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ABSTRACT

We review the theory of submodular functions and matroids in Chapters 1 and

2 respectively. In Chapter 3 we consider the problem of given two matroids

M1 andM2, find the smallest integer k such that there is a common partition

X1, ..., Xk of M1 and M2. We are interested in both the complexity of the

problem as well as in finding good approximations (if not the exact value).

We propose different approaches and present some partial results. One of the

approaches leads naturally to the study of the following problem: Given a

digraph D = (V,A) with a source node s, a sink t, and a partition A1, ..., Ak of

V −{s, t}, find an s-t dipath that contains at most one node from each set Ai.

We show that this problem is NP-Complete and present some applications.
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ABRÉGÉ

Nous examinons la théorie des fonctions sous-modulaires et des matröıdes

dans les Chapitres 1 et 2 respectivement. Dans le troisième chapitre nous

considérons le problème suivant: Étant donné deux matröıdesM1 etM2 quel

est le plus petit entier k tel qu’il existe une partition commune X1, ..., Xk de

M1 etM2 ? Nous sommes intéressés à la fois par la complexité du problème

ainsi que par la recherche de bonnes approximations (si ce n’est la solution

exacte). Nous proposons de différentes approches ainsi que des résultats par-

tiels. L’une des approches nous amène à étudier le problème suivant: Étant

donné un graphe orienté D = (V,A) avec source s, puits t et une partition

A1, ..., Ak de V − {s, t}, comment trouver un chemin de s à t qui contient au

plus un sommet de chaque ensemble Ai ? Nous démontrons ensuite que ce

problème est NP-complet et présentons quelques applications.
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Notation

We use S ⊂ T to mean that S ⊆ T but S 6= T .

For sets A,B ⊆ V we use A + B to denote the set union A ∪ B, and A − B

to the denote the set minus A\B. For a set function f : 2V → R we denote

f({e}) by f(e).

Given a graph G = (V,E), for any S ⊆ V we denote by δ(S) the set of edges

in E that have exactly one endpoint in S. For a directed graph G = (V,A)

and a set S ⊆ V we denote by δ+(S) the set of arcs leaving S, and by δ−(S)

the set of arcs incoming S . We use subscripts (e.g. δG(S)) to specify the

graph G if necessary.

We use
⊎

to denote a disjoint union of sets.

We use [k] to denote the set {1, 2, ..., k}.

Given a graph G = (V,E) and a path P , we denote by V (P ) the set of nodes

of the path P .

We denote by log n the logarithm to the base 2 of n, i.e., log2 n, unless other-

wise explicitly specified.

Given a finite ground set V and a set K, we denote by KV the space of vectors

whose components belong to K and are indexed by the elements of V . The

component of x indexed by v is denoted by xv. For instance, if V = {v1, v2},

then RV = {(xv1 , xv2) : xv1 , xv2 ∈ R}. Moreover, given a vector x ∈ KV and a

set U ⊆ V , we denote by x(U) the sum
∑

v∈U xv.
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CHAPTER 1

Submodular Functions

Submodularity is a property of set functions with deep theoretical conse-

quences and far-reaching applications. Optimizing submodular functions is a

central subject in operations research and combinatorial optimization [22]. It

appears in many important optimization frameworks including cuts in graphs,

rank functions of matroids, set covering problems, plant location problems,

certain satisfiability problems, combinatorial auctions, and maximum entropy

sampling. In computer science it has recently been identified and utilized

in domains such as viral marketing [14], information gathering [16], image

segmentation [2, 15, 13], document summarization [21], and speeding up sat-

isfiability solvers [25].

However, the interest for submodular functions is not limited to discrete opti-

mization problems. The rich structure of submodular functions and their link

with convex analysis through the Lovasz extension and the various associated

polytopes makes them particularly adapted to problems beyond combinatorial

optimization, namely as regularizers in signal processing and machine learning

problems. Indeed, many continuous optimization problems exhibit an under-

lying discrete structure (e.g., based on chains, trees or more general graphs),

and submodular functions provide an efficient and versatile tool to capture

such combinatorial structures.
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1.1 Introduction

Submodularity is a property of set functions, i.e., functions f : 2V → R that

assign each subset S ⊆ V a value f(S). Hereby V is a finite set, commonly

called the ground set. We assume |V | = n unless otherwise specified. Sub-

modular functions can be defined in different ways. We start this section by

presenting three equivalent definitions of submodularity.

Definition 1.1.1. (Submodularity) Let V be a finite ground set and f : 2V →

R be a real-valued set function. Then f is submodular if for all A,B ⊆ V ,

f(A) + f(B) ≥ f(A ∪B) + f(A ∩ B). (1.1)

Equivalently, a submodular function can be defined as a set function exhibit-

ing the diminishing marginal returns property.

Definition 1.1.2. A function f : 2V → R is submodular if for all A ⊆ B ⊆ V

and e ∈ V − B,

f(A+ e)− f(A) ≥ f(B + e)− f(B). (1.2)

This diminishing marginal return property makes submodular functions suit-

able for many applications, in areas such as economics, game theory, electrical

networks, and very recently, in machine learning, artificial intelligence, and

computer vision. We now show that the above two definitions of submodular-

ity are equivalent.

Lemma 1.1.1. A set function f : 2V → R satisfies (1.1) if and only if it

satisfies (1.2).
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Proof. First, we show that (1.1) implies (1.2). Let S ⊆ T ⊆ V and e ∈ V −T .

Then, by applying (1.1) to A = S + e and B = T , we get

f(S + e) + f(T ) ≥ f((S + e) ∪ T ) + f((S + e) ∩ T )

= f(T + e) + f(S).

Re-arranging the terms we obtain

f(S + e)− f(S) ≥ f(T + e)− f(T ).

Next, let us show that (1.2) implies (1.1). First, notice that (1.2) can be

rewritten as

f(S)− f(T ) ≤ f(S + e)− f(T + e) (1.3)

for S ⊆ T ⊂ T + e. Let X and Y be two subsets of V . If Y ⊆ X, then

X ∩ Y = Y and X ∪ Y = X, and hence (1.1) is trivially satisfied for the sets

X, Y . So assume Y * X, and enumerate the elements of Y −X as {e1, ..., ek}.

Then, note that for i < k we have

(X ∩ Y ) ∪ {e1, ..., ei} ⊂ X ∪ {e1, ..., ei} ⊂ X ∪ {e1, ..., ei+1}.

Hence, by taking S = X ∩ Y , T = X, and repeatedly apply (1.3) with the

elements e1, ..., ek we get

f(X ∩ Y )− f(X) ≤ f((X ∩ Y ) + e1)− f(X + e1)

≤ f((X ∩ Y ) ∪ {e1, e2})− f(X ∪ {e1, e2})

...

≤ f((X ∩ Y ) ∪ {e1, ..., ek})− f(X ∪ {e1, ..., ek})

= f(Y )− f(X ∪ Y ).
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Finally, this can be re-arranged as

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

Checking directly whether a function satisfies condition (1.1) or (1.2) is clearly

impractical. Our next definition of submodularity gives a condition that is of-

ten easier to verify. It applies the same diminishing returns condition (1.2),

but only considers a restricted family of set pairs.

Definition 1.1.3. A function f : 2V → R is submodular if for all A ⊆ V and

i, j ∈ V − A we have

f(A+ i)− f(A) ≥ f(A+ i+ j)− f(A+ j). (1.4)

We now show that our three definitions of submodularity are equivalent.

Lemma 1.1.2. A set function f : 2V → R satisfies (1.4) if and only if it

satisfies (1.2).

Proof. The conditions of Definition 1.1.2 clearly imply those of Definition 1.1.3.

To show the other direction, let A ⊆ B ⊆ V and j ∈ V − B. Enumerate the

elements of B − A as {b1, ..., bs}. Now, by repeatedly applying (1.4) we have

f(A+ j)− f(A) ≥ f(A+ j + b1)− f(A+ b1)

≥ f(A ∪ {j, b1, b2})− f(A ∪ {b1, b2})

...

≥ f(A ∪ {j, b1, ..., bs})− f(A ∪ {b1, ..., bs})
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= f(B + j)− f(B).

Hence condition (1.2) follows.

A function f is called supermodular if −f is submodular. A function is called

modular if f is both submodular and supermodular, i.e., if f satisfies (1.1) with

equality. We now define other properties of set functions that will be useful in

this thesis. Let f : 2V → R, we say that f is monotone if f(A) ≤ f(B) when-

ever A ⊆ B ⊆ V . A function that is not monotone is called non-monotone.

The function f is called non-negative if f(S) ≥ 0 for all S ⊆ V , and symmetric

if f(S) = f(V − S) for all S ⊆ V . We say that f is normalized if f(∅) = 0.

1.2 Examples

Submodular functions arise in many applications. In this section we present

some classical examples of submodular functions.

Example 1.2.1. Modular functions: A function 2V → R is modular if

f(A)+ f(B) = f(A∪B)+ f(A∩B) for all A,B ⊆ V . Modular functions can

always be expressed in the form f(S) =
∑

e∈S w(e) for some weight function

w : V → R. If w(e) ≥ 0 for all e ∈ V , then f is also monotone.

Example 1.2.2. Cut functions in graphs: Given an undirected graph

G = (V,E) and a non-negative capacity function c : E → R+, we define the

cut function f : 2V → R of the graph G as f(S) = c(δ(S)) =
∑

e∈δ(S) c(e).

The cut function of an undirected graph is submodular. If G = (V,A) is a

directed graph and c : A → R+, the cut function f : 2V → R defined as
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f(S) = c(δ+(S)) is submodular. In general, cut functions are not monotone.

Lemma 1.2.1. (a) The cut function of a directed graph is submodular.

(b) The cut function of an undirected graph is submodular.

Proof. For a directed graph G = (V,A) and X, Y ⊆ V , let E+(X, Y ) :=

{(x, y) ∈ E : x ∈ X − Y, y ∈ Y −X}. We use a counting argument to show

the result for directed graphs. Let Z := V − (X ∪ Y ), and observe that

f(X) + f(Y )

= c(δ+(X)) + c(δ+(Y ))

= c(E+(X,Z)) + c(E+(X, Y −X)) + c(E+(Y, Z)) + c(E+(Y,X − Y ))

= c(E+(X ∪ Y, Z)) + c(E+(X ∩ Y, Z)) + c(E+(X, Y −X)) + c(E+(Y,X − Y ))

= c(δ+(X ∪ Y )) + c(δ+(X ∩ Y )) + c(E+(X, Y )) + c(E+(Y,X))

≥ c(δ+(X ∪ Y )) + c(δ+(X ∩ Y ))

= f(X ∪ Y ) + f(X ∩ Y ).

Z

X Y
V

Hence, the cut function of a directed graph is submodular and (a) holds.

Finally, (b) follows from (a) by replacing each undirected edge (u, v) by a pair

of oppositely directed edges (u, v) and (v, u).

Example 1.2.3. Coverage functions: Given a universe V and sets S1, ..., Sm ⊆

V , the coverage function f : [m]→ Z+ given by f(A) = | ∪i∈A Si| is monotone

7



submodular.

Example 1.2.4. Let V be the set of columns of a matrix A. For each S ⊆ V ,

let r(S) be the rank of the matrix formed by the columns in S. Then r is

monotone submodular. We will see in Chapter 2 that this is a special case of

Example 1.2.5.

An even more general class is the class of matroids, which we discuss in-depth

in Chapter 2.

Example 1.2.5. Rank functions of matroids: The rank function of a

matroid M = (E, I), defined as rM(A) = max{|U | : U ⊆ A, U ∈ I}, is

monotone submodular [1].

Example 1.2.6. Let G = (A∪B,E) be a bipartite graph. For each S ⊆ A, let

N(S) denote the set of neighbours of S. Then f(S) := |N(S)| is a monotone

submodular function on the subsets of A.

Example 1.2.7. Entropy: Let Ω = {X1, ..., Xn} be a set of random vari-

ables, and H : 2Ω → R where H(S) denotes the entropy of the joint distribution

of the random variables in S. Then H is monotone submodular [10].

Example 1.2.8. Social Influence: Let V denote the family of nodes in a

social network and assume an idea or product is adopted at a set of nodes

S ⊆ V . The idea propagates through the network following some random dif-

fusion process. Several different diffusion models have been investigated in the

literature. The Linear Threshold and Independent Cascade are two of the most

basic and widely-studied such models. Let f(S) denote the expected number of
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nodes in the network which end up adopting the idea. Tardos et al. [14] show

that for both the Linear Threshold and Independent Cascade models the func-

tion f is monotone submodular.

Example 1.2.9. Facility location: Let V = {1, ..., n} denote a set of n

different locations. We are interested in selecting some of the locations to

open up facilities in order to serve a collection of m customers. There is

an associated matrix A ∈ Rm×n where Ai,j denotes the service or value that

opening up a facility at location j provides for customer i. If we assume that

each customer chooses the facility with highest value, the total value provided

to all customers is modeled by the function

f(S) =
m
∑

i=1

max
j∈S

Ai,j.

If the entries of the matrix A are non-negative, f is a monotone submodular

function [9].

1.3 Operations that preserve submodularity

There are many natural operations which build new submodular functions

from existing ones. In this section we present some of those operations.

Proposition 1.3.1. Submodularity is preserved under non-negative linear com-

binations. In other words, if f1, ..., fk : 2
V → R are submodular functions, and

α1, ..., αk ≥ 0, then f(S) :=
∑k

i=1 αifi(S) is submodular.
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Proof. The proof follows straightforward from the definition of submodularity.

Let X, Y ⊆ V , then

f(X) + f(Y ) =
k

∑

i=1

αifi(X) +
k

∑

i=1

αifi(Y )

=
k

∑

i=1

αi[fi(X) + fi(Y )]

≥
k

∑

i=1

αi[fi(X ∪ Y ) + fi(X ∩ Y )]

=
k

∑

i=1

αifi(X ∪ Y ) +
k

∑

i=1

αifi(X ∩ Y )

= f(X ∪ Y ) + f(X ∩ Y ),

where the inequality in the third line follows from the fact that α1, ..., αk ≥ 0

and f1, ..., fk : 2
V → R are submodular functions.

Definition 1.3.1. Let f : 2V → R and A ⊆ V . The restriction of f to A,

denoted by fA, is a set function defined as fA(S) := f(A ∩ S) for S ⊆ V .

Proposition 1.3.2. Let f : 2V → R be a submodular function. Then, for any

A ⊆ V the restriction fA is submodular.

Proof. Fix A ⊆ V , and let X ⊆ Y ⊆ V and e ∈ V − Y . Then, either e ∈ A or

e /∈ A. We show that in both cases condition (1.2) holds for fA, and hence fA

is submodular. First assume that e ∈ A, then

fA(X + e)− fA(X) = f((X + e) ∩ A)− f(X ∩ A)

= f((X ∩ A) + e)− f(X ∩ A)

≥ f((Y ∩ A) + e)− f(Y ∩ A)

= f((Y + e) ∩ A)− f(Y ∩ A)

= fA(Y + e)− fA(Y ),

10



where the inequality in the third line follows from the fact that X∩A ⊆ Y ∩A

and that condition (1.2) holds for f .

Now assume that e /∈ A. In this case the inequality follows trivially since

fA(X + e)− fA(X) = f((X + e) ∩ A)− f(X ∩ A)

= f(X ∩ A)− f(X ∩ A)

= 0

= f(Y ∩ A)− f(Y ∩ A)

= f((Y + e) ∩ A)− f(Y ∩ A)

= fA(Y + e)− fA(Y ).

Proposition 1.3.3. Let g : 2V → R be a monotone submodular function.

Then the truncation f(S) := min{g(S), c} remains monotone submodular for

any constant c ∈ R.

Proof. Let g : 2V → R be a monotone submodular function and fix c ∈ R.

It is clear that f(S) := min{g(S), c} is also monotone. Take an arbitrary set

S ⊂ V and elements i, j /∈ S. We show that (1.4) holds for f , i.e.,

min{g(S + i), c} −min{g(S), c} ≥ min{g(S + i+ j), c} −min{g(S + j), c}.

Note that we have six different cases to consider:

(1) g(S) ≥ c.

(2) min{g(S + j), g(S + i)} ≥ c ≥ g(S).

(3) g(S + j) ≥ c ≥ g(S + i).

(4) g(S + i) ≥ c ≥ g(S + j).

11



(5) g(S + i+ j) ≥ c ≥ max{g(S + i), g(S + j)}.

(6) c ≥ g(S + i+ j).

In the first case the inequality holds trivially since

min{g(S+ i+j), c} = min{g(S+ i), c} = min{g(S+j), c} = min{g(S), c} = c.

For the second case we have

min{g(S+i+j), c} = min{g(S+i), c} = min{g(S+j), c} = c ≥ min{g(S), c} = g(S)

and after substituting we obtain

c− g(S) ≥ c− c = 0,

which is true since we are assuming c ≥ g(S).

For case (3) we get

g(S + i)− g(S) ≥ c− c = 0,

which holds from the monotonicity of g.

After subbing in case (4) we have

c− g(S) ≥ c− g(S + j),

which follows again from the monotonicity of g.

For case (5) we get

g(S + i)− g(S) ≥ g(S + i+ j)− g(S + j) ≥ c− g(S + j),

where the first inequality follows from the submodularity of the function g.
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In the last case the inequality follows straightforward from the submodularity

of g, i.e.,

g(S + i)− g(S) ≥ g(S + i+ j)− g(S + j).

Proposition 1.3.4. Submodularity is preserved under reflection: Let g : 2V →

R be a submodular function. Then, the function f : 2V → R defined as

f(S) = g(V − S) for S ⊆ V is submodular.

Proof. The proof follows straightforward from the submodularity of g. Let

X, Y ⊆ V , then

f(X) + f(Y ) = g(V −X) + g(V − Y )

≥ g((V −X) ∩ (V − Y )) + g((V −X) ∪ (V − Y ))

= g(V − (X ∪ Y )) + g(V − (X ∩ Y ))

= f(X ∪ Y ) + f(X ∩ Y ).

Definition 1.3.2. Let f : 2V → R and A ⊆ V . The contraction of f on A,

denoted by fA, is a set function defined as fA(S) := f(S ∪ A) for S ⊆ V .

Proposition 1.3.5. Let f : 2V → R be a submodular function. Then, for any

A ⊆ V the contraction fA is submodular.

Proof. Fix A ⊆ V and let fA be the contraction of f on A. Let X ⊆ Y ⊆ V

and e /∈ Y . Then, either e ∈ A or e /∈ A. We show that in either case fA

satisfies condition (1.2), and hence fA is submodular. First assume that e /∈ A,

13



then we have

fA(X + e)− fA(X) = f((X + e) ∪ A)− f(X ∪ A)

= f((X ∪ A) + e)− f(X ∪ A)

≥ f((Y ∪ A) + e)− f(Y ∪ A)

= f((Y + e) ∪ A)− f(Y ∪ A)

= fA(Y + e)− fA(Y ),

where the inequality in the third line follows from the fact that X∪A ⊆ Y ∪A

and that condition (1.2) holds for f . Notice that here we are using that e /∈ A

since in order to apply condition (1.2) we need to have e /∈ Y ∪ A.

Now assume that e ∈ A. In this case the inequality follows trivially since

fA(X + e)− fA(X) = f((X + e) ∪ A)− f(X ∪ A)

= f(X ∪ A)− f(X ∪ A)

= 0

= f(Y ∪ A)− f(Y ∪ A)

= f((Y + e) ∪ A)− f(Y ∪ A)

= fA(Y + e)− fA(Y ).

Proposition 1.3.6. Let g : 2V → R be a submodular function and A,B ⊆ V

any two disjoint sets. Then, the function f : 2A → R defined via f(S) =

g(S ∪ B)− g(B) is submodular.
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Proof. Fix any two disjoint sets A,B ⊆ V . We show that f satisfies condition

(1.2). Let X ⊆ Y ⊆ A and e ∈ A− Y . Then

f(X + e)− f(X) = [g((X + e) ∪ B)− g(B)]− [g(X ∪B)− g(B)]

= g((X + e) ∪ B)− g(X ∪B)

= g((X ∪ B) + e)− g(X ∪B)

≥ g((Y ∪B) + e)− g(Y ∪B)

= g((Y + e) ∪ B)− g(Y ∪B)

= [g((Y + e) ∪ B)− g(B)]− [g(Y ∪B)− g(B)]

= f(Y + e)− f(Y ),

where the inequality in the fourth line follows from the fact thatX∪B ⊆ Y ∪B

and that condition (1.2) holds for g.

Proposition 1.3.7. The convolution of a submodular function and a modular

function is submodular: Let g : 2V → R be a submodular function, and z :

2V → R be a modular function. Then, f(S) := minU⊆S g(U) + z(S − U) for

S ⊆ V is submodular.

Proof. Let A,A′ ⊆ V , and B,B′ the corresponding minimizers defining f(A)

and f(A′). We show that f satisfies condition (1.1),

f(A) + f(A′)

= [g(B) + z(A− B)] + [g(B′) + z(A′ − B′)]

= g(B) + g(B′) + z(A− B) + z(A′ − B′)

≥ g(B ∪ B′) + g(B ∩B′) + z(A− B) + z(A′ − B′)

= g(B ∪ B′) + g(B ∩B′) + z((A− B) ∪ (A′ − B′)) + z((A− B) ∩ (A′ − B′))

= g(B ∪B′) + g(B ∩ B′) + z((A ∪ A′)− (B ∪B′)) + z((A ∩ A′)− (B ∩ B′))

15



= [g(B ∪B′) + z((A ∪ A′)− (B ∪B′))] + [g(B ∩ B′) + z((A ∩ A′)− (B ∩ B′))]

≥ f(A ∪ A′) + f(A ∩ A′),

where the first inequality follows from the submodularity of g, and the second

inequality from the definition of f . The equality signs in the fourth and fifth

lines follow from the fact that z is modular and from the relations

(A− B) ∪ (A′ − B′) = [(A ∩ A′)− (B ∩ B′)] ∪ [(A ∪ A′)− (B ∪B′)]

and

(A− B) ∩ (A′ − B′) = [(A ∩ A′)− (B ∩ B′)] ∩ [(A ∪ A′)− (B ∪ B′)].

A function f : Rn → R is concave if the line segment joining any two points

on the graph is never above the graph. More precisely,

Definition 1.3.3. (Concavity) A function h : K ⊆ Rn → R defined on a

convex set K is concave if for any two points x, y ∈ K and λ ∈ [0, 1] we have

λf(x) + (1− λ)f(y) ≤ f(λx+ (1− λ)y).

The following lemma is a property of concave functions that will be useful to

prove some of the relationships between concavity and submodularity.

Lemma 1.3.1. Let g : R+ → R be a concave function and a ≥ 0. Then, the

function f(t) := g(a+ t)− g(t) is non-increasing.

Proposition 1.3.8. Let z : 2V → R+ be a modular function given by non-

negative weights, i.e., there exists w : V → R+ such that z(S) =
∑

e∈S w(e)

for all S ⊆ V . Let g : R+ → R be a concave function. Then, f : 2V → R

defined as f(S) = g(z(S)) for S ⊆ V is submodular.
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Proof. Let A ⊆ V and i, j /∈ A. We use Lemma 1.3.1 to show that f satisfies

condition (1.4).

Let a = w(i), t1 = z(A) =
∑

e∈A w(e), and t2 = z(A+ j) = w(j)+
∑

e∈A w(e).

Since w is a non-negative function, we have that w(i), w(j) ≥ 0. In particular,

a ≥ 0 and t1 ≤ t2. Hence, by Lemma 1.3.1 we have

g(a+ t1)− g(t1) ≥ g(a+ t2)− g(t2).

But notice that

g(a+ t1)− g(t1) = g(w(i) +
∑

e∈A

w(e))− g(
∑

e∈A

w(e))

= g(z(A+ i))− g(z(A))

and

g(a+ t2)− g(t2) = g(w(i) + w(j) +
∑

e∈A

w(e))− g(w(j) +
∑

e∈A

w(e))

= g(z(A+ i+ j))− g(z(A+ j)).

Thus, condition (1.4) follows and f is submodular.

Proposition 1.3.9. The composition of a monotone concave function and a

monotone submodular function is submodular. Let g : 2V → R be a monotone

submodular function with values in a convex set K ⊆ R, and h : K → R

a monotone concave function. Then, the composition f(S) := h(g(S)) for

S ⊆ V is submodular.

Proof. We show that f satisfies condition (1.4). Let A ⊆ V and i, j /∈ A.

Then, since g is submodular, we have that

g(A+ i)− g(A) ≥ g(A+ i+ j)− g(A+ j),
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and hence

g(A+ i+ j) ≤ g(A+ i)− g(A) + g(A+ j).

Now, it follows from the monotonicity of h,

h(g(A+ i+ j))

≤ h(g(A+ i)− g(A) + g(A+ j))

= h(g(A+ i)− g(A) + g(A+ j))− h(g(A+ j)) + h(g(A+ j)).

And by Lemma 1.3.1 we get

h(g(A+ i)− g(A) + g(A+ j))− h(g(A+ j))

≤ h(g(A+ i)− g(A) + g(A))− h(g(A))

= h(g(A+ i))− h(g(A)).

Thus,

f(A+ i+ j)

= h(g(A+ i+ j))

≤ h(g(A+ i)− g(A) + g(A+ j))− h(g(A+ j)) + h(g(A+ j))

≤ h(g(A+ i))− h(g(A)) + h(g(A+ j))

= f(A+ i)− f(A) + f(A+ j),

and the proposition follows.

It is not true in general that the minimum or the maximum of two submodular

functions is also submodular. However, in the case when the difference of the

two functions is an increasing or decreasing function we have the following

result [22]:
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Proposition 1.3.10. Let f and g be two submodular functions such that f−g

is either increasing or drecreasing. Then min{f, g} is also submodular.
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CHAPTER 2

Matroids and Submodularity

2.1 Definitions and examples

One of the most studied class of submodular functions are the so-called rank

functions of matroids. Matroids were introduced by Whitney [26] in 1935

to provide a unifying abstract treatment of dependence in linear algebra and

graph theory. Whitney’s definition embraces a surprising diversity of combi-

natorial structures. Moreover, matroids arise naturally in combinatorial opti-

mization since they are precisely the structures for which the greedy algorithm

works. There is a strong relationship between matroids and submodularity.

In fact, we will see in this chapter that matroids can be defined in terms of

submodular functions.

Definition 2.1.1. A matroid is a pair (E, I) consisting of a finite set E with

a non-empty collection I of subsets of E, called independent sets, such that

(I1) If X ⊆ Y and Y ∈ I then X ∈ I.

(I2) If X, Y ∈ I and |Y | > |X| then ∃e ∈ Y −X such that X + e ∈ I.

Axiom (I1) is usually called the hereditary property, while (I2) is usually called

the greedy property. The sets in 2E that are not independent are called depen-

dent. Minimal dependent sets are called circuits, and maximal independent

sets are called bases.

20



We now present several examples of matroids, in some cases also describing

their bases and circuits.

Example 2.1.1. Uniform matroid: A very simple class of matroids is

given by the uniform matroids. A uniform matroid is a pair M = (E, I) in

which

I = {X ⊆ E : |X| ≤ k}

for some 1 ≤ k ≤ |E|. This is usually denoted by Uk,n where |E| = n. It is

easy to see that a base of Uk,n is any set of size k, while a circuit is any set of

size k + 1.

Example 2.1.2. Matroid restriction: Let M = (E, I) be a matroid, and

let U ⊆ E. Then M′ = (U, I ′) where I ′ = {I ∈ I : I ⊆ U} is a matroid.

M′ is usually denoted byM|U and it is called the restriction ofM to U . The

bases of M|U are the maximum independent sets of M contained in U , and

its circuits are the circuits ofM that are contained in U .

Let us check that M|U is indeed a matroid. Let Y ∈ I ′ and X ⊆ Y . Since

Y ∈ I ′, we have that Y ∈ I and Y ⊆ U . It follows from the hereditary prop-

erty ofM that X ∈ I. Also, since X ⊆ Y we have that X ⊆ U . Thus X ∈ I ′

and (I1) holds. To see (I2) let X, Y ∈ I ′ with |Y | > |X|. Then X, Y ∈ I

and X, Y ⊆ U . It follows from the greedy property of M that ∃e ∈ Y − X

such that X + e ∈ I. Moreover, since Y ⊆ U we have that e ∈ U , and hence

X + e ∈ I ′.
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Example 2.1.3. Partition matroid: Let E1, ..., Em be a partition of the

ground set E, and

I = {X ⊆ E : |X ∩ Ei| ≤ ki, ∀i ∈ [m]}

for some numbers 1 ≤ ki ≤ |Ei| with i ∈ [m]. Then M = (E, I) is called

a partition matroid. Notice that this generalizes uniform matroids. It is not

hard to see that the bases in this case are sets X ⊆ E satisfying the cardinality

constraints with equality, i.e., sets X ⊆ E such that |X ∩ Ei| = ki for all

i ∈ [m]. The circuits are sets X ⊆ Ei such that |X| = ki+1 for some i ∈ [m].

Let us check that M, as defined above, is indeed a matroid, i.e., that it

satisfies axioms (I1) and (I2) from Definition 2.1.1. The hereditary property

holds almost trivially, since if X ⊆ Y and |Y ∩ Ei| ≤ ki for all i ∈ [m], it is

clear that |X ∩Ei| ≤ ki for all i ∈ [m] as well. To see that the greedy property

holds, let X, Y ∈ I with |Y | > |X|. Then, since E1, ..., Em is a partition of

E we must have that |X ∩ Ei0 | < |Y ∩ Ei0 | ≤ ki0 for some i0 ∈ [m]. Let

e ∈ (Y ∩ Ei0)− (X ∩ Ei0). Then, we have

|(X + e) ∩ Ei| = |X ∩ Ei| ≤ ki ∀i 6= i0

and

|(X + e) ∩ Ei0 | = |X ∩ Ei0 |+ 1 ≤ |Y ∩ Ei0 | ≤ ki0 .

Hence, X + e ∈ I. Moreover, since e ∈ (Y ∩ Ei0) − (X ∩ Ei0), we have that

e ∈ Y −X, and this concludes the proof.

Notice that the disjointness condition on the sets Ei is key and cannot be

relaxed. A simple example to see why this could fail is the following: Let

E = {1, 2, 3}, E1 = {1, 2}, E2 = {2, 3}, and k1 = 1, k2 = 1. Define I as

above. Then the sets Y = {1, 3} and X = {2} are independent and |Y | > |X|.
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However, for each e ∈ Y −X we have X + e /∈ I. Hence, axiom (I2) does not

hold andM = (E, I) is not a matroid.

Example 2.1.4. Graphic matroid: A very important class of matroids in

combinatorial optimization is the class of graphic matroids. Given an undi-

rected graph G = (V,E) with |V | = n, a graphic matroid is a pairM = (E, I)

where

I = {F ⊆ E : F is a forest in G}.

It is usually denoted byM(G). The bases of a graphic matroid correspond to

the spanning forests of the graph G. If the graph is connected, the bases are

the spanning trees of G, i.e., forests of size n − 1. The circuits correpond to

the cycles of G.

To see that a pairM = (E, I) defined as above is indeed a matroid, first notice

that the hereditary property is trivially satisfied. Indeed, if F2 is a forest in

G (i.e., F2 ∈ I), any set of edges F1 ⊆ F2 will also be a forest since removing

edges does not create cycles. Now, let us show that the greedy property holds.

Let F1, F2 ∈ I with |F2| > |F1|. Then, n − 1 ≥ |F2| > |F1|, and hence

F1 does not induce a connected component. Let C1, ..., Ck be its connected

components. Then F1 induces a spanning tree on each component Ci, and

thus |F1| =
∑k

i=1(|Ci|−1) = n−k. Also, since |F2| > |F1|, F2 cannot only use

edges with both endpoints in some component Ci; if it did, F2 would also have

at least k connected components, and then |F2| ≤ n− k = |F1| contradicting

the fact that |F2| > |F1|. Thus, there exists e ∈ F2 with endpoints in distinct

components Ci, i.e., e ∈ F2 − F1. It follows that F1 + e is again a forest and

so F1 + e ∈ I as we wanted to show.
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Although graphic matroids are generally defined for undirected graphs, they

can also be associated with directed graphs by disregarding the orientations

of the arcs. That is, given a digraph D = (V,A) we can define the graphic

matroid associated to D, denoted byM(D), asM = (A, I) where

I = {F ⊆ A : F when viewed as undirected edges induces a forest on V }.

Example 2.1.5. Linear matroid: Given a matrix A, let E denote the index

set of the columns of A. For a subset X ⊆ E, let AX denote the submatrix of

A consisting only of those columns indexed by X. Then, define

I = {X ⊆ E : rank(AX) = |X|},

i.e., a set X is independent in M = (E, I) if and only if the corresponding

columns in the matrix A are linearly independent. Notice that in this case a

basis B ofM correspond to linearly independent set of columns of cardinality

rank(A).

Let us show that M is indeed a matroid: Assume that Y ∈ I and X ⊆ Y .

If the set of columns corresponding to Y are linearly independent, any subset

of them will also be linearly independent. Hence, X ∈ I. To show that (I2)

holds, let X, Y ∈ I and |Y | > |X|. Since the columns corresponding to both

X and Y are linearly independent, it follows that the column space of the

matrix AX has dimension |X| and the column space of the matrix AY has

dimension |Y |. Moreover, since |Y | > |X|, by a fundamental linear algebra

property we know that there exists a column of AY that is not in the column

space of AX . Adding this column to AX increases the rank by 1, and thus

property (I2) follows.
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Example 2.1.6. Matching matroid: Let G = (V,E) be a graph and con-

siderM = (V, I) where

I = {S ⊆ V : S is covered by some matching M}.

Notice that in the definition the matching M does not need to cover exactly

S, other nodes can be also covered. Then M is a matroid, usually called the

matching matroid.

Axiom (I1) is trivial since if X ⊆ Y and Y ∈ I, there exists a matching M

covering Y , but then M also covers X and hence X ∈ I. To show that (I2)

holds let X, Y ∈ I with |Y | > |X|, and let M be a matching covering X and

M ′ a matching covering Y . Consider M4M ′, and notice that each induced

connected component alternates between M and M ′ edges. Moreover, since

|M ′| > |M |, some component must have more edges from M ′ than from M .

We perform an augmentation on such a component, and we get a new matching

M ′′ that covers Z, where Z ⊃ X and Z ⊆ Y . Hence, ∃e ∈ Y −X such that

X + e ∈ I and axiom (I2) follows.

A matching matroid can also be defined for a ground set J ⊂ V , i.e., the pair

M = (J, I) where

I = {S ⊆ J : S is covered by some matching M}

is still a matching matroid. Here the matchings are allowed to involve nodes

from outside J . A special case of this is our next example.

Example 2.1.7. Transversal matroid: Let G = (A ∪ B,E) be a bipartite

graph with bipartition A and B. ConsiderM = (A, I) where

I = {I ⊆ A : I is covered by some matching M}.
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Then M is a matroid, usually called a transversal matroid.

Example 2.1.8. Laminar matroid: Let F be a laminar family of subsets

over E, i.e., if A,B ∈ F then, either A∩B = ∅, or A ⊆ B, or B ⊆ A. Assume

that each x ∈ E is in some set A ∈ F , and let k : F → Z+ be non-negative

weights on the sets of the family F . Then M = (E, I) is a laminar matroid,

where

I = {X ⊆ E : |X ∩ A| ≤ k(A), ∀A ∈ F}.

Notice that laminar matroids generalize partition matroids, which in turn (as

mentioned above) generalize uniform matroids.

Example 2.1.9. Gammoid: Let G = (V,E) be a graph and let S, T ⊆ V .

Then, the pairM = (E, I) where

I = {X ⊆ S : there exist |X| node-disjoint paths from X to T}

is a matroid, and it is called a gammoid.

Transversal matroids can be seen as a particular case of gammoids. Indeed,

given a bipartite graph G = (A ∪ B,E), consider the gammoid defined on G

by taking S = A and T = B, i.e.,M = (A, I) where

I = {X ⊆ A : there exist |X| node-disjoint paths from X to B}.

Given that G is a bipartite graph with bipartition A ∪ B we can rewrite the

independent sets as

I = {X ⊆ A : there exist |X| node-disjoint paths from X to B}

= {X ⊆ A : there exist |X| node-disjoint edges from X to B}
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= {X ⊆ A : X is covered by some matching M}.

It follows that the gammoidM defined this way is just the transversal matroid

on the bipartite graph G = (A ∪ B,E) with ground set A.

We have seen so far that transversal matroids are particular examples of both

gammoids and matching matroids. Also, that laminar matroids generalize

partition matroids, which in turn generalize uniform matroids. We summarize

these relations in the diagram below, where an arrow from A to B means that

A generalizes B (or equivalently, that B is a particular case of A).

Gammoid Matching

Transversal

Laminar

Partition

Uniform

We conclude this section by showing a couple of examples of pairs (E, I) that

are not matroids.

Example 2.1.10. Let G = (V,E) be a graph and consider the pair M =

(E, I) where I = {F ⊆ E : F is a matching in G}. It is easy to see that

axiom (I1) is satisfied since any subset of a matching is also a matching.

However,M is not a matroid in general since axiom (I2) does not necessarily

hold. To see this take a graph on four nodes, i.e., V = {1, 2, 3, 4}, and let

X = {(2, 3)} and Y = {(1, 2), (3, 4)} (see picture below). It is clear that both

X and Y are matchings, but there is no edge of Y that can be added to X and

still have a matching.
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2 3

4 1

Y

X

Example 2.1.11. Let D = (V,A) be a directed graph and consider I =

{F ⊆ A : F has no directed cycles}. Then, M = (A, I) is not a matroid

in general. For instance, let G be the complete graph on four nodes, and let

X = {(1, 2), (2, 3), (3, 4)} and Y = {(2, 1), (3, 2), (4, 3), (4, 1)} (see picture be-

low). It is easy to check that there is no arc e in Y −X such that X + e ∈ I,

i.e., such that X + e has no directed cycles.

1 2

4 3

Y:

X:

2.2 Rank function

The rank function of a matroidM = (E, I), denoted by either r(·) or rM(·),

is defined as a function r : 2E → Z+ such that r(X) = max{|U | : U ⊆ X, U ∈

I}. This is, the rank of a set of elements X ⊆ E, denoted by r(X), is the size

of a maximal independent subset of X. The rank of the matroidM is defined

to be the rank of all of E. We now describe the rank function of some of the

examples of matroids mentioned in Section 2.1.

Matroid restriction: Let M = (E, I) be a matroid and consider the restric-

tionM|U for some set U ⊆ E. Then the rank function ofM|U is that ofM

restricted to subsets of U , i.e., rM|U (S) = rM(S) for all S ⊆ U .
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Linear Matroid: Let M be a linear matroid defined from a matrix A. Then

the rank of a set X ⊆ E corresponds to the rank of the matrix AX in the

linear algebra sense (i.e., number of linearly independent columns).

Partition Matroid: The rank function of a partition matroid M = (E, I)

with I = {X ⊆ E : |X ∩ Ei| ≤ ki, ∀i ∈ [m]} is given by

r(X) =
m
∑

i=1

min{|X ∩ Ei|, ki}.

Graphic matroid: Let M = (E, I) be a graphic matroid defined on a graph

G = (V,E) with |V | = n. Then, the rank function ofM is given by

r(X) = n− k(V,X),

where k(V,X) denotes the number of connected components of the graph

induced by X.

There is a strong relationship between matroids and submodularity. The next

two propositions show that the rank function of a matroid is submodular, and

that in fact, matroids can be defined in terms of rank functions.

Proposition 2.2.1. Let r be the rank function of some matroid M = (E, I).

Then r satisfies the following:

1. ∀X ⊆ E, 0 ≤ r(X) ≤ |X|.

2. r is monotone, i.e., ∀X ⊆ Y, r(X) ≤ r(Y ).

3. r is submodular, i.e., ∀X, Y ⊆ E, r(X) + r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y ).

Proof. The first two properties follow straightforward from the definition of

rank function. Proving submodularity requires some work.
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Consider X, Y ⊆ E, and let J be a maximum independent set in X ∩ Y , i.e.,

|J | = r(X ∩ Y ). Extend J to a maximum independent set in X and call it

JX . Finally, extend JX to a maximum independent set JXY in X ∪ Y .

Now, notice that since J was a maximum independent set in X ∩ Y , we can

only add elements of X − Y to grow JX . Hence, JX − Y = JX − J . In the

same way, given that JX is a maximum independent set in X, we can only add

elements of Y −X to grow JXY . It follows that JXY ∩ Y = JXY − (JX − Y ),

and using the fact that JX − Y = JX − J we get JXY ∩ Y = JXY − (JX − J).

Thus,

r(X) + r(Y ) ≥ |JX |+ |JXY ∩ Y | (r(Y ) ≥ |JXY ∩ Y |)

= |JX |+ |JXY − (JX − J)|

= |JX |+ |JXY | − |JX |+ |J | (J ⊆ JX ⊆ JXY )

= |JXY |+ |J |

= r(X ∪ Y ) + r(X ∩ Y )

and the submodularity of r follows.

Proposition 2.2.2. Let r : 2E → Z+ be a monotone submodular function

satisfying 0 ≤ r(X) ≤ |X|, ∀X ⊆ E. Then r defines a matroid on E by

setting

I = {I ⊆ E : r(I) = |I|}.

Proof. We check that axioms (I1) and (I2) hold for the set family I. Let Y ∈ I

and X ⊆ Y . Since Y ∈ I, we know that r(Y ) = |Y |. Also, by assumption

we have that r(X) ≤ |X|. Assume r(X) < |X|, i.e., X /∈ I. Then, from the

submodularity of r we have

30



r(Y ) = r(X ∪ (Y −X))

≤ r(X) + r(Y −X)− r(X ∩ (Y −X))

< |X|+ |Y −X| − r(∅)

= |Y |,

contradicting the fact that r(Y ) = |Y |. Hence r(X) = |X| and X ∈ I.

Now, considerX, Y ∈ I with |Y | > |X|. SinceX, Y ∈ I, we know that r(X) =

|X| and r(Y ) = |Y |. Assume that there is no element e ∈ Y − X such that

X+ e ∈ I, i.e., ∀e ∈ Y −X we have r(X+ e) < |X+ e| = |X|+1. Enumerate

the elements of Y −X as {e1, ..., ek}, and notice that by the submodularity of

r we have

r(X + e1)− r(X) ≥ r(X + e1 + e2)− r(X + e1)

≥ r((X ∪ {e1, e2}) + e3)− r(X ∪ {e1, e2})

≥ ...

≥ r((X ∪ {e1, ..., ek−1}) + ek)− r(X ∪ {e1, ..., ek−1})

≥ r(Y )− r(X ∪ {e1, ..., ek−1}).

Since |X| = r(X) ≤ r(X+e1) < |X|+1, we have that r(X+e1) = |X| = r(X),

and hence r(X + e1) − r(X) = 0. Moreover, from the monotonicity of r we

know that r(Y )− r(X ∪ {e1, ..., ek−1}) ≥ 0. It follows that

0 = r(X + e1)− r(X)

= r(X + e1 + e2)− r(X + e1)

= ...

= r(Y )− r(X ∪ {e1, ..., ek−1}).
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Hence,

r(Y ) = r(X ∪ {e1, ..., ek−1}) = ... = r(X + e1) = r(X) = |X|,

contradicting the fact that r(Y ) = |Y | > |X|.

Thus, there must exist some element e ∈ Y −X such that r(X + e) = |X + e|,

i.e., X + e ∈ I. It follows that the set family I satisfies axiom (I2) and this

completes the proof.

The above two propositions imply our next theorem [26], which gives a full

characterization of rank functions.

Theorem 2.2.1. A function r : 2E → Z+ is the rank function of a matroid

if and only if r is a monotone submodular function satisfying 0 ≤ r(X) ≤

|X|, ∀X ⊆ E.

2.3 Geometric representation of matroids of small rank

Matroids of small rank (e.g., 2,3 or 4) can be represented geometrically. In

such diagrams the elements of the ground set E are represented as points

following these basic rules:

(1) A dependent element is marked in a single inset.

(2) Two elements that form a circuit are represented by touching points.

(3) If three elements form a circuit, the corresponding points are collinear.

(4) If four elements form a circuit, the corresponding points are coplanar.

In such representations, the lines need not be straight and the planes may be

twisted. Let us start with a simple example to show how rules (1)-(2)-(3) from
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exactly three 3-point lines and every line has exactly three points. The rank

of the matroid is 3, since the set {5, 6, 7} is independent (i.e., 5, 6, and 7 are

not collinear), but all sets of cardinality 4 are dependent (all the points in the

diagram are coplanar). The Fano matroid is a special case of matroids arising

from projective planes.

Example 2.3.3. The non-Fano matroid is obtained from the Fano matroid

by deleting the line {1, 2, 3}. It is usually denoted by F−
7 and its geometric

representation is given by

Example 2.3.4. Another important matroid that arises from the Fano plane

is P7, which can be represented as

The next examples are geometric representations of matroids of rank 4.

Example 2.3.5. The matroid P8 can be represented geometrically as
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Example 2.3.6. The Escher matroid has the following geometric represen-

tation [4],

Example 2.3.7. The following representation

corresponds to the graphic matroidM(G), where the graph G is given by

2 1

3

6

5 4

Indeed, from the diagram we see that the only dependent subsets of E with fewer

than five elements are the three planes {1, 2, 4, 5}, {1, 3, 4, 6} and {2, 3, 5, 6}.
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Notice that we do not have any dependent set of size 3 since there are no three

collinear points in the representation.

2.4 Matroid optimization

In this section we consider the fundamental problem of finding an independent

set of maximum weight. Notice that this generalizes optimization problems

associated with each of our matroid examples, most notably perhaps graphic

matroids, where the underlying optimization problem is to find a maximum

spanning tree. We show that the classical greedy algorithm solves this problem,

and that in fact, the greedy algorithm characterizes matroids.

Assume we are given a matroid M = (E, I) and weights w : E → R. The

greedy algorithm is defined as follows,

Greedy Algorithm for the maximum weight independent set prob-

lem:

Order E = {e1, ..., en} so that w(e1) ≥ w(e2) ≥ ... ≥ w(em) ≥ 0 ≥ w(em+1) ≥

... ≥ w(en)

S := ∅

for i = 1 to m do

If S + ei ∈ I then S := S + ei

end for

output S

Theorem 2.4.1. LetM = (E, I) be such that I is non-empty and it satisfies

axiom (I1) from Definition 2.1.1. Then, M is a matroid if and only if the
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greedy algorithm finds an independent set of maximum weight for each weight

function w : E → R.

Proof. (⇒) Let S = {s1, ..., sk} be the output of the greedy algorithm, and

assume T = {t1, ..., tl} is an independent set of larger weight. WLOG, assume

w(s1) ≥ w(s2) ≥ .... ≥ w(sk) and w(t1) ≥ w(t2) ≥ ... ≥ w(tl). Then, since
∑k

i=1 w(si) <
∑l

i=1 w(ti), there is at least one index i such that w(ti) > w(si),

or w(ti) > 0 and i > k. Let i0 be the smallest such index. It follows that

{s1, ..., si0−1} is a basis of A = {s1, ..., si0−1, t1, ..., ti0} (i.e., {s1, ..., si0−1} ∈ I

and r(A) = i0 − 1), since otherwise the greedy algorithm would have chosen

an element from t1, ..., ti0 as si0 . But {t1, ..., ti0} is a larger independent set

contained in A. Thus, we get a contradiction and the implication follows.

(⇐) Assume M is not a matroid, i.e., there exist sets X, Y ∈ I such that

|Y | > |X| and ∀e ∈ Y −X, X + e /∈ I. Let k = |X| and consider the weights

given by

w(e) =































k + 2, e ∈ X

k + 1, e ∈ Y −X

0, otherwise

.

Then the greedy algorithm outputs a set S ⊇ X with w(S) = w(X) = k(k+2),

while w(Y ) = (k + 1) · |Y | ≥ (k + 1)(k + 1) > k(k + 2). Hence, the greedy

algorithm does not output the optimal solution and we get a contradiction.

2.5 Matroid intersection

In this section we define the intersection of two matroids and we study its

properties.
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Definition 2.5.1. Given two matroidsM1 = (E, I1) andM2 = (E, I2) on a

common ground set we define their intersection as M1 ∩M2 = (E, I1 ∩ I2),

where I1 ∩ I2 denotes the collection of all sets that are independent in both

matroids.

Matroid intersection captures several optimization problems.

Example 2.5.1. Bipartite matching. Let G = (A ∪ B,E) be a bipartite

undirected graph. Notice that the edges can be partitioned as E =
⊎

v∈A δ(v)

and as E =
⊎

v∈B δ(v). Hence, we can define partition matroids as follows:

Let M1 = (E, I1) where I1 = {X ⊆ E : |X ∩ δ(v)| ≤ 1, ∀v ∈ A}, and

M2 = (E, I2) where I2 = {X ⊆ E : |X ∩ δ(v)| ≤ 1, ∀v ∈ B}. Notice that a

set I ⊆ E is independent inM1 ∩M2, i.e., I ∈ I1 ∩ I2, if and only if I is a

matching.

The above example shows that the intersection of two matroids is not neces-

sarily a matroid, since in Example 2.1.10 we showed that matchings (in both

general graphs and bipartite graphs) are not a matroid in general.

Definition 2.5.2. Given a digraph D = (V,A) and a special root node r ∈ V ,

an r-arborescence is a spanning tree (in the underlying undirected graph) di-

rected away from r.

Example 2.5.2. Arborescences. Let D = (V,A) be a digraph and r ∈ V .

Consider the matroidsM1 = (A, I1) =M(D) andM2 = (A, I2) where

I2 =

{

X ⊆ A :
|X ∩ δ−(v)| ≤ 1, ∀v 6= r

|X ∩ δ−(r)| ≤ 0

}

.
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Then we have that I ∈ I1 ∩ I2 if and only if I induces a forest on V ,

|I ∩ δ−(r)| = 0, and |I ∩ δ−(v)| ≤ 1 for all v 6= r. It follows that I ⊆ A

is an r-arborescence if and only if I ∈ I1 ∩ I2 and |I| = |V | − 1.

Example 2.5.3. Orientations on graphs. Assume we are given an undi-

rected graph G = (V,E) and targets d(v) ∈ Z+ for each v ∈ V such that
∑

v∈V d(v) = |E|. Can we orient the edges of G to get a digraph where

each vertex v has in-degree (i.e., |δ−(v)|) d(v)? We can use matroid inter-

section to answer this question. First, create a digraph D = (V,E2) where

E2 =
⊎

uv∈E{(u, v), (v, u)}. Notice that E2 can also be partitioned as E2 =
⊎

v∈V δ−D(v). Consider the partition matroids M1 = (E2, I1) and M2 =

(E2, I2) given by

I1 = {X ⊆ E2 : |X ∩ {(u, v), (v, u)}| ≤ 1, ∀uv ∈ E}

and

I2 = {X ⊆ E2 : |X ∩ δ−(v)| ≤ d(v), ∀v ∈ V }.

Then an orientation satisfying the above condition exists if and only if I1 ∩I2

contains an element of size |E|.

Example 2.5.4. Colourful Spanning Trees. Assume we are given a graph

G = (V,E) and every edge has a colour from [p]. Let Ei denote the set

of edges of colour i. Then we can partition the edges of the graph as E =
⊎p

i=1 Ei. We are interested in finding a multi-coloured spanning tree, i.e., one

whose edges have all different colours. This problem can be approached using

matroid intersection by letting M1 = M(G) and M2 be a partition matroid

with partition E1, ..., Ep and coefficients kj = 1 for all j ∈ [p]. Then, it is
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clear that a multi-coloured spanning tree exists if and only if I1 ∩ I2 contains

an element of size |V | − 1.

The above examples motivate the problem of finding a common independent

set of maximum cardinality. Since matroid intersection is not necessarily a

matroid, the greedy algorithm cannot be used to solve this problem. In this

section we discuss an algorithm due to Edmonds which finds such a com-

mon independent set in polynomial time. At each step, the algorithm takes a

common independent set I, and either ouputs a common independent set J

satisfying |J | = |I|+ 1, or certifies correctly that I is a common independent

set of maximum cardinality. Before stating the actual algorithm we need some

definitions and partial results.

Definition 2.5.3. Let M = (E, I) be a matroid and I ∈ I. We define the

exchange graph of I inM, denoted by DM(I), as a digraph D = (E,A) where

A = {(x, y) : x ∈ I, y ∈ E − I, I − x+ y ∈ I}.

Similarly, for two matroidsM1 = (E, I1) andM2 = (E, I2), and a common

independent set I ∈ I1 ∩ I2, we define the exchange graph of I in M1 ∩M2

as a directed graph D = (E,A) such that

A = {(y, z) : y ∈ I, z ∈ E−I, I−y+z ∈ I1}∪{(z, y) : y ∈ I, z ∈ E−I, I−y+z ∈ I2}.

This graph is usually denoted by DM1,M2
(I). Notice that both DM(I) and

DM1,M2
(I) are directed bipartite graphs with bipartitions I and E − I. The

exchange graph of a matroidM has some interesting properties. For instance,

Brualdi [3] showed the following:
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Lemma 2.5.1. Let M be a matroid, and let I, J be two independent sets in

M such that |I| = |J |. Then DM(I) has a perfect matching on I4J .

Krogdahl [19, 18, 20] gave the following counterpart to Lemma 2.5.1.

Lemma 2.5.2. LetM = (E, I) be a matroid. Let I ∈ I and J ⊆ E such that

|I| = |J |. If DM(I) has a unique perfect matching on I4J , then J ∈ I.

This implies the following result.

Corollary 2.5.1. Let M = (E, I) be a matroid and I ∈ I. Let J ⊆ E be

such that |J | = |I|, rM(I∪J) = |I|, and DM(I) has a unique perfect matching

on I4J . Then, for any e /∈ I ∪ J such that I + e ∈ I we have J + e ∈ I.

Proof. Let s /∈ I ∪ J be such that I + s ∈ I. Denote by N the unique perfect

matching on I4J in the digraph DM(I). Let t be a new element and consider

the matroid given byM′ = (E + t, I ′) where

I ′ = {I ⊆ E + t : I − t ∈ I}.

We claim that DM′(I + t) has a unique perfect matching on (I4J) + {s, t}.

To see this it is enough to show that (see picture below):

(1) There are no arcs from t to J − I.

(2) There is an arc from t to s.

Since then N + {(t, s)} is the unique perfect matching on (I4J) + {s, t} in

DM′(I + t).
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t

s

I − J

I ∩ J

J − I

I + t
(E + t)− (I + t)

N

To show (1) assume that there is an arc from t to some e ∈ J − I. Then by

definition of exchange graph we have that (I + t)− t+ e ∈ I ′, i.e., I + e ∈ I ′.

It follows that I + e− t ∈ I. But I + e− t is just I + e. Hence, since I + e ∈ I

and I + e ⊆ I ∪J we have that rM(I ∪J) > |I|, contradicting our assumption

of rM(I ∪ J) = |I|. To see condition (2) notice that I + s ∈ I, and therefore

(I+s)+t ∈ I ′. In particular (I+t)−t+s ∈ I ′, so (t, s) is an arc in DM′(I+t).

Hence DM′(I+ t) has a unique perfect matching on (I4J)+{s, t}. Moreover,

since I+ t ∈ I ′ and |I+ t| = |J+s|, it follows by Lemma 2.5.2 that J+s ∈ I ′.

Thus, J + s− t = J + s ∈ I.

These two last results are useful when proving the correctness of the matroid

intersection algorithm. We now show an easy upper bound on the size of a

common independent set.

Claim 2.5.1. LetM1 = (E, I1) andM2 = (E, I2) be two matroids with rank

functions r1 and r2 respectively. Then

max
I∈I1∩I2

|I| ≤ min
U⊆E

r1(U) + r2(E − U).
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Proof. Take an arbitrary I ∈ I1∩I2 and U ⊆ E. From the hereditary property

of matroids we have that I ∩ U ∈ I1 and I − U ∈ I2. Also, since I ∩ U ⊆ U

and I − U ⊆ E − U , we have that |I ∩ U | ≤ r1(U) and |I − U | ≤ r2(E − U)

respectively. It follows that

|I| = |I ∩ U |+ |I − U | ≤ r1(U) + r2(E − U).

Since the sets I and U were chosen arbitrarily from I1∩I2 and E respectively,

the result follows.

We see at the end of this section that in fact Claim 2.5.1 holds with equality.

This result is known as the Matroid Intersection Theorem, and is due to Ed-

monds [6].

Corollary 2.5.2. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with

rank functions r1 and r2 respectively. Let I ∈ I1 ∩ I2 and assume |I| =

r1(U) + r2(E − U) for some U ⊆ E. Then I is a common independent set of

maximum cardinality.

Proof. It follows directly from Claim 2.5.1.

We now present the matroid intersection algorithm and then verify its correct-

ness. We appeal to these arguments in Chapter 3.

Edmonds’ Matroid Intersection algorithm

I ← ∅

While I not maximal

Construct DM1,M2
(I)

X1 ← {z ∈ E − I : I + z ∈ I1}
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X2 ← {z ∈ E − I : I + z ∈ I2}

Let P be a shortest X1-X2 dipath in DM1,M2
(I)

if P is not empty then

I ← I4V (P )

end if

end while

output I

We show the correctness of the algorithm in the following two lemmas.

Lemma 2.5.3. If there is no X1-X2 dipath in DM1,M2
(I) = (E,A), then I is

a common independent set of maximum cardinality.

Proof. If X1 = ∅ or X2 = ∅, then I is already a base ofM1 orM2, and hence

a maximum size common independent set. So assume X1 6= ∅ and X2 6= ∅.

Let U be the set of nodes that can reach X2 in DM1,M2
(I), i.e., a node x

belongs to U if there exists a dipath P = xv1...vlt in DM1,M2
(I) with t ∈ X2.

By construction of U we have that X2 ⊆ U and δ−(U) = ∅. Moreover, since

there is no X1-X2 dipath in DM1,M2
(I) we have that X1 ∩ U = ∅. We claim

that the following two conditions hold:

(1) r1(U) ≤ |I ∩ U |.

(2) r2(E − U) ≤ |I − U |.

To show (1) assume that r1(U) > |I ∩ U |. In this case, there exists some ele-

ment z ∈ U − (I ∩U) such that (I ∩U) + z ∈ I1. Moreover, since X1 ∩U = ∅

we have that z /∈ X1 and hence I + z /∈ I1. Now, since (I ∩ U) + z ∈ I1 and

I+z /∈ I1, there must exist an element y ∈ I−U such that I−y+z ∈ I1. But

then (y, z) ∈ A with y /∈ U and z ∈ U , contradicting the fact that δ−(U) = ∅.
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Condition (2) is proved in a similar way. Assume r2(E − U) > |I − U |.

Then there exists an element z ∈ (E−U)− (I−U) such that (I−U)+z ∈ I2.

Moreover, since X2 ⊆ U it follows that z /∈ X2, and hence I + z /∈ I2. Again,

given that (I − U) + z ∈ I2 and I + z /∈ I2, there must exist an element

y ∈ I ∩U such that I−y+z ∈ I2. But then (z, y) ∈ A with z /∈ U and y ∈ U ,

contradicting the fact that δ−(U) = ∅. Combining (1) and (2) we get

|I| = |I ∩ U |+ |I − U | ≥ r1(U) + r2(E − U). (2.1)

It follows from Claim 2.5.1 that

|I| = r1(U) + r2(E − U),

and thus by Corollary 2.5.2 we have that I is a common independent set of

maximum cardinality.

Lemma 2.5.4. Let P be a shortest X1-X2 dipath in DM1,M2
(I). Then, J =

I4V (P ) belongs to I1 ∩ I2, where V (P ) is the set of nodes of the dipath P .

Proof. Let P = z0y1z1...ytzt be a shortest X1-X2 dipath in DM1,M2
(I), and

let J = I − {y1, ..., yt} + {z1, ..., zt} (see picture below). Then |J | = |I|

and the arcs from {y1, ..., yt} to {z1, ..., zt} form the only perfect matching

on I4J in DM1
(I), since otherwise P would have a shortcut and this would

contradict our assumption of P being a shortest dipath. It follows from Lemma

2.5.2 that J ∈ I1. Moreover, zi /∈ X1 for all i ≥ 1, since otherwise P ′ =

ziyi+1...ytzt would be a shorter X1-X2 dipath. Hence, I + zi /∈ I1 for i ≥ 1,

and this implies r1(I ∪ J) = r1(I) = |I| = |J |. Finally, since z0 ∈ X1 we

have that I + z0 ∈ I1, and by Corollary 2.5.1 it follows that J + z0 ∈ I1.
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Thus, I − {y1, ..., yt} + {z0, ..., zt} = I4V (P ) ∈ I1. By symmetry we have

that I4V (P ) ∈ I2, and the lemma follows.

y1

y2

yt

z0

z1

zt

I E − I

P

Clearly, the running time of the algorithm is polynomially bounded, since we

can construct DM1,M2
(I) and find the path P in polynomial time. Thus:

Theorem 2.5.1. Given two matroids, a maximum size common independent

set can be found in polynomial time.

To conclude this section, notice that Equation (2.1) in Lemma 2.5.3 proves the

other direction for the inequality in Claim 2.5.1. Hence, the min-max result

follows with equality.

Theorem 2.5.2. [Matroid Intersection Theorem] LetM1 = (E, I1) andM2 =

(E, I2) be two matroids with rank functions r1 and r2 respectively. Then the

size of a largest common independet set is given by

min
U⊆E

r1(U) + r2(E − U).
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2.6 Matroid union

Definition 2.6.1. Given matroids M1 = (E1, I1), ...,Mk = (Ek, Ik), we de-

fine their union asM1 ∨ ... ∨Mk = (E1 ∪ ... ∪ Ek, I1 ∨ ... ∨ Ik) where

I1 ∨ ... ∨ Ik = {I1 ∪ ... ∪ Ik : I1 ∈ I1, ..., Ik ∈ Ik}.

We show that unlike matroid intersection, matroid union generates a matroid.

We first need the following theorem due to Nash-Williams [23].

Theorem 2.6.1. Let M′ = (E ′, I ′) be a matroid with rank function r′, and

let f : E ′ → E. For any set U ⊆ E ′ let f(U) = {f(s) : s ∈ U}. Then

M = (E, I) is a matroid where I = {f(I ′) : I ′ ∈ I ′}. Moreover, the rank

function ofM is given by

r(U) = min
S⊆U

(|U − S|+ r′(f−1(S))).

Proof. It follows from the definition that I is non-empty and closed under

taking subsets. To see that the greedy property holds let X, Y ∈ I with

|Y | > |X|. Choose sets X ′, Y ′ ∈ I ′ such that f(X ′) = X, f(Y ′) = Y ,

|X ′| = |X|, |Y ′| = |Y |, and |X ′ ∩ Y ′| is as large as possible. By the greedy

property of M′ there exists e ∈ Y ′ − X ′ such that X ′ + e ∈ I ′. Notice that

f(e) /∈ f(X ′), since otherwise we would have that f(e) = f(s) for some s ∈ X ′,

and we could increase |X ′ ∩ Y ′| by replacing X ′ by X ′ − s+ e (contradicting

our assumption). It follows that f(e) ∈ f(Y ′)− f(X ′) and f(X ′) + f(e) ∈ I,

i.e., f(e) ∈ Y −X and X + f(e) ∈ I. HenceM is a matroid.

To derive the rank function of M, fix U ⊆ E and let U ′ = f−1(U). Then

notice that the rank of U can be written as
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r(U) = max{|I| : I ∈ I, I ⊆ U} (2.2)

= max{|I ′| : I ′ ∈ I ′, f(I ′) ⊆ U, f(I ′) = |I ′|}

= max{|I ′| : I ′ ∈ I ′, I ′ ⊆ U ′, f(I ′) = |I ′|}.

Define a partition matroid P = (E ′, I ′′) with

I ′′ = {I ′ ⊆ E ′ : |I ′ ∩ f−1(s)| ≤ 1 ∀s ∈ U, |I ′ ∩ f−1(s)| = 0 ∀s /∈ U}.

Observe that the rank function of P is given by

rP(S
′) = |{e ∈ U : f−1(e) ∩ S ′ 6= ∅}|.

In particular, we have that I ′ ∈ I ′′ if and only if I ′ ⊆ U ′ and |f(I ′)| = |I ′|. It

follows from (2.2) that

r(U) = max
I′∈I′∩I′′

I′⊆U ′

|I ′| = max
I′∈I′∩I′′

|I ′|.

Moreover, from the Matroid Intersection Theorem (Theorem 2.5.2) we have

max
I′∈I′∩I′′

I′⊆U ′

|I ′| = min
S′⊆U ′

r′(S ′) + rP(U
′ − S ′)

= min
S⊆U

r′(f−1(S)) + rP(f
−1(U − S))

= min
S⊆U

r′(f−1(S)) + |U − S|,

where the second equality follows from the fact that it is optimal to have S ′ of

the form f−1(S) for some S ⊆ U . Indeed, if S ′ ⊆ U ′ is such that S ′ 6= f−1(S)

for all S ⊆ U , defining S̄ = U ′ − f−1(f(U ′ − S ′)) = f−1(U − f(U ′ − S ′)) gives

a new set satisfying:

(i) S̄ ⊆ S ′, and hence r′(S̄) ≤ r′(S ′).
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(ii) rP(U
′ − S̄) = rP(U

′ − S ′). This follows from the definition of rP and the

fact that U ′ − S̄ = f−1(f(U ′ − S ′)).

(iii) S̄ = f−1(S) for S = U − f(U ′ − S ′).

Theorem 2.6.2. [Matroid Union Theorem] Let M1 = (E1, I1), ...,Mk =

(Ek, Ik) be matroids with rank functions r1, ..., rk respectively. ThenM1∨ ...∨

Mk is again a matroid, with rank function given by

r(U) = min
S⊆U

[|U − S|+
k

∑

i=1

ri(S ∩ Ei)].

Proof. For i = 1, ..., k let M′
i = (E ′

i, I
′
i) be a copy of Mi with E ′

1, ..., E
′
k

disjoint. Then triviallyM′
1∨ ...∨M

′
k = (E ′

1∪ ...∪E
′
k, I

′
1∨ ...∨I

′
k) is a matroid,

with rank function given by r′(U) =
∑k

i=1 r
′
i(U ∩ E ′

i), where r′i denotes the

rank function ofM′
i. Now consider the function f : E ′

1∪ ...∪E
′
k → E1∪ ...∪Ek

that sends a copy s ∈ E ′
i to its original in Ei. Then, by Theorem 2.6.1 we

know thatM = (E1 ∪ ... ∪ Ek, I) is a matroid, where

I = {f(I ′) : I ′ ∈ I ′1 ∨ ... ∨ I ′k}.

Moreover,M =M1 ∨ ... ∨Mk, and henceM1 ∨ ... ∨Mk is a matroid.

From Theorem 2.6.1 we know that the rank ofM is given by

r(U) = min
S⊆U

[|U − S|+ r′(f−1(S))].

Notice that the rank ofM′
1 ∨ ... ∨M′

k can be written in terms of f as

r′(U) =
k

∑

i=1

r′i(U ∩ E ′
i) =

k
∑

i=1

ri(f(U) ∩ Ei).

Hence,

r′(f−1(S)) =
k

∑

i=1

ri(f(f
−1(S)) ∩ Ei) =

k
∑

i=1

ri(S ∩ Ei),
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and the formula for the rank follows.

Applying the Matroid Union Theorem to a single matroid gives the following

interesting results.

Corollary 2.6.1. LetM = (E, I) be a matroid with rank function r, and let

k ∈ Z+. Then the maximum cardinality of the union of k independent sets of

M is equal to

min
U⊆E

[|E − U |+ k · r(U)].

Proof. It follows from Theorem 2.6.2 by takingM1 = ... =Mk =M.

Given a matroid M = (E, I) and an integer k ∈ Z+, we denote by Mk =

(E, Ik) the matroid unionM1 ∨ ... ∨Mk whereM1 = ... =Mk =M.

Corollary 2.6.2. LetM = (E, I) be a matroid with rank function r, and let

k ∈ Z+. Then the ground set E can be covered by k independent sets if and

only if k · r(U) ≥ |U |, ∀U ⊆ E.

Proof. The ground set E can be covered by k independent sets if and only if

there is a union of k independent sets of size |E|, i.e., if there is an independent

set in Mk of size |E|. By Corollary 2.6.1 we know that this happens if and

only if

min
U⊆E

[|E − U |+ k · r(U)] ≥ |E|.

It follows that

min
U⊆E

[|E − U |+ k · r(U)] ≥ |E|

m

|E − U |+ k · r(U) ≥ |E|, ∀U ⊆ E
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m

k · r(U) ≥ |U |, ∀U ⊆ E.

Similarly, we have the following result for the maximum number of disjoint

bases in a matroid due to Edmonds [7].

Corollary 2.6.3. LetM = (E, I) be a matroid with rank function r, and let

k ∈ Z+. Then there exist k disjoint bases if and only if

k (r(E)− r(U)) ≤ |E − U |, ∀U ⊆ E.

Proof. The matroid M has k disjoint bases if and only if the maximum size

of the union of k independent sets is k · r(E). We know from Corollary 2.6.1

that this happens if and only if

min
U⊆E

[|E − U |+ k · r(U)] ≥ k · r(E).

It follows that

min
U⊆E

[|E − U |+ k · r(U)] ≥ k · r(E)

m

|E − U |+ k · r(U) ≥ k · r(E), ∀U ⊆ E

m

|E − U | ≥ k (r(E)− r(U)), ∀U ⊆ E.
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2.7 Matroid intersection polytope

To conclude this chapter we introduce the notions of independent set poly-

tope and matroid intersection polytope, and we mention two important char-

acterizations due to Edmonds. We first need some concepts from polyhedral

combinatorics.

A convex combination of x, y ∈ Rn is any vector of the form λx+(1−λ)y, where

λ ∈ [0, 1]. A vector x ∈ Rn is a convex combination of vectors x1, ..., xk ∈ Rn if

there exist nonnegative λ1, ..., λk such that
∑

i∈[k] λi = 1 and x =
∑

i∈[k] λix
i.

A set X ⊆ Rn is convex if it is closed under convex combinations. An extreme

point of a convex set X is any point x ∈ X which is not a convex combination

of other points in X distinct from x. The convex hull of an arbitrary set of

points X ⊆ Rn is the set

conv(X) = {
∑

xi∈S

λix
i : S ⊆ X, |S| <∞, λi ≥ 0 ∀i,

∑

i

λi = 1}.

A polytope is any set which is the convex hull of finitely many points, i.e., it is

a set of the form conv(X) where X is finite. The extreme points of a polytope

are called vertices. A half-space is any set of the form {x : aTx ≤ γ} where

a is a nonzero vector in Rn and γ ∈ R. A set P is a polyhedron in Rn if it is

the intersection of finitely many half-spaces, i.e., P = {x : Ax ≤ b} for some

m × n matrix A and b ∈ Rm. Given P ⊆ Rn, we say that F is a face of P if

there is a ∈ Rn and γ ∈ R such that

F = {x ∈ P : aTx = γ}, γ = max{aTx : x ∈ P}.

We call F a facet of P if F is a maximal (inclusion-wise) face of P distinct

from P .
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Given a ground set E, we define the incidence vector of a set I ⊆ E as

χI ∈ {0, 1}E where χI
e = 1 if e ∈ I and χI

e = 0 if e /∈ I.

Definition 2.7.1. Let M = (E, I) be a matroid and let X = {χI : I ∈ I}.

The independent set polytope ofM is defined as PM = conv(X).

Edmonds gave a complete characterization of PM by showing that PM = P

where

P =

{

x ∈ RE :
x(U) ≤ r(U), ∀U ⊆ E

xe ≥ 0, ∀e ∈ E

}

.

Moreover, given two matroids M1 = (E, I1) and M2 = (E, I2), Edmonds

[6] also proved that the intersection of the independent set polytopes of M1

and M2 gives exactly the convex hull of the common independent sets, i.e.,

PM1
∩ PM2

= PM1∩M2
where

PM1∩M2
= conv({χI : I ∈ I1 ∩ I2}).

It follows that

PM1∩M2
=

{

x ∈ RE :

x(U) ≤ r1(U), ∀U ⊆ E

x(U) ≤ r2(U), ∀U ⊆ E

xe ≥ 0, ∀e ∈ E

}

.

We refer to PM1∩M2
as the matroid intersection polytope.
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CHAPTER 3

The matroid common colouring problem

3.1 Introduction

We say that a matroid M = (E, I) is k-colourable if there exists a partition

C1, C2, ..., Ck of E such that Ci ∈ I for every i ∈ {1, .., k}. We call such a

partition a k-colouring ofM, and we call the sets Ci the colour classes ofM.

Given two matroids M1 = (E, I1) and M2 = (E, I2) with rank functions

r1 and r2 respectively, we define a function r12 : 2E → Z+ where r12(U) =

max{|X| : X ⊆ U, X ∈ I1 ∩ I2}. That is, r12(U) is the size of the largest

common independent set contained in U . It follows from the definition that

r12 ≤ min{r1, r2}. For any two matroidsM1 = (E, I1) andM2 = (E, I2) we

also define:

χi = the smallest integer k such thatMi is k-colourable.

k12 = max{χ1, χ2} (i.e. the smallest integer k such that both matroids M1

andM2 are k-colourable).

χ12 = the smallest integer k such that there exists a partition C1, C2, ..., Ck of

E with Ci ∈ I1 ∩ I2 for every i ∈ {1, .., k}.

ω∗
12 = maxU⊆E

|U |
r12(U)

.

ω12 = dω∗
12e.

We sometimes refer to χ12 as the common colouring number ofM1 andM2,

or just the common colouring number when there is no ambiguity. In this

chapter we consider the problem of finding χ12 for two general matroids. We
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are interested in both the complexity of the problem, as well as in finding

good approximations (if not the exact value) for χ12. We start by showing

some simple bounds for the common colouring number.

Claim 3.1.1. k12 ≤ χ12 ≤ k2
12.

Proof. Observe that χi ≤ χ12 for i = 1, 2 since any colouring forM1 ∩M2 is

also a colouring forMi. It follows that χ12 ≥ max{χ1, χ2} = k12. To see the

second inequality, letX1, X2, ..., Xk12 and Y1, Y2, ..., Yk12 be k-colourings forM1

andM2 respectively. Then, X1 ∩ Y1, X1 ∩ Y2, ..., X1 ∩ Yk12 , X2 ∩ Y1, ..., Xk12 ∩

Y1, ..., Xk12 ∩ Yk12 is a k2
12-colouring for M1 ∩M2, where Xi ∩ Yj ∈ I1 ∩ I2

follows from the hereditary property of matroids. Hence χ12 ≤ k2
12.

Claim 3.1.2. ω12 ≤ χ12.

Proof. Let U ⊆ E, and denote by χU
12 the common colouring number of the

matroids M1|U and M2|U . It is clear that |U |
r12(U)

≤ χU
12 ≤ χ12. Now the

inequality follows by taking the maximum with respect to sets U ⊆ E in the

left hand side and the fact that χ12 ∈ Z+.

3.2 The greedy algorithm

In this section we discuss the performance of a greedy algorithm for the com-

mon colouring problem. At each step the algorithm packs a largest common

colour class available, i.e., a maximum common independent set available.

Notice that we can find such colour class in polynomial time thanks to the

matroid intersection algorithm due to Edmonds. The following algorithm

works in O(log n) rounds, where each round will use at most ω12 common

independent sets.
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The greedy algorithm for common colouring

U ← E

V ← E

S ← ∅

i← 1

k ← 1

while U 6= ∅

find a maximum size common independent set Ci in (M1 ∩M2)|U

U ← U − Ci

if | ∪i
j=1 Cj| ≥

|V |
2

then

V ← V − (∪ij=1Cj)

S ← S + {C1, C2, ..., Ci}

bk ← i

i← 0

k ← k + 1

end if

i← i+ 1

end while

output S
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Claim 3.2.1. In the above greedy algorithm we have bi ≤ ω12 ≤ χ12 for every

i ≥ 1.

Proof. The second inequality follows from Claim 3.1.2. To see the first inequal-

ity, let b = bi for some i. If b = 1 we are done. Otherwise, we must have that
∑b−1

j=1 |Cj| <
|V |
2

and
∑b

j=1 |Cj| ≥
|V |
2
. Denote by U ′ the set of remaining un-

coloured elements after packing the colour class Cb−1, i.e., U
′ = V − (∪b−1

j=1Cj).

Then,

|U ′| = |V | −
b−1
∑

j=1

|Cj| > 2
b−1
∑

j=1

|Cj| −
b−1
∑

j=1

|Cj| =
b−1
∑

j=1

|Cj|. (3.1)

Also, by the greediness of the algorithm we have

|Cj| ≥ r12(U
′) for each j ∈ {1, 2, ..., b− 1}. (3.2)

By combining (3.1) and (3.2) we get |U ′| >
∑b−1

j=1 |Cj| ≥ (b−1)·r12(U ′). Hence,

b− 1 <
|U ′|

r12(U ′)
≤ max

A⊆E

|A|

r12(A)
≤ ω12.

Finally, since both b and ω12 are integers it follows that b ≤ ω12.

Corollary 3.2.1. The greedy algorithm finds a common colouring of size

O(ω12 · log n).

Proof. In each round the algorithm colours at least half of the remaining un-

coloured elements. Hence, the algorithm runs in O(log n) rounds. Moreover,

from the above claim we know that the algorithm uses at most ω12 common

colour classes in each round. It follows that the greedy algorithm outputs a

common colouring of size O(ω12 · log n).

57



3.3 A linear programming approach

Note that χ12 is the solution to the minimization (covering) problem

min
∑

I∈I1∩I2
x(I)

s.t.
∑

I3e x(I) ≥ 1 ∀e ∈ E,

x(I) ∈ {0, 1} ∀I ∈ I1 ∩ I2.

(3.3)

We define χ∗
12 to be the solution to the linear program relaxation for the integer

program above, i.e.,

χ∗
12 = min

∑

I∈I1∩I2
x(I)

s.t.
∑

I3e x(I) ≥ 1 ∀e ∈ E,

x(I) ≥ 0 ∀I ∈ I1 ∩ I2.

(3.4)

Notice that by linear programming duality we have

χ∗
12 = max

∑

e∈E y(e)

s.t. y(I) =
∑

e∈I y(e) ≤ 1 ∀I ∈ I1 ∩ I2,

y(e) ≥ 0 ∀e ∈ E.

(3.5)

We refer to χ∗
12 as the common fractional colouring number or just as the

fractional colouring number of M1 ∩M2. Similarly, we can see χ1 and χ2 as

the solutions to minimization integer programs, and we can define χ∗
1 and χ∗

2

to be solutions to the respective linear programs relaxations.

Claim 3.3.1. max{χ∗
1, χ

∗
2} ≤ χ∗

12.

Proof. Any fractional colouring of M1 ∩M2 is also a fractional colouring of

bothM1 andM2. Thus, χ
∗
12 ≥ χ∗

1 and χ∗
!2 ≥ χ∗

2.
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We see later that very interestingly, Claim 3.3.1 holds with equality. Before

stating the main result of this section we need the following definition.

Definition 3.3.1. For a polyhedron P of Rn, its antiblocking polyhedron A(P )

is defined by

A(P ) = {y ∈ Rn : xTy ≤ 1, ∀x ∈ P}.

Theorem 3.3.1. For any two matroids M1 = (E, I1) and M2 = (E, I2) we

have χ∗
12 = ω∗

12.

Proof. Let us see first that χ∗
12 ≥ ω∗

12. Clearly, it is enough to show that

χ∗
12 ≥

|U |
r12(U)

for all U ⊆ E. From (3.4) we know that χ∗
12 =

∑

I∈I1∩I2
y(I) for

some vector y satisfying
∑

I∈I1∩I2
y(I)χI ≥ χE. Therefore,

1TχE ≤ 1T (
∑

I∈I1∩I2

y(I)χI).

But 1TχE = |E| and

1T (
∑

I∈I1∩I2

y(I)χI) =
∑

I∈I1∩I2

y(I)(1TχI)

=
∑

I∈I1∩I2

y(I) · |I|

≤ r12(E)
∑

I∈I1∩I2

y(I)

= r12(E) · χ∗
12.

Hence, χ∗
12 ≥

|E|
r12(E)

. Now, for every U ⊆ E, let us denote by χ∗
12|U the

fractional colouring number of (M1∩M2)|U (i.e., χ∗
12|U is defined in the same

way as χ∗
12 but changing the ground set from E to U). Then

χ∗
12 ≥ χ∗

12|U ≥
|U |

r12(U)
,

where the last inequality follows from the above argument by changing the

ground set from E to U . Thus, χ∗
12 ≥ ω∗

12.

59



To see the other direction let us denote the matroid intersection polytope

by PM1∩M2
. We saw in the previous chapter that the matroid intersection

polytope can be written [6] as

PM1∩M2
= conv{χI : I ∈ I1 ∩ I2}

= {x ≥ 0 : x(U) ≤ r1(U), x(U) ≤ r2(U), ∀U ⊆ E}

= {x ≥ 0 : x(U) ≤ min{r1(U), r2(U)}, ∀U ⊆ E}

= {x ≥ 0 :
1

min{r1(U), r2(U)}
x(U) ≤ 1, ∀U ⊆ E}

= {x ≥ 0 : (
χU

min{r1(U), r2(U)}
)Tx ≤ 1, ∀U ⊆ E}.

Notice that we defined the common fractional colouring number (3.5) as

χ∗
12 = max 1Ty

s.t. y ∈ P
,

where P = {y ≥ 0 : y(I) ≤ 1, ∀I ∈ I1 ∩ I2}. Moreover, observe that we can

write the polytope P as

P = {y ≥ 0 : y(I) ≤ 1, ∀I ∈ I1 ∩ I2}

= {y ≥ 0 :
∑

e∈I

ye ≤ 1, ∀I ∈ I1 ∩ I2}

= {y ≥ 0 : yTχI ≤ 1, ∀I ∈ I1 ∩ I2}

= {y ≥ 0 : yTx ≤ 1, ∀x ∈ PM1∩M2
}.

Hence, P = P ∗
M1∩M2

, where P ∗
M1∩M2

denotes the antiblocking polyhedron of

PM1∩M2
. Thus,

χ∗
12 = max 1Ty

s.t. y ∈ P ∗
M1∩M2

.

60



It is known [24] that the facets of PM1∩M2
correspond to the maximal vertices

of P ∗
M1∩M2

. It follows that the optimal solution of the above linear program

is attained at a vertex corresponding to some facet of PM1∩M2
. Hence,

χ∗
12 = max 1Ty = max 1Ta

s.t. y ∈ P ∗
M1∩M2

s.t. aTx ≤ 1 induces a facet of PM1∩M2

.

But we know that the facets of PM1∩M2
are induced by aTx ≤ 1 with a ∈

{ χU

min{r1(U),r2(U)}
: U ⊆ E}. Hence,

χ∗
12 = max 1T ( χU

min{r1(U),r2(U)}
) = max |U |

min{r1(U),r2(U)}

s.t. U ⊆ E s.t. U ⊆ E
.

Given that r12(U) ≤ min{r1(U), r2(U)}, it follows that

χ∗
12 = max

U⊆E

|U |

min{r1(U), r2(U)}
≤ max

U⊆E

|U |

r12(U)
= ω∗

12.

Theorem 3.3.1 leads to a number of interesting results.

Corollary 3.3.1. maxU⊆E
|U |

r12(U)
= maxU⊆E

|U |
min{r1(U),r2(U)}

.

Proof. It follows directly from Theorem 3.3.1.

Corollary 3.3.2. χ∗
12 = max{χ∗

1, χ
∗
2}.

Proof. From Theorem 3.3.1 we have

χ∗
12 = max

U⊆E

|U |

min{r1(U), r2(U)}
= max{max

U⊆E

|U |

r1(U)
,max
U⊆E

|U |

r2(U)
} = max{χ∗

1, χ
∗
2}.
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We find this last result very interesting and perhaps surprising, since in prin-

ciple there is no obvious reason why there should not be any gap between the

common fractional colouring and the maximum of the single fractional colour-

ings.

Corollary 3.3.3. LetM be a matroid. Then χ∗
M = ω∗

M.

Proof. It follows from Theorem 3.3.1 by takingM =M1 =M2.

Lemma 3.3.1. LetM be a matroid. Then χM = dχ∗
Me.

Proof. Since χM ≥ χ∗
M we need to show that χM − χ∗

M < 1. In order to

do this we will show that for any integer b such that M is not b-colourable

we have χ∗
M > b. Then, since χM is the smallest integer b such that M is

b-colourable, it follows that χ∗
M > χM − 1.

Let b ∈ Z+ such thatM is not b-colourable. By matroid union we know that

rMb(E) < |E|. Also, by using the rank formula

rMb(U) = min
S⊆U
|E − S|+ b · rM(S),

we get |E| > rMb(E) = |E − S|+ b · rM(S) for some set S ⊆ E. Hence,

b <
|E| − |E − S|

rM(S)
=
|S|

rM(S)
≤ max

U⊆E

|U |

rM(U)
= ω∗

M = χ∗
M,

where the last equality follows from Corollary 3.3.3.

Lemma 3.3.2. dχ∗
12e = k12.

Proof. Recall that k12 = max{χ1, χ2}. Let us show first that k12 ≥ χ∗
12. From

Theorem 3.3.1 we know

χ∗
12 = max

U⊆E

|U |

min{r1(U), r2(U)}
= max{max

U⊆E

|U |

r1(U)
,max
U⊆E

|U |

r2(U)
}.
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Moreover, since χi ≥ χ∗
i = maxU⊆E

|U |
ri(U)

, it follows that

k12 = max{χ1, χ2} ≥ max{max
U⊆E

|U |

r1(U)
,max
U⊆E

|U |

r2(U)
} = χ∗

12.

Hence, k12 ≥ χ∗
12. Now, WLOG assume that χ1 ≥ χ2. It follows that k12 = χ1.

Since k12 ≥ χ∗
12 ≥ χ∗

1, we have

0 ≤ k12 − χ∗
12 ≤ k12 − χ∗

1 = χ1 − χ∗
1 < 1,

where the last inequality follows from Lemma 3.3.1. Since k12 is an integer,

we must have dχ∗
12e = k12.

Corollary 3.3.4. k12 = ω12.

Proof. It follows directly from Theorem 3.3.1 and Lemma 3.3.2.

3.4 A 3-matroid intersection approach for common colouring

Let M1 = (E, I1) and M2 = (E, I2) be two matroids on a common ground

set E = {e1, ..., en}. Let Ei = {e
(i)
1 , e

(i)
2 , ..., e

(i)
n } be disjoint copies of E with

1 ≤ i ≤ k, and E ′ = E1 ∪ E2 ∪ · · · ∪ Ek. We define the projection f : E ′ → E

such that f(e
(i)
j ) = ej for 1 ≤ j ≤ n and 1 ≤ i ≤ k.

Consider the matroid M′
1 = (E ′, I ′1), where a set I ⊆ E ′ is independent if

and only if f(I ∩ Ei) ∈ I1 for i = 1, ..., k (i.e., M′
1 is the matroid union

of k disjoint copies of M1). We define M′
2 = (E ′, I ′2) in the same way for

M2. Let Tk = (E ′, IT ) be the partition matroid on E ′ with partitions P1 =

{e(1)1 , e
(2)
1 , ..., e

(k)
1 }, ..., Pn = {e(1)n , e

(2)
n , ..., e

(k)
n }, and capacities 1, i.e., a set I ⊆

E ′ is independent in Tk if and only if |I ∩ Pi| ≤ 1 for i ∈ [n]. Observe that for

each set I ∈ IT we have |f(I)| = |I|. The figure below shows this construction.
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In this setting, there exists a common k-colouring ofM1 andM2 if and only

if max I∈I′
1
∩I′

2
∩IT |I| = |E|. Indeed, if we can find such a set I we immediately

have that f(I∩E1), ..., f(I∩Ek) is a common k-colouring. Adding the partition

constraints (i.e. Tk) to the intersection is key, otherwise we trivially have that

max
I∈I′

1
∩I′

2

|I| = k · max
I∈I1∩I2

|I|,

since we can take k disjoint copies of a largest common independent set of

M1 and M2. However, while the problem of finding the maximum common

independent set for two matroids is solvable in polynomial time (matroid in-

tersection algorithm), it is known that it becomes NP-Hard to find such a set

when we are dealing with three or more matroids.

Theorem 3.4.1. It is NP-Hard to find a maximum cardinality common inde-

pendent set for three matroids.

Proof. We reduce a general instance of the Hamiltonian path problem (which

is known to be NP-Hard) to our problem. Given a digraph D = (V,A) and

two nodes s, t ∈ V , the Hamiltonian path problem consists of finding an s-t

dipath that visits each node exactly once. We construct three matroids as

follows: Let M1 = (A, I1) be the graphic matroid on D, i.e., M1 =M(D).
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LetM2 = (A, I2) be the partition matroid given by

I2 =

{

F ⊆ A :
|δ−(v) ∩ F | ≤ 1, ∀v 6= s

|δ−(s) ∩ F | = 0

}

,

andM3 = (A, I3) the partition matroid given by

I3 =

{

F ⊆ A :
|δ+(v) ∩ F | ≤ 1, ∀v 6= t

|δ+(t) ∩ F | = 0

}

.

That is, a set F ⊆ A is independent in M2 if each node has at most one

incoming arc in this set (except s that has none), and independent in M3 if

each node has at most one outgoing arc in this set (except t which has none).

It follows that F ⊆ A is a common independent set ofM1,M2 andM3 if and

only if F is the union of node disjoint dipaths with one of them starting at s

and one ending at t. Hence, there exists a Hamiltonian path in D from s to t

if and only if

max
I∈I1∩I2∩I3

|I| = |V | − 1.

However, our 3-matroid intersection is a really special case since Tk is very

simple, so it is not immediate that finding a maximum cardinality common

independent set forM′
1 ∩M

′
2 ∩ Tk is NP-Hard. From now on we try to make

use of the special structure of Tk, and we try to find a modified version of

the matroid intersection algorithm forM′
1 ∩M

′
2 that takes into account the

partition constraints from Tk. The setting would be the following: At a given

step we have a set of some coloured elements C ∈ I ′1 ∩ I
′
2, and a set of the

remaining uncoloured elements that we denote by U (i.e. U = E − C). We

say that C is feasible if it does not contain two copies of the same element of

E, i.e., if |f(C)| = |C|. Our goal is to run some sort of matroid intersection
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algorithm with bipartitions C and U in a way that the set C remains feasible

at each step of the algorithm. In other words, we want to find a shortest X1-X2

augmenting path in DM′
1
∩M′

2
(C) such that after doing the augmentation our

new set of coloured elements (which has one more element than the previous

one) remains feasible.

C U

DM′
1
∩M′

2
(C)

X1 = {z ∈ U : C + z ∈ I ′
1
}

X2 = {z ∈ U : C + z ∈ I ′
2
}

We consider the following approach: If e
(j)
i ∈ C for some i ∈ {1, ..., n} and

j ∈ {1, ..., k}, we say that the elements e
(l)
i are constrained for all l 6= j.

Otherwise, we say that the elements e
(j)
i are free for all j ∈ {1, ..., k}. Clearly,

we can only add a constrained element to C if we take out its copy in the same

step. We can add any free element to C as long as we do not add two copies

of the same element at the same time.

Let P be a X1-X2 path in the exchange digraph DM′
1
∩M′

2
(C). We say that

P is feasible if it does not have any shortcuts and if it satisfies the following

two conditions: (1) If a constrained element belongs to the path, then its copy

from C must also belong to the path, and (2) The path cannot contain two

free elements that are a copy of the same element (this can also be written as

|f(P ∩ U)| = |P ∩ U |). If we can find such a path, the analysis for the ma-

troid intersection algorithm guarantees that the corresponding augmentation

would lead to a larger common independent set, while constraints (1) and (2)

guarantee that the new set C remains feasible. It follows that the existence of
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such a path is a sufficient condition for having a valid augmentation of C. We

believe it would be very interesting to show whether this condition is necessary

as well, i.e., if our current set C is not optimal then such a path must exist.

We are also interested in the complexity of finding such a path. In the next

chapter we consider this problem in a more general setting and show that it

is NP-Hard in this general setting. However, the nice properties of matroids

and the special structure of the exchange digraph DM′
1
∩M′

2
(C) do not allow

us to determine if the path problem defined above is also NP-Hard.

3.5 SBO matroids and the common colouring problem

In this section we introduce two special types of matroids: strongly base or-

derable and weakly base orderable matroids. We will see that the common

colouring problem can be solved exactly when the two matroids in the inter-

section are strongly base orderable [5].

Definition 3.5.1. A matroid is strongly base orderable (abbreviated SBO) if

for any two bases B1 and B2 there is a bijection f : B1 → B2 with the property

that B1 −X + f(X) is a base for any X ⊆ B1.

Notice that from the definition it follows that B2 + X − f(X) is also a base

for any X ⊆ B1, since B2+X−f(X) = B1−Y +f(Y ) with Y = B1−X ⊆ B1.

Definition 3.5.2. A matroid is weakly base orderable (abbreviated WBO) if

for any two bases there is a bijection f : B1 → B2 with the property that

B1 − e+ f(e) and B2 − f(e) + e are bases for any e ∈ B1.
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It is clear from the definitions that every strongly base orderable matroid is

weakly base orderable. Uniform matroids, gammoids, P7, and transversal ma-

troids are SBO, while P8 is WBO but not SBO. M(K4), i.e., the graphic

matroid on the complete graph on four nodes, is not WBO. We prove this last

result since it is going to be useful later in this section.

Claim 3.5.1. M(K4) is not weakly base orderable.

Proof. Let us denote the ground set E as follows

e1

e2

e3

e4

e6 e5

and let B1 and B2 be the following bases ofM(K4)

e1

e3

e5 e4 e6 e2B1 B2

We show that there is no bijection f : B1 → B2 such that B1 − e + f(e) and

B2− f(e) + e are bases for any e ∈ B1. Let us start by deciding the image for

e1, i.e., f(e1). We have three different possibilities for this, either f(e1) = e2,

or f(e1) = e4, or f(e1) = e6. Notice that f(e1) cannot be e2, since B1− e1+ e2

has a cycle, i.e., B1 − e1 + e2 is not independent anymore. In the same way,

we cannot define f(e1) as e4 since B2 − e4 + e1 has a cycle. Hence, the only

possible image for e1 is e6 (it is easy to check that both B1 − e1 + e6 and
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B2 − e6 + e1 are acyclic). Next, we decide the image for e3. We have two

different possibilites, either f(e3) = e2 or f(e3) = e4. But observe that none of

these are feasible since both B2− e2 + e3 and B1− e3 + e4 have cycles. Hence,

M(K4) is not weakly base orderable.

Davies and McDiarmid [5] showed the following interesting result regarding

the colouring number of the intersection of two strongly base orderable ma-

troids.

Theorem 3.5.1. Let M1 = (E, I1) and M2 = (E, I2) be two SBO matroids

on a common ground set. Then χ12 = k12.

Proof. Let X1, ..., Xk12 be a colouring ofM1 and Y1, ..., Yk12 be a colouring of

M2 which maximize
∑k12

i=1 |Xi ∩ Yi|. If this sum equals |E| (i.e., Xi = Yi for

i ∈ [k12]) we are done, since then X1, ...., Xk12 is a colouring ofM1 ∩M2 and

hence χ12 = k12; so assume
∑k12

i=1 |Xi ∩ Yi| < |E|. Let i ∈ [k12] be such that

Xi 6= Yi, and WLOG assume that Xi− Yi 6= ∅. Then we can find i 6= j ∈ [k12]

such that Yj ∩Xi 6= ∅. Extend the colour classes Xi, Xj to bases Ci, Cj ofM1

and the colour classes Yi, Yj to bases Di, Dj ofM2 respectively.

Xi

Yi

Yj

Given that both M1 and M2 are strongly base orderable, we can find a bi-

jection f : Ci → Cj satisfying that (Ci −X) ∪ f(X) is a base ofM1 for any
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X ⊆ Ci, and a bijection g : Di → Dj such that (Di −X) ∪ g(X) is a base of

M2 for any X ⊆ Di. Now consider the graph G on the set of nodes E whose

edges are given by {(e, f(e)) : e ∈ Ci)} ∪ {(e, g(e)) : e ∈ Di}. Notice that

the sets of edges {(e, f(e)) : e ∈ Ci)} and {(e, g(e)) : e ∈ Di} can be seen as

two matchings, since f and g are bijections from Ci, Di to Cj, Dj respectively.

Hence, the set of edges of G is given by the union of two matchings and thus

G is a bipartite graph. Let S ∪ T be its bipartition.

Let I be an independent set in the graph G (i.e., there is no edge between any

two nodes in I) that is contained in Xi ∪Xj. We claim that I ∈ I1, i.e., I is

independent inM1. To see this, let J := f−1(I∩Xj). Then, by definition of f

we have that Ci−J +f(J) ∈ I1, and since I ⊆ Xi−J +f(J) ⊆ Ci−J +f(J)

it follows that I ∈ I1. In the same way, if I is an independent set in the graph

G that is contained in Yi∪Yj, then I is independent inM2. The picture below

depicts this argument.

Xi Xj

J

I = green nodes

f
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Now define X ′
i = S ∩ (Xi ∪Xj), X

′
j = T ∩ (Xi ∪Xj), and similarly for Y ′

i , Y
′
j .

By the above observation, we know that X ′
i, X

′
j ∈ I1 and Y ′

i , Y
′
j ∈ I2. Also,

notice that X ′
i ∪X ′

j = Xi ∪Xj and Y ′
i ∪ Y ′

j = Yi ∪ Yj. We claim that

|X ′
i ∩ Y ′

i |+ |X
′
j ∩ Y ′

j | > |Xi ∩ Y i|+ |Xj ∩ Yj|.

To see this let e ∈ Xi ∩ Yi, then either e ∈ S or e ∈ T . If e ∈ S, we have that

e ∈ X ′
i and e ∈ Y ′

i , and hence e ∈ X ′
i ∩Y

′
i . If e ∈ T , a similar argument shows

that e ∈ X ′
j ∩ Y

′
j . In the same way, for each element e ∈ Xj ∩ Yj we have that

either e ∈ X ′
i ∩ Y ′

i or e ∈ X ′
j ∩ Y ′

j . Thus,

|X ′
i ∩ Y ′

i |+ |X
′
j ∩ Y ′

j | ≥ |Xi ∩ Y i|+ |Xj ∩ Yj|.

However, we picked i and j such that Xi∩Yj 6= ∅. Let e ∈ Xi∩Yj and observe

that e /∈ (Xi ∩ Yi) ∪ (Xj ∩ Yj). Moreover, we have that either e ∈ X ′
i ∩ Y ′

i or

e ∈ X ′
j ∩Y

′
j , depending on whether e ∈ S or e ∈ T respectively. It follows that

|X ′
i ∩ Y ′

i |+ |X
′
j ∩ Y ′

j | > |Xi ∩ Y i|+ |Xj ∩ Yj|,

but this contradicts the maximality of
∑

l∈[k12]
|Xl ∩ Yl|.

Thus, we can can find colourings X1, ..., Xk12 ofM1 and Y1, ..., Yk12 ofM2 such

that
∑

l∈[k12]
|Xl ∩ Yl| = |E| and the theorem follows.

A natural question is whether the converse holds, i.e., if we have two matroids

M1 and M2 such that χ12 = k12, are the matroids necessarily SBO? The

answer is no. In fact, we cannot even guarantee that the matroids are WBO.

A simple example is to take M(K4) and U3,6. It is easy to check that both

matroids are 2-colourable, i.e., k12 = 2. Moreover, notice thatM(K4)∩U3,6 =

M(K4), since every subset of cardinality at most 3 is independent in U3,6, and

M(K4) has rank 3 (i.e., every independent set ofM(K4) is also independent
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in U3.6). It follows that the intersection is 2-colourable, i.e., χ12 = 2. However,

as shown in Claim 3.5.1,M(K4) is not weakly base orderable.

Another natural question is whether we can adapt the above argument to

two WBO matroids, or one SBO and one WBO. The answer to this is that

we do not know. The SBO condition is key in the above proof to show that

X ′
i, X

′
j, Y

′
i , and Y ′

j are independent sets ofM1 andM2 respectively.

72



CHAPTER 4

The directed path with partition constraints problem and

applications

4.1 The problem

Recall that in the previous chapter we considered the problem of finding what

we called a feasible path in the exchange graph DM′
1
∩M′

2
(C). Such a path

would automatically lead to a valid augmentation of the current common in-

dependent set C ∈M′
1∩M

′
2. Moreover, there were some partition constraints

(encoded in the matroid Tk) guaranteeing that the sets f(C∩E1), ..., f(C∩Ek)

were pairwise disjoint and independent in bothM1 andM2. Our goal was to

get a good approximation of a common k-colouring ofM1 andM2 by finding

a good approximation of maxC∈I′
1
∩I′

2
∩IT |C|.

In this chapter we study a problem that arises naturally from the setting dis-

cussed above. Given a digraph D = (V,A) with a source node s, a sink t, and

a partition A1, ..., Ak of V − {s, t}, find an s-t dipath that contains at most

one node from each set Ai. We denote this problem by DPPC (Directed Path

with Partition Constraints). Note that some of the sets Ai can be singletons.

Also, WLOG we can assume that the sets Ai are stable sets. After writing this

thesis we found out that this problem generalizes the path avoiding forbidden

pairs (PAFP) problem, first studied by Krause et al. [17] and shown to be

NP-Hard by Gabow et al. [11]. In this chapter we give an alternative hardness

proof for the DPPC problem and mention some applications.

Lemma 4.1.1. The DPPC problem is NP-Complete.
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Proof. Given a digraph D with two (not necessarily distinct) sources s1, s2 and

two (not necessarily distinct) sinks t1, t2, it is known that the problem of find-

ing s1-t1 and s2-t2 node disjoint dipaths is NP-Complete (Fortune, Hopcroft,

and Wyllie [8]). We reduce a general instance of this problem to the DPPC

problem.

Given a digraph D = (V,A) with sources s1, s2, and sinks t1, t2, we create an

instance of DPPC as follows: Create two disjoint copies of D, call them D1

and D2. Denote by vji the node in Dj which is a copy of vi ∈ V in D. Delete

s12 and t12 from D1, and s21 and t21 from D2. Add an arc from t11 to s22. Call this

new digraph D′ = (V ′, A′). Finally, for each node vi ∈ V − {s1, s2, t1, t2}, let

Ai := {v1i , v
2
i }. The picture belows depicts this construction.

s1
1

v1
1

v1n t1
1

s2
2

v2
1

v2n t2
2

D1

D2

D′ = (V ′, A′)

A1 An

Now, consider an instance of DPPC with digraph D′, source s11, sink t22, and

a partition A1, ..., Ak of V ′ − {s11, t
2
2}. Then, notice that any s11-t

2
2 dipath will

first follow a dipath P1 from s11 to t11 in D1, then use the arc (t11, s
2
2), and finally

follow a dipath P2 from s22 to t22 in D2. Moreover, our partition constraints

guarantee that we use at most one node from each pair {v1i , v
2
i }. Hence, P1

and P2 will denote s1-t1 and s2-t2 node disjoint dipaths in our original digraph

D.
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Observe that from a general instance of DPPC we can get a bipartite instance

by just subdividing each arc and assigning the new node arbitrarily to any of

the two sets Ai that the original arc was visiting. Hence, we have the following

result.

Corollary 4.1.1. DPPC is NP-Complete for bipartite digraphs.

4.2 Applications

4.2.1 The perfect matching with partition constraints problem

Given an instance of DPPC with a bipartite digraph D = (V ∪ U,A), source

s ∈ V , sink t ∈ V , and a partition A1, ..., Ak of (V ∪ U)− {s, t}, we create an

undirected bipartite graph using an idea due to Edmonds as follows:

Let V + := {s+, t+, v+1 , ..., v
+
n } and V − := {s−, t−, v−1 , ..., v

−
n } be two copies of

V , and U+ := {u+
1 , ..., u

+
l } and U− := {u−

1 , ..., u
−
l } be two copies of U . Delete

t+ from V + and s− from V −. For every arc uv ∈ A add an (undirected) edge

between u+ and v−. In addition, we add edges between v+i and v−i for all

i ∈ [n], and between u+
i and u−

i for all i ∈ [l]. Denote by E the set of edges

of this new graph. Then it is easy to see that the graph BD = ((V + ∪ U+) ∪

(V −∪U−), E) is bipartite. Moreover, for each Ai = {ui1 , ..., uip , vj1 , ..., vjm} we

define A′
i := {u

+
i1
, u−

i1
, ..., u+

ip
, u−

ip
, v+j1 , v

−
j1
, ..., v+jm , v

−
jm
}. The figure below shows

the construction of BD.
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s
+ v

+
1

t
− v

−
1

u
−
1 u

−
2v

+
n

v
−
n u

+
1 u

+
2 u

+
l

u
−
l

A′
1

A′
i A′

i+1

A′
k

V +

V −

U−

U+

We consider the problem of finding a perfect matching M on BD such that

|M ∩ δ(A′
i)| ≤ 2 for all i ∈ [k]. We denote this problem by PMPC (Perfect

Matching with Partition Constraints).

Lemma 4.2.1. A perfect matching M as above exists if and only if there is a

feasible s-t dipath in D for the DPPC problem.

Proof. First, assume that such an s-t dipath P exists. Denote this path by

sui1vj1ui2vj2 ...vjp−1
uipt. Then, we get a perfect matchingM on BD by first tak-

ing {(s+, u−
i1
), (u+

i1
, v−j1), (v

+
j1
, u−

i2
), ..., (v+jp−1

, u−
ip
), (u+

ip
, t−)}. Next, for each node

u+
i that has not been matched yet take the edge (u+

i , u
−
i ), and for each node

v+i that has not been matched yet take the edge (v+i , v
−
i ). It is easy to check

that this indeed gives a perfect matching M . Moreover, since P is a solution

to the DPPC problem, we must have that M satisfies |M ∩ δ(A′
i)| ≤ 2 for all

i ∈ [k].

Now, assume that we have a perfect matching M on BD satisfying |M ∩

δ(A′
i)| ≤ 2 for all i ∈ [k]. We get a feasible s-t dipath P for DPPC as follows:

First, delete from M the edges of the form (u+
i , u

−
i ) and (v+i , v

−
i ). After doing
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this, we are left with a set of edges of the form

{(s+, u−
i1
), (u+

i1
, v−j1), (v

+
j1
, u−

i2
), ..., (v+jp−1

, u−
ip
), (u+

ip
, t−)}.

We claim that sui1vj1ui2vj2 ...vjp−1
uipt is a feasible s-t dipath P for DPPC.

The fact that sui1vj1ui2vj2 ...vjp−1
uipt is an s-t dipath in D follows from the

construction of BD and the fact that

{(s+, u−
i1
), (u+

i1
, v−j1), (v

+
j1
, u−

i2
), ..., (v+jp−1

, u−
ip
), (u+

ip
, t−)} ⊆ E.

To see feasibility with respect to the partition sets A1, ..., Ak, notice that |M ∩

δ(A′
i)| ≤ 2 for all i ∈ [k] if and only if sui1vj1ui2vj2 ...vjp−1

uipt contains at most

one node from each Ai.

Corollary 4.2.1. The perfect matching problem with partition constraints is

NP-Complete.

Proof. This follows from Corollary 4.1.1 and Lemma 4.2.1.

4.2.2 The maximum integral flow problem is NP-Hard for trees

with edge capacities 1 and 2

This result was first proved by Garg-Vazirani-Yannakakis in [12], by reducing

the three-dimensional matching problem to the maximum integral flow prob-

lem. Here we give a different proof of this result by making use of the hardness

result for PMPC (Corollary 4.2.1).

Let B = (V,E) be an instance of the perfect matching problem with partition

constraints described above, with B a bipartite (undirected) graph. We have

seen that this problem is NP-Complete. We construct a tree TB of height 2 as

follows:
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The nodes at level 1 are labelled: 1, 2, ..., k, s, t. Each node i ∈ [k] has as chil-

dren the elements of the set Ai. Thus, there are k + 2 nodes in the first level

and |V | − 2 in the second level. Edges (r, i) have capacity 2 for every i ∈ [k].

All other edges have unit capacity. The figure below depicts the construction

of the tree.

r

1 k s t

v
+
i1

v
−

i1
v
+
ip

v
−

ip
v
+
j1

v
−

j1
v
+
jm

v
−

jm

2 2 11

1 1 11 1 1 11

For each edge (u, v) ∈ E where u has a “+” label and v has a “−” label, we

add a source-sink pair (u, v). NP-Hardness now follows from:

Claim 4.2.1. The graph B has a perfect matching M satisfying |M ∩δ(Ai)| ≤

2 for all i ∈ [k] if and only if TB has an integral flow of |V |
2

units.

Proof. Assume M is a perfect matching on B satisfying |M ∩δ(Ai)| ≤ 2 for all

i ∈ [k]. For every edge in M of the form (v+i , v
−
i ), we route a unit flow for the

source-sink pair (v+i , v
−
i ). After doing this, we must be left with a set of edges

in M of the form {(s+, v−i1), (v
+
i1
, v−i2), ..., (v

+
ip−1

, v−ip), (v
+
ip
, t−)}. For each of these

edges (u, v) we route a unit flow for the source-sink pair (u, v). Now, since M

satisfies |M ∩ δ(Ai)| ≤ 2 for all i ∈ [k], it follows that the integral flow defined

above is feasible with respect to the edge capacities of the tree TB. Moreover,

it is a |V |
2

units flow since M is a perfect matching on B, i.e. |M | = |V |
2
.

Conversely, assume TB has an integral flow of |V |
2

units. We get a perfect

matching M on B as follows: for each source-sink pair (u, v) routed by the
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flow (note that there must be |V |
2

of these pairs), add the edge (u, v) to M .

To see that the condition |M ∩ δ(Ai)| ≤ 2 holds for every i ∈ [k], notice that

the edge (r, i) has capacity 2 for each i ∈ [k]. Hence, for each i0 ∈ [k] we can

have at most two source-sink pairs with exactly one element being a child of

i0. Thus, |M ∩ δ(Ai0)| ≤ 2.
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