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Abstract 

Mild Traumatic Brain Injury (mTBI) affects millions of people worldwide and induces 

long-lasting deficits. The visual system has been well-characterized and is therefore the 

ideal test bed to study the cortical dysfunctions that occur after mTBI. The current 

understanding of visual perception in the mTBI population is constrained by measures 

of sensitivity and performance. Such metrics—whether acquired behaviorally or through 

non-invasive brain imaging—are limited in their mechanistic implications.  

Psychophysical studies report many visual deficits following brain injury, and these are 

understood in terms of cortical integration dysfunction. However, we do not know 

whether that can be explained by cortical integration failure or internal noise increase, 

which would have different mechanistic consequences. I sought to disentangle their 

contribution to contour integration following mTBI using the equivalent noise 

technique. I found that mTBI increased internal noise without affecting efficiency. 

Because the task was designed to be sensitive to quadrant-specific group differences, I 

was able to find that mTBIs had hemifield biases that were absent from the controls. 

These findings demonstrate that in contour perception, cortical integration is 

maintained after mTBI at the cost of internal noise.  

Patients continue to report difficulties executing tasks that do not require exceptional 

cognitive efforts for years, yet the measurement of these symptoms is eluding health 

care professionals. Instead, research has focused on pushing the demands of the tasks 

until TBIs’ performance is affected. This is exacerbated by traditional functional imaging 

analysis that require conditions to be sufficiently different to induce a contrasting BOLD 

response—often operationalized as difficulty levels. These tasks have been instrumental 

to revealing discrepancies in cortical function after mTBI, but they are not ecologically 
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valid and hard to interpret. In contrast, I have used simple naturalistic movie stimuli to 

show that mTBI’s cortical function differs from normal even when the task is not 

particularly demanding. Subtle differences with normal models of temporal patterns are 

localized in areas related to common patient complaints, and the imbalance between 

fronto-parietal and early areas could be explained by compensatory connectivity. I also 

found an increase in functional connectivity between early visual, ventral, dorsal and 

fronto-parietal areas, marking an increase in within subject synchrony in addition to the 

decrease in between subject synchrony. 

Network analysis of neuroimaging data has recently offered a new perspective on altered 

functional connectivity after mTBI and suggests that functional connection density is 

not randomly adjusted post-injury. Using simple naturalistic stimuli, I was able to 

extract key network parameters to describe the mTBI’s cortical visual system under 

normal processing demands. I found that connectivity degree was increased across the 

whole network graph, but so was global efficiency. The latter reflects cortical integration 

so both increases combined suggest utilization of additional compensatory pathways. 

Modularity was reduced in the mTBI group, suggesting a decline in specialized 

connections (segregation) and a muddling of functional boundaries. Clustering was 

increased, suggesting that the cortical network is more resilient to future injury. These 

findings are in line with highly demanding tasks and support the functional 

reorganization theory: even at low levels of difficulty, the injured brain relies on 

functional connections that are irrelevant in healthy controls.   

In conclusion, the mildly injured brain compensates for increased internal noise by 

adjusting information integration and segregation unevenly across the visual system, to 

maintain behavioral performance even in low-demanding conditions.   
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Résumé 

Les lésions cérébrales traumatiques légères (LCTl) affectent des millions de personnes 

dans le monde et causent des troubles cognitifs, perceptuels et de l’humeur. Le système 

visuel est idéal pour étudier les disfonctionnements corticaux visuels qui apparaissent à 

la suite d’une LCTl grâce à la riche littérature. Cependant, nos connaissances de la 

perception visuelle chez les LCTl sont limitées par les mesures de sensibilité et de 

performance. Ces mesures—qu’elles soient comportementales ou obtenues par imagerie 

médicale—nous informent quant à la capacité du système nerveux central mais sont 

limitées dans leurs implications mécanistiques.  

La multitude de déficits visuels suites aux LTCl sont globalement compris dans le cadre 

de dysfonctionnement d’intégration corticale. Cela pourrait être expliqué par un échec 

d’intégration corticale ou par une augmentation du bruit interne, ce qui aurait des 

conséquences mécanistiques différentes.  Afin de démêler leurs contributions à 

l’intégration de contours à la suite d’une LTCl j’ai employé la technique de bruit 

équivalent. J’ai appliqué un modèle mathématique établi et trouvé que la LTCl 

augmente le bruit interne sans affecter l’efficacité. J’ai pu trouver des biais dans le 

champ visuel chez les LTCl mais absents des contrôles. Ces résultats démontrent qu’au 

moins dans le cas de la perception de contours, l’intégration corticale est maintenue 

après une LTCl au prix du bruit interne.  

Les patients ont de la difficulté à exécuter des tâches simples, pourtant, la quantification 

de ces symptômes est complexe. La recherche se concentre sur augmenter les demandes 

des taches en laboratoires pour affecter la performance. Cette tendance est exacerbée 

par les méthodes traditionnelles d’analyse de données d’imagerie médicale fonctionnelle 

parce qu’elles requièrent des conditions suffisamment différentes pour induire une 
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réponse BOLD contrastante. Ces taches poussées ont révélé les défauts de la fonction 

corticale après une LTCl mais elles ne sont pas valides écologiquement et leur 

interprétation est complexe. En contrepartie, j’ai utilisé des stimuli naturels dynamiques 

pour montrer que la fonction corticale visuelle diffère de la normale même lorsque la 

tâche n’est pas particulièrement exigeante. Les différences subtiles d’avec les modèles 

normaux de déroulement temporel sont localisées dans les régions liées aux plaintes 

communes des patients, et le déséquilibre entre les régions dorsales et primaires 

pourrait être expliqué par une connectivité compensatoire.  

L’augmentation compensatoire de la connectivité fonctionnelle est l’un des résultats 

fréquents de la recherche sur les LTCl. L’analyse de réseaux dans les données d’imagerie 

médicale offre une nouvelle perspective sur la connectivité fonctionnelle qui serait 

altérée après une LTCl et suggère que l’ajustement de la densité des connections 

fonctionnelles suite au trauma n’est pas aléatoire. Pour extraire les paramètres de 

réseaux nécessaires à la description du système visuel cortical des LTCl sous des 

conditions normales de traitement de l’information, j’ai utilisé des stimuli naturels 

simples et j’ai trouvé que le degré de connectivité ainsi que l’efficacité globale étaient 

augmentés sur l’ensemble du réseau cortical visuel. L’efficacité globale reflétant 

l’intégration corticale, ces résultats suggèrent l’utilisation de voies compensatoires 

supplémentaires. La modularité était réduite chez les LTCl, suggérant un déclin des 

connexions spécialisées (ségrégation), ainsi qu’un brouillage des frontières 

fonctionnelles. Le partitionnement était augmenté, suggérant un réseau cortical plus 

résiliant aux traumas futurs.   

En conclusion, le cerveau des LTCl compense l’augmentation du bruit interne en 

ajustant l’intégration, ainsi que la ségrégation de l’information de manière inégale dans 
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le système visuel, afin de maintenir des performances comportementales normales, et 

ce, même dans des conditions cognitives peu exigeantes. 
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Chapter 1 Introduction 

Traumatic Brain Injury affects millions of people every year and is a leading 

cause of death and disability worldwide (W. D. Johnson & Griswold, 2017) but very little 

is understood about the cortical dysfunctions at the roots of the chronic deficits that 

many patients report for months or even years after an injury. Although some 

physiological mechanisms that follow a brain insult have been successfully investigated, 

the systemic consequences have yet to bring together various opposing views.  

In this thesis, I will investigate three paradigms, whereby mild Traumatic Brain 

Injury (mTBI) is approached as (1) a disorder of cortical integration, (2) a disorder of 

brain activity, and (3) a disorder of connectivity. 

Behavioral deficits following mTBI are widespread, but the seemingly diverse 

tasks that become difficult for patients have a distinct commonality: they all require 

integration over large cortical areas. Patients report difficulties related to vision such as 

reading or driving but behavioral deficits span over many other cognitive, emotional and 

perceptual functions, all requiring integration over larger portions of cortical matter. 

Thus, mTBI has been understood as a disorder of integration, potentially explained by 

diffuse injury that affects long range neuronal processes. Simple binary performance 

metrics are insufficient because they do not dissociate between a decrease in efficiency 

of processing and an increase in internal noise. The visual system is particularly affected 

by mTBI and has a rich history of empirically validated mechanistic models and refined 

stimuli that make it the ideal test bed to study the diffuse cortical impairments caused 

by mTBI. Thus, in my first paper (Chapter 2, (Ruiz, Baldwin, Spiegel, Hess, & Farivar, 

2019)), I propose the equivalent noise approach to disambiguate the contribution of 

internal noise and integration to the diminished capacity of visual contour perception.  
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Because patients often report fatigue and strain, the research community has 

focused on challenging the cortical system to evaluate potential shifts in the limits of its 

processing power. Under overloading conditions, a pathological pattern has emerged 

where isolated cortical regions showed abnormally high levels of activity. This can be 

interpreted as a form of compensation—the injured brain needs to work harder to attain 

normal levels of performance when the task is particularly difficult. However, the 

overwhelming complaints of patients encompass simple daily tasks as well, and it is 

possible that the injured brain is always under load. Thus, in my second paper (Chapter 

3, Ruiz et al, under submission) I propose to use naturalistic stimuli to allow for a 

comparison to a normal template of activity under normal processing demands instead.  

In my last experimental paper (Chapter 4, Ruiz et. Al, under submission), I use 

graph theory to approach the long-standing debate regarding the way the cortical 

system springs back from traumatic brain injury. Indeed, comparing the sheer 

magnitude of brain activity is not enough to gather a comprehensive understanding of 

the mechanistic implications of compensation, reorganization, and recruitment of latent 

processes. Recent applications of network science on the functional topology of the 

injured brain have focused on tasks that are overbearing and have various scales of 

analysis, making it difficult to conciliate results across studies. To palliate these crucial 

gaps in the literature, I extracted functional connectivity correlation matrices of visual 

cortical areas to construct task-relevant graphs from participants experiencing 

naturalistic and dynamic visual stimulation.   
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1.1 TBI and cortical integration 

1.1.1 How is cortical integration affected after a TBI? 

Classification  

A Traumatic Brain Injury (TBI) results from a mechanical insult to the brain from 

an external force such as a shock, a sheer, or a blast. It is considered mild when the 

verbal, motor and eye movement responses after the incident are not too severe: the 

patient is not too confused, disoriented nor unresponsive. When the patient does not 

lose consciousness for more than half an hour, does not present amnesia that spans over 

more than 24 hours, keeps their eyes open at least upon verbal stimuli, is able to answer 

a conversation, and directs their movement towards the pain, then the patient scores 

between 13 to 15 on the Glasgow Coma Scale (GCS) (Teasdale & Jennett, 1974) and is 

thus considered to have sustained a mild TBI (mTBI).  

mTBI’s definition is based on symptomatology since the Congress of Neurological 

Surgeons in 1966 where it was first defined on record. Unfortunately, the medical 

community is not unanimous regarding the defining criteria of mTBI. A few different 

guidelines are dictated by a series of medical organizations including the World Health 

Organization, the United States Department of Defense (DOD), and the Ontario 

Neurotrauma Foundation. They vary in terms of inclusion and exclusion criteria (Mayer, 

Quinn, & Master, 2017). For example, the DOD retains the best GCS score obtained in 

the first 24 hours (as opposed to the first one/the only one/30 minutes after the 

incident), while the American Academy of Neurology recommends a general assessment 

of the symptoms without using the GCS at all. Some organizations see structural damage 

to the skull or the brain such as a penetrating injury as an exclusion criterion while 

others do not. The list of criteria has broadened over time and now includes self report 
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of symptoms as well, showing an acknowledgement of the diversity of the pathology 

manifestation. The nosology itself remains unclear, with no determined differential 

diagnosis criteria between mTBI and concussion, although it is accepted that the term 

concussion refers to a less severe form of mTBI.  It is thus not surprising that the 

research literature is akin to a complex bouquet of seemingly opposing results, with 

many debates ranging from neural mechanisms of recovery to neural correlates of 

reported symptoms. Note that the following introduction assembles mTBI and TBI 

literature when necessary (in cases where advancement in mTBI research is still 

lacking). The former being a milder version of the latter they can be understood as 

belonging to a continuum, even when (and especially when) evidence of certain 

symptoms is lacking from mTBI body of science.  

Neuropathology 

Three immediate and long-lasting neuropathological changes following a mTBI 

are all obvious obstacles to cortical integration: neuronal death, diffuse axonal injury, 

and abnormal cerebral blood flow. 

Firstly, upon impact, entire regions of the cortex can be so damaged that neurons 

die—whether from necrosis (Rink et al., 1995; Ross, Graham, & Adams, 1993) or 

apoptosis. It is possible that apoptosis is an adaptive mechanism (Raghupathi, 2004), 

with more cells following in their footstep as inflammation takes place and induces 

neurodegeneration (Xiong, Mahmood, & Chopp, 2018). Tissue changes gradually 

escalate and various cells (central/peripheral, and neuronal/nonneuronal/originating 

from outside of the central nervous system) are made to interact and contribute to 

neuro-inflammation because of the injury-related disruption of the blood-brain barrier 

(Burda & Sofroniew, 2014). 
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Secondly and as a direct consequence, the long-range connections emanating 

from these dying cells are compromised. Connections between intact cells can succumb 

to compression and shearing, creating diffuse axonal injury (DAI) (Adams, Graham, & 

Murray, 1982; Meaney et al., 1995; Povlishock, Becker, Cheng, & Vaughan, 1983; D. H. 

Smith, Meaney, & Shull, 2003). Brain tissue is tolerant to some level of stretch and 

pressure and acts as a viscoelastic matter but rapid deformation (of the order of tens of 

milliseconds) causes axons to break, as the velocity of the shock renders white matter 

brittle (Metz, McElhaney, & Ommaya, 1970). The damage endured via DAI is consistent 

with persistent cognitive impairment (Scheid, Walther, Guthke, Preul, & von Cramon, 

2006). The structural integrity of specific brain regions is correlated with a particular set 

of executive functions because axons are not equally damaged across the cortex (Kraus 

et al., 2007). The integration of information via brain networks is severely impeded by 

DAI, especially large-scale networks. For example, the structural integrity of the salience 

network—thought to regulate and coordinate other networks—was found by Bonnelle et 

al. (2012) to be predictive of the default mode network dysfunction and inefficient 

cognitive control. Primary axotomy injury caused by immediate disconnection occurs in 

severe cases of TBI, but in mild injuries, disconnections are mostly due to secondary 

axotomy. These disconnections endured over minutes to weeks are due to swelling, 

altered membrane permeability and neurofilament compaction (Büki & Povlishock, 

2006; Pettus, Christman, Giebel, & Povlishock, 1994). 

Thirdly, cerebral blood flow is perturbed by mTBI. It is unclear whether 

secondary injury is caused by abnormal blood flow or if blood flow is reduced due to 

reduced demands by injured neurons (Lok et al., 2015). Hypoperfusion was found in 

frontal, pre-frontal and temporal regions in mTBI (Bonne et al., 2003), and later 

confirmed in fronto-temporal regions (Y. Wang et al., 2015), while hyperperfusion was 
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detected in the bilateral inferior temporal gyrus which was correlated with cognitive 

impairments (Li, Lu, Shang, Chen, et al., 2020). Both imbalances can be deleterious for 

brain functioning, one menacing of leakage, and the other of oligemia or worse, 

ischemia, although the latter is rare (Vespa et al., 2005). In order to maintain perfusion, 

cerebral arteries adjust their resistance in response to pressure changes. That capacity—

dynamic cerebral autoregulation—is an indicator of blood flow regulation. It was found 

to be diminished and associated with poorer cognitive performance in chronic stages of 

mTBI (Ding et al., 2020).   

Neuroinflammation 

 TBI leads to adaptative and limiting cortical processes induced by inflammation. 

Within minutes, alarmins are released from damaged meninges (Jassam, Izzy, Whalen, 

McGavern, & El Khoury, 2017). Almost immediately after injury, resident microglial 

activation and peripheral neutrophil recruitment occur. Lymphocytes and monocyte-

descendant macrophages infiltrate though the blood brain barrier diffusely in the case of 

mTBI, and in parallel, both pro- and anti-inflammatory cytokines promote and 

terminate the neuroinflammatory response. In the case of a lesion, inflammatory 

amplifiers like chemokine signaling activates and recruits immune cells on site (Simon 

et al., 2017).  

Some level of post-traumatic inflammation is necessary and beneficial to clear 

out debris and regenerate areas. However, neuronal death and progressive 

neurodegeneration is also mediated by neuroinflammatory mechanisms that are 

detrimental to cortical recovery. It is important to note that pure anti-inflammatory 

approaches to acute TBI treatment can be harmful to patients’ recovery because of this 
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duality.  Simon et al. (2017) proposed a set of guidelines for future neuroinflammatory-

centered therapy approaches that address this tricky balance. 

 Symptomatology 

“Patients with mild traumatic brain injury (MTBI) challenge physicians' 

skills and test their patience. Their manifold symptomatology is often not 

supported by objective neurological findings.”  

(Bonne et al., 2003) 

 

Initially, the scientific community supported the hope that a majority of patients 

recover fully from TBI without long-term neuropsychiatric sequelea (Karr, Areshenkoff, 

& Garcia-Barrera, 2014; McCrea et al., 2003). However, it is now unequivocal that a 

constellation of symptoms is debilitating and long-lasting for many TBI patients 

(Bieniek et al., 2015; Steven T. DeKosky, Ikonomovic, & Gandy, 2010; McKee et al., 

2013; Whiteneck, Gerhart, & Cusick, 2004). Post concussion syndrome has been 

removed from the Fifth edition of the Diagnostic and Statistical Manual of Mental 

Disorders(Regier, Kuhl, & Kupfer, 2013) but was previously described within four brain 

dysfunction categories: cognitive, somatic, affective and circadian (King et al., 2012). 

The brain functions that are altered by mTBI all require cortical integration over short- 

and long-range connections.  

Among the cognitive difficulties experienced by mTBI patients, working memory 

(Maki Kasahara et al., 2011) and episodic memory (Tsirka et al., 2011), attention 

(Malojcic, Mubrin, Coric, Susnic, & Spilich, 2008), and executive processing 

(Hartikainen et al., 2010; Little et al., 2010) are paramount. Respectively, Schlichting 
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and Preston (2015) (memory), Koelewijn, Bronkhorst, and Theeuwes (2010) 

(attention), Lipton et al. (2009) (executive functiona), and Caeyenberghs et al. (2014) 

(executive function) have shown that these processes require cortical integration.  

Headache (Defrin, 2014), dizziness and balance (Fife & Kalra, 2015), and light 

and noise sensitivity (Assi, Moore, Ellemberg, & Hébert, 2018; Waddell & Gronwall, 

1984) have been explored as somatic consequences of mTBI. These symptoms are 

related to functions also requiring integration over large areas of cortex.  

Thirty to seventy percent of TBI patients live with sleep disturbances (Ouellet, 

Savard, & Morin, 2004) that can span from simple insomnia to chronic fatigue, and even 

narcolepsy and sleep apnea (Viola-Saltzman & Watson, 2012). Sleep regulation relies on 

integration over cortical columns too (Roy, Krueger, Rector, & Wan, 2008). 

Between 30 to 60% of TBI patients are found to develop depression (Bowen, 

Chamberlain, Tennant, Neumann, & Conner, 1999; Hibbard, Uysal, Kepler, Bogdany, & 

Silver, 1998; Hurley & Taber, 2002; Jorge et al., 2004; Satz et al., 1998). In a large scale 

study about the incidence, outcome and treatment of mood disorders after TBI in 

Seattle, more than half of TBI patients met the criteria for major depressive disorder 

within the first year following injury, of which 60% were more likely to develop 

comorbid anxiety disorders (Bombardier et al., 2010). The pathophysiology of 

depression can be modelled as a failure of the cortico-subcortical integrative processes 

particularly involving the prefrontal cortex, the amygdala, striatum and hippocampus 

(Heller, 2016). Other more long term neuropsychiatric impairments linked with TBI 

include dementia and Alzheimer’s disease (Corrigan, Arulsamy, Teng, & Collins-Praino, 

2016). Based on self-report and family report, up to 30 % of TBI patients show 
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increased irritability (C. C. Yang, Hua, Lin, Tsai, & Huang, 2012), and anxiety (Ahmed 

et al., 2017).  

 Perceptual deficits following mTBI are widespread. In a visual assessment study, 

Costa et al. (2015) found that nearly all measurements of perceptual organization were 

worsened in the TBI group, whether local or global processing, or grouping of elements, 

both for accuracy and response time. Eye movement is also limited following mTBI (Cifu 

et al., 2015), as well as binocular disparity (Gunnar Schmidtmann et al., 2017) and 

visual acuity (Spiegel et al., 2016). Other senses are affected too, for example audition 

(Shah, Ayala, Capra, Fox, & Hoffer, 2014; Singh, Ahluwalia, Lal, & Chauhan, 1997).  

In the previous section, we have explored the symptomatology of acute and chronic 

mTBI, as well as the physiological mechanisms underlying the cognitive, somatic, 

circadian and affective difficulties experienced following mTBI. They have been framed 

as dysfunctional integration. This thesis will focus on perceptual changes occurring after 

mTBI, specifically visual, for two main reasons. The human visual system is very well 

characterized, and patients consistently report visual disturbances. Thus, the visual 

system is a perfect test bed to address systemic changes following mTBI.  

1.1.2 Visual integration in the healthy brain 

The following section is an overview of healthy visual integration, with the goal of 

describing healthy processing of visual information before addressing the changes that 

occur following mTBI.  

Cortical integration in the visual system 

People report vision as their most important perceptual source of information 

regarding the world around them (Schifferstein, 2006). Vision is also the sensory 
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modality that people are most scared of loosing (Hutmacher, 2019), probably because 

we rely on it for most of our every-day life activities and to form impressions about our 

surroundings (Kandel et al., 2000). Vision is the most important and developed sense in 

humans and in other animals (Zimbardo & Ruch, 1975). As such, the visual cortex 

engages much more processing resources from the brain than any other sense (Stokes, 

Matthen, & Biggs, 2015). For these reasons, and because of ease and accessibility of 

investigation methods, the visual cortex is very well characterized (Yantis, 2013). 

As early as the Renaissance, philosophers have started to piece together 

mechanisms of visual perception, beginning with Descartes and the understanding that 

images from both eyes are combined in a single image in the brain. Newton later 

postulated that color was an internal perceptual quality that did not belong to the light 

itself but to its sensation. Young then added that three receptors acted as combinators, 

and their relative activation signaled the color of an object. Very early on were we able to 

determine the importance of integration in vision. 

To perceive a natural scene and distinguish between the various objects within it, 

we need to group features and characteristics meaningfully. Complex features are 

successively integrated to construct a comprehensive percept (Felleman & Van Essen, 

1991)e. Without cortical integration in the visual cortex, basic cognitive object 

identification and accurate proprioception can be largely impaired (Riddoch & 

Humphreys, 1987).  

The primary property of a detectable shape is the proximity of its defining 

elements (Koffka, 2013; Kubovy & Wagemans, 1995; Oyama, 1961; Wertheimer, 1938). 

Perceptual grouping was first described by the Gestalt movement who coined the 

importance of good continuity between elements defining a contour or a shape for its 
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accurate detection (Koffka, 2013). Good continuity includes alignment and limits in 

orientation changes between elements on a path (D. J. Field, Hayes, & Hess, 1993).  The 

association field stipulates that multiple cells interact to detect contours, specifically 

ones with aligned edges, matching naturally occurring edge alignment.  

Cortical integration is thus critical to combine receptive fields into complex 

percepts. The following section will briefly introduce contour integration as a example of 

visual integration occurring in early and mid level visual processing. 

 

Contour integration mechanisms 

Edges naturally occur in an aligned, co-circular or parallel fashion (Elder & 

Goldberg, 2002; Geisler, Perry, Super, & Gallogly, 2001; Sigman, Cecchi, Gilbert, & 

Magnasco, 2001), and at different spatial scales (Sigman et al., 2001). This gives rise to 

the study of contours, representing the co-aligned structured information (R. Hess, 

May, & Dumoulin, 2014). The spatial frequency filters implicated in the association field 

model correspond to low-level visual processing, namely the primary visual cortex (V1) 

as a first stage. One evidence for the implication of V1 in contour perception is the 

modulation of neural responses by neuronal interactions, independently of contrast 

levels (Allman, Miezin, & McGuinness, 1985). Neurons that are linked across 

orientation columns of V1 tend to have receptive fields that are oriented and aligned 

similarly (Kisvárday, Toth, Rausch, & Eysel, 1997; R Malach, Amir, Harel, & Grinvald, 

1993; Weliky, Kandler, Fitzpatrick, & Katz, 1995), and neurophysiological data show 

increased responses to co-aligned stimuli in opposition to decreased responses to 

orthogonal orientations (Blakemore & Tobin, 1972; Knierim & Van Essen, 1992; Nelson 

& Frost, 1985; Sillito, Grieve, Jones, Cudeiro, & Davis, 1995). 
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However, in an fMRI study, the activity patterns in V1 were mostly explained by 

contrast variations, whereas the extra-striate cortex response variance could be 

explained best by contours, remaining independent of contrast modulations (Dumoulin, 

Dakin, & Hess, 2008). Some neurons of the early extra-striate cortex (V2) are angle 

selective, but their responses aren’t specific enough to be angle detectors, instead, they 

would be useful to extract orientation changes in contours (Ito & Komatsu, 2004), or 

combinations of orientations within contours (Anzai, Peng, & Van Essen, 2007).  

Further in the visual processing hierarchy structure, V4 has been shown to 

respond to more complex assemblages of contours, shape primitives, and certain curves 

(specifically convex curves) (Pasupathy & Connor, 1999).  

Visual processing relies on successive steps of signal integration and transmission 

between computational units is inevitably imperfect. To understand the complications 

in signal processing following mTBI, we have to be mindful of the imperfections of 

healthy neural computations. The following section introduces the concept of noise and 

its role in limiting cortical integration in the healthy brain. 

1.1.3 Noise can limit integration 

Changes of neural membrane potential encode meaningful information, but some 

fluctuations seem to be random and irrelevant to the target signal at best and 

detrimental to its transmission at worst. Approaching the brain as a system, different 

fields have shaped the concept of “noise”, with its most comprehensive definition, found 

in the Oxford English Dictionary, being “random or unpredictable fluctuations and 

disturbances that are not part of a signal […] or which interfere with or obscure a signal 

or more generally any distortions or additions which interfere with the transfer of 

information” (Stevenson, 2010). 
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Neural noise 

Neural coding’s fundamental question is the extent of neuronal variability 

pertaining to meaningful signals as opposed to meaningless noise (W. Bialek, Rieke, de 

Ruyter van Steveninck, & Warland, 1991; A. Aldo Faisal, Selen, & Wolpert, 2008). The 

conceptualizations of neural noise have imposed varied restrictions on its definition 

depending on the scale of its operationalization, the technique, and the field of study. At 

a single neuron level, noise can be expressed by the Fano factor, measuring the 

variability of spiking from trial-to-trial (variance over mean) (Fano, 1947; Tolhurst, 

Movshon, & Dean, 1983) but ignoring temporal structure and higher-order statistics (A. 

Aldo Faisal et al., 2008). Both intracellular and synaptic signalling have biochemical 

noise limits (William Bialek & Setayeshgar, 2005). Extracellular noise can disrupt signal 

transmission. Noise affects the synaptic cleft where the postsynaptic response and the 

presynaptic stimulation are not perfectly consistent and show trial-to-trial variability as 

well, measurable with patch-clamps (Kleppe & Robinson, 2006).  

In EEG recordings, the activity related to a certain process is mixed with signals 

from other processes as well as background oscillations. The analysis of single trials and 

that of the variability across trials thus requires the disentanglement of different source 

signals, for example using independent component analysis (ICA) (Makeig, Jung, Bell, 

Ghahremani, & Sejnowski, 1997; Milne, 2011), even if alpha rhythms can be treated as 

intra-individually stable (Gasser, Bächer, & Steinberg, 1985). Using functional Magnetic 

Resonance Imaging (fMRI), noise in the brain processes is also commonly understood 

as variability in activity, albeit at a more macro scale, using abnormally high responses 

given performance as a marker of unstable activity (Callicott et al., 2000).  
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Internal noise and the equivalent noise method 

The equivalent noise method was first theorized by engineers for the study of 

amplifier responses, their limitations and their efficiency (Friis, 1944; Mumford & 

Schelbe, 1968; North, 1968). Like amplifiers, our brains, or at least the brain modules 

responsible for perceptual detection, processing, and decision, receive an input and 

return an output. No amplifier is perfectly capable of returning the exact input 

amplified, so the amplification transformation inescapably injects random fluctuations 

in the signal. This injection is conceptualized as internal noise, and is specific to an 

amplifier, a system, or an individual’s brain. The incoming information received by the 

amplifier is also imperfect and noisy: input includes external noise. Qualifying internal 

noise by analyzing responses to a range of external stimuli to which noise was added is 

at the core of the equivalent noise method. If the amount of external noise added to the 

stimuli is lower than the internal—or intrinsic—noise of the amplifier system, the 

amount of signal needed to maintain constant output signal to noise ratio (SNR) across 

levels of external noise conditions is constant. Once external noise reaches values higher 

than intrinsic noise, increasing amounts of signal are needed to maintain constant SNR 

across levels of external noise (Dosher & Lu, 1998; Z. L. Lu & Dosher, 1999). Figure 1-1 

illustrates the effect of contrast noise on grating detection—low amounts of contrast 

noise yield an almost constant visibility and as more external noise is added to the 

signal, the visibility plumets exponentially (thresholds rise) (Z.-L. Lu & Dosher, 2013). 
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External noise added to the stimuli 

has been thoroughly used to characterize 

perceptual processes and psychophysical 

performance in terms of internal noise (H. B. 

Barlow, 1956, 1957; Carter & Henning, 

1971; Fletcher, 1940; Harmon & Julesz, 

1973; Henning, Hertz, & Hinton, 1981; 

Parish & Sperling, 1991; Pavel, Sperling, 

Riedl, & Vanderbeek, 1987; Denis G. Pelli & 

Farell, 1999; Pollehn & Roehrig, 1970; Riedl & 

Sperling, 1988; Stromeyer & Klein, 1974; Swets, 

Green, & Tanner Jr, 1962).  

Quantitative applications of the equivalent noise method in human perception 

The first translation from engineering to psychology of the equivalent noise 

method looked at the effect of luminance noise on contrast thresholds in a disk 

detection task (Nagaraja, 1964). The results were interpreted in the light of fluctuations 

in the retina’s absorption, attributing internal noise of the vision channel to quantum 

efficiencies. Barlow identified two potential main factors to characterize sensitivity—

internal noise and efficiency (H. Barlow, 1977). Internal noise referred to independent 

random events liable to be confused with the effective absorption of a quantum of light 

(H. B. Barlow, 1956) constraining performance, and efficiency as an estimate of the 

proportion of the sample of dots that is effectively utilized in deciding about the pattern 

(H. Barlow, 1977). 

Figure 1-1: Added contrast external noise on a 
grating of increasing signal strength stimuli. 
The three lines represent distinct levels of 
equal visibility (adapted from Z.-L. Lu & 
Dosher, 2013). 
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Pelli reanalyzed Nagaraja’s data in his thesis (Denis G Pelli, 1981), and used a 

linear amplifier as a model to yield two parameters from the observer: efficiency and 

equivalent input noise (D. Pelli & Blakemore, 1990; Denis G. Pelli & Farell, 1999). The 

latter, alternatively referred to as intrinsic noise, equivalent noise or internal noise, 

remains invariant with respect to certain properties of the stimulus and task.  

The linear amplifier models the expected changes in threshold (c) as a function of 

external noise (𝜎𝑒𝑥𝑡), to infer internal noise (𝜎𝑖𝑛𝑡) and efficiency (β) (adapted from Alex S 

Baldwin, Baker, & Hess, 2016).  

𝑐(𝜎𝑒𝑥𝑡) =
√𝜎𝑖𝑛𝑡

2 + 𝜎𝑒𝑥𝑡
2

β
 

For example, the Linear Amplifier Model (LAM) has been used to model visual 

sensitivity in infants from electrophysiological (EEG) data in a remarkable integration of 

methods across domains revealing internal noise as the limiting factor to visual 

sensitivity in both infants and adults (Skoczenski & Norcia, 1998). The authors derived 

thresholds of activity from the visually evoked potential (VEP) response, which were 

then plotted as a function of contrast and fitted to a LAM model. The “neural internal 

noise” parameter was obtained for each subject and correlated against behavioral 

measurements of contrast threshold. They were able to demonstrate that visual 

sensitivity in infants could adapt to changing conditions of stimulation dynamically and 

was limited by internal noise, in the same way that adults were. 

We have established that cortical processes are limited by neural noise even in 

the healthy brain. The first paper of this thesis explores modelled internal noise after 

mTBI and shows that it suffers an increase whereas compensation ensures the 

conservation of performance and efficiency. Because modelled abnormal levels of 
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internal noise must have tangible neural correlates, I will next introduce neuroimaging 

measurements of abnormal cortical activity following mTBI and TBI. 

1.2 Dysfunctional patterns of brain activity following TBI  

The following section reviews current brain imaging approaches and findings in the TBI 

literature and proposes a novel design that is sensitive to subtle cortical activity changes.  

1.2.1 Heterogenous chronic brain dysfunction 

Brain tissue that survived acquired brain injury relies on a series of coordinated 

biomolecular events for repair that require increased metabolism (Chodobski, Zink, & 

Szmydynger-Chodobska, 2011). Some genetic alterations contribute to TBI’s 

pathophysiology (Dash, Moore, & Dixon, 1995; S. T. DeKosky et al., 1994; Dutcher, 

Underwood, Walker, Diaz, & Michael, 1999; Hayes, Yang, Raghupathi, & McIntosh, 

1995; Katano, Masago, Harada, Iwata, & Yamada, 1998; Phillips & Belardo, 1992; K. 

Yang et al., 1994) and they inevitably weigh on energy consumption, even beyond the 

acute phase (Lynch & Marinov, 2015; Wagner, 2005). 

In the barrel cortex of the rat, TBI caused hyperexcitation in the upper cortical 

layers, potentially because of changes in inhibitory processes (Carron, Alwis, & Rajan, 

2016). 

This hyperexcitability is long-lasting, even after a single episode of experimental 

closed head trauma. In humans, both structural and functional alterations in inhibitory 

and excitatory processes were found by Santhakumar, Ratzliff, Jeng, Toth, and Soltesz 

(2001) which are likely putative in the development of hyperexcitable foci in 

posttraumatic limbic circuits.  
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Despite the severity and frequency of complaints reported by patients with post 

concussive syndrome (PCS), structural imaging data are most often normal and do not 

corroborate subjective reports (Miller & Cohen, 2001). Thus, functional imaging is 

necessary to investigate how mTBI affects cortical activity, especially in relation to 

neuropsychological data.  

It is widely reported that mTBI tends to induce an increase in brain activity, 

which I intermittently refer to as “hyperactivity” in this review of the literature. For 

example, the activity of the anterior cingulate cortex was increased in the TBI group 

compared to the healthy control group while the participants performed an attention 

demanding task (Bonnelle et al., 2011). After repetitive injury, boxers showed a marked 

decrease in frontal cortex metabolism (Provenzano et al., 2010), which could be 

explained by the fact that persistent hyperactivity keeps neurons under metabolic stress 

that can lead to neurodegeneration (de Haan, Mott, van Straaten, Scheltens, & Stam, 

2012; Saxena & Caroni, 2011). 

Thus, the analysis of the cortical activity of the injured brain has shown that alterations 

are not unidirectional and that some areas seem to increase in their activity while others 

decrease. Various tasks and conditions yield different results and the portrait of cortical 

activity after TBI is heterogenous. Many interpretations relate to the concept of 

compensation, whereby some areas compensate for others by hyperactivating. The 

following section describes the debate around the terminology of recovery and 

compensation.  

1.2.2 Recovery and compensation from brain damage  

To clarify the terminology, we hereby report considerations from 

(Reinkensmeyer et al., 2016) in parallel with those of (Levin, Kleim, & Wolf, 2008). The 
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term “recovery” has been used interchangeably to describe a return to normal, an 

adaptation to a pathological condition, or a state of functional balance attained via 

compensatory mechanisms. It is necessary to distinguish between the recovery of 

behavior and that of neural substrate normality. Behavioral recovery can happen 

through anatomical restitution, repair, restoration (also coined as “true recovery”) of the 

structural integrity of the injured brain, but it can also occur through functional 

compensation where remote or local neural elements that were not involved in normal 

processing are recruited to attain behavioral performance (Reinkensmeyer et al., 2016). 

The key point is that both recovery and compensation can refer to either anatomical 

structures or functional processes or both, and they should not be referred to without 

their contextual attributes. Restitution can be behavioral and rely on compensatory 

functional mechanisms. In contrast, recovery can refer to full return to normal (both 

behavioral and neural) and compensation or adaptation can be considered an entirely 

separate concept, by principle (Levin et al., 2008). Training can induce recovery of 

behavior via learned compensatory mechanisms whether they are behavioral or 

neurological, but Reinkensmeyer et al. (2016) warn that when compensation relies on 

the finding of new neural pathways, global functioning can be limited by local minimum 

of efficient performance. However, they explain that restoring of dysfunctional pathways 

is akin more to restitution.  

It is then not surprising that although symptoms (behavioral recovery) and 

routine structural imaging (neural substrate recovery) were found to be back to normal 

14 days after injury in model mice, fMRI (functional compensatory processes) was still 

reflecting of biological and molecular changes (To & Nasrallah, 2021). The mismatch 

between structural and functional damage at onset and after recovery went beyond that 

of symptom subsidence.  
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Thus, long lasting cortical changes can be compensatory although behavioral 

performance is recovered. We sought out to evaluate compensatory cortical activity in 

the context of non-demanding tasks using fMRI. The following section introduces 

naturalistic stimuli as a solution between resting state and demanding tasks.  

1.2.3 Stimulus designs scope functional imaging findings 

“Naturalistic stimuli can be advantageous because while artificial and 

highly controlled stimuli are designed for group comparisons, their results 

may not be ecologically valid.”  

(Zhang & Farivar, 2020) 

Abstract and artificial stimuli that are stripped down to their most fundamental, 

idealized and controllable parameters have been instrumental (Einhauser & Konig, 

2010) in the past century of neuroscience to approach the incredible complexity of the 

human brain. However, as the Gestalt movement has extensively demonstrated (Koffka, 

2013; Sigman et al., 2001; Wertheimer, 1938), natural stimuli are not simply a 

superimposition nor an addition of isolated pure stimuli like high contrast bars. 

Complex cells are more sensitive to the phase regularities of natural images (Felsen, 

Touryan, Han, & Dan, 2005). Moreover, feature segregation is maintained during 

complex stimuli processing and specialization is concomitant with integration. Activity 

in these feature specific modules is still representative of the perceptual intensity related 

to the corresponding stimuli parameters (Bartels & Zeki, 2004).  

A popular exercise in recent years has been to attempt to decode perceptual 

context from brain activity. Simple stimuli have yielded satisfactory decoding 

accuracies, but so have natural images (Kay, Naselaris, Prenger, & Gallant, 2008). 
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Decoding of detailed information about the object and the action categories in natural 

movies from fMRI data of brain activity was achieved as well (Huth et al., 2016).   

Resting state and task-related functional connectivity are not in agreement, 

however, intrinsic brain topology and connectivity are predictive of brain dynamics 

during natural vision (Betti, Corbetta, de Pasquale, Wens, & Della Penna, 2018). 

Watching movies requires an integrated brain response that orchestrates natural 

cortical activation and connectivity (Demirtas et al., 2019). Movies are processed 

differently from static images but temporal information is important to understand the 

typicality of visual processing, even in the early visual cortex, creating maps of separable 

tuning properties (Baker & Issa, 2005) shared between individuals.  

The most important characteristic of cortical brain response to natural stimuli is 

the synchronization of activity across individuals, showing widespread shared patterns 

of information processing that correlate with emotionality and visual field localization 

(Hasson, Nir, Levy, Fuhrmann, & Malach, 2004).  

The similarity of individualized brain response to natural stimuli is such that 

functional alignment is far exceeding anatomical alignment’s between subject 

classification (Haxby et al., 2011). The typicality and reliability of the brain response to 

natural stimuli, in addition to the ease of acquisition, make it and ideal test bed to 

explore clinical populations and their idiosyncrasies (Gao et al., 2020).  

For example, although responses within subject were reliable in healthy controls 

and in participants with autism spectrum disorder (ASD), brain activity in response to 

movie-viewing was atypical and highly variable in participants on the spectrum (Hasson 

et al., 2009).  
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Depression severity correlates with decreased and out-of-sync activity of the 

ventromedial prefrontal cortex during natural movie viewing in a cohort of melancholy-

burdened depressed participants suggesting a re-allocation of resources (Guo, Nguyen, 

Hyett, Parker, & Breakspear, 2015). Children with more severe depressive symptoms 

showed atypical patterns of cortical activity when watching Despical Me, a result that 

was exacerbated during low-emotional scenes of the movie (Gruskin, Rosenberg, & 

Holmes, 2020). Higher depression descriptive item-level similarity between individuals 

also yieled higher similarities in brain activity. Depressive symptoms could thus shape 

the way the brain responds to complex information dynamically.  

In the case of TBI, the human brain that is otherwise unencumbered by disease 

or neural atypicality, should follow highly typical patterns of activity when faced with 

natural stimuli if functional processing is maintained—read not reorganized nor 

compensating nor relying on latent processes—as typicality goes beyond temporal 

patterns and down to meso-scale spatial functional organization (Zhang & Farivar, 

2020).  

As true as it is that block-design holds important advantages over event-related 

experiments such as ease of implementation and statistical power in relation to the 

scanning time (Calautti & Baron, 2003), some limitations are inherent to the method 

and threaten proper interpretation of the results. BOLD signal is likely to include brain 

activity associated with additional cognitive processes that are not directly tied the 

stimuli (Fassbender et al., 2004), nor to the particularities of a stimuli versus the next 

one. This functional overlap could prove devastating in the understanding of clinical 

populations if they employ distinct cognitive strategies. Natural stimuli offer marked 

methodological advantages over block-design.  
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In the previous section, we have described the puzzling heterogeneity of cortical 

activity magnitude following mTBI and evoked neural compensation as a possible 

mechanism of behavioral recovery. The second paper in this thesis shows that natural 

movie viewing can be utilized to show important differences in cortical activity between 

healthy controls and mTBI participants.  

 

1.3 TBI and dysfunctional connectivity 

In the following section, we will introduce functional connectivity and how an mTBI can 

disrupt cortical dynamics beyond the acute phase. Brain activity changes delimited in 

cortical regions are not isolated from the rest of the cortex and induce systemic changes 

that are important and potentially eye opening to our understanding of mTBI. 

1.3.1 History of connectivity in neuroscience 

“Behavioural impairments that arise from damage to the CNS may often be 

the result of how the insult affects distributed neural dynamics, rather than 

of its impact on the lesioned site alone” 

 (A. Fornito, Zalesky, & Breakspear, 2015) 

Connectionism 

To form a coherent percept, the human brain relies on combination of sensory 

information (Robertson, 2003). Thus, for sensory integration to take place, neural 

pathways need to converge (Zamora-López, Zhou, & Kurths, 2010). 
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Galen was the first (in 130 AD) to propose that disease could spread from one 

brain region to another, albeit his formulation was archaic and supposed that animal 

spirits flowed between areas via neuronal connections (Galen & Siegel, 1976). 

Much later, Von Monakow coined the term “diaschisis” to describe the spread 

throughout the brain of the damage from a focal shock. Distal regions are thereby 

affected by a remote lesion through neuronal connections (Finger, Koehler, & Jagella, 

2004). Presently, a diaschisis includes alterations of functional connectivity as well 

(Carrera & Tononi, 2014) and refers to a temporary dysfunction of a non afflicted region 

due to a distal lesion (A. Fornito et al., 2015). 

Associationism 

Wernicke is considered the father of the disconnection theory of brain disorders 

(Gasser et al., 1985). In his associative theory of brain function, he depicts a hierarchical 

system where high order processes arise from the integration of multiple modular 

systems that are spatially distributed. Disorders like aphasia and schizophrenia are thus 

interpreted through that lens and considered to be possible consequences of a 

disruption of connectivity (Wernicke, 1885). His pupil and colleague, Dejerine, 

continued his work further by stipulating that these high order processes are localized 

too. Wernicke believes this to be a step backwards in the direction of phrenology and not 

a worthwhile model of higher function cortical areas (Bub, Arguin, & Lecours, 1993). In 

his work on alexia, he proposes the existence of a “visual verbal center” that subserves 

higher order reading and writing (Dejerine, 1892). 
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Disconnectionism 

Building on this work follows the theory of disconnectionism that stipulates that 

high order dysfunctions result purely from white matter lesions in the primary 

specialized areas, while associative areas act as relays (Geschwind, 1974). Geschwind 

had an evolutionary perspective in his behavioral neurology manifesto. Apart from TBI, 

autism (Frith, 2001), schizophrenia (E. T. Bullmore, Frangou, & Murray, 1997) and 

dyslexia (Démonet, Taylor, & Chaix, 2004)  have been considered disconnection 

disorders. Geshwind’s model has evolved to a more comprehensive framework of 

neuropathology in which high order dysfunctions result from a combination of damage 

to connectional pathways and loss of a specialized area’s function (Marco Catani & 

ffytche, 2005), so that a topological dysfunction of a cortical area can be one of deficit, 

hyperactivity or both. Today, Geshwinds’ model would be worded as distributed and 

specialized brain networks, clustered into modules that are connected in parallel.  

It is crucial to understand that more recent perspectives consider a disorder of 

connection to englobe disconnections as well as hyperconnection, or a combination of 

both (Marco Catani & ffytche, 2005). In this hodotopic framework, the frontal 

disconnection from other brain regions in the autism spectrum is coherent with 

hyperconnectivity found within the frontal areas (Courchesne & Pierce, 2005). 

Occipito-temporal connections have been confirmed in humans, and visual 

network disorders would inevitably affect long range connections from occipital to 

temporomedial regions (M. Catani, Jones, Donato, & Ffytche, 2003). The functional and 

spatial split between a lateral system integrating visual perceptual qualities with indirect 

connections with the early visual areas, and a more medial system incorporating 

emotions and memory to the visual experience with direct connections to the occipital 
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cortex has holistic consequences on the connection dysfunction. DAI would impair 

visual processing of holistic tasks but less in specific artificial and distilled tasks. To 

shine a light on visual cortical dysfunctions following mTBI, we need to present the 

injured system with a task that requires integration over multiple brain areas.  

Mechanisms of disconnection disorders 

Both increases in activity and increases in functional connectivity in brain 

disorders have been attributed to compensation (A. Fornito et al., 2015) and many brain 

disorders disproportionately affect tightly connected hub regions (Crossley et al., 2014) 

(Buckner et al., 2009). It is also possible that compromised activity and connectivity 

patterns could result from permanent functional reorganization (M. Kasahara et al., 

2010). 

One mechanism by which neural wiring can become dysregulated during 

development is through dedifferentiation. Areas that are not normally intended to be 

specialized for a task are diffusely recruited after a disruption of the 

excitation/inhibition balance (A. Fornito et al., 2015). The break down of specialization 

and segregation can lead to disconnection disorders where neuromodulation and signal-

to-noise ratio are abnormal (Georg Winterer & Weinberger, 2004).  

In an interpretation powered by the association theory, Wernicke’s assistant 

Lissauer (1890) studied in Breslau the case of a patient with severe traumatic brain 

injury who lost visual perception after a prolonged period of unconsciousness. The 

patient suffered from agnosia following brain injury. Though the patient was able to 

locate objects, he was not able to recognize them accurately. Lissauer delineates two 

types of blindness: apperceptive, caused by a cortical lesion within the visual system 

itself, and associative, resulting from a transcortical lesion of the associative fiber 
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connections. In the latter, he stipulates that sensory images are “disconnected” from 

other brain areas and cannot elicit recognition.  

There is some evidence showing that structural damage can correlate with 

functional deficits, in TBI for example (Caeyenberghs et al., 2011). However, anatomical 

connections do not absolutely have to be severed (van Meer et al., 2010) for behavior to 

be affected by a disconnection disorder. Even with apparently intact structural 

connections, functional connectivity can be correlated with behavior, arguing for a 

functional deafferantiation (A. Fornito et al., 2015). 

Moreover, disease can propagate through synapses and white matter tracts like in 

the case of the morphing of focal epileptogenic activity into a generalized seizure (Coan 

et al., 2014), or the spread of neurodegeneration (Goedert, Spillantini, Del Tredici, & 

Braak, 2013), or dysfunctional network dynamics caused by a local ischemia (Rehme & 

Grefkes, 2013).  

Thus, dysfunctional connectivity is a major concern after an insult to the brain, as 

cortical processing relies on orchestrated dynamics between functional regions. The 

following section is an overview of the effects of mTBI on functional connectivity.  

1.3.2 Functional connectivity after Traumatic Brain Injury 

 “Symptom resolution, in conjunction with abnormal biomarker levels, 

may reflect a degree of redundancy within neural networks in which gross 

behavioral performance can be compensated for, even in the presence of a 

subtly damaged node or network connection.”  

(Mayer, Mannell, Ling, Gasparovic, & Yeo, 2011) 
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Changes in connectivity are central to behavioral deficits following TBI. 

Functional connectivity between the default mode network and the precuneus is 

predictive of behavioral impairments in attention even in the absence of focal brain 

damage (Bonnelle et al., 2011) but compromised anatomical structure within the default 

mode network correlates with attentional performance.  

During a simple choice-reaction task, the same cortical regions were activated in 

both the TBI and the control group (David J. Sharp et al., 2011) but a positive 

relationship between functional connectivity (increased metabolism) and performance 

was found. Their performance was slow and variable but generally accurate. The group 

had a disparate distribution of structural disconnection but patients who had worse 

damage to their white matter tended to also have lower functional connectivity at rest. 

An fMRI study of working memory following TBI by Maki Kasahara et al. (2011) 

showed an imbalance in cortical activity with hypoactivation of the left inferior parietal 

gyrus and a hyperactivation of the inferior frontal gyrus in the clinical population 

compared to the healthy control group. The activity of the first was correlated with task 

accuracy in controls and the latter with that of patients who performed significantly 

worse. Functional connectivity between the two regions was compromised in patients, 

reflecting a desynchronization of the collaborative activation of these two regions. So, 

when two areas are necessary for a task, DAI affects functional networks—the more 

compensatory activity is required by one of the two, the more performance is affected.  

In their connectome-scale assessment of structural and functional connectivity in 

mild traumatic brain injury at the acute stage, Iraji, Chen, Wiseman, Zhang, et al. 

(2016) used DTI and resting state fMRI. They revealed that 41 out of 358 networks were 

anatomically affected by the injury. Intra-network connectivity was decreased within the 
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emotion network and between the emotion and cognition networks, while connectivity 

between action and emotion networks, and action and cognition, as well as within the 

perception networks were increased.  

Adolescents living with sport-related concussion disturbances were imaged with 

fMRI at rest to correlate functional connectivity alterations with potential white matter 

damage data obtained with DTI (Muller & Virji-Babul, 2018). They found a lack of 

dynamic flexibility during the shift between three distinct brain states within resting-

state in the TBI group that was correlated with hyperconnectivity in the left middle 

frontal gyrus. This could be due to functional reorganization in the attentional network. 

In a cohort of acute mild TBI participants, functional connectivity within the 

motor-striatal network was diminished concomitant with psychomotor cognitive deficits 

(Shumskaya, Andriessen, Norris, & Vos, 2012). They also found that functional 

connectivity in the right frontoparietal network was increased in the mTBI group which 

they interpreted in the light of excessive cognitive fatigue, headache, and increased 

photosensitivity hyperacusis.  

Coordination and integration between brain regions is undoubtedly altered by 

TBI, so Stevens et al. (2012) sought out to characterize the diffuse consequences of mild 

TBI on the cortical network in a resting state fMRI study. Using independent 

component analysis on the connectivity of the whole brain, they looked at twelve distinct 

networks and found that the TBI group had abnormal functional connectivity in all of 

them, including the visual, the executive and the cognitive networks. Deficits in 

functional connectivity were accompanied by increases in other subnetworks which was 

interpreted as compensatory mechanisms.  
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Functional connectivity can bring crucial additional information to understand 

whether TBI’s induced patterns of activity is due to a structural reorganization, a 

functional compensation, or a revelation of latent processes. For example, the increase 

in brain activation of the left middle frontal gyrus was negatively correlated with the 

severity of hyperactivity and impulsivity symptoms in healthy controls but not in the 

TBI participants in a study investigating visual attention processing using near infrared 

spectroscopy (Wu et al., 2018). Functional connectivity analysis of these data on the 

other hand, showed a positive relationship between the right calcarine gyri to inferior 

occipital cortex functional connectivity (which was increased in the TBI participants) 

and the severity of hyperactivity and impulsivity symptoms in patients, but not in the 

controls. Here, higher functional connectivity was accompanied with an increase in 

negative symptoms, equivalent to a decrease in social performance, reinforcing the idea 

that TBI forces the system to rely on latent processes.  

In a longitudinal whole brain functional connectivity analysis, out of 358 

landmarks preserving structural and functional correspondence, 258 functional pairs of 

nodes showed heightened functional connectivity in the TBI group, mostly in areas 

related to executive and cognitive functional domains. The posterior cingulate cortex 

and the association areas showed hyperconnectivity, and so did connections between 

the occipital and the frontal lobes of the brain. Hyperconnectivity was interpreted again 

as compensatory adaptation to pathophysiological alterations (Iraji, Chen, Wiseman, 

Welch, et al., 2016). 

In mild TBI, despite normal anatomical scans and neuropsychological measures, 

patients reported cognitive, emotional and somatic complaints, patients also 

demonstrated increased functional connectivity between the default mode network and 

the lateral prefrontal cortex but decreased functional connectivity within the default 
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mode network (Mayer et al., 2011). These measures were predictive of cognitive 

complaints. The resting-state fMRI obtained functional connectivity did not remain 

abnormal 4 months after the injury, however. Patterns of functional connectivity seem 

to normalize along with recovery. 

In a similar exploration of resting state functional connectivity of the whole-brain 

network, following sport-related concussion in the acute and sub-acute (day 8, 15 and 

45) phases. The psychological distress and neuropsychological measurements were 

abnormal but decreased by day 8. They found a global increase in connectivity in the 

concussed individuals 8 days after the injury but not at the 48hour mark or any of the 

subsequent scanning sessions. This was especially true in the subset of patients dealing 

with post-concussive symptoms which drove the group-difference results as it was not 

present in the asymptomatic participants. These findings reveal that functional 

connectivity abnormalities evolve over time as recovery takes place, but that they are a 

sign of latent processes as they appear to be correlated with behavioral disturbances 

(negative relationship between increased energy demands and performance).  

Although functional connections seem to be strengthened in the TBI group in 

contrast with the healthy controls (Caeyenberghs, Leemans, Leunissen, Michiels, & 

Swinnen, 2013), increased connectivity cannot simply reflect diffuse compensation 

because when modelling the cortex as computational network, two important factors 

appear as crucial criteria. First, node wiring must follow metabolic cost minimization, 

and second, the topological features of the network have to be optimized. Compromised 

networks are more likely to rely on cognitive reserve, stretching systems to their limits 

and their resources thin to the point of running out which would bring about defective 

performance at lower levels of difficulty (Caeyenberghs et al., 2012).  
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In this section, we have demonstrated the importance of functional connectivity 

in depicting an accurate and informative portrait of cortical activity changes following 

mTBI. Much like activity magnitude changes in response to demanding tasks, functional 

connectivity changes are interpreted in the light of compensation. Compensatory 

collaboration between regions can elicit higher levels of functional connectivity while 

asynchrony can arise when healthy collaboration between regions is compromised by 

injury. The evidence for functional connectivity changes is as heterogenous as that of 

activity change, so systemic descriptors of network organization are helpful to get a 

global understanding of dynamic changes following TBI.  
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1.3.3 Complex network analysis: graph theory analysis of brain disorders 

 

Figure 1-2 Taken from Rubinov et al (2009) Construction of brain networks from large scale anatomical and functional 
connectivity datasets. Structural networks are commonly extracted from histological (tract tracing) or neuroimaging 
(diffusion MRI) data. Functional networks are commonly extracted from neuroimaging (fMRI) or neurophysiological (EEG, 
MEG) data. For computational convenience, networks are commonly representing nodes and matrix entries representing 
links. TO simplify analysis, networks are often reduced to a sparse binary undirected form through thresholding, binarizing, 
and symmetrizing.  
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To understand in more detail how information is relayed, integrated and 

processed, graph theory analysis describes the cortical network in terms of topological 

and hodological relationships.  

“Structural brain networks can be described as graphs that are composed of 

nodes (vertices) denoting neural elements (neurons or brain regions) that 

are linked by edges representing physical connections (synapses or axonal 

projections)” 

 (Ed Bullmore & Sporns, 2009) 

Nodes are defined as processing units, neural elements—either neurons in the 

case of electrophysiology or cortical regions of interest of various scales in the case of 

brain imaging. The surface projected data is parcellated and functional connectivity 

matrices are calculated as correlation matrices (Pearson for example). Two nodes are 

then considered to be connected by an edge if their correlation p value exceeds a critical 

p calculated after FDR correction (see figure 1-2).  

The number of nodes connected to a single node on average is the connectivity 

degree of that node. The lowest number of node relays necessary to reach a node S from 

another node T is the shortest path length (Zamora-López et al., 2010). Once averaged 

and inversed, this information is understood as efficiency and reflects the system’s 

capacity to integrate information: how well does a signal travel from one area to 

another. Very small shortest paths mean information transfer is easy and does not 

require much intermediate processing, when taken in isolation from other critical 

network descriptors. Modularity is the number of connections that are situated within a 
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functional module of a certain network compared to a random network of similar size 

and reflects the tightness and segregation of computational processing.  

Centrality is the measure of how much influence one node has on other nodes (A. 

Fornito et al., 2015), the number of shortest paths that pass through a given node in 

respect to the total number of shortest paths that link these two same nodes (Zamora-

López et al., 2010). Central hubs are referred to as rich clubs and have strong integrative 

connectivity that links functional modules together (A. Fornito et al., 2015). These 

connector hubs show high connectivity with nodes from distributed areas.  

Primary sensory cortices tend to have low centrality (van den Heuvel & Sporns, 

2011) so damage there causes more constraint effects on the system’s network. When 

topologically central areas that connect subnetworks are affected by disease or injury, 

the damage to the whole system is more diffuse. Most of the central hubs belong to 

associative cortices whose function is broadly integrative which explains why damage to 

these hubs creates widespread functional disturbances.  

In contrast, groups of nodes that are not hubs and that show strong inter-module 

connectivity are called provincial modules. They show high connectivity with other 

nodes from the same module. They have an active role in functional specialization and 

show high level of segregation. 

“damage to provincial hubs should yield specific clinical deficits, whereas 

damage to connector hubs will result in more complex and pervasive 

dysfunction”  

(A. Fornito et al., 2015) 
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It has been shown that the cortical network of the macaque monkey follows three 

main characteristics (Zamora-López et al., 2010). First, nodes are organized in clusters 

that are topographically distinct. Second, the cortical network of the macaque monkey is 

highly connected (high density of connections). Third, finally, the degree distribution is 

broad, and the network contains highly connected tight areas called hubs Sensory 

integration is an intrinsic role of cortical hubs (Zamora-López et al., 2010). The authors 

go on to define necessary criteria for a node to be a participant in cortical integration, 

and thus, verify their definition of integration in the sense of sensory integration of 

information into a comprehensive percept. 

“[integration is] The capacity of one of more nodes to receive information of 

different character and combine it to produce new useful information” 

 (Zamora-López et al., 2010) 

To play an active role in sensory integration, a node must first have access to 

information contained in the system. Second, two or more nodes can collaborate in their 

integrative role only if they are effectively connected with one another. Third, if a node is 

putative to the integrative function taking place within a system, its removal must affect 

the integrative capabilities of the whole system.  

In networks and graphs obtained through functional connectivity between nodes 

calculated as time series correlation, for example obtained from fMRI data, the degree is 

influenced by the size of the network (Power, Schlaggar, Lessov-Schlaggar, & Petersen, 

2013; Warren et al., 2014). 

In their manuscript, Power et al. (2013) differentiate between “target” hubs 

which show integrative functionalities and are highly participative in many modules, 
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and “control” hubs that display high degree centrality. Damage to the former creates 

diffuse behavioral problems but damage to the latter affects more specialized functions.  

The probability that two nodes connected to the same third node are also 

connected with each other—the clustering coefficient—is low in hub regions. This 

equates to a certain level of functional overlap, a certain topological degeneracy, that 

allows for compensation (A. Fornito et al., 2015). Moreover, rich club nodes often act as 

bridges connecting two nodes that are otherwise not connected, forming an apex node. 

Its removal cuts communications between these two nodes. From this ensues that nodes 

that are deep in a module display high clustering and high potential for compensation, 

forming tightly interconnected cliques of nodes (Power et al., 2013).  

Damage to a topologically central associative hub would cause more frequent and 

pervasive dedifferentiation and diaschisis, and many of the connections going through 

and coming from hubs are long range which could explain their susceptibility to 

traumatic brain injury and its clinical profile of diffuse cognitive impairments (A. 

Fornito et al., 2015).  

This section has briefly introduced how graph analysis of neural networks can inform us 

of their dynamic organization. The following section reports findings from studies using 

graph theory to describe the injured brain network.  

1.3.4 Topological organization findings on traumatic brain injury 

Quantitative descriptors of network organisation provide valuable insight to our 

understanding of computational systems (Muldoon, Bridgeford, & Bassett, 2016) such 

as the human cortex (Rubinov & Sporns, 2010). Functional integration and segregation 

are biologically meaningful features directly interpretable from complex network 

measures brought about by network graph analysis within the graph theory framework. 
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Although they are extracted from functional connectivity matrices obtained via 

neuroimaging, they obviously also reflect the structural integrity of the anatomical 

connections. Diffuse axonal injury (combined with neuronal death and blood flow 

abnormalities) is thought to be putative to the disconnection hypothesis in traumatic 

brain injury research. This is supported by graph analysis studies based on functional 

connectivity and structural abnormalities have been related to behavioral deficits after 

TBI (David J. Sharp, Scott, & Leech, 2014).  

However, in a study combining event-related (task switching) fMRI and fiber 

tractography, Caeyenberghs et al. (2013) could not find strong overlap between hubs 

and graph metrics in either the TBI group nor the control group. Functional topology 

was not accounted for by structural limitations and there was no correlation between 

structural graph metrics obtained via DTI and those from functional connectivity. The 

authors concluded that impaired nodes fail to utilize existing (and possibly intact) 

anatomical connections effectively, which would explain the findings of increased 

functional connectivity in the absence of reduced structural connectivity. This could 

possibly be caused by a functional reorganization that induces a decoupling of structural 

and functional connectivity. Note here that the term “reorganization” does not refer to a 

permanent rewiring but more a functional adaptation whereby the remaining 

anatomical connections are reoptimized in their usage rather than in their structural 

positions.  

In another study supporting the idea of a functional reorganization, 

Caeyenberghs et al. (2012) found higher local efficiency in a TBI group. Stronger short-

range connections between neighboring nodes suggest adaptative mechanisms and a 

better organization and tolerance to future attacks to the system, literally bracing for 
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further traumatic instances. The injured brain tends to form highly clustered cortical 

regions that preserve efficient local communications as a compensatory mechanism.  

 Recovery following neurorehabilitation restored network parameters—namely 

network strength, path length, efficiency, clustering and energetic cost—to normal levels 

(Castellanos et al., 2011). This supports the compensation theory, as it underlines the 

positive relationship between metabolic demands and behavioral performance. During 

the recovery process however, in another study, network strength decreased but the 

number of functional connections did not (Nakamura, Hillary, & Biswal, 2009).  

The outcome of an attention and executive focused neurorehabilitation training 

following TBI was predicted by the modularity of the cortical network—the extent at 

which the distributed network is integrated and segregated (Arnemann, Chen, 

Novakovic-Agopian, Gratton, Nomura, & Esposito, 2015). This shows that a more 

modular brain network that sustains an injury is more likely to recover its cognitive 

functions strategically and be more adaptative to training.  

Recovery and rehabilitation studies highlight the importance of hodological 

measures of functional changes following TBI. Thanks to graph theory we can quantify 

topological features from neuro-imaging data and uncover important network 

abnormalities (Caeyenberghs, Verhelst, Clemente, & Wilson, 2017).  In their review, the 

authors assembled studies using graph network analysis to study connectivity 

abnormalities in the TBI population. They found evidence that integration is generally 

compromised by TBI and that hyperconnectivity is accompanied by a decrease in 

network efficiency. These findings rely on datasets from very specific regions of interest, 

without whole graph high resolution analysis, and using highly demanding tasks. 
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Finally, this last section of introduction has recognized the contribution of graph 

metrics to our understanding of brain functional connectivity and dysfunctional 

connectivity in the case of TBI. Directly meaningful network descriptors have been used 

to show important discrepancies in the injured brain cortical dynamics. The fourth 

chapter in this thesis will add to the body of TBI graph network analysis literature by 

broadening the scope of the functional brain: how does the TBI network behave when 

facing normal day-to-day natural vision stimuli? Can such non-demanding tasks reveal 

functional changes even in the mild TBI population? 
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2.1 Preamble 

 Visual deficits following mTBI have been reported by patients and investigated 

using psychophysics. They affect visual processes relying on cortical integration, but 

they could emanate from cortical noise independently from integration failure. In this 

chapter, I propose to investigate the contribution of both mechanisms to contour 

integration deficits in mTBI participants based on the translation of a physics 

paradigm—the equivalent noise method. This chapter aims to disentangle the influence 

of integration efficiency and internal noise on early visual cortex deficits of mTBI 

participants.  

The following manuscript was published in Frontiers in Neuroscience in August 2019.  

2.2 Abstract 

The bulk of deficits accompanying mild traumatic brain injury (mTBI) is 

understood in terms of cortical integration—mnemonic, attentional, and cognitive 

disturbances are believed to involve integrative action across brain regions. 

Independent of integrative disturbances, mTBI may increase cortical noise, and this has 

not been previously considered. High-level integrative deficits are exceedingly difficult 

to measure and model, motivating us to utilize a tightly controlled task within an 

established quantitative model to separately estimate internal noise and integration 

efficiency. First, we utilized a contour integration task modelled as a cortical-integration 

process involving multiple adjacent cortical columns in early visual areas. Second, we 

estimated internal noise and integration efficiency using the linear amplifier model 

(LAM). Fifty-seven mTBI patients and 24 normal controls performed a 4AFC task where 

they had to identify a valid contour amongst three invalid contours. Thresholds for 
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contour amplitude were measured adaptively across three levels of added external 

orientation noise. Using the LAM, we found that mTBI increased internal noise without 

affecting integration efficiency. mTBI also caused hemifield bias differences, and 

efficiency was related to a change of visual habits. Using a controlled task reflecting 

cortical integration within the equivalent noise framework empowered us to detect 

increased computational noise that may be at the heart of mTBI deficits. Our approach 

is highly sensitive and translatable to diagnostic and rehabilitative efforts for the mTBI 

population, while also implicating a novel hypothesis of mTBI effects on basic visual 

processing—namely that cortical integration is maintained at the cost of increased 

internal noise. 

2.3 Significance statement 

Traumatic brain injury symptoms are largely understood in terms of neuronal 

and axonal loss, reflected in deficits that are largely understood in terms of cortical 

integration. An untested idea is that integration is maintained and compensated, but 

that injury causes increased computational noise. We tested this hypothesis using a 

psychophysical task with a strong neurophysiological basis that requires cortical 

integration and utilized an established approach to separately estimate internal noise 

and integration efficiency. Our results demonstrate that injury increases noise in cortical 

circuits without affecting integration efficiency. This sensitive and informed approach 

has important implications for diagnosis and rehabilitation of the two million U.S. 

patients affected annually by traumatic brain injury.   
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2.4 Introduction 

Traumatic brain injury (TBI) affects over 2,000,000 people in North America 

every year, with a sizeable portion of patients continuing to report deficits of attentional, 

mnemonic, or sensory nature many months after injury (Corrigan and Hammond; Lye 

and Shores, 2000; Millis et al., 2001; Malojcic et al., 2008; Masel and DeWitt, 2010). 

The cognitive deficits of  mild TBI (mTBI) can be present across different types or 

modes of injury, suggesting them to be general in nature (Rosenfeld et al., 2013). These 

deficits are often interpreted as a decreased capability of the cortical system to integrate 

information after injury. 

Loss of tissue could have two distinct effects on the performance of a system—it could 

impair the integrative capacity of the system by reducing the efficiency with which 

information is processed, or it could increase the internal noise of the system. Here we 

aim to assess whether cortical changes caused by mTBI increase noise or decrease 

integration, or both.    

Of the domains potentially affected by mTBI, the cortical visual system is the most 

characterized and best understood—the human visual system has high homology to 

multiple animal models, and over 50 years of neurophysiology and psychophysics make 

it the most characterized cortical system (Kandel, 2013; Yantis, 2013). Visual 

complaints are common after mTBI (Adams, 2009), and we and others have successfully 

used visual psychophysics to quantify cortical visual deficits caused by mTBI (Kurylo et 

al., 2006; Chang et al., 2007; Spiegel et al., 2015; Spiegel et al., 2016; Schmidtmann et 

al., 2017). The availability of highly sensitive psychophysical methods with 

physiologically-motivated computational models behind them make vision an excellent 

platform for characterizing and understanding cortical changes that follow mTBI.  
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High-level deficits such as memory and attentional losses can be broadly described as 

impairments of cortical integration over large cortical scales (Naghavi and Nyberg, 

2005; Schlichting and Preston, 2015; Zhang et al., 2017). A highly controllable model of 

cortical integration is contour integration—the perception of a shape through pooling of 

local edge segments that together describe a shape (Field et al., 1993; Hess et al., 2003). 

Contour integration is a crucial step in the processing of visual shape representation and 

is understood to require well-characterized integrative mechanisms at the lowest levels 

of the cortical visual hierarchy (Gilad et al., 2013). Recently, a new contour integration 

approach has been developed that has the capability to allow measurements of both 

efficiency and internal noise (Baldwin et al., 2017) something not attainable from the 

original approach of Field et al (1993). 

We therefore measured cortical integrative capacity and noise using the tightly 

controlled visual contour integration task (Baldwin et al., 2017). Importantly, we can 

quantify both the capability of the cortical integration process that occurs for contours, 

as well as the amount of “noise” that is limiting the system’s performance. To enhance 

our sensitivity to changes in integrative capacity and/or internal noise, we made our 

measurements independently for the four visual quadrants, which simultaneously 

enabled us to probe previously-reported visual field biases in mTBI (Pavlovskaya et al., 

2007; Spiegel et al., 2015). 

2.5 Methods 

2.5.1 Participants 

All participants gave their informed consent prior to taking part in the 

experiment. All procedures were in accordance with the Code of Ethics of the World 
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Medical Association (Declaration of Helsinki) and were approved by the Research Ethics 

Board of the McGill University Health Center. 

 All participants were screened for anomalous vision loss or vision disorders 

(glaucoma, retinal detachment, macular degeneration, etc.). They had normal or 

corrected to normal visual acuity (wore their usual refractive correction). The average 

age of the participants was 39.7 years old (SD = 14.4 years, n=56) in the mTBI group 

and 35.5 years old (SD = 13.8 years, n=24) in the control group. 

 

2.5.1.1 TBI group 

Participants (Table 1) were recruited through the McGill University Health 

Center out-patient TBI clinic. The diagnostic criteria for mild TBI were: Glasgow Coma 

Scale score between 13 and 15, less than 30 minutes of loss of consciousness, and less 

than 24 hours of amnesia regarding events immediately before or after the accident. 

Patients with mild TBI who gave their authorization to be contacted went through a 

phone screening interview. The exclusion criteria were (1) family history of epilepsy or 

seizure, or the administration of prescription medication with increased risk of seizure, 

(2) severe tremors or involuntary movements, (3) general anesthesia in the past 6 

months, (4) mTBI occurred less than 1 month ago or more than 2 years ago, (5) 

presence of a brain lesion, (6) a history of multiple brain injury. During validation of 

patient’s clinical history, we found that five of them had had previous head traumas, 

with their last one being a mild TBI (GSC 13-15). We removed these five subjects from 

our analysis, but their data were not discarded and instead, we analyzed them 

separately. We did not exclude participants on the basis of having received an 

intervention or not. Following our previous publication, participants filled a 
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questionnaire adapted from Assessment with Mild Traumatic Brain Injury for the 

Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury 

(Spiegel et al., 2016) investigating blurred vision, migraines, behavioral change to 

palliate visual discomfort etc. The final sample size of tested mTBI participants was 55, 

(13 males and 42 females), with an additional 5 polytrauma participants (two males, 

three females). 

2.5.1.2 Control group 

Healthy participants were recruited through public announcements in the 

Montreal General Hospital and on social media. Demographics of the mTBI sample 

population were evaluated and the control group was sampled accordingly. Exclusion 

criteria included conditions 1-4 outlined above, and no history of any acquired brain 

injury. The control group was comprised of 23 individuals (12 males and 11 females). 

Despite the unequal proportions of males and females in both groups, sex had no effect 

on any of the LAM parameters, neither when taken as an average nor when assessed 

individually per quadrant (p > 0.05) and was therefore ruled out as a potential 

extraneous variable. 

2.5.2 Supplementary evaluation 

The Trail Making Test B (Giovagnoli et al., 1996), the Bells Test (Gauthier, 

Dehaut, & Joanette, 1989) and the clock-drawing test (Ishiai, Sugishita, Ichikawa, Gono, 

& Watabiki, 1993) were administered to mTBI participants to assess visual attention 

and spatial neglect. All participants responded normally on these tests. Monocular and 

binocular visual acuity was measured with a Snellen chart at four meters (Logarithmic 

Visual Acuity Chart; Precision Vision, Lasalle, IL, USA) and their ocular dominance was 

assessed using the Miles test. Maddox rod, cover/uncover and alternating-cover tests 
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were performed to detect presence of strabismus. Participants were excluded from the 

study if a strabismus was found. 

2.5.3 Display 

Stimuli were produced using Psychtoolbox (Brainard & Vision, 1997) through 

MATLAB® (2014b, The Math Works Inc., Natick, Massachusetts) and presented on a 

gamma-calibrated LG Flatron 915FT Plus monitor using a 10-bit graphics card (Nvidia 

Quadro 2000). Calibration was done using a photometer, and the mean luminance was 

62 cd/m². Subjects were placed consistently at a 77 cm viewing distance from the 

monitor, with a spatial resolution of 96 pixels per degree of visual angle.  

2.5.4 Stimuli and Procedure 

Subjects fixated on a marker at the centre of the screen. On each trial, four 

contours appeared simultaneously. Each contour was centred in one quadrant of the 

visual field, at an eccentricity of 2.8° from fixation. Each contour was comprised of 

seven log-Gabor wavelets (Meese, 2010) resting on an invisible curved path. The 

wavelets had a peak spatial frequency of 6 c/deg with a bandwidth of 1.6 octaves. They 

were presented in cosine phase (white bar with dark flanks) and had an orientation 

bandwidth of ±25°. The full-width at half-magnitude of the wavelet envelopes measured 

1.17 cycles along the stripes, and 0.91 cycles across them.  For the target the orientation 

of each wavelet was aligned with the path of the contour. In the three distractors, the 

orientations of the wavelets were consistent with a contour curving in the opposite 

direction. Discriminating the target from the distractors required the subject to combine 

the orientation and position information of the wavelets (Figure 2A). 
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The contour paths that specified the wavelet locations had the same amplitude 

for the target and for the three distractors. For large curvature amplitudes the task is 

easier, as the target appears to be a smoother contour than the distractors. Stimuli were 

presented for 400 ms, and subjects selected the smoother contour (with “good 

continuation”) (Wertheimer, 1938) in a four-alternate forced choice (4AFC) task (Figure 

2 B). This task was chosen to ensure data could be collected efficiently from 

inexperienced subjects (Jäkel & Wichmann, 2006). The amplitude of the curvature was 

modulated through a performance-dependent staircase (2-down 1-up), converging at an 

amplitude where the subject selected the target 70% of the time. The staircase was 

terminated after 40 trials or following 12 reversals. Thresholds for identifying the 

smooth contour were obtained using psychometric function fitting (see below). 

Thresholds were obtained both for stimuli without any added external noise, and for 

stimuli where the orientations of the individual wavelets were randomly jittered. 

Measuring performance at different levels of external noise allows the equivalent 

internal noise and processing efficiency of the contour integration system to be 

characterised. This method has been previously validated, with human performance 

measurements quantified compared to that from the ideal observer (A. S. Baldwin, Fu, 

Farivar, & Hess, 2017).  

We measured discrimination thresholds at three levels of orientation noise: 0°, 

8°, and 16°. The orientation of each wavelet was resampled from a Normal distribution 

centred on its original value (aligned with the contour for the target stimuli, and 

consistent with a contour of opposite curvature for the distractors). The standard 

deviation of the Normal distribution controlled the level of external orientation noise. 

We divided data collection into separate blocks for each noise level (10-15min each). 

The order of these blocks was randomised across participants. We have created an 
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interactive illustration of the procedure and corresponding psychometric performance 

hosted at http://www.farivarlab.com/stimuli-software.  

2.5.5 Experimental design and statistical analysis 

2.5.5.1 Experimental design 

We utilized a 2x2x2 factorial design, with a between-subjects factor (mTBI vs 

controls) and two within-subject factors of vertical visual field (upper vs. lower) and 

horizontal visual fields (left vs. right). To make inferences of differences in internal noise 

and efficiency across the subjects and quadrants, we analysed these parameters as 

estimated by the Linear Amplifier Model (see below) using non-parametric tests 

(Noguchi, Gel, Brunner, & Konietschke, 2012). To make inferences about quadrant 

biases, we used the rank assignment of each quadrant for internal noise and efficiency 

and carried out the same non-parametric tests on these rank values. 

2.5.5.2 Statistical analysis 

mTBI subjects tend to be heterogenous and their performance often does not 

follow a normal distribution—something we have previously observed (Gunnar 

Schmidtmann et al., 2017; Spiegel et al., 2016). Our data here also were not normally 

distributed, and we therefore carried out all our analyses using non-parametric 

inferential tests, which are more conservative and do not depend on normality of the 

data distribution and here report the Wald-type statistic (WTS) estimated using the 

nparLD (Noguchi et al., 2012) package in the R Statistical Package (R Core Team, 

2013), which is a non-parametric analog of the repeated-measures factorial ANOVA.  

http://www.farivarlab.com/stimuli-software
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2.5.5.3 Data preprocessing and psychometric fitting 

Psychometric function fitting was performed using the Palamedes toolbox (Prins 

and Kingdom, 2009). The number of trials at each curvature amplitude, and the number 

of correct responses for each amplitude were fitted with a Gumbel psychometric 

function. The guessing rate parameter was fixed at 25% (guessing rate for a 4AFC task). 

The lapse rate was allowed to vary from 0% to 5%, while the threshold and the slope 

were allowed to vary across noise levels and quadrants. 

The equivalent noise method, borrowed from engineering (North, 1942; Friis, 1944; 

Mumford and Scheibe, 1968; Pelli, 1981), uses external noise added to the input of a 

system to measure the equivalent internal noise level within the system. When the 

external noise is much smaller than the equivalent internal noise then its effects will be 

negligible. As the external noise is increased it will reach a point where its effects exceed 

those of the equivalent internal noise. Beyond this point the external noise will 

dominate performance, making the system’s equivalent internal noise no longer the 

limiting factor. Psychophysically, noise masking experiments typically find that 

thresholds are unaffected by low levels of external noise. Beyond some critical value 

however, the thresholds increase in proportion to the standard deviation of the masking 

noise. The simplest model for analyzing data from equivalent noise studies is the Linear 

Amplifier Model (LAM), which has two parameters 

𝐴threshold =
√𝜎external

2 + 𝜎internal
2

𝛽
 

This predicts a threshold A_threshold for each external noise level σ_external. The 

fitted σ_internal  parameter indicates the point at which the system transitions from 

being dominated by internal noise to being dominated by external noise. This is taken as 
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the external noise level that is equivalent to the internal noise level. The second fitted 

parameter β indicates the processing efficiency of the system (Baldwin et al., 2016). 

Elevated internal noise will affect thresholds when the external noise is low or absent 

but will not change behaviour once external noise is greater than internal noise. 

Reduced efficiency however will increase thresholds at all external noise levels. In the 

context of our contour task, internal noise indicates the inherent internal limitations 

affecting the representation of each wavelet, while the efficiency is the capability of the 

system to combine all of that noisy information to detect good continuity. Thus, the 

LAM model effectively captures the two key dimensions of performance that we aimed 

to measure.  

The LAM was then fitted to the discrimination thresholds to determine internal noise 

and efficiency (Figure 2). Outlier participants were removed if one of their LAM 

parameters was further than 1.5 interquartile below Q1 or above Q3 for each group 

(Tukey, 1970; Hoaglin et al., 1983), leaving 21 controls (two2 outliers) and 502 mTBI 

subjects (five4 outliers).  

Following data collection, we noted that the highest amplitude of curvature produced 

contours that were difficult to discriminate for several participants in both groups. This 

was true even at low noise levels. We designed an unbiased means of eliminating these 

points and validating that our procedure did not bias the results. The data points 

collected at these amplitudes were unreliable (they resulted in non-monotonic 

psychometric functions). We removed these data points if doing so significantly 

improved the fit of the Gumbel function to the data, as determined by a Chi-square 

goodness-of-fit test. Eleven control subjects and 20 mTBI subjects had points removed. 

Within-subject comparison of before and after the outlier removal showed no significant 

difference across groups for all quadrants and all noise levels which means that the 
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group differences found after fitting the LAM were not biased by our outlier removal 

procedure (WTS 0.89 p > 0.3). The unbiased preprocessing step significantly decreased 

variability across the pool of all participants across both groups for quadrants 1, 2 and 3 

(WTS 8.5 p = 0.0035, WTS 4.4 p = 0.035, WTS 9.57 p = 0.002) and for noise level 2 

(WTS 6.67 p = 0.01). 

 

2.6 Results 

2.6.1 Higher internal noise following TBI 

Internal noise was significantly higher in the mTBI group than in the control 

group (Figure 3 A, B) (WTS = 8.64, p = 0.003). We noted a significant interaction in the 

visual field biases between group and horizontal hemifields (WTS = 7.97, p = 0.005). 

Control subjects had lower internal noise than mTBI subjects (in both horizontal 

hemifields) with even lower internal noise in the right hemifield than in the left. 

Analyzing the data within groups, we found that control subjects presented a 

significant horizontal bias (WTS = 4.86 p = 0.03) with lower internal noise in the right 

hemifield as opposed to mTBIs who did not have any hemifield bias in internal noise 

(horizontal WTS = 2.78 p = 0.09, vertical WTS = 3.43 p = 0.06) (Figure 3 C).  

2.6.2 Abnormal efficiency distribution across the visual field after TBI 

Although there was no group difference in efficiency overall (WTS = 0.85 p = 

0.36), efficiency remained constant across hemifields in the control group (all p’s > 0.1) 

whereas mTBI subjects presented significant horizontal and vertical biases (horizontal 

WTS = 12.52 p = 0.0004, vertical WTS = 11.78 p = 0.0006) with higher efficiency in the 

lower right quadrant (Figure 4 D). 
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2.6.3 Consistent visual field ranking after TBI 

To assess potential visual field imbalances caused by mTBI, for each subject we 

rank-ordered the quadrants in terms of internal noise and efficiency (separately) and 

analyzed these rank scores using the same non-parametric method described above. The 

mTBI group exhibited visual field biases as measured by rank of both efficiency and 

internal noise (efficiency WTS = 20 p =0.0002, internal noise WTS = 9.5 p =0.23); this 

was not observed in the control group (efficiency WTS = 0.3 p =0.96, internal noise 

WTS = 2.15 p =0.54).  

 mTBI subjects presented significant horizontal and vertical biases (WTS = 9.9 p 

=0.0016; WTS = 9.1 p =0.002, respectively) in efficiency, and a significant vertical bias 

(WTS = 5.74 p =0.017) in internal noise. Control participants presented none of these 

biases.  

2.6.4 Efficiency and internal noise correlated in both groups 

To understand the dynamic relationship between efficiency and internal noise, 

we tested for correlations between these parameters for each individual quadrant in 

each group and found a significantly positive correlation between internal noise and 

efficiency in all quadrants for both groups (Spearman, rho >.4, p < .001).  However, 

when looking at the parameters averaged across quadrants this positive correlation was 

only maintained in the mTBI group (Spearman, rho = .36, p = .01). All participants 

tended to have higher efficiency in the quadrants where they also exhibited higher 

internal noise, but only participants from the mTBI group compensated for higher 

internal noise with higher efficiency when all quadrants were taken into account. 
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2.6.5 Internal noise, efficiency and visual dysfunctions report 

To investigate the relationship between the internal noise and efficiency 

parameters as measured by our task and the symptoms experienced by the patients, we 

tested whether their answers to the Visual symptoms questionnaires were correlated to 

their internal noise and efficiency. Interestingly, changes in visual habits were inversely 

correlated to the efficiency on the good-continuity discrimination task (Spearman, rho = 

- 041, p = 0.04), meaning that the more patients made changes to their visual habits 

(screen time, reading, driving…) the less efficiency they exhibited at discriminating 

between valid and invalid contours. Although the strength of the correlation was small, 

this would suggest that patients who adapted their behavior to their visual impairments 

also showed less efficiency in using the available orientation information to render a 

perceptual decision.   

2.6.6 Time since injury 

Studies looking at post-concussive symptoms typically span their data collection 

between the time of injury and the following year, finding a decrease when comparing 

time points (Bryant & Harvey, 1999; Emanuelson, Andersson Holmkvist, Björklund, & 

Stålhammar, 2003; Sigurdardottir, Andelic, Roe, Jerstad, & Schanke, 2009). 

Surprisingly, when we tested whether internal noise or efficiency on the good-continuity 

discrimination task were correlated with the time elapsed since injury, we did not find 

any significant relationship (Spearman, rho <-0.1, p > .4). We did not find any 

relationship between the time since injury and any of the neuropsychology tests either.  



84 
 

2.6.7 Multiple concussions participants 

For the five multiple concussion participants that were tested on the contour 

discrimination task, internal noise was marginally higher than in the controls (WTS = 

3.76 p = 0.053), and not different from the single mTBI group (WTS = 0.27 p > 0.6). 

When analysing all three groups at once, we found a significant main effect of Group on 

internal noise (WTS = 9.9 p < 0.007), as well as a significant interaction between the 

factors Group and Quadrants (WTS = 37.8 p < 0.000001). The multiple TBI group had 

higher internal noise (pseudo-median = 6.69°, conf.int = 5.29°-8.56°) than the single 

TBI group (pseudo-median = 6.1°, conf.int = 5.65°-6.58°), and the control group had 

even lower internal noise (pseudo-median = 4.51°, conf.int = 3.99°-5.06°).  

Efficiency of the multiple TBI patients did not vary compared to either group 

separately (controls/multiple TBIs WTS = 1.12 p > 0.2, TBIs/multiple TBIs WTS = 0.45 

p > 0.4). When the data from the three groups were combined into a single analysis, 

neither Group nor Quadrants had a significant relative effect on efficiency (WTS = 1.5 p 

= 0.48; WTS = 2.2 p = 0.53, respectively), but there was an effect of the interaction of 

Group and Quadrants on efficiency (WTS = 20.8 p = 0.002).  

2.7 Discussion 

Cortical integration is understood to be at the heart of many cognitive symptoms 

related to attention and memory following mTBI—a large network of cortical regions is 

engaged to carry out these fundamental cognitive processes (Fagerholm, Hellyer, Scott, 

Leech, & Sharp, 2015; Naghavi & Nyberg, 2005; Schlichting & Preston, 2015). Directly 

measuring impairments of cortical integration is a serious challenge, because of the 

absence of informed quantitative models that fully capture the two crucial limiting 

factors, namely cortical integration and internal noise. By utilizing contour integration—
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a fundamental step in visual shape recognition that is well-characterized in terms of 

cortical integration (A. Gilad, Meirovithz, Leshem, Arieli, & Slovin, 2012; Ariel Gilad, 

Meirovithz, & Slovin, 2013)—within the framework of the equivalent noise technique, 

we were able to overcome the limitations posed by cognitive measures while assessing 

changes in visual processing following mTBI.  

We have discovered that mTBI may not actually result in less efficient cortical 

integration per se, but rather in increased internal noise. This is a first quantitative 

characterization of the post-TBI changes using a model-driven behavioural task (Z. L. 

Lu & Dosher, 1998, 1999, 2008; Denis G. Pelli & Farell, 1999; Skoczenski & Norcia, 

1998). Our results also corroborated the previous finding of visual field biases being 

affected by mTBI—we found that cortical integration efficiency was different between 

the vertical and horizontal hemifields. Finally, we found that poorer cortical integration 

efficiency was correlated with greater change in visual habits of mTBI patients.  

We observed a significant increase in internal noise despite the recognised 

variability in the mTBI population (Ware et al., 2017; Yue et al., 2017), suggesting that 

internal noise is a valuable and valid construct in describing the visual processing 

changes that occur in this disorder. Occipital injury was not a common mode of insult, 

yet the bulk of the group exhibited elevated internal noise on a visual task. Adding to the 

emerging scientific evidence for cortical visual impairments following mTBI (Chang, 

Ciuffreda, & Kapoor, 2007; Pavlovskaya, Groswasser, Keren, Mordvinov, & Hochstein, 

2007; Gunnar Schmidtmann et al., 2017; Spiegel, Lague-Beauvais, Sharma, & Farivar, 

2015; Spiegel et al., 2016), our experiment relied on a non-invasive psychophysical 

method to probe cortical errors and inefficiencies in the low- to mid-level visual areas of 

the human brain (A. Gilad et al., 2012; Ariel Gilad et al., 2013; Pasupathy & Connor, 

1999). 
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2.7.1 Cortical integration during contour perception 

Contour integration is a basic building block of visual perception, and yet, it 

requires complex and balanced interactions (D. Field & Hayes, 2004; D. J. Field et al., 

1993; R. F. Hess, Hayes, & Field, 2003; Kisvárday et al., 1997). This integrative process 

can be effectively probed using simplified stimuli consisting of colinear Gabor elements 

along a path defining a shape—in our case, a simple arc. Such colinear sets tend to pop-

out against a background of randomly-oriented Gabors, as captured by the Gestalt rule 

of Good Continuation (Elder & Goldberg, 2002; Koffka, 2013; Wertheimer, 1938). Thus 

Good Continuation is the fundamental feature of a contour perception, and the task 

used here (A. S. Baldwin et al., 2017) directly measures this key aspect of visual 

perception.  

The perception of a contour is not instantaneous (R. F. Hess et al., 2003; Lamme, 

Super, & Spekreijse, 1998; Zipser, Lamme, & Schiller, 1996) suggesting multiple levels 

of computation, and recent evidence suggests at least two major steps are involved—a 

first step where the individual elements are detected by V1 neurons and a second step 

where secondary connections (lateral in V1 and/or feedback from extrastriate areas) 

“fill-in” the gaps between the Gabor elements (Ariel Gilad et al., 2013). In other words, 

the individual Gabor elements of a synthetic contour each have distinct cortical 

representations in the retinotopic map of V1 (D. Field & Hayes, 2004). These individual 

cortical representations then interact and integrate into a new form—the full contour—

thus describing a simple and elegant example of cortical integration that can be tightly 

controlled via stimulus manipulations.  

Although there are diverging views regarding the cortical mechanisms involved in 

contour perception, namely if linking between stimulus elements is explicit or not (D. J. 
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Field et al., 1993; Hansen, May, & Hess, 2014; May & Hess, 2008), some form of 

integration remains unavoidable, whether it follows a step-by-step summation or an 

algorithmic overlap of orientation and template filters across hierarchical processing 

levels. We propose that contour integration can serve as an effective model of cortical 

integration, because the individual elements of a contour have distinct cortical 

representations and because the integration of the contour requires pooling and 

interactions across a set of such cortical nodes. The magnitude of these interactions can 

be controlled by stimulus parameters such as collinearity, gap, and path curvature 

(Blakemore & Tobin, 1972; Knierim & Van Essen, 1992; Sillito et al., 1995; von der 

Heydt & Peterhans, 1989), unlike cortical interactions engaged in complex cognitive 

tasks. Given the tight control that is granted by stimulus manipulations on this well-

characterized integrative cortical process, contour integration is an effective and 

efficient method of probing complex interactions in the injured brain.  

2.7.2 Cortical visual deficits after TBI 

We had previously speculated that long-range fibers—i.e. those that integrate 

information across visual fields and cross at the corpus callosum—are most vulnerable 

to injury in mTBI (Spiegel et al., 2015). We and others (Lachapelle, Ouimet, Bach, Ptito, 

& McKerral, 2004; Gunnar Schmidtmann et al., 2017; Spiegel et al., 2015; Spiegel et al., 

2016) have documented several changes to cortically-mediated visual processes after 

mTBI. Traumatic brain injury results in decreased contrast sensitivity across spatial 

frequencies, especially for second-order modulated patterns (Spiegel et al., 2016). 

Binocular disparity perception is also affected by mTBI (Gunnar Schmidtmann et al., 

2017), in addition to inter-ocular signal propagation (Spiegel et al., 2015). That contour 

perception is also affected by mTBI suggests multiple components of the ventral visual 

pathway, needed for shape and object analysis, may be affected by mTBI. In contrast, 
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motion perception—putatively subserved by the dorsal visual pathway—is not affected in 

mTBI patients (Costa et al., 2015). The emerging pattern from these results is that the 

ventral visual pathway may be more vulnerable to injury, and more studies are needed 

to assess this possibility.  

2.7.3 Visual field biases after TBI 

We speculate that the vertical bias (greater efficiency in the lower visual field) 

may be related to the importance of this hemifield for shape perception---Schmidtmann 

et al. (2015) have reported that while on orientation discrimination tasks performance 

is balanced between the upper and lower hemifields, there is a distinct advantage in 

normal individuals in discrimination of complex shapes in the lower visual field. We 

build on this finding to suggest that perhaps following mTBI, patients increase efficiency 

selectively in the lower visual field because of its importance to shape recognition, as a 

compensatory effort. 

The left-right bias is admittedly more difficult to explain, but a clue may lie in the 

bias already present in the normal controls—internal noise is significantly lower in the 

right hemifield. We did find that this bias is eliminated by mTBI. We speculate that this 

bias may be part of normal visual processing, and its disruption by mTBI may be 

compensated by a biased increase in efficiency corresponding to our observations. 

2.7.4 Internal noise and neural noise 

The concept of noise utilized here—internal noise, captured as a Gaussian 

random variable within the Lam model—can be understood as a generalization of 

multiple sources of neural noise including spike-timing variability, synaptic noise, 

membrane potential variability, etc (A. Aldo Faisal et al., 2008). Complex circuits of 

neurons would likely exhibit complex noise properties that are not linearly related to the 
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noise within individual units (A Aldo Faisal, White, & Laughlin, 2005; Laughlin & 

Sejnowski, 2003; Prinz, Bucher, & Marder, 2004).  

The concept of internal noise, as measured by the equivalent noise technique (Z. 

L. Lu & Dosher, 1999, 2008) has been effective at capturing a variety of phenomenon 

that were previously understood as limited by processing capacity or sensitivity, 

including contrast sensitivity (Skoczenski & Norcia, 1998), attention (Z. L. Lu & Dosher, 

1998), and cortical blindness (Cavanaugh et al., 2015). Previous studies had described 

the observed changes as a modulation of performance capacity or sensitivity but 

estimates of internal noise within an equivalent noise framework revealed performance 

was noise-limited not capacity-limited, highlighting the value of a generalized measure 

of internal noise in characterization performance changes.  

A key component of the LAM is the distinction between internal noise and 

efficiency—the latter denoting the capacity of the system to utilize all the available 

information. In the present contour task, efficiency has a simple interpretation: it is an 

estimate of the capacity of the integrative cortical process to pool orientation signals 

across the retinotopic map to give rise to a coherent representation of the contour. In 

this respect, mTBI patients did not differ from controls, suggesting that cortical 

integration is not affected by putative injury.  

2.7.5 Neurophysiological basis of TBI 

TBI results in an array of changes to the brain physiology, including axonal injury 

(Hammoud & Wasserman, 2002; V. E. Johnson, Stewart, & Smith, 2013; Povlishock et 

al., 1983; Rubovitch et al., 2011; David J Sharp & Ham, 2011), neuronal death 

(Raghupathi, 2004; Rink et al., 1995; Ross et al., 1993), neurotransmitter rebalance 

(Erin D. Bigler, 2016; Hunt, Scheff, & Smith, 2011; Walter et al., 2004), glial activation 
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(Ramlackhansingh et al., 2011), vascular changes (Bonne et al., 2003; Y. Wang et al., 

2015), and cortical spreading depression (Church & Andrew, 2005; Giza & Hovda, 2001; 

Lauritzen et al., 2011), amongst other factors. Any of these factors would be expected to 

affect performance on a complex task such as ours. Thus, it is exceedingly difficult to 

relate the neurophysiological changes that accompany TBI to any aspect of performance 

on our task. 

Crucially, however, participants performance for integrating information during 

contour perception is not what was affected by mTBI—mTBI seemed to only inject noise 

in this integration mechanism. Compensatory mechanisms activated after TBI 

maintained a similar degree of cortical integration, thus keeping neural circuits and 

networks intact, but at the cost of added noise. This is in contradistinction to the notion 

that tissue loss after TBI causes capacity loss—we speculate that post-TBI compensation 

seeks to minimize loss of connectivity and circuitry, and the observed deficits are not 

due to loss of network interactions, but due to increased noise in those interactions.  

We did not select participants following the location where the head was hit, nor 

did we aim to specifically recruit patients who suffered from torsion, direct hit, or 

indirect jolt, meaning that our cohort included a wide range of mild TBI type. Because 

none of our participants had any brain lesion (to the visual system or otherwise), 

heightened internal noise is a general consequence of mTBI stemming from a diffuse 

cortical imbalance that cannot possibly be restricted to the visual system. We speculate 

that other sensory modules would be similarly affected by mTBI, and that the LAM 

could be adapted to capture an general perception internal noise profile.  

One cortical location previously thought to be instrumental in the modulation of 

visual processing noise, namely the Frontal Eye Field (Noudoost & Moore, 2011), and 
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modulation of FEF activity with non-invasive methods such as transcranial magnetic 

stimulation or direct current stimulation (Grosbras & Paus, 2003), may serve to 

modulate internal noise and, coincidentally, modulate attentional control effects as well.  

2.7.6 Limitations 

Abnormal integrative noise levels are a hallmark of other other clinical 

populations as well. In the Autism Spectrum Disorder for example, noise has been 

measured via psychophysical methods (Vilidaite, Yu, & Baker, 2017) as in the present 

study, and operationalized as intra-individual variability in evoked EEG (Milne, 2011) 

and fMRI responses (Haigh, Heeger, Dinstein, Minshew, & Behrmann, 2015). Crucially, 

studies that tie physiological and cognitive measurements together allow for stronger 

claims and more encompassing interpretations, as in the case of schizophrenia (G. 

Winterer et al., 2004). As such, functional imaging data should build on our findings to 

uncover the neural correlates of visual representation internal noise. We found no effect 

of gender on any of our measurements, but our sample did exhibit a gender bias, and it 

will be important to include gender as a factor in future mTBI studies because TBI may 

have gender-specific effects (Farace & Alves, 2000). 

Increased integration noise was not previously considered as an encompassing 

feature of mTBI. We therefore stress the value of this encouraging first step towards 

understanding the functional mechanisms behind visual dysfunctions that follow mild 

Traumatic Brain Injury.  

2.7.7 Conclusion 

In conclusion, we have demonstrated that cortical integration following mTBI is 

limited by abnormally high levels of internal noise as measured by our contour 
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integration task, and that efficiency levels are not altered except in terms of visual field 

biases, possibly as a compensatory mechanism.  
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2.9 Figures 

Table 1. Participants 

 

 

Subject Age Gender TMT time TMT errors Bells Time Bells missed Education Level Handedness Diagnosis Loss of Consciousness

t1 59 M 29.699 0 66.38 5 11th Grade Right Mild complex Yes

t2 56 F 35.07 0 126.163 0 11th Grade Right Mild simple No

t3 57 M 111.16 0 116.11 6 Bachelor's Degree Right Mild Yes

t4 33 M 23.107 0 89.576 10 Bachelor's Degree Right Mild simple Yes

t5 57 F 20.779 0 150.143 2 Master's Degree Right Mild Yes

t6 58 M 29.117 1 67.399 0 Master's Degree Right Mild simple No

t7 54 F 25.989 0 115.183 1 Bachelor's Degree Right Mild Yes

t8 40 M 16.01 0 65.93 0 Bachelor's Degree Right Mild No

t9 64 M 24.6 0 80.29 5 11th Grade Left Mild No

t10 38 F 38.2 0 115.1 2 11th Grade Right Mild No

t11 38 F 33.646 0 82.928 6 11th Grade Right Mild simple Yes

t12 31 F 20.842 1 61.49 9 Doctoral Degree Right Mild complex Yes

t13 23 F 26.58 0 131.79 0 Bachelor's Degree Right Mild simple No

t14 32 F 21.84 0 94.18 1 11th Grade Right Mild simple Yes

t15 55 F 39.204 0 80.945 7 Bachelor's Degree Right Mild simple Yes

t16 55 F 37.65 0 117.786 2 Bachelor's Degree Right Mild simple No

t17 53 F 22.019 0 77.569 4 Bachelor's Degree Right Mild trivial No

t18 32 F 26.398 0 107.426 5 Doctoral Degree Right Mild simple No

t19 41 F 15.442 0 74.9 1 Bachelor's Degree Right Mild Yes

t20 18 F 25.933 0 76.599 3 11th Grade Right Mild simple Yes

t21 50 F 23.369 0 68.446 6 Professional DEC Right Mild simple Yes

t22 20 F 27.62 0 50.909 13 General DEC Right Mild simple Yes

t23 22 F 14.8 0 60.5 14 Bachelor's Degree Left Mild simple No

t24 46 F 48.862 0 103.052 2 Bachelor's Degree Right Mild simple No

t25 19 F 19.98 0 46.6 6 11th Grade Right Mild complex Yes

t26 41 F 36.64 1 127.91 5 Professional DEC Left Mild No

t27 69 F 31.57 0 122.43 1 Professional DEC Left Mild simple No

t28 61 M 58.65 0 101.05 3 Bachelor's Degree Left Mild Yes

t29 34 F 32.72 0 93.83 4 10th Grade Right Mild simple Yes

t30 56 F 26.94 0 70.08 6 Master's Degree Right Mild simple No

t31 29 F 27.62 0 38.09 10 Bachelor's Degree Right Mild simple Yes

t32 33 F 20.23 0 71.09 5 Master's Degree Right Mild simple No

t33 57 F 27.33 0 75.3 7 Bachelor's Degree Left Mild simple Yes

t34 32 F 25.72 0 88.5 1 Professional DEC Right Mild simple Yes

t35 63 F 22.14 0 89.19 1 11th Grade Right Mild complex No

t36 18 F 23.11 1 101.84 1 11th Grade Right Mild simple No

t37 40 M 26.53 1 88.21 1 Master's Degree Right Mild simple Yes

t38 23 F 22.2 0 32.18 5 Bachelor's Degree Right Mild simple Yes

t39 44 F 19.93 1 62.08 11 Bachelor's Degree Right Mild simple No

t40 24 F 33 1 78.48 0 Bachelor's Degree Left Mild simple Yes

t41 31 F 23.28 0 119.65 2 Bachelor's Degree Right Mild Yes

t42 28 M 32.35 1 65.43 7 General DEC Right Mild complex Yes

t43 24 M 28.28 0 87.75 3 Bachelor's Degree Right Mild simple Yes

t44 28 F 20.55 0 46.37 7 General DEC Right Self reported Yes

t45 44 M 22.35 0 88.36 1 Bachelor's Degree Right Mild simple No

t46 19 F 13.28 0 78.84 2 General DEC Right Self reported No

t47 37 F 22.53 0 62.68 2 11th Grade Right Mild Yes

t48 27 F 31.26 0 122.4 1 Bachelor's Degree Right Mild simple Yes

t49 24 M 35.49 1 183.07 0 General DEC Right Mild simple Yes

t50 45 F 30.21 0 153.87 0 General DEC Right Mild simple No

t51 53 M 35.63 1 138.45 0 Master's Degree Right Mild simple Yes

t52 39 F 24.58 0 61.93 2 Bachelor's Degree Right Mild simple No

t53 50 F 22.25 0 67.93 3 Bachelor's Degree Right Mild simple No

t54 20 M 16.8 1 77.47 3 General DEC Right Mild simple Yes

t55 40 F 43.1 0 171.8 1 Bachelor's Degree Right Self reported n/a

poly1 24 M 24.5 0 122.57 1 Bachelor's Degree Right Multiple n/a

poly2 18 F 14.3 0 40.74 4 Master's Degree Right Multiple n/a

poly3 26 F 37.92 0 124.68 2 n/a Right Multiple n/a

poly4 49 F 36.34 0 98.31 10 Bachelor's Degree Right Multiple n/a

poly5 23 F 33.44 0 110.39 1 Bachelor's Degree Right Multiple n/a

c1 42 F n/a n/a 68.345 1 Doctoral Degree Right None n/a

c2 40 F n/a n/a 76.398 4CEGEP General DEC Right None n/a

c3 53 F n/a n/a 73.679 7 Master's Degree Left None n/a

c4 70 M n/a n/a 108.24 2 Bachelor's Degree Right None n/a

c5 19 M n/a n/a 68.66 1 n/a n/a None n/a

c6 54 M n/a n/a 92.8 1 Master's Degree Right None n/a

c7 49 F n/a n/a 80.239 1CEGEP Professional DECRight None n/a

c8 18 F 34.87 0 65.58 7 11th Grade Right None n/a

c9 25 M 18.25 0 48.4 7 Bachelor's Degree Right None n/a

c10 21 F 34.91 0 81.69 6 Bachelor's Degree Right None n/a

c11 53 F 36.48 1 Bachelor's Degree Right None n/a

c12 42 M 12.92 0 57.43 1 Bachelor's Degree Right None n/a

c13 27 M 21.12 0 65.05 2 Bachelor's Degree Right None n/a

c14 50 F 21.15 0 42.39 6 n/a n/a None n/a

c15 20 F 28.32 0 56.76 1CEGEP General DEC Left None n/a

c16 26 M 21.54 0 46.37 5 Master's Degree Right None n/a

c17 35 F 23.55 0 77.94 1 Doctoral Degree Right None n/a

c18 46 M 12.63 0 66.11 3 Bachelor's Degree Right None n/a

c19 25 M 16.85 0 72.67 3 11th Grade Right None n/a

c20 22 F 19.1 1 68.7 0 Bachelor's Degree Right None n/a

c21 28 M 23.53 0 62.98 4 Doctoral Degree Right None n/a

c22 27 M 15.16 1 48.19 3 Master's Degree Right None n/a

c23 33 M 32.72 0 126.14 0 Doctoral Degree Right None n/a
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Table 2. Result Summary. 

Single mTBI Polytrauma

Higher internal noise than controls  Higher internal noise than controls and single mTBIs

Abnormal efficiency distribution across visual field No effect found on efficiency  

Figure 1 

Figure 1 Visual stimuli. Contrast has been enhanced for illustration purposes. (A) An example trial of the Good 
continuation discrimination task, the upper right quadrant contains the valid contour (0° noise). (B) Construction of the 
invalid contour by inverting elements across the valid contour diagonal. Because of the systematic nature of this process, 
it is not to be confused with the addition of orientation noise. (C) Cartoon showing valid and invalid contours varying in 
amplitude under noise levels 1, 2 and 3 (respectively 0°, 8° and 16° of SD of orientation noise). Note the increasing 
difficulty of discriminating between the valid (on the right) and invalid (on the left) contours as amplitude decreases. 
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Figure 2 

Figure 2 Linear Amplifier model (LAM) graphical description with mock-data. (A) The LAM function describes the 
dynamics of performance thresholds along levels of added external noise—thresholds (t), as a function of external noise 

(𝜎𝑒𝑥𝑡), internal noise (𝜎𝑖𝑛𝑡) and efficiency (𝛽). At low levels of external noise, performance is not dependant on external 
noise and remains constant and limited by internal noise. After the equivalent noise point, additional external noise shifts 
thresholds upwards, and becomes the major limiting factor of performance.  (B) A higher internal noise curve (in grey) 
with unchanged efficiency shows a shift in the equivalent noise point towards higher noise. The thresholds are shifted up, 
as the tail of the function asymptotes towards the same slope. (C) A higher efficiency curve (in grey) with unchanged 
internal noise shows a global shift towards lower thresholds and maintains the same equivalent noise point.  
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Figure 3 

Figure 3 Main results. (A) LAM functions for the mTBI subjects (in black) and the control subjects (in grey).  (B) The 
mTBI group shows significantly higher internal noise than the control group. (C) The left and right hemifields varried 
significantly in internal noise in the control group but not in the mTBI group. (D) mTBI subjects had significant biases in 
efficiency across both the vertical and horiontal hemifields. 
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3.1 Preamble 

 We have established that increased levels of internal noise limit cortical 

integration in early visual areas following mTBI. This novel finding was obtained using 

psychophysical modelling of behavioral performance which isolated the processing of 

good continuity from other key visual features that form natural stimuli. Although 

investigating visual functions separately is necessary and useful to our understanding of 

perceptual mechanisms (Hubel & Wiesel, 1968), each visual process does not happen in 

a functional vacuum. Visual features are processed in parallel to form a coherent percept 

of our environment, and cortical activity is affected by injury (Kohl, Wylie, Genova, 

Hillary, & Deluca, 2009). Naturalistic movie viewing recruits the visual system as a 

whole and has been used to flag abnormal distribution of cortical activity in autism 

spectrum disorder (ASD) (Hasson et al., 2009). The following chapter aims at probing 

natural vision following mTBI by presenting naturalistic movies to participants while 

they are being scanned.    

The following manuscript is in preparation for submission to NeuroImage. 

3.2 Abstract 

 Although symptomatic mild Traumatic Brain Injury (mTBI) patients report daily 

visual complaints months after their injury, these have been difficult hard to corroborate 

in laboratory settings. Performance at low levels of task difficulty is hardly different 

from normal, but high-demand tasks also may put pressures that are not ecologically 

valid and therefore reveal effects that are not related to the mTBI symptoms. Moderate-

demand tasks are thus more ecologically valid and generalizable to mTBI’s natural 

cortical processing, so we sought out to determine whether naturalistic viewing would 



105 
 

reveal differences in visual processing between mTBIs and normal controls. We used 

classic fMRI analysis and novel independent modelling of normal temporal pattern of 

cortical activity. We imaged 17 mTBI and 54 healthy participants while they watched 

natural underwater scenes devoid of narrative or semantic structure. We found that the 

mTBIs fit poorly to our normative timeseries models. They showed lower activity in 

early areas but a tendency to increased activity in fronto-parietal areas compared to 

controls. This was corroborated with higher functional connectivity between fronto-

parietal areas and early, ventral and dorsal areas. Taken together, our results suggest a 

compensation for dysfunctional cortical regions. The increased connectivity affected 

visual areas related to typical mTBI symptoms (attention, integration of visual features, 

motion and scene perception). In conclusion, moderate-demand tasks such as movie 

viewing are enough to reveal subtle cortical changes following mTBI, potentially 

contributing a valid biomarker of TBI.   

3.3 Introduction 

Functional recovery following mild Traumatic Brain Injury (mTBI) relies on residual 

neural substrates but does not follow a linear progression (To & Nasrallah, 2021) and is 

often incomplete even after months or years (Shenton et al., 2012). Patients consistently 

report difficulties executing daily tasks that do not require excessive cognitive efforts—

they experience difficulties reading (Tabet et al., 2020), driving (Preece, Horswill, & 

Geffen, 2010), planning (Bottari, Gosselin, Chen, & Ptito, 2017) and doing other low-

demand activities that rely on high-level functions such as focus (Eisenberg, Meehan, & 

Mannix, 2014), attention (Malojcic et al., 2008), and memory (Smits et al., 2009).  

Symptomatology of mTBI is most apparent during high-demand tasks. Surprisingly, 

while patients are aware of functional abnormalities in their cognition, their behavioral 
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performance at low levels of laboratory task difficulty is often close to normal. In a dual-

task study looking at the effects of environmental demands on locomotion performance 

after mild to severe TBI, Vallée et al. (2006) measured cognitive performance (on a 

modified Stroop task) and locomotion (walking speed, stride length and obstacle 

clearance margin). They found that the most complex dual-task impaired the TBI 

group’s locomotion performance and concluded that challenging conditions were more 

difficult and revealed locomotor and attentional deficits.  

Although experimental tasks are intentionally tailored to test the complaints of TBIs, 

current behavioral metrics constrain their ecological validity. Tanguay, Davidson, 

Guerrero Nuñez, and Ferland (2014) argue that the fact that psychophysical measures 

are generalizable to real-world behavior—the assumption of such designs—is 

questionable. They found that computerized measurements of cooking skills using the 

Breakfast task (Craik & Bialystok, 2006) did not correlate with real-world meal 

preparation. Others have repeatedly warned that laboratory measures of executive 

functions do not necessarily correlate with everyday life comportment (Barker, Andrade, 

& Romanowski, 2004; Chevignard et al., 2000; Fortin, Godbout, & Braun, 2003; 

Manchester, Priestley, & Jackson, 2004).  Given that high-demand laboratory tasks have 

poor predictive value for real-life performance, we would do well to develop low-

demand tasks that are more ecologically valid for studying mTBI.  

A simple, engaging, low-demand task is the natural viewing of a dynamic scene. 

Functional magnetic resonance imaging has been effective in showing that temporal and 

spatial patterns are similar between healthy subjects when watching natural scenes 

(Hasson et al., 2004) and these studies have been replicated numerous times (see 

Vanderwal, Eilbott, and Castellanos (2019) for a review). Data from such studies can be 

analyzed simply in terms of intersubject correlation, or with multivariate methods that 
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explore shared components (i.e., principal or independent components analysis). 

However, such approaches are hard to relate to classic fMRI studies or to interpret 

within hypothetical pathophysiology. Alternatively, conventional fMRI analysis with 

General Linear Models (GLM) allow one to compare conditions and groups in a 

hypothesis-driven way but require well-defined event times and durations to create a 

predicted hemodynamic timeseries for each voxel, making them difficult to implement 

in movie-fMRI studies.  

We combined classic fMRI analysis with unbiased models of normative 

hemodynamic timeseries models within a naturalistic movie-viewing paradigm. We 

hypothesized that low-demand, naturalistic tasks will reveal subtle differences between 

symptomatic mild TBI and normal controls. We measured fMRI while normal and 

concussed participants viewed natural scenes devoid of narrative or semantic structure. 

We then created estimates of normal patterns of activity and functional connectivity 

matrices. We found that mTBI cortical activity deviates from normal patterns and that 

early visual areas have lower magnitudes of activity, possibly compensated by fronto-

parietal areas in concussed patients. Functional connectivity was increased between 

fronto-parietal areas and other visual areas which hold key-roles in complex visual 

feature integration.  

 

3.4 Methods 

3.4.1 Participants  

All participants gave their informed consent prior to taking part in the experiment. All 

procedures were in accordance with the Code of Ethics of the World Medical Association 
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(Declaration of Helsinki) and were approved by the Research Ethics Board of the McGill 

University Health Center.  

All participants were screened for anomalous vision loss or vision disorders (glaucoma, 

retinal detachment, macular degeneration, etc.). They had normal or corrected to 

normal visual acuity (wore their usual refractive correction as needed). The average age 

of the participants was 36 years old (SD = 10 years, n=17) in the TBI group and 26 years 

old (SD = 6 years, n=54) in the control group.  

TBI participants 

Participants were recruited through the McGill University Health Center out-patient 

TBI clinic. The diagnostic criteria for mild TBI were: Glasgow Coma Scale score between 

13 and 15, less than 30 minutes of loss of consciousness, and less than 24 hours of 

amnesia regarding events immediately before or after the accident. Patients with mild 

TBI who gave their authorization to be contacted went through a phone screening 

interview. The exclusion criteria were (1) family history of epilepsy or seizure, or the 

administration of prescription medication with increased risk of seizure, (2) severe 

tremors or involuntary movements, (3) general anesthesia in the past 6 months, 

(4) mTBI occurred less than 1 month ago or more than 2 years ago, (5) a history of 

multiple brain injury. Following our previous publication, participants filled a 

questionnaire adapted from Assessment with Mild Traumatic Brain Injury for the 

Defense Centers of Excellence for Psychological Health and Traumatic Brain 

Injury (Spiegel et al., 2016) investigating blurred vision, migraines, behavioral change to 

palliate visual discomfort etc. All participants experienced visual symptoms. None of our 

self-reported and neuropsychological measures (clock drawing test, trail making test, 
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bells test) correlated with any of our neuroimaging results. The final sample size of 

tested mTBI participants was 17 (9 females and 8 males).   

Control participants 

Healthy participants were recruited through public announcements in the Montreal 

General Hospital and on social media. Exclusion criteria included conditions 1-4 

outlined above, and no history of any acquired brain injury. The group was comprised of 

54 control participants (28 females and 26 males). 

3.4.2 Stimuli and procedure  

Stimuli were presented using MATLAB® (2014b, The Math Works Inc., Natick, 

Massachusetts) and synchronised with acquisition start time by Sterescopic Player 

(http://www.3dtv.at) and ActiveX connection using a 10-bit graphics card (Nvidia 

Quadro 2000) on a gamma-calibrated 3-D LCD BOLD screen reflected by a mirror 

above the participants’ head. They were placed at a 170 cm viewing distance from the 

monitor, spanning 9.4 by 17 degrees of visual angle at a pixel resolution of 1920 by 

1080. Participants were scanned while watching two five-minute-long movie clips twice, 

once in 2D, and once in 3D (using polarized glasses), cut from the movie “Under the 

Sea 3-D: IMAX” (Hall, 2009). We verified that the participants did perceive the movies 

in 3D after each scan. Scenes included marine fauna and flora, constituting naturalistic 

stimuli with no human made objects or other elements that could have biased 

representations depending on culture, gender or age. Participants were instructed to 

fixate on the center of the screen (white fixation cross present for the entirety of 

the stimuli), and a blank screen with fixation cross was presented before each clip for 

four seconds.   

http://www.3dtv.at/


110 
 

Data acquisition  

Data was acquired on a 3T Siemens TIM Trio scanner (TR=2000ms, Resolution 3mm3, 

TE=30ms, flip angle=76, matrix size=64x64, Field of View=192x192mm, number of 

slices=37) at the Montreal Neurological Institute (McGill University Health Center). 

Anatomical data (T1-weighted multi-echo magnetization prepared – rapid gradient 

echo sequence—MEMPRAGE— 1mm isotropic resolution) was acquired first, followed 

by functional imaging.   

3.4.3 Analysis 

Data preprocessing 

fMRI data was preprocessed with Analysis of Functional NeuroImages (AFNI) (Cox, 

1996). To minimize spatial blurring, we applied all spatial transformations in a single 

step following slice-time correction. Motion and distortion corrections and anatomical 

registration were concatenated into one transform and applied once. We also applied 

detrending and denoising (to remove structured noise along white matter boundaries 

from the time series) algorithms from ANATICOR (Jo, Saad, Simmons, Milbury, & Cox, 

2010). Cortical surfaces were first extracted with Freesurfer 

(http://surfer.nmr.mgh.harvard.edu/), and corrected segmentation errors after visual 

inspection. Statistical analysis was performed on surface-projected data because they 

preserve individual subjects’ topology and allow for better registration across subjects, 

which strengthens statistical power compared to voxel-based analysis (Saad & Reynolds, 

2012). Each node from one subject’s mesh (36,000 nodes per hemisphere) directly 

corresponds to the same node from other subjects, which allows for direct inter-subject 

comparisons.  

http://surfer.nmr.mgh.harvard.edu/
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Normal template 

 

Figure 3-1 Construction and attribution of the normal template. After a leave-one-out average of healthy control 
timeseries, a given normal template is used to fit the timeseries of the left-out healthy control and of a random mTBI 

participant. The procedure is repeated at each node of the surface mesh.  

We devised a method to assess how the injured brain’s activity related to the normal 

brain by creating templates of normal cortical activity using a leave-one-out procedure. 

Each participant in the healthy control group was attributed a “normal template”—a 

node-specific average timeseries of every other control subjects. For example, normal 

template 54 was the average timeseries per node across all the healthy control subjects 

except subject 54 (see Figure 3-1). This allowed us to create unbiased timeseries models 

of the hemodynamic response so we could carry out a GLM analysis within a naturalistic 

stimulation situation.  

Data from all subjects (from both groups) were fitted to a normal template—for normal 

controls, we used a leave-self-out template, while for mTBI subjects, we randomly 
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assigned one of the control templates. All models were thus independent of the data that 

was fitted to them.  

This procedure yielded two parameters for each subject-to-template linear fit: a scaling 

factor (Beta) and the residual error which was converted into Root Mean Square Error 

(RMSE). The scaling factors were then compared between groups via a two tailed t-test 

(controls-mTBIs), and the RMSE with a non-parametric Mann-Whitney U test, since 

RMSE values do not follow a Gaussian distribution, and converted to z-scores for 

interpretation. These results were computed at every node of the 36,000-node mesh 

excluding some frontal areas that were not covered by the acquisition window. Both 

were subsequently corrected for multiple comparison using false discovery rate with q = 

0.05 (Benjamini & Hochberg, 1995b). This procedure was repeated for each hemisphere 

and each stimulus condition (2D and 3D).  

Functional connectivity  

As a secondary analysis, we wanted to know whether mTBI affected the dynamic aspect 

of visual cortical activity, so we sought to perform a visual area-wise functional 

connectivity analysis.  

Timeseries at each of the 36,000 nodes from the surface projected data were correlated 

with all other nodes of that same hemisphere, yielding two 36,000 by 36,000 correlation 

matrices for each participant’s hemisphere. These were Fisher Z-transformed and then 

averaged per visual area (25 areas) as defined in a previously published probabilistic 

atlas based on retinotopy (Wang, Mruczek, Arcaro, & Kastner, 2015).  

The final matrices were thus 25  25 sized, and for each participant four such matrices 

were estimated—two for each hemisphere and two for each viewing condition (2D and 
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3D). We used two-tailed t-tests to compare these between groups and corrected the 

results using false discovery rate (Benjamini & Hochberg, 1995b).  

3.5 Results 

3.5.1 Timeseries from mTBI patient was poorly explained by normal template 

 

Figure 3-2 Difference of scaling factor to normal template between groups (control-mTBI) projected on a standard 
surface. 

When comparing mTBIs with healthy controls’ fit to normal templates of activity in response to 

our narrative-free movie stimuli, the first striking result was that most visual areas did not 

reveal significant differences in scaling between groups. Figure 3-2 shows only a few isolated 

clusters of nodes in early visual areas (V1, V2, V3, V3a, V3b) where mTBIs showed significantly 

smaller scaling factors for their node-wise timeseries fits to normal templates than healthy 

controls. We found that in these few nodes, mTBI participants’ timeseries needed less scaling 
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than healthy controls to fit normal templates of activity, but as the differences were few and 

scattered, we interpret this as effectively showing no scaling difference between mTBI and 

controls.  

 

Figure 3-3 Difference in RMSE from linear fit to normal templates (control-mTBI) projected on a standard surface 

The second important finding concerned the error parameter from fitting timeseries to normal 

templates—RMSE in the mTBI group was higher than that of healthy controls in almost all 

visual areas (see Figure 3-3). Thus, cortical activity of mTBI participants could not be fitted to 

normal templates as well as they could be in the healthy controls.  
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This pattern of results was repeated for the 2D viewing condition, in which the widespread 

increase in RMSE after mTBI showed that the fit-to-normal Templates was impaired, even in 

the absence of significant differences in scaling factor. Thus, the results for the 2D viewing 

condition mirrored that of the 3D condition.     

3.5.2 ROI analysis reveals compensation by fronto-parietal areas for decreased activity in 

early visual areas in mTBI 

We averaged scaling factors within each region of interest and found that the mTBI group 

showed lower betas (i.e., lower BOLD magnitude) in early visual areas (see Figure 3-4). 

Specifically, V1v (𝑡𝑑𝑓=71= 4.07, padjusted< 0.005), V1d (𝑡𝑑𝑓=71= 3.48, padjusted < 0.01) and V2v 

(𝑡𝑑𝑓=71 = 2.96, padjusted < 0.05) showed significantly lower scaling factors in the mTBI group. In 

contradistinction, fronto-parietal areas showed a tendency to increased betas (i.e., greater BOLD 

magnitude) in the mTBI group, although that group difference was not statistically significant 

(padjusted > 0.05). Ventral and Dorsal areas followed the trend of early visual areas as well, with a 

tendency towards lower betas for the mTBI group, but this did not reach significance either 

(padjusted > 0.05).  

 

Figure 3-4 Scaling factor differences between groups (CTR-mTBI) for each Region of Intererest of the visual cortex. 
One star represents a significance p < 0.05, two stars p < 0.01 (after FDR correction). V1v, V1d and V2v showed 

decreased activation in the mTBI group.  
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3.5.3 Dysfunctional connectivity after mTBI 

We constructed functional connectivity matrices for each subject describing the Pearson’s 

correlation between each visual area using the averaged ROI timeseries. These were then 

averaged across healthy controls to obtain a single normal functional connectivity matrix 

illustrated in light grey in the circular graph (Figure 3-5). We compared groups by performing a 

t-test between all the matrices from the mTBI group and all of those from the healthy controls. 

We found that visual areas from the parietal and frontal regions (SPL1, IPS2,3,5) exhibited 

higher functional connectivity to dorsal and ventral areas after mTBI (𝑡𝑑𝑓=71>3.5; p < 0.05). 

Two dorsal visual areas—V3A and LO—were more connected to each other and to an early visual 

area (V2v) as well as a ventral area (PHC1) (𝑡𝑑𝑓=71>3.5; p < 0.05). Thus, functional connectivity 

during naturalistic movie viewing is significantly altered in select cortical networks.  

 

Figure 3-5 Normal functional network of Regions of Interest of the visual cortex overlayed with connections that 
showed increased functional connectivity in the mTBI group. The increase in connectivity was thresholded at p < 0.05 

after FDR (𝑡𝑑𝑓=71 >  3.5) and the normal functional connectivity was thresholded at R > 0.7. 

  

3.6 Discussion 
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We have shown for the first time that naturalistic stimuli and an ecologically valid task such as 

movie viewing can reveal differences in visual processing following mTBI and have done so with 

a novel method of comparison to normative hemodynamic timeseries.  

First, we have shown that data from mTBI participants poorly fit the normal template of 

activity when watching naturalistic movies. Interestingly, the betas—often used in GLM analysis 

as a proxy for magnitude of activity—were similar between both groups, but crucially we found 

that the RMSE was substantially higher in the mTBI group in both 2D and 3D viewing 

conditions. This can be a sign of greater asynchrony between mTBI patients and the normal 

template, increased noise in the mTBI, or both. The widespread error could be a sign of 

asynchrony—the temporal synchrony found between healthy controls and the normal template 

is diminished following mTBI. In this view, each mTBI patient’s brain response is more likely to 

deviate from the normal template, and therefore as a group, there is greater RMSE, which is a 

reflection of how much error is not explained by the fit. This could be the case even when beta 

scores are similar, especially if the asynchrony is mild but consistent in the group. Under this 

Asynchrony Hypothesis, the mTBI cortex still responds in a structured fashion, but in a manner 

slightly different than the normal template would dictate. In contrast, it could simply be the case 

the mTBI cortex exhibits more noise due to computational errors. This would also result in betas 

comparable to the control group but increased in RMSE. Under this view, the cortex is not 

simply responding in a new, changed way, but expresses greater error.  Our results do not 

distinguish between these two explanations, and both may actually be present as well.  

Second, we have found that early visual areas tended to be less active (and significantly 

so) in the mTBI group—beta values were lower—compared to healthy controls, while parietal 

areas tended to exhibit slightly elevated activity compared to healthy controls, but this 

hyperactivity did not reach statistical significance. It is possible that while naturalistic movies 

reveal abnormalities in early visual areas in the form of scattered activity deficits, it is likely that 

these deficits were revealed because the task did not put large demands on the subject and thus 

compensatory mechanisms were not needed to be engaged. Compensatory hyperactivity has 
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been repeatedly associated with TBI (Caeyenberghs, Wenderoth, Smits-Engelsman, Sunaert, & 

Swinnen, 2009; Gooijers et al., 2016; Y.-H. Kim et al., 2008; Rasmussen et al., 2008) and 

meaningful for specific regions recruited by high load tasks such as during working memory 

(T.W. McAllister et al., 1999) or sustained attention (Wu et al., 2018).  

Third, we found a marked increase in functional connectivity between all four major sets 

of visual areas—early, ventral, dorsal, and fronto-parietal—which denotes increased synchrony 

within individual mTBI participants. The parietal-frontal regions showed the strongest increase 

in connectivity to ventral and dorsal areas, but each were significantly more connected to each 

other and to early visual areas as well. Increased functional connectivity has been reported 

previously at rest in TBI patients (Muller & Virji-Babul, 2018; David J. Sharp et al., 2011) 

especially in fronto-parietal regions in TBI and mild TBI patients (Shumskaya et al., 2012; 

Stevens et al., 2012), in the visual cortex of mild TBI patients (Stevens et al., 2012) and between 

occipital and frontal regions in mild TBI patients (Iraji, Chen, Wiseman, Welch, et al., 2016). 

Regions from the parietal-frontal set (SPL and IPS) were particularly more connected to regions 

from the dorsal set of visual areas (V3a), but also to one region from the ventral set (PHC1). SPL 

and IPS have been identified as major contributors to visual feature integration (Corbetta, 

Shulman, Miezin, & Petersen, 1995), attention shifts (Corbetta et al., 1998), and attentive 

tracking (Culham et al., 1998). Our results suggest that visual attention deficits previously found 

in the mTBI population (Konrad et al., 2010) could be related to increased functional 

connectivity even when stimuli are not particularly demanding in terms of attentional load.  

Area V3a is thought to be involved in motion perception and segregation of visual scenes 

based on texture features (Kastner, De Weerd, & Ungerleider, 2000). More specifically, V3a has 

been shown to contribute to directed attention towards or away from motion defined stimuli 

(Seiffert, Somers, Dale, & Tootell, 2003). These functions relate to symptoms reported by 

mTBI—motion sensitivity and vertigo (Kapoor & Ciuffreda, 2002; Patel, Ciuffreda, Tannen, & 

Kapoor, 2011), and visuo-motor integration deficits (Benassi, Frattini, Bolzani, Giovagnoli, & 

Pansell, 2019). V3a is also involved in second order motion processing (Seiffert et al., 2003). 
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Interestingly, we had previously found abnormalities in contrast sensitivity of second-order 

motion-defined stimuli (higher cut-off spatial frequency) following mTBI (Spiegel et al., 2016). 

V3a was also more connected to LO2 in the mTBI group which belongs to the dorsal set as well. 

The lateral occipital cortex is sensitive to objects (Rafael Malach et al., 1995) especially when 

presented foveally (Sayres & Grill-Spector, 2008). We interpret the increased connectivity in 

these regions dedicated to attention shift, texture, motion and scenes, to be revealing of 

increased efforts of integration between these visual features to process simple narrative-free 

naturalistic movies in the mTBI group.  

One early visual area, V2v, was more connected to PHC1 (belonging to the ventral set) and to 

V3a (dorsal set). V2 is anatomically divided into a ventral and a dorsal subregion, retinotopically 

distinct in that the former processes information from the upper visual field and the latter from 

the lower visual field. In our movie, the lower visual field consists mostly of seafloor. Thus, the 

significance of V2v’s altered functional connectivity reflects more vivid and attention-grabbing 

elements of the stimuli located in the upper visual field. V2 is known to process simple 

orientation (Boynton & Finney, 2003; Montaser-Kouhsari, Landy, Heeger, & Larsson, 2007), 

contrast (Avidan et al., 2002) and chromatic (Engel, Zhang, & Wandell, 1997) information and 

as well as figure-ground segregation from stereoscopic information (Qiu & Von Der Heydt, 

2005). It is most probable that the mTBI group experienced more difficulty in the latter 

function—figure-ground segregation—given the type of stimuli we presented. The para-

hippocampal cortex (PHC) is sensitive to scenes more than object and faces (Arcaro, McMains, 

Singer, & Kastner, 2009) and to contextual information surrounding objects (Biederman, 

Mezzanotte, & Rabinowitz, 1982). Together, these regions collaborate to process colorful scenes 

in motion surrounded by contextual cues and increased functional connectivity between these 

regions denotes that complex features forming natural stimuli are more difficult to integrate 

following mTBI.  

In conclusion, natural movie viewing revealed that although normal inter-subject synchrony was 

diminished after mTBI, within-subject synchrony was increased in relevant cortical areas of the 
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visual system, possibly as a compensatory mechanism. Our results show that important 

differences could be observed in mTBI without resorting to demanding tasks or simply relying 

on resting-state connectivity.   
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4.1 Preamble 

Naturalistic movie viewing is an active task that suffices to reveal differences in visual 

processing after a mild TBI. We have found decreased activity in early visual areas and 

increased functional connectivity between fronto-parietal regions and early, ventral and 

dorsal regions. These functional connectivity differences hint at critical network changes 

that we will explore in the following chapter. We will apply graph theory to the visual 

cortical network activated by natural movie viewing to probe changes in natural cortical 

dynamics following mTBI. 

The following manuscript is in preparation for submission to Human Brain Mapping. 

4.2 Abstract 

Conventional approaches to neuroimaging of mTBI have shown critical changes in the 

distribution of cortical activity at rest, during high-demand tasks, and during natural 

visual function. Graph theoretical approaches have revealed network changes in mTBI 

but results are inconsistent. Findings seem to depend on the network investigated and 

on the level of demand of the task. We used naturalistic movie viewing to mimic 

mondain task demands while the participants were being scanned (fMRI). We imaged 

17 mTBI participants and 54 healthy controls while they were watching an underwater 

movie devoid of narrative or semantic structure. The activated network was analyzed for 

changes in mean degree, global efficiency, modularity and clustering. All measures were 

significantly affected by mTBI. We found that the mTBI group showed increased mean 

connectivity degree, which is in line with previous literature. We also found increased 

efficiency and clustering, but this was not in full accordance with previous findings in 

mTBI. Thus, we found increased integration at a global scale and increased 
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specialization at the local scale. We attribute our results to the stimuli we used, arguing 

that our low-demand task—natural movie viewing—recruits networks that are actively 

engaged in visual processing and display a functional architecture that reflects the need 

for organized integration of information but does not overload the system. In contrast, 

we found decreased modularity in the mTBI group, suggesting that the cortical network 

of mTBI participants was less functionally segregated than healthy controls at the global 

scale.  We also analyzed subnetworks of the visual cortex and found that the combined 

results of increased connectivity degree and efficiency were repeated for all subnetworks 

except in early visual areas. Clustering only increased in dorsal and fronto-parietal 

subnetworks and modularity only decreased in fronto-parietal subnetworks. Regions of 

complex feature integration seem to be the most affected by network changes during 

naturalistic movie viewing but the whole visual system endures network changes 

following mTBI even when the task is only moderately demanding. Our results warrant 

the application of graph analysis of networks activated by naturalistic stimuli for other 

types of brain injury and disorders related to integrative dysfunction.  

4.3 Introduction 

Mild Traumatic Brain Injury induces long lasting and debilitating cognitive 

deficits that are hard to explain neurometrically in humans. Since the first fMRI study 

on mTBI (T.W. McAllister et al., 1999), conventional approaches using General Linear 

Models (GLM) have been tremendously successful in identifying regions that may be 

implicated in the cognitive deficits associated with mTBI (McDonald, Saykin, & 

McAllister, 2012). A sizeable list of such cortical regions include prefrontal (Matthews et 

al., 2011; Witt, Lovejoy, Pearlson, & Stevens, 2010), medial and temporal (T. W. 

McAllister, Flashman, McDonald, & Saykin, 2006), and the anterior cingulate (Sheth, 
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Rogowska, Legarreta, McGlade, & Yurgelun-Todd, 2021) cortices. Altered functional 

connectivity in the visual network were correlated with visuo-spatial and cognitive 

dysfunction in a mild TBI group (Li, Lu, Shang, Hu, et al., 2020). 

The emergent model is that the multiple regions implicated likely form multiple 

networks—interconnected regions that share information and depend on one another. 

Whereas detecting activity differences with GLM can be straightforward, detecting 

network changes is quite complex because networks can change by adding/subtracting 

nodes, or connections, and by adjusting the magnitude of node response. These 

alterations combine to essentially modify the topology of the network. Thus, making 

inferences about network changes requires a mathematically rigorous framework that 

captures network shape changes, which is found in graph theory (Caeyenberghs et al., 

2012; Messé et al., 2013).  

Network graphs are inferred from node-based functional connectivity matrices. 

After traditional processing of BOLD signal, the classic functional connectivity matrix 

(correlation of timeseries from each pair of voxels or voxel clusters or areas) can be 

translated into graph networks in one of two ways. Thresholding is applied to categorize 

connections between functionally significant and irrelevant processes, and correlation 

values can be kept reflecting connection strength (weighted graph) or simply discarded 

(binary graph). Parameters describing such networks thus fully depend on the brain 

state activating that network. Graph network analysis provides key insight into whether 

new connections are formed and whether they are random, which allows for comparison 

between clinical and healthy populations.   

Four commonly-reported parameters of network restructuring are (1) network 

connectivity degree (the average number of significantly correlated connections per 
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node), (2) efficiency (the inverse of the shortest path between two nodes), (3) 

modularity (connections pertaining to a functional module in a case-network compared 

to the total number of edges in the graph) and (4) clustering (the abundance of 

interconnected node trios)  (Rubinov & Sporns, 2010). These parameters are 

biologically meaningful as they quantify synchrony of processing across the cortical 

network (connectivity degree), the availability of local information—the tightness of 

connectivity in trade-off with redundancy (efficiency), the functional segregation in the 

architecture of a cortical network (related to modularity; See Wig (2017) for a review), 

and the level of local cohesiveness (clustering; see Wasserman and Faust (1994)). Their 

interpretation thus includes integration and segregation of processing on top of simple 

connection density when taken together. 

These four parameters have been valuable in understanding functional network 

restructuring and have been related to abnormal cognitive function that TBI patients 

experience (A. Fornito et al., 2015; David J. Sharp et al., 2014). To only cite a few 

examples, connectivity degree was correlated with motor-cognitive contralateral 

disruptions in TBI and not in heathy controls (Caeyenberghs et al., 2012). Raizman et al. 

(2020) reported a correlation between efficiency and nonverbal abstract reasoning in a 

group of healthy controls but not in the TBI group. On the other hand, cognitive training 

was found to reorganize network modularity in TBI (Han, Chapman, & Krawczyk, 2020) 

and training was predictive of modularity in another study (Arnemann, Chen, 

Novakovic-Agopian, Gratton, Nomura, & D'Esposito, 2015). In a resting state study, 

mild TBI was associated with increased clustering which was negatively correlated with 

post concussive symptoms (Zhou, 2017). 

Ideally, network descriptors should add value to our general understanding of cortical 

changes after mTBI and consider the dynamic aspect of cortical function. The rapid 
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cortical responses to internal demands or external factors, however, are overlooked 

when network behaviour is deemed constant, as for example, when network 

organization is inferred from resting state data (David J. Sharp et al., 2014).  

While the studies above looked at network architecture in relation with the performance 

of cognitive tasks, others have assessed baseline changes that are manifest in resting 

state—when a patient lies quietly in the scanner while their brains are scanned (Biswal, 

Yetkin, Haughton, & Hyde, 1995). Han, Chapman, and Krawczyk (2016) analyzed 

resting-state data of 40 TBI patients suffering from chronic symptoms (8 years after 

injury on average) using network analytic approaches and reported increased 

connectivity and decreased efficiency, which they took to implicate weaker integration 

and thus poorer information flow. Results from studies of Acquired Brain Injury 

(Nomura et al., 2010) and TBI patients of various severity (Pandit et al., 2013) have 

been understood similarly—after acquired damage to the cortical network, integration is 

compromised. Thus, TBI may impair cortical integration even at rest. 

Resting state connectivity is clearly informative of baseline changes, but they do not 

directly predict functional network changes, while classic cognitive tasks pose problems 

for ecological validity. This is especially true in the context of mTBI. The healthy brain 

can be comprehended as fluctuating between intense functional states demanded by 

difficult tasks and resting state (Biswal et al., 1995). However, we have no certitude that 

injury affects these brain states equally or even proportionately. It is likely that mTBI 

causes the cortical system to behave as if it were constantly under load because patients 

experience cognitive fatigue from completing usual tasks (Kohl et al., 2009). Patients 

struggle with cognitive fatigue in the absence of excessive demands, so results from 

demanding tasks might place them in an uncharacteristic state of functional activity 
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(Shumskaya et al., 2012) or misrepresent their cognitive function because they could be 

at floor performance.  

This presents us with a conundrum, whereby we cannot fully infer mTBI dysfunction 

from resting-state changes (because they could be well compensated during natural 

activity) and we cannot do this from targeted tasks (because they may represent “lab” 

behaviour and are often more difficult than real-world tasks). To overcome this 

conundrum and carry out a network analysis of mTBI changes during an ecologically 

valid task, we opted for a visually-complex, narrative-free movie scenes to achieve a 

level of engagement consistent with familiar, everyday activity.  

We predict the mTBI group to exhibit higher connectivity degree than the healthy 

controls as this had already been demonstrated during fMRI and attributed to 

compensation (Iraji, Chen, Wiseman, Welch, et al., 2016; Mayer et al., 2011). Efficiency 

is predicted to be higher in the mTBI group if the increased degree is not random but 

caused by purposeful compensatory mechanisms instead (Han, Chapman, & Krawczyk, 

2019). This parameter reflects the integrative capabilities of the system and describes 

how well information travels from one cortical area to another. In contrast, the tightness 

and segregation of processing is reflected by the modularity of the graph. In the mTBI 

group, modularity is expected to be decreased as compared to healthy controls because 

the boundaries between functional modules are blurred by active degeneracy and the 

connections are less specialized (Finger et al., 2004) . We expect clustering to be 

increased in the mTBI group as a marker for strengthened local cohesiveness and 

specialization (Imms et al., 2019). We thus expected stronger connections between 

modules and better long-range integration combined with short-range specialization, all 

while actively being engaged in a natural viewing task.  
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4.4 Methods 

4.4.1 Participants  

All participants gave their informed consent prior to taking part in the experiment. All 

procedures were in accordance with the Code of Ethics of the World Medical Association 

(Declaration of Helsinki) and were approved by the Research Ethics Board of the McGill 

University Health Center.  

All participants were screened for anomalous vision loss or vision disorders (glaucoma, 

retinal detachment, macular degeneration, etc.). They had normal or corrected to 

normal visual acuity (wore their usual refractive correction if lenses). The average age of 

the participants was 36. years old (SD = 10. years, n=17) in the mTBI group and 26 

years old (SD = 6 years, n=54) in the control group.  

TBI participants 

Participants were recruited through the McGill University Health Center out-patient 

TBI clinic. The diagnostic criteria for mild TBI were: Glasgow Coma Scale score between 

13 and 15, less than 30 minutes of loss of consciousness, and less than 24 hours of 

amnesia regarding events immediately before or after the accident. Patients with mild 

TBI who gave their authorization to be contacted went through a phone screening 

interview. The exclusion criteria were (1) family history of epilepsy or seizure, or the 

administration of prescription medication with increased risk of seizure, (2) severe 

tremors or involuntary movements, (3) general anesthesia in the past 6 months, 

(4) mTBI occurred less than 1 month ago or more than 2 years ago, (5) a history of 

multiple brain injury. Following our previous publication, participants filled a 

questionnaire adapted from Assessment with Mild Traumatic Brain Injury for the 
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Defense Centers of Excellence for Psychological Health and Traumatic Brain 

Injury (Spiegel et al., 2016) investigating blurred vision, migraines, behavioral change to 

palliate visual discomfort etc. None of our self-reported and neuropsychological 

measures (clock drawing test, trail making test, bells test) correlated with any of our 

neuroimaging results. The final sample size of tested mTBI participants was 17, (9 

females).   

Control participants 

Healthy participants were recruited through public announcements in the Montreal 

General Hospital and on social media. Exclusion criteria included conditions 1-4 

outlined above, and no history of any acquired brain injury. The control group was 

comprised of 54 individuals (28 females).   

3.4.2 Stimuli and procedure  

Stimuli were presented using MATLAB® (2014b, The Math Works Inc., Natick, 

Massachusetts) and synchronised with acquisition start time by Sterescopic Player 

(http://www.3dtv.at) and ActiveX connection using a 10-bit graphics card (Nvidia 

Quadro 2000) on a gamma-calibrated 3-D LCD BOLD screen reflected by a mirror 

above the participants’ head. They were placed at a 170 cm viewing distance from the 

monitor, spanning 9.4 by 17 degrees of visual angle at a pixel resolution of 1920 by 

1080. Participants were scanned while watching two five minutes movie clips twice, 

once in 2D, and once in 3D (using polarized glasses), cut from the movie “Under the 

Sea 3-D: IMAX” (Hall, 2009). Whether participants did see two of the four clips in 3D 

was verified after each the scanning session. Scenes included marine fauna and flora, 

constituting naturalistic stimuli with no human made object or other element that could 

have biased representation depending on culture, gender or age. Participants were 

http://www.3dtv.at/
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instructed to fixate on the center of the screen (white fixation cross present for the 

entirety of the stimuli), and a blank screen with fixation cross was presented before each 

clip for four seconds.   

Data acquisition  

Data was acquired on a 3T Siemens TIM Trio scanner (TR=2000ms, Resolution 3mm3, 

TE=30ms, flip angle=76, matrix size=64x64, Field of View=192x192mm, number of 

slices=37) at the Montreal Neurological Institute (McGill University Health Center). 

Anatomical data was acquired first (see parameters from Zhang and Farivar (2020), 

followed by functional imaging.   

3.4.3 Data processing 

Preprocessing 

fMRI data was preprocessed with Analysis of Functional NeuroImages (AFNI) (Cox, 

1996). To minimize spatial blurring, we applied all spatial transformations in a single 

step following slice-time correction. Motion and distortion corrections, and anatomical 

registration were concatenated to have a single estimate of spatial transformation for 

each volume. Temporal denoising and detrending were carried out using ANATICOR 

(Jo et al., 2010).  

Surface-based analysis  

After pre-processing, all data were projected onto cortical surface meshes for the group 

analysis. Cortical surfaces were first extracted for each subject using their T1-weighted 

image, using the Freesurfer package (http://surfer.nmr.mgh.harvard.edu/), and 

corrected errors after visual inspection. The Freesurfer surfaces were then converted to 

SUMA (Saad, Reynolds, Argall, Japee, & Cox, 2004) using a standard mesh model with 

32,000 nodes (ld40; (Argall, Saad, & Beauchamp, 2006)). We selected a mesh of 32,000 

http://surfer.nmr.mgh.harvard.edu/
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nodes (per hemisphere) to maximize resolution and optimize graph computation power 

Statistical analysis was performed on surface-projected data because they preserve 

individual subjects’ topology and allow for better domain-matching across subjects, 

which strengthens statistical power compared to voxel-based analysis (Saad & Reynolds, 

2012). In this scheme, each node from one subject corresponded to the same node from 

other subjects, which allows for inter-subject comparisons.  

Graph Comparisons  

To find global and local differences in functional connectivity (FC) between groups, we 

computed multiple measures of network topologies on thresholded FC in mTBI 

participants and healthy controls.  

Functional connectivity matrices were calculated as correlation matrices (Pearson) 

between pairs of timeseries for each of the 32,000 nodes for each subject and each 

movie clip. We then thresholded the 32k x 32k correlation matrix using false-discovery 

rate (FDR) correction controlled at q*=0.001 (Benjamini & Hochberg, 1995a). On 

average, 5 to 10% of correlations were maintained. Correlation matrices were thus 

converted into cortical network graphs.  

Thresholded FC matrices induce an undirected, unweighted network structure. An 

undirected unweighted network (graph) is a set of vertices 𝑉 = (𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛) and 

edge connections between pairs of vertices 𝐸 = (𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑘). In our example, the 

nodes in 𝑉 will represent a node in the cortical mesh models and edges 𝐸 represent pairs 

of cortical nodes whose functional correlation values survived the thresholding.  

We hypothesized that TBIs have reduced segregation and increased integration, due to 

compensation by their unaffected pathways and circuitry. To test this hypothesis, we 
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computed four measures of how well information is communicated globally and locally 

in graphs: (1) mean degree of nodes, (2) global efficiency (3) modularity, and (4) 

clustering. These were calculated in R (R Core Team, 2013). For a graphic illustration of 

the network measures explored, see Figure 4-1.  

The degree of a node 𝑣𝑖, 𝑑(𝑣𝑖), is the number of edges connected to 𝑣𝑖. As such, the mean 

degree of the whole network 𝐷(𝐺) is the mean of all nodal degrees and measures average 

local connectivity across the whole graph. 

The global efficiency of a graph 𝐺 was measured as the average of reciprocal distances—

the minimum number of edges needed to walk between two nodes, denoted by 𝑑𝑖,𝑗—

between all pairs of distinct nodes 𝑣𝑖, 𝑣𝑗  where 𝑖 ≠ 𝑗: 𝐸𝑔𝑙𝑜𝑏𝑎𝑙(𝐺) =
1

𝑛(𝑛−1)
 ∑

1

𝑑𝑖,𝑗
𝑖≠𝑗    (Latora 

& Marchiori, 2001).  The fraction before the summation accounts for the number of 

pairs of vertices in the graph. Intuitively, 𝐸𝑔𝑙𝑜𝑏𝑎𝑙(𝐺) is large when many distances are 

small, which is when most nodes are separated by short walks in the graph, which in 

effect is a measure of integration in the network.  

Given a parcellation of nodes into functional areas (i.e. assigning a functionally relevant 

(L. Wang et al., 2015) label such as “primary visual cortex”, V2, V3, etc.,  to each node in 

the graph), we can ask how modular the network is with regard to that parcellation. 

Intuitively, modularity relates to how specialized/segregated different regions of the 

brain (graph) are in processing information. We can quantify this notion in the graph by 

𝑄(𝐺) =  
1

2𝑘
∑ [1 −

deg(𝑣𝑖)∗deg (𝑣𝑗)

2𝑘
]𝑖,𝑗 ∗ 𝛿(𝑟𝑖, 𝑟𝑗), where 𝑟𝑖 is the region label of vertex 𝑣𝑖 and 

𝛿(𝑟𝑖, 𝑟𝑗) is 1 if its two inputs are the same and is 0 otherwise (Clauset, Newman, & 

Moore, 2004). In essence, modularity grows as the number of edges within a defined 

region grows. 
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Finally, the clustering coefficient can be understood as a resiliency marker for a given 

network. When two nodes are connected to each other, whether they are both connected 

to the same third node or not determines the local stability of processing. Information 

has more paths on which it can travel between its source and destination on the local 

scale when edges form triangles between three nodes. The clustering coefficient 𝐶𝑖 of a 

node 𝑖 is the likelihood of 𝑎𝑗ℎ=1 when 𝑎𝑖𝑗 = 𝑎𝑖ℎ = 1, defined as 

𝐶𝑖 =
1

𝑘𝑖(𝑘𝑖−1)
Σ𝑖≠ℎ∈𝑣𝑎𝑖𝑗𝑎𝑖ℎ𝑎ℎ𝑗  where 𝑘𝑖 is the number of neighbors of 𝑖 defined as 

 𝑘𝑖 = Σ𝑗∈𝑣𝑎𝑖𝑗 (Barrat, Barthelemy, Pastor-Satorras, & Vespignani, 2004). The clustering 

of a graph is simply the average of all node-specific clustering coefficients.  

 

Figure 4-1 Measures of network organisation. Schematic illustration of increasing levels of connectivity degree, 
efficiency and modularity. Nodes represented as dots, edges as lines connecting the nodes. The number of nodes 
represented is arbitrary. Number and position of edges determine network organisation. Connectivity degree, 
efficiency and clustering are calculated throughout the network as averages so Node-wise (number of edges connected 
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to single grey node) and Pairwise (number of edges taken as steps between two grey nodes) illustrations are added to 
describe a single item in the global average. The networks made of all-black nodes illustrate the measures of network 
organisation when all nodes and edges are taken into account. 

Whole-brain networks and regional sub-networks 

We also sought to study graph structures in sub-networks in addition to whole-brain 

networks (as above). For sub-network analyses, we divided the cortex into early, dorsal, 

ventral and fronto-parietal regions as defined by a large-scale atlas (L. Wang et al., 

2015). We defined a subnetwork as a subset of the vertices of the graph, 𝑉′ ⊆ 𝑉 and the 

edges of the subnetwork are the edges of the full graph which connect vertices in 𝑉′. 

Because modularity is not meaningful within a sub-network, we only calculated mean 

degree, efficiency and clustering of the subnetwork graph of each functional region in 

the parcellation. All graph analytic estimates were carried out using the igraph (version 

1.2.5) and brainGraph (version 2.7.3) packages in the R (version 3.6.3) programming 

language. 

To estimate the effects of mTBI on the various network measures outlined above, we 

computed a mixed model factorial ANOVA with Group (mTBI vs. Controls) x Movie (3D 

vs 2D) for each measure of network organisation (mean degree, efficiency, and 

modularity).  

For stream subgraphs and region subgraphs there was a separate model for each of the 

early, dorsal, ventral and fronto-parietal subnetworks and regions respectively. The 

significance and sign (positive or negative) of the 𝛽𝑡𝑏𝑖 were the focus of our results, 

however the interaction terms including 𝑡𝑏𝑖 effects were also examined. 

For thorough introductions to graph theory for neuroscience, see Rubinov and Sporns 

(2010) and A. Fornito et al. (2015). 
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4.5 Results 

We first consider the linear effects of traumatic brain injury on (1) mean degree, (2) 

efficiency, (3) modularity, and (4) clustering coefficient in thresholded FC graphs in 

sub-networks or the full visual cortex. In all models there were no meaningful 

interactions, suggesting that the stimulus (2D/3D) did not alter the effect of mTBI on 

FC architecture. However, the stimulus condition had a main effect on connectivity 

degree: 3D yielded higher connectivity than 2D (β = 24.4, p < 0.05). We related all our 

findings with our visual symptom questionnaire and found no correlation between with 

each question nor with the total score. 

No change in static architecture of natural viewing network after mTBI 

There was no major restructuring of the visual cortex network engaged in natural movie 

viewing between groups—the regions of interest engaged in the control group were the 

same in the mTBI group and they were connected in a similar network. The dynamic 

aspect of these connections however—the degree, efficiency, modularity, and clustering 

ruling their interaction—was altered.  
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Global network changes in the visual cortex in the mTBI group:  

 

Figure 4-2 Global network measures of the visual cortex during naturalistic viewing in mTBI participants and healthy 
controls. All measures reached statistically significant differences between the two groups.  

In the full-graph models (all nodes from the visual cortex), mTBI had significant effects 

on all metrics: mean degree (𝛽 = 88.4, 𝑝 = 1.30𝐸 − 06), efficiency (𝛽 = 0.08, 𝑝 =

4.28𝐸 − 05), clustering (𝛽 = 0.04, 𝑝 = 0.001), and modularity (𝛽 =  −0.07, 𝑝 = 0.0002).  

The increased mean degree and efficiency support the hypothesis of overcompensation 

in mTBI, however in different ways. An increase in mean degree reflects a global 

increase in connectivity, which agrees with known results of increased functional 

connectivity in mTBI subjects, whereas an increase in graph efficiency points to greater 
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structured reorganization of key connections in the visual cortex (Alex Fornito, Zalesky, 

& Bullmore, 2016).  

Network changes in subnetworks of the visual cortex in the mTBI group  

 

Figure 4-3 Measures of subnetwork organization during naturalistic viewing in mTBI and healthy control 
participants.  

In the sub-networks, efficiency was significantly impacted by mTBI in the ventral 

subnetwork (𝛽 = 0.1, 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.004), in the dorsal subnetwork (𝛽 = 0.08,

𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.01), and in the fronto-parietal subnetwork (𝛽 = 0.09, 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.005). 

Mean degree was also altered in the mTBI group in the ventral subnetwork (𝛽 = 21,

𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.0005), in the dorsal subnetwork (𝛽 = 23, 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.004), and in the 
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fronto-parietal subnetwork (𝛽 = 38, 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.002). The combined increase in mean 

degree and efficiency in the ventral, dorsal and fronto-parietal but not in the early visual 

areas provides evidence that these particular sub-networks drive the global structured 

alteration following mTBI reported above. If mean degree was increased alone, and 

efficiency was not different, the increase in connectivity would have been diffuse and 

unstructured. Interestingly, efficiency was increased evenly across subnetworks, but 

mean degree showed a two-fold stronger increase in the fronto-parietal subnetwork.   

Clustering was increased in the dorsal subnetwork (𝛽 = 0.05, 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.02), and in 

the fronto-parietal subnetwork (𝛽 = 0.06, 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.004).  

Modularity was decreased only in the fronto-parietal stream (𝛽 = −0.02, 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =

0.004). We expected that any effect of TBI on modularity would be a negative one, 

reflecting decreased segregation of processing, and that was confirmed in our analysis. 

Increased efficiency in specific regions of interest in the mTBI group 

The within-region analysis only looked for effects on efficiency in subgraphs, and the 

regions which showed strong effect of TBI were VO2 (𝛽 = 0.12, 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.004), PHC 

(𝛽 = 0.09, 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.008), V3a (𝛽 = 0.08, 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.03), IPS0 (𝛽 = 0.09,

𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.02), IPS1-2 (𝛽 = 0.08, 𝑝𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.05). All other visual areas did not 

show any difference in efficiency between the two groups.  

4.6 Discussion 

For the first time, we have shown that natural movie viewing is a powerful paradigm for 

revealing network changes in mTBI with ecologically-valid levels of demand on the 

patient, and with this paradigm we have provided evidence for the idea that injury alters 
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the cortical networks. Overall, our results point towards two strategies of connectivity 

change in mTBI patients powered by an increase in connectivity. The increase in 

integration (efficiency and mean degree) is counterbalanced by a decrease in 

segregation (modularity) at the macro scale, but at the micro scale, specialization is 

increased (clustering).   

Higher mean connectivity degree 

First, we found a significant global increase in connectivity throughout the visual cortex 

(whole graph) in the mTBI group. This finding was repeated specifically in regions of the 

visual cortex dedicated to complex processing of information—cortical regions beyond 

V4 in the visual system hierarchy, pertaining to both the ventral and the dorsal streams 

as well as the fronto-parietal region. Mean connectivity degree when calculated from 

binary graphs can be understood as equivalent to the significance of the functional 

connectivity analysis. Our results thus corroborate previous evidence of increased 

functional connectivity after mTBI (Iraji, Chen, Wiseman, Welch, et al., 2016; Muller & 

Virji-Babul, 2018). An increase in functional connectivity, or in mean connectivity 

degree, does not inform us about the changes to the structure of cortical networks after 

injury. For this reason, we compared other measures of network organisation between 

healthy controls and mTBI participants as an investigation of network reorganisation 

following mTBI.  

Higher global efficiency 

Second, we found a significant increase in global efficiency throughout the visual cortex, 

and within regions dedicated to complex processing of visual information (beyond V4) 

as well. The global graph of the visual cortex and within the ventral, dorsal and fronto-

parietal subgraphs, nodes were generally less functionally distant to other nodes in the 
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mTBI group than they were in healthy controls—there were less edge-bridges to take 

between two nodes. Another way to appreciate increased efficiency is to understand it as 

greater integration in the mTBI group. This finding needs to be interpreted in parallel 

with the first one because they complement one another—the increase in connectivity 

degree could have been diffuse, if not for the increase in efficiency and clustering 

without an increase in interregional connections—and this is discussed further below. 

Interestingly, both parameters were increased both in the whole visual system network 

but also in the same specific subnetworks. Together, these two findings show a 

purposeful increase in connectivity towards better global integration which suggests 

compensatory mechanisms are involved in network reorganization following mTBI.  

Lower modularity 

Our third finding was that of a decreased modularity after mTBI in the whole visual 

cortical network as well as within the fronto-parietal subnetwork. This subnetwork is 

particularly important for the integration of complex visual features [more than 1 ref] 

(Corbetta et al., 1995) that occur in scenes in motion. A decrease in modularity in this 

subnetwork suggests higher co-recruitment of modules to process feature integration in 

the mTBI group. Decreased modularity combined with an increase in efficiency reflects 

an increase in functional segregation. These two parameters’ changes overlapped in the 

complete visual cortex network and in the fronto-parietal subnetwork, suggesting that 

segregation is affected by mTBI specifically at high level of processing. We should note 

that based solely on the connectivity results, we would have expected an increase in 

modularity. The fact that modularity was decreased in the mTBI group is a strong 

indicator that the network changes were not diffuse, and the change had a functional 

purpose.  
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Higher clustering 

We found increased clustering in the mTBI group in the whole visual network and 

within the dorsal and fronto-parietal subnetworks. Thus, these two subnetworks drove 

the global results and there are specific areas where there were more interconnected 

triplets of nodes in the mTBI group than in healthy controls. Our results are in line with 

previous publications using graph analysis of neuroimaging data from mTBI patients 

(Tsirka et al., 2011; Yuan, Wade, & Babcock, 2015; Yuan et al., 2017) and moderate to 

severe TBI patients (Verhelst, Vander Linden, De Pauw, Vingerhoets, & Caeyenberghs, 

2018). A high clustering coefficient reflects a network with many cliques of nodes. The 

strategic accumulation of clusters increases segregation for local specialization (Imms et 

al., 2019). Functional specialization at the local scale was increased. Higher clustering 

might be in line with an adaptative or compensatory reorganization of the visual 

network following mTBI, however it can be a costly one—it supposes an increase in the 

number of steps needed to go from one node to another (Alex Fornito et al., 2016). This 

is corroborated by findings of increased path length following mTBI (Imms et al., 2019) 

but it is not in contradiction with the increase in efficiency that reflects a decrease in 

steps needed to join two nodes at a global scale. Two distant nodes tended to be 

functionally closer in the mTBI group than in healthy controls but two closely-linked 

nodes tended to be functionally further away in the mTBI group.  

Taken together, these findings reflect a functionally relevant reorganization in the 

topology of long-range connections, which facilitates inter-regional communication for 

complex processing of visual information. It suggests as well that regions functionally 

defined via probabilistic methods in healthy controls might be working together 

following mTBI to solve processing problems usually handled by single modules in 

healthy controls. Finally, the increase in local specialization contrasts with the decrease 
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in global specialization, and these effects were overlapping locally only in the fronto-

parietal subnetwork.   

Graph theory and mTBI 

Previous studies using resting-state fMRI had reported increases (Iraji, Chen, Wiseman, 

Welch, et al., 2016; Kaushal et al., 2019) but also decreases (Mayer et al., 2011; Stevens 

et al., 2012) in functional connectivity following mTBI at rest and these changes were 

both paradoxically correlated with behavioral performance and mTBI symptomatology 

(Rigon, Voss, Turkstra, Mutlu, & Duff, 2017; Zhou, 2017). The present paper shows that 

connectivity degree is increased in the cortical networks engaged by natural movie 

viewing as well, although we could not relate our findings to visual complaints. We 

speculate that the decrease in activity in the early visual cortex (Ruiz et al, under 

submission) and the compensatory increase in mean connectivity degree throughout 

visual areas are maintained across very different brain states provoked by very different 

processing demands because the injured brain is constantly overloaded.  

We are aware that our results regarding global efficiency are not in line with some of the 

previous literature on mTBI (Caeyenberghs et al., 2014; Zhou, 2017). However, we 

believe that our choice of task and stimuli (instead of using resting state) drove this 

difference—the increase in connectivity measured during resting-state fMRI could be 

unstructured and reflecting of diffuse damage to the global cortical network whereas 

natural viewing could recruit one or a few specific networks with tight processing within 

their nodes. In this scenario, natural stimuli could represent an active task that elicits 

efficient visual processing while resting state reflects spontaneous functional networks, 

meaning participants are not engaged in a common task that would grasp any particular 

network. 



148 
 

The idea that the brain is stuck in a cognitive state or experiences difficulties switching 

between a state and another has been previously discussed but has yet to be related to 

network measures. For example, concussed adolescents were found to be “stuck” in one 

of the three cognitive states investigated in a pilot study by Muller and Virji-Babul 

(2018) with the “stuck” state being one that specifically recruited attentional networks. 

In the perspective of network control theory, the architecture of a network constrains 

which transitions are easy to execute and which states are easy to maintain (J. Z. Kim et 

al., 2018). Mathematically, greater modularity makes it is easier to transition between 

states and to keep a given state (J. Z. Kim et al., 2018). Much like a pure conceptual 

network in physics, the human brain can be conceived as a complex system which can be 

manipulated into a cognitive state by changing excitatory and inhibitory input it receives 

as “cognitive control” (Gu et al., 2015). This could mean that the less modular a cortical 

network becomes following an mTBI, the more difficulties experienced by the patient in 

terms of state switching and maintain a state (i.e., for sustained attention). Although we 

did not find a relationship between visual complaints and modularity, others have 

shown that cognitive training was limited by decreased modularity (Arnemann, Chen, 

Novakovic-Agopian, Gratton, Nomura, & Esposito, 2015). 

Recent studies investigating the balance in connectivity within and between networks 

following mTBI have not reached a consensus, possibly because functional segregation 

and integration might be task and network dependant. Using resting-state fMRI for a 

connectome-wide investigation of the cortical network following TBI, connectivity was 

reportedly increased within networks and decreased between networks (Iraji, Chen, 

Wiseman, Zhang, et al., 2016). This imbalance would support the idea that injury 

increases segregation.  
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In contrast, graph analysis of cortical networks estimated from fMRI during an 

N-back memory task revealed decreased segregation between task-positive networks 

and the Default Mode Network (DMN), and increased connectivity within the DMN but 

not task-positive networks specifically during the more cognitively demanding condition 

in the mTBI group (Sours, Kinnison, Padmala, Gullapalli, & Pessoa, 2018). It is possible 

that our results denote a cognitive state between these two levels of demands. At low 

levels of cognitive load, another study using an easier N-back task reported no change in 

segregation between task-relevant networks but found increased connectivity within 

networks as we did, but in our case using naturalistic viewing (Bernier et al., 2017).  

Limitations 

The present paper relies on a novel application of complex network theory to analyze 

stimulus-driven functional connectivity and has revealed three important new 

findings—when watching a naturalistic movie, the visual cortex is (1) more connected, 

(2) more efficient, and (3) less modular after mTBI. To draw robust conclusions about 

whether connectivity changes following mTBI are structured or unstructured, we would 

like to compare our results of increased efficiency and clustering with a rewired null 

model—where edges are shuffled to see whether architectural descriptors were mainly 

driven by the increase in connectivity degree or whether the changes were structured. 

Although our results are based on high-resolution graphs (32,000 nodes per 

hemisphere), nodes cannot be understood as neurons and edges cannot be understood 

as axons. Ideally, we consider the neuron to be the smallest processing unit, but it is not 

currently possible to evaluate them individually in humans, especially not in the context 

of network science. For this reason, it is noteworthy that the activity of the nodes on 

which functional connectivity was based and thus the graphs were constructed, is an 

average of all BOLD activity in these nodes. On another level, the graphs analyzed here 
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were binary—non-weighted—and so we have not looked at inhibitory or excitatory 

interactions although these might be relevant to understand mTBI (Carron et al., 2016; 

Hunt et al., 2011; Krivitzky et al., 2011; Spiegel et al., 2015).  
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Chapter 5 Discussion and Future Directions 

5.1 Summary of novel contributions 

In this thesis, I have shown that mTBI induces long lasting changes in cortical 

processing of simple visual stimuli by using non-invasive methods and modelling.  

The elementary building blocks of visual perception are processed similarly in the mTBI 

population except for the fact that irrelevant activity clouds their integration more than 

it does in healthy controls. Internal noise is increased although efficiency of contour 

integration is maintained, which supposes a compensation to achieve normal levels of 

visual performance. Interestingly, although patients report visual complaints frequently 

and for long periods of time following injury, it is not common or easy for clinicians to 

find behavioral evidence of visual dysfunctions. My first novel finding shows that simple 

behavioral measures can be enough to reveal critical deficits in visual processing when 

coupled with mechanistic models. Until now, only performance, sensitivity and capacity 

measures had been used, which were limited in their interpretation as they only 

reflected the visual system’s integrative power and not its internal noise limitations.  

Although isolating visual functions is a powerful mechanistic approach, it is difficult to 

relate results from highly specific tasks to common visual complaints of mTBI patients. 

My second novel contribution was to show that naturalistic movie viewing is a low-

demanding task that is engaging enough to show major cortical abnormalities following 

mTBI. My results show that mTBI affects the synchrony between participants—

timeseries of the mTBI group do not fit my normative models of cortical activity—and 

the synchrony of cortical activity within participants. I found that cortical activity was 

decreased in early visual areas and possibly increased in fronto-parietal regions as 
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compensation. I also found that functional connectivity between visual regions of 

interest was affected by mTBI, and that the fronto-parietal regions were particularly 

more connected to early, ventral and dorsal regions. The specific regions that showed 

enhanced connectivity are related to common deficits found in mTBI participants but 

could not be correlated with our measures of visual complaints.  

Lastly, I applied a graph theoretical approach to investigate the architecture of the 

functional network activated by naturalistic stimuli. Movie viewing has been shown to 

elicit common temporal patterns among healthy controls, but I have shown that they are 

enough to reveal network changes in mTBI participants for the first time. The particular 

changes that I found were in alignment with some but not all previous literature as 

certain parameters show inconsistent changes depending on which network is 

investigated and the energy demands of the task used by the authors. I have found 

evidence for increased local specialization but decreased global segregation. I also found 

increased integration at the global scale. mTBI network investigations have mostly 

focused on resting-state data and the few active-task studies have used conventional 

block designs that could force results to be biased because of particularly demanding 

tasks.   

5.2 Noisy cortical integration: implications and considerations 

Systemic implications of noisy visual integration 

Although the significant role of the visual cortex in contour representation is 

indisputable, other areas could potentially be crucial. We assume that the sources of 

noise in contour integration would be within the visual cortices, most probably V4 

because contrast noise does not affect performance at the task, but what if the source of 
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noise was from somewhere not yet considered? Or alternatively, what if the noise in V4 

or V1 circuits is modulated by a more distal brain region?  

Attention may modulate orientation responses as early as the lateral geniculate 

nucleus (Ling, Pratte, & Tong, 2015). Top-down expectations have a facilitative effect on 

visual interpretation (Bar, 2004), and the dynamics of bottom-up interactions in 

predictive coding (Friston, 2005) stipulates that high-level predictions act on errors 

specifically (Rao & Ballard, 1999). The neural correlates of this effect have been 

measured in V1, showing increased performance and informational improvement of the 

representation in area V1, while decreasing BOLD-related signal (Kok, Jehee, & 

de Lange, 2012). Attention is not a unidirectional modulator of visual cortical 

responses—in a discrimination task, attention modulated V4 neurons differentially, by 

either increasing or decreasing spike count correlations between pairs of neurons 

depending on the coherence between the neuron and the perceptual decision (Ruff & 

Cohen, 2014). 

The neural mechanisms underlying spatial attention arise from the prefrontal 

cortex, likely through the dopamine-mediated modulation of long-range connections 

between the FEF and the visual cortex (Noudoost & Moore, 2011). The disruption of 

cortical signal through Transcranial Magnetic Stimulation (TMS) noise induction in 

V5/MT is compensated by drug enhancement of dopamine activation, meaning that 

frontal dopamine improves SNR by reducing noise in the visual cortex (Yousif et al., 

2016). Dopamine has also been shown to enhance SNR by reducing noise within 

prefrontal areas, both in the normal (Yousif et al., 2016) and in the diseased brain 

(Georg Winterer & Weinberger, 2004). The long-range control of cortical visual noise is 

further supported by the evidence of decreased BOLD-related activity and increased 
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metabolic demands (cerebral blood flow) following dopamine agonist injections 

(Zaldivar, Rauch, Whittingstall, Logothetis, & Goense, 2014).  

Implications of the Linear Amplifier Model 

Another approach to the equivalent noise method is that of the Perceptual template 

Model (PTM). It considers multiplicative internal noise in addition to the classic LAM 

additive internal noise. Multiplicative noise is not invariant to the signal’s properties—it 

is proportional to the signal strength instead (Z. L. Lu & Dosher, 1998, 1999). This 

model allows for three independent predictions of discriminability modulation 

mechanisms—signal enhancement (additive internal noise reduction), distractor 

exclusion (narrowing of template filter), or internal noise reduction (multiplicative noise 

reduction). Lu & Dosher’s findings suggest attentional mechanisms reflects reduction in 

internal additive noise (see Figure 5-1). Increase in additive internal noise, in contrast, 

may underlie saccadic suppression. Saccadic suppression refers to the loss of 

detectability of a stimulus presented during an eye movement or right before. In an 

equivalent noise study of saccadic suppression using the PTM, additive noise increase 

was shown as the underlying mechanism here as well (Watson & Krekelberg, 2011).  
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Refining their findings 

obtained with the LAM model, 

Cavanaugh et. al. used the PTM 

to demonstrate that lesion-

related cortical blindness 

recovery and residual perceptual 

deficits in intact cortical regions 

were limited by internal noise, 

more specifically, additive 

internal noise (Cavanaugh et al., 

2015). 

 

 

 

Noise in other clinical conditions with impaired cortical integration 

   The characterization of clinical populations such as schizophrenia and autism 

have contributed to shaping the concept of noise. In schizophrenia, event-related EEG 

recorded during an oddball task showed a different noise pattern in patients compared 

to normals, both spatially throughout brain regions, and spectrally throughout 

frequency bands. Patients exhibited increased broadband background noise, marked 

frontally, and so did their siblings in a lesser degree (G. Winterer et al., 2004). More 

generally, a recent review about abnormal oscillations and synchrony in schizophrenia 

(Uhlhaas & Singer, 2010) highlighted multiple studies, relying on a broad range of 

Figure 5-1: a, c, e: diagrams showing the potential targets of 

attention in the PTM,  illustrated respectively in  b, d, f: thresholds 

against external noise functions, modelled by the PTM, revealing 

changes b: at low levels-  d: at high levels-  f: across levels- of 

external noise (adapted from Z. L. Lu & Dosher, 1998) 
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methods such as EEG (Kwon et al., 1999; Light et al., 2006) and DTI (Rotarska-Jagiela 

et al., 2008), showing impairments in the integrity of signalling but also in the overall 

relative distribution of activity. Thus, the relative abnormality and localization of 

fluctuations seem to become more informative than the absolute amount of noise.  

Increased intra-individual variability, “wobble”, or “lability” has been reported 

both in behavioral responses (MacDonald, Nyberg, & Bäckman, 2006) and in 

neuroimaging (Rubenstein & Merzenich, 2003) in the autism spectrum disorder (ASD). 

Even in high-functioning adults on the autism spectrum, and despite exhibiting normal 

behavioral responses to a one-back task to sensory stimuli, BOLD-related activity 

variability within subjects was still higher than controls (Haigh et al., 2015). In children 

with ASD, evoked EEG variability was found to be greater than neuro-typical controls 

suggesting an impaired synchronization of activity and increased neural noise in ASD 

(Milne, 2011). Modelling of internal noise on psychophysical data as an estimation of 

neural noise using the equivalent noise method revealed higher internal noise in ASD 

that correlated with autistic traits (Vilidaite et al., 2017) allowing for a very relevant 

conceptualization of noise. Recent advancements in modelling and methodology have 

allowed us to operationalize neural noise as a biomarker for cognitive disorders, but we 

still lack in depth understanding of the mechanisms underlying noise control.  

5.3 Functional changes after mTBI: mechanisms of recovery 

Three main opposing views regarding the changes in the neural organization 

following mTBI have been proposed to explain the findings from functional imaging of 

the injured brain (the definitions here are a synthesis of multiple reviews including A. 

Fornito et al. (2015) and Medaglia et al. (2012)): 
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(1) Reorganization: instantiation of novel neural networks via permanent 

rewiring, supposing a change in the neural substrate without which cognitive 

performance would decline; 

(2) Compensation: activation and recruitment of specific brain regions while 

cognitive performance is maintained, with no relevance given to the 

permanence or transience of the mechanism, nor to its structural correlate (ie. 

Diffuse axonal injury); 

(3) Latent processes: the challenged system focuses metabolism onto attentional 

resources and cognitive control to meet task demands, causing distributed 

changes of altered functional engagement akin to DAI; 

Importantly, the latent hypothesis implies that brain activity that was heightened 

by trauma is reduced by training and successful recovery (restored performance), 

virtually bringing behavior “back to normal” in parallel with its neural substrate. Even 

the activation of brain areas in both the clinical and non-clinical cohorts without 

significantly showing hyperactivity in the clinical group can be interpreted as latent 

processes when their activation is behaviorally relevant at lower levels of task difficulty.  

For compensatory recruitment to occur, a system necessarily needs to show 

functional overlap between two regions of the network, but two subsystems can be 

sufficient on their own to carry out a task. That capability is referred to as degeneracy 

and a system that has that characteristic doesn’t necessarily compensate with higher 

levels of activity in one area if the functionally overlapping area is compromised as long 

as it is sufficient to carry out a task alone (A. Fornito et al., 2015). Furthermore, 

compensation can occur even if degeneracy is partial or incomplete, particularly when 

there is evidence of hyperactivity.  
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Evidence supporting the reorganization theory: 

Patients suffering from post concussive syndrome showed hyperactivity and additional 

recruitment of brain regions of the attentional and working memory networks while 

performing an n-back and a counting stroop task (Smits et al., 2009). Because they did 

not find a relationship between time since injury and this reorganization, it can be 

interpreted as a permanent rewiring change.  

 In what could be seen as an attempt to distance themselves from the latent 

theory, Rasmussen et al. (2008) investigated motor and visual dysfunctions in the TBI 

population within a varying processing load paradigm. Participants performed a single 

task at a time, and then both at the same time. They found that although the cortical 

activity was reduced in the single task condition, it was increased in the dual task 

condition, and that the latter also induced additional recruitment. The increase in 

activity in the regions recruited by the single tasks (a motor task and a visual search 

task) was accompanied by an increase in a region that was not recruited by the single 

task for that group: the bilateral medial superior frontal gyrus and left cingulate sulcus. 

These are extended visual search networks (Kübler, Dixon, & Garavan, 2006) that were 

not used by the controls suggesting a shift from the efficient automatic parallel strategy 

of visual search to a more effortful serial method, which is utilized in healthy controls 

during more difficult visual tasks (Treisman, 1991). That last detail could reverse the 

support of these findings and instead put them in the perspective of the latent theory. 

 Contralesional excitability was increased in the forelimb motor cortex of the rat 

after controlled cortical impact injury, accompanied with reduced sensory evoked 

potential latency but not by BOLD until much later than the 3-day post injury mark 

(Verley et al., 2018). Contralesional cortices seemed to undergo an early stage of 
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hyperexcitability, followed by a return to normal and then again, a late stage of 

hyperexcitability. The authors speculate that the excitability of the remote cortex 

inhibits ipsilesional activation to restore balance between excitation and inhibition.  

Evidence supporting the compensation theory:  

While some cortical regions showed a reduction in activity (the left inferior 

parietal gyrus), others significantly increased (that of the right inferior frontal gyrus) in 

TBI patients compared to controls while the participants were performing a working 

memory task (Maki Kasahara et al., 2011), combined with a compromised functional 

connectivity between the two, their data suggests a compensatory recruitment of an 

otherwise functionally overlapping area.  

In the TBI group (although formed of only five patients), performance at a Stroop 

task and patterns of brain activity were similar to those of controls but activation of the 

was diminished in the anterior cingulate cortex (ACC) as compared to the control group 

(Soeda et al., 2005), akin to patients dealing with attention deficit/hyperactivity 

disorder whose performance was lower than controls (Bush et al., 1999), reflecting 

failure of network recruitment (Edward Bullmore et al., 1999).  

Lower performance was correlated with lower brain activation measured with 

functional near-infrared spectroscopy in patients following mTBI during 

neuropsychological testing focused on word memory, spatial design memory, digit-

symbol substitution (symbol matching), and working memory (Kontos et al., 2014).  

A pediatric cohort of TBI patients was selected in a study evaluating motor 

dysfunction by tasking them to perform cyclical movements of their hand and foot in an 

iso and non-iso direction in the scanner (Caeyenberghs et al., 2009). The performance in 

the two groups were similar which allowed the team to interpret brain activation 
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differences as compensatory mechanisms: the medial and anterior parietal areas as well 

as the posterior cerebellum showed hyperactivity compared to controls meaning that the 

recruitment of neural resources for attentional and somatosensory processes was 

increased.  

Interestingly, when looking at the effects of visuospatial training on functional 

connectivity during a visual attention task (Y.-H. Kim et al., 2008), the pattern of results 

can be partially interpreted as subserving both the compensatory theory and the latent 

theory. Behavioral performance was worse in the TBI group at first (both in terms of 

visual attention and in terms of reaction time) and improved after training. These 

cognitive improvements were accompanied by changes in the attentional network 

activation. In support of the compensatory theory, Y.-H. Kim et al. (2008) found that the 

activity of the ACC and the precuneus nucleus increased after training.  

With no influence on performance at a task of executive control (working 

memory and inhibitory control), an mTBI group of children showed increased activity in 

the posterior cerebellum with the addition of a demand for inhibitory control which was 

correlated with self-reported post-concussive symptoms (Krivitzky et al., 2011).  

TBIs presented a positive correlation between performance at an n-back task and 

letter-number sequencing subtest and activation of the prefrontal cortex but a positive 

one with the right parietal and left parahippocampus for the low and high working 

memory loads respectively (Sánchez-Carrión et al., 2008). Patients showed less 

activation than controls in the fronto-parietal regions which was positively associated 

with performance, so this article supports the compensation hypothesis.  

With comparable task performance at a working memory, a TBI group with no 

focal lesion but with evidence of diffuse axonal injury with chronic symptoms showed 
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enhanced recruitment of the prefrontal cortex (middle frontal gyrus and right 

ventrolateral inferior frontal gyrus) and posterior cortices (posterior parietal and left 

temporo-occipital junction) (G. R. Turner & Levine, 2008). These disturbances were not 

attributable to load factor (task difficulty) nor to processing speed (response time), 

instead, the authors speculate that efficiency of processing was limited by diffuse injury.   

Evidence supporting the latent theory:  

However, in the same study (Y.-H. Kim et al., 2008) found a decrease in frontal 

activity after training. This suggests a negative relationship between that region’s 

activity and behavioral performance, and thus supporting the latent theory instead. 

In this perspective, an increase in brain activity is a sign of “computational over-

heating”, marked neural effort and disproportionate usage of resources. Cognitive 

fatigue can be experienced by patients sentiently and is part of the common self-

reported complaints. While healthy controls showed decreased activity in the middle 

frontal gyrus, superior parietal cortex, basal ganglia and anterior cingulate, TBI 

participants showed an increase instead, during a symbol digit modality task (Kohl et 

al., 2009), in support of the latent theory.  

In an investigation of the functional changes endured after a TBI and their effect 

on working memory, G. Turner, McIntosh, and Levine (2011) found that cortical areas 

pertaining to the prefrontal cortex were activated in both the TBI and the heathy control 

groups but were functionally relevant at an earlier stage of difficulty for the TBI group, 

showing altered functional engagement.  

At a classic working memory task—the n-back—practice reduced activation of the 

PFC and the ACC as novelty and difficulty decreased (Medaglia et al., 2012). Although 

the area seemed to be dedicated to a similar function of support in the TBI group as it 
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did in healthy controls under higher task load, it was evident at lower threshold of 

difficulty.  

 A bimanual coordination task showed overactivation of the fronto-parietal areas 

during movement execution which Chen et al. (2008) interpreted as an increase in 

sensory integration,  but underactivation during preparation in the TBI group compared 

to controls (Gooijers et al., 2016). There was more overlap between the two functional 

patterns (execution- and preparation-related) in the TBI group, suggesting a decrease in 

neural differentiation. Because the performance in the TBI group was poorer as well, 

reflecting a negative link between activity and performance, providing evidence for the 

latent hypothesis.  

 Another investigation of cognitive control revealed increased activation within 

the left precentral gyrus and bilateral cingulate, the medial frontal, middle frontal and 

superior frontal gyri, in the TBI group which was specific to a condition of stimulus-

response spatial incompatibility), while performance was similar between groups 

(Scheibel et al., 2007).  

 Working memory load has been shown to be correlated with increased activation 

of memory networks (E. E. Smith, Jonides, Marshuetz, & Koeppe, 1998) but in an 

auditory n-back task, T.W. McAllister et al. (1999) found an increase between the 0-

back and the 1-back but not the 2-back in the control group while the TBI group 

continued to show an increase in activation as the task difficulty went on. This increase 

was not concomitant with a performance drop however, so the authors attributed it to 

compensation and not task difficulty because the latter would have caused a large 

increase between the 1-back and 2-back conditions (much harder) and a diminished 

performance as well. Importantly, I classified their findings within the latent processing 
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framework because I believe that their results resonate with the theory in the fact that 

the areas of increased activation were not recruited in addition to the normal pattern of 

activation, and because that hyperactivity was tightly related to processing load. The TBI 

group did show some activation during the low processing load level of difficulty but 

that significantly increased in the high load condition compared to controls who barely 

showed an increase there. The authors speculate that the subjective feeling of memory 

problems in the TBI group could be due to the fact they are aware of having to work 

harder than normal to attain a basic level of capability, even thought performance was 

not different. They propose to go deeper in that direction and to present TBI patients 

with tasks of even higher levels of processing load.  

“the differences seen between control subjects and this group of very mild 

TBI patients appear to have more to do with the timing, allocation, and 

modulation of processing resources than an actual decrement in available 

resources”  

(T.W. McAllister et al., 1999) 

 In the same vein, the default mode network (DMN) showed a greater deactivation 

in the TBI group during a choice-reaction task (David J. Sharp et al., 2011) meaning 

inhibition was increased when the system was faced with a more consequent cognitive 

load.  

 For example, working memory was diminished by TBI but impairments at a 

theory of mind task were no longer apparent when working memory load was controlled 

(Honan, McDonald, Gowland, Fisher, & Randall, 2015). 
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 In an overview of the opposing views discussed in this section, namely the latent, 

reorganization and cognitive control theories, Hillary (2008) argues that hyperactivation 

of the prefrontal cortex during working memory is not due to compensation nor 

reorganization. Cortical regions that anatomically belong to areas of “support” in 

healthy controls and that hyperactivate in clinical populations in a load-dependant 

fashion are not evidence enough to claim network reorganization (Hillary, 2008).  

In this thesis, we have not designed our experiments to disentangle whether 

cortical changes following mTBI were attributable to one of these explanations. We 

speculate that our Chapter 3 results can be due to compensation, possibly from latent 

processes given that the regions involved in the cortical response are similar in both 

groups. However, we can’t interpret these results in terms of clear compensatory 

mechanisms.   

5.4 From compensatory connectivity for cortical deficits to network 

changes following mTBI 

In the third chapter we have shown that cortical activity of early visual areas is 

impaired even during natural vision, and that functional connectivity between most 

visual regions is increased. These two results can be understood as increased 

asynchrony between participants and increased synchrony within participants following 

mTBI. Asynchrony from normative cortical activity is a sign of pathology. The fact that 

participants who had sustained an mTBI were found to be less synchronous in their 

processing of naturalistic movies as a group is revealing of a deviation from the norm. 

The synchrony of processing found using naturalistic movies in healthy controls is 

interpreted as a common substrate, meaning that holistic stimuli elicit similar temporal 

patterns across individuals. By understanding what is common between individuals, we 
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can get closer to understanding brain function—and dysfunction. People who have 

suffered from a mild TBI are still able to see the world, perceive it and interact with it. In 

other words, their cortical performance is sufficient to respond to daily demands, but 

the way their visual system handles these demands is shifted. Understanding such shifts 

brings us closer to designing training paradigms and treatments in hopes of normalizing 

processing and healing dysfunctional patterns that might contribute to cognitive fatigue.  

Beyond diffuse white matter damage and the initial theories of disconnection to 

explain cognitive deficits in TBI, recent technical and technological advances have made 

it possible to incorporate hyperconnectivity and hyperactivity in our understanding of 

brain damage and brain disorders (Marco Catani & ffytche, 2005). Investigating 

network dynamics will help determine whether different regions are involved in 

dysfunctional processing, or whether the same regions are organised differently 

following mTBI. 

In a study linking structural network descriptors to performance at neuropsychological 

tests, van der Horn et al. (2017) found that clustering was inversely correlated with 

processing speed, and that symptomatic mTBI participants tended to have higher 

processing speed than non-symptomatic participants. However, the authors did not find 

that clustering was increased nor decreased as compared to healthy controls. If we look 

at our results from chapter 4, lower clustering could be a “more normal” local 

connectivity organization, and thus, local connectivity change (towards an increase in 

clustering) would be correlated positively with cognitive performance in the case of 

Horn et al’s study. This would support the idea of a compensatory mechanism where 

performance would decrease in the absence of cortical network change.  
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This thesis explored the cortical processing of vastly different visual stimuli: refined 

elementary visual integration and complete natural vision. Conclusions from these 

experiments can be taken as descriptions of the cortical deficits following mTBI from 

two ends of the complexity spectrum. Simplistic stimuli such as contours evoke 

abnormal cortical dynamics in mTBI participants, marked with increased internal noise 

as modelled by the equivalent noise method. In this paradigm, internal noise during 

contour integration reflects neural noise at the level of early cortical columns that 

laterally interact to integrate Gabor elements. Complex and natural movies on the other 

hand, evoke abnormal cortical dynamics marked with asynchrony between individuals—

which can be understood as group variability and thus another concept of noise. We also 

found synchrony within individuals—which we speculate could be an increase in 

redundancy, yet another conceptualization of noise. Early visual areas tended to be less 

signal-driven which in a sense is another evidence of abnormal cortical noise levels. 

Network changes in response to natural stimuli have revealed a surprising 

reorganization whereby the connectivity increase was accompanied with efficiency and 

clustering increases. This reflects back to within-subject redundancy. Internal noise as a 

very concrete mechanistic element is distinct from redundancy of cortical signalling as 

the former does not contribute to meaningful processing. However, the latter could 

support signal transmission as a confirmation, validation, or repetition, aimed at 

strengthening the fragilized cortical system and prevent signal loss by having multiple 

back-up messages. In this view of mTBI, local errors—noise—are compensated for by 

increased integrative power and redundancy at a larger scale—integration. This 

contributes to disproportionate resource consumption and possibly cognitive fatigue. 
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5.5 Clinical and social considerations 

The DSM-5 (released in May 2014) does not include post-concussion syndrome 

as a separate diagnostic entity. As a major change, clinicians are now instructed to 

diagnose “major or mild neurocognitive disorder due to traumatic brain injury” 

depending on the severity of cognitive deficits and functional disability present, 

regardless of initial injury severity (e.g., whether a patient's initial GCS score was 13–15 

or below 8) (Mayer et al., 2017). 

Fortunately, the disrespectful opinion that patients might be exaggerating 

psychological symptoms and morphing them into neuro-cognitive impairments is no 

longer a trend among researchers or clinicians. The neurobiological substrates of PCS 

have been under serious investigation since then. The importance of the structural and 

functional neurological aspect of the neuropsychological symptoms burdening the 

clinical population as been reaffirmed (Erin D. Bigler, 2003). It is now accepted that 15 

to 30% of mild TBI patients suffer from long term symptoms (Alexander, 1995; 

Bazarian et al., 1999; Erin D Bigler, 2008; Rimel, Giordani, Barth, Boll, & Jane, 1981; 

Vanderploeg, Curtiss, Luis, & Salazar, 2007).  

The total sample of mTBI patients who participated in the experiments presented 

in this thesis was comprised mostly of women (51 women and 21 males). Most studies 

focus on sport related concussion and or military/blast related concussions, so samples 

tend to include more men than women (Merritt, Padgett, & Jak, 2019). However, mTBI 

prevalence is higher in women who also report more symptoms and tend to have weaker 

performance at visual memory tasks (Merritt et al., 2019). Although we did not find an 

effect of sex on any of our behavioral or neuroimaging measures, it is important to 

consider sex in mTBI studies. For example, women tend to have a higher increase in 
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cortical thickness than men after a concussion, and also to score higher on a 

posttraumatic stress scale, and these two measures are correlated (Shao et al., 2018). It 

is possible that the pathophysiology of mTBI is different between sex, or gender, even 

though to our knowledge, gender is not a common reported characteristic of 

participants.  

We did not include ethnicity in our demographic reports, but emerging evidence 

suggests that people of color tend to show higher prevalence of concussion than white 

people and receive less care for concussion management which would affect post-

concussive symptoms and increase the risk of worse injuries (Brenner et al., 2020). 

These findings show a difference in incidence and treatment between ethnicities but 

representation in experimental studies matters even without differences in 

pathophysiology.  

5.6 Final conclusion and future directions 

This thesis has brought forth evidence for altered cortical dynamics in the visual 

processing of simple and natural stimuli following mild Traumatic Brain Injury. We 

have applied methods from the field of physics to complex neuroscience questions, 

approaching the perceptual system as a signal amplifier and as a network of connected 

nodes. We found increased levels of internal noise in the processing of contours, and a 

relationship between contour integration efficiency and changes in visual habits. We 

found that natural vision revealed deficits of activity in the early visual cortex and 

compensatory tendencies in fronto-parietal areas. Natural movies also showed that 

mTBI participants tended to have increased functional connectivity throughout the 

visual cortex and particularly in fronto-parietal areas. The novel application of graph 

theoretical analysis of the mTBI cortical network activated by natural vision confirmed a 
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general connectivity degree increase and revealed increased global efficiency, increased 

clustering and decreased modularity throughout the visual cortex. Similar findings were 

repeated in subnetworks of visual cortices, with an emphasis on complex processing 

areas. Findings from natural vision did not correlate with self-reported visual symptoms 

nor with our neuropsychology measures, which supports the idea that mTBI alters 

cortical dynamics regardless of behavior.  

Future studies would benefit from strong collaborative designs involving 

clinicians and researcher because subtle behavioral dysfunctions require rigorous and 

expert-driven investigation. For example, a more detailed visual complaint 

questionnaire could have revealed crucial relationships with our cortical modelling—

internal noise in good continuity perception, synchrony with normative timeseries 

models of cortical response to naturalistic movies, and network changes. Without such 

relationships, we are still advancing in the dark and unable to properly relate patient 

experience to neuroscientific findings regarding abnormal cortical processing. This is 

necessary if we want to build treatment to address chronic symptoms of mTBI because 

we need to know whether normalizing cortical activity benefits the patient first and 

foremost.  

In our fourth chapter we have found evidence of macro scale and local scale 

reorganization of connectivity in mTBI. However, the increase in efficiency and 

clustering could be a consequence of sheer mean degree increase. Thus, mathematically 

shuffling connections in each participants’ network to essentially create null models 

could rule out degree as a confounding variable. This could show that network changes 

in mTBI are structured by design and not simply by collateral chance. In any case, our 

results show that the cortical network activated by naturalistic movie viewing is altered 
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by mTBI, and these changes affect connectivity within and between subnetwork, their 

global efficiency, modularity, and clustering.  

Advances in computational capacities have allowed researchers to handle 

unprecedented quantities of brain data and take impressive leaps for our understanding 

of brain function and disorder, but future studies should focus on relating these findings 

back to the patients, their symptoms, their experience, and their demographic 

background and environmental factors that could potentially affect their impairments 

and ultimately their recovery.  
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