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DISTRIBUTION PROBLEMS CONNECTED 

WITH THE MULTIVARIATE LINEAR 

FUNCTIONAL RELATIONSHIP MODELS 

Abstract 

This thesis deals with a linear functional relationship 

model in which the unobserved true values satisfy multiple 

linear restrictions. New test statistics for some of the struc-

tural parameters of this model are derived under the assump-

tions that the observation vectors are normally distributed 

and that an estimator of the covariance matrix of measurement 

error is available from independent experiments or replicated 

observations. Exact null distributions for some test statistics 

proposed by other authors are also given. In order to obtain 

computable representations of the densities of these test statis-

tics, the exact densities of many algebraic functions of inde-

pendent gamma variates are derived in computable forms using 

the technique of inverse Mellin transform. Alternate represen-

tations of some of these densities are also expressed in terms 

of the density of the product of independent beta type-2 random 

variables. Finally applications to some econometric errors-in-

variables functional models are pointed out. 

Department of Mathematics and Statistics, Doctor of Philosophy 
McGill University, 
Montreal. January 1984 
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.. 
SUR LA DISTRIBUTION DE STATISTIQUES RELIEES 

' ' ~ 
A DES MODELES FONCTIONNELS MULTILINEAIRES 

Resume 

Cette these a pour objet l 1 etude de modeles fonc-

tionnels pour lesquels les esperances de vecteurs d 1 obser­

vations distribues selon une loi multinormale satisfont de 

multiples contraintes lineaires.Supposant qu 1 un estimateur 

non biaise de la. matrice de covariance provenant soit 

d 1 observations repetees ou encore d 1 experiences anterieures 

soit disponible , nous proposons de nouvelles statistiques 

permettant de tester des hypotheses portant sur les coef-

ficients associes ~ ces modeles multilineaires • Afin de 

determiner les densites respectives de ces statistiques, 

nous obtenons sous desformesse pretant ~!'evaluation nu-

merique, les densites exactes de plusieurs fonctions alge-

briques de variables aleatoires gamma ~ 1' aide de la trans-

formee inverse de Mellin. Nous representons egalement cer-

taines de ces densites au moyen d 'un produit de variables 

beta du second type. Nous proposons finalement des applica­

tions ~ quelques modeles econometriques pour lesquels les 

variables sont toutes sujettes ~ des erreurs d'evaluation. 

Departement de Mathematiques et de Statistique, Ph.D. 
Universite McGill, 
Montreal Janvier 1984 
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What is new in this thesis ? 

Most of the results given in Chapters 3,4 and 5 are be­

lieved to be new and not available anywhere in the literature 

except the basic materials and the discussions of the tech­

niques used in these chapters. 

(1) - The test statistics for the coefficients of multivar­

iate linear functional relationship models given in 

(3.14), (3.19), (3.31), (3.46)' (3.49), (3.67), (3.70), 

(3.75) and (3.77} and their respective distributions 

obtained in computable forms. (Chapters 3 , 4 and 5) 

(2) - The exact distribution of two test statistics ( (3.2) 

and (3.8) ) proposed by A.P. Basu given in (4.107} and 

(3.81) respectively. 

(3) - The exact density of the k-th root of a product of in­

dependent chi-square variates as the density of a prod­

uct of independent generalized gamma v~riates. (Section 

4.2) 

(4) - A representation of the density of a linear combination 

of independent gamma variates obtained with the tech­

nique of inverse Mellin transform. (Section 4.3) 

(5) - The exact distribution of a statistic denoted by R, 

whose numerator is a linear combination of independent 

gamma variates and whose denominator is the k-th root 

of a product of independent gamma variates.(Section 4.4) 

(iv) 



(6) - The derivation of the h-th moment of R for the case where 

h is a positive integer allowing one to select the Pear­

son curve that will best fit its distribution. (Section 

4.5) 

(7) - An identity expressing Meijer's G-functions of the type 

G~:~(.) in terms of the densities associated with the 

product of independent beta type-2 random variables 

which provides us with another representation of the 

density of R. (Chapter 5) 

Besides these new results, 

(l') -the multivariate errors-in-variables functional models 

and the muitivariate linear functional relationship mod­

els are presented as generalizations of the multivariate 

general linear hypothesis model; (Chapter 1) 

(2') -a more detailed derivation of Villegas' (1964) test sta­

tistic for the coefficients of a single linear func­

tional relationship model is given; (Section 2.1) 

(3') - a more systematic derivation of Basu's (1969) test sta­

tistic for the coefficients of a multivariate linear 

functional relationship model is proposed; (Section 2.2) 

(4') - an outline of possible applications of the results to 

the econometric multivariate errors-in-variables func-

tional model is given. (Chapter 6) 

(v) 
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n 

E (.) 

var ( ·) 

cov (.) 

Re ( ·) 

r (a) 

ind 
'U 

2 N(p,o ) 

SYMBOLS 

In this thesis 1 all vectors and all matrices will be 

denoted by underlined lower-case and capital letters 

respectively, the only exception being I which will 

represent the identity matrix of the appropriate order. 

- summation sign 

- product sign 

- mathematical expectation 

- variance 

- covariance 

- real part of (•) 

Joo a-1 -x - x e dx 1 
0 

Re(a) > 0 

- " is distributed as " 

- " are independently distributed as " 

- univariate normal distribution with mean value ll and 

variance o2 

N (p,V) ~ - p-variate normal distribution with mean vector ~ and 
p ""' - -

covariance matrix V ... 

x2 - chi-square distribution with r degrees of freedom r 

Wp(v,£) - central Wishart distribution of dimensionality p, 

with v degrees of freedom and associated parameter 

matrix z. - (xi) 



a• - - transpose of the vector a -
B' - - transpose of the matrix B 

eh [ • ] - vector whose components are the characteristic roots 

of [ • J 

I • I - determinant1 absolute value 

a1 , ... , a 
ct'-p',nq{ x lb bp} 

1 I • • • I q 
- Meijer•s G-function defined in (4.25) 

the psi function defined in (4.49) 

p(·,·) - the generalized zeta function defined in· ( 4. 50) 

- a type D Lauricella • s hypergeometric function de-

fined in (4.60) 

0 
(:r:ii) 
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Chapter 1 

THE MULTIVARIATE LINEAR 

FUNCTIONAL RELATIONSHIP MODEL 

1.0 Introduction 

This thesis deals with various aspects connected with what 

is known in the literature as the "multivariate linear func­

tional relationship model". 

The problem of inference concerning the coefficients of 

a single linear relation among several unobserved "true" var­

iables, when the observed vec~ors are contaminated with errors 

or fluctuations has a long history. The early writers on this 

functional model, notably Adcock (1878}, Kummel (1879}, Pearson 

(1901) and van Uven (1930) were mainly concerned with the deri-

vation of least squares estimators. Modern statistical methods 

were used for the first time by Wald (1940). Particular aspect 

of this problem has been studied by Creasy (1956) assuming 

the ratio of error variances to be known a priori; by Geary 

(1942} using product-cumulants and by Theil (1950) resorting 

to nonparametric methods. 

In experimental work, it is usually possible to replicate 

the observations. Data coming from replicated experiments can 

be analyzed without much difficulty, because we can easily ob-
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tain from them estimators of the experimental errors which can 

be assumed to have known distributions. The case in which repli­

cated observations are available was considered by Tukey (1951) , 

who showed how estimators of the linear relation could be easi­

ly derived from a variance component analysis. 

In a series of relatively recent papers, Villegas showed 

that an estimator previously proposed by Acton (1959) was the 

maximum likelihood estimator (1961); obtained invariant least 

squares estimators (1963) and confidence regions (1964): proved 

that the least squares estimators are asymptotically efficient 

(1966)7 considered the case of non-linear relations (1969); 

studied the problem in connection with time series models (1976} 

and derived maximum likelihood and least squares estimators in 

linear and affine models (1982). The problems of testing the 

linearity of a relation and testing for simultaneous linear re­

lations have been considered,respectively, by Rao (1965) and 

Basu (1969). A more complex model with strongly correlated ob­

servations was studied by Sprent (1966). 

The case where no replications are available has been con­

sidered by Lindley and El-Sayyad (1968) using Bayesian methods 

and by Kalbfleisch and Sprott (1970) using likelihood methods. 

The maximum likelihood estimation of general linear models 

was considered in the general multivariate case by Anderson 

(1951) and Nussbaum (1976), using differential calculus. An 

algebraic derivation for a general model has been given by 



-3-

Healy {1980). 

Least squares estimation of functional models has been con­

sidered by Eckart and Young (1936), Rao {1964) and HOschel(l978). 

For a more detailed survey of the extensive literature a­

vailable on the analysis of linear relations, the interested 

reader is referred to Madansky (1959) and Moran (1971). The 

problem where the true vectors are random (said to satisfy a 

linear structural relationship) is also treated in these ref­

erences. 

In Chapter 2, we present the main results appearing in the 

papers of Villegas (1964) and Basu (1969) with some modifica­

tions and simplifications of the derivations. 

Under the assumptions that the observation vectors are 

normally distributed and that an estimator of the covariance 

matrix of the measurement error is available from independent 

experiments or replicated observations new test statistics for 

the parameters of functional models which satisfy multiple lin­

ear restrictions are derived in Chapter 3. 

Different representations of the exact densities of these 

statistics are provided in computable forms using the technique 

of inverse Mellin transform (Chapter 4) and in terms of the den­

sities of the product of beta type-2 variables (Chapter 5). 

Some econometric applications are also pointed out in 

Chapter 6. 
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Most of the results given in chapters 3,4 and 5 are be­

lieved to be new and not available anywhere in the literature, 

except the basic materials and the discussions of the tech­

niques used in these chapters. 

1.1 Errors of Measurement 

The increase in data-gathering projects in the social and 

medical sciences is producing large bodies of data containing 

variables obviously difficult to measure, such as people's be­

haviour, opinions and motivations. Concurrently, there are 

signs of a rise in research interest stimulated by problems in 

econometrics where satisfactory methods for investigating rela­

tionships among variables that are subject to errors or fluctu­

ations are needed and in sample surveys where the errors of 

measurement may be very important. 

Standard techniques of analysis become erroneous and mis­

leading if certain types of errors are present in the variables. 

They often result in unsuspected biases and reduced precision. 

Hence a variety of mathematical models may be needed to des­

cribe realistically the types of measurement errors relevant 

to different measurement problems. 

As early as 1902, Karl Pearson wrote a paper on the mathe­

matical theory of errors of measurement. He was interested in 

the nature of error of measurement when the quantity being 

measured was fixed and definite, while the measurement was made 

by a human being. The model where the variables under conside­

ration are connected by a single linear relationship is the 
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basis of Mandel's (1959), theory of error of measurement as 

applied to the analysis of interlaboratory tests. 

Apart from these theories of errors of measurements, there 

are many articles connected with a topic, in econometric appli-

cations, known as "errors-in-variables linear models". We will 

discuss in Chapter 6 these _types of functional relationships which 

are presented here as generalizations of general linear models. 

1.2 General Linear Models 

Suppose Y1 , •.• ,Yn is a sequence of independent random var­

riables with 

and 

p 
= E 

j=l 
B .X •. , 

J ~J 
i=l, .•• ,n , 

var(Y.) = a
2 , i=l, ••. ,n, 

~ 

(1.1} 

(1. 2) 

2 where e1 , .•. ,s , a 1 are unknown paramaters and the x .. 's, 
p ~J 

i=l, ••• ,n; j=l, .•• 7 p 1 are regarded as fixed. Since E(Y.} is 
. ~ 

a linear function of the parameters sl, ••• ,sp , for i=l, .•. ,n , 

the models specified by (1.1} and (1.2} are called general lin-

ear hypothesis models. They are also referred to as linear mo-

dele for the expectations with independent covariance structure. 

Let 

. [!j y = • - . y 
and ~ = [~11 : : <lpl 

nl np 

{1. 3) 

We can now rewrite the equations (1.1) and (1.2) as 

http:fort:.he


0 
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E(Y) = xe 

2 Cov(Y) = E(Y-XB) (Y-XB}' = o I -

(1. 4) 

(1.5) 

where I is the n x n identity matrix. It is assumed that n ~ p. 

If X has full rank, that ·is to say, if the rank of X is equal 

to p, then these models are called general linear hypotheses 

or linear models of full rank. 

When the distributions of Y1 , ••• ,Yn are not specified 

except for their means and variances, the most ·commonly used 

distribution-free method for finding the estimates of the 

parameters is the method of least squares whereas when Y1 , ••. , 

Y are assumed to have normal distributions, the most commonly 
n 

used method is the method of maximum likelihood. 

In both cases, the estimator of B is obtained by solving -
the following nonhomogeneous system of linear equations 

{X'X)S = X'Y {1. 6) 

which is called the normal equation for the general linear hy­

pothesis model. If X has full rank p, then X'X is of rank p 

andhasa unique inverse (X'X)-l and the least squares estimate - "' 

as well as the maximum likelihood estimate of B are given by 

(X'X)-lX'Y - "' 

In Anderson (1958), the following generalization of the 

general linear hypothesis model is discussed. 
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Let xl' .... 1 Xn be a sequence of independent random vectors 

having a multivariate normal distribution with 

and 

where 

E (Y.) = BX. 
~1 ~""1 

cov(Y.) =I , i=l, •.• ,n 
-1. 

qxl 

x. = {x. 1·.; .•• ,x. )', i=l, ••• ,n, 
~1 1 1p. 

(1. 7) 

(1. 8) 

are known, and the q x q m..:.-trix f. and the q x p matrix :§ are 

unknown. 

It is further assumed that 

n ~ p+q 

and that the rank of 

X = (X1 , ••• ,X ) 
- I"V r-..~n 

pxn 

is p. Estimators for~ and ~·are obtained by the method of max-

imum likelihood. We will refer to the model specified by (1.7) 

and :(1.8) as the multivariate general linear hypothesis model. 

1.3 Functional Relationships in General Linear Models 

We now modify-the general linear hypothesis model specified 

by (1.1) and (1.2) as follows. 

Let 

ind T 2 
Yi"" N(llil'cr), i=l, .•• ,n, 
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xil = 1 , i=l, ••• ,n , 

and let 

x. = (x. 
2 

, ••• , x. ) 1 
, i=l, ••• , n , 

-~ ~ ~p 

be random vectors such that 

(i) 
"' N('J.l 1 I) 

"' ,.., 

where 
(i) 

}l = (1J.2t•••t'J.l• )I 
~ ~ ~p 

Then the relationship 

p 
B 1 + I B ·lJ .. , i=l, .•• 1n 1 

j=2 J ~J 

(1. 9) 

(1.10) 

(1.11) 

(1.12) 

character~zes the univariate errors-in-variables functional mo­

del where it is assumed that the lJ(i),s are constant vectors. 

Let 

"" 

cov ( {Y. , X~) I) = V , 
~ -~ 

then rewriting (1.12) as 

p 
I: 

j=l 
b.lJ .. +a= 0 

J ~J 

(1.13) 

(1.14) 

we obtain the single linear functional relationship model. 

Similarly the multivariate general linear hypothesis mo-

del specified by (1.7) and (1.8) may be modified as follows. 

Let 

Y . ...., N ( ll.;, , Iy) , 
-~ q ....,......_...., (1.15} 

xil = 1 , i=l, •.•• ,n 1 
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B = (81, ••• ,{3) 
,..._, !"V rvp 

qxp 
{1.16) 

and let 

""-( )' xi - x . 
2 

, ••• , x . 
~ l. l.p 

(p-l)x 1 
, i=l, ... , n , 

be random vectors such that 

X.~ N l(~.,E) 
""l. p- ~ l. "' 

(1.18) 

where 

~· = (~. 2 1•••t~• ) I 1 i=l, ••• ,n 
"'l l lp 

(1.19) 

Then the relationship 

~. 1 = s
1

+ <s
2

, .•• ,f3 )~. , i=l, ..• ,n, 
,....,1 ~ ("V ,...;p ,...,1 

(1.20) 

characterizes the multivariate errors-in-variables functional 

model where the ~· 's are assumed to be constant vectors. If the ..... ]. 

~.'s are independently and identically distributed random vec-
~l 

tors, the model is called the multivariate errors-in-variables 

structural model. 

""' Inference is based on the observed vectors Y. and X. which 
""1 "'l 

are the sum of the true vectors l'.il and l'.i respectively, and 

errors of measurement. 

Gleser and Watson (1973) derived the maximum likelihood 

estimators for the functional model with q=(p-1), Q1=Q and ~y= 

r=a2 r 0 where E0 is known. Bhargava (1979) obtained the maximum 

likelihood ·estimatcrs of the functional model with s
1
=o, E =a

2i 
,......, _, "'Y 

and ~ = cr
2

I where cr
2 

is unknown. Gleser (1981) gave the limiting 

distribution of the maximum likelihood estimators for the func-
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tional model with ~y=a 2 I and ~=a 2 I where a 2 is unknown. Oahm 

and Fuller {1981) applied the generalized least squares method 

to the functional model. The maximum likelihood estimators are 

derived in Amemiya and Fuller {1984) for the structural model 

and their limiting properties are obtained under a wide range 

of assumptions. 

We may also express (1.20) as follows 

(-I,~2, .•. ,~p}[Mi~ + gl = Q, i=l, ••• ,n • 

· Mij 

(1.21) 

Under the assumption that 

(1.22} 

we obtain the multivariate functional relationship model 

as the following generalization of (1.21): 

Q , (1.23) 

where B is a q x (q+p-1} matrix of rank q. 
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Chapter 2 

ANALYSIS OF LINEAR RELATIONS 

2.0 Introduction 

In this chapter, we present the main results appearing in 

Villegas (1964) and Basu (1969). Villegas' paper dealt with the 

problem of inference concerning the parameters of a single lin­

ear relation where all the variables involved were subject to 

normally distributed errors or fluctuations and where the un­

known error variances were estimated from replicated observa­

tions. His discussion covered the case of correlated errors. 

For this single linear functional relationship model, a 

test based on the F distribution was derived for testing the 

hypothesis that the unknown relation was a given linear rela­

tion. Particular aspect of this problem had been studied by 

Wald (1940) and Bartlett (1949) using the method of grouping; 

by Creasy (1956) assuming the ratio of error variances to be 

known a priori: by Geary (1949) and Halperin (1961) using 

instrumental variables or a priori weights; and by Hemelrijk 

(1949) and Theil (1950) resorting to nonparametric methods. 

For a detailed account of the various approaches that were 

used in solving inference problems related to functional and 

structural linear models prior to 1964, the reader is referred 

to Kendall and Stuart (1966), Chapter 29. 
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Following Villegas' approach, Basu (1969) extended the re-

sults to the case of several linear relations. For the coef-

ficients of this multivariate linear functional relationship 

model, he proposed a test statistic, R, without giving its exact 

distribution in closed form. 

In this chapter, we shall provide a more complete deriva-

tion of Villegas' statistic and a more systematic derivation of 

Basu's statistic. The exact distribution of the latter will be 

given in computable forms in Chapters 4 and 5. From these rep-

resentations of the exact density of R, percentage points can 

be computed. 

2.1 Villegas' Approach 

2.la Notation and Model 

Let 

(2 .1) 

. 
be an unknown linear relation among the p variables g1 , ••. ,gp. 

We shall assume that the g, 's are not observable in the sense 
~ 

that they are all subject to errors or fluctuations. Rewriting 

(2.1) in matrix notation, we have 

a + b'g = 0 , 
"" - (2.2) 

where 

b' = - (2.3) 

and 
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g = { gl I • • • I g ) I • 

- p 
{2. 4) 

Now let us consider r points, g
1

, ... ,g , on the hyperplane - ... r 
defined by (2.2). That is, 

a + b 'S· = 0 , ~-1 r .... - , ... , 
... ~ 

It is also assumed that n~ measurements x .. , j=l, .•• , n. , 
• -~J ~ 

provided by replicated experiments are available for the i-th 

point, i=l, ••• ,r. Let 

:sij = si + ~ij ' (2. 5) 

where 

e .. i~dN (O,V), J'=l, ••• ,n. , 
""~J . p- .., ~ 

(2. 6) 

that is, the e .. 's are all independently and identically dis­
-~J 

tributed {i.i.d.) random vectors, each having a p-variate nor-

mal distribution with mean vector Q and unknown positive def-

inite covariance matrix y, 

where n denote the total number of observed vectors and 

ni 
L X. J' /n. 1 

-~ ~ j=l 
{2. 7) 

where x. denotes the average of all the observed vectors cor-
-~ 

responding to the point g., i=l, ••• ,r. Let also 
-~ 

r ni 
s = I: !: - i=l j=l 

(x .. - i.) (x - i.) 'I (n-r) 
-~J -~ -ij -~ 

(2. 8) 
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The additional assumption, 

n-rli:p, 

assures us that (n-r)§ is, with probability one, a positive 

definite matrix and has the Wishart distribution with para-

meter matrix y and (n-r) degrees of freedom, that is, 

(n-r)_S ~ W ((n-r),V). p ... (2. 9) 

We will refer to the model specified by (2.2), {2.5) and 

(2.6) as the single linear functional relationship (SLFR) model 

although it is generally simply called the linear functional 

relationship model. 

2.lb A Test Statistic 

Villegas considered the hypothesis 

V 
H

0 
: a = a

0 
, b = b 

- -o 
(2 .10) 

for the SLFR model where y is unknown, a
0 

is a given scalar 

V quantity and b is a given vector. Under H
0 

, the true hyper--o 

plane is 

a +b' a=O o -o .c. 
(2.11) 

and the distances from the points a:;i, i=l, .•• ,r , to the hyper­

plane (2.11) are respectively given by 

o. = (a + b 1 X.)/ (b 1 b ) l/2 
~ o -o -~ -o -o 

(2.12) 

It is seen from (2.5} and (2.7) that the vectors 
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x. "' N (a. 1 V In. ) 1 i=l, ••• , r. 
-l. p .il]. - l. 

(2.13) 

Moreover, since each g. lies on the hyperplane (2.11) under Hv
0

1 .... ]. 

where 

and therefore 

that is, 

v 2 - (b 'Vb ) I (b 'b ) o - .... 0"""'0 -O""O 

r 
E 

i=l 

2 n. o. 
l. l. 

(2.14) 

{2.15) 

(2 .16) 

2 is distributed as a constant, namely v
0

, times a chi-squarevar-

iate having r degrees of freedom. 

Furthermore 

(2.17) 

is an unbiased estimator of v~ where§ is defined in (2.8). Also 

it follows from (2.9) that 

s 2 "'w1 ((n-r),(b'Vb )l(b'b ))l(n-r) , -o--o -o-o (2.18) 

that is 

2 2 2 
s "' v x I (n-r} • o n-r (2.19) 

Villegas' statistic being 
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(2 .20) 

is distributed as r times a F"isher' s F with r and (n-r) degrees 

of freedom in view of (2.16) and (2.19). It is clear that the 

numerator is independent from the denominator since the former 

is a function of i., i=l, .•. ,r, and the latter is a function of 
-~ 

S which is independent of i., i=l, .•• ,r, due to the basic as­
-~ 

sumption of normality. Hence S is independent of 

0 = -
2 . 

and thus s and£'£ are independently distributed. It is worth 

mentioning that the distribution of the test statistic (2.20) is 

free of V allowing us to test Hv as defined in (2.10). 
0 

2.2 Basu's Generalization of Villegas' Model 

2.2a Notation and Model 

Let 

al + bll gl + • · · + blpgp = 0 ' 

a2 +b2lgl + ••• +b2pgp = 0 ' 

(2.21) 

be k linear relations among the p variables g1 ,g2 ~ ••. ,gp where 

p > k. As before, it is assumed that the observed values do not 

.satisfy (2.21) because all of them are subject to errors or 

fluctuations. In matrix notation, (2.21) may be represented by 
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(2.22) 

where 

bll b21 bkl 

bl2 b22 bk2 
B = 

and 

(2.24) 

We assume that B is of full rank. Then we consider r points, ,., 

g1 ,g2 , .•• ,g , in the (p-k)-dimensional convex set defined by ,.., _. ...,.r 

(2.22). That is, 

a+ B'g. = 0 , i=l, ..• ,r .• 
.., _, •l.. """" 

The assumptions regarding the n. replicated measurements for 
l. 

each of the points g., i=l, ••• ,r, are identical to those purpor-
.... J. • 

ting to the SLFR model and consequently (2.5), (2.6), (2.7) , 

(2.8), (2.9} and {2.13) still hold for the next section. 

The model specified by (2.22), (2.5) and (2.6) is called 

the multivariate linear functional relationship (MLFR) model. 

2.2b A Test Statistic 

In order to test the hypothesis 

a=a , B=B , 
- "'O - -o 

(2.25) 
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where V is unknown, Basu (1969) proved the following result. 

Lemma 2.1. Let 

d~= (a +B'xi}'(B'B >-1 ca +B'x.), i=l, ••• ,r, 
~ -o -o- -o-o -o -o-~ · 

(2.26) 

then d~ represents the square of the distance between x. and 
~ -~ 

the (p-k)-dimensional convex set 

M
0

= {g:a +B'g =0} ,... -o -o- - · ' (2.27) 

where the distance is measured with respect to the Euclidean 

metric { (x. - g) • (x. - g) } 1/2 • 
-~ - -~ ... 

In his proof, he first notes that, because of the invar-

iance property of the distance function, minimizing the dis­

tance between x. and M is equivalent to minimizing the dis-
-~ 0 

tance between 0 and M - x. where 

and that 

- 0 -~ 

M -X. 
0 -~ 

= {g:a + B' (a+x.) = 
- -o -o .;:4 _.~ 

a + B' (g* + x.) = 0 -o -o ... -~ ""' 

0} 1 -
(2.27a) 

where g* denotes the point belonging to M - x which will min-
- 0 -i 

imize the distance between Q and M
0 

- ~i. Then using the or-

thogonality of (g-g*) and g* which implies that -- -
( g - g*) I g* = 0 ,.., ,..., ,., ,..; 

for all g e: M - x. , he shows that g* is equal to B y where y - o ...... ~ _. -o- _, 

is a suitable vector of coefficients. At this point, it is seen 

from (2.27a) that 
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a + B 1 X. = -B I a*= -BIB y • 
-o -o-1 -o ~ -o-o 

Therefore y is given by -
and hence 

g*=-B (B'B )-1 (a +U'v.) 
- -o -o-o -o ~0~1 

so that 

Considering (2.13), we see that 

a + B' x. i~d Nk ( 0, B 'VB /n. ) , i=1, ••• , r , -o -o ""'1 - -o--o 1 (2.28) 

since g. e: M under H0 .... 1 0 

Since B'VB is symmetrac and positive definite, there exists -o--o 

a nonsingu1ar matrix 

K = (B'VB ) - 1 / 2 
_, -O""""O 

such that 

K'B'VB K = I . 
_, ""0""'""0-

Let 

-1/2 -z.=n K' (a +B'x.) i=1, ••• ,r 
-1 - -o - o - 1 · ' 

then it is seen from (2.28) that 

and from (2.26) that 

2 
n.d. = 

1 1 

ind z . rv Nk (Q, I) 
""1 

(2.29) 

(2.30) 

(2.31) 

(2.32) 
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Since (B'B )-lis symmetric and positive definite, so is 
-o-o 

and hence there exists an orthogonal matrix !:! such that 

where m.>O, j=l, ••• ,k • Therefore J . 

.. 

(2.33) 

where eh[ • J denotes a vector whose components are the charac­

teristic roots (eigenvalues) of [ • J • 

Now let 

' (f. 1 , ••. ,f.k) =f. =U'z. , i=l, ••. ,r, 
1 1 -1 - -1 

then the vectors !i are i.i.d. Nk(g,I) and 

2 n.d. = f!Mf. = 
1 1. -1--1 

k 
z: m. f .. 

j=l J 1J 
(2.35) 

where the f .. 's are i.i.d. N(O,l), i=l, ••• ,r; j=l, ••• ,k. Hence, 
1] 

2 ind k 2 n.d. "' E m. Xj (1) , i=l, .•• ,r , 
1 1 j=l J 

(2. 36} 

and 

d2 = 
r 

2 k 
2 

E n.d. "' z: m. X. (r) I 

i=l 1 1 j=l J J 
(2.37) 

2 where Xj(r) are independent chi-square variates each having r 

degrees of freedom and the m. 's are defined in ( 2. 3 4) • 
J 
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Let 

ni 
A.= t (x .. -x.)(x .. -x.)', i=l, ••• ,r. 
.... l. j=l ""'l.J ""'l. _,l.J """'l. 

Then, assuming that 

so that 

n. > p , 
l. 

A.i~d w (n.-l,V) , i=l, ••. ,r, ...,l. p l. ,., 

r 
A=· E A. rv W (n-r,V). 
- ~l. p -i=l 

(2.38) 

(2.38a) 

(2.39) 

(2.40) 

It is well known that ~i can be expressed as <y1yi+y2y2+ ..• + 

u 1un' 1 > where u1 ,u2 , ••• ,u 1 are i.i.d. N (O,V) and that 
~n - - - ~ ~ ~n - p ~ . 

i i i 

A.is distributed independently of x. , i=l, ••• ,r • So A can be 
~l. -l. -

expressed as 

u1u1' + u2u2' + • . . + u u ' , - - - - -n-r-n-r 

where the u. 's, j=l, 2, ••. , n-r, are i. i·. d. N ( 0, V) • Thus 
.... J p - -

1/2 . -cov(n. (a + B'x.) )=B'VB 
1. -o -o...,l. ~o--o 

can be estimated by 

r n-r 
B'SB =·B' ( I: A.)B

0
/(n-r)= E w.w~/(n-r) =W/(n-r) , 

-o~-o -o i=1 Nl. - j~1 -J-J ~ 
(2.41} 

where w. =B'u. , J'=l, .•• ,n-r, and, thew's being i.i.d. 
-J -o-J -j 

Nk (Q,§~l}o)' 

W rv Wk((n-r),B'VB) 
~ ~o-'""o 

(2.42) 
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independently of d2 since W is a function of (A1 , ••• ,A) where 
~ - -r 

the hi's are independent and d2 is a function of (~1 , .•• ,~r) 

where the x. 's are independent and each A. is independent of 
-~ -~ 

x. , i=l, ••• ,r, due to the basic assumption of normality. 
-~ 

Basu (1969} proposed the following statistic to test the 

hypothesis H given in (2.25): 
0 

R = (n-r)d
2 

1!11 1/k 
(2.43) 

where d 2 is defined in (2.37) and (2.26), W is defined in (2.41) 
1¥ 

and (2.38) and 1!1 denotes the determinant of !· 

Since the distribution of 1~1 is that of the product of 

.k independent chi-square variates (see Anderson (1958), p.l71) 

times a constant: 

and that 

2 n .d. rv 
~ ~ 

k 
E 

j=l 

(2.44) 

2 
m. x. (r) , 

J J 

one can see that R is distributed as the ratio of a linear corn-

bination of chi-squares variates over the k-th root of a prod­

uct of chi-square variates where the chi-squares are all in­

dependent. 
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.. 
Chapter 3 

TESTS FOR 'rHE PARAHETERS OF A MULTIVARIATE 

LINEAR FUNCTIONAL RELATIONSHIP MODEL 

3.0 Introduction 

In this chapter we propose some new statistics for testing 

hypotheses about the parameters of a MLFR model. 

There are two common sources for estimating V, the eo-.., 

variance matrix of errors. tve have seen that replicated 

observations can provide such estimators which may als~ be 

obtained from independent experiments in the past. Moreover 

in some situations we may assume that V is known. 

We are therefore considering the following cases: {i) 

y is unknown; (ii) y is known up to a constant; (iii) V is -
completely known; (iv) an independent estimate is available 

for v. The first three riases are discussed in Gleser and Olkin -
{1972) for the ~eneral linear hypothesis model. 

F.or the third case, the distribution of the test statis-

tic turns out to be that of a linear combination of indepen-

dent chi-square variates. Three representations of its exact 

density whi.ch are suitable for computational purposes are 

provided. One representation will be given in terms of finite 

• sums, another in terms of a confluent hypergeometric function 

of several variables and a third in terms of zonal polynomials. 
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3.1 Summary of Basu's Results 

3.1 a One Test Statistic 

In Section 2.2a we have provided a different derivation 

of Basu's test statistic for the parameters of a MLFR model. 

The statistic proposed by Basu (1969) , iri our notation of Chap-

ter 2, to test 

H: a=a , B=B o ~ ~o ~ -o 

where V is unknown, was according to (2.43) 

r 
R = t 

i=l 
n.d~/IB'SB rl/k 
~ ~ -o--o 1 

where d~ was defined in (2.26) and Sin (2.8). . ~ ~ 

(3.1) 

{3.2) 

Furthemore we proved the independence of the numerator 

and the denominator of R which were respectively distributed 

as a linear.combination of chi-square variates according to 

(2.35) and as the k-th root of a constant times a product of 

chi-square variates according to (2.44). The distributional as-

pects of R will be treated in Chapters 4 and 5. 

3.1 b Another Test Statistic 

In order to test H
0

, Basu (1969) also considered a second 

statistic T based on the metric {(~-g) 'Y-l (~-g)} where y is the 

covariance matrix defined in (2.6) and g lies in the set 

M
0 

= {rr: a+ B'rr=O}. 
;:;J, -o ..... o-41 - ( 3. 3) 
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He showed that according to this metric, the square of 

the "distance" between x. the average of all the observed vec-
"'J. 

tors corresponding to a given point in M
0

, and M
0 

was 

d~ =(a+ B' x.)'(B'VB)-l(a +B' x.), i=l, ••• ,r. 
J. ""O ..... o ..... J. -o-..... o "'O - ""0 ..... J. 

(3.4) 

Moreover, according to (2.28), 

n l,/2 (a
0

+ B' - )indN (0 B'VB ) X. ..., k . I 0 I J. ..... ""O ""J. ..... -o .......... i=l, ••• ,r, (3. 5) 

so that 

n.d~= (a
0

+ B' x.)'{(B'VB )/n.}-1 (a + B'-) ind 2 
1 1 ..., ..... o ..... ]. ..... o ..... -o 1 ..... o -o ~i xk, (3. 6) 

i = 1 , ••• , r , and 

( 3. 7) 

that is, d~ is distributed as a chi-square variate with rk 
J. 

degrees of freedom. We also note that the use of d 2 would re-

quire a prior knowledge of V • .... 

Hence for the case where ~ is unknown, a studentized 

form of the d2 statistic was suggested to test H • The statis­
o 

tic is the following 

where 

_r 
E 

i=l 

-2 T. 
J. 

T~ =(a+ B' x.)'{(B'SB )/n.}-l(a + B' x.). 
J. "'0 ""0 "']. ..... 0"'""'0 J. ""'0 "'0 "'J. 

(3.8) 

(3.9) 
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Each T~ has Hotelling's T2 distribution but they are not 
~ 

independently distributed. If we use the large sample approxi-

mation,it is pointed out that we may again approximate the dis­

tribution of T2 by the chi-square distribution with rk degrees 

of freedom. 

It is also to be noted that, if ~ is known, the distribu­

tion of d 2 unde~ H is exactly known even if there is no repli­o 
catio~ (that is, if n1=n2= •.. =nr=l). 

3.2 Alternate Test Statistics 

3.2 a A Statistic Based on the Distance between M and a 

Weighted Average of the x.'s 
~~~~~~~~~~~~~~~--

Here we will derive a new statistic to test the hypothesis 

H given in (3.1). 
0 

Let 

t. 1/2 B' X.) I i=l, ••• ,r, {3.10) = n. s1 {a + 
-~ ~ ..... -o -o -~ 

where 
(B'B )-1/2 

!!1 = and B' = !!1· -o-o -1 

Then considering {3.5), we see that 

(3 .11) 

where, under the null hypothesis, 
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and V is unknown • ...., 

Let 

and 

r 
I: 

i=l 
t./r 
-l. 

r 
S* = I: 

i=l 
(t.-t) (t.-t) I • 

..... J. ,.., -J. "" 

Then for r > k, we propose the test statistic 

In the null case, 

Q* - {k/(r-k)}F . , . k,r-k 

that is, Q* is distributed as {k/(r-k)} times a Fisher's F 

with k and (r-k)degrees of freedom. 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Furthermore, the non-null distribution of Q* will be that 

of {k/(r-k)} times a noncentral F with the same degrees of 

freedom and noncentrality parameter r(£' Cy*)-l~) where~ is 

equal to the expectation of t. under the non-null hypothesis 
"'l. 

(see, for instance, Anderson (1958), corollary 5.2.3). 

where 

Moreover, we note that since 

r 
t = B I: { n ~/2 (a +B' x.) } /r = 
,.., -1 i=l J. ""0 -o ""l. 

a +{B' 
-o ""0 

r 
I: 

i=l 

1/2 -{n. x.)/ 
l. "'l. 

r 
i: 

i=l 

(3.16) 

(3.17) 
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(3.18) 

represents according to (2.26) the square of the Euclidean 

distance between M defined in (3.3) and a weighted average 
0 

of the x. 1 s. 
""l. 

3.2 b A Function of the Distance between M and the Arithmetic 

Mean of all the Observations 

We may also consider the following statistic to test H 
0 

where 

and 

i=l, •.. ,r; 

n = 

£ = 

r 
r 

i=l 
n. , 

l. 

r n. 
r r 1 c . . /n, 

"'l.J i=l j=l 

r n. 
S* = r t 1 

("' .. -c) (c .. -c) 1 

•c ;=;:;l.J ""' "'l.J ... i=l j=l 

ind 
c .. = B (a + B 1 x .. ) ""' Nk ( 0., Y*) , 
-l.J """1 "'o -o ""l.J ·- ·-

j=l, •.• ,n., with 
l. 

V* = B B'VB B • ..... -1-o ..... -o-1 

Moreover the non-null distribution of Q is that of c 

(3.19) 

(3.20) 

(3.21). 

(3.22) 

(3.23) 

{k/(n-k)} times a noncentral F with k and (n-k) degrees of 
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-1 
freedom and noncentrality parameter n(u' (V*} u ) where u 

~c ~ ~c ~c 

is equal to the expectation of £ij under the non-null hypo­

thesis. 

Since 

where 

r 
c = E 
~ 

n. 
£: 1 B

1
{a +B' x .. )/n = B

1
(a +B' x) - ~o ~o -lJ - -o -o -j=l 

n. 
£: 1 x .. /n , 

""'lJ j=l 

= (a +B' ~)' (B'B )-l(a +B' ~) -o -o ·- -o~o -o -o ·-

(3.24) 

(3.25) 

represents according to (2.26) the square of the Euclidean 
J 

distance between M defined in (3.3) and the arithmetic mean 
0 

of all the x .. 's. 
""'l) 

3.3 A Hodification of the Original Hypothesis 

3.3 a A Modification Based on the Euclidean Metric 

Let us consider a new null hypothesis 

' p 
H 

0 
a = ~o' B = B ...... -o and y is proportional to y

0
, (3.26) 

that is, V = v 2v , where a B V are known and y 2 is a positive 
"" ""'O -o'-o'-o ·-

scalar quantity which is assumed to be unknown. 

Let 

(B' V B )-l/2 
-o -o -o ' 

then we can rewrite (2.30) as 

K' B' V B K = I 
""1 "'0 ""'0 ""'0 "'1 
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and (2.33) as 

Vu 'K-l(B' )-1( ')-1 
1 B Kl Uv =M 

~ ~ ~o ~o ~ ~ ~ 

Hence 

2 
v m~= m. , j=l, •.. ,k, 

J J 

and 

where eh[.] is defined for (2.34). 

where 

Accordingly (2.37) becomes 

We propose the following statistic to test Hp 
0 

(3.28) 

(3.30) 

(3.31} 

2 r n. - -1 -
u = E E1 

{ (x .. -x.) 'V (x .. -x.)}/{p(n-r} }. (3.32) 
~.l.J "'1. ~o ~l.J ""1. i=l j=l 

2 2 , Let us prove that u is an unbiased estimator for v . 

Letting 

Yl.· J' = !!~1.· J' = (y. '1, y .. 2 I ••• I y.. ) I I l.J l.J l.JP 

n. 
i=l, ... ,r; j=l, ... ,n., 

1. 

Xi.~= E
1 

y .. t/n. , t=l, ... ,p, 
,., j l.J 1. 

( 3. 33) 

(3.34) 

(3.35) 
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and 
n. 

- l. I X·= (y. l,y. 2, ••• ,y. >' = I: X·· n. , 
l. l.. l.. l.. p j=l l.) l. 

(3.36) 

we have that cov(X· .) =I and therefore-they. ·n's are 
l.J l.J 1. 

all independent with variance equal to unity. Hence 

n. 2 ind 
rl. <x· · t -x · 1 > -j=l l.J l.. 

2 
Xn.-1 l. 

, i=l, ••• ,r~ .t=l, ••• ,p. 

Thus (3.32} becomes 

2 2 r n. 
l. - -u = V r r {(X··-:t·>'<X··-x·>}l{p(n-r)} 

i=l j=l l.J l. l.J l. 

2 r p n. . 2 
= V I r rl. <x · · -x. 1 ) 1 p(n-r) , 

i=l t=l j=l l.)R, l.. 

so that 
2 2 P r 2 

U -V L L Xn. -1 I{ p (n-r)}, 
t=l i=l l. 

that is, 
2 2 2 

u -v xp(n-r) I {p(n-r)} 

since all the chi-squares are independent and therefore 

(3.37) 

(3.38) 

'(3.39) 

(3.40) 

We will now show that d
2 

and u2 are independently distri­

buted. Let 

- -112 - ' w .. -V ~·.- (w .. 1 ,w .. 2 , ••• ,w .. ) , 
~l.J -o l.J l.J l.J l.JP 

i=l, ••• ,r~ j=l, ••• ,n. , l. 

(3.41) 
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w.= (w. 
1

, ... ,w. )' 
~1 1. 1.p (3.42) 

where 

+ •.• + W, n)/n: I !=lto••tP I 1n. !<. 1 

and 

Then 

r 
= E 

i=l 

1 

1 i=l, ••• , r • (3.43) 

- -1 n. (a +B' X.) I (B'B) (a +B 1 x.) 
1 ~o ~o ~1 · ~o-o -o -o ""'1 

1/2- -1 n. {a +B 'V w. ) 1 {B 1 B ) (a 1 -o -o-o -1 -o-o ~o 
(3.44) 

is a function of thew. n's which are all independent,i=l, ••• ,r; 
1.~<. 

!=l, ••. ,p 1 and 

2 r n. 
u = I: E1 { {w .. -w. >' (w .. -w. > }/{p(n-r)} 

i=l j=l ""'1] ""'1 ""1] ""'1 

r p 2 = E E si! /{p(n-r)} . (3.45) 
i=l !=1 

2 Due to the basic assumption of normality s.t and w. !are in-
1 1. 

2 dependent, i=l, .•• 1 r; !=1, .•• 1 p 1 and consequently u is in-

dependent of t., i = 1, •.• ,~r, and of d2= (t1• t 1+ ••• +t' t ) where 
-1 ..... ..... -r-r 

1/2 ( 1 -1/2-t . = n . { Bl a +B V w . )}, 
-1 1 - ~o ~o-o --1 i=l1 • • • 1 r 1 

and B1 is given in (3.10). 

Therefore we have that 

p 2 2 k . 2 2 
R = d /u ""p(n-r) ! {m~x. (r) }/x ( ) 

j=l J J p n-r (3.46) 

where all the chi-sguares are independent. Thus, the distribu-
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tion of RP is that of the ratio of a linear combination of 

chi-square variates over a chi-sguare variate and it will 

be obtained as corollaries of the results of Chapters 4 and 5. 

We note here that Basu's statistic 

could be used to test aP since its distribution would be that of 
0 

2 k 
(n-r}v { l: 

j=l 

k 
m; x~(r) }/{v2 !s•v B ll/k( n 2 )l/k} 

J J ~o~o~o . Xn-r+i-1 
1=1 

(3.47) 

and would be free of 2 
V • However, in this case, the procedure 

would be somewhat inefficient in view of the fact that the 

matrix y is estimated in its denominator whereas only v2 needs 

to be estimated. 

Furthermore, if we want to test the-hypothesis 

: a = a 
~ ""0 

we may use d* where 

I ~ = B ...... 0 

d* = d 2;v2 

and d2 is defined in (3.30}. 

is known, (3.48) 

(3.49) 

We will provide three representions of the density of d* 

where 

k 
d* ...... l: 

i=l 

2 x. (r) 
1 

and the chi-squares are independent. These representations can 

be deduced from the results found in Mathai and Pillai (1982) .• 
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For the sake of completen~ss, these are given here. 

The first representation is based on the moment generating 

function of d* '2: 0, namely, 

k 

j 
(1 - 2m~t)-r/2 

J 

( 3. 50) 

which can be expanded as a finite sum by a generalized partial 

fraction technique as follows when r is even: 

k 
rr 

j=l 
-2m~t)-r/2 = 

J 

p 
rr 

j=l 

k 
(-2m~)-r/2 E 

J . 
J 

{3.51) 

where the coefficients cjt are determined with an algorithm 

which is described in Mathai and Rathie (1971). Then term by 

term inversion allows us to write the density of d* as follows 

k k r/2 
f(d*)= l1 {(l-2m~}-r/2 } E E {{-l)~cJ.~d*~-l 

i=l l j=l t=l N 

exp(-d*A2m~))}/(2-l)! 
J 

(3.52) 

ford*> 0 and f(d*) =0 ford* ~0, where 

r/2-9.,-l rr/2-9..-1) (r/2-£.-1-j ) 
c. n={ " 2: • A. 1 

J '· j 1 =0 ' J 1 J 

with 

j -1 
2I 

j =0 
3 

(A<?B.) }/(r/2-Q,)! (3.53) 
J J 



0 

0 

and 

A~q) = 
J 

q= 0,1,2, ••.• 

-35-

k 
B.= rr (l/(2m;} - l/(2m~))-r/2 

J i=l J 1 
(3.54) 

i;ej 

k 
E (r/2) (1/ (2m3~) - 1/ (2mj:>)- {q+l}, 

i=l 

(3.55) 

In this case we assume that all the m~'s are distinct; 
1 

if some m~'s are equal, we combine the corresponding factors 
1 

and the density can again be obtained in the same way. 

Another representation of the density of d* which is valid 

whether r is odd or even is given in term of a confluent hyper-

geometric function of (k-1) variables denoted by ~ 2 {.}. This 

function is defined as follows in Mathai and Saxena (1978), 

p. 163, 

= 
CO il i 
E E { ( b 

1 
) . • • • ( b ) . x

1 
••• xnn } I 

. . ~· 1 1 n 1 i=O 1t .•. +1n-1 n 

{ ( ) • I • I } c i 11 •••• 1n. , (3.56) 

the notation (q). meaning q(q+l) ••• (q+i-1). The properties of 
1 

~ 2 are well-known in the theory of special functions. This 

function behaves like a Kummer's confluent hypergeometric 

function which is defined in Erdelyi(l953)and the series form is 

convergent for all values of the arguments. 

Let us consider the following representation of the various 

factors of the moment generating function. 
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(3.57) 

a) i. -i. 
E (r/2) . (1-mi/m~} J (l-2mit) J /iJ.! 

i.=O ~j J 
J 

for 

-1 
A sufficient condition for the expansion is that t < min{ (2mi> , 

••• ,{2~)-l}where mi is the smallest of the mj's such that 

(1-m* m~-l}<(l-2m~t), j=l, ••• ,k. 
1 J J 

Hence 

~ (l-2m~t) -r/2 ::d {m* (k-1) r/2 I ( ~ m~r/2) } 
j=l J 1 j=2 J 

(3.58) 

00 CO i 
1: l: (r/2) . • •• (r/2) . (l-m*

1
/m2*) 2 ••• 

i =0 i =0 ~2 ~k 
2 k 

where i=i2+ ..• +ik. Term by term inversion is possible in this 

case and the density of d* may be written as follows 

where (3.59) 

CO 

41 2 { ·} = l: l: (r/2) . • •• (r/2) . . . . ~ ~ 
i=O ~1+ ••• +~k-l=~ 1 k-1 
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The density of d* can also be derived in terms of zonal 

polynomials. First, we express the moment generating function 

in terms of a determinant: 

= lr- <t1*/n)+!1*(1-2nt)/nrr/2 (3.60} 

where n is an arbitrary constant and M* is defined in (3.27) 

and (3.29). 

The series obtained when we expand the determinant in terms 

of zonal polynomials is valid when the norm of the matrix 

-1 (I - n!* )/(1 - 2nt} 

is less than unity and a sufficient condition is that t<l/(2n) 

and max 11 - ( n/mi_) I< ( l-2nt} 1 i=l1 ••• 1 k. The validity of this 
i 

expansion is guaranteed due to the presence of n and term by 

term inversion is possible. Then, the density function of d* 

can be written as follows 

k 
h(d*) = n 

i=l 

E 
j=O 

* 
e -d /(2n) 

{j!(rk/2). r(rk/2)} 
J 

(3.61} 
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a zonal polynomial of order j and 

k 
(r/2) J = n (r/2- (i-l}/2)j. 

i=l 1 

(3.62) 
k 

= n r(r/2-(i-1)/2 +j.) /r(r/2-(i-1)/2) 
i=l 1 

The function r(z) may be defined by either of the following 

equations 

QO -x z-1 r ( z) = £ e x dx , . Re ( z ) > 0 (3.63) 

and 

Hence the denominator (and a fortiori the numerator) in (3.62) 

will be well-defined provided 

(r + 1)/2 ~ k/2, 

that is, 

r > k. 

The definition of zonal polynomials requires a few concepts 

from group representation theory. Let Vk be the vector space of 

homogeneous polynomials $(A) of' degree k in the n=m(m+l)/2 dif­

ferent elements of the ~m symmetric matrix A. The dimension N 

of Vk is the number 

N = (n+k-1)!/{(n-1) !k!} 

of monomials 
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k .. 
A..7J 
~J 

of degree k .. 
~J 

= k. 

Consider a congruence transformation A+LAL' by a nonsingular 

m x m matrix L. Then we can define a linear transformation of 

the space Vk of polynomials ~{A), that is, 

A subspace V'cV is called invariant if LV' cV' for all non-

singular matriees.L.Also V' is called an irreducible invariant 

subspace. if it has no proper invariant subspace. It can be 

shown that Vk decomposes into a direct sum of irreducible in­

variant subspaces VK corresponding to each partition K = (k1 , 

••. , km) , k = k1 + ••• +km into not more than m parts 

K 

k The polynomial (trA) e: Vk 

V = 
k 

then has a unique decomposition 

into polynomials CK{A) €VK belonging to the respective sub­

spaces. The zonal polynomial is thus a symmetric homogeneous 

polynomial of degree k in the latents roots of A. Zonal polyno­

mials have been developed by Hua (1959) and James (1961). A 

more detailed discussion may be found in these papers. 
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3.3 b Based on a Metric Depending on ~ 

For the metric 

. - -1-
{ (x. - er) 'V (x. - a) } , 

,..,~ ;<, ...., ..... ~ ;<, 

we can obtain, by going over arguments similar to those used 

in Chapter 2 for the metric { (x. - a) I (x. -a) } , the following 
....,~ ;;1, -~ ;<, 

result similar to (3.6) 

n.a~ =n. (a+ B' x.) I (B'V B )-1 ca + B' x.)/v2 ,.., x2 
~ ~ ~ -o ""0 ....,~ ""0""0""0 -o -o -~ k ' (3.65) 

i=l, ••• ,r, where d. represents the "distance" between x. and 
~ ....,~ 

M given in (3.3), under the hypothesis Hp defined in (3.26), 
0 0 

2 that is, where V= v V and V is known. 
""' ""0 ""0 

Let 

""2 2- 1 d. =v d~= (a+ B' x.)'(B'V B)- {a+ B' x.) 
~ ~ -o -o -~ ,..,o-o-o -o ""0 -~ 

(3.66} 

and let u 2 be defined as in (3.32). Then, the statistic 

(3.67) 

since according to (3.39), 

2 2 2 
u - v Xp(n-r)/{p(n-r)}. (3.68} 

"'2 
Moreover d arid u 2 are independent for the same reasons that 

d
2 

given in (3.44) and u
2 

are independently distributed. 

We may thus test the hypothesis (3.26) with ~2;u2 , where 

0 
""2 2 . 
d /u - rk{Frk,p(n-r) }. (3.69) 
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3.4 Concluding Remarks -
For testing H~ defined in (3.48), that is the null hypo­

thesis where y is known, we may also consider the following 

statistics: 

(3.70) 

instead of Q* given in (3.14) and 

c - -1- 2 
Q = n(g' (~*) g) - xk (3.71) 

instead of Qc given in (3.19), where t' and g' are respectively 

given in (3.12) and (3.21) and 

V*= B B'VB B = cov(t.} = cov(c .. ) , - ~l~o-~o-1 -1 ~1] 

i=l, ••• ,r; j=l, ••• ,n. , according to (3.11) and (3.23). 
l. 

(3.72) 

Now,assuming that we have at our disposal an independent 
A 

estimate of V denoted by V and that 
""' ..... 

we may use 

" n*Y ... w (n* V) ·- p ,_ , 

r 
R = {E 

i=l 

(3.73) 

(3.74) 

instead of R defined in (3.2), in order to test H given in 
. 0 

(3.1). In this case, no replications are required and 

k 
R "'(n* I: 

j=l 
m. x~(r)}/{IB'V B 1· 

J J ~o- -o 
~ 2 1/k 

Xn*-i+l} ' i=l 
(3.75) 
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where all the chi-squares are independent. The exact density of 

R will be discussed in Chapters 4 and 5. 

Similarly, let us suppose that we want to test Hp , that 
0 

2 is, the null hypothesis where V = v V and V is known and that 
,..., ""0 "'0 

an independent estimate of v2 denoted by v* 2 is available where 

(3.76) 

Then, instead of RP defined in (3.311, we may use 

k p 2 - 2 . 2 2 
R* = d /v* ""'N*{ I m*J. xJ.(rH/xN* 

j=l 
(3.77) 

where d2 is given in (3.44), m~ in (3.29), j=l, ••• ,k, and 
J 

the chi-squares are independent. 

Once again, the exact density of R*p will be obtained as 

corollaries of the results of Chapters 4 and 5. 

Furthemore, if the equations in (2.21) are homogeneous 

linear equations, that is, a.=0 1 i=l, ••• ,k 1 we can repeat 
~ 

our arguments tQ.king ~ = Q throughout and all the results of 

this chapter would still hold true. 

Finally, Basu (1969) claimed that the distribution of T2 

given in (3.8) could not be obtained in closed form. We will 

show that the exact density of T2 can be obtained in closed 

form. First, let us state Theorem 5.2.2. in .~derson (1958): 
2 -1 

Let T = !'§ ! l-Jhere ! ""Nk CQ, f.) and (n-r) § is independently 

distributed as z1z1'+ •.• +Z Z' with z. i.i.d. Nk(O,E) 1 J'=l 1 - - -n-r-n-r -J "" -
... ~n-r. Then 
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2 . 
{T /(n-r)} {(n-r-k+l)/k}- Fk,n-r-k+l • 

Therefore, according to (3.5) and (2.41), it follows that T~ 
1 

defined in (3.9) has the following distribution 

T~ =(a +B' x.) '(B'SB )-l( +B' x.) 
1 ~o ~o "'1 -o~-o ~o -o -1 

i=l, ••• ,r and that 

-2 T = 
r 
E 

i=l 

-2 T. -{ (n-r) 
1 

r 2 2 
E xi(k)}/ xn-r-k+l • 

i=l 

(3.78) 

(3.79) 

But since the common chi-square in the denominator is inde-

pendent of each chi-square in the numerator, it is also inde-

pendent of the sum of the chi-squares of the numerator which 

are all mutually independent. Therefore 

=2 2 2 
T ... {(n-r) xrk }/ x k 1 , n-r- + (3.80) 

that is, T2 is distributed as a constant times a central F 

with rk and n-r-k+l degrees of freedom: 

-2 T (n-r){(rk)/(n-r-k+l)} Frk,n-r-k+l 

Hence, we may use T2 for testing H
0 

defined in (3.1). 

(3.81} 
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Chapter 4 

THE DISTRIBUTION OF CERTAIN ALGEBRAIC 

FUNCTIONS OF INDEPENDENT GAMMA VARIATES 

4.0 Introduction 

In this chapter, we will derive the exact density of cer­

tain algebraic functions of gamma variates, namely products, 

ratios, linear combinations and also the ratio of a linear 

combination of independent gamma variates over the root of a · 

product of independent gamma variates. Corollaries of these 

results will enab~e us to write in computable forms the exact 

densities of. the test statistics given in {3.2), (3.46), (3.49), 

( 3 . 7 5 ) and ( 3 . 7 7) . 

All these densities are given in terms of the H-function 

which is the topic of the next section where it is presented 

as an inverse Mellin transform and some of its properties are 

discussed. The H-function is applicable in a number of problems 

arising in physical sciences, engineering and statistics. The 

importance of this function lies in the fact that nearly all 

the special functions occuring in applied mathematics and in 

statistics are its special cases. 

The H-function has been studied by Fox (1961) , Braaksma 

(1964), Nair (1973) ., Buschman (1974) , Oliver and Kalla 
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(1976) and Mathai and Saxena (1978) among others. 

Section 4.2 is devoted to the analysis of products and 

ratios of generalized gamma variates. This type of random 

variables is of vital importance in the fields of reliability 

analysis and life testing models. It has also been used by 

Amoroso (1925) and d'Attario (1932) to study the income dis­

tributions and by Rogers (1964) in order to obtain the exact 

distributions of some multivariate test criteria. Also, corn-· 

putable representations of the H-function are provided for the 

cases of interest. We also point out that the denominators of 

the statistics (3.2) and (3.75) are in fact distributed as the 

product of k independent generalized gamma variates. 

In Section 4. 3 , a representation of the density of a 

linear combination of real gamma variates is provided. Such 

linear combinations are connected to various problems in many 

areas. For instance, for their connection to random division of 

intervals and distribution of spacings see Dwass (1961), to 

content of a frustum of a simplex see Ali (1973) , to storage 

capacities and queues see Prabhu (1965). Linear combinations of 

gamma variates are also related to test statistics and traces 

of Wishart matrices as can be seen in Mathai (1980) and in 

Mathai and Pillai {1982). Their connection to time series pro­

blems can be seen from MacNeill (1974). They also appear in the 

study of probability content of offset ellipsoids in Gaussian 

hyperspace and of distribution of quadratic forms, see for 

example, Ruben (1962) and Sheil and O'Muirheartaigh {1977). 
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The density of the statistic given in (3.49) is obtained as a 

corollary. 

In Section 4.4, we derive the density of the ratio of a 

linear combination of gamma variates over the k-th root of a 

product of gamma variates and in Section 4.5 we obtain the h-th 

moment, (hEN), of this random variable in order to approximate 

its density with the appropriate Pearson curve. 

4.1 The H-Function as an Inverse Mellin Transform 

In this chapter, we will obtain the exact densities of 

the test statistics derived in the preceding chapter. These 

statistics are essentially functions of summations, products 

and ratios of real gamma variates and it turns out that the 

H-function defined in this section as an inverse integral trans­

form will be of great importance for the derivation of their 

densities. 

The basic tools for deriving distributions of sums,diffe­

rences, products, ratios, powers, and more generally, algebraic 

functions of continuous random variables are the integral trans­

forms.The most commonly used integral transforms are the Lapla­

ce transform, the Fourier transform and the Mellin transform. 

The aforementioned transforms, each corresponding to a function 

f(x), are now defined, together with their inverse transforms. 

If f(x) is a real piecewise smooth function which is de­

fined and single valued almost everywhere for x~ 0 and which 
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is such that the integral 

J'"'if(x)! e-kx dx 
0 

( 4 .1) 

converges for some real value k, then 

(4. 2) 

is the Laplace transform of f(x), where r is a complex va­

riable and wherever f(x) is continuous the corresponding in-

verse Laplace transform is 

f (x) = (211' i) -1 J.c+.ico 
c-~co 

( 4. 3) 

Equation (4.3) determines f(x) uniquely, if Lf(r) is analytic 

in a strip consisting of the portion of the plane to the right 

of ~nd including) the Bromwich path (c-ico, c+ico), the latter 

denoting the straight line given by 

lim (c-ia, c+ia) (4.4) 
a-+-co 

where i = (-1) l/2 and c is any value greater than k in (4 .1). 

The Laplace transform provides the means for deriving and 

analyzing the distribution of sums of nonnegative random var­

iables • On the other hand, if the random variables may take on 

both positive and negative values, the Fourier transform as 

defined in (4.6} is an appropriate tool for deriving the proba­

bility density function of their sums and their.differences. 

If f(x) is a real piecewise smooth function which is de-

fined and single valued almost everywhere for -oo< x < eo, and which 
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is such that 

r)oo f (t) dt (4. 5) 

is absolutely convergent where t is a real parameter, then 

( 4. 6) 

is the Fourier transform of f(x) and, wherever f(x) is con-

tinuous, the corresponding inverse Fourier transform is 

( 4. 7} 

The expression Ff(t) is also called the characteristic 

function of f(x) when f(x) is a density function and eitx is 

called the kernel. 

The Mellin transform as defined in (4.9) constitutes the 

counterpart of the Laplace transform in deriving the distribution 

of products and ratios of nonnegative random variables-.-

If f(x) is a real piecewise smooth function which is de-

fined and single valued almost everywhere for x > 0 and which 

is such that 

( 4. 8) 

converges for some real value k, then 

f "" s-1 Mf(s} = 
0 

x f{x) dx ( 4. 9) 

where s is a complex number, is the Mellin transform of f{x) 
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and wherever f(x) is continuous, the corresponding inverse 

Mellin transform is 

-1 J.c+ioo -s f (X) = (21T'i) . X Mf (s) ds 
c-~oo 

(4 .10) 

which, together with (4.9), constitutes a transform pair. Equa-

tion (4.10) determines f(x) uniquely, if the Mellin transform 

is an analytic function of the complex variable s for 

where c1 and c 2 are real. This condition is sufficient because 

the analyticity of the transform ensures that the integrand of 

the inversion integral is expressible as a Laurent expansion, 

which expansion is always unique. 

Here we give some important properties of these integral 

transforms. It is assumed that each transform pair exist within 

the region of convergence. 

1. Linearity property 

Mellin 

2. Shifting property 

Laplace: L ax (r) = Lf(r-a) 
e f 

Fourier: F (t) = Ff(t+ia) 
eaxf 

(4.11) 



0 

-50-

Mellin: M -a (s) = Mf(s-a) 
X f 

( 4 .12) 

3. Scaling 

Laplace: Lf (ax} (r) - (1/a) Lf (x) (r/a) 

Fourier": F f (ax) (t) = {1/a) Ff(x) (t/a) 

Mellin Mf(ax)(s) = (1/a) Mf(x)(s) (4.13) 

4. Exponentiation 

Mellin . M (s) = (1/a) Mf (x) ( s/a) . 
f(xa) 

( 4 .14) 

Since the great majority of cases, both theoretical and 

applied; involving the use of Mellin transform in connection 

with products, ratios and powers of independent random variables, 

are concerned with Mellin transforms of real variables, we 

will not discuss Mellin integral transforms for functions f(z} 

of complex random variables z. 

Let 

r (b .+B .s) 
J J 

n 
rr r ( 1-aJ. -AJ. s) } I 

j=l 

q p 
{ TI f(l-b.-B.s) TI f(a.+A.s)} 

j=m+l J J j=n+l J J 

= h (s) , say, ( 4 .15) 

where Mf(s) is defined in {4.9); m,n,p,q are nonnegative in-

tegers such that 0 s n s p, 1 smsq: A.,(j=l, ••• ,p), B.,(j=l, 
J J 

••• ,q) are positive numbers and a.,(j=l, ••• ,p), b.,(j=l, .•• ,q) 
J J 
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are complex numbers such that 

(4.16) 

for v,A. = 0,1,2, ••• ; h=l, ••• ,m; j=l, ••• ,n. Then the H-function 

may be defined in terms of the inverse Mellin transform of Mf(s) 

as follows: 

f (x} = Hm,n (x) 
p,q 

m n I (a ,A ) = H I . { X (bp Bp) } 
p,q q, q 

. -1 = (21TJ.) (4.17} 

where the Bromwich path (c-ioo,c+ioo) defined in (4.4), separates 

the points 

s = -(b. +v) /B. , j=l, ••• ,m~ v=O, 1, 2, • • • , 
J J 

(4.18) 

which are the poles of r(b.+B.s), j=l1•••1m 1 from the points 
J J 

s= (1-a.+A.)/A. 1 j=l~ ••• ,n; A=0,1,2, .••• (4.19} 
J J 

which are the poles of r{l-a.-A.s), s=l, •.• ,n. 
J J 

Hence one must have that 

maxRe(-b./B.} <c <minRe{(l-a.)/A.}. 
lsjsm J J lsjsn J J 

(4.20} 
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The H-function makes sense if the ~ollowing existence con-

ditions are satisfied: 

Case i. For all X> 0 1 when '1!>0 

Case ii.For 
-1 0 < x < S , when '11=0 

where 

q p 
ll = E B. - E A. 

j=l J j=l J 

and 

p A.. q -B. 
B == II A. J n B. ) 

j=l J j==l J 

It should also be mentioned that when 

Aj = Bh == 1 , j==l, ••• ,p; h==l, ••• ,q , 

the H-function reduces to a Meijer's G-function. Hence 

I 

exis'ts for all x > 0 when q > p and for 0 < x < 1 vThen q=p. A 

(4.21) 

(4 .22} 

(4.23) 

( 4. 24) 

(4.25) 

detailed account of Meijer's G-function can be found in Mathai 

and Saxena {1973). 

The behaviour of the H-function for small and large values 

of the argument has been discussed by Braaksma (1964). The two 

main results are 

(4 .'26) 
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for small x, where p~O and c=min(b./B.), j=l, .•• ,m 
J J 

and 

for large x, where p~O and d = max ((a .-1) /A.), 
J J 

j=l, ••• ,n • 

(4.27) 

Here we give a useful property of the H-function which 

follows readily from its definition. 

~,n{x 
1
ca.,A.)} 

p,q (b~,B~) 
J J 

(4.28) 

When normalized with the proper constant, the H- function 

defined in (4.17) encompasses an entire class of probability 

density functions provided the parameters are restricted so 
CO 

·that the function remains nonnegative and! f(x}dx=l where f(x) 
0 

represents the function. We will refer to the random variables 

belonging to that class as H-function random variables. Be-

cause this class includes so many basic distributions as well 

as the distribution of numerous test statistics in multivariate 

analysis (see for instance Mathai (1970), (1971}, (1972) ,(1972a), 

Mathai and Saxena (1969),(1971) ,(1978), and Hathai and Rathie 

{1971)), it is important to represent the H-function in com­

putable form. 

In fact, Hm,n(x) is available as the sum of the residues p,q 

of h(s)x-s in the points (4.18}. The proof of the applicability 

of the residue theorem as well as a discussion about the con-

tours for evaluating the integrals may be found in Springer 

(1979) •. In the next section, we will give some computable 
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representations of the H-function for the cases of interest. 

Furthermore a computer program has been written by Eldred (1978) 

for the evaluation of the H-function. This program which is 

operational evaluates the probability density function (p.d.f.) 

and the cumulative distribution function (c.d.f.) of an H-func-

tion random variable at any value of the random variable and 

also plots the p.d.f. and the c.d.f. The computer program com­

piled on an MNF compiler and run on a CDC 6600, is very effi-

cient and poses no precision problem. Should precision problems 

arise when the program is run on smaller computers, the pro-

blem may be solved by compiling the program under IBM's Exten-

ded a-compiler. 

Now we would like to point out that the c.d.f. may be 

found by a procedure analogous to that used for the p.d.f. 

Let f(x) in (4.10) represent a p.d.f.,then the c.d.f. F(y), 

defined by. 

F ( y) = f y f (X) dx 1 0 < y < m , 
0 

can be obtained through use of the Mellin transform of f(x). 

The following equation has been established in Springer (1979) , 

p.99, where the evaluation of the R.H.S. of (4.29) is discussed 

in detail 

Writing F(y) in the form of an H-function inversion integral, 

one has 
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(4.29) 
1 . m n 

, - J,C+l.eo F(y) =1- (2nl.) • [{IT f(b.+B.(s+l)) TI f(l-a.-A.(s+l))}/ 
· c-l."" j = 1 J J j = 1 J J 

q p -s 
{s ll f(l-b.-B.(s+l)) TI f(a.+A.(s+l))}]y ds. 

j=m+l J J j=n+l J J 

The definition of the H-function is slightly modified in 

(4.17) to present it as an inverse Mellin transform. This modi-

fication does not affect the results in Braaksma (1964) about 

its properties and the conditions for its existence, nor the 

representations in computable forms found in Mathai and Saxena 

(1978), p.71, where the H-function which will be denoted by H 

is defined as follows. 

For 

max Re( (a.-1)/A.) 
l~j~n J J 

< c ' < min Re( b . /B . ) , 
l~j ~m J J 

where h(-s) according to {4.15) is 

m n 
{ n r(b.-B.s) rr f(l-a.+A.s}}/ 
j=l J J j=l J J 

q p 
{ TI f(l-b.+B.s) IT f(a.-A.s}} 
j=m+l J J j=n+l J J 

The identity 

H m,n{x I (aj ,Aj)} = ifl'n{ x I (aj ,Aj) } 
p,q (b.,B.) p,q (b.,B.) 

J J J J 

(4.30) 

( 4. 31) 

{4.32) 

follows by changing direction ; we simply have to replace s by 

-s in {4.17). 
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4.2 Products and Ratios of Generalized Gamma Variates 

In this section, we will determine the exact density of 

products and ratios of independent generalized gamma variates 

which are not necessarily identically distributed. We will also 

provide computable representations of this density. 

The p.d.f. of a generalized real gamma variate, X., is 
J 

B . 
a ./S. a.-1 -d.x.J 

g. (x.) ,; {e. d. J J /f(a./S.)} X • J e J J ( 4. 33) 
J J J J J J J 

for x.>O, d.>O, a.>O, S.>O, and g.(x.)=O elsewhere. Gamma, Wei-
J J J J J J 

bull, Raleigh,folded normal and negative exponential are special 

cases of (4.33). 

We note here that the denominators of the statistics 

C3.2) and (3.75} which are distributed, up to a constant, as 

the k-th root of a product of k independent chi-square variates, 

can be regarded as having the distribution of the product of k 

independent generalized gamma variates in view of the fact that 

the k-th root of a chi-square variate with v degrees of freedom 

whose density is 

k 
{k 2-v/2 ~(kv/2)-1 e-~ /2}/f(v/2) for ~>0, 

is distributed as a generalized gamma variates with parameters 

a = kv/2 : B = k d = 1/2 • 

In Mathai and Saxena (1978), p. 83, the density of 
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( 4. 34) 

where x1 , ..• ,x ,X , .•• ,xk is a set of mutually independent 
m m+l 

and identically distributed generalized real gamma variates 

is obtained in terms of an H-function. 

We will derive the density of Y, denoted by g(y), for the 

case where x1 , ••. ,Xk are not necessarily identically distri­

buted but are independently distributed according to (4.33}. If 

g(y) exists, the (s-l)st moment of Y about the origin is given 

by 

m (s-1) 18. 
E(Ys-l} = IT {r((a.+s-l)l8.)l(r(a.IS.)d. J)} 

j=l J J J J J 

k -{s-1)18. 
rr { r ( (a.-s+ 1) Is.) I ( r (a ./ s . } d . J} } • ( 4 • 3 5) 

j =m+ 1 J . J J J J 

Hence the density function, g(y), is available from the inverse 

Mel;.lin transform of (4.35), that is, 

1 . m k . - Le+~~ -s g(y)=(oK) (2'11'~) . n r((a.-l+s}l8.} IT r{ (a.+l-s)l8.)(5y} ds 
c- ~"" . -1 J J . +1 J J 

where 

J- J=m 

0 < y < oo , n = k-m , 

m 
a={ n 

j=l 

118. 
d. J I 

J 

k 118. 
n d J} 

j=m+1 
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-1 r(a./8.)} 
J J 

and the H-function in (4.36) exists for all x>O if v>O and 

for O<x<8-l if ~=0, where 

m 1 k 1 
~ = I: i. 1: i. ~ 0 

j=l J j=m+l J 
(4.37) 

and 
m 1/6. k -1/B. 

6 = n (l/8j) J n (1/8.) J 
j=l j=m+l J 

(4.38) 

• 

provided 

(4.39) 

v,r = 0,1,2, ••• : j=l, ••• ,m and h=m+l, ••• ,k. Moreover the path 

(c-i~, c+i~) can be chosen suitably on account of (4.39). 

The following representations of H m,n(x) which are valid n,m 
for Hm'n(x) in view of (4.32),can be deduced from the results n,m 

of Mathai and Saxena (1978}. These representations will allow 

us to write g(y) in computable forms and will be useful for the 

next section. 

m 
Case I. When the poles of n r(b.-B.s) are assumed to be simple, 

j=l J J 

that is, when 

for j;eh; j,h=l, .•• ,m; A,v=O,l,2, •••. , we have the following 

expansion for H m,n(x). n,m 
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(4.40) 

m "" m n 
E E TI = j=l h=l v=O 

r {bJ. - BJ. (bh +v) /Bh} TI r { 1 -a. +A. (bh +v) /B.} 
j=l J J J 

j~h 

which exists for all x > 0 if lJ>O and for O<x<S-l if JJ=O, where 

JJ and e are defined in (4.23) and (4.24) respectively. 

Case II. When the poles of 

n 
TI 

j=l 
r(l-a.+A.s) 

J J 

are assumed to be simple, that is, when 

A. (1-a.+v) ~A.(l-a.+A), 
--h J J J 

j~h~ j,h=l, .•• ,ni ).,v =0,1, ••. ~ we hav& the following expansion 

for H m,n(x). 
n,m 

n "" 
= I: I: 

h=l v=O 

(4.41) 

n m 
TI r { 1 - a . - A. ( 1-ah +v) /~} TI r { b . + B • ( 1-a +v) /~} 

j=l J J j=l J J h 
j~h 

V -(1-a fV)/A 
{(-1) x h h}/{(v!)~} 

which exists for all x> 0 if JJ < 0 and for x> e -l if 1J=0, where 
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~ and 8 are defined in (4.23) and (4.24) respectively. 

General expansion in Case I. It is general in the sense that 

the poles of 

m 
JI 

j=l 
r(b.-B.s) 

J J 

are not assumed to be simple. 

The expansion will be obtained with the help of the fol-

lowing ec;ruations 

b.+ \) 
s = J , v=O,l, .•. 

B. 
J 

If there exists a pair of values (v1 ,A1 ) such that 

then the point 

s= 
b. + \)1 

J 
B. 

J 

(4.42) 

is a pole of order two if the point does not coincide with 

the pole of any other gamma of h(-s} given in (4.31). 

If the point coincides with the poles coming from (r-1) other 

gammas of the set r(b.-B.s), j=l, ••• ,m, then the point cor­
J J 

responds to a pole of order r. 

For a fixed j, we consider the following equations 
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= = 
b + v ~jm) . 

m J1···Jm 
B m 

(4.43) 

for which the following convention is used. For a fixed j, j =0 r 

or 1, for r=l,2, ••• ,m ~when j =0, 
r 

(b + V ~ j r) . ) /B 
r J 1" •• Jm r 

is to be excluded from the equations in (4.43). Here v~jr) . 
J1···Jm 

represents a value of v in (4.42); clearly, the possible values 

are 0,1,2, •.•• Moreover v~jr) . denotes the number corres­
Jl···Jm 

ponding to v~jj) . when the equation 
J 1" • • Jm 

b.+v~jj) . 
J J1···Jm 

b + v ~jr) . 
r J1···Jm 

= B. 
J 

B 
r 

is satisfied by some values of v~jj) . and 
J1···Jm 

v~jr) . • There­
J 1" • • Jm 

fore Cjr> t · t tl d th d't' v. . may or may no ex~s . n er ese con~ ~ons 
J1···Jm 

for every fixed j and j 1+ •.• +jm represents the order of the 

pole at 

s = 

For example, if j
1
+ ••• jm= r, then there will be r elements in 
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(4.43) if 

, k=l, .•. ,m 

are called elements in (4.43). In the above notation, a pole 

of order r is considered r times. In order to avoid duplication 

it will always be assumed that 

j =j :::;: ••• =j. =0 
1 2 J-1 

while considering the points corresponding to (4.42). When 

j
1

+ ••• +jm=O, the corresponding point is not a pole. 

If j =0 for r=l, •.• , m; r;tj , .then 
r 

b.+ 
J 

corresponds to a simple pole. 

Letting 

s ~jj) . 
J1···Jm 

= {v~jj) . } 
J1···Jm 

represent the set of all values v~jj) . 
J1···Jm 

takes for given j
1

, ... , 

jm, we have the following expansion for 

m 

H m,n(x). 
n,m 

E E R. 
j=l s ~j j) . 

J1···Jm 

J 
(4.44) 
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where R. is the residue of h(-s)xs at the pole 
J 

b.+v~jj). 
J J1···Jm 

s = --"'="""'--= B. 
J 

and 

l(''} denotes the summation over all the sets S~jj) . 
s.JJ . J1···Jm 
J1···Jm 

j + ••• +j -l . . 1 . + +' 1 1 E m Jl+ ••. +J - Jl ••. J - -r 
r=O ( r m ) (-log(x)} m 

(4.45) 

[ 
m . {jj) . (jh) 

D. = n r{bh-Bh(b.+v. . )/B.+ Jh(v. . + 1>} 
J h=l J J1···Jm J J1···Jm 

n 
n r{l-ah+~(b.+v~jj) J. )/B.}]/ 

h=l J J1··· m J 

(4.46) 

m 
C <. 0 ) = ... Bh ( j j ) I . ( ( j h) } " 1ji{bh-Bh(b.+v .. J') B. +Jh v. . +1) 

J h=l J J1··· m J J1···Jm 

+ ~ ,Bhjh{l + (1/2) + (1/v ~jh) . } 
h=l J1···Jm 

(4.47) 
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m ( •. ) 
c~t) = (-l)t+l t!{ I: Bht+l p(t+l,bh-Bh(bJ.+v.JJ · )/B. 

J J1· · • Jm J h=l 

+j {v~jj) . +1)) 
h Jl···J m 

+ ~ B7+1 jh{(-l)-t-1+(-2 )-t-1+ •.• +(-v~jh) J' )-t-1} 
J J1··· m h=l 

n ( .. ) 
+ E {-A.)t+l p(t+l,l-ah+A. (b.+v.JJ ·)/B.)} 

h=l --h --h J J 1 · · · Jm J 
(4.48) 

The psi function w(.) and the generalized zeta function p(.,.) 

are defined as follows: 

d CO -1 
w(z) = -d log(r(z)) =-y+ (z-1) E {(n+l) (z+n)} 

z n=O 
(4.49) 

where y is the Euler' s constant; y = 0. 577 ••• , 

"" 
p ( s, e) = I: (n + e) -s - (4.50) 

n=O 

-
Re(s) > 1, e :f. 0,-1, -2, •.. , Re( . ) denoting the real part of 

( . ) . 

We· note that the general expansion in ease II, that is the 

case where the poles of 

n 
II 

j=l 
r(l-a.-A.s) 

J J 

are not assumed to be simple, is available from case I by making 

the following changes: interchange m"-'n, b . "' (l-a . ) , B . "' A. , 
J J J J 

and x"' (1/x) in the R.H. S. of (4. 44). 
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4.3 Linear Combinations of Gamma Variates 

We will first derive an expression for the exact density 

of the inverse of a linear combination of independent real gamma 

variates. As a corollary, we will obtain the exact density of the 

* test statistic d in {3.49). General results and other 

convenient representations of the density of a linear combination 

of independent chi-square variates are available in Ruben (1962) 

and Johnson and Kotz (1970). 

A real random variable X is said to have a qamrna distri­

bution with parameters (a,b) , if the density of X, denoted by 

g(x) is given by 

g (x) = xa-l e -x/b /{ba r (a)}, 

a>O, b>O, X>O and g(x) ::::10 elsewhere. 

Let x1 , ... ,Xn be independent real gamma variates with pa-

rameters (a.,l/d.), j=l, ••. ,n, whose respective densities are 
J J . 

(4.51) tvith a=a.., b= 1/d. where a. and d. are positive 
J J J J 

given in 

real, numbers, j , ... ,n. 

The h-th moment of 1/G where 

n 
G = E m.X. , m.>O, j=l, ••• ,n, 

j=l J J J 
{ 4. 52) 

is 
-h m oo -h n a.-1 -d.x. a. 

R ( G ) = j . . . J G TI { x . J e J J ( d . J 1 r ( a . ) ) dx . } • 
0 0 j=l J J J J 

But since 
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(4.53) 

for Re (h)> 0 1 G> 0 1 \vhere Re (.) denotes the real part of (.) , 

we have 

n a.-1 -d x 
n {x.J e j j(d~/r(a.)) dx.}dt 

j=l J J J J 

-1 ro h-1 n ro -x. (m.t+d.) a.-1 
= ( r (h)) f t IT { f e J J J x J 

0 j=l 0 

a. 
(d.J/r(a.))dx.}dt . 

J J J 

Noticing that for j=l,2, •.. ,n, 

1 
-x . (m. t+d . ) a . -1 -a . 

(' { r (a.))- e J J J x. J dx. = (m. t+d.) J 
0 J J J J J 

(4.54) becomes 

where 

n -a. 
E (G-h) = ( f (h)) -l ("' th-l IT {(m. t+d.) /d.} J dt 

0 j=l J J J 

lJ. = m./d. 
J J J 

n 

j=l 
(l.J,t+l) 

J 

-a. 
J 

j=l, ... ,n. 

dt , 

Letting u · 1/ (l+t) , that is, t = (l-u) /u , one has 

I at I = 1 
du --2 

u 

{ 4. 54) 

(4.55) 

(4.56) 
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and {4.55} becomes 

-1 h-1 n -a. -a. 2 
E{G-h)=(r(h}) Jl((1-u)/u) n {(J.!./u) J((l-u)+u/J.!.) J}u- du 

0 j=l J J 

where 

Let 

and 

then 

-1 n -a· l -h-1 h-1 n -a· 
=(r(h)) n (tJ. J)J uP '(1-u) n {1-u(J.l.-1)/J.!.} Jdu 

j J 0 j=l J J 

p - h = q 

Y· = (Jl.-1)/lJ. ' 
J J J 

n -a. 
E(G-h)={( n l.l· J)r(q)/r(p)J[{r(p)/(r(q)r(p-q))l 

j=l J 

1 1 1 n -a. f uq- (1-u}p-q- IT (1-y.u) J du] 
0 j=l J 

) 

(4.57) 

(4.58) 

(4.58a} 

(4.58b} 

( 4. 59) 

At this point, we give a multiple series representation as 

well as a single integral representation of a type- D Laurice1-

la's hypergeometric function of n variables denoted by FD( ) . 

= l: l: {(a)./(c).}{(b
1

) .•.•. (b). 
j=O jl+ ... +jn=j J J J1 n Jn 

j1 j 
(xl •.. xnn)}/{(jl!) •.. (jn!)} 
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i=l, ••• ,n, and for instance 1 (a) . = r (a+j) ;r (a) , 
J 

and 

where 

-b 
={r(c)/(r(a)r(c-a))} ~l ua-l(l-u)c-a-l(l-ux

1
> 1 

-b 
{l-ux ) n du , 

n 

Re(a} > 0, Re(c-a} > 0 • 

(4.61) 

These representations may be seen from Mathai and Saxena 

(1978), p. 162, where other types of Lauricella's hypergeo­

metric functions are also defined. We may now rewrite (4.59) 

as follows 

provided Re(q) =Re(p-h) >0, Re(p-q) =Re(h) >0 and 

that is, 

lJ • > 1/2 for j = 1 1 ••• 1 n . 
J 

Condition (4.63) allows us to express the h-th moment of 1/G 

as a multiple series. Hence 

-h n -a. oo 

E(G )={TI J.1J.Jr(q)/f(p)} E E {(q)/(p)} 
J'=l "=0 + + - \) \) v v 1 . . . v n -v 
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forh·l < 1, that is, ll· =m./d. >1/2, j=l, ••• ,n. 
J J J J 

We now can state the following theorem. 

Theorem 4 .1. Let G = m1x1+ ••• +m X > 0 where m. > 0, j=l, ••• , n, n n J 

and x1 , ••• ,X are independent gamma variates with parameters 
. n 

(a.., 1/d.) and let p=a.1+ ••• +a. , then for O<Re(h) <p and 
J J n 

h·l =I ('l.l.-1)/ll·l<l, that is ll· =m./d. > 1/2, j=l, ••• ,n, 
J J J J J J 

-a.. n -h . E(G ) = { 11 ('l.l.) 
j=l J 

Jr(q)/r(p~}Fd(q:a.l, ••• ,a.n:p;yl, ••• ,yn) 

= 

where q = p-h and yh is defined in ( 4. 64) • 

If the condition ll. > 1/2 is not satisfied for j=l, ••• ,n, then 
J 

we use the following technique to make the conditions met in 

the integral (4.59) as well as in the multiple series (4.64). 

we multiply G by o/o where o is a constant such that 'l.l! =ell.= 
J J 

=am ./d. > 1/2 for all j, allowing us to express the h-th mo­
J J 

ment of 1/G, that is, 

where G' = oG, as a multiple series. We obtain the density of G' 

by taking the inverse Mellin transform of E(G'-h) and thereby 

we can easily get the density of G by making an appropriate 
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change of variables. 

Noting that 

r (q) (q)v = r (q)r (q+v)/r (q) = r (q+v) = r (p+v-h) 

and that 

r ( p ) ( p ) = r ( p +v ) , 
V 

(4.64) may be rewritten as 

where 

k 

K = 
\) 

"l""""n 

Y• -
J 

ll· = 
J 

p = 

and 

E 
v=O 

l<llj-l>lllj I 

m./d. 
J J 

, 

al + ..• +an 

K r(p+v-h) 
\) 

k I 

"l""""n 

< 1, j=l, ••• ,n 

j=l, ••. ,n , 

0 <Re (h) < p • 

, 

(4.65) 

(4.66) 

( 4. 6 6a) 

We obtain the density of J = 1/G denoted f (J) as the inverse 

Mellin transform of E {Jh) = E (G-h). 
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i = (-1) 1/2 
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and c < min { p + v ) = p • 
v=O,l, ••• 

(4.67) 

Since the infinite series in (4.66) is uniformly convergent 

within its region of convergence, 1-1 • > l/2, j=l, ••• ,n, the den­
J 

sity of J may be written as follows 

CIO 

= I: 
v=O 

K J-1 H 0,1{ J I {1-p-v, 1)} 
V 1,0 

for c < p • Then according to ( 4 • 2 8) , we have 

f(J) = 

Now since 

H 1,0{ I } B-1 b/B ( 1/B) 0,1 x (b,B) = x exp -x 

{4.68) 

(equation 1.7.2 in Mathai and Saxena(l978)), we can express 

the density of J as follows for J > 0 

eo· 

f(J) = I: 
v=O 

K J-l J-(p+v) exp(-1/J) • 
V 

(4.69) 

Let g2 (G) denote the probabily density function of G. Since 
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we have 

~~g, 

and 
CO 

g2(G) = l: K 
v=O \) 

CO 

= l: k 
v=O \) 

where 
k = K r(p+v). 

\) \) 
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1 J =- , 
G 

1 = 
G2 

· p+v-1 G 

Gp+v-1 

-G e 

-G e ;r (p+v) 

(4.70) 

(4. 71) . 

Therefore the density of G is available as a linear combination 

of densities of gamma variates with parameters (p+v,l). 

Corollary 4.1 The exact density g2 (d*) of d* where d* is de­

fined in (3.49} and 

k 
d* - l: 

i=l 
m! 

l. 

is according to (4.70) 

for d* > 0, where 

g 2 { d * ) = ( d * ) P -1 e -d * ; 
v=O 

.P = kr/2 

J{ = 
\) 

k 
= { IT 

j=l 

, 
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\) 

y~ k} /{r(p+v) (v 1 !. .. vk!)} 

and 

Y~ :;:: I (2m~-l)/(2m~) j<l,J·=l, ... ,k 
'J J J 

that is, 

This .representation for the density of a linear combi-

nation of chi-square variates is simpler than the representa-

tions given in (3.52), (3.59) and (3.61) which have been de-

duced from the results found in Mathai and Pillai (1982). More-

over, the representation of the density of G given in (4.70} 

for the case where G is a linear combination of independent ex-

ponential variables also differs from the representation given 

in Mathai (1983). 

As a simple application of this corollary, we see that the 

density of d* when k=l is 

g2 (d*) = d*r/2 -le-d* ~ (2mf) -r/2 { r (r/2 + v} /r (r/2)} 
v=O 

{ {2mi-l)/(2mi}}vd*v /{r (r/2+v) (v!)} 

00 

r {(2mi-l)d*/(2mi)}v/v! 
v=O 
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-d*/ (2m*) 
= d*r/2- 1 e 1 /{2m*)r/2r(r/2) , 

1 

which is the density of a gamma random variable with parameters 

{r/2,mf/2) as it should be. 

There is a vast literature on the distributions of linear 

combinations of random va.riables where the individual variables 

are assumed to have particular types of distributions. In order 

to unify as well as to generalize these results, Mathai and 

Saxena (1973) considered linear combinations of random variables 

where each component variable is assumed to have a density asso-

ciated with an H-function. Here we list one result for the sake 

of illustration. 

Let x1 , .•. ,xn ben independent random variables where Xi 

has the density function 

'Y·-1 -ap.x. 
f.(x.)=(x. ~ /C.)e ~ ~ 
~ ~ ~ ~ 

(4.72) 

for O<x.<m and f. (x.)=O elsewhere, i=l, .•• ,n: where 
~ ~ ~ 

(i) (i) -'Y· k.,L+l 
c.=(ap.) ~ H ~ ~ { 
~ ~ r.+l,s. 

z. (y. +l,J.1.), (a ,A ) 
-.....;~;...._ I ~ ~ r. r. } (4 73) 
(ap.)J.li {b(i),B(i)) ~ ~ • 

~ ~ 
~ s. s. 

~ ~ 

J.l. >0, p. >0 ,. {'Y.+l+J.1.min(b./B.)}>O, j=l, ••• ,k., i=l, ••• ,n. 
~ ~ ~ ~ J J ~ 

Since there exists at least one set of parameters for which 

f. (x.) in (4.72)is nonnegative andf~f. (x.)dx.=l, it is assumed 
~-~ 0 ~ ~ ~ 

that the parameters are such that f. (x.) ~0 for O<x,<m and 
1 1 1 

Jm f . (X . ) dx. = 1. 
0 ~ 1 1 

http:ap.)J.1i
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Let 

(4.74) 

then the density h(u) of U is given as follows 

n -y. n ki CO 

~ i r ( b ~ i > - B < i > ( b < i > + v . > /B ~ i > ) . ~ 

h (u) = {II p. /C.} 1I E E 
. 1 ~ ~ j=l J h h ~ J J= i=l h=l v.=O 

~ 

[{~i r (l-a ~i) +A~i) (b~i) +v.) /B~i)) r (y .+JJ. (b~i) +v.) /B~i)) 
j=l J J ~ ~ ~ ~ 

(i) (i) 
J.l • (b +v . ) /B s . ( . ) { . ) ( . ) ( . ) 

(z.p.~) h ~ h }/{ rr~r(l-b.~ +B.~ (b ~ +v.)/B ~) 
~ ~ j=k.+l J J h ~ h 

~ 

n 
[e-au u{ E (JJ.(b~j)+v.)/B~j) +v.) -1}/ 

j=l J J J 

(4.75) 

The density function in (4.75) is derived by finding the 

Laplace transform of U which is given by 

n 
L(r) = n Lf (p.r) 

i=l i ~ 
(4.76) 

due to the stochastic independence of x1 , ••• ,xn where Lf(r) is 

defined in (4.2). We get the density of U by collecting the ap-

c:J propriate terms and by taking the inverse Laplace transform of 

L(r) where the inverse Laplace transform is defined in (4.3) • 
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We would like to point out that series representations of 

the distributions of quadratic forms in normal variables were 

considered by many authors for the central as we~l as for the 

noncentral cases, see for example, Kotz, Johnson and Boyd (1967). 

Tables of distributions of positive definite quadratic forms in 

central normal variables are available in Johnson and Kotz(l968). 

Moreover, various approximations are available for the 

distribution of a linear combination of independent chi-sguare 

variates; see for instance, Oman and Zacks (1981), Jensen and 

Solomon (1972) for a Gaussian approximation, or Solomon and 

Stephens (1977) where the distribution is to be fitted by Aw0 , 

where w has a chi-square distribution with s degrees of free­

dom and the constants A, s and D are found by matching moments. 

The multivariate analog of this problem has been considered 

recently by Tan and Gupta (1983) who proposed an approximation 

to the distribution of a linear combination of central Wishart 

matrices. 

4.4 The Ratio of a Linear Combination of Gamma Variates over 

the k-th Root of a Product of Gamma Variates 

In this section, we will determine the exact distribution 

of a statistic of the type 

R = G/Q I (4.77) 

where G is the linear combination of gamma variates defined in 
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(4.52) and 

( 4. 78} 

where Y1 , ... ,Yk are independent real gamma variates with param­

eters (qj,l/Dj)' j=l, .•. ,k, their respective densities being 

q. q.-1 -D.y. 
g. (y.) = (D. J I r { q.) ) y. J e J J 

J J J J J , 
(4.79) 

y. > 0, D.> 0, q. > 0, j=l, •.. ,k, and g. (y.) = 0 elsewhere. 
J J J J J 

It is also assumed that G and Q are independently distributed. 

We are considering a ratio of the type R = G/Q in order to 

obtain the densities of the test statistics (3.2}, (3.46), (3.75) 

and {3.77) which are all structurally equivalent toR. 

Let 

L = 1/R ·• 

Since Q and G are independent,the h-th moment of Lis 

n 
E{ ( z: 

j=l 

-h 
m.X.) } 

J J 

Hence, according to (4.66) and (4.79), 

(4.80) 

(4.81) 

(4.82) 

for \1. =m./ d.> 1/2, j=1, ... n, and 0 < Re{h) < p , where p is 
J J -] 

given in (4.58). 

If the condition Jl. > 1/2 is not satisfied for j=l, •.• ,n, 
J 

.. ' 
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we use the following technique. We multiply both numerator 

and denominator of R by B ; then we absorb the numerator B 

in llj so that the new llj is BJJj such that B\.lj>l/2 for all j.We 
1/k keep the denominator B with (Y1Y2 ••• yk) so that the h-th mo-

ment of the denominator becomes 

k 
Bh II D ~h/kr (q i + h/k) /r (q i) • 

R.=l 
From (4.82) we have 

E(Lh>=·r K ~ {(o:h/k/r(q )} ~ r<q +h/k)r(p+v-h). (4.83) 
v=O " R.=l "' t t=l i 

The procedure for obtaining the h-th moment of L = Q/G could 

have been used even if Q and G were not independent but a prod-

uct and a linear combination of some independent gamma variates 

x1 ,x2 , ••• ,xp. In that case we would integrate out over the joint 

-h density of x1 ,x2 , .•• ,X after replacing G by using the tech-
.P 

nique in equation (4.53). 

From the uniqueness of the inverse Mellin transform, it is 

seen that this moment expression uniquely determines g(L), the 

density of L, where L = 1/R. Hence 

g (L) = (21T i) -l rc+ioo E (L h) L- (h+l) dh 
Jc-ioo 

where i=(-1) 112 and 

max (-kq1) < c < min (p+v) = p • 
l~R.~n v=O,l, ••• 

Hence c can be taken to be zero since q > 0 and p > 0 • 
R, 
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Since the infinite series in (4.83) is uniformly con-

vergent within its region of convergence, llj > 1/2, j=l, ••• ,n, 

the density of L may be written as follows 

where 
k 

K' = Kv/t~lr(qt) , 
V 

(4.85) 

k 
01/k 

~ = n 
R,=l R, 

(4.86) 

K is defined in (4.66) and the path in the complex plane .run­
v 

ning from -io:> to +ico , separates the poles of r (qR. + h/k) 

which are 

-k(q
1

+n), t=l, ••• ,n; n=O,l, •.• , 

from the poles of r(p+v-h) which are 

(p+v+A) , v=O,l, ••• ; A=O,l, ••• 

The density of L can thus be expressed in terms of a­

functions as follows: 

g(L) 

and the density of 

R = 1/L 

denoted by h(R) is therefore 

(4.87) 

( 4 • 88) 
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h(R) = g{l/R) ~~~~ ={g(l/R) }/R2 

(4.89) 

For the H-function appearing in (4.89), we have according 

to (4.23) and (4.24) that 

k 
l.l = l: (1/k) -1 = (k/k) - 1 = 0 {4.90) 

t=l 
and 

k 
(1/k)-1/k (1/k) -k/k = k 8 = n = . (4.91) 

j=l 

Hence we may use (4.40) where m, n, x, aj, Aj, b1 and B
1 

are respectively replaced by k, 1, (~/R), (1-p-v), 1, q. and 
. J 

(1/k), in order to obtain h(R) in a computable form for 

( ~/R) < k ( 4. 92) 

This last representation is valid provided the poles of 

k 
n (q£ + h/k) 

t=l 

are all simple. If this is not the case, that is, if 

for some pairs of values (v1 ,A1 ) and t ~j , the general rep­

resentation for Case 1 discussed in Section 4.2 ought to be 

used. 

Then noting that according to (4.28) 
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(4.93) 

(4.94} 

we may once again use (4.40) where m, n, x, aj, Aj' b1 and B1 

are respectively replaced by 1, k, R/~, (1-q.), 1/k, (P+V) and 1 
J 

in order to express h(R) in a closed form for 

-1 
(R/ ~) < k , 

that is, for 

(~/R) > k {4.95) 

We also notice that for v fixed, the poles of r(p+v+h} 

which are 

-(p+v+)..)=h, )..=0,1, ••• , (4.96) 

are all simple. 

Tnerefore h(R) is available in computable forms for ~11 

R > 0. 

The density of L = 1/R may also be expressed in terms of 

Meijer's G-function which is defined in (4.25). Let 

( 4. 97) 

then 

(4.98) 

Hence we can obtain the h-th moment of 

(4.99} 
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upon substituting hk for h in (4.83). Hence 

E (Th) = · ~ K 1 ~ r (q +h) r ( p+v-hk) ~ -hk 
v=O v .t=l .t 

(4.100} 

for 1.1. > 1/2 and 0 <Re (hk) < p 1 where K 1 and ~ are given in 
J \) 

{4.85) and (4.86) respectively. 

Noticing that 

r (p+v-hk) = r (k{ {p+v) /k - h}) 

k-1 
= (2n) (1-k) /2 kp+v-hk- 1/2 IT r ( {p+v+t) /k- h) 

t=O 

by the Gauss-Legendre multiplication formula: 

m-1 
r (mz) = (2n) (l-m) / 2 mmz- l/2 IT r (z + j/m) 1 

j=O 

(4.100) becomes 

(4.101) 

(4.102) 

~ k k 
E(Th) = l: K" IT r(q.+h) IT r((p+v+R.-1)/k-h) (k~)-kh, (4.103) 

v=O V j=l ) t=l 

where 

K" = (2n) (1-k) /2 kp+v- 1/2 K' 
V V 

{4 .104) 

The inverse Mellin transform of E(Th) will give us the 

density ofT, g(T), as a linear combination of Meijer's G-func­

tions times T-l : 

<lO 

g(T) = i: T-l K" { (21Ti}-l 
v=O v (4.105) 

f_+i:,~ ~ r (qJ.+h) ~ r ( (p+v+R.-1) /k- h) (kt;;) -kh T-h dh} 
j=l t=l 
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= I: 
\)=0 

(4.106) 

where 

aR.= 1- (p+\I+R.-1)/k, t=l, ••• ,k. 

Representations of Meijer' s G-function may be found in 

Mathai and Saxena (1973a). We may also use the representations 

of the H-function given in (4.40) and (4.44) with A.= 1, B.= 1 
J J 

and m= n = k. 

Since a chi-square variC)te with N degrees of freedom is in 

fact a gamma variate with parameters (N/2,2}, the densities of 

the statistics (3. 2) and (3.75) can be directly obtained in 

terms of H-functions of the type Hk'l( 
l,k 

) from (4 .89} or in 

terms of G-functions of the type Gk'k( k,k • from (4.106) after an 

appropriate change of variables. 

Similarly one can get the densities of the statistics (3.46) 

and (3.77) in terms of H-functions of the type Hi:i<.) from 

(4.89) or in terms of.G-functions of the type Gi:i<.) from 

(4.106). 

Let us express the density of the test statistic R defined 

in (3.2) in terms of H-functions. According to (2.37), (2.44) 

and (4.89) the density of R is 

where 

h(R} = I: 
\)=0 

qj = (n- r- j + 1) /2 , j=l, .•• ,k , 

(4.107) 

(4.108) 
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p = rk/2 , (4.109) 

k 
~ = n (l/2)l/k = 1/2 

t=l 

and according to (4.85) 

K' = 
k 

I: ( n (2m<?) -r/2 ) { (r/2} ••• (r/2) } 
· 1 J vl vk v1+ ••• +vn=v J= 

(4.110) 

with 

m<?= m./IB'VB ll/k, j=l, ••• ,k , 
J J 0 0 

(4.111) 

and 

y. = l<2m<:'-l}/(2m<?)l <l, j=l, ••• ,k, 
J J J 

( 4 .112) 

that is, 

0 m. > 1/4 , j=l, ••• ,k • 
J 

(4 .113) 

4. 5 Approximations of the Distributions through the l·toments 

In this section, we will derive an expression for the 

h-th moment of a statistic of the type R defined in (4.77) for 

the case where h is a positive integer and then we will obtain 

an approximation to the density of R by selecting the Pearson 

curve available by using the first four moments of R. Approx-

imations to the densities of the test statistics given in (3.2), · 

(3.46), (3.75) and (3.77) may be obtained as direct corollaries 

since these statistics can be expressed in terms of R. 
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Since the discussion of Pearson curves is readily avail-

able from many sources we will not go into the details. Only 

the very basic ideas will be given here so that the discussion 

in this section will be self-contained .. 

Pearson curves are probability densities 

y = Q (X) 

which are solutions:o,f the differential equation 

~= dx 
(x- a) y (4.114) 

Given the mean value v and the central moments p 2 ,v 3 and 

v4 of the distribution to be approximated, the selection of a 

particular Pearson curve is based on the following moment ratios 

(4.115) 

( 4 .116) 

and 

(4.117) 

There are twelve types of curves and the set of rules for 

determining which curve best fits a given probability distri-

bution has been developed by Karl Pearson in the late 1880s. 

A complete development of the curves and the associated rules 

can be found in many books, see for example Elderton and John-

son (1969}. Tables of standardized percentage points are in-
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eluded in Pearson and Hartley (1972) together with examples of 

their use. The steps in fitting a Pearson curve to a theoret-

ical distribution in order to find percentage points are given 

in Solomon and Stephens (1978). 

Let us compute the first four moments of R. It is seen 

from (4.80) and (4.81) that 

(4.118) 

w~ere Y~ is distributed according to the density given in (4.79) 

for ~=l, ••• ,k; 

M. =m.X. 
J J J 

is a real gamma variate with parameters (a.,m.ld.), j=l, ••• ,n , 
J J J 

according to the definition of G given in (4.52) and all Y 's 
~ 

and M 's are assumed to be mutually independent. 
j 

Then noting that 

E(Yn) -hlk = Dhlk r (q - hlk) lr (q } 
N . ~ ~ ~ 

I (4.119) 

·provided q~ > hlk, ~=1, ~ •• ,k , and that 

E (M . h) = (m . Id . )h r ( a. + h) I r ( a... ) , 
J J J J J 

( 4 .120) 

so that, for h,h1 , ••• ,~eN, 

n h. 
= {h!l(h1 1 ••• h !)} U(m.ld.) Jr(a.+h.)lr(a.) 

n j=l J J J J J 
h1+ ••• +hn=h 
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I (4.121) 

we get the following expression for the h-moment of R when h 

is a positive integer 

k h/k 
llh = { n DR. r(qt -h/k)/r(qt)} ~, (4.122) 

t=l 

where iP is given in (4.121), qt >h/k 1 t=l, ••• ,k 1 and h,h1 , ••• 1 

hn E IN. For instance the mean value of R is 

k 1/k n 
ll ={ n DR. r(qt -1/k)/r(qR.)} { t (m./d.)r(a.+l)/r(a.)}. (4.123) 

R.=l j=l J J J J 

From the first four moments of R, namely ll1ll2,ll3 and ll4 

readily available from (4.122) from which one can compute ll 2 , 

ll 3 and \.1 4 , a Pearson curve may be fitted to the theoretical 

distribution of R. 

It is worth mentioning that Carter (1970) has written a 

programm in FORTRAN language named STOFAN (stochastic function 

analyzer) which includes procedures to find the moments of the 

probability density function of an algebraic function of H-func-

tion independent random variables and to approximate the proba-

bility density function and the cumulative distribution func-

tion from the moments. 

The resulting approximations to the densities of random 

variables of the type R should prove very useful considering 

the lenghty computations that may be required to evaluate the 

percentage points of the exact distributions of the statistics 

given in ( 3 • 2) , ( 3 • 46 ) , ( 3 • 7 5) and ( 3 • 77) • 

http:1,\.12,\.13
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Chapter 5 

CONNECTION TO PRODUCT OF BETA TYPE-2 VARIABLES 

5.0 Introduction 

In Section 4.4, we have expressed the density of a random 

variable whose numerator is the sum of independent gamma var­

iates and whose denominator is the root of a product of indepen-

dent gamma variates in terms of H-functions as well as in terms 

of Meijer's G-functions. 

In this chapter, we provide another representation of the 

density of such a variable based on a new identity expressing 

Meijer's G-functions of the type G~:~(.) in terms of the dens­

ities associated with the product of independent beta type-2 

random variables. This simpler representation may also be pro-

grammed for computational purposes. The exact densities of the 

statistics corresponding to (3.2), (3. 75), (3.46) and (3. 77) may 

be obtained as corollaries. 

5.1 The Exact Density of R in Terms of that of the Product of 

Independent Beta Type-2 Variables 

A random variable T. is said to have a beta type-2 density 
J 

with parameters a. and s., if its probability density function 
J J 

is 

a.-1 -(a.+a.) 
fJ.(t.)={r(a.+S.)/(r(a.)r{S.))}t.J (l+t.) J J, (5.1) 

J J J. J J J J 
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for O<t.<co, Re(a.)>O, Re(f3.)>0, and f.(t.)=O elsewhere. 
J J J J J 

The h-th moment ofT. is then 
J 

h E {T.) = { r (a . +h) r ( 13 . -h) } I { r (a . ) r ( 13 . ) } 
J J J J J 

for -Re(a.) < Re{h) < Re(f3.). 
J J 

Let 

(5. 2) 

where T 1 , T 2 , ••• , Tk are k independent bet.a type-2 random variables 

with the respective densities given in (5.1), then the h-th mo-

ment of W is 

k k k 
E (Wh) = n E ( T~) = n { r ( a . +h) r ( 13. -h) } 1 n { r (a . ) r ( s . ) } , 

j=l J j=l J J j=l J J 
(5. 3) 

Now if we compare the gammas containing h in (4.103) to 

the expression in (5.3), it is evident that the random variable 

corresponding to the gamma product in (4.103) can be looked 

upon as structurally a product of k independent beta type-2 

random variables.For such a structure, the exact density is 

available in Mathai (1984). For the sake of completeness, we 

state the result here without proof. 

If T1 , •.• ,Tk are independent beta type-2 random variables 

with positive parameters (aj,8j)' j=l, ••• ,k, and if W=T1 ···Tk' 

then w(W), the density of W, which is a solution of the integral 

equation 
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c k 
~ n [{r(a.+s-l)r(e.-s+l)}/{r(a.)r(sJ.)}] 

j=l J J J 
{5.4) 

is given by 

(5.5) 

where 

Re(ai) >0 and Re(Bj) >0, i=l, ••• ,k, (5.6) 

and where for example, (a) . =a (a+l) ••• (a+j-1) and 
J 

(m)· . m! 
n = n! (m-n)! with 0! = 1 • 

Furthermore, according to (4.9) and (4.10), the density 

11J(W) may be expressed as an inverse Mellin transform as follows 

( 5. 7) 

that is, according to (5.4}, 

k -1 +' k -
tji(W) ={(2ni) TI(f(a.)f(B.})} 1° .Jsx>TI{f(ll.!-l+s)r(s.+l-s)}W sdW 

j=l J J c-~(l0·-1 J J 
J- (5.8) 

0 where 
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max { Re ( - a . + 1)} < c < min { Re ( 13 ;+ 1)} 
. J . J 
J J 

Hence, in view of (4.15), (4.17) and (4.22), we have for 

O<W<l I 

k 1 k k (-f3l,l), ••• ,(-Bk 1 l) 
1/J (W) = { . n ( r (a J' ) r ( s J. ) ) } - H 1 

{ w I } ( 5 • 9) 
J = 1 k 1 k (a 1-1 1 1) 1 • o • I ( ak -1 1 1) 

which may be expressed as a Meijer's G-function according to 

(4.25): 

k -1 k k -sl, ••• ,-sk 
1/J(W)={ n (r(a.)r(S.))} Gk'k{WI -l _1J. (5.10) 

j=l J J ' al , ••• 1 ak 

Also, in view of (4.28), we may rewrite (5.~) as follows 

for W > 1 

(5.11) 

= 
k -1 k k 1 2-al, ••. , 2-ak 
n {(r(aJ.)r(sJ.))} Gk'k{wla +1 a +1} 

j=l I ~1 t•••t~k 

(5.12~ 

k 1 +' k 
={(21Ti) n (r(a.}T{S.))}- Le.~"" n {r(s.+l+s)r(a.-1-s)}WsdW 

j=l J J c-~"" j=l J J 

where (5.13) 

max { Re ( - 13 . -1)} < c < min { Re ( a . -1 ) } 
j J . j J 

Therefore we have the following identity for a Meijer's 

G-function of the type Gk'k(W) 
k,k which is valid for O<W<co, pro-

vided it is understood that for W > 1 1 
Gklk(W) 
k,k appearing in (5.14) 
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is in fact the function Gkk,kk{W!) appearing in {5.12.): , 

k k -s1, ••• ,-ak k 
G' {Wj }= n crc~.)r(S.)) JP(W) 
k,k a 1-1, ... ,~k-1 j=l J J 

(5.14) 

where Re(~.) > 0 and Re (f:L) > 0, j=l, ..• ,k , and lj! n·n is given in 
J J 

(5.5). This new representation which is simpler than the rep-

resentations obtained in Chapter 4 can be programmed for cam-

putationa1 purposes and provides us with a new expression for 

the density given in (4.106). Hence we have new representations 

for the densities of the statistics (3 •. 2) and (3. 75) which can 

be obtained in terms of (4.106). 

For k=l, (5.14) reduces to 
j 

<-e 1) -a ~ -1 -(a +a ) 
1 1 1' 1 1 1 )W 1 (l+T·T) 1 1 (5.15) Hl:l{Wica

1
-l,l)}= Gl;l{Wia 1-l}=r<~l+el H 

for W > 0 , Re ( ~ 1 ) > 0 and Re ( a
1

) > 0 • 

Hence the densities of the statistics (3.46) and (3.77) 

which may be obtained in terms of g(L} defined in (4.87) for 

k = 1, are also available in terms of the densities of beta type-2 

random variables according to (5.15). 

As a particular case of (5.15), we have the following iden-

tity which is corroborated by equation (1.7.3} in Mathai and 

Saxena (1978) 

• 
1 1 -s1 -<l+s > 

G1:l{WI o} ==r(l+s1> (1+t·l) 1 (5.16) 

for W>O and s1 >0. 
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We will now rewrite the density ofT given in (4.106), 

where T= (1/R)k and R is defined in (4. 77), in terms of the 

densities of beta type-2 random variables. 

g (T} = I: 
v=O 

1 k k -sl, ... ,-sk 
T- K' ' G , {W I } 

v k,k a 1-l, ••• ,ak-l 

for O<W<l where 

k W = (kz;) T , 

(5.17) 

(5.18) 

si= (p+v+t-1)/k -l,t=l, ••• ,k; v=l,2, ••• {5.19) 

a.=q.+l, j=l, ••• ,k, 
J J 

Re ( a . ) > 0 , Re ( a . ) > 0 I j = 1 , ••• , k ' 
J J 

(5.20) 

these two last conditions being easily met by the parameters. 

Also, letting 

k 
K"'= K"{ n Cr(a.)r(s.))., 

\1 \1 j=l J J 

we obtain the following expression for g(T) when O<W<l 

that is, according to (5.10), 

g (T) = · r 
v=O 

where ..p(W} is given in (5.5). 

T-l K''' ..p (W) 
\1 

Similarly, for W> 1, (4.106) becomes 

(5.21) 

(5.22) 

(5.23) 
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g(T) = : T-1 111 k -1 k,k 1 2-al, ••. , 2-ak 
~... K { n (r(a.)r(S.)}} Gk k£wla +1 a +1} 

v=O v j=l J J ' ~1 , ••• ,~k 

{5 .24) 

where W, Sn, a. and K111 are respectively defined in (5.18), 
"' J V 

(5.19), (5.20) and {5.21). 

Hence according to (5.12) 

g(T) 
CIO 

= · E T-l K1 ' 1 ~(W) 
v=O v (5.25) 

where ~(W) is given in (5.5). 

Therefore, the density of T=(l/R)k is given by (5.25) for 

W > 0, that is, for T > 0 in view of (5.18). 

c 
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Chapter 6 

SOME ECONOMETRIC APPLICATIONS 

6.0 Introduction 

In this chapter, different types of econometric models are 

-discussed and the applicability of the test statistics obtained 

in Chapter 3 to the econometric pure error model, where there 

are k linear relationships, is pointed out. 

6.1 Types of Econometric Models 

Let us consider the simple case where the true values, g1 
and g2 , of two observations, x1 and x2 , subject to errors of 

measurement, e1 and e 2 respectively, are connected by the fol­

lowing linear relation 

( 6 .1) 

where 

(6.2) 

and 

(6.3) 

In the econometric terminology, this is a pure error model 

where x1 is an endogenous variable and x
2 

is an exogenous var­

iable. This model corresponds to the errors-in-variables func­

tional model defined in Section 1.3 and to the sin~le linear 

functional relationship model discussed in Section 2.1, for p=2. 
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The appellation" functional model" is due to Malinvaud(l970). 

If a stochastic component is added to the right-hand side 

of (6.1), the resulting more general model is referred to in the 

econometric literature as a shock-error model, see for instance 

Anderson and Hurwicz (1948). When this stochastic component is 

attributable to g2 , the model is a particular case of the multi­

variate errors-in-variables structural model for which maximum 

likelihood estimators have been derived in Amemiya and Fuller 

(1984). Models which incorporate both shocks and errors were 

also considered by Zelner (1970}, Golberger (1972}, Griliches 

(1974) and Geraci (1977). Gleser (1981) also obtained large sam-

ple results for the multivariate pure error model. 

For the pure shocks.models, it is assumed that the var­

iables are measured without error but that a stochastic corn-

ponent is present in the equations specifying their relation­

ships. Such models may usually be assimilated to the general 

linear hypothesis models discussed in Section 1.2. Konijn(l962) 

showed how the identification rules for the pure shock model 

carry over.to a shock-error model if error variances are known. 

6.2 The Multivariate Errors-in-Variables Econometric Models 

In Chapter 3, we have obtained new test statistics for the 

structural coefficients, a and B, of a multivariate linear func-- -
tional rel~tionship model (defined in Section 2.2a). We will 

now show that this MLFR model boils down to the multivariate 

errors-in-variables functional (MEVF) model when we set 
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B' =(-I,!}*) I 

k~p kxm 
where 

m= p -k 

Rewriting (2.5), that is, 

x .. =g.+ e .. 
-1] ..... 1 •¥1] 

as pxl 

(l) (l) x .. g. 
~1] -1 

= 
(2) (2) x .. g. 

"""1) -1 

i=l, ... ,r; j=l 1 ••• ,n. 
1 

(l) , where x. . , 
-1] 

(2) 
sional vectors, x .. , 

-1] 

and 

g~ 2 ) and e~~) 
-1 -' 1] 

(6.4) 

( 6. 5) 

(l) 
e .. 
""'1] 

+ ' 
( 6. 6) 

(2) e .. 
"'1 J 

g~l) and e~~) are k-dimen-
-1 .....,1] 

are m-dimensional vectors 

ind e .. "' N (O,V) 1 i=l, •.• ,r; j=l, ••• ,n.; V>O, 
~l] ~ - - 1 -

(6.7) 

a + B'g = 0 ,.., ,...; ~ ,..., 

becomes,upon substituting (6.4), 

a -
or equivalently 

The MEVF model specified by (6.6), (6.7) and (6.8), is in 

fact the pure error econometric model where there are k linear 

relationships. When it is further assumed that the g~ 2 ) 's are 
,....l_ 

independently and identically distributed random vectors, 
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the resulting model is called the multivariate errors-in-var-

iables structural (MEVS) model. 

In addition to the functional and the structural models, 

Villegas and Rennie {1976) proposed another version in which the 

true vectors constitute an autoregressive process. It is also 

stated in Villegas(l982) that from a Bayesian viewpoint the dif-

ferences among these three versions are not very important. 

We would like to mention that the maximum likelihood estima-

tors for the structural coefficients of a single linear func-

tional relationship model coincide with those derived for the 

structural coefficients of a single linear structural relation-

ship model.This result is proved in Patefield(l981) where these 

models are ·inappropriately referred to as multivariate linear 

relationships since this appellation is reserved to the case 

where there are more than one linear relationship among several 

variables. 

Similarly, the maximum likelihood estimators of a and B* - -
obtained in Amemiya and Fuller (1984) for the MEVF model are 

the same as the maximum likelihood estimators derived for the MEVS 

model; moreover it is stated that the maximum likelihood estimator 

of V defined in (6. 7) for the MEVF model differs only by a sea--
lar multiple from that for the MEVS model. 

We would also like to note that for the shock-error model 

discussed in Geraci {1976}, the author states that it is pos-

sible to compensate the stochastic component due to measure-
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ment errors by the stochastic component associated with shocks 

in the equations. This idea of merging these two types of dis­

turbances is also suggested in Intriligator (1978). Therefore, 

it is conceivable that some shock-error econometric models may 

be statistically equivalent to pure error models. 

Although the results of this thesis deal uniquely with 

the functional model which can be reduced to the econometric 

pure error model where there are k linear relationships (the 

MEVF model), they may perfor~ adequately in some inferenceprob­

lems connected with shock-error econometric models. Moreover 

many econometric variables are measured with substantial error 

and, in some cases, the stochastic component associated with 

shocks in the equations is negligible compared to measurement 

errors. 

As early as 1934, R. Frish considered errors in variables 

to be an important element in stochastic formulations of econo­

metric behaviour. 

Most pure error models that have been discussed so far in 

the econometric literature deal with the single er~ors-in-var­

iables functional (SEVF) model. Some examples are the Douglas­

type production function defined in Davis (1941) which is linear 

in the logarithms; the models discussed in Koopmans (1937) and 

Geary (1949) in connection with econometric time series; Fried­

man's (1957) theory of the consumption function which is based 

entirely on a postulated exact proportional relationship between 
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permanent consumption and permanent income where the measured 

income is the sum of permanent and transientincomes and the 

measured consumption is the sum of permanent and transient con­

sumptions;and Johnson•s (1963} generalization of the two-var­

iable linear case. The SEVF model is also discussed in Tintner 

(1950}, in Sargan {1958), in Kunimoto (1980) in connection with 

large econometric models and in Anderson (1976),where the model 

is made equivalent to a model of simultaneous equations in econo­

metrics and where the MLFR model is presented as a generali­

zation. 

6.3 Conclusion 

In Chapter 3, we considered some tests for the structural 

coefficients of a MLFR model under various conditions imposed 

on the covariance matrix of errors. 

The exact densities of the corresponding test statistics 

may be obtained as corollaries of the results of Chapters 4 and 

5, where computable representations of the densities of some 

algebraic functions of independent gamma variates are derived. 

Hence, with the help of the new results obtained in Chap­

ters 3-5, we can test many hypotheses about the parameters of 

a MEVF model which is a particular case of the MLFR model as 

w.ell as a generalization of the SEVF model discussed in the 

econometric literature. 
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