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Abstract

Personalized medicine is gaining attention as a promising avenue for improved healthcare, and has

received increased research interest in many domains. A dynamic treatment regime (DTR) is one

approach to personalized medicine, which has as its basis sequential (in terms of treatment stages)

decision rules that are based on a patient’s personal, and evolving, medical history. In this work, I focus

on G-estimation, a regression-based approach to estimating the parameters of a DTR, in the specific

setting where treatment decision rule parameters may be shared across different stages of the treatment

sequence.

In this thesis, a new computational method is introduced to perform shared-parameter G-estimation.

The new method shares similar theoretical properties with the original, “unshared” sequential G-estimation:

the new approach retains the double-robustness property, which ensures consistent estimation as long

as one of (i) the expected treatment-free outcome model or (ii) the treatment model is correctly speci-

fied. Simulation studies are conducted to test the validity and performance of the shared G-estimation.

In addition, comparisons between unshared and shared Q-learning, unshared sequential G-estimation,

and shared-parameter G-estimation are made in terms of bias and variance. The shared parameter

G-estimation method is applied to the data from the the STAR*D (NIMH Sequenced Treatment Alter-

natives to Relieve Depression) randomized trial to estimate the optimal shared-parameter DTR aimed

at reducing symptoms of depression.
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Résumé

La médecine personnalisée attire l’attention comme une avenue prometteuse pour l’amélioration des

soins de santé et a suscité un intérêt croissant pour la recherche dans de nombreux domaines. A régime de

traitement dynamique (DTR) est une approche de la médecine personnalisée, qui a comme base les règles

de décision séquentielles (en termes de niveaux de traitement) basées sur l’histoire médicale personnelle

et évolutive d’un patient. Dans ce travail, je me concentre sur l’estimation G, une approche basée sur la

régression pour estimer les paramètres d’une DTR, dans le cadre spécifique où les paramètres de la règle

de décision de traitement peuvent être partagés entre différents stades de la séquence de traitement.

Dans cette thèse, une nouvelle méthode de calcul est introduite pour effectuer une estimation G

partagée. La nouvelle méthode partage des propriétés théoriques similaires avec l’estimation séquentielle

initiale "non partagée": La nouvelle méthode conserve la propriété double robustesse, ce qui garantit une

estimation constante aussi longtemps que l’un des (i) le modèle de résultat sans traitement attendu ou

(ii) le modèle de traitement est correctement spécifié. Des études de simulation sont menées pour tester

la validité et la performance de l’estimation G partagée. En outre, les comparaisons entre l’apprentissage

Q non partagé et partagé, l’estimation G séquentielle non partagée et l’estimation G partagée sont faites

en termes de biais et de variance. La méthode d’estimation G du paramètre partagé est appliquée aux

données provenant de l’essai randomisé STAR*D (NIMH Sequenced Treatment Alternatives to Relieve

Depression) pour estimer le DTR optimal des paramètres partagés visant à réduire les symptômes de la

dépression.
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Chapter 1

Introduction

1.1 Precision Medicine

Precision medicine is a medical model that proposes the customization of healthcare through the

use of medical decisions that are tailored to the individual patient. Precision medicine is also referred

to as personalized medicine which conveys the same notion of assigning different therapies to different

patients based on their covariates such as genetic information and personal disease-course histories. It

is gaining attention as a promising avenue for improved healthcare, and has received increased research

interest in many domains as an alternative to the traditional “one size fits all” approach. Attention to

the personalized medicine is not confined to academia: former U.S. President Barack Obama stated

his intention to fund a United States national “precision medicine initiative” 1 in his 2015 State of the

Union.

The essential motivation and potential superiority of personalized medicine over traditional ap-

proaches is based on the fact that patients often respond to a medical treatment differently, in terms

of both the therapeutic effect and side effects. This inherent heterogeneity across patients in response

to many treatments has prompted many health researchers to call for evidence-based implementations
1https://obamawhitehouse.archives.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-

initiative
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of personalized medicine [1]. The tailoring of treatments in personalized medicine need not be targeted

at genes, but rather could also tailor treatment on factors such as diet, exercise and smoking history

as well. Compared to the traditional approach, the benefits of precision medicine may include better

treatment efficacy, fewer side effects and a reduction of the overall cost of health care [2].

Personalized treatments can be viewed as realizations of a set of decision rules which indicate what

to do in a given state (e.g. personal history, genetic information) of a patient. A simple way to view it is

as a rule book, which ask physicians to apply certain therapy given the patient’s information. However,

the reality of decision-making in healthcare often involves complex choices with more than one stage,

where decisions made at one stage may affect those to be made at other stages. Dynamic treatment

regimes (DTRs) are introduced for these more complex cases, where the treatment rules can account

for heterogeneity across patients and within patients over time.

1.2 Dynamic Treatment Regimes

A dynamic treatment regime (also known as “adaptive intervention” or “adaptive treatment strat-

egy”) is one approach to personalized medicine with sequential decision making, i.e. in a setting where

treatments are given in stages. A DTR takes patient information as input and outputs a recommended

treatment. By tailoring treatment decisions to a patient’s characteristics, the DTR is able to formal-

ize personalized medicine and improve long-term outcomes compared to the traditional non-tailored

approaches [3].

We are interested in finding the optimal DTR which optimizes the mean long-term outcome, observed

at the end of the final stage of intervention [4]. Hence it is required to know or estimate the outcome2

to be able to identify a optimal DTR.

There are numerous statistical approaches to estimating a DTR. As I will detail in sections 2.2 -

2.5, regression-based approaches that rely on structural nested models [5, 6, 7] offer both flexibility and

interpretability, and hence are attractive analytic choices.
2The outcome here is a function of other variables including patient’s treatment and covariate history.
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1.3 Thesis Aims and Structure

Numerous methods have been proposed for estimating an optimal DTR, and most can be classified

into two general types: regression-based methods and value search methods. The regression-based ap-

proaches estimation rely on either structural nested mean models (SNMMs), or conditional expectations

of the primary outcome. SNMMs parameterizes the difference between the conditional expectations un-

der different treatment options. By estimating the parameters in a SNMM or the conditional expectation

of the outcome, one can then identify the optimal DTR which is the sequence of treatment decisions that

maximizes the expected outcome. There are a variety of regression-based methods in DTR estimation,

including Q-learning [8, 9], dynamic weighted least squares [7], and G-estimation [10], the last of which

is the focus of this thesis.

Most methods aimed at estimating an optimal DTR focus on different decision rules across stages,

although it is in some settings reasonable to have the same decision rule for more than one stage,

e.g., when the decision rule at each stage is a function of the same time-varying covariates at multiple

stages. We refer this kind of DTR as a shared parameter DTR, i.e. the parameter of some or all of the

time-varying covariates are shared across different stages.

Theory and implementations of the existing G-estimation approach have largely focused on unshared-

parameter DTRs, a setting where sequential G-estimation can be applied in stages, typically with closed

form solutions for the estimators available. Inspired by shared parameter Q-learning [11], this thesis

will implement similar computational approach and thereby expand the application of G-estimation to

the realm of shared parameter DTRs using a computationally tractable and stable algorithm.

I will first review some well known regression-based methods for estimating DTRs in Chapter 2. I

then propose a new computational approach to G-estimation for shared parameters in Chapter 3. The

proposed approach will be evaluated via simulations in Chapter 4, and then applied to the STAR*D

(NIMH Sequenced Treatment Alternatives to Relieve Depression) data in Chapter 5. The conclusion

and further discussions are presented in Chapter 6.
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Chapter 2

Literature Review

In this chapter, I will first briefly describe the type of data needed for estimating an optimal DTR.

Then I will introduce the notations that will be used throughout the thesis along with the necessary

assumptions and framework. Finally, some popular regression-based approaches to estimate an optimal

DTR will be explained in detail.

For estimating an optimal DTR, we need data to provide sufficient information, which includes well

defined treatments, the outcomes and the measurements of covariates which are thought to influence

the outcome and treatment decisions. The data could be either observational or experimental; however

analyses using the observational data need more assumptions to make valid causal inference.

There are mainly two types of approaches to estimating the optimal DTRs: regression-based meth-

ods and value search methods. The regression-based methods of estimating the optimal DTRs typically

proceed by first modeling the conditional mean outcomes or the contrast between optimal treatment

and observed treatment for different stages, and then finding the treatments that optimize the estimated

mean or contrast for different stages [4]. There are three common approaches of regression-based meth-

ods: Q-learning, G-estimation and dynamic weighted ordinary least squares; all three will be reviewed

in this chapter.

In contrast to the regression-based approaches, value search estimator targets estimation of the de-

cision rule parameters directly (rather than indirectly through the outcome mean or contrast). Value
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search methods include the inverse probability weighted estimator [12], the augmented inverse proba-

bility weighted estimator [13], and outcome weighted learning along with its variants [14, 15]; since the

focus of the research is on G-estimation, a regression-based method, I will not detail those value search

methods here.

For simplicity, all methods introduced in the thesis will be illustrated with linear models.

2.1 Data for Estimating a DTR

To be able to construct a DTR, there are several components of information that are needed in the

data [3]:

• Treatment options, which could include not only medications or drugs, but also dosage, modes of

delivery (e.g., intravenous, injection or oral), behavioral intervention, etc.

• Critical decision points at which treatment is assessed and decisions are made; for example, when

researchers decide to continue, stop, add, or subtract treatment.

• Tailoring variables, which are the covariates (available up to the decision point) used for mak-

ing current treatment decisions; these usually include: previous treatment, response to previous

treatment, demographic and genetic information and test results.

• Predictive variables, which are the variables used for predicting the outcome other than tailoring

variables. These variables are particularly of use in regression-based methods, where the outcome

is modeled directly; they are also useful for control of confounding.

• Measurements on other covariates that might predict treatment decisions, which are used for

control of confounding.

• Outcomes, measurements for evaluating the effect of a set of sequential treatments.

The above elements are essential to conduct a DTR analysis and then make data-based clinical decisions.

I will detail the use of above information further in the following parts of this chapter for some common
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estimation methods1. Note that in particular, the variables that are predictive of both outcome and

treatment choices, i.e. the confounders, are required for all approaches to DTR estimation.

2.1.1 Longitudinal Observational Studies

A longitudinal study refers to a type of design that repeatedly records the observations of the same

subject (e.g., people) over a period of time. And observational study is the study where researchers

observe the effect of a risk factor or treatment without trying to change who is or who is not exposed

to it. Longitudinal observational data may be drawn from a variety of sources including cohort studies;

randomized trials of a particular intervention that is not the treatment of interest; electronic health

records such as provincial billing claims, private insurance billing claims, or disease-specific registries.

The advantages of longitudinal observational data include the possibility of obtaining a large sample

size of data at relatively low cost, greater heterogeneity in the participant pool, and a more generalizable

study population. However, in terms of detecting causal relationship, a longitudinal observational study

is usually less reliable than a randomized experimental study due to the possibility of confounding.

Although the data from observational studies may run the risk of hidden biases and confounding2,

causal inference based on observational data is still possible under certain assumptions. Those assump-

tions will be further discussed in section 2.2.3. The importance of randomized trial in detection of

average causal effect (ACE) has been pointed out by many researchers, hence if a randomized trial is

available, it is often preferred for more accurate estimation and stronger statistical inference [17, 18].

While it is crucial to generate meaningful and suitable data for estimating DTR, this is often beyond

the scope of typical randomized control trials. Thus a special class of design named sequential multiple

assignment randomized trial has been proposed for providing data to develop optimal DTRs.

2.1.2 Sequentially Randomized Studies

The sequential multiple assignment randomized trial (SMART) was first introduced by Lavori and

Dawson with the name “biased coin adaptive within-subject design” [19], and then Murphy proposed
1The second last one is not required for Q-learning methods, but needed for G-estimation.
2As Jerzy Neyman use to say, “without randomization an experiment has little value irrespective of the subsequent

treatment” [16].
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the general framework of the SMART design [20]. SMART designs initially randomize patients to the

possible first stage treatments, and follow by re-randomization at each subsequent stage of all or part

of the patients to another set of available treatments at that stage. The re-randomization at each

subsequent stage depends on the information collected in previous stages, prior to the new treatment.

It is common for subsequent randomizations to depend on whether or not a patient responds to the

treatment given in the previous stage.

There are different types of SMART designs in terms of the extent of multiple randomizations:

• both responders and non-responders are re-randomized;

• only the non-responders are re-randomized;

• the re-randomization depends on both response status and previous treatment.

I present the first and second types of SMART with a two stage case in Figure 2.1 and 2.2 respectively.

And the STAR*D trial that is analyzed in Chapter 5 is an example of the third type of SMART.
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Figure 2.1: SMART design in which both responders and non-responders are re-randomized
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Figure 2.2: SMART design in which only non-responders are re-randomized

A SMART design is ideal for generating data for developing DTRs. There is a separate stage for each

of the critical decision points involving decision making, and at each stage, all the research subjects are

randomized into different treatments. Thanks to the randomization, patients at each treatment decision

node are comparable with respect to all confounders, whether measured or not. There are often several

embedded DTRs in one SMART design, which allows researchers to develop optimal DTRs by comparing

them. Beyond those, the SMART design could detect the delayed effects and decrease the impact of

cohort effects [20].
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2.2 Notation and Assumptions

2.2.1 Notation

The following notations and setting will be used throughout this paper; the realized values will be

indicated via lower case while upper case is used for random variables.

• Yj : Subject’s outcome at the end of stage j, after the jth treatment; Y will be used to denote the

final outcome or reward that we wish to maximize; it is frequently a function of (Y1, ..., YJ) where

J denotes the total number of stages;

• Xj : The covariates measured prior to treatment at the beginning of the jth stage;

• Aj : The treatment assigned at the jth stage subsequent to observing Xj , coded as binary {0,1},

(usually, 1 for taking the treatment, 0 for not);

• Hj : The subject history, Hj = (X1, ..., Xj , A1, ..., Aj−1); H1 = (X1), H2 = (X1, A1, X2), H3 =

(X1, A1, X2, A2, X3), etc;

• dj : The decision rules, which is a function that projects from subject’s history space Hj to

treatment space Aj : aj = dj(hj);

• Pn: Denotes the empirical average function.

A DTR is a set of decision rules for all stages (d1, d2, ..., dj). In this thesis, I will restrict my attention

to 2 and 3 stage problems.

2.2.2 The Potential Outcomes Framework

In order to estimate the optimal DTR, one needs to assess the effects of potential treatments without

bias due to confounding effects, for example, sicker patients may be more likely to receive more intensive

treatment. Thus, before we get any further in the discussion of estimation methods, a causal inference

framework is required to control the confounders. There are several popular causal frameworks including

the potential outcomes framework [17], which include the structural causal model [21] and the structural
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equation models [22], and the “competing” predictive modeling approach of Dawid [23]. I will work under

the potential outcomes frameworks in this thesis. The potential outcomes framework, also termed

the counterfactual framework or Rubin’s causal model, defines a subject’s outcome when following a

particular treatment regime, which could differ from what he takes in reality, and builds estimands

based on “forced” interventions.

An individual level causal effect of a regime then could be viewed as the difference in outcomes if

a subject followed one regime compared to another (reference regime usually), denote the causal effect

as Y (a) − Y (a′). Unfortunately, unless there exists a parallel universe (and there exists an identical

research subject), for a individual subject, one cannot observe Y (a) and Y (a′) at the same time, if a

differs from a′. This is the so-called fundamental problem of causal inference.

However, with randomization, perfect compliance and no missingness, the population level causal

effect or average causal effect can be identified. For example, let A = 0, 1 denote treatment a = 0, 1,

respectively. The outcome of a subject then can be expressed as Y = A · Y (1) + (1− A) · Y (0). Under

the premise of randomization of A, we could still identify the average causal effect (ACE):

ACE(A→ Y ) = E[Y (1)− Y (0)],

since
ACE(A→ Y ) =E[Y (1)]− E[Y (0)]

=E[Y (1)|A = 1]− E[Y (0)|A = 0]

=E[Y |A = 1]− E[Y |A = 0]

because A ⊥ {Y (1), Y (0)} is assured by randomization.

Without randomization, i.e. an observational study or randomized trial with imperfect compliance,

more assumptions are needed to identify the causal effect.

2.2.3 Assumptions

The essential requirement of the potential outcomes framework is the axiom of consistency, which

states that the potential outcome under the observed treatment equals to the observed outcome. This

axiom is encapsulated in the expression Y = A · Y (1) + (1 − A) · Y (0) given above. In addition to
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consistency, three assumptions are needed for unbiased estimation of a DTR, which I will explain in the

two-stage context.

• Stable unit treatment value assumption (SUTVA): A subject’s outcome Y (a1, a2)3 is not in in-

fluenced by other subject’s treatment [24]. This assumption sometimes is also referred to as no

interaction between units or no interference between units.

• No unmeasured confounders (NUC) or sequential ignorability, or conditional exchangeability: The

treatment assignment Aj is independent of all future potential outcomes conditional on the co-

variates and treatment history. i.e. A1 ⊥ {Y (a1), Y (a1, a2)|H1} and A2 ⊥ {Y (a1, a2)|H2} where

aj ∈ Aj . The NUC assumption always holds under sequential randomization. This assumption

may also be true for observational studies when all the relevant confounders have been measured

and taken into consideration [25].

• Positivity: There are both treated and untreated individuals at every level of the treatment and

covariate history. P (A1 = a|H1) > 0 and P (A2 = a|H2) > 0, ∀aj ∈ Aj . The positivity assumption

assures there are subjects through all the possible combinations of treatments, from where could

gain information. This assumption may be violated if a particular stratum of subjects has very

few receiving treatment. Another possible reason of violation of this assumption is the study

design prohibits certain subjects from receiving a particular treatment. While estimation may be

possible in the presence of positivity violations, it must be acknowledged that results are being

extrapolated -- and may not in fact hold -- in strata where the data do not have both treated and

untreated individuals.

There is an additional strong assumption which is not necessary for DTR estimation but allow us to

make counterfactual interpretations of various quantities.

• Additive local rank preservation: Y (a) − Y (a′) = E[Y (a) − Y (a′)] = constant4. The individual

causal effect equals to the average causal effect.
3Here we explain the assumptions with a 2-stage longitudinal setting, where Y (a1) is the potential outcome at the

end of the first stage and Y (a1, a2) is the potential outcome at the end of second stage. Aj denotes the treatment
assignment/decision at stage j, where j = 1, 2; and a = 0, 1.

4Note the first term Y (a)− Y (a′) is the realization instead of the random variable here.
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This assumption states that the difference between any two individual’s outcomes will be the same

under all treatment patterns. The subject who do best under one regime will also do so under any

another regime, and in fact the ranking of each individual’s outcome will remain unchanged whatever

the treatment pattern received [4].

With the above assumptions, all the methods that I will discuss in this thesis also rely on specifying

components of the longitudinal distribution (i.e. models) of Yj , Aj and Hj . Each method requires at

least some if not all of the them to be correctly specified. I will detail those model specifications for

each approach in later sections.

2.2.4 Value Functions and Optimal DTRs

The primary goal of personalized medicine is to estimate the optimal DTR from the data, which can

be viewed as a multistage decision making problem. The optimal DTR is the one that has the greatest

possible outcome value (i.e. expected outcome under that regime). The stage j value function given a

regime d is defined as follows:

V dj (hj) = Ed[
∑J
k=j Y (Hk, Ak, Xk+1)|Hj = hj ], 1 ≤ j ≤ J .

This gives the total expected future reward from stage j onward. This value function could be recursively

expressed as:

V dj (hj) = Ed[Yj(Hj , Aj , Xj+1) + V dj+1(Hj+1)|Hj = hj ], 1 ≤ j ≤ J .

Hence the optimal stage j value function with history hj is V optj (hj) = max
d∈D

V dj (hj), again it can be

expressed recursively as:

V optj (hj) = max
aj∈Aj

E[Yj(Hj , Aj , Xj+1) + V optj+1(Hj+1)|Hj = hj , Aj = aj ]. 5

It is natural to directly build a model for the value function and then estimate its covariates associated

parameters; we are especially interested in those covariates that interacting with the treatments together

to influence the outcome. Once we have estimated the parameter related to those covariates, we could

then deduce the optimal DTR, and this is the essential concept of Q-learning method.
5Obviously, estimating the optimal DTR is equivalent to finding the DTR that returns the greatest value here.
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2.3 Q-Learning

One common regression-based approach to estimate an optimal DTR is to use Q-learning. Q-learning

was first proposed by Watkins [8] under the topic of reinforcement learning in computer science, and then

was applied as a reinforcement learning-based approach to estimating optimal DTRs due to the natural

similarities between the backwards induction used to estimated DTRs and reinforcement learning for

batch data6.

Instead of estimating the value functions for all possible regime directly, Q-learning works with the

following Q-function:

Qdj (hj , aj) = E[Yj(Hj , Aj , Xj+1) + V dj+1(Hj+1)|Hj = hj , Aj = aj ],

which is the total expected future reward starting from stage j with history hj , taking treatment aj ,

and followed by regime d thereafter.

Then the optimal stage j Q-function is

Qoptj (hj , aj) = E[Yj(Hj , Aj , Xj+1) + V optj+1(Hj+1)|Hj = hj , Aj = aj ],

or re-expressed in a recursive fashion:

Qoptj (hj , aj) = E[Yj(Hj , Aj , Xj+1) +Qoptj+1(Hj+1)|Hj = hj , Aj = aj ].

2.3.1 Unshared Q-Learning

From the definition of a Q-function, for a J stages scenario, the Jth stage Q-function isQJ(HJ , AJ) =

E[YJ |HJ , AJ ]; the jth stage Q-function is Qj(Hj , Aj) = E[Yj + max
aj+1

Qj+1(Hj+1, aj+1)|Hj , Aj ], j =

J − 1, ..., 1, where Yj and YJ are the intermediate and final outcome observed at the end of jth and Jth

stage, respectively.

A special case of it is the one with single primary outcome, where Yj = 0 and YJ = Y . Then the

Q-function can be simplified as:

QJ(HJ , AJ) = E[Y |HJ,AJ ],
6Both can be viewed as techniques that deal with problems involving multi-stage, sequential decisions making

16



Qj(Hj , Aj) = E
[
max
aj+1

Qj+1(Hj+1, aj+1)|Hj , Aj
]
.

Whether or not intermediate outcomes are measured, we find that the optimal DTR is dj(hj) =

arg max
aj

Qj(hj , aj), ∀j.

The true Q-function is unknown, thus we need to posit a model for the Q-function and estimate its

parameters from data. It is reasonable to model the Q-function as following since it is in the form of a

conditional expectation. Let the stage-j Q-function be:

Qj(Hj , Aj ;βj , ψj) = βTj H
β
j + (ψTj H

ψ
j )Aj (2.1)

Here Hβ
j and Hψ

j are possibly different components of the history Hj , where H
β
j denotes the “main

effect of history”, termed as predictive variables; and Hψ
j

7 denotes the “treatment effect of history”,

termed as tailoring or prescriptive variables [4]. These two elements Hβ
j and Hψ

j of subject history Hj

serves as core for all the regression-based methods throughout this paper.

The prime interest here is to estimate all the ψjs in the model, since βjs only affect the outcome but

not the treatment decisions; once we estimate all the ψ̂js, we will be able to estimate the optimal DTRs

as well. Let ψ be a vector containing J stage-specific ψjs, and ψjs are different across J stages, referred

to as unshared parameters. In unshared Q-learning, at each stage except the last, the pseudo-outcome

is calculated using plug-in estimates of parameters found at the previous stages. The lack of sharing

permits recursive estimation.

Algorithm

Let x+ denotes the positive part of x. That is, x+ = x · I[x > 0]. Then the recursive Q-learning

algorithm is given by the following:

7Intercepts are needed in both cases so there is a leading column of ones in both Hβ
j and Hψ

j .
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Algorithm 2.1 Unshared Q-Learning
• Step 1: Stage-J regression, Compute:

(β̂J , ψ̂J) = arg min
βJ ,ψJ

n∑
i=1

(YJi −QJ(HJi, AJi;βJ , ψJ))2

using ordinary least squares (OLS) regression with YJi as the response and HJi, AJi as covariates to
estimate βJ and ψJ . For simplicity, we sometimes use Yj instead of Yji as its vector form, same of Hj

and Aj .

• Step 2: Calculate the stage-j pseudo-outcome:

Ŷj = max
aj+1

Qj+1(Hj+1, aj+1; β̂j+1, ψ̂j+1) = β̂j+1H
β
j+1 + ((ψ̂j+1H

ψ
j+1) ·Aj+1)+.

Notice the above expression involves calculating the maximum of Qj+1. For j = J − 1, ŶJ−1 =

max
aJ

QJ(HJ , aJ ; β̂J , ψ̂J) = β̂JH
β
J + ((ψ̂JH

ψ
J ) · AJ)+, where ψ̂J and β̂J are estimated from the previous

regression step.

• Step 3: Stage-j regression;

(β̂j ; ψ̂j) = arg min
βj ,ψj

n∑
i=1

(Ŷji −Qj(Hji, Aji;βj , ψj))
2

Use OLS with Ŷji/Ŷj from the previous stage-j pseudo-outcome step as the outcome.

• Step 4: Repeat Step 2 and Step 3, for j = J − 1, ..., 1.

After implementing the above unshared Q-Learning algorithm, we will have estimates of parameter

vector β (from β̂J to β̂1), and ψ (from ψ̂J to ψ̂1).

Then the estimated optimal DTR is (d̂opt1 , ..., d̂optJ ), where

d̂optj (hj) = arg max
aj

Qj(hj , aj ; β̂j , ψ̂j).

To obtain the consistent estimators, the Q-function models need to be correctly specified, which may

depend on some external information to help formulating the correct models.

Example

Here we elaborate how Q-learning works with J = 3 stages:

• Stage 3:
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Propose a stage 3 Q-function model:

Q3(H3, A3) = E[Y |H3, A3] = Hβ
3 β3 + (Hψ

3 ψ3)A3.

Then estimate β̂3 and ψ̂3:

(β̂3, ψ̂3) = arg min
β3,ψ3

Pn(Y −Hβ
3 β3 − (Hψ

3 ψ3)A3)2,

which is solved by OLS regression.

• Stage 2:

First, calculate the stage-2 pseudo-outcome:

Ŷ2 = max
a3

Q3(H3, A3) = Hβ
3 β̂3 + (Hψ

3 ψ̂3A3)+.

Secondly, propose the stage 2 Q-function model:

Q2(H2, A2) = E[max
a3

Q3(H3, A3)|H2, A2] = E[Ŷ2|H2, A2] = Hβ
2 β2 + (Hψ

2 ψ2)A2.

With the linear regression model E[Ŷ2|H2, A2] = Hβ
2 β2 + (Hψ

2 ψ2)A2 and the pseudo-outcome Ŷ2, again

use OLS to estimate β̂2 and ψ̂2:

(β̂2, ψ̂2) = arg min
β2,ψ2

Pn(Ŷ2 −Hβ
2 β2 − (Hψ

2 ψ2)A2)2.

• Stage 1:

First, calculate stage-1 pseudo-outcome:

Ŷ1 = max
a2

Q2(H2, A2) = Hβ
2 β̂2 + (Hψ

2 ψ̂2A2)+.

Secondly, propose the stage 1 Q-function model:

Q1(H1, A1) = E[max
a2

Q2(H2, A2)|H1, A1] = Hβ
1 β1 + (Hψ

1 ψ1)A1.

Estimate β̂1 and ψ̂1:

(β̂1, ψ̂1) = arg min
β2,ψ2

Pn(Ŷ1 −Hβ
1 β1 − (Hψ

1 ψ1)A1)2.

With ψ̂3, ψ̂2 and ψ̂1, the estimated optimal DTR is:

d̂optj (hj) = arg max
aj

Qj(hj , aj ; β̂j , ψ̂j) ≡ I[Hψ
j ψ̂j > 0], for j = 1, 2, 3
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2.3.2 Shared Q-Learning

It is sometimes reasonable to assume that a treatment has the same effect for a subject across different

stages, or that the decision rules or some component of the rules are same across different stages. In

this case, the corresponding features in ψ are the same from 1 to J , i.e., ψJ = ψJ−1 = ... = ψ1
8. Thus,

as opposed to the unshared Q-learning, a shared Q-learning approach has been proposed [11].

In the unshared Q-learning algorithm, there are J regression equations Qj = βTj H
β
j + (ψTj H

ψ
j )Aj ,

and we solve them backwards from j = J to 1 recursively. However, when the parameter ψ is shared

through stages, we can not proceed through the algorithm sequentially as in the unshared setting.

Now let θTj = (βTj , ψ
T ) be the parameter of interest. With ψ being shared, let Zj = (Hβ

j , H
ψ
j Aj) be

the matrix of relevant covariate history; then Qj = βTj H
β
j + (ψTHψ

j )Aj can be rewritten as Qj = Zjθj .

The shared Q-learning approach solves the J equations simultaneously rather than recursively. This

could be done by minimizing ‖YJ − ZJθJ‖2 and ‖Yj(θj+1)− Zjθj‖2 , ∀j < J . We only observe YJ = Y

(the primary outcome); the other outcomes Yj(θj+1), are unobserved as they depend on the unknown

parameters θj+1. However, these can be replaced by the estimates of pseudo-outcome, those estimates

are functions of θ̂j+1. Similar to the unshared Q-learning, Ŷj = β̂j+1H
β
j+1 + (ψ̂Hψ

j+1Aj+1)+. Now let:

Y ∗(θ) = (Y, ŶJ−1(θJ), ..., Ŷ1(θ2))T ,

θ = (βJ , βJ−1, · · · , β1, ψ)T ,

Z =



Hβ
J 0 · · · 0 Hψ

J

0 Hβ
J−1 · · · 0 Hψ

J−1
...

...
...

...

0 0 · · · Hβ
1 Hψ

1


.

Then the regression model can be written as Y ∗(θ) = Zθ, with

θ̂ = arg min
θ
‖Y ∗(θ)− Zθ‖2.

By doing so, we summarize all stages Q-functions in one system of equations. J(θ) = ‖Y ∗(θ)−Zθ‖2 can

be identified as the (approximate) squared Bellman error [26]. Due to the non-smooth maximization
8All or part of decision rule parameters can be assumed to be the same, since they are vectors with sometimes different

lengths.
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operation used in defining the pseudo-outcomes, algorithms that directly minimize the squared Bellman

error can be unstable and may not converge [9, 27]. Hence instead of minimizing the squared Bellman

error, the estimating equation with Bellman residual proposed by Chakraborty et al. [11] is: ZT ·

(Y ∗(θ) − Zθ) = 0. Since Y ∗(θ) depends on the parameters θ via the maximization, the estimating

equation is non-linear, thus an iterative method needs to be used.

Algorithm

Algorithm 2.2 Shared Q-Learning

• Step 1: Propose initial values for θ, denoted θ̂(0) = (β̂
(0)
J , β̂

(0)
J−1, · · · , β̂

(0)
1 , ψ̂(0))T , and set t = 1.

• Step 2: Calculate Y ∗(θ̂(t)) using θ̂(t−1) .

• Step 3: Solve the estimating equation ZT · (Y ∗(θ̂(t))−Zθ) = 0 for θ to obtain θ̂(t+1), increment t.

• Step 4: Repeat step 2 and step 3 until convergence: ‖θ̂(t+1) − θ̂(t)‖ < ε.

The choice of initial value of θ could be taken from estimates of unshared Q-learning, denoted as

θ̂
(0)
j , j = J, ..., 1, or just using fixed values such as 0 throughout. Note that for shared parameter ψ,

we need to map J distinct estimates ψ̂j into one ψ̂: ψ̂(0) = f(ψ̂
(0)
J , ψ̂

(0)
J−1, ..., ψ̂

(0)
1 ) if we choose to use

unshared Q-learning to obtain the initial value.

The following are some possible choice of initial estimates:

1. Simple Average:

θ̂(SA) = (β̂
(0)
J , ..., β̂

(0)
1 , ψ̂(SA)),

where ψ̂(SA) = 1
J

∑J
j=1 ψ̂

(0)
j .

2. Inverse Variance Weighted Average:

θ̂(IVWA) = (β̂
(0)
J , ..., β̂

(0)
1 , ψ̂(IVWA)),

where ψ̂(IVWA) =
∑J
j=1

ψ̂
(0)
j

σ̂2
j
/
∑J
j=1

1
σ̂2
j
, and σ̂2

j is the estimated variance of ψ̂(0)
j .
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3. Maximum:

θ̂(MAX) = (β̂
(0)
J , ..., β̂

(0)
1 , ψ̂(MAX)),

where ψ̂(MAX) = max{ψ̂(0)
1 , ..., ψ̂

(0)
J }.

4. Minimum:

θ̂(MIN) = (β̂
(0)
J , ..., β̂

(0)
1 , ψ̂(MIN)),

where ψ̂(MIN) = min{ψ̂(0)
1 , ..., ψ̂

(0)
J }.

5. Zeros:

θ̂(ZERO) = (0, ..., 0, 0).

Chakraborty et al. found that there was no dependence of the estimates on the initial values, however

the algorithm converged faster when the initial values were closer to the true values [11].

2.4 G-estimation

Nearly two decades ago, Robins proposed a new method for finding optimal DTRs called G-estimation

using the structural nested mean model (SNMM) [6]. Murphy [5] proposed the first semi-parametric

approaches, which was later shown to be a special case of G-estimation [28].

As opposed to Q-learning, G-estimation models contrasts of the conditional expectation of outcomes

rather than modeling the conditional expectation of the outcomes themselves. G-estimation is similar

to Q-learning in concept, but requires additional modeling; in return it provides increased robustness

to model miss-specification.

2.4.1 Structural Nested Mean Models (SNMM)

The SNMM proposed by Robins is used to model the effect of a treatment as a function of the

covariate history up to that stage. In a two stage setting, E[Y (a1, a2) − Y (a1, a
′
2)|H2] is a SNMM; it

only models the difference in outcomes under different treatment regimes rather than outcomes. The

SNMM has variety of forms, and the blip model is a one of them.
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Define the optimal blip-to-reference function:

γj(hj , aj) = E[Y (āj , d
opt
j+1)− Y (āj−1, d

ref
j , doptj+1)|Hj = hj ].

When the “zero” regime is taken as reference regime, it becomes the optimal blip-to-zero function:

γj(hj , aj) = E[Y (āj , d
opt
j+1)− Y (āj−1, 0j , d

opt
j+1)|Hj = hj ],

where the “zero” treatment refers to some meaningful treatment such as placebo or standard care.

The optimal blip-to-zero function measures the expected difference between the average outcome for

someone who received treatment aj at stage j and someone who is given the “zero” treatment at stage j.

Both subjects have the same covariate and treatment history, and will be treated optimally from stage

j + 1 onward. This can be viewed as the expected effect of treatment aj9.

Another variant of the blip function is the regret function, defined as:

µj(hj , aj) = E[Y (āj−1, d
opt
j )− Y (āj , d

opt
j+1)|Hj = hj ],

or equivalently: µj(hj , aj) = max γj(aj)− γj(aj). The regret function is the negative of the optimal

blip-to-reference function where the optimal treatment is taken to be the reference regime. Without

further specification, blip function refers to the optimal blip-to-zero function in this thesis.

2.4.2 Unshared G-estimation

Having now discussed the necessary preliminaries of G-estimation, I will now give the details of it.

G-estimation estimates the parameters ψ of the optimal blip function via a combination of regression

models and estimating equations [29]. Define

Gj(ψ) = Y − γj(hj,aj ;ψ) +
∑J
k=j+1[γk(hk, d

opt
k ;ψ)− γk(hk, ak;ψ)].

where γk(hk, d
opt
k ;ψ) = E[Y (āk−1, d

opt
k , doptk+1) − Y (āk−1, 0k, d

opt
k+1)|Hk = hk], is the blip function inter-

preted as a subject’s outcome adjusted by the difference between the expected outcome for someone

who received optimal regime and someone received the zero regime at stage k, both of them have the

same treatment and covariate history up to stage k − 1, and treated with optimal regime from stage
9This blip can be interpreted as the expected (counterfactual) difference in outcome due to treatment aj relative to

zero.
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k + 1 onward. Similarly, γk(hk, ak;ψ) = E[Y (āk, ak, d
opt
k+1) − Y (āk, 0k, d

opt
k+1)|Hk = hk] is the difference

in expected outcome caused by taking observed regime ak instead of zero regime at stage k. Thus

γk(hk, d
opt
k ;ψ)−γk(hk, ak;ψ) is the difference in expected outcome caused by taking the optimal regime

over observed regime ak at stage k. Gj(ψ) then can be interpreted as subject’s outcome adjusted by the

expected effect of taking optimal regime from stage j+ 1 and onward. Imagine the patient can actually

time travel back to the time point j, if he now makes “perfect” treatment decisions (optimal regime) for

the current stage and all the following stages, then Gj(ψ) will be his outcome under this scenario.

Robins has proposed the following estimating equation:

U(ψ) =
∑J
j (Gj(ψ)− E[Gj(ψ)|Hj ;βj ])(Sj(Aj)− E[Sj(Aj)|Hj ;αj ]),

where Sj(Aj) is a vector-valued function that contains variables thought to interact with treatment to

effect a difference in expected outcome, here let Sj(Aj) =
∂γj
∂ψj

10. Here we assume the blip γj(Hj , Aj ;ψj)

is always correctly specified, under this premise, Robins proved that the estimators have the double

robustness property, i.e. the estimators of ψs are consistent if either the expected treatment-free outcome

model E[Gj(ψ)|Hj , βj ] or the treatment model pj(Aj = 1|Hj ;αj), used to compute E[Sj(Aj)|Hj ;αj ],

is correctly specified [10].

Algorithm

The unshared G-estimation algorithm can be described as follows:

10As we will see later, Sj(Aj) = Hψ
j Aj , and it is closely related to the treatment model pj(Aj = 1|Hj ;αj), also note

this probability is in fact the propensity score.
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Algorithm 2.3 Unshared G-estimation
• Step 1: Propose the optimal blip-to-zero function model:

γj(Hj , Aj ;ψ) = E[Y (āj , aj , d
opt
j+1)− Y (āj−1, 0j , d

opt
j+1)|Hj = hj ] = (ψTj H

ψ
j )Aj .

• Step 2: Set the recursive G-function:

Gj(ψ) = Y − γj(Hj , aj ;ψj) +

J∑
k=j+1

[γk(Hk, d
opt
k ;ψk)− γk(Hk, ak;ψk)].

• Step 3: Propose the expected treatment free outcome model:

E[Gj(ψj)|Hj = hj ;βj ] = βTj H
β
j ,

and βj is estimated as a function of ψj from data using OLS. Denote this as β̂j(ψj), obtained from the
estimating equation of β̂j : E[Hβ

j (Yj − ψTj H
ψ
j Aj − βTj H

β
j )] = 0.

• Step 4: Propose a treatment model:
p(Aj |Hj ;αj).

Set Sj(Aj) =
∂γj
∂ψj

= Hψ
j Aj , then E[Sj(Aj)|Hj ;αj ] = E[Hψ

j Aj |H
ψ
j ;αj ] = Hψ

j ·E[Aj |Hj ;αj ] is a function
of pj(Aj = 1|Hj ;αj), and αj is usually estimated from the data using logistic regression.

• Step 5: Construct the estimating function:

Uj(ψj) = (Gj(ψj)− E[Gj(ψj)|Hj = hj ;βj ])(Sj(Aj)− E[Sj(Aj)|Hj = hj ;αj ]).

Plugging in Gj(ψj), E[Gj(ψj)|Hj = hj ;βj ], Sj(Aj) and E[Sj(Aj)|Hj = hj ;αj ] into the function, we
have:

Uj(ψj) = Pn[(Ŷj − ψTj H
ψ
j Aj)− β

T
j H

β
j ] · [Hψ

j Aj − E[Hψ
j Aj |Hj ;αj ]],

where ŶJ = Y .

• Step 6: Estimate ψ̂j by solving the equation system Uj(ψj) = 0 with substitution of the estimates
of β̂j and α̂j .

• Step 7: Move one stage backwards, calculate the stage specific pseudo-outcome:

Ŷj = Y +
∑J
k=j+1[−γk(Hk, Ak; ψ̂k) + γk(Hk, d

opt
k ; ψ̂k)], or

Ŷj = Y +

J∑
k=j+1

[−Hψ
k ψ̂kAk + (Hψ

k ψ̂kAk)+],

is the observed outcome “taking off” the expected effect of observed treatment, then adding back the
expected effect of the optimal treatment.

• Step 8: Repeat from step 1 to step 7 till reached stage 1.

25



Remark 1: Here we proposed three models in total:

• optimal blip-to-zero models: γj(Hj , Aj ;ψj) = (ψTj H
ψ
j )Aj ,

• expected treatment free models: E[Gj(ψj)|Hj = hj ;βj ] = βTj H
β
j , and

• treatment models: p(Aj |Hj ;αj) or E[Aj |Hj ;αj ].

The optimal-to-zero blip models are always assumed to be correctly specified. As long as one of the last

two models is correctly specified, the estimators ψ̂j are consistent. The first two models together are

equivalent to the Q-function models; i.e., the Q-function is E[Y |H,A;ψ, β] = βTHβ + A · (ψTHψ) =

E[G(ψ)|H;β] + γ(H,A;ψ).

Remark 2: I have mentioned pseudo-outcome both in Q-learning and G-estimation, but they are

different. In Q-learning, the pseudo-outcome is the predicted outcome under the optimal treatment

E[Y |Aopt]. In G-estimation, the pseudo-outcome is the observed outcome taking off the expected effect

of observed treatment, then adding in the expected effect of the optimal treatment. In addition, the

pseudo-outcome in Q-learning relies on the estimates of βj , and the pseudo-outcome in G-estimation

does not:

Ŷ Qj = max
aj+1

Qj+1(Hj+1, aj+1; β̂j+1, ψ̂j+1) = β̂j+1H
β
j+1 + (ψ̂j+1H

ψ
j+1)+.

Ŷ Gj = Y +
∑J
k=j+1[−Hψ

k ψ̂kAk + (Hψ
k ψ̂kAk)+];

or with recursive fashion Ŷ Gj = Ŷj+1 + [−Hψ
j+1ψ̂j+1Aj+1 + (Hψ

j+1ψ̂j+1Aj+1)+]. Note also that with

the usage of the pseudo-outcome, we could simplify the notation for the stage j G-function to:

Gj(ψ) = Ŷj − γj(hj , aj ;ψj),

or equivalently, Gj(ψ) = Y +
∑J
k=j µk(ψ) with the regrets parameterization. From this point forward,

the term pseudo-outcome will be used without specifying its definition, with the appropriate choice for

each of Q-learning and G-estimation being assumed.

Example

Here we consider an example with 3 stages:
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• Stage 3:

Step 1: Propose the optimal blip-to-zero model:

γ3(H3, a3;ψ3) = E[Y (ā3)− Y (ā2, 03)|H3] = Hψ
3 ψ3A3.

Step 2: Set the G-function GJ(ψJ) = Y − γJ(HJ , aJ ;ψJ):

G3(ψ3) = Y − γ3(H3, a3;ψ3) = Y −Hψ
3 ψ3A3.

Step 3: Propose the expected treatment free outcome model:

E[G3(ψ3)|H3 = h3;β3] = E[Y − γ3(H3, a3;ψ3)] = Hβ
3 β3 +Hψ

3 ψ3A3 −Hψ
3 ψ3A3 = Hβ

3 β3.

β̂3(ψ3) = ((Hβ
3 )THβ

3 )−1(Hβ
3 )T (Y −Hψ

3 ψ3A3) is the OLS estimator with response as Y −Hψ
3 ψ3A3,

and the covariate is Hβ
3 .

Step 4: Propose the treatment model: E[A3|H3;α3].

Since Sj(Aj) =
∂γj
∂ψj

= Hψ
j Aj , S3(A3) = Hψ

3 A3. Then we have E[S3(A3)|H3;α3] = Hψ
3 E[A3|H3;α3],

and α̂3 is estimated using some possibly non-parametric methods.

Step 5: Construct the stage 3 estimation function:

U3(ψ3) = Pn[(Y −Hψ
3 ψ3A3)−Hβ

3 β̂3] · [Hψ
3 A3 −Hψ

3 E[A3|H3; α̂3]],

Step 6: Solve U3(ψ3) = 0 to estimate ψ3.

Step 7: Compute the stage 2 pseudo-outcome Ŷ2 = Y −Hψ
3 ψ̂3A3 + (Hψ

3 ψ̂3A3)+.

• Stage 2:

Step 1: Propose the optimal blip-to-zero model:

γ2(H2, a2;ψ2) = E[Y (ā2, d
opt
3 )− Y (a1, 02, d

opt
3 )|H2] = Hψ

2 ψ2A2.

And from stage-3 blip model, we have:

γ3(H3, d
opt
3 ;ψ3) = E[Y (ā2, d

opt
3 )− Y (ā2, 03)|H3] = (Hψ

3 ψ3A3)+.
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Step 2: Set the G-function 11:

G2(ψ2) =Y − γ2(h2,a2;ψ2) + [γ3(h3, d
opt
3 ;ψ3)− γ3(H3, a3;ψ3)]

=Y −Hψ
2 ψ2A2 −Hψ

3 ψ3A3 + (Hψ
3 ψ3A3)+

With the substitution of ψ̂3 and Ŷ2,

G2(ψ2) = Y −Hψ
2 ψ2A2 −Hψ

3 ψ̂3A3 + (Hψ
3 ψ̂3A3)+

= Ŷ2 −Hψ
2 ψ2A2

Step 3: Propose the expected treatment free outcome model:

E[G2(ψ2)|H2;β2] = Hβ
2 β2.

Hence β̂2(ψ2) = ((Hβ
2 )THβ

2 )−1(Hβ
2 )T (Ŷ2 −Hψ

2 ψ2A2) via linear regression.

Step 4: Propose the treatment model: E[A2|H2;α2]. Since S2(A2) = Hψ
2 A2, then E[S2(A2)|H2; α̂2] =

Hψ
2 E[A2|H2; α̂2].

Step 5: Construct the stage 2 estimating function:

U2(ψ2) = Pn[(Ŷ2 −Hψ
2 ψ2A2)−Hβ

2 β̂2] · [Hψ
2 A2 −Hψ

2 E[A2|H2; α̂2]]

Step 6: Solve U2(ψ2) = 0 to estimate ψ2.

Step 7: Calculate the stage 1 pseudo-outcome Ŷ1 = Y − Hψ
3 ψ̂3A3 + (Hψ

3 ψ̂3A3)+ − Hψ
2 ψ̂2A2 +

(Hψ
2 ψ̂2A2)+

12.

• Stage 1:

Step 1: Propose the optimal blip-to-zero model:

γ1(H1, a1;ψ1) = E[Y (a1, d
opt
2 )− Y (01, d

opt
2 )|H1] = Hψ

1 ψ1A1.

And from the stage-2 blip model, we have:

γ2(H2, d
opt
2 ;ψ2) = E[Y (a1, d

opt
2 )− Y (a1, 02, d

opt
3 )] = (Hψ

2 ψ2A2)+.

Step 2: Set the G-function:

G1(ψ1) = Ŷ1 − γ1(H1, a1;ψ1).

11With Aj ∈ {0, 1}, (Hψ
3 ψ3A3)+ =

H
ψ
3 ψ3+|Hψ3 ψ3|

2
12If express Ŷ1 with regrets, Ŷ1 = Y + µ3(H3, A3) + µ2(H2, A2).
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Then,

G1(ψ1) = Y −Hψ
3 ψ̂3A3 + (Hψ

3 ψ̂3A3)+ −Hψ
2 ψ̂2A2 + (Hψ

2 ψ̂2A2)+ −Hψ
1 ψ1A1.

Step 3: Propose the expected treatment free outcome model:

E[G1(ψ1)|H1;β1] = Hβ
1 β1.

Estimate β1 using OLS : β̂1(ψ1) = ((Hβ
1 )THβ

1 )−1(Hβ
1 )T (Ŷ1 −Hψ

1 ψ1A1).

Step 4: Propose the treatment model: E[A1|H1;α1]. With the estimate of α1, S1(A1) = Hψ
1 A1,

E[S1(A1)|H1; α̂1] = Hψ
1 E[A1|H1; α̂1].

Step 5: Construct the stage 2 estimation function:

U1(ψ1) = Pn[(Ŷ1 −Hψ
1 ψ1A1)−Hβ

1 β̂1] · [Hψ
1 A1 −Hψ

1 E[A1|H1; α̂1]].

Step 6: Solve U1(ψ1) = 0 to estimate ψ1.

Finally, we find that dopt1 is 1 when H1ψ̂1 ≥ 0 and 0 otherwise, and similarly for dopt2 and dopt3 . The

optimal DTR then is d = {dopt1 , dopt2 , dopt3 }.

2.5 Dynamic Weighted Ordinary Least Squares

From section 2.3 and 2.4, we see that the Q-learning approach is relatively easy to implement but

suffers from a lack of robustness; G-estimation offers double robustness property but is sometimes

difficult to understand and implement.

Wallace and Moodie [7] proposed an new approach to DTR estimation: dynamic weighted ordinary

least squares (dWOLS). The dWOLS combines the intuitiveness of Q-learning and double robustness of

G-estimation together with only some minor pre-computations and implementation of standard weighted

ordinary least squares regression.

With the same setup as Q-learning and G-estimation, the algorithm of dWOLS is:
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Algorithm 2.4 dWOLS
For each step j = J...1

• Propose the stage j regret function, or equivalently the blip function:

µj(Hj , Aj ;ψj) = γj(Hj , A
opt
j ;ψj)− γj(Hj , Aj ;ψj) = (Hψ

j ψjAj)+ −H
ψ
j ψjAj

• Propose the stage j treatment free outcome model:

E[Ŷj |Hj ;βj , ψj ] = βjH
β
j + ψjH

ψ
j Aj

• Calculate the stage j pseudo-outcome:

Ŷj = Y +

J∑
k=j+1

µk(Hk, Ak; ψ̂k),

where ψ̂k are taken from previous stages of estimation, notice this is identical to the pseudo-outcome of
G-estimation.

• Perform a weighted regression of Ŷj on {Hβ
j , H

ψ
j Aj} with weights wj(aj , Hj) that satisfy criteria

π(H)w(1, H) = (1− π(H))w(0, H) to estimate ψ̂j , where π(H) = P (A = 1|H).

• Move one stage back, till reached stage 1.

For the selection of wj , Wallace and Moodie have proposed some possible choices of weights wj :

1. w1i = |ai − P (Ai = 1|Hi)|,

2. w2i = [P (Ai = ai|Hi)]
−1,

3. w3i = 1ai=1 + 1ai=0
P (Ai=1|H)

1−P (Ai=1|H) , or

4. w4i = 1ai=0 + 1ai=1
1−P (Ai=1|H)
P (Ai=1|H) .

All of above weights satisfy π(H)w(1, H) = (1−π(H))w(0, H), which will provide consistent estimators

of ψ.

The dWOLS takes the form of Q-learning which is relatively easy to understand and perform, and

assures the double robustness property by introducing specialized weights w. Hence, the results from

dWOLS can compete, and sometimes out-perform G-estimation in terms of efficiency [7].
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2.6 Summary

I have reviewed three regression-based approaches for DTR estimation: Q-learning, G-estimation and

dWOLS. Q-learning models the conditional mean outcomes, while G-estimation and dWOLS models

the contrast between optimal (counterfactual) treatment and observed treatment. In contrast, the

value search approaches target directly to the parameters of the treatment rule itself rather than the

parameters of the mean outcome model or the contrast model, and these have not been detailed here.

The Q-learning approach is easy to understand and implement, but it is a singly-robust method,

the consistent estimators are only guaranteed by the correct specification of the Q-function models.

G-estimation and dWOLS are doubly-robust, but requires additional modeling of the treatment.

As already showed in section 2.3, Q-learning can be implemented in the presence of shared parameters

of decision rules. Due to the natural resemblance of Q-learning and G-estimation, I want to extend G-

estimation to the case with shared decision rules. I will fill this gap in the DTR literature in the next

chapter.
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Chapter 3

Shared G-estimation

3.1 Proposed Approach

In the previous chapter, the unshared parameter G-estimation was introduced. Here I show that it

can be extended to the shared parameter case similar to Q-learning. The shared parameter G-estimation

has previously been implemented by minimizing the squared Bellman error J(θ) = ‖Y ∗(θ)− Zθ‖2 [28].

As discussed in 2.3.2, an algorithm aimed directly at minimizing the squared Bellman error could be

unstable. Thus I will proceed with an alternative approach.

As I have already addressed in shared Q-learning, due to the fact that the parameter ψ is shared

through stages, we have to solve for ψ̂ simultaneously across all stages rather than solving ψ̂j backwards

for each stage separately.

I propose the following estimating system of equations, instead of J different estimating equations:

U(ψ) =



Pn(GJ(ψ)− E[GJ(ψ)|HJ ; β̂J ])(SJ(AJ)− E[SJ(AJ)|HJ ; α̂J ]) = 0

...

Pn(Gj(ψ)− E[Gj(ψ)|Hj ; β̂j ])(Sj(Aj)− E[Sj(Aj)|Hj ; α̂j ]) = 0

...

Pn(G1(ψ)− E[G1(ψ)|H1; β̂1])(S1(A1)− E[S1(A1)|H1; α̂1]) = 0
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where

Gj(ψ) = Ŷj − γj(Hj , aj ;ψ) = Ŷj − ψHψ
j Aj

1 ,

E[Gj(ψ)|Hj = hj ;βj ] = βjH
β
j ,

Sj(Aj) =
∂γj
∂ψ = Hψ

j Aj , and

E[Sj(Aj)|Hj ;αj ] = E[Hψ
j Aj |H

ψ
j ;αj ] = Hψ

j · E[Aj |Hj ;αj ].

Similar to unshared G-estimation, βj can be expressed as a function of ψ via regression, and E[Aj |Hj ;αj ]

can be estimated separately from the treatment model. Unfortunately, unlike in unshared G-estimation,

Ŷj cannot be calculated by plugging in the estimates of ψ from subsequent stages since it is shared

through all stages. Thus there is no closed form solution for Ŷj , and an iterative procedure needs to be

employed instead.

The ψ̂ could be estimated with the following fashion:

1Ŷj = Ŷj+1 + [−Hψ
j+1ψ̂Aj+1 +(Hψ

j+1ψ̂Aj+1)+] or Ŷj = Y +
∑J
k=j+1[−H

ψ
k ψ̂Ak +(Hψ

k ψ̂Ak)+] is the pseudo-outcome.
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Algorithm 3.1 Shared G-estimation

• Step 1: Propose initial value of ψ, denote as ψ̂(t=0).

• Step 2: Propose the model of optimal blip-to-zero function for all stages (j = 0, 1, · · · , J):

γj(Hj , Aj ;ψ) = (ψTHψ
j )Aj .

• Step 3: Calculate the pseudo-outcome for all stages:

ŶJ = Y , and
Ŷj = Ŷj+1 −Hψ

j+1ψ̂
(t)Aj+1 + (Hψ

j+1ψ̂
(t)Aj+1)+

• Step 4: Define Gj(ψ) = Y − γj(Hj , Aj ;ψ) +
∑J
k=j+1[γk(Hk, d

opt
k ;ψ) − γk(Hk, Ak;ψ)], or equiva-

lently:

Gj(ψ) = Ŷj − γj(Hj , Aj ;ψ).

• Step 5: Propose the expected treatment-free outcome model E[Gj(ψ)|Hj ;βj ] = βjH
β
j , where

βj can be estimated as a function of ψ(t) with the estimating equation E[Hβ
j (Yj − ψ(t)Hψ

j Aj −
βjH

β
j )] = 0.

• Step 6: Propose the treatment model: E[Sj(Aj)] = E[Hψ
j Aj |Hj ] which is equivalent to proposing

a model for Pj(Aj = 1|Hj ;αj), and estimate its parameters for all j.

• Step 7: Construct the estimating system of equations, which is constituted by the J stage-specific
equations below,

Uj(ψ) = Pn[Gj(ψ)− E[Gj(ψ)|Hj ;βj ]] · [Sj(Aj)− E[Sj(Aj)|Hj ;αj ]] = 0, or
Uj(ψ) = Pn[Ŷj − γj(Hj , Aj ;ψ)− E[Ŷj − γj(Hj , Aj ;ψ)|Hj ]] · [Hψ

j Aj − E[Hψ
j Aj |Hj ;αj ]] = 0.

• Step 8: Increment t, solve the step 7 system of equations for ψ̂, and use it as the values of ψ̂(t+1).

• Step 9: Re-calculate the pseudo-outcome using ψ̂(t+1), and repeat the above procedures (from step
3 to step 8) till convergence: ‖ψ̂(t+1) − ψ̂(t)‖ < ε.

With the estimates of ψ, we can identify the optimal DTRs: doptj = 1 when Hjψ̂ ≥ 0 and doptj = 0

otherwise. Just as in the shared Q-learning, there are various choices of the initial values that could be

used for shared G-estimation, including a zero vector ψ̂(ZERO), or estimates from other methods like

unshared G-estimation: ψ̂(SA), ψ̂(IVWA), ψ̂(MAX) or ψ̂(MIN).
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3.2 Example

Here are the details of shared G-estimation with a 3-stage example illustrated using a matrix for-

mulation. Wallace (2016) [30] showed a more friendly presentation of G-estimation as follows:

Rewrite the estimating equation as

Uj(ψ) =

n∑
i=1

{Hψ
ji[Ŷji − ψ

THψ
jiAji − β

T
j H

β
ji] · [Aji − E[Aji|Hji; α̂j ]]} = 0

Calculate β̂j using OLS:

∑n
i=1[Hβ

ji(Yji − ψTH
ψ
jiAji − βTj H

β
ji)] = 0.

Combining the above two equations together gives:

 Hβ
j

Hψ
j (Aj − E[Aj |Hα

j ; α̂j ])

 (Yj −AjHψ
j ψ −H

β
j βj) = 0 (3.1)

where the predicting variables, tailoring variables and treatments: Hβ
j , H

ψ
j and Aj are matrices with n

rows for stage j.

For simplicity, re-defining Hδ
j = (Hβ

j , AjH
ψ
j ), Hω

j = (Hβ
j , (H

ψ
j )T (Aj − E[Aj |Hα

j ; α̂j ])), and δj =

(βj , ψ), rewrite (3.1) as:

(Hω
j )T (Yj −Hδ

j δj) = 0.

Solve for δj : δj = ((Hω
j )THδ

j )−1(Hω
j )T Ŷj .

Now merge all the single-stage calculations into one, which could be done by the following:

With the estimates ψ̂k (k starts from zero), we can calculate all three stages pseudo-outcome for kth

iterations:

Ŷ3 = Y ,

Ŷ2 = Y −Hψ
3 ψ̂

(k)A3 + (Hψ
3 ψ̂

(k))+ = Y −Hψ
3 ψ̂

(k)A3 + 1
2 (Hψ

3 ψ̂
(k) + |Hψ

3 ψ̂
(k)|),

Ŷ1 = Y −Hψ
3 ψ̂

(k)A3 + (Hψ
3 ψ̂

(k))+ −Hψ
2 ψ̂

(k)A2 + (Hψ
2 ψ̂

(k))+.
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Denote

Y ∗ =


Ŷ3

Ŷ2

Ŷ1

 ,

Hβ =


Hβ

1 , 0, 0

0, Hβ
2 , 0

0, 0, Hβ
3

 ,

Hψ =


Hψ

1

Hψ
2

Hψ
3

 .

If vector ψ has different length among stages, just fill the blank in Hψ up with 0, to ensure the

shared parts are aligned. Then

AHψ =


A1 ∗Hψ

1

A2 ∗Hψ
2

A3 ∗Hψ
3

 , and

Hψ(A− E[A|α]) =


Hψ

1 ∗ (A1 − E[A1|α1])

Hψ
2 ∗ (A2 − E[A2|α2])

Hψ
3 ∗ (A3 − E[A3|α3])

 ,

Let Hδ = (Hβ , AHψ), Hω = (Hβ , Hψ(A − E[A|α])) and δ = (β1, · · · , βJ , ψ), then finally, δ̂ =

((Hω)THδ)−1(Hω)TY ∗ will give the estimates of βj and ψ.

3.3 Simulated Example

I will further illustrate this newly proposed shared G-estimation approach with a simple simulated

example. But before that, I will introduce two characteristics that quantified the closeness between
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estimated optimal DTR and true optimal DTR2. First, define the stage specific matching rate Mj =

P [dψ̂j (Hj) = dψj (Hj)], e.g., M1 = P[(ψ̂0 + ψ̂1·X1 > 0) = (ψ0 + ψ1 ·X1 > 0)]. Averaging Mj over stages

then we have M =
∑J
j=1Mj

J . Secondly, define the overall matching rate over all stages M̃ = P [dψ̂ = dψ],

an overall matching implies the treatment decision from the estimated DTR agrees with the true DTR

for all stages for a subject. Thus the stage specific matching rate M and overall matching rate M̃ can

be used for measuring the proportion of subjects which their decision trajectories guided by estimated

optimal DTR agreed with those guided by the true unknown optimal DTR.

Data Generation

The longitudinal data have 3 stages, and no subject will drop out at either stages, i.e. we will

have the same number of subjects throughout all three stages. The data contains 200, 500 or 2000

subjects, and we will generate 1000 samples of data for mean of the estimates and variance. The data

are simulated with the following setup:

• Covariates Xj where j = 1, 2, 3

X1 ∼ Normal(10, 5),

X2 ∼ Normal(1.25 ·X1, 5),

X3 ∼ Normal(X1 +X2, 5).

• Treatments Aj ∈ {0, 1},

Aj ∼ Bernoulli(πj),

where

logit(π1) = 0.05 ·X1,
3

logit(π2) = −0.05 ·X2,

logit(π3) = 0.02 ·X3.

2Of course, we could always compare ψ̂ with ψ, but that is less intuitive and sometimes could not fully reflect how the
estimated optimal DTR differs from the true one in terms of each decision making.
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• Blips γj :

γ1 = A1 · (ψ0 + ψ1X1),

γ2 = A2 · (ψ0 + ψ1X2 + ψ2A1),

γ3 = A3 · (ψ0 + ψ1X3 + ψ2A2 + ψ3A1X1).

The regrets µj :

µj = max γj − γj .

• Values of ψs: (ψ0, ψ1, ψ2, ψ3) = (8, −1.2, 8, 3).

• Outcome:

Y = Normal(β10 + β11X1, 60)− µ1 − µ2 − µ3, 4

where β10 = 30, β11 = 3. The observed dataset contains only X1, A1, X2, A2, X3, A3 and Y .

Model Specification

Three models need to be specified at each stage:

1. Blip model: γ(H,A;ψ).

2. Treatment-free outcome model: G(H;β).

3. Treatment model: E[A|H;α]

Table 3.1 summarizes two scenarios for model specifications considered in the analysis of the simulated

data. Because the shared parameter G-estimation is a doubly robust method, analysis 1 will have

unbiased estimates of ψ and analysis 2 will not. We will use simulation to verify that 5.

3This is equivalent to A1 ∼ Bernoulli(expit(0.05 ·X1)).
4This is from G1(ψ) = Y + µ1 + µ2 + µ3 with E[G1|X1] = β10 + β11X1.
5We could also have an analysis 3 with correct G(H;β) and incorrect E[A|H;α]. However, with the way we generate the

data and primary outcome Y , we could only know the true form of stage 1 treatment-free outcome model E[G1(H1;β1)] =
β10 + β11X1, but not for stage 2 and 3. It is difficult to derive the true model for these under realistic data-generating
scenarios [11].
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Table 3.1: Two model specifications of G-estimation
γ(H,A;ψ) G(H;β) E[A|H;α] ψ

Analysis 1 X × X X

Analysis 2 X × × ×

For both analysis 1 and 2, the blip models are correct are specified as follows:

γ1 = A1 · (ψ0 + ψ1X1),

γ2 = A2 · (ψ0 + ψ1X2 + ψ2A1),

γ3 = A3 · (ψ0 + ψ1X3 + ψ
2
A2 + ψ3A1X1).

Analysis 1: Correct treatment, incorrect treatment-free outcome

Treatment models were correctly specified. And the treatment-free outcome models were assumed

with the following covariate specifications: Hβ
j = (1, Xj) for j = 1, 2, 3.

Analysis 2: Incorrect treatment, incorrect treatment-free outcome

The incorrect treatment model was assumed, with the analyst positing E[Aj ] = 0.1 for all three

intervals. As in Analysis 1, the following specification was used for the treatment-free models: Hβ
j =

(1, Xj) for j = 1, 2, 3.

Results

The analysis results are summarized in Table 3.2, and both analyses takes zero as initial value6.

From Table 3.2, it is clear that analysis 1, the one with correct treatment model has unbiased

estimates and higher matching rate in contrast to analysis 2; even though the treatment-free outcome

model is incorrect. This shows the shared parameter G-estimation has the robustness as we desire.

In addition to that, larger sample size can lower the bias of estimates and the variance as well. With
6The standard deviations are showed in brackets after their estimates.
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Table 3.2: Estimates and concordance of estimated and true optimal treatments averaged across stages
(M) or in all stages (M̃).

Sample Size ψ̂0 (ψ0 = 8) ψ̂1 (ψ1 = −1.2) ψ̂2 (ψ0 = 8) ψ̂3 (ψ3 = 3) M M̃

Analysis 1
n=200 9.717 (10.616) -1.163 (0.706) 5.450 (14.424) 2.871 (1.548) 0.933 0.810

n=500 8.517 (7.180) -1.185 (0.463) 7.068 (9.676) 2.962 (0.981) 0.973 0.922

n=2000 8.023 (3.614) -1.201 (0.231) 7.700 (5.246) 2.981 (0.470) 0.981 0.942

Analysis 2
n=200 10.500 (8.805) -0.897 (0.558) 1.155 (9.639) 1.799 (0.882) 0.810 0.500

n=500 8.950 (5.798) -0.868 (0.368) 1.561 (6.114) 1.777 (0.533) 0.854 0.634

n=2000 8.062 (2.963) -0.868 (0.186) 1.676 (3.286) 1.804 (0.245) 0.870 0.668

the correct treatment model, 500 subjects are enough for gaining a 92.2% correct decision rate for this

specific case. We further note that, although the first stage treatment-free model is correctly specified,

parameter estimates are biased due to contamination due to the incorrectly-specified second and third

stage models in analysis 2.

3.4 Summary

In this chapter, I have discussed a new computational approach to estimate the optimal DTRs using

G-estimation in the presence of shared parameters ψ. The estimators ψ̂ are consistent with either the

treatment-free outcome model E[Gj(ψ)|Hj = hj ;βj ] or treatment model p(Aj |Hj ;αj) correctly specified;

thus it is doubly robust [31]. Note there could be other good choice of Sj(Aj) besides Sj(Aj) =
∂γj
∂ψ

to provide more efficient estimates, but the optimal form of Sj(Aj) depends on the knowledge of the

variance of the outcome which is usually difficult to know [11]. This new approach permits one to

estimate the optimal DTR with a doubly robust method, which is superior to shared Q-learning.

As I noted in Chapter 2, for G-estimation (unshared or shared), one can split the expected outcome

(Q-function model) into the sum of two components: βTHβ +A · (ψTHψ), the first component βTHβ is

the impact of patient history in absence of treatments, named as treatment-free outcome model; and the

second component A · (ψTHψ) is the impact of treatment and named as blip model. In Q-learning one
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aim to find the optimal DTRs that maximize the Q-function. However, in G-estimation, researchers are

looking for the optimal DTRs that maximize A · (ψTHψ). Of course, under correct specification of the

treatment free model, the same parameters ψ will maximize both the Q-function and the blip function.

Q-learning (unshared or shared) is a singly robust method, where consistency of the estimators relies on

the specification of the Q-function model. In contrast, G-estimation (unshared or shared) is a doubly

robust method: as long as one of the treatment-free outcome model or treatment model is correct7, the

estimators are consistent. I have showed this property through a simple simulation by comparing results

from different model specifications.

In this chapter, I have implemented and demonstrated shared G-estimation on the simulated data.

In the next chapter, performance of the estimators will be compared among different methods.

7We always assume the blip model is correct in this thesis.
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Chapter 4

Simulation Study

In this chapter, I will conduct several simulations comparing different DTR estimating methods

including unshared Q-learning, shared Q-learning, unshared G-estimation and shared G-estimation with

different model specifications. For simplicity, the simulation will consider two stages, although it is

straightforward to implement the methods in more stages problem as shown in chapter 3.

4.1 Data Generation

The simulated data have 2 stages, and no subject is lost to follow-up. The dataset contains 200,

500 or 2000 subjects respectively, and I will generate 1000 samples of data for mean and variance of the

estimates. The data are generated as follows:

• Covariates X1 and X2:

X1 ∼ Normal(10, 5)

X2 ∼ Normal(1.25 ·X1, 5)

• Treatments A1 and A2, Aj ∈ {0, 1}:

A1 ∼ Bernoulli(expit(0.05 ·X1))

A2 ∼ Bernoulli(expit(−0.05 ·X2))
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• Blips γ1 and γ2:

γ1 = A1 · (ψ0 + ψ1X1)

γ2 = A2 · (ψ0 + ψ1X2 + ψ2A1)

The regrets µj :

µj = max γj − γj

• Values of ψs: ψ0 = 8, ψ1 = −1.2 and ψ2 = 8.

• Outcome:

Y = Normal(β10 + β11X1, 60)− µ1 − µ2, where β10 = 30 and β11 = 3.

The dataset contains the following variables: X1, A1, X2, A2 and Y .

4.2 Model Specification

Both analysis 1 and analysis 2 are based on the correct blip models and treatment models, but with

different treatment-free outcome models, just as in the first analysis of the previous chapter. However,

now we consider two incorrect forms of the treatment-free model at the second interval, where one is

more flexible and hence possible closer to the true model:

• Correct blip models:

γ1 = A1 · (ψ0 + ψ1X1)

γ2 = A2 · (ψ0 + ψ1X2 + ψ2A1)

• Correct treatment models 1:

logit(π(Aj = 1)) = log(
π(Aj=1)

1−π(Aj=1) ) = αjXj , j = 1, 2.
1The treatment models are only provided for G-estimation but not Q-learning
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Analysis 1:

• Simple, linear (non-flexible) treatment-free outcome models have the covariate specifications as

follows:

Hβ
1 = (1, X1)

Hβ
2 = (1, X2)

• Q-Model:

Q1 = β10 + β11 ·X1 +A1 · (ψ0 + ψ1 ·X1)

Q2 = β20 + β21 ·X2 +A2 · (ψ0 + ψ1 ·X2 + ψ2 ·A1)

Analysis 2:

• Flexible treatment-free outcome models have the covariate specifications as follows:

Hβ
1 = (1, X1)

Hβ
2 = (1, X2

1 , A1X
2
1 , X2, X

2
2 )

• Q-Model:

Q1 = β10 + β11 ·X1 +A1 · (ψ0 + ψ1 ·X1)

Q2 = β20 + β21 ·X2
1 + β22 ·A1 ·X2

1 + β23 ·X2 + β24 ·X2
2 +A2 · (ψ0 + ψ1 ·X2 + ψ2 ·A1)

In analysis 2, I add more explanatory variables to fit the treatment-free outcome model, to assess

whether it might increase the accuracy of the estimates. In both analysis 1 and analysis 2, the Q-models

are incorrectly specified (See the supplement of [11] for the correct functional form of Q-models, which

depends on non-linear functions of the blip model parameters).

4.3 Results

In this section, I first display the convergence plot for the shared G-estimation with different initial

values, those initial values are the zero, simple average (SA) and inverse variance weighted average

(IVWA) estimates from unshared G-estimation.
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Figure 4.1 shows that the estimates of shared G-estimation procedure with different initial values

converge after only a few iterations. Thus, we will only display the estimates of shared G-estimation

with simple average as initial values in Table 4.1 and Table 4.22.

Figure 4.1: Convergence patterns of ψ0, ψ1 and ψ2 for shared G-estimation with three different initial
values

For unshared Q-learning and unshared G-estimation, I display their simple average estimates instead

of stage specific estimates. For shared Q-learning, the estimates are calculated with the initial value

zero. And for shared G-estimation, I choose their simple average estimates from unshared G-estimation

for the initial value. The estimated results are showed in Tables 4.1 and 4.23.

2Actually, the estimates of shared G-estimation for this simulated example are exactly the same with different initial
values.

3The standard deviations are showed in brackets after their estimates.
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Table 4.1: Analysis 1: Non-flexible treatment-free outcome model, ψ0 = 8, ψ1 = −1.2 and ψ2 = 8

Sample Size Method ψ̂0 ψ̂1 ψ̂2 M M̃

n=200

unshared Q 7.087 (14.404) -1.003 (1.082) 3.032 (15.411) 0.935 0.872

shared Q 8.151 (9.577) -0.706 (0.823) 0.907 (9.144) 0.764 0.583

unshared G 6.969 (14.858) -1.127 (1.110) 8.706 (19.317) 0.973 0.947

shared G 9.160 (15.171) -1.125 (1.210) 6.885 (14.100) 0.925 0.855

n=500

unshared Q 6.416 (9.063) -0.947 (0.690) 2.875 (9.493) 0.942 0.884

shared Q 6.896 (5.457) -0.658 (0.523) 0.920 (5.857) 0.801 0.650

unshared G 6.670 (9.260) -1.106 (0.705) 8.311 (11.678) 0.973 0.947

shared G 7.738 (8.694) -1.151 (0.687) 7.656 (7.993) 0.997 0.994

n=2000

unshared Q 7.358 (4.523) -1.013 (0.351) 2.698 (4.644) 0.924 0.852

shared Q 6.815 (3.109) -0.680 (0.260) 1.260 (2.864) 0.823 0.686

unshared G 7.932 (4.544) -1.197 (0.358) 7.932 (6.056) 0.997 0.995

shared G 8.183 (4.151) -1.212 (0.329) 7.996 (4.304) 0.996 0.993
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Table 4.2: Analysis 2: Flexible treatment-free outcome model, ψ0 = 8, ψ1 = −1.2 and ψ2 = 8

Sample Size Method ψ̂0 ψ̂1 ψ̂2 M M̃

n=200

unshared Q 7.907 (14.982) -1.177 (1.137) 7.243 (16.441) 0.991 0.982

shared Q 9.891 (10.424) -1.235 (1.005) 6.729 (10.993) 0.941 0.886

unshared G 7.089 (14.866) -1.139 (1.112) 8.426 (19.186) 0.979 0.958

shared G 9.201 (15.208) -1.136 (1.206) 6.901 (13.780) 0.928 0.861

n=500

unshared Q 7.531 (9.340) -1.146 (0.730) 6.849 (9.955) 0.984 0.969

shared Q 8.840 (6.546) -1.174 (0.626) 6.331 (6.707) 0.958 0.918

unshared G 6.760 (9.170) -1.115 (0.704) 8.289 (11.466) 0.975 0.950

shared G 7.760(8.605) -1.156 (0.685) 7.666 (7.968) 0.998 0.996

n=2000

unshared Q 8.543 (4.707) -1.224 (0.378) 6.775 (5.002) 0.975 0.950

shared Q 8.842 (3.423) -1.208 (0.312) 6.834 (3.452) 0.968 0.936

unshared G 7.937 (4.519) -1.198 (0.357) 7.945 (5.995) 0.997 0.994

shared G 8.174 (4.136) -1.212 (0.327) 8.004 (4.285) 0.997 0.994

As one can see from Tables 4.1 and 4.2, larger sample size can provide less estimation bias and

lower variance for all methods, although the shared Q-learning in particular remains biased with the

simple, incorrectly specified Q-function. In addition, larger sample size also leads to higher averaged

stage specific and overall matching rates M and M̃ . In this specific simulated example, the choice

of initial values for the shared G-estimation did not have any impact on the final estimates, but the

initial values that were closer to the true values can result in less computation time. In general, the

G-estimation methods outperform the Q-learning methods in terms of both bias and matching rates, due

to the incorrect specifications of Q-models and the robustness of G-estimation. Although the unshared

and shared Q-learning are biased procedures in this case, we can still reduce the bias by implementing

a more flexible outcome model.

Other than the general discussions above, there is also one interesting finding I think worth to bring

up in here: the unshared Q-learning methods performs better than shared Q-learning in this case.

Under the proposed data generation scheme, the Q1 function is correctly specified since both treatment-
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free outcome model and blip model are correct, and Q2 function is not due to the unknown stage 2

treatment-free outcome model. Because the unshared Q-learning solves Q1 and Q2 separately and the

shared Q-learning solves them simultaneously, the incorrectQ2 might compromises the overall estimation

in the shared Q-learning method. The G-estimation has assured consistent estimates, although the extra

treatment model could lead to small increase in variance of the estimators.

4.4 Summary

In this chapter, I have conducted several simulation studies with different settings and showed

the superiority of the newly proposed shared G-estimation algorithm as compared to Q-learning and

unshared G-estimation in the presence of shared parameters. By introducing the averaged stage specific

matching rate M and overall matching rate M̃ , I compared different DTR estimation methods not

only through the estimates themselves, but also via those matching rates. In the next chapter I will

implement the above-considered methods on a real dataset.
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Chapter 5

Data Analysis

In the previous chapters, I have conducted simulations with known data generation mechanism.

However, the true blip models, treatment-free outcome models, and treatment models are often unknown

with real data.

As I introduced earlier, the SMART design was developed to provide high-quality data to construct

DTRs. By randomizing patients multiple times, researchers are able to assess effectiveness of treatment

for each stage without fear of confounding. In this chapter, I will apply the proposed shared G-estimation

method to data from a SMART design.

5.1 The Sequenced Treatment Alternatives to Relieve Depres-

sion Study

The sequenced treatment alternatives to relieve depression study, or STAR*D, funded by NIMH

is a SMART aimed to assess the effectiveness of depression treatments in patients diagnosed with

major depressive disorder under different treatment regimes. The study was conducted over a seven-

year period, enrolled 4,041 participants, and all the participants were diagnosed with major depressive

disorder1.
1https://www.nimh.nih.gov/funding/clinical-research/practical/stard/index.shtml
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The scheme for treatment assignment is given in Figure 5.1. At level 1, all the patients were treated

with citalopram (CIT). Those who responded well to the CIT treatment remained on this treatment2;

and those who did not respond well to the CIT treatment moved to level 2. At level 2, depending on their

preference, the participants could either choose to switch or augment. Patients who chose switch were

randomly assigned to one of four treatments: bupropion (BUP), cognitive psychotherapy (CT), sertraline

(SER), or venlafaxine (VEN). Those who chose augmentation were randomly assigned to one of three

options: CIT+BUP, CIT+buspirone (BUS) or CIT+CT. For those who received CT or CIT+CT at level

2, if the response were unsatisfactory, they moved to the supplementary level 2a. At level 2a, they were

randomized to either BUP or VEN. Participants who did not respond well at level 2 or level 2a would

move to level 3. At level 3, based on their preference, patients were randomly assigned to switch to either

mirtazapin (MIRT) or nortriptyline (NTP); or randomly assigned to augment their previous treatment

with lithium (Li) or thyroid hormone (THY). Participants unsatisfied with level 3 treatment continued

to level 4 treatments, with options of either tranylcypromine (TCP) or MIRT+VEN. The severity of

depression was assessed based on the Quick Inventory of Depressive Symptomatology (QIDS). The

effectiveness of treatments was deemed to be satisfied when the patients achieved remission (QIDS< 5)

[4].

The selective serotonin reuptake inhibitors (SSRIs) are the most common class of antidepressants

prescribed to the patients suffered from depression, however few studies have focused on the treatment

regimes [32]. Here we want to conduct an analysis to study the optimal DTRs with SSRIs and non-SSRIs

for treating the major depressive disorder. For this purpose, we classified all the level 2 treatments into

two categories: (i) treatment involving SSRI (alone or combined): SER, CIT+BUP, CIT+BUS and

CIT+CT or (ii) treatment with non-SSRI (one or more): VEN, BUP or CT alone. Similar for the

treatments on level 3, (i) treatment with SSRIs: augmentation of any SSRI level 2 treatment with

either Li or THY and (ii) treatment with non-SSRI: MIRT, NTP or augmentation of any non-SSRI level

2 treatment with either Li or THY. We summary the scheme of study design in Figure 5.1.
2This is the same throughout the trial: patients who are benefiting from a treatment are not switched away from that

treatment for ethical reasons.
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Figure 5.1: The scheme for treatment assignment in the STAR*D study

5.2 Models and Analysis

Our model framework contains two stages3: level 2 and level 2a together as stage 1, and level 3 as

stage 2. Participants who took an SSRI treatment at level 2 but a non-SSRI at level 2a were considered

receiving SSRI at stage 1.

In addition, the following notations are introduced:

• The stage specific outcomes: Y1, Y2 are negative QIDS scores at the end of stage 1 and 2.
3Level 4 data were not included in this analysis. Level 1 data were not included because all patients received the same

treatment.
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• The primary outcomes: Y = R1 · Y1 + (1 − R1) · (Y1+Y2

2 ), where R1 = 1 if the patient achieved

remission (QIDS≤5) at the end of stage 1, and R1 = 0 otherwise.

• QS1, QS2 are QIDS scores at the start of stage 1 and 2 (so QS2 = −Y1).

• S1, S2 are QIDS slopes over the preceding interval (change in score/time).

• A1, A2 are treatments with 0 = non-SSRI, 1 = SSRI.

• P1, P2 are preferences, coded 1 for preference to switch and 0 otherwise, the preferences can also

be viewed as the side effects in this study4.

• Other personal data of the participants: age, sex, race, years of schooling completed, employment

category and private insurance (yes/no); denote them as Age, Sex, Race, School, Emplcat and

Privins, respectively.

Here I think it is reasonable to believe QS1 and QS2 share the same parameter ψ1 between two stages,

and similar for S1 and S2. Thus it seem appropriate to use shared parameter method.

I proposed the following models for Q-functions:

Q1 = β10 + β11 ·QS1 + β12 · S1 + β13 · P1 +A1 · (ψ0 + ψ1 ·QS1 + ψ2 · S1 + ψ3 · P1),

Q2 = β20 + β21 ·QS2 + β22 · S2 + β23 · P2 + β24 ·A1 +A2 · (ψ0 + ψ1 ·QS2 + ψ2 · S2).

Thus the models for blip function are:

γ1 = A1 · (ψ0 + ψ1 ·QS1 + ψ2 · S1 + ψ3 · P1),

γ2 = A2 · (ψ0 + ψ1 ·QS2 + ψ2 · S2),

and the treatment-free outcome models are:

E[G1|H1;β1] = β10 + β11 ·QS1 + β12 · S1 + β13 · P1,

E[G2|H2;β2] = β20 + β21 ·QS2 + β22 · S2 + β23 · P2 + β24 ·A1.

4Since patients who experienced side effects usually tended to switch to other treatments instead of to augment.
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For G-estimation, we also need to specify the treatment models.

Treatment models 1:

logit(π1) = α11 ·Age + α12 · Sex + α13 ·QS1 + α14 · S1 + α15 · P1,

logit(π2) = α21 ·Age + α22 · Sex + α23 ·QS2 + α24 · S2 + α25 · P2.

Also we could add more explanatory covariates to the above logistic regressions;

Treatment models 2:

logit(π1) = α11Age+α12Sex+α13Race+α14School+α15Emplcat+α16Privins+α17QS1+α18S1+α19P1

logit(π2) = α21Age+α22Sex+α23Race+α24School+α25Emplcat+α26Privins+α27QS2+α28S2+α29P2.

With the above models, I will implement four different methods to estimate the optimal DTRs:

unshared Q-learning, unshared G-estimation, shared Q-learning with zero as initial values and shared

G-estimation with zero as initial values.

5.3 Results

With the necessary manipulation and cleaning of the original data, there are 1,159 patients in stage

1 and 273 patients in stage 2 left in the study. This large reduction in sample size from the original

4,041 is primarily due to a great portion of patients responding to treatment in Levels 1 and 2 of the

STAR*D study. In order to calculate the variance of the estimates, I will bootstrap the data with the

same sample size 1000 times.

The parameters estimates and their bootstrap standard errors are summarized in Table 5.1. Just

as I did in Chapter 4, the parameter estimates of unshared methods are only displayed through their

simple average transformations; it is easier to compare estimates from unshared methods and those from

shared methods by doing so.
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Table 5.1: STAR*D analysis with SSRI and non-SSRI treatments at two stages
ψ̂0 ψ̂1 ψ̂2 ψ̂3

unshared Q -0.254 (0.850) 0.056 (0.069) 0.263 (0.389) -2.644 (1.111)

shared Q -0.674 (1.026) -0.451 (0.018) 0.568 (0.113) 0.2173 (0.131)

unshared G
Treatment model 1 -0.674 (1.026) 0.086 (0.081) -0.039 (0.489) -2.593 (1.175)

Treatment model 2 -0.633 (1.044) 0.088 (0.084) -0.097 (0.492) -2.681 (1.182)

shared G
Treatment model 1 -0.829 (1.012) 0.093 (0.080) -0.208 (0.507) -2.652 (1.149)

Treatment model 2 -0.776 (1.042) 0.098 (0.082) -0.225 (0.527) -2.702 (1.150)

Overall, the results of the four G-estimation methods are broadly similar, with the sign and magni-

tude of each estimate agreeing quite well. In contrast, the unshared Q-learning estimate of ψ0 is less

than half the magnitude of all other estimates, and the estimate of ψ1 and ψ3 for shared Q-learning

differs in sign from all other approaches.

The estimated optimal DTRs suggested by the shared G-estimation (with treatment model 1) are:

For a patient with depression, if −0.829+0.093 ·QS1−0.208 ·S1−2.652 ·P1 ≥ 0 at stage 1, then prescribe

the treatments with SSRI; otherwise prescribe the treatments with non-SSRI. If −0.829 + 0.093 ·QS2−

0.208 · S2 ≥ 0 at stage 2, then prescribe the treatments with SSRI; otherwise prescribe the treatments

with non-SSRI.

5.4 Summary

In this chapter, I demonstrated an application of the newly proposed shared G-estimation method,

along with three existing methods to a real dataset, to examine the optimal treatment strategy for

depressive disorder. For G-estimation (unshared and shared), different treatment models resulted in

slightly different estimates in this study, though given the randomized nature of the study and the simi-

larity of the estimates, it is likely that the double robustness property has assured consistent estimates.

The estimates of unshared G-estimation and shared G-estimation were not far from to each other. How-
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ever the estimates of shared Q-learning were quite different from those of other three methods; which

agreed with what I have found in the simulation study: even mis-specifying the Q-model from one stage

can lead to poorer performance of the shared Q-learning overall relative to the unshared Q-learning.

From the optimal DTRs estimated by shared G-estimation (with treatment model 1), we can conclude

that, if the QIDS score is high, the optimal DTRs tended to suggest treatments with SSRI; and if the

QIDS score changed dramatically over the preceding stage or the patients suffered from side effect, the

rule tended to suggest treatments without SSRI.
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Chapter 6

Conclusion and Discussion

In this thesis, I have reviewed some popular methods for estimating optimal DTRs, and then extended

G-estimation for unshared parameters to the shared parameter setting. By doing so, this new proposed

approach allows the parameters of blip functions to be the same through different stages; this is especially

useful when the different stage’s blip functions have similar structure and components.

From the simulation study and data analysis, I have shown that the newly proposed shared G-

estimation algorithm produces consistent estimators under assumptions of no unmeasured confounding

and certain model specifications being correct. Further, I observed that shared G-estimation performs

better than shared Q-learning in general with the extra modeling. The key reason for this phenomenon

is the double robustness property of G-estimation. But on the other hand, the G-estimation could

sometimes suffer from small increase in variance of the estimators over Q-learning with finite samples,

because of the extra treatment models.

In the process of completing this thesis, there were some interesting findings may provide avenues

for further research.

I have discussed shared parameters ψ in the blip models, and I posit that it will not be too complicated

to take it one step further, which is considering shared parameters β in the treatment-free outcome

model. While the β parameters are nuisance parameters and not of direct interest, it may be of value

to estimate these parsimoniously. In this thesis, I have only used the linear model for both blip model
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and treatment-free outcome model, future work would extend this to the non-linear case. As I have

introduced in section 2.5, dWOLS is another regression-based method for estimating the optimal DTR,

I would like to extend the shared parameter method to dWOLS as well.
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