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Abstract

Consider a signal whose entries are supported on the nodes of a graph. We study the

metric to measure the smoothness of signals supported on graphs and provide theoretical

explanations for when and why the Laplacian eigenbasis can be regarded as a meaningful

“Fourier” transform of such signals. Moreover, we characterize the desired properties of the

underlying graph for better compressibility of the signals. For a smooth signal with respect

to the graph topology, our work proves that we can gather measurements from a random

subset of nodes and then obtain a stable recovery with respect to the graph Laplacian

eigenbasis, leveraging ideas from compressed sensing. We also show how such techniques

can be used for both temporally and spatially correlated signals sampled by wireless sensor

networks. Significant savings are made in terms of energy resources, bandwidth, and query

latency by using this approach. All the theoretical analysis and the performance of proposed

algorithms are verified using both synthesized data and real world data.



ii

Abrégé

Nous considérons ici un signal dont les éléments sont supportés par les noeuds d’un graphe.

Nous étudions les métriques qui mesurent la régularité des signaux supportés par ces

graphes and apportons des explications théoriques sur quand et pourquoi les vecteurs pro-

pres du Laplacien eigenbasis peuvent être considérés comme une transformation de Fourier

significative pour de tels signaux. De plus, nous caractérisons les propriétés souhaitées pour

le graphe sous-jacent afin d’obtenir une meilleure compressibilité de ces signaux. Pour un

signal régulier par rapport à la topologie du graphe, notre travail prouve que nous pouvons

rassembler les mesures d’un sous-ensemble aléatoire de noeuds et obtenir une récupération

stable par rapport aux vecteurs propres du Laplacien eigenbasis du graphe. Nous mon-

trons aussi que de telles techniques peuvent être utilisées pour des signaux corrélés à la

fois spatialement and temporellement et provenant de réseaux de capteurs. Cette approche

apporte des diminutions significatives en terme d’utilisation des ressources énergétiques, de

la bande passante et de la latence nécessaire. Toutes les analyses théoriques et les perfor-

mances des algorithmes proposés sont validées par des simulations et des donnes provenant

de systémes existants.
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Chapter 1

Introduction

1.1 Motivation

Signals on graphs are now common in various application areas including wireless sensor

networks [60], dimension reduction [12] and network monitoring [24]. For example, in field

estimation [6, 7], a huge number of wireless sensors are distributed randomly in a field

to collect measurements, such as temperature or solar radiation, where the whole sensor

network can be modeled as a random geometric graph. In computer graphics, the shape

of a 3D object can be approximated by a regular graph, with its nodes containing the

coordinate information [15, 39]. In the traditional realm of approximation theory, we are

interested in approximating a certain function by a simpler one. So far the approximation

theory has focused on 1D signals and 2D images while less work has considered signals on

graphs. So a general question one might ask is: how can we approximate signals supported

on graphs?

A natural starting point is that of Fourier analysis. It is well known that the Fourier

transform plays a core role in approximation theory and the idea that any arbitrary periodic

function can be represented as a series of harmonically related sinusoids has a profound

impact in mathematical analysis, physics, and engineering. In signal processing, it has been

shown that a smooth signal is compressible and can be well approximated by a small por-

tion of its Fourier coefficients because of the compressibility. Conventional approximation

theory [41] shows that both the linear approximation error and non-linear approximation

error of smooth signals decay fast if we maintain more Fourier coefficients. Moreover, re-

cent developments in Compressed Sensing (CS) [21, 29] also exhibit promising behavior in
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approximating smooth signals. Candès et al. [18, 22] and Rudelson & Vershynin [54] show

that we can randomly sample the smooth signal with sampling rate far below the Nyquist

rate, a stable recovery is still guaranteed, where “stable” means that the signal can be well

estimated under small perturbation. If a similar paradigm can be extended to signals sup-

ported on graphs, there would be significant improvements in the mentioned applications,

especially in Wireless Sensor Networks (WSNs).

1.2 Thesis Problem Statement

Our goal here is to extend the CS paradigm to signals with more general structure, or say,

signals supported on graphs. More concretely, our main work can be divided into two very

specific questions:

First, can we find a “Fourier transform” for signals supported on graphs and how

can we construct such a transform basis? Previous literature has shown that there exist

wavelet transforms for signals on graphs while many researchers believe that the graph

Laplacian eigenbasis exhibits certain behaviors of the Fourier transform. However, not

many theoretical studies have been made to support this belief.

Second, if the first question has a positive answer and since the CS theory tells us

that random sampling is an efficient approach for smooth signal approximation, a natural

question one would ask next is: is random sampling still an efficient approach for acquiring

smooth signals on graphs? The main problem here is whether the sensing matrix generated

from such random sampling scheme still satisfies the Restricted Isometry Property (RIP)

[29]. If not, can the requirement for RIP be relaxed?

In this thesis, we address both of these questions and provide a direct application of

our idea to WSNs.

1.3 Thesis Contribution and Organization

Our main contributions are highlighted as follows:

Regarding the first question, it has been believed for quite a while that the eigenbases

of a Laplacian matrix can be deemed as the Fourier basis for its corresponding graph. In

this paper, we refer to it as the Graph Fourier Transform (GFT). Moreover, there have

already existed certain applications which utilize the GFT in data compression [39, 60],
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and signal denoising [57]. However, none of them provides a detailed theoretical analysis

on why the graph Laplacian eigenbases can be regarded as the Fourier transform of graphs.

Nor do they discuss whether the Laplacian eigenvectors are meaningful basis vectors on

all graphs. In this work, we address both these issues. We first generalize the concept of

smooth signals and define a metric to measure the smoothness of a graph signal. Later,

we derive certain properties of the GFT. Those properties imply that if the eigenvalues of

the graph Laplacian roughly maintain an increasing trend, then the smooth signals on that

graph are likely to be compressible.

In order to answer the second question, we need first delve into the traditional CS

literatures. Candès [22] and Rudelson [54] prove that we can construct a sensing matrix

by randomly selecting a small portion of the rows from the Discrete Fourier Transform

(DFT) matrix. Actually, we can relax the DFT matrix to any orthogonal matrix whose

entries are uniformly bounded, which is called structured random matrix [52]. Our work

breaks this constraint by showing that an orthogonal matrix without uniformly bounded

entries like certain GFT basis can still guarantee a stable recovery with a simple least

square estimator if we construct the underlying graph with its corresponding GFT basis

carefully and the signal we are interested in is smooth on that graph. We call this technique

“Graph Spectral Compressed Sensing (GSCS)”. To distinguish from the technique called

spectral compressed sensing [31], it is worth pointing out that our approach is related to

the graph spectrum, i.e., the graph Laplacian eigenbasis rather than the eigenbasis of the

autocorrelation matrix.

GSCS and the GFT have many applications for networked data processing and gather-

ing. In this thesis, we show that GSCS is a promising technique for Wireless Sensor Net-

works (WSNs) and the GFT is a suitable orthogonal basis for networked data. Via GSCS,

we can gather measurements from a random subset of nodes with irregular sturcture and

then interpolate with respect to the GFT basis. We propose algorithms for both temporally

and spatially correlated signals, and the performance of these algorithms is verified using

both synthesized data and real world data. Significant savings are made in terms of energy

resources, bandwidth, and query latency.

1.3.1 Thesis Organization

The rest of the thesis is organized as follows:
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In Chapter 2, we provide necessary background to understand how GFT and GSCS

work. We first review the approximation theory using the Fourier transform basis and

review some properties of the Fourier transform. Second, we review the basic ideas of

spectral graph theory and previous applications exploiting the “Fourier” property of the

Laplacian eigebasis. Finally, we briefly introduce the main idea of CS and its application

on WSNs.

In Chapter 3, the general idea of GFT is introduced. We provide a theoretical analysis

of its properties, which are similar to those of the Fourier transform. Discussion on how to

obtain a proper GFT basis based on a given signal is also made in this chapter. Moreover,

simulations and experiments are made to verify our theoretical analysis.

In Chapter 4, we give the whole idea of GSCS and a performance guarantee has been

made for our techniques theoretically. Later on, detailed data gathering algorithms for

WSNs with spatially and temporally correlated signals are proposed. Both synthesized and

real world data are utilized to verify the theory of GSCS and to evaluate the performance

of our approaches for sensor network.

In Chapter 5, a conclusion of our work is made and potential future work is discussed.

1.4 Author’s Work

Two papers [67, 68] based on content presented in this thesis will be published in the

following international conference proceedings:

• Xiaofan Zhu, Michael Rabbat, “Approximating Signals Supported on Graphs,” in

Proc. Intl. Conf. Acoustics, Speech, and Signal Processing (ICASSP), March 2012.

• Xiaofan Zhu, Michael Rabbat, “Graph Spectral Compressed Sensing for Sensor Net-

works,” in Proc. Intl. Conf. Acoustics, Speech, and Signal Processing (ICASSP),

March 2012.
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Chapter 2

Background and Literature Review

2.1 Approximation Theory on Fourier Basis

In order to study the GFT, we need first delve into the conventional approximation theory

and learn the role of the Fourier transform. Fourier expansion was discovered by the study

of heat diffusion, which is governed by a linear differential equation [41]. Fourier analysis

is the basis for the development of approximation theory and compressed sensing theory.

In this section, we make a quick review of the Fourier transform and its corresponding

properties for signal approximation. Basics of approximation theory are also included [41].

2.1.1 Approximation Theory Background

In this subsection, we introduce some basic definitions in Fourier analysis. We are interested

in a continuous signal x(t), then x̂(ω) =
∫ +∞
−∞ x(t)e−iwtdt denotes its Fourier transform. For

the convenience of analysis, it is conventional to model the signal x(t) as square integrable

over [0, 1]. Then, we can decompose a signal x(t) =
∑+∞

m=−∞ |〈x(u), ei2πmu〉|ei2πmt with

〈x(u), ei2πmu〉 =
∫ 1

0
x(u)e−i2πmudu. x̂(m) = 〈x(u), ei2πmu〉 is called the Fourier coefficients,

which form the “discrete version” of x̂(ω). In many applications, the signals do not have

fast-varying structure. Such signals are called smooth signals. For smooth signals, it is well

known that the coefficients with small m, in other words, the low frequency components

tend to dominate the behavior of the whole signal. Hence, we use linear approximation

represent the original signal by keeping only those low frequency components: the M -term
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Fourier linear approximation is defined as

xM =
∑

|m|≤M/2

|〈x(u), ei2πmu〉|ei2πmt

The linear approximation is non-adaptive to signals. Different from the linear approxi-

mation, non-linear approximation is adaptive to different signal structure, i.e., it extracts

the M largest Fourier coefficients and discards the other, which is shown as follows:

x̃M =
∑
m∈Π

|〈x(u), ei2πmu〉|ei2πmt,

where Π is the set of indices of the M largest Fourier coefficients in magnitude. The

distortion of M -term non-linear approximation is less than or equal to that of the M -term

linear approximation. However, the downside of this approach is that we need the prior

knowledge of the M largest coefficients. Such knowledge might be difficult to obtain in

certain applications.

Since “smoothness” is an important concept here, we need to use certain metric to

measure it. In conventional approximation theory, total variation is used to describe the

overall smoothness of a signal:

Definition 1. For a continuous differentiable function x, the total variation is defined

as ‖x‖V =
∫ +∞
−∞ |x

′(t)|dt, where x′(t) is the derivative of x. For discrete signals, ‖x‖V =∑
n |x(n)− x(n− 1)|. We say that x has a bounded variation if ‖x‖V < +∞.

Total variation measures the overall signal variation. It plays an important role in signal

processing since it impacts the decaying behavior of its Fourier coefficients. If a signal x(t)

is square integrable over [0, 1], we define the M-term linear approximation error as follows:

Definition 2. M-term Linear Fourier Approximation Error:

εl(M,x) =
∑

|m|>M/2

|〈x(u), ei2πmu〉|2

.

The linear approximation keeps the M lowest frequency components while discards the

rest. It has several important properties related to signal acquisition and compression.

Correspondingly, the non-linear approximation is defined as follows:
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Definition 3. The M-term non-linear Fourier Approximation Error is

εn(M,x) =
∑
m/∈Π

|〈x(u), ei2πmu〉|2,

It is well known [41] that there exist certain relations between the total variation and

the behavior of linear approximation error, which are included in the next subsection.

2.1.2 Properties of the Fourier Transform

As has been introduced above, the Fourier transform is a mathematical operation that

decomposes a signal into its constituent frequency components and smooth signals are

likely to have large lower frequency components while the higher frequency components

are small. Hence, we can approximate the original signal using only its low frequency

components. This approach is at the heart of many lossy compression techniques. Such

properties are expressed in the following theorems in this subsection. We emphasize the

importance of understanding them in order to understand the “Fourier” properties of the

Graph Fourier Transform(GFT) present in the next Chapter.

Proposition 2.1.1 ( [41]). If x(t) is differentiable and x̂(ω) =
∫ +∞
−∞ x(t)e−iwtdt denotes its

Fourier transform, then

|x̂(ω)| ≤ ‖x‖V
|ω|

(2.1)

,

where ω ≥ 0. It is worth pointing out that there exist other similar results for the

DFT with slightly different definition of the total variation. For example, for the case that

x̂(m) = 〈x(u), ei2πmu〉 and ‖x‖V = supP
∑

n |x(n) − x(n − 1)| where P is all the possible

partitions over the domain of x, |x̂(m)| = O(‖x‖V|m| ) [34, 44].

Theorem 2.1.2 ( [41]). If ‖x‖V < +∞, then εl(M,x) = O(‖x‖VM−1).

Theorem 2.1.3 ( [41]). For any s > 1/2, there exists some constants A,B > 0 such that if∑+∞
m=0 |m|2s|〈x, gm〉|2 < +∞ where gm is the mth vector from an arbitrary orthogonal basis,

then

A
+∞∑
m=0

|m|2s|〈x, gm〉|2 ≤
+∞∑
N=0

N2s−1εl(M,x) ≤ B
+∞∑
m=0

|m|2s|〈x, gm〉|2
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and thus εl(M,x) = o(M−2s).

The theorems above describe the decay rate of Fourier coefficients and the behavior of

linear approximation error. It is worth noting that Theorem 2.1.1 is consistent with the

fact that a smooth signal is likely to be compressible in the Fourier domain. Theorem 2.1.2

shows that the linear approximation error is upper bounded by total variation and thus

signals with small total variation will result in less linear approximation error. Proposition

2.1.3 states that the behavior of the linear approximation error depends on the decay rate

of |〈x, gm〉|. In the next chapter, we show that similar statements of all the three theorems

above apply to the GFT.

2.1.3 Uncertainty Principle

Time and frequency energy concentrations are restricted by the Heisenberg uncertainty

principle. This principle has a particularly important interpretation in quantum mechanics

as an uncertainty on the position and momentum of a free particle. Also in the realm

of signal processing, uncertainty principle plays an important role in signal sampling and

recovery. The idea of compressed sensing is built upon uncertainty principle.

The state of a one-dimensional particle is described by a wave function x ∈ L2(R). The

probability density of a particle at location t is 1
‖x‖2 |x(t)|2, where ‖x‖ is the 2-norm of x.

The probability density of the energy spreading at ω is 1
2π‖x‖2 |x̂(ω)|2. Hence, the average

location of the particle is

u =
1

‖x‖2

∫ +∞

−∞
t|x(t)|2dt

while the average energy spreading is

ξ =
1

2π‖x‖2

∫ +∞

−∞
ω|x̂(ω)|2dω

The variances around these average values are

σ2
t =

1

‖x‖2

∫ +∞

−∞
(t− u)2|x(t)|2dt

and

σ2
ω =

1

2π‖x‖2

∫ +∞

−∞
(ω − ξ)2|x̂(ω)|2dω
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respectively.

Theorem 2.1.4 ( [41]). The temporal variance and the frequency variance of x ∈ L2(R)

satisfy

σ2
t σ

2
ω ≥

1

4

The inequality is an equality if and only if there exist (u, ξ, a, b) ∈ R2 × C2 such that

x(t) = a exp[iξt− b(t− u)2].

In quantum mechanics, this theorem shows that we cannot arbitrarily reduce the un-

certainty of the position and the momentum of a free particle simultaneously. In signal

processing, this theorem tells us that we cannot determine where the signal locates both in

frequency domain and in time domain. In other words, if the signal is concentrated around

a certain frequency, it would be spread over the time domain and vice versa. This prop-

erty plays an important role in signal recovery techniques like sparse signal reconstruction

and further contribute to compressed sensing [20,21]. Interestingly, some researchers [3, 4]

recently showed that there also exists an uncertainty principle for signals supported on

graphs. Such content will be included in one of the next following sections.

2.2 Compressed Sensing

The development of approximation theory, along with uncertainty principle, contributes to

the theory of sparse recovery and finally formed the theoretical basis of compressed sensing.

The following subsections introduce the basic theory of Compressed Sensing (CS) and some

of its applications.

2.2.1 Compressed Sensing Background

Compressed Sensing, which was first developed by E. Candes, J. Romberg, T. Tao [22] and

D. Donoho [29], is a very useful tool to handle sparse or compressible signals. The main

motivation for CS is that many real-world signals can be well-approximated by sparse

ones, that is, they can be approximated by an expansion in terms of a suitable basis,

which has only a few non-vanishing terms. Such idea is the reason why conventional lossy

compression techniques such as linear approximation or non-linear approximation perform
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so well. However, there exist certain problems in those traditional approaches. First, we

spend huge efforts and costs to acquire or say sampling the whole information of the signal

and then throw away most of its coefficients to obtain the compressed version. Hence, one

might ask if there exists a better way of obtaining the compressed version of the signal

directly, which results in a lower sampling rate. Second, it would be difficult for us to

sample those large coefficients directly since we do not know the prior knowledge of where

the largest ones are. As an alternative, compressed sensing provides a way of obtaining

the compressed version of a signal using only a small number of linear and non-adaptive

measurements. Even more surprisingly, CS theory proves that recovering the signal from

its undersampled measurements can be done with computationally efficient methods, like

`1 programming or greedy methods.

CS theory first considers sparse signals. The sparse signals is defined as follow:

Definition 4. For a signal x ∈ RN , we say that x is γ sparse if and only if x has no more

than γ non- zero entries, where γ � N

Typically, when we refer to signal x as a γ sparse signal, it means that γ is far less than

the dimensionality N and hence “sparse”. We call the set of indices corresponding to the

nonzero entries the support of x and denote it by supp(x). The set of all γ sparse signals

is the union of the
(
N
γ

)
γ-dimensional subspaces aligned with the coordinate axes in RN .

Suppose that instead of collecting all the coefficients of a vector x ∈ RN where x is a

γ-sparse signal, we merely record M inner products (measurements) of x with M � N

pre-selected vectors which form the rows of a M ×N sensing matrix Φ:

y = Φx,

To recover x from y, one would in fact want to find the sparsest solution of y = Φx by

solving

min
x∈RN
‖x‖0 s.t. y = Φx.

This is a difficult combinatorial problem. Solving such problem is not realistic for real

world applications. Fortunately, it has been proven that if the sensing matrix satisfies the

Restricted Isometry Property (RIP) [22, 29], then we can reconstruct the original sparse
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signal perfectly by solving the linear program (`1 decoding):

min
x∈RN
‖x‖1 s.t. y = Φx.

Sometimes the signal x is not sparse directly but have sparse transform coefficients on

a certain orthogonal basis Ψ, i.e., x = Ψθ where θ is sparse. Then we can still solve the

problem via:

min
θ
‖θ‖1 s.t. y = ΦΨθ.

and obtain x = Ψθ. It is worth noting that there exist several other recovery algorithms

such as greedy algorithms like Matching Pursuit [30] or CoSamp [45]. The definition of

RIP is show as follows:

Definition 5. An M×N matrix Φ has the γ−Restricted Isometry Property (γ−RIP) with

constant δγ if for all γ sparse signals x, we have

(1− δγ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δγ)‖x‖2
2.

The constant δ is called the restricted isometry constant.

The γ−RIP requires every submatrix of Φ to have a good isometry1 property and

prevents the signal x from lying in the null space of Φ.

Actually, it has been proved [22, 29] that the solutions to the `1 decoding problem and

to `0 decoding problem are equivalent in the following sense:

1. If δ2γ < 1, the `0 problem has a unique sparse solution.

2. If δ2γ <
√

2−1, the solution to the `1 problem is equivalent to that of the `0 problem.

Hence, the core idea of CS theory is to determine whether the sensing matrix Φ satisfies

the RIP if we are given a signal of sparsity γ.

In other words, perfect recovery of the original sparse signal under the conventional CS

paradigm is based on two conditions:

1. The signal should be sparse.

1isometry means distance-preserving maps
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2. The sensing matrix should satisfy the RIP.

However, signals encountered in nature are not always sparse. Even though many

natural and manmade signals are not strictly sparse, but can be approximated as such;

Such signals are called compressible signals.

Definition 6. Consider a signal x whose coefficients, when sorted in order of decreasing

magnitude, decay according to a power law:

|x(i)| ≤ Si−1/r

for some constant r > 0, where i = 1, 2, · · · , N and x(i) is the ith largest coefficients.

Thanks to the rapid decay of their coefficients, such signals are well-approximated by

sparse signals. For compressible signals, the non-linear approximation error can be bounded

as:

εn(γ, x) ≤ (rs)−1/2Sγ−s

with s = 1
r
− 1

2
and the γ term non-linear approximation means we merely maintain the

largest γ coefficients of the original signal x. This upper bound implies that for compressible

signals, the signal’s best approximation error has a power-law decay with exponent s as γ

increases. Hence, such signals can be referred as s−compressible signals.

One great achievement in the area of CS is proven by E. Candes et al. [19] that CS

can be applied to more applicable situations where there is no specific constraint on the

sparsity of a signal and the measurements are corrupted by noise. More specifically, we

observe:

y = Φx+ z,

where z is an unknown noise term and the `1 decoding problem can be slightly modified as

follows:

min
x
‖x‖1 s.t. ‖y − Φx‖2 ≤ ε, (2.2)

where ε is an upper bound which is determined by the impact of noise. E. Candes [18] has

proved a stable recovery of the above recovery algorithm:

Theorem 2.2.1. Assume that δ2γ <
√

2−1 and ‖z‖2 ≤ ε. Then the solution to (2.2) obeys

‖x∗ − x‖2 ≤ C0γ
−1/2‖x− x̃γ‖1 + C1ε,
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where C0 and C1 is some constants and x∗ is the solution to the `1 decoding problem.

It is worth noting that if the signal x is γ sparse, then the above theorem reduces to

the perfect recovery conclusion of sparse signals. Also, it is straightforward to see that

if the original signal x is compressible, then the recovery upper bound ‖x − x̃γ‖1 will be

small with an adequately large γ. It is also worth pointing out that the `1 programming

is one standard recovery algorithm but not the only one. There are lots of CS recovery

algorithms such as Iterative Hard Thresholding (IHT) [16], subspace pursuit [28], Matching

pursuit [30], CoSamp [45], etc. Thanks to RIP, all of them provide a robust and stable

recovery of compressible signals. Hence, the remaining problem of CS is which sensing

matrices satisfy the RIP.

Random Matrices: Random matrices are commonly utilized sensing matrices in CS.

We generate such matrices by drawing each entry of the matrix from a i.i.d. Random Vari-

ables such as Gaussian or Bernoulli. Such matrix Φ are proved to satisfy the concentration

inequality shown below:

Pr(|‖Φx‖2
2 − ‖x‖2

2| ≥ ε‖x‖2
2) ≤ 2ec0(ε),

where 0 < ε < 1 and c0(ε) is some constant only related to ε. For such matrices, it has

been shown that if we have an adequate number of rows, the RIP is satisfied with an

overwhelming probability. More specifically, the following theorem [52] provides us with a

lower bound for the number of measurements for random noisy matrices:

Theorem 2.2.2 ( [52]). Let Φ ∈ RM×N be a Gaussian or Bernoulli random matrix. Let

ε, δ ∈ (0, 1) and assume that

M ≥ Cδ−2(γ ln(N/γ) + ln(ε−1))

for a constant C > 0. Then, with probability at least 1− ε the restricted isometry constant

for matrix Φ satisfies δγ ≤ δ.

This theorem, combined with earlier introduced results about stable recovery, states that

if such noisy random matrices have more than M = O(γ ln(N/γ)) number of measurements,

then a robust and stable recovery of CS is guaranteed with overwhelming probability. This

is the statement usually found in the literature. There exist several proofs for the above
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theorem. In [9] a particularly nice and simple proof is given, which, however, yields an

additional ln(δ−1) term.

Sparse Random Matrices: Further development of random sensing matrices has

been made for certain specific applications like wireless sensor networks. Computing such

matrices and gathering the measurements in a distributed setting would be expensive. One

solution for such problems is given by sparse random matrices [62]. For sparse random

projection, we set the sensing matrix as:

Φij =


1 : with prob. 1

2s

0 : with prob. 1− 1
s

−1 : with prob. 1
2s

The parameter s controls the degree of sparsity of the random projections. Thus if s = 1,

the random matrix has no sparsity; and if s = lnN
N

, the expected number of non zeros in

each row of the random matrix is O(lnN). Wang et al. [62] show that O(γ2 lnN) sparse

random projections are sufficient to recover a data approximation which is comparable to

the optimal γ-term approximation, with high probability. The expected degree of sparsity,

or say, the average number of nonzeros in each random projection vector, is O(lnN).

Structured Random Matrices: Although the random sensing matrices ensure sparse

recovery via `1 decoding, sometimes they are of limited use in real applications. Often the

design of the measurement matrix is subject to physical or other constraints due to the

applications, or it is actually given to us without having the freedom to alter its design,

and therefore it is quite likely that the matrix does not follow a Gaussian or Bernoulli

distribution. Moreover, Gaussian or other unstructured matrices have the disadvantage

that no fast matrix multiplication algorithm is available and storing an unstructured matrix

may be difficult. Hence, several papers [8, 32, 51] focus on the construction of structure

random matrices and their recovery guarantee.

In this thesis, we would like to focus on one type of structured random matrices. This

type of random matrix is generated by randomly selecting a portion of the rows of an

orthogonal matrix who has a bounded coherence. The coherence of a matrix is a metric

for measuring the capability of being a good sensing matrix. A smaller coherence tends to

have a better RIP [22,52,54].

For some cases that the signal is compressible or sparse on a certain orthogonal domain,
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i.e.,

y = ΦΨθ

, where x = Ψθ and Φ is an orthogonal measurement system, i.e., Φ∗Φ = I. In order

to evaluate the mutual orthogonality of the matrix Φ and the orthogonal basis Ψ, the

coherence is defined as:

Definition 7. The mutual coherence of Φ and Ψ is

µ(Φ,Ψ) = max
j,k
|〈Φj,Ψk〉|,

Coherence is a classical way to measure the quality of a measurement matrix with nor-

malized columns. If the coherence is small, then the columns of the sensing matrix are

almost mutually orthogonal. A small coherence is desired in order to have good sparse

recovery properties. One direct example for mutual coherence is the partial Fourier en-

semble, which is defined as randomly selecting a portion of the rows from the DFT basis.

In this case Ψ is the DFT basis and Φ is a random row submatrix of an identity matrix.

Hence the mutual coherence of the partial Fourier ensemble is the largest magnitude of the

entries of the DFT basis, i.e., 1√
N

. Generally speaking, the smaller the coherence is, the

less number of measurements we need for the recovery process [22,52].

The partial Fourier basis is a special case of structured random matrices. More generally,

CS theory is concerned with the matrices with the following properties [54]:

1. ΦΨ is orthogonal

2. The magnitude of the entries of matrix ΦΨ is bounded with O( 1√
N

)

In other words, the mutual coherence for structured random matrices like DFT basis can

be represented as its largest magnitude of the entries. This concept is closely related to our

work since in contrast to conventional sparse approximation theories, we consider random

matrices without a bounded magnitude of entries.

Previous results in CS theory tell us that with random sensing matrices that satisfy the

above two conditions, there are two types of recovery approaches: the uniform recovery and

the nonuniform recovery. A uniform recovery guarantee means that once the random matrix

is chosen, then with high probability all sparse signals can be recovered. A nonuniform

recovery guarantee states that only a sparse signal with fixed but arbitrary support can
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be recovered with high probability using a random structure matrix. There are several

works [22,52,54] discussing about the uniform recovery. And the best result so far has been

given in [54] which states that a uniform recovery of structured random matrices requires

M ≥ Cγ ln4N number of measurements while it was widely believed that the actual lower

bound should be Cγ lnαN with α = 1 or 2. For nonuniform recovery, the bound for the

number of measurements has been achieved in [18], which says that M ≥ C · γ lnN where

C is some constant.

This subsection introduced the standard CS theory. However, for many real world

applications, there are special situations where we do not require the RIP be satisfied. In

other words, RIP is a sufficient condition for CS recovery but not necessary. The next

subsection introduces a concept called model based CS that parallels the conventional

theory and provides concrete guidelines on how to create model-based recovery algorithms

with provable performance guarantees.

2.2.2 Model-based Compressed Sensing

Although many natural and manmade signals can be modeled as compressible or sparse

signals, some of them tend to have support of their coefficients with underlying inter-

dependencies. For example, block sparsity [17, 59] deals with the scenario that the non

zero coefficients of a signal form clusters. The Model-based CS theory take advantage of

such prior knowledge and hence outperforms the conventional CS recovery algorithm in two

aspects: First, the required number of measurements for recovery is reduced; Second, model

based CS recovery algorithms better recovers the original signal from limited signal spaces.

We introduce Model-based CS since the theoretical analysis of our proposed method works

under the framework of Model-based CS.

Model-based CS relies greatly on the structure of the coefficients support. We denote

the support set by T , where T is a subset of {1, 2, · · · , N} with N the signal dimension.

Let T c denote the complement of the set T . In [10], in order to provide a general model to

include the structured signal ensemble, the signal model Mγ is defined as:

Mγ =

mγ⋃
γ=1

Xm, Xm = {x : xTmγ ∈ R
γ, xT cmγ = 0}

where mγ is the number of the possible support set and γ represents the sparsity. xTmγ
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corresponds to a γ dimensional signal whose entries are extracted from the support Tmγ on

x. Thus the model Mγ is defined by the set of possible supports {T1, · · · , Tmγ}. Clearly,

mγ ≤
(
N
γ

)
. Correspondingly, there is a RIP defined for signals desirable by this model:

Definition 8. AnM×N matrix Φ satisfies theMγ−Restricted Isometry Property (Mγ−RIP)

with constant δMγ if for all x ∈Mγ, we have

(1− δMγ )‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δMγ )‖x‖2
2.

It is straightforward to see that the model based RIP is a weaker condition than the

conventional RIP because it only applies to the signals x ∈ Mγ, where Mγ is a subset

of all possible
(
N
γ

)
subspaces. [10] proved that the model sparse signals can be stably

recovered with random sensing matrices while it requires fewer measurements compared

with conventional CS decoder.

As in the case of conventional CS theory, sparse signals cannot fit a lot of applications

in real world while compressible signals are more realistic. In model based CS, Baraniuk

et al. [10] define the model compressible signals as below:

Definition 9. The set of s−model-compressible signals is defined as:

Ms = {x ∈ RN : εn(γ, x) ≤ Sγ−s, 1 ≤ γ ≤ N,S <∞},

where εn(γ, x) = inf
x̄∈Mγ

‖x− x̄‖2.

Positive results show that for exactly γ-model-sparse signals, we can perfectly recover

them with the help of model based RIP. Also, due to the smaller range of the possible

subspaces, the number of measurements can be significantly reduced, model-sparse concepts

and results do not immediately extend to model-compressible signals. This is because the

model based RIP merely deals with signals whose non-zero coefficients lie in Mγ while it

cannot cope with compressible signals. Hence, it is necessary to develop a generalization of

the Mγ-RIP that can be used to quantify the stability of recovery for model compressible

signals. Before giving a detailed description about this generalized version of RIP, we first

need to define the residual subspaces Rj,γ as Rj,γ = {u ∈ RN such that u = M(x, jγ) −
M(x, (j − 1)γ)} for j = 1, 2, · · · , dN/γe, where M(x, jγ) = argmin

x̄∈Mjγ

‖x − x̄‖2. Then the

Restricted Amplification Property is defined as follows:
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Definition 10. A matrix Φ has the (εγ, r)− restricted amplification property(RAmP) for

the residual subspaces Rj,γ if

‖Φu‖2
2 ≤ (1 + εγ)j

2r‖u‖2
2

for any u ∈ Rj,γ where 1 ≤ j ≤ dN/γe.

It is easy to see that if r = 0, then the RAmP is no different with the upper bound of

the RIP. RAmP can be utilized to measure the property of the tail bound of x. One way

to analyze the stability of compressible signal recovery in conventional CS is to consider

the tail of the signal outside its γ-term non-linear approximation as contributing additional

“noise” to the measurements of size ‖Φ(x− x̃γ)‖2 where x̃γ is the best γ− term non linear

approximation of x. This technique can also be used to quantify the stability of model-

compressible signal recovery. The key quantity that must be controlled is the amplification

of the model-based approximation residual through the sensing matrix Φ since the signal

energy in residual space is the tail of this signal and can be regard as “noise”. In [10],

the tail of a model compressible signal outside the γ-term approximation M(x, γ), i.e.,

‖Φ(x−M(x, γ))‖2, is proved to be upper bounded by C
√

1 + εγSγ
−s lndN

γ
e with the help

of RAmP and model compressible signal. Since ‖Φ(x − M(x, γ))‖2 is small, the robust

recovery of the model based algorithm can be easily verified [10].

Model-based CS recovery algorithms are mainly based on conventional CS recovery

algorithms like CoSamp or IHT. These algorithms iteratively search for the best support

for the signals and recover the magnitudes via a minimum MSE estimator. The way they

detect the best support is based on techniques for finding the best γ term non linear

approximation while the model based CS recovery algorithm merely replaces the best γ

term approximation with the best γ term model-based approximation M(x, γ). Since Mγ

is far less than
(
N
γ

)
, fewer measurements will be required for the same degree of robust signal

recovery. Alternatively, using the same number of measurements, more accurate recovery

can be achieved. Moreover, a performance bound has been provided for model-based CS

recovery algorithm [10].

The model based CS is closely related to our work since the theoretical analysis we

utilize is based on the model-based CS framework. The scenario we focus on is an extreme

condition of model based CS where mγ = 1, i.e., we know exactly where the coefficients

with largest magnitude are and the results in model based CS can also be applied to our
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case.

2.2.3 Compressed Sensing for Sensor Networks

A Wireless Sensor Networks (WSN) [5] contains a number of self-organized wireless sensors

that cooperate with each other for conducting the same tasks. WSNs have a promising

capability to monitor the physical world via their spatially distributed sensor nodes. Since

WSN is an attractive low-cost technology for a wide range of remote sensing and environ-

mental monitoring applications, the development of method to estimate the parameters of

the underlying signals has become an exceedingly hot research area [46,53,53].

Prolonging the lifetime of a WSN is important for both commercial and tactical appli-

cations. This is because wireless sensors contain non-rechargeable batteries, which place

stringent energy constraints on the design of all WSN operations. In addition, bandwidth

resources are also limited for wireless sensor network. We always want to design a WSN

algorithms that consume as less bandwidth resources as possible. All these present require-

ments create formidable challenges upon the design of communication, networking, and

local signal processing algorithms performed by a WSN. Lots of effort has been made for

designing energy efficient estimation algorithms for WSNs [56,63].

Fortunately, the conventional CS theory can form the basis of promising methods for

achieving best tradeoffs between energy and bandwidth resources. There are two main

advantages of applying CS to distributed estimation tasks:

1. Compressed Sensing requires far fewer observations than the number of sensor nodes.

2. Compressed Sensing is a general idea that can be applied on any data or parameters

as long as the measuring signal is sparse or compressible on a certain domain. This

means the signal itself does not have to be sparse on space domain.

The first advantage about CS motivates the application of CS on distributed estima-

tion since fewer observations lead to less energy consumption or less bandwidth require-

ments.The second claim gives rise to a wider area of application of CS on distributed

estimation problems: we do not have to utilize CS on sparse parameters estimation but

can apply it as long as we can find an orthonormal basis where the data can be sparsely

represented. Thus, one core problem for designing the distributed estimation system with

CS is how to find such a basis. In the past few years, researchers have developed several
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techniques of applying CS to sensor networks [6, 23, 33, 38, 50]. One related work which

deals with this problem is Compressive Wireless Sensing (CWS) [6].

Compressive Wireless Sensing

Bajwa et al. [6, 7] proposed a distributed matched source-channel communication scheme

for field estimation. Their method, which is based on theory of CS, estimates the sensed

data at the Fusion Center (FC) and analyzes the tradeoffs between energy, distortion and

latency(bandwidth). Their method is based on a similar philosophy rooted in image pro-

cessing: They regard each sensor as a single pixel. If we have the prior knowledge of the

orthogonal basis where the target signal is sparse and the subspace where the sparse pa-

rameter lives, then it is feasible to utilize the conventional image processing scheme like

JPEG [61] to encode the signal and reconstruct it at FC. The proposed approach is based

on analog scheme but only needs M unit of bandwidth resources, i.e., M different frequency

channels are allocated for each measurement. M is far less than the size of the WSN N .

However, it is not always practical for us to have such prior knowledge about the optimal

subspace where the signal is. In order to deal with this situation, a universal scheme called

Compressive Wireless Sensing (CWS) is proposed:

Instead of projecting the sensor network data onto a subset of deterministic orthogonal

basis (like JPEG), the FC tries to estimate a parameter x from noisy random projections

of the sensor network data. Specifically, let each sensor node multiply its readings with

a random variable and gather their sum at the FC. Repeat such process for M times

and we will obtain the M dimensional measurement vector y at FC. Such process can be

represented as following:

y = Φ(x+ w) + ñ

where x is a M × 1 observation vector, w is the sampling noise of i.i.d zero mean Gaus-

sian distributed with variance σ2
w and ñ is the channel noise of i.i.d zero mean Gaussian

distributed with variance σ2
n. Because the entries of the projection matrix(compression

matrix, sensing matrix) Φ are generated at random, observations of this form are called

random projections of the signal. The above mathematical model can be further simplified

as:

y = Φx+ (Φw + ñ) = Φx+ n
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where n = Φw + ñ. It has been proved [37] that the above model is equivalent to the

original model and n can be regarded as a noise term which is independent with Φ. Given

a countable collection χ of candidate reconstruction signals, such that |xi| ≤ B for all

entries, the estimate of original signal x, x̂, is obtained as a solution of

x̂ = argmin
x∈χ

{‖y − Φx‖2
2 +

c(x) log 2

ε
}

where c(x) is a non-negative number assigned to each x ∈ χ and ε > 0 is a constant

that depends on the function bound B and the noise variance. Moreover, if we can find a

deterministic basis Ψ where x is compressible or sparse, then we can use Ψ in the estimator

and rewrite the estimator as:

θ̂ = argmin
θ
{ 1

M
‖y − ΦΨθ‖2

2 +
2 log(2) log γ

ε
‖θ‖0},

and x̂ = Ψθ̂.

CWS manages to reduce the number of measurements, which means that it requires

less number of bandwidth resources or query latency (if we utilize a TDMA scheme). It

applies similar ideas in image processing, i.e., projecting signal onto proper orthogonal

basis, to obtain compressible coefficients and exploit CS for measurements reduction. No

prior knowledge about the location of the transformed coefficients θ is required. However,

there are still some problems in the CWS framework: First, collecting one CS measurement

requires the participation of every sensor and to obtain an M dimensional measurement

vector requires each sensor transmit its readings M times to the FC. The total number of

transmission is MN , which might not be quite energy efficient. Second, in their experi-

ments, they utilize some conventional orthogonal basis in image processing, e.g., wavelet,

Haar transform. Such orthogonal basis only applies to regular structured, or say, a 2D grid.

However, the topologies of many WSNs do not have such property. Later in this thesis, we

will show how our work deals with these issues.

WSN Monitoring via Compressed Sensing

The key idea in CWS is to make use of the spatial correlation of the parameter vector to

reduce required number of projections (observation). Another interesting idea [42, 43] of
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utilizing compressed sensing for distributed estimation is motivated by the temporal corre-

lation between desired signals. They exploit the Karhunen-Loeve Transform (KLT) basis

to obtain compressible coefficients and propose an online algorithm for signal recovery. The

general idea of [42,43] is introduced as follows:

The estimator at the FC utilizes the recent r estimations to help estimate the current

readings for each iteration since the signal is temporally correlated. Hence, this method

is an online estimation scheme. Consider that there exist N wireless sensors monitoring

some underlying signals (e.g. temperature, humidity) for a spatial area. Let xt(i) where

i = 1, · · · , N denote the sampled data by sensor i at time t. Accordingly, xt is a N ×1 vec-

tor. Also, x̄ = 1
r

∑t−1
k=t−r xk is the sample mean vector and C = 1

r

∑t−1
k=t−r(xk − x̄)(xk − x̄)T

is the sample covariance matrix. Via the basic theory of linear algebra, we can calculate an

orthonormal matrix U whose columns are the unitary eigenvectors of the covariance matrix

C. It is now possible to project a given measurement xt onto the vector space spanned

by the columns of U . Now, let θt = UT (xt − x̄) and reorder the entries of θt as follows:

θt(1) ≥ θt(2) ≥ · · · ≥ θt(N). Then θt is the KLT of the signal xt. Since they assumed that

the signal x is temporally correlated, there exists an γ � N such that when i > γ, θt(i) is

negligible compared to the largest γ entries. Thus we can say that it is very likely that θt

is compressible or it is γ sparse.

In this framework, instead of transmitting all N observations to the FC, the wireless

sensor network randomly chooses M sensors to send their sampled data to FC. Thus the

observations received by FC can be represented as: yt = IΩxt, where x is aM×1 observation

vector and IΩ is a random row submatrix of an N ×N identity matrix.

Before delving into the detailed procedure of this online estimation algorithm, we need

first to clarify its assumptions: the FC has the perfect knowledge of the past r samples,

i.e., the FC knows the signal set {xt−1, · · · , xt−r}. The parameter r is chosen according to

the temporal correlation of the observed phenomena to validate this assumption. Thus the

procedure of this estimator is as follows:

First, the wireless sensor network transmits its sampled version of xt, i.e., yt = IΩxt to

the FC. From the equation θt = UT (xt − x̄), we can see that

yt = IΩ(x̄+ Uθt) = IΩx̄+ IΩUθt = IΩx̄+ UΩθt
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, where UΩ = IΩU is the sensing matrix in Compressed sensing framework.

Second, when the FC obtains the observation yt, it can obtain the sensing matrix Φ

by distinguishing which sensors have been activated. And since the previous r readings is

known, x̄ is known to the FC. Then the FC can obtain

Yt = yt − IΩx̄ = IΩx̄+ UΩθt − IΩx̄ = UΩθt

. where UΩ = IΩU and we calculate U via the previous r readings as discussed.

Since we have the prior knowledge that θt is a sparse or compressible signal, we can

obtain the estimation according to the framework of compressed sensing:

θ̂t = argminθt ‖θt‖1 s.t. Yt = UΩθt

Finally, applying the following calculation: x̂t = x̄+ Uθ̂t, we can get the final estimate

of the underlying parameter and update the stored previous r readings.

In this work, Masiero et al. [42, 43] use experiments to illustrate the performance of

their algorithms. However, still certain issues are unclear in their papers. They did not

provide the proof that UΩ can be a valid sensing matrix, neither do they discuss the

required number of measurements. Actually, our work adopts similar online algorithm on

temporally correlated signals but ours utilized the Laplacian eigenbasis rather than KLT

basis and hence is able to provide more detailed theoretical discussion.

2.3 Spectral Analysis on Graphs

2.3.1 Spectral Graph Theory Basics

In mathematics, spectral graph theory [58] is the study of properties of a graph based on

the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated to the

graph, such as its adjacency matrix or Laplacian matrix.

In spectral graph theory or other graph theories, a graph G = (V,E,w) can be well

specified by its vertex set, V , edge set E and the weight set defined on edges. For

unweighted graphs, the definition can be reduced to G = (V,E). In an undirected graph,

the edge set E = {(i, j) : i ∼ j} is a set of unordered pairs of vertices while in an directed

graph, the set of pairs of vertices is ordered. In this thesis, we focus on undirected graphs.
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Unless otherwise specified, all graphs will be undirected, and finite.

Typically, and without loss of generality, we will assume that V = {1, · · · , N}. One

natural matrix to associate with a graph G is its adjacency matrix, A, since A is able

to contain all the topology information. For simplicity, we will just use A to denote the

adjacency matrix. The weighted adjacency matrix A of G is the N×N matrix with entries

Ai,j =

{
wi,j : if there is an edge between vertix i, j

0 : otherwise

and N = |V | is the number of nodes. If wi,j ∈ {0, 1}, then A reduces to an unweighted

adjacency matrix. Another related matrix is the Laplacian matrix. To construct this, let

D be the diagonal matrix in which D(i, i) is the degree of vertex i. The degree of vertex i

is defined as the number of edges which is connected to i for undirected graphs while for

directed graphs, we only count the outgoing edges. We have:

D(i, i) =
∑
j

Ai,j

The quadratic form associated with a graph is defined in terms of its Laplacian matrix:

L = D − A

Many elementary properties of the Laplacian follow from this definition. In particular, it

is immediate that for all x whose entries are supported on the nodes of a graph

xTLx =
∑

(i,j)∈E

wi,j(x(i)− x(j))2 ≥ 0.

From the above equation, we can see that L is SPD. If we let u denote one eigenvector of

the Laplacian matrix L and λ as its corresponding eigenvalue, then we have:

uTi Lui = λiu
T
i ui

Since L is a symmetric matrix for undirected graphs, λ is real and non negative because

L is Semi Positive Definite (SPD). There are certain basic properties of spectrum of the

Laplacian matrix:
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1. Observe that Lx = 0 for x(i) = c with i = 1, · · · , N is a constant vector. Hence we

can see that the smallest eigenvalue of a Laplacian matrix is 0.

2. We say that a graph G is connected if for any pair of nodes in the graph, there always

exists a path between them. Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1 be the eigenvalues of the

Laplacian matrix. Then λ1 > 0 if and only if G is connected.

3. λ0 = min
x

xTLx
xT x

and λN−1 = max
x

xTLx
xT x

. The ratio xTLx
xT x

is called the Rayleigh quotient.

Accordingly, from the first two properties we can see that the eigenvalues of the Laplacian

matrix maintain a non-decreasing trend starting from 0. And for a connected graph, the

multiplicity of the 0 eigenvalue is 1 and its corresponding eigenvector is a constant vector.

In Chapter 3, we will see that the Rayleigh quotient of the Laplacian matrix is closely

related to the smoothness of the signals supported on graphs.

2.3.2 Graph Laplacian Eigenbasis

If we let U = [u0, · · · , uN−1], where ui is the eigenvector of a Laplacian matrix, which

corresponds to λi. We call U the Laplacian eigenbasis. The graph Laplacian eigenbasis has

long been exploited by the computer science society for machine learning problems such

as regression, classification, clustering [14, 55], and especially for semi-supervised learning

problems [11, 65]. It has also be utilized for dimension reduction techniques in Laplacian

eigenmaps [12]. Moreover, some of the researchers in the area of computer graphics utilized

the methodology of signal processing and utilized graph Laplacian eigenbasis as compression

techniques for 3D objects [39]. This subsection will provide brief introductions on some of

the related works.

Spectral Compression

One idea in the area of computer science refers to the idea of image compression techniques

in signal processing is called spectral compression. Karni and Gotsman [39] show how

spectral methods may be applied to 3D mesh data to obtain compact representations.

This is achieved by projecting the mesh geometry onto an orthonormal basis derived from

the mesh topology.

More specifically, in image compression techniques like JPEG [61], we deal with 2D

images and project the image signal onto the DCT domain and only maintain the low
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frequency components. Correspondingly, in spectral compression, we deal with 3D mesh

data. The core idea of spectral compression is quite simple: it utilizes an efficient algorithm

to compute the N × N Laplacian eigenbasis and the authors claim that the eigenvectors

ui can be regarded as “low frequency” if i � N . Then, they project the coordinate

data onto the Laplacian eigenbasis while only remain the “low frequency” components of

the coefficients. In their work, they claim that the the graph Laplacian eigenbasis has

certain “Fourier” properties but they did not provide adequate analysis. Later on, the

work [15] shows a theoretical proof on the optimality of spectral compression. However,

this conclusion is restricted to the following two conditions:

1. The coordinate data of each node conforms to a strictly sorted order, i.e., along the

x-axis, the x coordinates of the nodes always keep increasing and the same happens

for y, z-axis.

2. The degree of each node is equal to 4.

Such strict requirements make the conclusion [15] difficult to be extended to more general

situations. In [39], it is mentioned that the Laplacian eigenbasis can be regarded as having

certain “Fourier” properties although the authors did not delve into this topic any fur-

ther. One natural question would be: Does such behavior exist for more general topology

structures? This question has been studied later in our thesis.

Manifold Embedding with Eigenmaps

In machine learning, dimension reduction is the process of reducing the number of random

variables under consideration, and can be divided into feature selection and feature extrac-

tion. Principle Component Analysis (PCA) or random projection are common dimension

reduction techniques. Moreover, there exists other prominent nonlinear techniques that

include manifold learning techniques such as Eigenmaps [12]. In [12], Belkin and Niyogi

present a new algorithm and a methodology of theoretical analysis for their geometrically

motivated dimensionality reduction.

The general process of the algorithm can be described as following:

1. Construct the adjacency graph based on the data points via an ε−graph or KNN

graph, i.e., connecting those nodes who are close to each other
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2. Choose the weights on the edges. The author suggests the use of a gaussian kernel

or unweighted graphs.

3. Compute eigenvalues and eigenvectors for the generalized eigenvector problem: Lu =

λDu, where D is the diagonal matrix corresponds to the node degrees and obtain the

M -dimensional embedded data as (u1, · · · , uM)

The solution reflects the intrinsic geometric structure of the manifold. The justification

comes from the role of the Laplacian operator in providing an optimal embedding.

It has been shown that the Laplacian of the graph obtained from the data points may

be viewed as an approximation to the Laplacian Beltrami operator defined on the manifold

and the Laplacian Beltrami operator is suitable to preserve the locality by trying to find

argmin
‖x‖=1

∫
M

‖∆x‖2,

where ∆ denotes the Laplacian Beltrami operator. The Laplacian Beltrami operator, like

the Laplacian, is the divergence of the gradient for the underlying manifold. Hence, this

optimization problem corresponds directly to minimizing
∑

(i,j)∈E wij(x(i) − x(j))2 on a

graph, which tries to maintain the smoothness of the low dimensional signal. In our work,

we show that the “smoothness” with regard to the graph here has further meanings under

the framework of signal processing and is worthy deeper study. The algorithm of Eigenmaps

is simple and easy to implement. M. Belkin [11] further shows that the core idea of the

eigenmaps can be applied to semi-supervised learning.

Manifold Structure for Semi-Supervised Classification

In computer science, semi-supervised learning is a class of machine learning techniques that

make use of both labeled and unlabeled data for training a small amount of labeled data

with a large amount of unlabeled data. Based on similar ideas developed in eigenmaps, the

classification techniques are developed [11] under the assumption that the data resides on

a low dimensional manifold within a high dimensional representation space. The technique

utilizes both the labeled data and unlabeled data for better performance on classification.

The procedure of the classification is quite similar to that of the eigenmaps: Consider N

points xi where i = 1, 2, · · · , N with only γ points with binary labels ci, where ci ∈ {1,−1}
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1. Constructing an adjacency graph based the data points via an ε−graph or KNN

graph.

2. Compute the eigenbasis U of the Laplacian matrix of the graph.

3. Build the classifier and obtain the M dimensional classifier parameter θ by minimizing

the error function: E(θ) =
∑γ

i (ci −
∑M−1

j=0 θjuj(i))
2, where ui is the ith eigenvector

of the Laplacian matrix and M is some constant smaller than N .

4. Classify the unlabeled data by:

ci =

{
1 : if

∑M−1
i=0 θjuj(i) > 0

−1 : otherwise

Their main theoretical support for the method is that the Laplacian can be regarded as a

smoothness function. If we denote M as a manifold and a smoothness function is defined

as S(x) =
∫

M
‖∆x‖2. Hence, it is easy to see that for eigenfunction ui, its smoothness

function is λi and by keeping the first M eigenfunction components, the smoothness of

the approximation is well maintained. Moreover, the authors argue in their paper that the

Laplacian matrix of the graph can be regarded as the discrete version of Beltrami operator.

Overall, such method makes use of the smoothness of the manifold function, which

can be inferred by the unlabeled data, and the information of the labeled data in order

to improve the performance of the classification task. It is worth pointing out that for

semi-supervised learning, an alternative classifier is proposed by following similar ideas:

min
x(i)∈R

N∑
i

wij(x(i)− x(j))2 s.t. x(i) = ci for all labels

The above optimization problem also preserves the smoothness of the function x since xTLx

is the discrete version of the smoothness function S(x).

On the other hand, there are still certain unresolved issues in [11]. The authors do

not provide further discussion about the relationship between error rate and the choice

of M . Moreover, they build the classifier via minimizing E(θ) =
∑γ

i (ci −
∑M−1

j=0 θjuj(i)),

which is merely based on the intuition of keeping the smoothness without the discussion

about how to pick the parameter M . Actually, the solution of the optimization problem
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min
θ

∑γ
i (ci−

∑M−1
j=0 θjuj(i)) is the conventional least square estimator in estimation theory

[49]. Such estimator is widely utilized in regression and signal processing tasks and the

choice of the first M coefficients during classifier building is closely related to the linear

approximation concept in classical approximation theory. Also it is worth pointing out that

such technique is quite closely related to ours since our proposed techniques utilize similar

procedure for signal estimation rather than classification, which makes this problem more

complex. But following the philosophy of signal processing, we are able to shed light on the

uncleared issues, which are difficult to be solved via the “computer science” methodology.

2.3.3 Signal Processing on Graphs

While graph theories are widely used in computer science techniques, there have been a lot

of efforts of applying graph theories to signal processing problems, especially to network

applications. Common IP networks, ad hoc networks or wireless sensor networks can be

modeled as graphs and sometimes we are interested in extracting the information from the

networks. Such scenarios motivate the developments of signal processing techniques on

graphs.

Wavelets on Graphs

The classical Continuous Wavelet Transform (CWT) [40] may be considered as a form of

time-frequency representation for continuous-time (analog) signals while more and more

efforts have been put on the development of wavelets for signals supported on graphs

[26,27,36]. The recent work of [36] construct the “wavelet” transform for signals on graphs

via spectral graph theory. In this paper, the authors call the eigenbasis of the Laplacian

matrix as the graph Fourier Transform. They deduct the graph wavelet functions:

ψt,n(m) =
N−1∑
l=0

g(tλl)u
∗
l (n)ul(m)

where g is defined as the spectral graph wavelet kernel and ui is the ith eigenfunction of

the Laplacian. It is easy to see that t is the scaling factor while n is the location factor.

Formally, the wavelet coefficients of a given function x are produced by taking the inner
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product with these wavelets, as

Wx(t, n) = 〈ψt,n, x〉

Their work shows that scaling may be implemented in the spectral domain of the graph

Laplacian.

Uncertainty Principle for Signals Supported on Graphs

As has been introduced in Subsection 2.1.2, the uncertainty principle plays an important

role in the area of conventional signal processing. Recently, Agaskar and Lu [3,4] extended

this classical result to functions defined on graphs. They first justify the use of the graph

Laplacian eigenbasis as a surrogate for the Fourier basis for graphs, and define the notions of

spread in the graph and spectral domains and establish an analogous uncertainty principle

for signals on graphs.

In their work, they first claim that the Laplacian eigenvalue λi corresponds to the square

of frequency ω2 and then define the spectral spread of signal x:

σ2
s =

1

‖x‖2

N−1∑
i=0

λi|〈x, ui〉|2 =
1

‖x‖2
xTLx

Then, the graph spread of a vector x ∈ RN is defined as:

σ2
g =

1

‖x‖2
min
v0∈V

∑
v∈V

d(v, v0)|x(v)|2

where d(v1, v2) is the distance between vertex v1 and vertex v2, be the smallest number

of edges that need to be traversed to get from one to the other and v0 is defined as the

center node of this graph. With the help of such definitions, it can be further proved that

if the center point x(v0) is smaller than its neighboring points and x(v) = 0 if the degree

of vertex v is 1, the following applies to any connected and acyclic graphs (graphs without

cycle):

σ2
sσ

2
g ≥

1

32

The theoretical analysis on the uncertainty principle sheds light on the “Fourier” properties

of the graph Laplacian. It is worth pointing out that there are actually more related
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techniques which utilize the philosophy of “Fourier” properties of graph Laplacian. In

parallel, Pesenson [47,48] studied sampling theorems for “bandlimited” functions on graphs.

Here “bandlimited” means that the functions x only contains “low frequency” components,

i.e., 〈x, ui〉 for large i. Moreover, there are certain lines of research which focus on practical

applications. In [57], a method to efficiently distribute the application of graph Fourier

multipliers to the high-dimensional signals collected by sensor networks is proposed. Such

method features approximations of the graph Fourier multipliers by shifted Chebyshev

polynomials. Their method is also based on the belief on the “Fourier” property of the

graph Laplacian eigenbasis.

2.4 Discussion

In this chapter, we have introduced three categories of research lines. We have introduced

the basics of approximation theory and several properties of the Fourier transform. We

also included compressed sensing, which is based on approximation theory. Moreover,

we discussed several techniques based on graph spectral analysis. Interestingly, all the

researchers in the area of computer science and those in signal processing have made out-

standing achievements in graph-based techniques respectively. In Subsection 2.3, we have

seen that the scholars from computer graphics and manifold learning have developed many

graph-based techniques by adopting the philosophy of signal processing while the signal

processing community also contributes to this topic but with more bias on theoretical anal-

ysis. Our work applies the graph-based techniques on signal processing tasks, leveraging

the idea from manifold learning. Moreover, the theoretical analysis of our work is built

upon the basis of signal processing. In the following chapters, we will show that our work

contribute to connecting manifold learning and signal processing. We show that the the-

oretical tool developed in signal processing can be exploited to analyze the graph based

techniques developed in manifold learning and semi-supervised learning and we also show

that we can generalize such techniques and apply to signal processing tasks.
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Chapter 3

The Graph Fourier Transform

In the previous chapter, we have seen that there have already been several works considering

the ”Fourier” properties of the signals supported on graphs while a detailed theoretical

analysis has not been made yet. Hence, our work tries to fill the gap problem. This

chapter extends the conventional approximation theory to signals on graphs and provides

a theoretical analysis about why and when the graph Laplacian eigenbasis can be regarded

as a Fourier transform for signals supported on graphs.

3.1 Towards Properties of the Graph Fourier Transform
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Fig. 3.1 Illustration of some eigenvectors of a ring with 500 nodes

Signals supported on graphs are fairly common in real applications. For a given graph
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G = (V,E), we write x ∈ RV to mean that x is supported on the vertices of G. We

are most interested in the situation that the distribution of the signal is closely related

to its underlying graph topology. For example, consider the data flow readings from the

routers in a network. It is reasonable to assume that the data flow is highly correlated to

the underlying topology. Or consider the readings from a group of sensor nodes for field

estimation. If we construct an ε−graph of the network by its location information, then

it is also reasonable to assume that the neighbor nodes share similar readings. In other

words, the desired “Fourier” transform of signals supported on graphs should be able to

capture the topology information. Spectral graph theory provides us with powerful tools

to analyze the graph topology such as the study about Laplacian matrix.

An interesting fact which has been noted many times is that the 1-D ring and the

2-D grid are examples of circulant graphs, and it is well known that the Discrete Fourier

Transform (DFT) is an eigenbasis for all circulant matrices [35]; i.e., the Laplacian matrix

of any circulant graph is diagonalized by the DFT basis. This has been a starting point

for researchers to adopt the Laplacian eigenbasis (i.e., the GFT) as a “Fourier” transform

of graphs. Fig. 3.1 shows the 2nd, 4th and 8th eigenvector of a ring with 500 nodes. It is

clear that they exhibits certain “Fourier” properties. Hence, a natural question one might

ask: Is it possible for graphs with more general structures to have similar properties of the

Fourier transform? The following subsection considers this issue.

3.2 Properties of the Graph Fourier Transform

One vital concept closely related to the Fourier transform is the smoothness of signals, since

smooth signals have compressible Fourier coefficients; i.e., the sorted magnitudes of their

Fourier coefficients exhibit a power law decay. Hence, we can keep a small portion of the

large ones to approximate the signal while discarding all the others. Similarly, in the graph

setting we need a notion of the smoothness of signals on graphs. In this work, we care about

more general graphs and signals than certain previous work [39]. Accordingly, we extend

this notion to “the value associated with a vertex is very close to that of its neighbors”.

More concretely, the following definition of 2-norm graph total variation describes the

overall smoothness of a signal.

Definition 11. 2-norm Graph Total Variation: Given a signal x ∈ RV , ‖x‖G = (xTLx)1/2 =

(
∑

i∼j(x(i)− x(j))2)1/2, where i ∼ j means there exists an edge between node i and node
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j.

The 2-norm graph total variation quantifies the smoothness of a signal defined on the

vertices of a graph. The smaller the graph total variation a signal has, the smoother the

signal is on the graph. Zhu et al. [66] also mention that xTLx measures the smoothness of

x on the graph.

Definition 12. We say that x ∈ RV has bounded variation if ‖x‖G < +∞.

Remark 3.2.1. 1. In an asymptotic sense, if the number of graph nodes N → +∞,

the bounded variation condition implies that
∑+∞

i=0 λi|x̂(λi)|2 < +∞, which gives

lim
i→∞

λi|x̂(λi)|2 = 0. Hence, the GFT coefficients of a signal with bounded graph

variation are closely related to the Laplacian eigenvalues λi, and thus the graph

structure. For example, if we consider a signal with bounded variation on a complete

graph1, |x̂(λi)| → 0 since λi → +∞, where i = 1, 2, · · · , i.e., only signals containing a

DC component can be considered smooth for complete graphs. It is worth pointing

out that this definition is consistent with the total variation of continuous signal in

conventional approximation theory.

2. However, for graphs with finite number of nodes, the bounded variation cannot guar-

antee any strong conclusions for the decay of the GFT coefficients. Hence, for finite

graphs, we say a signal x has a small total variation if its ‖x‖2
G � λN−1‖x‖2

2. This is

straightforward since ‖x‖2
G ranges from 0 to λN−1‖x‖2

2. Again, consider a complete

graph with finite number of nodes. The bounded variation condition cannot imply

much here. However, if the signal has a small total variation, the DC component

should dominate the signal, i.e., other coefficients are small. This is because ‖x‖2
G =

λ0|x̂(λ0)|2 + λN−1

∑N−1
i=1 |x̂(λi)|2 is far smaller than λN−1‖x‖2

2 = λN−1

∑N−1
i=0 |x̂(λi)|2.

Now that we have the concept of total variation for signals on graphs, next let us define

the linear and non-linear approximation error for the GFT. They are similar to those of

the Fourier transform.

Definition 13. The M -term linear approximation error is

εl(M,x) =
N−1∑
i=M

|x̂(λi)|2,

1Where every node is neighbors with all other nodes



3.2 Properties of the Graph Fourier Transform 35

where x̂(λi) = 〈x, ui〉 denotes the ith GFT coefficient of signal x, and where ui is the ith

eigenvector of the Laplacian matrix of graph G.

Definition 14. The M -term non-linear approximation error is

εn(M,x) =
∑
i/∈Ω

|x̂(λi)|2,

where Ω is the set of indices of the M largest graph Fourier coefficients in magnitude.

The following theorems describe the properties of the GFT.

Theorem 3.2.1. Given a signal x ∈ RV on vertices of a graph G = (V,E), let λi denote

the ith eigenvalue of the Laplacian matrix L and x̂(λi) = 〈x, ui〉 denotes the ith GFT

coefficient of the signal x. Then,

|x̂(λi)| ≤
‖x‖G√
λi
.

Proof. By Definition 11,

‖x‖2
G =

∑
i∼j

wij(x(i)− x(j))2 (3.1)

= xTLx (3.2)

= xT (
N−1∑
i=0

λiuiu
T
i )x, (3.3)

where ui is the ith eigenvector of the Laplacian matrix L. Put xT and x inside the sum,

‖x‖2
G =

N−1∑
i=0

λi|〈ui, x〉|2 (3.4)

=
N−1∑
i=0

λi|x̂(λi)|2. (3.5)
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It is straightforward to see that λi|x̂(λi)|2 ≤
∑N−1

i=0 λi|x̂(λi)|2 = ‖x‖2
G, thus

|x̂(λi)| ≤
‖x‖G√
λi
. (3.6)

Compared with Proposition 2.1.1, Theorem 3.2.1 implies that eigenvalues of the graph

Laplacian play the same role as “frequencies” in traditional signal processing; i.e., λ0, · · · , λN−1

index the GFT coefficients from low to high ”frequencies”. Accordingly, the eigenvectors

of the Laplacian are actually the “frequency” components of a graph. The next theorem

discusses the bound for linear approximation error.

Theorem 3.2.2. Consider a signal x ∈ RV on the graph G = (V,E). If x has a bounded

variation, then:

εl(M,x) ≤ ‖x‖2
Gλ
−1
M

Proof. Due to the proof of Theorem 3.2.1, we know that:

‖x‖2
G =

N−1∑
i=0

λi|x̂(λi)|2. (3.7)

Also since λi ≥ 0, it is straightforward to see that

N−1∑
i=M

λi|x̂(λi)|2 ≤
N−1∑
i=0

λi|x̂(λi)|2 (3.8)

= ‖x‖2
G (3.9)

The first inequality holds if x has bounded variation and the last equality is due to Eq. 3.7.
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By the definition of linear approximation error, we have:

εl(M,x) =
N−1∑
i=M

|x̂(λi)|2 =
λM
λM

N−1∑
i=M

|x̂(λi)|2 (3.10)

=
1

λM

N−1∑
i=M

λM |x̂(λi)|2 (3.11)

≤ 1

λM

N−1∑
i=M

λi|x̂(λi)|2 (3.12)

The last inequality is due to the fact that λi ≤ λi+1. By adopting the inequality
∑N−1

i=M λi|x̂(λi)|2 ≤
‖x‖2

G, we finally have εl(M,x) ≤ 1
λM
‖x‖2

G.

Remark 3.2.2. 1. For the case where N → +∞, this statement is analogous to Theo-

rem 2.1.2 for the classical Fourier transform. It shows that the decaying rate of the

linear approximation error is O( 1
λM

). The difference from Fourier transform is that

the upper bound of the linear approximation error is related to both the Laplacian

eigenvalues and the graph total variation. It implies that if the eigenvalues keep

increasing, the linear approximation error decays.

2. For graphs with finite number of nodes, the asymptotic explanation about the de-

caying rate of the GFT coefficients can no longer stand. Actually, since ‖x‖2
G =

αλN−1‖x‖2
2 where α range from 0 to 1, then it is straightforward to see that εl(M,x) ≤

αλN−1

λM
‖x‖2

2. If α ≥ λM
λN−1

, then the upper bound
‖x‖2G
λM

does not imply any thing about

the linear approximation error. On the other hand, in order to let this upper bound

dominate the behavior of its linear approximation error, we need x to have an ade-

quately small total variation, i.e., ‖x‖2
G � λN−1‖x‖2

2. For example, if ‖x‖G = 0, then

εl(M,x) = 0 for M ≥ 1, which means that this signal only has DC component.

The above two theorems describe upper bounds for the GFT coefficients and the linear

approximation error . The next theorem, which is similar to Theorem 2.1.3, gives the rela-

tion between the decaying rate of the GFT coefficients and that of the linear approximation

error. It is worth noting that Theorem 2.1.3 gives the simple fact that fast decaying coef-

ficients leads to fast decaying linear approximation error. This result can also be applied

to the case of GFT since it applies to any orthogonal basis. However, the theorem does
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not take the distribution of eigenvalues into account while the decaying rate of the GFT

coefficients is highly correlated to the distribution of eigenvalues. In order to address this

issue, we derive the following lemma and theorem by extending Theorem 2.1.3:

Lemma 3.2.3. Consider a signal x ∈ RV on a connected finite graph, for any s ≥ 1:

N−1∑
i=0

is−1λsi |x̂(λi)|2 ≤
N−1∑
M=0

M s−1λsMεl(M,x) ≤ Cs

N−1∑
i=0

(iλi)
s|x̂(λi)|2

If we consider a graph G with an infinite number of nodes, then for any s ≥ 1

+∞∑
i=0

is−1λsi |x̂(λi)|2 ≤
+∞∑
M=0

M s−1λsMεl(M,x) ≤ Cs

+∞∑
i=0

(iλi)
s|x̂(λi)|2

where Cs is some constant larger than 1/s.

Proof. First we prove the case when s = 1. Notice the fact that
∑N−1

M=0 λ
s
M

∑N−1
i=M |x̂(λi)|2 =∑N−1

i=0 |x̂(λi)|2(
∑i

M=0 λM), which immediately gives the lower bound. Moreover, since λn ≤
λm for all n ≤ m , we obtain the upper bound.

Next consider the case s > 1. Still
∑N−1

M=0M
s−1λsM

∑N−1
i=M |x̂(λi)|2 ≥

∑N−1
M=0M

s−1λsM |x̂(λM)|2

gives lower bound. On the other hand,

N−1∑
M=0

M s−1λsM

N−1∑
i=M

|x̂(λi)|2 =
N−1∑
i=0

|x̂(λi)|2(
i∑

M=0

M s−1λsM) (3.13)

≤
N−1∑
i=0

|x̂(λi)|2λsi (
i∑

M=0

M s−1) (3.14)

≤
N−1∑
i=0

|x̂(λi)|2λsi
∫ i

0

ts−1dt (3.15)

=
1

s

N−1∑
i=0

|x̂(λi)|2(λii)
s (3.16)

Theorem 3.2.4. Given a graph G with infinite number of nodes, if
∑+∞

i=0 (iλi)
s|x̂(λi)|2 <
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+∞ for some s ≥ 1, then the M term linear approximation error obeys

εl(M,x) = o(
1

M sλsM/2

).

Proof. From the second statement of Lemma 3.2.3, we notice that

εl(M,x)
M−1∑

m=M/2

ms−1λsm ≤
M−1∑

m=M/2

ms−1λsmεl(m,x) (3.17)

≤
+∞∑

m=M/2

ms−1λsmεl(m,x) (3.18)

≤
+∞∑
i=0

(iλi)
s|x̂(λi)|2. (3.19)

The first inequality holds due to the fact εl(M,x) ≤ εl(m,x) for all m ≤ M . Since∑+∞
i=0 (iλi)

s|x̂(λi)|2 < +∞, we have
∑+∞

m=M/2m
s−1λsmεl(m,x) < +∞. Thus,

lim
M→∞

+∞∑
m=M/2

ms−1λsmεl(m,x) = 0. (3.20)

Moreover, it is clear that there exists a constant C > 0 such that C ·M s ≤
∑M−1

m=M/2m
s−1.

Accordingly, Eq.3.17, Eq.3.18, along with Eq.3.20 implies that

lim
M→∞

(MλM/2)sεl(x,M) = 0.

Remark 3.2.3. Theorem 3.2.4 along with Lemma 3.2.3 describe the behavior of the linear

approximation error of graphs with an infinite number of nodes when its eigenvalues are

strictly increasing. The condition
∑+∞

i=0 (iλi)
s|x̂(λi)|2 < +∞ implies |x̂(λi)|2 = o( 1

isλsi
),

which is stronger than the bounded variation condition. Then, a similar decay rate of

o( 1
Msλs

M/2
) is guaranteed for the linear approximation error. The above theorem does not

require any constraints on the distribution of the Laplacian eigenvalues. However, if we

impose certain stronger assumption about the eigenvalues, we can obtain better result: if

we assume that λM = Θ(M s) for and s > 0, we can obtain o( 1
λsM

) as the decay rate of



40 The Graph Fourier Transform

the linear approximation error. It is worth noting that the condition λM = Θ(M s) for and

s > 0 rules out the case of complete graph and implies that fast increasing eigenvalues lead

to fast decaying linear approximation error.

The above theorems provide us with some implications about which signals on which

graphs are likely to be compressible in the corresponding graph Fourier domain. To summa-

rize, there are two main principles: First, from the perspective of signals, we need a smooth

signal on the underlying graph, i.e., ‖x‖G is small, since it controls the upper bound of linear

approximation error. Second, from the perspective of the underlying graphs, the Laplacian

eigenvalue of the graph must keep an increasing trend in order to ensure the graph Fourier

coefficients have a decaying upper bound.

3.2.1 Robustness of the Graph Fourier Transform

Since the graph Fourier transform is entirely dependent on the structure of the underlying

graph, it is worth discussing how the structural perturbation of a graph affects the decay-

ing rate of the Fourier coefficients. The “perturbation” here refers to adding or removing

edges without changing the signal. Zhu et al. [64] discusses the effect of structural per-

turbations on graph Laplacian eigenvectors. They claim that for regular or small-world

networks, eigenvectors corresponding to small eigenvalues usually have small oscillation,

which are sensitive to perturbation on a global scale while eigenvectors corresponding to

large eigenvalues are mostly sensitive to localized perturbations within a small set of nodes.

Moreover, for complex networks that do not possess a regular backbone, they observe that

the eigenvectors do not exhibit any periodic wave structure but the above statement still

holds.

Zhu’s discussion is consistent with our intuition that the eigenvectors with larger eigen-

values correspond to higher frequency basis vectors in the graph Fourier domain. Ac-

cordingly, it is easy to conclude that small perturbations of the graph structure will not

significantly change the behavior of the GFT coefficients of signals supported on the graph.

This is due to the fact that the eigenvectors of higher “frequencies” are more sensitive to

small perturbations while their corresponding graph Fourier coefficients are likely to be very

small due to Theorem.3.2.1, which means localized perturbations only change those GFT

coefficients with small magnitude. Thus, we conclude that the graph Fourier transform of

smooth signals are robust to localized perturbations of the underlying graph.
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3.2.2 Constructing Graphs for Signal Compression

Given a signal x ∈ RN×D, i.e., there exist N graph nodes each with a D dimensional vector

value on it. What graph leads to a GFT basis of best compression for x? The properties of

the GFT provide us with certain implications of this question. First, each entry in x can

be regarded as a node allocated D dimensional data. From our theoretical analysis in last

section, we want x to be smooth on the graph, i.e., ‖x‖G should be kept small to let the

upper bound of linear approximation error to dominate its decaying behavior. Second, the

eigenvalues should keep an increasing tendency, i.e., without too many eigenvalues close to

each other. One possible solution to this problem is to use neighborhood graphs. More

concretely, let x(i) stands for the D × 1 vector value associated with the ith node. We

construct the graph by putting an edge between the nodes which are likely to share similar

values so that (
∑

i∼j ‖x(i)− x(j)‖2)1/2 is kept small. We therefore provide three methods

for constructing such graphs:

1. ε−graph: Choose the parameter ε ∈ R and then connect the node i and node j if

‖x(i)−x(j)‖2 ≤ ε. The ε−graph is geometrically motivated but it is difficult to choose

the parameter ε. With a different distribution of the signal x, we need different ε to

ensure the graph is connected.

2. KNN graph: Node i and node j are connected if i is among the K nearest neighbors

of j or j is among the K nearest neighbors of i. Such KNN graph can also be referred

to as the “symmetric KNN graph”. The degree of each node will be at least K. The

choice of K is easier than ε since the connectivity of the graph is not significantly

affected by the distribution of x if K is determined.

3. Least-weighting graph: The least weighting graph is built in a greedy manner. For

each iteration, connect the pair of nodes with least difference, i.e., ‖x(i) − x(j)‖2 is

smallest. Repeat connecting nodes with least difference until the graph is connected.

The least-weighting graph is less geometrically intuitive but one of its main advantage

is that it does not require any parameters to be determined in advance.

For neighborhood graphs like the ε−graph and KNN graph, we pick a parameter K or

ε to obtain a desired distribution of the Laplacian eigenvalues. From the perspective of

building compressible GFT coefficients, we need the eigenvalues to maintain an increasing
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trend. Following this principle, we should avoid constructing graphs like a complete graph.

A large choice of K or ε will result in the situation where the graph become dense and

approximate the behavior of complete graph, ie., the eigenvalues corresponding to high

frequencies become close to the largest eigenvalue and hence increase too slowly, which

violates the compressibility of the GFT coefficients. Hence, the parameters shouldn’t be

too large. On the other hand, if the value of K or ε is too small, the connectivity of the

graph will be weak and the eigenvalues corresponding to low frequencies might be equal to

or close to 0. Such behavior also contradicts the increasing trend of eigenvalues that we

desire. Thus, the graph we construct should at least be a connected one. The ε−graph and

KNN graph are common techniques in dimension reduction or semi-supervised learning.

However, they are not the only methods for obtaining smooth signals on a graph. Any

graph construction approach is desirable if it can result in small graph total variation and

increasing eigenvalues. For example, the least-weighting graph is a greedy method which

connects the closest pair of nodes at each iteration so that the term (
∑

i∼j ‖x(i)−x(j)‖2)1/2

is small and we believe there are more techniques to be developed.

3.3 Simulations and Experiments

In this section, we utilize experiments and simulations to verify the theories we introduced

above. First, we will use both synthesized data and real world data to demonstrate how

GFT basis works and the distribution of the eigenvalues significantly affects the behavior

of the compressibility of a certain signal. The performance of the linear, non-linear ap-

proximation and conventional compressed sensing will be used to evaluate the impact of

different GFT basis but generated based on a same signal.

3.3.1 Simulated Data

First we utilize the above three methods to generate graphs and check the compressibility

of the synthesized data. Fig. 3.2, Fig. 3.3 and Fig. 3.4 show the linear approximation

error and the normalized eigenvalues λi/λN−1 based on different underlying signals. The

signal x is a 200 × 1 random signal drawn from a (0,1) i.i.d. Gaussian distribution, i.i.d.

Uniform distribution and i.i.d. Pareto distribution. The Pareto distribution is a classic

“heavily-tailed” distribution, which coincides with social, scientific, and many other types

of observable phenomena. In the experiment repeated here, we choose α = 1.2 and b = 3 for
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its density function f(x) = α
b
( b
x
)(α+1), for x >= b. We select the parameter K = 7 for KNN

graph and ε =
√

C·logN
πN

∗D for ε−graph, where C = 2 and D is the maximum Euclidean

distance among the pair of signal entries xi and xj. By picking those two parameters, the

underlying graphs are likely to be connected.
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Fig. 3.2 The linear approximation error and distribution of Laplacian eigen-
values of ε−graph, KNN grapn and least weighting graph. x(i) is drawn from
an i.i.d. Gaussian distribution.

The fast decay of the linear approximation error implies that the compressibility of the

original signal x, i.e., the GFT coefficients of x decays fast. It is worth noting that the

performance varies with different choice of the parameter K or ε and the distribution of

signal x. From Fig. 3.2, we can see that those 3 methods generate graphs with similar

eigenvalue distributions and their linear approximation error are also very close. Fig. 3.3

is based on uniformly distributed signal and its corresponding performance is better than

that of Fig. 3.2. In such case, the least weighting graph show certain different behavior

when compared with the other two methods: its eigenvalues increases slowly at first (several

eigenvalues are quite close to 0) and the linear approximation error decreases slowly at the

very beginning correspondingly. From Fig. 3.4, it is straightforward to see that for the

“heavy-tailed” distribution, the least weighting graph and the ε−graph do not perform well

since they construct graphs with very strong connectivity, which are close to the complete

graph. The experiments results show that all the above methods can generate very good

graphs when given a certain signal. But KNN graph is generally the best for various types of
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Fig. 3.3 The linear approximation error and distribution of Laplacian eigen-
values of ε−graph, KNN grapn and least weighting graph. x(i) is drawn from
an uniform distribution.

signals. Hence we recommend to use the KNN graph when dealing with signals of unknown

distribution.

It is worth pointing out that in many applications, we may not have prior information

about the exact distribution of the signal x, but we can construct the graph based on

other information. For example, for field estimation in a wireless sensor network, it is

fairly reasonable to assume the values measured at each node are highly correlated to its

location, and thus nodes that are geographically close to each other are likely to have

similar readings. Hence, we can build the graph based on the location information.

Although the above simulations have already shed light on the relation between linear

approximation error and distribution of eigenvalues, it would be much clearer if we utilize

the same graph construction techniques but with different choice of parameter to control

the pattern of eigenvalues. In the simulation here, we utilize the comparison among KNN

graphs with different choice of K. The underlying signal x is an i.i.d. Gaussian distributed

random signal and we build a KNN graph based on the node values. We plot their linear

approximation error and the distribution of normalized eigenvalue respectively. The result

is illustrated in Fig. 3.5.

From Fig. 3.5, we see that when K is set to 30, the eigenvalues corresponding to low fre-

quencies increase sharply and meanwhile the linear approximation error drops significantly.
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Fig. 3.4 The linear approximation error and distribution of Laplacian eigen-
values of ε−graph, KNN grapn and least weighting graph. x(i) is drawn from
an i.i.d. Pareto distribution.

After the rapid increasing, the eigenvalues corresponding to high frequencies maintain a

slow increasing rate and the linear approximation error decay slowly. The situation when

K = 2 is the opposite: the eigenvalues corresponding to low frequencies increase slowly

while the remaining eigenvalues maintain a steady increasing rate. Consequently, the linear

approximation error decays very slowly at first but catches up quickly later. Fig. 3.5 clearly

illustrates different choice of K is suitable for different number of remaining coefficients for

linear approximation. However, neither of the above two cases provide satisfying compress-

ibility: one fails to provide quick decaying behavior for low frequency components while the

other for high frequency components. For better compressibility, we often desire a tradeoff

between the above two cases. The curve for K = 7 illustrates such scenario: we can utilize

a small portion of the coefficients to represent the original signal while maintaining the loss

acceptable. The results shown in Fig. 3.5 to some extent verify our theoretical analysis,

i.e., the decaying rate of the eigenvalues affect the decaying rate of linear approximation

error.

3.3.2 Environmental Data

In the following experiments, we investigate the performance of GSCS on data from the

California Irrigation Management Information System (CIMIS) [2]. This dataset is gener-
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Fig. 3.5 Fig. 3.5 illustrates the relation between linear approximation er-
ror and the distribution of eigenvalues. The signal x is an i.i.d. Gaussian
distributed random signal and we utilize KNN graph to generate its corre-
sponding GFT basis. Fig. 3.5(a) shows the linear approximation error with
regard to different choice of K. Fig. 3.5(b) plots their corresponding distribu-
tion of eigenvalues.

ated by the weather stations across the state of California, which are equipped with sensors

that measure solar radiation, temperature, and wind speed, among other variables.

We use the solar radiation data for one day which contains 135 readings from different

weather stations to verify our theory about the GFT. We show that the techniques we

discussed in Subsection 3.2.2 can be exploited to generate linear compressible signals on

real world data. We utilize KNN graphs based on the geological information of weather

station to build its GFT basis.

We will compare the performance of linear approximation, non-linear approximation and

compressed sensing [21,29] on this dataset. We know that compressed sensing works well for

compressible signals and thus its performance can be exploited to imply the compressibility

of a signal. For compressed sensing, we use `1 programming in the Graph Fourier basis as

the decoding algorithm. All the experiments are repeated 50 times and the average values

are reported. Moreover, we will show which GFT basis is best for approximating signals

via CS by changing the parameter K to construct different graphs.

Fig. 3.6 illustrates the performance of CS, linear approximation and non-linear approx-

imation with increasing compression rate. The compression ratio is defined as M
N

, where M
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Fig. 3.6 The Performance of Compressed Sensing, linear approximation and
non-linear approximation.

is the number of measurements and N is the dimension of signal. Distortion is calculated

with Mean Square Error(MSE). The non-linear approximation outperforms the other two

methods, while linear approximation performs a little bit better than Compressed Sens-

ing. This result further verifies the conclusion we made in this section: by utilizing prior

information for graph construction in real applications, we are able to obtain compressible

signals.

Fig. 3.7(a) describes explicitly how the connectivity of a graph affects the performance

of compressed sensing. The result agrees with our earlier discussion about the choice of

parameter K. Given a constant compression rate, the best performance of Compressed

Sensing appears when K is in the range of 5−10. When K is smaller than 5, the graph is

unconnected with high probability. In this case, we have multiple zero eigenvalues. When

K become larger than 30, the graph approximate the complete graph, which also gives a

poor compressibility. Fig. 3.7(b) gives the behavior of the eigenvectors when K is set to

6. We can see that the low frequency eigenvector entries are close to their neighbors, i.e.,

change smoothly while the high frequency eigenvector entries change drastically in a local

area.
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Fig. 3.7 (a) The performance of Compressed Sensing with different graph
Fourier basis. M is the number of measurements. X axis shows the number of
neighbors we use to formulate a symmetric KNN graph. (b) plots the behavior
of the 2rd, 8th, 32th 128th eigenvectors when we set K = 6

3.4 Discussion

In the realm of signal processing, not much emphasis is laid on the graph Laplacian and

its properties while a great amount of works have focused on it in the area of computer

science. As have been introduced in Chapter 2, [39] utilizes the technique called spectral

compression for 3D object compression. However, in their work, Karni and Gotsman merely

claim the graph Laplacian eigenbasis has the “Fourier” properties instead of giving a strict

theoretical proof. Later on, [15] provides theoretical guarantee by showing the Laplacian

matrix is equivalent to the inverse of covariance matrix. Consequently, the graph Laplacian

eigenbasis is intrinsically the same as KLT and hence optimal. However, this conclusion

is restricted to coordinates on mesh and cannot be extended to generalized situations.

Meanwhile, one dimensionality reduction technique called Eigenmaps was developed by

Belkin [12]. The procedure of their algorithm is similar as described in subsection 3.2.2

by utilizing KNN or ε−graph. Different from our analysis, they justify the method by

showing that Laplace Beltrami operator provides an optimal embedding for the manifold

and the graph Laplacian converges to Laplace Beltrami operator when the number of nodes

N → +∞ and ε → 0 [13]. Although Eigenmaps applies for more general scenarios than

spectral compression, their theory neither provides any instructions on how to choose the
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parameter K or ε nor shows how good is the embedding.

Different from the above methodologies, our work stems from the approximation theory

and deal with not only KNN or ε−graph but also graphs with more generalized features

(the eigenvalue distribution). It is worth emphasizing that we merely put constraints on the

distribution of eigenvalues while no specific graph structures are required in our analysis.

Hence, our analysis implies that there might be more types of graphs feasible for manifold

embedding. Moreover, the theoretical justification for Eigenmap is based on the asymptotic

behavior of the graph Laplacian for uniformly distributed data points. Accordingly, their

analysis does not show how to choose the parameters K or ε for finite number of nodes

with arbitrary distribution. Our work, on the other hand, relates the linear approximation

error to the distribution of eigenvalues and take one step further on how to choose those

parameters. Although some literatures in semi-supervised learning [11] mention that xTLx

can represent the smoothness of a signal, they have not analyzed the impact of the graph

topology on smoothness while our work relates the smoothness of signals supported on

graphs to the conventional concept called total variation in approximation theory and show

the Laplacian eigenvalues plays an important role in characterizing the signal as smooth

with regard to the underlying graph.
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Chapter 4

Graph Spectral Compressed Sensing

The previous chapter discussed how smooth signals supported on graphs can be decomposed

into decaying GFT coefficients. If we have a signal that decays fast in the GFT domain and

can find a power law decay upper bound, we can refer to such signals as “compressible”.

In classical approximation theory, it is common to use linear or non-linear approximation

to code such “compressible” signals. However, in certain applications like wireless sensor

networks, obtaining the linear or non-linear approximation in a distributed manner requires

significant overhead. In this section, we provide an alternative which compresses such

signals by random sampling and is energy efficient. More concretely, if the signal on graph

is adequately smooth with respect to the graph, then we can randomly sample a small

portion of the nodes and recover the original signal by a simple least square estimator. The

experiments also shows that `1 decoding still works well for such random sampling scheme.

The idea here is leveraged from Compressed Sensing.

4.1 Linear Compressible Signals

The conventional CS theory deals with general sparse or compressible signals while in

real application there are more realistic signal models that go beyond simple sparsity and

compressibility by including dependencies between values and locations of the signal coef-

ficients. The model-based compressive sensing [10] deals with such situation. They have

shown that for the subspaces where the magnitude of the signal is small, we allow a gen-

eralized version of RIP and can utilize a simplified version of CoSamp called model based

recovery algorithm.
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Leveraging the idea from model based CS, we focus on signals and sensing matrices

with more special properties and an upper bound is still provided for the recovery error

of a least square estimator under such circumstances. Before we delve into the recovery

process, we need to first understand the property of the signals supported on graphs and

that of the sensing matrices.

Within the scope of this section, we focus on the smooth signals supported on graphs

and we are interested in the graphs whose eigenvalues have an increasing trend. From the

discussions in last section, we know that such signals exhibit similar behaviors described in

conventional approximation theory. More concretely, the GFT coefficients of smooth signals

on graphs present a linearly decaying behavior. In order to model such signals, we assume

that 1
λi

satisfy a power law decay property. For simplicity, we use θ to denote the GFT of x,

i.e., θ = UTx and thus the corresponding GFT coefficients satisfy |θ(i)| = |x̂(λi)| ≤ Gi−1/r

for some r > 0. We call such signals linearly compressible. As discussed in [10], compressible

signals can be defined by their decaying behavior of non-linear approximation error. Since

we are talking about linearly compressible signals, we can adapt the definition a little to

fit our case:

Definition 15. The set of s-linear-compressible signals is defined as

Ls = {x ∈ RN : εl(γ, x) ≤ Sγ−s, 1 ≤ γ ≤ N,S <∞},

where εl(γ, x) is the γ-term Linear Graph Fourier Approximation Error.

In conventional CS literatures [19,25], the performance of CS is proved to be comparable

to the non-linear approximation. The techniques utilized to prove this conclusion need to

divide the space of the compressible signal into roughly dN/γe residual subspaces if we

want to relate it to a γ−term non-linear approximation. We can exploit similar techniques

in our scenario while focusing on the linear compressible signals. We want to show that

the performance of GSCS is comparable to a γ−term linear approximation instead of a

non-linear approximation. Also, it is straightforward to see that the difference of the linear

compressible signal between the jγ term linear approximation error and j(γ−1) term linear

approximation error lies in a deterministic subspaces, which is captured by the following:

Definition 16. Given a signal θ, its jth set of the linear residual subspaces of size γ is

defined as: Lj,γ = {u ∈ RN such that u = θjγ − θ(j−1)γ} for j = 1, 2, · · · , dN/γe. We let
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θ0 = 0 here and θjγ is the jγ term linear approximation of x, i.e., θjγ maintain the first jγ

entries while set the rest of the others to 0. Also we denote the corresponding support of

u as Tj. The last set may have less than γ non-zero entries.

According to the definition, we can split a linear compressible signal into dN/γe sets

of the linear residual subspaces. For a linear compressible signal x, ‖θTj‖2 decays fast as j

becomes larger, where θTj = {θTj(i) = θ(i) if i ∈ Tj otherwise θTj(i) = 0}. Moreover, if T

and Ω are subsets of {1, 2, · · · , N}, we denote ΦT as the submatrix of selecting the corre-

sponding columns from matrix Φ while ΦΩ as the submatrix of selecting the corresponding

rows from Φ. It is worth noting that the linear compressible signals are special case of the

model-based compressible signals.

4.2 Coherence of the Graph Fourier Transform Basis

Candès and Tao [22], along with Rudelson and Vershynin [54] discuss conditions that the

structured random matrices should satisfy to be valid CS sensing matrices:

1. The matrix should be orthogonal.

2. For a N × N matrix, if we normalize each column such that its 2-norm is 1, the

magnitude of the entries should be upper bounded by O( 1√
N

), i.e., the coherence of

the sensing matrix µ = O( 1√
N

), where µ = max
i,j
|Φi,j|.

By randomly selecting M = O(γ ln4N)) rows of such matrices, we can generate valid

sensing matrices for CS. The traditional Fourier basis is clearly a candidate fit for such

criteria. If F is the Discrete Fourier Transform (DFT) basis and let θ = F Tx. If Ω is a

random subset of {1, 2, · · · , N} with dimension |Ω| = O(γ ln4N)), where γ is the sparsity

of x in the basis F , or say, the number of non-zero coefficients of θ, then we can reconstruct

x by solving

min
θ
‖θ‖1 s.t. y = FΩθ,

where FΩ is a submatrix of F obtained by selecting the rows corresponding to Ω and we

can get x = Fθ. FΩ is the so-called “partial Fourier ensemble”. Analogously, if U is the

GFT basis, then we call UΩ the partial Graph Fourier ensemble. One direct question one

might ask is: as the GFT is considered the “Fourier” basis for signals supported on graphs,
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can the partial Graph Fourier ensemble be similarly treated as a CS sensing matrix? In

our scenario, it is straightforward to see that the GFT basis satisfies the first condition. So

the main problem remaining here is whether the coherence of the GFT matrix is uniformly

bounded?

Unfortunately, it is not always guaranteed. For example, circulant graphs will generate

eigenbasis with uniformly bounded entries while more general graphs like KNN graphs or

ε−graphs fail with largest entries close to 1. However, due to the discussion in GFT, we

know that KNN graphs or ε−graphs are good structures for graph signals compression.

Hence, we are very interested in the distribution of the entries in their GFT basis, which

implies the coherence of the matrices.
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Fig. 4.1 This figure plots the entry with largest magnitude of the entries
in each eigenvector. The Graph Fourier basis is generated by extracting the
eigenbasis of a symmetric KNN graph. We denote k as the number of neighbors
for a KNN graph.

Fig. 4.1 plots the largest components of each column for a GFT basis and its cor-

responding eigenvalue distribution. X-axis represents the index of the eigenvalues with

sorted order and y-axis stands for the largest magnitude of the eigenvector entry for the

left side figures. For the right side figures, the y-axis show the magnitude of the eigenval-

ues. The GFT basis is formulated by obtaining the Laplacian eigenvector of a KNN graph
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with K = 5, K = 50, K = 100. The KNN graph is constructed based on 500 uniformly

distributed nodes. Clearly, the conventional coherence is close to 1 since this matrix is not

uniformly bounded. In order to delve into more details about how the entries of the GFT

basis are distributed, we generalize the definition of coherence as follows:

Definition 17. Define µΦ(T ) = max
i,j
|[ΦT ]i,j| to be the coherence of the matrix ΦT , where

T is a subset of {1, 2, · · · , N} and ΦT is the submatrix obtained by selecting the columns

of Φ corresponding to T . If T = {1, 2, · · · , N}, then µΦ(T ) is equivalent to µ. In some part

of this paper, we abbreviate µΦ(T ) as µ(T ).

It is worth noting that in this specific example, µU(T ) is bounded when UT corresponds

to the eigenvectors whose associated eigenvalues are small, even if the coherence of the

whole matrix is not bounded by O( 1√
N

). A natural question is: does such a trend exist for

all the graphs? Or say, is µU(T ) bounded by O( 1√
N

) for all kinds of graphs?

Fig. 4.1 already provides with a negative answer. However, such phenomenon exists for

some graphs. Fig. 4.1 also provides us with an observation that the largest magnitude of

each eigenvector entries is correlated to its eigenvalue distribution. Such phenomenon can

be explained by the anslysis in GFT: we regard ‖x‖G = xTLx =
∑

(i,j)∈E(x(i)− x(j))2 as

the smoothness of signal x on a graph. If we also consider the eigenvector ui as a graph

signal and replace x with ui, it is easy to check that ‖ui‖G = λi, where λi is the eigenvalue

corresponds to ui, i.e. we can say that λi describes the smoothness of eigenvector ui. If

λi is far smaller than λN−1, then we say that ui has a small total variation. Intuitively,

a signal with small total variation tends to be smooth, i.e., each entry supported on the

graph node tends to be close to other neighboring entries and hence its entries have small

upper bound for the magnitude since their total energy are normalized.

One explicit example would be the first eigenvector: since λ0 = 0, u0 is perfectly

smooth, or say, is the DC component of the Graph Fourier basis. Hence, u0 has a small

total variation no matter what graphs. In Fig. 4.1(a), we can also see that the the largest

entry of each eigenvector keeps increasing until i is around 100 and λi is large enough

and can no longer affect the distribution of the eigenvector entries. Based on the above

discussion and observation, we know that the graphs with adequately small eigenvalues

in low frequencies may provide bounded µU(T ). An opposite example is the dense graph

shown by Fig. 4.1(c) since the eigenvalues except λi where i < 5 are equally very large,

the largest magnitude of the entry for the eigenvectors is still large when i > 5. The study
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in Chapter 3 provides us with the intuition why small Laplacian eigenvalue corresponds

to eigenvector with small magnitude of entries but does not provide us with a accurate

upper bound for the magnitude of each entry. However, in academia, there are plenty of

researchers focusing on the behavior of the Laplacian eigenvalues while less efforts have

been put on that of the eigenvector. The discussion of this issue is without the scope of

this paper, but will be our future research lines.

4.3 Compressed Sensing via Graph Fourier Transform Basis

The last section show that using a KNN graph with a proper choice of K, we can have

an underlying graph whose first few eigenvalues λi � λN−1 and their corresponding eigen-

vector entries are small. We use T1 = {1, 2, · · · , γ} to denote the set of the index of such

eigenvectors. In this section, we shows that for such graphs, as long as the signal to be

reconstructed is linearly compressible, i.e., most of its energy lies in the low frequency

eigenvectors, a stable recovery is still guaranteed although the overall coherence of U is

unbounded. To give an intuition about this result, we can first consider a sparse signal

here. If the nonzero entries of the original signal have a fixed support T and Φ is the sensing

matrix, then the behavior of submatrix ΦT c will not affect the recovery process; i.e., we

merely require µΦ(T ) = O( 1√
N

). The same conclusion can be generalized to smooth signals

supported on graphs by following the same reason: Since most of the energy of the smooth

signal is supported on the set T1, the coherence of the matrix ΦT1
c is no longer important.

In order to control the isometry property of a fixed set, we first define a special case of

model-based RIP:

Definition 18. A matrix Φ has the Lγ-Restricted Isometry Property (Lγ−RIP) with con-

stant δγ if for all θγ, we have

(1− δγ)‖θγ‖2
2 ≤ ‖Φθγ‖2

2 ≤ (1 + δγ)‖θγ‖2
2,

where θγ is a γ sparse signal whose entries are zero except the first γ ones.

The Lγ−RIP is much weaker than the conventional RIP since conventional RIP requires

the inequality holds for γ sparse signal with all possible
(
N
γ

)
supports while the Lγ−RIP only

requires it for one support. Hence, the Lγ−RIP is utilized to deal with linear compressible
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signals since the first γ coefficients are likely to contain most of the signal energy. Moreover,

if µ(T1) = O( 1√
N

), then we can exploit the Lγ−RIP to guarantee a perfect signal recovery

for all the signals whose non-zero entries are supported on the low frequency eigenvectors.

The Lγ−RIP is a special case of model based RIP since we know exactly how the energy

of the signal decays and where the residual space is located. Likewise, we also need a tool

to deal with how will the small non-zero entries outside L1,γ behaves. Due to the fact that

the coefficients outside L1,γ have very small magnitudes, we can relax the conventional RIP

to control their non-isometry property. The following definition of RAmP [10] is a remedy

counterpart of RIP in this case.

Definition 19. Given a signal x, a matrix Φ has the (εγ, r)− restricted amplification

property(RAmP) for the linear residual subspaces Lj,γ of x if

‖Φu‖2
2 ≤ (1 + εγ)j

2r‖u‖2
2

for any u ∈ Lj,γ for each 1 ≤ j ≤ dN/γe.

The (εγ, r)−RAmP can be regarded as a generalized version of RIP. When j = 1, then

it is just the upper bound in RIP. Since Lγ−RIP cannot deal with the signals which have

non-zero coefficients outside L1,γ. For linear compressible signals, when j becomes larger,

‖u‖2 for u ∈ Lj,γ will become smaller and thus we allow a higher upper bound for ‖Φu‖2
2.

The recovery algorithms for model based compressive sensing can be built based on

CoSamp [45]. The CoSamp algorithm iteratively seeks to find the optimal supports where

the residual signal lies in among all
(
N
γ

)
subspaces of a N dimensional signal with γ sparsity.

On the other hand, the model based compressive sensing takes advantage of the prior

knowledge of the signal structure and reduces the number of possible subspaces significantly.

While for our cases, the signal we assume is linearly compressible, which is a very special

case of model based compressed sensing. It means that the signal can be well approximated

by the linear approximation, i.e., the first γ GFT coefficients will contain most of the energy

of the signal if γ is adequately large. Thus, instead of detecting the
(
N
γ

)
possible subspaces,

we can rely on such prior knowledge and utilize a simple least square estimator, which

deterministically estimates the first γ GFT coefficients while discards the other small ones.

More specifically, if Φ is the sensing matrix by randomly selecting a subset of the rows

from U , i.e., Φ = UΩ, let Φγ denote the sub-matrix of Φ containing the first γ columns.
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For the case that Ω > γ, then this is an over-determined system. We can now give the

least square estimate that reconstruct the first γ coefficients as Φ†γy where y = Φθ is the

measurement and Φ†γ is the Moore-Penrose pseudo inverse [49] of Φγ. Since Φ†γy is a γ

dimensional vector, we need to fill the other N − γ coefficients with zero. Accordingly, the

formal definition of the least square estimator is shown below:

θ̂(i) =

{
(Φ†γy)(i) : i = 1, 2, · · · , γ

0 : otherwise

And x̂ = Uθ̂ is the estimate of x. It is worth pointing out that Φ†γy is actually the least

square estimates for the first γ entries of θ. And since x = Uθ and Φ = UΩ, y(i) = x(ji)

where {j1, j2, · · · , jM} is the index set Ω. With such estimator, we can achieve the following

performance guarantee:

Theorem 4.3.1. Let x ∈ Ls be an s-linear compressible signal and θ = UTx. Also let Tj

be defined in Definition 16. If µ(Tj) ≤ C · js−1 for all j = 1, · · · , dN/γe and some C > 0,

and if the number of measurements M obeys M ≥ Const · γ · ln(γ
δ
) for some δ > 0, then

with probability 1− δ, the estimate θ̂ obtained from the least square estimator satisfies

1√
2
‖θ − θγ‖2 ≤ ‖θ − θ̂‖2

2 ≤ ‖θ − θγ‖2 + C · Sγ−slndN
γ
e

where C =
Cs
√

1+εγ√
1−δγ

.

The theorem claims that if the entries of the original signal decay quickly, we can still

guarantee a stable recovery when the coherence µ(Tj) keeps increasing for larger j. Actually,

we allow µ(Tj) to become unbounded if the entries of the original signals supported on Tj

are small. The above theorem explains that why the partial Graph Fourier ensemble works

as a sensing matrix for smooth signals supported on graphs. This is because smooth

signals supported on graphs are linear compressible, i.e., most of the large Graph Fourier

coefficients are located in the “low frequency component” while those components have

relatively low coherence. The full proof of this result is given below. The methodology of

the proof is mainly based on [18], [10] and [19].

In order to prove the above result, we first need to determine the property of the sensing

matrix such that the (εγ, r)−RAmP is satisfied.
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Theorem 4.3.2. Let Φ =
√
N√
M
UΩ be an M × N sensing matrix by selecting rows from U ,

where Ω is the subset of the measurement domain of size |Ω| = M . Fix a subset T of the

signal domain. Suppose that the number of measurements M obeys:

M ≥ C3|T | ln(
|T |
δ

)(
µΦ(T )

jr
)2 (4.1)

for some positive constant C3 and with proper choice of εγ and r. Then, with probability

1− δ, the matrix Φ satisfies

‖Φu‖2
2 ≤ (1 + εγ)j

2r‖u‖2
2. (4.2)

for any u ∈ Lj,|T | for each 1 ≤ j ≤ dN/|T |e.

The proof of this theorem is mainly based on the techniques in [18] and is included in

Appendix. This theorem immediately gives the following corollary:

Corollary 4.3.3. Let Φ be the same setting described in Theorem 4.3.2. If µU(Tj) ≤ C · jr√
N

for all j = 1, · · · , dN/γe and if the number of measurements M obeys

M ≥ Const · γ · ln(
γ

δ
)

Then with probability 1− δ, the measurement matrix Φ satisfies the (εγ, r)−RAmP for the

linear residual subspaces Lj,γ, where γ = |T1|.

Proof. Let the dimension of T in Theorem 4.3.2 be equal to γ. Since µΦ(T ) =
√
NµU(T )

and
√
NµΦ(T )
jr

is upper bounded by some constant C, by letting M ≥ C3C
2|T | ln( |T |

δ
) gives

the corollary.

Corollary 4.3.4. Let Φ be the same setting described in Theorem 4.3.2. If µU(T1) ≤ C√
N

and the number of measurements M obeys

M ≥ Const · γ · ln(
γ

δ
)

Then with probability 1−δ, the measurement matrix Φ satisfies the Lγ−RIP where γ = |T1|.

Proof. When we consider the situation j = 1 in Theorem 4.3.2, the proof will directly give

Corollary 4.3.4.
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Theorem 4.3.2 along with Corollary 4.3.3 provide us with the implication that the co-

herence of matrix Φ does not have to be uniformly bounded as required in the conventional

compressed sensing literatures [18, 22, 54]. More specifically, if the coefficients which are

supported on a certain residual space Lj,γ are quite small, we allow the corresponding co-

herence µ(Tj) to be larger. The next theorem shows that with (εγ, r)−RAmP, ‖Φ(x−xγ)‖2

is upper bounded. Since linear compressible signals are just one special case of model based

compressible signal, the following theorem stems from [10] directly.

Theorem 4.3.5. Let x ∈ Ls be an s-linear compressible signal and θ its GFT. If Φ has the

(εγ, r)−RAmP for the linear residual subspaces Lj,γ and r = s− 1, then we have

‖Φ(θ − θγ)‖2 ≤ Cs
√

1 + εγSγ
−s lndN

γ
e. (4.3)

where Cs = 2s + 1.

The detailed proof of this theorem is basically the same to Theorem 3 in [10]. The

upper bound we have here from this theorem can be utilized to derive the following upper

bound of the least square estimator.

Theorem 4.3.6. Let x ∈ Ls be an s-linear compressible signal. If Φ has the Lγ−RIP and

the (εγ, s− 1)−RAmP, then the solution θ̂ obtained from least square estimator satisfies

1√
2
‖θ − θγ‖2 ≤ ‖θ − θ̂‖2 ≤ ‖θ − θγ‖2 + C · Sγ−s lndN

γ
e

where C =
Cs
√

1+εγ√
1−δγ

.

The proof of above theorem, which is included in the Appendix, is mainly based on

Theorem 4.3.5 and certain elementary properties of matrix norms. With the random sam-

pling scheme and µ(Tj) ≤ C · jr, we can achieve Corollary 4.3.3 and Corollary 4.3.4 eas-

ily. Combining the Corollary 4.3.3 and Corollary 4.3.4, we know that L1,γ−RIP and the

(εγ, s−1)−RAmP is satisfied when M ≥ Const·γ ·ln(γ
δ
) for some small δ. Then, for a linear

compressible signal x and a sensing matrix Φ with L1,γ−RIP and the (εγ, s − 1)−RAmP,

we can obtain Theorem 4.3.1 by applying those conditions in Theorem 4.3.6.
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4.4 Simulations

In this section, we use synthesized data to verify our theoretical analysis for GSCS with

least square estimator. Fig.3.7 shows the performance of GSCS with Basis Pursuit(BP)

and GSCS with least square estimator as compared to CS using an i.i.d. Gaussian sensing

matrix and sparse random projection. For sparse random projection [62], we set the sensing

matrix as:

Φij =


1 : with prob. lnN

2N

0 : with prob. 1− lnN
N

−1 : with prob. lnN
2N
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Fig. 4.2 This figure illustrates the performance of GSCS with BP and with
least square estimator, conventional CS via i.i.d. Gaussian random matrix and
sparse random projection on two different synthesized data sets. (a) utilize
the data which is strictly linear compressible on GFT domain while (b) get the
GFT coefficients by projecting the signal on the GFT basis constructed on the
noisy version of the original signal. In both of the two figures, the averaged
distortion is plotted while the best and worst performance is denoted by the
error bar.

We use two different kinds of synthesized data here. The signal is generated by two

methods:

(1) For Fig.4.2(a), we first generate a 200× 1 Gaussian random vector x and then scale

its nth entry by a factor 1
ns

. It is easy to see that the larger s is, the more compressible
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the signal will be. In this experiment, we set s = 2. We use the BPsolver routine of

SparseLab2.1 [1] to solve the `1 recovery problem. For least square estimator, we set the

parameter γ = round(M
7

) in all the experiments here. The algorithm is run for 200 trials to

get the best, worst and average performance. Such synthesized data set conforms strictly

to our signal model of linear compressibility. The sensing matrix is generated randomly

selecting the rows of a GFT basis from a KNN graph, which is constructed based on the

nodes with uniform distribution.

(2) Fig.4.2(a) shows the performance of an ideal signal in order to verify our theory while

for Fig.4.2(b), we use the data set which is not ideally compressible. We first generate a

200× 1 (0,1) Gaussian distributed random vector x. From the experiments in Chapter 3,

we can see that the GFT coefficients of Gaussian distributed signals do not decay very fast,

which can describe certain situations in real world data sets. Moreover, we don’t construct

the KNN graph directly on x. Instead, we construct the graph based on x + n, where n

is a 200× 1 i.i.d. (0, 0.04) Gaussian random noise and hence obtain its sensing matrix by

random selecting the rows. Such data set is exploited to simulate the common case in real

application that we don’t have the direct information of x in prior, which means we might

not be able to obtain an optimal underlying graph. The other settings are the same as

those of the previous ones. The algorithm is run for 200 trials to get the best, worst and

average performance.

In the simulation, we merely keep the signals fixed in each iteration. The sensing

matrices are randomly generated for different number of measurements in each trial. From

Figure 4.2(a), we can see that for a linear 2-compressible signal, the GSCS with least square

estimator outperforms all the other methods when M � N . Its performance is only worse

than that of others when M → N . This is easy to understand since the recovery error

for least square estimator has an lower bound. It’s worth noting that the GSCS with

BP performs essentially as well as the Gaussian sensing matrix, on average. The worst

case performs slightly worse than that of the Gaussian matrix. None theoretical analysis

has been made to prove why `1 decoding works for non-uniformly bounded orthogonal

matrices and this will be one of our future lines of research. The performance of GSCS

with least square estimator in Fig. 4.2(b) is worse than that of Fig. 4.2(a). The least

square estimator only outperforms other method when the number of measurements is less

than 80. And due to the poorly compressible signal and noise disturbance, the distortion

for all the four methods decays fairly slow with the increasing number of measurements.
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The above two data sets are used to simulate the ideal and unexpected cases while the

following experiments will make use of some real world data sets.

4.5 Discussion

The idea of GSCS is originated from the ideas of signal processing, especially from CS. we

point out connections to recent related works: Pesenson [47,48] studies sampling theorems

for “bandlimited functions on graphs, results which may be useful in constructing critically

sampled transforms. They also proves that if certain conditions are satisfied, “bandlimited

functions on graphs can be uniquely determined with the knowledge of a portion of the

nodes. In their work, “bandlimited” actually means that the functions only contains “low

frequency” components. Compared with their work, we merely assume “linear compress-

ible” signals, which is more general than the “bandlimited functions. Consequently, we

provide an upper bound for reconstruction error other than perfect recovery as theirs.

In parallel, M. Belkin [11] developed similar techniques for classification under the

assumption that the data resides on a low dimensional manifold within a high dimensional

representation space. Their approach is highly correlated with ours. Accordingly, it is worth

pointing out the differences and contributions of our work with regard to theirs. First, in our

work, the problem we consider here is an estimation problem while classification for theirs.

Clearly, our problem is much more complex here. Second, in their work, they provide us

with certain theoretical justification for the methods while lack a thorough analysis while

we provide detailed analysis about the performance bound. We believe that our results can

easily be extended to cover their scenarios. Third, to our best knowledge, GSCS is the first

to utilize such idea for signal estimation.
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Chapter 5

Graph Spectral Compressed Sensing

for Wireless Sensor Networks

GSCS turns out to be a very useful data gathering technique especially for Wireless Sensor

Network (WSN). For a lot of WSN applications, the signals measured are likely to be

correlated either spatially or temporally, i.e., we can find an appropriate transform domain

where the signals are compressible. In order to reduce power consumption and bandwidth

resources (or query latency), we want to pre-process the data so that only γ � N number

of measurements are collected, where N is the total number of sensor nodes. Computing

a deterministic transform domain and locating the K largest transform coefficient is very

difficult to accomplish efficiency in a distributed manner.

GSCS provides an alternative solution to the above issue. In this chapter, we propose

two algorithms respectively to deal with both spatially and temporally correlated signals

sampled by WSN. We show that if the sampled signals are correlated spatially or temporally,

we can construct an underlying graph where the supported signal is smooth. Moreover, if

we project the signals onto the corresponding Graph Fourier Transform (GFT) basis, the

coefficients are linearly compressible. In this setting, only a small random portion of the

sensor nodes need to be activated to sample and transmit the measurements. Both the

power consumption and bandwidth resources (or query latency) are reduced.
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5.1 Wireless Sensor Networks

As have been introduced in Chapter 2, WSN has a promising capability to monitor the

physical world via a spatially distributed network of small and inexpensive wireless sensors.

For many WSN applications, especially field monitoring, the signals measured are likely

to be correlated either spatially or temporally; i.e., we can find an appropriate transform

domain where the signals are compressible. WSNs are characterized by having simple

battery-powered wireless nodes with limited energy and communication resources. In order

to reduce power consumption and conserve bandwidth (or query latency), it is desirable

to apply the philosophy of compressed sensing since we can directly gather a reduced

number of informative measurements rather than gathering a large number of redundant

measurements.

CS theory shows that, when our signal is sparse or compressible in the transform domain,

we can utilize M = O(γ lnN) random projections of the data to estimate the original signal

with an error very close to that of the optimal approximation using the γ largest transform

coefficients. Many efforts [6, 7] have been made along this line of research. However,

the conventional CS sensing matrices like i.i.d. Gaussian or Bernoulli are expensive to

compute and each random measurement requires cooperation and communications among

all N sensors. Hence, the overall number of transmission via conventional CS will be MN ,

which results in high power consumption and a complicated design of the communication

architecture. Wang et al. [62] solve this problem by proposing sparse random sensing

matrices, which significantly reduces the communication overhead. Different from their

approach, we utilize the technique called GSCS, which has been introduced earlier, for

data gathering via WSNs.

In contrast to previous work, we focus on the particular case of estimating signals which

are smooth with respect to a graph. We show by experiments on real world data that if

the sampled signals are correlated spatially or temporally, we can construct an underlying

graph such that the signal is compressible in a corresponding transform domain. More

specifically, if we project signals onto the corresponding GFT basis, the coefficients are

likely to be linearly compressible. According to the theory of GSCS, only a small random

portion of the sensor nodes need to be activated to sample and transmit measurements,

and the original signal can be recovered via least square estimator with small distortion.

Consequently, both power consumption, bandwidth usage, and latency are reduced. It
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is worth noting that we also try `1 programming during those experiments, which gives

surprisingly positive results. The main contributions of applying GSCS to sensor networks

are twofold:

First, to our best knowledge, most of the previous literatures [6,7,62] considering data

compression or field estimation assume that the signals sampled are compressible in certain

orthogonal domains (e.g., 2-d wavelets). These methods are inspired by image processing

and treat each sensor node as a single pixel in an image. Accordingly, they assume the sensor

nodes are in a regular structure, e.g., 2-d grid. However, in real world applications, sensor

nodes may not always exhibit such a rigid structure. The proposed method overcomes this

problem by exploiting the GFT, which is suitable for networks with general topology.

Second, much of the existing literature [6, 7, 37] consider Gaussian or Bernoulli dis-

tributed random matrices as the sensing matrix. As mentioned above, those matrices have

two main disadvantages. Not only does every node have to randomly generate the entries

of the sensing matrix, but also the implementation of noisy projections requires more coop-

erations and communications among sensors. The method we propose successfully solves

such a dilemma between bandwidth resources (or query latency) and energy consumption.

Both of them can be significantly reduced in our scheme.

The next two sections introduce the two algorithms for spatially correlated signals and

temporally correlated signals respectively.

5.2 Spatially Correlated Signals

Spatial correlation describes the correlation between signals at different points in space.

Such concept is very common in image processing and also in environment monitoring. In

our case, when we distribute a number of sensor nodes in a certain field to acquire its field

information like temperature, pressure, or solar radiation, the signal is likely to be spatially

correlated since the reading of each sensor is highly correlated with its location and such

signals can be regarded as smooth signals since the neighbor nodes tend to share similar

values. We focus on such a scenario and propose a simple algorithms for data gathering

with lossy compression.

Let x ∈ RN be the data vector for a WSN with N nodes; i.e., each entry xi is the data

reading from the corresponding sensor node, i. Here we wish to sample M � N nodes to

recover the original signal x. Assume we have perfect knowledge about where each sensor
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node is located. We can utilize the location information to generate a symmetric KNN

graph of the WSN. According to the analysis in Section 3, we have to select the parameter

K carefully, where K here is the number of neighbors each node should be connected to.

K should be chosen as small as possible while still keeping the graph well-connected. After

obtaining the underlying graph, we can get its Laplacian eigenbasis U . We randomly select

M � N nodes to report their data to the sink while the other N −M sensors remain in

a sleep mode. Denote the set of awakened sensors as Ω and y ∈ RM as the transmitted

measurement vector. Then, we have the sensing matrix UΩ and the measurements y. After

the fusion center obtains the measurement y, we can estimate the original signal x by

exploiting the least square estimator described in the last chapter to first recover the GFT

θ:

θ̂(i) =

{
(U †Ωγy)(i) : i = 1, 2, · · · , γ

0 : otherwise

where UΩγ is the sub matrix of Uγ by selecting rows corresponding to the index set Ω.

We can obtain the final estimate of x by x̂ = Uθ̂. Moreover, in the experiments, we also

try to estimate the original signal by solving the `1 optimization problem:

θ̂ = arg min
θ
‖θ‖1 s.t. y = UΩθ

and similarly obtain x̂ = Uθ̂.

5.3 Temporally Correlated Signals

Temporal correlation describes the predictable relationship between signals observed at

different moments in time. In applications of speech or environment monitoring, temporally

correlated signals are very common. In our scenario, we distribute a number of sensor nodes

in a certain field for data gathering. Since the location of each sensor node is fixed and the

readings of each nodes do not change very fast from the previous readings, i.e., each signal

is highly correlated with its previous states. If we construct an underlying graph based

on the information of its previous states, it is very likely that the current signal is smooth

with regard to the graph because of the temporal correlation. Accordingly, a simple online

estimation algorithm is proposed for such scenario:

Let xt ∈ RN be the data samples from a WSN at time instant t, where the network
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consists of N sensor nodes. The data is collected via a certain sampling rate at discrete

times t = 1, 2, · · · . Here we propose an online estimation algorithm to iteratively estimate

the readings xt based on previous estimates of xt−1, . . . , x1. We show that merely sampling

a small portion of the sensor nodes at each iteration, we can still maintain a stable recovery.

The general idea of the algorithm is described as follows:

(1) Assume the central station has already obtained all the estimates x̂t−1, . . . , x̂1 of the

previous readings. We calculate the mean of the r most recent estimates: x̄t = 1
r

∑t−1
k=t−r x̂k.

(2) Next we generate a KNN graph G based on x̄ by following the principles in [?] and

obtain its Laplacian matrix U by taking the eigenvalue decomposition Laplacian matrix L

corresponding to G.

(3) At the time t, the WSN randomly collects data from a random subset Ωt of |Ωt| =
M � N sensor nodes. At the fusion center, the received measurements are collected in the

M -dimensional vector yt = UΩtθt, where Ωt is the random sampling subset at time t.

(4) When the fusion center obtains the current measurement vector yt, it recovers the

current estimates x̂t by using the least square estimator:

θ̂t(i) =

{
(U †Ωtγy)(i) : i = 1, 2, · · · , γ

0 : otherwise

and reconstruct xt with x̂t = Uθ̂t. The definition of UΩtγ is similar to the least square

estimator for spatially correlated signals. Likewise, we also try solving the `1 optimization

problem in this case:

θ̂t = arg min
θ
‖θ‖1 s.t. yt = UΩtθt

and obtain x̂t = Uθ̂t

(5) Set t = t+ 1 and start a new iteration from step 1.

5.4 Power, Latency and Distortion

For a linear compressible signal, the upper bound shows that ‖θ − θγ‖2 ≤ Const · Sγ−s.
Combining this with lndN

γ
e ≤ lnN , we can see that the MSE D = ‖x − x̂‖2 ≤ Const ·

lnN · γ−s. If the signals decays fast, i.e., s is large, then the distortion will have a small

upper bound. Moreover, if we increase the number of measurement M , a larger γ could

be found to satisfy the condition M ≥ Const · γ · ln γ and consequently, the distortion will
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be reduced. Since the fusion center has to first receive all M measurements and then start

recovery process, it will cost the WSN M units of bandwidth and latency.

Different from the conventional CS paradigm, GSCS is able to reduce the number of

communications for data gathering significantly. If we adopt the architecture described

in [6], for a WSN with N nodes, each sensor have to transmit M1 times in order to generate

the measurement vector y, i.e., the total number of transmissions in the WSN is M1N .

However, by exploiting GSCS, we merely require M2 nodes to transmit their readings

where M2 is the number of measurements for GSCS to achieve the same reconstruction

error, i.e., the total number of transmissions in the WSN is M2. For a large scale WSN,

the reduction of the energy consumption is huge since M2 � NM1. In the next section, we

will show by experiment that to achieve the same distortion, M2 for GSCS is quite close to

M1 for certain real world data sets, which also implies that conventional CS will consume

N times more number of transmissions than GSCS does and thus our method is energy

efficient.

5.5 Experiments

In this section, we still utilize the CIMIS data sets. We run GSCS on solar radiation data

across multiple sensors and multiple time points. We use our proposed algorithms for WSNs

to check how GSCS works for WSNs. We choose KNN graph for the underlying graphs.

The reason for such choice is listed: First, KNN graphs are more robust to the distribution

of the signals while ε−graphs are sensitive to nonuniform distribution. We have to adjust

the parameter ε to fit different signals. Second, KNN graphs are more likely to generate

small coherence of low frequency components when compared to least weighting graphs.

From the above experience, we know that the best choice of K is in the range of 5 to 10

for constructing a KNN graph. Hence, in the following experiments, we set K = 7 all the

time. We will compare the performance of GSCS, conventional CS sensing matrix and the

sparse random projection [62] method.

It is easy to see if we maintain the same number of measurements for the above three

methods, then the number of transmission required for each node of GSCS, sparse random

projection and Gaussian random matrix will be Θ(1), Θ(lnN), Θ(N) respectively with

same number of measurements. Thus, the remaining question is for the same number of

measurements, how good is the recovery accuracy of GSCS when compared with the other
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two methods.

5.5.1 Spatially Correlated Signals

First we use the solar radiation data of one day which contains 135 readings from different

weather stations. Since we know the exact coordinates of all those weather stations, we

can generate a KNN graph based on the geological information and obtain its GFT basis.
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Fig. 5.1 (a) The K-Nearest-Neighbor graph generated using the locations of
weather stations in California. We set the number of neighbors for this graph
K = 7. (b) Performance comparison of GSCS with BP, GSCS with least
square estimator, conventional CS with an i.i.d. Gaussian sensing matrix and
sparse random projection. The figure plots distortion (mean squared error) as
a function of the number of measurements, M .

The resulting network is shown in Fig. 5.1(a), and Fig. 5.1(b) illustrates that the per-

formance of GSCS with BP is comparable with that of the conventional Gaussian random

matrix and sparse random projection while the least square estimator works clearly better

than all the other methods when M � N . The distortion is computed for 200 different

times and the average distortion is presented.

5.5.2 Temporally Correlated Signals

Next we test the GSCS algorithm on temporally correlated signals. The data set is also from

CIMIS. We use 92 daily readings from each of 117 sensor nodes, corresponding to a period
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Fig. 5.2 Temporally correlated data set. The horizontal line represents the
time of 92 days while the vertical line represents 117 sensor nodes. The color
represents the solar radiation readings from each sensor nodes.

of three months. Figure 5.2 illustrates the temporally correlated signal. The horizontal

line represents the time of 92 days while the vertical line represents 117 sensor nodes. We

can see that this signal is not always well temporally correlated since for some days, there

happen certain changes in the weather, which leads to uncorrelated solar radiation readings.

First we set r = 40 and let the sensor data of the first 10 days to be fully transmitted to

formulate the initial estimated data and obtain its mean of x̄ to generate the corresponding

KNN graph. For the remaining 52 days we exploit the procedure described in Subsection

5.3 to estimate the original signals. Figure 5.3(a) shows how the number of measurements

affects the performance of GSCS. The averaged MSE is around 0.025 when the number

of measurements exceeds 20. Figure 5.3(b) gives the MSE for each iteration when we

randomly activate 40 nodes to transmit the data. This experiment is run for 100 trials

and the average is plotted. By comparing with the original signals shown in Fig. 5.2,

we find that the large spikes of the error usually correspond to signals that deviate from

the the day before. Compared with other methods, the GSCS with least square estimator

does not outperform significantly when M � N . One main reason here is that some daily

readings might change quickly from the past and such signals does not exhibits strict linear

compressibility.
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(a) Performance comparison of GSCS with BP and with least square

estimator, conventional CS sensing matrix and sparse random project-

ing on temporally correlated data as a function of number of measure-
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(b) Mean square error of each iteration for GSCS with BP and with

least square estimator, conventional CS sensing matrix and sparse ran-

dom projecting. The number of measurement M is set to 40..

Fig. 5.3 Performance comparison of GSCS with BP and with least square

estimator, conventional CS sensing matrix and sparse random projecting on

temporally correlated signals. The parameter K is set to 7.
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This is one main disadvantage of the least square estimator: it requires the signals to

conform to the linear compressible model strictly since it recovers the signal on a fixed

support. In such cases, BP solver might be a better choice. It is worth noting that the

least square estimator is computationally much faster than all the other methods while the

BP solver is the slowest. This makes least square estimator suitable for some specific online

estimation tasks, which requires fast recovery process.

5.6 Discussion

In this chapter, we introduce two algorithms based on GSCS for WSNs to deal with tem-

porally or spatially correlated signals. For spatially correlated signals, GSCS is a general

approach for regular or irregularly structured WSNs. For temporally correlated signals,

GSCS provides an online estimation technique which iteratively learns the underlying trans-

form domain where the signal is compressible. Both algorithms exhibit great improvement

in saving both the energy consumption and bandwidth resources (or latency) since GSCS

merely requires a small portion of the whole sensor nodes to sample and transmit the data.

Moreover, we use real world data to verify that the GFT basis is suitable for irregular struc-

tured sensor topology. Also, the experiment results show that both least square estimator

and `1 decoding work for signal recovery algorithm.
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Chapter 6

Conclusion

6.1 Summary and Discussion

Our work analyzes a concept called the Graph Fourier Transform (GFT). To the best of

our knowledge, this is the first work to address (i) when we can compress signals supported

on graphs using the graph Laplacian eigenbasis, and (ii) on what conditions the graph and

signals should satisfy for approximation. We define the smoothness of signals supported on

graphs and extend the concept of bounded variation to signals supported on graphs. We

also analyze the impact of the distribution of the Laplacian eigenvalues of the underlying

graph. It has been shown that in order to obtain the best compressibility of a certain signal,

we require two conditions: First, the signal should be smooth with regard to the underlying

graph. Second, the underlying graph should have different eigenvalues to represent different

frequencies and different distribution of the eigenvalues will result in different behavior

of the linear approximation error. In addition to the theoretical discussion about the

properties of the GFT, we also provide simulations and experiments for further study. We

suggest different approaches of constructing the underlying graph to generate a smooth

signal and proper distribution of the eigenvalues. It is worth noting that our work on GFT

is not only related to the area of approximation theory, but also highly correlated with

manifold learning and semi-supervised learning.

The GFT extends the conventional approximation theory to signals on graphs. On the

other hand, we also show that the GFT has further applications as being the sensing matrix

of compressed sensing. We have proved that although the entries of the GFT basis are not

uniformly bounded, we can still guarantee a stable recovery through an simple least square
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estimator for the smooth signals supported on graphs. Different from the conventional

partial Fourier ensemble, our approach deals with more specific cases: the smooth signals

supported on certain graphs. Such method is called Graph Spectral Compressed Sensing

(GSCS). GSCS is very suitable for applications in WSNs since it only need to sample a

small portion of the sensor nodes randomly and provides a lossy compressed version of the

original signal.

Accordingly, we also introduce two algorithms based on GSCS for WSNs to deal with

temporally or spatially correlated signals. For spatially correlated signals, GSCS is a gen-

eral approach for regular or irregularly structured WSNs. For temporally correlated signals,

GSCS provides an online estimation technique which iteratively learns the underlying trans-

form domain where the signal is compressible. Both algorithms exhibit great improvement

in saving both the energy consumption and bandwidth resources (or latency) since GSCS

merely requires a small portion of the whole sensor nodes to sample and transmit the data,

6.2 Future Work

Since GFT and GSCS are relatively a new realm of study in approximation theory, there

still exists several uncleared issues for further development:

From the perspective of approximation theory, we would like to consider a question:

Given a signal x, does there exist an optimal GFT basis for least approximation error?

Based on the properties of the GFT, we have already known that we desire the graph with

increasing eigenvalues. However, is there an optimal distribution of eigenvalues for better

approximation? More specifically, when we construct a KNN graph, we know that a very

small choice of K and a large one will both lead to larger approximation error. However,

what is the optimal choice of K? The result of experiments shows when K = 5 ∼ 10,

we have the smallest approximation error. But is such choice universal? Or under what

conditions, such choice is optimal?

From the perspective of graph theory, we are interested in if there are any other graph

construction techniques for better compression. One possible way of research is related

to chromatic number. The intuition comes from the fact that graphs like ring or 2D grid

maintain small chromatic number of 2. Does a graph with small chromatic number have a

GFT basis for good compression? If so, graph topologies such as the planar graph might be

a good choice since it maintains small chromatic number. Moreover, Nodal’s theorem [58]
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in graph theory describes the behavior of the Laplacian eigenvectors. Is it related to the

“Fourier” properties of the eigenvector? Last but not least, another question concerns

about the Laplacian matrix. In our work, we utilized the unnormalized Laplacian matrix,

but how about the normalized Laplacian? The normalized Laplacian has some desired

properties such as it eliminates the bias on nodes of large degree and its eigenvalues range

from 0 to 2. All the above questions need further theoretical study and thus provide one

line of future research.

From the applicational perspective, we want to apply GFT and GSCS to more scenarios.

In this paper, we concentrate on the case that we construct the underlying graphs given

a certain signal. It is shown that such method can be well applied to WSNs and provide

the partial Graph Fourier ensemble which GSCS requires. However, sometimes we are

interested in the converse situation, i.e., we want to approximate a smooth signal which

is supported on a given graph. For example, each router in a certain network records its

total amount of data flows and we consider the underlying network as the graph with the

readings from routers as the signal. Since the records are highly correlated to its underlying

topology, we would like to investigate under what conditions such signal is smooth with

regard to the network.

In addition to the above questions, there still exist certain unsolved theoretical issues in

this work. When we discuss the coherence of the partial graph Fourier ensemble, we need

to analyze the largest magnitude of the entries among each eigenvector. Thanks to the

theory about the GFT, we have certain implications about why the coherence of the low

frequency components is small. However, there is still no strict mathematical proof about

what graphs are likely to have such property. In the area of graph theory, there have been

plenty of studies analyzing the distribution of the eigenvalues while not much efforts have

been laid on analyzing the distribution of eigenvectors. Hence, this question still remains

an open problem. Another unsolved problem is related to GSCS. During experiments and

simulations, we find out that the conventional CS decoding `1 programming still works well

for the partial graph Fourier ensemble although such sensing matrix does not satisfy the

conventional RIP. We conjecture that the reason of this phenomenon should be the same

as that of the least square estimator but we currently lack solid theoretical analysis.
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Appendix A

A.1 Proof of Theorem 4.3.2

We first need some tools to determine the property of the sensing matrix such that the

(εγ, r)−RAmP is satisfied. The following lemma is tailored from [18] to fit our need.

Lemma A.1.1. Let Ψ be an N ×N orthogonal matrix obeying ΨTΨ = NI. Consider a fix

set T and let Ω be a random set sampled using the Bernoulli model and µΨ(T ) = max
j∈T
|Ψi,j|.

Denote Y = 1
M

ΨT
ΩTΨΩT − I where I is the identity matrix and M = |Ω|. Then

E‖Y ‖ ≤ CR · µΨ(T )

√
|T | log |T |√

M
(A.1)

and

P (|‖Y ‖ − E‖Y ‖| > t) ≤ 3 exp(− t

γB
log(1 +

t

1 + E‖Y ‖
)), (A.2)

where B ≤ µ2
Ψ(T )|T |/M anb CR is some small constant.

From this lemma, Candès and Romberg [18] further prove for x ∈ RN be a sequence

supported on a fixed set T , M
2
‖x‖2

2 ≤ ‖ΨΩx‖2
2 ≤ 3M

2
‖x‖2

2. If we let T = Lj,γ, then it

is exactly the Lγ−RIP. It is worth noting that there is one minor difference between the

lemma here and the original work in [18]. Since in [18], the authors discuss the case where T

is fixed but arbitrary, they define the coherence µ = max|Ψi,j|. However, in the scenario we

are interested in, we merely concern about L1,γ−RIP. Accordingly, the set T is not arbitrary

but T (L1,γ). Correspondingly, we can replace µ with µU(T ) since only UT is involved. This

lemma can also be exploited as a useful tool for verifying the (εγ, r)−RAmP.
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Proof. In order to prove the conclusion, it is equivalent to upper the probability that

Φ =
√
N√
M
UΩ does not satisfy ‖Φu‖2

2 ≤ (1 + εγ)j
2r‖u‖2

2:

P (‖Φu‖2
2 > (1 + εγ)j

2r‖u‖2
2) ≤ P (|‖Φu‖2

2 − ‖u‖2
2| > [(1 + εγ)j

2r − 1]‖u‖2
2) (A.3)

= P (‖ 1

M
ΦT

ΩTΦΩT − I‖ > (1 + εγ)j
2r − 1) (A.4)

Denote Y = N
M

ΦT
ΩTΦΩT − I. Thus, the problem is now equivalent to bound P (‖Y ‖ >

(1 + εγ)j
2r−1). From Lemma A.1.1, set t = (1+εγ)j2r−1

2
and since CR is small and |T | � N ,

we can find an M large enough to make E‖Y ‖ ≤ t if (1+εγ)j2r−1

2µΦ(T )
is not very small, then

(A.4) is bounded by the righthand of (A.2). Accordingly, we can obtain

M ≥ 4C2
Rµ

2(T )|T | log |T |
[(1 + εγ)j2r − 1]2

(A.5)

which can be simplified as:

M ≥ C1|T | ln |T |(
µ(T )

j2r
)2 (A.6)

where C1 = 4C2
R/(1 + εγ)

2. Since B ≤ µ2(T )|T |/M , (A.2) gives

P (‖Y ‖ > 2t) ≤ 3 exp(−
Mt · log(1 + t

1+t
)

µ2(T )γ
) (A.7)

and let it be bounded by δ which provides the following:

M ≥ ln(
3

δ
)
γµ2(T )|T |
t · log(1+2t

1+t
)

(A.8)

where t = (1+εγ)j2r−1

2
. Since it is easy to pick proper εγ and r to bound log(1+2t

1+t
) away from

zero, i.e. there exist a constant C such that 0 < C ≤ log(1+2t
1+t

) < log 2, we can further

simplify (A.8) as:

M ≥ C2|T | ln(
3

δ
)(
µ(T )

jr
)2 (A.9)

where C2 = γ

(1+εγ) log( 1+2t
1+t

)
. Combining (A.6) with (A.9), we can see that:

M ≥ max{C1|T | ln |T |(
µ(T )

j2r
)2, C2|T | ln(

3

δ
)(
µ(T )

jr
)2}, (A.10)
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which gives the conclusion

A.2 Proof of Theorem 4.3.5

The proof of this theorem is exactly the same as in [10] since the only difference here

is we assume the signal to be linear compressible while their work considers generally

compressible signals. We include it here for the completeness of this thesis.

Proof. In this proof, we represent θγ as the γ term linear approximation of the original

signal θ. To bound ‖Φ(θ − θγ)‖2, we write θ as:

θ = θγ +

dN
γ
e∑

2

θTj ,

where θTj , according to Definition 16, is the difference between the jγ term linear approxi-

mation and the (j− 1)γ term linear approximation. Since Φ has the (εγ, r)−RAmP for the

linear residual subspaces Lj,γ and r = s− 1, we obtain:

‖Φ(θ − θγ)‖2 = ‖Φ(

dN
γ
e∑

2

θTj)‖2 ≤
dN
γ
e∑

2

‖ΦθTj‖2 (A.11)

≤
dN
γ
e∑

2

√
1 + εγj

s−1‖θTj‖2. (A.12)

Since x is a linear compressible signal, the norm of each piece of its GFT θ can be bounded

as

‖θTj‖2 = ‖θjγ − θ(j − 1)γ‖2 ≤ ‖θ − θjγ‖2 + ‖θ − θ(j−1)γ‖2 (A.13)

≤ SK−s((j − 1)−s + j−s). (A.14)
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Combining this bound with A.12, we obtain

‖Φ(θ − θγ)‖2 ≤
dN
γ
e∑

2

√
1 + εγj

s−1‖θTj‖2 (A.15)

≤
√

1 + εγ

Ks
S

dN
γ
e∑

2

js−1

(j − 1)s
+
js−1

js
(A.16)

(A.17)

≤
√

1 + εγ

Ks
S

dN
γ
e∑

2

1

j(1− 1/j)s
+

1

j
(A.18)

≤
√

1 + εγ

Ks
S

dN
γ
e∑

2

2s

j
+

1

j
(A.19)

≤ (2s + 1)

√
1 + εγ

Ks
S

dN
γ
e∑

2

1

j
(A.20)

By using Euler-Maclaurin summations, that
∑dN

γ
e

2
1
j
≤ lndN

γ
e, we can easily obtain the

conclusion.

A.3 Proof of Theorem 4.3.6

Proof. Let θ(γ) be the first γ entries of θ. Consequently, it is a γ × 1 vector and the least

square estimate θ̂(γ) = Φ†γy while θ̂γc = 0. Hence, θ̂ = [θ̂T(γ), θ̂
T
γc ]

T . Let θγ denote the γ−term

linear approximation of θ, then:

‖θ − θ̂‖2 = ‖θ − θγ + θγ − θ̂‖2 (A.21)

≥ 1√
2

(‖θ − θγ‖2 + ‖θγ − θ̂‖2) (A.22)
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which gives the lower bound immediately. The inequality is due to the fact that the support

of θ− θγ is disjoint to that of θγ− θ̂. For the upper bound, it is straightforward to see that:

‖θ − θ̂‖2 ≤ ‖θ − θγ‖2 + ‖θγ − θ̂‖2 (A.23)

= ‖θ − θγ‖2 + ‖θ(γ) − Φ†γy‖2 (A.24)

The second equality is due to the fact that θγ and θ̂ are 0 outside the support of T1. Notice

that θ(γ) = Φ†γΦγθ(γ) = Φ†γΦθγ and y = Φθ, the recovery error can be further bounded by:

‖θ − θ̂‖2 ≤ ‖θ − θγ‖2 + ‖Φ†γΦ(θ − θγ)‖2 (A.25)

≤ ‖θ − θγ‖2 + ‖Φ†γ‖2‖Φ(θ − θγ)‖2 (A.26)

Since Φ has the L1,γ−RIP, ‖Φγu‖2‖u‖2 ∈ [1− δγ, 1 + δγ], i.e., the smallest singular value of Φγ is

smaller than
√

1− δγ. Denote it by σmin Hence, ‖Φ†γ‖2 = 1
σmin

≤ 1√
1−δγ

. Moreover, since

θ ∈ Ls and Φ has the (εγ, r)−RAmP, we can bound ‖Φ(θ−θγ)‖2 by Cs
√

1 + εγSγ
−slndN

γ
e,

which completes the proof.
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