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Abstract

Systems developed today are increasing in complexity. MDdeen Engineering (MDE) attempts
to solve the issues related to complexity through the useanfets to describe systems at different
levels of abstraction. Multi-Paradigm Modelling (MPM) pnotes modelling all parts of the system,
at the most appropriate level(s) of abstraction, using tlstrappropriate formalism(s), to reduce
accidental complexity. MPM principles state that transfations too should be modelled explicitly.
Model transformations are at the very heart of MDE. Tramsftions allow one to execute, analyse,
synthesize code, optimize, compose, synchronize, angeevabdels.

Despite a robust theoretical foundation, model transfaonastill suffers from scaling and cor-
rectness problems. The growing interest in model transdtion has lead to a plethora of model
transformation languages. They provide tremendous valuddvelopers, but in all existing imple-
mentations, the transformation language is hard-coded.thisis contributes to the engineering of
model transformation languages at the foundation levdipviang MPM principles. It proposes a
framework for designing transformation languages taddrethe problem to be solved. As a result,
model transformation languages engineered in this framewmximally constrain the modeller to
only use the constructs needed. The aim is to increase thellacsiproductivity, by raising the level
of abstraction at which transformations can be specifiedgowering the mismatch between model
transformation languages and their application domain.

After thoroughly analyzing the uses of model transformmatiod their supporting languages, we
extract what is common to approaches and express modeidraration at the level of their primitive
building blocks. We introduce T-Core, a collection of trimmimation language primitives for model
transformation. A Python implementation of T-Core is depeld. It offers an API of primitive trans-
formation operations that act on models represented afhigrdis opens the door for non-MDE
developers to “properly” interact and manipulate modelakimg the link between the programming
world and the modelling world. In the framework developedydel transformation languages are
modelled explicitly. This supports developers in creattagtom-built transformation languages. The
approach semi-automatically generates model transfasmé&inguages adapted to the application
domain. MoTif is another model transformation languagearmgyed with this framework. Its syntax
and semantics are completely modelled, as well as its execeimgine. MoTif is the result of merg-
ing T-Core with DEVS, a discrete-event simulation form@lidt thus introduces the notion of time
in model transformation. This allows one to easily modettea systems and consequently optimize
and calibrate them. Finally, the notion of exception hamglin model transformation is explored to
strengthen the robustness and dependability of the sadtialt using this technology.






Abbrégé

Les systémes développés aujourd’hui sont de plus en plugleges. Pour résoudre les problemes liés
a la complexité, I'Ingénierie Dirigée par les Modeéles (IDMilise des modéles qui décrivent les sys-
temes a différents niveaux d’abstraction. La Modélisaéidraradigmes Multiples (MPM) renchérie
cette approche en modélisant toutes les composantes @umgysaux niveaux d’abstraction les plus
appropriés, tout en utilisant les formalismes les plus adts) afin de réduire toute complexité acci-
dentelle. Les principes MPM stipulent que les transforaratidoivent aussi étre modélisées explicite-
ment. Les transformations de modéles sont au ceeur de I'lDies permettent d’exécuter, d’analyser,
de générer le code, d’optimiser, de composer, de synclaogeisle faire évoluer les modeles.

Bien que la transformation de modéles soit basée sur deesdhéories, les problémes de mise a
I'échelle et de validité restent néanmoins encore a résoMr'intérét suscité par la transformation
de modéles, on observe de nos jours une vaste sélectionghigksde transformation de modeles.
Bien gu’ils apportent une énorme plus-value au développé@émplémentation de ces langages de
transformation demeure cependant codée en dur. Cettedbesdue aux fondements de I'ingénierie
de langages de transformation de modeles, tout en suivaptilecipes MPM. Elle propose un sys-
teme qui permet la conception de langages de transformatiaptés au probleme a résoudre. Ces
langages de transformation restreignent au maximum le isatkur a n’utiliser que les concepts
nécessaires. Le but est d’accroitre la productivité du isatéur, en élevant le niveau d’abstraction
auquel les transformations sont spécifiées, tout en raulisedéquation du langage de transforma-
tion de modéles avec son domaine d’application.

Apres avoir analysé les différents usages des transfarnsatie modeéles et de leurs langages,
nous avons identifié et extrait la partie commune a touteagpsoches. Ceci permet alors de définir
les transformations de modeles a partir des concepts edseaqui les composent. Nous présentons
alors T-Core, une collection d’opérateurs primitifs pautrnsformation de modéles. T-Core est im-
plémentée en Python, offrant ainsi une API disponible a@taons primitives de transformation de
modeles qui agissent sur des modéles représentés sousdegnaphes. Ceci permet a des program-
meurs de « proprement » interagir avec des modeles et de @puter, faisant ainsi le lien entre le
monde de la programmation et celui de la modélisation. Le2ays établi dans cette these modélise
de maniere explicite les langages de transformation de ie®dépermet alors de créer des langages
de transformation personnalisés. L'approche génere aatomatiquement des langages de transfor-
mation adaptés au domaine d’application. MoTif est un damgage de transformation de modéles
construit a partir de ce systéme. Sa syntaxe, sa sémantigoe moteur d’exécution sont entierement
modélisés. MoTif est le résultat de la fusion entre T-CorBEYS, un formalisme de simulation &
évenements discrets. MoTif permet alors d’introduire laarode temps dans les transformations de
modeles, ce qui permet de facilement modéliser des syst@&aetss et, par consequent, les optimiser
et les calibrer. Finalement, nous explorons la notion de@ed’exception au sein des transformations
de modéles, afin de renforcer la fiabilité des logiciels l#tiaide de cette technologie.
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Introduction

Context

The past fifty years have seen a drastic increase in the caitypdé the systems we design and use.
In particular, major innovations of the last decade focusedollaboration and integration of individ-
ual systems. Despite the advances in programming langaagesupporting integrated development
environments, the development of complex software systequares an enormous effort. The main
reason behind the difficulty of developing complex systesiisé conceptual gap between the problem
to solve and the implementation using current code-cetgdbnologies. This raises two issues we
notice in current realizations: (1) the development predgesiot optimal and (2) there is often a mis-
match between the functional needs derived from the problathe delivered software. Some ways
to tackle this complexity are through the use of abstrag@in02], problem decomposition [CLROO],
and separation of concerns [KL\7]. Model-driven approaches to systems development nwve t
focus from third-generation programming language (3GLldectomodels The objective of model-
driven development is to increase productivity and redume-to-market by enabling development at
a higher level of abstraction and by using concepts clostire@roblem domain at hand, rather than
the ones offered by programming languages.

Model-Driven EngineeringMDE) [SVCO06] is now considered a well-established deveiept
methodology. It attempts to solve these issues through skeotiabstraction, bridging the gap be-
tween the problem and the software implementation. The MpjE@ach is to support systematic
transformations of problem-level abstractions into tlmijplementations. To bridge the gap between
the application domain and the solution domain, MDE useseatsow describe complex systems at
multiple levels of abstraction and through automated sttpfpo transforming and analyzing mod-
els. MDE, and in particulailomain-specific modellinfGTK07], is an approach that allows one
to manipulate models at the level of abstraction of the appbn domain the model is intended
for, rather than at the level of computing. MDE considers aie@nd transformations as first-class
entities. A model represents an abstraction of a real systapturing some of its essential proper-
ties, to reduce accidental complexity. Models are used éui§p document, simulate, test, verify,
and generate code for applications. In software languageeering terms, a model conforms to
a meta-mode[Kuh06b, KihO6a]. A meta-model defines the abstract syntakstatic semantics of
a (possibly infinite) set of models. A model is thus typed synteta-model that specifies its per-
missible syntax, often in the form of constraints. A commepresentation of meta-models uses the
Unified Modelling Language (UML) Class Diagram notation [@8] with Object Constraint Lan-
guage (OCL) constraints [Obj06b]. MDE allows one to margpelthese models through the use of
model transformationA model transformation transforms a source model into getamodel, both
conforming to their respective meta-models. The Object &g@ment Group (OMG) has proposed
the Model-Driven Architecture (MDA), which promotes modlnsformation at the heart of MDE.



The Query, Views, and Transformations (QVT) language [@)if a recent addition to the OMG's
set of standards.

Today’s research in the field of MDE focuses on the applitg@hd scalability of its solutions to
industrial problems. Complementary to MDRulti-Paradigm ModellingMPM) [MV04] addresses
these issues and formulates a domain-independent frarkeMi®M promotes modelling all parts of
the system, at the most appropriate level(s) of abstraatising the most appropriate formalism(s),
to reduce accidental complexity. One key aspect of MPM istirallstraction. A model abstraction
is a view of a system exhibiting some of its properties whitlirig others. Multi-abstraction is thus
the ability to express models at different levels of absioac MPM realizes that systems can be
represented in different modelling languages or formadisMPM, in particular multi-abstraction
and multi-formalism modelling, is enabled by the use of matadelling and model transformation.
Instead of describing their behaviour in terms of code, MPiuhgiples state that transformations
too should be modelled explicitly. The developer can themimdate models by means of model
transformation. Transformations allow one to executelysea synthesize code, optimize, compose,
synchronize, and evolve models. Model transformationstiee very heart of MDE.

Problem Statement and Thesis Proposition

Despite a robust theoretical foundation, model transfaomastill suffers from scaling and correct-
ness problems in an industrial context. The growing interesnodel transformation has lead to a
plethora of model transformation languages expressedffereint paradigmse.g.,template-based,
rule-based, triple graph grammars, with or without expantrol flow [CHO6]. They are supported
by various implementations such &6G [Tae04],ATL [JK06], AToM? [dLV02], GReAT [AKK *06],
MOFLON [AKRSO06], QVT [Obj08], VMTS [LLMCO05], just to name a few. They provide tremendous
value for developers, but in each implementation the t@nshtion paradigm is hard-coded to be
used as is [BBGO06].

This thesis contributes to the engineering of model transétion languages at the foundation
level, following MPM principles. This is done by modellingexythingexplicitly at the most appro-
priate level(s) of abstraction using the most appropriatenflism(s). In this approach, the model
transformation language is modelled at the syntactic Igdtract and concrete). Moreover, the se-
mantics of such transformation models is also modelleduinahe use of meta-modelling and model
transformation. The aim is to increase the developer’syortidty, by raising the level of abstraction
at which transformations can be specified and by loweringrtisenatch between model transforma-
tion languages and their application domaig,, minimizing accidental complexity. Therefore, the
work presented here provides a framework for building sucilehtransformation languages, and
illustrates its applicability by designing and implemengtia new model transformation language fol-
lowing the MPM principles for the core algorithms, the trmmsation language building blocks, and
the transformation formalism. The approach presented foereses on the expressiveness of model
transformation.

Since this work focuses on the foundation level of modelgfamation (software) development,
it is important to realize there are four levels of users ia tramework:



Theend-usemperates the system implemented. For him, the system neddslktrictly a soft-
ware application that suits his need.

Themodellerdesigns and operates models of the system. A domain-spegdgioeer is typi-
cally a modeller who is an expert in his domain, modelling kvl of abstraction as close as
possible to his domain of expertise.

. Thetransformation engineds aware of the domain of expertise. He designs a framewollk we

suited for the domain-specific engineers. Note that in saamses; the transformation engineer
may as well be the domain-specific engineer (this is analeotma database administrator and
the programmers developing the database system). The bgjimeer is sometimes replaced by
modeller.

. Thetransformation language engineéuilds the transformation language to be used by the

transformation engineer. He engineers a transformatiogulage with the necessary and suffi-
cient features needed for a class of application domains.

This thesis provides the necessary tools for the transfitemknguage engineer to build transforma-
tion languages that are problem-specific.

Contributions

The goal of this thesis is to improve our understanding of ehdinsformation, facilitate the engi-

neering of model transformations, and increase the quaiditige software produced by this technol-
ogy. To achieve this goal, the focus is shifted to the langadlgat allow us to develop transformation
models. The main outcome of this thesis is a framework andhodeiogy to engineer model trans-
formation languages that are tailored to the specific dorg@pplication and the problem to solve.
The contributions of this thesis are the following:

1.
2.

The ability to createustom transformation languagesaccording to the problem to be solved.

The re-use of modelling languages to definedtigedulerof a model transformation, instead
of inventing a new one for each transformation language.

. A framework for defining transformation languages thatampletely modelledin a multi-

paradigm modelling sense. Consequently, this allows ocketmly specify higher-order trans-
formations.T-Core encapsulates the building blocks of this framework.

A precisecommon representationof essential model transformation language features.

. The introduction oéxception handlingin model transformation to ensure the dependability of

the software built.

The integration of model transformation ipeogramming framework, as opposed to a mod-
elling framework.

Anin-depth comparisonof existing model transformation languages, approacmesparadigms.

The weaving of the model transformation paradigm withdiserete event simulation paradigm,
ensured byimed model transformations. This provides a model-driven approach to modelling



and simulation-based desigvioTif is a novel model transformation language built using this
approach.

Outline

This thesis is divided into four parts. Part | proposes aerked survey of model transformation. It
comprises two chapters. Chapter 1 explains what a modedftianation is and where it is applied.
Chapter 2 exposes an overview of existing model transfoom#nguages and their features.

Part Il focuses on the foundations of model transformat@imapter 3 proposes a common basis
for defining model transformation languages and Chaptedédscated to the implementation of this
transformation core. To complement this idea, Chapter Svaiets and describes the need for custom-
built transformation languages, focusing on the specitiogbart rather than on the transformation
engine.

Part lll illustrates the proposed framework for enginegtiansformation languages tailored to the
needs of the transformation engineer. Chapter 6 presemtsrealism for modelling and simulation
purposes. It is entirely modelled following MPM principléhen, Chapter 7 shows how to define
a novel transformation language in the framework describeBart II, combining the formalism
presented in Chapter 6, as well as Chapters 3 and 5. Chapake8 advantage of the fact that this
novel transformation language is entirely engineeredfalhg MPM principles, to extend it with
fault-tolerance capabilities, such as exception handling

Part IV demonstrates applications of the transformatiogl@age developed throughout the thesis.
Chapter 9 shows the application of the language to moddiugsimulation-based design. Chapter 10
evaluates the expressiveness of the language and Chaptgalliates its performance. A final con-
clusion summarizes the conclusions described at the eracbf@apter and proposes an outlook for
future research.
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A Survey of Model Transformation






“Rien ne se perd, rien ne se crée, tout se transforme.”
(Nothing is lost, nothing is created, everything is transfed.)

Antoine Lavoisier






What is Model Transformation?

Part | of the thesis presents a thorough survey of the diffeapplications of model transformation,
of the features that model transformation languages exlaibd a comparison of the most common
model transformation languages and approaches that exiay.t This chapter focuses on the first
aspect. But first let us explain what a model transformason i

1.1 Definition of Model Transformation

In MDE, models are the primary engineering artefacts. Beeat the compelling need to manipulate
the data stored in models, transformations play a fundashesie in model-driven development. In
fact, they are so crucial that transformations are consdlas “first-class citizens” in MDE. Further-
more, transformations themselves are modelled, hencerimrtodel transformation

1.1.1 Previous Definitions

The OMG defines a model transformation as “the process ofezting one model to another model
of the same system” [Obj03]. This definition is too restxetas it only considers transformations
that produce a different model from the initial one. In 20R&ppeet al. published a book on prac-
tical applications of the MDA. The definition they proposaesnds the OMG'’s definition with spe-
cific keywords: “a model transformation is the automaticeyation of a target model from a source
model, according to a transformation definition” [KWB03h&termssourceandtargetmodels refer
to the functional nature of a transformation, taking a seurmdel as input and outputting a target
model. Another key aspect in this definition is the “automggneration”. This implies that the trans-
formation is not specified directly on models but at a higmeet@-)level and the transformation is
automatically generated from its definition.

Figure 1.1 illustrates this definition. A transformationdisfined at the meta-model level. From
the transformation definitidn the transformation is automatically generated and iseecon the
models conforming to their respective meta-models. Thestaamation can be interpreted or the
result of a compilation. In this figure, the source and tangeta-models may be different or the same,
depictingexogenousr endogenousransformations respectively. Furthermore, the sourcketarget

LIn the literature, this term also appears as transformatesification or transformation design.
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Source KLY Transformation Target
Meta-model Definition Meta-model

executes

conforms to
conforms to

outputs

Transformation

Figure 1.1: Model transformation terminology.

models may be different or the same, depictg-placeor in-placetransformations respectively.
These terms were first introduced by Mens and Van Gorp in [M&|GBloreover, the figure can be
extended to allow a transformation to operate on multiples®and/or target models.

1.1.2 Proposed Definition

Since these definitions were proposed (over 8 years ago)lnratisformation has been applied in
a much wider range of applications than expected at the asélustrated in the following section.
Therefore, the definition of a model transformation mustdyesied to fit in a more general context.
In this thesis, we consider a model transformatiothasautomatic manipulation of a model with a
specific intention It is automatic because, as in the definition from Kleppal, the transformation
is automatically generated from a higher level specificat® model transformation is a manipula-
tion of a model because it encapsulates any modificationterasion of a model, which entails—at
the minimum—reading, creating, and modifying model eletaeodel transformation can work at
different levels of abstractions, modify the syntax of a ®lpdr even define/alter the semantics of a
language. Its application may vary from simple model elemeadifications to defining the semantics
of a language or synchronizing different views of a same rh@deexhaustive list of applications of
model transformation will be given in Section 1.2. The dsirin the applications thus implies that
each model transformation is characterized by the intardehind its usage.

This more general definition must be placed in a multi-payednodelling context wherevery-
thing is modelled. In that sense, any change in the system alwgyseha on a model. Lé¥l be a
model that conforms to a meta-modédM. A transformation orM is an intentional change or al-
teration of the model, which yields a moddl conforming to a meta-modeMM’. Moreover, since
we model everything explicitly, then a change or modificatad a model must be itself modelled:
we therefore have models of transformations. The meta-hoddetransformation model defines all
possible changes for the same intention from an instantbéto an instance dfiM’.

’Note thatMM andMM’ may be the same.
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1.1.3 Program versus Model Transformation

At first glance, a model transformation, just like any othesgram, is a data manipulation pro-
gram: take input data and produce output data. However, hi@esformation is a form ometa-
programming[CI84], i.e., programs that manipulate meta-data, such as programsfisagans,
schemata, etc. Manipulating “semantically rich” data,isas programs, requires specialized facil-
ities: thus the need for program transformation and cormrgildowever, one may argue that the dif-
ference between a model and a program resides in (1) thedéadstraction they are specified in
and (2) the cognitive effort needed by a human to map the cteypased model to the system in
the real world. Similarly, model transformation can worldéterent levels of abstraction. Its appli-
cation may vary from simple model element modifications tiiniieg the semantics of a language or
synchronizing different views of the same model.

The distinction between a program and a model transformégioot clear-cut. The first distinction
is biased towards tree versus graph rewriting. Traditignpfogram transformation has used term
rewriting—that is, tree transformations—as its undeuytheory,e.g.,Stratego [VisO1]. A good part
of the model transformation community that works on the thgcal aspects of model transformations
views graph transformation as the most appropriate pamaétbg model transformations. This view
applies well to models such as Petri nets, which are trulglgtée. However, some models may have
natural tree-like nesting (often represented as compositi their respective meta-models). Thus,
viewing model transformation as transforming graphs witrgpecial attention to the tree structures
Is unnecessarily restricted. The bottom line is that botlgam and graph transformation systems
transform graph structures and both can be used to trangfoygrams or models. In practice, the
choice between the two boils down more to how well the souncktarget languages are supported.
For example, a system that can transform Java should corheawith library of built-in program
analyses, starting with the simplest query for all the iiaiEzs a given class implements.

Another distinction is that programming languages traddily used grammars as their syntax
definition formalisms; most of the modelling world uses actiormalisms such as class models,
e.g.,the Meta-Object Facility (MOF) [Obj06a]. The latter are m@roperly “concept definition” for-
malisms with generalization and property relations (witbgerties possibly divided into references
and composition).

The final distinction is that models are more diverse. Altjiothe term “model” normally refers
to system abstractions above the implementation code [@VK that is—artefacts such as require-
ments and design specifications or analysis models, maderdenvironments sometimes represent
programs in the same form as models, and treat them alikes, Weucan conclude that model transfor-
mations operate on more diverse artefacts than prograsftramation, as these artefacts may include
programs, but also other artefacts, such as specificatrmhs@ema definitions. In other words, one
could view program transformation as a narrower field thadehtransformation.
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1.2 Types and Uses of Model Transformation

In MDE, a model is a static representation of some inforrmatd a system. Model transforma-
tion allows one to manipulate models in order to modify sorhéheir properties, answer queries,
generate code, simulate, migrate, optimize, compose,rahsgnize them. These different types of
model transformations capture the intention behind theipudation they perform on models. The
following classification extends the taxonomy of model sfanmation proposed by Mens and Van
Gorp [MVGO06].

1.2.1 Access/Modify Operations

Strictly speaking, a model consists of a set of elementsefample if a model is represented by an
instance of a UML class diagram [Obj09], then the elementsespond to objects and links. These
elements are usually structured; for example in the forrmadralering or containment relationships.
Properties of the model are encapsulated in elements; &npbe as attribute values in the objects.

The simplest operations on a model addingan element to the modeakemovingan element
from the modelupdatingan element’s propertiesavigatingthrough the elements, aagcessinghe
properties of an element. These primitive operations a@ lkadown as th€ RUD operations (create,
read, update, delete) as first introduced by Kilov in [Kil99jom a pragmatic point of view, a model
transformation is a sequence of CRUD operations. The dff@tia specific sequence has on a model
determines the nature of the transformation. The simpfebese is the simple access or modification
of one or more elements of the model or their properties.

1.2.2 Query

Queries take their origins from data manipulations in dasals. A query is an operation that requests
for some information about a system. This operation takeéspag a modeM and outputs aiew of

M. A view is a projection of (a subset of) the propertiedvbf Therefore a query is a transformation
as it is a projection, obtained by CRUD operations on the gnigs ofM. We distinguish between
two types of views: restrictive and aggregated viewsegtrictive view reveals all, none, or some of
the properties oM. For example, the query “retrieve all cycles in a Causal BB@gram” outputs a
view of the causal block diagram model represented as acay@ph composed of strongly connected
components. Another kind of restrictive view is the outpithe query “show only classes/associa-
tions of a class diagram”. Aaggregated views a restriction oM modifying some of its properties.
One example of such a view is the average of all costs perogatalproduct in a relational database
schema. Or, in a hierarchical model, show top-level elesenly with an extra attribute denoting the
number of sub-elements.

These definitions of a query and a view differ from those psagloby the Query/View/Transfor-
mations initial call for submissions [GGKHO03]. The authdefine a query as “an expression that is
evaluated over a model” and a view as “a model which is corapleterived from another model”.
Although stated from a more pragmatic perspective, theyavertheless compatible with our defini-
tions.
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Figure 1.2: Multiple views of a single repository model.

There can be multiple views for different observers of thesanodel. For example in Figure 1.2,
the central model, calletepository, can be viewed as a UML class diagram to highlight the main
concept elements, as a UML sequence diagram to outline teeation between these elements,
as a UML activity diagram that specifies a workflow scenarimiving some of the elements, or a
Statecharts model to define their behaviour. Some viewseaigt-only and others are write-enabled.
In any case, views must be kept consistent with the repgsitofGdL06], Guerra and de Lara show
how multi-view consistency can be ensured by a model tramsfbon that defines a relation between
the repository and a view. For read-only views, any changeapagated from the repository to all
views (or those that are affected by the change). For wrigiked views, any change is propagated
from a modified view to the repository, which will propagale tchanges to the other views. This
principle is known as th#odel/View/Controlleiin software engineering [KP88].

1.2.3 Synthesis

Synthesis is a transformation from a higher level speciboab a lower level specification. We talk
aboutcode generationwvhen the target specification is source code in a programianggage. A typ-
ical example of code generation is when design models (ssitHWL class diagrams) are translated
into source code (such as C#) as supported by most UML editatCASE tools, such as Enterprise
Architect [Sys00]. Another typical case of code generaisowhen adomain-specific modéDSM)

or abstract model is translated into source code. For exgnaglillustrated in Figure 1.3, a State-
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if e = 0: $ event “e"

if table[l] and self.isInState(l) and self.testConditicn(3):

if (=scheduler == =elf or scheduler == None) and table[l]:
self.runfctionCode (4) $# cutput acticn(sl)
zelf.runExitlictionsForStates (-1)
zelf.clearEnteredStates()

e self.changeState (1, 0)

self.runEnterfictionsForStates(self.StatesEntered, 1)
self.applyMask(DigitalWatchStatechart.OrthogenalTable[1l], table)

handled = 1
e ° if table[0] and self.isInState(0) and self.testConditicn(d):
if (scheduler == =elf or scheduler == None) and table[0]:
zelf.runficticnCode (3) $# output acticn(sZ)

zelf.runExithctionsForStates (-1)

zelf.clearEnteredStates()

self.changeState (0, 0)
self.runEnterfActionsForStates(self.5tatesEntered, 1)
self.applyMask(DigitalWatchStatechart.OrthogonalTakle[0], table)
handled = 1

Figure 1.3: Statecharts to Python compilation.

Figure 1.4: Extracting user-interface behaviour from daesfaarts model into a PhoneApps model.

charts model is compiled into Python source code in ordemtolate it. This is amodel-to-code
transformation which is a special case ohadel-to-modeltransformation, since source code can be
modelled by its abstract syntax tree and the meta-modetigrdfommar of the programming language.

1.2.4 Reverse engineering

Reverse engineering is the inverse of synthesis: it estagher level specifications from lower-level
ones. For example, Figure 1.4 shows a transformation frortage@arts model to a DSM of the
PhoneApps language for a conference registration mobgkcapion [MV10b].

1.2.5 Translational Semantics

Harel and Rumpe [HROO] define a modelling languagddamalism) by syntax and semantics com-
ponents. The syntax comprises thlestract syntaxepresenting the essence of the concepts of the
language. The abstract syntax can be mapped to sex@natete syntaxe@extual representation,
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graphical visualization, etc). These two components $pdise different concepts of the language
and how they are represented. The semantics of a formalispeisfied by a uniqusemantic map-
ping functionwhich maps each model element in the language onto an elémegesémantic domain
For example, the meaning of a Causal Block Diagram is givemégping it onto an Ordinary Differ-
ential Equation. For practical reasons, semantic mapgingually applied to the abstract rather than
to the concrete syntax of a model. Note that the semantic ohoisna modelling language in its own
right which needs to be properly modelled (and so on, reeeisgi. In practice, the semantic mapping
function maps abstract syntax onto abstract syntax.

e °‘
sded SO

Figure 1.5: A Finite State Automata to Petri net semanticsiation.

The meta-model of the formalism represents the abstratasynd static semantics of the lan-
guage. A model transformation can be used to define the dgnsemantics of the language. In the
case of translational semantics, the formalism’s semaméigping function is defined by a transfor-
mation and its semantic domain is a modelling language. Wd&fiming a translational semantics,
we transform a model in one formalism into a model in anotleemalism. Then the semantics
of the source formalism is given in terms of the semanticshef target formalism. For example
in [KMS*09], we define the semantics of Finite State Automata in tesfiRRetri nets. That is, the
model transformation translates any finite state automatdeirinto a semantically equivalent Petri
net model, as depicted in Figure 1.5.

1.2.6 Simulation

A model transformation can be used to simulate models: iatgsthe state of the system modelled. In
this case, the target model is then an “updated version"e$tiurce model (in-place transformation).
For instance, Heckel has described the behaviour of a stigghacman game in [Hec06]. There, the
transformation specifies the transitions that a Pacman gastence is allowed to take (pacman and
ghost moving in each direction, pacman eating a pellet, tgkating pacman). In software language
engineering terms, this is called tbperational semanticsof the Pacman language. The execution
of the transformation shows the trace of the model’s behawvieor example, Figure 1.6 depicts the
trace of the simulation of a Finite State Automata model.
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Figure 1.6: The animation trace of a Finite State Automata.
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Figure 1.7: Generation of valid UML class diagrams.

1.2.7 Meta-Model Instance Generation

The meta-model of a language can be defined by a grammar sucka®ended Backus-Naur Form
(EBNF). In the modelling environment DiaMeta (formerlyleal DiaGen [VM95]), meta-models are
defined bygraph grammars3. This is a model transformation that allows one to genedhfmasible
instances of the language. For example, Figure 1.7 shovesad@$JML class diagrams generated for
the meta-model in the middle. In [EKTO09], the authors getee&tatecharts models from its meta-
model also via a graph grammar. This technique is very usefuhodel-based testing [DJ99] of
model transformations as it allows one to automaticallyegate input tests to verify the correctness
of a transformation.

3Hypergraph grammars to be more precise.
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Figure 1.8: Normalization of a Statecharts model by flattgmi.

1.2.8 Migration

Another use of model transformation is in model migration[MBP99], the authors define migra-
tion as a transformation from a software model written in targuage or framework into another
language, keeping the models at the same level abstradtiban a languages.g.,Enterprise Java
Beans 2.0 (EJB2gvolveso a newer versiore.g.,Enterprise Java Beans 3.0 (EJB3), one must mi-
grate all models conforming to the meta-model of EJB2 sottiet conform to the new meta-model
of EJB3. Instead of having to migrate each model individyalh automatic process would be desired.
Thanks to the fact that model transformations are definedetasmodels and operate on models, Ci-
cchettiet al. [CDREPO08] have proposed a model-to-model transformabasutomatically migrate
models.

1.2.9 Normalization

Normalization aims to decrease the syntactic complexitgnotiels.Desugaringis when complex
language constructs (syntactic sugar) are translatedriote primitive language construc&mpli-
fication is when all uses of a language construct are transformed amraat or canonical form. Fig-
ure 1.8 shows how a Statecharts model is normalized to itsrikedl form where OR- and AND-states
are replaced by the appropriate states and transitRarsing the concrete syntax of a modelling lan-
guage back to its abstract syntax is also considered as ahpation, which can be implemented by
a model transformation involving the meta-model of the cetesyntax and the meta-meta-model of
the language.

1.2.10 Optimization

Improving operational qualitiesof models is crucial for scalability. Nevertheless, op#iation pre-
serves the semantics of the model. Optimization tasks g@iealy done on architectural or design
models. For instance in Figure 1.9, we optimize a model sgpréng a spreadsheet with dense data
converting the list representation of the cells into a tvime&hsional table.
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Figure 1.9: List to table optimization.

1.2.11 Restructuring

Model refactoring is a restructuring that changes the internal structureefibdel to improve cer-
tain quality characteristics (such as understandabititydifiability, re-usability, modularity, adapt-
ability) without changing its observable behaviour [GHi9This involves applyingefactoringas de-
fined by Fowler [Fow99] to models. Zhamg al. [ZLGO05] proposed a generic model transformation
engine that can be used to specify refactorings for DSMs.

1.2.12 Composition

Model composition integrates models that have been prabincisolation into a compound model.
Typically, each isolated model represents a concern whiai averlap. There are two techniques
to compose concerns as illustrated in Figure 1.10. On theéhand,model merging creates a new
model such that every element from the union of both modgisasent exactly once in the merged
model. In [EPKO06], the authors propose a transformatioguage that allows one to compute the
merged models given two models conforming to the same meti&emOn the other hananodel
weaving creates correspondence links between overlapping entlhethis case, a generic meta-
model is defined for correspondences which are thus modelled
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Figure 1.10: Composition of two models through model maygion the bottom left) and model
weaving (on the bottom right).

1.2.13 Synchronization

Model synchronization integrates models that have evalveésblation but that are subject to global
consistency constraints. In contrast with compositionchyonization requires that changes are prop-
agated to the models that are being integrated. Source rologegjes are propagated to corresponding
target model changes. Referring back to Figure 1.2, thisigoe is typically applied when multiple
views of a repository are accessed or modifladremental transformations such as in [BOR08]

are well-suited for this task. Furthermore, synchron@atnust be ensured in both directions: in this
case, multi-directional transformation [Sch94, Obj08ls&d to manage inconsistencies.

1.2.14 Classification of Transformation Types

Mens and Van Gorp [MVGO06] have classified only some of theHferént types of transformations
along several dimensions. Table 1.1 classifies transfoaom&gpes depending on whether they are
applied on the same model or not and whether they refer tcatine sneta-model or not. For example
on the one hand, a model transformation that simulates a Imualdifies the source model and the
resulting model still conforms to the source meta-modelti@nother hand, a model transformation
that synthesises a DSM to source code produces a differaelrtiwat does not conform to the source
meta-model. Note that an in-place transformation is monegd than an out-place transformation as
it can emulate the latter by first copying the model and thesraing on the copy.

Composition is out-place by definition. However, it can b endogenous or exogenous de-
pending on the intention of the composition. For instanfce model transformation is used to merge
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Endogenous Exogenous Either
In-place Access/Modify, Simulation X X
Out-place Restrictive query, Simplification Aggregate query, Systbe Composition,
Reverse engineering, Migration, Synchronization
Desugaring
Either Optimization, Restructuring X X

Table 1.1: Model versus meta-model concerns of transfoomst

Endogenous Exogenous Either
Horizontal Access/Modify, Simulation Migration Composition
Vertical Restructuring, Restrictive query, Aggregate query, Synthesis, X

Optimization, Simplification = Reverse engineering, Desugaring

Table 1.2: Abstraction level of transformations.

different restrictive views of the same repository, themierged model conforms to the same meta-
model. However, if composition is used to merge an old varsica model with a newer one, then the
target model would typically not conform to one of the soureta-models. The same reasoning holds
for synchronization. As for optimization and restructgrioperations, these transformations modify
the model keeping it in the same language.(the target model still conforms to the source meta-
model). However, depending on the specific implementatloey may produce a different model or
simply modify the source model.

Finally, Table 1.2 classifies transformation types along tbsthogonal dimensions: whether the
source and target model occupy the same level of abstragtioimt and whether they refer to the
same meta-model or not. For example on the one hand, a madsfdrmation that migrates a model
to conform to a new meta-model outputs a model that is stithatsame level of abstraction as the
source model. On the other hand, a model transformatiomp#rédrms a restrictive query on a model
produces a view that conforms to a subset of the source medieinthe view being at a different
level of abstraction than the source model.

Synchronization is not present in this classification beeaitiis orthogonal to the other types
of transformation. As stated previously, it can be both geth@us or exogenous. Synchronization
may also produce a model on the same level of abstractiorz@mdal) as the source model(s) or not
(vertical). For example, suppose two domain-specific exrgisiare working on the same conceptual
model, each on a different version of the model. When the twalets are be synchronized, the
modifications applied on each model are still on the samd lgivabstraction. In contrast, if the
domain-specific engineers are each working on differentexgded views of the same model, then
the synchronization between the two views with the repogitoodel will be on different levels of
abstraction.
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Syntactic Query, Synthesis, Reverse Engineering, Simplificatiorsugaring

Semantic Access/Modify, Simulation, Migration, Optimization, Regturing, Composition,
Synchronization

Table 1.3: Syntactic and semantic transformations.

Finally, Table 1.3 distinguishes transformations thatetfthe syntax of a model from those affect-
ing its semantics. A syntactic transformation solely medithe representation of the model (semantic
preserving). However in a semantic transformation (seimambdifying), the output model has a dif-
ferent meaning than the input model, although the repraientof the latter may or may not have
been modified. To illustrate the application of model transfation types, let us consider a model
transformation chain (sequence of model transformatigriegtions) to compile a DSM into exe-
cutable Java code. Typically, the DSM is represented inredasyntax. A transformation will parse
the model to extract its abstract syntax. On the abstratagyevel, optimizations or refactorings may
be applied to improve the quality of the artefact. From thsti@et syntax of the model, a transfor-
mation synthesize it directly to Java source code. Afterestime, the meta-model of the DSM may
have evolved. Consequently, a model transformation wigrate the abstract syntax of the DSM to
conform to the new meta-model. A new model transformatiathés required to synthesize source
code for the new version of the model.

1.3 Conclusion

The first part of the survey presented in this chapter is basede taxonomy of model transformation
proposed by Mens and Van Gorp as well as many experiencestsimahe literature. To summarize,
model transformation has many purposes. Given a formalisenmeta-model defines the abstract
syntax (structure) and the static semantics. Model tramsfon provideslynamic semanticgoe-
haviour) to models of the formalism. When the transfornrateoendogenous (the source and target
meta-models are the same), the transformation is typieaisnulationof the formalism. In this case,

a model transformation describes the operational sensamitithe language in the formalisiRefac-
toring is another form of endogenous transformation, typicallgduor optimizing or evolving the
design of models. When a transformation is exogenous (diifesource and target meta-models), it is
typically used taranslatemodels from one formalism into another. For example, a dorspecific
modelling formalism may be transformed into a lower (aldtom) level formalism such as Petri
nets or Statecharts. In this case, the meaning of a modeles ¢y a translational semantics into a
behaviourally equivalent model. When two models are rdlateey can each co-evolve and thus the
initial relationship does not hold anymore. Model transfation can be used t®ynchronizenod-
els, specifying a bidirectional transformation or relatimetween models from different meta-models.
Code generatiofis another form of exogenous model transformation, comgsiggorograms as trees
and thus as models. It can also be used to allow the integrafi@a model in a software applica-
tion and to make the model executable. Other model transfiooms are useful to serialize models to
persistent storage.
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Model transformation has applications in several indakprojects. The automotive, military,
airspace, and mobile industrg.¢.,Porsche, BMW, Nokia, Motorola) are examples of early adgpte
of model-driven engineering. However, model transforprasitill suffers from scaling and correctness
problems in an industrial context.



Features and Approaches

This chapter completes the survey of model transformatid@hiapter 1 by first examining the differ-
ent features that current model transformation approaaifess Then a thorough comparison of some
of the most relevant transformation tools and languageseartaday is presented.

2.1 Overview of Model Transformation Features

From the previous chapter, we can affirm that model transfition has many applications. For ex-
ample, it is used to generate platform-specific models fr@atiggm-independent models and reverse
engineer them, map and synchronize among models at the saaweoss abstraction levels, cre-
ate query-based views of a system, model evolution tasksansform models between different

languages for integration. We will now explore the diffdrésatures that a model transformation
language can have. It covers more than what current toolsostiput this framework may change

because of the very active research in the field.

! Model Transformation

O O j I | O [ O —0 O
Specification | | Transform- Rule Rule Source-Target | | Incremen-| | Direction- | | Tracing»
- | ation Rules» Application Organization» | | Relationship»| | tality» ality»

Control

-0 I O
| Location Scheduling»
Determinaton»

Figure 2.1: Feature diagram of model transformation laggadrom [CHO6].

2.1.1 Transformation Language Features

In 2003 and later in 2006, Czarnecki and Helsen proposedsaifitation of the different features of
contemporary model transformation approaches. The @itzsin is based on a feature model [CHO6]
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for which the top-level features are depicted in Figure Bhhis section, we only highlight some of
the features relevant for comparison in the remainder sf¢hapter.

Transformation rules are the smalledtansformation unitsised to specify a transformation. In
fact this feature should be renamed to transformation waté does not restrict the classification
to rule-based transformation only, although it is the moshmonly used paradigm. Transformation
units will be discussed in more detail in the following seati

Rule application control determines where individual rules are applied on the maugimwhat
order the rules are executed he latter feature will be discussed in greater detailsdati®n 2.1.3.
The former feature is calleldcation determination. A deterministic transformation implies that a
repeated execution will always lead to the same output. ¥@mele inStratego, the user defines his
own traversal mechanism in a deterministic way. When sécli@ces occur in a non-deterministic
transformation, it is important to distinguish concurrerecution from one-point execution. A rule
may also be applied on only one non-deterministically setééocation in the model as in graph
transformation approaches [EEKR9AJoM? [dLV02] and VIATRA2 [VBO07] offer the possibility to
apply a rule on all applicable locations in the model at thmesaime. This may however induce
conflicts in parts of a model shared by two or more applicatiohthe rule AGG [Tae04] detects
such conflicts by performing a critical pair analysis on thikes and the input model. The application
location of a rule may also be determined by the user inteedgtspecifying it as inATom3.

Specificationis the ability to specify pre- and post-conditions for theoléhtransformation. The
specification defines a function between the source andttargeels. This function may be directly
executable or not.

Rule organization considers the issues on the general structuring of the tolesmpose them.
Rules may be packaged inside modules, such aginlJJABKO8], QVT-R [Obj08], andVIATRA2.
When designing a transformation (typically for translaibsemantics) there are often redundancies
in rule patterns; re-use mechanisms then come in very hamdwllows a rule to inherit from another
rule: the pre-conditions and bindings of the sub-rule aremated by taking their union with those of
the super-rule. Th@VT specification presents very sophisticated re-use mecahanisut there is no
implementation available for them.

Source-target relationshiprefers to whether a transformation is out-place (such asrir) or
in-place (such as iIAGG). QVT allows one to create a new model or update an existing one.

Tracing is the runtime footprint of a transformation execution.caability links (or trace links)
are a common form of trace information in model transfororatiTraceability links connect source
and target elements. They are useful for impact analysidiow changing a model affects another.
They are also used to determine the direction of a synchaaizin an N-to-M transformation (read-
ing N source models and producing target models wherdl,M > 1). Trace links can be created
automatically by the transformation as AL andQVT to avoid a transformation unit from being
applied on the same location more than once. But one midghwatit to have some control over their
creation. INPAGG, AToM3, andVIATRA2, they are considered as any other model but have to be created

The latter is calledule schedulingand will be covered in Section 2.1.3



2.1 Overview of Model Transformation Features 25

manually. Tracing transformation execution is crucialrfardel transformation debugging. It can take
the form of snapshots of the models at different steps inrdresformation process. Tracing may also
be expressed by having backward links from the new modelaanitial (or an intermediate) model
along the transformation. Traces may be automatically igéee in the source or the target or in a
separate storage. This is typically useful when the transdtion transforms a model in one formal-
ism into a model in another formalism. Traceable transfdiona are also very important when code
synthesis and reverse engineering is needed. When deg@niodel transformation, the transforma-
tion engineer sometimes needs to relate elements confgimutifferent meta-models. Generic links
(a generalization of trace links) can be temporarily créabefulfil this need.

An incremental transformation is defined as a set of relations between sand target meta-
models. These relations define constraints on models tatahisynized. Change-detection and change
propagation mechanisms are then used as in [BO#R The first time it is run, the transformation
creates a target model. Trace links are often automaticedigted. Then, if a change is detected in
one of the models, it propagates this change to the otherlimdadding, removing, or updating an
element so that the relations are still satisfied. There @ure $tandard scenarios in model synchro-
nization:

e Create a target model from the source model,

e Propagate changes in the source model to the target model,
e Propagate changes in the target model to the source model,
e \erify consistency between the two models.

Directionality is a fundamental feature distinguishing unidirectionahfrmulti-directional trans-
formations. Aunidirectional transformation creates (or updates) the target model énimulti-
directional transformation can be executed in any direction. Howeveequires multi-directional
rules that are conceptually defined by separate unidiregtiaules, one for each directio@pera-
tional rules are often unidirectional and have a functional chiaragiven an input model, produce a
target model. This entails a causality from the source tddlget modelDeclarativerules are often
multi-directional: they specify a relation between bothdels that must be satisfied. This entails an
acausal relationship between the models. For examplé& gipaph grammar rules are bi-directional
and are specified declaratively [Sch94]. But to execute ilie@y are converted into seven operational
rules.

e Every new element in a model has a correspondence in the[otBer

e When an element is removed from a model, its correspondamgett(s) is (are) deleted appro-
priately [x2]

e Enforce the consistency relations between attributey [

e Create a correspondence between unmapped elements obtheottels [« 1]

2.1.2 Transformation Units

Transformation units are the central elements of a modabktoamation. A transformation unit is
specified on one or momomains (for each meta-model). The domain expresses what paradigm t
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Figure 2.2: A transformation rule on the left and three msda), (b), and (c).

transformation unit uses to operate and access elemeis widdels. It may be applied under certain
conditions or from a given context.

They can take the form of a function, a rule, or a relatiorfuAction is an imperative construct
that dictates how the input model shall be modified or theetangodel produced, such as Ker-
meta [FHNOG]. A rule is a declarative construct that dictates “what” shall betfarmed and not
“how”. It consists of a pre-condition and a post-conditidine pre-condition must be first satisfied
to modify or produce model elements so that its post-comdlis satisfied after its application. Fig-
ure 2.2 shows a possible graphical representation of a ruteeleft. The left compartment depicts
the pre-condition pattern and the right compartment dsploe post-condition pattern. A possible
semantics of this rule is: if an A element is found then an Arelat connected to a B element shall
be present. If the rule is applied to model (a), it will prodwcB element and connect the A element
to it. However, if it is applied to model (b), then nothing dedo be produced since there is already
an A element connected to a B element. In graph transformétie rule has a different semantics: if
an A element is found then create a B element and connect A tdratBis case, if the rule is applied
to model (a) then model (b) is a possible outcome. The thipd tf transformation unit is @lation.

A relation extends the notion of rule by removing the notibdicection or causality between the pre-
and the post-conditions. A relation acts on domains (thewmeidels involved in the transformation)
and declaratively states the relationship between theesiesrand their properties. However, when a
relation is executed, a direction must be specified to agm@ytriansformation in one of the scenarios
enumerated when discussing incremental transformatmotigiprevious section, such asQNT-R.

Transformation units consist ghtterns. A pattern is a model fragment that can be represented
as: strings for template-based transformatiang.(Xpand [Pro10b]), terms for tree representations
of models é.g.,Stratego), or graphs for model-to-model transformatioagy(,graph transformation).
Patterns can be represented using the abstract or congnéde sf the corresponding source or target
model language. The syntax can be textual or graphical.eTaer two notations for representing
patterns in graphical syntax: the traditional and the cashpatation. The former is the traditional
way of representing graph transformation rules with, onléfe the pre-condition pattern known
as the left-hand side (LHS) and the post-condition patt@owk as the right-hand side (RHS). For
instance, Figure 2.3 illustrates a ruleAtoM? on the left and its equivalent IFUJABA [FNTZ00] on
the right. In theaToM? rule, the LHS pattern must first be found in the source modw®rifthe relation
labelled 3 must be removed as it is present in the LHS but ntterRHS and the relation labelled
4 must be created as it is present in the RHS but not in the LH8.cbrresponding relations in the
compact notation are labelled “destroy” and “create” in ¢benpact notation ofFUJABA. Although
the compact notation is more concise and prevents the neodsdim replicating pattern elements
in both patterns, the traditional notation is more expkessihen it comes to specifying multiple
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Figure 2.3: The same rule representedioM® and inFUJABA.

top relation PackageToSchema { operation transform(source:PackageHierarchy): DataBase is do
domain uml p:Package{name=pn} result := DataBase.new
domain rdbms s:Schema{name=pn} trace.initStep (“uml2db”)
} source.hierarchy.each{ pkg
var scm: Schema init Schema.new
scm.name := String.clone (pkg.name)
result.schema. add (scm)
trace.addlink(™uml2db”, “packageZschema", pkg, scm)

Figure 2.4: AQVT-R relation on the left and the correspondikgrmeta function on the right.

negative-application conditions (NACs). A NAC represemfzttern that prohibits the application of
the rule if encountered in the source model.

The computations and constraints over model elements ipdtierns are regrouped in thagic

of a transformation unit. The logic can be classified in twihogonal dimensions: executable/non-
executable and imperative/declarative. For example, &va Application Programming Interface
(API) for the Meta-Object Facility (MOF) [Obj06a] modelsas executable, imperative logic. OCL
queries [Obj06b] are executable and declaratdI-R relations are non-executable and declarative.
For example, Figure 2.4 shows@V/T-R relation and the&ermeta function that corresponds to its
forward check-enforce application. Note that an impeeathon-executable logic cannot exist since
the imperative language will very likely have a virtual manghto execute it.

It is sometimes convenient for the modeller to specify a ng@eeric rule that can be re-used.
Parametrization of rules is supported by several transformation languages.example inPro-
GReS [ZUn94], a rule can take input/output parameters referodolytvariables (such as thiag-
nosis variable in Figure 2.5). This is analogous to parameters f@ifnation in a programming
language. This allows one to bind some pattern elementsetagiined source model elements. In
GReAT [AKK *06], the notion ofpivot nodesacts as parameter passing. For exampleQtitate
element is attached to tHe icon depicting that that element was already bound to a pusviule
application and will be used when executing the current. erametrization reduces the size of
transformations, in terms of number of rules and complexity

Since rule-based transformation is the most common paraftigmodel transformation, we will
use the term rule in lieu of transformation unit for the rendr of this thesis.
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return evidence = '3;
end;

Figure 2.5: Pivot passing iIBReAT (left) and parameter passingmnoGReS (right).
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| Unordered || Grammar | | Internal || External |

| Ordered || Event-driven |

Figure 2.6: Feature diagram for rule scheduling.

2.1.3 Rule Scheduling

When designing the transformation units, it is mandatorpeocaware of what kind of scheduling
mechanism is used to apply the rules. Rule scheduling isgpamter-rule management. Scheduling
can be achieved by explicit control structures or can beigitmue to the nature of the rule speci-
fications. Moreover, several rules may be applicable ataingestime. Similar selection mechanisms
can be used as in the intra-rule case. To classify schedulethanisms, we combine Czarnecki and
Helsen’s classification with that of Blostest al.[BFG96]. The feature diagram in Figure 2.6 reflects
this updated classification.

One can distinguish between implicit and explicit scheuyliwhen the scheduling of a trans-
formation language isnplicit, the modeller has no direct control over the order in whi@httians-
formation units are applied. On the one hand, a transfoondéinguage can benordered, i.e., it
simply consists of a set of rules. In this case, the order pliegtion of the rules is entirely de-
termined at run-time. It completely depends on the pattspeified in the rules. Applicable rules
are selected non-deterministically until none apply anyggmbBor instanceGroove [Ren04] andvO-
MENT2 [BO10] are graph transformation languages with unorderggicit scheduling.

Model transformation can also be used ag@ammar. It is an unordered transformation (set of
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rules) together with a start state and terminal states. ®3iamce, graph grammars [EEKR97] are
used for generating language elements: starting from agnapth (maybe empty), apply the rules to
create graph elements until a termination state is foundaflygrammar also defines the operational
semantics of a system modelled as a graph: it is the sequémzzieations from the initial graph

to a final graph. Graph grammars are also used for languaggn#ion: starting from the empty
graph, find a sequence of rules that leads to the start graphasacteristic of this approachssate
space explorationWhen no more rules are applicable because of the specifizzeeq of rule ap-
plications, a backtracking mechanism is used to revert fiieets of applying the rules until the last
non-deterministic choice was mad®aMeta [Min06] uses graph grammars to define the meta-model
of a language.

The scheduling of a language can be explicitly specified leyntiodeller. Inexplicit internal
transformation languages, a rule may explicitly invokeeottules. For example iATL, a matched
rule (implicitly scheduled) may invoke a called rule in itsperative part. Also, a rule taggedlagy
will be applied only after all other rules have been applidother example of an explicit internal
transformation language @VT-R. There, the when/where clauses of a rule may have a refetence
other rules: for when, the former will be applied after thigdaand for where, the latter will be applied
after the former.

Finally, in anexplicit external transformation language, there is a clear separation leetwe
rules and the scheduling logi@rdered transformations specify a control mechanism that explic-
itly orders rule application of a set of rules. Examples gmority-based, layered/phased, or with
an explicit workflow structure. Most transformation langea arepartially ordered however. That
is, applicable rules are chosen non-deterministicallylevfollowing the control specification. An-
other sub-category of explicit external transformatiasevent-driven transformations, which have
recently gained popularity. In these transformation systerule execution is triggered by external
events such as in [GdLO7b].

Since this thesis focuses more on the graph transformapigroach, controlled (or programmed)
graph rewriting is the key for scaling graph transformatiomeal-life industrial applications. Con-
trolled graph transformation imposes a control structwer ahe transformation entities (transfor-
mation rules) to have a stricter ordering over the execubioa sequence of rules. This allows for
more efficient implementations by providing search pland pattern caching based on the given
order. Initially proposed in [EEKR97] and later extendedlihMCO06] and then in [SVO07], graph
transformation control structure primitives may exhibig following properties:

e atomicity either all rules succeed or they all fail;

e sequencingapply rules one after the other;

e branching execution of a sub-structure based on a condition;
e looping apply rules iteratively;

e non-determinisrmon-deterministic ordering of rule application;
e recursion ability of a control structure to call itself;

e parallelism apply rules in parallel;
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e back-tracking explicit roll-back mechanism;
¢ hierarchy in the sense of rule nesting.

In Table 2.1, we compare some of the relevant scalable graplsformation tools that exist today
according to these properties (but is by no means an exhaluist). A more detailed explanation is
given in the following section.

Another comparative study of different graph transformratiools can be found in [TE®5].
There, another set of tools is compared (though inclugiog® andvMTS) based on the solution they
provide to a common case-study: the standard benchmarkagE@liagrams to Relational Database
Models transformation [BRTO5]. This case study will be aeekin Chapter 10.

The very active field of graph transformation is not resgéucto the tools appearing in Table 2.1.
DSLTrans [BLA *10] is a layered graph transformation language. It allovestordesign simple trans-
formations that only produce a new model without affectimg driginal one. Unlike common model-
to-model transformation languages (suclas), the transformation engineer has direct access to the
tracing information that is automatically generated fromvpous rule applications.

GrGen.NET [GBG™'06] is considered as the fastest graph transformation Eyg{Zin08]. It is
a textual language and regular expression annotationsvateaules provide sequencing, branching,
looping, and non-determinism to the langua@esen.NET does not provide an appropriate abstrac-
tion for a domain-specific modeller. Its target users howeve software developers and it is meant
to be used for the generation of the algorithmic core of @ggilbns processing graph structured data.

GROOVE [Ren04] offers a graph transformation language and enahésonstruction of a la-
belled transition system corresponding to all possiblenpgations of the rule applications. Graph
patterns are combined with first-order logic predicates thiig allow for rule amalgamation (with
universal and existential quantifiers). The main purposeRIDOVE is formal verification for graph
based systems.

Henshin [ABJ"10] is the successor afger [EETWO06]. They are both integrated with the Eclipse
Modelling Framework (EMF) allowing one to transform Ecoredels. The execution engine relies
on AGG, but is more expressive by adding sequence, priority, Image and looping to schedule
transformation units.

MOFLON [AKRSO06] is a tool for designing triple graph grammars (TG@s described in Sec-
tion 2.2.3. The execution engine is basedruJABA’s. A MOFLON TGG rule is compiled to story
diagram transformation rules FUJABA. Instead of using a proprietary language for pattern spec-
ification, MoTMoT [MSVGO05] (another graph transformation relying BUJABA) is true standard-
compliant by providing an adequate UML profile, but at thet@ddefining story patterns as class
diagrams.

MOLA [KBCO05] merges traditional structured programming as atr@brstructure with pattern-
based transformation rules. The scheduler is a structwegtilart which allows graphical expression
of statements such as rules, loops, branching, and reeuwsihs to sub-programs.

MOMENT2 [BO10] supports transformations based on rewriting logiplemented on top of the
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constraint satisfaction solver Maude [CD&7]. Thanks to its formalization based on rewrite logic,
some static analysis and formal verification based on mduwsling are possible.

Kermeta [FHNOG] is an example of a non-graph transformation languagh an explicit control
structure. In this language, transformations are not bbalsed and do not have a formal foundation
such as graph transformation. It is a textual language basead action language which is imperative
and object-orientedVT-Operational Mappings [Obj08] is another example of non-graph transforma-
tion languages with an explicit control structure. It wi# described in detail in Section 2.2.4.



Property AGG AT oM?3 FUJABA GREAT PROGRES VIATRAZ2 VMTS
Control Structure  Layered ordering Priority ordering Story diagram Data flow  mpkrative language  Abstract state machine Activity diagra
Atomicity Rule Rule Rule Expression transaction , rule gtrule Step
Sequencing Implicit Implicit Yes Yes & seq Yes
Branching No No Branch activity Test / Case choose ...else if-then-else Decision step , OCL
Looping Implicit Implicit For-all pattern Yes loop iterate , forall Self loop
Non-determinism Within layer Within priority layer No 1 n connection and ,or random , or-pattern No
Recursion No No No Yes Yes Yes Yes
Parallelism No Optional Optional No No No Fork , Join
Back-tracking No No No No Implicit choose (implicit) No
Hierarchy No No Nested state  Block , ForBlock Modularisation Pattern composition ~ High level step

Table 2.1: A comparison of the control structure of graphgfarmation tools.
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2.2 Existing Transformation Languages and Approaches

Currently, there are over 30 model transformation appresich the literature. Among these ap-
proaches, Czarnecki and Helsen distinguish between:

Visitor-based: A visitor pattern implemented in a programming languageerses the model in an
object-oriented frameworle(g.,for pretty-printing a concrete syntax). This becomes paogr
ming rather than modelling.

Template-based: Templates are typically expressed in the concrete syntdieofarget model, to-
gether with annotations of meta-code to access the sourdelmihis approach is often used
by code generatore(g.,Enterprise Architect).

Direct-manipulation: Models offer an API to operate on them. The user has direetsado the API
(described in the meta-meta-language) to manipulate raodhls is still programming while
being aware that they are models with a dedicated API.

Operational: They consist of modelled languages that allow manipulatioglels through, for ex-
ample, declarative and/or imperative OCL. Also, meta-nimdee augmented with imperative
constructs offering callable methods/functions in the slethemselves.

Graph transformation-based: Models are represented as graphs, thus the theory of grapsfar-
mation is used to transform models. It is a declarative wagestribing operations on models.

Relational: They declaratively describe mappings between source agdttenodel, often in the
form of constraints that need to be solved. They are impliaitulti-directional, but in-place
transformation is harder to achieve.

Hybrid: Itis a combination of two or more of the previous approaches.

Direct manipulation of models is the most used techniqueftwaire engineering. However, for
the past decade, the modelling community has been promuoticlgl manipulation techniques that are
more structured, domain-specific, and declarative. A pletlof model transformation languages exist
today; this section compares some of the most relevant dhedocus is first directed to graph trans-
formation approaches, then to relational approaches, aallyfio other popular hybrid approaches.
But first, let us examine the theory of graph transformatmit & the basis of the work in this thesis.

2.2.1 Foundations of Graph Transformation

Graphs are often used to model the state of a system. Thigsadjaph transformation to model state
changes of that system. Thus graph transformation systambe applied in various fields. Graph
transformation has its roots in classical approaches tatieg; such as Chomsky grammars [Cho51]
and term rewriting [BN99]. Operationally, a graph transfiation from a grapis to a graprH follows
these main steps. Firsthoosea rule composed of a LHS pattern and a RHS. THiexwl, an occur-
rence of the LHS irG satisfying the application conditions of the rule. Finatgplacethe sub-graph



34 Features and Approaches

matched inG by the RHS. In fact, there are only four possible operatitvas & graph transforma-
tion rule can perform on the host graph: the so-called CRU&atns. Unless specified otherwise,
graphs are considered typed, attributed, labelled, ardteid.

There are different graph transformation approaches tly #pgse steps, as described in [EEKR97].
Among them is thalgebraicapproach, based on category theory with pushout constradtse cate-
gory of graphs. Algebraic graph transformation can be défuseng either th&ingle-PushoutSPO)
or theDouble-PushouwDPO) approach. Since most of the tools adopt one or the,atleawill outline
DPO (the side-effect free approach) and discuss the diiteewith SPO.

Algebraic Graph Transformation

We consider the categofyraphs [EEPTO06] to present the major results. In this categorypthjects
are directed grapRsn the formG = (V, E, s t) whereV is the set of vertices is the set of edges, and
st : E — V are the source and target functions respectively.mbgphismsare graph morphisms in
the form off : G —H = (fy : Vg — W4, fe : Ec — En) where the mapping from (nodes and edges of)
G1 to (nodes and edges dbp is total,i.e.,Ve € Eg, fv (s(e)) =s(fe (e)) A fv (t(e)) =t (fe (e)). The
composition operatoandidentity morphisnof Graphs lead to component-wise graph morphisms on
nodes and edges.

A pushoutover morphismsk : K — D andr : K — Ris defined by a pushout objelt and mor-
phismsn: R— H andg: D — H such that diagram (2) in Figure 2.7(a) commutes.

A graph transformation rule p(L Lkl R), calledproduction is composed of a pair of injective
total graph morphismis: L + K andr : K — RwhereL, K, andR are respectively the LHS, interface,
and RHS ofp. In this caseK represents what sub-graph to preserve, being the commbaofpiaand
R. We can now formally define a graph transformation.

Letp: (L Ik R) be a graph productio® a context graph (which includés), andm: L — G

a total graph morphism calledatch Then aDPO graph transformation G'H fromGtoH is given
by the DPO diagram of Figure 2.7(a), where (1) and (2) are quishin the categorgraphs. This is
also known aglirect derivation

| r

L - K L
ml (1) Il< (2) ln ml ln
G - D H "

f g (b)

Figure 2.7: DPO (a) and SPO (b) constructions.

In the DPO approach, a transformation rule can thus be apiplithe following steps:

2All the results of this section can be generalized to thegmateof typed, attributed, labelled, and directed graphs.
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1. Find amatctM =m(L) in G.

2. Removel — K (the elements to be deleted) fravh such that theluing condition(G —M) U
k(K) = D still holds.

3. Glue R—K (the elements to be created)@an order to obtairH.

To build the context grapB, the gluing condition comprising thdentification conditiorand the
dangling conditiorhas to be satisfied. In generaldoes not need to be isomorphichth This is a
problem since elements fromcannot be unambiguously identified. The identification c¢toowl re-
quires that all elements m(R—L) (to be deleted) have only one pre-imagé irinother problematic
situation is the presence of dangling edges, where the ptiotudeletes the source or the target of an
edge outside the scope of the LHS. Therefore the danglindgiton requires that whep specifies
the deletion of a node, it should also delete all its incicsiges.

Concurrency

Assume a graph transformation system with a set of produsfo= {pi (L & Ki - Ri)}. Givena

host graplG, the rulep; € P is applicable if the context gragd of pushout (1) in Figure 2.7(a) exists

(i.e., the gluing condition is satisfied). Suppose ryeg, € P are both applicable. Applying; and

p2 in a parallel system allows the two transformations to tdkegsimultaneously. On a sequential
system however, their atomic CRUD operations have to bel@ateed arbitrarily. Meanwhile, under

what conditions cam; andp; be applied concurrently?

To answer this question, the literature defines the notiodireict derivation independence (see
[EEKR97]). Letd; = (G "™ Hy) anddy = (G "2 Hy) be two direct derivationsd; andd, are
parallel independenit they do not conflict;p, can still be applied after the applicationf and vice-
versa. Using DPO this can be formulated@asLi) "mp (L2) € my (11 (K1) Nmp (I2(K2)). Therefore,
neither of them can delete elements matched by the othes, @handd, may only overlap on the
elements preserved by both derivations.

On the other hand, two consecutive direct derivatenandd, aresequential independeiitthey
are not causally dependent: applying fipgton G followed by p2 or p2 then p; leads to the same
result. Using DPO this can be formulatedagR;) "mp (L2) C ny (r1 (K1) Nmp(12(K2)). Therefore,
d> may not delete elements preserveddyand cannot use any element createdlhy

The conditions for interleaving; and d, is formulated by thd.ocal Church-Rosser theorem
Referring to Figure 2.8(a), the theorem states the follgwwwo conditions:

o If G ™ H; and G P22 H, are parallel independent, then there exists a giémnd two
direct derivationdH; p2:,>rrf2 X andH» pl:’@(l X such that the pai& PLn Hi p2:,>rrf2
G Pzl® Ho pl:’@(l X are each sequential independent.

pz*:,g{z

X and the pair

e If two direct derivations 2" H,
. L , ., ,
H, and two direct derivations "2 H, " X such thatG "™ H; andG P22 H, are parallel

X are sequential independent, then there exists a grapt
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independent.

The condition for parallelizingl; and dy, is formulated by theParallelism theoremReferring to
Figure 2.8(b), the theorem states that, given two prodasiie andp,, a parallel derivatios Prtlm

X exists if and only if there exists sequential independemadiderivationss PL Hi pz:’;ﬂz X.
N
N/ H1

& &

Hq Ho> Q/ &
P1+ P2, M

% %ﬁ‘” =0 .

Figure 2.8: Derivations of (a) Local Church-Rosser and @rpRelism theorems.

These two theorems answer the question on the conditiorapfalying rules concurrently. Two
graph transformations can be applied in an arbitrary ord@riged they are parallel independent. In
this case, they can be applied in parallel via a parallellgtegmsformation. If two rules are parallel
dependent they formexitical pair.

Algebraic Graph Transformation using SPO

In SPO, a production : L — R s an injective partial graph morphismA partial graph morphism
from a graphA to a graphB is a total graph morphism from a sub-graph/ofo B. L andR denote
respectively the LHS and RHS qf Given the matcim: L — G as a total graph morphism,SPO
graph transformation GE H from G to H is given by the pushout diagram of Figure 2.7(b) in the
category of graphs with partial morphisms.

The main difference between the SPO and the DPO approactvithieg handle the identification
and dangling problems. DPO prevents the rule applicatidooth situations, whereas SPO implicitly
deletes the problematic nodes. For this reason, DPO rutas\artible and SPO rules are not.

Similar concurrency properties hold for SPO. In fact, a SiR&lpction can be translated to a DPO
production definind as a sub-graph df. However, the reverse translation is not always possible.

Application Conditions

Graph transformation defines the transformation of modet®me level of abstraction. The LHS is
also called the positive application condition (PAC) siitagetermines the pattern to lbeundin the
host model. Nevertheless, in lots of applications, it igftonvenient to specify what pattern should
not be found. This is referred to as negative application camatNAC) [HHT96].
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A graph transformation rule is then extended with the notitbapplication condition A produc-
tion with application conditiorp = (L 2R A(p)) consists of a graph transformation rygeand an
application condition oA(p). The authors of [HHT96] distinguish the PACs from the NAC#\(p)
as sets of total graph morphisms representing positive agdtive constraints. In practice, the LHS
implicitly contains the PACs, but NACs should be expliciigecified. The productiop iS said to
be applicableif, given a matchm: L — G, m satisfies all positive and negative constraint&\op).
AssumeA(p) only consists of a NAC with negative constraptL — L. p is applicable if there is no
total graph morphismm: L — G such that the compositiano p = mholds as depicted in Figure 2.9.

Extensions of the DPO approach with NAC have been propos@dHi96] and parallel and
sequential independence have been adapted accordingly.

p p

L
L
o
H

G—

R

L
%,

Figure 2.9: Application of a production with NAC.

Negative application conditions are very useful in transfation languages. A graph transfor-
mation rule consists of a LHS, a RHS and optionally a NAC. TkSLrepresents a pre-condition
pattern to be found in the host graph along with conditionsatinbutes. The RHS represents the
post-condition pattern after the rule has been applied emthtched sub-graph by the LHS. The
NAC represents what pattern condition shall not be fountiénhiost graph, inhibiting the application
of the rule. NACs therefore increase the expressivenesamgformation rules. This makes the indi-
vidual rules and the transformation process more undeatatde. Also, allowing negative expressions
reduces the number of rules for a given transformation igdte a factor of two since, on top of the
rules necessary for the transformation, additional rulestrbe specified to prevent the application
of some of them). NACs may become very handy to prevent a seque derivations to process the
graph. For example, when the transformation traversesrdghdor parts of it), making use of NACs
can prevent infinite loops.

Hierarchical Graph Transformation

As mentioned previously, there are other approaches tdhgrapsformation than the algebraic one.
For example, irhyperedge replacemegtaph transformations, the LHS and RHS are hypergrfaphs
The transformation is applied on a hyperedge, which is oeplaby an arbitrary hypergraph with
designated attachment nodes specified from the LHS.

Dreweset al. have extended the DPO approach for hierarchical graphg hgiperedge replace-
ment transformations [DHPO02]. This approach transfornpehyraphs where some hyperedges (called

3A graph where the edges may have multiple source and targitege
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frameg cancontainhypergraphs or variables. They denote transformationheset nested hyper-
graphs as hierarchical graph transformations. A hieraatigraphG = <é, FG,ctsG> consists of the
graphG at the root of the hierarchy, the set of frantesC Eg (subset of the hyperedges®j, and a
content functiorctss assigning to each framee Fg either a (hierarchical) hypergraph or a variable
(symbol). They extend the notion of graph morphism to hraal graph morphism fror®s to H
with mappings on root graphs, frames, variables, and ctst&€he category of hierarchical graphs
without variables is thus defined. A pushout with injectiverarchical morphisms il is defined in
the same way as iGraphs with injective matches o6 and on the hierarchical hypergraphsFe
recursively. Because the match morphisms are injectivig,tbe dangling condition is necessary to
glue (the identification problem is handled like in SPO). tdey to handle hierarchical graph trans-
formation with variables, assignments on variables of tH&lare treated as a morphism satisfying
the dangling condition.

The hierarchical graph transformation defined above doesampletely abide by DPO because
of the injective morphismk < K andK — R. As described in [DHPO02], hierarchical graph transfor-
mation allows encapsulation of local transformation ofpdpsg This brings the graph transformation
paradigm closer to a programming paradigm having the piiggitsf “storing” patterns inside vari-
ables.

In the node replacemerdpproach [VJO04], hierarchy is added to graph transformdtipletting
nodes hold directed graphs.

A hierarchical graph is a graph where edges or nodes canioarstteer graphs nested in them.
External edges from an inner graph to an ancestor (in thargiey tree) are not allowed. Hierarchical
graph transformations are useful when the host model islaegge: they allowlocality. A single rule
may be focused on parts of the graph. Rules thus gain in esipee®ss in the sense that they allow
transformations at different levels of the graph hierar@bstraction levels). For example, a modeller
having designed a sub-model of the whole model can thenfggetiansformation only for the part
he is interested in. From an implementation point of viewewhierarchical graphs are transformed
by hierarchical graph transformation rules, the rule matggmay be performed more efficiently. That
is, the search space of the matching process can be drigsteziiced, given that the rule is applied
in a given context (the parent node).

2.2.2 Graph Transformation Languages

The theory of graph transformation is used as a basis for mawgel transformation tools. This
subsection presents some of the most popular graph tramestion languagésavailable today.

AGG

The Attributed Graph Grammar systemQG) [Tae04] is still considered as the closest language
implementing the theory of algebraic graph transformatfdype graph (the equivalent of a meta-

4In fact, they are controlled graph transformation langsagkere an explicit external scheduler organizes the indi-
vidual graph transformation rules.
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model in graph transformation) is specified by nodes andsdgedes are distinguishable by their
type and may hold attributes

AGG allows us to define typed attributed graph grammars. Thehgrales composing a graph
grammar support LHS, RHS, and NAC specification in terms emgnts of the type graph. The
application of al’AGG graph rule follows the SPO approach with the option of allayinjective or
non-injective matches. Graph rules can be organized inrdayiéat is, all rules in a layer will be
applied as long as at least one of them finds a match beforengtwithe next layer. When no more
rules in the last layer can match, the transformation teatem It is also possible to restart from the
first layer until no more rules across all layers can matchreorg.

AToM?3

AToM3 is a tool for meta-modelling, multi-formalism modellingydmodel transformation [dLV02].
Model transformation can be performed on models conforrtorg cross product of meta-models
Since models are represented as abstract syntax graphs)A8Gdel transformation is performed
through graph transformation. It was the first tool to prevadmeta-modelling layer in graph trans-
formations.

The control mechanism is limited to a priority-based transfation flow. The transformation
system is a graph grammar consisting of graph transformatiles that can be assigned priorities.
The rules are applied following the priority ordering: if@e with higher priority fails, then the rule
with the next lower priority is tried. If a rule succeeds, thensformation process starts back at the
highest priority rule. These iterations go on until no markes are applicable. When more than one
rule with the same priority is applicable, one of them is @mwosndomly, or the user chooses one
interactively, or they are applied in parallel. For thedatbption,AToM® does not support conflict
detection of overlapping rules. It is also possible to davicansformations into layers by sequencing
graph grammars, without priorities.

ProGReS

The Programmed Graph Rewriting SysteéPrmGReS) was the first fully implemented environment to
allow programming through graph transformations [BS9M24) SWZ95]. The control mechanism
is a textual imperative language. A rule PmoGReS has a boolean behaviour indicating whether it
succeeded or not. Among the imperative control structun@®vides, rules can be conjuncted using
the & operator. This allows for applying a sequence of rules ireor8ranching is supported by
thechoose construct, which applies the first applicable rule follog/the specified ordeProGReS
allows non-deterministic execution of transformatioressnd andor are the non-deterministic duals
of & andchoose respectively by selecting in a random order the rule to bdieghpWith theloop
construct, it is possible to loop over sequences of (one oe)nales as long as it succeeds.

A sequence of rules can be encapsulatedtrargaction  following the usual atomicity, isola-

5In AGG, the type of the attributes can be any Java primitive or deéined type.
6Cross meta-modelling is commonly referred to as multi-falism modelling.
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tion, durability, and consistency (ACID) properties. Thlarlying database system where the models
are stored is responsible for ensuring the first three ptigggeAn implicit back-tracking mechanism
ensures consistency however. HereGReS offers two kinds of back-tracking: data back-tracking
(with undo operations) and control flow back-tracking [ZBh9Vhen a rule”’ fails in a sequence in
the context of a transaction, the control flow will back-k&a the previously applied rule The data
back-tracking mechanism undoes the changes performecklgatiisformation of. If r is applicable

on another match, it applies the transformation on it anghtbeess continues with the next rule (pos-
sibly r’). If r has no further matches, two cases arise.\Was chosen non-deterministically from a
set of applicable rules, a non-previously applied rule isded from this set. Otherwise, the process
back-tracks recursively to the rule applied befor&equences and transactions can be named allow-
ing recursive calls. The module concept provides a twolleierarchy in the control flow structure
by encapsulating a sequence of transactions.

FUJABA

Insights gained through the developmenPedGReS have led taFUJABA (From UML to Java and
Back Again) [NNZ0O], a completely redesigned graph tramsgttion environment based on Java
and UML.FUJABA'’s programmed graph rewriting system is based on Story €hadombination of
Story Diagrams [FNTZO00] and Statecharts. An activity intsaaiagram contains either graph rewrite
rules, which adopt Collaboration Diagram-like represgota or pure Java code. The graph schemes
for graph rewriting rules exploit UML class diagrams. Wikietexpressiveness of Story Charts, graph
transformation rules can s2quencedusing success and failure guards on the linking edgespalon
with activities containing coddBranchingis ensured by the condition blocks which act like an if-else
construct. An activity can befar-all story pattern, which acts like a while loop on a transforonati
rule.

FUJABA’s approach is implementation-oriented. Classes defindadesignatures and method
content is described by Story Chart diagrams. All modelscarapiled to Java code. There is no
notion of time.

GReAT

GReAT (for Graph Rewriting And Transformation language) is thedeldransformation language
for the domain-specific modelling tool GME [AKKD6]. GReAT's control structure language uses a
proprietary asynchronous dataflow diagram notation whgmduction is represented by a “block”
(called Expressionin [AKK T06]). Expressions have input and output interfadapdrts and out-
ports). They exchange packets: node binding information. Thelagce transformation of the host
graph thus requires only packets to flow through the transition execution. Upon receiving a
packet, if a match is found, the (new) packet will be sent ®dhtput interface. Inport to outport
connections depict sequencing of expressions in that.order

Two types of hierarchical rules are supportedBick forwards all the incoming packets of its
inport to the target(s) of that port connectiore( the first inner expression(s) of tfgock). On the
other hand, &orBlock sends one packet at a time to its first inner expression(s@rvtireForBlock
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has completely processed the packet, the next packet istsetively. Branching is achieved using
TestexpressionsTestis a special composite expression hold@@seexpressions internally. £ase

is given in the form of a rule with only a LHS and a boolean ctindion attributes. An incoming
packet is tested on eaflaseand every time th€asesucceeds, itis sent to the corresponding outport.
If a Casehas itscutbehaviour enabled, the input will not be tried with the supsntCasesWhen an
outport is connected to more than one inport or if multiplesessucceed in dest(also one-to-many
connection), the order of execution of the expressionsftikw is non-deterministic. To achieve
recursion, a composite expressi@idck ForBlock or Test/Caspcan have an internal connection to
a parent or ancestor expression (in terms of the hierarely.tr

VMTS

The controlled graph rewriting system WMTS is provided by the VMTS Control Flow Language
(VCFL) [LLMCO6], a stereotyped UML Activity Diagram. In this alatt statemachine a transforma-
tion rule is encapsulated in an activity, callstep Sequencing is achieved by linking steps; self loops
are allowed. Branching iMCFL is adecision stegonditioned by an OCL expression. Chainste#ps
can thus be connected to tbecision However at most one of the branches may execute stéyes
connected to thdecisionshould then be non-overlapping (this is checked at contprie). A branch
can also be used to provide conditional loops and thus stipge@tion.

Stepscan be nested inlaigh level stepA primitive step ends with success when the terminating
state is reached and with failure when a match fails. Howewdrierarchical steps, when a decision
cannot be found at the level of primitive steps, the conta/fis sent to the parent state or else the
transformation fails. As IlGReAT, recursive calls thigh level stepss possible. Afork connected to
astepallows for parallelism and pin synchronizes the parallel branches. Semantically, [disath
IS possible invMTS but it is not yet implemented [LLMCO06].

VIATRA2

Transformations of the Visual Automated model Transforamest framework YIATRA2) are specified

in the Viatra Textual Command LanguagéTCL), incorporating graph transformation techniques
driven by abstract state machines [VB0O7].MMCL, a rule has a pre-condition and a post-condition.
These conditions are composedpaitterns(similar to a LHS),negative patterngsimilar to a NAC)

or OR-patterngallowing to specify a disjunction of patterns). UWTCL, rules can be parameterized
by attribute values declared globally, or model elementsndato the application of a rule (this is
similar to pivots INGReAT ). They can be applied in sequence usingsétekeyword. One rule can be
applied non-deterministically from a set of rules usingrdrelom constructlf-then-else is used

for branching.Try A else B attempts to apply rulé and, if no matches were found, then réles
applied.lterate  applies a rule as long as possible, wherfleedl  first finds all matches and then
rewrites them one by one. MIATRA2, the notion of rule hierarchy is obtained by composing sub-
patterns into more complex ones (suctoagatterns). This way, patterns can be re-used in multiple
rules. A rule may be called recursively as long as it doesmative a negative pattern.
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2.2.3 Graph-based Model-To-Model Relations

The previous subsections dealt with graph transformatsn®perations”: given a host model and

a set of transformation rules, produc@ewmodel by applying the rules on the host model. In the
following two subsections, graph transformation is raitethe abstraction level of relations: given

two models, specify a relation between them. Because theptspecify any causality, these model-
to-model transformations (or relations) are inherentlyireictional. Thus, in a single specification,

they combine source-to-target and target-to-sourceftvamations. Such declarative graph transfor-
mations can then be used for model (co-)evolution, modettsymization, and incremental change
propagation between the two models.

Triple Graph Grammars

Originally, Triple Graph Grammars (TGGs) were inspired irFGraph Grammars (PGGS). In
1971, Pratt proposed PGGs [Pra71] to examine string-tpkgtianslations as a one-to-one context-
free mapping. In 1994, Schirr introduced TGGs as graphdpfgtranslations and data integra-
tion [Sch94]. In contrast with an operational graph gramraafGG is not intended to model the
editing processes on related graphs (by inserting, dgledinmodifying graph elements), but rather
provides a generative description of graph languages agid thlationships. A TGG consists of
context-sensitive triple productions allowing complex&tnd RHS graphs, as well as a separate
correspondence graph for modelling many-to-many relatigps. In addition, the correspondence
links between the correspondence graph and the LHS and R&iSthpt role of traceability links
that map elements of one graph to elements of the other gnagblviae-versa. Furthermore, each
correspondence link may carry additional information dtiba transformation itself.

In a TGG, the graph transformation rules are monotonic: Hreynon-deleting rules. Following
the notation in the commuting diagram of Figure 2.10(a), anotenic graph transformation rule
p: L — Ris a graph transformation rule such tha€ R andn consists of all the mappings af as
well as additional mappings restricted frdR+ L to H — G only. A monotonic productions then
given by the pushout of Figure 2.10(a)@raphs.

TGGs act orgraph triplesof the form(G. <|3 Ge s Gr) wherelLg, Rg, andCg are the LHS, RHS,
and correspondence graphs respectivelgndrg are graph morphisms allowing-to-n relationships
between_g andRg such that every pair of related elements in a subs€& of Gr has a pre-image in
Ge.

A production triple p= (py L e — pr) consists of three monotonic productiops: (L. — R,),
pr: (Lr = RR), andpc : (Lc — Rc) (the left, right, and correspondence pushouts in perspeti
Figure 2.10(b)). Furthermoré,: (Rc — R.) andr : (Rc — Rg) are graph morphisms such that the
two diagrams at the back of Figure 2.10(b) are pushou@raphs. A TGG production is therefore
a graph partitioned into three (left, right, and correspormmt) graphs. Viewed from another angle, a
TGG production contains three graph productions: one ¢@em a left graph, one on the right graph
and one on a correspondence graph. It is this combinatidweé tgraph rewriting rules which has to
be applied simultaneously that we call “triple graph gramraée”.
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Figure 2.10: (a) A monotonic production and (b) a TGG produrcapplied on a triple graph. The
pushouts should not be confused with the SPO and DPO notti®ection 2.2.1.

Moreover, since a TGG rule is context-sensitive, it is agptin araxiomgraph tripleG = (G_ <|3
Gc s Gr) and produce the result graph= (H_ Ll He ™ HRr), as depicted in Figure 2.10(b).

The presented TGG rules above define a declarative bidiredtiransformation from a left graph
to a right graph. In a model-driven engineering context, a&5Ti@le defines a bidirectional relation
between two meta-models. The operational semantics of a fi&3how the transformation is per-
formed) is described by three kinds @berational graph transformation rulgsn the sense of Sec-
tion 2.2.1) where the LHS and the RHS are triple graphs: ineateletion, and consistency rules. The
former ensures that every new element of one model has asporidence in the other model. The
second makes sure that when an element is removed from onel,mectorresponding element(s)
is (are) deleted appropriately. The latter enforces theistency relation between two elements (at
the attribute level) by updating the corresponding elemfemtward and backwards versions of these
rules are generated with an additional traceability ruég tlreates the correspondence link between
unmapped consistent elements of the two models. The (sartofatic derivation of some of these
“lower-level” transformations is given in [KS06b]. In tdtaeven operational graph transformation
rules are generated for each model element, for every TGGnhe grammar. The operational rules
are then given priorities to ensure correct application.

TGGs had a great impact in the graph transformation commafidwing declarative and bidi-
rectional graph transformations. For example, in [GdLGFbJauthors have extended TGGs to handle
meta-models with inheritance and parameterizeé\mnts Event-driven grammars have been intro-
duced in the context of expressing user interface behawoumalized in the DPO approach, a TGG
was used to relate a model’s concrete syntax (its visuatsgmtation to the user) to its abstract syntax
(the graph model). Triple graph grammars have also beenaatto multi-graph grammars [KS06a]
where an arbitrary number of models can be related. MOFLOKRB06] is the main model trans-
formation tool that supports TGGs.
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Pattern-based Transformation

As recently pointed out in [SK08], TGGs do not support NAC$sAA it is not clear how arbitrary
attribute manipulation is handled in TGGs. FurthermoreG&Tis context-sensitive and assumes an
axiom triple graph as context. This induces causality betweiles, thus TGG rules are notirely
declarative. For these reasons, pattern-based trangfom{&BT) was proposed [dLGO8]. PBT is
highly inspired by TGG, but their intentions differ.

In PBT, a (model-to-model) specification is a conjunctionrgdle patternsacting as constraints
over triples graphs (equivalent concept to graph triplea iRGG). A triple graphTrG relates the
two models (graphs) by an intermediate correspondencéngfafriple pattern defines a constraint
on the graph triple by specifying positive and negativetimfation (similar to PAC and NAC). There
are three types of patterns. The simple pattern (S-Pattemmgists of a negative pre-conditi&, a
positive graphQ, and a negative post-conditi(ﬂ . An S-Pattern thus states tl@ashould be found in
TrG wheneverN is not; and onc&) is found,ﬁ should not occur iT rG. The composite pattern (C-
Pattern) is an S-Pattern with an additional positive predaoon P. The negative pattern (N-Pattern)
simply consists of a negative post-condition.

Given a specification, the patterns are compiled into operat TGG rules. The compilation
process of the patterns is divided into two phases. Flestuction rulesre produced. This generates
new patterns which take inter-pattern dependencies irtousnt. The N-Patterns are transformed into
post-conditions for the S- and C-patterns. The S- and Gepettare enriched with further pre- and
post-conditions according to their dependencies. Fronetti@ward and backwards operational TGG
rules are derived.

There are some limitations of this approach: the derivgimtess does not allow patterns with
both positive and negative post-conditions. Althoughedéht from TGG, PBT does not handle com-
plex attribute relationship either. No practical applicatimplements PBTs yet. Bidirectional re-
lational transformation is a very active topic of reseanshthe graph transformation community.
Other non-graph-based declarative model-to-model toamsftion approaches exist, such as: QVT-
relational [Obj08] and Tefkat [LS06].

2.2.4 Hybrid Model Transformation Approaches

Model transformation approaches are not restricted tolgtegnsformation. First we describe how
relational database systems can resolve model transfiormaging concepts similar to that of graph
transformation. Then we describe a hybrid approach (migegarative and imperative aspects) pro-
vided by one of today’s most used model transformation tioklly, we elaborate the transformation
language proposed by the OMG as a standard.

Model Transformation in Relational Databases

Graph transformation as described in the previous sect®opsrformed in memory. This approach
scales up to some point as long as both models and transfompaibcess fit in memory. However,
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for very large models (of the order of 46r more elements) it is preferable to store them in a database
For that reason, Varrét al. propose in [VFV06] a model transformation approach perfmnm

a relational database management system (RDBMS). Oncelsnadestored appropriately in an
RDBMS, the transformation specification consists of views query statements.

Here, we assume that meta-models are initially specifiedsumbaet of UML class diagrams and
models in UML Communication diagrams. The transformattumyever, requires the models to be
represented in a RDBMS in the following way. From the metadeipone table per class is gener-
ated with a column for a unique identifier. Additionally, oo@umn is created per attribute and per
many-to-one association. Many-to-many associationsepeesented as tables on their own with a
column for the source and another for the target. Foreigs kegure the constraint dependencies for
association ends and inheritance. Models are stored aditlimgsthese tables.

The transformation rules follow the SPO graph transforamatipproach. A rule is divided into
two parts: thematching phasand themodification phase~or the matching phase, the pre-condition
LHS & NAC (weaving overlapping elements) of the rule is considefide LHS is stored as a single
view, LHS-view in the RDBMS. An inner join is added for every object (nodedl @very association
instance (edge) in the LHS. They are filtered according teetge constraints of the structure of the
pattern. Additional filters are used for specifying the éxaatching conditions (total injective graph
morphism). Finally, the selection projects only the joimetumns. SimilarlyNAC-viewsare created
for each NAC pattern of the rule. LH8 NAC is stored as a separate view. A left outer join of each
NAC-view is performed on the LHS-view and the join conditidepicts the overlapping elements.
To prevent the NAC from being positively matched, the filtefshe view force a null value on the
columns of the join conditions. Finally, the selected cahsrare those of the LHS-view.

The modification phase of a transformation rule is encapstilan a transaction consisting of
a sequence of INSERT, DELETE, and UPDATE statements. Thaselstarts by deleting edges if
LHS — RHS # 0. An UPDATE statement removes the foreign key of the source ofany-to-one
association. A DELETE statement removes a many-to-margcagon as well as any node. Addi-
tional DELETE and UPDATE statements are required to enswaeléletion of dangling edges. Then
insertions come into place if RHSLHS # 0. An INSERT statement creates a many-to-many associ-
ation as well as a new node object. An UPDATE statement @eateany-to-one association. In the
RDBMS approach, a model element can have an attribute as-tbames association between them.
This is why there is no UPDATE statement that modifies theevalian attribute.

An advantage of this approach is that a single rule may baexppi parallel on all its matches.
This is achieved by applying the modification phase on altties returned by the pre-condition view
of the rule. Both matching and modification phases can bemaged with the underlying database
system used. For example, to perform SPO-like deletionait suffice to allow cascading deletes on
associations, if they are represented accordingly in thebdae. Although applying a transformation
in a RDBMS is less efficient than in memory, an optimizatiortime can be gained by properly
creating indices on columns where a matching occurs.
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ATL

The ATLAS Transformation Language (ATL) is a hybrid modalrtsformation language combining
declarative and imperative constructs [JK06, Jou06].dtpsogramming language with its own com-
piler and virtual machine. An ATL transformation is definedrh (possibly several) read-only source
meta-models to one write-only target meta-model.

The transformation specification consists of a set of rutespssibly helpers and external mod-
ules. The helpers are similar to OCL helpers: they serve appars in the context of source models
elements (since the target model is not navigalilgeration helperstaking input parameters, act
as functionsAttribute helperdecorate the source model by enriching it with a derived stublkits
structure.

A declarative rule is called matched rulesince it is transparent from the internal matching and
scheduling algorithms of ATL. A matched rule is composed @barce and a target pattern. The
source pattern specifies a set of pdirg)) wheret is a type from the source meta-model ands
an OCL boolean guard. The target pattern is a set of gtits) wheret’ is a type from the target
meta-model and is a binding initializing the attributes or referenceg’oft’,b) can be replaced by
anaction blockwhere ATL imperative statements are used to build the tangetel elements. A rule
may refer to other rulesStandardrules are applied once for every mattdzy rules are applied as
many times as they are referred to, amdque lazyrules are lazy rules but re-use the target elements
they created when applied multiple times. Declaratives@epport inheritance as means of re-use
and polymorphism. A subrule may only match a subset of thelmaitits parent, but can extend the
creation of target elements.alled ruleis an imperative procedure which can be invoked from a rule
(matched or called) and is implemented either using the Afipdrative language constructs or any
other language (but the latter has limited support).

Although declarative rules resemble graph transformatibes with a LHS and a RHS, the pro-
cedural semantics of an ATL transformation is quite diffeéieom the execution of a graph transfor-
mation system on a source model. The transformation stattisavirst pass through all the guards to
evaluate the helpers. The transformation is executed isgbend pass. First, a called rule marked as
entry pointis applied if present, which may trigger subsequent ruldiegjons. Then all the matches
from all the standard matched rules are computed. Aftersydalt every match, the target elements
are created without evaluating the bindings. At the same,tentraceability link between the rule,
its matched source elements, and the new target elemerstaidished internally. Secondly, all ini-
tializations (including bindings) are resolved followitige ATL resolve algorithmif referenced, lazy
rules are applied too. Then action blocks evaluationsolide algorithm ends by invoking the called
rule marked agnd point if present. The order of execution of the standard rulesmsaheterministic.
Nevertheless, determinism and termination of the algarigensured, provided that no lazy or called
rules are used.

The Eclipse Modelling Framework (EMF) has adopted ATL adatgyjuage and tool support for
model transformation. However, ATL lacks a formal foundatiunlike graph-based transformation.
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QVT

The Meta-Object Facility (MOF) 2.0 Query, View, and Tramshation QVT) framework [Obj08]

is a recent addition to the OMG’s set of standards. Q@ specification defines three transforma-
tion languages that collectively form a hybrid transforimatianguageQVT-Relations (QVT-R) and
QVT-Core (QVT-C) are declarative transformation languages at differergl$eof abstractionQVT-
Operational Mappings (QVT-OM) is an imperative transformation language that extends Qvt-R
andQVT-C. Black-Box implementations are also imperative extension@wf-R andQVT-C allowing
one to plug-in external code.

Transformations specified @VT-R consist of declarations oélationsspecifying constraints that
must be satisfied by the input models. A relation consistg t&est two domains as well as pre- and
post-conditions. A domain specifies the type (meta-modeheinvolved model instance along with
a pattern defining the template that a model must satisfywhén clause specifies a pre-condition
required by the relation. Avhere clause specifies a post-condition that must hold if the octne-
lation holds. Both clauses may refer to other relations.r@fae two kinds of relations iQVT-R.

All top-levelrelations are required to hold after the execution of thesi@mation, while non-top-
level relations must only hold if invoked directly or tratmgely by awhere clause. The execution of

a QVT-R transformation follows theheck-enforcessemantics. On the one hand, if a transformation
is executed in the direction ofcaeckonly domain, then the transformation simply checks whether
there is a valid match in the target model that satisfies Eticmships. On the other hand, if a trans-
formation is executed in the direction of amforce  domain, then the transformation checks whether
the relations holds. When a relation fails to find a valid rhatbe appropriate model elements are
created, deleted, or modified according to the pattern otakget domain. Hence, when only one
domain isenforced and the othersheckonly , the transformation is uni-directional. When at least
two domains areenforced , the transformation is multi-directional. Finally, wheh éomains are
checkonly , the transformation is a synchronization verifying if thedels are consistent with respect
to the relations. Additionally, declaring a meta-modehedat askey ensures that th@VT-R trans-
formation does not create duplicate elements if they ajreaikt. Patterns can be matched against
existing model elements, instantiated to model elemenigew models, and may be used to apply
changes to existing models. Nevertheless, the languaghdsaine manipulation of traceability links
automatically and hides the related details from the dgesld-urthermore, scheduling of relations is
implicitly determined by thevhen andwhere clauses.

Transformations specified iIQVT-C consist of declarations ahappings A mapping supports
pattern matching over a flat set of variables by evaluatinglitmns over those variables against a
set of input models. In contrast witQvT-R, a mapping defines explicit traceability links between
domains. Similarcheckingand enforcemensemantics are also available @vT-C. Every QVT-R
transformation can be translated to a semantically eqgmt@\VT-C transformation.

Transformations specified @VT-OM are similar to classes, in that they can be instantiatedy The
consist of unidirectionahapping operationspecified with imperative constructs. A mapping opera-
tion is a standard UML operation that, given one or more soarodel elements, specifies how target
model elements are constructed. A mapping operation mayfggee- and post-conditions iwhen
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andwhere clauses respectively. The body of an operation is exprdsged imperative extension of
OCL. It consists of optional initializationnjt ) and terminationfinalize ) sections. They respec-
tively allow computations prior to and after the instantatof the outputs. Theopulation  section
specifies how the output objects must be constructed. Thettabject output by a mapping opera-
tion is referred to by theesult  variable. AQVT-OM transformation starts executing from timein
operation. Mapping operations may be invoked at any timdikesstandard operations using tiap
keyword. Branching is ensured Ilhelif-else constructs. Executing operations in loops is pro-
vided byforEach andwhile statements. When a mapping operaiiomerits from another one, the
initialization section of the latter is invoked after therfeer's. Sequencing operations is done by the
merge of mapping operation®isjunction  of mapping operations allows the execution of at most
one operation whosehen pre-condition is satisfied. MoreoverarallelTransform andwait al-

low running operations in parallel. RVT-OM, mappings between source and target model elements
are implicitly created like iMQVT-R. Resolveln  allows one to refer to the source element mapped
on the created object. Also, lazy instantiation of outpyeots is possible using tHate resolve
construct.

The black-box mechanism allows complex algorithms to belemented in any programming
language and enables re-use of already existing libraries . makes some parts of the transformation
opaque, which brings a potential danger since their funatity is arbitrary and is not controlled by
the transformation engine.

2.3 Conclusion

This chapter concludes the survey of model transformatian began in Chapter 1. This survey

established that model transformation has various agjaits such as: to generate platform-specific
models from platform-independent models and reverse ergthem, to map and synchronize among
models at the same or across abstraction levels, to creatg-Qased views of a system, to model
evolution tasks, or to transform models between differangjlages for integration. After a high level

overview of the different types and uses of model transfdionathe survey elaborated on the features
that contemporary model transformation languages offatteampt solving these problems. Focusing
on first controlled graph transformation languages and timesthers, the survey compared twelve of
the most relevant languages that are used today.

An interesting interpretation of the feature model preséity Czarnecki and Helsen is that every
vaild combination of the leaves of the feature diagram l¢ads specific transformation language
equipped with these features. This allows us to talk abofanaly of model transformation lan-
guages
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“Diversity is the one true thing we all have in common. Ce#dbrit every day.”

Winston Churchill
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A Minimal Transformation Core

Since the applications are very different in nature, it isopimal to have a single model transforma-
tion language to perform all the tasks previously enumdrdtestead, it is more appropriate to have
dedicated transformation languages tailored to specé#itstormation problems.

The diversity of today’s model transformation language&esadt hard to compare their expres-
siveness and provide a framework for interoperability.ddestructing and then re-constructing model
transformation languages by means of a unique set of masttjme constructs facilitates both. Thus
this chapter introduceBCore, a collection of primitives for model transformation. Coimibg T-Core
with a (programming or modelling) language enables thegthesi model transformation formalisms.
We show how basic and more advanced features from existirghti@ansformation languages can
be re-constructed usingCore primitives.

3.1 Introduction

A plethora of different rule-based model transformatiamglaages and supporting tools exists today.
They cover all (or a subset of) the well-known essentialuiest of model transformation [SV09]:
atomicity, sequencingbranching looping non-determinismrecursion parallelism back-tracking
hierarchy, andtime For such languages, the semantics (and hence implenmn)tafia transforma-
tion rule consists of the appropriate combination of bui¢gdblocks implementing primitive operations
such as matching, rewriting, and often a validation of cetesit application of the rule. The above-
mentioned essential features of transformation languageschieved by implicitly or explicitly spec-
ifying “rule scheduling”. Languages such ASL [JK06], FUJABA [FNTZ00], GReAT [AKK T06],
MoTif [SV10], VIATRA [VBO07], and VMTS [LLMCO6] include constructs to specify the order in
which rules are applied. This often takes the form of a carfitoav language. Without loss of gener-
ality, we consider transformation languages where modelgsiacoded as typed, attributed graphs.

The diversity of transformation languages makes it hardthenone hand, to compare their ex-
pressiveness and, on the other hand, to provide a framewoikteroperability i.e., meaningfully
combining transformation units specified in different sommation languages). One approach is to
express model transformation at the level of primitive @uidy blocks. De-constructing and then re-
constructing model transformation languages by means afal set of most primitive constructs
offers a common basis to compare the expressiveness ofdraraion languages. It may also help
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in the discovery of novel, possibly domain-specific, modahsformation constructs by combining
the building blocks in new ways. Furthermore, it allows ierpenters to focus on maximizing the
efficiency of the primitives in isolation, leading to moréi@ent transformations overall. Lastly, once
re-constructed, different transformation languages @am$essly interoperate as they are built on
the same primitives. This use of common primitives in tuowas$ for global as well as inter-rule
optimization.

In this chapter we introducgCore, a collection of transformation language primitives fordab
transformation in Section 3.2. Section 3.3 motivates th@aghof its primitives. Then, Section 3.4
shows how transformation entities, common as well as mateas, can be re-constructed. Finally,
Section 3.6 describes related work.

3.2 De-constructing Transformation Languages

Model transformation language primitives can be definedfégrdnt levels of granularity. The de-
composition process is similar to what is found in objedeoted languages as depicted in Table 3.1.
At the highest level, the transformation can be decompagedib-transformatiofseach dedicated
to a specific task in order to accomplish a single goal (sittadacode generation, synchronization,
etc). Following the analogy, a transformation correspdondspackage in object-oriented languages.
Defining model transformation language primitives at thisel means that transformations are treated
as black-boxes, which is not the intention. Thus at a loweel|ea (sub-)transformation can be de-
composed into individual rules. Rules are the units of asfi@mation like a class is to a package.
However, setting the rules as primitives would not consmteer model transformation paradigms
such as relational or functional. At a coarser level of &udton, a transformation encapsulates CRUD
operations performed on a model. However, we believe tlesietioperations should be defined at the
virtual machine level, rather than having a transformalzmyuage engineer combine therm,, this

is not the optimal level of abstraction. Hence rule pringsuweside somewhere between rule defi-
nitions and CRUD operations. They dictate how a rule operade methods define the behaviour
of a class and operations on objects, rule primitives defieebehaviour of a rule operating on the
model. At a more fine-grained level, a rule primitive encdgi®s CRUD operations performed on
the model. This is similar to how methods encapsulate ojp@sathat can be performed on variables
(assignment, navigation, iteration, etc).

The proposed decomposition of model transformation laggsidherefore focuses on the rule
primitives level. After the comparison of the features ofdetransformation languages in Chapter 2,
one can synthesize the common essential features of madsfarmation as follows:

Pre- and post-condition patterns that allow one to declaratively specify a rule;

Matching rule pre-condition patterns in the host model to bind motehents (a match) that will
be modified by the application of a rule;

A sub-transformation can be considered as a transformatidts own. But when designed modularly, composing
these transformations can lead to a more complex transfanma
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Model Transformation Paradigm Object-Oriented Paradigm

Transformation Package
Rule Class
Rule Primitive Method
CRUD operation Operation on variables

Table 3.1: Analogy of the abstraction hierarchy in modehsfarmation and object-oriented
paradigms.

Rewriting the host model to satisfy the post-condition of a rule;

Validation of consistent rule applications to detect conflicts andlvestivem;
Manipulation of matches to iterate through them andoll-back to previous match states;
Control of the flow of rule applications by offeringhoicesandconcurrency;

Composition mechanisms to provide structure, re-use, and encapsulatio

Based on the previous observations, we propose here atcmii@é model transformation prim-
itives. The class diagram in Figure 3.1 presents the modGlee (which stands foffransformation
Core) encapsulating model transformation primitivésCore consists of eight primitive constructs
(Primitive objects): avatcher, Iterator, Rewriter, Resolver, Rollbacker, Composer, Selector, andSyn-
chronizer. The first five areRulePrimitive elements and represent the building blocks of a singletrans
formation unit.T-Core is not restricted to any form of specification of a transfatioraunit. In fact,
we consider onlypreConditionPatterns andPostConditionPatterns. For example, in rule-based model
transformation, the transformation unit iswe. The PreConditionPattern determines its applicabil-
ity: it is usually described with a LHS and optional NACs. I@consists of #ostConditionPattern
which imposes a pattern to be found after the rule was apptiéslusually described with a RHS.
RulePrimitives are to be distinguished from tl@ontrolPrimitives, which are used in the design of the
rule scheduling part of the transformation language. A nmgdinl composition of all these differ-
ent constructs in &omposer object allows modular encapsulation of and communicatietvben
Primitive objects.

Primitives exchange three different types of messa@asket, Cancel, andException. A packetrt
represents the host model together with sufficient infolonafor inter- and intra-rule processing of
the matchestthus holds the current model (graph in our cagaph , thematchSet , and areference
to thecurrent  PreConditionPattern identifying a MatchSet. A MatchSet refers to acondition
pattern and contains the actual matches as well as a regetertbematchToRewrite . Note that
eachMatchSet of a packet has a unique condition, used for identifying #teo$matches . A Match
consists of a sub-graph of tigeaph in twhere each element is bound to an elemegtaph . Some
elements Nodes) of the match may be labelled as/ots , which allows certain elements of the
model to be identified and passed between rules. A cancebgess meant to cancel the activity of
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+clean():void

Figure 3.1: Th&-Core module.

an active primitive element (especially used in the pres@f@aSelector). Finally, specific exceptions
X can be explicitly raised, carrying along the currently @ssed packet.

All the primitive constructs can receive packets by invgkeither theirpacketin
methods. The result of calling one of these methods setsrih®tipe in

successin

thecancelln

, or failln
success or failure mode as recorded byi$lsaccess
method. Next, we describe in detail the behaviour of theadiffit methods supported

, hextln ,

attribute. Cancel messages are received from

by each of the eight primitive elements.
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3.2.1 Matcher

Algorithm 1 Matcher.packetin( )
M + (max) matches ofondition  found inTtgraph
if 3(condition ,M’) € tmatchSets then
M« M UM
else
add(condition ;M) to TtmatchSets
end if
TLcurrent < condition
isSuccess + M #0
return Tt

The Matcher looks for an occurrence of its pre-condition patteondition  in the graph of the
input packetrt. The transformation modeller may optimize the matchingddyirsg themax attribute
to finding one, all, or a maximum number of matches when he kreopriori that this many matches
of the matcher will be processed in the overall transforamafl he matching also considers the pivot
mapping (if present) of the current match of After matching the graph, theatcher stores the
different matches in the packet as described in Algorithim this notationMSis aMatchSet object
structure M is the set oMatch instances it holds anoh is a singleMatch object. Some implemen-
tations may, for example, parametrize Matcher by the condition pattern or embed it directly in
the Matcher. The transformation unit(g.,rules) may be compiled in pre/post-condition patterns or
interpreted, but this is a tool implementation issue wh&chat discussed here.

3.2.2 Rewriter

As described in Algorithm 2, thRewriter applies the required transformation according to the
post-condition patteroondition  on the match specified in the packet it receives frorpatsetin
method. That match is consumed by ®Rewriter: no other operation can be further applied on it.
Some validations are made in tRewriter to verify, for example, thattcurrent .condition =
condition.pre or that no error occurred during the transformation. In gapraach, a modification
(update or delete) of an element{m & M| (condition .pre,M) € TtmatchSets } is automatically
propagated to all the other matches, when applicable.

3.2.3 lterator

The Iterator chooses a match among the set of matches otdhent condition of the packet it
receives from itpacketin method, as described in Algorithm 3. The match is chosenorahdin a
Monte-Carlo sense, repeatable using sampling from a umitbstribution to provide a reproducible,
fair sampling. When itsextin method is called, th&erator chooses another match as long as the

2The bound pivot nodes are storedglobalPivots . But the matching may also assign pivots (useful for nested
rules, as discussed later) and stores thetodalPivots
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Algorithm 2 Rewriter.packetin( )
if Ttis invalid then
isSuccess <« false
exception <« x(m)
return Tt
end if
MS« (condition.pre ,M) € tmatchSets
apply transformation oM S matchToRewrite
if transformation failedhen
isSuccess <« false
exception < X(1)
return Tt
end if
set all modified nodes iMSmatchToRewrite  to dirty
removeMSmatchToRewrite  from MSmatches
isSuccess <« true
return Tt

maximum number of iterationsaxiterations (possibly infinite) is not yet reached, as described in
Algorithm 4. In the case of multiple occurrences dflatchSet identified byrtcurrent |, thelterator
selects the laswlatchSet.

Algorithm 3 Iterator.packetin( 1) Algorithm 4 Iterator.nextin( )

if (rtcurrent M) € mumatchSets if  (rcurrent M) € TmumatchSets and

then iterations < maxlterations then
MS« (tteurrent M) MS«+ (ttcurrent M)
choosem € MSmatches choosem € MSmatches
MSmatchToRewrite <« m MSmatchToRewrite <« m
iterations +~1 iterations + iterations +1
isSuccess <« true isSuccess <« true
return Tt return Tt

else else
isSuccess <« false isSuccess <« false
return Tt return Tt

end if end if

3.2.4 Resolver

The Resolver resolves a potential conflict between matches and rewsi@sgdescribed in Algorithm
5. For the moment, theesolver detects conflicts in a simple conservative way: it prohiaitg change
to other matches in the packet (check thrty nodes). However, it does not verify if a modified
match is still valid with respect to its pre-condition patteTheexternalMatchesOnly attribute
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specifies whether the conflict detection should also consndéches from its match set identified by
Tteurrent  or not. In the case of conflict, a default resolution functi®provided but the user may
also override it. Although the conflict detection is conséite, thecustomResolution  function
may discard the conflict if, for example, NACs are not enalmesther matches. That is, tiResolver

will detect trivial conflicts, but the transformation engar is empowered to define the conflicts that
may occur in his application domain.

Algorithm 5 Resolver.packetin( )

for all conditionc € {c|(c,M) € tmatchSets } do
if externalMatchesOnly and c = Ttrcurrent  then
continue
end if
for all matchme M do
if mhas adirty nodethen
if not customResolution (1) then
if not defaultResolution( 1) then
isSuccess <« false
exception <« x(m)
return Tt
end if
end if
end if
end for
end for
isSuccess <« true
return Tt

3.2.5 Rollbacker

The Rollbacker provides transactional behaviour with back-tracking tédpees. Consequently, it is
used as a recovery point that allows backward recovery digiae.g.,by means of checkpointing
as described in Algorithms 6 and 7. Tpacketin method establishes a checkpoint of the received
packet. This is done by making a cofmyof the input packett and pushing it on a temporary stack.
It also sets the maximum number of iterations to the total Imemof matches found for the current
condition. Thenextin method restores the last checkpoint to roll-back the paoki&t previous state

Tt If there are no more matches leftlif, it also removes the previous checkpoint established.
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Algorithm 6 Rollbacker.packetin( ) Algorithm 7 Rollbacker.nextin( )

establish( ™) T+ restore()

if (rtcurrent M) € tmatchSets then iterations + iterations +1
maxliterations «— M| if iterations < maxlterations then

else isSuccess <« true
maxlterations + max else

end if discard()

iterations +—1 isSuccess <« false

isSuccess < true end if

return T return Tt

3.2.6 Selector

TheSelector is used when a choice needs to be made between multiple pgckeessed concurrently
by different constructs. It allows exactly one of them to begessed further. When itsiccessin

(or failln ) method is called, the received packet is stored irsuiscess (or fail ) collection,
respectively. Note that, unlike the previously describexthads, it is only when thgelect method

in Algorithm 8 is called that a packet is returned, chosemfsuccess . The selection is random
in the same way as in thesrator. However, ifsuccess is empty, the returned packet is randomly
chosen fromfail . Note that if bothsuccess andfail are emptyselect throws an exception with
an empty packeaty. When thecancel method is invoked, the two collections are cleared and agtanc
messag® is returned where thexclusions  set consists of the singletancurrent  (meaning that
further operations of the choseondition ~ should not be cancelled).

3.2.7 Synchronizer

The Synchronizer is used when multiple packets processed in parallel nee@ t®ybchronized. It
is parametrized by the number treads to synchronize. This number is known at design-time.
Its successin  andfailin  methods behave exactly like those of 8eector. The Synchronizer is

in success mode only if all threads have terminated by newekingfailln . Themerge method
“merges” the packets isuccess , as described in Algorithm 9. A trivial default merge fumctiis
provided by unifying and “gluing” the set of packets. Newetess, it first conservatively verifies the
validity of the received packets by prohibiting overlagpmatches between them. If it fails, the user
can specify a custom merge function. This avoids the neestétic parallel independence detection.
Instead it is done at run-time and the transformation medetiust explicitly describe the handler.
One pragmatic use of that solution is, for instance, to letttansformation run once to detect the
possible conflicts and then the transformation modeller imaydle these cases by modifying the
transformation model.
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Algorithm 8 Selector.select() Algorithm 9 Synchronizer.merge()
if success = 0then if |success | =threads then
i+ choose fronsuccess if customMerge() then
isSuccess <« true Tt«+ the merged packet isuccess
else iffail  # 0then isSuccess <« true
i+ choose fronfail success «+ 0
isSuccess <« false fal «0
else return Tt
T4 Tl else ifdefaultMerge() then
isSuccess <« false Tt«+ the merged packet isuccess
exception <+ X(Ti) isSuccess « true
end if success «+ 0
success «+ 0 fal «0
fal «0 return Tt
return Tt else
isSuccess <« false
exception <« X (1)
return Ty,
end if
else if|success |+ |fail |=threads then
i+ choose fronfail
isSuccess <« false
return Tt
else
isSuccess <« false
exception <« X ()
return Ty,
end if
3.2.8 Composer
The Composer serves as a modular encapsulation interface of the elenreissprimitives list.

When one of itspacketin  or nextin  methods is invoked, it is up to the user to manage subse-
guent method invocations to its primitives. Neverthelegsen thecancelln  method is called, the
Composer invokes thecancellin  method of all its sub-primitives. This cancels the currestice of

the primitive object by resetting its state to its initightg. Cancelling happens only if a primitive is
actively processing a packatsuch that the current condition afis not in ¢.exclusions , where

¢ is the received cancel message. In the caseMdtaher, since the current condition of the packet
may not already be set, thancelln  also verifies that the condition of tiatcher is not in the
exclusions list. The interruption of activity can, for iaate, be implemented as a pre-emptive asyn-
chronous method call afancelin . Furthermore, resetting the dirty flag of modified nodes isedo

in the Composer by calling theclean method of a packet. Also, resetting thgccess andfail
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collections of the control primitives should be done byicglltheirreset method at the appropriate
time.

3.3 T-Core: a minimal collection of transformation primiti ves

In the de-construction process of transformation langsi@ge a collection of primitives, questions
like “up to what level?” or “what to include and what to exc&®l arise. The proposé&eCore module
answers these questions in the following way.

3.3.1 Rationale

In a model transformation language, the smallest transitom unit is traditionally theule. A rule

is a complex structure with a declarative part and an oparatipart. The declarative part of a rule
consists of the specification of the ruked.,LHS/RHS and optionally NAC in graph transformation
rules). However;T-Core is not restricted to any form of specification be it rule-lmhssonstraint-
based, or function-based. In fact, some languages reqgnite with only a pre-condition to satisfy,
while others with a pre- and a post-condition. Some evenadiditrary permutations of repetitions
of the two. InT-Core, either aPreConditionPattern or both aPre- and aPostConditionPattern must be
specified. For example, a graph transformation rule cangresented in-Core as a pair of a pre- and
a post-condition pattern, where the latter has a referemtteetformer to satisfy the semantics of the
interfaceK (intheL «+ K — Ralgebraic graph transformation rules) and to be able toparthe
transformation. Transformation languages where ruleegpeessed bidirectionally or as functions
are supported ifm-Core as long as they can be represented as pre- and post-corghtienns.

The operational part of a rule describes how it executess @peration is often encapsulated in
the form of an algorithm (with possibly local optimizatigndlevertheless, it always consists of a
matching phasd.e., finding instances of the model that satisfy the pre-conditiod of atransfor-
mation phasgi.e., applying the rule such that the resulting model satisfieptst-conditionT-Core
distinguishes these two phases by offeringl@cher and aRewriter as primitives. Consequently,
the Matcher’s condition only consists of a pre-condition pattern anelRlewriter then needs a post-
condition pattern that can access the pre-condition patteperform the rewrite. Combinations of
Matchers and Rewriters in sequence can then represent a sequence of simple gragfotraation
rules: match-rewrite-match-rewriteMoreover, because of the separation of these two phases, mo
general and complex transformation units may be built, siscimatch-match-matcbr match-match-
rewrite-rewrite The former is a query where eathatcher filters the conditions of the query. The
latter is a nesting of transformation rules. In this casevéwer, overlapping matches between differ-
entMatchers and then rewrites on the overlapping elements may lead tmsistent transformations
or even nonsense. This is whyRasolver can be used from-Core to safely allowmatch-rewrite
combinations.

The data structure exchanged betw&eavore RulePrimitives in the form of packets contains suf-
ficient information for each primitive to process it as désed in the various algorithms in Section
3.2. TheMatch allows one to refer to all model elements that satisfy a jprdiion pattern. The pivot



3.3 T-Core: a minimal collection of transformation primiti ves 63

mappings allow elements of certain matches to be bound neegits of previously matched elements.
The pivot mapping is equivalent to passing parameters legtwdes as it will be shown in the exam-
ple in Section 3.4.1. Th&latchSet allows delaying the rewriting phase instead of having toritew
directly after matching.

Packets conceptually carry the complete model (optimiggdementation may relax this) which
allows concurrent execution of transformations. Batector and theSynchronizer both permit one
to join branches or threads of concurrent transformatidfsn, having separated the matching from
the rewriting enables one to manage the matches and thesre$wd rewrite by further operators.
Advanced features such as iteration over multiple matchésck-tracking to a previous state in the
transformation are also supportedrigore. If the Rollbacker is used in combination with theerator,
then the overall behaviour can handle back-tracking foesagere multiple matches are found.

SinceT-Core is a low-level collection of model transformation primis, combining its prim-
itives to achieve relevant and useful transformations maglve a large number of these primitive
operators. Therefore, it is necessary to provide a “grayipimechanism. Th€omposer allows one to
modularly organizd-Core primitives. It serves as an interface to the primitives itasulates. This
then enables scaling of transformations builtTe@ore to large and complex model transformation
designs.

T-Core is presented here as an open module which can be extendeagithinheritance for ex-
ample. One could add other primitive model transformatioihdiing blocks. For instance, a confor-
mance check operator may be useful to verify if the resultragsformed model still conforms to
its meta-model. It can be interleaved between sequenceswoites or used at the end of the overall
transformation as suggested in [KM@]. We believe however that such new constructs shouldeith
be part of the (programming or modelling) language or théitowhich T-Core is integrated, to keep
T-Core as primitive as possible.

3.3.2 Usage of T-Core

The API of T-Core presented in the previous section offers a common intettaa# primitive trans-
formation operators. Furthermore, tGempositionPrimitive can be used to encapsulate the execution
of other primitives in order to provide abstraction. Teeketin  method is the entry point of &
Core transformation. Figure 3.2 illustrates a typical intei@ciwith a transformation operator. When
a CompositionPrimitive gets initially created, it is responsible of recursivelgatied the instances of
its sub-primitives following the composite design pattfaiHJV94]. Itspacketin is invoked with

a packet that had previously been initialized with the ingnaiph of the transformation. Because the
operators support asynchronous executionptiuketin - method returns the resulting packet after
being processed by the correspondigePrimitive r. To know whether has been successfully ap-
plied or not, one should query teSuccess property ofr. Similarly, if an exception occurred, the
exception  property ofr will refer to the corresponding detailed error. Therefdris important to
not forget to set thesSuccess property of a custonComposer in case of a successful execution so
that the invoking context of the transformation can be avedrtdat status, as well as any exception
that may have occurred. A similar pattern can be used fondékgn method.
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i :CompositionPrimitive r:RulePrimitive
:Transformation
|

]
|
]
<<create>> :

1
1
1
1
1
I
<<create>> :

| >
p:=Packet(g)
packetin(p)
isSuccess:=false
packetin(p)
" pt=retun |
ALT [r.isSuccess==false]
OPT [r.exception!=null]

1.
exception:=
r.exception

isSuccess:=true

Figure 3.2: Sequence diagram for usinguePrimitive.

Figure 3.3 illustrates a typical interaction witlsalector. Recall that control primitives accumu-
late packets and can then produce a single packet: they asr@n points in the transformation.
Packets are stored by invoking thigccessin  orfailln -~ methods. At the appropriate time, the cor-
responding join functionsglect for the Selector andmerge for the Synchronizer) can be invoked to
retrieve a single packet from that operator. In the caseSafiector, a cancel event may be requested
to invoke thecancelln method of the other primitives if the suspension of theiivitgtis desired.
Thereset method shall be invoked afterwards to clear the lists of pclkAs in the previous case,
verifying for success and errors needs to be integrated ks we

T-Core is designed in such a way that the transformation primitbaasbe executed independently
from one another. To produce a meaningful result (transftion, query, state exploration, etc.),
certain operators should preferably be applied beforerstt@r example, Figure 3.4 illustrates the
interaction between-Core operators to execute a transformation rule. In the follgyine outline
good practices for using theCore primitive operators:

e A Matcher should always be preceded by lggrator in order to select a match found.

e A Rewriter should not be applied before executing Metcher whose condition is the pre-
condition of theRewriter’s post-condition. Otherwise, the rewriting phase will rdfect the
input graph and an exception will be reported.

e A Roll-backer will typically receive apacketin message as soon as the enclosingposer

receives a packet. That way, the original graph will be cpeakted and may be restored at a
later time via thenextin  method.
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:Composer r1:RulePrimtive r2:RulePrimtive s:Selector
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A A A A

PAR p1:=packetin(p)

successin(p1)

p2:=packetin(p)

Ll
successIn(p2)

Y

p3:=select()

x:=cancel()

reset()

YVYY

Figure 3.3: Sequence diagram for usinQantrolPrimitive.

e A Resolver should be executed after at least one application Bewariter. That is because
conflicts are detected in an optimistic wag., after a modification of the graph, since the
invariant part of the rule is not stored.

3.4 Re-constructing Transformation Languages

De-constructing model transformation languages in a codle of model transformation primitives
makes it easier to reason about transformation languagésct, properly combining-Core primi-
tives with an existing well-formed programming or modeajlianguage allows us to re-construct some
already existing transformation languages and even amistew one¥ Figure 3.5 shows some ex-
amples of combinations of-Core with other languages. Figure 3.5(a) and Figure 3.5(b) cambi
a subset ofi-Core with a simple (programming) language which offsexjuencingbranching and
loopingmechanisms (as proposed in BOhm-Jacopstractured program theoreifi3J66]). We will
refer to such a language as 8BL languageThe first combination only involves theatcher and

its PreConditionPattern, Packet messages to exchange, and @uenposer to organize the primitives.
TheseT-Core primitives integrated in an SBL language lead tueery languageSince only matching
operations can be performed on the model, they represenegwehere the resulting packet holds
the set of all elements (sub-graph) of the model (graph) g¢htsfy the desired pre-conditions. In-
cluding otherT-Core primitives such as thRewriter promotes the query language to a transformation
language. Figure 3.5(b) enumerates H@ore primitives combined with an SBL language necessary
to design a complete sequential model transformation lagguReplacing the SBL language by an-
other one, such as UML Activity Diagrams in Figure 3.5(c)pwatk us to re-construct Story Diagrams
[FNTZO00], for example, since they are defined as a combinaifdJML Activity and Collaboration
Diagrams with graph transformation features. Other coatimns involving the whol&-Core module
may lead to novel transformation languages with exceptamdhing and the notion of timed model
transformations when combined with a discrete-event nioddanguage (c.f., Part 11l of this thesis).

3This is the subject of Part 1l of this thesis.
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Figure 3.4: Sequence diagram of a simple rule execution.
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Figure 3.5: Combinin@-Core with other languages allows one to re-construct existirdyraw lan-
guages.

We now present the re-construction of two transformati@iuiees using the combination of an
SBL language with-Core as in Figure 3.5(b).

3.4.1 Re-constructing Story Diagrams

In the context of object-oriented reverse-engineering FIWABA tool allows the user to specify the
content of a class method by means of Story Diagrams, ansatenof UML Activity Diagrams. A
Story Diagram organizes the behaviour of a method with gietssand transitions. An activity can
be aStory Pattern or astatement activity. The former consists of a graph transformation rule and the
latter is Java code. Figure 3.6 shows such a story diagraen fatim thedoDemomethod example in
[FNTZO00]. This snippet represents an elevator loading fgeop a given floor of a house who wish to
go to another level. The rule in the pattern is specified in alldllaboration Diagram-like notation
[Obj09] with objects and associations. Objects with imiptigpes €.g.,this , 12 , andel) arebound
objects from previous patterns or variables in the contettte@current method. Th&tory Pattern 6 is
afor-all Pattern. Its rule is applied on all matches found looping over theaunta objects€.g.,p4, and

14 ). The outgoing transition labelleghch time appliesstatement 7 after each iteration of ther-all
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levels levels [this.choice]

| 12 }a—| el ‘\4:Leve\|

t 1 ‘
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Figure 3.6: TheFUJABA doSubDemo transformation showing &r-all Pattern and two statement
activities.

]

this.choice = random(0,3)

this.step = this.step +1

pes

[each time]

Pattern. This activity allows the pattern to simulate random chsioé levels for different people.
When all iterations have been completed, the flow proceetifsstatement 8 reached by the transition
labelledend, which simulates the elevator going one level up.

load makeChoice
T s
1 (this) (this)
o levels levels levels levels \ /

waitsAt | 2 3 4 2 3 4 PostMatch(1).choice := random(0,3)

I at at
l Person 1 l Level }—{ Elevator }T{ Level ‘ l Level }—{ Elevator }T{ Level ‘ nextStep

! o) i @ ( P
! sin wantsTo (this)
! context House inv: Person |5 ! !
: PreMatch(4) == PreMatch(1).levels[choice] —

\ )
ol PostMatch(1).step := PreMatch(1).step + 1

Figure 3.7: The thre®loTif rules for thedoSubDemo transformation.

We now show how to re-construct this non-trivial story degrtransformation from an SLB lan-
guage combined withi-Core. An instance of that combination is calledTaore model First, we
design the rules needed for the conditions of rule primitiegure 3.7 describes the three necessary
rules corresponding to the three Story Diagram activilfés.use the visual concrete syntaxMdTif
[SV10] where the central compartment is the LHS, the compant on the right of the arrow head
is the RHS and the compartment(s) on the left of dashed liresh@ NAC(s). The concrete syn-
tax for representing the pattern was chosen to be intuwtigllse enough to thEUJABA graphical
representation. Numeric labels are used to uniquely ifjedifferent elements across compartments.
Elements with an alpha-numeric label between parenthessstel pivot elements. A right-directed
arrow on top of the label depicts that the model element neak¢br this pattern element is assigned
to a pivot €.g.,p4 andl4 ). A left-directed arrow on top of the label depicts that thedal element
matched for this pattern element is bound to the specifiest (8vg.,this andel).

The T-Core model equivalent to the origindbSubDemo transformation consists of @omposer
doSubDemoC. The hierarchy of its sub-primitives is illustrated in thell@boration Diagram in Fig-
ure 3.8. It is composed of twoomposers loadC andnextStepC each containing &atcher, anltera-
tor, aRewriter, and aResolver. Thepacketin method ofdoSubDemoC first calls the corresponding
method ofloadC and then feeds the returned packet to pheketin method ofnextStepC. This
ensures that the output packet of the overall transformagithe result of first loading all theerson
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loadM:Matcher

load|:lterator

loadC:Composer loadW:Rewriter

makeChoiceM:Matcher

loadR:Resolver

makeChoicel:lterator

makeChoiceC:Composer

doSubDemoC:Composer

makeChoiceW:Rewriter

nextStepM:Matcher
makeChoiceR:Resolver

nextStep!:Iterator

nextStepC:Composer

nextStepW:Rewriter

nextStepR:Resolver

Figure 3.8: The object hierarchy of tdeSubDemo composer.

objects and then moving the elevator by arep . Algorithm 10 describes this behaviour.

Algorithm 10 doSubDemoC.packetin( )
Tt < loadC.packetin( 1)
Tt <— nextStepC.packetin( 1)
isSuccess < true
return Tt

makeChoiceC and nextStepC behave as simple transformation rules. Thesicketin ~ method
behaves as specified in Algorithm 11. First, the matcheriesl ton the input packet. Note that the
conditions of the matchenmakeChoiceM and nextStepM are the LHSs of rulesakeChoice and
nextStep , respectively. If the matcher fails, the composer goes f@tare mode and the packet is
returned. Then, the iterator chooses a match. Subsequtrglyewriter attempts to transform this
match. Note that the conditions of the rewriteraskeChoiceW andnextStepW are the RHSs of rules
makeChoice andnextStep , respectively. If the rewriter fails, an exception is throand the trans-
formation stops. Otherwise, the resolver verifies the aptibn of this pattern with respect to other
matches in the transformed packet. The behaviour of thdutemo function will be elaborated on
later. Finally, on a successful resolution, the resultiagket is output and the composer is put in
success mode.

loadC is the composer that emulates theall Pattern of the example. Algorithm 12 specifies that
behaviour. After finding all matches withadM (whose condition is the LHS and the NAC of rule
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load ), the packet is forwarded to the iteratoadl to choose a match. The iteration is emulated by
a loop with the failure mode dbadl as the breaking condition. Inside the lodgdw rewrites the
chosen match aridadR resolves possible conflicts. Then, the resulting packetristomakeChoiceC

to fulfil the each time transition of the story digram. After that, thextin method ofload! is invoked
with the new packet to choose a new match and proceed in the loo

Algorithm 11 makeChoiceC.packetin( ) Algorithm 12 loadC.packetin( 1)
isSuccess <« false isSuccess <« false
Tt <— makeChoiceM.packetin( 1) Tt <— loadM.packetin( 1)
if not makeChoiceM.isSuccess then if not loadM.isSuccess then

return Tt

end if

Tt < makeChoicel.packetin( 1)

if not makeChoicel.isSuccess then
return Tt

end if

Tt < makeChoiceW.packetin( 1)

if not makeChoiceW.isSuccess then
return Tt

end if

Tt <— makeChoiceR.packetin( 1)

if not makeChoiceW.isSuccess then
return Tt

return Tt
end if
T« loadl.packetin( 1)
if not loadl.isSuccess then
return Tt
end if
while true do
Tt < loadW.packetin( 1)
if not loadW.isSuccess then
return Tt
end if
T+ loadR.packetin( 1)
if not loadR.isSuccess then

end if return Tt
isSuccess <+ true end if
return Tt Tt<— makeChoiceC.packetin( 1)

T« loadl.nextin( 1)
if not loadl.isSuccess then
isSuccess <« true
return Tt
end if
end while

Having seen the overaltlCore transformation model, let us examine how the diffeRetolvers
should behave in order to provide a correct and completsfibamation. The first rewriter called is
loadW and the first time it receives a packet is when a transformagiapplied on one of the matches
of the matchetoadM. Therefore each match consists of the saese (since it is a bound node),
two Levels, anElevator, and the associations between them. On the other hearyy only adds a
Person and links it to alLevel. Therefore the default resolution function of the resoleadR applies
successfully, since no matched element is modified nor iSN&@ violated in any other match. The
next resolver isnakeChoiceR which is in the same loop dsadR. There, theHouse is conflicting
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with all the matches in the packet according to the conservdefault resolution function. Note that
makeChoiceM finds at most one match (the bourduse element). HowevemakeChoiceW does not
really conflict with matches found imadM. We therefore specify a custom resolution function for
makeChoiceR that always succeeds. The same applieséatStepR.

3.4.2 Re-constructing amalgamated rules

Algorithm 13 baseC.packetin( )
isSuccess <« false
Tt < baseM.packetin( 1)

if not baseM.isSuccess then
\,i/ \,i/ ./ return Tt

(broken) (unbroken end if
while true do
Ti<— basel.packetin( 1)
if basel.isSuccess then
Tl < baseW.packetin( 1)
\,i/ N v L/ if not baseW.isSuccess then
(Broken) (unbroken) return Tt
end if
Figure 3.9: The transformation rules for tRepot- Tt baseR.packetin( )
t|ng Geranium$xamp|e if not baseR.isSuccess then
return Tt
end if
Tt<— innerC.packetin( 1)
end if
T« baseM.packetin( )
if not baseM.isSuccess then
isSuccess < true
return Tt
end if
end while

base

inner

In a recent paper, Rensimk al. claim that theRepotting the Geraniunmexample is inexpressible
in most transformation formalisms [RK09]. The authors mepa transformation language that uses
an amalgamation scheme for nested graph transformaties.rdls we have seen in the previous
example, nesting transformation rules is possibl&@ore and will be used to solve the problem.
It consists ofrepotting all flowering geraniums whose pots have crackedure 3.9 illustrates the
two nested graph transformation rules involved and Alpomnitl3 demonstrates the composition of
primitive T-Core elements encoding these ruléaseM (with, as condition, the LHS of rulbase)
finds all broken pots containing a flowering geranium, givea input packet containing the input
graph. The set of matches resulting in the packet are the icatitn of all flowering geraniums
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and their pot container. From then on starts the loop. Fiesigl chooses a match. If one is chosen,
baseW transforms this match anshseR resolves any conflicts. In this cagsgsew only creates a
new unbroken pot and assigns pivots. TherefoeseR’s resolution function always succeeds. In
fact, the resolver is not needed here, but we include it fosistency. ThénnerC composer encodes
theinner rule which finds the two bound pots and moves a flourishing ftamthe broken pot to the
unbroken one. In order to iterate over all the flowers in thekén pot, thénnerC.packetin  method
has the exact same behavioul@siC.packetin in Algorithm 12, with the exception of not calling
a sub-composer (likmakeChoiceC). Note that an always successful custom resolution fundto
innerR is required. After th&esolver successfully outputs the packet, theer rule is applied. Then
(and also ifbasel had failed)baseM.packetin is called again with the resulting packet. The loop
ends when theaseM.packetin method call inside the loop fails, which entabksseC returning the
final packet in success mode.

3.5 Transformation Language Product Line

There is a wide variety of transformation languages andsttwt exist today. Also, they are very
powerful in solving the problems they were initially intesdifor. For examplezsUJABA [NNZOOQ] is
primarily meant to provide reverse-engineering capabiitoM® [dLV04] and GReAT for defining
translational semantics and simulation of formalisms, riee/ version ofVIATRA2 [BORT08] to
provide means for model synchronization, etc. However,trabthem have a tendency to provide a
generic tool for solving any kind of model transformatiomlplem. This is especially true with the
arrival of QVT [Obj08] and most applications @ffiL [Pro10a]. This genericity requires transformation
languages to be very expressive, which makes analysis mgftianation models built using these
general purposdransformation languages very hard. In fact, some appesblave realized this
problem and propose Turing-incomplete transformatioglages, such aSLTrans [BLA *10].

The solution proposed here is to use a sub-sa@t@re primitives to restrict a transformation
language for one specific purpose or intention. To some egxtere can redefine a transformation
language as consisting of the following features:

1. Primitive transformation operators, for example taken from (a sub-set of) th€ore module;

2. Combined with acheduling languagewhich can be programmee.(.,Java [EETWO06]) or
modelled €.g.,UML Activity diagrams [LLMCO06], Coloured Petri nets [WK'9]).

In fact, the scheduling language may be a domain-specifiriage dedicated for defining transforma-
tion schedulers. The combination of both provides a proliinetof problem-specifictransformation
languages. This restricts the transformation engineeodad entirely on designing transformation
models without added complexity that is irrelevant for thegmse of the transformation. Also, the
transformation language has no more expressiveness theeded and this may allow for better
analysis of the transformation models. Nevertheless, tipeessiveness of the transformation lan-
guage then depends on the glue language the scheduler) used and the primitive operators chosen.



3.5 Transformation Language Product Line 73

Py-T-Core

Currently T-Core is implemented in Python and is available at the websitel@yrlt is a direct
implementation of the class diagram of Figure 3.1. Theesfthhe combination of-Core primitives
with Python as a scheduling language seems adequate. $hitsrie a new transformation language,
calledPy-T-Core®.

For example, a query is defined as in Listing 3.1: given a padka match is found it is selected
and the resulting packet is output. The packet then corsistsingle match set containing a single
match. This match describes the sub-graph that satisfiggeéheondition patterne.,the query.

Listing 3.1: A query inPy-T-Core.

fromt _core.composer i mport Composer
from t_core.matcher i mport Matcher
from t_core.iterator i mport Iterator

cl ass Query(Composer):
def __init__(self , LHS):
super (Query, self ).__init__()
self .M = Matcher(condition=LHS, max=1)
self .1 = Iterator(max_iterations=1)

def packet _in(self , packet):

self .exception = None
self .is_success = Fal se
# Match

packet = self .M.packet_in(packet)

i f not self .M.is_success:
self .exception = self .M.exception
return packet

# Choose the only match

packet = self .l.packet_in(packet)

i f not self .l.is_success:
self .exception = self .l.exception
return packet

# Output success packet

self .is_success = True

return packet

Listing 3.2 illustrates how a simple rule is defined, suchna&lgorithm 11.

Listing 3.2: A simple rule irPy-T-Core.

from t_core.composer i mport Composer
from t_core.matcher i mport Matcher
from t_core.iterator i mport lterator
from t_core.rewriter i mport Rewriter
from t_core.resolver i mport Resolver

4Similarly, an implementation in C would be calledT-Core or in Java would be calle@tT-Core.
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cl ass ARul e(Composer):

def _ init__ (self , LHS, RHS, ignore_resolver= Fal se,

external_matches_only= Fal se,
custom_resolution= | anbda packet: Fal se):

super (ARule, self ).__init__()

self .ignore_resolver = ignore_resolver

self .M = Matcher(condition=LHS, max=1)

self .1 = lterator(max_iterations=1)

self .\W = Rewriter(condition=RHS)

self .R = Resolver(external_matches_only, custom_resolution )

def packet in(self , packet):

self .exception = None
self .is_success = Fal se
# Match

packet = self .M.packet_in(packet)

i f not self .M.is_success:
self .exception = self .M.exception
return packet

# Choose the only match

packet = self .l.packet_in(packet)

if not self .l.is_success:
self .exception = self .l.exception
return packet

# Rewrite

packet = self .W.packet_in(packet)
if not self .W.is_success:
self .exception = self .W.exception
return packet
i f not self .ignore_resolver:
# Resolve any conflicts if necessary
packet = self .R.packet_in(packet)
i f not self .R.is_success:
self .exception = self .R.exception
return packet
# Output success packet
self .is_success = True
return packet

Listing 3.3 shows how an iterative rule applied on multiplatames is defined. This is similar to what
was described in Algorithm 12, with the exception that th&elahad a nested rule applied at each
iteration.

Listing 3.3: A rule applied on all matches at oncePyT-Core.

f rom util.infinity i mport INFINITY
from arule inport ARule

cl ass FRul e(ARule):
def _ init__ (self , LHS, RHS, ignore_resolver= Fal se,
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external_matches_only = Fal se,
custom_resolution= | anbda packet: Fal se,
max_iterations=INFINITY):
super (FRule, self ).__init__(LHS, RHS, ignore_resolver,
external_matches_only, custom_resolution)
# Matcher needs to find many matches
self .M.max = max_iterations
self .l.max_iterations = max_iterations

def packet _in(self , packet):

self .exception = None
self .is_success = Fal se
# Match

packet = self .M.packet in(packet)
i f not self .M.is_success:
self .exception = self .M.exception
return packet
# Choose the first match
packet = self .l.packet_in(packet)
i f not self .l.is_success:
self .exception = self .l.exception
return packet
whil e True:
# Rewrite
packet = self .W.packet_in(packet)
i f not self .W.is_success:
self .exception = self .W.exception
return packet
i f not self .ignore_resolver:
# Resolve any conflicts if necessary
packet = self .R.packet_in(packet)
i f not self .R.is_success:
self .exception = self .R.exception
return packet
# Choose another match
packet = self .l.next_in(packet)
# No more iterations are left
i f not self .l.is_success:
i f self .l.exception:

self .exception = self .l.exception
el se:

# Output success packet

self .is_success = True

return packet

Listing 3.4 depicts the definition of a rule to be applied aglas there are matches. This is similar to
what was described in Algorithm 13, with the difference tet latter also had a nested rule applied
inside the loop.
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Listing 3.4: A rule applied as long as possiblePpT-Core.

f rom util.infinity i mport INFINITY
from arule inport ARule

cl ass SRul e(ARule):

def _ init__ (self , LHS, RHS, ignore_resolver= Fal se,
external_matches_only= Fal se,
custom_resolution= | anbda packet: Fal se,

max_iterations=INFINITY):
super (SRule, self ).__init__(LHS, RHS, ignore_resolver,
external_matches_only, custom_resolution)
self .l.max_iterations = max_iterations

def packet _in(self , packet):

self .exception = None
self .is_success = Fal se
# Match

packet = self .M.packet in(packet)

i f not self .M.is_success:
self .exception = self .M.exception
return packet

return self .transform(packet)

def transforn{self , packet):
# Choose the first match
packet = self .l.packet_in(packet)
i f not self .l.is_success:
self .exception = self .l.exception
return packet
whil e True:
# Rewrite
packet = self .W.packet_ in(packet)
i f not self .W.is_success:
self .exception = self .W.exception
return packet
i f not self .ignore_resolver:
# Resolve any conflicts if necessary
packet = self .R.packet_in(packet)
i f not self .R.is_success:
self .exception = self .R.exception
return packet
# Rule has been applied once, so it's a success anyway
self .is_success = True
i f self .l.iterations == self .l.max_iterations:
return packet
# Re-Match
packet = self .M.packet_in(packet)
i f not self .M.is_success:
self .exception = self .M.exception
return packet



3.5 Transformation Language Product Line 77

# Choose another match
packet = self .l.next_in(packet)
# No more iterations are left
i f not self .l.is_success:
i f self .l.exception:
self .exception = self .l.exception
return packet

Listing 3.5 shows an example of how to combine rules and pixies with the procedural constructs
of Python. This describes the solution of tBestributed Mutual Exclusion Algorithrbenchmark
presented in [VSVO05].

Listing 3.5: The composition of different rules Ry-T-Core.

cl ass Short Tr ansf or mati onSequence(Composer):

def _ init_ (self , N, debug_folder= " ):
super (ShortTransformationSequence , self ). __init__ ()
self .N = N
self .NewRule = SRule(HNewRuleLHS(), HNewRuleRHS(),
max_iterations=N-2, ignore_resolver= True)
self .MountRule = ARule(HMountRuleLHS(), HMountRuleRHS(),
ignore_resolver= True)
self .RequestRule = FRule(HRequestRuleLHS(), HRequestRuleRH S(),
max_iterations=N, ignore_resolver= True)
self .TakeRule = ARule(HTakeRuleLHS(), HTakeRuleRHS(),
ignore_resolver= Tr ue)
self .ReleaseRule = ARule(HReleaseRuleLHS(), HReleaseRuleRH S(),
ignore_resolver= True)
self .GiveRule = ARule(HGiveRuleLHS(), HGiveRuleRHS(),
ignore_resolver= Tr ue)

def packet _in(self , packet):
# New Processes
packet = self .NewRule.packet_in(packet)
packet.clean()
if not self .NewRule.is_success:

i f self .NewRule.exception i s not None:
self .exception = self .NewRule.exception
return packet

# Mount
packet = self .MountRule.packet_in(packet)

packet.clean()
i f not self .MountRule.is_success:

i f self .MountRule.exception i s not None:
self .exception = self .MountRule.exception
return packet

# Request
packet = self .RequestRule.packet_in(packet)

packet.clean()
i f not self .RequestRule.is_success:
i f self .RequestRule.exception i s not None:
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self .exception = self .RequestRule.exception
return # Pass it around
for _ in range(self .N):
# Take

packet = self .TakeRule.packet_in(packet)
packet.clean()
i f not self .TakeRule.is_success:

i f self .TakeRule.exception i s not None:
self .exception = self .TakeRule.exception
return packet

# Release
packet = self .ReleaseRule.packet_in(packet)

packet.clean()
i f not self .ReleaseRule.is_success:

i f self .ReleaseRule.exception i s not None:
self .exception = self .ReleaseRule.exception
return packet

# Give
packet = self .GiveRule.packet in(packet)

packet.clean()
i f not self .GiveRule.is_success:

i f self .GiveRule.exception i s not None:
self .exception = self .GiveRule.exception
return packet

self .is_success = True

return packet

Py-T-Core allows a programmedsoftware to integrate with model transformation solutithasiks
to theT-Core API. This is a pragmatic solution to bridge the gap betwedtwsoe developers (who
program large-scale systems) and domain experts (whoideslee behaviours of their model through
transformation).

3.6 Related work

The closest work to the one presented here is [VIJBBO09]. lcdimeext of global model management,
the authors define a type system offering a set of primitisesfodel transformation. The advantage
of our approach is thatCore is described here as a module and is thus directly implerhkntalso,

the approach described in [VIBB09], does not deal with exmepat all unlikeT-Core. Nevertheless,
their framework is able to achieve higher-order transfdroms (HOTS),i.e., transformations that
operate on model transformations. The implementatiom©ére is currently available in Python.
Since this is an object-oriented language, H@ore primitive operators are implemented as classes.
Thus, at run-time, the operators are objects which can lettiirmanipulations and thus emulate
HOTs. However, as it will be seen in ChapteimfGore can be combined with a modelling language.
Thus, HOTSs can be easily specified in such a completely medigthnsformation language.

5As opposed to a modelled software where no artefacts aredualed.
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TheGP graph transformation language [MP08] also offers tramsé&dion primitives. The authors
however focus more on the scheduling of the rules then onulaes themselves. Their scheduling
(control) language is an extension of an SBL language. Oproggeh is more general since much
more complex scheduling languagesy(,allowing concurrent and timed transformation execution)
can be integrated witf-Core. Although it performs very efficiently, the application aref GP is
more limited, as it can not deal with arbitrary domain-speenodels.

Other graph transformation tools, suchaTRA [VB0O7] andGReAT [AKK T06], have their own
virtual machine used as an API. In our approach, since timeifpre operations are modelled, they are
completely compatible with other existing model transfation frameworks.

T-Core does cover a significant amount of variation in pattern-8asedel transformation. For ex-
ample, we showed how to solve the amalgamated rule probleznendattern elements are combined
with universal and existing quantifiers. This was done byelyi$nesting” pre-condition patterns with
the use of pivots. Other pattern compositions include digjue constructs such as in [BV06]. That
is, a LHS pattern can consist of sub-patterns that can beigotgd and disjuncted. Chapter 10 will
show how this can be accomplished witltore primitives. When the LHS consists of two disjuncted
patterns, we first split each disjunctive case in separa&epndition patterns. Then, tipacketin
method of theviatcher of each pattern is called. Each resulting packet is outpat3elector which
finally selects one of the packets.

3.7 Conclusion

This chapter motivated the need for providing model trams&dion language primitive3:Core was
defined by precisely describing each of these primitive tants. The de-construction process of
model transformation languages enabled us to re-congxisiing simple model transformation fea-
tures as well as more complex ones by combirir@pre with, for example, an SBL language. This
allowed us to compare different model transformation laggs using a common basis. Furthermore,
T-Core is combined with a programming language which allows nonBVilsers to integrate with
MDE solutions. This integration is transparent for prognaans sincePy-T-Core andT-Core offer a
complete API.

T-Core was presented as a minimal collection of model transfolngtrimitives, defined at the
optimal level of granularityT-Core is not restricted to any form of specification of transforioiat
units, be it rule-based, constraint-based, or functiosetalt can also represent bidirectional and
functional transformations as well as querieSore modularly encapsulates the combination of these
primitives through composition, re-use, and a common fatex. It is an executable module that is
easily integrable with a programming or modelling language

It is impossible to prove thar-Core is a collection of the most primitive transformation oper-
ators, because of the complexity and diversity of the exgivesess of most model transformation
languages. However, our experience showed that it can lobeaiseproduce most of the languages de-
scribed in Chapter 2. Note that, for example, declaratedformations defined as relations, such as
in QVT-R or TGG, cannot be directly expressed usihGore primitives. That is because their transfor-
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mation units specify relations between the involved metalets as opposed to the operational nature
of transformation rules. However, if these relations cacdrapiled into operational rules (such as in
TGG c.f. Chapter 2.2.3), theRCore primitives can be used to mimic the corresponding behawbur
the relations.

The detection of conflicts in thResolver and theSynchronizer is conservative. A possible ex-
tension would be to incorporate more advanced detectiormamsms, such as through critical pair
analysis [LEOO8]. However, this technique assumes thatamsformation units are traditional graph
transformation rules with a singteatch-rewritecombination, which is not always the casdigore.

T-Core can serve as a basis for inter-operating model transfoomatxpressed in different for-
malisms. That is, by mapping each and every construct oftiguiages to an appropriate combination
of T-Core operators. In [HKA10], the authors define a language for cosimgy heterogeneous trans-
formations defined in different formalisme.§.,ATL andQVT-OM). Their approach is to wrap each
transformation model imromponent&nd communicate between each other via in/out-port connec-
tions, treating the transformation models as black-bokeis.is the opposite of opening the languages
and mapping them to a common denominateCore. The disadvantage of their approach is that port
connection consistency is validated through simple tymekimg. Also, their current implementation
is restricted to models only represented in Ecore.

Now that the primitives are well-defined, efficiently implenting each of them will certainly lead
to more efficient model transformation languages.



Implementation of Himesis

One of the key aspects to address industrial-scale mod@rdengineering problems is the ability to
execute model transformations on large models efficieftigrefore a first step is to provide an effi-
cient implementation of the model transformation pringswdescribed in Chapter 3. In this chapter,
we first design and implement efficient data structures tcessmt models to-be-transformed as well
as transformation models. We describe the implementatiagheoT-Core transformation primitives
in the form of Himesis, a kernel for graph-based model repregion and manipulation. We then
implement the transformation primitives described in thevpus chapter. The performance of our
implementation is thoroughly analysed.

4.1 Introduction

Model-based development (MBD) is increasingly adoptechdustry. However, the models industry
deals with are very large, with up to 4@lements. Modern (MBD) tools, such as AToMPM (our
successor oAToM3 [dLV02]), must allow the modeller to work with such indusirscale models.
These tools should be able to handle common tasks such asdpadving, visually representing,
and transforming large models.

Graphs, as opposed to meta-model/instance, are commoadiytagepresent models (because
they are often truly graph-like, such as Petri nets) andishédso the choice made in AToOMPM. The
goal of this chapter is to develop and analyse the performahthe data structures used internally
to represent typed, attributed, directed graphs. Thistgkapnel is called HimeslsIn order to make
the kernel of AToOMPM as efficient as possible, Himesis mukivalone to efficiently manipulate
graphs. In AToMPM, models are represented as graphs. Mergthe tool is implemented in the
Python language. We therefore restrain our investigatoroimpare two potential candidate graph
representation/manipulation software libraries implatad in Python, nameliGraph [CNO6] and
NetworkX[HSSO08]. A thorough performance analysis allows us to cadbs most efficient one for
our purposes. Furthermore, we extend it to efficiently malaifg models, more specifically to perform
model transformation. We describe the different algorghirat are used and compare their perfor-
mance to other model transformation tools by means of a atdrgtaph transformation benchmark.

1This name was first introduced in [Pro05]. It is derived frogefiesis” for origin and “mimesis” for representation.
The syllable “hi” stands for hierarchical.
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Chapter 3 abstracted away details such as the data struepresenting models as graphs, the
matching procedure of thlatcher, and the transformation procedure of tRewriter. This chap-
ter focuses on the implementation of these aspec®@afre. In Section 4.2, we first compare the
performance of two promising software libraries with Pyit#PIs for graph creation and manipula-
tion. Section 4.3 examines the performance of the mostefii@ne, focusing on the tasks common
in model-based tools. One critical task in particular is twlfsub-graphs in a given graph, respect-
ing some constraint conditions (meta-model type, muttipés, OCL constraints, etc). Since graph
transformation relies heavily on the matching algorithmect®n 4.4 describes the algorithms imple-
mented in Himesis for (1) computing sub-graph isomorphiant (2) pattern matching as used in
model transformation. The performance of Himesis is amalys Section 4.5 by means of a standard
graph transformation benchmark.

4.2 Making the Right Choice

Our search for existing libraries that efficiently manigalgraphs resulted in two potential candidates:
IGraph [CNO6] andNetworkX[HSSO08].

4.2.1 |Graph and NetworkX

Both IGraph [igr09] and NetworkX [net10] are open sourcdwafe packages for creating and ma-
nipulating graphs. IGraph is implemented in ANSI C and ieaffa Python API. NetworkX is entirely
implemented in Python. They both allow creating directedtirgaphs,.e.,graphs whose edges have
a source to target orientation and there can be more thandgeelbetween any two (not necessarily
distinct) nodes. Attributes can be assigned to nodes, edgés the graph itseff The values of at-
tributes can be of any type, including graphs, thus suppgttierarchical graphs [DHP02]. Although
both libraries exhibit very similar features, they diffarthe way data is stored internally.

In IGraph, nodes are not explicitly stored. Instead, therimal structure only keeps track of the
total number of nodes in the graph. Nodes and edges are eatifiet by a non-negative integer ID.
Node and edge ID numbering is always continuous which mayirege-numbering when a node
is deleted. Consequently, the attribute values of a hodeeatrstored in the node itself. Instead, a
vector is assigned globally to the graph. The drawback isitlaa attribute is only meaningful for a
small subset of nodes, the required memory space will bgrasdifor all nodes, as if they all had this
attribute defined. Attributes are conveniently accesdigllookup/reference tables.

In NetworkX, a graph is stored by its adjacency list impleteenn a Python dictionary of dic-
tionaries. The outer dictionary is indexed by nodes and thaues are themselves dictionaries thus
encoding edges adjacent to the indexed node. The inneowlati is indexed by neighbouring nodes
and their values are edge attributes associated with tiggt &tbdes can take the form of any hash-
able Python object. For non-hashable objects, Networlko{allone to represent the node as a unique
identifier and assign the data as a node attribute. This itasita how IGraph allows arbitrary objects
to be stored in a node. Unlike with IGraph, with NetworkX theden is on the developer to guarantee

2We only considered attributed nodes for the experimentsisnsection.
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the uniqueness of the identifiers.

4.2.2 1Graph vs. NetworkX

We will now examine how each library performs for model margpion tasks. The tasks that concern
us are: creation, deletion, and modification of nodes ané®das well as the traversal of all the
elements in the graph (the well known CRUD operations).

Experimental Conditions

Figure 4.1 shows a heat graph, represented as a table,ingdessvhich case one library is more
optimal than the other. For each operation we vary two par@rseThe first one is the number of
timesn an operation is applied. In this comparison, we generateitialiErdds-Rényi random graph
G(50,0.5). It is a graph with 50 nodes such that an edge is created betavsetwo nodes with prob-
ability p = 0.5, the randomness being sampled from a uniform distribdtiantion. The probability
chosen generates a dense graph, given that directed rawdtigles and self loops are allowed. To
ensure non-biased experiments, the same initial g&apghused for both libraries, by exporting the
adjacency list of the generated graph reconstructing iGiraph and in NetworkX. The second pa-
rameter is how data is stored in the graph. For this expetimenevaluate the case when no data is
stored in the graph (depicted by the “No Attributes” labdFigure 4.1) and when nodes hold attribute
values (depicted by the “Attributed” label in Figure 4.1)

The table in Figure 4.1 represents the results of the exeatsralong three dimensions: whether
data is stored, the operation under study, and the numbiene$ the operation is performed. It shows
the ratiosr € [0, +oo[ of the computation time between the two librafies.,

_ Networkx
tIGraph
When 0<r < 1, NetworkX is faster and when> 1, IGraph is faster. The boundary caserof 1

simply depicts that they were as fast for performing the saperation. The ratio depends on three
dimensions:

e op € {AN,AE,UN, T,DE,DN} is the operation of interesAdd nodesAdd edgesUpdate
nodes Traverse Delete edgesandDelete nodesrespectively.

e d € {NA AT} indicates whether data is storédb attributesor Attributed the latter stores data
at the node level using the library’s node attribute medranior the attributed case, the size
of the data stored at each node is 4,118 bytes, which is cenesics a light-weight attribute in
Python.

e ne N is the number of times an operation has been applied in sequen

r

In this experiment, each operation is applndnes in the order defined above. For the case wtiere
NA, operationAN is first appliedn times on the initial grapls: this creates new nodes. TherAE is

3All numerical results of the experiments presented in tlipgy have an error margin af1.000x 10~ seconds
because of the resolution of the timers.
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Operation |10 20 50 70 100 200 500 700 1,000 2,000 5,000 7,000 10,000 20,000 50,000 70,000 100,000 120,000 150,000 170,000 200,000

|No attributes
No attributes |A8
| Mo attribute date nod
No attributes [Traverse

|No attributes

10 10 10 10 10 10

Figure 4.1: Relative performance of IGraph and NetworkX @RUD operations. The darker the
colour, the better IGraph performs.

appliedn times, which adds new edges in the new graghiN updates the attribute valuesrohodes

in the graph and traverses the whole graph in a breadth-first fashion. Aftes¢ four operations are
applied,n edges are deleted from the graph. Findlli{ deletesh nodes from the resulting graph. We
chose to apply the operations in this order to avoid depeanégm@nd deletion which make no sense,
and thus do not bias the computation times. Similar expeariswere performed for the case where
d = AT. The system running these experiments is composed of 3Zmagepped with an Intel Core
2 Duo processor of 2.66 GHz, 8 GB of memory with a 667 MHz DDR#] &wo times 4MB of L2
cache.

Analysis of the Comparison

At a first glance, Figure 4.1 shows many more dark cells thght lones, indicating that overall,
IGraph performs better than NetworkX. For a graph with ndtaites (wherd = NA), since IGraph
stores nodes very efficiently as explained previouslygiadly outperforms NetworkX with respect to
the creation of elements:3x 10° times faster for the creation 0f>210° nodes and 30 times faster
for the creation of the same number of edges. NetworkX is uptimes faster for deleting a small
number of edges (less than 50), while IGraph is up to 45 tirastef for larger values af. As for
the deletion of nodes, IGraph is up to 80 times faster for sized graphs (¥Dedges) and around
50 times faster for larger graphs. This ratio of computatiore r is significantly smaller than for the
creation of nodes because of the re-numbering requiredsiorera continuous numbering of nodes
in IGraph. Traversing all nodes in the graph is twice as fasawerage in IGraph for any size of the
graph. The update operatioad= UN) in this case is simply the sum of adding and removing the
same number of nodes since no attributes are stored in the nodes. On averagepérstion is 100
times faster for IGraph.

Now that we know IGraph is significantly more efficient thartierk X for non-attributed graphs,
we will examine whether this is still the case when attrilndéa is added to the graph. Whee= AT,
the creation of nodes is about 3 times faster in IGraph th&leiworkX forn < 100. In both libraries,
creating a larger number of nodes is as fast as the inittadizaf attributes becomes an overhead on
the actual creation of a node. This is confirmed by the fadtttitewupdate operation is equally fast in
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Operation No Attributes Attributed
Average Standard deviation Average Standard deviation

Add nodes 719.9 583.3 15 1.2

Add edges 17.9 9.8 23.2 18.0
Update nodes 99.5 65.5 1.0 0.0

Traverse 2.0 0.6 2.5 1.2

Delete edges  28.7 22.8 27.8 22.1
Delete nodes 46.4 25.5 5.2 1.7

Table 4.1: Average (first column) and standard deviationdisé column) over all values of of the
performance ratios of IGraph over NetworkX.

both libraries. The ratio for edge creation is the same athfnon-attributed case for< 2 x 10*.
This is predictable as the presence of node attributes daesfluence edge creation. However, when
creating more edges, IGraph is slightly even more efficitm: ratio is 15 times higher than for
the non-attributed case. Edge deletion for the attributes performs as well as its non-attributed
counterpart. Node deletion becomes only 4 times faster i@tlaph when attributes are present.
NetworkX is slower traversing the graph with attributed esdup to 4 times slower for graphs with
2 x 10* nodes). Table 4.1 summarizes the overall comparison. Térages were computed based on
the data captured in each row of Figure 4.1.

4.3 Optimal Representation of Models

Given the results of the previous experiment, IGraph is @Veignificantly more time-efficient. It
is also more space-efficient since the machines running gtedkX library ran out of memory at
n= 3 x 10°, while no thrashing was observed when IGraph was dealiny griaph sizes of up to
10° elements. In this section, we investigate the optimal sgrtation of typed attributed graphs. We
analyse the performance and relative cost of the CRUD apesat

4.3.1 Representing Models as Directed Simple Graphs

Models are abstractions of pertinent aspects of a systenmpartant class of models is those where
entitiesrepresent the concepts and data of the modelraladionsdescribe how these concepts are
related. Moreover, a relation may itself hold data. Wherhsuodels are realized as directed graphs,
representing entities as nodes and relations as edges ebeings at a first glance. IGraph supports
attribute assignment on both elements. In specific casedaton may itself be related to another
relation or entity. But then the graph representation would require one toigensuch relations
as nodes. Therefore, to uniformly represent entities aladioas of a model, we propose that they
be represented as nodes. Thus, a graph edge representkthetiveen an entity and a relation, a

4For example, in UML class diagrams [Obj09], an associatiassccan relate two classes and also be part of an
inheritance relationship with another association class.
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Figure 4.2: Different types of grapl@and their representation as Himesis graghs

relation and an entity, or a relation and a relation. Henteipates need only be stored on nodes.
Another advantage of this uniform representation of motetsomes apparent when a model has a
multi-graph or hyper-graph topology. Figure 4.2 describew the relations are represented in each
case. However, our representation does not consider hypef-graphs, which are not common in
MDE.

Now let us examine the cost of this uniform representatioa wfodelM. LetG = (V(G),E(G))
denote a directed graph representing the entitiéd a node¥ (G) and its relations as edgesG).
Let H denote the graph representing the entities and relatioivs @ noded/(H) and the links as
edgesE(H). Examples ofc andH are depicted in Figure 4.2. We then have tvgH )| = |V (G)| +
|[E(G)| and|E(H)| = 2 x |E(G)|. Therefore there is only a constant differenE€G)| between the
size ofH andG. This is also the case whé&his a multi-graph. Whei@ is a hyper-graph|V(H)| is
as before but noWE(H)| = |SrdE(G))|+ |Tar(E(G))|, whereSrcandTar represent respectively the
source nodes and target nodes of all edges.

4.3.2 Performance Evaluation of CRUD Operations

To investigate the optimal representation of data, we needddify the domain ofl in the condi-
tion tuple(d,op,n) such thatd € {NA LA/ HA LO,HO}, respectivelyNo Attribute Light Attribute
Heavy AttributeLight Object andHeavy ObjectThey span two dimensions: data representation and
the size of the data. The “attribute” label indicates that,dach node, data is stored as a separate
node attribute. The “object” label indicates that all theéadia wrapped in a single object and only
that object is stored as a node attribute. In our experimariight attribute is 139 bytes, whereas a
heavy attribute is 4,330 bytes. The first corresponds toifieecs two integers and three characters in
Python. The second corresponds to the size of two integesH@-character-long strings and another
string of 4,094 characters long.

Figure 4.3 represents the time performance of IGraph fdn galue ofd. When no data is stored
in the graphj.e., d= NA(Figure 4.3(a)), node creation is the least costly opemnatiith less than 10
milliseconds for adding onodes. Node deletion is also very efficient with 100 milliseds for the
same amount of nodes. As mentioned before, for the case whemdA, the update node operation
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Figure 4.3: The effect of data representation. The graphplatted on a log-log scale.
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No attribute Light attribute Light object Heavy attribute Heavy object
Small Medium  Large Small Medium  Large | Small Medium Large | Small Medium Large | Small Medium Large

Operation 0,107 [10°,10°] [10°,10%| [0,20°[ [10°,10°[ [10°,10%|[0,10°[ [10°,10°[ [10°,10%|[0,10°[ [10°,10°[ [10°,10%|[0,20°[ [10%10° [10°10%
Add nodes 5.E06 2.E-04 5.E-03 | 2503 2.E-01 3.E+00 | 7.E-04 7.E-02 B.E-01 |6.E-03 2.E-01  3.E#00 | 5.E-03 7.5-02  B.E-01
Add edges 2604 2.E02 3.E01 | 2.E04 2F02 501 |2.E04 2.E-02 S5.E-01 |2.E-04 2E02 3E01 |3.E04 3.E02 3.E01
Update nodes |1.E-04 2.F-02 2.E-01 | 2.E03 2F01 2.E+00 |5.E-04 G5.E-02 7.E-01 |2.E-03 2.E-01 3.F4+00 |5.E-04 6.E-02 7.E-01
Traverse 2.E-02 4.E+02 2.E403 | 5.E02 6.E#02 3.E+05 |5.E-02 S5.E+02 3.E+05 | 3.E-02 4.E+02 2.E+03 |9.E-03 6.E+02 2.E+03

Delete edges 2.E-04 4.E-03 3.E-02 | 2.e-04 5.E-03 8.E-02 | 2.E-04 5.E-03 8.E-02 | 2.E-04 5.E-03 3.E-02 | 2.E-04 5.E-03 3.E-02
Delete nodes 4.E-05  3.E-03 4.E-02 | 3.E-05 2.E-03 2.E-02 [3.E-05 1.E-03 1.E-02 [ 1.E-04 B8.E-03 1E-01 [1.E-04 5.E-03 6.E-02

Figure 4.4: Average times in seconds for executing CRUD atpmrs.

is evaluated as first deleting then adding a new node to rejlathis is why it takes about the same
time as the delete node operation. Edge deletion seemsftypdaster than edge creation for larger
graphs with respectively 100 milliseconds versus 1 sechiode traversal is undoubtedly the most
costly operation. IGraph can traversec20* nodes within a minute, but it takes almost 6.5 days to
traverse 10nodes in breadth-first search! This poor performance isaltieetinternal implementation
of the IGraph version used. However, in model transfornmatics rarely the case that the whole graph
must be traversed, since it is often a single match that isast@d. Nevertheless, requiring all matches
may in the worst case lead to multiple traversals of the gréfghplan to solve this issue in the future.

The plots ford = LA andd = LO are very similar to each other. This indicates that the ikedgter-
formance of the operations is the same when light data isdiarthe graph (Figure 4.3(b) and 4.3(d)
respectively). Edge operations become the fastest. Nwless, fromn = 2 x 10* onwards, node
deletion performs better than edge creation but worse ttige deletion, both by a factor of 2. Node
creation is now slower by a factor 10 the case ofl = LA and by a factor of 5 10? in the case of
d = LO. Moreover, node update takes about the same time as nod®ireehich confirms that the
setting of attribute values is an overhead for node crealimversal is still the most costly operation.

Finally, the plots ford = HA andd = HO are also very similar. The exceptions are that node
deletion is now more expensive than edge creation witts&conds fon = 10°. Also, node creation
(and thus the update operation) is more costly than thersalveperation up ta = 2 x 10* nodes.

To better illustrate the described results, the table imf@gt.4 presents the average performance
time of each operation for different sizes of the graph. Ttephs are grouped in three categories.
Small graphs (less than 4@odes) are typically used for small examples or debuggimgqses.
Medium graphs (between 3@nd 1@ nodes) are considered as large graphs for academics batjaver
size for industrial projects. Large graphs (more thanri@des) are typically used in large industrial
applications such as mobile networking. Furthermore, dbéetin Figure 4.5 summarizes the impact
of choosing the “attribute” or the “object” representation data in the graph. It clearly shows that
the “object” approach is more efficient than the “attribuégproach.

The plots in Figure 4.6 compare the time performance of the@Bperations for each represen-
tation of data.

Add Nodes. From Figure 4.6(a), node creation is polynomial with a paxr108, 10-°, and 103
for the case where there are no attributes, for light attieuand for heavy attributes respec-
tively.
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Operation LO/LA | HO/HA | HA/LA |HO/LO
Add nodes 3.E-01| 5.E-01 2.E+00 | 3.E+00
Add edges 1.E+00| 1.E+00 | 9.E-01 | 1.E+00
Update nodes | 3.E-01| 3.E-01 1.E+00 | 1.E+00
Traverse 1.E+00| 1.E+00 4.E-01 | 4.E-01
Delete edges 1.E+00| 1.E+00 | 8.E-01 | 9.E-01
Delete nodes 7.E-01| 7.E-01 4.E+00 | 4.E+00

Figure 4.5: Effect of using IGraph’s node-level attributeahanism for each node attribute individ-
ually compared to wrapping all attributes in one objectedousing IGraph’s node-level attribute
mechanism.

Add/Delete Edges.From Figure 4.6(b), edge creation is independent of the rdgieesentation and
size. The log-log relation is in fact quadraticnnEdge deletion is also independent of the data
representation as shown in Figure 4.6(c).

Delete Nodes.From Figure 4.6(d), node deletion is quadraticirHere we see that the “attribute”
representation is slightly more optimal for small to medisized graphs by 30%.

Update Nodes.In Figure 4.6(e), updating light data represented in thé&itaite” approach is 30
times slower than the “object” approach. As for heavy-weidgta, either approach is as slow
by a factor 16.

Traverse. Finally, from Figure 4.6(f), traversal of the graph is inéapent of the data representation
and size. The plotted graphs are quadratic reflecting thrersal's complexity.

4.3.3 Optimal Representation of Data of Models

The previous experiment considered graphs in general.driglfowing experiment, we investigate
an optimal representation of attributes of ATOMPM modelentents of these models can hold an
arbitrary number of attributes. A typical element of an ATBM model includes the following data:
a universally unique id, two integers, two booleans, twach@racter long strings, an additional 10-
character long string encoding the type of this element,G®4dharacter long string representing an
action or constraint on the element (typical for elementsafsformation models), and a list of seven
10-character long strings enumerating all the sub-typabetype of this element. The total size
of this typical element is thus 1,382 bytes, which is an ayersize according to the experiment in
Section 4.3.2.

We now consider three different alternatives for repraagrdata in the nodes of IGraph graphs:

¢ Node attribute mechanism used for each of the above atslthis is theAT approach used
previously).

e A Python object encapsulating all the attributes, storedrasnode attribute (this is theT
approach used previously).
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Figure 4.6: CRUD operations on nodes for each representafiaata. Plots (a) and (b) are on a
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Figure 4.7: CRUD operations on nodes for each representafiaata. The plots are on a log-log
scale.

e A hash table holding all the attributes, stored as one nadéuwe (this will be referred to as
HT).

In order to determine which &T, OT, orHT is the optimal representation to use in Himesis, we eval-
uate their performance on CRUD operations applied to nodgssince Section 4.3.2 has confirmed
that data stored in nodes has no impact on the performanagefaperations.

Create Nodes. Figure 4.7(a) shows the time orders of magnitude for crgatiodes for each repre-
sentation: 9« 10~ for AT, 5x 10~3 for OT, and 3x 1073 for HT.

5Addition of nodes and initialization of their attributes.
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Update Nodes.Figure 4.7(b) shows the time orders of magnitude for updatwdes for each repre-
sentation: 9« 10-3 for AT, 5x 102 for OT, and 3x 103 for HT. Not surprisingly, this is the
same order as for adding nodes since, according to Secto2, 4he addition of nodes takes
significantly less time than initializing its attributes@ut 1 times faster).

Delete Nodes.Figure 4.7(c) shows the time orders of magnitude for dedetiodes for each repre-
sentation: 4< 10~* for AT, 8 x 10~% for OT, and 7x 10~ for HT.

Query Nodes. To query nodes, we have investigated the optimal way ofenatrg the data from
nodes: using the mechanism built in IGraph for querying sddeeselect method) or pro-
grammatically retrieving attribute values (in a loop). Tiesults were very conclusive: using
the IGraph query mechanism for HT and OT is 1.6 times fastar the programmed loop, and
3.1 times faster if using the IGraph query mechanism for AT.sIWwe only consider the IGraph
mechanism for querying nodes. Figure 4.7(d) shows the taalkes for querying nodes for each
representation: 8 10~ for AT and 8x 10~ for bothOT andHT.

We would like to minimize the time each of the CRUD operatitai®s in a rule. Here, we assume
that a rule consists of a LHS pre-condition pattern grapheaRHS post-condition pattern graph. After
performing a regression analysis of the plots in Figurewerhave computed the slopes of each curve
and added them as labels in the figure. With these obsergatiancan write the following formulas
representing the time cost of a rule application for eachesgntation of data:

AT : 90a+90u+4d+ 3q (4.1)
OT: 50a-+50u+8d+8q (4.2)
HT: 30a+30u+7d+8q, (4.3)

wherea, u,d, andq are the number of times the add, update, delete, and quergtape® on nodes
happens in arule, respectively. Therefore, choosing ttimaprepresentation depends on the solution
of the following inequalities:

ChooseHT overOT <« 20(a+u)+d>0 (4.4)
ChooseAT overOT <« q>8(a+u)—0.8d (4.5)
ChooseAT overHT <« g> 12(a+u)—0.6d (4.6)

Equation (4.4) is obtained by reducing the inequalitie8)(4maller than (4.2). The remaining equa-
tions are obtained in a similar way. Equation (4.4) is alwtye since, by definition, a rule applies

at least one of the add, update, or delete operations. Hemagill not be considered anymore and

equation (4.5) can be discarded. The left-hand side of @#@esents the operation performed in
the matching phase of the rule (querying nodes). The rightdrside of (4.6) represents the opera-
tion performed in the rewriting phase of the rule (add, upddelete nodes). Recall that the match-
ing phase queries all nodes of the pre-condition patternedksas all nodes of the source gra@h

5The update and query operations are performed on all thieuitis of each node.
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Figure 4.8: Performance of all operations on Himesis graphs graph is plotted on a log-log scale.

(in the worst case). Henage O(|V(LHS)| + |V (G)|). Following a similar reasoning, we have that
ac O(V(RHS-LHY)|),ue O(V(LHSNRHS)|), andd € O(|V(LHS—RHS)|). On the one hand,
in the extreme case where the LHS is empty, we therefore heatéM(G)| > 12.6|V(RHS|. On
the other hand if the RHS is empty, thAnG)| > —13.6|V (LHS)|, which is always true if both the
LHS andG are not empty. Therefore, a sufficient condition for chogshe AT approach is if there
are 13 times more nodes in the source graph than in the RHS.igtiery likely to hold given that
relation-like model elements are also represented as nodéisnesis. Moreover, favouring th&T
approach reduces attribute access time for other modelpmlations as well. Figure 4.8 classifies
the performance of each graph operation performed on a kSngesph implemented with th&T
approach.

4.3.4 Memory Requirements for Himesis Graphs

Models used in industry typically hold a significant amouhtdata. One issue that may arise is
how much physical memory is required to hold these modetyurgi4.9(a) shows the amount of
physical memory required for loading a Himesis graph in mgmibhe measures were obtained with
an average node size of 1,382 bytes as before. The valuesrapaited as follows. For a fixed amount
of physical memory, we attempt to load a graph and increasesile of the graph until IGraph starts
thrashing. This maximum size is recorded every time. Eathplaint of Figure 4.9(a) thus represents
the average over 100 repetitions of this experiment. Istergly, the size of the graph follows a
cubic function with respect to the minimum amount of memagaed. Although the plot only shows
graphs of size up to 8 10° nodes, it can still load graphs with @®odes but it requires virtual
memory and hard disk as secondary memory storage. Figuie) 4ll@strates the time required to
load a Himesis graph in memory. It takes less than a secorwhtbd graph with & 10* nodes and
almost a minute for X 10°.
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(a) Physical memory required for loading a Himesis graph. (b) Time for loading a Himesis graph.

Figure 4.9: Measuring the effect of memory.

4.4 Match and Rewrite Operations in Himesis

Model transformation plays a crucial role in model-driveavelopment. A transformation is com-
monly expressed as a set tohnsformation rulesA rule consists of a pre-condition pattern and a
post-condition pattern; both affeCore primitives. The former describes a pattern that should occu
in the input model and the latter describes how this occoegeamall be modified. When models are
implemented as graphs, the pre-condition pattern spedtifsgsan instance of this pattern must be a
sub-graph of the input graph. Pattern matching and, inqadati the sub-graph homomorphism prob-
lem, is NP-complete [Meh84]. There are however various egptal-time worst case solutions for
which the average-time complexity can be reduced with tie dieheuristics. These approaches can
be divided into two major categoriesearch plang@ndconstraint satisfaction problen{f€SP).

Search plan techniques [Zin94, GB@] define the traversal order for the nodes of the model to
check whether the pattern can be matched. This is done bywtorgghe cost tree of the different
search paths and choosing the least costly one. Complexl+speéeific optimization steps can be
carried out for generating efficient adaptive search pl&\&-p5]. Examples of such heuristics are
the use of typing information with respect to meta-modetedats or the use of cardinality constraints
defined in the meta-model.

Graph pattern matching can also be described as a consa#isfaction problem [Rud98], where
the pre-condition elements are variables, the elementseaiibdel form the domain and typing, and
the links and attribute values form the set of constraint®sEg techniques make use of backtracking
algorithms [KHO04] for finding a sub-graph of the input graphattis isomorphi€to the pre-condition
graph. The algorithm explores the search space in a deptiefuer. Well-known algorithms such
as Ullmann [UlI76] and VF2 [CFSVO04] are some of the most affitifor solving the sub-graph

’In fact, it is homomorphic since the added attribute comstsan the pattern graphs describe constraints on the
attributes of the source graph.
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iIsomorphism problem as a constraint satisfaction problastus first explore these two algorithms.

4.4.1 Ullmann

Ullimann’s algorithm [Ull76] is an efficient solution to theils-graph isomorphism problem. Given
two undirected graphd = (V4,En) andG = (Vg, Eg), the Ullmann algorithm tests whethiris a
sub-graph ofG. We denote byH andG their respective adjacency matrices. deg : V — N be a
function mapping a vertex to its degree: the number of intidelges it is connected tbl fepresents
here the set of non-negative integers). The algorithm fasstucts theVy | x [Vg| binary matrixM *
such that:

M* 1 if deg (v) < deg (w) for veVy andw € g,
YW1 0 otherwise.

In this notation M, denotes the element M* at the row corresponding to nogend the column
corresponding to node. M* therefore represents the matching of all possible nodeidates ofVg

that are isomorphic to nodes 4. The algorithm tries to find a matrid such thaM (MG)T = H
where every row has exactly one 1 and every column has at mest.olrherefordVl represents the
isomorphic mapping of vertices éf to G. The algorithm thus enumerates all possible such matrices
starting fromM *. At each step, a node W (row of M) is assigned one of the matches (in decreasing
order of degree) by setting to 1 the appropriate column aaddkt to 0. This depth-first search is
optimized with arefinement procedurthat takes into account neighbouring nodes: a néaglenay
only match if all its neighbours also match. This may set o#lements of the matrix to 0, hence
reducing the search space. After refinMg if there is a row with no 1, the algorithm backtracks and
the next potential match is tried. Otherwise, the algoritantinues on the next row ®fl. Repeated
recursively, the algorithm terminates when either a cotepieatch is found or if all possible matches
have been exhausted.

Time efficiency depends highly on how spak4é is initially. Because in graph transformation we
consider typed, attributed, labelled, directed graph®peesenting models, the numberMfmatri-
ces generated through the search is much smaller than irettexra) case. This requires comparing
incoming and outgoing edges, attribute values, and typepetibility to appropriately fillM* with
1s. Some approaches also extend the test of the degree @idaéémmore sophisticated compatibility
tests.

4.4.2 VF2

VF2 [CFSV04] is yet another algorithm for the sub-graph isopmism problem. Like in Ullmann’s
approach, VF2 constructs a search-tree traversing theghasih depth-first and backtracks when the
current search-state fails a compatibility test. The algor also performs a pruning of the search
space during the matching process.

ConsideH andG as directed graphs. We dendte Vy — Vg to be the isomorphic node mapping
andM (s) holds the set of current matchess, vy ) at search state(the dashed lines in Figure 4.10
linking the black nodes). Then I8 (s) andMg (s) respectively represent the nodesvaf andVg
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Figure 4.10: Partial sets for the pruning technique of VF2

contained inM (s). They are respectively the black nodesHnand inG. VF2 then considers the
neighbourhood oMy (s) by definingNy (s) andVy (s) (respectively the highlighted and white nodes
in Figure 4.10)Ny (s) = N7 (s) UNS! (s) whereN!" (s) is the set of nodes adjacenty (s) along
incoming edges andg" (s) is the set of nodes adjacent My (s) along outgoing edges, not yet in
the partial mappindviy (s). V4 is defined ad/y () = V4 — My (S) — Ny (), representing the nodes
not connected to the current mapping. Similar expressiottsfor Ng (s) andVg (S).

At each step of the depth-first search, the search-stet@augmented by a candidate paie=
(vp,wp) only if it passes deasibility test (vp, wp) is chosen from the ordered liBt(s) of candidate
pairs. The order suggested by VF2 gives priority to nodeff andN2™, then inN,Qn and Ng‘, and
finally (in case of unconnected graphsMa(s) andVg (s). The feasibility test run og = sU p tests
three criteria in this order:

1. if the new mappingv (s') is still a valid isomorphismi.e., edges between, and its adjacent
nodes inMy (s') and edges betweemn, and its adjacent nodes Mg (') correspond,

2. if the number of external edges betwedp (s') andNy (S') is smaller than or equato the
number of external edges betwedg (s') andNg (S),

3. if the number of external edges betwedn (s') andVy () is smaller than or equato the
number of external edges betwedg(s) andVg (),

This way VF2 reduces the search space and ensures that mogatbilities will occur in future
search steps. Ip fails the feasibility test, the procedure backtracks toghevious states and tries
another candidate. The algorithm terminates wkigs) covers all the nodes d¢i (success) or when
all candidate pairs dP(s) have been tried (failure).

Efficiency-wise, experimental results show that VF2 perferbetter than Ullmann for larger
graphs. Considerin®l = |V4| + |Vg| search states to visit in the best case, the time complekity o
VF2 is©(N?). In the worst case, there a# search states, leading to a time complexitygN!N).

In both cases, VF2 is a linear order of magnitude more efficleam Ullmann. Furthermore, its spa-
tial complexity is linear, while cubic in the case of Ullmarifhese measurements are based on a
benchmark [FSV01] considering 48ub-graph matching experiments and are hence deduced from
empirical results.

The major difference between Ullmann and VF2 is that, withme backtracking step, Ullmann
compares pairs of adjacent nodes, while VF2 compares a nitdetsvneighbourhood. Moreover,
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Ullmann’sM* matrix verifies the semantic compatibility between pairaodes in the match, while
VF2's feasibility test ensures a correct structure of thécmaA combination of VF2 and Ullmann for
hierarchical graphs was proposed in [Pro05]. The idea wasaige the two search plans providing
containment edges and local edges to denote hierarchyimibebmplexity was thus improved.

4.4.3 An Efficient Sub-graph Isomorphism Algorithm

The matching algorithm of Himesis combines our own variatbthe VF2 algorithm together with
the refinement strategy of Ullmann’s algorithm, as outlimedlgorithm 14. The procedurextend
augments the state of the algorithm with all possible magginom the pattern graph to the source
graph. In the following, we call mappingthe one-to-one correspondence between a pattern node an
a source node. We denote byratchthe set of mappings in which all source nodes form a graph
that is homomorphic to the pattern graph. Lines 4-14 recekgcompute further mappings given the
current state of the algorithm. Tiseatestores the following information:

Algorithm 14 extend (state)
1: if mappinglsComplete  (state)then
storeMatch (state)

N

3: end if

4: for p, sin suggestMapping (state)do

5:  if areCompatible (p, s)then

6: if areSyntacticallyFeasible (p, s)then
7: if areSemanticallyFeasible (p, s)then
8: statestoreMapping  (p, S)

o: extend (state)

10: stateundoMapping (p, S)

11: end if

12: end if

13 endif

14: end for

e MP andMS are the mapping sets holding the pattern nodes and the swanles respectively in
the current mappings,
o T andT3, hold the set of adjacent nodes to respectiwfandM* following outgoing edges,
at any time;
e TP andT.>hold the set of adjacent edges coming in respectivélyandMS following incoming
edges, at any time;
° Tir?out = ToutN T|r|? ar‘dTirslout = ToSut n T|r81
Toe TH, Th . andT.S,  are called theéerminal setsEach step of the search computes a partial map-
ping of the nodes and verifies that it does not violate theltgpoof the pattern graplBuggestMapping
suggests a potential mapping of a source nodéth a pattern node (the pair(p,s) is also known
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as the candidate pair in [CFSVO4]) The choice of the paioisedin the following order: first from

(Tikouts Tt then from(TE ., T, then from(T,E, T.5), and finally from all other nodes.

Afterwards,areCompatible  verifies if it is worth continuing this mapping. This is dong b
comparing the number of incident edgess@ndp (this is known as the refinement step in [UII76]).
The compatibility check verifies that:

[Out(p)| < [Out(s)| A[In(p)| < [In(s)| (4.7)

whereln(n) andOut(n) respectively represent the set of incoming and outgoingcaat edges of a
noden. This is similar to the refinement step of Ullmann’s algamth

Then come the feasibility checkareSyntacticallyFeasible ensures that the topology of
the current mapping corresponds to a sub-graph of the pagr@ph. This is done by looking at
the number of incident edges whép,s) is added to the current set of mapping4”(and MS).

Let InOut(n) =In(n)+ Out(n), for any noden,

let  Out, = Out(p) N T, and Outs = Out(s) N Ty,
let Inp=In(p)NTF and Ins=In(s)NT>,
let Allp=MPUTEUTF and Alls=MSUTZUTS,
Then the following must be true to ensure syntactic feagjtof sandp:
|Outp| < [Outs| A |Inp| < [Ing| A (4.8)

|Outp| -+ [Inp| + [INOut(p) — Allp| < |Outs| + |Ins| + [INOut(s) — All

The last test ensures that the semanticsoofresponds to the semanticgoin our case, semantic in-
formation of the nodes is encoded in their attributes, beititails of the functioareSemantically-
Feasible  will be elaborated later on. Whesiand p satisfy all of the above conditiongp,s) is
considered a valid mapping and is stored in the state (lin&!8) algorithm then continues looking
for remaining mappings. When all valid mappings have beenpeded (lines 1-3), the correspond-
ing match is stored. The algorithm backtracks to the preygtate when either a complete match is
found or if the current partial match (set of mappingsiR andMS) does not allow for any further
valid mapping. Note that a nice property of this algorithrthigt any state in the search tree is visited
exactly once.

Algorithm 15 allows us to compute all matches between a pageaphP and a source graph
Furthermore, an initial set of mappings can be specified tog@the search tree constructed by the
procedureextend . This initial mapping can also be seen as the initial coritewthich the matchings
must be computed: it restricts specific pattern nodes to ppeathexactly to predefined source nodes.

Algorithm 15 computeMappings (S, P, context)
1: state« initState (S, P)

for p, sin contextdo
stateupdate (p, S)

end for

extend (state)

return stategetMatches ()
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Performance Evaluation of the Implementation

Let us first analyse the space complexity of teend procedure. The state of the algorithm is
encoded in thestatevariable. It holds the two partial mapping sets as well asstheerminal sets.
Thus, the number of nodes stored in the state is at mo$¥'dP)| + 3 x |V (S)| which is linear in terms

of the nodes of the source and pattern graphs. Moreoveg $#m@ph stores the nodes as integers,
stateis quite compact. Additionally, the experiments below shbat the algorithm performs better
if the adjacency list (encoded as a hash table) is memoizeelasT he size of this hash table is in the
worst caseV (P)| + [V (S)|? for fully connected, directed, simple graphs.

Find First Match sec Find All Matches
et £04
/ )
nnn
00 1wee0 100000 00 1wee0 100000
B tfimesis B tfimesis
(a) (b)
No Matches Found
11111
chchch
1801
Nodes Edges | Class | Attribute | Associations [ Matches] All | First | None
Small [0,103[ 399 51 45 51 7291 0.016] 0.04] 0.034
o wee i 000 1005000, Medium [103,105[ 33,727| 4,133 4,249 4,196 83,766] 0.067] 0.125) 0.348)
—a—imesis Large [10°,10%] 304,552| 38,158 38,312 37,919| 891,171] 2.929] 5.006) 22.305

(© (d)

Figure 4.11: Size average of sub-graph isomorphism majaar the six pattern graphs. The graphs
are plotted on a log-log scale.

We now compare the time performance of#eend algorithm of Himesis with VF2’s sub-graph
iIsomorphism algorithm. We have chosen the IGraph impleatemt of VF2 as a benchmark which
is in direct correspondence with the original implemewtatiNote that Himesis is implemented in
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Python whereas VF2 was implemented in C. Anecdotal studies shown that Python is in general
slower than C by an average factor of 23 (c.f. [Ful10]), whghot integrated in the results presented
here. In these experiments, we gathered the computati@with respect to the number of nodes

of the source graph. The source graph represents randothclasis diagrams encoded as Himesis
graphs. The average number of class diagram elements isishdvigure 4.11(d). For each source
graph we have run the algorithm on six pattern graphs whass sange from 2 to 12 nodes. Our
experience shows that this is a typical size for LHS and NA&gondition patterns assuming an
expressive control flow language suchMTif [SV11]. For both the source and pattern graphs, the
number of edges is the same order as the number of nodes (ishigical in class diagrams). Each
data point of the plots in Figure 4.11 represents the avdrageover the six pattern graphs.

Figure 4.11(a) shows the performance of both algorithmdifwling thefirst match only. For
small graphs, VF2 is about 25 times faster than Himesis. Fetinm graphs, VF2 is twice as fast
as Himesis. However, at around22< 10° nodes, both perform equally fast. At this point, Himesis
overtakes VF2 by a factor of 6 for large graphs.

Figure 4.11(b) shows the performance of both algorithm8ridingall matches. For small graphs,
VF2 is about 60 times faster than Himesis. For medium grayhRg,is 5 times faster than Himesis.
However at around.5 x 10° nodes, both perform as fast. At this point, Himesis oveake2 by a
factor of 5 for large graphs.

Figure 4.11(c) shows the performance of both algorithmswieematchexists. For small graphs,
VF2 is about 24 times faster than Himesis. The medium grajggoay must be divided into two. For
graphs with 18 to 10* nodes, VF2 is 3.6 times faster than Himesis. As for graphk ®if to 10°
nodes, Himesis overtakes by a factor of 2.2. The break evien isaaround 17 x 10* nodes. At this
point, Himesis overtakes VF2 by 3 times for large graphs.

The table in Figure 4.11(d) summarizes these observatidasce how Himesis significantly
outperforms VF2 for large graphs.

4.4.4 Pattern Matching

The transformation kernel of ATOMPM iBCore. In T-Core, the pre- and post-condition patterns of a
rule are encoded as Himesis graphs. A pre-condition is ceetpof a positive condition graph (LHS)

and optional negative condition graphs (NACs). Proposifth9) defines the semantics of a rule with
n NACs: if an occurrence of the LHS is found in the source gragliiote the rule is applied and none
of the NACs are found, then an occurrence of the RHS must bedfouthe source graph after the

rule has been applied. A more formal definition based on cayapeory can be found in [EPTO04].

LHSA -NAG A —-NAG A ... A —-NAG, = RHS (4.9)

Some approaches have extended the semantics of graplotraagbn rules by redefining the LHS as
a combination of different patterns. This is still compé#gitvith traditional graph transformation rules
if the patterns are conjuncted. In [BV06], both conjunctamd disjunction of patterns are allowed.
In [RKO9], existential and universal quantifiers have begaeal, leading to amalgamated rules. In the
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previous chapter we showed how these two extensions canddatechinT-Core with pattern nesting
and pivots.

In Himesis, a noda of a pattern graph holds the following information:

e A universally unique identifier: such identifiers are ensuieebe unique at all time.

e The typet of the model element encodes: the absolute path (across packages) of the name «
the type element.

e Aboolean flagstmspecifying whether a source node mappednaust be of type or a sub-type
of t.

e The setst of all sub-types of.

e The identifier of a binding pivo<t_< (for pre-condition graphs). If specified, it predefines whic
source node that was assigned to the piotust be matched to.

e The identifier of a pivot assignmeﬁt If specified, it indicates that the source node mapped to
nwill be assigned to the pivot

¢ A label global to the scope of the rule. Node labelling in tifeecent pattern graphs of the rule
is used as follows. In the LHS, a label allows one to distispuietween two nodes of the same
type that must be mapped to different source nodes. A lalesiept in both the LHS and the
RHS or in both the LHS and a NAC corresponds to the same matwh@de node. A label
present in a NAC but not in the LHS allows one to distinguistwieen two nodes of the same
type that must be mapped to different source nodes.

e Each attribute of the meta-model element correspondingisosubject to the RAM proce-
dure [KMS"10]. In the LHS and the NAC, the node is assigned one constpainattribute.
The constraint can be of arbitrary complexity, but can oefgr to source nodes bound to the
corresponding pattern (LHS xor NAC). In the RHS, the nodessigned an action code per
attribute. The action can be of arbitrary complexity, but oaly refer to source nodes bound to
the LHS pattern.

The size of the data stored in each pattern node is 1,342, lwiti®ut taking into consideration the
meta-model attributes. Additional information is storéde graph pattern level: the set of all meta-
models involved in the pattefras well as an additional constraint (for a LHS or a NAC) orae(ffor

an RHS). The constraints and actions are treated similabattern node attributes.

Up to now, we have described an efficient solution for findingub-graph of the source graph
iIsomorphic to the pattern graph. However, this is not swfitfor pattern matching as it only takes
into account the topology of the pattern graph. Constraitiéshed to match patterns as well as NACs
must be taken into consideration as well. Algorithm 16 Sjesca procedure that modifies the previous
sub-graph isomorphism solution for pattern matching psegoWe must first modify thextend
procedure to handle constraints on meta-model attribugsiade typing. The type of a pattern node
p and a source nodemust correspond. This requirement must be verified as earlyoasible to
reduce the search space. We therefore modify the funate@ompatible in Algorithm 14. More

8Because in AToMPM, rules can involve many meta-models @sgnmulti graph grammars [KS06a].
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specifically, condition (4.7) must now take into considerathe types of the candidate p&p,s) as
specified in (4.10), such that the typesa$ the same as the type pfor one of its sub-types. (4.7) can
then be rewritten as:

|Out(p)| < |Out(s)|AlIn(p)| < |In(S)| A ((st=p.t) V(p.StmASt € p.st)) (4.10)

Additionally, the functionareSemanticallyFeasible must ensure that the attributes heldsin
each satisfy the corresponding meta-model attribute caings inp. Also, to help the algorithm find

a match as soon as possible, we have parametrizeslitfyestMapping  function with a priority
mechanism to suggest a candidate pair. Our implementaitmmsaus to specify an arbitrary order
of a terminal set. By defaulsuggestMapping  will suggest an unmatched pattern node such that
its type occurs the least often in the graph. This heuristieong can be modularly extended with
further knowledge of the pattern graph and the source graph.

The pattern matching algorithm of Himesis is described igodithm 16. The procedunaatch

takes a source grapgh and the LHS pattern graph as input. Pivot bindings may alsspeeified in
the context The procedure can be one of three cases. In the followingonsider a match aslid
if the source nodes in the mappings of the match satisfy thetcaint of the pattern graph.

No NACs. When no NACs are specified in the pre-condition patternctingouteMappings proce-

dure is called on the LHS and returns the valid matches.

Unbound NACs. We denote a NAC as unbound if none of its nodes have a labetmirés the

corresponding LHS. If the pre-condition has unbound NACsuifices to find one valid NAC
match to prevent the pre-condition pattern from succelysfnding any matches. Lines 3-14
describe this behaviour. Firgg is matched on the NAC with the provided context. If no valid
match is found, the procedure then tries to find matches ®LHS as in the previous case.
Otherwise, no match is output.

Bound NACs. All other NACs are bound to the LHS. SincemputeMappings is the most costly

procedure, we want to avoid computing mappings twiee, the common part between the
LHS and a NAC. Our approach is to first match the common pavidsert the LHS and a NAC,
then continue the matching along the NAC, and finally, if nbd/&IAC matches were found,
continue from the match of the common part along the LHS.

A NAC having a common part with the LHS means that there is agsaph of the LHS that
overlaps with the NAC. We denote this intersection as a predition graph calledbridge In
general, computing the bridge would require us to find theimarm common sub-graph (MCS)
between these two graphs. Solving the MCS isomorphism enold NP-complete. However,
making use of the labels in the Himesis pattern graphs redineecomplexity to linear-time.
The bridge can therefore be constructed as follows: if a riedea label present in nodes of
both the LHS and the NAC, then this node is part of the briddso fevery edge in the smallest
graph between the LHS and the NAC whose source and targes rmoden the bridge is part
of the bridge. However, recall that pattern nodes may al$d a@onstraint for each attribute
from the meta-model of the domain of the transformation.slteach meta-model attribute of



4.4 Match and Rewrite Operations in Himesis

103

Algorithm 16 match (G, LHS, context)

1:
2:
3:

R

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:

validMatches— 0
moreNACs«+ False

for NAC in LHS.getNACs () do
bridge<+ NAC.getBridge ()
if V(NAC.getBridge ()) > Othen
moreNACs«+ True
else
for nacMatchin computeMappings (G, NAC, context)do
if NAC.checkConstraint ~ (nhacMatch)then
return 0
end if
end for
end if
end for
if not moreNACsthen
for lhsMatchin computeMappings (G, LHS, contextdo
if LHS.checkConstraint ~ (lhsMatch)then
validMatches«— validMatchesJ {lhsMatch}
end if
end for
return validMatches
end if
mMaxNAC «+ LHS getNACwithMaxBridge ()

B + maxNACgetBridge ()
for bMatchin computeMappings (G, B, context)do
for maxNACMatchingin computeMappings (G, maxNAC, bMatchu context)do
if not maxNACcheckConstraint  (maxNACMatching)then
goto 20
end if
end for
for lhsMatchin computeMappings (G, LHS, bMatchu context)do
if LHS.checkConstraint  (IhsMatch)then
for NAC in LHS.getNACs () do
if NAC # maxNACandV (NAC.getBridge ()) > Othen
for nacMatchin computeMappings (G, NAC, IhsMatchu context)do
if not NAC.checkConstraint  (nacMatch)then
validMatches«+— validMatchesJ {lhsMatch}
end if
end for
end if
end for
end if
end for
end for
return validMatches
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a bridge node is computed as the conjunction of the correbpgrattribute constraint in the
LHS and the corresponding attribute constraint in the NAGteNthat no constraint is added
on the pattern graph of the bridge as in the LHS or NAC cases. dasy to show that the
time complexity of constructing the bridge between the L8 an NAC isO(V + E), where
V =max|V(LHS)|,|V(NAC)|) andE = min(|E(LHS)|,|E(NAC)|)°.

In thematch procedure, line 24 computes the bridgevith the largest number of nodes. Since
a bridge can be statically computed, all bridges have ajrbadn precomputed and integrated
in the corresponding NACs at compile-time. On line @bis matched orB with the provided
context. Then, on lines 26-3@ is matched on the NAC corresponding Bo To prune the
search space of this matching, the bridge mappings aredqao\as context together with the
initial context. Those mappings are valid since the nod&sare in the NAC as well. If a valid
match for this NAC is found, then the current matciBak discarded and the next one is tried.
When a match oB is found such that it does not induce a valid match, we m&amn the
LHS with again the bridge mappings provided as context tugawith the initial context. Each
valid match of the LHS represents a potential valid matchhef procedure. However, there
may be additional bound NACs with a bridge having fewer natles B. In this case, lines
33-41 ensure that only the valid matches of the LHS that deatxfy the remaining NACs are
stored. Note that when applying tkemputeMappings procedure orG with the remaining
NACs, the LHS mappings are provided as context together anghpivot node bound in the
LHS that were given in the initial context. Finally on line,4ly the valid matches are output.

4.4.5 Rewriting the Matches

A rule is successfully applied when proposition (4.9) iss$ed. The pre-condition satisfaction is en-
sured by the pattern matching algorithm described prelyoOsie way to satisfy the post-condition is
to modify the matched nodes in the source graph appropridietransform (or rewrite) the matches,
a Himesis RHS pattern graph is provided with a comp#edcute function encoding the appro-
priate modification actions. Given the LHS and the RHS pattggaphs, the rewriting of a match
M = {(p,s)|p € LHS A s € G} can be statically determined. For eaghs) € M we perform the
following steps in order:

1

. If the label ofp is present in both the LHS and the RHS, theruadate operatioms executed.

Each attribute o6 is set according to the action specified in the correspondiata-model
attribute of the RHS node that has the same labgl as

Let C represent the graph whose node labels are present in the RH®thin the interface
graphK. Also edges ofC are constructed in a similar way as for the bridge,, E(C) =
{(ni,nj)|ni,nj € V(C) A (ni,nj) € E(RHS)}. Then acreate operatioris applied to the nodes
and edges df. For each node (or edge)¥C) (or E(C)), a corresponding source node (edge)
is created in the source graph. Furthermore, the attrimftése new nodes are initialised ac-
cording to the action specified in the corresponding metdehattribute of the respective node
inC.

9V should also be multiplied by the maximum number of meta-rhatebutes, which is small in practice.
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3. Ifthe label ofp is present in the LHS but not in the RHS, thededete operatioms applied and
removess from the source graph. Note that in IGraph, deleting a nodenaatically deletes its
adjacent edges.

4. If pis assigned a pivot identifie?, thenX will be mapped te.

5. Finally, after all nodes have been processed, we applgdtien specified in the RHS on the
source nodes that are vh as well as those created frdn

Since the rewriting phase is compiled, its run-time comipyeis linear: O(|V (LHS)| + |E(LHS)| +
IV(RHS)|+ |E(RHS)|) Note that according to the graph transformation literafgeKR97], Hime-
sis’ transformation procedure follows the Single-Pusi{&RO) approach as opposed to the Double-
Pushout (DPO) approach. The identification issue of theirgdgueondition in DPO is avoided thanks
to our labelling mechanism in place. That is because evetg imoeach pattern graph is unique and
thus may be mapped to exactly one node in each matching. Vedxglicitly chosen to solve the
dangling edges issue automatically. That is, if a matchedceonode must be deleted, all its adjacent
edges will be deleted too. This has the advantage of redtioegwgumber of rules in a transformation.

45 Related Work

In his Masters thesis, Provost [Pro05] described an eftiédramework for graph-sub-graph isomor-
phism. The implementation of Algorithm 14 is based on hiskwétowever, his approach does not
address pattern matching as used in model transformatMdsts.there is no evaluation of the perfor-
mance of each CRUD operation as done in this chapter.

To compare Himesis with other graph transformation apgrescwe provide our results for a
standard graph transformation benchmark: Bhstributed Mutual Exclusion Algorithrbenchmark
presented by Varré in [VSVO05]. Although some measurememieweported in the original paper,
Geisset al. [GBG'06] provide a more complete spectrum of measurements witle hools. In the
latter paper, the measurements were carried out on an AMDABO00+ with 1GB of RAM. To re-
use these results, we multiplidseiss’ figures by 0.684 to compensate for the speed of ouepsot.

The tools used for this comparison are the following. Thedfarmation tools GrGen.NET SP
[GBG'06], FUJABA [FNTZ00], and PROGRES [ZS92] use search plahn@ues for the matching
phase. An approach from Varr6 [VFV06] (hereafter refermeds VarroDB) to execute graph transfor-
mations directly in a relational database is also constiékée also include GrGen.NET PSQL which,
in contrast with GrGen.NET SP, also stores the graphs ireioekl database. Finally, AGG [Rud98]
is the only tool that uses a CSP for the matching phase. Akexgents were performed without any
of the optimizations suggested by the benchmark, as no mezasuts for these cases were available
for the other tools. As Himesis provides a framework for mpafating graphs, we integrated it in
T-Core, in combination with Python and calledRy-T-Core. More specifically, thé-Core matcher
calls the procedurmatch form Algorithm 16 and th&-Core rewriter calls theexecute method of
the corresponding RHS graph to perform the rewriting.

10This factor is obtained from the SPEC organization at Httpviv.spec.org/cpu2000/results/cpu2000.html.
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Figure 4.12: Performance comparison for the DistributeduduExclusion Algorithm benchmark
with no optimization.

For the Short Transformation Sequence experiment (ST8ur&i4.12(a) shows thatCore’s
performance is average compared to the other tools. It hemmrforms 5.6 times better thaeG,
which is the only other tool whose matching phase is alsoemginted as a CSP. For the As Long As
Possible experiment (ALAP), Figure 4.12(b) shows thateamore, T-Core’s performance is average
compared to the other tools. It however performs 9.2 timeéebéhanAGG. For the Long Trans-
formation Sequence experiment (LTS), the only resultslavta are for N=1,000 (N processes with
one resource). Figure 4.12(c) shows tina&tore performs quite well compared to the other tools. It
now performs on average over 100 times better th@® and about as fast as GrGen.NET using
ProgresSQL. The table in Figure 4.12(d) summarizes thdtsesu
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4.6 Conclusion

This chapter describes an efficient implementatiori-Gore, a library of transformation building
blocks. Himesis, a low-level framework for graph manipigiatbased on the IGraph library, allows
one to efficiently manipulate models encoded as graphs. Tihetpe CRUD operations are very
fast even for models with up to §@lements. Moreover, an efficient pattern matching algorittas
implemented to perform model transformation on models éad@s Himesis graphs. The comparison
of performance with other existing tools and approachesvstbat Himesis is indeed an efficient
framework. The implementation &fy-T-Core, described in Section 3.5 of Chapter 3, relies entirely
on Himesis.

TheT-Core API can be called from a modelling language or a programnangliage. This “glue
language” provides the scheduling of transformation wemntsapsulated imCore. Py-T-Core is the re-
sult of implementingl-Core in Python, thus making model transformation available tgpammers.
Himesis is therefore an optimal choice for implementinguhderlying data-structures and matching
for Py-T-Core.

Regarding speed, one reason for the average performandts fes graph transformation tasks
may be that Himesis is entirely implemented in Python. Feiplans are to implement the core algo-
rithms in a faster target language, such as C. Regardinatsitil beyond graphs of size $@lements,
one direction would be to store the host graph on a secondargge, such as a database, to over-
come size limitations because of limited physical memoriayArid solution is envisaged where the
host graph is stored in physical memory for as long as no himigss observed as anticipated by
Figure 4.9(a). After that threshold, the system would swatcto database storagey.,by adapting
the IGraph library as described in [ABFID9].
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Explicit Modelling of Transformations

The previous two chapters focused on the building blockd®®ingine behind a transformation lan-
guage,.e., how it operates. In this chapter, transformationsracelelledexplicitly following MPM
principles. The focus is on the other components of the toam&tion language, namely the transfor-
mation units and the patterns language. Despite the pisaificance of transformations for model-
driven approaches, there have not been any attempts taiélyptnodel transformation languages
yet although a number of benefits are to be gained. Firstsfimamation developers may change the
design of their transformation languages by modellindyeathan programming. Second, they may
use environments to create transformations that are cumgdmwith respect to the input and output
languages involved. Therefore, this chapter identifiesudises, and demonstrates some of the above
advantages. In particular, it suggests ways to systentigtgigoport developers in creating transfor-
mation languages by means of semi-automated meta-maglellin

5.1 Introduction

Model-driven approaches are gaining popularity both inftren of being based on standard mod-
elling languages, such as the UML [Obj09], as well as donsaieeific modelling languages (DSL)
[GTK™07]. In both instances, the aim is to increase developeryatddty by (2) raising the level
of abstraction at which systems can be specified (for UML) @)dby lowering the impedance mis-
match between a modelling language and its application dofA&07] (for DSLs). There are still
many open problems with respect to the economic developafddELs, but their definition is well
understood.

This shifts the focus on transformations which have a nurobapplications (c.f., Chapter 1.2).
A number of transformation paradigms existsy., template-based, rule-based, relational, with or
without explicit control flow and are supported by variouplementations (c.f., Chapter 2). They
provide tremendous value for developers but, in each imgieation, the transformation paradigm
is hard-coded to be used as is. The implementations do neidgra way to interrogate or modify
transformation definitions as first-class transformatiauels [BBG" 06]. This is surprising as there
are a number of benefits to be gained when treating transfinsaas first-class citizens [BF03,
TJF"09] which are explicitly modelled and amenable to introsipecand modification. We identify
the following potential advantages:
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e It becomes easier to explore the language design space bygradierations to the control flow,
mapping, and pattern specification parts of the languageio08ly, this requires modelling the
respective semantics, but once available, alterationsetgyntax and semantics definitions of
such transformation (meta-)models should be easier togerthan the respective changes in
a code base.

e Instead of using @eneric pattern specification languag® be used for all input and output
languages, one can utilizeistomized pattern specification languagesa case-by-case basis.
Automating the creation of such customized pattern spatific languages opens up a cost-
neutral way to achieve customized transformation defimi@ovironments providing increased
rigour.

e Transformation definitions can be the subjects of othesframations, thus facilitating the con-
cept of higher-order transformations [TJ89]. Higher-order transformations are of particular
interest since they enable a separation of transformatocerns which are either harder, or
even impossible, to realize with standard multi-stagesfiamnations. This is achieved by split-
ting a complex transformation into simpler ones and theegréting them with a higher-order
transformation.

The following section introduces our typical transforroatexample which will be used as the ba-
sis of subsequent discussions. In Section 5.3, we investiga automated construction of customized
pattern specification languages, using the componentsateda, augmentation, and modification,
exploring and discussing alternative solutions. This gles a systematiprocedurefor explicitly
modelling transformation languages. Finally, furtheatetl work is discussed in Section 5.5.

5.2 A Typical Transformation

Next
1 0..1

1
1
1 fromState * ! .
State FSATransition Event ! Place 1 * Arc 1 1| PNTransition
name : string 1 toState * | event : string label : string ! tokens : integer weight : integer
isInitial : boolean current : boolean| | name : string toPlace: boolean
isAccepting : boolean Constraints: | -
current : boolean - For all State: name is unique X Constraints: o
- Exactly one State is initial 1 - For all Place: name is unique
1 .
- Exactly one State is accepting ! - Forall Plat_:e. tokens > 0
- Exactly one State is current . - For all Arc: weights > 0
- Exactly one Event is current !
(a) y 1 (b)

Figure 5.1: (a) FSA & (b) Petri net meta-models.

The example that we will use in the remainder of the chaptidluirate our arguments is a typical
case of a DSL being assigned a semantics by translatingiaitdgrget formalism with known seman-
tics. In order to define the semantics of Statecharts anéféorpn reachability analyses on them, one
can translate them to Petri nets [dLV02]. Another reasorcémsidering this particular translation is
that one can use Petri nets as a common semantic domain feclstéas, sequence diagrams, and
activity diagrams. For the purposes of this paper, howevenestrict ourselves to translating finite
state automata (FSA), rather than Statecharts, into Rei Mhe resulting transformation definitions
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of this translation are much simpler but still rich enougliltestrate our arguments. Figure 5.1 shows
both meta-models. Thevent attribute of theTransition class should have been represented as an
association to the clagdvent instead. However, this choice was made to intuitively repné the
concrete syntax of a transition (displaying the event laipetop of the arrow) irAToM3.

5.2.1 Finite State Automata as Language Recognizers

More specifically, we interpret our state automata to beuagg recognizers.e., they either accept
input sequences as belonging to respective regular laeguagnot. For the sake of example, recall
Figure 1.5 from Chapter 1. On the left hand side, the figurevshlosample input sequencegdés ”)
and a finite state automaton accepting the langygge*s. In our example, we want to simulate the
execution of the finite state automaton in the context ofivéng the events from the input sequence
in order to ascertain whether the input sequence is a sentdribe language. Note that in the meta-
model of the FSA, we assume only one accepting state as medtia the constraints. To this end,
we translate such scenarios into corresponding Petri seg¢stlie right hand side of the figure) so that
the behaviour of the Petri net model is equivalent to thenitkéel behaviour of the FSA model.

5.2.2 Translating Finite State Automata To Petri Nets

Figure 5.2 shows the transformation rules that are requoerhnslate a finite state automaton plus
an input sequence into a Petri net that can be used to sintbh&a@utomaton execution. The rules
behave as graph transformation rules with single push®R6) semantids Their concrete visual
representation is composed of three components: a LHSipattehe left of the arrowhead, a RHS
pattern to its right, and possibly multiple NAC patterns boed by dashed lines. Also, these rules
employ numerical labels to indicate identity of pattermedmts as explained in Section 1.5.

The scheduling of the rules is controlled by a modelling anditation language adapted to graph
transformation [SV11]. Part Il of the thesis is dedicatedte precise specification of this trans-
formation language. The general idea of the transformasidinst to map the automata of the FSA
model, then the event list, then making the link betweenwein the Petri net model, and finally to
ensure the language recognizer behaviour and remove glbtany artefacts. The rules in Figure 5.2
are applied following the order they appear:

1. TheruleState2Place is the first to be applied, mapping an FSA state to a Petri meegplOnly
the place corresponding to the initial state has a tokenebaar, it is applied iteratively for as
long as there are unmapped FSA states remaining. Note themue of generic nodes and links
(the small filled rectangles linked to dashed lines). Theyaadraceability links to retain which
Petri net element is mapped to which FSA element.

2. The ruleNextPlace is applied only once. This creates a single place “NEXT” thgit make
the bridge between Petri net model part modelling the aut@anad the part modelling the event
list.

LActually, it is a variant of SPO where the dangling edge peobtemains but the identification problem is resolved:
if two elements of the same type occur in the same pattemviiebe mapped to two distinct model elements.
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Figure 5.2: The transformation rules for the translatiG@mhantics transformation from FSA to Petri
nets.
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3. The ruleFSA2PNLoopTransition — andFSA2PNTransition  map FSA transitions to Petri net
transitions. The two rules are applied iteratively as befbut the choice of which rule is applied
is non-deterministic, since they are sequential indepande

4. The ruledHeadEvent2Place , Event2Place , andEndPlace create Petri net places correspond-
ing to the first FSA event, those in the middle of the list, ane fast event (called “END”)
respectively. Only the place corresponding to the headtewethe list has a token. The rule
Event2Place is again applied iteratively, but the other two are only aapbnce.

5. Then the ruléNext2Transition maps the event list links to Petri net transitions. The rale i
applied iteratively.

6. The ruleEnableNextEvent , applied iteratively, creates an arc between the NEXT pdackev-
ery transition in the Petri net modelling the event list,epicthe transition that has an incoming
arc from the place in the head. This forbids the automatagfahte Petri net to fire transitions
without the event list part firing first.

7. The ruleAcceptPlace is applied once. It creates a transition from both the placeesponding
to the accepting state and the END place to a place “ACCEPMH& Jemantics of a token
present in the ACCEPT place means that the string encodéxiavent list is recognized by
the automaton.

8. The ruleCreateUniqueEventPlace  , EventPlace2UniqueEventPlace , andEventLabel2-
Transition  create intermediary places between the automata part arevémt list part in the
Petri net. This ensures that the label of the event in thetdistns correctly mapped to the
transition with the same event in the Petri net model. Theehules are applied in this order,
each iteratively.

9. Finally, the ruleDeleteGeneric  removes all generic nodes. Thanks to the SPO semantics o
the rule, all the links connected to generic nodes,generic links) are removed implicitly. The
rule is applied orall its matches at once.

Although a proof of correctness of this transformation vadug ideal, we only focus on a potential
issue of semantics between FSA and Petri nets. We are waleavghe tension between the “must
transition” and “may fire” semantics of finite state automatal Petri nets, respectively. In timed
Petri nets, this difference may lead to a situation where igefstate automaton does not change
states anymore even thoughshould just because the Petri net used for simulating it does ret fir
transitions anymore, even thougltduld However, the place/transition nets we assume do not creats
this mismatch and a simulator for them will fire enabled titamss. We leave the support for these
kinds of property preserving proofs for future work.

5.3 Explicit Transformation Modelling

In this section, we describe and discuss the explicit modgbf transformation definitions as an
enabler of customized transformatidavelopment environments
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Figure 5.3: (a) Meta-modelling of model transformationd én) the MDA meta-layers.

Meta-modelling, i.e., the explicit specification of a language’s well-formednessstraints, has
become popular because of a number of associated advantages

e the specification is not hidden in the code of a tool, makirgagier to understand and correct;
¢ the specification can be altered by users of the tool instesetjairing a new tool release;
e One can reason about the specification and the models itilbescr

The same advantages apply if metamorphosing is not onlyeapi@ modelling language definitions,
but also to transformation definitions. While there is a ad&sble initial investment to be made in
explicitly modelling a transformation language includig semantics, the prospect to more easily
experiment with language features, customize them foarepurposes, and allow transformations
to be reasoned about (since modelled) and/or modified makesnvestment worthwhile. Clearly,
in order to enable the last aspect mentioned above, theédramstion language’s mapping approach,
e.g.,rule-based graph transformation, needs to be explicitlgetied.

5.3.1 Models, Meta-Models, and Transformations

The diagram in Figure 5.3(a) depicts the relations betwetarsformation and the artefacts it is
involved with.T is theoperationthat transforms a modéll into a modelM’. They conform to their
respective meta-mod®M; andMM,. Mt models this transformation and, conversdlyexecutes
Mt. In fact, Mt is amodelof a transformation that transforms any modeMi4 into a model of
MM,. MMt is ameta-modebf all transformations that transform any meta-model. Siexerything

is modelled explicitty MMM is themeta-meta-model i.4t,is the meta-model of the language used to
describe meta-models. TypicalMMM conforms to itself in a sound bootstrapped environments Thi
explicit point of view on models of transformations is cortipke with the model-driven architecture
(MDA) meta-layers [KWBO03] depicted in Figure 5.3(b). It pks a transformation at the level of
real systems (the bllayer), a model transformation (or transformation modekha instance level

2Linguistic meta-modelling [AK07], to be precise.
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(the M; layer) and the transformation language at the level of UMdssldiagrams used to define a
meta-model (the Mllayer). In MDA, the Ms layer would represent the meta-model of UMe&., the
meta-object facility (MOF).

The goal here is to provide transformation developmentrenments customized to the specific
domain of application. Therefore the focus should b&t, the meta-model of all transformations,
to provide a general solution. Unlike the mapping and cdmtspects of a transformation language,
its pattern specification sub-language depends on othgudayes: the domain of the transformation.
The input and output languages of a transformation determinich pattern specifications for the
pre-condition and the post-condition can be consideretfaehed. The underlying assumption here
is that the pattern specification language should not bergetwefit all possible input and output
languages, but specifically tailored to the input and ougnguages involved.

5.3.2 Generic versus Customized Pattern Specification Lang uages

Some studies have shown that using appropriate visual magleldvantageous for a better under-
standing and a faster modification of software [Whi97, NPICB% this is one of the main aims of
DSLs, we will assume visual concrete syntax of rule pattpatsgications rather than textual ones.

The most economic approach to providing a pattern specdditdénguage is to offer a generic
one. Most tools do not use concrete syntax for specifyingsiamation patterns and thus are able to
use the same generic (often UML object-diagram-inspirattepn specification syntax for all possible
input/output languages. They often also have an underlyamgeric (often MOF-like) representation
format which can be used to represent elements from any/oygput language.

There are good reasons, however, to consider using a pajpecification language which is
customized to the input/output languages involved:

e One may use pattern specification visualizations which dapi@d to the languages involved.
Even if no concrete syntax is used, one may still want to coste the syntaxe.g.,to ade-
quately visualize connector elements.

e A customized syntax allows excluding patterns from beingcged that do not have a chance
of matching sub-graphs in the host graphs. For instancégrdntext of Petri nets, a pattern
consisting of an arc linking two places will never be matcbedany valid Petri net instance
(i.e.,conforming to the meta-model in Figure 5.1).

A generic pattern specification language will allow any @attto be expressed whether or not it will
be able to match sub-graphs from the input language(s) argensub-graphs conforming to the
meta-model(s) of the output language(s). Just as a plairasheapecific modelling tool has advan-
tages for its users, guiding them to produce meaningful nspdecustomized transformation pattern
specification tool also aids in avoiding meaningless patggrecifications. The main disadvantage
however is that a customized pattern language requireswatefor the transformation language en-
gineer. Whether this customization is achieved by chantfiagepresentation format for each gener-
ated transformation definition environment or by just exxjiag a language definition against which
generic pattern specifications are checked is immaterihlg@ser, but a tool builder decision. In the
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following, we assume that, in one way or another, patterifpations can be checked for confor-
mance to a pattern specification language definition. Aswdtresmethod needs to be identified that
enables these conformance checks in an economic mannkr offering the transformation language
user maximum benefits.

5.3.3 Meta-models versus Conformance Checks

Unfortunately, providing a customized pattern specifa@atanguage is not as easy as simply reusing
the corresponding input/output meta-models. First, dehmgna full adherence of pattern specifi-
cations to original language definitions is not practicaall minimal multiplicity requirements of
language definitions were enforced, one could not specigulipatterns such aBventLabel2-
Transition  of Figure 5.2, which refer to model fragments, ignoring mmal multiplicity require-
ments. Second, one may want to provide several levels ofirigith respect to checking the well-
formedness of pattern specifications. While the transfaonalesigner edits a pattern specification,
one most certainly does not want to enforce all well-formesgnconstraints. It also should be possi-
ble to save ill-formed sketches to be worked on later. Thessdwt mean, however, that the complete
absence of all potential well-formedness checks is alwag®eést choice in such cases. Table 5.1 lists
potentially useful levels of conformance checking rigamoess. There are two ways to enable the use
of such levels of conformance:

1. either one creates modified language definitions and pesf@ normal conformance check
against them, or

2. one uses original language definitions, but with accgigimodified conformance checks.

The second option has a number of advantages:
e One can simply use the original language definitions; treen@ineed to create multiple variants
of them.

e Switching between conformance levels does not requirewlitels of a meta-model; the latter
is quite feasible though with an appropriate architecture.

e The alternative 1. (above) cannot use a standard confoerk anyhow (see Sections 5.3.4
and 5.5).

However, there are also a number of disadvantages:

Level of rigour Description

Free form no constraints at all
Valid elements elements are typed by the meta-model
Valid multiplicities  (relaxed) multiplicity constraints are enforced
Valid constraints  (a subset of) meta-model constraints are enforced

Table 5.1: Levels of Conformance.
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e Some generic way to extend languages defined by meta-madedguired; pattern specifi-
cation languages require additional features beyond tiggnal input/output languages (see
Section 5.3.4). Customized meta-models can easily incatpthese.

e Custom conformance checks are harder to reason about tstmntmeta-models; in the ab-
sence of a fully modelled action language, conformancekshed! be implemented in some
programming language making it harder to see and analyserefation they actually imple-
ment.

e Conformance checks are harder to customize by users; oramstion engineers can be ex-
pected to alter the transformations that yield tailoredasmabdels but may not be able to re-
program conformance checks.

e Swapping conformance checks means that the transformdéweelopment will remain the
same; swapping meta-models opens up the possibility tohese for the automated gener-
ation of dedicated development environments with difigsets of control elements.

Finally, there is another motivation for supporting morarttone mode of well-formedness checking
which can only be enabled by using multiple meta-model vassitypically, transformation defini-
tions comprise layers of rules in the sense that one will edglérules from one layer to have matched,
and then match no more, before the next layer of rules willdeduThis layering often exists inde-
pendently of whether or not it is dealt with explicitly (suak inAGG). For example in the FSA to
Petri nets transformation, the nine steps enumerated itio8€s.2.2 correspond to such layers. In
particular with in-place transformations, the input andpo languages change from layer to layer.
The first layer’'s input language is the source language wtsileutput, the input to the next layer,
will typically contain generic links which are not part oftlsource language (see Section 5.3.4). The
last layer’s output language is the target language, wheakgreceding layers will produce either
augmented versions of it or mixtures between the sourceangdttlanguages. The availability of a
series of adapted meta-models may aid the transformateslajeer to understand what the layers
involved are and assign rules to them accordingly.

We have not yet pursued the idea of using a series of tranatmmlayer interface language
definitions and it would be challenging to automate the gar@r of these intermediate language
definitions. Luckily, however, the creation of customizeditprn specification languages from original
input/output language definitions can be automated veri; wel

5.3.4 Semi-Automated Meta-Modelling of Pattern Specificat  ions

The previous section motivated the use of variants of caiigmeta-models for defining the well-
formedness of pattern specifications. In this section, veeudis how one can create such variants
systematically and thus automate the process.

Figure 5.4 proposes a meta-model of a rule-based transfiomanit: it refers to pre- and post-
condition patterns as well as the pattern elements theyacontvhen adapting transformation lan-
guages to specific input and output languages, one needotatih@se pre- and post-condition pat-
terns so that they are fit to be used for the respective inpdibatput languages. We obtain the re-
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Figure 5.4: The meta-model of a rule.

quired tailored pattern specification meta-models byisigkvith the original language meta-models
and then subjecting them to a number of changes. The requiegelmodel metamorphosis, called the
RAM process has three distinct components: relaxation, augmentadiwch modification. Figure 5.5
shows the result of applying these steps to the finite stathima meta-model of Figure 5.1. This
defines the pattern language of the rules designed in Fig@re 5

Relaxation

Original language definitions cannot be used as is for defithe well-formedness of pattern spec-
ifications. First, often transformation designers aim taahdor any one-of-many element types,
e.g.,all sub-classes of a super-class. Such generalizationy@oally present in original language

definitions but as abstract concepts which cannot be inatadt One relaxation step therefore is to
turn such abstract concepts into concrete ones.

Second, as mentioned before, enforcing minimal multipfliconstraints would be completely
impractical. A further relaxation step is, therefore, tduee all minimal multiplicities to zero. This
allows representing fragments of meta-model instancé®rahan pattern models that completely
conform to the original meta-model. For example, tlegt association now has a.Q multiplicity
as opposed to 1 originally on its source end. This allows onepresent such an association link
isolated from its source and target elements as shomemniLabel2Transition

Third, only a subset of explicitly formulated original carasnts €.g.,using OCL) can be active
for the purpose of checking pattern specification well-fedmess. All constraints concerned with
ensuring completeness of models are potentially unseitiolthe inherent fragment-like nature of
specification patterns. The relaxation process could aatioaily filter out constraints with the help of
a corresponding naming scheme for constraints or manualyged augmentations. But we currently
believe any further automation will be difficult to achieviéhis is why we refer to the meta-model
generation asemiautomated.

A potential further relaxation is to raise all maximum mpilicities to “unbounded” in order to
allow intermediate results that can be helpful to drive tta$formation process, despite the fact
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MTpre_current : constraint MTpost_current : action

Figure 5.5: Generated pattern specification meta-modei fhre RAM process.

that they would be ill-formed as end results. However, waiarthat purposefully violating well-
formedness requirements in this way amounts to “hackingl’strould be avoided. We recommend
using so-called generic links for these purposes instead.

Augmentation

To be fit as pattern specification meta-models, input/outpeta-models also need to be augmented
with features required for transformation purposes. Irukegb.5, all types are made descendants of
MT_Element so that they inherit features that all elements that may @ppea pattern specification
must havee.g.,a way to label them for identity matching.

The generated meta-models also feature additional gemedies and links which are often nec-
essary to drive the transformatioe.q.,see the generic connectors between states and places in Fit
ure 5.2). They allow connecting elements that conform tosthece and target meta-models when-
ever needed, without violating the meta-model of the pastefrace elements are considered here
as special kinds of generic elements. Note that althoughr€&i§.4 shows a single class diagram



120 Explicit Modelling of Transformations

representing the meta-models of the pre- and post condiierns of each the input and output
meta-models, they are in fact four separate meta-modedstarrthe pre-condition patterns of FSA,
one for the post-condition patterns of FSA, one for the pmeddtion patterns of Petri net, and one for
the post-condition patterns of Petri net. Neverthelessnthta-models of the pre-condition pattern of
FSA and Petri net are connected (carteisan product) thrtheggeneric nodes and links. The same
applies for the meta-models of post-condition pattern chdarmalism.

Elements which are used in pre-condition patterns (sulstgp@Tpre_element )also need a flag
feature that tells the pattern matcher whether to look facekypes or allow sub-type matching as
well. This allows one to havabstract rule§dLBE"07] which is very handy for the transformation
designer who, instead of specifying the same rule for eabkiygue, only needs to specify one rule
with the corresponding element flagged to also match sudstyp

Parameter or pivot passing is also a very useful featurecémdition pattern elements may be
pre-bound to model elements before the rule matches: irgranpeters/pivots. A post-condition pat-
tern element (subtypes ™Tpost_element ) may be assigned to a specific model element that can
be used as input pivot in another rule: output parametetgiNote that, in the case of query (as
opposed to a rule), pre-condition pattern elements alse tieevpossibility to specify an output pivot.

Depending on the expressiveness of the pattern languagmdta-model can be augmented with
further features. A former version ¥MTS offered the possibility to specify multiplicities on assoc
ations in pattern [LLCO5]. For example, if an associatiok lIA—B is annotated with 1 on the A end
and 1.2 on the B end, this would mean that exactly one A must be fonddtanust be connected to
one or two B’s.

In the relaxation step, some all or none of the original nmetatel constraints may have been
removed. However, additional constraints on the pattegmehts may be required on the augmented
structurej.e.,on the properties that were added on top of those existinggtiginal meta-models,
not in the shared dimension. For example, the notion of labsladded. Then an additional constraint
on the pattern meta-model is then required to ensure theienéss of a label within a pattern.

In the original meta-models, it is possible that no concsgte#ax was specified for abstract ele-
ments as they will never be instantiated. Neverthelesgusecof the relaxation step, such elements
can be instantiated in the patterns and therefore requioaeete representation. The remaining dif-
ferences between the original and generated meta-modeérts are all modifications of existing
features.

Modification

The source and target meta-models of the transformatioditiezent from the meta-model of the
patterns. The latter should then have a different name on laedifferent namespace. Furthermore,
although all the concepts of the original meta-models aesgmt in the pattern meta-model, the in-
dividual elements are completely modified. The modificaditimat need to be applied depend on
whether we want to obtain pre-conditione(, NAC and LHS) or post-condition.g., RHS) pattern
specifications.
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In the pre-condition pattern specifications, one does nat teeassign an actual value to attributes
of the original meta-model classes, but specify a condtreor example, a pattern requiring a place
to have at least one token cannot assign a value to the tokdoute of theMTpre_Place class. On
the contrary, theMTpre_token attribute holds a constraint on theken value of a matched model
element. Thus, we need to replace the respective typesrifustts with the type ¢onstraint .
This allows the transformation designer to specify comstsdor element features, such as

PreNode(1).name="NEXT"

in theNextPlace rule of Figure 5.2. For post-condition pattern specifiaatie need to allow actions
rather than constraints, so that the transformation desigan assign values of attributes, among
other potential actions. In ruldextPlace , the “=" in the RHS part of the rule is an assignment
action rather than an equality check. Note that the samentparid modification scheme is applied
to classes, associations, and role names.

Finally, we sometimes need to modify the concrete syntaxanfiliage elements whose size or
natural layout is not conducive for specifying patterns. &ample, in a modelling environment for
designing Petri nets, tokens (represented by a dot) willdrgred inside a place (represented as a
circle). If places and tokens were modelled by classes iRP#ig net meta-model, the concrete syntax
of the association between these two concepts would be &tgipal constraint on the visual syntax.
In this case, the presence of the association is implicihéomhodeller since the token is centred in
the place. However for the transformation designer, thap@ation must be explicitly represented
and accessible to, for example, assign values to the augattributes or bind it to a pivot. Also,
elements which are normally not rendered at all, such aanoss of formerly abstract classes or
association ends, need to be assigned some concrete sgritet they may be referred to in a visual
manner.

5.3.5 Implementation of the RAM process

The RAM process was integratedAmoM®’s meta-modelling process. After having defined the meta-
model of the source and target domains of the transformgtiertransformation engineer can request
to generate the relaxed, augmented, and modified (RAMifiedieon of the meta-models, one for the
meta-model of the pre-condition patterns and one for thenmeidel of the pre-condition patterns.
He can then load the meta-model of the transformation wotssisting of LHS, RHS, and optionally
NAC components of a rule or query. Patterns can then be emtstt for each component as illustrated
in Figure 5.6. The following summarizes how each step of tA&Rprocess is implemented:

Relaxation

Concretize abstract classeschanged thesAbstract  attribute of all classes. This is accessed from
the abstract syntax graph (ASG) nodes: the elements at Haydr.

Reduce multiplicities: changed theardinality attribute of all associations.

Constraint filtering: manual. The modeller must modify/remove them prior to th&/Rgeneration.
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Figure 5.6: A transformation rule model ATom3.

Augmentation

Pattern elements re-typing: all classes inherit from the pre-defined class&pre_Element or
MTpost_Element

Connection with generic elements:automatically inherited fronMTpre/post_Element
Augmented attributes: added the attributes to all classes (sub-type matchingt passing. .).
Augmented constraints: added label uniqueness constraint.

Concrete syntax: all copied from the original meta-model. Added a default toreabstract classes
annotated with the original class name.

Modification

Namespace:the process creates a new meta-model with the same namesgrefith MTpre__ or
MTpost__ .

Pre-condition attribute types: all attributes are typed by the type of constraint langdagéeir
value correspond to the body of a constraint methodgtr ) such that:

constr: object xGraph — boolean .

3The type of constraint and action languages are implemexststtings for the moment.
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Figure 5.7: Schema of domain-specific transformation laggs.

Post-condition attribute types: all attributes are typed by the type of action language. Mvedue
correspond to the body of an action methaction ) such that:

action: object x Graph — object x Graph.

The original attribute types are preserved thanks to getted setters added to the RAMified
meta-model. The setter takes as input the new value of dpjget and makes sure it is a
(sub-)type of the original attribute.

Adaptation of concrete syntax: manual.

To summarize, this section has discussed various alteesdtr enabling transformation design-
ers to make use of customized pattern specification languaige environments. We proposed the
semi-automated generation of customized, maximally caim&d, meta-models based on relaxation,
augmentation, and modification operations. Figure 5.7aiepiow a transformation is defined with
this approach. Following the finite state automata to Petis example, we call-sppn the (transfor-
mation) model mapping an FSA moddEsato a Petri net modeéMpy. Trsppn IS the transformation
model described in Section 5.2.2 allig sp andMpy are represented in Figure 1.5. The two models
conform to their respective meta-modM#/i-spandMMpy. Applying the technique described in this
section,domain-specific pattern languagaee generated from these meta-models, na&8PL-sa
and DSPLpy respectively. The meta-models of the patterns (specifihitw ttansformation) com-
bined with the meta-model of the general transformatiogl@ge, form théransformation language
T Lrsmpn. The transformatiofigsppn is thus completely modelled and conforms to its meta-model
T LrspopPN shown in Figure 5.5.
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Figure 5.8: The meta-layers of a transformation language.

5.4 Engineering of Model Transformation languages

Let us now take a step back and look at the chapters of thioptre thesis as a whole. In Chapter 3,
we described the building blocks of a transformation suelh, ttvhen combined with an appropriate
scheduling language, a transformation engine is compléetcribedT-Core is provided as a col-
lection of components with a dedicated API so that a transé&bion language engineer can combine
them with his favourite schedulérCore’s syntax is modelled in the UML class diagram formalism.
Chapter 4 demonstrated how a transformation engine can jlerimented to allow executing trans-
formation models. It is described using a dedicated progreng language, such as Python. Finally,
in the current chapter, both the transformation units aedpiitterns used to specify transformation
mapping are modelled. The meta-model of the transformaitnits is integrated with the meta-model
of the modelling framework, such as the onea®éM3. Also, following MPM principles, one should
use the most appropriate language to describe the patteansansformation unit. The most appro-
priate formalisms are undoubtedly the original DSLs of therse and target domains, albeit adapted
for model transformation tasks. Thanks to the RAM procéss|avel of abstraction at which patterns
can be described is the same as the one a domain-specifieengiorks at for designing models.
Therefore all aspects of a transformation language have imeelelled explicitly at the most appro-
priate level of abstraction, using the most appropriatenedisms. Figure 5.8 shows an integrated
view of (1) how to engineer a transformation, (2) how to eegina transformation language, and (3)
how this MPM model transformation engineering methodolbtgywith the standard model-driven
architecture. Note that it describes how custom-builtsfarmation languages tailored to the needs
of the domain-specific engineer are modelled.

At the very top of the meta-layers hierarchy is theta-meta-modeIMMM, a MOF-like for-
malisme.g.,the Ecore meta-model. It is the formalism that allows us tecdbe meta-models of
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modelling languages and, in particular, transformatiowgleages. This layer is often bootstrapped,
l.e.,the meta-model oMMM is MMM (itself.

Themeta-modelMM~ of a transformation language consists of three componEintt, a meta-
modelMM-Ty of thetransformation unitgs required. These basic units can take the form of rules,
queries, functions, etc. It is up to the transformation leage engineer to define them as they indicate
the building blocks used by the transformation engineeesigh a transformation model. Second, the
engine component is defined by selectiransformation primitiveencountered in the meta-model
of T-Core and weaving them with scheduling languagé®epending on the type of transformation re-
quired (query, synthesis, translation, simulation, ntigrg synchronization, etc), the transformation
language engineer will combine the approprie@re components with the most appropriate formal-
ism MMsc for the scheduler. The transformation language may gramatdaccess to the scheduler
so that the transformation engineer can explicitly spettig/order in which transformation units are
executed. Another possibility is to hide the scheduler ftbetransformation designer and internally
predefine the scheduling. The third component is the paldaguageMMp, that describes how the
transformation engineer specifies the body of a transfoomaiit. As far as rules are concerned, the
pattern language can be semi-automatically generatededg M process. This allows the transfor-
mation engineer to specify rule patterns at the same le\abstiaction and using the same constructs
as the DSMs he builds rely on. In addition to the meta-modéhefcustomized transformation lan-
guageMMr, the source and target meta-models, respectividily andMMo, are also present in the
meta-layer M.

All the elements in the M layer conform to elements in the Mayer. M1 represents a model
of the system to transform and conformsMd;. M is the result of this transformation and con-
forms toMMa. Mt is themodel that the transformation engineer designs to manipulatarness of
MM;j. It conforms toMM7y. To achieve that, the transformation engineer must defitterpa Mpy;
instances oMMp| ) that are embedded in transformation unig;(;; instances oMM~Ty), such as
rules. Furthermore, he can assign a specific schetMge ihstances oMMsgc) for executing rules.

Although we are working at higher levels of abstraction teaarce code, one should not forget
that we are buildingoftware products after all. Thus, at the Mlevel, the actual system modelled
by M1 is input to the transformation software modelled My that modifies it as intended by the
transformation model. The resulting system is modelletVlby

5.5 Related Work

The idea of employing languages tailored to certain domainst a new one [Lan66], and numerous
DSLs have been devised since. Meanwhile, the DSL approaslalba propagated into the model
engineering community. Actually, considerable contreyesxists about of whether MDE should fo-
cus on a general-purpose modelling language (such as UMhjase use of a number of smaller,
domain-specific languages.

The need to provide domain-specific model transformatioiguages was first pointed out in

4M, may still conform taMIMy, but we make this distinction to be more general.
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[RKRT06]. The authors’ approach is to generate an execution@nwient for DSLs. The frame-
work, called Marius, takes as input the EBNF grammar desuJithe abstract syntax of the DSL, as
opposed to our approach which uses meta-models descrithédlaslass diagrams with a graphical
concrete syntax. Marius is not MOF-compliant. The modehgfarmation languages produced by
their approach are template-based, rather than rule-basedr opinion, rule-based languages are
more declarative and hence reduce the cognitive effortetittmain-specific engineer for designing
transformations. Most importantly, the environment gatest by Marius is not modelled and hence
does not allow for higher-order transformation.

In his Ph.D. thesis, Van Gorp [VGO08] proposes to model modeidformations in an object-
oriented manner. The advantage is that a model transfaymiatthen considered as an object-oriented
model where refactoring, refinement and synchronizatienvall understood. In contrast, our ap-
proach models model transformations as DSMs which reduz@dental complexity and the effort
required by a developer to map domain-specific informatiamio the transformations to implement.

Bézivin et al. explicitly model transformations with “transformation oeds” [BBG'06] but for
capturing the relations maintained by transformationBerathan supporting their customization or
generation.

The need to relax conformance rules occurs in other areaslhsMorin et al. also relax an
original meta-model in order to allow the formulation of pmut specifications in the context of
aspect-oriented modelling [MBJRO7]: (1) invariant, prend post-conditions are removed, (2) all
features of all classes are changed to optional, (3) abstradel items are removed. The approach is
similar to our meta-model relaxation, but is less generat @mrently works only on class diagrams
and Java programs. The RAM process described in this chapseimed that the meta-models are
defined as UML class diagrams. This is not really a restmcsimce most CASE tools define meta-
models in this language.

Levendovszkyet al. capture domain-specific design patterns which also inllgrare fragments
of proper models [LLMO9]. Instead of creating a relaxed w@rof the meta-model, they use relaxed
conformancei.e., “relaxed instantiation”. This allows them to use one oraitanguage definition
to check both proper models and design patterns. Since tilgyneed to support this one variant of
conformance checking, this is a viable approach. In geneoalever, the explicit modelling of trans-
formations may require a multitude of conformance levelakimg the relaxation of meta-models a
more attractive option (see Section 5.3.3). Levendoesky, furthermore, observe that simply setting
all minimal multiplicities to zero will allow the formulabin of fragments which cannot be completed
to proper models. They suggest detecting such fragmentsibyg aonstraint solving. This approach
is applicable in our context as well and could be realizedduiray corresponding constraints to the
relaxed meta-models.

5.6 Conclusion

In this chapter, we demonstrated the benefits of explicithdatling transformations and proposed
ways to economically enable their definition. As a resultgdeidgransformation languages can be tai-
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lored to the source and target languages of transformatiortie same way as DSLs are tailored
to model domains. While it is not necessary to explicitly rlaall aspects of transformation defini-
tions, we have illustrated that there are benefits assoomth each such step. The explicit modelling
of pattern specifications allowed the semi-automatic geiar of customized pattern specification
language definitions based on the components of relaxatigymentation, and modification. It thus
provided a cost-effective way to obtain customized tramsédion development environments. The
transformations we presented are furthermore applicaldenide range of similar contexts. This and
their re-usability is a direct result of explicitly modelf all aspects of transformations including their
control flow aspects. We provided a tool-support and a metlogy to design custom-built model
transformation language®., the automatic generation of domain-specific model transétion de-
velopment environments.

The automatic meta-modelling proposed in this chapter deswn the pattern language cus-
tomized to fit with the domain of application of transfornmeis. Another interesting research di-
rection is to investigate how tautomaticallydefine a scheduling language tailored to the type of
transformation intended. A possible direction could begleage design patterns [LLMQ9] or using
transformations by example [KWSB10].

A possible problem with the proposed approach is that, ferylanguage used in a transfor-
mation, both the language meta-mod&M and its RAMified versiorMMg will co-exist. Thus a
co-evolution problem may arise if, on the one haktiM is later modified and evolves to a meta-
model MM’. Certainly, MMg should be adapted accordingly. For example, if the RAM @sede
implemented as a model transformation (operating at the+metdel level), co-evolution techniques
such as in [SK04, HBJ09, MV11] can be applied. Another palisibs to define an incremental
model transformation for RAM and thidMg is modified automatically [RBOV08]. On the other
hand if MMRg evolves,MM should remain unchanged. That is because typical changd®ig do
not modify core concepts in the language, but are specifiatstormation purposes only. Therefore
future improvements should only consider automaticallgpdchg the RAMified meta-model when
the original meta-model evolves.
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“If you're asking your kids to exercise, then you better ddab. Practice what you preach’”
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Modelling DEVS and its Simulators

This chapter presents some background orDikerete Event system Specification (DEVS) [Zei84]
formalism used for modelling and simulation. It is the setitadomain of the transformation lan-
guage that will be introduced in the following chapter. Oa tine handDEVS allows one to model a
system focusing on its behaviour. On the other h@®l/S models are executed through simulation.
Following MPM principles, this chapter provides a model ot nnly theDEVS language but also
a model of its simulation protocol. An extension of this MDppaoach is to replace the sequential
simulation model by a distributed simulator. Hence, thecttire and behaviour of a distributed sim-
ulator for theDEVS formalism is modelled explicitly. Simulation-based arsadyof this model of the
simulator allows for the investigation of measures suclebalyility and performance across different
alternative designs and hence for optimal design. In pdaicusing a model of a distributed simula-
tor allows one to simulate scenarios such as failures of coatipnal and network resources, which
can be hard to realize in reality. We demonstrate our modsét approach by modelling, simulating,
and ultimately synthesizing a distributed DEVS simulator.

6.1 Introduction

Distributed environments overcome many of the limitatiomposed by single processor imple-
mentations of large-scale tasks. Simulation of large n®dehsumes a lot of computational and
memory resources. In this chapter we focus on models in tker&e Event system Specification
(DEVS) [Zei84] formalism. Our experiences show that thigrfalism, thanks to its modularity and
compositionality, is highly suitable for large-scale taséuch as model transformation [SV08a].

Simulators in general and distributed, discrete-eventigtors in particular, are typically realized
using different implementation languages and hardwartgphas (processing as well as network re-
sources). This hampers realistic performance comparisetvgeeen simulator implementations. Fur-
thermore, details of the distributed algorithms used areraonly present in the form of code rather
than explicitly modelled which hampers re-use and rigom@nelysis. A distributed environment for
the simulation of DEVS models is attractive for several osss Although not the primary goal of
distributed simulation, model execution time can be reduédso, the limited memory issue for a
single machine can be overcome and models with an extrelmuglg ktate-space can be handled. Our
main goal of distributing DEVS models is for interoperalyiliHandling geographically distributed



134 Modelling DEVS and its Simulators

users and/or resources §.,databases or specialized equipment) and exploiting gréata handling
capability through specialized nodes is our main inter@sta side effect, this allows integrating
simulations running on different platforms. Furthermguegperties of distributed systems such as
fault-tolerance capabilities become accessible.

In the next section, we review the essence of the classic DavSalism from an MPM perspec-
tive as well as its simulation protocol. Section 6.3 progas®EVS model representing a DEVS sim-
ulator. It is then extended to a distributed DEVS simulatgrether with preliminary fault-tolerance
capabilities. From this model, we can synthesize or builgsaiduted DEVS simulator, implemented
on a dedicated middleware. Section 6.4 outlines the imph¢atien used for this work. In Section 6.5,
we calibrate the modelled distributed simulator with valgathered from the implemented distributed
DEVS simulator. Then, simulation experiments on the medidlistributed DEVS simulator allow us
to determine optimal values for the variables and thus rhtback the implemented simulator to be-
have optimally for the given input model. Section 6.6 conegaome of the current distributed DEVS
implementations and shows how our modelling and simuldbiased approach can be considered as
a generalisation of these different implementations.

6.2 Classic DEVS

We introduce the classiDiscrete EVent system Specificatifmmmalism and review its simulation
definition. The notation introduced here will be used fortaimainder of the article.

6.2.1 Formalism

TheDEVS formalism was introduced in the late seventies by Zeigler@gorous basis for the compo-
sitional modelling and simulation of discrete event sys¢iei84]. It has been successfully applied to
the design, performance analysis, and implementation tdthgra of complex systems such as peer-
to-peer networks [XBZPZ08], transportation systems [LU;@nd complex natural systems [FBO4].

Figure 6.1 shows a possible meta-model of DEVS in UML Classgiam notation. A DEVS
model (the abstract clag8ock) is either anAtomicBlock or a CoupledBlock. An atomic model de-
scribes the behaviour of a timed, reactive system. A coupledel is the parallel composition of
several DEVS sub-models which can be either atomic or cau@ab-models haveorts which are
connected by channels (represented here by the assosidbneen the different ports). Ports are
directional and are eithénport or Outport. The abstract classé®/Out)port can be instantiated as an
Atomic(In/Out)port or aCoupled(In/Out)port, respectively. Ports and channels allow a model to receive
and send events (any sub-clasgaént) from and to other models. A channel must go from an output
port of some model to an input port of a different model, fromigput port of a coupled model to
an input port of one of its sub-models, or from an output pba sub-model to an output port of its
parent model, as depicted by the associations of Figuré&@tk.that the dynamic semanticsmEVS
is not expressed by the meta-model. It will be informallysamrgted hereatfter.

An atomic DEVS model is a structureS, X, Y, dint, dext; A, T). Sis a set of sequentiatates X is
a set of allowednput events Y is a set of allowed@utput events There are two types of transitions
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Figure 6.1: The DEVS meta-model.

between statesin; : S— Sis theinternal transition function anddey : Q x X — Sis theexternal
transition function . Associated with each state areS— R* U {+}, thetime-advancefunction
andA : S— Y, theoutput function. In this definition,Q = {(s,e)|s€ S0< e<1(s)} is called the
total state space For each(s,e) € Q, eis called theelapsed time the time the system has spentin a
sequential statesince the last transition. The state of the atomic DEVS isailized togp = (So, €p),
but in the sequel we only considgyfor simplicity. When the time is infinite, it is said to lpassivated
and when it is zero, it is said to bensient

Informally, the operational semantics of an atomic modedgsfollows: the model starts in its
initial state. It will remain in any given state for as longthge time-advance of that state specifies
or until input is received on some port. If no input is recéivafter the time-advance of the state
expires, the model first (before changing state) producesugsut event as specified by the output
function. Then, it instantaneously jumps to a new stateipddy the internal transition function.
However, if an input event is received before the time forrbk&t internal transition, then it is the
external transitionwhich is applied. The external transition depends on theeotrstate, the time
elapsed since the last transition, and the input event.

To illustrate the atomic DEVS concept, consider a user ohmasfiormation system, who receives
a graphG every time a rule is applied. Furthermore, after analyzireggraph, he outputs a decision
encoded as an integere N five time units later. We model the user’s behaviour by an atonodel
m. Its state space iIS= {IDLE,ANALY ZING x N; the state is also used to store the computed
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integer.mcan only receive a graph as input, heixcis the set of all graphs. It also sends an integer as
output, henc& = N. Sis initially in IDLE mode. Upon reception of a grag@) mapplies the external
transitiondext((IDLE, €),G) = ANALY ZING It stays inANALY ZINGmode, until the time advance
T(ANALY ZING = 5 expires. Thenm outputsA(ANALY ZING = n € N and subsequently applies
the internal transitiolin: (ANALY ZING = IDLE. mthen stays in this mode until an external input is
received, sinceé(IDLE) = +oo.

A coupled DEVSmodel named is a structuréX,Y,N,M,1,Z =) whereX andY are as before.
N is a set otomponent namegor labels) such thaf ¢ N. M = {Mu|n € N,M; is a DEVS model
(atomic or coupled) with input sé, and output seY; } is a set of DEVSub-modelsor components
The set ofinfluenceesof a component labelled is I,,, denoting all components influenced hy
| ={ln|ne NI, CNU{C}} is the set of alinfluenceesdescribing the coupling network structure.
That is, for a given model labeh, I, represents all models (denoted by their label) that mayivece
an event output from modeh. Z ={Z nVneN,i € 1n,Zin:Yi = XaVZcn: X = XaVZic:Yi = Y}
is a set otransfer functions between connected componer@s 2N — N is theselector tie-breaking
function. 2 denotes the powerset b (the set of all sub-sets o).

The connection topology of sub-models is expressed by theeimcee sek, of the components.
Note that for a given modei, this set includes not only the external models that redepets from
n, but also its own internal sub-models that produce its dufibun is a coupled model). Transfer
functions €; ) represent output-to-input translations between compisn&hey can be thought of as
channels that make the appropriate type translations.¥@&mgle, a “departure” event output of one
sub-model is translated to an “arrival” event on a connestdmodel’s input. The select functi@n
takes care of conflicts as explained below.

The semantics for a coupled model is, informally, the palaibmposition of all its sub-models.
A priori, each sub-model in a coupled model is assumed to hedependent process, concurrent
to the rest. There is no explicit method of synchronizatietween processes. Blocking does not
occur, except if it is explicitly modelled by the output fuion of a sender, and the external transition
function of a receiver. There is howevesarializationwhenever there are multiple sub-models that
have an internal transition scheduled at the same timegqghis referred to as theaminent set). The
modeller controls which of the conflicting sub-models uigdes its transition first by means of the
select function.

Av4

/ \ c
m1 m2
¢ !

Figure 6.2: A hierarchical DEVS model.

To illustrate the coupled DEVS concept, we extend the pressexample by involving different
decision makers. It is visually depicted in Figure 6.2. Saggowe now have two decision blocks
andmp, wherem; deterministically outputs. The task is to output the computed numbers when a
graph is received. For that, we construct a coupled modehereX = {G} andY = N. We label
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the two inner model$ = {my,my} by N = {1,2} respectively. We then connect the inportof
to the inport ofmy and the inport ofm,. We also connect the outports of batlh andmp, to the
outports ofc. Therefore] = {I; = {c},l> = {c},lc = {1,2}}. As for the transfer function, we define
Z:1(G) = Z:2(G) = G for the input-to-input channels arifi ¢(n) = Z¢(n) = n for the output-to-
output channels. At simulation time (run-time), aftgrs receivedm andm, are scheduled to output
and then perform their internal transition at the same tisigge their time advance is 5 and they
received the input at the same time. The select function¢henses which inner model will execute
first, e.g.,set=({1,2}) = 1.

In this thesis, we have usedzEVS simulator calledpythonDEVS [BV01], grafted onto the
object-oriented scripting language Python.

6.2.2 The DEVS simulation protocol

To simulate a DEVS model, solver is attached to each atomic DEVSgcaordinator is attached

to each coupled DEVS andraot coordinator initiates, ends, and keeps the simulation running.
Figure 6.3 illustrates the simulation entities (modelladDEVS) representing the simulation of a

client-server model, depicting the tree hierarchy of thepted and atomic models. It also shows the
corresponding hierarchy of simulation entities.
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System receive
-— log
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Solver send_2 Solver send_2 Solver send_2

receive receive receive

Figure 6.3: The hierarchical model of client-server exam(pin the left) and and its corresponding
simulation entities as DEVS models for the distributed datian (on the right). In this case, there
are two machines involved.

In an atomic DEVS solver, the last event titpes well as the local stagare kept. In a coordinator
(the coupled DEVS'’ solver), only the last event tibpes kept. The next event tintg is sent as output
of either solver and is stored in the solvers. This requiessistent (recursive) initialization of the
t.s. Thety allows one to check whether the solvers are appropriateiglspnized. The operation
of an abstract simulator (solver or coordinator) involvaadiing four types of messages sent at time
from asourceDEVS model to aargetDEVS model:
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INIT : (so,sourcetarget t) message holding the state at which the model and the simomlati
timet are (re)set;

*: (sourcetarget,t) message to indicate that an internal transition is duenailakion timet;
X: (x,sourcetarget,t) message to carry the external input informatkpat simulation time;
Y: (y,sourcetarget ty) message to carry the output informatigrand

DONE (sourcetarget ty) message to acknowledge that one of the above messages basssuc
fully been handled.

When a coordinator receives anessage, it selects an imminent compomefrom the imminent
set by means of the select functiarspecified for the coupled model it is associated to. The ngessa
is then routed to*. When a solver receivestanessage, it generates an output mes¥dgesed on the
old state of the atomic model it is associated to. It then agegpthe new state by means of the internal
transition function. Note how DEVS output messages are pnbyluced while executing internal
events. When a simulator outputsranessage, it is sent to its parent coordinator. The coominat
sends the output, after appropriate output-to-input teties (Z; ), to each of the influencees iof(if
any). If the coupled modé! itself is an influencee af, the output, after appropriate output-to-output
translation Z c), is sent taC’s parent coordinator.

When a coordinator receives #message from its parent coordinator, it routes the mesaétge,
appropriate input-to-input translation, to each of theetitd components. When a solver receives an
X message, it executes the external transition functiors@ssociated atomic model.

After processing aiX or Y message, a solver send®@NEmessage to its parent coordinator to
prepare a new schedule. Once a coordinator has recB@Nd8messages from all its components, it
sets its next-event-timg to the minimumty of all its components and send®@NEmnessage to its
parent coordinator. This process is recursively appligd the top-level root coordinator receives a
DONEmessage.

To run a simulation experiment, the initial conditions R s, andty must first be set in all
simulators of the hierarchy. Ly is kept in the simulators, it must be recursively set too. ©tine
initial conditions are set, the main loop which sends message and waits forONEmessage is
executed until a termination condition is satisfied.

The classi®EVS formalism has some limitations such as:

e A conflict may arise in the occurrence of simultaneous irgeand external events. In this case,
the external transition has precedence by default.

e The select function is an artificial legacy of the semanticsauitional sequential simulators
based on an event list. It serializes simultaneously triggjenternal transitions.

e Therefore, the potential for parallel implementationmited to only external transitions.

e It is not possible to explicitly describe variable struetsince, once designed, the network of
components and their connections is fixed.

Some of these limitations are resolved in the widely usedlfghDEVS formalism [CZ96]. It allows
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collision handling and parallelism of DEVS models. A confitransition functio®gon: Q x X — S

is added to the classic atomic DEVS model. It is triggeredmadne atomic block receives an external
event at the time of its internal transition. The eventéeét now a set of bags of events since atomic
simulators may output events concurrently. As for the cedphodel, the select function is removed
since all delta functions run in parallel.

6.3 Modelling a Simulator

In this section, we show how the DEVS simulator describedvalman be explicitly modelled in
DEVS. First, each of the simulation entities is represeatedn atomic DEVS model. Then, we model
a distributed simulation engine for an arbitrary DEVS modéle model takes into consideration the
simulation entities, the different machines, and the comication layer. Figure 6.4 illustrates the
cluster integrating all the different modelled entitiess#ar on an inport is a shorthand notation to
represent channels incoming from all the components ofdh@esype as the source of the channel
(e.g.,everySimulator’s log port is connected to thieg_in port of theLog). A star on an outport is a
shorthand notation to represent channels outgoing toettdmponents of the same type as the target
of the channel€.g.,the control_out port of theMaster is connected to evergimulator’'s control_in
port). Dots between ports with a generic label is a shorthmatdtion to represent as many ports on
the host component as there are components of the same type asurce/target of the channel
(e.g.,the outport pattern labelledimID on Machine denotes one such outport per AS, CO, and RC).

6.3.1 The Simulation Entities

The simulation model is composed afomic Solvers, Coordinators, and aRoot Coordinator, each
modelled as an atomic DEVS block. Solvers and coordinatlistheir corresponding model in their
state. Each of these simulator models has one inpogtve and as mangend outports as there are
machines (this is needed since DEVS models lack variahletsiie). Sending and receivisgmula-
tion messages, X, Y, andDONEencoded as events) is performed via these ports. The donalao
receives aeallocation messagmdicating to which machine the simulator interoperatedgdifional
ports handlegeallocation messagesontrol messagegstop and resume), arldgging messagef®r
fault-tolerance purposes.

The Atomic Solver Model
An Atomic Solver (AS) is an atomic DEVS model. Its state is composed of:

the atomic DEVS modé¥l it simulates;

a unique identifierd such thatmap(id ) uniquely identifiesv;
the identifier of the parent d¥l, parentid

the last event timg ;

the next event timéy;

the output sed\ of M;
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Figure 6.4: A DEVS model representing a distributed enviment for a DEVS simulation.

e a bit-vectoractivePorts  identifying which outport is currently active (its size istdrmined
by the number of machines); and

e the modauthe AS is in:PAUSEDor RUNNING

An AS is reactive. It waits for either‘aevent to process the internal transition functiorivobr
anXevent to process the external transition functioMofT he state of the AS is updated accordingly
in dext @s described in Algorithm 17. It also receives a special Etran message for initialization,
INIT , holding the state the AS should be (re)set to. The DEVS midil set at instantiation-time
of the AS andactivePorts Is set to the zero vector. Its mode is triggered by a contrasagex
received from theontrol_in port and, from theeallocate inport, it receives reallocation message
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indicating the (possibly) new active outport. In the altfum, we distinguish structural elements of
the AS from those of its mod@&ll by annotating the latter wit&M.

Algorithm 17 The external transition functiodex ((S,€),X) of an AS
UPON RECEIVE INIT : (sp,sourcetarget,t) do

if o # nil  then
Mg

else
id ,parentld ,A <« target,source0
tL<—t—M.e
N 'H +1M (SM)
U+ PAUSED

end if

UPON RECEIVE X:(x,sourcetargett) do
M« 6g/lxt((s|\/|7t _tL) 7X>
L+t
In L + M (SM)
M.e<0

UPON RECEIVE *:(sourcetarget t) do
N+ NU{M (M)}
M gl (M)
L+t
ty —tL +T™ (SM)
M.e< 0

UPON RECEIVE x do
if X == PAUSEthen
M+ PAUSED
else ifx == RESUMEhen
M < RUNNING
end if

UPON RECEIVE p do
activePorts <— (O, ceey O)'activeports ‘
activePorts  [p] + 1

The internal transition functiod; clearsA. If p= RUNNINGand either\ # 0 or one of* or
X was received, then(s) is the real execution time spent for applyih, 6{\r’,'t, or 8% On the other
hand, ifINIT orx was received, ther(s) = 0. Otherwise, the time advance of the AS is infinity.
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In case/ # 0, the output functiom\ first sendsY: (A,id ,parentld .t ), followed by DONE
(id ,parentld ,tN). Note that the output is sent via the currently active outpidre output function
is extended to allow logging for handling fault-toleransed section 6.3.3): whenever a simulation
message is received, the new state of the AS is serializedwtpdt through théog port.

The Coordinator Model

A Coordinator(CO) is an atomic DEVS model. Its state is the same as for thevitSadditional
information:

e M is now a coupled DEVS model;

the list of events to be processked

the list of children (simulators this CO coordinates dowa simulators hierarchychildren
the list of children still processing an eveattiveChildren  ; and

Y is the output set oX messages for its children (not to be confused wth

The external transition function of the CO is modified frone thne of an AS as described in
Algorithm 18.activePorts  ,children , andactiveChildren are set at instantiation-time of the
CO.

The internal transition functiod; clears/\ and¥. The time advance of the CO is infinity unless
p= RUNNINGand eithe\ # 0, W = 0, INIT was received, ox was received. In this casgs) = 0.

If INIT was received, the output function of the CO produb¥#s : (nil ,id,children t), where
tis the same time in th&lIT message the CO received. Haviag= nil in theINIT message means
that the simulator is starting (usually sent only once)Wit£ 0, the CO sendX: (A,id,active -
Children ,t), wheret is the same time in th¥ message the CO received. Otherwise) i 0, the
output function first produces (W,id,parentld ,t), wheret is the same time in th¥ or Y message
the CO received. However, the CO seridgA,id,i*,t) when it received & message with timeé.
Finally, if activeChildren = 0 thenDONE (id,parentld ,ty) is sent.

The Root Coordinator Model

A Root Coordinato(RC) is also an atomic DEVS model. Its state consists of:

e id , activePorts , andchildren as defined before;
e the current simulation time;
e atermination conditio®.

When the external transition function recei33NE (source
targett) T is set tot. However, if0 is not satisfied, the simulation is stopped. The time advance
functiont of the RC is always infinity except whédONEwas received (in which case it evaluates to
0). The output function returnNIT : (nil ,id ,id ,0) when the simulation starts atnd(id,children
T) whenDONEwas received.
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Algorithm 18 The external transition functiodx: ((S,€),x) of a CO
UPON RECEIVE INIT : (sp,sourcetarget t) do

if So# nil then
Mg

else
id ,parentld ,/\,W < target,source0,0
L+t
tN  Fo0
<« PAUSED

end if

UPON RECEIVE X:(x,sourcetargett) do
activeChildren ~ « activeChildren U {i|map(id ) € IM}

W < UicactiveChildren Zn'\qﬂap(id i (%)
L+t

UPON RECEIVE *:(sourcetarget t) do
immList < {i|(i,T) eLAT =t}
i* <— = (immList )
activeChildren < activeChildren u{i*}
remove(i*, L)
L+t

UPON RECEIVE Y:(y,sourcetarget,t) do
activeChildren ~ « activeChildren  U{ili € 13,ce\ {map(id )} }

W < UicactiveChildren Zi'\,gource(Y)

A AU{ZM i D)€ Mg )}
L+t

UPON RECEIVE DONE(sourcetarget t) do
L « LO{(sourcet)} /I replacesourceentry if it already exists irL,
otherwise add entry th
activeChildren <+ activeChildren \ {sourcég
N min(tN,t)

6.3.2 Communication between Simulators

Each simulation entity runs on a machine. This is modelle@ lappannel from the simulator to the
machine being active, determined by the non-zero dimerfiactivePorts . There can be at most
one active channel per simulator at a time.
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The Local Coupling Table (LCT) holds a table mapping each simulator running on thehimac
to a unique port. When it receives an event, it is forwardetthéoappropriate port of the target after
some delay time. The delay time for local search is sampted & parameterized uniform distribution
(typically order of milliseconds). However, if the targstriot in the local table, it is forwarded to the
send_remote outport. The events received are stored in a queue to haodtigency (reception of
remote and local events). In order to ensure sequentialiérecf simulators on the same machine,
the LCT waits for a call-back from the simulator currenthopessing before the next event in the
gueue is sent. Since ASs always sendOhNEmessage after the reception of a simulation message,
the LCT expects such a message before sending the next &gefur. COs, they only send BONE
message after the reception of a simulation message thatesdctiveChildren to be empty.
Therefore the output function of the CO is extended to seREBJRNMessage after a simulation
message is received. An LCT models the intra-machine conuation of simulators.

The Remote Coupling Table (RCT) has a similar behaviour to the LCT. Additionally, itltde
a table mapping each simulator in the cluster to the machimserunning on. The parameterized
delay time is typically longer than for an LCT, taking in caderation network communication delays
(typically order of tens to hundreds of milliseconds). Hoe#e the event queue does not depend on
call-backs. An RCT models inter-machine communicationmiusators.

Machines are modelled as coupled models comprising two atomic sutbeisoLCT andActivity.
The state of arActivity is eitherACTIVE or FAILED. The Activity model generates failures on the
machine. After some time (specified in the time advance)rids afailure messagéo the LCT.
When the LCT receives a failure, it is passivated (the timeaade evaluates to infinity).

6.3.3 Fault-tolerance Entities

When running a distributed environment, several fauktamhce issues must be handled. Among them
is machine failure. As a consequence, mechanisms suchtasesteoration and resource reallocation
come into play. There are three major components modellatbasc DEVS models that ensure fault
detection correct restoration: tMenitor, theLog, and theMaster servers.

TheMonitor server monitors each machine to detect failures. At redurta intervals, it pings all
the machines through itsng outport. TheActivity then receives this request framtivity req. After
some small delay, it sends back an acknowledgement wnatifg outport. Note that if the state of the
Activity is FAILED, then no acknowledgement will be output. The monitor acdates all responses
within a certain timeout. It continues pinging (at the regudfequency) as long as it receives responses
from all the machines (from itsalive inport). However, if timeout is reached beforehand, Muaitor
considers the remaining machines that have not respondexs yailed. It subsequently notifies the
Master model.

The Log server receives the log messages from the AS, CO, and R@srthtough itdog_in
inport. The log message of a simulator, identifieddy is LOG (id ,m,s), wheremis the last simu-
lation message received ands the resulting state aft@ey; or Ot is applied. At the level of theog

Lt is possible to model machine replacement by allowingAti#ity to send aevival message
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Figure 6.5: The modal behaviour of the Master

model, a cleaning mechanism removes unnecessary tracestfedog. Whenever a third entry from
the same simulator is received, the external transitiontfan of Log removes the first one. This is
sufficient since state restoration is only applied from #tedt previous state.

The Master server coordinates the whole environment. Its state hdldssimulation hierarchy
(coupling of all the AS, CO, and RC models) and the resoutioeation (which simulator is currently
running on which machine). Before the simulation starts rttaster sends dNIT message to all the
simulators. Recall that this message provides knowledgfgegbarent of the simulator, the machine it
will be running on, its children (in case of a CO or a RC), argithitial simulation time (for the RC).
The Statechart in Figure 6.5 expresses the behaviour afltiseer. After initialization, theMaster
sends the control message- RESUMESubsequently, the RC sends message to its children and the
simulation runs as long as the termination condition isfiati. When it receives a failure notification
(from Monitor), the Master first sendsy = PAUSEto all the simulators to halt the simulation. It also
requests (frontog) for the last saved state of the simulators formerly runminghe failed machines.
We call a simulator (AS, CO, or RC) to be failed if it is alloedtto a failed machine.€.,theActivity is
in FAILED state). In the mean time, thdaster repartitions the simulators. The output function sends
the appropriate message to the failed simulators. Note that the repartitiay also need to reallocate
simulators that were running on non-failed machines. lifiestthe RCT and as well as each machine
about the new allocation of resources. Upon receiving thesfdries fromLog, theMaster then sends
anINIT message to the failed simulators in order to restore thaie 40 the previous “safe” state.
Finally, it sendsy = RESUMHEo all the simulators to continue the simulation from thairrent (or
newly modified) state.

We have modelled th@aster, Log, andMonitor components as three different servers. It is possible
to consider them as one single server. Note thamMidster could even be modularly split further. This
is an implementation design consideration.

6.3.4 Generic Instantiation and Parametrization

This model of a distributed DEVS simulator was implementealthonDEVS . To be able to simulate
this model, several simulation experiments are providedldgsary. It instantiates the€luster coupled
DEVS model which, in turn, creates the necessary ASs and C€sding to the given host DEVS
model. The necessary inports, outports, and channels aated: For experimental purposes, the
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Cluster system expects several parameters.

e The initial host modeM;

e the number of machines in the cluster

¢ the initial partition of resources specifying the node tomaof every simulation entity;

¢ the initial states of all the AS, CO, and RC models, referedy 5o (the start time of the
simulation can be specified in the initial state of RC);

¢ the termination conditiof of the simulation, specific tM;

e the distribution of the delagk ¢t for LCT to respond;

e the distribution of the delafrcT for RCT to respond;

¢ the distribution of the dela¥_oc for Master-Log communication (typically very fast);

¢ the distribution of the delaon for Master-Monitor communication (typically very fast);

e the ping frequency of theMonitor; and

e the distribution of the delaiacT for the Activity to notify that machine has not failed (typically
Dact = DicT).

We propose an experiment where the only variable is the tiefieré theMonitor times-out. The
simulation collects performance results for differentedont values. Performance can be measured,
for example, by the number of log entries in by server since every simulation operation of AS,
CO, and RC is logged.

The termination condition for the simulation experimentshlee modelled DEVS simulator is
satisfied when eithdd is satisfied at the RC level or if allctivity models are ifFAILED state.

6.4 A Distributed DEVS Simulator

We have chosen the RMI (Remote Method Invocation) as a midakelayer for our implementation
for many reasons. For our purposes of implementing a seiqlietassical DEVS simulation proto-
col, RMI simplifies distributed computing, through the tsparency it provides over remote procedure
calls. It also hides all internal implementations of the éowevel communication to maintain remote
references locally. Given the nature of our particular $ations, any type of object can be sent be-
tween the solver objects as an event. This flexibility in objgpes would be much more tedious to
implement using TCP. In the following, we briefly describe ttoncrete realization of the distributed
simulator. We use “Python Remote Objects” (PyRO), a RMIebasiddleware solution similar to
Java RMI. PyRO is implemented in Python, which makes it cdibf@awith our pythonDEVS se-
quential DEVS simulator implementation of which we re-usetg.

6.4.1 Location Configuration and Model Partitioning

Partitioning is often referred to as the deployment of défeé solver objects onto different processes
running on different servers. Many algorithms allow foriogl partitioning whenever dynamic re-
configuration is necessary, but this is not the scope of tloikwNevertheless, such an algorithm
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is easily pluggable into our implementation. In Section.B,.Slifferent partitioning possibilities of
the input DEVS model will be simulated. The optimal partiilag of solver objects over the cluster
machines can then be obtained from simulation experimenttse

6.4.2 Simulation Tracing - Log Server

As described previously, the DEVS simulation is meant talpoe a trace which describes events oc-
curring at certain times, as well as the way they are handlleid.trace can be produced from all solver
objects executing on different machines. To aggregatetimelvidual traces into a single simulation
trace aLog servers used. The Log server also captures the communicatioa beiween solvers. It
is used to calculate the network delay variables (LCT, RGflolgging the time the messages were
sent and received. The communication trace allows for @stom of the network and the framework
overheads. This log server also stores the most recens sttee solvers for fault tolerance purposes.

6.4.3 Instantiation

To run the simulation, the initial step is to start a namingseon one of the machines on the cluster.
Then, a server containing a factory object (solver factadyich can host solver objects is instantiated
on each of the cluster machines. It will subsequently regisself with the naming server. Through
the naming server, the solver factory can be discovereddgithulation engine clients. These clients
instantiate solver objects, atomic or coupled, destindidémn the factory object’s machine.

A remote reference is created for each factory and is use@&becthe solver objects. These solver
objects are passed the log server reference to send tlegistrBhe simulator has been implemented to
accept a mapping object, describing which machine in theteta solver should be running on. The
simulator can then instantiate the solvers according t@#mtioning mapping locations. If no spe-
cific mapping was provided, they are instantiated localiyuFe 6.6 illustrates the overall architecture
of the implementation.

6.4.4 Simulation protocol

The simulation protocol was implemented in a asynchronasiibn. This allows for better perfor-
mance of the overall simulation. For example, when an evenestined to multiple solvers, it is
broadcast in an asynchronous fashion. In turn, the regesatvers can receive and process the event
simultaneously, and then through a callback respond asygnobsly.

6.4.5 Fault Tolerance Implementation

Since solvers are dispersed over several machines, it ectegbto encounter a new class of errors
which were not present in the classical non-distributed BEimulator. Like in any other distributed
settings, we would have to deal with unexpected machinéhesadt is important to handle such
crashes with affecting minimally the simulation flow. Thiedomes more critical for long running
simulations. In the case of a crash, the simulation will stod would have to be manually restarted
later on. This is deemed inconvenient and not scalable agpecethe possibility of machines crash-



148 Modelling DEVS and its Simulators

Root Coordinator

TheSystemSolver

Cueue -
SimTrace
<<Prox \‘\
2
.
.

Server Solver
<<Prox'
'
v
\

Client
% Solver
‘\ <<Proxy>>

\
\
\
.
T g \
¢, A \
o \
e R T
[ NamingServer
i 8 3
W RMI
_---[.7| Registy
—— JEumET e A
Log Server et s "
- ,, "
o ;r
/
/

queve | 177
SimTrace

Machine 2 H
) * '
Machine 1 7
/

Client |~
Solver
P
P3
> sover |[ 72 ][ o |

Figure 6.6: The RMI architecture of a distributed DEVS siataf using PyRO

ing increasing with running time. As in any fault-toleraathnique, there are two phases for achieving
that: fault detection and fault recovery. For fault detactithere exists many techniques, e.g., accep-
tance tests an-version programming. For recovery, first perform regukackup operations whenever
a modification to the state of the system (or object) takesepl&econd, we could restore the latest
fault-free state.

In the application of the distributed DEVS simulation, wensmler a fault model where cluster
machines involved in the simulation can potentially crashdetect failures, Emeoutis set on each
methods being executed on remote objects. Therefore ifveisot the machine it lives on failed to
respond to a call (simulation call, heartbeat call, or ottedis) after a certain timeout, the site or the
component on the site is considered as crashed. Then, theerganechanism takes over. Ideally
these timeouts should be specified according to the pauitigoor mapping of the simulation.

Recovering from such a fault requires collecting enougla @out the state of each solver and
they simulate. For Atomic Solvers;, ty, and the state of the DEVS model being simulated. For
Coordinatorst, , ty, eventList subsolversand the state of the DEVS model being simulated. The
solver objects (coupled or atomic) which simulate the s#/B component of the current solver’s
DEVS model.

Having the last valid version of this information for all tiselvers is sufficient to restore the
simulation at a correct state to resume the simulation framere it left off. The choice of when
to update this version is one of the key optimization iss&es.our application we have chosen to
“piggy-back” this information in a conservative fashionin each solver to the log server whenever
the solver state gets updated.
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6.5 Calibration and Optimization

The simulation experiments we perform use an input mdtlelhis is an abstracted model of a city.
A city (coupled DEVS) is divided into several districts (gbed DEVS). A district encapsulates a
road network with houses and offices (both atomic DEVS). Rg¢edupled DEVS) are bidirectional
and thus consist of two road segments (atomic DEVS). In thd retwork of a district, roads can
connect to an intersection (coupled DEVS composed of e@fd segments) at specific points, with
or without a traffic light (atomic DEVS). Some districts comnicate via highways (coupled DEVS)
modelled as sequences of roads. At periodic intervals,dsgsnerate cars to go to a predefined
office. Note that a house and its corresponding office can ddferent districts. After some random
time interval, a car leaves the office and returns back horhe.sImulation ends when all cars are
back home or are involved in a car accident.

The simulator of the DEVS mod@ll is itself modelled as a DEVS model as described in Sec-
tion 6.3. The simulator model was calibrated with model exien parameters from the PyRO-based
distributed simulator described previously.

6.5.1 Optimization of Performance Metrics

One of the most important configuration questions in theibisied implementation, with regards to
efficient fault-tolerance, is the timeout to set on solvédischefore assuming that the site has crashed
or even has a fault. This timeout really depends on the moeieglsimulated and the partitioning
that is used for the solvers. The timeout value might alsafberent at different solver levels. Setting
an arbitrary constant value may not be sufficient, as it haake into account the network message
passing time and other properties.

To accomplish a realistic simulation, several parameteesirio be calculated from the middle-
ware and the cluster. Network statistics for a specific elusan be gathered using the current im-
plementation of the log server. As discussed, the log s&weps track of both the simulation and
communication traces. Communication trace analysis allome to estimate remote and local delays
for message passing between different solvers. Each soltputs a communication trace before
sending a message to another solver and when it receive3@ues are appended with extra infor-
mation to allow calculating latency and are classified aalloc remote messages. For example, the
trace message produced at each solver is augmented withlltheihg parameters:

¢ the name of the model in the solver,

¢ the global current time at which this trace was produced,

e the local time at the solver machine when the message wasedce
¢ the local time at the machine when the trace was produced.

After several experiments on the cluster simulating the ekample, we analysed the trace in-
formation to calculate the distribution of remote and lodelays. These values were then used as
parameters in the modelled simulator to simulate messaggupdelays.
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Figure 6.7: (a) Effect of adding machines and (b) delay l@efoaster reaction on correct detection of
machine failure.

By running a simple simulation, the log server can produceesaverage network parameters
with regards to the time a message takes to travel over thoriefrom a solver to another in the
hierarchy. These numbers can be given to the modellediisdd simulator described earlier. It then
can simulate this delay which is specific to the cluster.

The optimal timeout for a specific solver message on anotrebe discovered using the modelled
simulator: before a solver makes a call on another solvearitinvoke the modelled simulator to run
a simulation of the current call and expect the time leng#induld take. This simulation is expected
to be much faster than the actual implementation since Itomily simulate and not run the actual
model. The computed value is then used as a timeout limiticall.

Figure 6.7(a) illustrates the performance behaviour ofdineulator depending on the number
of machines used. In our experiments the city model has fsteictis and 10 bridges, totalling 1000
coupled DEVS models and 10,000 atomic DEVS models. For camele, the partitioning of the city
models on the different available machines follows one tang: the coupled DEVS representing a
district and all its sub-models are always on the same macRi@rformance was measured by taking
the total simulation time of the simulation run. The graplows a decrease in performance when
the number of machines involved increases. This is becdiesadtwork communication between
components adds an overhead. The graph hence shows thatyrforodel, the optimal number of
machines is two. (The case where there is only one machimg@ed since it is not distributed).
Because our goal is not to increase performance but ratha@miza interoperability using specialized
nodes. For example, in some cases parts of the partitionddmmifixed. Then such analysis becomes
more valuable. Furthermore, the performance levels offnwrhere than six machines are used. This
is due to the limited number of components in the modelledikator.

The graph in Figure 6.7(b) allows one to find the optimal tiot€for the given configuration. In
this case the minimal timeout with 100% reliable fault datetis 27 seconds. This is significantly
less than the monitor frequency (which is 7 seconds).
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6.6 Related Work

The DEVS formalism and its simulation protocol as descriipeSection 6.1 are well suited for local
execution on a single machine. In addition, many approafdredistributing DEVS simulation have
been proposed and implementecy, [SPB"04, CSPZ04, ZZH06, SKHP07]). Thanks to the modu-
larity and hierarchical structure of DEVS, distributing &12S model execution on several processors
can be achieved without modifying the simulation models.

The distributed architecture for DEVS can be divided intgels. Theapplication layer(highest
level of the system) is the modelling and simulation probterder study. The DEVS model lies in the
modelling layer At the simulation layey the protocol to simulate the DEVS model is implemented.
The lowest level layer is themiddleware layemwhere the communication between computing nodes
is implemented.

James Il [URHO3] is a dynamic simulation framework where alei@f a DEVS simulator can
be simulated. However, the purpose is to enhance®#S formalism with dynamic restructuring
capabilities. That is, the simulation model (composed ofrat solvers and coordinators) is modified
at run-time to, for example, re-partition the model disitdxl on several machines.

6.7 Conclusion

In this chapter, we have explicitly modelled both the stuueiand the behaviour of a distributed DEVS
simulator, as a DEVS model. From this DEVS model, a distedUDEVS simulator was realized

(i.e., partially synthesized). This simulator runs over RMI usiyRQ The actual performance data
obtained from this implementation (simulating the modetraffic in a synthetic city) was used to

obtain realistic parameter values to be used in the DEVS hwfdé&ie simulator. Isolating system

variables, such as timeouts, optimal values were foundrulsiting multiple alternative models of

the DEVS simulator. These variables were finally used tdcatie the real simulator.

In the future, we want to completely automate the synthdsgaulators from their DEVS mod-
els. Also, we plan to synthesize DEVS/RMI instead of theeathefficient PyRO.
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MoTif

Itis possible to design transformation languages thatraresdy explicitly modelled. We will now use
the framework presented in Part Il to engineer a new modestoamation language. This language
is completely modelled: its syntax, its semantics, andxéxetion engine.

In Chapter 37T-Core was presented as the result of a de-construction processd#lrimansforma-
tion languages to a set of most primitive constructs. In¢hegpter, we propose to combine &iCore
primitives with the modelling and simulation formalism nedeéd in Chapter 6 to design a new model
transformation language. The choice of the underlying &ism allows one to easily add the dimen-
sion of time and asynchrony to model transformation. A nide-effect of explicitly modelling the
transformation language is the facility to design higheteo transformations.

7.1 Introduction

In 1996, Blostein et.al. [BFG96] described some issuesdaggithe practical use of graph rewriting,
at that time very sporadic. Graphs are a versatile and esipeedata representation, and there are
many advantages to the explicit representation (as oppwsedcoding in the form of programs)
of graph transformations. Issues such as expressivereadabtity and re-use of models of graph
transformation as well as the ability to integrate such nuddth traditional software components
were considered critical enablers for wide-spread useagfigtransformations. During the last decade,
several of these issues have been addressed and tools leavddweloped. In particular, tools such
as GReAT [AKK *06], FUJABA [NNZ00], andProGReS [SWZ95] (just to name a few) allow for
programmed graph rewritingl he purpose of programmed graph rewriting is to be able tdahihe
control structure of (graph) transformation. This is domégirms of control flow primitivessuch as
sequencgbranching(choice), andooping(iteration).Hierarchical encapsulatioallows formodular
construction(and re-use) of control flow structures. Some tools add esgpreness throughon-
determinisnmandparallel compositionin general, it is also desirable for a control language talget
(programming) languageeutral The explicit incorporation ofimeis rare in current transformation
languages. Programmed (or controlled) graph transfoamasi one of the keys to making graph
transformation scalable and hence industrially applEeaMost current graph transformation tools

These requirements were summarized in Section 2.1.3.
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support programmed graph transformation, but mostly ¢htoe their own control flow language

This chapter presents a novel model transformation largyuBtge main contribution of this chap-
ter is the re-use of a discrete-event modelling and simarafiormalism, such as theevs (c.f.,
Chapter 6), to describe the scheduler of a model transfawm&@inceDEVS inherently allows one to
build hierarchical models, the transformation languagmbees highly modular by re-using specific
components of a transformation. Another side-effect aigiBIEVS is the explicit introduction of the
notion of time in model transformations. This allows one todal a time-advance for every rule as
well as to interrupt (pre-empt) rule execution.

In Section 7.2, we formally define thoTif-Core model transformation language, as well as its
semantics, based on tlEVS formalism. Section 7.3 discusses some properties of thgukage.
Then Section 7.4 describes a model transformation langMadé that is more convenient to use
at the transformation modelling level. It encapsulates ehdcinsformation features defined with
MoTif-Core building blocks. Section 7.5 explains howvmTif transformation is executed. As a side
effect of explicitly modelling all aspects ®foTif, Section 7.6 illustrates how to express higher-order
transformations in this language. Finally, Section 7.71@gs related work.

7.2 Semantic Mapping Onto DEVS

In Chapter 3, we have shown how model transformation langgiagn be de-constructed in a col-
lection of model transformation primitives, which makesed#sier to reason about transformation
languages. These primitives are encapsulated im-tbee module. By properly combining-Core
primitives with existing well-formed programming or motied) languages allowed us to re-construct
some already existing transformation languages and evestragt new ones. Recall Figure 3.5 which
showed a combination involving the whaoleCore module with theDEVS formalism. In the context

of rule-based graph transformation, thevVS formalism can be used as an underlying basis for rule
scheduling in transformation languages [SV@®VS is a compositional, timed discrete-event lan-
guage and is thus an attractive framework for a general gerpwdel transformation language. The
combination off-Core with DEVS is a transformation language calle@Tif-Core.

The meta-model oMoTif-Core, described by the UML class diagram in Figure 7.1, shows how
MoTif-Core is an extension dbEVS integrating aff T-Core constructs. The so-call@dCore primitives
can be found encapsulated in the state of different atomiv ®EtomicPrimitive elements. Those
classes are prefixed byC”, depicting that they are semantically identical to thie@ore counterparts
(e.g.,in MoTif-Core, TCMatcher represents th&latcher from T-Core). However, the messages sent
through their method calls ugent objects fromMoTif-Core instead ofl-Core Messages.

All the RulePrimitive elements have two inport®4cketin andCancelln) from which packets and
cancel events are respectively received and two outpeutséssOut andExceptionOut) from which
packets and exception events are sent.Maieher, Iterator andRollbacker have an additionatailOut
outport from which packets are sent. The latter two atonackd have an extrilextin inport from

2ThoughFUJABA’s Story Diagrams are heavily based on UML Activity Diagrams
3Except for thecomposer since the composition of primitives is specific to the largpiaombined with-Core.
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Figure 7.1: The meta-model dfoTif-Core.
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which packets can be received. For compositionality andispparency reasons, tl@mmposer has
all of the ports mentioned. As faZontrolPrimitive elements, they have ti®&iccessin andFailin in-
ports, andSuccessOut and FailOut outports to receive and send packets. Be&ctor has an addi-
tional CancelOut ouport from which cancel events are transmitted. Whew@if-Core primitive (any
sub-class oRulePrimitive, ControlPrimitive, or CompositePrimitive) receives an event from an inport,
its external transition function invokes the appropriatetmod of its correspondinGCore primitive
according to the activated inport. Algorithms 19 and 20 dethis integration forRulePrimitves.

In the ControlPrimitive elements, theSelector’'s select method is no longer used. It is the select
function of theComposer that takes care of the selection of the appropriate primitd/output. In
MoTif-Core, the Composer inherently composes oth®EVSBIlock elements NloTif-Core primitives
as well as pur®EVSBIocks) as it is aCoupledDEVS and hence statelesSompositePrimitives spec-
ify the connection between the different in/outports tousasa proper flow of the transformation.

Algorithm 19 rulePrimitiveextTrans ((s,€),X) Algorithm 20 rulePrimitiveoutput (S)
if X received fromACancelln then if s.stateisSuccesthen
s.statecancelln  (X) output (s.packet ASuccessOut)
else ifx received fromAPacketin then else ifs.stateexception# nil  then
s.packet= s.statepacketin  (X) E = toDEVSEvent (s.stateexceptioi
else ifx received fromANextin then output (E, AExceptionOut)
/1 1f defined else
s.packet= s.statenextin (X) output (S.packet , AFailOut)
end if end if

In the following, we formally define the semantic mappingMdTif-Core onto theDEVS for-
malism. The behaviour of evefyCore element was precisely described in Chapter 3. Note that the
time base used i = RT U{+}. Also, for the sake of completeness of the formal DEVS maqdels
we assume an input segment funcfion: T — X determining the input event on an inport at a cer-
tain time. At the end of this section, an example illustrakesuse of these constructs to build graph
transformation rules.

7.2.1 The different events

There are exactly three types of events. In our notattotienotes any event instance of a sub-class of
Event. We writeE € INSTANCESOREvent)°. Packets, cancel, and exception events correspond to the
T-Core messages defined in Section 3.2.

A packet is a structuree= (y € G*,current ,{MS]|i € N}), wherey is a graph taken from the
setG of all directed, attributed, typed graghsurrent is an instance oPreConditionPattern re-
ferring to the currently processed match 9485 is an instance ofMatchSet. Furthermore MS =
(condition ,j € N,{m;|j € N}), wherecondition  is an instance oPreConditionPattern andm

4Recall that the input segment function triggers the exidraasition function.
5The functionlNSTANCESOFX) returns the set of all instances of clagand its sub-classes.
8G* =Gu{nil }andV; =V, U{nil }
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Figure 7.2: The behaviour @ftomicPrimitives.

IS an instance oMatch. A match set is identified by a pre-condition patteomdition ~ which is

an instance oPreConditionPattern. It also holds all the matches of the pattem= INSTANCES-

OR(Match). A matchm = (hy:y— vy, {pk|k € N}) consists of a mapping and pivot assignmehis.
is a homomorphism mapping the nodes of a pattern graph tcsraidesource graph. A piv@tis an

instance oPivot and is defined by a stringbel and a single-node grapi (Vy) whereh, 1V, —y

is a morphism.

A cancel event) instance offCCancel carries arexclusions  set ofPreConditionPatterns, de-
picting theRulePrimitive elements whose activity should not be cancelled. Finatlgaeption event
X instance ofTCException can also be transmitted byoTif-Core primitives. The detail of exception
events and their handling will be detailed in Chapter 8 artinet be covered in this chapter.

7.2.2 The AtomicPrimitives

The AtomicPrimitives are atomic DEVS models. Aameidentifies the model and optionally ahias

can be used in the occurrence of multiple models of the sapgettsiving the sam@ame The combi-
nation(namealias) should be unique among eaatomicPrimitive type. Furthermore, altomicPrim-

itive instanceM is globally uniquely identified by the functiad(M) = (TYPEM),M.nameM.alias),

whereTYPEM) gives the exact type d¥l.

The general behaviour of the state oftamicPrimitive is defined by the statechart in Figure 7.2.
It initially starts in thelnitial state. At any point in time, whenever a packet is receiveslAtbm-
icPrimitive is in its Active  state. After some time (defined by its time advance functjoit outputs
an event which can be a packet, an exception, or a cancel. &laatthen brings it to th@assive
state. Also at any pointin time, whenever a cancel eventeved, theAtomicPrimitive is in aCancel
State.

The Matcher

TheMatcher is an atomic DEVS, parametrized by a pre-condition pattgtime timeA it will consume,
and the maximum number of matchraax(to optimize the search of the matching processylacher
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is defined by the following structure:

Matchehamealias,c.amax= (S X, Y, dint, Bext, A, T)

The stateSis defined as:
S={(a,TC,m|a € B,TC € INSTANCESOKTCMatcher) , Tt€ INSTANCESOFRPacket) U {nil }}

In this notation, the booledrvariablea indicates whether th®atcher is active,i.e., processing a
packet.TCMatcher corresponds to the matcher clas§i@ore. Recall thatfCMatcher finds maxpos-
sible matches ot on the (graph) model embedded in a packet. Wagcher temporarily holds a
packet, from the time it receives it to the time it outputsas, noT-Core rule primitive stores any
packet in its state. Note that all the parameters are alt@p& but are omitted in this notation for
simplicity. We denote by = (false ,TCMatcher(max,nil ) the initial value ofS.

TheAPacketin port can receive a packet instance. We therefore define:

@ represents the null event as used in [Zei84]: it covers tlse eghen no event is present. The
ACancelln port can only receiveh € INSTANCESOFRCancel), indicating to the matcher to cancel
its activity. Thus:

Xacancelln = {INSTANCESOFRCancel) } U{®}.

TheMatcher can receive either a packet or a cancel event or both. Heme@put set of thatcher
is the cross-product:

X = XaPacketln X XACancelln
TheASuccessOut and theAFailOut ports can both send packet instances. Thus:

YASuccessOut = YAFailout = {INSTANCESOKPacket)} U {@}

Furthermore, th&atcher can output an exception, hence:
YAExceptionOut = INSTANCESOEEXCEptlon) U {(p}

The output set of th®atcher is therefore:
Y =YASuccessOut * YAFailout > YAExceptionOut

The time advance is finite only when thtatcher is active. The funtiod : INSTANCESOFPacket) —
R* specifies the matching time, which may depend on the currackegim. Note that whenever
o =true thentt=nil , henceA is well-defined. The time advance function of tiatcher is thus
defined as:

A(m) if o =true

400 otherwise VSES

T((X,TC,T[):{

'B= {true,false  } represents the set of boolean values.
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The internal transition function resets this atomic DEV$ts¢anitial state. It will thus passivate
the Matcher as it will force the time advance to evaluate to infinity:

dint (S) = %o

The external transition function is constructed as follows
(false ,TCSnil ) if x=(E*,¢)AcC¢ ¢.exclusion
69Xt(((a7TC7T[>7e)7X> = if X = ¢ V
(true ,TCP, TC.packetin (7)) (X=(T1,) AcE q).e)((cIngi?)n )

When¢ is received (fromACancelln), the Matcher is deactivated and the state is clearé€{ is the

resultingTCMatcher after TC.cancelln () is applied).E* denotes any event, including When a
packetrt is received (fromAPacketin), the resulting packet of theacketin  operation is temporarily
saved in the state. Note that the statelf €@ may have change®(g.,theisSuccess attribute) and
results inT CP.

Finally, the output function is:

(@, @, TC.exception ) if TC.exception # nil

A((a,TC. 1) = if TC.isSuccess = true A
( ) (Me.9) TC.exception = nil
(@10 otherwise

Implicitly, it returns the transformed packet if the matchsssuccessful, otherwise it returns the origi-
nal packet. However, if an exception occurred, Meecher will instead output the exception properly

converted to a DEVS event. Note thaits nevemil since, by construction, it is only applied a finite

amount of time, set by, afterdey; is applied.

The Rewriter

The Rewriter is an atomic DEVS, parametrized by a post-condition patteamd the time it will
consume\. A Rewriter is defined by the following structure:

Rewritefhamealiasca = (S X, Y, Bint, Oext, A, T)

TheReuwriter is structurally very similar to th®atcher, with the difference that th€ C element of
its stateSis an instance of CRewriter instead. Recall thatCRewriter applies the required transforma-
tion for c on the match specified in a packet. Thus the initial stagg-s (false , TCRewriter(),nil ).
Moreover,T, X, dint, anddey; are all identical to those of thdatcher.

The output set of &ewriter isY = YasuccessOut X YAExceptionout -~ €ach defined as previ-
ously. The output function must be modified accordingly:

[ (@, TC.exception ) if TC.exception  nil
M(O(’TC’T[))_{ (T, Q) otherwise
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The Resolver
TheResolver is an atomic DEVS defined by the following structure:
ResolVefamealiasres = (S X,Y, dint, Oext, A, T)

Sis defined as before, but tieC element is an instance BCResolver instead. Recall thatCRe-
solver resolves potential conflicts between matchings and rewgstby means of a user-definezb
resolution function, or a default one. The resolution fiorcts defined ages: INSTANCESOFRPacket)
— B. Thus the initial state isy = (false ,TCResolver(res),nil ). X,Y,dn andA remain identical to
those of theRewriter.

However, since th®esolver is not parametrized by a condition, the external transitiorction
must be adapted when a cancel event is received: it becomes/amregardless of the exclusion list.

(false ,TCSnil ) if x=(E*,9)

Oext (0, TC, 1), €) ,X) :{ (true ,TCP, TC.packetin (1)) if x= (10, @)

Also, theResolver does not consume time, therefore its time advance is 0 wheRadtive:

0 if o =true
T(S>_{ +00  otherwise VSES

The Iterator and the Rollbacker

Thelterator is an atomic DEVS, parametrized by a maximum number of i@matax It is defined
by the following structure:

Iteratoramealias max= (§X,Y, dint, Oext, A, T)

The Iterator is structurally very similar to théatcher but, in this caseTC is an instance of
the iterator class iM-Core. Recall thatTClterator chooses a match among the set of matches of the
current  condition of a packet. Thus the initial statesjs= (false ,TClterator(max,nil ).

Y andA are identical to those of th@atcher. T is defined as in thBesolver depicting that theter-
ator does not consume time. For the input set, Itbator can receive either a packet frolPacketin
or ANextln port as well as a cancel event frolCancelln. In this caseXaNextin = XaPacketin
Therefore the input set is

X = XaPacketln X XACancelln X XANextIn

Consequently, the external transition function is modifedandle the packet received fragxNextin:

(false ,TC®nil ) if x=(E*,E*,0)
dext(((a, TC,1),€),X) =< (true ,TCP, TC.packetin (7)) if x=(11,E*, )
(true ,TC", TC.nextin (1)) if x=(@1,0)
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When a packett is received fromANextln, the resulting packet of theextin  operation is tem-
porarily savedTC" is the state of th@Clterator after TC.nextin (77) is applied.DEVS constrains
that exactly one atomic DEVS may output at a time. Howeveingls atomic DEVS may output
events that result on different ports (in a one-to-many nehoonnection). In this cas@Packetin
andANextin might simultaneously receive a packet. The second comditi@ey; enforces that the
packet received frorAPacketin is handled and the other one is discarded.

Finally, the internal transition function behaves difigtg than for the previous models. It does
not reset the state of theerator to sp anymore but keeps theClterator state unchanged. That is
because when a packet arrives from Alinextin inport, the counter of the remaining iterations should
not be reset. Thus:

Oint = ((a, TC,m)) = (false ,TC,nil )

As Figure 7.1 shows, thRollbacker is derived from thdterator. Recall that the rollbacker im
Core checkpoints the packets it receives to roll-back to a previgacket when needed (it fulfils the
standard back-tracking property in graph transformati®®92]). In MoTif-Core, the Rollbacker is
defined exactly like théterator with the difference that th& C element of its stat&is an instance
of TCRollbacker instead. Also recall that the maximum number of iteratiansat implicitly in the
packetin  method of theRollbacker. Thus:

RO”baCkEHamQalias = <S> X7Y7 5int7 6ext7 )\7 T)

and the initial state is) = (false , TCRollbacker(),nil ). Furthermore, since theextin method is
independent from the event received, tb@Nextin = {INSTANCESOFREvent)} U {@}.

The Selector

The Selector is an atomic DEVS defined by the following structure:

SelectOfamealias = (S X, Y, dint, Oext, A, T)

Sis now needs to be modified to not explicitly store packetsdally in the state. That is because
theT-Core selector already does in tkaccess andfail sets. Thus:

S={(a,TC)|a € B,TC € INSTANCESOKTCSelector) }

Recall thatTCSelector allows exactly one packet to proceed, being non-detertigally selected.
The initial state is thelsy = (false ,TCSelector()). T anddjy; are identical to those of thResolver.
The output set is augmented with the capacity of sendingat@vents:

Thus
Y =YASuccessOut * YAFailout % YACancelOut % YAExceptionOut
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The input set is
X =XaSuccessin X XaAFailln X XCancelln

where
XASuccessin = XAFailln = {INSTANCESOFKPacket) } U { ¢}

The external transition function is given by:

(false ,TC®) if x=(E*,E*,¢)
dext(((0,TC),€),x) =< (true ,TC°) if x= (T, E*, @)
(rue ,TCT) if x=(q.m o)

As before, when a cancel event is received,Ho®are component calls itsancelin ~ function. When
a packetrt is received fromASuccessin, TC.successin  (T1) is applied andTCSelector results in
TC. Finally when a packett is received fromAFailin, TC.failln (1) is applied andrCSelector
results inTC'. Note that if both packets are received at the same time,rteeeceived fromiFailin
is discarded. Recall that every time a packet is receivad,stored in thesuccess or fail set of
TCSelector.

The output function returns the selected packet resultimg theselect function of theT-Core
selector and the packet is sent via the appropriate outpocancel eventp is also emitted. It is
the result of thecancel function which excludes theurrent condition of the selected packet,
i.e., ¢.exclusions = {Ttcurrent }. This will cause all atomic primitives receiving that event
cancel their activity except for the identified one. HoweWéhe select function failed, then only
an exception is output.

(@,@,@, TC.exception ) if TC.exception # nil
if TC.isSuccess = true A

A((a,TC)) = (TCselect (), TC.cancel (),9) TCexception — ni
if TC.isSuccess = false A

(g, TCselect (), TC.cancel (),®) TCexception — nil

The Synchronizer

TheSynchronizer is an atomic DEVS, parametrized by the number of thréadsadsto synchronize
and a user-defined merge functioer. A Synchronizer is defined by the following structure:

Synchronizéfamealiasthreadsmer = (S, X, Y, dint, Oext; A, T)

The Synchronizer is structurally identical to th&elector but, in this caseT C is an instance of
the synchronizer class iRCore. Recall thatrCSynchronizer synchronizes multiple threads of execu-
tion by merging the received packets if all threads sucakederging is Performed by means of a
user-definedner merge function, or a default one and is definedres : 2 NSTANCESO#packet) _,
INSTANCESOFPacket). Thus the initial statgy = (false , TCSynchronizer(threadsmer)).
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X, Oint, anddey: are identical to those of theelector, butY is the same as thdatcher’s. The time
advance returns 0 only when the number of events receivetiegsdhe thresholdhreads In practice,

this means that all threads have reachedsthehronizer.

[ 0 if|TCsuccess |+|TCfail |=threads
t(s) _{ +o0  otherwise VSES

The output function returns the merged packet resultingnftioe merge function of theT-Core
synchronizer and the packet is sent via the appropriateodutgowever if themerge function failed,

then only an exception is output.

(@, TC.exception ) if TC.exception # nil
(TC.merge (),®, @) if TC.isSuccess =true ATC.exception = nil

A((a,TC)) =
(@, TC.merge (),®) if TC.isSuccess =false ATC.exception =nil

7.2.3 The Composer

TheComposer is aCompositePrimitive defined exactly like a coupled DEVS.

Compose&iamealias = <X;Y7N,M ={MilieN}, I ={li},Z= {Zi,j},z>-

The input and output sets are defined as in their atomic cquarte

X = XcPacketin X XCCancelln X XCNextn

and
Y =YCSuccessOut * YCFailout X YCExceptOut

N, M, and| describe the inner-topology of tlmposer. TheZ; j functions are the identity as in
the example of Section 6.2.1.

VYNEN,i €ln,Zin: Y = Xn, Zon: X = XnZic Y — Y

As for the select functiox, it chooses one sub-model of t@emposer from theimminent set
Recall that the imminent set is the set of sub-models fikrvhich would have an internal transition
at the same time. This set is computed at simulation time bystmulator.= is described by the

following prioritized algorithmic steps:

1. If aSelector is in the imminent set, choose tBelector: this ensures that the cancel event will
be sent before anoth®EVSBIlock is selected.

2. Among all theAtomicPrimitives that have a successful staied.isSuccess
one at random: this allows for optimistic execution.

=true ), choose
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CPacketln ~ CCancelln

CSuccessOut  CFailOut

Figure 7.3: AComposer representing a simple transformation rule.

3. At this point noAtomicPrimitive is successful. Now choose any of th®micPrimitive or Com-
positePrimitive models in the imminent set.

4. Finally, the imminent set only contains custaimomicDEVS. Select a model randomly.

Once a sub-model is selected, it first produces an outpueétied for the current state). This may
trigger thedey; Of the influencees of this sub-model. Thendig is performed. The select function
= is called as long as the imminent set is non-empty. It is ingydrto note that the sequencing re-
sulted from applying= does not conflict with the parallel nature @bTif-Core. This is because all
transformation-specific operations (operations onttere elements) are performed in the external
transition function rather than in the internal transitfanction. Concurrent internal transition func-
tions are serialized, but external transition functioreseatecuted in parallel (in a parallel setting).

7.2.4 Examples

MoTif-Core is a modelling language for designing model transformatfs defined by Harel and
Rhumpe [HROO], a modelling language is defined by an absssadtix and represented with a con-
crete syntax; the semantics of the language is defined by araenmapping function from the ab-
stract syntax to a semantic domain. The abstract synt&odff-Core is defined by the meta-model
in Figure 7.1. Its concrete syntax is described graphidaylyrounded rectangular shapes as illus-
trated in Figure 7.3. The semantic domainMuTif-Core is the DEVS formalism and the semantic
mapping function was described in Sections 7.2.2 and 7m2apping each element from theCore
meta-model ont®EVS models. In fact, aMoTif-Core model is aDEVS model. To illustrate this
transformation language, we propose to first re-constrsoingle graph transformation rule. Then,
we re-construct the case where one transformation rule foaitchoice of two is applied in a non-
deterministic way.
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A simple graph transformation rule

The simplest rule-based model transformation unit is a talgraph transformation, a rule behaves
as follows. Given a transformation rule pattern, the rulstfiooks for an occurrence of its LHS
pattern to match in the input graph. If a match is found, the imansforms the graph by rewriting the
matched sub-graph, resulting in the RHS pattern. Figuresffo8vs how a graph transformation rule
can be defined iMoTif-Core. The graphical syntax dfloTif-Core primitives is a rounded rectangle
labelled on the top right by its typé(for Matcher, | for Iterator, W for Rewriter, R for Resolver, B

for Rollbacker, S for Selector, andY for Synchronizer). Inside it, the optionahlias followed by a
column and then aame identify the primitive. AComposer is represented by a double-lined rounded
rectangle. A line depicts a channel connecting ports. Is filgure, the composition of the different
primitive MoTif-Core elements are encapsulated iG@nposer namedSimpleRule.

TheComposer has three inner models:Matcher, anlterator, and aRewriter. M is the set of these
three inner models\ is the set of labels which identifies each compomatty its unique identifier
id(m). The connection topology is given by the influencee Sefspierue = {:M1:M,:11:1,:W1:W},
I.vim = {:12:1, SimpleRule}, 1.1, = {:W1:W, SimpleRule}, andl.w;.w = {SimpleRule}. For clarity of
the figure, the channels from tl@Cancelin inport to theACacenlin inport of each sub-model were
omitted. This is why the influencee set&ifpleRule includesli1 andwa1.

The behaviour goes as follows. The packet$impleRule receives via it€Packetln inport is first
sent to theMatcher. When theMatcher receives the packet, ahpccurrence in the graph of its pre-
condition patterrc (the LHS) is stored in the packet. After a certain delay dptby 4, if a match
is found, theterator receives the modified packet output from thetcher and selects one match (in
this case the only one). Then, tRewriter receives the packet output from therator and transforms
the graph according to its post-condition pattefthe RHS) applied on the selected match (specified
in the packet). After a certain delay specifieddyhe selected match is removed form the packet and
the resulting packet is sent to an outport of Gwnposer. In the case of a successful application, the
newly modified packet is sent through the success outpeutcessOut. If the Matcher was unable
to find any matches, or if thierator has exceeded the number of iterations (to select a mat@h), th
packet is sent through the fail paFailOut, depicting that th&impleRule was not applied.

Non-deterministic selection

MoTif-Core is not only a timed language, but also allows parallel comosof models. Since the
different primitive models are designed such that they ¥aaitan input event to arrive at an inport,
they can inherently run in parallel insideGomposer. GReAT [AKK *06] is a well-known graph
transformation language with asynchronous behaviour.eikample, Figure 7.4(a) presentsiast
block where twoCases (atomic or composite rules) can be applied. WheTest block receives a
packet iINGReAT, the packet is tested on all tizases. If multiple Cases succeed, only one will be
applied non-deterministically.

Figure 7.4 shows how st block can be re-constructed usiMgTif-Core primitives. TheMoTif-

8For this simple rule, thenaxparameter of th#atcher is set to 1 since the rule is applied only once.
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Core model consists of &omposer composing twoSimpleRules—one for eachCase, assuming
they each consist of a simple rule described above. Howav&#lector (Cut) ensures that at most
one of them will get applied by sending the appropriate cheeent to theSimpleRule as soon as

a packet is received. Sin€&ReAT is not a timed model transformation language, we assume that
the Matcher and theRewriter of both rules consume the same time. Twmposer has the follow-

ing inner models: twdMatchers, two Iterators, two Rewriters, and oneSelector. As before,M is the

set of these three inner models aNds the set of labels. The connection topology is given by the
influencee setsk.case1:m = l:casezm = {:Cut:S}, l.curs = {:Casel:M,:Case2:M,:Casel:l,:Case2:l},
l.case1:1 = {:Test,:Casel:W}, l.casez: = {:Test,:Case2:W}, l.caser:w = l:casez:w = {:Test}, andl.fest =
{:Casel:M,:Case2:M,:Cut:S,:Casel:l,:Case2:l,:Casel:W,:Case2:W}. Again, the Composer influ-
ences all its inner models because of the cancel ports cbongc

The behaviour goes as follows. First, the twatchers each receive a clof®f the packet that the
Composer received. Then, assuming battatchers are in success mode, the select funcfioof the
Composer will choose one of them to output. Without loss of generabtypposeCasel is chosen.
Consequently th&elector receives the packet froldSuccessin and immediately sends it through
ASuccessOut which yields to bothterators receiving the packet. But onigasel elements must be
activated. To solve this problem, tigelector also sends a cancel event througftancelOut which
bothlterators receive and only the one mentioned in #xelusion list (in this caseCasel) does not
cancel its activity. The same behaviour as previously desdifor theSimpleRule follows from there.
For the case where one of thatchers fails, the same scenario applies since@oenposer will still
select the successful one. Finally, in the case where Matthers fail the Composer selects one of
them and the&elector sends the packet it receives througfailOut. Therefore thevioTif-Core model
is indeed semantically equivalent to the asynchrormessblock in GReAT.

The reason why cancel events have been added tadini&Core language is becau®EVS lacks

of dynamic re-structuring. That is, once modelled, the at@nd coupled DEVS models as well as the
connection topology can no longer be modified. Dynamic stinecDEVS (DSDEVS) [Bar95] over-
comes this limitation. It allows the structure of a model lmoge dynamically. Structural changes
include changes in connection topology and the creationdmtetion of components in a coupled
DEVS model. The changes are triggered by particular staelitons. We have not chosen DSDEVS
variant as a semantic because we do not believe the exprgssier offered by DSDEVS is useful for
us. At the (transformed) model level, we have dynamic stmecthanks to the nature of graph trans-
formation. At the level of the rule scheduling, the conulala flow logic which classic DEVS offers
is more than sufficient. Using DSDEVS would allow for the ratheduling to change dynamically
which hardly seems useful.

7.3 Properties of MoTif-Core

The following outlines some of the most remarkable propsrtifMoTif-Core.

9Cloning the events is necessary to pres@g¥'s properties, as two atomic DEVS models shall not share thesam
(sub-)state. In this case, modifying the packet in Blaecher (e.g.,storing the matches found) should not affect the packet
of the otheMatcher.
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Figure 7.4: ATest block in GReAT showing twocases in (&) and its equivalent model MoTif-Core
in (b).

7.3.1 Soundness

When connectingyloTif-Core elements, through port channelling, the resulting modshds an exe-
cution flow of a graph transformation. In order to ensupeaper flow, Lemma 1 states that whenever
a packet is received byMoTif-Core primitive, a packet will be output from that entity. This rsi¢ as
long as no cancel event is received.

Lemma 1. For anyAtomicPrimitive (X,Y, S dint, Oext, A, T), the following must hold:

Vse SVee T,¥x € X\INSTANCESORCancel) , A (Sext((S,€),X)) # @< T (dext((S,€),X)) < +00

Proof. Since by constructiorys € S A (s) # @, we need to show that(s') < +0 = § = dex(S). That

is, if the time advance of a stasgis finite thens' was computed from the external transition function.
Note that for all atomic primitives except ti8ynchronizer, T(s) < + < o =true if and only if a
packet is received without a cancel event.

For theSynchronizer, we havet (S') < +o = |TC.success |+ |TCfail |=threadsRecallthat
the size ofsuccess is only incremented by thsuccessin  operation and the size @il is only
incremented by th&ilin  operation. Both operations are applied in the contexegfonly, when
a packet is received without a cancel event. Hence the dondif C.success |+ |TCfail |=
threadsis satisfied only after the application &dyt.

On the other hand, note that for all atomic primitives, netitly nor the state produced Iy lead
to an output as the time advance is infinite. O
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7.3.2 Complete and Autonomous System

A MoTif-Core model is aDEVS model specialized for transformation purposes. It canetioee be
combined witharbitrary AtomicDEVS and CoupledDEVS models The implementation ofoTif-
Core makes use of this to specify the interface for the input ofltbet model in a similar way as
in [SVO7]. A userAtomicDEVS sends the initial packet toteansformationCoupledDEVS which en-
capsulates thsloTif-Core transformation model. The interface for outputting theutesf the trans-
formation is also modelled, as it is sent back to the userkblbience,MoTif-Core is a complete
systemsince all the components are modellediaVvS. It is alsoautonomousas it does not require
interaction with the outside world.

7.3.3 Time and Asynchrony

MoTif-Core is inherently @imed event-based language. This allows transformation laregtgspec-

ify the time duration for the matching phasdatcher) and for the rewriting phase&réwriter) sepa-
rately. Furthermore, the remainimgomicDEVS elements do not consume time (their time advance
is 0). Thus the transformation modeller has control oveimgrat the transformation unit level. This
allows a transformation engineer to conveniently spetig/iehaviour of languages modelling reac-
tive systemse.g.,modelling lag time or delays. Another application of tramgfations enriched with
the dimension of time is in simulation-based design. In ¢hse, a simulated time system can later be
replaced with a real-time clock. Chapter 9 shows such aricgtin.

Being discrete-event basedpTif-Core allows one to specifiasynchronoustransformation lan-
guages and can provide a data flow of execution. That is, algvackets can be processed simultane-
ously, and hence the transformation can potentially belpfizad. Nevertheless, the timing specified
by the time advances may induce delays which implicitly giveaausal dependency between concur-
rent transformation units.

Traditionally in graph transformation, dependency betwades was only based on the input
model and the specification of the rule patterns (LHS and RAR} leads tacausal relationships
between rules at run-time. MoTif-Core, rule causality depends on several factors. Orthogonako t
aforementioned factors, the duration for executimgagcher or aRewriter also affects the flow of the
transformation. Furthermore, pivot exchange may prevemath from occurring or let the matching
focus only on part of the input model. Together with how pa@nts connected, this may affect the
sequence of rules application in the overall transfornmatio

7.3.4 Well-formed transformation language

Lemma 2 ensures that the execution ofi@rif-Core model is well-formed. Model transformation is
inherently non-deterministic. The non-determinism app@&atwo places: the location of application
in the host model and the choice of which rule to apply. Thenfaris because the pre-condition
pattern of a rule may have multiple matches in the host mddhe latter is because rule-based model
transformation is declarative, allowing rules to be péstiardered. ThereforeMoTif-Core models
must have a non-deterministic execution, but each choics brirepeatable. This is what we call a
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well-formed execution

Lemma 2. EveryMoTif-Core model has a well-formed model transformation execution.

Proof. A DEVS model is deterministic if:

e all atomic models have thedy, dint, andA functions deterministic, and
¢ all coupled models have thetrfunction deterministic.

It is trivial to see thabdey;, Oint, andA are all deterministic for alAtomicPrimitives. However, this
imposes that the matching algorithm of theMatcher must be deterministic, as well as the selection
algorithm ofpacketin  operation of therCiterator, the resolution function of th@CResolver, and

the merge function of th€CSynchronizer. In our implementation, we ensure that the abovementioned
operations are deterministic by enforcing all choices tali@sen randomly in a Monte-Carlo sense,
repeatable using sampling from a uniform distribution tovle a reproducible, fair sampling. How-
ever, itis the responsibility of the user to define deterstioor random repeatable) custom resolution
and merge functions. As for the select function of Gwnposer, random choices are repeatable as
mentioned above. O

7.3.5 Modular Execution

MoTif-Core models can be executed byp&VS simulator as described in Chapter 6. This allows the
DEVS model to behave as a graph transformation engine. @®tpes of simulators can be used to
execute a DEVS model, such as real-time simulators or bliged simulators. These are attractive
since they do not require to modify the DEVS moded.( plug-and-play.

The time advances specified in a DEVS model evolve the timeeltextiexplicitly. The standard
DEVS simulator runs th&loTif-Core model in simulated time. The transformation model can also
be executed by eeal-time DEVS simulator (RT-DEVS) [HSKP97]. Our Python implementation of
RT-DEVS based opythonDEVS will be used to run transformation models in real-time in Qea 9.

MoTif-Core primitives are independent from one another as they do rexesany information.
Furthermore, the packets they exchange contain enoughmatmn for each primitive to process
them. TheControlPrimitives provide join points to parallel execution of othepTif-Core primitives.
Therefore, a distributed (and thus partially parallel)axen of MoTif-Core models is possible with
an appropriatelistributed DEVS simulator (c.f., Section 6.6).

A potential overhead of running DEVS models in parallel insributed environment is the select
function of coupled models. Recall that it only happens wimesitiple internal transitions can occur
simultaneously. However iNoTif-Core, all the work performed by the primitives is encapsulated in
the external transition functions. The internal transifionctions do very little work. For thelatcher,
Rewriter, Resolver, Selector, andSynchronizer, the internal transition function simply resets the cur-
rent state to the initial state. For thterator and Rollbacker it simply changes a boolean value and
dereferences the temporary pointer to the packet. Alseorédhe internal transition is triggered, an
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atomic DEVS model may output an event computed by the outmdtion. Except for th&ynchro-
nizer, the computation of a the output function is minimal as iheitsends a packet pre-computed in
the external transition function, or creates a cancel evean exception event. As for ttf&/nchro-
nizer, the packets are merged into a single packet in the outpatim Recall that the defaulterge
function first verifies whether the received packets havelapping matches. If not, then the match
set of the “merged” packet consists of the union of all theamatets from all the packets received.
Therefore, the computation time of the default merge furmcts linear in terms of the size of the
host graph. However, if a custom merge function is specitieel, computation time depends on its
specification.

7.4 The MoTif Language

MoTif-Core is a language for modelling transformations. From a syidalcpoint of view, it is a
domain-specific language for modelling wifCore primitives. However, its semantics relies entirely
on DEVS. Thus the transformation engineer is required to have ¢éspein theDEVS formalism,
which is rarely the case. It is hence not a trivial transfdiaralanguage to design transformation
models with. InsteadyloTif-Core is intended to offer a common platform for model transfoiiorat
languages that are at a more appropriate level of abstmadtidhis section, we therefore present a
transformation-specific languag4oTif whose syntax abstracts aw@Core constructs and whose
semantics is defined in terms abTif-Core.

7.4.1 A Domain-Specific Language for General-Purpose Trans  formations

MoTif is @ modelling language for designing model transformatidinis language is engineered fol-

lowing MPM principles where everything is explicitly modtkd at the most appropriate level of ab-

straction using the most appropriate formalism. Therefsnmeta-model, depicted in Figure 7.5, con-
sists of three parts: the pattern language, the schedaimgubge, and the transformation units. This
is compatible with the transformation language engingemethodology proposed in Section 5.4.

The pattern language is automatically adapted to the doofapplication of each transformation
following the RAM process of Section 5.3.4. It is integrabtedhe meta-model afioTif by extending
thePre- andPostConditionPattern classes through inheritance, the same way as in Figures8 3.5.
MoTif is a controlled graph transformation language. It offereart separation of the transformation
units from the structure and flow of execution of the transfation. There are two types of trans-
formation units. Aquery is composed of solely pre-condition patterns. They cordist LHS and
optionally NACs. Arule is composed of pre- and post-condition patterns, with a LABHS, and
optional NACs. Transformation units are embeddedtomicRuleBlocks that are part of the schedul-
ing language. This language mainly consistsRafeBlocks. A RuleBlock can thus be either atomic
or composite CompositeRuleBlock). In the atomic rule blocks, aaRule (“Atomic Rule”) encodes
a rule and aQRule (“Query Rule”) encodes a query. Composite rule blocks aszlus modularly
encapsulate othetuleBlocks (atomic or composite). Some express advanced control flawtstes
such as branching, looping, and parallelistnleBlocks have ports that can be connected via chan-
nels.Model is the only input port an&uccess, Fail, andException represent output portExceptions



7.4 The MoTif Language

171

/\

context RuleBlock def: indirectPath(): Bag =
if self.oc/lsKindOf(AtomicRuleBlock) then
self.ports->collect(c: Channel | c[tar].ruleBlock)
else self.ports->collect(c: Channel | c[tar].ruleBlock)->union(
self.ports->collect(c: Channel | c[tar].ruleBlock.indirectPath()))

AN

I
[m2m | [sem| [Fem | [E2m | endif
T T T T
0.1 : : : : : context RuleBlock inv:
= 0.1 . . . ! self.indirectPath()->excludes(self)
+Src +tar =y ' ' :
X . , . context Channel inv:
+tar0.1 : +src :0 1 1 CompositeRuleBlock.alllnstances()->exists(c |
" ' o . c.subRules->includes(self[src].ruleBlock) and
! ! ' c.subRules->includes(self[tar].ruleBlock)))
Model | ' 0.1
*tar0.1 . context Model inv:
1 Channel.alllnstances()->collect(c | c[tar] = self)->size() <= 1
! Exception
+tar0..1 +src0..1 context M2M inv:
selffsrc].ruleBlock.ocllsKindOf(fCompositeRuleBlock) and
Port self[src].ruleBlock.subRules->includes(self[tar].ruleBlock))
JAN context E2E inv:
[ I I ] selfftar].ruleBlock.ocl/sKindOfiCompositeRuleBlock) and
. . self[tar].ruleBlock.subRules->includes(selffsrc].ruleBlock))
Model Success Fail Exception 1.
1 1 1 0.1
; 0..1
RuleBlock <1 Handler
+name:String N
+alias:String
+subRules
AtomicRuleBlock | +pase 1 CompositeRuleBlock
+matchDuration:Real +/isTransactional:Boolean
4 0.1 4 1
[ ] [ I I ] 0
QRule ARule LRule BRule PRule | CRule |
+rewriteDuration:Real +nested:Boolean +customMerge:Action
* +isTransactional:Boolean * +iterations:int > 0 0.1 +1loop | 1
+customResolution:Action [€@————————— 0.1 +threads | 2..*
0..1
1 .| +rule
+branches | 2..*
FRule SRule Rule

+iterations:int > 0| | +iterations:int > 0

1

1 [ +query

* \|/+ NACs 1\|/+ LHS

+RHS\I/1

0.1

1 +LHS 1
Query > 1
PreConditionPattern

+pre

+NACs *

PostConditionPattern

Figure 7.5: The meta-model ofoTif.




172 MoTif

v v v
ARule LRule
v X
CRule
v
QRule
v 4 v X = <
v v —
FRule ' BRule
v X
v
v X
SRule -
v X B PRule
1
|
XRule XI .

v X v X

Figure 7.6: The different rule blocks mMoTif.

andHandlers will be discussed in the next chapter. Port channelling ceduan orderedequenceof
application of rule blocks. The OCL constraints includethe meta-model specify that:

¢ No path defined by a sequence of port connections shall inalggele;

e The source and target ports of any channel shall be withisdh®e scope defined by composite
rule blocks;

e A model port can be the target of at most one channel,

e The source port of a model to model channel shall be attach#tparent of the source’s rule
block;

e The target port of an exception to exception channel shalttaehed to the parent of the target’s
rule block.

In the MoTif visual modelling language, the concrete syntax ofA®Rule is a single rectangle
frame as depicted in Figure 7.6. The top triangle on a rulekoie theModel input port. The bottom
left tick symbol is theSuccess output port and the bottom right “X” symbol is thril output port.
Conceptually, the input model is received from thedel port and, if the application of the rule is
successful, the resulting model is output throughShecess port. However, if the pre-condition pat-
tern is not satisfied, the original model is output from Haé port. TheQRule has a similar graphical
syntax with a question mark symbol on the top right of theamegte. The transformation engineer
can specify a duration for the matching phase for both atontécblocks. In the case of &Rule, the
duration for the rewriting phase can also be specified.

A MoTif sub-model encoding transformation units can be part ORale (“Composite Rule”).
CRules are visually depicted by a double rectangle frame. The gaorts appear on both atomic
and composite rule transformation models which implies thay can be used interchangeably to
modularly build compleshierarchical transformation models.
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Iterative rule application is possible with variants of ARule. TheFRule (“For all Rule”) applies
the transformation rule oall matches of the pre-condition pattern (in arbitrary, buedeinistic and
repeatable order). The matches are assumed to be pardiglendent [EEKR97]. Two matches are
parallel independent if no overlapping matched elementadified (node deletion or attribute modi-
fication) by the rule when applied. If they are not, the transiation designer can specify a resolution
function to resolve the conflicts. The purpose of BRale is purely syntactic. It is syntactic sugar
for applying the rule iteratively over all matched sub-dreapThe maximum number of iterations is
parametrizable. ThERule is represented using the same concrete visual syntax AR@a, anno-
tated with an " in the top right corner. If the maximum number of iteratioigsnot infinite, the
positive integer appears in the top left corner.

Another variant of theARule is the SRule (“Star Rule”). It is applied sequentially as long as
the pre-condition pattern is satisfied in the model. Thaaf®r the received graph is matched and
transformed, the resulting model is then matched by the salee This continues until no more
matches can be found in the resulting packet. Care shoulkka tvhen using this construct as it may
result in an infinite loop. When combined with pivot passithg; SRule applies itselfrecursively©.
TheSRule is represented using the same concrete visual syntax/ue annotated with an asterisk
in the top right corner. If the maximum number of iteratiopgot infinite, the positive integer appears
in the top left corner.

While iteration involves a single rule blodikoping allows one to iterate over multiple rule blocks.
This is possible with theRule (“Loop Rule”). It consists of an atomic rule block as base a@iRule
as loop body. It allows applying several rules iterativ@lige LRule has different variants depending
on the type of the base rule block and whether pivots are usteipatterns, such as rule nesting and
indirect recursion. Its concrete syntax is the same @Rude but a horizontal solid line separates the
base compartment from the loop compartment.

In graph transformation, it is sometimes desirable to hagaymules match, but let only one be
applied.MoTif introduces th&Rule (“Branch Rule”) block which makes of this feature faranch-
ing. Its purpose is to receive a model, throughMisdel port, and send it to each branch. However,
only one branch is selected to continue executing the toamsition. Visually, &BRule is very similar
to aCRule but the rectangle is partitioned by vertical filled lines éparate the branches, each branch
being aCRule in its own right.

MoTif allows rules to be applied iparallel with the PRule (“Parallel Rule”). This leads to what
we call “threads” of rule applications. Each thread is aggblconcurrently, independently from one
another. The output of RRule is a single model “merged” from the result of each thread. thiheads
are assumed to be sequential independent [EEKR97]. Thatysprder of application of the rules in
each thread leads to the same output. If they are not, thefbramation designer can specify a merge
function to merge the graphs in conflict. TRRule’s parallel execution requires special care. Visually,
aPRule is very similar to aBRule but vertical lines that separate the threads are dashet.thead
is aCRule in its own right.

10This is similar to direct recursion in procedural programgiianguages, where a procedure invokes itself.
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When theisTransactional flag of a rule block is activated, its behaviour is extendethwi
memory capacity, which providdsack-tracking. We denote such a rule block b§rule (“Trans-
actional Rule”). For composite rule blocksTransactional is set to true if and only if the first
sub-rule is transactional. We will see in Chapter 9 thapulgh transactional rule$foTif also al-
lows forrecursion. A transactional rule block has the same concrete visudahgyas the rule block,
annotated with anX”.

Note how the meta-model ofloTif does not include any information about the data processed.
This is becausloTif is a language that constrains the transformation modealemty focus on
describing a model transformation. In fact, the semantidgaTif is defined in terms ofioTif-Core.

The behaviour of each of its constructs is detailed in thiefohg subsections.

7.4.2 From MoTif to MoTif-Core

Now that the abstract and concrete syntaiofif have been described, we define its semantics by
mapping it ontaMoTif-Core (i.e., DEVS). The semantic mapping is injective since everyTif con-
struct corresponds to a unigmeTif-Core model. We describe this mapping as a model transformation
specified inMoTif. It is therefore ahigher-order transformation transforming one transformation
language into another. Following the methodology desdrib&hapter 5, the meta-model of the pat-
terns of this transformation consists of the RAM versiorhef tneta-models afloTif andMoTif-Core.

In this subsection, we outline the main transformationstd#fghe semantic mapping.

EveryRuleBlock in MoTif is mapped onto @omposer in MoTif-Core. Thealiasandnameparam-
eters of theComposer are the same as those of RaleBlock counterpart. Th&lodel port is mapped
to theCPacketin port of theComposer, the Success port to theCSuccessOut port and therail port to
the CFailOut port. Exceptions are not considered here.

QRule

e v ) ™

' Alias:Name

v
AIias:Name?
7 X

Y,

- v X /

Figure 7.7: Th&QRule in MoTif and its equivalentoTif-Core model.

TheQRule, is the simplest transformation unit with no side effecanty searches for one match
of a pattern in the host model. Figure 7.7 illustrates ha@Rale is mapped onto &oTif-Core Com-
poser. We use the following notation to refer taRule: QRUl&amealias prean,- The rule in the figure
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describes the connection topology of themposer’s sub-modelst. We denoteéVgruiethe set of sub-
models of theComposer of type QRule. For readability purposes, we will omit ttetias andname
parameters oMoTif-Core’s AtomicPrimitives which will always be set to those ®foTif RuleBlock,
unless stated otherwise.

Mgrule= {Matcherprea,, 1, Iterators }

The QRule has a very simple behaviour. Given an input packet, if a madbund, the resulting
packet is output via the success port. Otherwise, the @ligiacket is sent from the fail port.

ARule

. B
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v
Alias:Name
v X

. R
Alias:Name
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Figure 7.8: TheARule in MoTif and its equivalentloTif-Core model.

The ARule, is the simplest transformation unit with side effect. WiaemRule receives a model
input from theModel port, it searches for one occurrence of its LHS in the inputleholf a match
is found, it is transformed according to the RHS of the ruiguFe 7.8 illustrates how aARule is
mapped onto #MoTif-Core Composer. We use the following notation to refer to aRrule:
ARUIl&amealias, pre, postam,Awress The rule in the figure describes the connection topologhefiom-
poser’s sub-models. We denodaryethe set of sub-models of the correspondingfif-Core Com-
poser:

Marule= {Matcherprea,, 1, Iterators, Rewriter posta,,, Resolveryes, Rollbackery }

An ARule behaves similarly to the simple rule described in Secti@¥7 However, &esolver is
added in case a pending match in the packet conflicts withufhrert rule application. Visually, the
zigzag on its right depicts th&ExceptionOut port from which an exception event encapsulating the
packet is output if th&esolver cannot resolve the confli¢s To ensure the atomicity of the graph

1Once again, the connections between @@ancelln port of the Composer and theACacenlin ports of all its sub-
models are omitted for clarity.
12More details on exceptional situations will be providedre following chapter.
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transformation rule, &ollbacker is added to theoTif-Core model. It ensures that if the rule is not
applied, the packet will be restored to the state it was lesdotering th&€omposer.

FRule

R B
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A\v4
Alias:Namée’
4 X

N )

Figure 7.9: The=Rule in MoTif and its equivalent1oTif-Core model.

TheFRule is anARule that applies its transformation phase alhthe matches found before the
new model is output. As shown in Figure 7.9, the matching @eaperformed only once and, after the
match is rewritten and validated, the packet is sent backdadrator that will select another match
to process. Note that theerator failing (i.e., outputs a packet fromFailOut) means that th®atcher
has successfully found matches in the host graph and thatdhe no more matches left to process. In
this case, th€Rule will successfully output the new packet. If, however, Bevriter or theResolver
fails during one of the iterations, all the modificationstthad been performed in thmposer are
discarded through thRollbacker. Given anFRule defined as-Rul&amealias, pre, postAm,Aw,resmax the
sub-models of the correspondingTif-Core Composer are:

MERule= {I\/IatcherpreAm’maX, Iteratormax, Rewriterposta,, , R€solverres, Rollbackerl}

The user can control the number of times the rule encodeciRRble is applied. Ifmax= o, it will

be applied on all possible matches. The order in which matahe processed is non-deterministic as
it relies on the behaviour afCore’s TClterator. Also, theTCResolver will by default fail if any two
matches overlap. This will result in discarding all pre\gdtansformations performed by tHH&ule.
This seems like an overhead as confluence of the matches ltawvgdbeen detected prior to the exe-
cution, through the computation of critical pairs [HKTO®} fexample. However, the latter approach
may sometimes be too conservative leading to false posifareexample is given in [HHTO02]). This
is overcome irMoTif by letting the user override the validation criterés.
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Figure 7.10: TheSRule in MoTif and its equivalentoTif-Core model.

SRule

The SRule, is anARule that applies the rulas long as possibleThat is, after the received model
is matched and transformed, the resulting packet is theohedtagain by the same rule. This con-
tinues until no more matches can be found in the resultingkgda@ds shown in Figure 7.10, the
application of theSRule is considered successful if at least one match is found andfisrmed. For
this purpose, after the packet has been matched, trangipiame validated a first time, it is sent
to a differentMatcher that will ensure the loop. A clone of the originsllatcher is needed to dis-
tinguish the first non-occurrence of matches (in which chgsesRule fails) from subsequent ones
(in which case the&sRule succeeds). The secomhtcher sends a packet to theNextin port of the
Iterator rather than to itAPacketIn port to keep track of the number of iterations remaining.sThi
then requires that botkatchers refer to the same pre-condition pattern. GiverS®&ule defined as
SRuUl@amealias pre, postAmAw,resmax the sub-models of the correspondiigTif-Core Composer are:

Msrule= { Matcherpre Ay, 1, Matchermamealias /1, pre Am, 1, It€ratormax, Rewriterposta,, , Resolverryes,
Rollbackers }

XRule and its variants

TheXARule, is the transactional version of aRule. It is an atomic rule with the capability of rolling-
back the packet to the state before the last applicationisfrthe. As shown in Figure 7.11, the
application of thexARule has a similar topology to th&Rule with the addition of a secor®bolibacker.
Given anXARule defined asX ARUl@amealias, pre, postam,Awres: the sub-models of the corresponding
MoTif-Core Composer are:

Mxarule= { Matcherpre a0, It€rators, Rewriterposta,, , Re€solverres, Rollbackermameatias, 1,
Rollbackernamea“as_._/l/}

The Matcher now needs to search for all matches as they may all be pratdsseto roll-backing.
It then sends the resulting packet to tRellbacker which checkpoints the packet. Recall that its
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Figure 7.11: The&XARule in MoTif and its equivalentoTif-Core model.

maximum number of iterations is set to the number of matcbesd. Then, théterator receives the
packet output by th&ollbacker (which is the same as the one output from Kkhecher). It selects a
match and outputs it to thRewriter. The same behaviour as for th&ule follows from there. After
some time, th€omposer may receive an event from i@\extin port and forwards it to thRollbacker

to undo the previous effect of this rule and attempt to appdyia different match. When all matches
have been tried, the packet is restored to its original stadeoutput via the fail port.

TheQRule also has a transactional variant. Although it does not nydd# input model, it never-
theless adds match sets to the packet. The topology afiéhé-Core model equivalent to th&Rule
is the same as for theéARule, but withoutRewriter andResolver.

Figure 7.12(a) shows théSRule, the transactional version of &Rule. The XSRule is the trans-
actional version of arsRule. When theComposer receives a packet from thePacketin port, the
XSRule applies the rule first on the original model received. Subsagtransformations are applied
on the previously transformed model. However, the order Imctv the matches are selected may
lead to different final results. Therefore when a roll-bagkequired, all previous transformations
of the rule are discarded and the following sequence of foamstions starts with a different ini-
tial match selected. This is why the fingtitcher must find all matches. Given &Rule defined as
SRul@amealias, pre, postAmAw,resmax the sub-models of the correspondivigTif-Core Composer are:

Msrule= { Matcherpre A0, Matchernamealias+/1/, pre,Am, 1, It€ratormax, Rewriterposta,, , Resolverres,
Rollbackernamealias, 1, ROllbaCkernamealiaer’l’}

Figure 7.12(b) shows théFRule, the transactional version of &Rule. In this case, only onRoll-
backer is needed since theRule consumes all the matches. Therefore, whendtw@poser receives
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Figure 7.12: TheXSRule in (a) and thexFRule in (b) and their equivaleriloTif-Core models.

an event from theNextin port, all changes affected by théRule are discarded and the original
the correspondiniloTif-Core Composer are:

MxERrule= { Matcherpre o, max Iteratormax, Rewriterposa,,, Resolverres, Rollbackers

CRule

The CRule, is a composite rule that allows one to group rule blocks nartju It provides abstrac-
tion of a phase or concern of the transformation. SemahtjaCRule is mapped to aoTif-Core
Composer which has the same purpose. According to the meta-modebdif, theModel port of the
CRule can be connected to at most one sub-rule. However, sevérals may be connected to its
Success or Fail ports.

A CRule is transactional if its first sub-rule is. Consider the exmp Figure 7.13 which shows a
MoTif model on the left consisting of@Rule, namedC, with four sub-ruleskR1 andR3 areXRules and
R2 andR4 areARules. In case they all succeed, the channel connections iedicat the rule blocks
are applied in alphabetical order. Rfl fails, then the transformation terminates in failure. Iisea
any other rule block fails, the transformation is haltedefmgitely. However, sinc€ is transactional,
the channels are implicit. If a rule block with an unconndgbert fails, the transformation rolls-
back to the previouXRule recursively, until the first rule block. In the exampleR# fails then the
transformation rolls-back tB3. But if R3 fails, then it rolls-back tdr1 sinceR2 is not anXRule. We
denote such a composite rule blockX@DRule.
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Figure 7.13: ACRule with transactional behaviour and the equival&oTif-Core model.

LRule and its variants

TheLRule, is a composite rule block whose primary purpose is to loggr several rule applications,
since channel connections cannot induce cycles. As delpictéigure 7.14(a), it consists of@Rule

as base and a rule block in the loop part. The inner rule dRiskapplied for each match encountered
in theMatcher of the query. If the success and fail portdRadire not connected, then looping continues
regardless of its output. Otherwise, the loop is interrdjitea similar way as a break statement inter-
rupts a loop in programming languages. GiverLRale defined ad Rul@amealias, pre, postAm,Aw,maxR:

the sub-models of the correspondimgTif-Core Composer are:

MLRu|e: {MatCherpr&Am’max, Iteratormax, R}

If the base rule block is aARule, then theRewriter in the correspondingyloTif-Core model is
applied at the end of the loop. As Figure 7.14(a) shows, thesalgntMoTif-Core model of anARule
is constructed by interleaving the inner rule block betwtriterator and theRewriter. Such a con-
struct, called ahARule, allows one to interleave the matching and the rewritingspbaf several rule
blocks thereby providingule nesting®. TheLARule is defined a$ ARUIGamealias, pre, postAm,Aw,maxRs
the sub-models of the correspondimgTif-Core Composer are:

Miarule= {Matcherpre s, max Iteratormay, Rewriter posta,,, Resolveryes, Rollbackery, R}

The LFRule is constructed in a similar way, replacing thRule by anFRule. In this case, the
Rewriter is applied at each iteration before the inner rule blocktdmested version, theNFRule,
the Rewriter is applied at each iteration after the inner rule block. Bathstructs are illustrated in

13gection 3.4.2 shows how rule nesting allows one to amalgatrasformation rules.
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Figure 7.14: The.Rule in (a) and theLARule in (b) and their equivalerMoTif-Core models.

Figure 7.15(a) and 7.15(b). Th&SRule andLNSRule are constructed in a similar way, replacing the
FRule by anSRule. If the base rule block is transactional then tiReile becomes transactional. Since
all variants of thexRule either add @&ollbacker between thevatcher and thelterator or a channel to
the existingRollbacker, all the applications of both the base and the inner ruleksledgll be undone
upon roll-back.

BRule

TheBRule, is a composite rule block that non-deterministically sedene successful branch of ex-
ecution. The selection is applied only on the first matchiofjsach branch. Thus when a branch
starts with a composite rule block, the selection is appbely on the first atomic rule block found.
Figure 7.16(a) shows thdoTif-Core model corresponding to BRule with two branches, each con-
sisting of a sequence of twaRules. The channels thdatchers output from are re-routed to a single
Selector. The behaviour is similar to thgest rule block in Section 7.2.4. However, to preserve the
atomicity property of the transformationRallbacker is added to undo any changes Rasolver does
not succeed. Note that if there were only one branch irBfée consisting of arARule, theBRule
would have the exact same behaviour as®Rele. The only difference is the addition of tiselector,
but it does not consume time. Recall that Hrule, SRule and theLRule only differ from theARule
starting from thdterator. Therefore if one replaces ti#dRules in Figure 7.16(a) by aRRule or an
SRule or anLRule, only that part following théterator would have to be adapted. In case oi®ule,
Rollbackers are added between tiatchers and theSelector as illustrated in Figure 7.16(b). Then the
success/fail connections are delegated taRibitbackers. This has for effect to undo all modifications
performed within théBRule.

A variant of theBRule is theBSRule. It allows one to apply recursively each branch, giving the
chance to both branches of re-applying at each iterationlldstrated in Figure 7.17, the first rule
block of each branch is converted into aRule. On the first iteration, th@SRule behaves exactly
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Figure 7.16: TheéRule in (a) and thexBRule in (b) and their equivalemoTif-Core models.

like a BRule. But on the following iterations, the clonadatcher outputs a packet to a clone of the
Selector and the normal behaviour ofgRule follows.

SinceMoTif is a timed transformation language, matching time and tewritime may differ
from one rule block to another. Ttgelector will always choose the first branch that finds matches
and cancel all the other branches. However, if two or morediras have their firs¥latcher output
a packet at the same time, one of them is chosen non-detstiwatly by the select function of the
Composer and the other one is cancelled. The output time ofBRale is the output time of the

selected branch.

PRule

ThePRule, is a composite rule block that provides deterministic exea of several threads of sub-
transformations in parallel. THeRule succeeds if and only if all threads succeed. The output time o
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Figure 7.17: ABSRule and its equivalentoTif-Core model.

the PRule is the output time of the slowest thread. We propose tworatares for applying threads
sub-transformations in parallel.

The first alternative synchronizes the threads at the enddf sub-transformation. Each thread
is mapped to &omposer encapsulating theloTif-Core model equivalent to the transformation of the
corresponding thread, following the transformations @nésd in this subsection. 8ynchronizer is
added to theMoTif-Core model such that theSuccessOut port of all theComposers are connected
to theASuccesslin port of theSynchronizer and theirCFailOut port is connected to th&ynchronizer’s
AFailin port. The top part of Figure 7.18 illustrates sucRRule with two threads, each consisting
of two ARules. The advantage of this approach is that the content of émehd can be arbitrarily
complex and with arbitrary match and rewrite durationscaithe synchronization and merge of
packets only happens once at the end. The disadvantage théhaurden is on the transformation
engineer who has to provide a merge function (if needed)}#tkat as input as many packets as there
are threads.

The second alternative takes advantage of the fact thatahsformation language has been de-
composed in primitive operations. The primary purpose PRale is to provide optimization points
in a transformation allowing concurrent operations. Thgcal operations in a transformation are
the matching and the rewriting. Since matching is in gerggalificantly more time consuming than
rewriting (c.f. Chapter 4), it is highly desirable to paedilte this operation, on rules that are parallel
independent. The right part of Figure 7.18 illustrates hHosvareviousRule is mapped tvoTif-Core
in this approach. Suppose tR&ule hasb threads. IrVioTif-Core, first a clone of the received packet
is fed to the® Matchers. When aMatcher finishes processing the packet, it sends iSyachroniz-
ers according to the success or fail output. There &syhchronizers, each representing a possible
combination of theMatchers’ output. Since aMatcher outputs a packet exclusively from either of its
outports, there is exactly or8ynchronizer that performs the merge of the packets and outputs the re-
sult. Recall from Chapter 3 that if the received packets mmreoverlapping match sets, the merged
packet consists of the union of these match sets. Otherthisg¢ransformation engineer must define
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Figure 7.18: APRule mapped to a/oTif-Core model according to each alternative.

the merge operation. Depending on the activ&@ptthronizer, the Iterator and Rewriter correspond-

ing to the rule blocks whosklatcher succeeded are applied. After the first rule of each thread has
been applied, the resulting packet is sent to the followdag:hers and the same behaviour continues.
The main disadvantage of this alternative is that the ptesesolution is well-defined for threads con-
sisting sequences aiRule applications as depicted on the bottom left of Figure 7.18tle number

of ARules in each sequence may differ. The main advantage, howsverai synchronization and
packet merging happens at a finer granularity than the fiestredtive, which enables the transforma-
tion engineer to (1) specify simpler merge functions anck(®w exactly where the packets are not
mergeable.

In our implementation, if each thread oP&ule only consists of a sequenceARRules andQRules,
then thePRule is transformed into &oTif-Core model according to the second alternative; otherwise
according to the first alternative. Here, we set the stagduftre work to implement a possibly
parallel or distributed transformation based on theserata/es.
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Figure 7.19: The architecture of tiMoTif language.

7.5 Running MoTif models

MoTif is a completely modelled model transformation languagesyhtax is convenient to use for
a transformation engineer in the sense that it only cont@itedacts specific to transformations (un-
like MoTif-Core). Its semantics is also modelled since it is mapped ontaviigif-Core modelling
language and this mapping is modelled as a transformatigard-7.19 illustrates the different lan-
guage layersoTif relies on.MoTif is a syntactic sugar language MbTif-Core, which consists of
the core elements of the language. The former language widefihes a more user-friendly syntax
encapsulating the different transformation operatorsigel in the latter languag®oTif-Core com-
binesT-Core and DEVS, both running on a model-aware virtual machine. They areesged in a
neutral target language as defined by the APdR&dux Kernel (ARK), which represents the meta-
meta-modelling layer inToM3. The tool is implemented in Python. TB&VS virtual machine allows
executingMoTif transformations.

Figure 7.20 represents the framework in whigbTif transformation models are executéth-
Tif is a formalism defined imToM® as a domain-specific language. To define a transformatien, th
transformation engineer transforms the source and targtt-models with the semi-automatic RAM
process. The result is combined with the transformatiom pait of the meta-model a¥loTif and
produces a customized meta-model for the patterns of theftianation. On the one hand, the trans-
formation engineer defines rules, queries, and their petterthe modelling environment described
in Section 5.3.5. They are then automatically compiled iRG@ore patterns. On the other hand, the
transformation engineer specifies the control flow of thedfarmation by designing oTif model.
The atomic rule blocks refer to the transformation unitgeadly created. Then theoTif model is
transformed into an equivaleMoTif-Core model as outlined in Section 7.4.2. The resulting model is
further compiled into @ythonDEVS model following the mapping defined in Section 7.2. The gen-
eratedT-Core patterns are integrated in the DEVS model through packageris. APythonDEVS
environment is also generated from thieTif-Core model. It allows one to interact, execute, and
debug thePythonDEVS model.

After a MoTif-Core model is generated from th@oTif model, some optimization are performed
to reduce unnecessary overhead of DEVS artefacts. For égathp transformation systematically
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Figure 7.20: TheoTif execution framework.

includes aResolver in anARule. Its purpose is to verify if the application of the rule coctfi with any
pending matches. Consider one of the branches ofkhde in Figure 7.16(a). Th&Rule A12:N12

is applied sequentially after tieRule A11:N11 . Therefore the packet will not contain any match set
afterA11:N11 thus the application 0A12:N12 cannot be in conflict with any other rule. In fact, the
only cases where afiRule can conflict with other matches is if it is part of arule (in the loop) or
aPRule. Hence the resultingloTif-Core model of anARule is the simple rule depicted in Figure 7.3,
since noRollbacker is needed anymore. A similar reasoning for 8rale can be followed. If it is not
part of the loop of ai.Rule variant or the base arNSRule or part of aPRule, then noResolver and
Rollbacker are required.

7.6 Enabling Higher-Order Transformation

To illustrateMoTif, we extend the example presented in Chapter 5 in whikloEf transformation
maps a finite state automaton to a Petri net model. We wilgtlesiPetri net simulator inoTif that
defines the operational semantics of the Petri net modelgndansitivity, the operational semantics
of the finite state automaton it was translated from. Thenhesvshow, using both transformations,
one can specify a higher-order transformation to animagdiiite state automaton while the Petri net
model is simulated.
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7.6.1 Petri Net Semantics
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Figure 7.21: The operational semantics for Petri nets:utesrin (a) and the control flow in (b).

We simulate the execution of a Petri net execution 