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Abstract

Systems developed today are increasing in complexity. Model-Driven Engineering (MDE) attempts
to solve the issues related to complexity through the use of models to describe systems at different
levels of abstraction. Multi-Paradigm Modelling (MPM) promotes modelling all parts of the system,
at the most appropriate level(s) of abstraction, using the most appropriate formalism(s), to reduce
accidental complexity. MPM principles state that transformations too should be modelled explicitly.
Model transformations are at the very heart of MDE. Transformations allow one to execute, analyse,
synthesize code, optimize, compose, synchronize, and evolve models.

Despite a robust theoretical foundation, model transformation still suffers from scaling and cor-
rectness problems. The growing interest in model transformation has lead to a plethora of model
transformation languages. They provide tremendous value for developers, but in all existing imple-
mentations, the transformation language is hard-coded. This thesis contributes to the engineering of
model transformation languages at the foundation level, following MPM principles. It proposes a
framework for designing transformation languages tailored to the problem to be solved. As a result,
model transformation languages engineered in this framework maximally constrain the modeller to
only use the constructs needed. The aim is to increase the modeller’s productivity, by raising the level
of abstraction at which transformations can be specified andby lowering the mismatch between model
transformation languages and their application domain.

After thoroughly analyzing the uses of model transformation and their supporting languages, we
extract what is common to approaches and express model transformation at the level of their primitive
building blocks. We introduce T-Core, a collection of transformation language primitives for model
transformation. A Python implementation of T-Core is developed. It offers an API of primitive trans-
formation operations that act on models represented as graphs. This opens the door for non-MDE
developers to “properly” interact and manipulate models, making the link between the programming
world and the modelling world. In the framework developed, model transformation languages are
modelled explicitly. This supports developers in creatingcustom-built transformation languages. The
approach semi-automatically generates model transformation languages adapted to the application
domain. MoTif is another model transformation language engineered with this framework. Its syntax
and semantics are completely modelled, as well as its execution engine. MoTif is the result of merg-
ing T-Core with DEVS, a discrete-event simulation formalism. It thus introduces the notion of time
in model transformation. This allows one to easily model reactive systems and consequently optimize
and calibrate them. Finally, the notion of exception handling in model transformation is explored to
strengthen the robustness and dependability of the software built using this technology.
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Abbrégé

Les systèmes développés aujourd’hui sont de plus en plus complexes. Pour résoudre les problèmes liés
à la complexité, l’Ingénierie Dirigée par les Modèles (IDM)utilise des modèles qui décrivent les sys-
tèmes à différents niveaux d’abstraction. La Modélisationà Paradigmes Multiples (MPM) renchérie
cette approche en modélisant toutes les composantes du système, aux niveaux d’abstraction les plus
appropriés, tout en utilisant les formalismes les plus adéquats, afin de réduire toute complexité acci-
dentelle. Les principes MPM stipulent que les transformations doivent aussi être modélisées explicite-
ment. Les transformations de modèles sont au cœur de l’IDM. Elles permettent d’exécuter, d’analyser,
de générer le code, d’optimiser, de composer, de synchroniser et de faire évoluer les modèles.

Bien que la transformation de modèles soit basée sur de solides théories, les problèmes de mise à
l’échelle et de validité restent néanmoins encore à résoudre. Vu l’intérêt suscité par la transformation
de modèles, on observe de nos jours une vaste sélection de langages de transformation de modèles.
Bien qu’ils apportent une énorme plus-value au développeur, l’implémentation de ces langages de
transformation demeure cependant codée en dur. Cette thèsecontribue aux fondements de l’ingénierie
de langages de transformation de modèles, tout en suivant les principes MPM. Elle propose un sys-
tème qui permet la conception de langages de transformationadaptés au problème à résoudre. Ces
langages de transformation restreignent au maximum le modélisateur à n’utiliser que les concepts
nécessaires. Le but est d’accroître la productivité du modélisateur, en élevant le niveau d’abstraction
auquel les transformations sont spécifiées, tout en réduisant l’inadéquation du langage de transforma-
tion de modèles avec son domaine d’application.

Après avoir analysé les différents usages des transformations de modèles et de leurs langages,
nous avons identifié et extrait la partie commune à toutes lesapproches. Ceci permet alors de définir
les transformations de modèles à partir des concepts essentiels qui les composent. Nous présentons
alors T-Core, une collection d’opérateurs primitifs pour la transformation de modèles. T-Core est im-
plémentée en Python, offrant ainsi une API disponible aux opérations primitives de transformation de
modèles qui agissent sur des modèles représentés sous formede graphes. Ceci permet à des program-
meurs de « proprement » interagir avec des modèles et de les manipuler, faisant ainsi le lien entre le
monde de la programmation et celui de la modélisation. Le système établi dans cette thèse modélise
de manière explicite les langages de transformation de modèles et permet alors de créer des langages
de transformation personnalisés. L’approche génère semi-automatiquement des langages de transfor-
mation adaptés au domaine d’application. MoTif est un autrelangage de transformation de modèles
construit à partir de ce système. Sa syntaxe, sa sémantique et son moteur d’exécution sont entièrement
modélisés. MoTif est le résultat de la fusion entre T-Core etDEVS, un formalisme de simulation à
événements discrets. MoTif permet alors d’introduire la notion de temps dans les transformations de
modèles, ce qui permet de facilement modéliser des systèmesréactifs et, par conséquent, les optimiser
et les calibrer. Finalement, nous explorons la notion de gestion d’exception au sein des transformations
de modèles, afin de renforcer la fiabilité des logiciels bâtisà l’aide de cette technologie.
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Introduction

Context

The past fifty years have seen a drastic increase in the complexity of the systems we design and use.
In particular, major innovations of the last decade focusedon collaboration and integration of individ-
ual systems. Despite the advances in programming languagesand supporting integrated development
environments, the development of complex software systemsrequires an enormous effort. The main
reason behind the difficulty of developing complex systems is the conceptual gap between the problem
to solve and the implementation using current code-centrictechnologies. This raises two issues we
notice in current realizations: (1) the development process is not optimal and (2) there is often a mis-
match between the functional needs derived from the problemand the delivered software. Some ways
to tackle this complexity are through the use of abstraction[Dah02], problem decomposition [CLR00],
and separation of concerns [KLM+97]. Model-driven approaches to systems development move the
focus from third-generation programming language (3GL) code tomodels. The objective of model-
driven development is to increase productivity and reduce time-to-market by enabling development at
a higher level of abstraction and by using concepts closer tothe problem domain at hand, rather than
the ones offered by programming languages.

Model-Driven Engineering(MDE) [SVC06] is now considered a well-established development
methodology. It attempts to solve these issues through the use of abstraction, bridging the gap be-
tween the problem and the software implementation. The MDE approach is to support systematic
transformations of problem-level abstractions into theirimplementations. To bridge the gap between
the application domain and the solution domain, MDE uses models to describe complex systems at
multiple levels of abstraction and through automated support for transforming and analyzing mod-
els. MDE, and in particular,domain-specific modelling[GTK+07], is an approach that allows one
to manipulate models at the level of abstraction of the application domain the model is intended
for, rather than at the level of computing. MDE considers models and transformations as first-class
entities. A model represents an abstraction of a real system, capturing some of its essential proper-
ties, to reduce accidental complexity. Models are used to specify, document, simulate, test, verify,
and generate code for applications. In software language engineering terms, a model conforms to
a meta-model[Küh06b, Küh06a]. A meta-model defines the abstract syntax and static semantics of
a (possibly infinite) set of models. A model is thus typed by its meta-model that specifies its per-
missible syntax, often in the form of constraints. A common representation of meta-models uses the
Unified Modelling Language (UML) Class Diagram notation [Obj09] with Object Constraint Lan-
guage (OCL) constraints [Obj06b]. MDE allows one to manipulate these models through the use of
model transformation. A model transformation transforms a source model into a target model, both
conforming to their respective meta-models. The Object Management Group (OMG) has proposed
the Model-Driven Architecture (MDA), which promotes modeltransformation at the heart of MDE.
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The Query, Views, and Transformations (QVT) language [Obj08] is a recent addition to the OMG’s
set of standards.

Today’s research in the field of MDE focuses on the applicability and scalability of its solutions to
industrial problems. Complementary to MDE,Multi-Paradigm Modelling(MPM) [MV04] addresses
these issues and formulates a domain-independent framework. MPM promotes modelling all parts of
the system, at the most appropriate level(s) of abstraction, using the most appropriate formalism(s),
to reduce accidental complexity. One key aspect of MPM is multi-abstraction. A model abstraction
is a view of a system exhibiting some of its properties while hiding others. Multi-abstraction is thus
the ability to express models at different levels of abstraction. MPM realizes that systems can be
represented in different modelling languages or formalisms. MPM, in particular multi-abstraction
and multi-formalism modelling, is enabled by the use of meta-modelling and model transformation.
Instead of describing their behaviour in terms of code, MPM principles state that transformations
too should be modelled explicitly. The developer can then manipulate models by means of model
transformation. Transformations allow one to execute, analyse, synthesize code, optimize, compose,
synchronize, and evolve models. Model transformations areat the very heart of MDE.

Problem Statement and Thesis Proposition

Despite a robust theoretical foundation, model transformation still suffers from scaling and correct-
ness problems in an industrial context. The growing interest in model transformation has lead to a
plethora of model transformation languages expressed in different paradigms,e.g.,template-based,
rule-based, triple graph grammars, with or without explicit control flow [CH06]. They are supported
by various implementations such asAGG [Tae04],ATL [JK06], AToM3 [dLV02], GReAT [AKK +06],
MOFLON [AKRS06], QVT [Obj08], VMTS [LLMC05], just to name a few. They provide tremendous
value for developers, but in each implementation the transformation paradigm is hard-coded to be
used as is [BBG+06].

This thesis contributes to the engineering of model transformation languages at the foundation
level, following MPM principles. This is done by modelling everythingexplicitly at the most appro-
priate level(s) of abstraction using the most appropriate formalism(s). In this approach, the model
transformation language is modelled at the syntactic level(abstract and concrete). Moreover, the se-
mantics of such transformation models is also modelled through the use of meta-modelling and model
transformation. The aim is to increase the developer’s productivity, by raising the level of abstraction
at which transformations can be specified and by lowering themismatch between model transforma-
tion languages and their application domain,i.e., minimizing accidental complexity. Therefore, the
work presented here provides a framework for building such model transformation languages, and
illustrates its applicability by designing and implementing a new model transformation language fol-
lowing the MPM principles for the core algorithms, the transformation language building blocks, and
the transformation formalism. The approach presented herefocuses on the expressiveness of model
transformation.

Since this work focuses on the foundation level of model transformation (software) development,
it is important to realize there are four levels of users in this framework:
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1. Theend-useroperates the system implemented. For him, the system modelled is strictly a soft-
ware application that suits his need.

2. Themodellerdesigns and operates models of the system. A domain-specificengineer is typi-
cally a modeller who is an expert in his domain, modelling at alevel of abstraction as close as
possible to his domain of expertise.

3. Thetransformation engineeris aware of the domain of expertise. He designs a framework well-
suited for the domain-specific engineers. Note that in some cases, the transformation engineer
may as well be the domain-specific engineer (this is analogous to a database administrator and
the programmers developing the database system). The term engineer is sometimes replaced by
modeller.

4. The transformation language engineerbuilds the transformation language to be used by the
transformation engineer. He engineers a transformation language with the necessary and suffi-
cient features needed for a class of application domains.

This thesis provides the necessary tools for the transformation language engineer to build transforma-
tion languages that are problem-specific.

Contributions

The goal of this thesis is to improve our understanding of model transformation, facilitate the engi-
neering of model transformations, and increase the qualityof the software produced by this technol-
ogy. To achieve this goal, the focus is shifted to the languages that allow us to develop transformation
models. The main outcome of this thesis is a framework and methodology to engineer model trans-
formation languages that are tailored to the specific domainof application and the problem to solve.
The contributions of this thesis are the following:

1. The ability to createcustom transformation languagesaccording to the problem to be solved.

2. The re-use of modelling languages to define theschedulerof a model transformation, instead
of inventing a new one for each transformation language.

3. A framework for defining transformation languages that are completely modelledin a multi-
paradigm modelling sense. Consequently, this allows one tocleanly specify higher-order trans-
formations.T-Core encapsulates the building blocks of this framework.

4. A precisecommon representationof essential model transformation language features.

5. The introduction ofexception handlingin model transformation to ensure the dependability of
the software built.

6. The integration of model transformation in aprogramming framework, as opposed to a mod-
elling framework.

7. An in-depth comparisonof existing model transformation languages, approaches, and paradigms.

8. The weaving of the model transformation paradigm with thediscrete event simulation paradigm,
ensured bytimed model transformations. This provides a model-driven approach to modelling
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and simulation-based design.MoTif is a novel model transformation language built using this
approach.

Outline

This thesis is divided into four parts. Part I proposes an extended survey of model transformation. It
comprises two chapters. Chapter 1 explains what a model transformation is and where it is applied.
Chapter 2 exposes an overview of existing model transformation languages and their features.

Part II focuses on the foundations of model transformation.Chapter 3 proposes a common basis
for defining model transformation languages and Chapter 4 isdedicated to the implementation of this
transformation core. To complement this idea, Chapter 5 motivates and describes the need for custom-
built transformation languages, focusing on the specification part rather than on the transformation
engine.

Part III illustrates the proposed framework for engineering transformation languages tailored to the
needs of the transformation engineer. Chapter 6 presents a formalism for modelling and simulation
purposes. It is entirely modelled following MPM principles. Then, Chapter 7 shows how to define
a novel transformation language in the framework describedin Part II, combining the formalism
presented in Chapter 6, as well as Chapters 3 and 5. Chapter 8 takes advantage of the fact that this
novel transformation language is entirely engineered following MPM principles, to extend it with
fault-tolerance capabilities, such as exception handling.

Part IV demonstrates applications of the transformation language developed throughout the thesis.
Chapter 9 shows the application of the language to modellingand simulation-based design. Chapter 10
evaluates the expressiveness of the language and Chapter 11evaluates its performance. A final con-
clusion summarizes the conclusions described at the end of each chapter and proposes an outlook for
future research.



Part I

A Survey of Model Transformation





7

“Rien ne se perd, rien ne se crée, tout se transforme.”
(Nothing is lost, nothing is created, everything is transformed.)

Antoine Lavoisier
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1
What is Model Transformation?

Part I of the thesis presents a thorough survey of the different applications of model transformation,
of the features that model transformation languages exhibit, and a comparison of the most common
model transformation languages and approaches that exist today. This chapter focuses on the first
aspect. But first let us explain what a model transformation is.

1.1 Definition of Model Transformation

In MDE, models are the primary engineering artefacts. Because of the compelling need to manipulate
the data stored in models, transformations play a fundamental role in model-driven development. In
fact, they are so crucial that transformations are considered as “first-class citizens” in MDE. Further-
more, transformations themselves are modelled, hence the termmodel transformation.

1.1.1 Previous Definitions

The OMG defines a model transformation as “the process of converting one model to another model
of the same system” [Obj03]. This definition is too restrictive as it only considers transformations
that produce a different model from the initial one. In 2003,Kleppeet al.published a book on prac-
tical applications of the MDA. The definition they propose extends the OMG’s definition with spe-
cific keywords: “a model transformation is the automatic generation of a target model from a source
model, according to a transformation definition” [KWB03]. The termssourceandtargetmodels refer
to the functional nature of a transformation, taking a source model as input and outputting a target
model. Another key aspect in this definition is the “automatic generation”. This implies that the trans-
formation is not specified directly on models but at a higher (meta-)level and the transformation is
automatically generated from its definition.

Figure 1.1 illustrates this definition. A transformation isdefined at the meta-model level. From
the transformation definition1, the transformation is automatically generated and is executed on the
models conforming to their respective meta-models. The transformation can be interpreted or the
result of a compilation. In this figure, the source and targetmeta-models may be different or the same,
depictingexogenousor endogenoustransformations respectively. Furthermore, the source and target

1In the literature, this term also appears as transformationspecification or transformation design.
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Figure 1.1: Model transformation terminology.

models may be different or the same, depictingout-placeor in-place transformations respectively.
These terms were first introduced by Mens and Van Gorp in [MVG06]. Moreover, the figure can be
extended to allow a transformation to operate on multiple source and/or target models.

1.1.2 Proposed Definition

Since these definitions were proposed (over 8 years ago), model transformation has been applied in
a much wider range of applications than expected at the time,as illustrated in the following section.
Therefore, the definition of a model transformation must be revised to fit in a more general context.
In this thesis, we consider a model transformation asthe automatic manipulation of a model with a
specific intention. It is automatic because, as in the definition from Kleppeet al., the transformation
is automatically generated from a higher level specification. A model transformation is a manipula-
tion of a model because it encapsulates any modification or alteration of a model, which entails—at
the minimum—reading, creating, and modifying model elements. Model transformation can work at
different levels of abstractions, modify the syntax of a model, or even define/alter the semantics of a
language. Its application may vary from simple model element modifications to defining the semantics
of a language or synchronizing different views of a same model. An exhaustive list of applications of
model transformation will be given in Section 1.2. The diversity in the applications thus implies that
each model transformation is characterized by the intention behind its usage.

This more general definition must be placed in a multi-paradigm modelling context whereevery-
thing is modelled. In that sense, any change in the system always happens on a model. LetM be a
model that conforms to a meta-modelMM. A transformation onM is an intentional change or al-
teration of the model, which yields a modelM′ conforming to a meta-model2 MM′. Moreover, since
we model everything explicitly, then a change or modification of a model must be itself modelled:
we therefore have models of transformations. The meta-model of a transformation model defines all
possible changes for the same intention from an instance ofMM to an instance ofMM′.

2Note thatMM andMM′ may be the same.
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1.1.3 Program versus Model Transformation

At first glance, a model transformation, just like any other program, is a data manipulation pro-
gram: take input data and produce output data. However, model transformation is a form ofmeta-
programming[CI84], i.e., programs that manipulate meta-data, such as programs, specifications,
schemata, etc. Manipulating “semantically rich” data, such as programs, requires specialized facil-
ities: thus the need for program transformation and compilers. However, one may argue that the dif-
ference between a model and a program resides in (1) the levelof abstraction they are specified in
and (2) the cognitive effort needed by a human to map the computer-based model to the system in
the real world. Similarly, model transformation can work atdifferent levels of abstraction. Its appli-
cation may vary from simple model element modifications to defining the semantics of a language or
synchronizing different views of the same model.

The distinction between a program and a model transformation is not clear-cut. The first distinction
is biased towards tree versus graph rewriting. Traditionally, program transformation has used term
rewriting—that is, tree transformations—as its underlying theory,e.g.,Stratego [Vis01]. A good part
of the model transformation community that works on the theoretical aspects of model transformations
views graph transformation as the most appropriate paradigm for model transformations. This view
applies well to models such as Petri nets, which are truly graph-like. However, some models may have
natural tree-like nesting (often represented as composition in their respective meta-models). Thus,
viewing model transformation as transforming graphs without special attention to the tree structures
is unnecessarily restricted. The bottom line is that both program and graph transformation systems
transform graph structures and both can be used to transformprograms or models. In practice, the
choice between the two boils down more to how well the source and target languages are supported.
For example, a system that can transform Java should come with a rich library of built-in program
analyses, starting with the simplest query for all the interfaces a given class implements.

Another distinction is that programming languages traditionally used grammars as their syntax
definition formalisms; most of the modelling world uses richer formalisms such as class models,
e.g.,the Meta-Object Facility (MOF) [Obj06a]. The latter are more properly “concept definition” for-
malisms with generalization and property relations (with properties possibly divided into references
and composition).

The final distinction is that models are more diverse. Although the term “model” normally refers
to system abstractions above the implementation code [GTK+07], that is—artefacts such as require-
ments and design specifications or analysis models, model-driven environments sometimes represent
programs in the same form as models, and treat them alike. Thus, we can conclude that model transfor-
mations operate on more diverse artefacts than program transformation, as these artefacts may include
programs, but also other artefacts, such as specifications and schema definitions. In other words, one
could view program transformation as a narrower field than model transformation.
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1.2 Types and Uses of Model Transformation

In MDE, a model is a static representation of some information of a system. Model transforma-
tion allows one to manipulate models in order to modify some of their properties, answer queries,
generate code, simulate, migrate, optimize, compose, or synchronize them. These different types of
model transformations capture the intention behind the manipulation they perform on models. The
following classification extends the taxonomy of model transformation proposed by Mens and Van
Gorp [MVG06].

1.2.1 Access/Modify Operations

Strictly speaking, a model consists of a set of elements; forexample if a model is represented by an
instance of a UML class diagram [Obj09], then the elements correspond to objects and links. These
elements are usually structured; for example in the form of an ordering or containment relationships.
Properties of the model are encapsulated in elements; for example as attribute values in the objects.

The simplest operations on a model areaddingan element to the model,removingan element
from the model,updatingan element’s properties,navigatingthrough the elements, andaccessingthe
properties of an element. These primitive operations are also known as theCRUD operations (create,
read, update, delete) as first introduced by Kilov in [Kil90]. From a pragmatic point of view, a model
transformation is a sequence of CRUD operations. The effectthat a specific sequence has on a model
determines the nature of the transformation. The simplest of these is the simple access or modification
of one or more elements of the model or their properties.

1.2.2 Query

Queries take their origins from data manipulations in databases. A query is an operation that requests
for some information about a system. This operation takes asinput a modelM and outputs aview of
M. A view is a projection of (a subset of) the properties ofM. Therefore a query is a transformation
as it is a projection, obtained by CRUD operations on the properties ofM. We distinguish between
two types of views: restrictive and aggregated views. Arestrictive view reveals all, none, or some of
the properties ofM. For example, the query “retrieve all cycles in a Causal Block Diagram” outputs a
view of the causal block diagram model represented as a cyclic graph composed of strongly connected
components. Another kind of restrictive view is the output of the query “show only classes/associa-
tions of a class diagram”. Anaggregated viewis a restriction ofM modifying some of its properties.
One example of such a view is the average of all costs per catalogue product in a relational database
schema. Or, in a hierarchical model, show top-level elements only with an extra attribute denoting the
number of sub-elements.

These definitions of a query and a view differ from those proposed by the Query/View/Transfor-
mations initial call for submissions [GGKH03]. The authorsdefine a query as “an expression that is
evaluated over a model” and a view as “a model which is completely derived from another model”.
Although stated from a more pragmatic perspective, they arenevertheless compatible with our defini-
tions.
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Figure 1.2: Multiple views of a single repository model.

There can be multiple views for different observers of the same model. For example in Figure 1.2,
the central model, calledrepository, can be viewed as a UML class diagram to highlight the main
concept elements, as a UML sequence diagram to outline the interaction between these elements,
as a UML activity diagram that specifies a workflow scenario involving some of the elements, or a
Statecharts model to define their behaviour. Some views are read-only and others are write-enabled.
In any case, views must be kept consistent with the repository. In [GdL06], Guerra and de Lara show
how multi-view consistency can be ensured by a model transformation that defines a relation between
the repository and a view. For read-only views, any change ispropagated from the repository to all
views (or those that are affected by the change). For write-enabled views, any change is propagated
from a modified view to the repository, which will propagate the changes to the other views. This
principle is known as theModel/View/Controllerin software engineering [KP88].

1.2.3 Synthesis

Synthesis is a transformation from a higher level specification to a lower level specification. We talk
aboutcode generationwhen the target specification is source code in a programminglanguage. A typ-
ical example of code generation is when design models (such as UML class diagrams) are translated
into source code (such as C#) as supported by most UML editorsand CASE tools, such as Enterprise
Architect [Sys00]. Another typical case of code generationis when adomain-specific model(DSM)
or abstract model is translated into source code. For example, as illustrated in Figure 1.3, a State-
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Figure 1.3: Statecharts to Python compilation.

Figure 1.4: Extracting user-interface behaviour from a Statecharts model into a PhoneApps model.

charts model is compiled into Python source code in order to simulate it. This is amodel-to-code
transformation which is a special case of amodel-to-modeltransformation, since source code can be
modelled by its abstract syntax tree and the meta-model is the grammar of the programming language.

1.2.4 Reverse engineering

Reverse engineering is the inverse of synthesis: it extracts higher level specifications from lower-level
ones. For example, Figure 1.4 shows a transformation from a Statecharts model to a DSM of the
PhoneApps language for a conference registration mobile application [MV10b].

1.2.5 Translational Semantics

Harel and Rumpe [HR00] define a modelling language (orformalism) by syntax and semantics com-
ponents. The syntax comprises theabstract syntaxrepresenting the essence of the concepts of the
language. The abstract syntax can be mapped to severalconcrete syntaxes(textual representation,
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graphical visualization, etc). These two components specify the different concepts of the language
and how they are represented. The semantics of a formalism isspecified by a uniquesemantic map-
ping functionwhich maps each model element in the language onto an elementin asemantic domain.
For example, the meaning of a Causal Block Diagram is given bymapping it onto an Ordinary Differ-
ential Equation. For practical reasons, semantic mapping is usually applied to the abstract rather than
to the concrete syntax of a model. Note that the semantic domain is a modelling language in its own
right which needs to be properly modelled (and so on, recursively). In practice, the semantic mapping
function maps abstract syntax onto abstract syntax.

Figure 1.5: A Finite State Automata to Petri net semantic translation.

The meta-model of the formalism represents the abstract syntax and static semantics of the lan-
guage. A model transformation can be used to define the dynamic semantics of the language. In the
case of translational semantics, the formalism’s semanticmapping function is defined by a transfor-
mation and its semantic domain is a modelling language. Whendefining a translational semantics,
we transform a model in one formalism into a model in another formalism. Then the semantics
of the source formalism is given in terms of the semantics of the target formalism. For example
in [KMS+09], we define the semantics of Finite State Automata in termsof Petri nets. That is, the
model transformation translates any finite state automata model into a semantically equivalent Petri
net model, as depicted in Figure 1.5.

1.2.6 Simulation

A model transformation can be used to simulate models: it updates the state of the system modelled. In
this case, the target model is then an “updated version” of the source model (in-place transformation).
For instance, Heckel has described the behaviour of a simplistic Pacman game in [Hec06]. There, the
transformation specifies the transitions that a Pacman gameinstance is allowed to take (pacman and
ghost moving in each direction, pacman eating a pellet, ghost eating pacman). In software language
engineering terms, this is called theoperational semanticsof the Pacman language. The execution
of the transformation shows the trace of the model’s behaviour. For example, Figure 1.6 depicts the
trace of the simulation of a Finite State Automata model.
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Figure 1.6: The animation trace of a Finite State Automata.

Figure 1.7: Generation of valid UML class diagrams.

1.2.7 Meta-Model Instance Generation

The meta-model of a language can be defined by a grammar such asin Extended Backus-Naur Form
(EBNF). In the modelling environment DiaMeta (formerly called DiaGen [VM95]), meta-models are
defined bygraph grammars3. This is a model transformation that allows one to generate all possible
instances of the language. For example, Figure 1.7 shows possible UML class diagrams generated for
the meta-model in the middle. In [EKT09], the authors generate Statecharts models from its meta-
model also via a graph grammar. This technique is very usefulfor model-based testing [DJK+99] of
model transformations as it allows one to automatically generate input tests to verify the correctness
of a transformation.

3Hypergraph grammars to be more precise.
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Figure 1.8: Normalization of a Statecharts model by flattening it.

1.2.8 Migration

Another use of model transformation is in model migration. In [MBP99], the authors define migra-
tion as a transformation from a software model written in onelanguage or framework into another
language, keeping the models at the same level abstraction.When a language,e.g.,Enterprise Java
Beans 2.0 (EJB2),evolvesto a newer version,e.g.,Enterprise Java Beans 3.0 (EJB3), one must mi-
grate all models conforming to the meta-model of EJB2 so thatthey conform to the new meta-model
of EJB3. Instead of having to migrate each model individually, an automatic process would be desired.
Thanks to the fact that model transformations are defined on meta-models and operate on models, Ci-
cchettiet al. [CDREP08] have proposed a model-to-model transformation to automatically migrate
models.

1.2.9 Normalization

Normalization aims to decrease the syntactic complexity ofmodels.Desugaring is when complex
language constructs (syntactic sugar) are translated intomore primitive language constructs.Simpli-
fication is when all uses of a language construct are transformed in a normal or canonical form. Fig-
ure 1.8 shows how a Statecharts model is normalized to its flattened form where OR- and AND-states
are replaced by the appropriate states and transitions.Parsing the concrete syntax of a modelling lan-
guage back to its abstract syntax is also considered as a normalization, which can be implemented by
a model transformation involving the meta-model of the concrete syntax and the meta-meta-model of
the language.

1.2.10 Optimization

Improvingoperational qualitiesof models is crucial for scalability. Nevertheless, optimization pre-
serves the semantics of the model. Optimization tasks are typically done on architectural or design
models. For instance in Figure 1.9, we optimize a model representing a spreadsheet with dense data
converting the list representation of the cells into a two-dimensional table.
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Figure 1.9: List to table optimization.

1.2.11 Restructuring

Model refactoring is a restructuring that changes the internal structure of the model to improve cer-
tain quality characteristics (such as understandability,modifiability, re-usability, modularity, adapt-
ability) without changing its observable behaviour [Gri91]. This involves applyingrefactoringas de-
fined by Fowler [Fow99] to models. Zhanget al. [ZLG05] proposed a generic model transformation
engine that can be used to specify refactorings for DSMs.

1.2.12 Composition

Model composition integrates models that have been produced in isolation into a compound model.
Typically, each isolated model represents a concern which may overlap. There are two techniques
to compose concerns as illustrated in Figure 1.10. On the onehand,model merging creates a new
model such that every element from the union of both models ispresent exactly once in the merged
model. In [EPK06], the authors propose a transformation language that allows one to compute the
merged models given two models conforming to the same meta-model. On the other hand,model
weaving creates correspondence links between overlapping entities. In this case, a generic meta-
model is defined for correspondences which are thus modelled.
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Figure 1.10: Composition of two models through model merging (on the bottom left) and model
weaving (on the bottom right).

1.2.13 Synchronization

Model synchronization integrates models that have evolvedin isolation but that are subject to global
consistency constraints. In contrast with composition, synchronization requires that changes are prop-
agated to the models that are being integrated. Source modelchanges are propagated to corresponding
target model changes. Referring back to Figure 1.2, this technique is typically applied when multiple
views of a repository are accessed or modified.Incremental transformations such as in [BÖR+08]
are well-suited for this task. Furthermore, synchronization must be ensured in both directions: in this
case, multi-directional transformation [Sch94, Obj08] isused to manage inconsistencies.

1.2.14 Classification of Transformation Types

Mens and Van Gorp [MVG06] have classified only some of these different types of transformations
along several dimensions. Table 1.1 classifies transformation types depending on whether they are
applied on the same model or not and whether they refer to the same meta-model or not. For example
on the one hand, a model transformation that simulates a model modifies the source model and the
resulting model still conforms to the source meta-model. Onthe other hand, a model transformation
that synthesises a DSM to source code produces a different model that does not conform to the source
meta-model. Note that an in-place transformation is more general than an out-place transformation as
it can emulate the latter by first copying the model and then operating on the copy.

Composition is out-place by definition. However, it can be either endogenous or exogenous de-
pending on the intention of the composition. For instance, if a model transformation is used to merge
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Endogenous Exogenous Either

In-place Access/Modify, Simulation X X
Out-place Restrictive query, Simplification Aggregate query, Synthesis,

Reverse engineering, Migration,
Desugaring

Composition,
Synchronization

Either Optimization, Restructuring X X

Table 1.1: Model versus meta-model concerns of transformations.

Endogenous Exogenous Either

Horizontal Access/Modify, Simulation Migration Composition
Vertical Restructuring, Restrictive query,

Optimization, Simplification
Aggregate query, Synthesis,

Reverse engineering, Desugaring
X

Table 1.2: Abstraction level of transformations.

different restrictive views of the same repository, then the merged model conforms to the same meta-
model. However, if composition is used to merge an old version of a model with a newer one, then the
target model would typically not conform to one of the sourcemeta-models. The same reasoning holds
for synchronization. As for optimization and restructuring operations, these transformations modify
the model keeping it in the same language (i.e., the target model still conforms to the source meta-
model). However, depending on the specific implementation,they may produce a different model or
simply modify the source model.

Finally, Table 1.2 classifies transformation types along two orthogonal dimensions: whether the
source and target model occupy the same level of abstractionor not and whether they refer to the
same meta-model or not. For example on the one hand, a model transformation that migrates a model
to conform to a new meta-model outputs a model that is still atthe same level of abstraction as the
source model. On the other hand, a model transformation thatperforms a restrictive query on a model
produces a view that conforms to a subset of the source meta-model, the view being at a different
level of abstraction than the source model.

Synchronization is not present in this classification because it is orthogonal to the other types
of transformation. As stated previously, it can be both endogenous or exogenous. Synchronization
may also produce a model on the same level of abstraction (horizontal) as the source model(s) or not
(vertical). For example, suppose two domain-specific engineers are working on the same conceptual
model, each on a different version of the model. When the two models are be synchronized, the
modifications applied on each model are still on the same level of abstraction. In contrast, if the
domain-specific engineers are each working on different aggregated views of the same model, then
the synchronization between the two views with the repository model will be on different levels of
abstraction.
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Syntactic Query, Synthesis, Reverse Engineering, Simplification, Desugaring

Semantic Access/Modify, Simulation, Migration, Optimization, Restructuring, Composition,
Synchronization

Table 1.3: Syntactic and semantic transformations.

Finally, Table 1.3 distinguishes transformations that affect the syntax of a model from those affect-
ing its semantics. A syntactic transformation solely modifies the representation of the model (semantic
preserving). However in a semantic transformation (semantic modifying), the output model has a dif-
ferent meaning than the input model, although the representation of the latter may or may not have
been modified. To illustrate the application of model transformation types, let us consider a model
transformation chain (sequence of model transformation applications) to compile a DSM into exe-
cutable Java code. Typically, the DSM is represented in concrete syntax. A transformation will parse
the model to extract its abstract syntax. On the abstract syntax level, optimizations or refactorings may
be applied to improve the quality of the artefact. From the abstract syntax of the model, a transfor-
mation synthesize it directly to Java source code. After some time, the meta-model of the DSM may
have evolved. Consequently, a model transformation will migrate the abstract syntax of the DSM to
conform to the new meta-model. A new model transformation isthen required to synthesize source
code for the new version of the model.

1.3 Conclusion

The first part of the survey presented in this chapter is basedon the taxonomy of model transformation
proposed by Mens and Van Gorp as well as many experiences shared in the literature. To summarize,
model transformation has many purposes. Given a formalism,the meta-model defines the abstract
syntax (structure) and the static semantics. Model transformation providesdynamic semantics(be-
haviour) to models of the formalism. When the transformation is endogenous (the source and target
meta-models are the same), the transformation is typicallyasimulationof the formalism. In this case,
a model transformation describes the operational semantics of the language in the formalism.Refac-
toring is another form of endogenous transformation, typically used for optimizing or evolving the
design of models. When a transformation is exogenous (different source and target meta-models), it is
typically used totranslatemodels from one formalism into another. For example, a domain-specific
modelling formalism may be transformed into a lower (abstraction) level formalism such as Petri
nets or Statecharts. In this case, the meaning of a model is given by a translational semantics into a
behaviourally equivalent model. When two models are related, they can each co-evolve and thus the
initial relationship does not hold anymore. Model transformation can be used tosynchronizemod-
els, specifying a bidirectional transformation or relation between models from different meta-models.
Code generationis another form of exogenous model transformation, considering programs as trees
and thus as models. It can also be used to allow the integration of a model in a software applica-
tion and to make the model executable. Other model transformations are useful to serialize models to
persistent storage.



22 What is Model Transformation?

Model transformation has applications in several industrial projects. The automotive, military,
airspace, and mobile industry (e.g.,Porsche, BMW, Nokia, Motorola) are examples of early adopters
of model-driven engineering. However, model transformation still suffers from scaling and correctness
problems in an industrial context.



2
Features and Approaches

This chapter completes the survey of model transformation in Chapter 1 by first examining the differ-
ent features that current model transformation approachesoffer. Then a thorough comparison of some
of the most relevant transformation tools and languages in use today is presented.

2.1 Overview of Model Transformation Features

From the previous chapter, we can affirm that model transformation has many applications. For ex-
ample, it is used to generate platform-specific models from platform-independent models and reverse
engineer them, map and synchronize among models at the same or across abstraction levels, cre-
ate query-based views of a system, model evolution tasks, ortransform models between different
languages for integration. We will now explore the different features that a model transformation
language can have. It covers more than what current tools support but this framework may change
because of the very active research in the field.

Figure 2.1: Feature diagram of model transformation languages from [CH06].

2.1.1 Transformation Language Features

In 2003 and later in 2006, Czarnecki and Helsen proposed a classification of the different features of
contemporary model transformation approaches. The classification is based on a feature model [CH06]



24 Features and Approaches

for which the top-level features are depicted in Figure 2.1.In this section, we only highlight some of
the features relevant for comparison in the remainder of this chapter.

Transformation rules are the smallesttransformation unitsused to specify a transformation. In
fact this feature should be renamed to transformation unitsso it does not restrict the classification
to rule-based transformation only, although it is the most commonly used paradigm. Transformation
units will be discussed in more detail in the following section.

Rule application control determines where individual rules are applied on the model and in what
order the rules are executed1. The latter feature will be discussed in greater details in Section 2.1.3.
The former feature is calledlocation determination. A deterministic transformation implies that a
repeated execution will always lead to the same output. For example inStratego, the user defines his
own traversal mechanism in a deterministic way. When several choices occur in a non-deterministic
transformation, it is important to distinguish concurrentexecution from one-point execution. A rule
may also be applied on only one non-deterministically selected location in the model as in graph
transformation approaches [EEKR97].AToM3 [dLV02] andVIATRA2 [VB07] offer the possibility to
apply a rule on all applicable locations in the model at the same time. This may however induce
conflicts in parts of a model shared by two or more applications of the rule.AGG [Tae04] detects
such conflicts by performing a critical pair analysis on the rules and the input model. The application
location of a rule may also be determined by the user interactively specifying it as inAToM3.

Specificationis the ability to specify pre- and post-conditions for the whole transformation. The
specification defines a function between the source and target models. This function may be directly
executable or not.

Rule organization considers the issues on the general structuring of the rulesto compose them.
Rules may be packaged inside modules, such as inATL [JABK08], QVT-R [Obj08], andVIATRA2.
When designing a transformation (typically for translational semantics) there are often redundancies
in rule patterns; re-use mechanisms then come in very handy.ATL allows a rule to inherit from another
rule: the pre-conditions and bindings of the sub-rule are computed by taking their union with those of
the super-rule. TheQVT specification presents very sophisticated re-use mechanisms, but there is no
implementation available for them.

Source-target relationship refers to whether a transformation is out-place (such as inATL) or
in-place (such as inAGG). QVT allows one to create a new model or update an existing one.

Tracing is the runtime footprint of a transformation execution. Traceability links (or trace links)
are a common form of trace information in model transformation. Traceability links connect source
and target elements. They are useful for impact analysisi.e., how changing a model affects another.
They are also used to determine the direction of a synchronization in an N-to-M transformation (read-
ing N source models and producingM target models whereN,M ≥ 1). Trace links can be created
automatically by the transformation as inATL andQVT to avoid a transformation unit from being
applied on the same location more than once. But one might still want to have some control over their
creation. InAGG, AToM3, andVIATRA2, they are considered as any other model but have to be created

1The latter is calledrule schedulingand will be covered in Section 2.1.3
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manually. Tracing transformation execution is crucial formodel transformation debugging. It can take
the form of snapshots of the models at different steps in the transformation process. Tracing may also
be expressed by having backward links from the new model to the initial (or an intermediate) model
along the transformation. Traces may be automatically generated in the source or the target or in a
separate storage. This is typically useful when the transformation transforms a model in one formal-
ism into a model in another formalism. Traceable transformations are also very important when code
synthesis and reverse engineering is needed. When designing a model transformation, the transforma-
tion engineer sometimes needs to relate elements conforming to different meta-models. Generic links
(a generalization of trace links) can be temporarily created to fulfil this need.

An incremental transformation is defined as a set of relations between source and target meta-
models. These relations define constraints on models to be synchronized. Change-detection and change-
propagation mechanisms are then used as in [BÖR+08]. The first time it is run, the transformation
creates a target model. Trace links are often automaticallycreated. Then, if a change is detected in
one of the models, it propagates this change to the other model, by adding, removing, or updating an
element so that the relations are still satisfied. There are four standard scenarios in model synchro-
nization:

• Create a target model from the source model;

• Propagate changes in the source model to the target model;

• Propagate changes in the target model to the source model;

• Verify consistency between the two models.

Directionality is a fundamental feature distinguishing unidirectional from multi-directional trans-
formations. Aunidirectional transformation creates (or updates) the target model only.A multi-
directional transformation can be executed in any direction. However, it requires multi-directional
rules that are conceptually defined by separate unidirectional rules, one for each direction.Opera-
tional rules are often unidirectional and have a functional character: given an input model, produce a
target model. This entails a causality from the source to thetarget model.Declarativerules are often
multi-directional: they specify a relation between both models that must be satisfied. This entails an
acausal relationship between the models. For example, triple graph grammar rules are bi-directional
and are specified declaratively [Sch94]. But to execute them, they are converted into seven operational
rules.

• Every new element in a model has a correspondence in the other[×2]

• When an element is removed from a model, its corresponding element(s) is (are) deleted appro-
priately [×2]

• Enforce the consistency relations between attributes [×2]

• Create a correspondence between unmapped elements of the two models [×1]

2.1.2 Transformation Units

Transformation units are the central elements of a model transformation. A transformation unit is
specified on one or moredomains (for each meta-model). The domain expresses what paradigm the
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Figure 2.2: A transformation rule on the left and three models (a), (b), and (c).

transformation unit uses to operate and access elements of the models. It may be applied under certain
conditions or from a given context.

They can take the form of a function, a rule, or a relation. Afunction is an imperative construct
that dictates how the input model shall be modified or the target model produced, such as inKer-
meta [FHN06]. A rule is a declarative construct that dictates “what” shall be transformed and not
“how”. It consists of a pre-condition and a post-condition.The pre-condition must be first satisfied
to modify or produce model elements so that its post-condition is satisfied after its application. Fig-
ure 2.2 shows a possible graphical representation of a rule on the left. The left compartment depicts
the pre-condition pattern and the right compartment depicts the post-condition pattern. A possible
semantics of this rule is: if an A element is found then an A element connected to a B element shall
be present. If the rule is applied to model (a), it will produce a B element and connect the A element
to it. However, if it is applied to model (b), then nothing needs to be produced since there is already
an A element connected to a B element. In graph transformation, the rule has a different semantics: if
an A element is found then create a B element and connect A to a B. In this case, if the rule is applied
to model (a) then model (b) is a possible outcome. The third type of transformation unit is arelation.
A relation extends the notion of rule by removing the notion of direction or causality between the pre-
and the post-conditions. A relation acts on domains (the meta-models involved in the transformation)
and declaratively states the relationship between the elements and their properties. However, when a
relation is executed, a direction must be specified to apply the transformation in one of the scenarios
enumerated when discussing incremental transformations in the previous section, such as inQVT-R.

Transformation units consist ofpatterns. A pattern is a model fragment that can be represented
as: strings for template-based transformations (e.g.,Xpand [Pro10b]), terms for tree representations
of models (e.g.,Stratego), or graphs for model-to-model transformations (e.g.,graph transformation).
Patterns can be represented using the abstract or concrete syntax of the corresponding source or target
model language. The syntax can be textual or graphical. There are two notations for representing
patterns in graphical syntax: the traditional and the compact notation. The former is the traditional
way of representing graph transformation rules with, on theleft, the pre-condition pattern known
as the left-hand side (LHS) and the post-condition pattern known as the right-hand side (RHS). For
instance, Figure 2.3 illustrates a rule inAToM3 on the left and its equivalent inFUJABA [FNTZ00] on
the right. In theAToM3 rule, the LHS pattern must first be found in the source model. Then the relation
labelled 3 must be removed as it is present in the LHS but not inthe RHS and the relation labelled
4 must be created as it is present in the RHS but not in the LHS. The corresponding relations in the
compact notation are labelled “destroy” and “create” in thecompact notation ofFUJABA. Although
the compact notation is more concise and prevents the modeller from replicating pattern elements
in both patterns, the traditional notation is more expressive when it comes to specifying multiple
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Figure 2.3: The same rule represented inAToM3 and inFUJABA.

Figure 2.4: AQVT-R relation on the left and the correspondingKermeta function on the right.

negative-application conditions (NACs). A NAC representsa pattern that prohibits the application of
the rule if encountered in the source model.

The computations and constraints over model elements in thepatterns are regrouped in thelogic
of a transformation unit. The logic can be classified in two orthogonal dimensions: executable/non-
executable and imperative/declarative. For example, the Java Application Programming Interface
(API) for the Meta-Object Facility (MOF) [Obj06a] models isan executable, imperative logic. OCL
queries [Obj06b] are executable and declarative.QVT-R relations are non-executable and declarative.
For example, Figure 2.4 shows aQVT-R relation and theKermeta function that corresponds to its
forward check-enforce application. Note that an imperative, non-executable logic cannot exist since
the imperative language will very likely have a virtual machine to execute it.

It is sometimes convenient for the modeller to specify a moregeneric rule that can be re-used.
Parametrization of rules is supported by several transformation languages.For example inPro-
GReS [Zün94], a rule can take input/output parameters referred to by variables (such as thediag-

nosis variable in Figure 2.5). This is analogous to parameters of afunction in a programming
language. This allows one to bind some pattern elements to pre-defined source model elements. In
GReAT [AKK +06], the notion ofpivot nodesacts as parameter passing. For example, theOrState

element is attached to theIn icon depicting that that element was already bound to a previous rule
application and will be used when executing the current rule. Parametrization reduces the size of
transformations, in terms of number of rules and complexity.

Since rule-based transformation is the most common paradigm for model transformation, we will
use the term rule in lieu of transformation unit for the remainder of this thesis.
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Figure 2.5: Pivot passing inGReAT (left) and parameter passing inProGReS (right).

Figure 2.6: Feature diagram for rule scheduling.

2.1.3 Rule Scheduling

When designing the transformation units, it is mandatory tobe aware of what kind of scheduling
mechanism is used to apply the rules. Rule scheduling is partof inter-rule management. Scheduling
can be achieved by explicit control structures or can be implicit due to the nature of the rule speci-
fications. Moreover, several rules may be applicable at the same time. Similar selection mechanisms
can be used as in the intra-rule case. To classify schedulingmechanisms, we combine Czarnecki and
Helsen’s classification with that of Blosteinet al. [BFG96]. The feature diagram in Figure 2.6 reflects
this updated classification.

One can distinguish between implicit and explicit scheduling. When the scheduling of a trans-
formation language isimplicit , the modeller has no direct control over the order in which the trans-
formation units are applied. On the one hand, a transformation language can beunordered, i.e., it
simply consists of a set of rules. In this case, the order of application of the rules is entirely de-
termined at run-time. It completely depends on the patternsspecified in the rules. Applicable rules
are selected non-deterministically until none apply anymore. For instance,Groove [Ren04] andMO-
MENT2 [BÖ10] are graph transformation languages with unordered implicit scheduling.

Model transformation can also be used as agrammar. It is an unordered transformation (set of
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rules) together with a start state and terminal states. For instance, graph grammars [EEKR97] are
used for generating language elements: starting from a hostgraph (maybe empty), apply the rules to
create graph elements until a termination state is found. A graph grammar also defines the operational
semantics of a system modelled as a graph: it is the sequence of derivations from the initial graph
to a final graph. Graph grammars are also used for language recognition: starting from the empty
graph, find a sequence of rules that leads to the start graph. Acharacteristic of this approach isstate
space exploration. When no more rules are applicable because of the specific sequence of rule ap-
plications, a backtracking mechanism is used to revert the effects of applying the rules until the last
non-deterministic choice was made.DiaMeta [Min06] uses graph grammars to define the meta-model
of a language.

The scheduling of a language can be explicitly specified by the modeller. Inexplicit internal
transformation languages, a rule may explicitly invoke other rules. For example inATL, a matched
rule (implicitly scheduled) may invoke a called rule in its imperative part. Also, a rule tagged aslazy
will be applied only after all other rules have been applied.Another example of an explicit internal
transformation language isQVT-R. There, the when/where clauses of a rule may have a referenceto
other rules: for when, the former will be applied after the latter and for where, the latter will be applied
after the former.

Finally, in anexplicit external transformation language, there is a clear separation between the
rules and the scheduling logic.Ordered transformations specify a control mechanism that explic-
itly orders rule application of a set of rules. Examples are:priority-based, layered/phased, or with
an explicit workflow structure. Most transformation languages arepartially ordered, however. That
is, applicable rules are chosen non-deterministically while following the control specification. An-
other sub-category of explicit external transformations is event-driven transformations, which have
recently gained popularity. In these transformation systems, rule execution is triggered by external
events such as in [GdL07b].

Since this thesis focuses more on the graph transformation approach, controlled (or programmed)
graph rewriting is the key for scaling graph transformationto real-life industrial applications. Con-
trolled graph transformation imposes a control structure over the transformation entities (transfor-
mation rules) to have a stricter ordering over the executionof a sequence of rules. This allows for
more efficient implementations by providing search plans and pattern caching based on the given
order. Initially proposed in [EEKR97] and later extended in[LLMC06] and then in [SV07], graph
transformation control structure primitives may exhibit the following properties:

• atomicity: either all rules succeed or they all fail;

• sequencing: apply rules one after the other;

• branching: execution of a sub-structure based on a condition;

• looping: apply rules iteratively;

• non-determinism: non-deterministic ordering of rule application;

• recursion: ability of a control structure to call itself;

• parallelism: apply rules in parallel;
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• back-tracking: explicit roll-back mechanism;

• hierarchy: in the sense of rule nesting.

In Table 2.1, we compare some of the relevant scalable graph transformation tools that exist today
according to these properties (but is by no means an exhaustive list). A more detailed explanation is
given in the following section.

Another comparative study of different graph transformation tools can be found in [TEG+05].
There, another set of tools is compared (though includingAToM3 andVMTS) based on the solution they
provide to a common case-study: the standard benchmark of Class Diagrams to Relational Database
Models transformation [BRT05]. This case study will be covered in Chapter 10.

The very active field of graph transformation is not restricted to the tools appearing in Table 2.1.
DSLTrans [BLA +10] is a layered graph transformation language. It allows one to design simple trans-
formations that only produce a new model without affecting the original one. Unlike common model-
to-model transformation languages (such asATL), the transformation engineer has direct access to the
tracing information that is automatically generated from previous rule applications.

GrGen.NET [GBG+06] is considered as the fastest graph transformation language [Zün08]. It is
a textual language and regular expression annotations of rewrite rules provide sequencing, branching,
looping, and non-determinism to the language.GrGen.NET does not provide an appropriate abstrac-
tion for a domain-specific modeller. Its target users however are software developers and it is meant
to be used for the generation of the algorithmic core of applications processing graph structured data.

GROOVE [Ren04] offers a graph transformation language and enablesthe construction of a la-
belled transition system corresponding to all possible permutations of the rule applications. Graph
patterns are combined with first-order logic predicates andthus allow for rule amalgamation (with
universal and existential quantifiers). The main purpose ofGROOVE is formal verification for graph
based systems.

Henshin [ABJ+10] is the successor ofTiger [EETW06]. They are both integrated with the Eclipse
Modelling Framework (EMF) allowing one to transform Ecore models. The execution engine relies
on AGG, but is more expressive by adding sequence, priority, branching, and looping to schedule
transformation units.

MOFLON [AKRS06] is a tool for designing triple graph grammars (TGGs) as described in Sec-
tion 2.2.3. The execution engine is based onFUJABA’s. A MOFLON TGG rule is compiled to story
diagram transformation rules inFUJABA. Instead of using a proprietary language for pattern spec-
ification, MoTMoT [MSVG05] (another graph transformation relying onFUJABA) is true standard-
compliant by providing an adequate UML profile, but at the cost of defining story patterns as class
diagrams.

MOLA [KBC05] merges traditional structured programming as a control structure with pattern-
based transformation rules. The scheduler is a structured flowchart which allows graphical expression
of statements such as rules, loops, branching, and recursive calls to sub-programs.

MOMENT2 [BÖ10] supports transformations based on rewriting logic implemented on top of the
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constraint satisfaction solver Maude [CDE+07]. Thanks to its formalization based on rewrite logic,
some static analysis and formal verification based on model checking are possible.

Kermeta [FHN06] is an example of a non-graph transformation language with an explicit control
structure. In this language, transformations are not rule-based and do not have a formal foundation
such as graph transformation. It is a textual language basedon an action language which is imperative
and object-oriented.QVT-Operational Mappings [Obj08] is another example of non-graph transforma-
tion languages with an explicit control structure. It will be described in detail in Section 2.2.4.



32
F

eatures
and

A
pproaches

Property AGG AT OM 3 FUJABA GR EAT PROGRES VIATRA2 VMTS

Control Structure Layered ordering Priority ordering Story diagram Data flow Imperative language Abstract state machine Activity diagram

Atomicity Rule Rule Rule Expression transaction , rule gtrule Step

Sequencing Implicit Implicit Yes Yes & seq Yes

Branching No No Branch activity Test / Case choose . . .else if-then-else Decision step , OCL

Looping Implicit Implicit For-all pattern Yes loop iterate , forall Self loop

Non-determinism Within layer Within priority layer No 1−n connection and ,or random , or-pattern No

Recursion No No No Yes Yes Yes Yes

Parallelism No Optional Optional No No No Fork , Join

Back-tracking No No No No Implicit choose (implicit) No

Hierarchy No No Nested state Block , ForBlock Modularisation Pattern composition High level step

Table 2.1: A comparison of the control structure of graph transformation tools.
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2.2 Existing Transformation Languages and Approaches

Currently, there are over 30 model transformation approaches in the literature. Among these ap-
proaches, Czarnecki and Helsen distinguish between:

Visitor-based: A visitor pattern implemented in a programming language traverses the model in an
object-oriented framework (e.g.,for pretty-printing a concrete syntax). This becomes program-
ming rather than modelling.

Template-based: Templates are typically expressed in the concrete syntax ofthe target model, to-
gether with annotations of meta-code to access the source model. This approach is often used
by code generators (e.g.,Enterprise Architect).

Direct-manipulation: Models offer an API to operate on them. The user has direct access to the API
(described in the meta-meta-language) to manipulate models. This is still programming while
being aware that they are models with a dedicated API.

Operational: They consist of modelled languages that allow manipulatingmodels through, for ex-
ample, declarative and/or imperative OCL. Also, meta-models are augmented with imperative
constructs offering callable methods/functions in the models themselves.

Graph transformation-based: Models are represented as graphs, thus the theory of graph transfor-
mation is used to transform models. It is a declarative way ofdescribing operations on models.

Relational: They declaratively describe mappings between source and target model, often in the
form of constraints that need to be solved. They are implicitly multi-directional, but in-place
transformation is harder to achieve.

Hybrid: It is a combination of two or more of the previous approaches.

Direct manipulation of models is the most used technique in software engineering. However, for
the past decade, the modelling community has been promotingmodel manipulation techniques that are
more structured, domain-specific, and declarative. A plethora of model transformation languages exist
today; this section compares some of the most relevant ones.The focus is first directed to graph trans-
formation approaches, then to relational approaches, and finally to other popular hybrid approaches.
But first, let us examine the theory of graph transformation as it is the basis of the work in this thesis.

2.2.1 Foundations of Graph Transformation

Graphs are often used to model the state of a system. This allows graph transformation to model state
changes of that system. Thus graph transformation systems can be applied in various fields. Graph
transformation has its roots in classical approaches to rewriting, such as Chomsky grammars [Cho51]
and term rewriting [BN99]. Operationally, a graph transformation from a graphG to a graphH follows
these main steps. First,choosea rule composed of a LHS pattern and a RHS. Then,find an occur-
rence of the LHS inG satisfying the application conditions of the rule. Finally, replacethe sub-graph
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matched inG by the RHS. In fact, there are only four possible operations that a graph transforma-
tion rule can perform on the host graph: the so-called CRUD operations. Unless specified otherwise,
graphs are considered typed, attributed, labelled, and directed.

There are different graph transformation approaches to apply these steps, as described in [EEKR97].
Among them is thealgebraicapproach, based on category theory with pushout constructson the cate-
gory of graphs. Algebraic graph transformation can be defined using either theSingle-Pushout(SPO)
or theDouble-Pushout(DPO) approach. Since most of the tools adopt one or the other, we will outline
DPO (the side-effect free approach) and discuss the differences with SPO.

Algebraic Graph Transformation

We consider the categoryGraphs [EEPT06] to present the major results. In this category, theobjects
are directed graphs2 in the formG= (V,E,s, t)whereV is the set of vertices,E is the set of edges, and
s, t : E→V are the source and target functions respectively. Themorphismsare graph morphisms in
the form of f : G→H = ( fV : VG→VH , fE : EG→ EH) where the mapping from (nodes and edges of)
G1 to (nodes and edges of)G2 is total,i.e.,∀e∈ EG, fV (s(e)) = s( fE (e))∧ fV (t (e)) = t ( fE (e)). The
composition operatorandidentity morphismof Graphs lead to component-wise graph morphisms on
nodes and edges.

A pushoutover morphismsk : K→ D andr : K→ R is defined by a pushout objectH and mor-
phismsn : R→ H andg : D→H such that diagram (2) in Figure 2.7(a) commutes.

A graph transformation rule p: (L
l
←K

r
→R), calledproduction, is composed of a pair of injective

total graph morphismsl : L← K andr : K→RwhereL, K, andRare respectively the LHS, interface,
and RHS ofp. In this case,K represents what sub-graph to preserve, being the common part of L and
R. We can now formally define a graph transformation.

Let p : (L
l
← K

r
→R) be a graph production,D a context graph (which includesK), andm : L→G

a total graph morphism calledmatch. Then aDPO graph transformation G
p,m
⇒ H from G to H is given

by the DPO diagram of Figure 2.7(a), where (1) and (2) are pushouts in the categoryGraphs. This is
also known asdirect derivation.
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Figure 2.7: DPO (a) and SPO (b) constructions.

In the DPO approach, a transformation rule can thus be applied in the following steps:

2All the results of this section can be generalized to the category of typed, attributed, labelled, and directed graphs.
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1. Find a matchM = m(L) in G.

2. RemoveL−K (the elements to be deleted) fromM such that thegluing condition(G−M)∪
k(K) = D still holds.

3. Glue R−K (the elements to be created) toD in order to obtainH.

To build the context graphD, the gluing condition comprising theidentification conditionand the
dangling conditionhas to be satisfied. In general,L does not need to be isomorphic toM. This is a
problem since elements fromL cannot be unambiguously identified. The identification condition re-
quires that all elements inm(R−L) (to be deleted) have only one pre-image inL. Another problematic
situation is the presence of dangling edges, where the production deletes the source or the target of an
edge outside the scope of the LHS. Therefore the dangling condition requires that whenp specifies
the deletion of a node, it should also delete all its incidentedges.

Concurrency

Assume a graph transformation system with a set of productions P=
{

pi : (Li
l i← Ki

r i→ Ri)
}

. Given a

host graphG, the rulepi ∈P is applicable if the context graphDi of pushout (1) in Figure 2.7(a) exists
(i.e., the gluing condition is satisfied). Suppose rulesp1, p2 ∈ P are both applicable. Applyingp1 and
p2 in a parallel system allows the two transformations to take place simultaneously. On a sequential
system however, their atomic CRUD operations have to be interleaved arbitrarily. Meanwhile, under
what conditions canp1 andp2 be applied concurrently?

To answer this question, the literature defines the notion ofdirect derivation independence (see
[EEKR97]). Let d1 = (G

p1,m1
⇒ H1) andd2 = (G

p2,m2
⇒ H2) be two direct derivations.d1 andd2 are

parallel independentif they do not conflict:p2 can still be applied after the application ofp1 and vice-
versa. Using DPO this can be formulated asm1(L1)∩m2(L2)⊆m1(l1(K1))∩m2(l2(K2)). Therefore,
neither of them can delete elements matched by the other. Thus, d1 andd2 may only overlap on the
elements preserved by both derivations.

On the other hand, two consecutive direct derivationsd1 andd2 aresequential independentif they
are not causally dependent: applying firstp1 on G followed by p2 or p2 then p1 leads to the same
result. Using DPO this can be formulated asn1(R1)∩m2(L2)⊆ n1(r1(K1))∩m2(l2(K2)). Therefore,
d2 may not delete elements preserved byd1 and cannot use any element created byd1.

The conditions for interleavingd1 and d2 is formulated by theLocal Church-Rosser theorem.
Referring to Figure 2.8(a), the theorem states the following two conditions:

• If G
p1,m1
⇒ H1 and G

p2,m2
⇒ H2 are parallel independent, then there exists a graphX and two

direct derivationsH1
p2,m′2⇒ X andH2

p1,m′1⇒ X such that the pairG
p1,m1
⇒ H1

p2,m′2⇒ X and the pair

G
p2,m2
⇒ H2

p1,m′1⇒ X are each sequential independent.

• If two direct derivationsG
p1,m1
⇒ H1

p2,m′2⇒ X are sequential independent, then there exists a graph

H2 and two direct derivationsG
p2,m2
⇒ H2

p1,m′1⇒ X such thatG
p1,m1
⇒ H1 andG

p2,m2
⇒ H2 are parallel
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independent.

The condition for parallelizingd1 and d2, is formulated by theParallelism theorem. Referring to

Figure 2.8(b), the theorem states that, given two productionsp1 andp2, a parallel derivationG
p1+p2,m
⇒

X exists if and only if there exists sequential independent direct derivationsG
p1,m1
⇒ H1

p2,m′2⇒ X.
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Figure 2.8: Derivations of (a) Local Church-Rosser and (b) Parallelism theorems.

These two theorems answer the question on the conditions forapplying rules concurrently. Two
graph transformations can be applied in an arbitrary order provided they are parallel independent. In
this case, they can be applied in parallel via a parallel graph transformation. If two rules are parallel
dependent they form acritical pair.

Algebraic Graph Transformation using SPO

In SPO, a productionr : L→ R is an injective partial graph morphismr. A partial graph morphism
from a graphA to a graphB is a total graph morphism from a sub-graph ofA to B. L andR denote
respectively the LHS and RHS ofp. Given the matchm : L→ G as a total graph morphism, aSPO
graph transformation G

r,m
⇒ H from G to H is given by the pushout diagram of Figure 2.7(b) in the

category of graphs with partial morphisms.

The main difference between the SPO and the DPO approach is how they handle the identification
and dangling problems. DPO prevents the rule application inboth situations, whereas SPO implicitly
deletes the problematic nodes. For this reason, DPO rules are invertible and SPO rules are not.

Similar concurrency properties hold for SPO. In fact, a SPO production can be translated to a DPO
production definingK as a sub-graph ofL. However, the reverse translation is not always possible.

Application Conditions

Graph transformation defines the transformation of models at some level of abstraction. The LHS is
also called the positive application condition (PAC) sinceit determines the pattern to befoundin the
host model. Nevertheless, in lots of applications, it is often convenient to specify what pattern should
not be found. This is referred to as negative application condition (NAC) [HHT96].
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A graph transformation rule is then extended with the notionof application condition. A produc-
tion with application condition ˆp = (L

p
→ R,A(p)) consists of a graph transformation rulep and an

application condition ofA(p). The authors of [HHT96] distinguish the PACs from the NACs inA(p)
as sets of total graph morphisms representing positive and negative constraints. In practice, the LHS
implicitly contains the PACs, but NACs should be explicitlyspecified. The production ˆp is said to
beapplicableif, given a matchm : L→ G, m satisfies all positive and negative constraints ofA(p).
AssumeA(p) only consists of a NAC with negative constraint ¯p : L→ L̄. p̂ is applicable if there is no
total graph morphism ¯m : L̄→G such that the composition ¯m◦ p̄= mholds as depicted in Figure 2.9.

Extensions of the DPO approach with NAC have been proposed in[HHT96] and parallel and
sequential independence have been adapted accordingly.
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Figure 2.9: Application of a production with NAC.

Negative application conditions are very useful in transformation languages. A graph transfor-
mation rule consists of a LHS, a RHS and optionally a NAC. The LHS represents a pre-condition
pattern to be found in the host graph along with conditions onattributes. The RHS represents the
post-condition pattern after the rule has been applied on the matched sub-graph by the LHS. The
NAC represents what pattern condition shall not be found in the host graph, inhibiting the application
of the rule. NACs therefore increase the expressiveness of transformation rules. This makes the indi-
vidual rules and the transformation process more understandable. Also, allowing negative expressions
reduces the number of rules for a given transformation (often by a factor of two since, on top of the
rules necessary for the transformation, additional rules must be specified to prevent the application
of some of them). NACs may become very handy to prevent a sequence of derivations to process the
graph. For example, when the transformation traverses the graph (or parts of it), making use of NACs
can prevent infinite loops.

Hierarchical Graph Transformation

As mentioned previously, there are other approaches to graph transformation than the algebraic one.
For example, inhyperedge replacementgraph transformations, the LHS and RHS are hypergraphs3.
The transformation is applied on a hyperedge, which is replaced by an arbitrary hypergraph with
designated attachment nodes specified from the LHS.

Dreweset al. have extended the DPO approach for hierarchical graphs using hyperedge replace-
ment transformations [DHP02]. This approach transforms hypergraphs where some hyperedges (called

3A graph where the edges may have multiple source and target vertices.
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frames) cancontainhypergraphs or variables. They denote transformations on these nested hyper-
graphs as hierarchical graph transformations. A hierarchical graphG=

〈

Ĝ,FG,ctsG
〉

consists of the
graphĜ at the root of the hierarchy, the set of framesFG⊆ EG (subset of the hyperedges ofG), and a
content functionctsG assigning to each framef ∈ FG either a (hierarchical) hypergraph or a variable
(symbol). They extend the notion of graph morphism to hierarchical graph morphism fromG to H
with mappings on root graphs, frames, variables, and contents. The categoryH of hierarchical graphs
without variables is thus defined. A pushout with injective hierarchical morphisms inH is defined in
the same way as inGraphs with injective matches on̂G and on the hierarchical hypergraphs inFG

recursively. Because the match morphisms are injective, only the dangling condition is necessary to
glue (the identification problem is handled like in SPO). In order to handle hierarchical graph trans-
formation with variables, assignments on variables of the LHS are treated as a morphism satisfying
the dangling condition.

The hierarchical graph transformation defined above does not completely abide by DPO because
of the injective morphismsL← K andK→ R. As described in [DHP02], hierarchical graph transfor-
mation allows encapsulation of local transformation of graphs. This brings the graph transformation
paradigm closer to a programming paradigm having the possibility of “storing” patterns inside vari-
ables.

In thenode replacementapproach [VJ04], hierarchy is added to graph transformation by letting
nodes hold directed graphs.

A hierarchical graph is a graph where edges or nodes can contain other graphs nested in them.
External edges from an inner graph to an ancestor (in the hierarchy tree) are not allowed. Hierarchical
graph transformations are useful when the host model is verylarge: they allowlocality. A single rule
may be focused on parts of the graph. Rules thus gain in expressiveness in the sense that they allow
transformations at different levels of the graph hierarchy(abstraction levels). For example, a modeller
having designed a sub-model of the whole model can then specify a transformation only for the part
he is interested in. From an implementation point of view, when hierarchical graphs are transformed
by hierarchical graph transformation rules, the rule matching may be performed more efficiently. That
is, the search space of the matching process can be drastically reduced, given that the rule is applied
in a given context (the parent node).

2.2.2 Graph Transformation Languages

The theory of graph transformation is used as a basis for manymodel transformation tools. This
subsection presents some of the most popular graph transformation languages4 available today.

AGG

The Attributed Graph Grammar system (AGG) [Tae04] is still considered as the closest language
implementing the theory of algebraic graph transformation. A type graph (the equivalent of a meta-

4In fact, they are controlled graph transformation languages where an explicit external scheduler organizes the indi-
vidual graph transformation rules.
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model in graph transformation) is specified by nodes and edges. Nodes are distinguishable by their
type and may hold attributes5.

AGG allows us to define typed attributed graph grammars. The graph rules composing a graph
grammar support LHS, RHS, and NAC specification in terms of elements of the type graph. The
application of anAGG graph rule follows the SPO approach with the option of allowing injective or
non-injective matches. Graph rules can be organized in layers. That is, all rules in a layer will be
applied as long as at least one of them finds a match before moving to the next layer. When no more
rules in the last layer can match, the transformation terminates. It is also possible to restart from the
first layer until no more rules across all layers can match anymore.

AToM3

AToM3 is a tool for meta-modelling, multi-formalism modelling, and model transformation [dLV02].
Model transformation can be performed on models conformingto a cross product of meta-models6.
Since models are represented as abstract syntax graphs (ASGs), model transformation is performed
through graph transformation. It was the first tool to provide a meta-modelling layer in graph trans-
formations.

The control mechanism is limited to a priority-based transformation flow. The transformation
system is a graph grammar consisting of graph transformation rules that can be assigned priorities.
The rules are applied following the priority ordering: if a rule with higher priority fails, then the rule
with the next lower priority is tried. If a rule succeeds, thetransformation process starts back at the
highest priority rule. These iterations go on until no more rules are applicable. When more than one
rule with the same priority is applicable, one of them is chosen randomly, or the user chooses one
interactively, or they are applied in parallel. For the latter option,AToM3 does not support conflict
detection of overlapping rules. It is also possible to divide transformations into layers by sequencing
graph grammars, without priorities.

ProGReS

The Programmed Graph Rewriting System (ProGReS) was the first fully implemented environment to
allow programming through graph transformations [BS99, Zün94, SWZ95]. The control mechanism
is a textual imperative language. A rule inProGReS has a boolean behaviour indicating whether it
succeeded or not. Among the imperative control structures it provides, rules can be conjuncted using
the & operator. This allows for applying a sequence of rules in order. Branching is supported by
thechoose construct, which applies the first applicable rule following the specified order.ProGReS
allows non-deterministic execution of transformation rules.and andor are the non-deterministic duals
of & andchoose respectively by selecting in a random order the rule to be applied. With the loop
construct, it is possible to loop over sequences of (one or more) rules as long as it succeeds.

A sequence of rules can be encapsulated in atransaction following the usual atomicity, isola-

5In AGG, the type of the attributes can be any Java primitive or user-defined type.
6Cross meta-modelling is commonly referred to as multi-formalism modelling.
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tion, durability, and consistency (ACID) properties. The underlying database system where the models
are stored is responsible for ensuring the first three properties. An implicit back-tracking mechanism
ensures consistency however. Hence,ProGReS offers two kinds of back-tracking: data back-tracking
(with undo operations) and control flow back-tracking [Zün92]. When a ruler ′ fails in a sequence in
the context of a transaction, the control flow will back-track to the previously applied ruler. The data
back-tracking mechanism undoes the changes performed by the transformation ofr. If r is applicable
on another match, it applies the transformation on it and theprocess continues with the next rule (pos-
sibly r ′). If r has no further matches, two cases arise. Ifr was chosen non-deterministically from a
set of applicable rules, a non-previously applied rule is selected from this set. Otherwise, the process
back-tracks recursively to the rule applied beforer. Sequences and transactions can be named allow-
ing recursive calls. The module concept provides a two-level hierarchy in the control flow structure
by encapsulating a sequence of transactions.

FUJABA

Insights gained through the development ofProGReS have led toFUJABA (From UML to Java and
Back Again) [NNZ00], a completely redesigned graph transformation environment based on Java
and UML.FUJABA’s programmed graph rewriting system is based on Story Charts, a combination of
Story Diagrams [FNTZ00] and Statecharts. An activity in such a diagram contains either graph rewrite
rules, which adopt Collaboration Diagram-like representation, or pure Java code. The graph schemes
for graph rewriting rules exploit UML class diagrams. With the expressiveness of Story Charts, graph
transformation rules can besequenced(using success and failure guards on the linking edges) along
with activities containing code.Branchingis ensured by the condition blocks which act like an if-else
construct. An activity can be afor-all story pattern, which acts like a while loop on a transformation
rule.

FUJABA’s approach is implementation-oriented. Classes define method signatures and method
content is described by Story Chart diagrams. All models arecompiled to Java code. There is no
notion of time.

GReAT

GReAT (for Graph Rewriting And Transformation language) is the model transformation language
for the domain-specific modelling tool GME [AKK+06]. GReAT ’s control structure language uses a
proprietary asynchronous dataflow diagram notation where aproduction is represented by a “block”
(called Expressionin [AKK +06]). Expressions have input and output interfaces (inports and out-
ports). They exchange packets: node binding information. The in-place transformation of the host
graph thus requires only packets to flow through the transformation execution. Upon receiving a
packet, if a match is found, the (new) packet will be sent to the output interface. Inport to outport
connections depict sequencing of expressions in that order.

Two types of hierarchical rules are supported. ABlock forwards all the incoming packets of its
inport to the target(s) of that port connection (i.e., the first inner expression(s) of theBlock). On the
other hand, aForBlocksends one packet at a time to its first inner expression(s). When theForBlock
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has completely processed the packet, the next packet is sentiteratively. Branching is achieved using
Testexpressions.Testis a special composite expression holdingCaseexpressions internally. ACase
is given in the form of a rule with only a LHS and a boolean condition on attributes. An incoming
packet is tested on eachCaseand every time theCasesucceeds, it is sent to the corresponding outport.
If a Casehas itscutbehaviour enabled, the input will not be tried with the subsequentCases. When an
outport is connected to more than one inport or if multipleCasessucceed in aTest(also one-to-many
connection), the order of execution of the expressions thatfollow is non-deterministic. To achieve
recursion, a composite expression (Block, ForBlock, or Test/Case) can have an internal connection to
a parent or ancestor expression (in terms of the hierarchy tree).

VMTS

The controlled graph rewriting system ofVMTS is provided by the VMTS Control Flow Language
(VCFL) [LLMC06], a stereotyped UML Activity Diagram. In this abstract statemachine a transforma-
tion rule is encapsulated in an activity, calledstep. Sequencing is achieved by linking steps; self loops
are allowed. Branching inVCFL is adecision stepconditioned by an OCL expression. Chains ofsteps
can thus be connected to thedecision. However at most one of the branches may execute. Thesteps
connected to thedecisionshould then be non-overlapping (this is checked at compile-time). A branch
can also be used to provide conditional loops and thus support iteration.

Stepscan be nested in ahigh level step. A primitive step ends with success when the terminating
state is reached and with failure when a match fails. However, in hierarchical steps, when a decision
cannot be found at the level of primitive steps, the control flow is sent to the parent state or else the
transformation fails. As inGReAT , recursive calls tohigh level stepsis possible. Afork connected to
a stepallows for parallelism and ajoin synchronizes the parallel branches. Semantically, parallelism
is possible inVMTS but it is not yet implemented [LLMC06].

VIATRA2

Transformations of the Visual Automated model Transformations framework (VIATRA2) are specified
in the Viatra Textual Command Language (VTCL), incorporating graph transformation techniques
driven by abstract state machines [VB07]. InVTCL, a rule has a pre-condition and a post-condition.
These conditions are composed ofpatterns(similar to a LHS),negative patterns(similar to a NAC)
or OR-patterns(allowing to specify a disjunction of patterns). InVTCL, rules can be parameterized
by attribute values declared globally, or model elements bound to the application of a rule (this is
similar to pivots inGReAT ). They can be applied in sequence using theseq keyword. One rule can be
applied non-deterministically from a set of rules using therandom construct.If-then-else is used
for branching.Try A else B attempts to apply ruleA and, if no matches were found, then ruleB is
applied.Iterate applies a rule as long as possible, whereasforall first finds all matches and then
rewrites them one by one. InVIATRA2, the notion of rule hierarchy is obtained by composing sub-
patterns into more complex ones (such asor -patterns). This way, patterns can be re-used in multiple
rules. A rule may be called recursively as long as it does not involve a negative pattern.
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2.2.3 Graph-based Model-To-Model Relations

The previous subsections dealt with graph transformationsas “operations”: given a host model and
a set of transformation rules, produce anewmodel by applying the rules on the host model. In the
following two subsections, graph transformation is raisedto the abstraction level of relations: given
two models, specify a relation between them. Because they donot specify any causality, these model-
to-model transformations (or relations) are inherently bidirectional. Thus, in a single specification,
they combine source-to-target and target-to-source transformations. Such declarative graph transfor-
mations can then be used for model (co-)evolution, model synchronization, and incremental change
propagation between the two models.

Triple Graph Grammars

Originally, Triple Graph Grammars (TGGs) were inspired by Pair Graph Grammars (PGGs). In
1971, Pratt proposed PGGs [Pra71] to examine string-to-graph translations as a one-to-one context-
free mapping. In 1994, Schürr introduced TGGs as graph-to-graph translations and data integra-
tion [Sch94]. In contrast with an operational graph grammar, a TGG is not intended to model the
editing processes on related graphs (by inserting, deleting, or modifying graph elements), but rather
provides a generative description of graph languages and their relationships. A TGG consists of
context-sensitive triple productions allowing complex LHS and RHS graphs, as well as a separate
correspondence graph for modelling many-to-many relationships. In addition, the correspondence
links between the correspondence graph and the LHS and RHS play the role of traceability links
that map elements of one graph to elements of the other graph and vice-versa. Furthermore, each
correspondence link may carry additional information about the transformation itself.

In a TGG, the graph transformation rules are monotonic: theyare non-deleting rules. Following
the notation in the commuting diagram of Figure 2.10(a), a monotonic graph transformation rule
p : L→ R is a graph transformation rule such thatL ⊆ R andn consists of all the mappings ofm as
well as additional mappings restricted fromR−L to H −G only. A monotonic productionis then
given by the pushout of Figure 2.10(a) inGraphs.

TGGs act ongraph triplesof the form(GL
lG←GC

rG→GR) whereLG, RG, andCG are the LHS, RHS,
and correspondence graphs respectively.lG andrG are graph morphisms allowingm-to-n relationships
betweenLG andRG such that every pair of related elements in a subset ofGL×GR has a pre-image in
GC.

A production triple p= (pl
l
← pc

r
→ pr) consists of three monotonic productions:pl : (LL→RL),

pr : (LR→ RR), and pc : (LC→ RC) (the left, right, and correspondence pushouts in perspective in
Figure 2.10(b)). Furthermore,l : (RC→ RL) and r : (RC→ RR) are graph morphisms such that the
two diagrams at the back of Figure 2.10(b) are pushouts inGraphs. A TGG production is therefore
a graph partitioned into three (left, right, and correspondence) graphs. Viewed from another angle, a
TGG production contains three graph productions: one operates on a left graph, one on the right graph
and one on a correspondence graph. It is this combination of three graph rewriting rules which has to
be applied simultaneously that we call “triple graph grammar rule”.
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Figure 2.10: (a) A monotonic production and (b) a TGG production applied on a triple graph. The
pushouts should not be confused with the SPO and DPO notationof Section 2.2.1.

Moreover, since a TGG rule is context-sensitive, it is applied on anaxiomgraph tripleG= (GL
lG←

GC
rG→GR) and produce the result graphH = (HL

lH←HC
rH→ HR), as depicted in Figure 2.10(b).

The presented TGG rules above define a declarative bidirectional transformation from a left graph
to a right graph. In a model-driven engineering context, a TGG rule defines a bidirectional relation
between two meta-models. The operational semantics of a TGGrule (how the transformation is per-
formed) is described by three kinds ofoperational graph transformation rules(in the sense of Sec-
tion 2.2.1) where the LHS and the RHS are triple graphs: creation, deletion, and consistency rules. The
former ensures that every new element of one model has a correspondence in the other model. The
second makes sure that when an element is removed from one model, its corresponding element(s)
is (are) deleted appropriately. The latter enforces the consistency relation between two elements (at
the attribute level) by updating the corresponding element. Forward and backwards versions of these
rules are generated with an additional traceability rule that creates the correspondence link between
unmapped consistent elements of the two models. The (semi-)automatic derivation of some of these
“lower-level” transformations is given in [KS06b]. In total seven operational graph transformation
rules are generated for each model element, for every TGG rule in the grammar. The operational rules
are then given priorities to ensure correct application.

TGGs had a great impact in the graph transformation community allowing declarative and bidi-
rectional graph transformations. For example, in [GdL07b]the authors have extended TGGs to handle
meta-models with inheritance and parameterized byevents. Event-driven grammars have been intro-
duced in the context of expressing user interface behaviour. Formalized in the DPO approach, a TGG
was used to relate a model’s concrete syntax (its visual representation to the user) to its abstract syntax
(the graph model). Triple graph grammars have also been extended to multi-graph grammars [KS06a]
where an arbitrary number of models can be related. MOFLON [AKRS06] is the main model trans-
formation tool that supports TGGs.
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Pattern-based Transformation

As recently pointed out in [SK08], TGGs do not support NACs. Also, it is not clear how arbitrary
attribute manipulation is handled in TGGs. Furthermore, a TGG is context-sensitive and assumes an
axiom triple graph as context. This induces causality between rules, thus TGG rules are notpurely
declarative. For these reasons, pattern-based transformation (PBT) was proposed [dLG08]. PBT is
highly inspired by TGG, but their intentions differ.

In PBT, a (model-to-model) specification is a conjunction oftriple patternsacting as constraints
over triples graphs (equivalent concept to graph triples ina TGG). A triple graphTrG relates the
two models (graphs) by an intermediate correspondence graph. A triple pattern defines a constraint
on the graph triple by specifying positive and negative information (similar to PAC and NAC). There
are three types of patterns. The simple pattern (S-Pattern)consists of a negative pre-condition

←−
N , a

positive graphQ, and a negative post-condition
−→
N . An S-Pattern thus states thatQ should be found in

TrG whenever
←−
N is not; and onceQ is found,

−→
N should not occur inTrG. The composite pattern (C-

Pattern) is an S-Pattern with an additional positive pre-condition
←−
P . The negative pattern (N-Pattern)

simply consists of a negative post-condition.

Given a specification, the patterns are compiled into operational TGG rules. The compilation
process of the patterns is divided into two phases. First,deduction rulesare produced. This generates
new patterns which take inter-pattern dependencies into account. The N-Patterns are transformed into
post-conditions for the S- and C-patterns. The S- and C-patterns are enriched with further pre- and
post-conditions according to their dependencies. From there, forward and backwards operational TGG
rules are derived.

There are some limitations of this approach: the derivationprocess does not allow patterns with
both positive and negative post-conditions. Although different from TGG, PBT does not handle com-
plex attribute relationship either. No practical application implements PBTs yet. Bidirectional re-
lational transformation is a very active topic of research in the graph transformation community.
Other non-graph-based declarative model-to-model transformation approaches exist, such as: QVT-
relational [Obj08] and Tefkat [LS06].

2.2.4 Hybrid Model Transformation Approaches

Model transformation approaches are not restricted to graph transformation. First we describe how
relational database systems can resolve model transformation using concepts similar to that of graph
transformation. Then we describe a hybrid approach (mixingdeclarative and imperative aspects) pro-
vided by one of today’s most used model transformation tool.Finally, we elaborate the transformation
language proposed by the OMG as a standard.

Model Transformation in Relational Databases

Graph transformation as described in the previous sectionsis performed in memory. This approach
scales up to some point as long as both models and transformation process fit in memory. However,
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for very large models (of the order of 106 or more elements) it is preferable to store them in a database.
For that reason, Varróet al. propose in [VFV06] a model transformation approach performed in
a relational database management system (RDBMS). Once models are stored appropriately in an
RDBMS, the transformation specification consists of views and query statements.

Here, we assume that meta-models are initially specified in asubset of UML class diagrams and
models in UML Communication diagrams. The transformation,however, requires the models to be
represented in a RDBMS in the following way. From the meta-model, one table per class is gener-
ated with a column for a unique identifier. Additionally, onecolumn is created per attribute and per
many-to-one association. Many-to-many associations are represented as tables on their own with a
column for the source and another for the target. Foreign keys ensure the constraint dependencies for
association ends and inheritance. Models are stored as rowsfilling these tables.

The transformation rules follow the SPO graph transformation approach. A rule is divided into
two parts: thematching phaseand themodification phase. For the matching phase, the pre-condition
LHS⊎ NAC (weaving overlapping elements) of the rule is considered. The LHS is stored as a single
view, LHS-view, in the RDBMS. An inner join is added for every object (node) and every association
instance (edge) in the LHS. They are filtered according to theedge constraints of the structure of the
pattern. Additional filters are used for specifying the exact matching conditions (total injective graph
morphism). Finally, the selection projects only the joinedcolumns. Similarly,NAC-viewsare created
for each NAC pattern of the rule. LHS⊎ NAC is stored as a separate view. A left outer join of each
NAC-view is performed on the LHS-view and the join conditiondepicts the overlapping elements.
To prevent the NAC from being positively matched, the filtersof the view force a null value on the
columns of the join conditions. Finally, the selected columns are those of the LHS-view.

The modification phase of a transformation rule is encapsulated in a transaction consisting of
a sequence of INSERT, DELETE, and UPDATE statements. This phase starts by deleting edges if
LHS−RHS 6= /0. An UPDATE statement removes the foreign key of the source ofa many-to-one
association. A DELETE statement removes a many-to-many association as well as any node. Addi-
tional DELETE and UPDATE statements are required to ensure the deletion of dangling edges. Then
insertions come into place if RHS−LHS 6= /0. An INSERT statement creates a many-to-many associ-
ation as well as a new node object. An UPDATE statement creates a many-to-one association. In the
RDBMS approach, a model element can have an attribute as a one-to-one association between them.
This is why there is no UPDATE statement that modifies the value of an attribute.

An advantage of this approach is that a single rule may be applied in parallel on all its matches.
This is achieved by applying the modification phase on all therows returned by the pre-condition view
of the rule. Both matching and modification phases can be optimized with the underlying database
system used. For example, to perform SPO-like deletion, it may suffice to allow cascading deletes on
associations, if they are represented accordingly in the database. Although applying a transformation
in a RDBMS is less efficient than in memory, an optimization intime can be gained by properly
creating indices on columns where a matching occurs.
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ATL

The ATLAS Transformation Language (ATL) is a hybrid model transformation language combining
declarative and imperative constructs [JK06, Jou06]. It isa programming language with its own com-
piler and virtual machine. An ATL transformation is defined from (possibly several) read-only source
meta-models to one write-only target meta-model.

The transformation specification consists of a set of rules and possibly helpers and external mod-
ules. The helpers are similar to OCL helpers: they serve as wrappers in the context of source models
elements (since the target model is not navigable).Operation helpers, taking input parameters, act
as functions.Attribute helpersdecorate the source model by enriching it with a derived subset of its
structure.

A declarative rule is called amatched rule, since it is transparent from the internal matching and
scheduling algorithms of ATL. A matched rule is composed of asource and a target pattern. The
source pattern specifies a set of pairs(t,g) wheret is a type from the source meta-model andg is
an OCL boolean guard. The target pattern is a set of pairs(t ′,b) wheret ′ is a type from the target
meta-model andb is a binding initializing the attributes or references oft ′. (t ′,b) can be replaced by
anaction blockwhere ATL imperative statements are used to build the targetmodel elements. A rule
may refer to other rules.Standardrules are applied once for every match,lazy rules are applied as
many times as they are referred to, andunique lazyrules are lazy rules but re-use the target elements
they created when applied multiple times. Declarative rules support inheritance as means of re-use
and polymorphism. A subrule may only match a subset of the match of its parent, but can extend the
creation of target elements. Acalled ruleis an imperative procedure which can be invoked from a rule
(matched or called) and is implemented either using the ATL imperative language constructs or any
other language (but the latter has limited support).

Although declarative rules resemble graph transformationrules with a LHS and a RHS, the pro-
cedural semantics of an ATL transformation is quite different from the execution of a graph transfor-
mation system on a source model. The transformation starts with a first pass through all the guards to
evaluate the helpers. The transformation is executed in thesecond pass. First, a called rule marked as
entry pointis applied if present, which may trigger subsequent rule applications. Then all the matches
from all the standard matched rules are computed. Afterwards, for every match, the target elements
are created without evaluating the bindings. At the same time, a traceability link between the rule,
its matched source elements, and the new target elements is established internally. Secondly, all ini-
tializations (including bindings) are resolved followingtheATL resolve algorithm. If referenced, lazy
rules are applied too. Then action blocks evaluations follow. The algorithm ends by invoking the called
rule marked asend point, if present. The order of execution of the standard rules is non-deterministic.
Nevertheless, determinism and termination of the algorithm is ensured, provided that no lazy or called
rules are used.

The Eclipse Modelling Framework (EMF) has adopted ATL as itslanguage and tool support for
model transformation. However, ATL lacks a formal foundation, unlike graph-based transformation.
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QVT

The Meta-Object Facility (MOF) 2.0 Query, View, and Transformation (QVT ) framework [Obj08]
is a recent addition to the OMG’s set of standards. TheQVT specification defines three transforma-
tion languages that collectively form a hybrid transformation language.QVT-Relations (QVT-R) and
QVT-Core (QVT-C) are declarative transformation languages at different levels of abstraction.QVT-
Operational Mappings (QVT-OM) is an imperative transformation language that extends both QVT-R
andQVT-C. Black-Box implementations are also imperative extensions ofQVT-R andQVT-C allowing
one to plug-in external code.

Transformations specified inQVT-R consist of declarations ofrelationsspecifying constraints that
must be satisfied by the input models. A relation consists of at least two domains as well as pre- and
post-conditions. A domain specifies the type (meta-model) of the involved model instance along with
a pattern defining the template that a model must satisfy. Awhen clause specifies a pre-condition
required by the relation. Awhere clause specifies a post-condition that must hold if the current re-
lation holds. Both clauses may refer to other relations. There are two kinds of relations inQVT-R.
All top-levelrelations are required to hold after the execution of the transformation, while non-top-
level relations must only hold if invoked directly or transitively by awhere clause. The execution of
a QVT-R transformation follows thecheck-enforcesemantics. On the one hand, if a transformation
is executed in the direction of acheckonly domain, then the transformation simply checks whether
there is a valid match in the target model that satisfies all relationships. On the other hand, if a trans-
formation is executed in the direction of anenforce domain, then the transformation checks whether
the relations holds. When a relation fails to find a valid match, the appropriate model elements are
created, deleted, or modified according to the pattern of thetarget domain. Hence, when only one
domain isenforced and the otherscheckonly , the transformation is uni-directional. When at least
two domains areenforced , the transformation is multi-directional. Finally, when all domains are
checkonly , the transformation is a synchronization verifying if the models are consistent with respect
to the relations. Additionally, declaring a meta-model element askey ensures that theQVT-R trans-
formation does not create duplicate elements if they already exist. Patterns can be matched against
existing model elements, instantiated to model elements innew models, and may be used to apply
changes to existing models. Nevertheless, the language handles the manipulation of traceability links
automatically and hides the related details from the developer. Furthermore, scheduling of relations is
implicitly determined by thewhen andwhere clauses.

Transformations specified inQVT-C consist of declarations ofmappings. A mapping supports
pattern matching over a flat set of variables by evaluating conditions over those variables against a
set of input models. In contrast withQVT-R, a mapping defines explicit traceability links between
domains. Similarcheckingand enforcementsemantics are also available inQVT-C. Every QVT-R
transformation can be translated to a semantically equivalentQVT-C transformation.

Transformations specified inQVT-OM are similar to classes, in that they can be instantiated. They
consist of unidirectionalmapping operationsspecified with imperative constructs. A mapping opera-
tion is a standard UML operation that, given one or more source model elements, specifies how target
model elements are constructed. A mapping operation may specify pre- and post-conditions inwhen
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andwhere clauses respectively. The body of an operation is expressedby an imperative extension of
OCL. It consists of optional initialization (init ) and termination (finalize ) sections. They respec-
tively allow computations prior to and after the instantiation of the outputs. Thepopulation section
specifies how the output objects must be constructed. The target object output by a mapping opera-
tion is referred to by theresult variable. AQVT-OM transformation starts executing from themain
operation. Mapping operations may be invoked at any time just like standard operations using themap
keyword. Branching is ensured byif-elif-else constructs. Executing operations in loops is pro-
vided byforEach andwhile statements. When a mapping operationinherits from another one, the
initialization section of the latter is invoked after the former’s. Sequencing operations is done by the
merge of mapping operations.Disjunction of mapping operations allows the execution of at most
one operation whosewhen pre-condition is satisfied. Moreover,parallelTransform andwait al-
low running operations in parallel. InQVT-OM, mappings between source and target model elements
are implicitly created like inQVT-R. ResolveIn allows one to refer to the source element mapped
on the created object. Also, lazy instantiation of output objects is possible using thelate resolve
construct.

The black-box mechanism allows complex algorithms to be implemented in any programming
language and enables re-use of already existing libraries.This makes some parts of the transformation
opaque, which brings a potential danger since their functionality is arbitrary and is not controlled by
the transformation engine.

2.3 Conclusion

This chapter concludes the survey of model transformation that began in Chapter 1. This survey
established that model transformation has various applications, such as: to generate platform-specific
models from platform-independent models and reverse engineer them, to map and synchronize among
models at the same or across abstraction levels, to create query-based views of a system, to model
evolution tasks, or to transform models between different languages for integration. After a high level
overview of the different types and uses of model transformation, the survey elaborated on the features
that contemporary model transformation languages offer toattempt solving these problems. Focusing
on first controlled graph transformation languages and thenon others, the survey compared twelve of
the most relevant languages that are used today.

An interesting interpretation of the feature model presented by Czarnecki and Helsen is that every
vaild combination of the leaves of the feature diagram leadsto a specific transformation language
equipped with these features. This allows us to talk about afamily of model transformation lan-
guages.
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“Diversity is the one true thing we all have in common. Celebrate it every day.”

Winston Churchill
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3
A Minimal Transformation Core

Since the applications are very different in nature, it is not optimal to have a single model transforma-
tion language to perform all the tasks previously enumerated. Instead, it is more appropriate to have
dedicated transformation languages tailored to specific transformation problems.

The diversity of today’s model transformation languages makes it hard to compare their expres-
siveness and provide a framework for interoperability. De-constructing and then re-constructing model
transformation languages by means of a unique set of most primitive constructs facilitates both. Thus
this chapter introducesT-Core, a collection of primitives for model transformation. Combining T-Core
with a (programming or modelling) language enables the design of model transformation formalisms.
We show how basic and more advanced features from existing model transformation languages can
be re-constructed usingT-Core primitives.

3.1 Introduction

A plethora of different rule-based model transformation languages and supporting tools exists today.
They cover all (or a subset of) the well-known essential features of model transformation [SV09]:
atomicity, sequencing, branching, looping, non-determinism, recursion, parallelism, back-tracking,
hierarchy, andtime. For such languages, the semantics (and hence implementation) of a transforma-
tion rule consists of the appropriate combination of building blocks implementing primitive operations
such as matching, rewriting, and often a validation of consistent application of the rule. The above-
mentioned essential features of transformation languagesare achieved by implicitly or explicitly spec-
ifying “rule scheduling”. Languages such asATL [JK06], FUJABA [FNTZ00], GReAT [AKK +06],
MoTif [SV10], VIATRA [VB07], and VMTS [LLMC06] include constructs to specify the order in
which rules are applied. This often takes the form of a control flow language. Without loss of gener-
ality, we consider transformation languages where models are encoded as typed, attributed graphs.

The diversity of transformation languages makes it hard, onthe one hand, to compare their ex-
pressiveness and, on the other hand, to provide a framework for interoperability (i.e., meaningfully
combining transformation units specified in different transformation languages). One approach is to
express model transformation at the level of primitive building blocks. De-constructing and then re-
constructing model transformation languages by means of a small set of most primitive constructs
offers a common basis to compare the expressiveness of transformation languages. It may also help
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in the discovery of novel, possibly domain-specific, model transformation constructs by combining
the building blocks in new ways. Furthermore, it allows implementers to focus on maximizing the
efficiency of the primitives in isolation, leading to more efficient transformations overall. Lastly, once
re-constructed, different transformation languages can seamlessly interoperate as they are built on
the same primitives. This use of common primitives in turn allows for global as well as inter-rule
optimization.

In this chapter we introduceT-Core, a collection of transformation language primitives for model
transformation in Section 3.2. Section 3.3 motivates the choice of its primitives. Then, Section 3.4
shows how transformation entities, common as well as more esoteric, can be re-constructed. Finally,
Section 3.6 describes related work.

3.2 De-constructing Transformation Languages

Model transformation language primitives can be defined at different levels of granularity. The de-
composition process is similar to what is found in object-oriented languages as depicted in Table 3.1.
At the highest level, the transformation can be decomposed into sub-transformations1, each dedicated
to a specific task in order to accomplish a single goal (simulation, code generation, synchronization,
etc). Following the analogy, a transformation correspondsto a package in object-oriented languages.
Defining model transformation language primitives at this level means that transformations are treated
as black-boxes, which is not the intention. Thus at a lower level, a (sub-)transformation can be de-
composed into individual rules. Rules are the units of a transformation like a class is to a package.
However, setting the rules as primitives would not considerother model transformation paradigms
such as relational or functional. At a coarser level of abstraction, a transformation encapsulates CRUD
operations performed on a model. However, we believe that these operations should be defined at the
virtual machine level, rather than having a transformationlanguage engineer combine them,i.e., this
is not the optimal level of abstraction. Hence rule primitives reside somewhere between rule defi-
nitions and CRUD operations. They dictate how a rule operates. As methods define the behaviour
of a class and operations on objects, rule primitives define the behaviour of a rule operating on the
model. At a more fine-grained level, a rule primitive encapsulates CRUD operations performed on
the model. This is similar to how methods encapsulate operations that can be performed on variables
(assignment, navigation, iteration, etc).

The proposed decomposition of model transformation languages therefore focuses on the rule
primitives level. After the comparison of the features of model transformation languages in Chapter 2,
one can synthesize the common essential features of model transformation as follows:

Pre- and post-condition patterns that allow one to declaratively specify a rule;

Matching rule pre-condition patterns in the host model to bind model elements (a match) that will
be modified by the application of a rule;

1A sub-transformation can be considered as a transformationon its own. But when designed modularly, composing
these transformations can lead to a more complex transformation.
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Model Transformation Paradigm Object-Oriented Paradigm

Transformation Package
Rule Class

Rule Primitive Method
CRUD operation Operation on variables

Table 3.1: Analogy of the abstraction hierarchy in model transformation and object-oriented
paradigms.

Rewriting the host model to satisfy the post-condition of a rule;

Validation of consistent rule applications to detect conflicts and resolve them;

Manipulation of matches to iterate through them androll-back to previous match states;

Control of the flow of rule applications by offeringchoicesandconcurrency;

Composition mechanisms to provide structure, re-use, and encapsulation.

Based on the previous observations, we propose here a collection of model transformation prim-
itives. The class diagram in Figure 3.1 presents the moduleT-Core (which stands forTransformation
Core) encapsulating model transformation primitives.T-Core consists of eight primitive constructs
(Primitive objects): aMatcher, Iterator, Rewriter, Resolver, Rollbacker, Composer, Selector, andSyn-
chronizer. The first five areRulePrimitive elements and represent the building blocks of a single trans-
formation unit.T-Core is not restricted to any form of specification of a transformation unit. In fact,
we consider onlyPreConditionPatterns andPostConditionPatterns. For example, in rule-based model
transformation, the transformation unit is arule. ThePreConditionPattern determines its applicabil-
ity: it is usually described with a LHS and optional NACs. It also consists of aPostConditionPattern
which imposes a pattern to be found after the rule was applied: it is usually described with a RHS.
RulePrimitives are to be distinguished from theControlPrimitives, which are used in the design of the
rule scheduling part of the transformation language. A meaningful composition of all these differ-
ent constructs in aComposer object allows modular encapsulation of and communication between
Primitive objects.

Primitives exchange three different types of messages:Packet, Cancel, andException. A packetπ
represents the host model together with sufficient information for inter- and intra-rule processing of
the matches.π thus holds the current model (graph in our case)graph , thematchSet , and a reference
to the current PreConditionPattern identifying a MatchSet. A MatchSet refers to acondition

pattern and contains the actual matches as well as a reference to thematchToRewrite . Note that
eachMatchSet of a packet has a unique condition, used for identifying the set of matches . A Match
consists of a sub-graph of thegraph in π where each element is bound to an element ingraph . Some
elements (Nodes) of the match may be labelled aspivots , which allows certain elements of the
model to be identified and passed between rules. A cancel messageϕ is meant to cancel the activity of
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Figure 3.1: TheT-Core module.

an active primitive element (especially used in the presence of aSelector). Finally, specific exceptions
χ can be explicitly raised, carrying along the currently processed packetπ.

All the primitive constructs can receive packets by invoking either theirpacketIn , nextIn ,
successIn , or failIn methods. The result of calling one of these methods sets the primitive in
success or failure mode as recorded by theisSuccess attribute. Cancel messages are received from
thecancelIn method. Next, we describe in detail the behaviour of the different methods supported
by each of the eight primitive elements.
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3.2.1 Matcher

Algorithm 1 Matcher.packetIn( π)
M← (max) matches ofcondition found inπ.graph
if ∃〈condition ,M′〉 ∈ π.matchSets then

M′←M′∪M
else

add〈condition ,M〉 to π.matchSets
end if
π.current ← condition
isSuccess ←M 6= /0
return π

TheMatcher looks for an occurrence of its pre-condition patterncondition in the graph of the
input packetπ. The transformation modeller may optimize the matching by setting themax attribute
to finding one, all, or a maximum number of matches when he knows a priori that this many matches
of the matcher will be processed in the overall transformation. The matching also considers the pivot
mapping2 (if present) of the current match ofπ. After matching the graph, theMatcher stores the
different matches in the packet as described in Algorithm 1.In this notation,MS is aMatchSet object
structure,M is the set ofMatch instances it holds andm is a singleMatch object. Some implemen-
tations may, for example, parametrize theMatcher by the condition pattern or embed it directly in
theMatcher. The transformation units (e.g.,rules) may be compiled in pre/post-condition patterns or
interpreted, but this is a tool implementation issue which is not discussed here.

3.2.2 Rewriter

As described in Algorithm 2, theRewriter applies the required transformation according to the
post-condition patterncondition on the match specified in the packet it receives from itspacketIn

method. That match is consumed by theRewriter: no other operation can be further applied on it.
Some validations are made in theRewriter to verify, for example, thatπ.current .condition =
condition.pre or that no error occurred during the transformation. In our approach, a modification
(update or delete) of an element in{m∈M| 〈condition .pre,M〉 ∈ π.matchSets } is automatically
propagated to all the other matches, when applicable.

3.2.3 Iterator

The Iterator chooses a match among the set of matches of thecurrent condition of the packet it
receives from itspacketIn method, as described in Algorithm 3. The match is chosen randomly in a
Monte-Carlo sense, repeatable using sampling from a uniform distribution to provide a reproducible,
fair sampling. When itsnextIn method is called, theIterator chooses another match as long as the

2The bound pivot nodes are stored inglobalPivots . But the matching may also assign pivots (useful for nested
rules, as discussed later) and stores them inlocalPivots .
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Algorithm 2 Rewriter.packetIn( π)
if π is invalid then

isSuccess ← false
exception ← χ(π)
return π

end if
MS← 〈condition.pre ,M〉 ∈ π.matchSets
apply transformation onMS.matchToRewrite
if transformation failedthen

isSuccess ← false
exception ← χ(π)
return π

end if
set all modified nodes inMS.matchToRewrite to dirty
removeMS.matchToRewrite from MS.matches
isSuccess ← true
return π

maximum number of iterationsmaxIterations (possibly infinite) is not yet reached, as described in
Algorithm 4. In the case of multiple occurrences of aMatchSet identified byπ.current , theIterator
selects the lastMatchSet.

Algorithm 3 Iterator.packetIn( π)

if 〈π.current ,M〉 ∈ π.matchSets
then

MS← 〈π.current ,M〉
choosem∈MS.matches
MS.matchToRewrite ←m
iterations ← 1
isSuccess ← true
return π

else
isSuccess ← false
return π

end if

Algorithm 4 Iterator.nextIn( π)

if 〈π.current ,M〉 ∈ π.matchSets and
iterations < maxIterations then

MS← 〈π.current ,M〉
choosem∈MS.matches
MS.matchToRewrite ←m
iterations ← iterations +1
isSuccess ← true
return π

else
isSuccess ← false
return π

end if

3.2.4 Resolver

TheResolver resolves a potential conflict between matches and rewritings as described in Algorithm
5. For the moment, theResolver detects conflicts in a simple conservative way: it prohibitsany change
to other matches in the packet (check fordirty nodes). However, it does not verify if a modified
match is still valid with respect to its pre-condition pattern. TheexternalMatchesOnly attribute



3.2 De-constructing Transformation Languages 59

specifies whether the conflict detection should also consider matches from its match set identified by
π.current or not. In the case of conflict, a default resolution functionis provided but the user may
also override it. Although the conflict detection is conservative, thecustomResolution function
may discard the conflict if, for example, NACs are not enabledin other matches. That is, theResolver
will detect trivial conflicts, but the transformation engineer is empowered to define the conflicts that
may occur in his application domain.

Algorithm 5 Resolver.packetIn( π)

for all conditionc∈ {c| 〈c,M〉 ∈ π.matchSets } do
if externalMatchesOnly and c= π.current then

continue
end if
for all matchm∈M do

if mhas adirty nodethen
if not customResolution (π) then

if not defaultResolution( π) then
isSuccess ← false
exception ← χ(π)
return π

end if
end if

end if
end for

end for
isSuccess ← true
return π

3.2.5 Rollbacker

TheRollbacker provides transactional behaviour with back-tracking capabilities. Consequently, it is
used as a recovery point that allows backward recovery of packets,e.g.,by means of checkpointing
as described in Algorithms 6 and 7. ThepacketIn method establishes a checkpoint of the received
packet. This is done by making a copyπ̂ of the input packetπ and pushing it on a temporary stack.
It also sets the maximum number of iterations to the total number of matches found for the current
condition. ThenextIn method restores the last checkpoint to roll-back the packetto its previous state
π̂. If there are no more matches left inM, it also removes the previous checkpoint established.
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Algorithm 6 Rollbacker.packetIn( π)
establish( π)
if 〈π.current ,M〉 ∈ π.matchSets then

maxIterations ← |M|
else

maxIterations ←max
end if
iterations ← 1
isSuccess ← true
return π

Algorithm 7 Rollbacker.nextIn( π)

π̂← restore()
iterations ← iterations +1
if iterations < maxIterations then

isSuccess ← true
else

discard()
isSuccess ← false

end if
return π̂

3.2.6 Selector

TheSelector is used when a choice needs to be made between multiple packets processed concurrently
by different constructs. It allows exactly one of them to be processed further. When itssuccessIn

(or failIn ) method is called, the received packet is stored in itssuccess (or fail ) collection,
respectively. Note that, unlike the previously described methods, it is only when theselect method
in Algorithm 8 is called that a packet is returned, chosen from success . The selection is random
in the same way as in theIterator. However, ifsuccess is empty, the returned packet is randomly
chosen fromfail . Note that if bothsuccess andfail are empty,select throws an exception with
an empty packetπφ. When thecancel method is invoked, the two collections are cleared and a cancel
messageϕ is returned where theexclusions set consists of the singletonπ.current (meaning that
further operations of the chosencondition should not be cancelled).

3.2.7 Synchronizer

The Synchronizer is used when multiple packets processed in parallel need to be synchronized. It
is parametrized by the number ofthreads to synchronize. This number is known at design-time.
Its successIn andfailIn methods behave exactly like those of theSelector. TheSynchronizer is
in success mode only if all threads have terminated by never invoking failIn . Themerge method
“merges” the packets insuccess , as described in Algorithm 9. A trivial default merge function is
provided by unifying and “gluing” the set of packets. Nevertheless, it first conservatively verifies the
validity of the received packets by prohibiting overlapping matches between them. If it fails, the user
can specify a custom merge function. This avoids the need forstatic parallel independence detection.
Instead it is done at run-time and the transformation modeller must explicitly describe the handler.
One pragmatic use of that solution is, for instance, to let the transformation run once to detect the
possible conflicts and then the transformation modeller mayhandle these cases by modifying the
transformation model.
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Algorithm 8 Selector.select()

if success 6= /0 then
π̂← choose fromsuccess
isSuccess ← true

else iffail 6= /0 then
π̂← choose fromfail
isSuccess ← false

else
π̂← πφ
isSuccess ← false
exception ← χ(πφ)

end if
success ← /0
fail ← /0
return π̂

Algorithm 9 Synchronizer.merge()

if |success |= threads then
if customMerge() then

π̂← the merged packet insuccess
isSuccess ← true
success ← /0
fail ← /0
return π̂

else ifdefaultMerge() then
π̂← the merged packet insuccess
isSuccess ← true
success ← /0
fail ← /0
return π̂

else
isSuccess ← false
exception ← χ(πφ)
return πφ

end if
else if|success |+ |fail |= threads then

π̂← choose fromfail
isSuccess ← false
return π̂

else
isSuccess ← false
exception ← χ(πφ)
return πφ

end if

3.2.8 Composer

TheComposer serves as a modular encapsulation interface of the elementsin its primitives list.
When one of itspacketIn or nextIn methods is invoked, it is up to the user to manage subse-
quent method invocations to its primitives. Nevertheless,when thecancelIn method is called, the
Composer invokes thecancelIn method of all its sub-primitives. This cancels the current action of
the primitive object by resetting its state to its initial state. Cancelling happens only if a primitive is
actively processing a packetπ such that the current condition ofπ is not in ϕ.exclusions , where
ϕ is the received cancel message. In the case of aMatcher, since the current condition of the packet
may not already be set, thecancelIn also verifies that the condition of theMatcher is not in the
exclusions list. The interruption of activity can, for instance, be implemented as a pre-emptive asyn-
chronous method call ofcancelIn . Furthermore, resetting the dirty flag of modified nodes is done
in the Composer by calling theclean method of a packet. Also, resetting thesuccess and fail
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collections of the control primitives should be done by calling theirreset method at the appropriate
time.

3.3 T-Core: a minimal collection of transformation primiti ves

In the de-construction process of transformation languages into a collection of primitives, questions
like “up to what level?” or “what to include and what to exclude?” arise. The proposedT-Core module
answers these questions in the following way.

3.3.1 Rationale

In a model transformation language, the smallest transformation unit is traditionally therule. A rule
is a complex structure with a declarative part and an operational part. The declarative part of a rule
consists of the specification of the rule (e.g.,LHS/RHS and optionally NAC in graph transformation
rules). However,T-Core is not restricted to any form of specification be it rule-based, constraint-
based, or function-based. In fact, some languages require units with only a pre-condition to satisfy,
while others with a pre- and a post-condition. Some even allow arbitrary permutations of repetitions
of the two. InT-Core, either aPreConditionPattern or both aPre- and aPostConditionPattern must be
specified. For example, a graph transformation rule can be represented inT-Core as a pair of a pre- and
a post-condition pattern, where the latter has a reference to the former to satisfy the semantics of the
interfaceK (in theL ← K → R algebraic graph transformation rules) and to be able to perform the
transformation. Transformation languages where rules areexpressed bidirectionally or as functions
are supported inT-Core as long as they can be represented as pre- and post-conditionpatterns.

The operational part of a rule describes how it executes. This operation is often encapsulated in
the form of an algorithm (with possibly local optimizations). Nevertheless, it always consists of a
matching phase, i.e., finding instances of the model that satisfy the pre-condition and of atransfor-
mation phase, i.e.,applying the rule such that the resulting model satisfies thepost-condition.T-Core
distinguishes these two phases by offering aMatcher and aRewriter as primitives. Consequently,
the Matcher’s condition only consists of a pre-condition pattern and the Rewriter then needs a post-
condition pattern that can access the pre-condition pattern to perform the rewrite. Combinations of
Matchers andRewriters in sequence can then represent a sequence of simple graph transformation
rules:match-rewrite-match-rewrite. Moreover, because of the separation of these two phases, more
general and complex transformation units may be built, suchas:match-match-matchor match-match-
rewrite-rewrite. The former is a query where eachMatcher filters the conditions of the query. The
latter is a nesting of transformation rules. In this case, however, overlapping matches between differ-
entMatchers and then rewrites on the overlapping elements may lead to inconsistent transformations
or even nonsense. This is why aResolver can be used fromT-Core to safely allowmatch-rewrite
combinations.

The data structure exchanged betweenT-Core RulePrimitives in the form of packets contains suf-
ficient information for each primitive to process it as described in the various algorithms in Section
3.2. TheMatch allows one to refer to all model elements that satisfy a pre-condition pattern. The pivot
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mappings allow elements of certain matches to be bound to elements of previously matched elements.
The pivot mapping is equivalent to passing parameters between rules as it will be shown in the exam-
ple in Section 3.4.1. TheMatchSet allows delaying the rewriting phase instead of having to rewrite
directly after matching.

Packets conceptually carry the complete model (optimized implementation may relax this) which
allows concurrent execution of transformations. TheSelector and theSynchronizer both permit one
to join branches or threads of concurrent transformations.Also, having separated the matching from
the rewriting enables one to manage the matches and the results of a rewrite by further operators.
Advanced features such as iteration over multiple matches or back-tracking to a previous state in the
transformation are also supported inT-Core. If the Rollbacker is used in combination with theIterator,
then the overall behaviour can handle back-tracking for cases where multiple matches are found.

SinceT-Core is a low-level collection of model transformation primitives, combining its prim-
itives to achieve relevant and useful transformations may involve a large number of these primitive
operators. Therefore, it is necessary to provide a “grouping” mechanism. TheComposer allows one to
modularly organizeT-Core primitives. It serves as an interface to the primitives it encapsulates. This
then enables scaling of transformations built onT-Core to large and complex model transformation
designs.

T-Core is presented here as an open module which can be extended, through inheritance for ex-
ample. One could add other primitive model transformation building blocks. For instance, a confor-
mance check operator may be useful to verify if the resultingtransformed model still conforms to
its meta-model. It can be interleaved between sequences of rewrites or used at the end of the overall
transformation as suggested in [KMS+09]. We believe however that such new constructs should either
be part of the (programming or modelling) language or the tool in which T-Core is integrated, to keep
T-Core as primitive as possible.

3.3.2 Usage of T-Core

The API ofT-Core presented in the previous section offers a common interfaceto all primitive trans-
formation operators. Furthermore, theCompositionPrimitive can be used to encapsulate the execution
of other primitives in order to provide abstraction. ThepacketIn method is the entry point of aT-
Core transformation. Figure 3.2 illustrates a typical interaction with a transformation operator. When
a CompositionPrimitive gets initially created, it is responsible of recursively created the instances of
its sub-primitives following the composite design pattern[GHJV94]. ItspacketIn is invoked with
a packet that had previously been initialized with the inputgraph of the transformation. Because the
operators support asynchronous execution, thepacketIn method returns the resulting packet after
being processed by the correspondingRulePrimitive r. To know whetherr has been successfully ap-
plied or not, one should query theisSuccess property ofr. Similarly, if an exception occurred, the
exception property ofr will refer to the corresponding detailed error. Therefore it is important to
not forget to set theisSuccess property of a customComposer in case of a successful execution so
that the invoking context of the transformation can be awareof that status, as well as any exception
that may have occurred. A similar pattern can be used for thenextIn method.
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:Transformation

:CompositionPrimitive r:RulePrimitive

OPT

<<create>>

<<create>>

p:=Packet(g)

packetIn(p)

isSuccess:=false

packetIn(p)

p1:=return

ALT

[r.exception!=null]

[r.isSuccess==false]

isSuccess:=true

p1

exception:=

r.exception

Figure 3.2: Sequence diagram for using aRulePrimitive.

Figure 3.3 illustrates a typical interaction with aSelector. Recall that control primitives accumu-
late packets and can then produce a single packet: they serveas join points in the transformation.
Packets are stored by invoking thesuccessIn or failIn methods. At the appropriate time, the cor-
responding join function (select for theSelector andmerge for theSynchronizer) can be invoked to
retrieve a single packet from that operator. In the case of aSelector, a cancel event may be requested
to invoke thecancelIn method of the other primitives if the suspension of their activity is desired.
The reset method shall be invoked afterwards to clear the lists of packets. As in the previous case,
verifying for success and errors needs to be integrated as well.

T-Core is designed in such a way that the transformation primitivescan be executed independently
from one another. To produce a meaningful result (transformation, query, state exploration, etc.),
certain operators should preferably be applied before others. For example, Figure 3.4 illustrates the
interaction betweenT-Core operators to execute a transformation rule. In the following, we outline
good practices for using theT-Core primitive operators:

• A Matcher should always be preceded by anIterator in order to select a match found.

• A Rewriter should not be applied before executing theMatcher whose condition is the pre-
condition of theRewriter’s post-condition. Otherwise, the rewriting phase will notaffect the
input graph and an exception will be reported.

• A Roll-backer will typically receive apacketIn message as soon as the enclosingComposer
receives a packet. That way, the original graph will be checkpointed and may be restored at a
later time via thenextIn method.
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:Composer

PAR

r1:RulePrimtive r2:RulePrimtive s:Selector

p1:=packetIn(p)

p2:=packetIn(p)

successIn(p1)

successIn(p2)

p3:=select()

x:=cancel()

reset()

Figure 3.3: Sequence diagram for using aControlPrimitive.

• A Resolver should be executed after at least one application of aRewriter. That is because
conflicts are detected in an optimistic way,i.e., after a modification of the graph, since the
invariant part of the rule is not stored.

3.4 Re-constructing Transformation Languages

De-constructing model transformation languages in a collection of model transformation primitives
makes it easier to reason about transformation languages. In fact, properly combiningT-Core primi-
tives with an existing well-formed programming or modelling language allows us to re-construct some
already existing transformation languages and even construct new ones3. Figure 3.5 shows some ex-
amples of combinations ofT-Core with other languages. Figure 3.5(a) and Figure 3.5(b) combine
a subset ofT-Core with a simple (programming) language which offerssequencing, branching, and
loopingmechanisms (as proposed in Böhm-Jacopini’sstructured program theorem[BJ66]). We will
refer to such a language as anSBL language. The first combination only involves theMatcher and
its PreConditionPattern, Packet messages to exchange, and theComposer to organize the primitives.
TheseT-Core primitives integrated in an SBL language lead to aquery language. Since only matching
operations can be performed on the model, they represent queries where the resulting packet holds
the set of all elements (sub-graph) of the model (graph) thatsatisfy the desired pre-conditions. In-
cluding otherT-Core primitives such as theRewriter promotes the query language to a transformation
language. Figure 3.5(b) enumerates theT-Core primitives combined with an SBL language necessary
to design a complete sequential model transformation language. Replacing the SBL language by an-
other one, such as UML Activity Diagrams in Figure 3.5(c), allows us to re-construct Story Diagrams
[FNTZ00], for example, since they are defined as a combination of UML Activity and Collaboration
Diagrams with graph transformation features. Other combinations involving the wholeT-Core module
may lead to novel transformation languages with exception handling and the notion of timed model
transformations when combined with a discrete-event modelling language (c.f., Part III of this thesis).

3This is the subject of Part III of this thesis.
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arule:Composer m:Matcher i:Iterator w:Rewriter

<<create>><<create>>

<<create>>

packetIn(p) p:=packetIn(p)

OPT

ALT

isSuccess:=true

p

<<create>>

p2:=packetIn(p)

ALT [i.isSuccess==false]

OPT

p

p3:=packetIn(p)

OPT

p

p

p:Packet

clean()

clean()

clean()

ALT

clean()

exception:=

m.exception

[m.exception!=null]

[i.exception!=null]

[w.exception!=null]

[m.isSuccess==false]

[w.isSuccess==false]

exception:=

i.exception

exception:=

w.exception

Figure 3.4: Sequence diagram of a simple rule execution.
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(a) (b)

(c) (d)

Figure 3.5: CombiningT-Core with other languages allows one to re-construct existing and new lan-
guages.

We now present the re-construction of two transformation features using the combination of an
SBL language withT-Core as in Figure 3.5(b).

3.4.1 Re-constructing Story Diagrams

In the context of object-oriented reverse-engineering, the FUJABA tool allows the user to specify the
content of a class method by means of Story Diagrams, an extension of UML Activity Diagrams. A
Story Diagram organizes the behaviour of a method with activities and transitions. An activity can
be aStory Pattern or astatement activity. The former consists of a graph transformation rule and the
latter is Java code. Figure 3.6 shows such a story diagram taken from thedoDemomethod example in
[FNTZ00]. This snippet represents an elevator loading people on a given floor of a house who wish to
go to another level. The rule in the pattern is specified in a UML Collaboration Diagram-like notation
[Obj09] with objects and associations. Objects with implicit types (e.g.,this , l2 , ande1) arebound
objects from previous patterns or variables in the context of the current method. TheStory Pattern 6 is
a for-all Pattern. Its rule is applied on all matches found looping over the unbound objects (e.g.,p4 , and
l4 ). The outgoing transition labelledeach time appliesstatement 7 after each iteration of thefor-all
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Figure 3.6: TheFUJABA doSubDemo transformation showing afor-all Pattern and twostatement
activities.

Pattern. This activity allows the pattern to simulate random choices of levels for different people.
When all iterations have been completed, the flow proceeds with statement 8 reached by the transition
labelledend , which simulates the elevator going one level up.

Figure 3.7: The threeMoTif rules for thedoSubDemo transformation.

We now show how to re-construct this non-trivial story diagram transformation from an SLB lan-
guage combined withT-Core. An instance of that combination is called aT-Core model. First, we
design the rules needed for the conditions of rule primitives. Figure 3.7 describes the three necessary
rules corresponding to the three Story Diagram activities.We use the visual concrete syntax ofMoTif
[SV10] where the central compartment is the LHS, the compartment on the right of the arrow head
is the RHS and the compartment(s) on the left of dashed lines are the NAC(s). The concrete syn-
tax for representing the pattern was chosen to be intuitively close enough to theFUJABA graphical
representation. Numeric labels are used to uniquely identify different elements across compartments.
Elements with an alpha-numeric label between parentheses denote pivot elements. A right-directed
arrow on top of the label depicts that the model element matched for this pattern element is assigned
to a pivot (e.g.,p4 andl4 ). A left-directed arrow on top of the label depicts that the model element
matched for this pattern element is bound to the specified pivot (e.g.,this ande1).

TheT-Core model equivalent to the originaldoSubDemo transformation consists of aComposer
doSubDemoC. The hierarchy of its sub-primitives is illustrated in the Collaboration Diagram in Fig-
ure 3.8. It is composed of twoComposers loadC andnextStepC each containing aMatcher, an Itera-
tor, aRewriter, and aResolver. ThepacketIn method ofdoSubDemoC first calls the corresponding
method ofloadC and then feeds the returned packet to thepacketIn method ofnextStepC. This
ensures that the output packet of the overall transformation is the result of first loading all thePerson
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Figure 3.8: The object hierarchy of thedoSubDemo composer.

objects and then moving the elevator by onestep . Algorithm 10 describes this behaviour.

Algorithm 10 doSubDemoC.packetIn( π)

π← loadC.packetIn( π)

π← nextStepC.packetIn( π)

isSuccess ← true
return π

makeChoiceC and nextStepC behave as simple transformation rules. TheirpacketIn method
behaves as specified in Algorithm 11. First, the matcher is tried on the input packet. Note that the
conditions of the matchersmakeChoiceM and nextStepM are the LHSs of rulesmakeChoice and
nextStep , respectively. If the matcher fails, the composer goes intofailure mode and the packet is
returned. Then, the iterator chooses a match. Subsequently, the rewriter attempts to transform this
match. Note that the conditions of the rewritersmakeChoiceW andnextStepW are the RHSs of rules
makeChoice andnextStep , respectively. If the rewriter fails, an exception is thrown and the trans-
formation stops. Otherwise, the resolver verifies the application of this pattern with respect to other
matches in the transformed packet. The behaviour of the resolution function will be elaborated on
later. Finally, on a successful resolution, the resulting packet is output and the composer is put in
success mode.

loadC is the composer that emulates thefor-all Pattern of the example. Algorithm 12 specifies that
behaviour. After finding all matches withloadM (whose condition is the LHS and the NAC of rule
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load ), the packet is forwarded to the iteratorloadI to choose a match. The iteration is emulated by
a loop with the failure mode ofloadI as the breaking condition. Inside the loop,loadW rewrites the
chosen match andloadR resolves possible conflicts. Then, the resulting packet is sent tomakeChoiceC
to fulfil the each time transition of the story digram. After that, thenextIn method ofloadI is invoked
with the new packet to choose a new match and proceed in the loop.

Algorithm 11 makeChoiceC.packetIn( π)

isSuccess ← false
π← makeChoiceM.packetIn( π)

if not makeChoiceM.isSuccess then
return π

end if
π← makeChoiceI.packetIn( π)

if not makeChoiceI.isSuccess then
return π

end if
π← makeChoiceW.packetIn( π)

if not makeChoiceW.isSuccess then
return π

end if
π← makeChoiceR.packetIn( π)

if not makeChoiceW.isSuccess then
return π

end if
isSuccess ← true
return π

Algorithm 12 loadC.packetIn( π)

isSuccess ← false
π← loadM.packetIn( π)

if not loadM.isSuccess then
return π

end if
π← loadI.packetIn( π)

if not loadI.isSuccess then
return π

end if
while true do

π← loadW.packetIn( π)

if not loadW.isSuccess then
return π

end if
π← loadR.packetIn( π)

if not loadR.isSuccess then
return π

end if
π← makeChoiceC.packetIn( π)

π← loadI.nextIn( π)

if not loadI.isSuccess then
isSuccess ← true
return π

end if
end while

Having seen the overallT-Core transformation model, let us examine how the differentResolvers
should behave in order to provide a correct and complete transformation. The first rewriter called is
loadW and the first time it receives a packet is when a transformation is applied on one of the matches
of the matcherloadM. Therefore each match consists of the sameHouse (since it is a bound node),
two Levels, an Elevator, and the associations between them. On the other hand,loadW only adds a
Person and links it to aLevel. Therefore the default resolution function of the resolverloadR applies
successfully, since no matched element is modified nor is theNAC violated in any other match. The
next resolver ismakeChoiceR which is in the same loop asloadR. There, theHouse is conflicting
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with all the matches in the packet according to the conservative default resolution function. Note that
makeChoiceM finds at most one match (the boundHouse element). However,makeChoiceW does not
really conflict with matches found inloadM. We therefore specify a custom resolution function for
makeChoiceR that always succeeds. The same applies fornextStepR.

3.4.2 Re-constructing amalgamated rules

Figure 3.9: The transformation rules for theRepot-
ting Geraniumsexample

Algorithm 13 baseC.packetIn( π)

isSuccess ← false
π← baseM.packetIn( π)

if not baseM.isSuccess then
return π

end if
while true do

π← baseI.packetIn( π)

if baseI.isSuccess then
π← baseW.packetIn( π)

if not baseW.isSuccess then
return π

end if
π← baseR.packetIn( π)

if not baseR.isSuccess then
return π

end if
π← innerC.packetIn( π)

end if
π← baseM.packetIn( π)

if not baseM.isSuccess then
isSuccess ← true
return π

end if
end while

In a recent paper, Rensinket al.claim that theRepotting the Geraniumsexample is inexpressible
in most transformation formalisms [RK09]. The authors propose a transformation language that uses
an amalgamation scheme for nested graph transformation rules. As we have seen in the previous
example, nesting transformation rules is possible inT-Core and will be used to solve the problem.
It consists ofrepotting all flowering geraniums whose pots have cracked. Figure 3.9 illustrates the
two nested graph transformation rules involved and Algorithm 13 demonstrates the composition of
primitive T-Core elements encoding these rules.baseM (with, as condition, the LHS of rulebase )
finds all broken pots containing a flowering geranium, given the input packet containing the input
graph. The set of matches resulting in the packet are the combination of all flowering geraniums
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and their pot container. From then on starts the loop. First,baseI chooses a match. If one is chosen,
baseW transforms this match andbaseR resolves any conflicts. In this case,baseW only creates a
new unbroken pot and assigns pivots. Therefore,baseR’s resolution function always succeeds. In
fact, the resolver is not needed here, but we include it for consistency. TheinnerC composer encodes
the inner rule which finds the two bound pots and moves a flourishing flower in the broken pot to the
unbroken one. In order to iterate over all the flowers in the broken pot, theinnerC.packetIn method
has the exact same behaviour asloadC.packetIn in Algorithm 12, with the exception of not calling
a sub-composer (likemakeChoiceC). Note that an always successful custom resolution function for
innerR is required. After theResolver successfully outputs the packet, theinner rule is applied. Then
(and also ifbaseI had failed)baseM.packetIn is called again with the resulting packet. The loop
ends when thebaseM.packetIn method call inside the loop fails, which entailsbaseC returning the
final packet in success mode.

3.5 Transformation Language Product Line

There is a wide variety of transformation languages and tools that exist today. Also, they are very
powerful in solving the problems they were initially intended for. For example,FUJABA [NNZ00] is
primarily meant to provide reverse-engineering capability, AToM3 [dLV04] and GReAT for defining
translational semantics and simulation of formalisms, thenew version ofVIATRA2 [BÖR+08] to
provide means for model synchronization, etc. However, most of them have a tendency to provide a
generic tool for solving any kind of model transformation problem. This is especially true with the
arrival ofQVT [Obj08] and most applications ofATL [Pro10a]. This genericity requires transformation
languages to be very expressive, which makes analysis of transformation models built using these
general purposetransformation languages very hard. In fact, some approaches have realized this
problem and propose Turing-incomplete transformation languages, such asDSLTrans [BLA +10].

The solution proposed here is to use a sub-set ofT-Core primitives to restrict a transformation
language for one specific purpose or intention. To some extent, one can redefine a transformation
language as consisting of the following features:

1. Primitive transformation operators , for example taken from (a sub-set of) theT-Core module;

2. Combined with ascheduling language, which can be programmed (e.g.,Java [EETW06]) or
modelled (e.g.,UML Activity diagrams [LLMC06], Coloured Petri nets [WKS+09]).

In fact, the scheduling language may be a domain-specific language dedicated for defining transforma-
tion schedulers. The combination of both provides a productline of problem-specifictransformation
languages. This restricts the transformation engineer to focus entirely on designing transformation
models without added complexity that is irrelevant for the purpose of the transformation. Also, the
transformation language has no more expressiveness than isneeded and this may allow for better
analysis of the transformation models. Nevertheless, the expressiveness of the transformation lan-
guage then depends on the glue language (i.e.,the scheduler) used and the primitive operators chosen.
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Py-T-Core

Currently T-Core is implemented in Python and is available at the website [Syr10]. It is a direct
implementation of the class diagram of Figure 3.1. Therefore, the combination ofT-Core primitives
with Python as a scheduling language seems adequate. This results in a new transformation language,
calledPy-T-Core4.

For example, a query is defined as in Listing 3.1: given a packet, if a match is found it is selected
and the resulting packet is output. The packet then consistsof a single match set containing a single
match. This match describes the sub-graph that satisfies thepre-condition patterni.e., the query.

Listing 3.1: A query inPy-T-Core.

from t_core . composer import Composer
from t_core . matcher import Matcher
from t_core . i terator import I terator

class Query( Composer ):
def __init__( self , LHS ):

super(Query , self ). __ini t__ ()
self .M = Matcher ( condit ion =LHS , max=1)
self . I = Iterator ( max_iterat ions =1)

def packet_in( self , packet ):
self . exception = None
self . is_success = False
# Match
packet = self .M. packet_in ( packet )
if not self .M. is_success :

self . exception = self .M. exception
return packet

# Choose the only match
packet = self . I . packet_in ( packet )
if not self . I . is_success :

self . exception = self . I . exception
return packet

# Output success packet
self . is_success = True
return packet

Listing 3.2 illustrates how a simple rule is defined, such as in Algorithm 11.

Listing 3.2: A simple rule inPy-T-Core.

from t_core . composer import Composer
from t_core . matcher import Matcher
from t_core . i terator import I terator
from t_core . rewri ter import Rewriter
from t_core . resolver import Resolver

4Similarly, an implementation in C would be calledC-T-Core or in Java would be calledJ-T-Core.
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class ARule( Composer ):
def __init__( self , LHS , RHS , ignore_resolver = False,

external_matches_only = False,
custom_resolut ion = lambda packet : False):

super(ARule , self ). __ini t__ ()
self . ignore_resolver = ignore_resolver
self .M = Matcher ( condit ion =LHS , max=1)
self . I = Iterator ( max_iterat ions =1)
self .W = Rewriter ( condit ion =RHS)
self .R = Resolver ( external_matches_only , custom_resolut ion )

def packet_in( self , packet ):
self . exception = None
self . is_success = False
# Match
packet = self .M. packet_in (packet )
if not self .M. is_success :

self . exception = self .M.exception
return packet

# Choose the only match
packet = self . I . packet_in (packet )
if not self . I . is_success :

self . exception = self . I . exception
return packet

# Rewrite
packet = self .W. packet_in (packet )
if not self .W. is_success :

self . exception = self .W.exception
return packet

if not self . ignore_resolver :
# Resolve any conflicts if necessary
packet = self .R. packet_in ( packet )
if not self .R. is_success :

self . exception = self .R. exception
return packet

# Output success packet
self . is_success = True
return packet

Listing 3.3 shows how an iterative rule applied on multiple matches is defined. This is similar to what
was described in Algorithm 12, with the exception that the latter had a nested rule applied at each
iteration.

Listing 3.3: A rule applied on all matches at once inPy-T-Core.

from util . inf ini ty import INFINITY
from arule import ARule

class FRule(ARule ):
def __init__( self , LHS , RHS , ignore_resolver = False,
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external_matches_only = False,
custom_resolut ion = lambda packet : False,
max_iterat ions = INFINITY ):

super(FRule , self ). __ini t__ (LHS , RHS , ignore_resolver ,
external_matches_only , custom_resolut ion )

# Matcher needs to find many matches
self .M.max = max_iterat ions
self . I . max_iterat ions = max_iterat ions

def packet_in( self , packet ):
self . exception = None
self . is_success = False
# Match
packet = self .M. packet_in ( packet )
if not self .M. is_success :

self . exception = self .M. exception
return packet

# Choose the first match
packet = self . I . packet_in ( packet )
if not self . I . is_success :

self . exception = self . I . exception
return packet

while True:
# Rewrite
packet = self .W. packet_in (packet )
if not self .W. is_success :

self . exception = self .W. exception
return packet

if not self . ignore_resolver :
# Resolve any conflicts if necessary
packet = self .R.packet_in (packet )
if not self .R. is_success :

self . exception = self .R. exception
return packet

# Choose another match
packet = self . I . next_in (packet )
# No more iterations are left
if not self . I . is_success :

if self . I . exception :
self . exception = self . I . exception

else:
# Output success packet
self . is_success = True

return packet

Listing 3.4 depicts the definition of a rule to be applied as long as there are matches. This is similar to
what was described in Algorithm 13, with the difference thatthe latter also had a nested rule applied
inside the loop.
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Listing 3.4: A rule applied as long as possible inPy-T-Core.

from util . inf ini ty import INFINITY
from arule import ARule

class SRule(ARule ):
def __init__( self , LHS , RHS , ignore_resolver = False,

external_matches_only = False,
custom_resolut ion = lambda packet : False,
max_iterat ions = INFINITY ):

super(SRule , self ). __ini t__ (LHS , RHS , ignore_resolver ,
external_matches_only , custom_resolut ion )

self . I . max_iterat ions = max_iterat ions

def packet_in( self , packet ):
self . exception = None
self . is_success = False
# Match
packet = self .M. packet_in (packet )
if not self .M. is_success :

self . exception = self .M.exception
return packet

return self . t ransform (packet )

def transform( self , packet ):
# Choose the first match
packet = self . I . packet_in (packet )
if not self . I . is_success :

self . exception = self . I . exception
return packet

while True:
# Rewrite
packet = self .W. packet_in ( packet )
if not self .W. is_success :

self . exception = self .W. exception
return packet

if not self . ignore_resolver :
# Resolve any conflicts if necessary
packet = self .R. packet_in ( packet )
if not self .R. is_success :

self . exception = self .R. exception
return packet

# Rule has been applied once, so it's a success anyway
self . is_success = True
if self . I . i terat ions == self . I . max_iterat ions :

return packet
# Re-Match
packet = self .M. packet_in ( packet )
if not self .M. is_success :

self . exception = self .M. exception
return packet
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# Choose another match
packet = self . I . next_in (packet )
# No more iterations are left
if not self . I . is_success :

if self . I . exception :
self . exception = self . I . exception

return packet

Listing 3.5 shows an example of how to combine rules and primitives with the procedural constructs
of Python. This describes the solution of theDistributed Mutual Exclusion Algorithmbenchmark
presented in [VSV05].

Listing 3.5: The composition of different rules inPy-T-Core.

class ShortTransformationSequence( Composer ):
def __init__( self , N , debug_folder = '' ):

super( ShortTransformationSequence , self ). __ini t__ ()
self .N = N
self . NewRule = SRule ( HNewRuleLHS () , HNewRuleRHS () ,

max_iterat ions =N-2 , ignore_resolver = True)
self . MountRule = ARule ( HMountRuleLHS () , HMountRuleRHS () ,

ignore_resolver = True)
self . RequestRule = FRule ( HRequestRuleLHS () , HRequestRuleRH S () ,

max_iterat ions =N, ignore_resolver = True)
self . TakeRule = ARule ( HTakeRuleLHS () , HTakeRuleRHS () ,

ignore_resolver = True)
self . ReleaseRule = ARule ( HReleaseRuleLHS () , HReleaseRuleRH S () ,

ignore_resolver = True)
self . GiveRule = ARule ( HGiveRuleLHS () , HGiveRuleRHS () ,

ignore_resolver = True)

def packet_in( self , packet ):
# New Processes
packet = self .NewRule . packet_in ( packet )
packet . clean ()
if not self .NewRule . is_success :

if self .NewRule . exception is not None:
self . exception = self .NewRule . exception
return packet

# Mount
packet = self .MountRule .packet_in (packet )
packet . clean ()
if not self . MountRule . is_success :

if self . MountRule . exception is not None:
self . exception = self .MountRule .exception
return packet

# Request
packet = self .RequestRule . packet_in ( packet )
packet . clean ()
if not self . RequestRule . is_success :

if self . RequestRule .exception is not None:
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self . exception = self . RequestRule . exception
return # Pass it around

for _ in range( self .N):
# Take
packet = self .TakeRule . packet_in (packet )
packet . clean ()
if not self . TakeRule . is_success :

if self . TakeRule . exception is not None:
self . exception = self .TakeRule . exception
return packet

# Release
packet = self .ReleaseRule . packet_in ( packet )
packet . clean ()
if not self . ReleaseRule . is_success :

if self . ReleaseRule .exception is not None:
self . exception = self .ReleaseRule . exception
return packet

# Give
packet = self .GiveRule . packet_in (packet )
packet . clean ()
if not self . GiveRule . is_success :

if self . GiveRule . exception is not None:
self . exception = self .GiveRule . exception
return packet

self . is_success = True
return packet

Py-T-Core allows a programmed5 software to integrate with model transformation solutionsthanks
to theT-Core API. This is a pragmatic solution to bridge the gap between software developers (who
program large-scale systems) and domain experts (who describe the behaviours of their model through
transformation).

3.6 Related work

The closest work to the one presented here is [VJBB09]. In thecontext of global model management,
the authors define a type system offering a set of primitives for model transformation. The advantage
of our approach is thatT-Core is described here as a module and is thus directly implementable. Also,
the approach described in [VJBB09], does not deal with exceptions at all unlikeT-Core. Nevertheless,
their framework is able to achieve higher-order transformations (HOTs),i.e., transformations that
operate on model transformations. The implementation ofT-Core is currently available in Python.
Since this is an object-oriented language, theT-Core primitive operators are implemented as classes.
Thus, at run-time, the operators are objects which can be directly manipulations and thus emulate
HOTs. However, as it will be seen in Chapter 7,T-Core can be combined with a modelling language.
Thus, HOTs can be easily specified in such a completely modelled transformation language.

5As opposed to a modelled software where no artefacts are hard-coded.



3.7 Conclusion 79

TheGP graph transformation language [MP08] also offers transformation primitives. The authors
however focus more on the scheduling of the rules then on the rules themselves. Their scheduling
(control) language is an extension of an SBL language. Our approach is more general since much
more complex scheduling languages (e.g.,allowing concurrent and timed transformation execution)
can be integrated withT-Core. Although it performs very efficiently, the application area of GP is
more limited, as it can not deal with arbitrary domain-specific models.

Other graph transformation tools, such asVIATRA [VB07] andGReAT [AKK +06], have their own
virtual machine used as an API. In our approach, since the primitive operations are modelled, they are
completely compatible with other existing model transformation frameworks.

T-Core does cover a significant amount of variation in pattern-based model transformation. For ex-
ample, we showed how to solve the amalgamated rule problem where pattern elements are combined
with universal and existing quantifiers. This was done by wisely “nesting” pre-condition patterns with
the use of pivots. Other pattern compositions include disjunctive constructs such as in [BV06]. That
is, a LHS pattern can consist of sub-patterns that can be conjuncted and disjuncted. Chapter 10 will
show how this can be accomplished withT-Core primitives. When the LHS consists of two disjuncted
patterns, we first split each disjunctive case in separate pre-condition patterns. Then, thepacketIn

method of theMatcher of each pattern is called. Each resulting packet is output toa Selector which
finally selects one of the packets.

3.7 Conclusion

This chapter motivated the need for providing model transformation language primitives.T-Core was
defined by precisely describing each of these primitive constructs. The de-construction process of
model transformation languages enabled us to re-constructexisting simple model transformation fea-
tures as well as more complex ones by combiningT-Core with, for example, an SBL language. This
allowed us to compare different model transformation languages using a common basis. Furthermore,
T-Core is combined with a programming language which allows non-MDE users to integrate with
MDE solutions. This integration is transparent for programmers sincePy-T-Core andT-Core offer a
complete API.

T-Core was presented as a minimal collection of model transformation primitives, defined at the
optimal level of granularity.T-Core is not restricted to any form of specification of transformation
units, be it rule-based, constraint-based, or function-based. It can also represent bidirectional and
functional transformations as well as queries.T-Core modularly encapsulates the combination of these
primitives through composition, re-use, and a common interface. It is an executable module that is
easily integrable with a programming or modelling language.

It is impossible to prove thatT-Core is a collection of the most primitive transformation oper-
ators, because of the complexity and diversity of the expressiveness of most model transformation
languages. However, our experience showed that it can be used to reproduce most of the languages de-
scribed in Chapter 2. Note that, for example, declarative transformations defined as relations, such as
in QVT-R or TGG, cannot be directly expressed usingT-Core primitives. That is because their transfor-
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mation units specify relations between the involved meta-models as opposed to the operational nature
of transformation rules. However, if these relations can becompiled into operational rules (such as in
TGG c.f. Chapter 2.2.3), thenT-Core primitives can be used to mimic the corresponding behaviourof
the relations.

The detection of conflicts in theResolver and theSynchronizer is conservative. A possible ex-
tension would be to incorporate more advanced detection mechanisms, such as through critical pair
analysis [LEO08]. However, this technique assumes that thetransformation units are traditional graph
transformation rules with a singlematch-rewritecombination, which is not always the case inT-Core.

T-Core can serve as a basis for inter-operating model transformations expressed in different for-
malisms. That is, by mapping each and every construct of the languages to an appropriate combination
of T-Core operators. In [HKA10], the authors define a language for composing heterogeneous trans-
formations defined in different formalisms (e.g.,ATL andQVT-OM). Their approach is to wrap each
transformation model incomponentsand communicate between each other via in/out-port connec-
tions, treating the transformation models as black-boxes.This is the opposite of opening the languages
and mapping them to a common denominator:T-Core. The disadvantage of their approach is that port
connection consistency is validated through simple type checking. Also, their current implementation
is restricted to models only represented in Ecore.

Now that the primitives are well-defined, efficiently implementing each of them will certainly lead
to more efficient model transformation languages.



4
Implementation of Himesis

One of the key aspects to address industrial-scale model-driven engineering problems is the ability to
execute model transformations on large models efficiently.Therefore a first step is to provide an effi-
cient implementation of the model transformation primitives described in Chapter 3. In this chapter,
we first design and implement efficient data structures to represent models to-be-transformed as well
as transformation models. We describe the implementation of the T-Core transformation primitives
in the form of Himesis, a kernel for graph-based model representation and manipulation. We then
implement the transformation primitives described in the previous chapter. The performance of our
implementation is thoroughly analysed.

4.1 Introduction

Model-based development (MBD) is increasingly adopted in industry. However, the models industry
deals with are very large, with up to 106 elements. Modern (MBD) tools, such as AToMPM (our
successor ofAToM3 [dLV02]), must allow the modeller to work with such industrial-scale models.
These tools should be able to handle common tasks such as loading, saving, visually representing,
and transforming large models.

Graphs, as opposed to meta-model/instance, are commonly used to represent models (because
they are often truly graph-like, such as Petri nets) and thisis also the choice made in AToMPM. The
goal of this chapter is to develop and analyse the performance of the data structures used internally
to represent typed, attributed, directed graphs. This graph kernel is called Himesis1. In order to make
the kernel of AToMPM as efficient as possible, Himesis must allow one to efficiently manipulate
graphs. In AToMPM, models are represented as graphs. Moreover, the tool is implemented in the
Python language. We therefore restrain our investigation to compare two potential candidate graph
representation/manipulation software libraries implemented in Python, namelyIGraph [CN06] and
NetworkX[HSS08]. A thorough performance analysis allows us to choose the most efficient one for
our purposes. Furthermore, we extend it to efficiently manipulate models, more specifically to perform
model transformation. We describe the different algorithms that are used and compare their perfor-
mance to other model transformation tools by means of a standard graph transformation benchmark.

1This name was first introduced in [Pro05]. It is derived from “genesis” for origin and “mimesis” for representation.
The syllable “hi” stands for hierarchical.
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Chapter 3 abstracted away details such as the data structurerepresenting models as graphs, the
matching procedure of theMatcher, and the transformation procedure of theRewriter. This chap-
ter focuses on the implementation of these aspects ofT-Core. In Section 4.2, we first compare the
performance of two promising software libraries with Python APIs for graph creation and manipula-
tion. Section 4.3 examines the performance of the most efficient one, focusing on the tasks common
in model-based tools. One critical task in particular is to find sub-graphs in a given graph, respect-
ing some constraint conditions (meta-model type, multiplicities, OCL constraints, etc). Since graph
transformation relies heavily on the matching algorithm, Section 4.4 describes the algorithms imple-
mented in Himesis for (1) computing sub-graph isomorphismsand (2) pattern matching as used in
model transformation. The performance of Himesis is analysed in Section 4.5 by means of a standard
graph transformation benchmark.

4.2 Making the Right Choice

Our search for existing libraries that efficiently manipulate graphs resulted in two potential candidates:
IGraph [CN06] andNetworkX[HSS08].

4.2.1 IGraph and NetworkX

Both IGraph [igr09] and NetworkX [net10] are open source software packages for creating and ma-
nipulating graphs. IGraph is implemented in ANSI C and it offers a Python API. NetworkX is entirely
implemented in Python. They both allow creating directed multi-graphs,i.e.,graphs whose edges have
a source to target orientation and there can be more than one edge between any two (not necessarily
distinct) nodes. Attributes can be assigned to nodes, edges, or to the graph itself2. The values of at-
tributes can be of any type, including graphs, thus supporting hierarchical graphs [DHP02]. Although
both libraries exhibit very similar features, they differ in the way data is stored internally.

In IGraph, nodes are not explicitly stored. Instead, the internal structure only keeps track of the
total number of nodes in the graph. Nodes and edges are each identified by a non-negative integer ID.
Node and edge ID numbering is always continuous which may require re-numbering when a node
is deleted. Consequently, the attribute values of a node arenot stored in the node itself. Instead, a
vector is assigned globally to the graph. The drawback is that if an attribute is only meaningful for a
small subset of nodes, the required memory space will be assigned for all nodes, as if they all had this
attribute defined. Attributes are conveniently accessibleby lookup/reference tables.

In NetworkX, a graph is stored by its adjacency list implemented in a Python dictionary of dic-
tionaries. The outer dictionary is indexed by nodes and their values are themselves dictionaries thus
encoding edges adjacent to the indexed node. The inner dictionary is indexed by neighbouring nodes
and their values are edge attributes associated with that edge. Nodes can take the form of any hash-
able Python object. For non-hashable objects, NetworkX allows one to represent the node as a unique
identifier and assign the data as a node attribute. This is similar to how IGraph allows arbitrary objects
to be stored in a node. Unlike with IGraph, with NetworkX the burden is on the developer to guarantee

2We only considered attributed nodes for the experiments in this section.
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the uniqueness of the identifiers.

4.2.2 IGraph vs. NetworkX

We will now examine how each library performs for model manipulation tasks. The tasks that concern
us are: creation, deletion, and modification of nodes and edges, as well as the traversal of all the
elements in the graph (the well known CRUD operations).

Experimental Conditions

Figure 4.1 shows a heat graph, represented as a table, assessing for which case one library is more
optimal than the other. For each operation we vary two parameters. The first one is the number of
timesn an operation is applied. In this comparison, we generate an initial Erdõs-Rényi random graph
G(50,0.5). It is a graph with 50 nodes such that an edge is created between any two nodes with prob-
ability p= 0.5, the randomness being sampled from a uniform distributionfunction. The probability
chosen generates a dense graph, given that directed multiple edges and self loops are allowed. To
ensure non-biased experiments, the same initial graphG is used for both libraries, by exporting the
adjacency list of the generated graph reconstructing it in IGraph and in NetworkX. The second pa-
rameter is how data is stored in the graph. For this experiment, we evaluate the case when no data is
stored in the graph (depicted by the “No Attributes” label inFigure 4.1) and when nodes hold attribute
values (depicted by the “Attributed” label in Figure 4.1)

The table in Figure 4.1 represents the results of the experiments along three dimensions: whether
data is stored, the operation under study, and the number of times the operation is performed. It shows
the ratiosr ∈ [0,+∞[ of the computation time between the two libraries3 i.e.,

r =
tNetworkX

tIGraph

When 0≤ r < 1, NetworkX is faster and whenr > 1, IGraph is faster. The boundary case ofr = 1
simply depicts that they were as fast for performing the sameoperation. The ratio depends on three
dimensions:

• op∈ {AN,AE,UN,T,DE,DN} is the operation of interest:Add nodes, Add edges, Update
nodes, Traverse, Delete edges, andDelete nodes, respectively.

• d ∈ {NA,AT} indicates whether data is stored:No attributesor Attributed, the latter stores data
at the node level using the library’s node attribute mechanism. For the attributed case, the size
of the data stored at each node is 4,118 bytes, which is considered as a light-weight attribute in
Python.

• n∈ N is the number of times an operation has been applied in sequence.

In this experiment, each operation is appliedn times in the order defined above. For the case whered=
NA, operationAN is first appliedn times on the initial graphG: this createsn new nodes. Then,AE is

3All numerical results of the experiments presented in this paper have an error margin of±1.000× 10−1 seconds
because of the resolution of the timers.
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Figure 4.1: Relative performance of IGraph and NetworkX forCRUD operations. The darker the
colour, the better IGraph performs.

appliedn times, which addsn new edges in the new graph.UN updates the attribute values ofn nodes
in the graph andT traverses the whole graph in a breadth-first fashion. After these four operations are
applied,n edges are deleted from the graph. Finally,DN deletesn nodes from the resulting graph. We
chose to apply the operations in this order to avoid dependencies and deletion which make no sense,
and thus do not bias the computation times. Similar experiments were performed for the case where
d = AT. The system running these experiments is composed of 32 nodes equipped with an Intel Core
2 Duo processor of 2.66 GHz, 8 GB of memory with a 667 MHz DDR2, and two times 4MB of L2
cache.

Analysis of the Comparison

At a first glance, Figure 4.1 shows many more dark cells then light ones, indicating that overall,
IGraph performs better than NetworkX. For a graph with no attributes (whend = NA), since IGraph
stores nodes very efficiently as explained previously, it clearly outperforms NetworkX with respect to
the creation of elements: 1.3×103 times faster for the creation of 2×105 nodes and 30 times faster
for the creation of the same number of edges. NetworkX is up to4 times faster for deleting a small
number of edges (less than 50), while IGraph is up to 45 times faster for larger values ofn. As for
the deletion of nodes, IGraph is up to 80 times faster for mid-sized graphs (104 edges) and around
50 times faster for larger graphs. This ratio of computationtime r is significantly smaller than for the
creation of nodes because of the re-numbering required to ensure a continuous numbering of nodes
in IGraph. Traversing all nodes in the graph is twice as fast on average in IGraph for any size of the
graph. The update operation (op= UN) in this case is simply the sum of adding and removing the
same number of nodesn, since no attributes are stored in the nodes. On average thisoperation is 100
times faster for IGraph.

Now that we know IGraph is significantly more efficient than NetworkX for non-attributed graphs,
we will examine whether this is still the case when attributedata is added to the graph. Whend = AT,
the creation of nodes is about 3 times faster in IGraph than inNetworkX forn≤ 100. In both libraries,
creating a larger number of nodes is as fast as the initialization of attributes becomes an overhead on
the actual creation of a node. This is confirmed by the fact that the update operation is equally fast in
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Operation No Attributes Attributed
Average Standard deviation Average Standard deviation

Add nodes 719.9 583.3 1.5 1.2
Add edges 17.9 9.8 23.2 18.0

Update nodes 99.5 65.5 1.0 0.0
Traverse 2.0 0.6 2.5 1.2

Delete edges 28.7 22.8 27.8 22.1
Delete nodes 46.4 25.5 5.2 1.7

Table 4.1: Average (first column) and standard deviation (second column) over all values ofn of the
performance ratios of IGraph over NetworkX.

both libraries. The ratio for edge creation is the same as forthe non-attributed case forn≤ 2×104.
This is predictable as the presence of node attributes does not influence edge creation. However, when
creating more edges, IGraph is slightly even more efficient:the ratio is 1.5 times higher than for
the non-attributed case. Edge deletion for the attributed case performs as well as its non-attributed
counterpart. Node deletion becomes only 4 times faster withIGraph when attributes are present.
NetworkX is slower traversing the graph with attributed nodes (up to 4 times slower for graphs with
2×104 nodes). Table 4.1 summarizes the overall comparison. The averages were computed based on
the data captured in each row of Figure 4.1.

4.3 Optimal Representation of Models

Given the results of the previous experiment, IGraph is overall significantly more time-efficient. It
is also more space-efficient since the machines running the NetworkX library ran out of memory at
n = 3×105, while no thrashing was observed when IGraph was dealing with graph sizes of up to
106 elements. In this section, we investigate the optimal representation of typed attributed graphs. We
analyse the performance and relative cost of the CRUD operations.

4.3.1 Representing Models as Directed Simple Graphs

Models are abstractions of pertinent aspects of a system. Animportant class of models is those where
entitiesrepresent the concepts and data of the model andrelationsdescribe how these concepts are
related. Moreover, a relation may itself hold data. When such models are realized as directed graphs,
representing entities as nodes and relations as edges seemsobvious at a first glance. IGraph supports
attribute assignment on both elements. In specific cases, a relation may itself be related to another
relation or entity4. But then the graph representation would require one to consider such relations
as nodes. Therefore, to uniformly represent entities and relations of a model, we propose that they
be represented as nodes. Thus, a graph edge represents the link between an entity and a relation, a

4For example, in UML class diagrams [Obj09], an association class can relate two classes and also be part of an
inheritance relationship with another association class.
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Figure 4.2: Different types of graphsG and their representation as Himesis graphsH.

relation and an entity, or a relation and a relation. Hence, attributes need only be stored on nodes.
Another advantage of this uniform representation of modelsbecomes apparent when a model has a
multi-graph or hyper-graph topology. Figure 4.2 describeshow the relations are represented in each
case. However, our representation does not consider multi-hyper-graphs, which are not common in
MDE.

Now let us examine the cost of this uniform representation ofa modelM. Let G= (V(G),E(G))
denote a directed graph representing the entities ofM as nodesV(G) and its relations as edgesE(G).
Let H denote the graph representing the entities and relations ofM as nodesV(H) and the links as
edgesE(H). Examples ofG andH are depicted in Figure 4.2. We then have that|V(H)|= |V(G)|+
|E(G)| and |E(H)| = 2× |E(G)|. Therefore there is only a constant difference|E(G)| between the
size ofH andG. This is also the case whenG is a multi-graph. WhenG is a hyper-graph,|V(H)| is
as before but now|E(H)|= |Src(E(G))|+ |Tar(E(G))|, whereSrcandTar represent respectively the
source nodes and target nodes of all edges.

4.3.2 Performance Evaluation of CRUD Operations

To investigate the optimal representation of data, we need to modify the domain ofd in the condi-
tion tuple(d,op,n) such that:d ∈ {NA,LA,HA,LO,HO}, respectivelyNo Attribute, Light Attribute,
Heavy Attribute, Light Object, andHeavy Object. They span two dimensions: data representation and
the size of the data. The “attribute” label indicates that, for each node, data is stored as a separate
node attribute. The “object” label indicates that all the data is wrapped in a single object and only
that object is stored as a node attribute. In our experiments, a light attribute is 139 bytes, whereas a
heavy attribute is 4,330 bytes. The first corresponds to the size of two integers and three characters in
Python. The second corresponds to the size of two integers, two 50-character-long strings and another
string of 4,094 characters long.

Figure 4.3 represents the time performance of IGraph for each value ofd. When no data is stored
in the graph,i.e., d= NA (Figure 4.3(a)), node creation is the least costly operation with less than 10
milliseconds for adding 106 nodes. Node deletion is also very efficient with 100 milliseconds for the
same amount of nodes. As mentioned before, for the case whered = NA, the update node operation
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Figure 4.3: The effect of data representation. The graphs are plotted on a log-log scale.
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Figure 4.4: Average times in seconds for executing CRUD operations.

is evaluated as first deleting then adding a new node to replace it. This is why it takes about the same
time as the delete node operation. Edge deletion seems to perform faster than edge creation for larger
graphs with respectively 100 milliseconds versus 1 second.Node traversal is undoubtedly the most
costly operation. IGraph can traverse 2×104 nodes within a minute, but it takes almost 6.5 days to
traverse 106 nodes in breadth-first search! This poor performance is due to the internal implementation
of the IGraph version used. However, in model transformation it is rarely the case that the whole graph
must be traversed, since it is often a single match that is requested. Nevertheless, requiring all matches
may in the worst case lead to multiple traversals of the graph. We plan to solve this issue in the future.

The plots ford= LA andd= LO are very similar to each other. This indicates that the relative per-
formance of the operations is the same when light data is stored in the graph (Figure 4.3(b) and 4.3(d)
respectively). Edge operations become the fastest. Nevertheless, fromn = 2× 104 onwards, node
deletion performs better than edge creation but worse than edge deletion, both by a factor of 2. Node
creation is now slower by a factor 103 in the case ofd = LA and by a factor of 5×102 in the case of
d = LO. Moreover, node update takes about the same time as node creation, which confirms that the
setting of attribute values is an overhead for node creation. Traversal is still the most costly operation.

Finally, the plots ford = HA andd = HO are also very similar. The exceptions are that node
deletion is now more expensive than edge creation with 1.7 seconds forn= 106. Also, node creation
(and thus the update operation) is more costly than the traversal operation up ton= 2×104 nodes.

To better illustrate the described results, the table in Figure 4.4 presents the average performance
time of each operation for different sizes of the graph. The graphs are grouped in three categories.
Small graphs (less than 103 nodes) are typically used for small examples or debugging purposes.
Medium graphs (between 103 and 105 nodes) are considered as large graphs for academics but average
size for industrial projects. Large graphs (more than 105 nodes) are typically used in large industrial
applications such as mobile networking. Furthermore, the table in Figure 4.5 summarizes the impact
of choosing the “attribute” or the “object” representationfor data in the graph. It clearly shows that
the “object” approach is more efficient than the “attribute”approach.

The plots in Figure 4.6 compare the time performance of the CRUD operations for each represen-
tation of data.

Add Nodes. From Figure 4.6(a), node creation is polynomial with a powers of 10−8, 10−5, and 10−3

for the case where there are no attributes, for light attributes, and for heavy attributes respec-
tively.
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Figure 4.5: Effect of using IGraph’s node-level attribute mechanism for each node attribute individ-
ually compared to wrapping all attributes in one object stored using IGraph’s node-level attribute
mechanism.

Add/Delete Edges.From Figure 4.6(b), edge creation is independent of the datarepresentation and
size. The log-log relation is in fact quadratic inn. Edge deletion is also independent of the data
representation as shown in Figure 4.6(c).

Delete Nodes.From Figure 4.6(d), node deletion is quadratic inn. Here we see that the “attribute”
representation is slightly more optimal for small to medium-sized graphs by 30%.

Update Nodes.In Figure 4.6(e), updating light data represented in the “attribute” approach is 30
times slower than the “object” approach. As for heavy-weight data, either approach is as slow
by a factor 103.

Traverse. Finally, from Figure 4.6(f), traversal of the graph is independent of the data representation
and size. The plotted graphs are quadratic reflecting the traversal’s complexity.

4.3.3 Optimal Representation of Data of Models

The previous experiment considered graphs in general. In the following experiment, we investigate
an optimal representation of attributes of AToMPM models. Elements of these models can hold an
arbitrary number of attributes. A typical element of an AToMPM model includes the following data:
a universally unique id, two integers, two booleans, two 50-character long strings, an additional 10-
character long string encoding the type of this element, a 1000-character long string representing an
action or constraint on the element (typical for elements oftransformation models), and a list of seven
10-character long strings enumerating all the sub-types ofthe type of this element. The total size
of this typical element is thus 1,382 bytes, which is an average size according to the experiment in
Section 4.3.2.

We now consider three different alternatives for representing data in the nodes of IGraph graphs:

• Node attribute mechanism used for each of the above attributes (this is theAT approach used
previously).

• A Python object encapsulating all the attributes, stored asone node attribute (this is theOT
approach used previously).
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(a) (b)
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(e) (f)

Figure 4.6: CRUD operations on nodes for each representation of data. Plots (a) and (b) are on a
log-log scale.
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(a) (b)

(c) (d)

Figure 4.7: CRUD operations on nodes for each representation of data. The plots are on a log-log
scale.

• A hash table holding all the attributes, stored as one node attribute (this will be referred to as
HT).

In order to determine which ofAT, OT, orHT is the optimal representation to use in Himesis, we eval-
uate their performance on CRUD operations applied to nodes only, since Section 4.3.2 has confirmed
that data stored in nodes has no impact on the performance of edge operations.

Create Nodes.Figure 4.7(a) shows the time orders of magnitude for creating5 nodes for each repre-
sentation: 9×10−3 for AT, 5×10−3 for OT, and 3×10−3 for HT.

5Addition of nodes and initialization of their attributes.
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Update Nodes.Figure 4.7(b) shows the time orders of magnitude for updating nodes for each repre-
sentation: 9×10−3 for AT, 5×10−3 for OT, and 3×10−3 for HT. Not surprisingly, this is the
same order as for adding nodes since, according to Section 4.3.2, the addition of nodes takes
significantly less time than initializing its attributes (about 103 times faster).

Delete Nodes.Figure 4.7(c) shows the time orders of magnitude for deleting nodes for each repre-
sentation: 4×10−4 for AT, 8×10−4 for OT, and 7×10−4 for HT.

Query Nodes. To query nodes, we have investigated the optimal way of retrieving the data from
nodes: using the mechanism built in IGraph for querying nodes (theselect method) or pro-
grammatically retrieving attribute values (in a loop). Theresults were very conclusive: using
the IGraph query mechanism for HT and OT is 1.6 times faster than the programmed loop, and
3.1 times faster if using the IGraph query mechanism for AT. Thus we only consider the IGraph
mechanism for querying nodes. Figure 4.7(d) shows the time scales for querying nodes for each
representation: 3×10−4 for AT and 8×10−4 for bothOT andHT.

We would like to minimize the time each of the CRUD operationstakes in a rule. Here, we assume
that a rule consists of a LHS pre-condition pattern graph anda RHS post-condition pattern graph. After
performing a regression analysis of the plots in Figure 4.7,we have computed the slopes of each curve
and added them as labels in the figure. With these observations, we can write the following formulas
representing the time cost of a rule application for each representation of data:

AT : 90a+90u+4d+3q (4.1)

OT : 50a+50u+8d+8q (4.2)

HT : 30a+30u+7d+8q, (4.3)

wherea,u,d, andq are the number of times the add, update, delete, and query operations6 on nodes
happens in a rule, respectively. Therefore, choosing the optimal representation depends on the solution
of the following inequalities:

ChooseHT overOT ⇔ 20(a+u)+d > 0 (4.4)

ChooseAT overOT ⇔ q> 8(a+u)−0.8d (4.5)

ChooseAT overHT ⇔ q> 12(a+u)−0.6d (4.6)

Equation (4.4) is obtained by reducing the inequalities (4.3) smaller than (4.2). The remaining equa-
tions are obtained in a similar way. Equation (4.4) is alwaystrue since, by definition, a rule applies
at least one of the add, update, or delete operations. HenceOT will not be considered anymore and
equation (4.5) can be discarded. The left-hand side of (4.6)represents the operation performed in
the matching phase of the rule (querying nodes). The right-hand side of (4.6) represents the opera-
tion performed in the rewriting phase of the rule (add, update, delete nodes). Recall that the match-
ing phase queries all nodes of the pre-condition pattern as well as all nodes of the source graphG

6The update and query operations are performed on all the attributes of each node.
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Figure 4.8: Performance of all operations on Himesis graphs. The graph is plotted on a log-log scale.

(in the worst case). Henceq ∈ O(|V(LHS)|+ |V(G)|). Following a similar reasoning, we have that
a∈ O(|V(RHS−LHS)|), u∈ O(|V(LHS∩RHS)|), andd ∈ O(|V(LHS−RHS)|). On the one hand,
in the extreme case where the LHS is empty, we therefore have that |V(G)| > 12.6|V(RHS)|. On
the other hand if the RHS is empty, then|V(G)| > −13.6|V(LHS)|, which is always true if both the
LHS andG are not empty. Therefore, a sufficient condition for choosing theAT approach is if there
are 13 times more nodes in the source graph than in the RHS. This is very likely to hold given that
relation-like model elements are also represented as nodesin Himesis. Moreover, favouring theAT
approach reduces attribute access time for other model manipulations as well. Figure 4.8 classifies
the performance of each graph operation performed on a Himesis graph implemented with theAT
approach.

4.3.4 Memory Requirements for Himesis Graphs

Models used in industry typically hold a significant amount of data. One issue that may arise is
how much physical memory is required to hold these models. Figure 4.9(a) shows the amount of
physical memory required for loading a Himesis graph in memory. The measures were obtained with
an average node size of 1,382 bytes as before. The values are computed as follows. For a fixed amount
of physical memory, we attempt to load a graph and increase the size of the graph until IGraph starts
thrashing. This maximum size is recorded every time. Each data point of Figure 4.9(a) thus represents
the average over 100 repetitions of this experiment. Interestingly, the size of the graph follows a
cubic function with respect to the minimum amount of memory needed. Although the plot only shows
graphs of size up to 3× 105 nodes, it can still load graphs with 106 nodes but it requires virtual
memory and hard disk as secondary memory storage. Figure 4.9(b) illustrates the time required to
load a Himesis graph in memory. It takes less than a second to load a graph with 8×104 nodes and
almost a minute for 2×105.
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(a) Physical memory required for loading a Himesis graph. (b) Time for loading a Himesis graph.

Figure 4.9: Measuring the effect of memory.

4.4 Match and Rewrite Operations in Himesis

Model transformation plays a crucial role in model-driven development. A transformation is com-
monly expressed as a set oftransformation rules. A rule consists of a pre-condition pattern and a
post-condition pattern; both areT-Core primitives. The former describes a pattern that should occur
in the input model and the latter describes how this occurrence shall be modified. When models are
implemented as graphs, the pre-condition pattern specifiesthat an instance of this pattern must be a
sub-graph of the input graph. Pattern matching and, in particular the sub-graph homomorphism prob-
lem, is NP-complete [Meh84]. There are however various exponential-time worst case solutions for
which the average-time complexity can be reduced with the help of heuristics. These approaches can
be divided into two major categories:search plansandconstraint satisfaction problems(CSP).

Search plan techniques [Zün94, GBG+06] define the traversal order for the nodes of the model to
check whether the pattern can be matched. This is done by computing the cost tree of the different
search paths and choosing the least costly one. Complex model-specific optimization steps can be
carried out for generating efficient adaptive search plans [VVF05]. Examples of such heuristics are
the use of typing information with respect to meta-model elements or the use of cardinality constraints
defined in the meta-model.

Graph pattern matching can also be described as a constraintsatisfaction problem [Rud98], where
the pre-condition elements are variables, the elements of the model form the domain and typing, and
the links and attribute values form the set of constraints. These techniques make use of backtracking
algorithms [KH04] for finding a sub-graph of the input graph that is isomorphic7 to the pre-condition
graph. The algorithm explores the search space in a depth-first order. Well-known algorithms such
as Ullmann [Ull76] and VF2 [CFSV04] are some of the most efficient for solving the sub-graph

7In fact, it is homomorphic since the added attribute constraints in the pattern graphs describe constraints on the
attributes of the source graph.
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isomorphism problem as a constraint satisfaction problem.Let us first explore these two algorithms.

4.4.1 Ullmann

Ullmann’s algorithm [Ull76] is an efficient solution to the sub-graph isomorphism problem. Given
two undirected graphsH = (VH ,EH) andG= (VG,EG), the Ullmann algorithm tests whetherH is a
sub-graph ofG. We denote byH andG their respective adjacency matrices. Letdeg : V → N be a
function mapping a vertex to its degree: the number of incident edges it is connected to (N represents
here the set of non-negative integers). The algorithm first constructs the|VH |× |VG| binary matrixM∗

such that:

M∗vw =

{

1 if deg (v)≤ deg (w) for v∈VH andw∈VG,
0 otherwise.

In this notation,M∗vw denotes the element ofM∗ at the row corresponding to nodev and the column
corresponding to nodew. M∗ therefore represents the matching of all possible node candidates ofVG

that are isomorphic to nodes ofVH . The algorithm tries to find a matrixM such thatM(MG)T = H
where every row has exactly one 1 and every column has at most one 1. ThereforeM represents the
isomorphic mapping of vertices ofH to G. The algorithm thus enumerates all possible such matrices,
starting fromM∗. At each step, a node inVH (row of M ) is assigned one of the matches (in decreasing
order of degree) by setting to 1 the appropriate column and the rest to 0. This depth-first search is
optimized with arefinement procedurethat takes into account neighbouring nodes: a nodeVG may
only match if all its neighbours also match. This may set other elements of the matrix to 0, hence
reducing the search space. After refiningM , if there is a row with no 1, the algorithm backtracks and
the next potential match is tried. Otherwise, the algorithmcontinues on the next row ofM . Repeated
recursively, the algorithm terminates when either a complete match is found or if all possible matches
have been exhausted.

Time efficiency depends highly on how sparseM∗ is initially. Because in graph transformation we
consider typed, attributed, labelled, directed graphs as representing models, the number ofM matri-
ces generated through the search is much smaller than in the general case. This requires comparing
incoming and outgoing edges, attribute values, and type compatibility to appropriately fillM∗ with
1s. Some approaches also extend the test of the degree of the node to more sophisticated compatibility
tests.

4.4.2 VF2

VF2 [CFSV04] is yet another algorithm for the sub-graph isomorphism problem. Like in Ullmann’s
approach, VF2 constructs a search-tree traversing the hostgraph depth-first and backtracks when the
current search-state fails a compatibility test. The algorithm also performs a pruning of the search
space during the matching process.

ConsiderH andG as directed graphs. We denoteM : VH→VG to be the isomorphic node mapping
andM (s) holds the set of current matches(vG,vH) at search states (the dashed lines in Figure 4.10
linking the black nodes). Then letMH (s) andMG(s) respectively represent the nodes ofVH andVG



96 Implementation of Himesis

Figure 4.10: Partial sets for the pruning technique of VF2

contained inM (s). They are respectively the black nodes inH and inG. VF2 then considers the
neighbourhood ofMH (s) by definingNH (s) andV̄H (s) (respectively the highlighted and white nodes
in Figure 4.10).NH (s) = Nin

H (s)∪Nout
H (s) whereNin

H (s) is the set of nodes adjacent toMH (s) along
incoming edges andNout

H (s) is the set of nodes adjacent toMH (s) along outgoing edges, not yet in
the partial mappingMH (s). V̄H is defined as̄VH (s) = VH −MH (s)−NH (s), representing the nodes
not connected to the current mapping. Similar expressions hold for NG(s) andV̄G (s).

At each step of the depth-first search, the search-states is augmented by a candidate pairp =
(vp,wp) only if it passes afeasibility test. (vp,wp) is chosen from the ordered listP(s) of candidate
pairs. The order suggested by VF2 gives priority to nodes inNout

H andNout
G , then inNin

H andNin
G , and

finally (in case of unconnected graphs) inV̄H (s) andV̄G(s). The feasibility test run ons′ = s∪ p tests
three criteria in this order:

1. if the new mappingM (s′) is still a valid isomorphism,i.e., edges betweenvp and its adjacent
nodes inMH (s′) and edges betweenwp and its adjacent nodes inMG(s′) correspond,

2. if the number of external edges betweenMH (s′) andNH (s′) is smaller than or equalto the
number of external edges betweenMG(s′) andNG(s′),

3. if the number of external edges betweenNH (s′) andV̄H (s′) is smaller than or equalto the
number of external edges betweenNG(s′) andV̄G(s′),

This way VF2 reduces the search space and ensures that no incompatibilities will occur in future
search steps. Ifp fails the feasibility test, the procedure backtracks to theprevious states and tries
another candidate. The algorithm terminates whenM(s) covers all the nodes ofH (success) or when
all candidate pairs ofP(s) have been tried (failure).

Efficiency-wise, experimental results show that VF2 performs better than Ullmann for larger
graphs. ConsideringN = |VH |+ |VG| search states to visit in the best case, the time complexity of
VF2 is Θ(N2). In the worst case, there areN! search states, leading to a time complexity ofΘ(N!N).
In both cases, VF2 is a linear order of magnitude more efficient than Ullmann. Furthermore, its spa-
tial complexity is linear, while cubic in the case of Ullmann. These measurements are based on a
benchmark [FSV01] considering 104 sub-graph matching experiments and are hence deduced from
empirical results.

The major difference between Ullmann and VF2 is that, withinone backtracking step, Ullmann
compares pairs of adjacent nodes, while VF2 compares a node with its neighbourhood. Moreover,
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Ullmann’sM∗ matrix verifies the semantic compatibility between pairs ofnodes in the match, while
VF2’s feasibility test ensures a correct structure of the match. A combination of VF2 and Ullmann for
hierarchical graphs was proposed in [Pro05]. The idea was tomerge the two search plans providing
containment edges and local edges to denote hierarchy. The time complexity was thus improved.

4.4.3 An Efficient Sub-graph Isomorphism Algorithm

The matching algorithm of Himesis combines our own variation of the VF2 algorithm together with
the refinement strategy of Ullmann’s algorithm, as outlinedin Algorithm 14. The procedureextend

augments the state of the algorithm with all possible mappings from the pattern graph to the source
graph. In the following, we call amappingthe one-to-one correspondence between a pattern node and
a source node. We denote by amatchthe set of mappings in which all source nodes form a graph
that is homomorphic to the pattern graph. Lines 4-14 recursively compute further mappings given the
current state of the algorithm. Thestatestores the following information:

Algorithm 14 extend (state)
1: if mappingIsComplete (state)then
2: storeMatch (state)
3: end if
4: for p, sin suggestMapping (state)do
5: if areCompatible (p, s)then
6: if areSyntacticallyFeasible (p, s)then
7: if areSemanticallyFeasible (p, s)then
8: state.storeMapping (p, s)
9: extend (state)

10: state.undoMapping (p, s)
11: end if
12: end if
13: end if
14: end for

• MP andMS are the mapping sets holding the pattern nodes and the sourcenodes respectively in
the current mappings,

• TP
out andTS

out hold the set of adjacent nodes to respectivelyMP andMS following outgoing edges,
at any time;

• TP
in andTS

in hold the set of adjacent edges coming in respectivelyMP andMS following incoming
edges, at any time;

• TP
inout = TP

out∩TP
in andTS

inout = TS
out∩TS

in.

TP
out,T

P
in ,T

P
inout, andTS

inout are called theterminal sets. Each step of the search computes a partial map-
ping of the nodes and verifies that it does not violate the topology of the pattern graph.suggestMapping

suggests a potential mapping of a source nodes with a pattern nodep (the pair(p,s) is also known



98 Implementation of Himesis

as the candidate pair in [CFSV04]). The choice of the pair is done in the following order: first from
(TP

inout,T
S
inout), then from(TP

out,T
S
out), then from(TP

in ,T
S
in), and finally from all other nodes.

Afterwards,areCompatible verifies if it is worth continuing this mapping. This is done by
comparing the number of incident edges ofs andp (this is known as the refinement step in [Ull76]).
The compatibility check verifies that:

|Out(p)| ≤ |Out(s)|∧ |In(p)| ≤ |In(s)| (4.7)

whereIn(n) andOut(n) respectively represent the set of incoming and outgoing adjacent edges of a
noden. This is similar to the refinement step of Ullmann’s algorithm.

Then come the feasibility checks.areSyntacticallyFeasible ensures that the topology of
the current mapping corresponds to a sub-graph of the pattern graph. This is done by looking at
the number of incident edges when(p,s) is added to the current set of mappings (MP and MS).
Let InOut(n) = In(n)+Out(n), for any noden,
let Outp = Out(p)∩TP

out and Outs= Out(s)∩TS
out,

let Inp = In(p)∩TP
in and Ins= In(s)∩TS

in,
let Allp = MP∪TP

out∪TP
in and Alls= MS∪TS

out∪TS
in.

Then the following must be true to ensure syntactic feasibility of sandp:
∣

∣Outp
∣

∣≤ |Outs| ∧
∣

∣Inp
∣

∣≤ |Ins| ∧ (4.8)
∣

∣Outp
∣

∣+
∣

∣Inp
∣

∣+
∣

∣InOut(p)−Allp
∣

∣≤ |Outs|+ |Ins|+ |InOut(s)−Alls|

The last test ensures that the semantics ofscorresponds to the semantics ofp. In our case, semantic in-
formation of the nodes is encoded in their attributes, but the details of the functionareSemantically-

Feasible will be elaborated later on. Whens and p satisfy all of the above conditions,(p,s) is
considered a valid mapping and is stored in the state (line 8). The algorithm then continues looking
for remaining mappings. When all valid mappings have been computed (lines 1-3), the correspond-
ing match is stored. The algorithm backtracks to the previous state when either a complete match is
found or if the current partial match (set of mappings inMP andMS) does not allow for any further
valid mapping. Note that a nice property of this algorithm isthat any state in the search tree is visited
exactly once.

Algorithm 15 allows us to compute all matches between a pattern graphP and a source graphS.
Furthermore, an initial set of mappings can be specified to prune the search tree constructed by the
procedureextend . This initial mapping can also be seen as the initial contextin which the matchings
must be computed: it restricts specific pattern nodes to be mapped exactly to predefined source nodes.

Algorithm 15 computeMappings (S, P, context)
1: state← initState (S, P)
2: for p, sin contextdo
3: state.update (p, s)
4: end for
5: extend (state)
6: return state.getMatches ()
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Performance Evaluation of the Implementation

Let us first analyse the space complexity of theextend procedure. The state of the algorithm is
encoded in thestatevariable. It holds the two partial mapping sets as well as thesix terminal sets.
Thus, the number of nodes stored in the state is at most 5×|V(P)|+3×|V(S)|which is linear in terms
of the nodes of the source and pattern graphs. Moreover, since IGraph stores the nodes as integers,
stateis quite compact. Additionally, the experiments below showthat the algorithm performs better
if the adjacency list (encoded as a hash table) is memoized aswell. The size of this hash table is in the
worst case|V(P)|2+ |V(S)|2 for fully connected, directed, simple graphs.

(a) (b)

(c) (d)

Figure 4.11: Size average of sub-graph isomorphism matching over the six pattern graphs. The graphs
are plotted on a log-log scale.

We now compare the time performance of theextend algorithm of Himesis with VF2’s sub-graph
isomorphism algorithm. We have chosen the IGraph implementation of VF2 as a benchmark which
is in direct correspondence with the original implementation. Note that Himesis is implemented in
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Python whereas VF2 was implemented in C. Anecdotal studies have shown that Python is in general
slower than C by an average factor of 23 (c.f. [Ful10]), whichis not integrated in the results presented
here. In these experiments, we gathered the computation time with respect to the number of nodesn
of the source graph. The source graph represents random valid class diagrams encoded as Himesis
graphs. The average number of class diagram elements is shown in Figure 4.11(d). For each source
graph we have run the algorithm on six pattern graphs whose sizes range from 2 to 12 nodes. Our
experience shows that this is a typical size for LHS and NAC pre-condition patterns assuming an
expressive control flow language such asMoTif [SV11]. For both the source and pattern graphs, the
number of edges is the same order as the number of nodes (whichis typical in class diagrams). Each
data point of the plots in Figure 4.11 represents the averagetime over the six pattern graphs.

Figure 4.11(a) shows the performance of both algorithms forfinding thefirst match only. For
small graphs, VF2 is about 25 times faster than Himesis. For medium graphs, VF2 is twice as fast
as Himesis. However, at around 2.2× 105 nodes, both perform equally fast. At this point, Himesis
overtakes VF2 by a factor of 6 for large graphs.

Figure 4.11(b) shows the performance of both algorithms forfindingall matches. For small graphs,
VF2 is about 60 times faster than Himesis. For medium graphs,VF2 is 5 times faster than Himesis.
However at around 1.5×105 nodes, both perform as fast. At this point, Himesis overtakes VF2 by a
factor of 5 for large graphs.

Figure 4.11(c) shows the performance of both algorithms when no matchexists. For small graphs,
VF2 is about 24 times faster than Himesis. The medium graph category must be divided into two. For
graphs with 103 to 104 nodes, VF2 is 3.6 times faster than Himesis. As for graphs with 104 to 105

nodes, Himesis overtakes by a factor of 2.2. The break even point is around 1.7×104 nodes. At this
point, Himesis overtakes VF2 by 3 times for large graphs.

The table in Figure 4.11(d) summarizes these observations.Notice how Himesis significantly
outperforms VF2 for large graphs.

4.4.4 Pattern Matching

The transformation kernel of AToMPM isT-Core. In T-Core, the pre- and post-condition patterns of a
rule are encoded as Himesis graphs. A pre-condition is composed of a positive condition graph (LHS)
and optional negative condition graphs (NACs). Proposition (4.9) defines the semantics of a rule with
n NACs: if an occurrence of the LHS is found in the source graph before the rule is applied and none
of the NACs are found, then an occurrence of the RHS must be found in the source graph after the
rule has been applied. A more formal definition based on category theory can be found in [EPT04].

LHS∧¬NAC1∧¬NAC2∧ . . .∧¬NACn⇒RHS (4.9)

Some approaches have extended the semantics of graph transformation rules by redefining the LHS as
a combination of different patterns. This is still compatible with traditional graph transformation rules
if the patterns are conjuncted. In [BV06], both conjunctionand disjunction of patterns are allowed.
In [RK09], existential and universal quantifiers have been added, leading to amalgamated rules. In the
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previous chapter we showed how these two extensions can be emulated inT-Core with pattern nesting
and pivots.

In Himesis, a noden of a pattern graph holds the following information:

• A universally unique identifier: such identifiers are ensured to be unique at all time.

• The typet of the model elementn encodes: the absolute path (across packages) of the name of
the type element.

• A boolean flagstmspecifying whether a source node mapped tonmust be of typet or a sub-type
of t.

• The setst of all sub-types oft.

• The identifier of a binding pivot
←
x (for pre-condition graphs). If specified, it predefines which

source node that was assigned to the pivotx must be matched ton.

• The identifier of a pivot assignment
→
x . If specified, it indicates that the source node mapped to

n will be assigned to the pivotx.

• A label global to the scope of the rule. Node labelling in the different pattern graphs of the rule
is used as follows. In the LHS, a label allows one to distinguish between two nodes of the same
type that must be mapped to different source nodes. A label present in both the LHS and the
RHS or in both the LHS and a NAC corresponds to the same matchedsource node. A label
present in a NAC but not in the LHS allows one to distinguish between two nodes of the same
type that must be mapped to different source nodes.

• Each attribute of the meta-model element corresponding tot is subject to the RAM proce-
dure [KMS+10]. In the LHS and the NAC, the node is assigned one constraint per attribute.
The constraint can be of arbitrary complexity, but can only refer to source nodes bound to the
corresponding pattern (LHS xor NAC). In the RHS, the node is assigned an action code per
attribute. The action can be of arbitrary complexity, but can only refer to source nodes bound to
the LHS pattern.

The size of the data stored in each pattern node is 1,342 bytes, without taking into consideration the
meta-model attributes. Additional information is stored at the graph pattern level: the set of all meta-
models involved in the pattern8 as well as an additional constraint (for a LHS or a NAC) or action (for
an RHS). The constraints and actions are treated similarly to pattern node attributes.

Up to now, we have described an efficient solution for finding asub-graph of the source graph
isomorphic to the pattern graph. However, this is not sufficient for pattern matching as it only takes
into account the topology of the pattern graph. Constraintsattached to match patterns as well as NACs
must be taken into consideration as well. Algorithm 16 specifies a procedure that modifies the previous
sub-graph isomorphism solution for pattern matching purposes. We must first modify theextend

procedure to handle constraints on meta-model attributes and node typing. The type of a pattern node
p and a source nodes must correspond. This requirement must be verified as early as possible to
reduce the search space. We therefore modify the functionareCompatible in Algorithm 14. More

8Because in AToMPM, rules can involve many meta-models as ine.g.,multi graph grammars [KS06a].
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specifically, condition (4.7) must now take into consideration the types of the candidate pair(p,s) as
specified in (4.10), such that the type ofs is the same as the type ofp or one of its sub-types. (4.7) can
then be rewritten as:

|Out(p)| ≤ |Out(s)|∧ |In(p)| ≤ |In(s)|∧ ((s.t = p.t)∨ (p.stm∧s.t ∈ p.st)) (4.10)

Additionally, the functionareSemanticallyFeasible must ensure that the attributes held ins
each satisfy the corresponding meta-model attribute constraints inp. Also, to help the algorithm find
a match as soon as possible, we have parametrized thesuggestMapping function with a priority
mechanism to suggest a candidate pair. Our implementation allows us to specify an arbitrary order
of a terminal set. By default,suggestMapping will suggest an unmatched pattern node such that
its type occurs the least often in the graph. This heuristic ordering can be modularly extended with
further knowledge of the pattern graph and the source graph.

The pattern matching algorithm of Himesis is described in Algorithm 16. The procedurematch

takes a source graphG and the LHS pattern graph as input. Pivot bindings may also bespecified in
thecontext. The procedure can be one of three cases. In the following, weconsider a match asvalid
if the source nodes in the mappings of the match satisfy the constraint of the pattern graph.

No NACs. When no NACs are specified in the pre-condition pattern, thecomputeMappings proce-
dure is called on the LHS and returns the valid matches.

Unbound NACs. We denote a NAC as unbound if none of its nodes have a label present in the
corresponding LHS. If the pre-condition has unbound NACs, it suffices to find one valid NAC
match to prevent the pre-condition pattern from successfully finding any matches. Lines 3-14
describe this behaviour. First,G is matched on the NAC with the provided context. If no valid
match is found, the procedure then tries to find matches for the LHS as in the previous case.
Otherwise, no match is output.

Bound NACs. All other NACs are bound to the LHS. SincecomputeMappings is the most costly
procedure, we want to avoid computing mappings twice,i.e., the common part between the
LHS and a NAC. Our approach is to first match the common part between the LHS and a NAC,
then continue the matching along the NAC, and finally, if no valid NAC matches were found,
continue from the match of the common part along the LHS.

A NAC having a common part with the LHS means that there is a sub-graph of the LHS that
overlaps with the NAC. We denote this intersection as a pre-condition graph calledbridge. In
general, computing the bridge would require us to find the maximum common sub-graph (MCS)
between these two graphs. Solving the MCS isomorphism problem is NP-complete. However,
making use of the labels in the Himesis pattern graphs reduces the complexity to linear-time.
The bridge can therefore be constructed as follows: if a nodehas a label present in nodes of
both the LHS and the NAC, then this node is part of the bridge. Also, every edge in the smallest
graph between the LHS and the NAC whose source and target nodes are in the bridge is part
of the bridge. However, recall that pattern nodes may also hold a constraint for each attribute
from the meta-model of the domain of the transformation. Thus, each meta-model attribute of
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Algorithm 16 match (G, LHS, context)
1: validMatches← /0
2: moreNACs← False
3: for NAC in LHS.getNACs () do
4: bridge← NAC.getBridge ()
5: if V(NAC.getBridge ()) > 0 then
6: moreNACs← True
7: else
8: for nacMatchin computeMappings (G, NAC, context)do
9: if NAC.checkConstraint (nacMatch)then

10: return /0
11: end if
12: end for
13: end if
14: end for
15: if not moreNACsthen
16: for lhsMatchin computeMappings (G, LHS, context)do
17: if LHS.checkConstraint (lhsMatch)then
18: validMatches← validMatches∪ {lhsMatch}
19: end if
20: end for
21: return validMatches
22: end if
23: maxNAC← LHS.getNACwithMaxBridge ()
24: B←maxNAC.getBridge ()
25: for bMatchin computeMappings (G, B, context)do
26: for maxNACMatchingin computeMappings (G, maxNAC, bMatch∪ context)do
27: if not maxNAC.checkConstraint (maxNACMatching)then
28: goto 20
29: end if
30: end for
31: for lhsMatchin computeMappings (G, LHS, bMatch∪ context)do
32: if LHS.checkConstraint (lhsMatch)then
33: for NAC in LHS.getNACs () do
34: if NAC 6= maxNACandV(NAC.getBridge ()) > 0 then
35: for nacMatchin computeMappings (G, NAC, lhsMatch∪ context)do
36: if not NAC.checkConstraint (nacMatch)then
37: validMatches← validMatches∪ {lhsMatch}
38: end if
39: end for
40: end if
41: end for
42: end if
43: end for
44: end for
45: return validMatches
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a bridge node is computed as the conjunction of the corresponding attribute constraint in the
LHS and the corresponding attribute constraint in the NAC. Note that no constraint is added
on the pattern graph of the bridge as in the LHS or NAC cases. Itis easy to show that the
time complexity of constructing the bridge between the LHS and an NAC isO(V +E), where
V = max(|V(LHS)| , |V(NAC)|) andE = min(|E(LHS)| , |E(NAC)|)9.

In thematch procedure, line 24 computes the bridgeB with the largest number of nodes. Since
a bridge can be statically computed, all bridges have already been precomputed and integrated
in the corresponding NACs at compile-time. On line 25,G is matched onB with the provided
context. Then, on lines 26-30,G is matched on the NAC corresponding toB. To prune the
search space of this matching, the bridge mappings are provided as context together with the
initial context. Those mappings are valid since the nodes inB are in the NAC as well. If a valid
match for this NAC is found, then the current match ofB is discarded and the next one is tried.
When a match ofB is found such that it does not induce a valid match, we matchG on the
LHS with again the bridge mappings provided as context together with the initial context. Each
valid match of the LHS represents a potential valid match of the procedure. However, there
may be additional bound NACs with a bridge having fewer nodesthanB. In this case, lines
33-41 ensure that only the valid matches of the LHS that do notsatisfy the remaining NACs are
stored. Note that when applying thecomputeMappings procedure onG with the remaining
NACs, the LHS mappings are provided as context together withany pivot node bound in the
LHS that were given in the initial context. Finally on line 45, only the valid matches are output.

4.4.5 Rewriting the Matches

A rule is successfully applied when proposition (4.9) is satisfied. The pre-condition satisfaction is en-
sured by the pattern matching algorithm described previously. One way to satisfy the post-condition is
to modify the matched nodes in the source graph appropriately. To transform (or rewrite) the matches,
a Himesis RHS pattern graph is provided with a compiledexecute function encoding the appro-
priate modification actions. Given the LHS and the RHS pattern graphs, the rewriting of a match
M = {(p,s)|p ∈ LHS∧ s∈ G} can be statically determined. For each(p,s) ∈ M we perform the
following steps in order:

1. If the label ofp is present in both the LHS and the RHS, then anupdate operationis executed.
Each attribute ofs is set according to the action specified in the correspondingmeta-model
attribute of the RHS node that has the same label asp.

2. Let C represent the graph whose node labels are present in the RHS but not in the interface
graphK. Also edges ofC are constructed in a similar way as for the bridge,i.e., E(C) =
{(ni,n j)|ni,n j ∈ V(C)∧ (ni,n j) ∈ E(RHS)}. Then acreate operationis applied to the nodes
and edges ofC. For each node (or edge) inV(C) (or E(C)), a corresponding source node (edge)
is created in the source graph. Furthermore, the attributesof the new nodes are initialised ac-
cording to the action specified in the corresponding meta-model attribute of the respective node
in C.

9V should also be multiplied by the maximum number of meta-model attributes, which is small in practice.
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3. If the label ofp is present in the LHS but not in the RHS, then adelete operationis applied and
removess from the source graph. Note that in IGraph, deleting a node automatically deletes its
adjacent edges.

4. If p is assigned a pivot identifier
→
x , then

→
x will be mapped tos.

5. Finally, after all nodes have been processed, we apply theaction specified in the RHS on the
source nodes that are inM as well as those created fromC.

Since the rewriting phase is compiled, its run-time complexity is linear:O(|V(LHS)|+ |E(LHS)|+
|V(RHS)|+ |E(RHS)|) Note that according to the graph transformation literature[EEKR97], Hime-
sis’ transformation procedure follows the Single-Pushout(SPO) approach as opposed to the Double-
Pushout (DPO) approach. The identification issue of the glueing condition in DPO is avoided thanks
to our labelling mechanism in place. That is because every node in each pattern graph is unique and
thus may be mapped to exactly one node in each matching. We have explicitly chosen to solve the
dangling edges issue automatically. That is, if a matched source node must be deleted, all its adjacent
edges will be deleted too. This has the advantage of reducingthe number of rules in a transformation.

4.5 Related Work

In his Masters thesis, Provost [Pro05] described an efficient framework for graph-sub-graph isomor-
phism. The implementation of Algorithm 14 is based on his work. However, his approach does not
address pattern matching as used in model transformations.Also, there is no evaluation of the perfor-
mance of each CRUD operation as done in this chapter.

To compare Himesis with other graph transformation approaches, we provide our results for a
standard graph transformation benchmark: theDistributed Mutual Exclusion Algorithmbenchmark
presented by Varró in [VSV05]. Although some measurements were reported in the original paper,
Geisset al. [GBG+06] provide a more complete spectrum of measurements with more tools. In the
latter paper, the measurements were carried out on an AMD Athlon 3000+ with 1GB of RAM. To re-
use these results, we multiplied10 Geiss’ figures by 0.684 to compensate for the speed of our processor.

The tools used for this comparison are the following. The transformation tools GrGen.NET SP
[GBG+06], FUJABA [FNTZ00], and PROGRES [ZS92] use search plan techniques for the matching
phase. An approach from Varró [VFV06] (hereafter referred to as VarroDB) to execute graph transfor-
mations directly in a relational database is also considered. We also include GrGen.NET PSQL which,
in contrast with GrGen.NET SP, also stores the graphs in a relational database. Finally, AGG [Rud98]
is the only tool that uses a CSP for the matching phase. All experiments were performed without any
of the optimizations suggested by the benchmark, as no measurements for these cases were available
for the other tools. As Himesis provides a framework for manipulating graphs, we integrated it in
T-Core, in combination with Python and called itPy-T-Core. More specifically, theT-Core matcher
calls the procedurematch form Algorithm 16 and theT-Core rewriter calls theexecute method of
the corresponding RHS graph to perform the rewriting.

10This factor is obtained from the SPEC organization at http://www.spec.org/cpu2000/results/cpu2000.html.
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(a) (b)

(c) (d)

Figure 4.12: Performance comparison for the Distributed Mutual Exclusion Algorithm benchmark
with no optimization.

For the Short Transformation Sequence experiment (STS), Figure 4.12(a) shows thatT-Core’s
performance is average compared to the other tools. It however performs 5.6 times better thanAGG,
which is the only other tool whose matching phase is also implemented as a CSP. For the As Long As
Possible experiment (ALAP), Figure 4.12(b) shows that, once more,T-Core’s performance is average
compared to the other tools. It however performs 9.2 times better thanAGG. For the Long Trans-
formation Sequence experiment (LTS), the only results available are for N=1,000 (N processes with
one resource). Figure 4.12(c) shows thatT-Core performs quite well compared to the other tools. It
now performs on average over 100 times better thanAGG and about as fast as GrGen.NET using
ProgresSQL. The table in Figure 4.12(d) summarizes the results.
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4.6 Conclusion

This chapter describes an efficient implementation ofT-Core, a library of transformation building
blocks. Himesis, a low-level framework for graph manipulation based on the IGraph library, allows
one to efficiently manipulate models encoded as graphs. The primitive CRUD operations are very
fast even for models with up to 106 elements. Moreover, an efficient pattern matching algorithm was
implemented to perform model transformation on models encoded as Himesis graphs. The comparison
of performance with other existing tools and approaches shows that Himesis is indeed an efficient
framework. The implementation ofPy-T-Core, described in Section 3.5 of Chapter 3, relies entirely
on Himesis.

TheT-Core API can be called from a modelling language or a programming language. This “glue
language” provides the scheduling of transformation unitsencapsulated inT-Core. Py-T-Core is the re-
sult of implementingT-Core in Python, thus making model transformation available to programmers.
Himesis is therefore an optimal choice for implementing theunderlying data-structures and matching
for Py-T-Core.

Regarding speed, one reason for the average performance results for graph transformation tasks
may be that Himesis is entirely implemented in Python. Future plans are to implement the core algo-
rithms in a faster target language, such as C. Regarding scalability beyond graphs of size 106 elements,
one direction would be to store the host graph on a secondary storage, such as a database, to over-
come size limitations because of limited physical memory. Ahybrid solution is envisaged where the
host graph is stored in physical memory for as long as no thrashing is observed as anticipated by
Figure 4.9(a). After that threshold, the system would switches to database storagee.g.,by adapting
the IGraph library as described in [ABFL+09].
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5
Explicit Modelling of Transformations

The previous two chapters focused on the building blocks of the engine behind a transformation lan-
guage,i.e., how it operates. In this chapter, transformations aremodelledexplicitly following MPM
principles. The focus is on the other components of the transformation language, namely the transfor-
mation units and the patterns language. Despite the pivotalsignificance of transformations for model-
driven approaches, there have not been any attempts to explicitly model transformation languages
yet although a number of benefits are to be gained. First, transformation developers may change the
design of their transformation languages by modelling, rather than programming. Second, they may
use environments to create transformations that are customized with respect to the input and output
languages involved. Therefore, this chapter identifies, discusses, and demonstrates some of the above
advantages. In particular, it suggests ways to systematically support developers in creating transfor-
mation languages by means of semi-automated meta-modelling.

5.1 Introduction

Model-driven approaches are gaining popularity both in theform of being based on standard mod-
elling languages, such as the UML [Obj09], as well as domain-specific modelling languages (DSL)
[GTK+07]. In both instances, the aim is to increase developer productivity by (2) raising the level
of abstraction at which systems can be specified (for UML) and(2) by lowering the impedance mis-
match between a modelling language and its application domain [AK07] (for DSLs). There are still
many open problems with respect to the economic developmentof DSLs, but their definition is well
understood.

This shifts the focus on transformations which have a numberof applications (c.f., Chapter 1.2).
A number of transformation paradigms exists,e.g., template-based, rule-based, relational, with or
without explicit control flow and are supported by various implementations (c.f., Chapter 2). They
provide tremendous value for developers but, in each implementation, the transformation paradigm
is hard-coded to be used as is. The implementations do not provide a way to interrogate or modify
transformation definitions as first-class transformation models [BBG+06]. This is surprising as there
are a number of benefits to be gained when treating transformations as first-class citizens [BFJ+03,
TJF+09] which are explicitly modelled and amenable to introspection and modification. We identify
the following potential advantages:
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• It becomes easier to explore the language design space by making alterations to the control flow,
mapping, and pattern specification parts of the language. Obviously, this requires modelling the
respective semantics, but once available, alterations to the syntax and semantics definitions of
such transformation (meta-)models should be easier to perform than the respective changes in
a code base.

• Instead of using ageneric pattern specification languageto be used for all input and output
languages, one can utilizecustomized pattern specification languageson a case-by-case basis.
Automating the creation of such customized pattern specification languages opens up a cost-
neutral way to achieve customized transformation definition environments providing increased
rigour.

• Transformation definitions can be the subjects of other transformations, thus facilitating the con-
cept of higher-order transformations [TJF+09]. Higher-order transformations are of particular
interest since they enable a separation of transformation concerns which are either harder, or
even impossible, to realize with standard multi-stage transformations. This is achieved by split-
ting a complex transformation into simpler ones and then integrating them with a higher-order
transformation.

The following section introduces our typical transformation example which will be used as the ba-
sis of subsequent discussions. In Section 5.3, we investigate the automated construction of customized
pattern specification languages, using the components relaxation, augmentation, and modification,
exploring and discussing alternative solutions. This provides a systematicprocedurefor explicitly
modelling transformation languages. Finally, further related work is discussed in Section 5.5.

5.2 A Typical Transformation

Constraints:

- For all State: name is unique

- Exactly one State is initial

- Exactly one State is accepting

- Exactly one State is current

- Exactly one Event is current

State

name : string

isInitial : boolean

isAccepting : boolean

event : string

FSATransition

current : boolean

1 0..1

label : string

Event

Next

current : boolean

*1

toState

fromState

*1

(a)

Place

tokens : integer

name : string

Constraints:

- For all Place: name is unique

- For all Place: tokens > 0

- For all Arc: weights > 0

PNTransition*1 11..*Arc

weight : integer

toPlace: boolean

(b)

Figure 5.1: (a) FSA & (b) Petri net meta-models.

The example that we will use in the remainder of the chapter toillustrate our arguments is a typical
case of a DSL being assigned a semantics by translating it into a target formalism with known seman-
tics. In order to define the semantics of Statecharts and/or perform reachability analyses on them, one
can translate them to Petri nets [dLV02]. Another reason forconsidering this particular translation is
that one can use Petri nets as a common semantic domain for Statecharts, sequence diagrams, and
activity diagrams. For the purposes of this paper, however,we restrict ourselves to translating finite
state automata (FSA), rather than Statecharts, into Petri nets. The resulting transformation definitions
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of this translation are much simpler but still rich enough toillustrate our arguments. Figure 5.1 shows
both meta-models. Theevent attribute of theTransition class should have been represented as an
association to the classEvent instead. However, this choice was made to intuitively represent the
concrete syntax of a transition (displaying the event labelon top of the arrow) inAToM3.

5.2.1 Finite State Automata as Language Recognizers

More specifically, we interpret our state automata to be language recognizers,i.e., they either accept
input sequences as belonging to respective regular languages or not. For the sake of example, recall
Figure 1.5 from Chapter 1. On the left hand side, the figure shows a sample input sequence (“yees ”)
and a finite state automaton accepting the languagey(e) ∗s . In our example, we want to simulate the
execution of the finite state automaton in the context of receiving the events from the input sequence
in order to ascertain whether the input sequence is a sentence of the language. Note that in the meta-
model of the FSA, we assume only one accepting state as mentioned in the constraints. To this end,
we translate such scenarios into corresponding Petri nets (see the right hand side of the figure) so that
the behaviour of the Petri net model is equivalent to the intended behaviour of the FSA model.

5.2.2 Translating Finite State Automata To Petri Nets

Figure 5.2 shows the transformation rules that are requiredto translate a finite state automaton plus
an input sequence into a Petri net that can be used to simulatethe automaton execution. The rules
behave as graph transformation rules with single push-out (SPO) semantics1. Their concrete visual
representation is composed of three components: a LHS pattern to the left of the arrowhead, a RHS
pattern to its right, and possibly multiple NAC patterns bounded by dashed lines. Also, these rules
employ numerical labels to indicate identity of pattern elements as explained in Section 1.5.

The scheduling of the rules is controlled by a modelling and simulation language adapted to graph
transformation [SV11]. Part III of the thesis is dedicated to the precise specification of this trans-
formation language. The general idea of the transformationis first to map the automata of the FSA
model, then the event list, then making the link between the two in the Petri net model, and finally to
ensure the language recognizer behaviour and remove all temporary artefacts. The rules in Figure 5.2
are applied following the order they appear:

1. The ruleState2Place is the first to be applied, mapping an FSA state to a Petri net place. Only
the place corresponding to the initial state has a token. Moreover, it is applied iteratively for as
long as there are unmapped FSA states remaining. Note the presence of generic nodes and links
(the small filled rectangles linked to dashed lines). They act as traceability links to retain which
Petri net element is mapped to which FSA element.

2. The ruleNextPlace is applied only once. This creates a single place “NEXT” thatwill make
the bridge between Petri net model part modelling the automata and the part modelling the event
list.

1Actually, it is a variant of SPO where the dangling edge problem remains but the identification problem is resolved:
if two elements of the same type occur in the same pattern, they will be mapped to two distinct model elements.
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Figure 5.2: The transformation rules for the translationalsemantics transformation from FSA to Petri
nets.
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3. The rulesFSA2PNLoopTransition andFSA2PNTransition map FSA transitions to Petri net
transitions. The two rules are applied iteratively as before, but the choice of which rule is applied
is non-deterministic, since they are sequential independent.

4. The rulesHeadEvent2Place , Event2Place , andEndPlace create Petri net places correspond-
ing to the first FSA event, those in the middle of the list, and the last event (called “END”)
respectively. Only the place corresponding to the head event in the list has a token. The rule
Event2Place is again applied iteratively, but the other two are only applied once.

5. Then the ruleNext2Transition maps the event list links to Petri net transitions. The rule is
applied iteratively.

6. The ruleEnableNextEvent , applied iteratively, creates an arc between the NEXT placeand ev-
ery transition in the Petri net modelling the event list, except the transition that has an incoming
arc from the place in the head. This forbids the automata partof the Petri net to fire transitions
without the event list part firing first.

7. The ruleAcceptPlace is applied once. It creates a transition from both the place corresponding
to the accepting state and the END place to a place “ACCEPT”. The semantics of a token
present in the ACCEPT place means that the string encoded in the event list is recognized by
the automaton.

8. The rulesCreateUniqueEventPlace , EventPlace2UniqueEventPlace , andEventLabel2-
Transition create intermediary places between the automata part and the event list part in the
Petri net. This ensures that the label of the event in the event list is correctly mapped to the
transition with the same event in the Petri net model. The three rules are applied in this order,
each iteratively.

9. Finally, the ruleDeleteGeneric removes all generic nodes. Thanks to the SPO semantics of
the rule, all the links connected to generic nodes (i.e.,generic links) are removed implicitly. The
rule is applied onall its matches at once.

Although a proof of correctness of this transformation would be ideal, we only focus on a potential
issue of semantics between FSA and Petri nets. We are well aware of the tension between the “must
transition” and “may fire” semantics of finite state automataand Petri nets, respectively. In timed
Petri nets, this difference may lead to a situation where a finite state automaton does not change
states anymore even though itshould, just because the Petri net used for simulating it does not fire
transitions anymore, even though itcould. However, the place/transition nets we assume do not create
this mismatch and a simulator for them will fire enabled transitions. We leave the support for these
kinds of property preserving proofs for future work.

5.3 Explicit Transformation Modelling

In this section, we describe and discuss the explicit modelling of transformation definitions as an
enabler of customized transformationdevelopment environments.
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Figure 5.3: (a) Meta-modelling of model transformations and (b) the MDA meta-layers.

Meta-modelling2, i.e., the explicit specification of a language’s well-formednessconstraints, has
become popular because of a number of associated advantages:

• the specification is not hidden in the code of a tool, making iteasier to understand and correct;

• the specification can be altered by users of the tool instead of requiring a new tool release;

• one can reason about the specification and the models it describes.

The same advantages apply if metamorphosing is not only applied to modelling language definitions,
but also to transformation definitions. While there is a considerable initial investment to be made in
explicitly modelling a transformation language includingits semantics, the prospect to more easily
experiment with language features, customize them for certain purposes, and allow transformations
to be reasoned about (since modelled) and/or modified makes that investment worthwhile. Clearly,
in order to enable the last aspect mentioned above, the transformation language’s mapping approach,
e.g.,rule-based graph transformation, needs to be explicitly modelled.

5.3.1 Models, Meta-Models, and Transformations

The diagram in Figure 5.3(a) depicts the relations between atransformation and the artefacts it is
involved with.T is theoperationthat transforms a modelM into a modelM′. They conform to their
respective meta-modelMM1 andMM2. MT models this transformation and, conversely,T executes
MT . In fact, MT is a modelof a transformation that transforms any model ofMM1 into a model of
MM2. MMT is ameta-modelof all transformations that transform any meta-model. Since everything
is modelled explicitly,MMM is themeta-meta-model i.e.,it is the meta-model of the language used to
describe meta-models. Typically,MMM conforms to itself in a sound bootstrapped environment. This
explicit point of view on models of transformations is compatible with the model-driven architecture
(MDA) meta-layers [KWB03] depicted in Figure 5.3(b). It places a transformation at the level of
real systems (the M0 layer), a model transformation (or transformation model) at the instance level

2Linguistic meta-modelling [AK07], to be precise.
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(the M1 layer) and the transformation language at the level of UML class diagrams used to define a
meta-model (the M2 layer). In MDA, the M3 layer would represent the meta-model of UMLi.e., the
meta-object facility (MOF).

The goal here is to provide transformation development environments customized to the specific
domain of application. Therefore the focus should be onMMT , the meta-model of all transformations,
to provide a general solution. Unlike the mapping and control aspects of a transformation language,
its pattern specification sub-language depends on other languages: the domain of the transformation.
The input and output languages of a transformation determine which pattern specifications for the
pre-condition and the post-condition can be considered well-formed. The underlying assumption here
is that the pattern specification language should not be generic to fit all possible input and output
languages, but specifically tailored to the input and outputlanguages involved.

5.3.2 Generic versus Customized Pattern Specification Lang uages

Some studies have shown that using appropriate visual models is advantageous for a better under-
standing and a faster modification of software [Whi97, NPC01]. As this is one of the main aims of
DSLs, we will assume visual concrete syntax of rule pattern specifications rather than textual ones.

The most economic approach to providing a pattern specification language is to offer a generic
one. Most tools do not use concrete syntax for specifying transformation patterns and thus are able to
use the same generic (often UML object-diagram-inspired) pattern specification syntax for all possible
input/output languages. They often also have an underlyinggeneric (often MOF-like) representation
format which can be used to represent elements from any input/output language.

There are good reasons, however, to consider using a patternspecification language which is
customized to the input/output languages involved:

• One may use pattern specification visualizations which are adapted to the languages involved.
Even if no concrete syntax is used, one may still want to customize the syntax,e.g.,to ade-
quately visualize connector elements.

• A customized syntax allows excluding patterns from being specified that do not have a chance
of matching sub-graphs in the host graphs. For instance, in the context of Petri nets, a pattern
consisting of an arc linking two places will never be matchedon any valid Petri net instance
(i.e.,conforming to the meta-model in Figure 5.1).

A generic pattern specification language will allow any pattern to be expressed whether or not it will
be able to match sub-graphs from the input language(s) or generate sub-graphs conforming to the
meta-model(s) of the output language(s). Just as a plain domain-specific modelling tool has advan-
tages for its users, guiding them to produce meaningful models, a customized transformation pattern
specification tool also aids in avoiding meaningless pattern specifications. The main disadvantage
however is that a customized pattern language requires morework for the transformation language en-
gineer. Whether this customization is achieved by changingthe representation format for each gener-
ated transformation definition environment or by just exchanging a language definition against which
generic pattern specifications are checked is immaterial tothe user, but a tool builder decision. In the
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following, we assume that, in one way or another, pattern specifications can be checked for confor-
mance to a pattern specification language definition. As a result, a method needs to be identified that
enables these conformance checks in an economic manner, while offering the transformation language
user maximum benefits.

5.3.3 Meta-models versus Conformance Checks

Unfortunately, providing a customized pattern specification language is not as easy as simply reusing
the corresponding input/output meta-models. First, demanding a full adherence of pattern specifi-
cations to original language definitions is not practical. If all minimal multiplicity requirements of
language definitions were enforced, one could not specify useful patterns such asEventLabel2-
Transition of Figure 5.2, which refer to model fragments, ignoring minimal multiplicity require-
ments. Second, one may want to provide several levels of rigour with respect to checking the well-
formedness of pattern specifications. While the transformation designer edits a pattern specification,
one most certainly does not want to enforce all well-formedness constraints. It also should be possi-
ble to save ill-formed sketches to be worked on later. This does not mean, however, that the complete
absence of all potential well-formedness checks is always the best choice in such cases. Table 5.1 lists
potentially useful levels of conformance checking rigorousness. There are two ways to enable the use
of such levels of conformance:

1. either one creates modified language definitions and performs a normal conformance check
against them, or

2. one uses original language definitions, but with accordingly modified conformance checks.

The second option has a number of advantages:

• One can simply use the original language definitions; there is no need to create multiple variants
of them.

• Switching between conformance levels does not require the switch of a meta-model; the latter
is quite feasible though with an appropriate architecture.

• The alternative 1. (above) cannot use a standard conformance check anyhow (see Sections 5.3.4
and 5.5).

However, there are also a number of disadvantages:

Level of rigour Description

Free form no constraints at all
Valid elements elements are typed by the meta-model

Valid multiplicities (relaxed) multiplicity constraints are enforced
Valid constraints (a subset of) meta-model constraints are enforced

Table 5.1: Levels of Conformance.
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• Some generic way to extend languages defined by meta-models is required; pattern specifi-
cation languages require additional features beyond the original input/output languages (see
Section 5.3.4). Customized meta-models can easily incorporate these.

• Custom conformance checks are harder to reason about than custom meta-models; in the ab-
sence of a fully modelled action language, conformance checks will be implemented in some
programming language making it harder to see and analyse what relation they actually imple-
ment.

• Conformance checks are harder to customize by users; transformation engineers can be ex-
pected to alter the transformations that yield tailored meta-models but may not be able to re-
program conformance checks.

• Swapping conformance checks means that the transformationdevelopment will remain the
same; swapping meta-models opens up the possibility to use them for the automated gener-
ation of dedicated development environments with differing sets of control elements.

Finally, there is another motivation for supporting more than one mode of well-formedness checking
which can only be enabled by using multiple meta-model versions: typically, transformation defini-
tions comprise layers of rules in the sense that one will expect all rules from one layer to have matched,
and then match no more, before the next layer of rules will be used. This layering often exists inde-
pendently of whether or not it is dealt with explicitly (suchas inAGG). For example in the FSA to
Petri nets transformation, the nine steps enumerated in Section 5.2.2 correspond to such layers. In
particular with in-place transformations, the input and output languages change from layer to layer.
The first layer’s input language is the source language whileits output, the input to the next layer,
will typically contain generic links which are not part of the source language (see Section 5.3.4). The
last layer’s output language is the target language, whereas all preceding layers will produce either
augmented versions of it or mixtures between the source and target languages. The availability of a
series of adapted meta-models may aid the transformation developer to understand what the layers
involved are and assign rules to them accordingly.

We have not yet pursued the idea of using a series of transformation layer interface language
definitions and it would be challenging to automate the generation of these intermediate language
definitions. Luckily, however, the creation of customized pattern specification languages from original
input/output language definitions can be automated very well.

5.3.4 Semi-Automated Meta-Modelling of Pattern Specificat ions

The previous section motivated the use of variants of original meta-models for defining the well-
formedness of pattern specifications. In this section, we discuss how one can create such variants
systematically and thus automate the process.

Figure 5.4 proposes a meta-model of a rule-based transformation unit: it refers to pre- and post-
condition patterns as well as the pattern elements they contain. When adapting transformation lan-
guages to specific input and output languages, one needs to tailor these pre- and post-condition pat-
terns so that they are fit to be used for the respective input and output languages. We obtain the re-
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Figure 5.4: The meta-model of a rule.

quired tailored pattern specification meta-models by starting with the original language meta-models
and then subjecting them to a number of changes. The requiredmeta-model metamorphosis, called the
RAM process, has three distinct components: relaxation, augmentation, and modification. Figure 5.5
shows the result of applying these steps to the finite state machine meta-model of Figure 5.1. This
defines the pattern language of the rules designed in Figure 5.2.

Relaxation

Original language definitions cannot be used as is for defining the well-formedness of pattern spec-
ifications. First, often transformation designers aim to match for any one-of-many element types,
e.g.,all sub-classes of a super-class. Such generalizations aretypically present in original language
definitions but as abstract concepts which cannot be instantiated. One relaxation step therefore is to
turn such abstract concepts into concrete ones.

Second, as mentioned before, enforcing minimal multiplicity constraints would be completely
impractical. A further relaxation step is, therefore, to reduce all minimal multiplicities to zero. This
allows representing fragments of meta-model instances rather than pattern models that completely
conform to the original meta-model. For example, thenext association now has a 0..1 multiplicity
as opposed to 1 originally on its source end. This allows one to represent such an association link
isolated from its source and target elements as shown inEventLabel2Transition .

Third, only a subset of explicitly formulated original constraints (e.g.,using OCL) can be active
for the purpose of checking pattern specification well-formedness. All constraints concerned with
ensuring completeness of models are potentially unsuitable for the inherent fragment-like nature of
specification patterns. The relaxation process could automatically filter out constraints with the help of
a corresponding naming scheme for constraints or manually provided augmentations. But we currently
believe any further automation will be difficult to achieve.This is why we refer to the meta-model
generation assemi-automated.

A potential further relaxation is to raise all maximum multiplicities to “unbounded” in order to
allow intermediate results that can be helpful to drive the transformation process, despite the fact
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Figure 5.5: Generated pattern specification meta-model from the RAM process.

that they would be ill-formed as end results. However, we argue that purposefully violating well-
formedness requirements in this way amounts to “hacking” and should be avoided. We recommend
using so-called generic links for these purposes instead.

Augmentation

To be fit as pattern specification meta-models, input/outputmeta-models also need to be augmented
with features required for transformation purposes. In Figure 5.5, all types are made descendants of
MT_Element so that they inherit features that all elements that may appear in a pattern specification
must have,e.g.,a way to label them for identity matching.

The generated meta-models also feature additional genericnodes and links which are often nec-
essary to drive the transformation (e.g.,see the generic connectors between states and places in Fig-
ure 5.2). They allow connecting elements that conform to thesource and target meta-models when-
ever needed, without violating the meta-model of the patterns. Trace elements are considered here
as special kinds of generic elements. Note that although Figure 5.4 shows a single class diagram
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representing the meta-models of the pre- and post conditionpatterns of each the input and output
meta-models, they are in fact four separate meta-models: one for the pre-condition patterns of FSA,
one for the post-condition patterns of FSA, one for the pre-condition patterns of Petri net, and one for
the post-condition patterns of Petri net. Nevertheless, the meta-models of the pre-condition pattern of
FSA and Petri net are connected (carteisan product) throughthe generic nodes and links. The same
applies for the meta-models of post-condition pattern of each formalism.

Elements which are used in pre-condition patterns (subtypes ofMTpre_element ) also need a flag
feature that tells the pattern matcher whether to look for exact types or allow sub-type matching as
well. This allows one to haveabstract rules[dLBE+07] which is very handy for the transformation
designer who, instead of specifying the same rule for each sub-type, only needs to specify one rule
with the corresponding element flagged to also match sub-types.

Parameter or pivot passing is also a very useful feature. Pre-condition pattern elements may be
pre-bound to model elements before the rule matches: input parameters/pivots. A post-condition pat-
tern element (subtypes ofMTpost_element ) may be assigned to a specific model element that can
be used as input pivot in another rule: output parameters/pivots. Note that, in the case of query (as
opposed to a rule), pre-condition pattern elements also have the possibility to specify an output pivot.

Depending on the expressiveness of the pattern language, the meta-model can be augmented with
further features. A former version ofVMTS offered the possibility to specify multiplicities on associ-
ations in pattern [LLC05]. For example, if an association link A—B is annotated with 1 on the A end
and 1..2 on the B end, this would mean that exactly one A must be found and it must be connected to
one or two B’s.

In the relaxation step, some all or none of the original meta-model constraints may have been
removed. However, additional constraints on the pattern elements may be required on the augmented
structure,i.e.,on the properties that were added on top of those existing in the original meta-models,
not in the shared dimension. For example, the notion of labelwas added. Then an additional constraint
on the pattern meta-model is then required to ensure the uniqueness of a label within a pattern.

In the original meta-models, it is possible that no concretesyntax was specified for abstract ele-
ments as they will never be instantiated. Nevertheless, because of the relaxation step, such elements
can be instantiated in the patterns and therefore require a concrete representation. The remaining dif-
ferences between the original and generated meta-model elements are all modifications of existing
features.

Modification

The source and target meta-models of the transformation aredifferent from the meta-model of the
patterns. The latter should then have a different name or be in a different namespace. Furthermore,
although all the concepts of the original meta-models are present in the pattern meta-model, the in-
dividual elements are completely modified. The modifications that need to be applied depend on
whether we want to obtain pre-condition (i.e., NAC and LHS) or post-condition (i.e., RHS) pattern
specifications.
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In the pre-condition pattern specifications, one does not want to assign an actual value to attributes
of the original meta-model classes, but specify a constraint. For example, a pattern requiring a place
to have at least one token cannot assign a value to the token attribute of theMTpre_Place class. On
the contrary, theMTpre_token attribute holds a constraint on thetoken value of a matched model
element. Thus, we need to replace the respective types of attributes with the type “constraint ”.
This allows the transformation designer to specify constraints for element features, such as

PreNode(1).name=”NEXT”

in theNextPlace rule of Figure 5.2. For post-condition pattern specification we need to allow actions
rather than constraints, so that the transformation designer can assign values of attributes, among
other potential actions. In ruleNextPlace , the “=” in the RHS part of the rule is an assignment
action rather than an equality check. Note that the same naming and modification scheme is applied
to classes, associations, and role names.

Finally, we sometimes need to modify the concrete syntax of language elements whose size or
natural layout is not conducive for specifying patterns. For example, in a modelling environment for
designing Petri nets, tokens (represented by a dot) will be centred inside a place (represented as a
circle). If places and tokens were modelled by classes in thePetri net meta-model, the concrete syntax
of the association between these two concepts would be a topological constraint on the visual syntax.
In this case, the presence of the association is implicit to the modeller since the token is centred in
the place. However for the transformation designer, that association must be explicitly represented
and accessible to, for example, assign values to the augmented attributes or bind it to a pivot. Also,
elements which are normally not rendered at all, such as instances of formerly abstract classes or
association ends, need to be assigned some concrete syntax so that they may be referred to in a visual
manner.

5.3.5 Implementation of the RAM process

The RAM process was integrated inAToM3’s meta-modelling process. After having defined the meta-
model of the source and target domains of the transformation, the transformation engineer can request
to generate the relaxed, augmented, and modified (RAMified) version of the meta-models, one for the
meta-model of the pre-condition patterns and one for the meta-model of the pre-condition patterns.
He can then load the meta-model of the transformation units,consisting of LHS, RHS, and optionally
NAC components of a rule or query. Patterns can then be constructed for each component as illustrated
in Figure 5.6. The following summarizes how each step of the RAM process is implemented:

Relaxation

Concretize abstract classes:changed theisAbstract attribute of all classes. This is accessed from
the abstract syntax graph (ASG) nodes: the elements at the M3 layer.

Reduce multiplicities: changed thecardinality attribute of all associations.

Constraint filtering: manual. The modeller must modify/remove them prior to the RAM generation.
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Figure 5.6: A transformation rule model inAToM3.

Augmentation

Pattern elements re-typing: all classes inherit from the pre-defined classesMTpre_Element or
MTpost_Element .

Connection with generic elements:automatically inherited fromMTpre/post_Element .

Augmented attributes: added the attributes to all classes (sub-type matching, pivot passing. . .).

Augmented constraints: added label uniqueness constraint.

Concrete syntax: all copied from the original meta-model. Added a default onefor abstract classes
annotated with the original class name.

Modification

Namespace:the process creates a new meta-model with the same name prefixed with MTpre__ or
MTpost__ .

Pre-condition attribute types: all attributes are typed by the type of constraint language3. Their
value correspond to the body of a constraint method (constr ) such that:

constr: object ×Graph → boolean .

3The type of constraint and action languages are implementedas strings for the moment.
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Figure 5.7: Schema of domain-specific transformation languages.

Post-condition attribute types: all attributes are typed by the type of action language. Their value
correspond to the body of an action method (action ) such that:

action: object × Graph → object × Graph .

The original attribute types are preserved thanks to getters and setters added to the RAMified
meta-model. The setter takes as input the new value of typeobject and makes sure it is a
(sub-)type of the original attribute.

Adaptation of concrete syntax: manual.

To summarize, this section has discussed various alternatives for enabling transformation design-
ers to make use of customized pattern specification languages and environments. We proposed the
semi-automated generation of customized, maximally constrained, meta-models based on relaxation,
augmentation, and modification operations. Figure 5.7 depicts how a transformation is defined with
this approach. Following the finite state automata to Petri nets example, we callTFSA2PN the (transfor-
mation) model mapping an FSA modelMFSA to a Petri net modelMPN. TFSA2PN is the transformation
model described in Section 5.2.2 andMFSA andMPN are represented in Figure 1.5. The two models
conform to their respective meta-modelsMMFSAandMMPN. Applying the technique described in this
section,domain-specific pattern languagesare generated from these meta-models, namelyDSPLFSA

and DSPLPN respectively. The meta-models of the patterns (specific to this transformation) com-
bined with the meta-model of the general transformation language, form thetransformation language
TLFSA2PN. The transformationTFSA2PN is thus completely modelled and conforms to its meta-model
TLFSA2PN shown in Figure 5.5.
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Figure 5.8: The meta-layers of a transformation language.

5.4 Engineering of Model Transformation languages

Let us now take a step back and look at the chapters of this partof the thesis as a whole. In Chapter 3,
we described the building blocks of a transformation such that, when combined with an appropriate
scheduling language, a transformation engine is completely described.T-Core is provided as a col-
lection of components with a dedicated API so that a transformation language engineer can combine
them with his favourite scheduler.T-Core’s syntax is modelled in the UML class diagram formalism.
Chapter 4 demonstrated how a transformation engine can be implemented to allow executing trans-
formation models. It is described using a dedicated programming language, such as Python. Finally,
in the current chapter, both the transformation units and the patterns used to specify transformation
mapping are modelled. The meta-model of the transformationunits is integrated with the meta-model
of the modelling framework, such as the one ofAToM3. Also, following MPM principles, one should
use the most appropriate language to describe the patterns of a transformation unit. The most appro-
priate formalisms are undoubtedly the original DSLs of the source and target domains, albeit adapted
for model transformation tasks. Thanks to the RAM process, the level of abstraction at which patterns
can be described is the same as the one a domain-specific engineer works at for designing models.
Therefore all aspects of a transformation language have been modelled explicitly at the most appro-
priate level of abstraction, using the most appropriate formalisms. Figure 5.8 shows an integrated
view of (1) how to engineer a transformation, (2) how to engineer a transformation language, and (3)
how this MPM model transformation engineering methodologyfits with the standard model-driven
architecture. Note that it describes how custom-built transformation languages tailored to the needs
of the domain-specific engineer are modelled.

At the very top of the meta-layers hierarchy is themeta-meta-modelMMM, a MOF-like for-
malisme.g., the Ecore meta-model. It is the formalism that allows us to describe meta-models of
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modelling languages and, in particular, transformation languages. This layer is often bootstrapped,
i.e., the meta-model ofMMM is MMM itself.

Themeta-modelMMT of a transformation language consists of three components.First, a meta-
modelMMTU of the transformation unitsis required. These basic units can take the form of rules,
queries, functions, etc. It is up to the transformation language engineer to define them as they indicate
the building blocks used by the transformation engineer to design a transformation model. Second, the
engine component is defined by selectingtransformation primitivesencountered in the meta-model
of T-Core and weaving them with ascheduling language. Depending on the type of transformation re-
quired (query, synthesis, translation, simulation, migration, synchronization, etc), the transformation
language engineer will combine the appropriateT-Core components with the most appropriate formal-
ism MMSC for the scheduler. The transformation language may grant direct access to the scheduler
so that the transformation engineer can explicitly specifythe order in which transformation units are
executed. Another possibility is to hide the scheduler fromthe transformation designer and internally
predefine the scheduling. The third component is the patternlanguageMMPL that describes how the
transformation engineer specifies the body of a transformation unit. As far as rules are concerned, the
pattern language can be semi-automatically generated by the RAM process. This allows the transfor-
mation engineer to specify rule patterns at the same level ofabstraction and using the same constructs
as the DSMs he builds rely on. In addition to the meta-model ofthe customized transformation lan-
guageMMT , the source and target meta-models, respectivelyMM1 andMM2, are also present in the
meta-layer M2.

All the elements in the M1 layer conform to elements in the M2 layer. M1 represents a model
of the system to transform and conforms toMM1. M2 is the result4 of this transformation and con-
forms toMM2. MT is themodel that the transformation engineer designs to manipulate instances of
MM1. It conforms toMMT . To achieve that, the transformation engineer must define patterns (MPLi

instances ofMMPL) that are embedded in transformation units (MTUi instances ofMMTU), such as
rules. Furthermore, he can assign a specific schedule (MSC instances ofMMSC) for executing rules.

Although we are working at higher levels of abstraction thansource code, one should not forget
that we are buildingsoftware products after all. Thus, at the M0 level, the actual system modelled
by M1 is input to the transformation software modelled byMT that modifies it as intended by the
transformation model. The resulting system is modelled byM2.

5.5 Related Work

The idea of employing languages tailored to certain domainsis not a new one [Lan66], and numerous
DSLs have been devised since. Meanwhile, the DSL approach has also propagated into the model
engineering community. Actually, considerable controversy exists about of whether MDE should fo-
cus on a general-purpose modelling language (such as UML) ormake use of a number of smaller,
domain-specific languages.

The need to provide domain-specific model transformation languages was first pointed out in

4M2 may still conform toMM1, but we make this distinction to be more general.
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[RKR+06]. The authors’ approach is to generate an execution environment for DSLs. The frame-
work, called Marius, takes as input the EBNF grammar describing the abstract syntax of the DSL, as
opposed to our approach which uses meta-models described asUML class diagrams with a graphical
concrete syntax. Marius is not MOF-compliant. The model transformation languages produced by
their approach are template-based, rather than rule-based. In our opinion, rule-based languages are
more declarative and hence reduce the cognitive effort of the domain-specific engineer for designing
transformations. Most importantly, the environment generated by Marius is not modelled and hence
does not allow for higher-order transformation.

In his Ph.D. thesis, Van Gorp [VG08] proposes to model model transformations in an object-
oriented manner. The advantage is that a model transformation is then considered as an object-oriented
model where refactoring, refinement and synchronization are well understood. In contrast, our ap-
proach models model transformations as DSMs which reduces accidental complexity and the effort
required by a developer to map domain-specific information onto the transformations to implement.

Bézivin et al. explicitly model transformations with “transformation models” [BBG+06] but for
capturing the relations maintained by transformations rather than supporting their customization or
generation.

The need to relax conformance rules occurs in other areas as well. Morin et al. also relax an
original meta-model in order to allow the formulation of pointcut specifications in the context of
aspect-oriented modelling [MBJR07]: (1) invariant, pre-,and post-conditions are removed, (2) all
features of all classes are changed to optional, (3) abstract model items are removed. The approach is
similar to our meta-model relaxation, but is less generic and currently works only on class diagrams
and Java programs. The RAM process described in this chapterassumed that the meta-models are
defined as UML class diagrams. This is not really a restriction since most CASE tools define meta-
models in this language.

Levendovszkyet al.capture domain-specific design patterns which also inherently are fragments
of proper models [LLM09]. Instead of creating a relaxed version of the meta-model, they use relaxed
conformance,i.e., “relaxed instantiation”. This allows them to use one original language definition
to check both proper models and design patterns. Since they only need to support this one variant of
conformance checking, this is a viable approach. In general, however, the explicit modelling of trans-
formations may require a multitude of conformance levels, making the relaxation of meta-models a
more attractive option (see Section 5.3.3). Levendovskyet al., furthermore, observe that simply setting
all minimal multiplicities to zero will allow the formulation of fragments which cannot be completed
to proper models. They suggest detecting such fragments by using constraint solving. This approach
is applicable in our context as well and could be realized by adding corresponding constraints to the
relaxed meta-models.

5.6 Conclusion

In this chapter, we demonstrated the benefits of explicitly modelling transformations and proposed
ways to economically enable their definition. As a result, model transformation languages can be tai-
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lored to the source and target languages of transformations, in the same way as DSLs are tailored
to model domains. While it is not necessary to explicitly model all aspects of transformation defini-
tions, we have illustrated that there are benefits associated with each such step. The explicit modelling
of pattern specifications allowed the semi-automatic generation of customized pattern specification
language definitions based on the components of relaxation,augmentation, and modification. It thus
provided a cost-effective way to obtain customized transformation development environments. The
transformations we presented are furthermore applicable in a wide range of similar contexts. This and
their re-usability is a direct result of explicitly modelling all aspects of transformations including their
control flow aspects. We provided a tool-support and a methodology to design custom-built model
transformation languagesi.e., the automatic generation of domain-specific model transformation de-
velopment environments.

The automatic meta-modelling proposed in this chapter focuses on the pattern language cus-
tomized to fit with the domain of application of transformations. Another interesting research di-
rection is to investigate how toautomaticallydefine a scheduling language tailored to the type of
transformation intended. A possible direction could be language design patterns [LLM09] or using
transformations by example [KWSB10].

A possible problem with the proposed approach is that, for every language used in a transfor-
mation, both the language meta-modelMM and its RAMified versionMMR will co-exist. Thus a
co-evolution problem may arise if, on the one hand,MM is later modified and evolves to a meta-
modelMM′. Certainly,MMR should be adapted accordingly. For example, if the RAM process is
implemented as a model transformation (operating at the meta-model level), co-evolution techniques
such as in [SK04, HBJ09, MV11] can be applied. Another possibility is to define an incremental
model transformation for RAM and thusMMR is modified automatically [RBÖV08]. On the other
hand if MMR evolves,MM should remain unchanged. That is because typical changes inMMR do
not modify core concepts in the language, but are specific to transformation purposes only. Therefore
future improvements should only consider automatically adapting the RAMified meta-model when
the original meta-model evolves.
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“If you’re asking your kids to exercise, then you better do it, too. Practice what you preach.”

Bruce Jenner
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6
Modelling DEVS and its Simulators

This chapter presents some background on theDiscrete Event system Specification (DEVS) [Zei84]
formalism used for modelling and simulation. It is the semantic domain of the transformation lan-
guage that will be introduced in the following chapter. On the one hand,DEVS allows one to model a
system focusing on its behaviour. On the other hand,DEVS models are executed through simulation.
Following MPM principles, this chapter provides a model of not only theDEVS language but also
a model of its simulation protocol. An extension of this MDE approach is to replace the sequential
simulation model by a distributed simulator. Hence, the structure and behaviour of a distributed sim-
ulator for theDEVS formalism is modelled explicitly. Simulation-based analysis of this model of the
simulator allows for the investigation of measures such as reliability and performance across different
alternative designs and hence for optimal design. In particular, using a model of a distributed simula-
tor allows one to simulate scenarios such as failures of computational and network resources, which
can be hard to realize in reality. We demonstrate our model-based approach by modelling, simulating,
and ultimately synthesizing a distributed DEVS simulator.

6.1 Introduction

Distributed environments overcome many of the limitationsimposed by single processor imple-
mentations of large-scale tasks. Simulation of large models consumes a lot of computational and
memory resources. In this chapter we focus on models in the Discrete Event system Specification
(DEVS) [Zei84] formalism. Our experiences show that this formalism, thanks to its modularity and
compositionality, is highly suitable for large-scale tasks, such as model transformation [SV08a].

Simulators in general and distributed, discrete-event simulators in particular, are typically realized
using different implementation languages and hardware platforms (processing as well as network re-
sources). This hampers realistic performance comparisonsbetween simulator implementations. Fur-
thermore, details of the distributed algorithms used are commonly present in the form of code rather
than explicitly modelled which hampers re-use and rigorousanalysis. A distributed environment for
the simulation of DEVS models is attractive for several reasons. Although not the primary goal of
distributed simulation, model execution time can be reduced. Also, the limited memory issue for a
single machine can be overcome and models with an extremely large state-space can be handled. Our
main goal of distributing DEVS models is for interoperability. Handling geographically distributed
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users and/or resources (e.g.,databases or specialized equipment) and exploiting greater data handling
capability through specialized nodes is our main interest.As a side effect, this allows integrating
simulations running on different platforms. Furthermore,properties of distributed systems such as
fault-tolerance capabilities become accessible.

In the next section, we review the essence of the classic DEVSformalism from an MPM perspec-
tive as well as its simulation protocol. Section 6.3 proposes a DEVS model representing a DEVS sim-
ulator. It is then extended to a distributed DEVS simulator together with preliminary fault-tolerance
capabilities. From this model, we can synthesize or build a distributed DEVS simulator, implemented
on a dedicated middleware. Section 6.4 outlines the implementation used for this work. In Section 6.5,
we calibrate the modelled distributed simulator with values gathered from the implemented distributed
DEVS simulator. Then, simulation experiments on the modelled distributed DEVS simulator allow us
to determine optimal values for the variables and thus calibrate back the implemented simulator to be-
have optimally for the given input model. Section 6.6 compares some of the current distributed DEVS
implementations and shows how our modelling and simulation-based approach can be considered as
a generalisation of these different implementations.

6.2 Classic DEVS

We introduce the classicDiscrete EVent system Specificationformalism and review its simulation
definition. The notation introduced here will be used for theremainder of the article.

6.2.1 Formalism

TheDEVS formalism was introduced in the late seventies by Zeigler asa rigorous basis for the compo-
sitional modelling and simulation of discrete event systems [Zei84]. It has been successfully applied to
the design, performance analysis, and implementation of a plethora of complex systems such as peer-
to-peer networks [XBZPZ08], transportation systems [LLC04], and complex natural systems [FB04].

Figure 6.1 shows a possible meta-model of DEVS in UML Class Diagram notation. A DEVS
model (the abstract classBlock) is either anAtomicBlock or a CoupledBlock. An atomic model de-
scribes the behaviour of a timed, reactive system. A coupledmodel is the parallel composition of
several DEVS sub-models which can be either atomic or coupled. Sub-models haveports, which are
connected by channels (represented here by the associations between the different ports). Ports are
directional and are eitherInport or Outport. The abstract classes(In/Out)port can be instantiated as an
Atomic(In/Out)port or aCoupled(In/Out)port, respectively. Ports and channels allow a model to receive
and send events (any sub-class ofEvent) from and to other models. A channel must go from an output
port of some model to an input port of a different model, from an input port of a coupled model to
an input port of one of its sub-models, or from an output port of a sub-model to an output port of its
parent model, as depicted by the associations of Figure 6.1.Note that the dynamic semantics ofDEVS
is not expressed by the meta-model. It will be informally presented hereafter.

An atomic DEVS model is a structure〈S,X,Y,δint,δext,λ,τ〉. S is a set of sequentialstates. X is
a set of allowedinput events. Y is a set of allowedoutput events. There are two types of transitions
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Figure 6.1: The DEVS meta-model.

between states:δint : S→ S is theinternal transition function andδext : Q×X→ S is theexternal
transition function . Associated with each state areτ : S→ R+ ∪{+∞}, the time-advancefunction
andλ : S→ Y, theoutput function . In this definition,Q = {(s,e) |s∈ S,0≤ e≤ τ(s)} is called the
total state space. For each(s,e) ∈Q, e is called theelapsed time, the time the system has spent in a
sequential statessince the last transition. The state of the atomic DEVS is initialized toq0 = (s0,e0),
but in the sequel we only considers0 for simplicity. When the time is infinite, it is said to bepassivated
and when it is zero, it is said to betransient.

Informally, the operational semantics of an atomic model isas follows: the model starts in its
initial state. It will remain in any given state for as long asthe time-advance of that state specifies
or until input is received on some port. If no input is received, after the time-advance of the state
expires, the model first (before changing state) produces anoutput event as specified by the output
function. Then, it instantaneously jumps to a new state specified by the internal transition function.
However, if an input event is received before the time for thenext internal transition, then it is the
external transitionwhich is applied. The external transition depends on the current state, the time
elapsed since the last transition, and the input event.

To illustrate the atomic DEVS concept, consider a user of a transformation system, who receives
a graphG every time a rule is applied. Furthermore, after analyzing the graph, he outputs a decision
encoded as an integern∈ N five time units later. We model the user’s behaviour by an atomic model
m. Its state space isS= {IDLE,ANALYZING}×N; the state is also used to store the computed
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integer.mcan only receive a graph as input, henceX is the set of all graphs. It also sends an integer as
output, henceY =N. Sis initially in IDLE mode. Upon reception of a graphG, mapplies the external
transitionδext((IDLE,e),G) = ANALYZING. It stays inANALYZINGmode, until the time advance
τ(ANALYZING) = 5 expires. Then,m outputsλ(ANALYZING) = n ∈ N and subsequently applies
the internal transitionδint(ANALYZING) = IDLE. m then stays in this mode until an external input is
received, sinceτ(IDLE) = +∞.

A coupled DEVSmodel namedC is a structure〈X,Y,N,M, I ,Z,Ξ〉 whereX andY are as before.
N is a set ofcomponent names(or labels) such thatC 6∈ N. M = {Mn|n∈ N,Mn is a DEVS model
(atomic or coupled) with input setXn and output setYn} is a set of DEVSsub-modelsor components.
The set ofinfluenceesof a component labelledn is In, denoting all components influenced byn.
I = {In | n∈ N, In⊆ N∪{C}} is the set of allinfluenceesdescribing the coupling network structure.
That is, for a given model labelm, Im represents all models (denoted by their label) that may receive
an event output from modelm. Z = {Zi,n|∀n∈ N, i ∈ In,Zi,n : Yi → Xn∨ZC,n : X→ Xn∨Zi,C : Yi →Y}
is a set oftransfer functions between connected components.Ξ : 2N→N is theselector tie-breaking
function. 2N denotes the powerset ofN (the set of all sub-sets ofN).

The connection topology of sub-models is expressed by the influencee setIn of the components.
Note that for a given modeln, this set includes not only the external models that receiveinputs from
n, but also its own internal sub-models that produce its output (if n is a coupled model). Transfer
functions (Zi,n) represent output-to-input translations between components. They can be thought of as
channels that make the appropriate type translations. For example, a “departure” event output of one
sub-model is translated to an “arrival” event on a connectedsub-model’s input. The select functionΞ
takes care of conflicts as explained below.

The semantics for a coupled model is, informally, the parallel composition of all its sub-models.
A priori, each sub-model in a coupled model is assumed to be anindependent process, concurrent
to the rest. There is no explicit method of synchronization between processes. Blocking does not
occur, except if it is explicitly modelled by the output function of a sender, and the external transition
function of a receiver. There is however aserializationwhenever there are multiple sub-models that
have an internal transition scheduled at the same time (thisset is referred to as theimminent set). The
modeller controls which of the conflicting sub-models undergoes its transition first by means of the
select function.

m1 m2

c

Figure 6.2: A hierarchical DEVS model.

To illustrate the coupled DEVS concept, we extend the previous example by involving different
decision makers. It is visually depicted in Figure 6.2. Suppose we now have two decision blocksm1

andm2, wheremi deterministically outputsi. The task is to output the computed numbers when a
graph is received. For that, we construct a coupled modelc whereX = {G} andY = N. We label
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the two inner modelsM = {m1,m2} by N = {1,2} respectively. We then connect the inport ofc
to the inport ofm1 and the inport ofm2. We also connect the outports of bothm1 and m2 to the
outports ofc. Therefore,I = {I1 = {c} , I2 = {c} , Ic = {1,2}}. As for the transfer function, we define
Zc,1(G) = Zc,2(G) = G for the input-to-input channels andZ1,c(n) = Z2,c(n) = n for the output-to-
output channels. At simulation time (run-time), afterG is received,m1 andm2 are scheduled to output
and then perform their internal transition at the same time,since their time advance is 5 and they
received the input at the same time. The select function thenchooses which inner model will execute
first, e.g.,setΞ({1,2}) = 1.

In this thesis, we have used aDEVS simulator calledpythonDEVS [BV01], grafted onto the
object-oriented scripting language Python.

6.2.2 The DEVS simulation protocol

To simulate a DEVS model, asolver is attached to each atomic DEVS, acoordinator is attached
to each coupled DEVS and aroot coordinator initiates, ends, and keeps the simulation running.
Figure 6.3 illustrates the simulation entities (modelled in DEVS) representing the simulation of a
client-server model, depicting the tree hierarchy of the coupled and atomic models. It also shows the
corresponding hierarchy of simulation entities.
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Figure 6.3: The hierarchical model of client-server example (on the left) and and its corresponding
simulation entities as DEVS models for the distributed simulation (on the right). In this case, there
are two machines involved.

In an atomic DEVS solver, the last event timetL as well as the local statesare kept. In a coordinator
(the coupled DEVS’ solver), only the last event timetL is kept. The next event timetN is sent as output
of either solver and is stored in the solvers. This requires consistent (recursive) initialization of the
tLs. ThetN allows one to check whether the solvers are appropriately synchronized. The operation
of an abstract simulator (solver or coordinator) involves handling four types of messages sent at time
from asourceDEVS model to atargetDEVS model:



138 Modelling DEVS and its Simulators

• INIT : (s0,source, target, t) message holding the state at which the model and the simulation
time t are (re)set;

• * : (source, target, t)message to indicate that an internal transition is due, at simulation timet;

• X: (x,source, target, t)message to carry the external input informationx, at simulation timet;

• Y: (y,source, target, tN) message to carry the output informationy; and

• DONE: (source, target, tN) message to acknowledge that one of the above messages has success-
fully been handled.

When a coordinator receives a* message, it selects an imminent componenti∗ from the imminent
set by means of the select functionΞ specified for the coupled model it is associated to. The message
is then routed toi∗. When a solver receives a* message, it generates an output messageY based on the
old state of the atomic model it is associated to. It then computes the new state by means of the internal
transition function. Note how DEVS output messages are onlyproduced while executing internal
events. When a simulator outputs aY message, it is sent to its parent coordinator. The coordinator
sends the output, after appropriate output-to-input translation (Zi,n), to each of the influencees ofi∗ (if
any). If the coupled modelC itself is an influencee ofi∗, the output, after appropriate output-to-output
translation (Zi,C), is sent toC’s parent coordinator.

When a coordinator receives anX message from its parent coordinator, it routes the message,after
appropriate input-to-input translation, to each of the affected components. When a solver receives an
X message, it executes the external transition function of its associated atomic model.

After processing anX or Y message, a solver sends aDONEmessage to its parent coordinator to
prepare a new schedule. Once a coordinator has receivedDONEmessages from all its components, it
sets its next-event-timetN to the minimumtN of all its components and sends aDONEmessage to its
parent coordinator. This process is recursively applied until the top-level root coordinator receives a
DONEmessage.

To run a simulation experiment, the initial conditions ontL, s, and tN must first be set in all
simulators of the hierarchy. IftN is kept in the simulators, it must be recursively set too. Once the
initial conditions are set, the main loop which sends a* message and waits for aDONEmessage is
executed until a termination condition is satisfied.

The classicDEVS formalism has some limitations such as:

• A conflict may arise in the occurrence of simultaneous internal and external events. In this case,
the external transition has precedence by default.

• The select function is an artificial legacy of the semantics of traditional sequential simulators
based on an event list. It serializes simultaneously triggered internal transitions.

• Therefore, the potential for parallel implementation is limited to only external transitions.

• It is not possible to explicitly describe variable structure since, once designed, the network of
components and their connections is fixed.

Some of these limitations are resolved in the widely used parallel DEVS formalism [CZ96]. It allows
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collision handling and parallelism of DEVS models. A confluent transition functionδcon : Q×X→ S
is added to the classic atomic DEVS model. It is triggered when an atomic block receives an external
event at the time of its internal transition. The event setX is now a set of bags of events since atomic
simulators may output events concurrently. As for the coupled model, the select function is removed
since all delta functions run in parallel.

6.3 Modelling a Simulator

In this section, we show how the DEVS simulator described above can be explicitly modelled in
DEVS. First, each of the simulation entities is representedas an atomic DEVS model. Then, we model
a distributed simulation engine for an arbitrary DEVS model. The model takes into consideration the
simulation entities, the different machines, and the communication layer. Figure 6.4 illustrates the
cluster integrating all the different modelled entities. Astar on an inport is a shorthand notation to
represent channels incoming from all the components of the same type as the source of the channel
(e.g.,everySimulator’s log port is connected to thelog_in port of theLog). A star on an outport is a
shorthand notation to represent channels outgoing to all the components of the same type as the target
of the channel (e.g.,the control_out port of theMaster is connected to everySimulator’s control_in
port). Dots between ports with a generic label is a shorthandnotation to represent as many ports on
the host component as there are components of the same type asthe source/target of the channel
(e.g.,the outport pattern labelledsimID onMachine denotes one such outport per AS, CO, and RC).

6.3.1 The Simulation Entities

The simulation model is composed ofAtomic Solvers, Coordinators, and aRoot Coordinator, each
modelled as an atomic DEVS block. Solvers and coordinators hold their corresponding model in their
state. Each of these simulator models has one inportreceive and as manysend outports as there are
machines (this is needed since DEVS models lack variable structure). Sending and receivingsimula-
tion messages* , X, Y, andDONE(encoded as events) is performed via these ports. The simulator also
receives areallocation messageindicating to which machine the simulator interoperates. Additional
ports handlereallocation messages, control messages(stop and resume), andlogging messagesfor
fault-tolerance purposes.

The Atomic Solver Model

An Atomic Solver (AS) is an atomic DEVS model. Its state is composed of:

• the atomic DEVS modelM it simulates;

• a unique identifierid such thatmap(id ) uniquely identifiesM;

• the identifier of the parent ofM, parentId ;

• the last event timetL;

• the next event timetN;

• the output setΛ of M;
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Figure 6.4: A DEVS model representing a distributed environment for a DEVS simulation.

• a bit-vectoractivePorts identifying which outport is currently active (its size is determined
by the number of machines); and

• the modeµ the AS is in:PAUSEDor RUNNING.

An AS is reactive. It waits for either a* event to process the internal transition function ofM or
anX event to process the external transition function ofM. The state of the AS is updated accordingly
in δext as described in Algorithm 17. It also receives a special simulation message for initialization,
INIT , holding the state the AS should be (re)set to. The DEVS modelM is set at instantiation-time
of the AS andactivePorts is set to the zero vector. Its mode is triggered by a control messageχ
received from thecontrol_in port and, from thereallocate inport, it receives reallocation messageρ
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indicating the (possibly) new active outport. In the algorithm, we distinguish structural elements of
the AS from those of its modelM by annotating the latter with•M.

Algorithm 17 The external transition functionδext((s,e) ,x) of an AS
UPON RECEIVE INIT : (s0,source, target, t) do

if s0 6= nil then
sM← s0

else
id ,parentId ,Λ← target,source, /0
tL← t−M.e
tN← tL+ τM

(

sM
)

µ← PAUSED
end if

UPON RECEIVE X:(x,source, target, t) do
sM← δM

ext((sM, t− tL) ,x)
tL← t
tN← tL+ τM

(

sM
)

M.e← 0

UPON RECEIVE * :(source, target, t) do
Λ← Λ∪

{

λM
(

sM
)}

sM← δM
int

(

sM
)

tL← t
tN← tL+ τM

(

sM
)

M.e← 0

UPON RECEIVE χ do
if χ == PAUSEthen

µ← PAUSED
else ifχ == RESUMEthen

µ← RUNNING
end if

UPON RECEIVE ρ do
activePorts ← (0, . . . ,0)|activePorts |

activePorts [ρ]← 1

The internal transition functionδint clearsΛ. If µ= RUNNINGand eitherΛ 6= /0 or one of* or
X was received, thenτ(s) is the real execution time spent for applyingλM, δM

int , or δM
ext. On the other

hand, ifINIT or χ was received, thenτ(s) = 0. Otherwise, the time advance of the AS is infinity.
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In caseΛ 6= /0, the output functionλ first sendsY: (Λ, id ,parentId , tL), followed by DONE:
(id ,parentId , tN). Note that the output is sent via the currently active outport. The output function
is extended to allow logging for handling fault-tolerance (see section 6.3.3): whenever a simulation
message is received, the new state of the AS is serialized andoutput through thelog port.

The Coordinator Model

A Coordinator (CO) is an atomic DEVS model. Its state is the same as for the ASwith additional
information:

• M is now a coupled DEVS model;

• the list of events to be processedL;

• the list of children (simulators this CO coordinates down the simulators hierarchy)children ;

• the list of children still processing an eventactiveChildren ; and

• Ψ is the output set ofX messages for its children (not to be confused withΛ).

The external transition function of the CO is modified from the one of an AS as described in
Algorithm 18.activePorts ,children , andactiveChildren are set at instantiation-time of the
CO.

The internal transition functionδint clearsΛ andΨ. The time advance of the CO is infinity unless
µ= RUNNINGand eitherΛ 6= /0, Ψ 6= /0, INIT was received, orχ was received. In this case,τ(s) = 0.

If INIT was received, the output function of the CO producesINIT : (nil , id,children , t), where
t is the same time in theINIT message the CO received. Havings0 = nil in theINIT message means
that the simulator is starting (usually sent only once). IfΨ 6= /0, the CO sendsX: (Λ, id,active -
Children , t), wheret is the same time in theX message the CO received. Otherwise, ifΛ 6= /0, the
output function first producesY: (Ψ, id,parentId , t), wheret is the same time in theX or Y message
the CO received. However, the CO sends* : (Λ, id, i∗, t) when it received a* message with timet.
Finally, if activeChildren = /0 thenDONE: (id,parentId , tN) is sent.

The Root Coordinator Model

A Root Coordinator(RC) is also an atomic DEVS model. Its state consists of:

• id , activePorts , andchildren as defined before;

• the current simulation timeT;

• a termination conditionθ.

When the external transition function receivesDONE: (source,
target, t) T is set tot. However, if θ is not satisfied, the simulation is stopped. The time advance
functionτ of the RC is always infinity except whenDONEwas received (in which case it evaluates to
0). The output function returnsINIT : (nil , id , id ,0)when the simulation starts and* : (id,children ,
T) whenDONEwas received.
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Algorithm 18 The external transition functionδext((s,e) ,x) of a CO
UPON RECEIVE INIT : (s0,source, target, t) do

if s0 6= nil then
sM← s0

else
id ,parentId ,Λ,Ψ← target,source, /0, /0
tL← t
tN←+∞
µ← PAUSED

end if

UPON RECEIVE X:(x,source, target, t) do
activeChildren ← activeChildren ∪

{

i|map(id ) ∈ IM
i

}

Ψ←
⋃

i∈activeChildren ZM
map(id ),i (x)

tL← t

UPON RECEIVE * :(source, target, t) do
immList ←{i|(i,T) ∈ L∧T = t}
i∗← Ξ(immList )
activeChildren ← activeChildren ∪{i∗}
remove(i∗,L)
tL← t

UPON RECEIVE Y:(y,source, target, t) do
activeChildren ← activeChildren ∪

{

i|i ∈ IM
source\{map(id )}

}

Ψ←
⋃

i∈activeChildren ZM
i,source(y)

Λ← Λ∪
{

ZM
i,map(id )

(y) |i ∈ IM
map(id )

}

tL← t

UPON RECEIVE DONE:(source, target, t) do
L ← L∪̃{(source, t)} // replacesourceentry if it already exists inL,
otherwise add entry toL
activeChildren ← activeChildren \{source}
tN←min(tN, t)

6.3.2 Communication between Simulators

Each simulation entity runs on a machine. This is modelled bya channel from the simulator to the
machine being active, determined by the non-zero dimensionof activePorts . There can be at most
one active channel per simulator at a time.
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The Local Coupling Table (LCT) holds a table mapping each simulator running on the machine
to a unique port. When it receives an event, it is forwarded tothe appropriate port of the target after
some delay time. The delay time for local search is sampled from a parameterized uniform distribution
(typically order of milliseconds). However, if the target is not in the local table, it is forwarded to the
send_remote outport. The events received are stored in a queue to handle concurrency (reception of
remote and local events). In order to ensure sequential execution of simulators on the same machine,
the LCT waits for a call-back from the simulator currently processing before the next event in the
queue is sent. Since ASs always send aDONEmessage after the reception of a simulation message,
the LCT expects such a message before sending the next event.As for COs, they only send aDONE
message after the reception of a simulation message that inducesactiveChildren to be empty.
Therefore the output function of the CO is extended to send aRETURNmessage after a simulation
message is received. An LCT models the intra-machine communication of simulators.

The Remote Coupling Table (RCT) has a similar behaviour to the LCT. Additionally, it holds
a table mapping each simulator in the cluster to the machine it is running on. The parameterized
delay time is typically longer than for an LCT, taking in consideration network communication delays
(typically order of tens to hundreds of milliseconds). However, the event queue does not depend on
call-backs. An RCT models inter-machine communication of simulators.

Machines are modelled as coupled models comprising two atomic sub-models: LCT andActivity.
The state of anActivity is eitherACTIVE or FAILED. The Activity model generates failures on the
machine. After some time (specified in the time advance), it sends afailure messageto the LCT1.
When the LCT receives a failure, it is passivated (the time advance evaluates to infinity).

6.3.3 Fault-tolerance Entities

When running a distributed environment, several fault-tolerance issues must be handled. Among them
is machine failure. As a consequence, mechanisms such as state restoration and resource reallocation
come into play. There are three major components modelled asatomic DEVS models that ensure fault
detection correct restoration: theMonitor, theLog, and theMaster servers.

TheMonitor server monitors each machine to detect failures. At regulartime intervals, it pings all
the machines through itsping outport. TheActivity then receives this request fromactivity_req. After
some small delay, it sends back an acknowledgement via itsnotify outport. Note that if the state of the
Activity is FAILED, then no acknowledgement will be output. The monitor accumulates all responses
within a certain timeout. It continues pinging (at the regular frequency) as long as it receives responses
from all the machines (from itsalive inport). However, if timeout is reached beforehand, theMonitor
considers the remaining machines that have not responded yet as failed. It subsequently notifies the
Master model.

The Log server receives the log messages from the AS, CO, and RC entities through itslog_in
inport. The log message of a simulator, identified byid , is LOG: (id ,m,s), wherem is the last simu-
lation message received ands is the resulting state afterδext or δint is applied. At the level of theLog

1It is possible to model machine replacement by allowing theActivity to send arevival message.
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Figure 6.5: The modal behaviour of the Master

model, a cleaning mechanism removes unnecessary traces from the log. Whenever a third entry from
the same simulator is received, the external transition function of Log removes the first one. This is
sufficient since state restoration is only applied from the latest previous state.

The Master server coordinates the whole environment. Its state holds the simulation hierarchy
(coupling of all the AS, CO, and RC models) and the resource allocation (which simulator is currently
running on which machine). Before the simulation starts, the master sends anINIT message to all the
simulators. Recall that this message provides knowledge ofthe parent of the simulator, the machine it
will be running on, its children (in case of a CO or a RC), and the initial simulation time (for the RC).
The Statechart in Figure 6.5 expresses the behaviour of theMaster. After initialization, theMaster
sends the control messageχ=RESUME. Subsequently, the RC sends a* message to its children and the
simulation runs as long as the termination condition is satisfied. When it receives a failure notification
(from Monitor), theMaster first sendsχ = PAUSEto all the simulators to halt the simulation. It also
requests (fromLog) for the last saved state of the simulators formerly runningon the failed machines.
We call a simulator (AS, CO, or RC) to be failed if it is allocated to a failed machine (i.e.,theActivity is
in FAILED state). In the mean time, theMaster repartitions the simulators. The output function sends
the appropriateρ message to the failed simulators. Note that the repartitionmay also need to reallocate
simulators that were running on non-failed machines. It notifies the RCT and as well as each machine
about the new allocation of resources. Upon receiving the log entries fromLog, theMaster then sends
an INIT message to the failed simulators in order to restore their state to the previous “safe” state.
Finally, it sendsχ = RESUMEto all the simulators to continue the simulation from their current (or
newly modified) state.

We have modelled theMaster, Log, andMonitor components as three different servers. It is possible
to consider them as one single server. Note that theMaster could even be modularly split further. This
is an implementation design consideration.

6.3.4 Generic Instantiation and Parametrization

This model of a distributed DEVS simulator was implemented in pythonDEVS . To be able to simulate
this model, several simulation experiments are provided asa library. It instantiates theCluster coupled
DEVS model which, in turn, creates the necessary ASs and COs according to the given host DEVS
model. The necessary inports, outports, and channels are created. For experimental purposes, the
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Cluster system expects several parameters.

• The initial host modelM;

• the number of machines in the clustern;

• the initial partition of resources specifying the node location of every simulation entity;

• the initial states of all the AS, CO, and RC models, referred to by s0 (the start time of the
simulation can be specified in the initial state of RC);

• the termination conditionθ of the simulation, specific toM;

• the distribution of the delay∆LCT for LCT to respond;

• the distribution of the delay∆RCT for RCT to respond;

• the distribution of the delay∆LOG for Master-Log communication (typically very fast);

• the distribution of the delay∆MON for Master-Monitor communication (typically very fast);

• the ping frequencyp of theMonitor; and

• the distribution of the delay∆ACT for theActivity to notify that machine has not failed (typically
∆ACT≈ ∆LCT).

We propose an experiment where the only variable is the time before theMonitor times-out. The
simulation collects performance results for different timeout values. Performance can be measured,
for example, by the number of log entries in theLog server since every simulation operation of AS,
CO, and RC is logged.

The termination condition for the simulation experiments of the modelled DEVS simulator is
satisfied when eitherθ is satisfied at the RC level or if allActivity models are inFAILED state.

6.4 A Distributed DEVS Simulator

We have chosen the RMI (Remote Method Invocation) as a middleware layer for our implementation
for many reasons. For our purposes of implementing a sequential classical DEVS simulation proto-
col, RMI simplifies distributed computing, through the transparency it provides over remote procedure
calls. It also hides all internal implementations of the lower level communication to maintain remote
references locally. Given the nature of our particular simulations, any type of object can be sent be-
tween the solver objects as an event. This flexibility in object types would be much more tedious to
implement using TCP. In the following, we briefly describe the concrete realization of the distributed
simulator. We use “Python Remote Objects” (PyRO), a RMI-based middleware solution similar to
Java RMI. PyRO is implemented in Python, which makes it compatible with our pythonDEVS se-
quential DEVS simulator implementation of which we re-use parts.

6.4.1 Location Configuration and Model Partitioning

Partitioning is often referred to as the deployment of different solver objects onto different processes
running on different servers. Many algorithms allow for optimal partitioning whenever dynamic re-
configuration is necessary, but this is not the scope of this work. Nevertheless, such an algorithm
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is easily pluggable into our implementation. In Section 6.5.1, different partitioning possibilities of
the input DEVS model will be simulated. The optimal partitioning of solver objects over the cluster
machines can then be obtained from simulation experiment results.

6.4.2 Simulation Tracing - Log Server

As described previously, the DEVS simulation is meant to produce a trace which describes events oc-
curring at certain times, as well as the way they are handled.This trace can be produced from all solver
objects executing on different machines. To aggregate these individual traces into a single simulation
trace aLog serveris used. The Log server also captures the communication trace between solvers. It
is used to calculate the network delay variables (LCT, RCT) by logging the time the messages were
sent and received. The communication trace allows for estimation of the network and the framework
overheads. This log server also stores the most recent states of the solvers for fault tolerance purposes.

6.4.3 Instantiation

To run the simulation, the initial step is to start a naming server on one of the machines on the cluster.
Then, a server containing a factory object (solver factory)which can host solver objects is instantiated
on each of the cluster machines. It will subsequently register itself with the naming server. Through
the naming server, the solver factory can be discovered by the simulation engine clients. These clients
instantiate solver objects, atomic or coupled, destined tolive on the factory object’s machine.

A remote reference is created for each factory and is used to create the solver objects. These solver
objects are passed the log server reference to send their traces. The simulator has been implemented to
accept a mapping object, describing which machine in the cluster a solver should be running on. The
simulator can then instantiate the solvers according to thepartitioning mapping locations. If no spe-
cific mapping was provided, they are instantiated locally. Figure 6.6 illustrates the overall architecture
of the implementation.

6.4.4 Simulation protocol

The simulation protocol was implemented in a asynchronous fashion. This allows for better perfor-
mance of the overall simulation. For example, when an event is destined to multiple solvers, it is
broadcast in an asynchronous fashion. In turn, the receiving solvers can receive and process the event
simultaneously, and then through a callback respond asynchronously.

6.4.5 Fault Tolerance Implementation

Since solvers are dispersed over several machines, it is expected to encounter a new class of errors
which were not present in the classical non-distributed DEVS simulator. Like in any other distributed
settings, we would have to deal with unexpected machine crashes. It is important to handle such
crashes with affecting minimally the simulation flow. This becomes more critical for long running
simulations. In the case of a crash, the simulation will stopand would have to be manually restarted
later on. This is deemed inconvenient and not scalable as we expect the possibility of machines crash-
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Figure 6.6: The RMI architecture of a distributed DEVS simulator using PyRO

ing increasing with running time. As in any fault-tolerant technique, there are two phases for achieving
that: fault detection and fault recovery. For fault detection, there exists many techniques, e.g., accep-
tance tests orn-version programming. For recovery, first perform regular backup operations whenever
a modification to the state of the system (or object) takes place. Second, we could restore the latest
fault-free state.

In the application of the distributed DEVS simulation, we consider a fault model where cluster
machines involved in the simulation can potentially crash.To detect failures, atimeoutis set on each
methods being executed on remote objects. Therefore if a solver or the machine it lives on failed to
respond to a call (simulation call, heartbeat call, or othercalls) after a certain timeout, the site or the
component on the site is considered as crashed. Then, the recovery mechanism takes over. Ideally
these timeouts should be specified according to the partitioning or mapping of the simulation.

Recovering from such a fault requires collecting enough data about the state of each solver and
they simulate. For Atomic Solvers:tL, tN, and the state of the DEVS model being simulated. For
Coordinators:tL, tN, eventList, subsolversand the state of the DEVS model being simulated. The
solver objects (coupled or atomic) which simulate the sub-DEVS component of the current solver’s
DEVS model.

Having the last valid version of this information for all thesolvers is sufficient to restore the
simulation at a correct state to resume the simulation from where it left off. The choice of when
to update this version is one of the key optimization issues.For our application we have chosen to
“piggy-back” this information in a conservative fashion from each solver to the log server whenever
the solver state gets updated.
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6.5 Calibration and Optimization

The simulation experiments we perform use an input modelM. This is an abstracted model of a city.
A city (coupled DEVS) is divided into several districts (coupled DEVS). A district encapsulates a
road network with houses and offices (both atomic DEVS). Roads (coupled DEVS) are bidirectional
and thus consist of two road segments (atomic DEVS). In the road network of a district, roads can
connect to an intersection (coupled DEVS composed of eight road segments) at specific points, with
or without a traffic light (atomic DEVS). Some districts communicate via highways (coupled DEVS)
modelled as sequences of roads. At periodic intervals, houses generate cars to go to a predefined
office. Note that a house and its corresponding office can be indifferent districts. After some random
time interval, a car leaves the office and returns back home. The simulation ends when all cars are
back home or are involved in a car accident.

The simulator of the DEVS modelM is itself modelled as a DEVS model as described in Sec-
tion 6.3. The simulator model was calibrated with model execution parameters from the PyRO-based
distributed simulator described previously.

6.5.1 Optimization of Performance Metrics

One of the most important configuration questions in the distributed implementation, with regards to
efficient fault-tolerance, is the timeout to set on solver calls, before assuming that the site has crashed
or even has a fault. This timeout really depends on the model being simulated and the partitioning
that is used for the solvers. The timeout value might also be different at different solver levels. Setting
an arbitrary constant value may not be sufficient, as it has totake into account the network message
passing time and other properties.

To accomplish a realistic simulation, several parameters need to be calculated from the middle-
ware and the cluster. Network statistics for a specific cluster can be gathered using the current im-
plementation of the log server. As discussed, the log serverkeeps track of both the simulation and
communication traces. Communication trace analysis allows one to estimate remote and local delays
for message passing between different solvers. Each solveroutputs a communication trace before
sending a message to another solver and when it receives one.Traces are appended with extra infor-
mation to allow calculating latency and are classified as local or remote messages. For example, the
trace message produced at each solver is augmented with the following parameters:

• the name of the model in the solver,

• the global current time at which this trace was produced,

• the local time at the solver machine when the message was received,

• the local time at the machine when the trace was produced.

After several experiments on the cluster simulating the city example, we analysed the trace in-
formation to calculate the distribution of remote and localdelays. These values were then used as
parameters in the modelled simulator to simulate message passing delays.
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(a) (b)

Figure 6.7: (a) Effect of adding machines and (b) delay before master reaction on correct detection of
machine failure.

By running a simple simulation, the log server can produce some average network parameters
with regards to the time a message takes to travel over the network from a solver to another in the
hierarchy. These numbers can be given to the modelled distributed simulator described earlier. It then
can simulate this delay which is specific to the cluster.

The optimal timeout for a specific solver message on another can be discovered using the modelled
simulator: before a solver makes a call on another solver, itcan invoke the modelled simulator to run
a simulation of the current call and expect the time length itshould take. This simulation is expected
to be much faster than the actual implementation since it will only simulate and not run the actual
model. The computed value is then used as a timeout limit for the call.

Figure 6.7(a) illustrates the performance behaviour of thesimulator depending on the number
of machines used. In our experiments the city model has five districts and 10 bridges, totalling 1000
coupled DEVS models and 10,000 atomic DEVS models. For our example, the partitioning of the city
models on the different available machines follows one constraint: the coupled DEVS representing a
district and all its sub-models are always on the same machine. Performance was measured by taking
the total simulation time of the simulation run. The graph shows a decrease in performance when
the number of machines involved increases. This is because the network communication between
components adds an overhead. The graph hence shows that, forour model, the optimal number of
machines is two. (The case where there is only one machine is ignored since it is not distributed).
Because our goal is not to increase performance but rather maximize interoperability using specialized
nodes. For example, in some cases parts of the partition would be fixed. Then such analysis becomes
more valuable. Furthermore, the performance levels off when more than six machines are used. This
is due to the limited number of components in the modelled simulator.

The graph in Figure 6.7(b) allows one to find the optimal timeout for the given configuration. In
this case the minimal timeout with 100% reliable fault detection is 2.7 seconds. This is significantly
less than the monitor frequency (which is 7 seconds).
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6.6 Related Work

The DEVS formalism and its simulation protocol as describedin Section 6.1 are well suited for local
execution on a single machine. In addition, many approachesfor distributing DEVS simulation have
been proposed and implemented (e.g., [SPB+04, CSPZ04, ZZH06, SKHP07]). Thanks to the modu-
larity and hierarchical structure of DEVS, distributing a DEVS model execution on several processors
can be achieved without modifying the simulation models.

The distributed architecture for DEVS can be divided into layers. Theapplication layer(highest
level of the system) is the modelling and simulation problemunder study. The DEVS model lies in the
modelling layer. At the simulation layer, the protocol to simulate the DEVS model is implemented.
The lowest level layer is themiddleware layerwhere the communication between computing nodes
is implemented.

James II [URH03] is a dynamic simulation framework where a model of a DEVS simulator can
be simulated. However, the purpose is to enhance theDEVS formalism with dynamic restructuring
capabilities. That is, the simulation model (composed of atomic solvers and coordinators) is modified
at run-time to, for example, re-partition the model distributed on several machines.

6.7 Conclusion

In this chapter, we have explicitly modelled both the structure and the behaviour of a distributed DEVS
simulator, as a DEVS model. From this DEVS model, a distributed DEVS simulator was realized
(i.e.,partially synthesized). This simulator runs over RMI usingPyRO. The actual performance data
obtained from this implementation (simulating the model oftraffic in a synthetic city) was used to
obtain realistic parameter values to be used in the DEVS model of the simulator. Isolating system
variables, such as timeouts, optimal values were found by simulating multiple alternative models of
the DEVS simulator. These variables were finally used to calibrate the real simulator.

In the future, we want to completely automate the synthesis of simulators from their DEVS mod-
els. Also, we plan to synthesize DEVS/RMI instead of the rather inefficient PyRO.
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7
MoTif

It is possible to design transformation languages that are entirely explicitly modelled. We will now use
the framework presented in Part II to engineer a new model transformation language. This language
is completely modelled: its syntax, its semantics, and its execution engine.

In Chapter 3,T-Core was presented as the result of a de-construction process of model transforma-
tion languages to a set of most primitive constructs. In thischapter, we propose to combine allT-Core
primitives with the modelling and simulation formalism modelled in Chapter 6 to design a new model
transformation language. The choice of the underlying formalism allows one to easily add the dimen-
sion of time and asynchrony to model transformation. A nice side-effect of explicitly modelling the
transformation language is the facility to design higher-order transformations.

7.1 Introduction

In 1996, Blostein et.al. [BFG96] described some issues regarding the practical use of graph rewriting,
at that time very sporadic. Graphs are a versatile and expressive data representation, and there are
many advantages to the explicit representation (as opposedto encoding in the form of programs)
of graph transformations. Issues such as expressiveness, scalability and re-use of models of graph
transformation as well as the ability to integrate such models with traditional software components
were considered critical enablers for wide-spread use of graph transformations. During the last decade,
several of these issues have been addressed and tools have been developed. In particular, tools such
asGReAT [AKK +06], FUJABA [NNZ00], andProGReS [SWZ95] (just to name a few) allow for
programmed graph rewriting. The purpose of programmed graph rewriting is to be able to model the
control structure of (graph) transformation. This is done in terms of control flow primitives1 such as
sequence, branching(choice), andlooping(iteration).Hierarchical encapsulationallows formodular
construction(and re-use) of control flow structures. Some tools add expressiveness throughnon-
determinismandparallel composition. In general, it is also desirable for a control language to betarget
(programming) languageneutral. The explicit incorporation oftime is rare in current transformation
languages. Programmed (or controlled) graph transformation is one of the keys to making graph
transformation scalable and hence industrially applicable. Most current graph transformation tools

1These requirements were summarized in Section 2.1.3.
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support programmed graph transformation, but mostly introduce their own control flow language2.

This chapter presents a novel model transformation language. The main contribution of this chap-
ter is the re-use of a discrete-event modelling and simulation formalism, such as theDEVS (c.f.,
Chapter 6), to describe the scheduler of a model transformation. SinceDEVS inherently allows one to
build hierarchical models, the transformation language becomes highly modular by re-using specific
components of a transformation. Another side-effect of usingDEVS is the explicit introduction of the
notion of time in model transformations. This allows one to model a time-advance for every rule as
well as to interrupt (pre-empt) rule execution.

In Section 7.2, we formally define theMoTif-Core model transformation language, as well as its
semantics, based on theDEVS formalism. Section 7.3 discusses some properties of the language.
Then Section 7.4 describes a model transformation languageMoTif that is more convenient to use
at the transformation modelling level. It encapsulates model transformation features defined with
MoTif-Core building blocks. Section 7.5 explains how aMoTif transformation is executed. As a side
effect of explicitly modelling all aspects ofMoTif , Section 7.6 illustrates how to express higher-order
transformations in this language. Finally, Section 7.7 explores related work.

7.2 Semantic Mapping Onto DEVS

In Chapter 3, we have shown how model transformation languages can be de-constructed in a col-
lection of model transformation primitives, which makes iteasier to reason about transformation
languages. These primitives are encapsulated in theT-Core module. By properly combiningT-Core
primitives with existing well-formed programming or modelling languages allowed us to re-construct
some already existing transformation languages and even construct new ones. Recall Figure 3.5 which
showed a combination involving the wholeT-Core module with theDEVS formalism. In the context
of rule-based graph transformation, theDEVS formalism can be used as an underlying basis for rule
scheduling in transformation languages [SV07].DEVS is a compositional, timed discrete-event lan-
guage and is thus an attractive framework for a general purpose model transformation language. The
combination ofT-Core with DEVS is a transformation language calledMoTif-Core.

The meta-model ofMoTif-Core, described by the UML class diagram in Figure 7.1, shows how
MoTif-Core is an extension ofDEVS integrating all3 T-Core constructs. The so-calledT-Core primitives
can be found encapsulated in the state of different atomic DEVS AtomicPrimitive elements. Those
classes are prefixed by “TC”, depicting that they are semantically identical to theirT-Core counterparts
(e.g., in MoTif-Core, TCMatcher represents theMatcher from T-Core). However, the messages sent
through their method calls useEvent objects fromMoTif-Core instead ofT-Core Messages.

All the RulePrimitive elements have two inports (PacketIn andCancelIn) from which packets and
cancel events are respectively received and two outports (SuccessOut andExceptionOut) from which
packets and exception events are sent. TheMatcher, Iterator andRollbacker have an additionalFailOut
outport from which packets are sent. The latter two atomic blocks have an extraNextIn inport from

2ThoughFUJABA’s Story Diagrams are heavily based on UML Activity Diagrams.
3Except for theComposer since the composition of primitives is specific to the language combined withT-Core.
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Figure 7.1: The meta-model ofMoTif-Core.
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which packets can be received. For compositionality and transparency reasons, theComposer has
all of the ports mentioned. As forControlPrimitive elements, they have theSuccessIn andFailIn in-
ports, andSuccessOut andFailOut outports to receive and send packets. TheSelector has an addi-
tionalCancelOut ouport from which cancel events are transmitted. When aMoTif-Core primitive (any
sub-class ofRulePrimitive, ControlPrimitive, or CompositePrimitive) receives an event from an inport,
its external transition function invokes the appropriate method of its correspondingT-Core primitive
according to the activated inport. Algorithms 19 and 20 depict this integration forRulePrimitves.
In the ControlPrimitive elements, theSelector’s select method is no longer used. It is the select
function of theComposer that takes care of the selection of the appropriate primitive to output. In
MoTif-Core, the Composer inherently composes otherDEVSBlock elements (MoTif-Core primitives
as well as pureDEVSBlocks) as it is aCoupledDEVS and hence stateless.CompositePrimitives spec-
ify the connection between the different in/outports to ensure a proper flow of the transformation.

Algorithm 19 rulePrimitive.extTrans ((s,e),x)
if x received fromACancelIn then

s.state.cancelIn (x)
else ifx received fromAPacketIn then

s.packet= s.state.packetIn (x)
else ifx received fromANextIn then

// If defined
s.packet= s.state.nextIn (x)

end if

Algorithm 20 rulePrimitive.output (s)
if s.state.isSuccessthen

output (s.packet, ASuccessOut)
else ifs.state.exception6= nil then

E = toDEVSEvent (s.state.exception)
output (E, AExceptionOut)

else
output (s.packet , AFailOut)

end if

In the following, we formally define the semantic mapping ofMoTif-Core onto theDEVS for-
malism. The behaviour of everyT-Core element was precisely described in Chapter 3. Note that the
time base used isT = R+ ∪{+∞}. Also, for the sake of completeness of the formal DEVS models,
we assume an input segment function4 ω : T → X determining the input event on an inport at a cer-
tain time. At the end of this section, an example illustratesthe use of these constructs to build graph
transformation rules.

7.2.1 The different events

There are exactly three types of events. In our notation,E denotes any event instance of a sub-class of
Event. We writeE ∈ INSTANCESOF(Event)5. Packets, cancel, and exception events correspond to the
T-Core messages defined in Section 3.2.

A packet is a structureπ = (γ ∈G∗,current ,{MSi |i ∈ N}), whereγ is a graph taken from the
setG of all directed, attributed, typed graphs6. current is an instance ofPreConditionPattern re-
ferring to the currently processed match set.MS is an instance ofMatchSet. Furthermore,MS=
(

condition , j ∈ N,{mj | j ∈ N}), wherecondition is an instance ofPreConditionPattern andm

4Recall that the input segment function triggers the external transition function.
5The functionINSTANCESOF(X) returns the set of all instances of classX and its sub-classes.
6G∗ = G∪{nil } andV∗γ =Vγ∪{nil }
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Figure 7.2: The behaviour ofAtomicPrimitives.

is an instance ofMatch. A match set is identified by a pre-condition patterncondition which is
an instance ofPreConditionPattern. It also holds all the matches of the patternm∈ INSTANCES-

OF(Match). A matchm= (hm : γ→ γ,{ρk|k∈ N}) consists of a mapping and pivot assignments.hm

is a homomorphism mapping the nodes of a pattern graph to nodes of a source graph. A pivotρ is an
instance ofPivot and is defined by a stringlabel and a single-node graphhρ(Vγ) wherehρ : Vγ→ γ
is a morphism.

A cancel eventϕ instance ofTCCancel carries anexclusions set ofPreConditionPatterns, de-
picting theRulePrimitive elements whose activity should not be cancelled. Finally, an exception event
χ instance ofTCException can also be transmitted byMoTif-Core primitives. The detail of exception
events and their handling will be detailed in Chapter 8 and will not be covered in this chapter.

7.2.2 The AtomicPrimitives

TheAtomicPrimitives are atomic DEVS models. Anameidentifies the model and optionally analias
can be used in the occurrence of multiple models of the same type having the samename. The combi-
nation(name,alias) should be unique among eachAtomicPrimitive type. Furthermore, anAtomicPrim-
itive instanceM is globally uniquely identified by the functionid(M) = (TYPE(M),M.name,M.alias),
whereTYPE(M) gives the exact type ofM.

The general behaviour of the state of anAtomicPrimitive is defined by the statechart in Figure 7.2.
It initially starts in theInitial state. At any point in time, whenever a packet is received, the Atom-
icPrimitive is in its Active state. After some time (defined by its time advance functionτ), it outputs
an event which can be a packet, an exception, or a cancel event. This then brings it to thePassive

state. Also at any point in time, whenever a cancel event is received, theAtomicPrimitive is in aCancel

state.

The Matcher

TheMatcher is an atomic DEVS, parametrized by a pre-condition patternc, the time∆ it will consume,
and the maximum number of matchesmax(to optimize the search of the matching process). AMatcher
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is defined by the following structure:

Matchername,alias,c,∆,max= 〈S,X,Y,δint,δext,λ,τ〉

The stateS is defined as:

S= {(α,TC,π) |α ∈ B,TC∈ INSTANCESOF(TCMatcher) ,π ∈ INSTANCESOF(Packet)∪{nil }}

In this notation, the boolean7 variableα indicates whether theMatcher is active,i.e., processing a
packet.TCMatcher corresponds to the matcher class inT-Core. Recall thatTCMatcher findsmaxpos-
sible matches ofc on the (graph) model embedded in a packet. TheMatcher temporarily holds a
packet, from the time it receives it to the time it outputs it,as noT-Core rule primitive stores any
packet in its state. Note that all the parameters are also part of S, but are omitted in this notation for
simplicity. We denote bys0 = (false ,TCMatcher(max) ,nil ) the initial value ofS.

TheAPacketIn port can receive a packet instance. We therefore define:

XAPacketIn = {INSTANCESOF(Packet)}∪{φ}

φ represents the null event as used in [Zei84]: it covers the case when no event is present. The
ACancelIn port can only receiveϕ ∈ INSTANCESOF(Cancel), indicating to the matcher to cancel
its activity. Thus:

XACancelIn = {INSTANCESOF(Cancel)}∪{φ} .

TheMatcher can receive either a packet or a cancel event or both. Hence, the input set of theMatcher
is the cross-product:

X = XAPacketIn ×XACancelIn

TheASuccessOut and theAFailOut ports can both send packet instances. Thus:

YASuccessOut =YAFailOut = {INSTANCESOF(Packet)}∪{φ}

Furthermore, theMatcher can output an exception, hence:

YAExceptionOut = INSTANCESOF(Exception)∪{φ}

The output set of theMatcher is therefore:

Y =YASuccessOut ×YAFailOut ×YAExceptionOut

The time advance is finite only when theMatcher is active. The funtion∆ : INSTANCESOF(Packet)→R+ specifies the matching time, which may depend on the current packetπ. Note that whenever
α = true thenπ 6= nil , hence∆ is well-defined. The time advance function of theMatcher is thus
defined as:

τ(α,TC,π) =
{

∆(π) if α = true

+∞ otherwise
,∀s∈ S

7B= {true,false } represents the set of boolean values.
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The internal transition function resets this atomic DEVS toits initial state. It will thus passivate
theMatcher as it will force the time advance to evaluate to infinity:

δint (s) = s0

The external transition function is constructed as follows:

δext(((α,TC,π) ,e) ,x) =











(false ,TCc,nil ) if x= (E∗,ϕ)∧c /∈ ϕ.exclusion

(true ,TCp,TC.packetIn (π′)) if x = (π′,φ) ∨
(x= (π′,ϕ)∧c∈ ϕ.exclusion )

Whenϕ is received (fromACancelIn), theMatcher is deactivated and the state is cleared (TCc is the
resultingTCMatcher afterTC.cancelIn (ϕ) is applied).E∗ denotes any event, includingφ. When a
packetπ′ is received (fromAPacketIn), the resulting packet of thepacketIn operation is temporarily
saved in the state. Note that the state ofTC may have changed (e.g.,the isSuccess attribute) and
results inTCp.

Finally, the output function is:

λ((α,TC,π)) =



















(φ,φ,TC.exception ) if TC.exception 6= nil

(π,φ,φ) if TC.isSuccess = true ∧
TC.exception = nil

(φ,π,φ) otherwise

Implicitly, it returns the transformed packet if the match was successful, otherwise it returns the origi-
nal packet. However, if an exception occurred, theMatcher will instead output the exception properly
converted to a DEVS event. Note thatπ is nevernil since, by construction, it is only applied a finite
amount of time, set by∆, afterδext is applied.

The Rewriter

The Rewriter is an atomic DEVS, parametrized by a post-condition patternc and the time it will
consume∆. A Rewriter is defined by the following structure:

Rewritername,alias,c,∆ = 〈S,X,Y,δint,δext,λ,τ〉

TheRewriter is structurally very similar to theMatcher, with the difference that theTC element of
its stateSis an instance ofTCRewriter instead. Recall thatTCRewriter applies the required transforma-
tion for c on the match specified in a packet. Thus the initial state iss0 = (false ,TCRewriter(),nil ).
Moreover,τ,X,δint, andδext are all identical to those of theMatcher.

The output set of aRewriter is Y =YASuccessOut ×YAExceptionOut , each defined as previ-
ously. The output function must be modified accordingly:

λ((α,TC,π)) =
{

(φ,TC.exception ) if TC.exception 6= nil

(π,φ) otherwise
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The Resolver

TheResolver is an atomic DEVS defined by the following structure:

Resolvername,alias,res= 〈S,X,Y,δint,δext,λ,τ〉

Sis defined as before, but theTC element is an instance ofTCResolver instead. Recall thatTCRe-
solver resolves potential conflicts between matchings and rewritings by means of a user-definedres
resolution function, or a default one. The resolution function is defined asres: INSTANCESOF(Packet)
→ B. Thus the initial state iss0 = (false ,TCResolver(res),nil ). X,Y,δint andλ remain identical to
those of theRewriter.

However, since theResolver is not parametrized by a condition, the external transitionfunction
must be adapted when a cancel event is received: it becomes inactive regardless of the exclusion list.

δext(((α,TC,π) ,e) ,x) =
{

(false ,TCc,nil ) if x= (E∗,ϕ)
(true ,TCp,TC.packetIn (π′)) if x= (π′,φ)

Also, theResolver does not consume time, therefore its time advance is 0 when itis active:

τ(s) =
{

0 if α = true

+∞ otherwise
,∀s∈ S

The Iterator and the Rollbacker

The Iterator is an atomic DEVS, parametrized by a maximum number of iterationsmax. It is defined
by the following structure:

Iteratorname,alias,max= 〈S,X,Y,δint,δext,λ,τ〉

The Iterator is structurally very similar to theMatcher but, in this case,TC is an instance of
the iterator class inT-Core. Recall thatTCIterator chooses a match among the set of matches of the
current condition of a packet. Thus the initial state iss0 = (false ,TCIterator(max),nil ).

Y andλ are identical to those of theMatcher. τ is defined as in theResolver depicting that theIter-
ator does not consume time. For the input set, theIterator can receive either a packet fromAPacketIn
or ANextIn port as well as a cancel event fromACancelIn. In this caseXANextIn = XAPacketIn .
Therefore the input set is

X = XAPacketIn ×XACancelIn ×XANextIn

Consequently, the external transition function is modifiedto handle the packet received fromANextIn:

δext(((α,TC,π) ,e) ,x) =







(false ,TCc,nil ) if x= (E∗,E∗,ϕ)
(true ,TCp,TC.packetIn (π′)) if x= (π′,E∗,φ)
(true ,TCn,TC.nextIn (π′)) if x= (φ,π′,φ)
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When a packetπ′ is received fromANextIn, the resulting packet of thenextIn operation is tem-
porarily saved.TCn is the state of theTCIterator after TC.nextIn (π′) is applied.DEVS constrains
that exactly one atomic DEVS may output at a time. However, a single atomic DEVS may output
events that result on different ports (in a one-to-many channel connection). In this case,APacketIn

andANextIn might simultaneously receive a packet. The second condition of δext enforces that the
packet received fromAPacketIn is handled and the other one is discarded.

Finally, the internal transition function behaves differently than for the previous models. It does
not reset the state of theIterator to s0 anymore but keeps theTCIterator state unchanged. That is
because when a packet arrives from theANextIn inport, the counter of the remaining iterations should
not be reset. Thus:

δint = ((α,TC,π)) = (false ,TC,nil )

As Figure 7.1 shows, theRollbacker is derived from theIterator. Recall that the rollbacker inT-
Core checkpoints the packets it receives to roll-back to a previous packet when needed (it fulfils the
standard back-tracking property in graph transformation [ZS92]). In MoTif-Core, the Rollbacker is
defined exactly like theIterator with the difference that theTC element of its stateS is an instance
of TCRollbacker instead. Also recall that the maximum number of iterations is set implicitly in the
packetIn method of theRollbacker. Thus:

Rollbackername,alias= 〈S,X,Y,δint,δext,λ,τ〉

and the initial state iss0 = (false ,TCRollbacker(),nil ). Furthermore, since thenextIn method is
independent from the event received, thenXANextIn = {INSTANCESOF(Event)}∪{φ}.

The Selector

TheSelector is an atomic DEVS defined by the following structure:

Selectorname,alias= 〈S,X,Y,δint ,δext,λ,τ〉

S is now needs to be modified to not explicitly store packets directly in the state. That is because
theT-Core selector already does in thesuccess andfail sets. Thus:

S= {(α,TC) |α ∈ B,TC∈ INSTANCESOF(TCSelector)}

Recall thatTCSelector allows exactly one packet to proceed, being non-deterministically selected.
The initial state is thens0 = (false ,TCSelector()). τ andδint are identical to those of theResolver.
The output set is augmented with the capacity of sending cancel events:

YACancelOut = {INSTANCESOF(Cancel)}∪{φ}

Thus
Y =YASuccessOut ×YAFailOut ×YACancelOut ×YAExceptionOut
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The input set is
X = XASuccessIn ×XAFailIn ×XCancelIn

where
XASuccessIn = XAFailIn = {INSTANCESOF(Packet)}∪{φ}

The external transition function is given by:

δext(((α,TC) ,e) ,x) =







(false ,TCc) if x= (E∗,E∗,ϕ)
(true ,TCs) if x= (π,E∗,φ)
(

true ,TCf
)

if x= (φ,π,φ)

As before, when a cancel event is received, theT-Core component calls itscancelIn function. When
a packetπ is received fromASuccessIn, TC.successIn (π) is applied andTCSelector results in
TCs. Finally when a packetπ is received fromAFailIn, TC.failIn (π) is applied andTCSelector
results inTCf . Note that if both packets are received at the same time, the one received fromAFailIn
is discarded. Recall that every time a packet is received, itis stored in thesuccess or fail set of
TCSelector.

The output function returns the selected packet resulting from theselect function of theT-Core
selector and the packet is sent via the appropriate outport.A cancel eventϕ is also emitted. It is
the result of thecancel function which excludes thecurrent condition of the selected packet,
i.e., ϕ.exclusions = {π.current }. This will cause all atomic primitives receiving that eventto
cancel their activity except for the identified one. Howeverif the select function failed, then only
an exception is output.

λ((α,TC)) =























(φ,φ,φ,TC.exception ) if TC.exception 6= nil

(TC.select (),φ,TC.cancel (),φ) if TC.isSuccess = true ∧
TC.exception = nil

(φ,TC.select (),TC.cancel (),φ) if TC.isSuccess = false ∧
TC.exception = nil

The Synchronizer

TheSynchronizer is an atomic DEVS, parametrized by the number of threadsthreadsto synchronize
and a user-defined merge functionmer. A Synchronizer is defined by the following structure:

Synchronizername,alias,threads,mer= 〈S,X,Y,δint,δext,λ,τ〉

The Synchronizer is structurally identical to theSelector but, in this case,TC is an instance of
the synchronizer class inT-Core. Recall thatTCSynchronizer synchronizes multiple threads of execu-
tion by merging the received packets if all threads succeeded. Merging is performed by means of a
user-definedmer merge function, or a default one and is defined asmer : 2INSTANCESOF(Packet) →
INSTANCESOF(Packet). Thus the initial states0 = (false ,TCSynchronizer(threads,mer)).
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X, δint , andδext are identical to those of theSelector, butY is the same as theMatcher’s. The time
advance returns 0 only when the number of events received reaches the thresholdthreads. In practice,
this means that all threads have reached theSynchronizer.

τ(s) =
{

0 if |TC.success |+ |TC.fail |= threads
+∞ otherwise

,∀s∈ S

The output function returns the merged packet resulting from themerge function of theT-Core
synchronizer and the packet is sent via the appropriate outport. However if themerge function failed,
then only an exception is output.

λ((α,TC)) =







(φ,φ,TC.exception ) if TC.exception 6= nil

(TC.merge (),φ,φ) if TC.isSuccess = true ∧TC.exception = nil

(φ,TC.merge (),φ) if TC.isSuccess = false ∧TC.exception = nil

7.2.3 The Composer

TheComposer is aCompositePrimitive defined exactly like a coupled DEVS.

Composername,alias=
〈

X,Y,N,M = {Mi |i ∈ N} , I = {Ii} ,Z =
{

Zi, j
}

,Ξ
〉

.

The input and output sets are defined as in their atomic counterpart:

X = XCPacketIn ×XCCancelIn ×XCNextIn

and
Y =YCSuccessOut ×YCFailOut ×YCExceptOut

N,M, andI describe the inner-topology of theComposer. TheZi, j functions are the identity as in
the example of Section 6.2.1:

∀n∈ N, i ∈ In,Zi,n : Yi → Xn,ZC,n : X→ Xn,Zi,C : Yi →Y

As for the select functionΞ, it chooses one sub-model of theComposer from the imminent set.
Recall that the imminent set is the set of sub-models fromM which would have an internal transition
at the same time. This set is computed at simulation time by the simulator.Ξ is described by the
following prioritized algorithmic steps:

1. If a Selector is in the imminent set, choose theSelector: this ensures that the cancel event will
be sent before anotherDEVSBlock is selected.

2. Among all theAtomicPrimitives that have a successful state (TC.isSuccess = true ), choose
one at random: this allows for optimistic execution.
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:SimpleRule
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Figure 7.3: AComposer representing a simple transformation rule.

3. At this point noAtomicPrimitive is successful. Now choose any of theAtomicPrimitive or Com-
positePrimitive models in the imminent set.

4. Finally, the imminent set only contains customAtomicDEVS. Select a model randomly.

Once a sub-model is selected, it first produces an output (if needed for the current state). This may
trigger theδext of the influencees of this sub-model. Then itsδint is performed. The select function
Ξ is called as long as the imminent set is non-empty. It is important to note that the sequencing re-
sulted from applyingΞ does not conflict with the parallel nature ofMoTif-Core. This is because all
transformation-specific operations (operations on theT-Core elements) are performed in the external
transition function rather than in the internal transitionfunction. Concurrent internal transition func-
tions are serialized, but external transition functions are executed in parallel (in a parallel setting).

7.2.4 Examples

MoTif-Core is a modelling language for designing model transformation. As defined by Harel and
Rhumpe [HR00], a modelling language is defined by an abstractsyntax and represented with a con-
crete syntax; the semantics of the language is defined by a semantic mapping function from the ab-
stract syntax to a semantic domain. The abstract syntax ofMoTif-Core is defined by the meta-model
in Figure 7.1. Its concrete syntax is described graphicallyby rounded rectangular shapes as illus-
trated in Figure 7.3. The semantic domain ofMoTif-Core is theDEVS formalism and the semantic
mapping function was described in Sections 7.2.2 and 7.2.3,mapping each element from theT-Core
meta-model ontoDEVS models. In fact, aMoTif-Core model is aDEVS model. To illustrate this
transformation language, we propose to first re-construct asimple graph transformation rule. Then,
we re-construct the case where one transformation rule out of a choice of two is applied in a non-
deterministic way.
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A simple graph transformation rule

The simplest rule-based model transformation unit is a rule. In graph transformation, a rule behaves
as follows. Given a transformation rule pattern, the rule first looks for an occurrence of its LHS
pattern to match in the input graph. If a match is found, the rule transforms the graph by rewriting the
matched sub-graph, resulting in the RHS pattern. Figure 7.3shows how a graph transformation rule
can be defined inMoTif-Core. The graphical syntax ofMoTif-Core primitives is a rounded rectangle
labelled on the top right by its type (M for Matcher, I for Iterator, W for Rewriter, R for Resolver, B
for Rollbacker, S for Selector, andY for Synchronizer). Inside it, the optionalalias followed by a
column and then aname identify the primitive. AComposer is represented by a double-lined rounded
rectangle. A line depicts a channel connecting ports. In this figure, the composition of the different
primitive MoTif-Core elements are encapsulated in aComposer namedSimpleRule.

TheComposer has three inner models: aMatcher, anIterator, and aRewriter. M is the set of these
three inner models.N is the set of labels which identifies each componentm by its unique identifier
id(m). The connection topology is given by the influencee sets:ISimpleRule = {:M1:M, :I1:I, :W1:W},
I:M1:M = {:I1:I,SimpleRule}, I:I1:I = {:W1:W,SimpleRule}, andI:W1:W = {SimpleRule}. For clarity of
the figure, the channels from theCCancelIn inport to theACacenlIn inport of each sub-model were
omitted. This is why the influencee set ofSimpleRule includesI1 andW1.

The behaviour goes as follows. The packet theSimpleRule receives via itsCPacketIn inport is first
sent to theMatcher. When theMatcher receives the packet, any8 occurrence in the graph of its pre-
condition patternc (the LHS) is stored in the packet. After a certain delay specified by∆, if a match
is found, theIterator receives the modified packet output from theMatcher and selects one match (in
this case the only one). Then, theRewriter receives the packet output from theIterator and transforms
the graph according to its post-condition patternc (the RHS) applied on the selected match (specified
in the packet). After a certain delay specified by∆, the selected match is removed form the packet and
the resulting packet is sent to an outport of theComposer. In the case of a successful application, the
newly modified packet is sent through the success outportCSuccessOut. If the Matcher was unable
to find any matches, or if theIterator has exceeded the number of iterations (to select a match), the
packet is sent through the fail portCFailOut, depicting that theSimpleRule was not applied.

Non-deterministic selection

MoTif-Core is not only a timed language, but also allows parallel composition of models. Since the
different primitive models are designed such that they waitfor an input event to arrive at an inport,
they can inherently run in parallel inside aComposer. GReAT [AKK +06] is a well-known graph
transformation language with asynchronous behaviour. Forexample, Figure 7.4(a) presents aTest
block where twoCases (atomic or composite rules) can be applied. When aTest block receives a
packet inGReAT, the packet is tested on all theCases. If multiple Cases succeed, only one will be
applied non-deterministically.

Figure 7.4 shows how aTest block can be re-constructed usingMoTif-Core primitives. TheMoTif-

8For this simple rule, themaxparameter of theMatcher is set to 1 since the rule is applied only once.
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Core model consists of aComposer composing twoSimpleRules—one for eachCase, assuming
they each consist of a simple rule described above. However,a Selector (Cut) ensures that at most
one of them will get applied by sending the appropriate cancel event to theSimpleRule as soon as
a packet is received. SinceGReAT is not a timed model transformation language, we assume that
the Matcher and theRewriter of both rules consume the same time. TheComposer has the follow-
ing inner models: twoMatchers, two Iterators, two Rewriters, and oneSelector. As before,M is the
set of these three inner models andN is the set of labels. The connection topology is given by the
influencee sets:I:Case1:M = I:Case2:M = {:Cut:S}, I:Cut:S = {:Case1:M, :Case2:M, :Case1:I, :Case2:I},
I:Case1:I = {:Test, :Case1:W}, I:Case2:I = {:Test, :Case2:W}, I:Case1:W = I:Case2:W = {:Test}, andI:Test =
{:Case1:M, :Case2:M, :Cut:S, :Case1:I, :Case2:I, :Case1:W, :Case2:W}. Again, theComposer influ-
ences all its inner models because of the cancel ports connections.

The behaviour goes as follows. First, the twoMatchers each receive a clone9 of the packet that the
Composer received. Then, assuming bothMatchers are in success mode, the select functionΞ of the
Composer will choose one of them to output. Without loss of generality, supposeCase1 is chosen.
Consequently theSelector receives the packet fromASuccessIn and immediately sends it through
ASuccessOut which yields to bothIterators receiving the packet. But onlyCase1 elements must be
activated. To solve this problem, theSelector also sends a cancel event throughACancelOut which
bothIterators receive and only the one mentioned in theexclusion list (in this caseCase1) does not
cancel its activity. The same behaviour as previously described for theSimpleRule follows from there.
For the case where one of theMatchers fails, the same scenario applies since theComposer will still
select the successful one. Finally, in the case where bothMatchers fail the Composer selects one of
them and theSelector sends the packet it receives throughAFailOut. Therefore theMoTif-Core model
is indeed semantically equivalent to the asynchronousTest block in GReAT.

The reason why cancel events have been added to theMoTif-Core language is becauseDEVS lacks
of dynamic re-structuring. That is, once modelled, the atomic and coupled DEVS models as well as the
connection topology can no longer be modified. Dynamic structure DEVS (DSDEVS) [Bar95] over-
comes this limitation. It allows the structure of a model to change dynamically. Structural changes
include changes in connection topology and the creation anddeletion of components in a coupled
DEVS model. The changes are triggered by particular state-conditions. We have not chosen DSDEVS
variant as a semantic because we do not believe the expressive power offered by DSDEVS is useful for
us. At the (transformed) model level, we have dynamic structure thanks to the nature of graph trans-
formation. At the level of the rule scheduling, the control/data flow logic which classic DEVS offers
is more than sufficient. Using DSDEVS would allow for the rulescheduling to change dynamically
which hardly seems useful.

7.3 Properties of MoTif-Core

The following outlines some of the most remarkable properties ofMoTif-Core.

9Cloning the events is necessary to preserveDEVS properties, as two atomic DEVS models shall not share the same
(sub-)state. In this case, modifying the packet in oneMatcher (e.g.,storing the matches found) should not affect the packet
of the otherMatcher.
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(a)
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Figure 7.4: ATest block in GReAT showing twocases in (a) and its equivalent model inMoTif-Core
in (b).

7.3.1 Soundness

When connectingMoTif-Core elements, through port channelling, the resulting model defines an exe-
cution flow of a graph transformation. In order to ensure aproper flow, Lemma 1 states that whenever
a packet is received by aMoTif-Core primitive, a packet will be output from that entity. This is true as
long as no cancel event is received.

Lemma 1. For anyAtomicPrimitive 〈X,Y,S,δint,δext,λ,τ〉, the following must hold:

∀s∈ S,∀e∈ T,∀x∈ X\INSTANCESOF(Cancel) ,λ(δext((s,e),x)) 6= φ⇔ τ(δext((s,e),x))<+∞

Proof. Since by construction,∀s∈S,λ(s) 6= φ, we need to show thatτ(s′)<+∞⇒ s′ = δext(s). That
is, if the time advance of a states′ is finite thens′ was computed from the external transition function.
Note that for all atomic primitives except theSynchronizer, τ(s) < +∞⇔ α =true if and only if a
packet is received without a cancel event.

For theSynchronizer, we haveτ(s′)<+∞⇒|TC.success |+ |TC.fail |= threads. Recall that
the size ofsuccess is only incremented by thesuccessIn operation and the size offail is only
incremented by thefailIn operation. Both operations are applied in the context ofδext only, when
a packet is received without a cancel event. Hence the condition |TC.success |+ |TC.fail | =
threadsis satisfied only after the application ofδext.

On the other hand, note that for all atomic primitives, neithers0 nor the state produced byδint lead
to an output as the time advance is infinite.
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7.3.2 Complete and Autonomous System

A MoTif-Core model is aDEVS model specialized for transformation purposes. It can therefore be
combined witharbitrary AtomicDEVS and CoupledDEVS models. The implementation ofMoTif-
Core makes use of this to specify the interface for the input of thehost model in a similar way as
in [SV07]. A userAtomicDEVS sends the initial packet to atransformationCoupledDEVS which en-
capsulates theMoTif-Core transformation model. The interface for outputting the result of the trans-
formation is also modelled, as it is sent back to the user block. Hence,MoTif-Core is a complete
systemsince all the components are modelled inDEVS. It is alsoautonomousas it does not require
interaction with the outside world.

7.3.3 Time and Asynchrony

MoTif-Core is inherently atimed event-based language. This allows transformation languages to spec-
ify the time duration for the matching phase (Matcher) and for the rewriting phase (Rewriter) sepa-
rately. Furthermore, the remainingAtomicDEVS elements do not consume time (their time advance
is 0). Thus the transformation modeller has control over timing at the transformation unit level. This
allows a transformation engineer to conveniently specify the behaviour of languages modelling reac-
tive systems,e.g.,modelling lag time or delays. Another application of transformations enriched with
the dimension of time is in simulation-based design. In thiscase, a simulated time system can later be
replaced with a real-time clock. Chapter 9 shows such an application.

Being discrete-event based,MoTif-Core allows one to specifyasynchronoustransformation lan-
guages and can provide a data flow of execution. That is, several packets can be processed simultane-
ously, and hence the transformation can potentially be parallelized. Nevertheless, the timing specified
by the time advances may induce delays which implicitly givea causal dependency between concur-
rent transformation units.

Traditionally in graph transformation, dependency between rules was only based on the input
model and the specification of the rule patterns (LHS and RHS). This leads tocausal relationships
between rules at run-time. InMoTif-Core, rule causality depends on several factors. Orthogonal to the
aforementioned factors, the duration for executing aMatcher or aRewriter also affects the flow of the
transformation. Furthermore, pivot exchange may prevent amatch from occurring or let the matching
focus only on part of the input model. Together with how portsare connected, this may affect the
sequence of rules application in the overall transformation.

7.3.4 Well-formed transformation language

Lemma 2 ensures that the execution of aMoTif-Core model is well-formed. Model transformation is
inherently non-deterministic. The non-determinism appears in two places: the location of application
in the host model and the choice of which rule to apply. The former is because the pre-condition
pattern of a rule may have multiple matches in the host model.The latter is because rule-based model
transformation is declarative, allowing rules to be partially ordered. Therefore,MoTif-Core models
must have a non-deterministic execution, but each choice must be repeatable. This is what we call a
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well-formed execution.

Lemma 2. EveryMoTif-Core model has a well-formed model transformation execution.

Proof. A DEVS model is deterministic if:

• all atomic models have theirδext, δint , andλ functions deterministic, and

• all coupled models have theirΞ function deterministic.

It is trivial to see thatδext, δint , andλ are all deterministic for allAtomicPrimitives. However, this
imposes that the matching algorithm of theTCMatcher must be deterministic, as well as the selection
algorithm ofpacketIn operation of theTCIterator, the resolution function of theTCResolver, and
the merge function of theTCSynchronizer. In our implementation, we ensure that the abovementioned
operations are deterministic by enforcing all choices to bechosen randomly in a Monte-Carlo sense,
repeatable using sampling from a uniform distribution to provide a reproducible, fair sampling. How-
ever, it is the responsibility of the user to define deterministic (or random repeatable) custom resolution
and merge functions. As for the select function of theComposer, random choices are repeatable as
mentioned above.

7.3.5 Modular Execution

MoTif-Core models can be executed by aDEVS simulator as described in Chapter 6. This allows the
DEVS model to behave as a graph transformation engine. Othertypes of simulators can be used to
execute a DEVS model, such as real-time simulators or distributed simulators. These are attractive
since they do not require to modify the DEVS model (i.e., plug-and-play).

The time advances specified in a DEVS model evolve the time modelled explicitly. The standard
DEVS simulator runs theMoTif-Core model in simulated time. The transformation model can also
be executed by areal-time DEVS simulator (RT-DEVS) [HSKP97]. Our Python implementation of
RT-DEVS based onpythonDEVS will be used to run transformation models in real-time in Chapter 9.

MoTif-Core primitives are independent from one another as they do not share any information.
Furthermore, the packets they exchange contain enough information for each primitive to process
them. TheControlPrimitives provide join points to parallel execution of otherMoTif-Core primitives.
Therefore, a distributed (and thus partially parallel) execution ofMoTif-Core models is possible with
an appropriatedistributed DEVS simulator (c.f., Section 6.6).

A potential overhead of running DEVS models in parallel in a distributed environment is the select
function of coupled models. Recall that it only happens whenmultiple internal transitions can occur
simultaneously. However inMoTif-Core, all the work performed by the primitives is encapsulated in
the external transition functions. The internal transition functions do very little work. For theMatcher,
Rewriter, Resolver, Selector, andSynchronizer, the internal transition function simply resets the cur-
rent state to the initial state. For theIterator andRollbacker it simply changes a boolean value and
dereferences the temporary pointer to the packet. Also, before the internal transition is triggered, an
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atomic DEVS model may output an event computed by the output function. Except for theSynchro-
nizer, the computation of a the output function is minimal as it either sends a packet pre-computed in
the external transition function, or creates a cancel eventor an exception event. As for theSynchro-
nizer, the packets are merged into a single packet in the output function. Recall that the defaultmerge

function first verifies whether the received packets have overlapping matches. If not, then the match
set of the “merged” packet consists of the union of all the match sets from all the packets received.
Therefore, the computation time of the default merge function is linear in terms of the size of the
host graph. However, if a custom merge function is specified,the computation time depends on its
specification.

7.4 The MoTif Language

MoTif-Core is a language for modelling transformations. From a syntactical point of view, it is a
domain-specific language for modelling withT-Core primitives. However, its semantics relies entirely
on DEVS. Thus the transformation engineer is required to have expertise in theDEVS formalism,
which is rarely the case. It is hence not a trivial transformation language to design transformation
models with. Instead,MoTif-Core is intended to offer a common platform for model transformation
languages that are at a more appropriate level of abstraction. In this section, we therefore present a
transformation-specific languageMoTif whose syntax abstracts awayT-Core constructs and whose
semantics is defined in terms ofMoTif-Core.

7.4.1 A Domain-Specific Language for General-Purpose Trans formations

MoTif is a modelling language for designing model transformations. This language is engineered fol-
lowing MPM principles where everything is explicitly modelled at the most appropriate level of ab-
straction using the most appropriate formalism. Thereforeits meta-model, depicted in Figure 7.5, con-
sists of three parts: the pattern language, the scheduling language, and the transformation units. This
is compatible with the transformation language engineering methodology proposed in Section 5.4.

The pattern language is automatically adapted to the domainof application of each transformation
following the RAM process of Section 5.3.4. It is integratedin the meta-model ofMoTif by extending
thePre- andPostConditionPattern classes through inheritance, the same way as in Figures 5.4 and 5.5.
MoTif is a controlled graph transformation language. It offers a clean separation of the transformation
units from the structure and flow of execution of the transformation. There are two types of trans-
formation units. Aquery is composed of solely pre-condition patterns. They consistof a LHS and
optionally NACs. Arule is composed of pre- and post-condition patterns, with a LHS,a RHS, and
optional NACs. Transformation units are embedded inAtomicRuleBlocks that are part of the schedul-
ing language. This language mainly consists ofRuleBlocks. A RuleBlock can thus be either atomic
or composite (CompositeRuleBlock). In the atomic rule blocks, anARule (“Atomic Rule”) encodes
a rule and aQRule (“Query Rule”) encodes a query. Composite rule blocks are used to modularly
encapsulate otherRuleBlocks (atomic or composite). Some express advanced control flow structures
such as branching, looping, and parallelism.RuleBlocks have ports that can be connected via chan-
nels.Model is the only input port andSuccess, Fail, andException represent output ports.Exceptions
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RuleBlock
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*

context RuleBlock def: indirectPath(): Bag =

  if self.oclIsKindOf(AtomicRuleBlock) then

    self.ports->collect(c: Channel | c[tar].ruleBlock)

  else self.ports->collect(c: Channel | c[tar].ruleBlock)->union(

    self.ports->collect(c: Channel | c[tar].ruleBlock.indirectPath()))

  endif

context RuleBlock inv:

  self.indirectPath()->excludes(self)

context Channel inv:

  CompositeRuleBlock.allInstances()->exists(c |

    c.subRules->includes(self[src].ruleBlock) and

    c.subRules->includes(self[tar].ruleBlock)))

context Model inv:

  Channel.allInstances()->collect(c | c[tar] = self)->size() <= 1

context M2M inv:

  self[src].ruleBlock.oclIsKindOf(CompositeRuleBlock) and

  self[src].ruleBlock.subRules->includes(self[tar].ruleBlock))

context E2E inv:

  self[tar].ruleBlock.oclIsKindOf(CompositeRuleBlock) and

  self[tar].ruleBlock.subRules->includes(self[src].ruleBlock))

Figure 7.5: The meta-model ofMoTif .
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Figure 7.6: The different rule blocks inMoTif .

andHandlers will be discussed in the next chapter. Port channelling induces an orderedsequenceof
application of rule blocks. The OCL constraints included inthe meta-model specify that:

• No path defined by a sequence of port connections shall inducea cycle;

• The source and target ports of any channel shall be within thesame scope defined by composite
rule blocks;

• A model port can be the target of at most one channel;

• The source port of a model to model channel shall be attached to the parent of the source’s rule
block;

• The target port of an exception to exception channel shall beattached to the parent of the target’s
rule block.

In the MoTif visual modelling language, the concrete syntax of anARule is a single rectangle
frame as depicted in Figure 7.6. The top triangle on a rule block is theModel input port. The bottom
left tick symbol is theSuccess output port and the bottom right “X” symbol is theFail output port.
Conceptually, the input model is received from theModel port and, if the application of the rule is
successful, the resulting model is output through theSuccess port. However, if the pre-condition pat-
tern is not satisfied, the original model is output from theFail port. TheQRule has a similar graphical
syntax with a question mark symbol on the top right of the rectangle. The transformation engineer
can specify a duration for the matching phase for both atomicrule blocks. In the case of anARule, the
duration for the rewriting phase can also be specified.

A MoTif sub-model encoding transformation units can be part of aCRule (“Composite Rule”).
CRules are visually depicted by a double rectangle frame. The sameports appear on both atomic
and composite rule transformation models which implies that they can be used interchangeably to
modularly build complexhierarchical transformation models.
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Iterative rule application is possible with variants of anARule. TheFRule (“For all Rule”) applies
the transformation rule onall matches of the pre-condition pattern (in arbitrary, but deterministic and
repeatable order). The matches are assumed to be parallel independent [EEKR97]. Two matches are
parallel independent if no overlapping matched element is modified (node deletion or attribute modi-
fication) by the rule when applied. If they are not, the transformation designer can specify a resolution
function to resolve the conflicts. The purpose of theFRule is purely syntactic. It is syntactic sugar
for applying the rule iteratively over all matched sub-graphs. The maximum number of iterations is
parametrizable. TheFRule is represented using the same concrete visual syntax as anARule, anno-
tated with an “F” in the top right corner. If the maximum number of iterationsis not infinite, the
positive integer appears in the top left corner.

Another variant of theARule is the SRule (“Star Rule”). It is applied sequentially as long as
the pre-condition pattern is satisfied in the model. That is,after the received graph is matched and
transformed, the resulting model is then matched by the samerule. This continues until no more
matches can be found in the resulting packet. Care should be taken when using this construct as it may
result in an infinite loop. When combined with pivot passing,theSRule applies itselfrecursively10.
TheSRule is represented using the same concrete visual syntax as anARule, annotated with an asterisk
in the top right corner. If the maximum number of iterations is not infinite, the positive integer appears
in the top left corner.

While iteration involves a single rule block,looping allows one to iterate over multiple rule blocks.
This is possible with theLRule (“Loop Rule”). It consists of an atomic rule block as base andaCRule
as loop body. It allows applying several rules iteratively.TheLRule has different variants depending
on the type of the base rule block and whether pivots are used in the patterns, such as rule nesting and
indirect recursion. Its concrete syntax is the same as aCRule but a horizontal solid line separates the
base compartment from the loop compartment.

In graph transformation, it is sometimes desirable to have many rules match, but let only one be
applied.MoTif introduces theBRule (“Branch Rule”) block which makes of this feature forbranch-
ing. Its purpose is to receive a model, through itsModel port, and send it to each branch. However,
only one branch is selected to continue executing the transformation. Visually, aBRule is very similar
to aCRule but the rectangle is partitioned by vertical filled lines to separate the branches, each branch
being aCRule in its own right.

MoTif allows rules to be applied inparallel with thePRule (“Parallel Rule”). This leads to what
we call “threads” of rule applications. Each thread is applied concurrently, independently from one
another. The output of aPRule is a single model “merged” from the result of each thread. Thethreads
are assumed to be sequential independent [EEKR97]. That is,any order of application of the rules in
each thread leads to the same output. If they are not, the transformation designer can specify a merge
function to merge the graphs in conflict. ThePRule’s parallel execution requires special care. Visually,
a PRule is very similar to aBRule but vertical lines that separate the threads are dashed. Each thread
is aCRule in its own right.

10This is similar to direct recursion in procedural programming languages, where a procedure invokes itself.
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When theisTransactional flag of a rule block is activated, its behaviour is extended with
memory capacity, which providesback-tracking. We denote such a rule block byXRule (“Trans-
actional Rule”). For composite rule blocks,isTransactional is set to true if and only if the first
sub-rule is transactional. We will see in Chapter 9 that, through transactional rules,MoTif also al-
lows for recursion. A transactional rule block has the same concrete visual syntax as the rule block,
annotated with an “X”.

Note how the meta-model ofMoTif does not include any information about the data processed.
This is becauseMoTif is a language that constrains the transformation modeller to only focus on
describing a model transformation. In fact, the semantics of MoTif is defined in terms ofMoTif-Core.
The behaviour of each of its constructs is detailed in the following subsections.

7.4.2 From MoTif to MoTif-Core

Now that the abstract and concrete syntax ofMoTif have been described, we define its semantics by
mapping it ontoMoTif-Core (i.e., DEVS). The semantic mapping is injective since everyMoTif con-
struct corresponds to a uniqueMoTif-Core model. We describe this mapping as a model transformation
specified inMoTif . It is therefore ahigher-order transformation transforming one transformation
language into another. Following the methodology described in Chapter 5, the meta-model of the pat-
terns of this transformation consists of the RAM version of the meta-models ofMoTif andMoTif-Core.
In this subsection, we outline the main transformation steps of the semantic mapping.

EveryRuleBlock in MoTif is mapped onto aComposer in MoTif-Core. Thealiasandnameparam-
eters of theComposer are the same as those of itsRuleBlock counterpart. TheModel port is mapped
to theCPacketIn port of theComposer, theSuccess port to theCSuccessOut port and theFail port to
theCFailOut port. Exceptions are not considered here.

QRule

Alias:Name

Alias:Name

M

I

Alias:Name

?
Alias:Name

Figure 7.7: TheQRule in MoTif and its equivalentMoTif-Core model.

TheQRule, is the simplest transformation unit with no side effect: itonly searches for one match
of a pattern in the host model. Figure 7.7 illustrates how aQRule is mapped onto aMoTif-Core Com-
poser. We use the following notation to refer to aQRule: QRulename,alias,pre,∆m. The rule in the figure
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describes the connection topology of theComposer’s sub-models11. We denoteMQRulethe set of sub-
models of theComposer of type QRule. For readability purposes, we will omit thealias andname
parameters ofMoTif-Core’s AtomicPrimitives which will always be set to those ofMoTif RuleBlock,
unless stated otherwise.

MQRule=
{

Matcherpre,∆m,1, Iterator1
}

The QRule has a very simple behaviour. Given an input packet, if a matchis found, the resulting
packet is output via the success port. Otherwise, the original packet is sent from the fail port.
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Figure 7.8: TheARule in MoTif and its equivalentMoTif-Core model.

TheARule, is the simplest transformation unit with side effect. WhenanARule receives a model
input from theModel port, it searches for one occurrence of its LHS in the input model. If a match
is found, it is transformed according to the RHS of the rule. Figure 7.8 illustrates how anARule is
mapped onto aMoTif-Core Composer. We use the following notation to refer to anARule:
ARulename,alias,pre,post,∆m,∆w,res. The rule in the figure describes the connection topology of theCom-
poser’s sub-models. We denoteMARule the set of sub-models of the correspondingMoTif-Core Com-
poser:

MARule=
{

Matcherpre,∆m,1, Iterator1,Rewriterpost,∆w,Resolverres,Rollbacker1
}

An ARule behaves similarly to the simple rule described in Section 7.2.4. However, aResolver is
added in case a pending match in the packet conflicts with the current rule application. Visually, the
zigzag on its right depicts theAExceptionOut port from which an exception event encapsulating the
packet is output if theResolver cannot resolve the conflicts12. To ensure the atomicity of the graph

11Once again, the connections between theCCancelIn port of theComposer and theACacenlIn ports of all its sub-
models are omitted for clarity.

12More details on exceptional situations will be provided in the following chapter.
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transformation rule, aRollbacker is added to theMoTif-Core model. It ensures that if the rule is not
applied, the packet will be restored to the state it was before entering theComposer.
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Figure 7.9: TheFRule in MoTif and its equivalentMoTif-Core model.

TheFRule is anARule that applies its transformation phase onall the matches found before the
new model is output. As shown in Figure 7.9, the matching phase is performed only once and, after the
match is rewritten and validated, the packet is sent back to the Iterator that will select another match
to process. Note that theIterator failing (i.e.,outputs a packet fromAFailOut) means that theMatcher
has successfully found matches in the host graph and that there are no more matches left to process. In
this case, theFRule will successfully output the new packet. If, however, theRewriter or theResolver
fails during one of the iterations, all the modifications that had been performed in thisComposer are
discarded through theRollbacker. Given anFRule defined asFRulename,alias,pre,post,∆m,∆w,res,max, the
sub-models of the correspondingMoTif-Core Composer are:

MFRule=
{

Matcherpre,∆m,max, Iteratormax,Rewriterpost,∆w,Resolverres,Rollbacker1
}

The user can control the number of times the rule encoded in the FRule is applied. Ifmax= ∞, it will
be applied on all possible matches. The order in which matches are processed is non-deterministic as
it relies on the behaviour ofT-Core’s TCIterator. Also, theTCResolver will by default fail if any two
matches overlap. This will result in discarding all previous transformations performed by thisFRule.
This seems like an overhead as confluence of the matches couldhave been detected prior to the exe-
cution, through the computation of critical pairs [HKT02] for example. However, the latter approach
may sometimes be too conservative leading to false positives (an example is given in [HHT02]). This
is overcome inMoTif by letting the user override the validation criteriares.
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Figure 7.10: TheSRule in MoTif and its equivalentMoTif-Core model.

SRule

The SRule, is anARule that applies the ruleas long as possible. That is, after the received model
is matched and transformed, the resulting packet is then matched again by the same rule. This con-
tinues until no more matches can be found in the resulting packet. As shown in Figure 7.10, the
application of theSRule is considered successful if at least one match is found and transformed. For
this purpose, after the packet has been matched, transformed, and validated a first time, it is sent
to a differentMatcher that will ensure the loop. A clone of the originalMatcher is needed to dis-
tinguish the first non-occurrence of matches (in which case the SRule fails) from subsequent ones
(in which case theSRule succeeds). The secondMatcher sends a packet to theANextIn port of the
Iterator rather than to itsAPacketIn port to keep track of the number of iterations remaining. This
then requires that bothMatchers refer to the same pre-condition pattern. Given anSRule defined as
SRulename,alias,pre,post,∆m,∆w,res,max, the sub-models of the correspondingMoTif-Core Composer are:

MSRule= { Matcherpre,∆m,1,Matchername,alias+′1′,pre,∆m,1, Iteratormax,Rewriterpost,∆w,Resolverres,

Rollbacker1}

XRule and its variants

TheXARule, is the transactional version of anARule. It is an atomic rule with the capability of rolling-
back the packet to the state before the last application of this rule. As shown in Figure 7.11, the
application of theXARule has a similar topology to theARule with the addition of a secondRollbacker.
Given anXARule defined asXARulename,alias,pre,post,∆m,∆w,res, the sub-models of the corresponding
MoTif-Core Composer are:

MXARule= { Matcherpre,∆m,∞, Iterator1,Rewriterpost,∆w,Resolverres,Rollbackername,alias,1,

Rollbackername,alias+′1′}

The Matcher now needs to search for all matches as they may all be processed due to roll-backing.
It then sends the resulting packet to theRollbacker which checkpoints the packet. Recall that its
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Figure 7.11: TheXARule in MoTif and its equivalentMoTif-Core model.

maximum number of iterations is set to the number of matches found. Then, theIterator receives the
packet output by theRollbacker (which is the same as the one output from theMatcher). It selects a
match and outputs it to theRewriter. The same behaviour as for theARule follows from there. After
some time, theComposer may receive an event from itsCNextIn port and forwards it to theRollbacker
to undo the previous effect of this rule and attempt to apply it on a different match. When all matches
have been tried, the packet is restored to its original stateand output via the fail port.

TheQRule also has a transactional variant. Although it does not modify the input model, it never-
theless adds match sets to the packet. The topology of theMoTif-Core model equivalent to theXRule
is the same as for theXARule, but withoutRewriter andResolver.

Figure 7.12(a) shows theXSRule, the transactional version of anSRule. TheXSRule is the trans-
actional version of anSRule. When theComposer receives a packet from theCPacketIn port, the
XSRule applies the rule first on the original model received. Subsequent transformations are applied
on the previously transformed model. However, the order in which the matches are selected may
lead to different final results. Therefore when a roll-back is required, all previous transformations
of the rule are discarded and the following sequence of transformations starts with a different ini-
tial match selected. This is why the firstMatcher must find all matches. Given anSRule defined as
SRulename,alias,pre,post,∆m,∆w,res,max, the sub-models of the correspondingMoTif-Core Composer are:

MSRule= { Matcherpre,∆m,∞,Matchername,alias+′1′,pre,∆m,1, Iteratormax,Rewriterpost,∆w,Resolverres,

Rollbackername,alias,1,Rollbackername,alias+′1′}

Figure 7.12(b) shows theXFRule, the transactional version of anFRule. In this case, only oneRoll-
backer is needed since theFRule consumes all the matches. Therefore, when theComposer receives
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Figure 7.12: TheXSRule in (a) and theXFRule in (b) and their equivalentMoTif-Core models.

an event from theCNextIn port, all changes affected by theXFRule are discarded and the original
packet is output. Given anXFRule defined asXFRulename,alias,pre,post,∆m,∆w,res,max, the sub-models of
the correspondingMoTif-Core Composer are:

MXFRule=
{

Matcherpre,∆m,max, Iteratormax,Rewriterpost,∆w,Resolverres,Rollbacker1
}

CRule

The CRule, is a composite rule that allows one to group rule blocks modularly. It provides abstrac-
tion of a phase or concern of the transformation. Semantically, a CRule is mapped to aMoTif-Core
Composer which has the same purpose. According to the meta-model ofMoTif , theModel port of the
CRule can be connected to at most one sub-rule. However, several sub-rules may be connected to its
Success or Fail ports.

A CRule is transactional if its first sub-rule is. Consider the example in Figure 7.13 which shows a
MoTif model on the left consisting of aCRule, namedC, with four sub-rules.R1 andR3 areXRules and
R2 andR4 areARules. In case they all succeed, the channel connections indicate that the rule blocks
are applied in alphabetical order. IfR1 fails, then the transformation terminates in failure. In case
any other rule block fails, the transformation is halted indefinitely. However, sinceC is transactional,
the channels are implicit. If a rule block with an unconnected port fails, the transformation rolls-
back to the previousXRule recursively, until the first rule block. In the example, ifR4 fails then the
transformation rolls-back toR3. But if R3 fails, then it rolls-back toR1 sinceR2 is not anXRule. We
denote such a composite rule block anXCRule.
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Figure 7.13: ACRule with transactional behaviour and the equivalentMoTif-Core model.

LRule and its variants

TheLRule, is a composite rule block whose primary purpose is to loop over several rule applications,
since channel connections cannot induce cycles. As depicted in Figure 7.14(a), it consists of aQRule
as base and a rule block in the loop part. The inner rule blockR is applied for each match encountered
in theMatcher of the query. If the success and fail ports ofRare not connected, then looping continues
regardless of its output. Otherwise, the loop is interrupted in a similar way as a break statement inter-
rupts a loop in programming languages. Given anLRule defined asLRulename,alias,pre,post,∆m,∆w,max,R,
the sub-models of the correspondingMoTif-Core Composer are:

MLRule=
{

Matcherpre,∆m,max, Iteratormax,R
}

If the base rule block is anARule, then theRewriter in the correspondingMoTif-Core model is
applied at the end of the loop. As Figure 7.14(a) shows, the equivalentMoTif-Core model of anARule
is constructed by interleaving the inner rule block betweenthe Iterator and theRewriter. Such a con-
struct, called anLARule, allows one to interleave the matching and the rewriting phases of several rule
blocks thereby providingrule nesting13. TheLARule is defined asLARulename,alias,pre,post,∆m,∆w,max,R,
the sub-models of the correspondingMoTif-Core Composer are:

MLARule=
{

Matcherpre,∆m,max, Iteratormax,Rewriterpost,∆w,Resolverres,Rollbacker1,R
}

The LFRule is constructed in a similar way, replacing theARule by anFRule. In this case, the
Rewriter is applied at each iteration before the inner rule block. In its nested version, theLNFRule,
the Rewriter is applied at each iteration after the inner rule block. Bothconstructs are illustrated in

13Section 3.4.2 shows how rule nesting allows one to amalgamate transformation rules.
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Figure 7.14: TheLRule in (a) and theLARule in (b) and their equivalentMoTif-Core models.

Figure 7.15(a) and 7.15(b). TheLSRule andLNSRule are constructed in a similar way, replacing the
FRule by anSRule. If the base rule block is transactional then theLRule becomes transactional. Since
all variants of theXRule either add aRollbacker between theMatcher and theIterator or a channel to
the existingRollbacker, all the applications of both the base and the inner rule blocks will be undone
upon roll-back.

BRule

TheBRule, is a composite rule block that non-deterministically selects one successful branch of ex-
ecution. The selection is applied only on the first matchingsof each branch. Thus when a branch
starts with a composite rule block, the selection is appliedonly on the first atomic rule block found.
Figure 7.16(a) shows theMoTif-Core model corresponding to aBRule with two branches, each con-
sisting of a sequence of twoARules. The channels theMatchers output from are re-routed to a single
Selector. The behaviour is similar to theTest rule block in Section 7.2.4. However, to preserve the
atomicity property of the transformation, aRollbacker is added to undo any changes if aResolver does
not succeed. Note that if there were only one branch in theBRule consisting of anARule, theBRule
would have the exact same behaviour as theARule. The only difference is the addition of theSelector,
but it does not consume time. Recall that theFRule, SRule and theLRule only differ from theARule
starting from theIterator. Therefore if one replaces theARules in Figure 7.16(a) by anFRule or an
SRule or anLRule, only that part following theIterator would have to be adapted. In case of anXRule,
Rollbackers are added between theMatchers and theSelector as illustrated in Figure 7.16(b). Then the
success/fail connections are delegated to theRollbackers. This has for effect to undo all modifications
performed within theBRule.

A variant of theBRule is theBSRule. It allows one to apply recursively each branch, giving the
chance to both branches of re-applying at each iteration. Asillustrated in Figure 7.17, the first rule
block of each branch is converted into anSRule. On the first iteration, theBSRule behaves exactly
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Figure 7.15: TheLFRule in (a) and theLNFRule in (b) and their equivalentMoTif-Core models.
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Figure 7.16: TheBRule in (a) and theXBRule in (b) and their equivalentMoTif-Core models.

like a BRule. But on the following iterations, the clonedMatcher outputs a packet to a clone of the
Selector and the normal behaviour of aBRule follows.

SinceMoTif is a timed transformation language, matching time and rewriting time may differ
from one rule block to another. TheSelector will always choose the first branch that finds matches
and cancel all the other branches. However, if two or more branches have their firstMatcher output
a packet at the same time, one of them is chosen non-deterministically by the select function of the
Composer and the other one is cancelled. The output time of theBRule is the output time of the
selected branch.

PRule

ThePRule, is a composite rule block that provides deterministic execution of several threads of sub-
transformations in parallel. ThePRule succeeds if and only if all threads succeed. The output time of
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Figure 7.17: ABSRule and its equivalentMoTif-Core model.

thePRule is the output time of the slowest thread. We propose two alternatives for applying threads
sub-transformations in parallel.

The first alternative synchronizes the threads at the end of each sub-transformation. Each thread
is mapped to aComposer encapsulating theMoTif-Core model equivalent to the transformation of the
corresponding thread, following the transformations presented in this subsection. ASynchronizer is
added to theMoTif-Core model such that theCSuccessOut port of all theComposers are connected
to theASuccessIn port of theSynchronizer and theirCFailOut port is connected to theSynchronizer’s
AFailIn port. The top part of Figure 7.18 illustrates such aPRule with two threads, each consisting
of two ARules. The advantage of this approach is that the content of each thread can be arbitrarily
complex and with arbitrary match and rewrite durations, since the synchronization and merge of
packets only happens once at the end. The disadvantage is that the burden is on the transformation
engineer who has to provide a merge function (if needed) thattakes as input as many packets as there
are threads.

The second alternative takes advantage of the fact that the transformation language has been de-
composed in primitive operations. The primary purpose of aPRule is to provide optimization points
in a transformation allowing concurrent operations. The critical operations in a transformation are
the matching and the rewriting. Since matching is in generalsignificantly more time consuming than
rewriting (c.f. Chapter 4), it is highly desirable to parallelize this operation, on rules that are parallel
independent. The right part of Figure 7.18 illustrates how the previousPRule is mapped toMoTif-Core
in this approach. Suppose thePRule hasθ threads. InMoTif-Core, first a clone of the received packet
is fed to theθ Matchers. When aMatcher finishes processing the packet, it sends it toSynchroniz-
ers according to the success or fail output. There are 2θ Synchronizers, each representing a possible
combination of theMatchers’ output. Since aMatcher outputs a packet exclusively from either of its
outports, there is exactly oneSynchronizer that performs the merge of the packets and outputs the re-
sult. Recall from Chapter 3 that if the received packets havenon-overlapping match sets, the merged
packet consists of the union of these match sets. Otherwise,the transformation engineer must define
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Figure 7.18: APRule mapped to aMoTif-Core model according to each alternative.

the merge operation. Depending on the activatedSynchronizer, the Iterator andRewriter correspond-
ing to the rule blocks whoseMatcher succeeded are applied. After the first rule of each thread has
been applied, the resulting packet is sent to the followingMatchers and the same behaviour continues.
The main disadvantage of this alternative is that the presented solution is well-defined for threads con-
sisting sequences ofARule applications as depicted on the bottom left of Figure 7.18, but the number
of ARules in each sequence may differ. The main advantage, however, is that synchronization and
packet merging happens at a finer granularity than the first alternative, which enables the transforma-
tion engineer to (1) specify simpler merge functions and (2)know exactly where the packets are not
mergeable.

In our implementation, if each thread of aPRule only consists of a sequence ofARules andQRules,
then thePRule is transformed into aMoTif-Core model according to the second alternative; otherwise
according to the first alternative. Here, we set the stage forfuture work to implement a possibly
parallel or distributed transformation based on these alternatives.
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Figure 7.19: The architecture of theMoTif language.

7.5 Running MoTif models

MoTif is a completely modelled model transformation language. Its syntax is convenient to use for
a transformation engineer in the sense that it only containsartefacts specific to transformations (un-
like MoTif-Core). Its semantics is also modelled since it is mapped onto theMoTif-Core modelling
language and this mapping is modelled as a transformation. Figure 7.19 illustrates the different lan-
guage layersMoTif relies on.MoTif is a syntactic sugar language ofMoTif-Core, which consists of
the core elements of the language. The former language simply defines a more user-friendly syntax
encapsulating the different transformation operators provided in the latter language.MoTif-Core com-
binesT-Core andDEVS, both running on a model-aware virtual machine. They are expressed in a
neutral target language as defined by the AToM3 Redux Kernel (ARK), which represents the meta-
meta-modelling layer inAToM3. The tool is implemented in Python. TheDEVS virtual machine allows
executingMoTif transformations.

Figure 7.20 represents the framework in whichMoTif transformation models are executed.Mo-
Tif is a formalism defined inAToM3 as a domain-specific language. To define a transformation, the
transformation engineer transforms the source and target meta-models with the semi-automatic RAM
process. The result is combined with the transformation unit part of the meta-model ofMoTif and
produces a customized meta-model for the patterns of the transformation. On the one hand, the trans-
formation engineer defines rules, queries, and their patterns in the modelling environment described
in Section 5.3.5. They are then automatically compiled intoT-Core patterns. On the other hand, the
transformation engineer specifies the control flow of the transformation by designing aMoTif model.
The atomic rule blocks refer to the transformation units already created. Then theMoTif model is
transformed into an equivalentMoTif-Core model as outlined in Section 7.4.2. The resulting model is
further compiled into aPythonDEVS model following the mapping defined in Section 7.2. The gen-
eratedT-Core patterns are integrated in the DEVS model through package imports. APythonDEVS

environment is also generated from theMoTif-Core model. It allows one to interact, execute, and
debug thePythonDEVS model.

After a MoTif-Core model is generated from theMoTif model, some optimization are performed
to reduce unnecessary overhead of DEVS artefacts. For example, the transformation systematically
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Figure 7.20: TheMoTif execution framework.

includes aResolver in anARule. Its purpose is to verify if the application of the rule conflicts with any
pending matches. Consider one of the branches of theSRule in Figure 7.16(a). TheARule A12:N12
is applied sequentially after theARule A11:N11 . Therefore the packet will not contain any match set
after A11:N11 thus the application ofA12:N12 cannot be in conflict with any other rule. In fact, the
only cases where anARule can conflict with other matches is if it is part of anLRule (in the loop) or
a PRule. Hence the resultingMoTif-Core model of anARule is the simple rule depicted in Figure 7.3,
since noRollbacker is needed anymore. A similar reasoning for theSRule can be followed. If it is not
part of the loop of anLRule variant or the base anLNSRule or part of aPRule, then noResolver and
Rollbacker are required.

7.6 Enabling Higher-Order Transformation

To illustrateMoTif , we extend the example presented in Chapter 5 in which aMoTif transformation
maps a finite state automaton to a Petri net model. We will design a Petri net simulator inMoTif that
defines the operational semantics of the Petri net model and,by transitivity, the operational semantics
of the finite state automaton it was translated from. Then we show how, using both transformations,
one can specify a higher-order transformation to animate the finite state automaton while the Petri net
model is simulated.
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7.6.1 Petri Net Semantics
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Figure 7.21: The operational semantics for Petri nets: the rules in (a) and the control flow in (b).

We simulate the execution of a Petri net execution by using a small set of transformation rules,
transforming Petri nets to Petri nets. This realizes an operational semantics of Petri nets (see Fig-
ure 7.21(a)). We are able to express the operational semantics in just four simple rules thanks to the
expressiveness ofMoTif control structures. The respective control structure is shown in Figure 7.21(b).
The control structure makes it particularly easy to find an enabled Petri net transition,i.e.,one which
can fire. Such a transition needs sufficiently many tokens ateachof its incoming transitions. One naive
solution for finding enabled transitions is to just specify all possible patterns to be found as sub-graph
isomorphisms. Alternatively, this can be solved provided that the pattern specification language uses
intentional specifications to allow referring to sub-graphs of arbitrary size. However, the most elegant
solution is to iterate through all transitions until one hasbeen found that doesnot satisfy the pattern
of anon-firing transition.

The behaviour of the transformation model goes as follows. The outer-most rule block is an
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LSRule calledSimulation —since the base rule block of thisLRule is anSRule. Although the base
is a query, it is nevertheless encapsulated in anSRule (with no rewriting phase) to recursively exe-
cute the transformation. First,1:FindTransition looks for one transition. The transition found is
assigned to a pivot calledtransition . In the loop part of theLSRule, anLFRule ensures that only
firing transitions will be processed. This is done by iterating over every transition in the model and, if
one of them can not fire, it is assigned to the pivot in order to fire the transition. This interruption in
the loop is represented by the channel from the fail port of the NonFiringTransition QRule to the
success port of the enclosingLFRule. When a firing transition is found, it is assigned to a pivot called
transition , replacing the former transition. Then, tokens are transferred along this transition as
depicted by rulesConsumeTokens andProduceTokens . After that, the first rule blockSimulation
is applied again recursively, by re-matching the new model looking for a transition. This control flow
goes on until no more transitions are fire-able.

Next we will use a higher-order transformation to extend thecontrol structure shown in Fig-
ure 7.21(b) to include an animation component.

7.6.2 Background on Higher-Order Transformation

Tisi et al.[TJF+09] define higher-order transformation (HOT) as “a model transformation such that its
input and/or output models are themselves transformation models”. A HOT is a model transformation
and is therefore an automatic manipulation of a model with a specific intention (c.f., Section 1.1). The
difference with a (first-order) model transformation is that at least one of the input or output artefacts
of the HOT must be a transformation model:

• A HOT transforms a transformation model into a transformation model;

• A HOT transforms a non-transformation model into a transformation model;

• A HOT transforms a transformation model into a non-transformation model;

• A HOT generates a transformation model from nothing.

The authors use the term “transformation model” which was first introduced by Bézivinet al. in
[BBG+06]. The meaning is that transformations must be modelled, which matches the philosophy
adopted in this thesis.

There is ample motivation for transforming transformations by means of higher-order transforma-
tions. Promising application areas include:

Transformation synthesis is the category of HOTs where the output is a transformation model. On
the one hand, this type of HOT is used to reduce the abstraction level such as mapping from
QVT-Relations to QVT-Core [Obj08] (with respect to traces) or the mapping fromMoTif to
MoTif-Core (with respect to DEVS). The implementation of triple graph grammars (TGGs)
transforms declarative specifications (TGG rules) to operational specifications (TGG opera-
tional rules) as described in [KKS07]. On the other hand, a HOT can synthesize generic trans-
formations. That is, the input or output meta-models of a transformation is not known a priori:
the HOT generates a transformation on-the-fly specific to theinput or output meta-models. For
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example in [GvD07], a HOT takes as input a meta-modelMM and outputs a transformation
modelMT . MT takes as input two models that conform toMM and outputs the difference model
between them: the union of both models annotated with “similar”, “from left”, or “from right”
stereotypes.

Transformation analysis is the category of HOTs where the input is a transformation model and
the output is not. On the one hand, it can produce a view on the transformation model by
querying it. On the other hand, the HOT generates data information from a transformation for
analysis purposes. For example in [dLV10], de Lara and Vangheluwe transform the operational
semantics of a language defined as a graph transformation, together with an instance model of
the language, into a Petri-Net. This Petri net can then be used to analyze properties of the model
transformation.

Transformation composition is the category of HOTs where the input consists of several transfor-
mation models and the output is a single transformation model. This kind of HOT allows one to
compose two transformations into one. For instance in his thesis [VG08], Van Gorp has applied
HOT to desugar (convert into primitive constructs) a “copy”operator for graph transforma-
tions. Another application is the separation of transformation concerns. Instead of putting all
functionality into one transformation, one can split concerns over many transformations and
integrate them by sequentially adding them with higher-order transformations to a base trans-
formation. Often one may use multi-stage transformations for the same effect, but sometimes
this is not a viable option (see next section). Separating transformation concerns from each
other does not only reduce the complexity of an otherwise monolithic transformation but also
opens up the opportunity to re-use (higher-order) transformations. Conversely,transformation
de-compositiontakes as input one transformation model and outputs severalones.

Transformation migration is the category of HOTs where the input is a model and the output is
a transformation model. Whenever the definition of a language evolves, any associated trans-
formations have to be adapted. This adaptation process may sometimes be semi-automated by
using a HOT generated from the modifications made to the language.

Transformation modification is the category of HOTs where the transformation is applied on a
transformation model in-place. On the one hand, the semantics of the transformation engine
can be enhanced. For example, adding a copy operator to transformation rules [VG08] or a
grouping mechanism in the patterns [BNN+07]. On the other hand, the transformation can be
optimized by improving the transformation definition for more efficient results or by refactoring
it based on best practices.

7.6.3 Source-Level Animation

In conjunction, the “Finite State Automaton to Petri Net” and Petri net operational semantics transfor-
mations presented simulate a language recognizer but without visualizing the execution at the source
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Figure 7.22: The animation rules.

level of state automata. In order to add source-level animation, we need to add update rules (see Fig-
ure 7.22) to the operational Petri net semantics.AToM3 then automatically takes care of updating the
respective concrete syntax.
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Figure 7.23: Higher-Order Transformation: Animation.

Having explicitly modelled all artefacts, we are now in a position to define a HOT that automati-
cally adds the animation rules to the operational semanticstransformation. The rule block labelled 1 at
the bottom of the LHS pattern in Figure 7.23 is a parameter to the HOTAddAnimation and contains
all the animation rules of Figure 7.22. We perform the parameter passing by using the block as a pivot
model. The RHS of the HOTAddAnimation simply links the animation block into the main loop of
the original semantics control structure (see Figure 7.21(b)), making sure this happens only once at
the top level (hence the NAC).

Figure 7.24 shows the result of applying the HOTAddAnimation to the original control flow
shown in Figure 7.21(b). Note that being able to modify an explicit representation of a transforma-
tion’s control structure allowed us to designAddAnimation in a way that makes it reusable. As long
as one designs other operational semantics definitions witha similar overall main loop and provides
corresponding update rules as a parameter toAddAnimation , the latter can be re-used as is.

Had we designed the operational semantics transformation to perform a single step only, it would
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have been possible to add animation using a multi-stage transformation approach as well (i.e., se-
quential execution of transformations). The transformation we discuss next, however, cannot be easily
expressed by a multi-stage approach.

7.6.4 Correspondence Links

The animation rules make use of correspondence links between finite state automata and Petri net
models (see element labelled 4 of Figure 7.22). These correspondence links sometimes coincide with
the intermediate generic links used in the “Finite State Automata to Petri nets” transformation, but
the latter are not a reliable source for establishing correspondence. Furthermore, they are typically
removed as part of the transformation in order not to waste memory.

We can, however, automate the insertion of relevant correspondence links by adding correspon-
dence associations between certain language elements at the meta-model level,i.e., by creating a
“meta-triple” [GdL07b] (see Figure 7.25). With this additional information, a HOT that extends the
“Finite State Automata to Petri nets” transformation with the feature of establishing correspondence
links, can be defined with a simple, single rule (see Figure 7.26). This rule transforms translation rules
such that they automatically insert corresponding links between respective input-output language ele-
ment pairs. Note that Petri net places are linked to both state automaton states and events. It is there-
fore crucial to have the context of the original translationrule that creates an output language element
based on the presence of an input language element. The rule in Figure 7.26 specifically matches such
creation patterns. Establishing the correct links betweencorresponding input-output elements without
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Figure 7.25: The correspondence meta-triple.
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Figure 7.26: Higher-order Transformation: correspondence links.

this contextual knowledge would, in general, be impossible. This demonstrates that HOTs cannot be
subsumed by multi-stage transformations.

Our correspondence HOT is not directly reusable becauseMoTif does not support parametrization
of rules. Because of this limitation we could not formulate ageneric version of the transformation
that can be tailored to a particular application by passing in the names of meta-model elements of
input/output language types. Instead, the pivot passing emulates parameter passing. Nevertheless, the
transformation is reusable with respect to its structure. Another application can simply be obtained by
a manual renaming of the input/output language types.
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7.7 Related Work

This section summarizes some of the topics covered byMoTif and how they relate with existing
approaches.

7.7.1 Explicit Use of Time

Timed Graph Transformation (TGT), as proposed by Gyapay, Heckel and Varró [GHV02], integrates
time in the double push-out approach. They extend the definition of a production by introducing, in
the model and rules, a “chronos” element that stores the notion of time. Rules can monotonically
increase the time.DEVS is inherently a timed formalism, as explained previously. In contrast with
TGT, it is the execution of a rule that can increase time and not the rule itself. That is, in TGT the
designer of the rule can increment the chronos element in theRHS pattern. However, inMoTif (as a
matter of fact inMoTif-Core) time is a property of a rule taken into consideration in the scheduling of
the rules. Hence, the control flow (of the graph transformation) has full access to time.

This addition of time is similar to how Heckel et. al. define stochastic graph transformations [HLM04].
Every transformation rule is augmented by a probability indicating the delay of application of the rule.
In fact, Heckel et. al.’s approach is complementary to ours:one can encode the application rate of in-
dividual MoTif rules in the time advance function, if the current simulation time is stored in the state
of each rule. As pointed out in [GHV02], time can be used as a metric to express how many time units
are consumed to execute a rule. Having time at the level of theblock containing a rule rather that in
the rule itself retains this expressiveness.

7.7.2 Higher-Order Transformation

Varró and Pataricza seem to have been the first to suggest higher-order transformations for improving
the performance and maintainability of first-order transformations [VP03].

Schürr’s triple graph grammars (TGGs) are designed to support correspondence links between
models from declarative rules [Sch94]. In contrast to our higher-order transformations, a TGG trans-
formation designer is more flexible in defining different correspondence links per rule. However, this
also bears the risk that some correspondence links are forgotten or incorrectly established. A higher-
order transformation like ours automates the process of establishing the required links and will be
comparatively simple to correctly define, even for more advanced cases. Moreover, we may generate
correspondence links with arbitrary amounts of additionalinformation in contrast to the fixed format
links of TGGs.

Jouault usedATL to define a higher-order transformation for automatically generating traceabil-
ity links [Jou05]. Unlike our correspondence link higher-order transformation, however, Jouault’s
TraceAdder transformation addstraceabilitylinks between all elements rather thancorrespondence
links. Traceability links can sometimes be used for tracking correspondences as well but not in gen-
eral. Furthermore, while traceability links come for free as they do not need pattern specifications that
only match relevant correspondences, they may use up a lot ofmemory even though the majority of
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them is not being used in correspondence mapping applications. The main problem with usingATL
for specifying higher-order transformations is that a higher-orderATL transformation has access to
the transformation definition (e.g.,to the FSA-to-PN transformation), but not to the latter’s respective
input and output languages (the FSA and PN meta-models). Allmatching patterns and output pat-
terns for the input/output languages of the transformationare therefore unchecked as they occur on a
purely textual basis only. This results in even mundane syntactic errors going unnoticed. This problem
is aggravated by the fact that the result of the higher-ordertransformation must be tested dynamically
in order to detect the errors. Sometimes the only means to detect errors is to examine the first-order
transformation’s output. Having detected errors in the output, one then has to trace back the errors
to the first-order transformation and from there back to the higher-order transformation. While there
will always be a class of errors that will require this extended backward reasoning, our approach can
avoid this complicated procedure for purely syntactical errors.

7.7.3 Comparison with other Model Transformation Approach es

The idea of defining the semantics of a model transformation language at a higher level of abstraction
(such asMoTif ) with respect to another model transformation language at alower level of abstraction
(such asMoTif-Core) is not new. For example, the semantics ofQVT-Relations is defined in terms of
QVT-Core [Obj08]. This semantic mapping is defined in plain English text, which lacks of formality. In
the case ofMoTif , the mapping is defined as a higher-order transformation which is, in turn, expressed
in MoTif . SinceMoTif is formally defined in terms ofDEVS, T-Core, and graph transformation, the
semantic mapping ofMoTif to MoTif-Core is formally defined.

Nowadays, the Eclipse Modelling Framework (EMF) is gaininga lot of popularity. EMF allows
one to design a transformation language by modelling its abstract and concrete syntaxes.MoTif is a
completely modelled language. Its abstract syntax (definedby a meta-model) and its concrete (visual)
syntax are specified inAToM3. This can also be done in EMF. The semantics ofMoTif is defined in
terms of the DEVS formalism. The DEVS simulator ensures the execution ofMoTif transformations.
This would not be directly possible to implement in EMF, since this would require adding a virtual
machine for simulating DEVS models on top E-Core virtual machine.

Finally, we complete the comparison of the different model transformation tools presented in
Chapter 2.2. Recall that Table 2.1 categorized several tools according to different features. Table 7.1
completes this feature matrix for theMoTif language. This is based on the description of the language
in Section 7.4.1. Although all the tools compared in Table 2.1 provide a control flow mechanism
for graph transformations, many designed a new formalism for this purpose. Also, none of these
exploit event-based transformations.MoTif not only allows event-triggered execution, but the user
and his interaction with the executing transformation can be explicitly modelled, offering a user-
centric approach to model transformations. On top of the novelties MoTif adds to control structures
for model transformation, it is the only language introducing the notion of time and allowing the
designer toexplicitly modelback-tracking and recursion.
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Property M OT IF

Control Structure DEVS
Atomicity ARule
Sequencing Yes
Branching BRule
Looping FRule, SRule, LRule
Non-determinism BRule
Recursion SRule, LSRule, BSRule
Parallelism PRule
Back-tracking XRule
Hierarchy CRule

Table 7.1: Feature matrix ofMoTif .

7.8 Conclusion

In this chapter, we have shown how the combination ofT-Core with DEVS allows one to express a
modular timed graph transformation language. This language, however, is typically not used directly
by the modeller as it is a low-level transformation language. Nevertheless,MoTif offers a syntactic
layer on top ofMoTif-Core to abstract away from allDEVS artefacts. Therefore the semantics of
MoTif is expressed in terms ofMoTif-Core. This allowed us to enhance and introduce new model
transformation features, such as the dimension of time. Being a completely modelled language, both
at the syntax and at the semantics level, theMoTif language allows one to easily design higher-order
transformations. In fact, the semantic mapping ofMoTif to MoTif-Core is itself expressed inMoTif as
higher-order transformation from the former to the latter.

Since expressiveness is the primary focus of this thesis, this chapter addressed the expressiveness
of the novel languageMoTif . From a performance point of view, each of the layersMoTif relies on
is efficiently implemented:T-Core, PythonDEVS , AToM3, and Python. In the future, we would like to
investigate the performance overhead of having all the layers described in Figure 7.19 versus a more
direct implementation such asPy-T-Core. One can foresee that the performance ofPy-T-Core will
be more efficient than that ofMoTif . However, althoughPy-T-Core is more efficient and more easily
integrable in programmed software, there are two disadvantages of choosingPy-T-Core overMoTif :

1. Py-T-Core does not rely onDEVS hence the modular execution property cannot be used any-
more,i.e., the execution cannot easily be ported from a sequential to a distributed environment.

2. In model-driven engineering terms,MoTif abides to the MPM principles and the transformation
engineer or the domain-specific engineer can design transformations for his DSL at a level of
abstraction as he used to model DSMs.

As mentioned in Section 7.4.2, an extension ofMoTif is to provide full support for parallel and dis-
tributed transformations. One possibility is to enhance the language with the notion of scoping such
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as in hierarchical graph transformations [DHP02, VJ04]. However, to facilitate the transformation en-
gineer in the design of transformations usingPRules that are currently supported, we have enhanced
MoTif with the notion of exception handling, thus allowing for forward error recovery at the synchro-
nization points.



8
Transformation Exceptions

As model transformations are increasingly used in model-driven engineering, the dependability of
model transformation systems becomes crucial to model-driven development deliverables. As any
other software, model transformations can contain design faults, be used in inappropriate ways, or
may be affected by problems arising in the transformation execution environment at run-time. We
propose in this chapter to introduce exception handling into model transformation languages to in-
crease the dependability of transformations. We first introduce a classification of different kinds of
exceptions that can occur in the context of model transformations. We present an approach in which
exceptions are modelled in the transformation language andthe transformation designer is given con-
structs to define exception handlers to recover from exceptional situations. This facilitates the debug-
ging of transformations at design time. It also enables the design of fault-tolerant transformations
that continue to work reliably even in the context of design faults, misuse, or faults in the execution
environment.

8.1 Introduction

Model transformation is at the heart of model-driven engineering approaches; it is therefore crucial
to ensure that the transformations are safe to use: when a model transformation is requested to exe-
cute, any exceptional situation that prevents the transformation from executing successfully must be
detected and the requester must be made aware of the problem.Informing the requester about the
situation allows for possible reactions. What exactly needs to be done highly depends on the context
in which the model transformation has been requested.

A model transformation can be seen as an operation on models,taking a model as input and pro-
ducing a (possibly implicit) model as output. This is similar to operations in a programming language,
which can have input and output parameters and, in addition,can affect the application state stored in
objects or variables. In order to address exceptional situations that prevent the normal execution of an
operation, modern programming languages introducedexception handling[Don90].

A programming language or system with support for exceptionhandling allows users to signal
exceptions and to define handlers [Don90]. To signal an exception amounts to detecting the excep-
tional situation, interrupting the usual processing sequence, looking for a relevant handler, and then
invoking it. Handlers are defined on (or attached to) entities, such as data structures or contexts for
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one or several exceptions. Depending on the language, a context may be a program, a process, a pro-
cedure, a statement, an expression, etc. Handlers are invoked when an exception is signalled during
the execution or the use of the associated or nested context.Exceptionhandlingmeans to put the sys-
tem into a coherent state,i.e., to carry out forward error recovery and then to take one of these steps:
transfer control to the statement following the signallingone (resumption model [Goo75]); or discard
the context between the signalling statement and the one to which the handler is attached (termination
model [Goo75]); or signal a new exception to the enclosing context.

In model transformation, the transformation units (orrules in rule-based transformations) that
compose a transformation have the notion ofapplicability(of a rule). In contrast to an operation at the
programming language level, the model transformation may or may not be applied depending on the
applicability of its constituting rules. We must from the beginning clearly distinguishtransformation
failure from transformation inapplicability, as we consider these as two distinct outcomes. In graph
transformation for example, a ruler is said to beapplicableif and only if an occurrence of its LHS
is found in the model (encoded as a typed attributed graph). When r also specifies a NAC, such a
pattern shallnot be found given the LHS match. In case of a successful match, the match is replaced
by the RHS ofr. Thus the result of asuccessfully applied ruleis the (possible) modification of the
graph it received. If no occurrences of the LHS were found in the input model, the rule is said to be
inapplicableand the resulting graph is identical to the input graph. Botha successfully applied rule
and a rule that did not match (inapplicable) describe the regular execution of a transformation rule.
However, as in the case of the execution of an operation in a program, it is possible that during a model
transformation an exceptional situation is encountered inwhich case it is impossible to continue nor-
mal execution. At run-time, there are situations in which neither an output model can be produced by
applying the transformation in its entirety nor is it possible to determine the non-applicability of the
transformation. In this case the rule is said to havefailed. The definition of applicability, inapplica-
bility, and failure of rules can also be extended to the levelof the transformation. That is respectively,
the transformation has at least one rule that was successfully applied, no rule in the transformation
has been applied, and the last rule to be applied has failed.

Once the development of the transformation is completed andtested, it is critical to provide a
failure-freemodel transformation that does not crash when, for example,an erroneous input model
is provided. The model can be incorrect from a syntactic or a semantic point of view. The former
is typically detected before the transformation starts executing, since it must conform to a specific
meta-model. Therefore we only consider semantic incorrectness of models in this paper. In this case,
the designer must be able to specify how to handle such errorsat the transformation level directly.
This is why proper handling of exceptions must be available to the designer.

Currently, no model transformation language offers means to reason about such exceptional sit-
uations encountered during model transformations (see related work section). This chapter is based
on [SKV10] which is a first attempt to motivate and define the notion of exception and exception
handling in model transformations. Some may argue that it isnot needed in a transformation language
and that it is a tool or system issue instead. This contribution claims however that there are many
kinds of exceptional situations that can arise while transforming a model and that, following MPM
principles, these should be modelled in the transformationlanguage to give the modeller control over
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how such a situation is to be handled. If applied rigorously,exception handling leads to the design of
safe model transformations.

The remainder of the paper is structured as follows. In Section 8.2, we analyse what kind of
exceptions can occur in model transformations. Then, in Section 8.3, we elaborate on possibilities for
handling such exceptions. We also outline the implementation of transformation exceptions and their
handling inMoTif . Finally, we put the presented work in perspective in Section 8.4.

8.2 Classification of Exceptions in Model Transformations

Similar to exception class hierarchies used in object-oriented programming languages to distinguish
between different kinds of exceptions, we propose a classification of the exceptions that may arise
during a model transformation. In a transformation model, faults may originate from:

1. the transformation design,

2. the model on which a transformation is applied,

3. or the context in which the transformation is executed.

This section provides a non-exhaustive classification of potential exceptions that may arise during a
transformation.

8.2.1 Terminology

We shall define the termsfailure, error, and fault that are used in fault-tolerant computing, in the
context of model transformation. Afailure is an observable deviation from the specification of a
transformation. In other words, a failed transformation either produced a result that, according to the
specification, is not a valid output model for the specified input, or produced no result at all. Anerror
is a part of the transformation state that leads to a failure.The transformation state includes the input
and output models, as well as potentially created temporarymodels and auxiliary variables. Afault
is a defect or flaw that affects the execution of the transformation. A fault is thus typically present
before the transformation execution,e.g.,when there is a flaw in the design of the transformation,
or the fault arises from the fact that a transformation is applied to a model that it was not designed
to work on, or finally the fault resides in the execution environment. At run-time, a fault can be
activated and lead to an error,i.e., an erroneous state in the transformation, which in turn may be
detected if the transformation language supports it. If it is not handled, however, an error propagates
through the system until the transformation fails. Note that the time between the error activation and
the transformation failure is the only time frame for the transformation to handle the exception.

We define anexceptionin the context of model transformation as a description of a situation
that, if encountered, requires something exceptional to bedone in order to resolve it. Anexception
occurrenceat run-time signals that such an exception was encountered.

Traditionally, exception handling has two purposes. It canprevent non-intentional behaviour when
a fault occurs or it can serve as an intentional means to interrupt the current execution and go out of
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Figure 8.1: A rule with attribute constraints written in an action language (on the left) applied to a
specific input model (on the right).

Figure 8.2: A monotonically increasing rule (on the left) applied to a specific input model (on the
right).

scope. Therefore, from a design perspective, we distinguish between different uses of exceptions the
model transformation designer can make.

8.2.2 Execution Environment Exceptions

Execution Environment Exceptions (EEEs) represent exceptional situations that typically orig-
inate from the transformation’s virtual machine.

Action Language Exceptions

When the transformation language allows the use of an actionlanguage (which can contain a con-
straint language such as OCL), a complete exception tree maybe provided for types of exceptions
specific to the action language itself. Depending on the capabilities of the action language, these ex-
ceptions can come from arithmetic manipulations, list manipulations, de-referencing null references,
etc. For example, Figure 8.1 illustrates a specificAction Language Exception (ALE), namely
the case of a division by 0.

System Exceptions

During the execution of a transformation, the virtual machine executing the transformation can en-
counter exceptional situations,e.g.,it can run out of memory. There are many reasons that could lead
to such a problem, one of which is a design fault in the transformation itself. Consider a transforma-
tion that contains an iteration over a monotonically increasing rule (that never deletes an element nor
disables itself) as depicted in Figure 8.2. A memory overflowwill eventually occur if an infinite loop
or recursion (like a recursive rule as described in [GdL07a]) is executed.

Other kinds ofSystem Exceptions (SEs) may arise,e.g.,I/O Exception when logging is used
and the logging device is not writeable. Also, if the access to the model is provided via web-service
functions, for example, the server may be down leading to communication or access errors.
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Figure 8.3: An inconsistent use of aniterated rule(on the left) with respect to a specific input model
(on the right).

8.2.3 Transformation Language-Specific Exceptions (TLSEs )

Features specific to a particular transformation language can also be the source of exceptional sit-
uations. For example,ProGReS [ZS92], QVT [Obj08], and to a certain extent,FUJABA [FNTZ00]
allow rules to be parametrized by specific model elements that may be bound to matches from pre-
vious rules. In these languages, executing a rule with unbound parameters results in an exceptional
situation that needs to be resolved. A similar exceptional situation arises when a pivot node is passed
from one rule to another by connecting input and output portsin GreAT [AKK +06] or even through
nesting inMoTif , if the rules are not appropriately connected. InMoTif however, if a rule expects a
pivot node that is not provided, the rule is inapplicable rather than in failure.

But there are other kinds of exceptional situations that canarise due to a specific transformation
language design. In languages such asQVT-R, for example, the creation of duplicate elements is
semantically avoided by the concept ofkeyproperties. Two elements are logically the same if and
only if their key properties are equal. Thekeyis used to locate a matched element of the model and a
new element is created (with a newkey) when a matched element does not exist. However, if multiple
keys with the same value are found in a model, this indicates that the model is faulty1.

Moreover, exceptions proper to the implementation of the scheduling language can also be consid-
ered. InMoTif , for instance, since the underlying execution engine allows for timed transformations by
specifying the duration of application of a rule, bad timingsynchronization may arise whene.g.,rules
are evaluated at the same time (through conditional branching or parallel application). This typically
happens due to the numerical error of floating point operations in the DEVS simulator.

8.2.4 Rule Design Exceptions

Rule Design Exceptions (RDEs) represent errors that stem from a fault in the design of the
transformation model itself.

Inconsistent Use Exception

One class of design faults that may happen in a transformation is when rules are conflicting with one
another. We distinguish the case when a rule conflicts with itself from when several rules conflict

1We assume in this chapter that the transformation engines are fault-free.
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Figure 8.4: Two conflicting rules to be applied in parallel (on the left) with respect to a specific input
model (on the right). The two rules are specified in aPRule depicting that they will be executed
concurrently.

with each other. The former occurs when a rule finds multiple matches on a given input model and
is executed several times in a row. This typically happens during an iteration;e.g.,a rule executed in
a loop in ProGReS, iterated in a for-loop or a while-loop inQVT-OM [Obj08], or in case the rule is
an SRule in MoTif . This is the case in the example of Figure 8.3, where the rule matches the input
model twice, but depending on the order in which the matches are processed, two different output
models are produced. Although the transformation itself isa valid transformation, the application of
the transformation to this particular input model results in a non-deterministic result and as such is
very likely to be incorrect. We consider such a situation as an inconsistent useof a transformation
and propose that in these cases the transformation should benotified with anInconsistent Use

Exception (IUE).

Synchronization Exceptions

Another class of design fault can happen in the context of parallel execution of model transformations,
a technique often used for efficiency reasons.

Semantically, if a transformation designer specifies that two rules should be executed in parallel,
this implies that the order of execution of the transformation rules is irrelevant. This optimization
can, however, only work if the two rules are independent fromone another. InMoTif , FRule and
the PRule both allow one to execute the rewriting part of rules concurrently. For example, the two
rules in Figure 8.4 are clearly not independent, as the application of one disables the application of
the other. In fact, executing both rules in parallel yields two different models that cannot be trivially
merged without knowledge of the application domain. We propose to signal such situations by raising
a Synchronization Exception (YE).

8.2.5 Transformation-Specific Exceptions

Finally, we believe that a dependable transformation language should also support user-defined excep-
tions. Almost all programming languages with support for exception handling support user-defined
exceptions that allow the programmer to signal application-specific exceptional conditions to a calling
context. Similarly, a transformation language that supports user-definedTransformation -Specific

Exceptions (TSEs) makes it possible for the transformation engineer tocheck desired properties of
the model being transformed at specific points during the transformation execution. These property
checks can take the form ofassertionsas pre-/post-conditions on a (sub-)transformation by specifying
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Figure 8.5: The proposed classification of model transformation exceptions in UML class diagrams.

a constraint on the current state of the model. In case the assertion fails, the corresponding TSE can
be explicitly raised by the transformation model and signalled to the calling context.

8.2.6 Using Exceptions in Model Transformations

Figure 8.5 summarizes the classification of potential exceptions that may arise during the execution
of a transformation. Some classes of exceptions like ALEs and TLSEs can be empty for certain model
transformation environments, if the design of the transformation language and action language allows
the corresponding problems to be detected statically. In the domain of programming languages, for
example, dynamically typed languages such as Python define certain types of exceptions (e.g.,No-
SuchField Exception) that strongly typed languages do not need to provide. In C++, for instance, a
compiler can always statically determine that the programmer was erroneously trying to access a field
of a class that has not been declared.

We foresee that exceptions are going to be used in two different ways in the context of model
transformation: during transformation development to help eliminate design faults (debug mode) and
when the transformation is applied to different models in order to increase dependability of the trans-
formation at run-time (release mode). Some exceptions are more likely to occur in debug mode while
others are relevant only in release mode.

Debug Mode

When running a transformation in debug mode, the goal of applying the transformation to an input
model is not so much to obtain an output model that is subsequently used for other purposes, but to
validate that the transformation design is correct. Debugging a transformation is not trivial and excep-
tions are very helpful fordebugging, namely to detect logical errors in the design of a transformation.

If the generated output model does not correspond to what thetransformation designer expects,
then there must be a flaw in the transformation design that hasto be found. In this case, the modeller
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can debug the transformation by adding “assertion” rules atintermediate points in the transformation
that check that the previous rule achieved the desired effect. If not, a user-defined TSE is thrown.

If unhandled, the exception halts the transformation execution and the transformation modelling
environment informs the modeller of the exception kind and point of occurrence. Using this informa-
tion, the modeller can more easily locate the rules that contain design faults.

When transformation rules are run distributed or in parallel to increase performance, a YE in-
dicates a merging problem of the different output models. The problem occurs if the rules that are
executed concurrently are not independent,i.e., the intersection of the model elements modified by
the rules is not empty. No transformation tool can provide anautomated general merge operation, not
only because general graph merging is undecidable, but alsobecause the correct merging algorithm
depends on the specifics of the transformation and its domain(s). Most likely a YE indicates that
the modeller incorrectly assumed rule independence when hedecided to instruct the transformation
engine to use parallel execution.

The occurrence of an IUE on an input model, that the transformation under development should
be able to handle, indicates that the iterated rule in which the exception was detected was incorrectly
specified. The modeller needs to inspect the information carried with the exception such as the faulty
matched model elements as well as the context of execution tothen correct the faulty rule or revise
the transformation design.

An EEE in debug mode can signal various problems to the modeller. It can signal design flaws,
including flaws that are due to the incorrect use of a specific action language feature (e.g.,Unbound-
Parameter Exception), incorrect expressions specified by the modeller using the action language (Di-
visionByZero Exception), or faulty transformation designs that result in infinite recursion or loops
(MemoryOverflow Exception).

Release Mode

In release mode, a transformation that is assumed to work correctly is applied to an input model with
the goal of producing an output model that is used for a specific purpose. Most likely it is essential that
the transformation was applied successfully and did indeedproduce the expected result; otherwise the
output model is unusable. It is therefore important to design reliable transformations that can recover
from exceptional situations and still provide a useful output.

In release mode, a SE such asIOException could signal that the device used for logging trans-
formation related information is currently not writeable,for instance because the communication
link broke down. Instead of immediately halting the transformation process, a reliable transformation
could try to handle this situation. For instance, if the fault is assumed to be transient, the exception
could be handled simply by waiting for some time and restarting the failed transformation. Alterna-
tively, a different device could be used to store the log information.

The occurrence of an IUE in release mode signals that the transformation is being applied to an in-
put model that the transformation was not designed to handle. An example of such a situation is given
in Figure 8.3. This does not mean, however, that the rule cannot produce a correct output model. Both
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possible outputs shown in Figure 8.3 might be correct, or maybe only one of them is. The problem is
that the transformation system cannot guess what the correct behaviour of the transformation should
be. One way of handling the exception could be to obtainuser (or external) inputfrom the transfor-
mation environment,i.e., halt the transformation, prompt the user to designate the correct match or
output, and continue with the transformation. Another transparent way of handling could be to apply
a different set of rules instead that can produce an appropriate output model using different rules.

Finally, by incorporating exception handling into model transformation, it is possible to design
fault-tolerant model transformations that can even tolerate transformation design faults. The idea is
to employ design diversity in a way similar to what is done in recovery blocks [RX95] or N-version
programming [CA78] at the programming language level: whena software is supposed to implement
a critical functionality, several versions of the softwareare developed that achieve the specified func-
tionality in different ways,e.g.,by using different algorithms and different data structures, sometimes
even different programming languages and paradigms. The more diverse the implementations, the
more likely it is that they do not fail simultaneously on the same input. At run-time, if one of the ver-
sions fails to deliver the expected result, the chances are high that one of the other versions produced
a correct result. In the context of model transformation, itcan be envisioned that a complex transfor-
mation can be designed in different ways by composing multiple rules in different ways, thus creating
several versions of the same transformation. At run-time, if one of the transformation versions throws
an exception, an alternate version can be executed to tolerate the fault and attempt to produce the
desired result in a different way.

8.3 Exception Handling in Model Transformation

The previous classification identifies the exceptional situations that can occur during a model trans-
formation. In order for a transformation to be dependable, the transformation designer should think
of potential exceptions that could occur at run-time and design a way of addressing them in order
to recover. We must therefore define a way that allows the transformation engineer to reason about
exceptions and express exception handling behaviour at thesame level of abstraction as the model
transformation itself. However, exceptions should not be an escape to programming.

8.3.1 Modelling Exceptions

In order to be able to reason about exceptions at the transformation level, exceptions should be treated
as first-class entities,i.e., just like any other model element that can itself be used as aninput to a
transformation. From a transformation language design point of view, a transformation exception can
be considered as a model conforming to a distinct meta-modelas shown in Figure 8.6. An exception is
identified by a name and has a status which can be:active (i.e., the exception instance has not been
addressed yet),handling (i.e., it is currently being handled), orhandled (i.e., it has been addressed
by a handler).

In order to enable proper handling, an exception must hold relevant information regarding its
activation point context: where it happened, what happened, and when it happened. The transforma-
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Figure 8.6: The transformation exception meta-model.

tion exception therefore references the transformation unit (the rule) that triggered its activation. The
transformation context depicted in Figure 8.6 contains allthe information needed to effectively inves-
tigate the origin of the exception occurrence and allow the designer to model an appropriate handler.
In our implementation, for instance, the context contains the stack frame and the state of the packet
(see Section 8.3.3) at the activation of the exception. In compositional or hierarchical transformation
languages such asMoTif , GReAT, or QVT, knowing the exact path to the rule helps locating the fault
in the transformation design, especially if the handler is not in the same scope as the activation point.
To specify the activation point, several options can be considered:

• The most detailed information that can be provided is at the level of primitive transformation
operations supported by the virtual machine instruction set (e.g.,CRUD operations). In this
case, the modeller knows exactly which model element (node,edge, or attribute) was last ac-
cessed before the exception was activated. However, the transformation designer should not rely
on the implementation of the transformation language when designing transformations.

• The context could simply indicate the transformation rule that triggered the exception. We be-
lieve that providing this little information severely limits the possible handling strategies that
can be designed by the modeller, especially in the case of a SEor a TLSE.

• If the modelling language makes it possible to isolate the transformation operators (match,
rewrite, iterate, etc.) from the virtual machine operations, such as in Chapter 3 (i.e., T-Core),
then the activation point can be specified in terms of these operations. We believe that this is
the right level of detail that allows the modeller to understand which part of the current rule
generated the exception and to design an appropriate handler, if possible.

In addition to the point of activation, the transformation context should also indicate the state of
the transformed (input) model at the time when the exceptionwas thrown. For instance, in order to
handle an RDE effectively, the input model elements involved in the matcher of the current rule should
certainly be accessible to the handler.

In our proposed meta-model of an exception, we also includedtiming information, such as the
timestamp at which the exception was generated (active ) and has been handled (handled ). This
can be useful for profiling the transformation and gatheringstatistical measures on the handling policy.
Moreover, in timed transformations such as inMoTif , the global (simulated) transformation time as
well as the local time of the transformation rule operator may be useful.
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Figure 8.7: TheMoTif framework and the propagation of exceptions across different layers.

8.3.2 Detection of Exceptions

When a transformation executes, the transformation run-time and the underlying virtual machine must
monitor the transformation steps to detect the different kinds of exceptions presented in Section 8.2
and signal them appropriately. For example, the transformation run-time of theMoTif framework
presented in Figure 7.19 is annotated with exception occurrences in Figure 8.7. The different classes
of exceptions relevant to the modeller are detected at different layers, but must all be propagated to
theMoTif-Core layer (and conceptually to theMoTif layer) in order to allow the modeller to handle
them explicitly within the transformation, if unhandled inthe meantime.

Detection of ALEs, such asnull de-referenceor division by zero, are typically detected at the
level of the virtual machine in theMoTif framework. Depending on whether the action language is
interpreted or compiled, certain design faults can even be detected at compile-time, in which case the
corresponding exception never occurs at run-time. Similarly, the transformation language may prevent
the action language from accessing model elements that are not explicitly part of the LHS, RHS, or
NAC patterns, in which case null de-referencing can never occur. This may, however, be considered
as a restriction on the expressiveness of the transformation language used and may lead to excessively
large rules.

SEs are typically detected by the underlying operating system and the implementation language
which is a Python interpreter in theMoTif case. To properly propagate the detected exception to the
modeller, the exception needs to be caught at the virtual machine interface and transformed into the
corresponding exception model instance shown in the previous section.

TLSEs are detectable at the level ofT-Core, typically by checking pre-conditions before executing
any language constructs. TLSEs are again an example of exceptions that can be rendered obsolete if
the transformation language is compiled and strongly typed, in which case the compiler should be
able to detect unbound parameters and similar situations. Bad timing synchronization of events can
also be detected at the level of DEVS.

RDEs are also detected at the transformation language level. In algebraic graph transformation ap-
proaches, some RDEs can be detected statically. In grammar-like languages (a.k.a. unordered graph
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transformation), rule non-confluence can be detected through critical pair analysis [HKT02]: verify-
ing if a rule can disable another,i.e., making it inapplicable. In such languages, this technique can
assert parallel and sequential independence of the rules. Tools such asAGG detect these conflicts by
overlapping the rules (all possible combination of the LHSs, taking NACs into consideration). How-
ever, their current approach is sometimes too conservativeleading to false positives as it does not take
into consideration the meta-model constraints (an exampleis given in [HHT02]). Moreover, although
containing critical pairs of rules, a transformation may still be semantically correct and avoid the con-
flicts depending on the matches selected at runtime. The occurrence of an IUE can usually also not be
checked statically since, most of the time, the input model to which a transformation is applied is not
known at compile time.

Controlled graph transformation languages—which are moregeneral than algebraic graph trans-
formation approaches—consist of (partially) ordered rules, where rule scheduling is not implicit but
modelled explicitly by the transformation designer. In this case, critical pair analysis is not directly
applicable. It must first be adapted to controlled transformations as it may consider a pair of rules in
conflict although the conflict does not occur at run-time because of a particular rule scheduling. For
instance, letr1, r2, r3 be a sequence of rules to be applied in this order such that thecritical pair analy-
sis test fails on(r1, r3) becauser1 deletes an element that can be matched byr3. If r2 re-creates those
deleted elements,r3 may still be applicable. In our framework,T-Core primitives such as aResolver
or aSynchronizer can be customized to detect IUEs and YEs.

Detection of TSEs cannot be done by the transformation framework automatically, since those
situations depend on the semantics of the specific transformation. As mentioned in Section 8.2, they
represent user-defined exceptions. Just like in programming languages that support user-defined ex-
ceptions where the programmer is responsible for detectingthe exceptional situation usingif state-
ments or assertions, TSEs have to be detected by the transformation engineer. Fortunately, expressing
a condition that needs to be satisfied by a model (or a condition that should never be satisfied by a
model) is trivial in a transformation language: the condition can simply be expressed as a query on the
input model,e.g.,using aQRule. Depending on the query, either a match being found or the fact that
no matches are found depicts a violation of a constraint. To signal that, the rule must have the ability
to throw an exception, which is described in the following subsection.

From a performance point of view, it is expected that a transformation running with exception
detection mechanisms will be slower than one without it, as this is the case in programming languages
such as Python, Java, and C#. Nevertheless, our prototype implementation showed that the closer an
exception is detected to the virtual machine (see Figure 8.7), the smaller is the performance penalty.
That is exceptions occurring at this level can be handled within the same layer or a layer above,
whereas an exception occurring at the level ofMoTif is needs to be processed by the underlying layers
first before being rendered to the user at the transformationmodel level.

8.3.3 Extending Rules with Exceptions

In order to allow rules to signal exceptions to the enclosingtransformation, we propose to add ex-
ceptional outcomes to rules. Therefore, such anexceptional rulereceives a model as input and has
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Figure 8.8: AnARule with the ability to detect exceptions.

three possible outcomes: a successfully transformed model(in case of a successful match and exe-
cution of the transformation), an unmodified model (in case the rule is inapplicable on the model),
or an exception (when an exceptional situation occurred). If the rule outputs an exception, there are
two possibilities: either (1) if the error took place in the matching phase, then the input model is not
modified, or (2) if the error took place during the application phase of the rule, then the input model
may have been partially modified. The latter outcome seems todefeat theatomicityproperty of a rule.
However, as expressed in [GGKH03], a partial output may sometimes be desirable. This feature is
certainly very helpful in debugging mode, as the modeller would like to see a partial result even if not
complete to understand at what point the transformation execution failed in terms of the input model.
Nevertheless, if backward recovery is desired, the transformation language should offer a mechanism
to roll-back to the previous “safe” state of the model,i.e., to the state that was valid before the rule
was applied.

We have integrated the notion of exception inMoTif following the ideas mentioned above. At the
level of MoTif , an Exception port can be added to a rule block. It is visualized by a zigzag line as
shown in Figure 8.8. Informally, the semantics of anARule with an exception port is that if the rule
is applicable, the transformed graph is output through theSuccess port. Otherwise if the rule is inap-
plicable, the input graph is output through theFail port. However if an error occurs, a transformation
exception is output throughException port at any point during the execution of theARule. Therefore a
rule has three possible outcomes: a new graph when the transformation is successful, the unmodified
graph when the rule is not applicable, or an exception (modelled as in Section 8.3.1) if an exceptional
situation is detected. In the latter case, the packet may have been partially modified. On the one hand
in the matching phase, information concerning the matched elements may have already been stored in
the packet. On the other hand, if the rewriting phase was already initiated, the input model may have
been modified. In any case, the packet is in aninconsistent statewith respect to the atomicity property
of graph transformation rules application. The remaining rule blocks are adapted in a similar way.



210 Transformation Exceptions

To formally define this behaviour, we must adapt the semanticmapping ofMoTif to MoTif-Core
to take into account exceptional rule blocks. Being an event-based system, we model exceptions in
MoTif-Core as events since they allow interruption. This was already present in its meta-model in
Figure 7.1. Furthermore, the mapping ofMoTif-Core elements ontoDEVS also considered the output
of exceptions in the definition of the output setY and output functionλ. An exception can be output
by any atomic primitive. In the scope of a composite primitive, theRollbacker receives an exception
from its ANextIn inport and forwards the output of theTCRollbacker (its T-Core counter part) to the
Composer as depicted in Figure 8.8. In this case, theTCRollbacker should output the same exception
it received with the original packet stored in it. To ensure that an exception is received from the
CExceptionOut outport of theComposer, the transfer functionZi,C from Section 7.2.3 verifies that the
event is of typeTransformationException .

From an implementation point of view, exceptions can be caught either directly at the level of
an atomic DEVS (e.g.,for simulation errors) or at level ofT-Core (e.g.,SE or algorithmic errors). In
the latter case, the exception is propagated to level of the atomic DEVS. The generated exception is
an instance of the class diagram in Figure 8.6 with the appropriate type according to Figure 8.5. It is
initialized with a descriptive name, the time it occurred2, and with the active status. The transformation
unit is refers to the enclosingMoTif-Core atomic primitive, identified by its alias, name, and type. The
involvedElements refer to the elements in thematch2rewrite of thecurrent condition pattern
in the packet.

8.3.4 Modelling the Handler

Unlike current transformation tools such asATL or FUJABA where exception handling is available only
at the level of the code of the implementation of the transformation language, we believe again that
the most appropriate level of abstraction at which exception handling behaviour should be expressed
is at the transformation language level. This is similar to what is done in programming languages,
e.g., in Python, where exception constructs are provided in Python and not in C (the language in
which Python is implemented). This could be achieved by specifying exception handlers either (1)
at the level of transformation rules (in which case an exception handler would take the form of a
transformation rule that is only applied in exceptional situations), (2) at the level of the transformation
operators (e.g.,at the level ofT-Core primitives such as the matcher or the rewriter), or (3) at thelevel
of the primitive model manipulation implementation provided by the virtual machine level (CRUD).
For the same reasons that we detailed in Section 8.3.1, we consider specifying exception handlers at
the same level of abstraction as the transformation rules themselves as the optimal choice.

We propose two alternatives for how transformation exception handlers can be specified in a model
transformation language. From a pure model transformationpoint of view, an exception can be seen as
an ordinary model, although its semantics distinguishes itfrom a “normal” model. Hence when a rule
emits an exception (model), this model can serve as input forother rules whose pre-condition looks
for a specific exception type. Given an appropriate meta-model for modelling an exception (such as

2At the DEVS level, exceptions are caught in the external transition functionδext. The start time of a transformation
exception is computed by taking the sum of the current simulation time with the elapsed timee.
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Figure 8.9: Explicitly modelling exception handling in thetransformation model.
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Figure 8.10: Handling exceptions in the transformation model.

partly given in Figure 8.6), the meta-model of the LHS pattern of an exception handling rule (i.e., its
domain) would need to involve multiple meta-models: the RAMified meta-model of the input model to
transform as well as the meta-model of the transformation exception. This can be easily accomplished
if the transformation language is itself meta-modelled as in theMoTif framework. Figure 8.9 shows
an example of this approach based on theMoTif language. In a “normal” execution scenario, the rule
Faulty is applied first, and in case of success, the ruleNormalFlow is subsequently applied. However,
if an exception occurs inFaulty , the rule outputs the corresponding transformation exception to the
enclosing transformation. Then, theBRule containing the three rulesEx1Handler , Ex2Handler , and
Ex3Handler receives the exception. The behaviour of this composite rule block is that the three rules
simultaneously receive the exception and try to find a match.But at most one of the applicable rules is
finally applied. Then, the transformation continues with the application of the ruleAlternateFlow .
Notice here that there is no priority precedence on the handling depending on the exception type. It is
up to the modeller of the transformation to specify the orderin which the rules catch the exception. For
example, the ruleDefaultHandler is only applied if none of the rulesEx1Handler , Ex2Handler ,
andEx3Handler match.

Although the solution presented is elegant, our experienceshowed that it is not very practical to let
the modeller specify rules that match elements from the transformation domain and simultaneously
from the domain of exceptions. A more pragmatic solution is to let the exception produced by a rule
be used to influence the control flow of the transformation, redirecting it to rules designed for handling
specific exceptions. To support this,MoTif introduces an explicitHandler block where the modeller
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may access the information of the exception model and specify subsequent rules to pursue the excep-
tion flow. The handler block acts as a dispatcher sending the packet contained in the transformation
context of the exception through the outport correspondingto the exception name. Figure 8.10 shows
the use of the handler block. The handler block associates the packet with the appropriate exception
outport given a predefined exception tree. Since it is possible that not all the exceptions that can oc-
cur during a model transformation execution have a specific handler rule designed to address them, a
default exception port is provided with the handler block (which is linked to the top-most exception
class in the classification tree presented in Figure 8.5,e.g.,TransformationException ).

Note that in both models the handling part may itself producean exception which can be in turn
handled. For example, since the handling process involves further pattern matching, memory over-
flows are likely to occur and hence it is necessary to properlyhandle such exceptions.

Formally, theMoTif Handler is mapped to an atomic DEVS, integrated inMoTif-Core3. Following
the notation used in Section 7.2.2, a handler parametrized by a name and an alias, well as a set of
stringsΨ each representing a pre-defined exception type. At initialization-time, the atomic DEVS
will have as many outports as the size ofΨ. A Handler is defined by the following structure:

Handlername,alias,Ψ = 〈S,X,Y,δint ,δext,λ,τ〉

The stateS is defined as:

S= {(χ,map) |χ ∈ INSTANCESOF(Exception)∪{nil } ,map: Ψ→Y}

In this notation,mapis a bijective function that maps an outport for each string in Ψ. Also, theHandler
temporarily holds a an exception, from the time it receives it to the time it outputs it. We denote by
s0 = (nil ,map) the initial value ofS. It receives an exception as input, hence the input set is:

X = {INSTANCESOF(Exception)}∪{φ}

It outputs a packet, from one of the|Ψ| outports, hence the output set is:

Y = {INSTANCESOF(Packet)}|Ψ|∪{φ}

TheHandler does not consume time, hence the time advance is:

τ(s) = 0

The internal transition function simply removes the exception stored in the atomic DEVS. Thus:

δint (s) = s0

The external transition function simply stores the exception in the atomic DEVS. Thus:

δext((s,e) ,χ) =
(

χ′,map
)

3Recall that a property ofMoTif-Core is that a model can be extended with custom DEVS models (c.f.,Section 7.3).
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Figure 8.11: Modelling possible control flows after handling an exception locally at a sub-
transformation level: (1) resume after the activation point, (2) restart at the beginning of the enclosing
context, and (3) terminate the enclosing context.

whereχ′ is the updated version of the exception with the status set tohandling .

Finally, for the output function, theHandler outputs the exception stored in its state via the outport
in Y =

(

y1,y2, . . . ,y|Ψ|
)

corresponding to the type of the exception. Hence:

λ((χ,map)) =

{

χ′′ if map(χ.type ) = yi

φ otherwise
,∀yi ∈Y

whereχ′′ is the updated version of the exception with the status set tohandled .

8.3.5 Control Flow Concerns

Once an exception is generated, it should either be handled right away or propagated to a higher
scope. When a rule emits an exception, the control flow is redirected to a handler component which,
in release mode at least, handles the exception with the goalof continuing the transformation. After
the exception is handled, there are three options: the enclosing transformation mayresume, restart, or
terminate.

Resuming the transformation means to return the flow of control to the place where it was interrupted
by the exception. As depicted by channel (1) in Figure 8.11, the transformation continues in the
“normal” flow after the rule that activated the exception. Such a resumption model allows one
to express an alternative execution of the transformation.However, care should be taken if
the input model (or even the packet) was modified. As outlinedin Section 8.3.3, the modeller
may choose to recover the model to a state that was valid before the rule started applying its
modifications, if desired.

Restarting the transformation means to re-run the enclosing transformation from the beginning. As
depicted by channel (2) in Figure 8.11, the transformation restarts the “normal” flowbeforethe
rule that activated the exception. This is certainly an interesting way to tolerate transient faults.
However, restarting the transformation induces a loop in the control flow which may lead to
dead-locks, in case the fault is of a permanent nature.
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Figure 8.12: Propagating the exception to enclosing contexts.

Terminating the transformation means to skip the entire flow of the transformation in which a rule
raised the exception. As depicted by channel (3) in Figure 8.11, the enclosing transformation
exits the scope of the occurrence of the exception seamlessly. It ends in a “normal” flow,i.e., in
success or not applied mode, and not in generating an exception. As a result, the outer scope is
not aware that an exception occurred.

Exception Propagation

Up to now, we have considered that it is at the level of a transformation rule that an exception is
generated and subsequently handled at the level of the enclosing transformation. As mentioned previ-
ously,MoTif transformation models are hierarchical, in the sense that transformations can be nested.
Constructs such as aCRule modularly define scoped sub-transformations, allowing to compose trans-
formations models.

Just like in programming languages, it is recommended to handle exceptions in a scope that is
as close as possible to the point of activation. In other words, local exception handling is preferred.
However, it is possible that handling an exception locally is not possible, because the necessary con-
text information that is needed to define a useful handler is only available in a more global context.
Therefore, unhandled exceptions must be propagated up the transformation hierarchy as long as no
corresponding handler can be found. Only if an exception propagates unhandled out of the topmost
CRule, the transformation execution must be halted and debugginginformation displayed.

Figure 8.12 illustrates how, if an exception occurs, it is propagated4 through three transformation
encapsulation units (CRules). Nevertheless, at each level, a handler could be specifiedto “clean up”
any local state before the exception is propagated outside.Note that once an exception is handled,
it can no longer be propagated. If propagation is needed, thehandler must create a new user-defined
exception which can refer to the previously handled exception in itsTransformationContext .

8.4 Related work

The concept of exceptions exists in programming languages since the 1970s [Goo75]. Several ap-
proaches have been proposed for modelling exceptions in workflow languages [BCCT05] and event-

4Note that inMoTif , even if the exception ports of sub-models are not explicitly connected to the exception port of
their enclosing block, the generatedMoTif-Coremodel will have such links.
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driven languages [PM05]. However, there has not been any work on modelling exceptions in model
transformation languages. Current tools mostly rely on exceptions triggered from the underlying vir-
tual machine. As a matter of fact, debugging in tools such as ATL [JABK08], Fujaba [FNTZ00],
GReAT [AKK+06], QVTo [Dvo08], SmartQVT [Fra08], or VIATRA [VB07] is specific to their re-
spective integrated development editors (IDE).

Exception handling provides dynamic forward error recovery. Back-tracking mechanisms such as
in ProGReS [Zün92] are considered as backward recovery mechanisms, although not intended for
error recovery but rather for searching for matches to applya rule.

QVT Operational Mappings (QVT-OM) supports exception handling at the action language level,
an imperative extension of OCL 2.0 [Obj08]. The language allows one to handle exceptions in a
try . . . exceptstatement in the same way as in modern programming languagessuch as Java, It is
however unclear where, when, or how an exception occurs inQVT-OM. User-defined exceptions can
be declared and raised arbitrarily5 in themainoperation of a transformation. Moreover, an exception
is also raised when afatal assertionis not satisfied. However, it is unclear what information exceptions
carry and whether they can be propagated outside the scope ofthe transformation. Implementations of
QVT-OM such as SmartQVT and QVTo (an Eclipse plug-in into EMF) have different interpretations
from the standard,e.g.,allowing map to raise an exception if the pre-condition is not fulfilled. The
advantage of our approach is to (1) explicitly model the raising of exceptions and (2) explicitly model
the control flow subsequent to the handling of an exception.

FUJABA is a model transformation tool based on graph transformation combined with Story di-
agrams [FNTZ00]. There, exceptions are also not modelled, although present at the code level. The
maybestatements in Story diagrams can be used to handle exceptions in the transformation, but they
are only available for statement activities (i.e.,Java code). The same argument can be used as for the
choice of allowing exception handling at the level ofT-Core.

8.5 Conclusion

In this chapter, we have motivated the need for providing theconcepts of exception and exception
handling at the level of transformations. We have outlined aclassification of potential exceptions that
can occur in the context of model transformation. Though having different uses at different steps of
the development of a transformation model, these transformation exception must be handled by the
transformation model itself. We have discussed the different issues related to the handling of these
exceptions.

We have implemented the main concepts of this approach inMoTif . As the prototype is still in an
early stage, we are working on a system which will allow for user friendly debugging of model trans-
formation. The implementation of the detection mechanismsfor some classes of exceptions (such as
SE, ALE, and TSLE) relies on the exception detection mechanism of the underlying implementation
language (i.e.,Python). A complete implementation is left for future work.

5This fits in theAction Language Exceptionscategory according to our classification.
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The same exercise this paper presented for theMoTif framework can be done for theATL or QVT-
OM languages. We are confident that it is also applicable to transformation languages at different
levels of abstraction such as relational transformations (e.g.,QVT-R or Triple Graph Grammars).

Exception handling can become handy when designing a higher-order transformation. For exam-
ple in ATL [KMS+09], static verification of well-formed higher-order transformation rules is quite
limited. In this case, with an exception handling mechanismat the transformation level, the designer
may safely rely on the engine to design arbitrarily complex higher-order transformations.
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“In theory, there is no difference between theory and practice. In practice there is.”

Jan L. A. van de Snepscheut
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9
The Pacman Game Case-Study

In Part III, we introduced the novel model transformation languageMoTif . It allows one to model
a time-advance for every rule as well as to interrupt (pre-empt) rule execution. In this chapter, we
design a case study to show how the explicit notion of time allows for the simulation-based design
of reactive systems such as modern computer games. We use thewell-known game of Pacman as
an example and model its dynamics inMoTif . This also allows the modelling of player behaviour,
incorporating data about human players’ behaviour and reaction times. Thus, a model of both player
and game is obtained which can be used to evaluate, through simulation, the playability of a game
design.

9.1 Introduction

Modelling and Simulation-Based Design MSBD uses mathematical, visual and executable methods
to address problems of specification, verification, validation, integration and deployment of designing
complex hardware and software systems. This includes techniques of abstraction, compositionality
and virtualization. TheDiscrete Event system Specification (DEVS) formalism [Zei84] is primarily
intended for modelling and simulation of complex systems.

MoTif is a model transformation language whose semantics is basedonDEVS. SinceDEVS inher-
ently allows one to build hierarchical models, the transformation language becomes highly modular,
allowing re-use of specific components of a transformation.Another side-effect of usingDEVS is
the explicit notion of time it introduces in model transformations. This allows one to model a time-
advance for every rule as well as to interrupt (pre-empt) rule execution. Thanks to this notion of time,
we implement a simulation-based design of reactive systemssuch as modern computer games. More
precisely, the dynamics of the game is entirely modelled in the model transformation language.

In this chapter, we illustrate the application ofMoTif to modelling and simulation-based design
by means of the well-known Pacman game example, presented inSection 9.2. Subsequently, the suit-
ability of MoTif for Modelling and Simulation-Based Design is demonstrated. The Pacman game is
entirely modelled inMoTif in Section 9.3, including the game semantics, the transformation environ-
ment as well as the player. The simulation and optimization experiments as well as the synthesis of a
real-time Pacman web application are explained in Section 9.4.



222 The Pacman Game Case-Study

Scoreboard

score: int
GridNode RightLeft

Top Bottom

0..1

0..1

0..1
0..1

0..1

0..1 0..1

0..1

Pacman GhostPellet

1

* * *

On

Figure 9.1: The Pacman Meta-Model

9.2 The Pacman Formalism

In order to illustrate the power ofMoTif in the context of simulation-based design, we use a simplified
version of the well-known video game Pacman throughout thischapter. ThePacman language syn-
tax and semantics are inspired by Heckel’s tutorial introduction to graph transformation [Hec06].
In what follows, we first synthesize a Pacman-specific visualmodelling environment in the tool
AToM3 [dLV02] by defining a meta-model of thePacman language. Subsequently, we model the se-
mantics of the Pacman language by means of graph transformation rules.

9.2.1 The Pacman Language (Abstract and Concrete Syntax)

The Pacman language has five distinct syntactic elements:Pacman, Ghost, Pellet, GridNode, and
ScoreBoard. Figure 9.1 shows the meta-model of this modelling language. Pacman, Ghost, andPellet
objects can be linked toGridNode objects with anOn association. This represents that these objects
can be “on” a grid node. The four self-associationsLeft, Right, Top andBottom betweenGridNode ob-
jects represent the geometric organization of the game area, similar to the classic Pacman video game.
At a semantic level, these associations denote thatPacman andGhost “may move” to a connected
GridNode. A Scoreboard object holds an integer valued attributescore . For the concrete syntax of
the Pacman language, an icon is associated with each of the meta-model’s classes. For each of the
meta-model’s associations, a geometric/topological constraint relation is given. TheOn association
betweenPacman andGhost entities for example is rendered as the Pacman icon being centered over
the grid node icon1. Note how in this example there are no restrictions on the number of instances of
each meta-model class, nor on the number of links to aGridNode instance.

9.2.2 The Pacman Semantics (Graph Transformation)

The operational semantics of thePacman formalism is defined by means of a collection of (graph)
transformation rules. These rules take as input a host graph(model) and produce as output the trans-
formed graph. The resulting graph may be only partly modified, e.g., the GridNode elements are
preserved in the transformation. Concrete visual syntax isused in the rules in Figure 9.2(a)-(d). This
feature ofAToM3 is particularly useful for domain-specific modelling. Thekill rule in Figure 9.2(a)

1Note that this is why links (instances of association) are not shown explicitly in Figures 9.2(a)-(d).
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Figure 9.2: The Pacman semantics rules for (a)Ghost killing Pacman, (b) Pacman eatingPellet, (c)
Ghost moving right, and (d)Pacman moving right.

shows killing: when a Ghost object is on a GridNode which has aPacman object, that Pacman object
is deleted. Theeat rule in Figure 9.2(b) shows eating: when aPacman object is on aGridNode which
has aPellet object, thePellet object is deleted and the score gets updated (using an attribute update
expression). TheghostRight rule in Figure 9.2(c) expresses the movement of aGhost object to the
right and thePacmanRight rule in Figure 9.2(d) the movement of aPacman object to the right. Note
the presence of a NAC in the last rule prevents thePacman from moving to aGridNode that holds a
Ghost (as this would imply certain death). Similar rules to moveGhost andPacman objects up, down,
and left are omitted.

9.3 Modelling the Pacman Case Study

At the heart of our approach lies the embedding of graphs in DEVS events and of individual trans-
formation rules into atomic DEVS blocks as, at run-time, aMoTif transformation model is aDEVS
model.

9.3.1 (Modelling) The Transformation Environment

The overall transformation model of the Pacman game is shownin Figure 9.3. The atomic DEVS block
User is responsible for user (player) interventions. It can sendthe initial graph to be transformed, the
number of rewriting steps to be performed (possibly infinite), and some control information. In a
previous work [SV07], the control information was in the form of key press codes to model the user
input to a game. All these events are received by theController, another atomic DEVS block. This
block encapsulates the coordination logic between the external input and the transformation model. It
sends the host graph through its outport to a rule set (theAutomatic CRule) until the desired number
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Figure 9.3: The overall transformation model

of steps is reached. If a control event is received however, theController sends the graph to another
rule set (theUserControlled CRule). The RuleAutomaticCRule expects only a graph to perform
the rewriting on, whereas theUserControlled CRule waits for a control, too. The details are omitted
here to focus on the overall structure.

The model described in [SV07] does not model a realistic, playable game. When the user sends
a key, the corresponding transformation rule is executed and the graph is sent toAutomatic until
another key is received or the Pacman entity has been deleted(note that the consumption of transfor-
mation steps is not a termination factor when infinity is initially sent). What prohibits this from being
suitable for a playable game is:

• A rule consumes a fixed amount of time. From the graph rewriting perspective, this allows one to
compute the time complexity of the transformation. From theinput model perspective, it gives
a way of quantifying the complexity of a model. However, thisdoes not take into consideration
any notion of game levels or real-time behaviour which a gamesuch as Pacman should have.

• The user sends information to the rewriting system to (1) configure the transformation engine
and (2) to control the transformation execution abstractedto the specific domain of interest
(Pacman movements). This model does not take into account any playability issues, such as the
Ghost moving too fast versus a user reacting too slowly.

In the sequel we present an extended model with focus on timing information. This will allow us,
through simulation, to construct an optimally “playable” game.
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9.3.2 Modelling the Player

In current graph transformation tools, theinteraction between the user –the player in the current
context– and the transformation engine is hard-coded rather than explicitly modelled. Examples of
typical interaction events are requests to step through a transformation, run to completion, interrupt
an ongoing transformation, or change parameters of the transformation. In the context of the Pacman
game, typical examples are game-events such as Pacman move commands. Also, if animation of a
transformation is supported, the time-delay between the display of subsequent transformation steps is
encoded in the rewriting engine.

In contrast, in ourDEVS-based approach, the interaction between the user and the game is ex-
plicitly modelled and encapsulated in the atomic DEVS blockUser (see Figure 9.3). Note that in this
interaction model, time is explicitly present. Also performance analysis in the form of statistics is
often neglected.

With the current setup, it is impossible to evaluate thequality (playability) of a particular game
dynamics model without actuallyinteractivelyplaying the game. This is time-consuming and repro-
ducibility of experiments is hard to achieve. To support automatic evaluation of playability, possibly
for different typesof players/users, it is desirable to explicitly model player behaviour. With such a
model, a complete game between a modelled player and a modelled Pacman game –an experiment–
can be runautonomously. Varying either player parameters (modelling different types of users) or
Pacman game parameters (modelling for example different intelligence levels or speed in the be-
haviour of Ghosts) becomes straightforward and alternatives can easily be compared with respect to
playability. For the purpose of the Pacman game, player behaviour parameters can be user reaction
speed or levels of decision analysis (such as pathfinding). We have explored these two dimensions of
behaviour. Section 9.4 will discuss reaction speeds more in-depth.

Obviously, evaluating quality (playability) will requirea precise definition of a playabilityper-
formance metric. Also, necessary data to calculate performance metrics needs to be automatically
collected during experiments. Explicitly modelling player behaviour can be done without modifying
the overall model described previously thanks to the modularity of DEVS. We simply need to replace
theUser block by a coupled DEVS block with the same ports as shown in Figure 9.4. We would like
to cleanly separate the way a player interrupts autonomous game dynamics (i.e., Ghost moving) on
the one hand and the player’s decision making on the other hand. To make this separation clear, we
refine theUser block into two sub-models: theUser Interaction and theUserBehaviour atomic DEVS
blocks. On the one hand, theUser Interaction model is responsible for sending control information
such as the number of transformation steps to perform next, or a direction key to move thePacman.
On the other hand, theUserBehaviour block models the actual behaviour of the player. This is often
referred to as the “AI” of a Non Player Character (NPC) in the game community. It is this block
which, after every transformation step, receives the new game state graph, analyzes it, and outputs a
decision determining what the next game action (such as Pacman move up) will be. Also, since it is
theUserInteraction block which keeps receiving the game state graph, we chose togive this block the
responsibility of sending the initial host graph to the transformation subsystem.

An atomic DEVS block,Dispatch, receives the user action and branches the execution to the corre-
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sponding rule to be triggered. Thus, in this approach, the event-driven execution of the transformation
is embedded in thetransformation modelrather than in the rule itself such as in [GdL07b, GdL04].
There, the notion of Event-driven Graph Rewriting was proposed in the context of visual modelling:
a graph rewriting rule is triggered in response to a user action. More precisely, the rule itself is aug-
mented to behave according to the event it received. InMoTif , we have separated the event reaction
from the rule itself. When theUserBehaviour coupled DEVS block emits the event, it is fed to the
UserControlled model via theController as shown in detail in Figure 9.5. Also, in our approach, the
user and user interaction itself have been modelled in theUser coupled DEVS block.

Different players may use differentstrategies. Each strategy leads to a different model in the
UserBehaviour block. We have modelled three types of players for our experiments: Random, Lazy,
and Smart.

The Random user does not take the current game state graph into consideration but rather chooses
the direction in which the Pacman will move in randomly. Notethat this type of player may
send direction keys requesting illegal Pacman moves such ascrossing a boundary (wall). This
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is taken care of by our Pacman behaviour rules: the particular rule that gets triggered by that key
will not find a match in the graph, hence Pacman will not move. However, time is progressing
and if Pacman does not move, the ghost will get closer to it which will eventually lead to Pacman
death. Note that the rules used are similar to the move right of Figure 9.2(d): the NAC prevents
movements towards a grid node already occupied by a Ghost.

The Lazy user does not make such mistakes. After querying the game state graph for the Pacman
position, it moves to the adjacent grid node that has Food butnot a Ghost on it. If no such
adjacent grid node can be found, it randomly chooses a legal direction.

The Smart user is an improved version of the Lazy user. Whereas the Lazy useris restricted to mak-
ing decisions based only on adjacent grid nodes, the Smart user has a “global” view of the board.
The strategy is to compute the closest grid node with Food on it and move the Pacman towards
it depending on the position of the Ghost. One way to implement this strategy is by using a
path finding algorithm. Many solutions exist for such problems, including some efficient ones
such as A* [HNR68]. It is possible to integrate this kind of path finding techniques in aMoTif
model. Because it is not the main focus of this paper, we only outline two possibilities. One is
to explicitly model the path finding with transformation entities. The depth-first search model
in Figure 9.6 can be a starting point. The behaviour of theSmartMove transformation model
is to find a sequences of path steps that, from a Pacman object,lead to a Pellet object. Since
theTryMove BRule consists of transactionalSRules, if MakeMove succeeds,TryMove is recur-
sively applied on the new model. However, ifEat fails, TryMove rolls-back to the state before
it was last applied and tries a different match or branch. It therefore models a recursive back-
tracking algorithm to find a correct path. Another abstraction is algorithmic, using an atomic
DEVS block to encode the algorithm in its external transition function. In any case, whether
modelled declaratively using backtracking rules or algorithmically, the path finding sub-model
can be used as a “black-box” and integrated transparently inthe transformation model. In this
case-study, extending thePacman meta-model with(x,y) coordinates on grid nodes allows a
linear time solution to this particular path finding problem. AToM3 allows one to add actions
to meta-model elements. Relative coordinates management is handled in the action of each of
the four associations betweenGridNode objects: if aGridNode instanceg1 is associated with
another instanceg2 by aLeft association, theng1.x< g2.x andg1.y= g2.y. Similar conditions
are defined forRight, Top, andBottom associations. Therefore, the pathfinding only needs to
compute the shortest Manhattan distance from Pacman to Pellet as well as perform a simple
check for the grid node coordinates of the Ghost.

We compare the performance of different user behaviour types in Section 9.4. Note that to match
different user types, we need to model similar strategies for the Ghost to make the game fair. Indeed, a
Smart user (controlling the Pacman) playing against a randomly moving Ghost will not be interesting
nor will a Lazy user playing against a Smart Ghost. As playersmay become better at a game over
time, gamelevelsare introduced whereby the game adapts to the player’s aptitude. This obviously
increases game playability.
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theXBSRule sub-model.MakeMove is theBRule version ofTryMove .

9.3.3 Modelling the Game

As long as the (modelled) player does not send a decision key to move the Pacman (thus changing
the game state graph) the game state graph continues to loop between theController block and the
Automatic block depicted in Figure 9.7. If no instantaneous rule (Kill or Eat ) matches, then it is the
lower priority GhostMove block that modifies the graph. The Ghost movement model in Figure 9.8
supports different strategies. The game state graph is received by aDecider atomic DEVS block.
Similar to theUserBehaviour block, it emits a direction that drives the movement of the Ghost. The
Random, Lazy and Smart strategies are analogous to those of the player. The Random Ghost will ran-
domly choose a direction, the Lazy Ghost will look for a Pacman among the grid nodes adjacent to the

:GhostMove

:Eat

:Kill

:Automatic

Figure 9.7: TheAutomatic CRule encoding rule priorities.
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one the Ghost is on, and the Smart Ghost has “global” vision and always decides to move towards the
Pacman2. The same argument previously made about optimal path finding and backtracking applies.
TheDecider sends the graph and the decision (in the form of a key) to aDispatch block and the rest
of the behaviour is identical to that in theUserControlled CRule.

9.3.4 Explicit Use of Time

We have now modelled both game and player, and the behaviour of both can use Random, Lazy, or
Smart strategies. However, one crucial aspect has been omitted up to now: the notion of time. Time
is critical for this case study since game playability depends heavily on the relative speed of player
(controlling the Pacman) and game (Ghost). The speed is determined by both decision (thinking) and
reaction (observation and keypress) times.

We will now show how the notion of time from theDEVS formalism integrated in a graph trans-
formation system can be used for realistic modelling of bothplayer and game. We consider a game to
be unplayable if the user consistently either wins or loses.The main parameter we have control over
during the design of a Pacman game is the speed of the Ghost.

Each atomic DEVS block has a state-dependent time advance that determines how long the block
stays in a particular state.Kill andEat rules should happen instantaneously, thus their time advance
is 0 whenever they receive a graph. In fact, all rules involved in the transformation have time advance
0. What consumes time is the decision making of both the player (deciding where to move thePac-
man) and the game (deciding where to move theGhost). For this reason, only theDecider and the
UserBehaviour blocks have strictly positive time advance.

2In the original Pacman video game, these different Ghost types are referred to as “Clyde” for Random, “Pinky” for
Lazy, and “Inky” for Smart.
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To provide a consistent playing experience, the time for theGhost to make a decision should
remain almost identical across multiple game plays. The player’s decision time may vary from one
game to another and even within the same game. We have chosen atime advance for theDecider that
is sampled from a uniform distribution with a small variance(interval radius of 5ms). What remains
is to determine a reasonable average of the distribution. Tomake the game playable, this average
should not differ significantly from the player’s reaction time. If they are too far apart, a player will
consistently lose or win making the game uninteresting.

9.4 Simulation experiments

In the previous section, we determined that the playabilityof the Pacman game depends on the right
choice of the average time advance of theDecider block, i.e., the response time of the Ghost. We
will now perform multiple simulation experiments, each with a different average time advance of the
Decider block. For each of the experiments, a playability performance metric (based on the outcome
and duration of a game) will be calculated. The value of theDecider block’s average time advance
which maximizes this playability performance metric will be the one retained for game deployment.
Obviously, the optimal results will depend on the type of player.

9.4.1 Modelling User Reaction Time

First of all, a model for player reaction time is needed. Different psychophysiology controlled exper-
iments [ZS02] give human reaction times:

• the time of simple visuomotor reaction induced by the presentation of various geometrical fig-
ures on a monitor screen with a dark background;

• the time of reaction induced by the onset of movement of a white point along one of eight
directions on a monitor screen with a dark background.

The reaction time distribution can be described by an asymmetric normal-like distribution. The cu-
mulative distribution function3 for sensorimotor human reaction time is:

F(x) = e−e
b−x

a (9.1)

wherea characterizes data scatter relative to the attention stability of the subject: the largera is, the
more attentive the subject;b characterizes the reaction speed of the subject. For simulation purposes,
sampling from such a distribution is done by using the Inverse Cumulative Method [Dev86]: a value
sampled from the initial distribution function is computedby sampling a random number from a
uniform distribution in the interval[0,1] and subsequently evaluating the inverse cumulative function
at that value.

3The type of the function for describing the reaction time distribution was chosen on the basis of the results obtained in
two adult subjects (400 reaction time values of each type were measured in the dominant hand). The function was tested
on a group of 25 university students between 17 to 20 years of age.
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(a) (b)

(c) (d)

Figure 9.9: The simulation results: (a) the time till end, (b) the score at the end of game, (c) the victory
frequency, and (d) the game length distribution with a normal user and a game time advance of 325ms.

For our simulation, four types of users were tested: Slow with a= 33.3 andb= 284, Normal with
a = 19.9 andb = 257, Fast witha = 28.4 andb = 237, VeryFast witha = 17.7 andb = 222. The
parameters used are those of four example subjects in [ZS02].

9.4.2 Simulation Results

For the simulations, we only consider the Smart user strategy. For each type of user (Slow, Normal,
Fast and VeryFast), thelength of the simulated gameis measured: the time until Pacman is killed
(loss) or no Pellet is left on the board (victory). To appreciate the need for these results, the score
is also measured for each run. Simulations were run for a gameconfiguration with 24 GridNodes,
22 Pellets, 1 Ghost and 1 Pacman. The game speed (ghost decision time) was varied from 100ms to
400ms. Each value is the result of an average over 100 samplessimulated with different seeds.
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The following presents the simulation results obtained by means of the DEVS simulations of our
game and player model. All figures show results for the four types of users (Slow, Normal, Fast and
VeryFast). Figure 9.9(a) shows thetime until the game endsas a function of the time spent on the
Ghost’s decision. The increasing shape of the curves imply that the slower the ghost, the longer the
game lasts. This is because the user has more time to move the Pacman away from the Ghost. One
should note that after a certain limit (about 310ms for the VeryFast user and 350ms for the Normal
user), the curves tend to plateau. To further investigate this behaviour, Figure 9.9(b) shows the score
(relative percentage of number of Pellets eaten) for the different game speeds. Not surprisingly, these
curves and the previous ones have the same shape: increasingup to a certain limit and then remain
constant. These limits even coincide at sensibly the same values and happen when the score reaches
100%. An explanation for this behaviour is simply that aftera certain point, the Ghost decision time is
too low and the user always wins. Therefore, the optimal averagetime advancevalue we are looking
for is found in the middle of the steep slope of the plots.

Figure 9.9(c) depicts thefrequencywith which a player willwin a game (when playing a large
number of games) as a function of the time spent on the Ghost’sdecision. We decided that we want
to deploy a game where the user should be able to win with a probability of 75%. Thus, the optimal
average Ghost time advance (decision time) was found to be 325ms (taking into account fairness
among the different types of users). Note that the focus of this case study is not on the reasons for
such decisions/assumptions but rather on how the integration of graph rewriting systems with the
DEVS formalism gives the modeller the right level of abstraction for simulation and performance
analysis.

To give further insight in the variability of the game experience, Figure 9.9(d) shows thegame
length distributionat the optimaltime advancevalue. It is an unimodal distribution with a peak at
7.5s. This average is quite low, but not surprising given the small game board. Experience with the
deployed real-time game application is consistent with this value.

9.4.3 Game Deployment

Having found a prediction for the optimal time theDecider block should spend on the choice of
the next movement of the ghost entity, we can now test the simulated game with real users, in
real-time. From theAToM3 Pacman formalism/meta-model we have synthesized –yet another model
transformation– an Ajax/SVG-based application. The web application’s dynamics is defined by a
JavaScript compiled Statechart handling the events. TheMoTif model is slightly modified to get the
decision event from an external source. TheUser coupled DEVS now has an inport“interrupt” wait-
ing for external input. TheUser Interaction block is then linked to that port to receive the decisions.
The player behaviour model in theUser Behaviour block is thus discarded. The transformation model
is executed by a real-time version of ourpythonDEVS simulator. An intermediate layer for event
management and communication between the web client and thetransformation model is used.

The most expensive operation in a graph transformation toolis the matching phase.MoTif ’s current
implementation of the rule matching turned out to be significantly fast enough to play the deployed
game. Figure 9.10 shows a snapshot of the deployed game with the same initial state and conditions
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Figure 9.10: Snapshot of the deployed Pacman game running ina web browser

as the simulated game.

9.5 Conclusion

In this chapter we have shown how the explicit notion of time in MoTif allows for the simulation-based
design of reactive systems such as modern computer games. Weused the well-known game of Pacman
as an example and modelled its dynamics with programmed graph transformation based onDEVS.
This allowed the modelling of player behaviour, incorporating data about human players’ behaviour
and reaction times. We used the models of both player and gameto evaluate, through simulation, the
playability of a game design. In particular, we proposed a playability performance metric and varied
parameters of the Pacman game. This led to an “optimal” (froma playability point of view) game
configuration. The user model was subsequently replaced by aweb-based visual interface to a real
player and the game model was executed using a real-time DEVSsimulator.

The use of graph transformation at the heart of this approachallows non-software-experts to spec-
ify all aspects of the design in an intuitive fashion. The resulting simulations give quantitative insight
into optimal parameter choices. This is an example of modelling and simulation-based design, where
the graph transformation rules and the timed transformation system are modelled, as well as the user
(player) and the context. Having modelled all these aspectsin the same model transformation frame-
work, MoTif , allows for simulation-based design.

The transformation language used in the Pacman example emulatesAToM3’s rewriting semantics.
In fact, we could have used another graph transformation semantics (such as unordered or layered



234 The Pacman Game Case-Study

graph rewriting). We could even have combined different transformation specification languages. As
such,DEVS acts as a “glue” language.

Using theDEVS formalism as a control flow language for graph rewriting enabled us not only to
model theAToM3 semantics for graph transformation execution but also to model continuous execu-
tion and user interaction. Note that we are thus modelling control structures supporting step by step
simulation, continuous simulation and user controlled simulation, which are not in the system under
study, but rather in the execution environment.

The beauty ofDEVS models lies in the modularity of its building blocks. In fact, each block
performs an action given some input and can produce outputs.This modularity trivially supports
the combination of building blocks specified usingheterogenous modelsexpressed in multiple for-
malisms. Hence, we may combine graph grammars with for example Statecharts and code. This is the
key to scaling up (graph) transformation modelling to arbitrarily more complex models, far beyond
the limits of pure rule-based graph transformation systems.

For future work we propose the following. The focus of this thesis is on expressiveness rather than
performance. Although the transformation implementationis fast enough for this specific example of
a Pacman game, performance analysis is needed for larger-scale games. At the model structure level, it
is noted how topologically similar theUserControlled rules andGhostMove CRules are. Re-use and
parametrization of transformation models deserves further investigation. For the presented Modelling
and Simulation-based design application, we could also enhance the game with Dynamic Difficulty
Adjustment techniques as outlined in [Hun05]. For example,the user speed could be measured in
real-time and compared with the simulated user speeds. The speed of the ghost can then be adapted
appropriately.
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The Class Diagram To Relational Database

Benchmark

In this chapter, we evaluate the expressiveness ofMoTif by solving a standard benchmark in model
transformation: the class diagram to relational database schema transformation. We also compare our
solution to others.

10.1 Introduction

A plethora of model transformation languages co-exist nowadays. This diversity makes it hard for
a customer to choose the most appropriate tool to solve his problem. Having realized this issue, the
model transformation community proposed a common case study at the Model Transformations in
Practice Workshop (MTiP) workshop [BRT05] co-located withthe MoDELS conference in 2005.
Various solutions were submitted to the workshop, mostly graph transformation based. Today, so-
lutions have been constructed in all model transformation languages. It has thus become a standard
benchmark for evaluating the expressiveness of the different languages.

In this chapter we propose to solve the case study inMoTif and thus compare its expressiveness
with other common transformation languages. This comparison is a complement to the one drawn
in Chapter 2. The following section outlines the specifications of the benchmark description. In Sec-
tion 10.3, we solve the problem usingMoTif . Finally in Section 10.4, we discuss similarities and
differences of our solution with respect to others.

10.2 Description of the Benchmark

The case study was originally proposed by the OMG [Obj04] in 2004. However, the case study used
in this chapter is based on the benchmark proposed at the 2005MTiP workshop [BRT05]. There
are several versions of this example—nearly every paper uses its own version. It is the most popular
case study in model transformation. Its goal is to transforma class diagram model into an equivalent
relational database schema. We will therefore call it the CD2RDBMS benchmark.

Figure 10.1(a) presents the meta-model of class diagrams considered in the benchmark. It consists
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Figure 10.1: The class diagram meta-model in (a) and the relational database schema meta-model
in (b).

of classes and directed associations. A class is either persistent or not. It can inherit from another
class and contains at least one attribute. At least one attribute must constitute the class’s primary key.
The type of an attribute is either a primitive data type (simple) or another class (complex). Associa-
tions represent one-to-one relationships. Additional constraints where added to the FAQ page of the
workshop [BRT05]: In an inheritance hierarchy, only the top-most class is persistent. Furthermore,
sub-classes may not add new primary keys to the ones inherited from their parent.

Figure 10.1(b) presents the meta-model of relational database schemas considered in the bench-
mark. It consists of at least one table. A table contains at least one column; at least one of them must
be assigned to the table’s primary key. A table may contain a foreign key. Each of them refers to the
particular table it identifies and denotes the columns of thetable that are part of the foreign key. The
transformation’s directives are the following:

1. A class is transformed into a table if and only if it is persistent. The corresponding table shall
have the same name and one or more column of every attribute ofthe class and every association
for which the class is the source.

2. An attribute whose type is a primitive data type shall be transformed into a single column whose
type is the same name as the primary data type’s name.

3. An attribute whose type is a persistent class shall be transformed into one or more columns,
created from the persistent class’ primary key attributes.The columns name shall be prefixed
by the name of the attribute followed by an underscore (“_”).The resulting columns must be
part of a foreign key that refers to the persistent class. An association whose destination class is
persistent must be transformed in a similar way.

4. An attribute whose type is not a persistent class shall be transformed into one or more columns.
The columns name shall be prefixed by the name of the attributefollowed by an underscore
(“_”). The columns shall be placed in tables created from persistent classes. An association
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whose destination class is not persistent must be transformed in a similar way. Primary and
foreign keys of the translated non-persistent classes mustbe merged in appropriately, taking
into consideration that the translated non-persistent class may contain primary and foreign keys
from an arbitrary number of other translated classes.

5. All attributes of the (recursive) parent classes and all associations whose source is one of the
parents classes shall be considered. The resulting columnsare therefore all merged in the table
corresponding to the top-most table. An attribute with the same name as an attribute in a parent
class is considered to override it.

6. Associations are not directly transformed. However, each association which has a particular
class as a source must be considered when transforming that class into a table and/or columns.

7. Transformations shall not create duplicate elements with the same names when merging at-
tributes and associations as well as when foreign keys pointto the same columns of a table.

The specifications imply three requirements with recursivenature: (1) the drill-down of the inheritance
hierarchy, (2) the recursive propagation of the columns corresponding to non-persistent attributes
and associations, and (3) the recursive propagation of the foreign keys involved with non-persistent
classes.

10.3 The Solution in MoTif

Now we describe how to solve the CD2RDBMS transformation inMoTif . First we outline the imple-
mentation steps to design and run the transformation and then we present the details of the transfor-
mation specification.

10.3.1 Development of the Implementation

We follow the MPM transformation development methodology presented in Section 7.5. In our solu-
tion, we first define the class diagram (CD) and relational database schema (RDBMS) meta-models in
the toolAToM3. Then we synthesize a modelling environment for each language and the meta-model
of the transformation model CD2RDBMS. Recall from Chapter 5that the latter is obtained with the
RAM process. Thanks to the CD2RDBMS meta-model, we generatea modelling environment for
describing the pattern specifications of the transformation. All the patterns appear in Figure 10.2. The
meta-model of the patterns allows one to create fragments ofCD and RDBMS models augmented
with constraints and action statements and an appropriate graphical concrete syntax (c.f. Figure 10.2).
Furthermore, generic links allows one to connect elements within and across the CD and RDBMS
languages. Then, based on theMoTif meta-model, we design a scheduling model that encapsulates
the patterns such as the one in Figure 10.3. The CD2RDBMS patterns are compiled into Himesis
patterns and theMoTif model is translated into aMoTif-Core model. The resulting transformation
model is loaded in the common transformation framework to beexecuted. From the CD meta-model,
we define a CD model to input to the transformation. At the end of the transformation execution,
CD2RDBMS produces a multi-language model partitioned intotwo sub-models: one is the original
CD model and the other is the produced RDBMS model, as it is an in-place transformation.
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10.3.2 The Transformation Model

The core of the transformation resides in the specification of the patterns enclosed in rules and their
scheduling inMoTif . The general idea is first to relate all classes to tables and simple attributes to
columns, then complex attributes and associations are mapped to columns along with temporary
structures, and finally all temporary artefacts are removed. The proposed solution consists of 21 rules,
shown in Figure 10.2, organized as illustrated by the model in Figure 10.3.

First, theFRule TopClass2Table creates a table for each top-most class, even for non-persistent
classes. This one-to-one mapping maintains generic links which act like traceability links. Then,
DrillDownInheritance relates each sub-class to the table of its top-most parent. The rule is en-
capsulated in anSRule which allows one to recursively traverse each inheritance hierarchy. The NAC
prevents ensures that the rule is executed only once per class. When every class is mapped to exactly
one table, the rulePDTAttribute creates a column for every simple attribute in the table correspond-
ing to the enclosing class. This is anSRule since we should prevent the creation of multiple columns
with the same name, coming from a parent class’ attribute. Atthis point all columns corresponding
to attributes with a primitive data type have been created. Thus theFRule SetPK can safely create the
primary keys of each table.

Next is to process complex attributes. Note that from the specifications, persistent attributes and
associations with a persistent class as destination are transformed in a similar way. The same holds for
non-persistent attributes and associations with a non-persistent class as destination. We will therefore
describe the mapping for associations only, as mapping complex attributes is analogous. The next rule
block is aBSRule with four branches, one for each case of (non-)persistent attribute or association.
Only one applicable branch is executed. After its application, theBSRule ProcessReferences is
re-applied until no branch is applicable. For the persistent case, the rulePAssociation creates a
foreign key between the tables corresponding to the source and destination classes of the association.
Additionally, a column is created in the table corresponding to the source class to be part of the foreign
key. Note that although classes labelled 1 and 3 in the LHS aredistinct elements, they may be matched
to the same element in the input model as none of them is deleted in the RHS. Hence self-associations
are also considered. The NAC prevents the application of therule on the same association for each
iteration of theBSRule. For the non-persistent case, each column of the table corresponding to the
destination class is copied to the table corresponding to the source class. After each application of
NPAssociation , theARulePropagatePK ensures that if the original column was part of the primary
key of its table, then the copied column is also part of the primary of its table. TheBSRule processes
each association recursively so that the columns and foreign keys correctly appear in the required
tables. However, one should still take care of the foreign keys. On the one hand, the above process
creates a separate foreign key for each column of each related table. TheBSRule MergeFK therefore
merges such foreign keys into a single one involving all columns referring to a same table. ABSRule
is required in this case to handle alternation of associations and complex attributes recursively. On
the other hand, theBSRule PropagateFK propagates all foreign keys of tables corresponding to non-
persistent classes to the tables corresponding to persistent classes that refer to them. Note that for
each propagated foreign key, theFRule PropagateFKCol ensures that the new foreign key refers to



10.3 The Solution in MoTif 239

pdtAttribute

Class

1

Attr 2

6

4

Table

8:MTpost_name =

name.setValue(PreNode(2).name)

8:MTpost_type =

name.setValue(PreNode(3).name)

5

PDT

3
7

4

Table

Col

8

9
5

10

Class

1

Attr2

6

PDT

3
7

Col

8
10

Attr

2

4

Table Col

8
9

8:MTpre_name =

name.setValue(PreNode(2).name)

setPK

3

Table

Col

4

6
7

8

Class

1

Attr2

5

2:MTpre_is_primary =

is_primary.setValue(True)

3

Table

Col

4

6
7

8

Class

1

Attr2

5
PK9

propagateFKCol

FK

4

5

1 2

3

6

7

8

9

FK

Table

Col Col

fk2fk1

t FK

4

5

1 2

3

6

7

8

9 10

FK

Table

Col Col

fk2fk1

t

mergeAttrFK

4

Attr

5

11

1

Table

FK

2 3

6

7 8

9 10 12

FK

Col Col

4

Attr

13

1

Table

2 3

14 15

Col Col

FK

16

17

mergeAssocFK

4

5

11

1

Table

FK

2 3

6

7 8

9 10 12

FK

Col Col

4

13

Table

2 3

14 15

Col Col

FK

16

17

Assoc
1
Assoc

propagateAttrFK

Class

4

Attr

5

Table
11

Class

1

Table Table

FK

Table

FK

2

3

6

7

8

9
10

12

13

Class

4

Attr

5

Table
11

Class

1

Table Table

FK2

3

6

7

8

9
10

12

13

FK

14
15 16

17
14

1

6

fk2

fk1

t
4:MTpre_is_persistent =

is_persistent == False

propagateAssocFK

Class

4 5

Table
11

Class

1

Table Table

FK

Table

FK

2 6

7

8

12

13

Class

4 5

Table
11

Class

1

Table Table

FK2

3

6

7

8

9

10
12

13

FK

14
15 16

17
14

1

6
dest

src

Assoc

3

9

10

dest

src

Assoc

fk2

fk1

t
4:MTpre_is_persistent =

is_persistent == False

delTmpCol

2

Table

Col

4

5
3

Class

1

1:MTpre_is_persistent =

is_persistent == False

3

Table

2

Class

1

delTmpTable

2

Table
3

Class

1

1:MTpre_is_persistent =

is_persistent == False

Class

1

delTmp

1

delTmpFKCol

2

Table

4

5
3

Class

1

1:MTpre_is_persistent =

is_persistent == False

2

Table
3

Class

1

FKCol

6

7

4

5

FKCol

6

drillDownInheritance

2

Table

3

4

Class

5
Class

11

2

6

Class

Table

6

2

Table

3

4

Class

5
Class

1

propagatePK

3

Table

Col 4

6

7

Table

1

Col2

5

3

Table

Col

4

6

7

Table

1

Col2

5
PKPK PK 8

col1 col2

topClass2Table

1

2

3

Class

Table

2

1

3

Class

Class

1

Class

2:MTpost_name =

name.setValue(PreNode(1).name)

pAssociation

12:MTpost_name =

name.setValue(PreNode(2).name

             + '_' + PreNode(5).name)

12:MTpost_type =

name.setValue(PreNode(5).type)

6

Table Col

12
13

12:MTpre_name =

name == PreNode(2).name

    + '_' + PreNode(5).name

Class

1 6

Table
7

Class

4

Table Col 5
1110

PK

Col

12

13

FK
17

14

15

16

Class

1 6

Table
7

Class

4

Table

5

11
10

PK

Col

Assoc 2

8

3
9

src

dest

Assoc
2

8

3
9

src

dest

3:MTpre_is_persistent =

is_persistent == True

npAssociation

12:MTpost_name =

name.setValue(PreNode(2).name

                +'_'+PreNode(5).name)

12:MTpost_type =

name.setValue(PreNode(5).type)

Class

1

Assoc 2

8

6

Table
7

3
9

Class

4

Table

Col 5

11

10

6

Table
7

4

Table

Col
5

11

10

Col
12

13

14

src

dest

Class

1

Assoc2

8

3
9

Class

src

dest

3:MTpre_is_persistent =

is_persistent == False

PK

6

Table

Col 5

Col 12

13

14
col2

col1

pAttribute

12:MTpost_name =

name.setValue(PreNode(2).name

             + '_' + PreNode(5).name)

12:MTpost_type =

name.setValue(PreNode(5).type)

6

Table Col

12
13

12:MTpre_name =

name == PreNode(2).name

    + '_' + PreNode(5).name

Class

1

Attr2

8

6

Table
7

3
9

Class

4

Table Col 5
1110

PK

Col

12

13

FK
17

14

15

16

Class

1

Attr2

8

6

Table
7

3
9

Class

4

Table

5

11
10

PK

Col

3:MTpre_is_persistent =

is_persistent == True

npAttribute

12:MTpost_name =

name.setValue(PreNode(2).name

             + '_' + PreNode(5).name)

12:MTpost_type =

name.setValue(PreNode(5).type)

Class

1

Attr 2

8

6

Table
7

3
9

Class

4

Table

Col 5

11

10

Class

1

Attr 2

8

6

Table
7

3
9

Class

4

Table

Col
5

11

10

Col
12

13

14
col2

col1

3:MTpre_is_persistent =

is_persistent == False

6

Table

Col
5

Col
12

13

14

delTmpFK

2

Table

4

5
3

Class

1

1:MTpre_is_persistent =

is_persistent == False

FK

3

Table

2

Class

1

delTmpRef

2

Table

4

5
3

Class

1

1:MTpre_is_persistent =

is_persistent == False

FK

3

Table

2

Class

1

delTmpPK

2

Table

Col

4

5
3

Class

1

1:MTpre_is_persistent =

is_persistent == False

PK Col

4

3

Table

2

Class

1

Figure 10.2: The CD2RDBMS transformation rules.
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Figure 10.3: The CD2RDBMS transformation block.

the columns of its own table.

At this point, the mapping of all persistent classes is complete. It is thus possible to remove all
temporary artefacts: columns, foreign keys, and tables (and the links between them) mapped from non-
persistent classes, as well as all generic links. The sub-rule blocks in theCleanTemp CRule ensures
this clean up. Here, the order in which all theFRule are applied is important to prevent the presence
of dangling references.

10.4 Comparison With Other Solutions

The CD2RDBMS benchmark was first attempted by graph transformation tools. In [TEG+05], four
of these tools solved the case study with different approaches. This lead to the identification of the
different expressiveness of each. This was the first comparative study of contemporary model transfor-
mation tools along a common case study. In this section, we enrich this work by extending, on the one
hand, the number of model transformation languages considered and, on the other hand, the properties
of the comparison. A summary of the extended part of the comparison is given in Table 10.1.
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The graph transformation languages involved in the former comparison were:AGG, AToM3, VIA-
TRA2, andVMTS. A solution with a preliminary version ofQVT-R was also considered in the sample.
Here, we compare the solution usingMoTif with the same set of graph transformation languages.
Furthermore, we have added other solutions using a non-graph transformation approach:ATL [ATL],
MOLA [MOL], QVT-R (as it appears in [Obj08]), andQVT-OM [Obj08].

The former paper compared some features of each approach, the strategy and technique of each
solution to the case study, as well as the tool accompanying each transformation language. Here, we
focus on the following properties.

Meta-model modification. Some solutions needed to modify the original meta-models ofCD and
RDBMS to be able to correctly implement the transformation and simplify the rule specifi-
cations. For example,AGG duplicated the attribute and association elements in the CDmeta-
model to recursively compute the prefix of the correspondingcolumn name, whileMOLA and
VMTS duplicated the links in the CD meta-model for the same purpose. The use ofkeys in
the RDBMS meta-model of both solutions of QVT instruments the transformation to not cre-
ate duplicate elements and thus does not require rules to merge them asMergeAttrFK and
MergeAssocFK in Figure 10.2.VIATRA2 introduced an ancestor link to easily drill-down the in-
heritance hierarchy and super-classed the attribute and association elements to avoid replicating
rules for both elements as it is the case inMoTif . ATL simplified a major part of the benchmark
by not considering non-persistent keys.AToM3 andMoTif are the only solutions that use the
original meta-models without altering them.

Helper structures. Because of the recursive nature of the transformation, all graph transformation
approaches require the use of helper structures. However, this often forces the modeller to man-
ually extend the input and output meta-models with these elements. Nevertheless,AToM3 and
MoTif are multi-paradigm modelling frameworks and thus offers constructs to connect elements
from different meta-models natively. In theQVT-OM solution, the transformation temporarily
creates an array of attributes for each persistent class to collect them from non-persistent ones.
BothQVT-R andATL do not require any helper structure.

Rule optimization. This property outlines the feature of each transformation language that reduces
the number of rules to specify. For example, the order of theFRules in theCleanTemp CRule
allow one to reduce the number of rules from 12 to 7 in theMoTif solution.

Number of rules. An quantitative way to compare the expressiveness of model transformation lan-
guages is in the number of rules. We have split this number in two parts: the rules required to
produce the corresponding RDBMS model and those required toremove all temporary arte-
facts.ATL has the least number of rules since it only solves a subset of the transformation; it
should therefore be ignored. The solution inQVT-R stands out with a total of eight rules each
specified in less than 20 lines of code. This is mainly due to the ability to invoke other rules as
method calls with parameters and recursion.

Incremental. A nice side-effect ofVIATRA2 is that it does not require one to reconstruct a completely
new output model from scratch when modifying the input meta-model. The specification in
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QVT state that the transformation can be executed incrementally, if properly implemented (this
is still not the case in the tools MediniQVT and SmartQVT).

Bidirectional. Thanks to the declarative nature of relations inQVT-R, a single transformation model
can be executed from the input to the output meta-model and vice-versa, following the check-
/enforce semantics.

Syntax. ATL, QVT-R andQVT-OM transformation models are specified in textual syntax, while the
remaining are in graphical visual concrete syntax. OnlyAToM3 andMoTif allow one to use a
concrete syntax for the patterns in the rules. Furthermore,in theMoTif framework, a domain-
specific language is automatically synthesized from the meta-models involved in the transfor-
mation.

Debugging. To facilitate the development of the CD2RDBMS transformation, the transformation
language—or at least the supporting tool—should offer debugging facilities to the modeller.
VIATRA2 andVMTS only provide a log of the steps performed a run-time, although the latest
version of the latter allows step-by-step animation of the input model similar toAToM3. AGG
allows a manual selection of the rules and the match of each rule. A critical-pair analysis can
also be performed on the transformation to verify causalitydependencies between rules. How-
ever,MoTif is the only transformation language that supports exception handling modelled at
the level of the transformation model.
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AGG ATL AT OM 3 MOLA M OT IF QVT-R QVT-OM VIATRA2 VMTS

Meta-model modif. Extra
attributes +
associations

No
non-persistent

classes

no Intra-
formalism

links

no keys keys Ancestor link
+ Property

Intra-
formalism
links

Helper structures Inter-
formalism

links

no Built-in
generic links

Inter-
formalism

links

Built-in
generic links

no Extra
attributes

Inter-
formalism

links

Inter-
formalism
links

Rule optimization Layers Simplification
of CD

meta-model

N/A Recursion,
parameters,
method calls

FRule, BSRule Recursion,
parameters,
method calls

Recursion,
parameters,
method calls

OR-pattern ,
forAll

In-
ternal / exter-
nal causalities

Number of rules 17 + ? 6 + 0 13 + 12 25 + 0 14 + 7 8 + 0 8 + 0 12 + ? 11 + 5

Incremental no no no no no yes yes yes no

Bidirectional no no no no no yes no no no

Syntax Visual +
abstract syntax

Textual +
abstract syntax

Visual +
concrete
syntax

Visual +
abstract syntax

Visual
generated

DSL +
concrete
syntax

Textual +
abstract syntax

Textual +
abstract syntax

Visual +
abstract syntax

Visual +
abstract syntax

Debugging Manual
selection of

rule & match

Breakpointing
& state

inspection

Manual
selection of

match

N/A Exception
handling

N/A N/A Log window Log window

Table 10.1: Comparison of model transformation tools for the CD2RDBMS case study
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10.5 Conclusion

This chapter describes an MPM solution to the CD2RDBMS benchmark implemented inMoTif . It
serves as an example on how to develop a transformation. The expressiveness ofMoTif allows one
to elegantly solve non-trivial case studies such as this one. Finally, this chapter demonstrates that
developing a model transformation in a completely modelledframework alleviates the cognitive effort
of the modeller.

The comparison proposed in Section 10.4 can be extended. Forexample, we considered the num-
ber of rules as a quantitative measurement for a qualitativefeature such as expressiveness. In the
future, we will investigate on how to improve the metrics forexpressiveness of model transformation
languages. Possible candidates are the distribution of thesize of the rules, the total number of appli-
cation points (matching points), the size of textual constraints or actions for graphical languages, or
even the number of user clicks. What is also important to evaluate is the performance of transforma-
tion languages.



11
The AntWorld Benchmark

In this chapter, we evaluate the performance of model transformation languages developed in the
framework presented in this thesis. This evaluation is based on a case-study proposed at the 2008
edition of the Graph-Based Tools (GraBaTs) workshop [SV08b]. The case-study constitutes a stan-
dard benchmark for graph transformation languages, where the focus is on local search performance.
The solution presented here is designed, on the one hand, inPy-T-Core to compare its performance
efficiency with other transformation tools and, on the otherhand, inMoTif to quantify the overhead of
executing a transformation in aDEVS environment.

11.1 Introduction

Graph transformation is an attractive approach to perform model transformation thanks to the general
and easy-to-grasp nature of the underlying graph formalism, as well as the intuitive way in which
graph changes can be encoded using transformation rules. Moreover, it allows one to easily capture
concepts from many different domains and rapidly develop a given system as a prototype model.
The price to pay for the generality that makes graph transformation widely applicable is the cost of
manipulating graphs, including storage, editing, and ruleapplication. In particular, the latter involves
graph matching, which is an NP-hard problem. In applications where graphs are large or the number
of transformation steps is large, it is therefore crucial tooptimise tool performance.

Throughout this thesis, we have developed a framework for modelling and executing model trans-
formation languages. This work focused on the design and theexpressiveness of the languages. Al-
though some performance analysis was done in Chapter 4, it evaluated the performance of the under-
lying data structure, namely Himesis. This chapter presents some results regarding the performance
of MoTif based on a standard case study described in the next section.We compare the solution us-
ing MoTif with the same solution implemented inPy-T-Core to evaluate the overhead of executing a
transformation in aDEVS environment.

The following section outlines the specifications of the AntWorld case study. In Section 11.3, we
illustrate two solutions to the case study problem: one using MoTif and one usingPy-T-Core. Then,
Section 11.4 analyses the performance of each solution and discusses their differences. Finally in
Section 11.5, we compare our results to other solutions to the case study.
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11.2 The AntWorld Case Study

The case study used in this chapter is based on case no. 2 (AntWorld Simulation case study) of the
GraBaTs 2008 tool contest [VGR08]. This is a benchmark for the comparison of graph transformation
tools that stresses local rule application. The complete description of the behaviour can be found
in [Zün08] and is as follows.

The AntWorld simulation map is discretized into concentriccircles of nodes (representing a large
area) centered at a hill (the ant home). Ants are moving around searching for food. When an ant
finds food, it brings it back to the ant hill in order to grow newants. On its way home, the ant
drops pheromones marking the path to the food reservoir. If an ant without food leaves the hill or
if a searching ant hits a pheromone mark, it follows the pheromone path leading to the food. This
behaviour already results in the well known ant trails.

The AntWorld simulation works in rounds (similar to time-slices). Within each round, each ant
makes one move. If an ant is not in carry mode and is on a node with food parts, it takes one piece of
food and enters carrying mode. Note that it may still move within the current round. On the other hand,
if an ant carries some food, it follows the links towards the inner circle one node per round. During
its way home (towards the unique hill at the centre of all node), on each visited node (including the
node that it picked food from) the ant drops 1024 parts of pheromones in order to guide other ants to
the food place. However, if a carrying ant is on the hill, it drops the food and enters the search mode.
It may leave the hill within the same round. Any ant without food is in search mode. In this mode, the
ant checks the neighbouring node(s) of the next outer circlefor pheromones. If some hold more than
9 parts of pheromones, the ant chooses one of these nodes randomly. Otherwise, the ant moves to any
of its neighbour nodes based on a fair random choice (but never enters the hill).

Whenever during one round an ant is on a node on the outmost circle, a new circle of nodes shall
be created. For each outmost grid node, a new grid node is created; but three nodes are created in the
case of a main axis node. During the creation of this next circle, every 10th node shall carry 100 food
parts. If a circle has for example 28 nodes, node 10 and node 20of that circle shall have food. Thus,
this circle would need just two more nodes to create a third food place. Therefore, these 8 nodes are
kept in mind and during the creation of the next circle (in ourexample with 36 nodes) we add another
food place when two more nodes have been added. Thus, across circles, every 10th node becomes a
food place. After each round, all pheromones shall evaporate: reducing by 5%. Also, the hill shall
consume the food brought to it by creating one new ant per delivered food part.

11.3 The Solution

In our approach we define the syntax and semantics of the AntWorld formalism in the toolAToM3.
On the one hand, we synthesize a domain-specific modelling environment to design the initial model
of the transformation as illustrated in Figure 11.1. The operational semantics of the formalism is
implemented inAToM3 using theMoTif language.
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Figure 11.1: The input model.

11.3.1 The AntWorld Language

As shown in Figure 11.2, the AntWorld formalism consists of ants and grid nodes. AnAnt element
can be standing on oneGridNodeat a time. The “carry mode” of the ant is modelled by itshasFood

attribute. A grid node can either be on the main axis or be a hill or neither of them. Grid nodes can hold
pheromones and food parts. The grid nodes are connected in circles following theRight association
and are centred at the hill following theForward association. The former connects grid nodes on the
same concentric circle and the latter connects grid nodes onone circle to neighbouring grid nodes on
the next outer circle. AConfiguration element is added to keep track of the number of ants and the
number grid nodes, which summarizes a snapshot of the model while simulating. UsingAToM3 as a
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Figure 11.2: The AntWorld meta-model.
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modelling environment enables one to associate a concrete syntax for each meta-model element. The
meta-model in Figure 11.2 is annotated with the icon representing visually each meta-model element.
Note that for grid nodes, it is possible to specify a different icon depending whether it is a hill or
on a main axis. Also, theForward associations are represented by a full line arrow and theRight
associations are represented by a dashed line arrow.

11.3.2 AntWorld Simulation

We define the operational semantics of the AntWorld languageas a graph transformation in lieu of
model transformation inMoTif . After creating a meta-model of the transformation following the RAM
process of the AntWorld meta-model for both pre- and post-condition patterns (c.f. Chapter 5), we au-
tomatically synthesize an environment for designing aMoTif transformation, specific to AntWorld in
AToM3. Figure 11.3 depicts all the graph transformation rules necessary for the simulation. In com-
plement, Figure 11.4 depicts theMoTif workflow controlling the application of these rules.

11.3.3 MoTif Solution

TheRound CRule encapsulates the actions within a single round of the simulation. First it lets all ants
move once, giving priority first to ants carrying food and then to those in searching mode. After that
and if necessary, a new circle of grid nodes is created. Then,if the hill contains food parts, theSRule
AntBirth creates as many ants as there are food parts. Finally, theFRule Evaporate reduces the
amount of pheromones present on grid nodes by 5%.

TheMoveCarryingAnts block is anLRule iterating over each ant in carry mode. If it is on the hill
then, with theARule DropFood , the ant deposits the food part and is back in search mode. Otherwise,
it must move on the next inner circle. If theARule MoveToHill fails, then there must be design fault in
the transformation (according to the requirements). A transformation-specific exception is then raised
and propagated up to theRound block.

The MoveSearchingAnts block is anLRule iterating over each ant in search mode. First, the
rule MoveToPhero gives an ant the chance to move to a grid node on the next outer circle contain-
ing pheromone drops. Recall that the requirements specify that if there are multiple grid nodes with
pheromones adjacent to the current one, one of them must be selected randomly. In order to not rely
on the order in which the matching algorithm chooses the nodes, MoveToPhero is an FRule with
a maximum of 1 iteration. Thus, in its correspondingMoTif-Core model, theMatcher will find all
neighbouring grid nodes that satisfy the condition and theIterator will choose one of them randomly.
If no such grid node is found, theBRule Move lets the ant move in any direction non-deterministically.
Again here, the requirements specify that the direction must be chosen randomly. Recall that the select
function of theMoTif-Core Composer corresponding to this block is implemented in a Monte-Carlo
sense like the selection process of theIterator: randomly but repeatable using sampling from a uni-
form distribution to provide a reproducible, fair sampling. Since all ants must move within a round,
the failure of theBRule generates an exception as before. After a searching ant has moved, theARule
GrabFood allows it to get a hold a food part on the grid node it is currently on, if any. Note that if an
ant in carry mode had dropped a food part on the hill in the previousLRule, it will move out of the
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Figure 11.3: The AntWorld transformation rules.
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Figure 11.4: TheRound transformation block.

After all ants have moved, theCRule CreateCircle encapsulates the creation of a new out-
most circle. To test whether it necessary to create one, theBRule OnBorder looks for an ant at the
border of the current map. In the successful case, a series ofnew grid nodes (and main axis nodes)
are created starting from the grid node on which the ant was found. The rulesCreateCircleGN
andCreateCircleMAN make sure that every tenth node created holds the required number of food
parts. These twoARules are enclosed in a variant of theBRule: theBSRule. It applies every branch
recursively, giving to each the chance of re-applying at each iteration. Note that ifOnBorder was
successful, thenCreateNodes must be applied. If not, an exception is raised as before. Finally, the
ARule CloseCircle makes sure that the new circle is closed by connecting the last newly created grid
node to the first one. The transformation rules of the simulation make use of two pivots to optimize the
execution. Theant pivot points to the ant to move in eachLRule. Alternatively, one could have altered
the RAMified meta-model by augmenting theAnt class with aisProcessed boolean attribute, to
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Figure 11.5: The overall transformation model.

move each ant exactly once per round. However, this would require an additional rule to reset the
flag on all ants. The use of pivot reduces the search space in the matching phase of the rules by pre-
binding the selected ant to move. Similarly, thenode pivot is used during the creation of a new outer
circle. All the rules in theCRule CreateCircle can be specified without this pivot and still produce
a correct result. However, every time a rule is matched, it will have to search through all grid nodes of
the map instead of focusing on the local region of the node bound to the pivot. Another optimization
in this model is that noResolver is needed in theMoTif-Core model generated from the presented
MoTif model. The onlyFRule of the transformation loops over all grid nodes of the map andtherefore
no matching conflicts with another. As for theLRules, no rule nesting is present and thus no conflict
is possible.

Similar to the previous case studies, the transformation environment is entirely modelled inDEVS.
As depicted in Figure 11.5, theController receives the initial model from theUser and sends it to the
Round transformation unit. It also receives from theUser the number of rounds the simulation shall
make (set to infinity by default). After each round, theController receives the graph from theRound
and notifies theUser about its current state. If an exception occurred during theround, the simulation
is stopped and the transformation exception is propagated up to the user.

When debugging, we have implemented a graphical visualisation of the graph received in the
external transition function of theUser. Because the received model is implemented as a Himesis
graph which relies on the IGraph Python module (c.f. Chapter4), the API allows one to graphically
render the graph using Cairo. A snapshot taken at round 35 shows a model with 33 ants and 257
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Figure 11.6: A snapshot of the simulated model at round 55.

grid nodes in Figure 11.6. Ants in search mode are represented as large black rounds and ants in
carry mode are in red. Grid nodes are rendered as small black rounds, main axis nodes as small white
circles, and the hill as a large orange round. Grid nodes withat least 9 pheromones are coloured in
blue, those holding food are in yellow, and grid nodes with both food are in green.

11.3.4 Py-T-Core Solution

The Py-T-Core solution is implemented exactly like theMoTif solution (but without time advance).
The following listings show snippets of the implementationin Python.

Listing 11.1:Py-T-Core implementation of the AntWorld simulation.

class MoveCarryingAntsLoop( Composer ):
def __init__( self ):

super( MoveCarryingAntsLoop , self ). __ini t__ ()
self . DropFood = ARule ( HDropFoodLHS () , HDropFoodRHS () ,

ignore_resolver = True)
self . MoveToHil l = ARule ( HMoveToHil lLHS () , HMoveToHil lRHS () ,

ignore_resolver = True)

def packet_in( self , packet ):
self . exception = None
self . is_success = False
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# Drop Food
packet = self .DropFood . packet_in (packet )
if not self . DropFood . is_success :

if self . DropFood . exception is not None:
self . exception = self .DropFood . exception
return packet

# Move To Hill
packet = self . MoveToHil l . packet_in (packet )
if not self . MoveToHil l . is_success :

if self . MoveToHil l . exception is not None:
self . exception = self . MoveToHil l . exception
return packet

else:
self . exception = TransformationExcept ion (

None, " Carrying Ant can ' t move to hil l ! " )
self . exception . packet = packet
self . exception . transformation_unit = self

return packet
# Output
self . is_success = True
return packet

class MoveSearchingAntsLoop( Composer ):
def __init__( self ):

super( MoveSearchingAntsLoop , self ). __ini t__ ()
self . GrabFood = ARule ( HGrabFoodLHS () , HGrabFoodRHS () ,

ignore_resolver = True)
self . MoveForwardToPheromones = FRule ( HMoveForwardToPherom onesLHS () ,

HMoveForwardToPheromonesRHS () ,
ignore_resolver = True)

self . MoveForwardToPheromones . I . max_iterat ions = 1
self .Move = BRule (branches =

[ ARule ( HMoveForwardLHS () , HMoveForwardRHS () , ignore_r esolver = True) ,
ARule ( HMoveBackwardsLHS () , HMoveBackwardsRHS () , ignor e_resolver = True) ,
ARule ( HMoveLeftLHS () , HMoveLeftRHS () , ignore_resolver =True) ,
ARule ( HMoveRightLHS () , HMoveRightRHS () , ignore_resolv er = True)])

def packet_in( self , packet ):
self . exception = None
self . is_success = False
# Move Forward To Pheromones
packet = self . MoveForwardToPheromones . packet_in ( packet )
if not self . MoveForwardToPheromones . is_success :

if self . MoveForwardToPheromones . exception is not None:
self . exception = self . MoveForwardToPheromones . exception
return packet

# Move
packet = self .Move . packet_in (packet )
if not self .Move . is_success :

if self .Move . exception is not None:
self . exception = self .Move . exception
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else:
self . exception = TransformationExcept ion (

None, ' Ant is stuck ! ' )
self . exception .packet = packet
self . exception . transformation_uni t = self

return packet
guid = self . MoveForwardToPheromones .M.condit ion [ ' GUID__ ' ]
if guid in packet . match_sets :

del packet . match_sets [guid ]
# Grab Food
packet = self . GrabFood . packet_in (packet )
if not self .GrabFood . is_success :

if self .GrabFood . exception is not None:
self . exception = self . GrabFood . exception
return packet

# Output
self . is_success = True
return packet

class GenerateCircle( Composer ):
def __init__( self ):

super(GenerateCircle , self ). __ini t__ ()
self . CloseCircle = ARule ( HCloseCircleLHS () , HCloseCircleRH S () ,

ignore_resolver = True)
self . CreateCircle = BSRule (branches =

[ARule ( HCreateCircleGNLHS () , HCreateCircleGNRHS () ,
ignore_resolver = True) ,

ARule ( HCreateCircleMANLHS () , HCreateCircleMANRHS () ,
ignore_resolver = True)])

self . OnBorder = BRule (branches =
[ARule ( HOnBorderGNLHS () , HOnBorderGNRHS () , ignore_res olver = True) ,
ARule ( HOnBorderMANLHS () , HOnBorderMANRHS () , ignore_re solver = True)])

def packet_in( self , packet ):
self . exception = None
self . is_success = False
# On Border
packet = self . OnBorder . packet_in (packet )
if not self .OnBorder . is_success :

if self .OnBorder . exception is not None:
self . exception = self . OnBorder . exception

return packet
# Create Circle
packet = self . CreateCircle . packet_in (packet )
if not self . CreateCircle . is_success :

if self . CreateCircle . exception is not None:
self . exception = self . CreateCircle . exception

else:
self . exception = TransformationException (

None, ' Impossible to create new circle ! ' )
self . exception . packet = packet
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self . exception . transformation_uni t = self
return packet

# Close Circle
packet = self .CloseCircle . packet_in ( packet )
if not self . CloseCircle . is_success :

if self . CloseCircle .exception is not None:
self . exception = self .CloseCircle . exception

else:
self . exception = TransformationExcept ion (

None, ' Impossible to close new circle ! ' )
self . exception .packet = packet
self . exception . transformation_uni t = self

return packet
# Output
self . is_success = True
return packet

class Round( Composer ):
def __init__( self ):

super( Simulat ion_Fast_Map , self ). __ini t__ ()

self . AntBirth = SRule ( HAntBirthLHS () , HAntBirthRHS () ,
ignore_resolver = True)

self . Evaporate = FRule ( HEvaporateLHS () , HEvaporateRHS () ,
ignore_resolver = True)

self . MoveCarryingAnts = LRule ( HSelectCarryingAntsLHS () ,
MoveCarryingAntsLoop ())

self . MoveSearchingAnts = LRule ( HSelectSearchingAntsLHS () ,
MoveSearchingAntsLoop ())

self . GenerateCircle = GenerateCircle ()

def packet_in( self , packet , round):
self . exception = None
self . is_success = False
# Move Carrying Ants
packet = self . MoveCarryingAnts . packet_in ( packet )
if not self . MoveCarryingAnts . is_success :

if self . MoveCarryingAnts .exception is not None:
self . exception = self . MoveCarryingAnts . exception
return packet

# Move Searching Ants
packet = self . MoveSearchingAnts . packet_in ( packet )
if not self . MoveSearchingAnts . is_success :

if self . MoveSearchingAnts .exception is not None:
self . exception = self . MoveSearchingAnts . exception
return packet

# Generate Circle
packet = self . GenerateCircle .packet_in (packet )
if not self . GenerateCircle . is_success :

if self . GenerateCircle . exception is not None:
self . exception = self . GenerateCircle . exception
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return packet
# Ant Birth
packet = self . AntBirth . packet_in (packet )
if not self .AntBirth . is_success :

if self .AntBirth . exception is not None:
self . exception = self . AntBirth . exception
return packet

# Evaporate
packet = self . Evaporate . packet_in ( packet )
if not self .Evaporate . is_success :

if self .Evaporate .exception is not None:
self . exception = self . Evaporate . exception
return packet

# Output
self . is_success = True
return packet

The following illustrates the implementation of theBRule, BSRule, andLRule in Py-T-Core.

Listing 11.2: TheBRule implemented inPy-T-Core.

from t_core . composer import Composer
from util . seeded_random import Random

class BRule( Composer ):
def __init__( self , branches ):

super(BRule , self ). __ini t__ ()
self . branches = branches

def packet_in( self , packet ):
self . exception = None
self . is_success = False
remaining_branches = range( len( self . branches ))
# Success on the first branch that is in success
while True:

if len( remaining_branches ) == 0:
# They all failed
return packet

branch_no = Random . choice ( remaining_branches )
branch = self . branches [ branch_no ]
packet = branch . packet_in ( packet )
if not branch . is_success :

if branch . exception is not None:
self . exception = branch . exception
return packet

else:
# Ignore this branch for next try
remaining_branches . remove (branch_no )

else:
self . is_success = True
return packet
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Listing 11.3: TheBSRuleimplemented inPy-T-Core

from util . inf ini ty import INFINITY
from t_core . composer import Composer
from tc_python .brule import BRule

class BSRule( Composer ):
def __init__( self , branches , max_iterat ions = INFINITY ):

super(BSRule , self ). __ini t__ ()
self . brule = BRule (branches )
self . max_iterat ions = max_iterat ions
self . i terat ions = 1

def packet_in( self , packet ):
self . exception = None
self . is_success = False
# Apply the BRule
packet = self . brule . packet_in (packet )
if not self . brule . is_success :

self . exception = self . brule . exception
return packet

else:
# Rule has been applied once, so it's a success anyway
self . is_success = True
while self . i terat ions < self . max_iterat ions :

# Re-apply the BRule
packet = self . brule . packet_in (packet )
if not self . brule . is_success :

self . exception = self . brule .exception
return packet

self . i terat ions += 1
return packet

Listing 11.4: TheLRule implemented inPy-T-Core

from util . inf ini ty import INFINITY
from t_core . composer import Composer
from t_core . matcher import Matcher
from t_core . i terator import I terator

class LRule( Composer ):
def __init__( self , LHS , inner_rule , max_iterat ions = INFINITY ):

super(LRule , self ). __ini t__ ()
self .M = Matcher ( condit ion =LHS , max= max_iterat ions )
self . I = Iterator ( max_iterat ions = max_iterat ions )
self . inner_rule = inner_rule

def packet_in( self , packet ):
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self . exception = None
self . is_success = False
# Match
packet = self .M. packet_in (packet )
if not self .M. is_success :

self . exception = self .M.exception
return packet

# Choose the first match
packet = self . I . packet_in (packet )
if not self . I . is_success :

self . exception = self . I . exception
return packet

while True:
# Apply the inner rule
packet = self . inner_rule . packet_in ( packet )
if not self . inner_rule . is_success :

if self . inner_rule . exception :
self . exception = self . inner_rule . exception
return packet

# Clean the packet: required since there is no Rewriter in a Qu ery
if len( packet . match_sets [ self . I . condit ion ]. matches ) == 0:

del packet . match_sets [ self . I . condit ion ]
# Choose another match
packet = self . I . next_in (packet )
# No more iterations are left
if not self . I . is_success :

if self . I . exception :
self . exception = self . I . exception

else:
# Output success packet
self . is_success = True

return packet

11.4 Performance Analysis

After running the simulation for hundreds of runs, we analyse both solutions.

11.4.1 Properties of the case study

The goal of this case study is to analyse the performance of graph transformation tools with respect
to local search. That is in every round, the transformation focuses on the behaviour of each ant indi-
vidually. In the meantime, the number of grid nodes grows while the ants are discovering the map.
Because of pheromones, the trajectories of the ants will form trails to grid nodes with food. It is thus
expected that the size of the map grows faster in the beginnings of the simulation while there are not
any pheromone trails then when at least a trail is present. Since food is limited on each grid node,
the map will grow at a faster rate when no more food is found on agrid node and the ants have to
look for other sources of food. Therefore the performance ofthe simulation relies on two aspects:
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the movement of the ants and the evolution of the map. Since pheromones and food parts are im-
plemented as integer attributes, the time the rules spend managing them is negligible compared to
ants and grid nodes management. On the one hand, all ants moveexactly once per round. Thus the
three rule blocksMoveToHill , MoveForwardToPheromones , andMove are applied exactlya times
per round, wherea is the number of ants in a round. On the other hand, if an ant is on the border
of the map,CreateCircleMAN andOnBorderMAN are applied together 4 times, creating 12 new grid
nodes. Also, to havec concentric circles,CreateCircleGN is applied 8c−16 times forc≥ 3. From
the above observations, the number of grid nodesn and associationse in the mapG is given by the
following equations:

nc = 4c2+1,c≥ 0 (11.1)

ec = 8c2,c≥ 0 (11.2)

Gc = 12c2+1,c≥ 0 (11.3)

In this case study, there is a significant amount of variability: the number of ants with respect
to the number of grid nodes qualifies the transformation setup since it highly depends on the non-
deterministic choices of directions ants take. We define thelevel of the simulation as the number of
elements present in the model after a round. Equation 11.4 describes the level of the simulation with
the number of Himesis verticesH.

Hc = 12c2+2a+1,c≥ 0 (11.4)

11.4.2 Simulation

Table 11.1 shows the performance measurements of the execution of thePy-T-Core transformation
for up to 1000 rounds. The simulations were performed in the same environment as in Chapter 4.
Table 11.2 shows the performance measurements of the same experiment implemented inMoTif . A
regression analysis reveals a quadratic complexity for both, which corresponds to the other solutions
that implemented this benchmark (see Section 11.5).

Round Level Ants Food Nodes with Phero Himesis Vertices Round Time Total Time

25 6 27 1,274 8 487 0.819 18
50 8 119 2,278 14 1,007 1.843 58

100 18 392 12,268 80 4,673 12 456
200 37 1,177 52,935 314 18,783 112 7,580
300 61 2,393 145,580 657 49,439 664 51,556
400 82 3,989 263,901 1,060 88,667 2,304 204,381
500 102 5,833 408,484 1,537 136,515 5,885 616,019

Table 11.1: Performance measurements of the AntWorld simulation usingPy-T-Core. Time measure-
ments are in seconds.
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Round Level Ants Food Nodes with Phero Himesis Vertices Round Time Total Time

25 8 19 2,375 16 807 1.494 37
50 8 67 2,283 20 903 1.701 79

100 19 283 13,950 68 4,899 49 1,195
200 31 958 37,098 174 13,449 216 16,197
300 50 2,093 97,193 498 34,187 1,287 92,420
400 73 3,637 208,522 871 71,223 3,736 293,002
500 96 5,177 361,830 1,352 120,947 8,425 874,339

Table 11.2: Performance measurements of the AntWorld simulation usingMoTif . Time measurements
are in seconds.

T-CorePython Himesis

Py-T-Core

MoTif

PythonDEVS

T-Core Himesis

Coordinator

Root

Coordinator

Atomic

Solver

Figure 11.7: The component interaction inMoTif and inPy-T-Core.

Given these two measurements, we notice that theMoTif solution is slower than thePy-T-Core
solution by a factor of 2.65. This number represents the average of all ratios for the same number of
vertices, both for the round time and for the total time. Thisis to be expected since, at run-time,MoTif
involves a larger number of interactions with more components than inPy-T-Core. As Figure 11.7
illustrates, inPy-T-Core, the transformation is specified directly in Python, interfacing with the API
of T-Core. Furthermore,T-Core manipulates Himesis data structures. However inMoTif , the transfor-
mation is specified as aDEVS model—implicitly. At run-time, thePythonDEVS simulator involves
atomic solvers (for atomic DEVS models), coordinators (forcoupled DEVS models), and a root co-
ordinator to execute the whole model. The interaction between these components was described in
detail in Chapter 6.

As far as memory usage is concerned, thePy-T-Core solution uses up to 319 megabytes for the
500th round, while theMoTif solution uses up to 432 megabytes of memory. This differenceis to be
expected since the wholeDEVS structure must be loaded in memory for a transformation implemented
in MoTif .
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11.4.3 Optimizations

We have tried to reduce the execution time by optimizing the transformation model only. That is, the
optimizations performed do not rely on the code generator nor on the pattern matching algorithm,
unlike other solutions [GZ10, MMLA10]. This allows a non-MoTif developer to carry out similar
optimizations.

1. We define a pivot for every pattern element that is used in more than one rule. For example,
declare an assigning pivot to theAnt1, AntOnNode, andGridNode objects of every rule that
makes a searching ant move. Then declare a binding pivot to these object in the ruleGrabFood ,
so that its search space is reduced. Also, the rules involvedin theCRule CreateCircle only
bind the inner and outer nodes as pivots. Instead we should also bind theForward andRight
connections that are associated with them. The goal of this optimization is to reduce the search
space of each rule applied in sequence by passing the output of a rule as input to the next rule
in the sequence.

2. In Figure 11.4, theARules OnBorderGN and OnBorderMAN are evaluated after all ants have
moved. Instead, we could verify if an ant is on the border of the map as soon as an ant moves
forward. In the first design, the rules must evaluate every grid node holding an ant. In the worst
case, the rule will have to process all the nodes of the map. Inthe second design, all the elements
involved in the pre-condition pattern are already bound by aprevious rule that made the ant
move. Therefore the search space ofOnBorderGN andOnBorderMAN is reduced significantly,
but the drawback is that it has to be evaluated as many times asthere are ants in the model.

3. One can refactor the rules involved in aBRule to avoid matching the overlapping pattern more
than once. The idea is to precede everyBRule with an extra query corresponding to the over-
lap of the pre-condition pattern of each branch. In aBRule with b branches, theMatcher of
each branch is applied as soon as a packet is received. In the current implementation, the pre-
condition pattern is matched by allb matchers. However if the patterns overlap, an optimization
could first pre-match the overlapping part. This is done by augmenting theMoTif-Core model
corresponding to theBRule with an extraMatcher whose pre-condition pattern is the pattern
overlapping with all branches. For example, the four rules involved in theMove BRule all have
the ant, the grid node it is on, and the association between them in common. This can be com-
puted in a similar way as the bridge for the overlap between the LHS and the NACs of a single
rule. If this Matcher fails, then noMatcher from any branch can succeed and hence theBRule
fails. Otherwise, the nodes of the current match is used as pivots for the subsequentMatchers
of each branch. That way, the overlapped pattern is matched only once instead ofb times.

We have incorporated all seven combinations of these optimizations, but no significant speed
up was noticed: each “optimized” solution was less than 1% faster than the solution presented in
Section 11.3, which is negligible given the error margin. This is mainly due to the overhead of adding
more pivots for such small pre-condition patterns. Recall from Chapter 4 that in the implementation

1TheAnt object is already assigned a pivot to correctly move it inside the loop of theMoveSearchingAnts block.
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of the pattern matching in Himesis needed to convert graph nodes identified by a universally unique
identifier (UUID) into the corresponding IGraph vertex index before matching and back afterwards.
The reason why the implementation can not directly rely on these indices is because (1) when deleting
a node all indices are affected and (2) the IGraph implementation may change in future releases.

11.5 Comparison With Other Solutions

The tool contest motivated many graph transformation tool builders to submit their solutions to the
AntWorld case study. The task of addressing a “fair” tool-to-tool comparison for this benchmark is
a hard task, since we are not experts of the transformation language of other tools and, most of all,
they have radically different technological approaches onhow the problem is meta-modelled and the
rules are designed (e.g.,“compiled” transformation engines are typically directedtowards different
use cases than “interpreted” tools). Furthermore, the lackof standard and complete measurements of
the different solutions prevents us to precisely align their performance. We will nevertheless briefly
outline the solutions proposed by other tools.

FUJABA provided the fastest solution [GZ10]. The simulation reached 66.5×106 vertices2 in a
total of about 5.1×103 seconds after 1000 rounds. Recall thatFUJABA is not a graph transformation
tool but a CASE tool that allows for forward and reverse engineering, based on UML class diagrams.
Nevertheless, the specification of the body of the methods inside each class is expressed in Story
Charts, implemented as a graph transformation engine. By design, pre-condition pattern elements
are always bound to either the formal parameters of the method, an object created by a previous
rule inside the scope of the method, an attribute defined in the class encapsulating the method, or
a reference to the current object (using the Java keywordthis ). This reduces the search space of
each rule significantly. The meta-model of AntWorld proposed by theFUJABA solution is not as
straightforward as the one proposed in this chapter. It incorporates a lot of information that is not
mandatory to model the language. For example, neighbouringnodes are stored as an array of to-one
associations instead of having a single to-many association. As mentioned in [GZ10], the authors have
also adapted the code generator to optimize the execution time. All these optimizations require deep
knowledge of the implementation of the tool. Our solution did not incorporate such optimizations
since, in our opinion, this defeats the philosophy of MPM where the goal is to reduce accidental
modelling complexity. Designing transformation models that rely on the implementation detail of
the transformation language is not to be expected from the domain engineer, but the transformation
language engineer.

TheVMTS solution [MMLA10] also relies on implementation-aware optimizations. For example,
the number of pattern elements in the rules is reduced by accessing the underlying data structure
directly in the constraint and action code of the rules. In contrast, the constraint and action code in our
solution is quite succinct and is therefore more intuitive for the modeller. Nevertheless, unlikePy-T-
Core, VMTS implements pattern matching using sophisticated search plans [BKG08]. It introduces a
cost-model for primitive matching operations and tries to minimize the overall cost of the execution
of a rule by minimizing the possible backtracks when matching an element. The idea of the approach

2This corresponds to the number of Himesis vertices that would be required. It is computed using equation (11.4).
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is to build a specialplan graph for the pattern to be matched. The plan graph is a directed graph,
whose nodes correspond to the elements (both nodes and edges) of the pattern graph and edges reflect
the possible matching orders in the pattern graph. The 1000th round had 1.25×106 vertices and was
computed in 54 seconds.

The toolGrGen.NET provided a fast solution [JBK10], computing 1.1×106 vertices in 232 sec-
onds for the 1000th round. It implements similar search plans asVMTS. GrGen.NET is a graph trans-
formation tool where the specification of the rules is in textual syntax. The power of its efficiency is
attributed to the generative approach of adapting the search plan to the input graph. The rules are then
compiled into aconcatenatedsequence of rules as described in [MG07].

The previous tools proposed solutions using the graph transformation technology in a compiled
approach. The following tools solve the benchmark in an interpreted approach3. The first one was
implemented as an EMF transformation. However, the simulation was only measured up to 110 rounds
with about 8×103 vertices taking about 192 seconds for this round. OurPy-T-Core solution is faster
by 33 seconds for a similar graph.

Another solution was implemented inVIATRA2 [HBRV10]. The authors solved the case study
using the incremental transformation technique [BÖR+08]. This technique consists of caching the
matches of a pattern for future rule applications. The matchset is thus available from the cache at
any time without having to perform further pattern matching. The cache is incrementally updated
whenever changes are made to the model. This solution consumes about 20 seconds on the hundredth
round for an input graph with 8×103 vertices. For this case study the incremental approach ofVIA-
TRA2 is faster than its non-incremental approach with a polynomial order difference, but at the price
of utilizing significantly more memory [HBRV10].

A solution using the toolGROOVE was also submitted [SR08]. The simulation results provided
only showed measurements up to 100 rounds because the machine started swapping given the limited
hardware. The hundredth round was computed in 178 seconds.

Figure 11.8(a) compares the execution time (per round) of the abovementioned solutions. The
measurements were scaled appropriately to match the processor’s speed as in Chapter 4. VIATRA2
(incr) refers to the incremental solution ofVIATRA2 and VIATRA (ls) refers to the non-incremental
solution (local search). Additionally, we incorporated the performance results of a solution using
Kermeta [MSF+10]. Kermeta is an object-oriented language that allows one to manipulate models
directly through imperative code. For this case study, the authors have designed the meta-model in
ECore and the simulation is encoded as operations. The meta-model is then augmented with these
operations through aspect-oriented modelling techniques[KAAK09]. Since its execution is com-
piled, Kermeta outperforms the interpreted graph transformation approaches, although the compiled
graph transformation approaches are still more efficient. Given the log-log scale of the graph in Fig-
ure 11.8(a), all curves depict a polynomial behaviour:VMTS seems to be the fastest whileGROOVE
the slowest.Py-T-Core seems to be the fastest interpreted solution until the 300th round where the
incremental solution ofVIATRA2 becomes faster.

3A solution implemented in an old version ofMoTif was also submitted, but was erroneous.
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(a) (b)

Figure 11.8: Time (a) and memory (b) performance measurements of all the solutions to the AntWorld
benchmark.

Figure 11.8(b) shows the amount of memory required to run some of the solutions. The compiled
solutions are those that consume the least memory. ThePy-T-Core is situated in the middle with
372 megabytes of memory, like in the time performance case. Note that theMoTif solution requires
100 megabytes more because of the overhead of theDEVS structure and simulator. As expected, the
incremental solution ofVIATRA2 requires the most amount of memory since it caches all the matches
in memory.

11.6 Conclusion

In this chapter, we have implemented the AntWorld benchmarkin bothPy-T-Core andMoTif . On the
one hand, this allowed us to quantify the overhead imposed byexecuting a transformation model in
the MoTif framework over directly executing the transformation in Python. We discovered that the
overhead of using aDEVS structure on top of Python induces a slow down by a factor 3. Onthe other
hand, it allowed us to compare their performance with other model transformation approaches. This
ensured us that theMoTif framework presented in Chapter 7 together with all the meta-layers involved
(c.f. Chapter 5) does not affect the complexity class of the speed of execution of a completely modelled
transformation language.

This thesis focuses on the expressiveness of model transformation rather than on performance. The
performance results ofPy-T-Core appearing in this chapter depict that, although it is not as efficient as
existing tools, the performance ofPy-T-Core is still in the range of performance of similar approaches
(e.g.,interpreted). One possibility to improve the performance is to move to a compiled approach. This
would however require a re-design of the run-time architecture of the framework. Another possibility
is to implement the pattern matching using search plans rather than considering it as a constraint
satisfaction problem.
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When solving this case study, we have discovered several potential optimization points in the
implementation ofMoTif . For this case study, we have incorporated this optimization manually. In the
future, we would like to automatically enhance the transformation model at compile-time or propose
refactorings to the modeller at design-time. TheVMTS solution [MMLA10] proposed an automatic
way of refactoring the rules involved in aBRule to avoid matching the overlapping pattern more than
once. Model transformation refactoring [MTR05, ZLG05] anddesign patterns [MLM10] has become
an emerging research topic in the field.
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Summary

Model transformation is at the centre of model-driven development efforts. It is therefore crucial
that developers are equipped with well-founded model transformation languages. According to MPM
principles, a model transformation must be modelled at the right level of abstraction, using the most
appropriate formalism. Treating a model transformation language as a domain-specific language satis-
fies this rule. This thesis presented a framework to engineermodel transformation languages following
the MPM principles. This enables one to re-engineer existing transformation languages as well as to
develop novel ones tailored to the specific domains and problems to be solved. In the following, the
contributions of each chapter of the thesis are summarized.

Survey of Model Transformation

Establishing a framework for the design of model transformation languages requires a thorough anal-
ysis of existing languages, approaches, and paradigms. Thereview first focuses on the theory which
has its roots in algebraic graph transformations. Then, a survey is presented of existing model trans-
formation languages implemented as controlled graph transformation languages (such asGReAT ,
ProGReS, andVIATRA2), as model-to-model relations (such asTGG or QVT ), and hybrid model
transformations (such asATL).

T-Core

From this survey, what is common in all model transformationapproaches is extracted. The approach
proposed in this thesis is to express model transformation at the level of their primitive building blocks.
De-constructing and then re-constructing model transformation languages by means of a small set of
most primitive constructs offers a common basis to compare the expressiveness of transformation
languages. It may also help in the discovery of novel (possibly domain-specific) model transforma-
tion languages by combining the building blocks in new ways.Furthermore, it allows transformation
language engineers to focus on maximizing the efficiency of the primitives in isolation, leading to
more efficient transformations overall.T-Core is introduced as a collection of transformation lan-
guage primitives for model transformation. It comprises primitive rule operations (such asmatching
and rewriting) and control-flow primitives (such as ruleselectionandsynchronization). Inter- and
intra-rule conflict detection and resolution are also available at the primitive level. This allows us to
ensure a consistent application of rules executed in iteration or concurrently.
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Systematic Development of Transformations

Despite the pivotal significance of transformations for model-driven approaches, there have not been
any attempts to explicitly model transformation languagesyet. In this thesis, a novel approach for the
specification of transformations is presented, by treatingmodel transformation languages as domain-
specific languages. That is, for each pair of domains (the meta-models involved in the transformation),
the meta-models of the rules are (semi-)automatically generated to create a language tailored to the
transformation. This allows transformation developers tochange the design of their transformation
languages by modelling, rather than programming. Also, they may use environments to create trans-
formations that are customized with respect to the input andoutput languages involved. The goal
is to systematically support developers in creating transformation languages through the relaxation,
augmentation, modification process.

Py-T-Core

T-Core is implemented as a module based on a model-centric virtual machine. The API is usable
with a modelling language or a programming language. This “glue language” provides the scheduling
of transformation units encapsulated inT-Core. Py-T-Core is the result of implementingT-Core in
Python, thus making model transformation technologies available to programmers. From there, a
transformation language engineer only needs to choose which T-Core primitives are necessary to
define his custom transformation language.

MoTif

Py-T-Core is an example of how to use the model transformation languageengineering framework
when transformations are defined in programming languages.MoTif is a new model transformation
language built using this framework. Here, transformations are defined in a modelling language.MoTif
is the result of combiningT-Core primitives with the discrete-event formalismDEVS. First, it is shown
how the execution engine of a DEVS model can itself be modelled as a DEVS model. Then, execution
of graph transformation control structures inDEVS is introduced. Thus graph transformation control
structures are formalized by expressing them in terms of DEVS models. This is done by embedding
the structure and the behaviour ofMoTif constructs in terms of atomic and coupled DEVS models,
and embed graphs in the events they exchange. This is therefore a contribution in both the MDE
community and the discrete-event simulation community. Since all the components of the model
transformation languageMoTif are modelled explicitly, a transformation defined in this language is
therefore a model conforming to the meta-model ofMoTif . Higher-order transformation can then be
applied on such transformation models.

Timed Model Transformations

SinceDEVS is inherently a timed formalism, the notion of time in model transformation is explored.
One may now model a time-advance for every rule as well as interrupt (pre-empt) rule execution. It
is demonstrated how the explicit notion of time allows for the simulation-based design of the well-
known Pacman game. Its dynamics is modelled with programmedgraph transformation based on
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DEVS. This also allows the modelling of player behaviour, incorporating data about human players’
behaviour and reaction times. Thus, a model of both player and game is obtained which can be used to
evaluate, through simulation, the playability of a game design. The case study proposes a playability
performance measure and varies parameters of the Pacman game. For each variant of the game thus
obtained, simulation yields a value for the quality of the game. This allows us to choose an “optimal”
(from a playability point of view) game configuration.

Exception Handling in Model Transformation

An important aspect of model transformation which had not been investigated in the past is the no-
tion of exception handling. This allows one to increase the dependability of transformation mod-
els. The different kinds of exceptions that can occur in model transformations were first analysed
and classified. Some are more closely related to the execution environment. Some exceptions can-
not be generalized to all transformation paradigms and thusare more transformation-language spe-
cific. A more subtle class of errors includes exceptions resulting from an inconsistent specification
of transformation rules. The category of transformation-specific exceptions covers domain-specific,
application-specific, and user-defined exceptions. The novelty of this work lies in the explicitmod-
elling of exceptions and hence introducingmodelexception handling in the transformation language.
For that, transformation rules are made exception-aware. The outcome of such rules is either a suc-
cessfully transformed model (in case of a successful match and execution of the transformation), or an
unmodified model (in case the rule is inapplicable on the model), or an exception (in case an excep-
tional situation occurred). Also, with appropriate control-flow support, the transformation modeller
can directly specify how to handle all possible exceptions that can occur. Furthermore, the modeller
can specify if the transformation should resume, restart, or terminate after an exception is handled.

Expressiveness and Performance Analysis

The CD2RDBMS case study was implemented to evaluate and compare the expressiveness ofMoTif
with existing model transformation languages. Additionally, the AntWorld case study provides a time
and size performance comparison ofPy-T-Core with MoTif , as well as with other model transformation
tools. The results from these two benchmarks can be generalized: transformation languages produced
by the framework presented in this thesis have a higher levelof expressiveness and can perform better
than some of the existing languages and tools.

Outlook

To conclude this thesis, follows an enumeration of what I think are the grand challenges that remain to
be solved in model transformation to enable industrial adoption. The following are possible extensions
to the work presented in this thesis.

Scalability. The first aspect of scalability is in terms of thesize of modelsa transformation should be
able to handle: models with 105 elements or 106 elements or more. A second aspect is scalability
with respect to thesize of the transformation. This can be measured in terms of the number of
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rules applied on a given model or of the number of rules attempted at a given point during the
execution of the transformation.

Interoperability. As in programming, one should be able to treat transformations as black-boxes
while ensuring a meaningful and efficient communication between them. The work presented
in [HKA10] is a step in this direction. Alternatively, we should investigate a common formalism
that can serve as “bus” that serves as a communicating channel between transformation units,
with plug-and-play behaviour. This requires a standardization of model/graph representation
(such as GXL [Lam05]). We believe the modularity ofDEVS may enable the development of
such a bus.

Expressiveness.It is crucial to investigate what are the necessary and sufficient features a model
transformation must be equipped with.T-Core can be used as a basis for the transformation
units. The expressiveness of the pattern language and the scheduling language should also be
considered.

Reversibility/Bidirectionality. With the advances of declarative transformation languagessuch as
QVT-R andTGG, a single specification of the transformation can be executed from a source to
a target model and vice versa. Handling arbitrarily complexattribute constraints is still under
investigation, since the constraints may not be invertible. A link with non-causal languages,
such as Modelica [Fri04], seems promising. Generalizing transformations to relate three or
more modes is also an interesting challenge, withmulti-directional transformations [KS06a].
Modular composition of relational models is another promising direction of research.

Analysis. The designer of a model transformation must be able to validate and verify the correctness
of his transformation; property preservation of the input and output models must be ensured.
Formal verification techniques [Flo67] allow verifying all behaviours of the transformation
for any input model.Model checking techniques [CES82] restrict the verification to a fixed
input model. When neither of these techniques is possible, model testing of the transformation
can be used to test the transformation on a large set of generated input models. Alternatively,
simulation of the transformation can be performed to calibrate, optimize, and validate a sin-
gle behaviour of the transformation on a fixed input model (c.f. Chapter 9). These techniques
should also validate the correct application of a transformation (at each step) and ensure that its
properties are satisfied [BLA+10]. For example, critical pair analysis [MTR05] gives feedback
to the modeller about possible conflicts between rules.

Testing. Properly testing model transformation is not a trivial task. On the one hand, one should
identify adequate test inputs and how to assess the quality of models [MBLT06, SBM09]. On
the other hand, one should investigate an adequate design ofan oracle, be it generic, domain-
specific, or transformation-specific.

Profiling. Profiling is an important activity in the development of software. The profiling results
of a transformation should be provided in terms of, for example the T-Core primitives of a
transformation or to its domain of application, instead of the generated code.
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Debugging. Debugging the transformation should not rely on the code generated by the transforma-
tion. Instead, it should provide the appropriate support tothe transformation designer to deter-
mine the origin of failure. The work on exception handling inthis thesis is a first step in this
direction. Nevertheless, debugging should also be provided in terms of the artefacts generated
from the the transformation (i.e.,output or input model) as proposed in [MV10a].

Traceability. One should be able to trace back to the origin of an error. Properly tracing back to which
element the created/modified element originated from is also desired. Tracing can be performed
at different levels of a model transformation language. Tracing at the rule-level acts like a log of
the rules that have been applied or not. Tracing at the level of primitive T-Core operation or at
the level of matches is another possibility. One use of such traces is the inference of statistical
measures on the execution of the transformation.

Evolution. Currently there is very little support to, in an evolving modelling language, automatically
migrated the models to conform to the new version of the language [CDREP08, MV11]. For
transformations, a first attempt at automatically migrating simple graph transformation rules
was proposed in [ASWK11].

Although the abovementioned topics are important for industry, this thesis has already advanced
the foundations of model transformation language engineering. I sincerely hope that further research
will favour a close collaboration between research and industry in the area of model transformation
and more generally in MDE.
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