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Abstract

Sorting procedures are frequently adopted as an alternative to dissimilarity ratings to

measure the dissimilarity of large sets of stimuli in a comparatively short time. However,

systematic empirical research on the consequences of this experiment-design choice is

lacking. We carried out a behavioral experiment to assess the extent to which sorting

procedures compare to dissimilarity ratings in terms of e�ciency, reliability and accuracy,

and the extent to which data from di↵erent data-collection methods are redundant and

are better fit by di↵erent distance models. Participants estimated the dissimilarity of

either semantically charged environmental sounds or of semantically neutral synthetic

sounds. We considered free and hierarchical sorting and derived indications concerning the

properties of constrained and truncated hierarchical sorting methods from hierarchical

sorting data. Results show that the higher e�ciency of sorting methods comes at a considerable

in terms of data reliability and accuracy. This loss appears to be minimized with truncated

hierarchical sorting methods that start from a relatively low number of groups of stimuli. Finally,

variations in data-collection method di↵erentially

a↵ect the fit of various distance models at both the group-average and individual levels.

Based on these results we suggest adopting sorting as an alternative to dissimilarity-rating

methods only when strictly necessary. We also suggest analyzing the raw behavioral

dissimilarities, and avoiding modeling them with one single distance model.

Keywords: Similarity, hierarchical sorting, multidimensional scaling, additive trees,

common and distinctive features.
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Comparison of methods for collecting and modeling

dissimilarity data: applications to complex sound stimuli

Similarity is a fundamental construct in the empirical and theoretical study of a

variety of cognitive and perceptual processes such as categorization, problem solving,

generalization and memory retrieval (Tversky, 1977; Shepard, 1987; Goldstone, 1999).

Various distance models are available to model dissimilarities as a function of the features

of the judged stimuli (Tversky, 1977; see Tversky & Gati, 1978; Gati & Tversky, 1982; for

di↵erences between similarity and dissimilarity judgments), and empirical studies often aim

measur the features underlying the mental representation of the stimuli (see Borg &

Groenen, 1997, for exploratory and confirmatory approaches). Dissimilarities can be collected

with various methods (e.g., Rao & Katz, 1971; Henry & Stumpf, 1975; Tsogo, Masson, &

Bardot, 2000). Although several studies have quantified the merits and disadvantages of the

various data-collection methods, none has jointly considered all the factors relevant to their

comparison: their e�ciency, the reliability and accuracy of the data, the similarity of data

di↵erent methods (redundancy), and the e↵ects of method on the fit of distance

models. As a consequence, the methods-comparison literature is widely scattered, and several

of these aspects remain partially investigated, at best. We investigated the extent to which

the above-mentioned factors vary across data-collection methods. We considered the

methods of dissimilarity ratings, hierarchical sorting and free sorting, and modeled the

properties of the constrained and truncated hierarchical sorting methods from the

hierarchical sorting data.

Among the various methods, that of dissimilarity ratings or paired comparisons is

perhaps the most popular. Accordingly, participants rate along a categorical or continuous

scale the dissimilarity of each of theN(N� 1)/2 possible pairs ofN stimuli. Despite its

popularity, this method is regarded as relatively ine�cient because it requires a large
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number of judgments that grows quadratically with the set size (Rosenberg & Kim, 1975).

Further, the ine�ciency of this method makes it unsuitable for perceptual domains

subject to considerable carry-over and adaptation e↵ects (e.g., tastes and smells; Lawless,

Sheng, & Knoops, 1995). The ine�ciency of this method also makes it prohibitive for

investigating large sets of stimuli because the required long experimental sessions would

result in fatigue and boredom (M. D. Johnson, Lehmann, & Horne, 1990; Malhotra, 1990;

Bijmolt & Wedel, 1995) and in uncontrolled fluctuations of the response criteria

throughout the experimental session. A number of studies investigated more e�cient

variants of this method that produce incomplete dissimilarity matrices (e.g., Tsogo et al.,

2000). Interestingly, an input spatial representation can be accurately recovered through a

multidimensional scaling (MDS) analysis of the incomplete dissimilarity matrix, provided

that at least two thirds of the data are available (Spence & Domoney, 1974) or that only

dissimilarities of intermediate magnitude are not available (Graef & Spence, 1979). For

these reasons incomplete designs are of limited value: they rely on the assumption that

data can indeed be accurately represented with an MDS model; they require preliminary

estimates of the entire dissimilarity matrix necessary to identify dissimilarities of

intermediate magnitude; they reduce the experimentation time by only 33%, at best.

Sorting methods are a widely adopted alternative to dissimilarity ratings. With

sorting methods, participants create groups of similar stimuli (Coxon, 1999; see Goldstone,

1994, for cognitive theories on the relationship between similarity and categorization).

With free sorting (Miller, 1969; Rosenberg & Kim, 1975), participants are free to decide

on how many groups they should create, whereas with constrained sorting the number of

groups is fixed by the experimenter. For both these methods, a binary dissimilarity is

derived from the co-occurrence of the stimuli within the groups (dissimilarity = 0 and 1 if

two stimuli are in the same group or not, respectively). The variant of hierarchical sorting

(hierarchy-construction method, Harlo↵ & Coxon, 2005, or successive sorting method,

smc
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Bimler & Kirkland, 1997) is the behavioral analog of the hierarchical clustering scheme

(S. C. Johnson, 1967). With agglomerative hierarchical sorting, participants start from a

condition in which each of the stimuli is in a di↵erent group and, at each subsequent step,

merge together the two most similar stimuli or groups of stimuli until all stimuli are

merged together. Dissimilarity can be measured as N minus the number of groups into

which the stimulus set is partitioned at the moment the two stimuli are first merged (Rao

& Katz, 1971). Variants of this method are available: divisive hierarchical sorting

proceeds in the direction opposite to that of agglomerative hierarchical sorting, starting

from the one-group condition (Boster, 1986); truncated agglomerative hierarchical sorting

starts with a constrained sorting phase (number of groups < N , Harbke, 2003) or with a

free sorting phase (Bimler, Kirkland, & Chen, 1998).

The comparative study of dissimilarity ratings and sorting methods has been

fragmentary. The choice of a data-collection method should take into account various

factors: method e�ciency, data reliability (the extent to which results can be replicated

either with the same participants or with a di↵erent group of participants) and data

accuracy (the extent to which data accurately reflect the features of the investigated

stimuli); method redundancy (the extent to which di↵erent methods yield comparable

data); data-modeling biases (the extent to which data from a given method are optimally

accounted for by a particular distance model). To date, no study has jointly considered all

these factors, thus making the process of selecting a method di�cult at best or

uninformed at worst. For example, free sorting is often chosen on the grounds that it is a

very e�cient alternative to dissimilarity ratings (e.g., in Bijmolt & Wedel, 1995, free

sorting is 2.5 times faster than dissimilarity ratings). However, the price of the increased e�ciency

is seldom considered: free sorts are known to be less accurate than dissimilarity

ratings (Subkoviak & Roecks, 1976). Further, other di↵erences between free sorting and

dissimilarity ratings are simply unknown: no study compared their reliability;
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redundancy studies (Ward, 1977, Bertino & Lawless, 1993, Bonebright, 1996, Cartier et

al., 2006), are often carried out by focusing on MDS models, rather than on raw data (see

Harbke, 2003, for an exception), despite the known inaccuracies of the MDS analysis of

the binary free-sorting dissimilarities (Kendall, 1975; Goodhill, Simmen, & Willshaw,

1995; Simmen, 1996) and the vulnerability of the fit of these models to variations in the

distributional properties of the input data (Pruzansky, Tversky, & Carroll, 1982).

The methodological study of hierarchical sorting is even less developed. The best

studied aspects are the redundancy and reliability of this method. When compared with

dissimilarity ratings, hierarchical sorts are thus reported to be fairly redundant (Bricker &

Pruzansky, 1970; Harbke, 2003 reports a correlation of .60 between group-average

truncated hierarchical sorts and dissimilarity ratings), but are also characterized by a

larger degree of interindividual di↵erences (Bricker & Pruzansky, 1970; see Gri�ths &

Kalish, 2002 for the e↵ects of the number of participants on the correlation between group-

average hierarchical sorts). However, empirical data on other properties of this

method are lacking. For example, although Bimler and Kirkland (1997) state that

cannot be used to investigate more than 16 items because of its ine�ciency, it is unknown

whether still represents a more e�cient alternative to dissimilarity ratings. Focusing

on data accuracy, Bimler and Kirkland (1997) claim that hierarchical sorts provide more

information than free sorting (hierarchical sorting dissimilarities can assume a larger number of

di↵erent values than can binary free sorting dissimilarities). Consistently, Rao and Katz (1971)

showed that hierarchical sorting is the most accurate among a variety of sorting methods.

Note, however, that Rao and Katz (1971) investigated simulated and not real behavioral data,

and accuracy measures were computed fromMDS solutions rather than from the raw data.

Finally, hierarchical sorting is claimed to be more suitable for the quantification of interindividual

di↵erences than free sorting (Lawless et al., 1995) and to require fewer participants than free

sorting, but to be

smc
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more demanding (Bimler & Kirkland, 1997). Notably however, no clear empirical data are

available to substantiate either of these claims.

Empirical studies of dissimilarity often base their conclusions not on analyses of the

raw dissimilarity data, but on the parameters of a distance model of the raw

dissimilarities. Given the importance of this modeling step, the experimenter might be interested

in assessing the extent to which model-based conclusion can be replicated by studies based on

di↵erent data-collection methods and, above all, might choose the

method whose data are accurately accounted for by the distance model of interest. For

instance, an experimenter interested in MDS models might choose the method whose data

are better accounted by this model. Thus, hierarchical sorts would be a less than optimal

choice for MDS-based studies because each individual yields an ultrametric tree (see

Appendix) that can be represented perfectly by a Euclidean space with a rather large

number of dimensions (N� 1, Holman, 1972 see Carroll & Pruzansky, 1980, for

additional considerations), but would likely be a reasonable choice if the modeling interest

graph-theoretic structures (e.g., additive trees, see Appendix). In addition to these

considerations, the experimenter might also be interested in assessing the extent to which model-

based conclusions can be replicated by studies based on di↵erent data-collection methods. To our

knowledge, no previous empirical work has explored this important dimension of comparison for

the data-collection methods.

We carried out a comparative study of dissimilarity ratings, free sorting and

agglomerative hierarchical sorting (referred to simply as hierarchical sorting from now on).

In order to increase the generality of the results, behavioral dissimilarities were collected

for two largely di↵erent sound sets: a semantically neutral set of unrecognizable synthetic

sounds and a semantically charged set of recognizable living environmental sounds

(Giordano, McDonnell, & McAdams, 2010). Data-collection methods were compared

focusing on various factors of potential interest to the experiment-design process:
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e�ciency, reliability, redundancy, data modeling and accuracy. Results for each of these aspects

are discussed separately at the end of the rel parts of the Results section.

The data-modeling analysis was complemented by a study of the influence of the

distributional properties of the data on model fit (Pruzansky et al., 1982). Various

analyses considered truncated hierarchical sorting and constrained sorting data derived

from the hierarchical sorting data collected with the experiment participants. The validity

of the derived data was assessed when analyzing the redundancy of data from di↵erent

methods. Given their nature, the conclusions reached for derived data should be taken as

an indication of what expected from an actual experiment based on these methods.

Empirical study

Methods

Participants. Participants (N = 120; age: M = 23 yrs, STD = 4 yrs; gender: 75

female, 45 male) were native English speakers and had normal hearing, as assessed with a

standard audiometric procedure (ISO, 2004; Martin & Champlin, 2000).

Stimuli. We selected two sets of 20 stimuli each. The semantic set comprised highly

recognizable vocal and nonvocal living environmental sounds (Giordano et al., 2010). The

synthetic set comprised harmonic tones equalized in perceived duration and loudness and

di↵ering in attack time, spectral centroid and the ratio between the levels of even and odd

harmonics (Caclin, McAdams, Smith, & Winsberg, 2005, Experiment 3). Each of the

three variable parameters had the same range of variation as in Caclin et al. (2005) and

could assume one of 20 di↵erent values, evenly spaced along a psychophysically linear

scale. For each stimulus, the level of the synthesis parameters was selected at random and

without replacement from the 20 available values. The sounds in the synthetic set were

more perceptually more similar to each other than those in the semantic set, and none of

them could be associated with a real-world sound-generating event. We selected two
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ten-stimulus training sets that were di↵erent from the experimental sets. The semantic set

comprised five living and five nonliving sounds. For the synthetic set, the three synthesis

parameters varied within the same range as for the experimental set.

Apparatus. Sound stimuli were stored on the hard disk of a Mac Pro Quad Core

Workstation equipped with an M-Audio CO2 optical-to-coaxial S/PDIF converter. Audio

signals were amplified with a Grace Design m904 monitor system and presented through

Sennheiser HD595 headphones. Participants were seated in a structurally isolated,

soundproofed room with a noise-floor rating of PNC20. Sound peak level was 58 dB SPL

on average (STD = 12 dB).

Design and procedure. We adopted a 2 ⇥ 3 between-subjects design by combining two

levels for the sound set factor (semantic vs. synthetic set) with three levels

for the data-collection method factor (dissimilarity ratings, and hierarchical or free

sorting). Twenty participants were randomly assigned to each of the six cells of the

experimental design.

Before estimating the dissimilarities, participants were familiarized with the stimuli

by presenting them all twice in sequence in block-randomized order

(inter-stimulus-interval, ISI = 100 ms). They were instructed to estimate the maximum

and minimum within-set dissimilarities while listening to the sounds. The task of

estimating the dissimilarities with one of the three investigated methods began after this

familiarization phase.

On each trial of the dissimilarity-rating condition, participants were presented with

one of the possible N(N � 1)/2 pairs of di↵erent sounds (N = number of stimuli), and

rated the dissimilarity of the sounds by moving a slider along a scale marked “very

similar” and “very di↵erent” at the two extremes. The within-pair order was chosen at

random on each trial.
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In the first step of the hierarchical sorting condition, participants were presented

with N randomly numbered on-screen icons corresponding to the N sounds. Icons could

be dragged around the screen by using the mouse. Participants were asked to listen to

each of the sounds by clicking on the icons and to drop the two most similar sounds inside

a merging box. When the merging box contained two sounds, participants clicked on an

on-screen button labeled “OK” to create a new icon that pointed to the two grouped

sounds. The new icon was labeled with the numbers of the icons for the merged stimuli

(e.g., “3-6” for the merged icons “3” and “6”). When the participant clicked on an icon

for merged sounds, all of the sounds were played back in random order (ISI = 100 ms). At

each subsequent step of the procedure, participants were asked to drop the two most

similar sounds/groups of sounds inside the merging box. Participants were required to

listen to each of the stimuli at least once before each of the first three merging decisions.

The procedure ended when only two groups of stimuli remained to be merged.

In the free sorting condition, participants were presented with N randomly

numbered on-screen icons, one for each of the N stimuli. They were asked to create as

many nonempty groups of similar sounds as they thought necessary, but not less than 2

groups and not more than N � 1. Sounds were grouped by dropping the icons inside a

merging box, one for each of the groups. Participants were required to listen to each of the

sounds at least twice before creating any group and to listen to each of the groups at least

once after each of the sounds had been dropped inside one of the merging boxes.

In all conditions, participants could listen to the stimuli as many times as needed

before giving a response. At the beginning of the hierarchical and free sorting tasks,

participants were required to arrange the on-screen icons so that similar sounds were

closer together. Participants were told that this initial step was meant to aid the process

of creating groups of sounds and were instructed to start grouping the sounds that they

had arranged closer on the screen. In all conditions, response-related operations (e.g., drag
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the icons or move the slider) were also possible during the playback of the sounds. For all

of the conditions, the task was initially practiced with the training set. For the training

phase (average duration = 4.2 minutes; STD = 4.2), participants rated the dissimilarity of

10 pairs randomly selected out of the possible 45, or carried out the above-described

sorting procedures in their entirety.

Results

All analyses considered group-average data. Individual data were considered in the

data-modeling and accuracy analyses. The minimum and maximum possible dissimilarity

ratings were 0 and 1, respectively. With hierarchical sorting, the dissimilarity of two

stimuli was computed as 1�Ng/N [range: 1/N to (N � 1)/N ], where Ng is the number

of groups into which the stimulus set is partitioned at the moment the two stimuli are first

merged (Rao & Katz, 1971). With free sorting, the (binary) dissimilarity of two stimuli

equals 0 if the stimuli are grouped together and 1 if they are not. For each of the

hierarchical sorting steps, di↵ering in the number of groups of stimuli, we finally computed

a binary dissimilarity following the same co-occurrence approach as for the free sorting

method. These distance matrices derived from the hierarchical sorting data are taken as

an approximation of real constrained sorting dissimilarities (see redundancy analyses for

validation). For all methods, group-average dissimilarities were given by the average of

individual data1.

E�ciency. Table 1 reports four di↵erent temporal measures for each of the

experimental conditions: experiment duration, playback time, nonplayback time dedicated

exclusively to response operations (Tresp), and number of playbacks/stimulus (Nplays).

None of these measures considered the initial phase of familiarization with the stimuli. As

shown in Table 1, the experiment took more time for the semantic than for the synthetic

set. This di↵erence in part reflects a longer average duration of the semantic sounds
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compared to the synthetic sounds, 2.4 s (STD = 1.24) and 0.6 s (STD = 0.01),

respectively. Nplays was higher for dissimilarity ratings than for hierarchical and free

sorting. This di↵erence in part reflects the minimum number of playbacks required for

each condition: 19 for dissimilarity ratings and 3 for hierarchical and free sorting. Within

two separate 2⇥3 ANOVAs, we analyzed the influence of sound set and data-collection

method on both Tresp and Nplays. The interaction between sound set and

data-collection method was not significant for either temporal factor, F(2, 114) = 2.10 and

.51, p = .13 and .60, ⌘2p = .04 and .01 for Tresp and Nplays, respectively. Data-collection

method significantly influenced both variables, F(2, 114) = 5.91 and 25.17, p = .004 and <

.001, ⌘2p = .09 and .31 for Tresp and Nplays, respectively. Both variables were higher

with dissimilarity ratings than with both sorting methods: for Tresp as dependent

variable, unpaired t(78) = 3.32 and 2.52, p = .002 and .01 for hierarchical and free

sorting, respectively; for Nplays as dependent variable, unpaired t(78) = 2.34 and 5.83,

p = .02 and < .001 for hierarchical and free sorting, respectively. Whereas Nplays was

higher for hierarchical than for free sorting, t(78) = 4.03, p < .001, Tresp did not di↵er

significantly between them, t(78) = -0.32, p= .75. Finally, whereasNplays was lower for the

semantic than for the synthetic set, F(1, 114) = 35.17, p < .001, ⌘p
2= .24, T resp was

for the two sound sets, F(1, 114) = 50.89, p= .09, ⌘p
2= .03.

[Table 1 here]

We created a model for predicting the amount of time necessary to evaluate N

stimuli with each of the following methods: dissimilarity ratings, free sorting, hierarchical

sorting and the truncated hierarchical sorting (see Figure 1). The model extrapolates the

empirical e�ciency measures obtained withN= 20 stimuli to various untested stimulus-set

sizes. The reader should take the results of this modeling as an indication o the experiment

duration that requires a validation through pilot experimental testing.

smc
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Experiment duration was modeled as:

dissimilarity ratings

8

>

<

>

:

Tpres = Tstim N (N � 1 + k1)

Tresp = k2N (N � 1) /2

hierarchical sorting

8

>

<

>

:

Tpres = Tstim N (3 + k1M)

Tresp = k2NM

free sorting

8

>

<

>

:

Tpres = Tstim N (3 + k1)

Tresp = k2N

(1)

where Tpres is the presentation time for all stimuli; Tstim is the average

stimulus-presentation time; M is the number of hierarchical sorting steps = number of

starting groups - number of groups after final merge (M = N - 1 for complete hierarchical

sorts that do not omit the last trivial step where all sounds are grouped together; this

trivial step is omitted from the simulations, and is not carried out in the behavioral

experiments). We considered a minimum Nplays of 3 for hierarchical and free sorting and

of N � 1 for dissimilarity ratings. These values correspond to those used in the actual

experiment. The constant k1 models the spontaneous Nplays beyond the minimum

requirement throughout the entire experiment for dissimilarity ratings and free sorting,

and for each of the hierarchical sorting steps. The constant k2 models Tresp for each

dissimilarity-rating pair or for each stimulus in free sorting or for each stimulus in each of

the hierarchical sorting steps. The constants k1 and k2 were estimated from the empirical

data and averaged across sound sets. Predictions were carried out by assuming a stimulus

duration of 1 s.

[Figure 1 here]

Based on this modeling approach, hierarchical and free sorting methods do not

appear to be noticeably more e�cient than dissimilarity ratings for a number of stimuli

lower than 30. For larger sets, free sorting appears instead as an increasingly more

smc




COMPARISONOFMETHODS FOR COLLECTING ANDMODELINGDISSIMILARITIES 14

e�cient alternative to both hierarchical sorting and dissimilarity ratings. The comparative

gain in e�ciency of hierarchical sorting relative to dissimilarity ratings is very small for

any set size. Interestingly, truncated hierarchical sorting appears to be highly e�cient

even when compared with free sorting.

The validity of the e�ciency model relies on a number of assumptions. Firstly, for

all the hierarchical sorting methods we assume that Tresp and Nplays are constant

throughout the merging steps. In practice, participants played the sounds less times and

responded faster as they proceeded with the merging task. A more advanced model

that takes into account the dependence of T resp andNplays on the merging level did not produce

substantially di↵erent results than those discussed in this section is not

presented here for the sake of simplicity. Secondly, we assume an average stimulus

duration of 1 s. We observed the same pattern of results when assuming a stimulus

duration of either 100 ms or 10 s. Finally, we assumed that each of the following

quantities is independent of the number N of stimuli: Tresp/(N(N � 1)/2) for

dissimilarity ratings; Tresp/N for hierarchical and free sorting; Nplays for all methods.

These last assumptions do not take into account memory limitations. Indeed, it is highly

likely that for larger stimulus sets participants will tend to inspect each stimulus a larger

number of times than is assumed by our model, and will devote more and more time to

response operations simply because they will have a harder time remembering what

stimuli they have already inspected, and, for sorting procedures, what stimulus has been

placed in which group. For this reason, the estimates of experiment duration are more

likely to underestimate the real value as the set size increases and are best conceived as a

lower bound that requires a validation through pilot experimental testing.

Reliability. Highly reliable methods yield strongly correlated data with di↵erent

populations of participants. Based on the assumption that our group of participants is a

representative sample of the population, we estimated method reliability by using the

smc
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bootstrap resampling approach (Efron & Tibishirani, 1993). For each of six target

numbers of participants (x) log-spaced from 5 to 160, we computed a bootstrap sample by

drawing with replacement two groups of participants of size x from the available data and

then estimating reliability as the R2 between the group-average data for the two sets. The

final reliability estimate was the average value across 10,000 bootstrap samples.

Reliability was computed for each of the sound sets, for each of the dissimilarity-rating,

and hierarchical and free sorting methods and for the 5-group constrained-sorting data.

Although reliability measures were significantly higher for the semantic than for the

synthetic set, average R2 = .83 and .78, respectively, paired samples

t(23) = 5.99, p < .001, Cohen’s d for the paired t test = .27, the e↵ect of method on

the reliability was highly similar across stimulus sets, r(22) = .99, p < .001. This e↵ect

will not be discussed further. Figure 2 shows the reliability measures averaged across

sound sets.

[Figure 2 here]

Reliability decreases from dissimilarity ratings to hierarchical sorting to 5-groups

constrained sorting to free sorting. The number of participants necessary to reach a target

level of reliability increases in the same order. The higher reliability of dissimilarity

ratings hierarchical sorts is consistent with the previous observation of larger

interindividual di↵erences in hierarchical sorting than in dissimilarity ratings (Bricker &

Pruzansky, 1970). The higher reliability of hierarchical free sorts is consistent with

the claim that fewer participants are necessary with the former method (Bimler &

Kirkland, 1997). One likely origin for the e↵ects of method on reliability is the

between-methods di↵erence in the number of times participants inspected each of the

stimuli: a larger number of inspections of each stimulus indeed allows one to develop a

more stable representation and to refine the decision process, thus decreasing the noise in

smc
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the behavioral responses. Consistently, participants listened to each of the sounds more

often with dissimilarity ratings than with hierarchical sorting than with free sorting.

Another explanation focuses on the resolution of the dissimilarities at the individual level

(continuous for dissimilarity ratings, N-1 levels for hierarchical sorting and binary for

constrained and free sorting), with higher resolutions allowing responses that more closely

reflect the mental dissimilarities. This explanation is less plausible because constrained

sorts were more reliable than free sorts in spite of the fact that the individual

dissimilarities had the same resolution.

Method redundancy. Redundancy was defined as the proportion of variance (R2)

shared by group-average data from the di↵erent methods. The initial analysis of

redundancy also considered the constrained sorts derived from the hierarchical sorting

data. The proportion of variance shared between methods was significantly higher for the

semantic set than for the synthetic set, average R2 = .64 and .63, respectively, paired

samples t(209) = 2.78, p = .006, Cohen’s d for the paired t test = .05. The pattern of

between-methods correlation was highly consistent between the two sound sets,

r(208) = .97, p < .001. Further analyses considered the between-methods R2 matrices

averaged across sound sets. We modeled the between-methods distance 1-R2 as a

minimum variance root additive tree GTREE (Corter, 1998; proportion of explained

variance = .97; see Figure 3).

[Figure 3 here]

Hierarchical and free sorts shared a larger proportion of variance, R2 = .71, than did

any of them with dissimilarity ratings, R2 of dissimilarity ratings with hierarchical or free

sorts = .62 and .61, respectively. This result might arise from the fact that the task of

creating groups of stimuli is more influenced by categorization processes, whereas that of

rating dissimilarities is more influenced by the cognitive estimation of similarities (see
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Goldstone, 1994, for the relationship between similarity and categorization). From a

practical point of view, however, this eventual di↵erence in cognitive processes accounts for

only 10% of the data variance. Interestingly, dissimilarity ratings and free and hierarchical

sorts are maximally correlated with the constrained sorts derived from the latest steps of

the hierarchical merging process (six-group constrained sorts for dissimilarity ratings and

free sorting, R2 = .61 and .67, respectively, and seven-group constrained sorts for

hierarchical sorting, R2 = .95). This similar result might indicate that, independently of

whether participants rated dissimilarities or grouped stimuli, they carried out the task by

di↵erentiating between very large and smaller mental distances, or by focusing on

relatively superordinate levels of their mental taxonomy of the experimental stimuli.

Further, the resemblance of the group-level data to the constrained sorts into 6-7 groups is

reminiscent of the number of working-memory chunks (Miller George, 1956), and might

thus arise also from limitations mnemonic resources.

The constrained sorts considered in the redundancy analysis were derived from the

hierarchical sorts. We analyzed in detail the redundancy of free and derived constrained

sorts in order to assess the extent to which the latter represent an accurate model of what

measured when participants sort stimuli in a specific number of groups. At the

group-average level, free sorts were maximally correlated with the six-group derived

constrained sorts. Notably, the number of groups created by participants in the free

sorting condition was not significantly di↵erent than 6 (mean = 6.15, STD = 2.50,

t(39) = 0.38, p = .76): the group-average free sorts were thus maximally correlated with

the derived constrained sorts based on the same number of groups. Still at the

group-average level, the proportion of variance shared by free and six-group constrained

sorts approaches the proportion of variance shared by the free sorts from two separate

groups of 20 participants each (R2 = .67 and .74, respectively, see Figure 2): the amount

of variance shared by free and six-group sorts is thus comparable to what expected for
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separate individuals that carry out the same free sorting task. nally considered the

R2 between group-average constrained sorts and the individual-level free sorts for the

same sound set. We thus computed the absolute di↵erence between the number of groups

in each of the free sorts and in the various constrained sorts (e.g., absolute di↵erence = 0

for free and constrained sorts based on the same number of groups), and averaged R2

values between free and constrained sorts within each level of the absolute di↵erence in

the number of groups. Based on this analysis, the free sorts appeared to be maximally

correlated with the derived constrained sorts based on, approximately, the same number

of groups (Figure 4). Overall, these analyses indicate that the derived constrained sorts

are an acceptable model of real constrained sorts.

[Figure 4 here]

We observed a very high proportion of variance shared between the group-average

hierarchical sorts and the seven-group constrained sorts (R2 = .95). One potential

conclusion to be drawn from this result is that part of the initial merging steps of a

complete hierarchical sort are not necessary because they have a weak influence on the

between-stimulus dissimilarities. To address this issue, we measured the redundancy (R2

averaged across sound sets) between group-average complete hierarchical sorts and various

truncated hierarchical sorts each derived by discarding a di↵erent number of the initial

merging steps (Figure 5). The derived truncated sorts share a very high proportion of

variance with the complete hierarchical sort even when the number of starting groups is

less than half of the experimental stimuli (R2
> .95). For this reason, truncated

hierarchical sorting variants with a relatively low number of starting groups are an

advisable alternative to complete hierarchical sorting because their increased e�ciency

does not appear to come at a considerable loss in the amount of dissimilarity information.

[Figure 5 here]
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Data modeling. We investigated the e↵ect of data-collection method on the change

in fit of various distance models (see Table 3, and Appendix). An initial group of analyses,

carried out with group-average data, considered a large number of distance models varying

in the number of free parameters. The assessment of model fit in this initial step allowed

us to address some standing issues concerning the number of free parameters in

set-theoretic models. The quantification of models redundancy, i.e., the extent to they

yield equivalent distances, allowed us to identify groups of largely diverse distance models.

Based on this initial step, we selected a smaller set of distance models (approximately)

the same number of free parameters and characterized by a

comparatively lower redundancy. The second group of analyses, carried out with

group-average and individual data, assessed in detail the e↵ects of method on the fit of the

selected models. This analysis was complemented with a study of the e↵ect of the

distributional properties of the dissimilarities on model fit. The goal of this analysis was

to explain divergences between results for group-average and individual data and to allow

the experiment designer to better predict the e↵ects of method on model fit.

[Table 3 here]

We fit various distance models to group-average data from the di↵erent methods,

including the constrained sorts. We considered variants/derivations of seven basic distance

models (see Table 3 for model class, interpretation in terms of common, distinctive, and

unique features, and naming conventions): 1) the modified contrast model of Navarro and

Lee (2004, MCM); 2) the additive clustering model of Shepard and Arabie (1979,

ADCLUS); 3) the distinctive-features clustering model of Navarro and Lee (2004,

DFCLUS); 4) the minimum variance root additive tree model (Sattath & Tversky, 1977),

estimated using the generalized triples algorithm of Corter (1998, GTREE); 5) the

least-squares ultrametric tree (Hubert, Arabie, & Meulman, 2006, L2ULTRA); 6) the
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centroid metric model (Barthélemy & Guénoche, 1991, CENM); and 7) a nonmetric

multidimensional scaling model (Takane, Young, & De Leeuw, 1977, ALSCAL). We fit

three variants for each of the MCM, ADCLUS and DFCLUS models by manipulating the

number of nonuniversal features: 2, 3 or 20. Our manipulation of the number of features

reflects the absence of a wide consensus on the number of free parameters for this class of

models (see Appendix). From each of the MCM and additive-tree models, we derived both

a common- and distinctive-feature metric. Two di↵erent centroid-distance metrics were fit

either to the observed dissimilarities (CENM) or to their square (CENMSQ; see Equations

6 and 7 in Appendix). Finally, we fit the ALSCAL model with either two or three

dimensions.

The ALSCAL model was fit using the secondary approach to the handling of tied

ordinal data, which allows di↵erent model distances for input dissimilarities of the same

modulus (Takane et al., 1977). The primary approach to ties, which attempts to assign

the same model distance to tied input data, was not considered, because it is prone to

annular and horseshoe biases (Goodhill et al., 1995). With the exception of CENM and

CENMSQ, which have an exact least-squares solution, all models involve iterative

criterion-minimization routines and are thus potentially prone to local minima problems

(i.e., the fitting routines are not always guaranteed to converge on a globally optimal

solution). We made an attempt at mitigating these problems by using a permutation

approach for the input data. In particular, each of the models was fit 200 times to random

permutations of the order of the stimuli within the dissimilarity matrices. The final

solution minimized a criterion across the permutations: SSTRESS for ALSCAL and the

squared error for the other models. In the following, we measure model fit as the R2

between input and model distances. When an MCM model included only

common/distinctive features, the R2 for the distinctive/common component of the same

model was set to zero.
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Across the 21 methods and 22 models, fit was higher for the semantic than for the

synthetic set, R2 = .56 and .52, paired samples t(461) = 6.0, p < .001, Cohen’s d for

paired samples t-test = 0.28. This di↵erence might be caused by a slightly higher

reliability of the behavioral data for the semantic than for the synthetic set, where more

reliable data are likely to be less influenced by measurement error, and thus to contain a

large portion of variance that can be captured with a distance model. A good consistency

was nonetheless observed between the e↵ects of method on model fit for the two sound

sets, r(460) = .89, p < .001. Further analyses averaged across sound sets. Figure 6 (left

panel) shows the average model-specific fit across methods and the standard error of this

measure. Note that the standard error of these fit quantities measures the strength of the

e↵ect of data-collection method on model fit. The data-collection method thus appears to

a↵ect most strongly the fit of the distinctive-feature models ALSCAL and DFCLUS, and

that of the common- and distinctive-feature components of the MCM models. In general,

and with the exception of CENM and CENMSQ, the e↵ect of method on fit is weaker for

models that, overall, are better fitting. As a rule of thumb, the data analyst should thus

carefully consider the potential e↵ects of data-collection method on model-based

conclusions when models explain less than 70% of the variance of the group-average

dissimilarities.

This initial analysis can also inform the debate on the number of free parameters in

set-theoretic models. Across methods, all the 20-feature set-theoretic models reach an

almost perfect fit. Since this result is potentially the product of overfitting (the model has

so many free parameters that it also captures measurement noise), then these models

likely have a very large number of parameters. Notably, according to Chaturvedi and

Carroll (2006) each of these models have N stimuli ⇥ K features + 1 = 401 parameters

whereas according to Carroll and Arabie (1983) and Shepard and Arabie (1979) they have

N +K + 1 = 41 or K + 1 = 21 free parameters, respectively. As such, only the position
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by Chaturvedi and Carroll (2006) appears to account for the overfit of the 20-feature

models. Another result potentially consistent with the position of Chaturvedi and Carroll

(2006) is the fact that for all set-theoretic models an increase in the number of features

from 2 to 3 (from 23 to 24 parameters according to Carroll & Arabie, 1983, and from 41

to 61 parameters according to Chaturvedi & Carroll, 2006) explains 10% of the variance in

the input data. Note that for the ALSCAL model a similar improvement in explained

variance is by 19 additional parameters (compare the fit for the two- and three

dimensional ALSCAL models), a figure similar to the number of additional parameters assumed by

Chaturvedi and Carroll (2006) for ADCLUS. For these reasons, in the

following we will adopt the position of Chaturvedi and Carroll (2006) as a working

solution to the debate on the number of parameters in set-theoretic models.

[Figure 6 here]

We measured the redundancy of the distance estimates from di↵erent models. For

each of 42 datasets (21 data-collection methods ⇥ 2 sound sets), we defined a matrix of

measures of between-model redundancy as the R2 between the distance estimates of each

of the 22 distance models. We took the average of the redundancy matrices across sound

sets and data-collection methods and fit a two-dimensional metric MDS model (ALSCAL)

to a distance metric defined as 1-R2 (see Figure 6, right panel; ALSCAL R2 = .83). Based

on this MDS analysis, the distance models appear to form three separate clusters: 1) the

unique-feature models CENM and CENMSQ; 2) the distinctive-feature models ALSCAL3,

ALSCAL2, DFCLUS3 and DFCLUS2, and MCMD; and 3) the common-features models

ADCLUS3, ADCLUS2, GTREEC and MCMC. Notably, L2ULTRA and GTREED share a

high portion of variance with GTREEC. This result might be the product of the overall

poor fit of the centroid metric, which produces an additive tree in which the objects are

equidistant from the root (a defining property of ultrametric trees), and a complementarity
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of the common and distinctive metrics of the additive tree (see Appendix). Finally, the

models MCM20, ADCLUS20 and DFCLUS20, which are likely to overfit the data, lie in a

region intermediate between the common- and distinctive-features clusters, a region also

occupied in part by the hybrid common/distinctive feature models MCM2 and MCM3.

We analyzed in detail the e↵ect of data-collection method on the fit of a subset of

the distance models (see Figure 7). Based on the results of the initial analyses, we selected

the following models (number of parameters): ADCLUS2 (38), GTREED (37), DFCLUS2

(41), ALSCAL2 (41) and CENM (20). These models appear to span the entire MDS space

of distance models (see Figure 6), and, with the exception of the CENM model, all have

approximately the same number of parameters. The distance models were fit to both

group-average and individual data. Prior to MDS fitting, binary individual dissimilarities

(free and constrained sorts) were �-transformed (Rosenberg & Kim, 1975):

�ij =
n

(
P

k dik � djk)
2
o1/2

. The � transform decreases the strength of horseshoe/annular

biases in nonmetric MDS (Goodhill et al., 1995), and does not alter the accuracy of MDS

models of noisy data such as the behavioral dissimilarities from this study (Dragsgow &

Jones, 1979). For consistency, binary dissimilarities were � transformed prior to fitting any

model. All models were fit by using the above-described permutation approach.

[Figure 7 here]

Focusing on group-average data (Figure 7, left panel), the fit of all methods appears

relatively constant across the dissimilarity ratings and hierarchical and free sorting

methods. An exception to this is the fit for CENM, which is much higher for dissimilarity

ratings than for both hierarchical and free sorting. The fit of the common- and

unique-feature models is also relatively constant across constrained sorts and shows overall

higher levels of fit for GTREED than for ADCLUS2 than for CENM. Consistently with

the initial analyses, the fit of the distinctive-feature models DFCLUS2 and ALSCAL2
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appears to change strongly across constrained sorts. It increases progressively as

participants merge larger and larger groups of stimuli and passes through the point where

common- and distinctive-features models explain the same amount of variance in the data

(5- 8 group constrained sorts). Thereafter, these models yield better fits than

common-feature models. From a psychological standpoint, these results suggest that

common features are equally important throughout all the levels of a cognitive taxonomy,

whereas distinctive features dominate the superordinate levels. Furthermore, the

constrained sorting data for which the common-features model ADCLUS2 and the

distinctive-features models DFCLUS2 and ALSCAL2 explain equal proportions of variance

are also those that share the largest proportion of variance with dissimilarity ratings and

hierarchical and free sorting data (cf. Figure 3). We have no explanation for this result.

Di↵erent trends emerge from the analysis of individual data (Figure 7, right panel).

When compared with group-average results, larger variations in fit emerge across

dissimilarity ratings and hierarchical and free sorts. Across models, the fit for free sorts is

better than for hierarchical sorts and dissimilarity ratings, with the exception of the

unsurprising perfect fit of GTREED for hierarchical sorts. Three results emerge from the

analysis of individual constrained sorts. Firstly, the unique-features model (CENM)

explains a larger proportion of variance for individual than for group-average data, with

fits that progressively decrease as participants merge larger and larger groups of stimuli.

Secondly, the fit of both the common- and distinctive-features models varies across the constrained

sorts. Finally, the fit of all models follows a U shape function of the number of groups in the

constrained sorting data.

One potential explanation for the di↵erence of results across group-average and

individual data focuses on the violation of the triangle inequality, a metric axiom according

to which the distance between objects A and B is always equal to or less than the sum of

the distances of A and B from a third object. This metric axiom is implicit in the MDS
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and DFCLUS models and in all graph-theoretic models, but not in ADCLUS (Tversky,

1977; Navarro & Lee, 2004; Sattath & Tversky, 1977). In particular, Ashby, Maddox, and

Lee (1994) showed that the averaging process decreases the number of violations of the triangle

inequality, and improves the fit of MDS models compared to what observed for individual data.

Consistently with this interpretation, group-average dissimilarity ratings

were characterized by fewer violations than individual data (average number of

violations = 0.02 and = 0.32, respectively). Notably, this explanation does not account for

the results for sorting data because, by definition, they satisfy the triangle inequality at

both the group-average and individual levels. Another explanation for the di↵erent results

for group-average and individual data focuses on the distributional properties of the input

dissimilarities and on the sensitivity of the distance models to such variations (Pruzansky

et al., 1982; Ghose, 1998). We thus assessed the extent to which models’ fit was influenced

by the skewness and elongation (proportion of elongated triangles in the distance matrix)

of the input data. For each of the distance models, we computed a multiple

rank-regression model (Iman & Conover, 1979), with model fit as dependent variable and

skewness and elongation as predictors (Table 2). We considered group-average and

individual data together. To consider the same number of group-average and individual

datapoints, model fit, skewness and elongation were averaged across individuals. Within

the rank-regression model, the strength of the e↵ect of the predictors was measured by

their partial R2 (R2
p) within the multivariate model (Mulaik, 2005), as computed based on

the observed values of model fit rather than on the ranked values.

[Table 2 here]

Overall, data skewness and elongation explained the variations in the fit of

distinctive-features models better than those of common-features models, with

intermediate levels of explained variance for the unique-features model. Consistently with
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the results of Pruzansky et al. (1982) and Ghose (1998), the fit of GTREED improved for

lower skewness values, whereas that of all the other models, ALSCAL2 included, improved

for higher skewness values. Although CENM fits datasets with low elongation better, all

of the other models yielded better fits for high elongation values. Notably, previous

studies reported better additive tree and MDS fits for high and low values of elongation,

respectively (Pruzansky et al., 1982; Ghose, 1998). Our results for the ALSCAL2 model

are thus contrary to this trend. We have no explanation for this di↵erence. Finally, as

revealed by the R2
p values, the fit of distinctive- and common-features models is better

explained by variations in skewness and elongation, respectively. To a first approximation,

the fit of the unique-features model is instead equally well explained by variations in both

factors. Among the various results of this analysis, the stronger ones concern the e↵ect of skewness

on the fit of distinctive-features models (R2
� .80). Accordingly, the experiment designer should be

particularly aware of the extent to which the distributional properties of the data yielded by the

chosen method influences the ability to fit distinctive-features models.

Accuracy. We measured the accuracy of the group-average and individual data from

the di↵erent data-collection methods. Accuracy was defined as the extent to which the behavioral

data allow recovery of a distance metric based on the stimulus features. We

focused on the data collected with the synthetic sounds, because their features were

known in advance: attack time, spectral centroid and energy ratio between even and odd

harmonics. Accuracy was defined as the R2between behavioral dissimilarities and a

Euclidean measure of the between-stimuli distance based on the stimulus features. For the

sake of coherence with the above-presented analyses, individual data were �-transformed. Figure 8

shows the R2 feature distances and group-average and individual data. Because of

the fact that accuracy was measured with reference to a Euclidean distance

based on the features, between-methods di↵erences in accuracy might be influenced by the
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ability to fit a Euclidean structure to the various behavioral datasets. However, alternative

accuracy measures based on alternative metrics of the feature-based distance (e.g.,

additive tree) produced the same results, and are not shown here for the sake of brevity.

[Figure 8 here]

Several points emerge from this analysis. Firstly, and not surprisingly, less noisy

group-average data are more accurate than individual data. Secondly, and consistently

with previous studies, dissimilarity rating is by far the most accurate method (Bricker &

Pruzansky, 1970; Subkoviak & Roecks, 1976). Thirdly, free sorting and hierarchical

sorting are equally accurate at the group-average level, whereas hierarchical sorts are more

accurate at the individual level. The first of these results is in contrast with the superior

accuracy of group-average hierarchical sorts compared to free sorts observed by Rao and

Katz (1971). Several methodological di↵erences might explain this inconsistency. For

example, Rao and Katz (1971) assumed a Euclidean mental space and measured accuracy

in MDS models fit to the dissimilarities. Our datasets were better fit with graph-theoretic

structures, and the analysis of accuracy focused on the raw data. Among the various

factors, a particular aspect of the free sorts simulated by Rao and Katz (1971) appears to

provide a straightforward explanation for the divergence. he maximum number of free-sorting

groups is proportionally lower than what observed with the participants in our experiment

(8 groups/40 stimuli = 0.2 for Rao & Katz, 1971; 6.15 groups/20 stimuli = 0.31 in this study).

As such, the free sorting data from the study are likely more comparable to the four-groups

constrained sorts than to the free sorts from the current study (4 groups/20 stimuli = 0.2).

Based on these considerations, our results are consistent with those of Rao and Katz (1971) at

both the group-average and individual levels: in both cases, the four-group constrained sorts are

less accurate than the hierarchical sorts. The superior accuracy of individual sorts also
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provides at least partial support for the hypothesis that hierarchical sorting produces data

that are more appropriate than free sorting for individual-di↵erences scaling (Lawless et

al., 1995). Indeed, more accurate individual data are more likely to yield interpretable

solutions for individual-di↵erences models.

Conclusions

We compared dissimilarity ratings and sorting methods relative to a variety of

factors of potential relevance to the experiment design process: e�ciency, reliability,

between-method redundancy, data modeling and accuracy. Table 4 ranks the various

methods relative to most of these criteria.

[Table 4 here]

Consistently with previous studies, dissimilarity ratings scored as a highly ine�cient

method for large stimulus sets, whereas free sorting was drastically more e�cient. When

compared to dissimilarity ratings, the gain in e�ciency associated with hierarchical

sorting appeared to be minimal if participants were asked to create the entire hierarchy.

Interestingly, modeling results showed that the truncated hierarchical sorting methods are

at least as e�cient as free sorting. The analysis of reliability revealed an

e�ciency-reliability tradeo↵: less e�cient methods that required participants to inspect

each stimulus a larger number of times produced more reliable data, more likely to be

replicated with di↵erent groups of participants. Dissimilarity ratings and free sorting were

thus the most and least reliable methods, with an intermediate reliability for

hierarchical sorting. Similar results emerged from the analysis of data accuracy: dissimilarity

ratings reflected the stimulus features more closely than any of the sorting methods at both

the group-average and individual levels. Partially mitigating the plausible hypothesis of an

e�ciency-accuracy tradeo↵, whereas hierarchical sorting was more accurate than free
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sorting at the individual level, both methods appeared equally accurate at the

group-average level.

The analysis of cross-method redundancy revealed that group-average dissimilarity

ratings and hierarchical and free sorting dissimilarities share a considerable amount of

variance, approximately 60%. These results might in principle support the choice of more

e�cient sorting methods over dissimilarity ratings. This choice should nonetheless

considering the lower accuracy and reliability of sorting methods. Because of these latter

properties, sorting methods should be adopted with extreme parsimony and only when

strictly necessary (e.g., strong adaptation e↵ects; measurement of context e↵ects

vulnerable to long dissimilarity-estimation sessions). The choice of sorting methods should

be cautious even when dealing with large sets of stimuli. In such cases, and depending on

the available resources, the experimenter might thus still opt for dissimilarity ratings and

distribute the judgment of the various pairs of stimuli across di↵erent-day experimental

sessions, and collect multiple ratings of each of the pairs from each of the participants. In

the absence of the necessary conditions, truncated hierarchical sorting should be

considered as the best alternative to dissimilarity ratings. Redundancy analyses showed

that truncated hierarchical sorts contain a very large amount of information about the

complete-hierarchical sorts even when the starting number of groups is less than one third

of the number of experimental stimuli. For this reason, truncated hierarchical sorting is

highly likely to keep the higher individual-level accuracy and reliability of complete hierarchical

sorts while at the same time reaching similar e�ciency levels as free sorting.

Overall, the analysis of data-modeling biases revealed that the fit of

distinctive-features models such as MDS is particularly sensitive to a change in

data-collection methods. This e↵ect appears to be strongly dependent on the skewness of

the dissimilarities. In particular, and consistently with previous studies, distinctive-feature models

better fit data with a moderately negative to positive skewness. Given the
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relatively strong dependence of model fit on the data-collection method, it is

recommended to carry out analyses based on the raw unmodeled dissimilarities as

frequently as possible. In the case of strong interest for distance models, the experimenter

is advised to evaluate the robustness of the main conclusions against variations in the

data-collection method, and against variations in the distance model itself (e.g., test

whether both MDS and additive tree models of the same data suggest the perceptual

relevance of the same stimulus features).
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Appendix: Distance models

Distance models can be classified into three categories: spatial models, set-theoretic

models and graph-theoretic models (Corter, 1996). All of the considered models assume

that the distance between objects is a function of their features, which can be of three

types: common features, which increase the similarity of the objects that share them;

distinctive features, which increase the dissimilarity of the objects that do not share them

(Tversky, 1977); unique features, or specificities (Winsberg & Carroll, 1989), a special

type of distinctive feature that characterizes only one of the objects in the set.

The distance models presented here are appropriate for the analysis of two-way

data. Three-way extensions of part of the models presented here are described in Arabie,

Carroll, and DeSarbo (1987), Kroonenberg (2008), and Carroll and Arabie (1983).

Spatial models. Spatial models represent the dissimilarity dij between objects i and

j, with i, j = 1, ..., N , as their distance d

0
ij in a space. In the multidimensional scaling

(MDS) model

d

0
ij =

"

D
X

d=1

(xid � xjd)
r

#1/r

(2)

where D is the number of dimensions, xid is the coordinate of object i along the dth

dimension, and r is the power of the Minkowski metric. The classical MDS model is

metric and the space is Euclidean, i.e., d0ij is a linear function of dij and r = 2 (Torgerson,

1952). In the nonmetric MDS model, d0ij is more generally a monotonic function of dij

(Shepard, 1962a, 1962b). Taking into account the translational invariance of MDS models,

i.e., the fact that the configuration can be translated arbitrarily without a↵ecting the

distances, the number of free parameters equals D(N � 1). MDS can be considered a

distinctive-features model, because features common to all objects (e.g., shape for

triangles of di↵erent colors) do not a↵ect their distance (Gati & Tversky, 1982).
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Set-theoretic models. In this class of models, objects are conceived as collections of

features. One of the most general formulations is the contrast model (Tversky, 1977). In a

recent variant of the contrast model, the modified contrast model (MCM, Navarro & Lee,

2004), the between-objects proximity s

0
ij equals

s

0
ij = c+ sc

0
ij + sd

0
ij

sc

0
ij =

X

k2CF

wkfikfjk

sd

0
ij = �

1

2

X

k2DF

wkfik (1� fjk)�
1

2

X

k2DF

wkfjk (1� fik) (3)

where c is a constant term modeling the saliency of a universal feature common to all

stimuli (Shepard & Arabie, 1979), sc0ij and sd

0
ij are the common- and distinctive-feature

proximity metrics, f = (1, ...,K) is a feature that can be either common (CF ) or

distinctive (DF ) and wk is the weight of the kth feature. The MCM is a hybrid

common/distinctive features model. It reduces to the common-features additive-clustering

model (ADCLUS, Shepard & Arabie, 1979) and to the distinctive-features model

(DFCLUS, Navarro & Lee, 2004) if DF = ; or CF = ;, respectively. Current opinions

diverge on the number of free parameters in a set-theoretic model. For ADCLUS, this

number equals K + 1 according to Shepard & Arabie, 1979; see also Navarro & Lee, 2004,

p. 966), N +K + 1 according to Carroll and Arabie (1983) and NK + 1 according to

Chaturvedi and Carroll (2006). The disagreement likely extends to DFCLUS and MCM.

Graph-theoretic models. Graph-theoretic structures model distances as the

minimum-length path between nodes, each representing an object. A path is a sequence of

arcs (e.g., Figure 3). A particularly important graph-theoretic structure is the tree, i.e., a

graph that is connected (each pair of nodes is connected by a path) and does not have

cycles (each path passes through one node only once; Corter, 1996).

In the additive tree (Carroll, 1976; Sattath & Tversky, 1977), distances satisfy the
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additive inequality:

dij + dkl  max (dik + djl, dil + djk) (4)

implying that for each quadruple of objects, the two largest of the three sums in Equation

4 are equal (Barthélemy & Guénoche, 1991, p. 50). In a rooted additive tree, all the paths

descend from a common point (e.g., Figure 3). In principle, an additive tree can be rooted

in infinitely many di↵erent ways, i.e., the root can be located on any point in the tree.

Commonly, one uses the minimum-variance root, which minimizes the variance of its

distances from all the objects (Sattath & Tversky, 1977). Under this condition, the root

can be thus taken as a representation of the stereotypical stimulus for the set. An

additive-tree model requires the estimation of 2N � 3 parameters (Sattath & Tversky,

1977). Additive trees can yield both a distinctive-features dissimilarity and a

common-features similarity metric. In the first widely known case, the minimum-path

distance between two objects models the weight of unshared features (Tversky, 1977). In

the second, frequently ignored, case, the length of an arc models the weight of the features

common to the object that descend from the same arc (Tversky, 1977, p. 347). Note that

whereas the distinctive-feature dissimilarity is independent of the location of the root, the

common-features similarity depends on the location of the root.

Ultrametric trees, among which the hierarchical clustering model (S. C. Johnson,

1967), are a special case of the additive tree. In ultrametric trees, objects are equidistant

from the root, and distances satisfy the ultrametric inequality:

dij  max (dik, djk) , (5)

which implies that each possible triad of objects defines an isosceles triangle. An

ultrametric tree is specified by N � 1 parameters. As with additive trees, ultrametric trees

can yield both a common-features proximity, the length of an arc from which two objects

descend (Corter, 1996, p. 14), and a distinctive-features distance, the minimum-length
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path between objects. Di↵erently from additive trees, however, the sum of these two

metrics is the same for each pair of objects. As such, in an ultrametric tree it is not

possible to distinguish between common- and distinctive-features metrics.

An additive tree with a single internal node is called a singular tree, (Sattath &

Tversky, 1977) or star tree or centroid distance (Barthélemy & Guénoche, 1991, p. 88).

With the centroid distance, the additive inequality reduces to the equality of all of the

three sums in Equation 4 (Corter, 1996, p. 19), and distances are modeled as

d

0
ij = xi + xj . (6)

The least-squares estimation of the x terms is given by:

xi =

N
P

j=1,j 6=i
dij + k

N � 2
�

N
P

i=1

N
P

j=1,j 6=i
dij + k

2 (N � 1) (N � 2)
(7)

where k is a constant term appropriately chosen to ensure positivity of xi, with

i = 1, ..., N (Hubert, Arabie, & Meulman, 1997). A centroid distance estimates N

parameters. A formulation of the centroid distance similar to that in Equation 6 is used in

EXSCAL, a hybrid of a tree and an MDS model (Winsberg & Carroll, 1989). When the

spatial component is null, EXSCAL reduces to:

d

0
ij = [xi + xj ]

1/2 (8)

where the x terms, termed specificities, weight the attributes specific to each of the

stimuli. Independent of the particular formulation, the centroid distance can be

interpreted as a unique-feature model. Overall, these models can be interpreted as a

measure of the weight of features unique to each of the objects.

Note finally that an additive tree can always be decomposed in infinitely many ways

as the sum of an ultrametric tree and a centroid metric (Barthélemy & Guénoche, 1991, p.

114). The ambiguity of the decomposition reflects the fact that an additive tree can be
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rooted in infinitely many ways. As such, an additive tree can also be interpreted as the

sum of a unique-features dissimilarity with an ultrametric tree, which might be equally

well interpreted as a model of distinctive-feature dissimilarity or of common-features

similarity.
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Table 1

Temporal factors for the data-collection methods and sound sets averaged across participants (SE in parentheses).

Semantic set Synthetic set

Method DR HS FS DR HS FS

Experiment duration (min)33.09 (1.77) 25.70 (1.75) 14.66 (0.61) 21.18 (1.65) 17.39 (1.33) 17.18 (1.91)

Playback time (min) 18.76 (1.26) 14.88 (1.22) 4.77 (0.28) 7.21 (0.66) 5.65 (0.52) 3.94 (0.71)

Nonplayback time (min) 14.33 (0.91) 10.82 (0.61) 9.90 (0.53) 13.97 (1.11) 11.74 (0.87) 13.24 (1.36)

Number of playbacks 23.05 (1.55) 18.40 (1.51) 5.96 (0.36) 33.96 (3.11) 27.11 (2.51) 19.28 (3.41)
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Table 2

Multiple rank regression analysis of the e↵ects of data skewness and elongation on the fit of distance models.

Skewness Elongation

B SE B R2
p B SE B R2

p R2

ADCLUS2 0.19 0.10 .05 0.32 ⇤⇤ 0.10 .08 .10

DFCLUS2 0.84 ⇤⇤ 0.05 .78 0.22 ⇤⇤ 0.05 .17 .80

CENM 0.53 ⇤⇤ 0.08 .70 �0.50 ⇤⇤ 0.08 .60 .67

GTREED �0.24 ⇤ 0.10 .12 0.46 ⇤⇤ 0.10 .21 .24

ALSCAL2 0.81 ⇤⇤ 0.05 .82 0.33 ⇤⇤ 0.05 .17 .84

Note. B = rank regression coe�cient; R2
p = partial R2; ⇤

p < .05; ⇤⇤
p < .01; df = 81.
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Table 3

Distance models considered in this study.

Acronym Model Model family Feature interpretation

§ALSCALX Multidimensional scaling (alternating least-squares Spatial Distinctive

†MCMX Set-theoretic Common, Distinctive

†MCMXC Set-theoretic Common

†MCMXD

algorithm); X = number of dimensions

Modified contrast model, X = number of non-universal

features
Common-feature distance derived from MCMX

Distinctive-feature distance derived from MCMX Set-theoretic Distinctive

†ADCLUSX Additive clustering model; X = number of clusters Set-theoretic Common

†DFCLUSX Distinctive-feature clustering model; X = number of Set-theoretic Distinctive

‡GTREE Graph-theoretic Comm., Dis., Uni.

‡GTREEC Graph-theoretic Common

‡GTREED

clusters

Additive tree (generalized triples algorithm

Common-feature distance derived from GTREE

Distinctive-feature distance derived from GTREE Graph-theoretic Distinctive

?L2ULTRA Least-squares ultrametric tree Graph-theoretic Common, Distinctive

?CENM Centroid metric model (star tree) Graph-theoretic Unique

?CENMSQ CENM fit to squared dissimilarities Graph-theoretic Unique

Note. † = fit using the Matlab routines available at http://www.socsci.uci.edu/⇠mdlee/sda.html; ‡ = fit

using the Pascal routines available at http://www.columbia.edu/⇠jec34/; ? fit using the Matlab routines

available at http://cda.psych.uiuc.edu/srpm mfiles/; § = fit using the Fortran routines available at

http://forrest.psych.unc.edu/research/alscal.html. Routines for all models retrieved on May 19, 2011.
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Table 4

Rank-ordering of non-derived data-collection methods relative to various criteria investigated in this study.

Dissimilarity Hierarchical Free

ratings sorting sorting

E�ciency low medium high

Reliability high medium low

Accuracy (group) high medium medium

Accuracy (indiv.) high medium low

Note. group = group-average data; indiv. = individual data.
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Footnotes

1Hierarchical sorting dissimilarities are more rigorously conceptualized as ordinal

measures and should thus be pooled across participants using the median and not the

mean. In the present study, the Pearson correlation between median- and mean-pooled

hierarchical sorting data is .95 and .97 for the semantic and synthetic sets, respectively.
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Figure Captions

Figure 1. Estimates of experiment duration as a function of the size of the stimulus set

and data-collection method (average stimulus duration = 1 sec). DR = dissimilarity

ratings; HS = hierarchical sorting; FS = free sorting; TSN/4 and TS5 = truncated HS with

a number of starting groups equal to one fourth of the number of stimuli and to five,

respectively.

Figure 2. Bootstrap estimates of the reliability (R2) of group-average dissimilarities as a

function of the number of participants.

Figure 3. Redundancy of dissimilarities collected with di↵erent methods. An additive tree

(GTREE) is fit to the proportion of variance not shared by data from di↵erent methods.

The sum of the horizontal tree branches that connect two methods models the amount of

variance they do not share. The additive constant has been subtracted from the branch

length to improve the metric correspondence between input and tree distances.

DR = dissimilarity ratings; HS = hierarchical sorting; FS = free sorting;

CSX = constrained sorting into X groups.

Figure 4. Redundancy (R2) between individual-level free sorting (FS) data and

group-average constrained sorts (CS) derived from the hierarchical sorting data, as a

function of the absolute di↵erence between the number of CS and FS groups of stimuli.

Error bar = ± 1 standard error of the mean.

Figure 5. Redundancy (R2) between group-average complete hierarchical sorting (HS)

data and derived truncated hierarchical sorts (TS) based on a variable number of starting

groups of stimuli. Note that complete hierarchical sorting starts with 20 groups, one for

each of the stimuli.
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Figure 6. Left panel: average and standard error of the fit (R2) of the distance models

across methods and sound sets. Right panel: metric two-dimensional MDS computed on

the percentage of variance not shared by di↵erent distance models, averaged across

data-collection methods and sound sets.

Figure 7. Fit (R2) of distance models for dissimilarities from di↵erent data-collection

methods. Left panel: group-average data; right panel: individual data.

Figure 8. Accuracy of group-average and individual dissimilarities = R2 between

dissimilarities and Euclidean distance based on known stimulus features. R2 measures are

shown on a logarithmic scale to improve the readability of individual-level results.
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