track. 

Synopsis: Similar to batch_track, performs tracking to enable self-organization. 

Input: foo. clist, a list of candidate features. 

Output: foo. gml, a set of tracked features for self-organization. 

2.2. selforg. 

Synopsis: Self-organizing map inference. 

Input: foo. gml, a list tracked features, and a set of prior pose constraints. 

Output: foo. gml, a set of feature models and inferred camera poses. 

151 



A.2 MAPPING AND EXPLORATION 

2.3. loopclose. 

Synopsis: Similarity-based loop closure for order image sequences and weak 

odometric information. 

Input: foo. gml, set of features tracked over an image sequence, and actions. dat, 

the action sequence associated with the images. constraints. 

Output: f 00. gml, a set of feature models and inferred camera poses. 

2.4. kfslam. 

Synopsis: Online simultaneous localization and mapping using a Kalman 

Filter. 

Input: foo. conf, a configuration file describing the exploration policy, robot 

type, and feature learning parameters. 

Output: foo. gml, a set of feature models and camera poses. 

2.5. rdgui. 

Synopsis: A graphical user interface for visualizing the learned feature mod­

els (Figure A.1). Applications such as scene reconstruction are implemented 

through this program. 

Input: foo. gml, a set of feature models. 

2.6. Robodaemon. 

Synopsis: Robot control and simulation software for controlling the real and 

simulated robots used throughout the experiments [30]. Figure A.2 illus­

trates the Robdaemon interface. 

2.7. glenv. 

Synopsis: An application for visually simulating Robodaemon environments. 

This application was used to generate the simulated camera viewpoints in 

the exploration experiments. 
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