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ABSTRACT

Two explicit time-integration schemes based on a f{inite-volume approach {or
the solution of the Euler equations are developed and used in the study of
compressible flows. The starting point is a comparison of the performance of three
widely used methods (i.e., Jameson’s, MacCormack’s and Godunov's) in several
rather difficult test problems, characterized by the existence of flow discontinuities
or strong nonlinearities. This indicates that the best solutions for such flows are
obtained when the numerical method is closely related to the physical behaviour of
the fluid, as is the case with Godunov's method, in contrast with the other two
methods, which need a special treatment of the discontinuitics, and are very prone
to numerically induced oscillations. Therefore, a first scheme, which improves the way
Jameson’s method computes tlie flux-node variables in that it treats in a more
realistic manner the physics of signal propagation in both subsonic and supersonic
flow, is developed. The numerical experiments with this schcme suggest that it
converges more rapidly and does not need the dissipation terms, thus leading to
computer efficiency and a gain in accuracy. The second method is a lincar hybrid, in
conservative form, between MacCormack’s and Godunov’s methods, which is shown
to keep the best features of both the methods: second order accuracy in smooth
regions of the flow and lack of oscillations near discontinuitics, where it behaves

locally like a first-order monotone scheme.



SOMMAIRE

Deux méthodes pour I'intégration numérique explicite en temps des €quations
Euler, utilisant 'approche des volumes finis, sont développées et utilisées pour
'étude des écoulements des fluides compressibles. Le point de départ est une
comparaison des solutions obtenues avec trois méthodes classiques (Jameson,
MacCormack et Godunov) pour des problémes relativement difficiles, caractérisés
par 'existence des discontinuités ou des grandes nonlinéairités. Ceci indique que les
meilleures solutions pour ces écoulements sont obtenues quand la méthode
numérique reproduit les caractéristiques physiques de I'écoulement du fluide, comme
par excmple la méthode développée par Godunov, par contrast avec les deux autres
méthodes qui nécessitent un traitement spécial des discontinuités et sont susceptibles
d’engendrer des oscillations numériques. En conséquence, une premiére méthode qui
améliore la modalité dont le flux numérique est calculé dans la méthode de Jameson,
en traitant d’'une maniére plus réaliste la propagation physique des perturbations
dans les régimes subsonique et supersonique, est mise au point. Les expériments
numériques avec cette méthode prouvent sa convergence plus rapide sans avoir
besoin des termes de dissipation, ce qui apporte un temps de calcul diminué ainsi
qu’une plus grande précision. La deuxiéme méthode est une méthode hybride, en
forme conservative, entre les méthodes de MacCormack et Godunov, qui garde les
meilleures caractéristiques de ces deux méthodes: précison globale de deuxi¢me ordre
et manque des oscillations auprés des discontinuités, ol elle emprunte un

comportement monotone.
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Chapter 1

INTRODUCTION

Over the last 35 years, a great emphasis has been laid upon the development
of numerical methods for solving the equations of fluid flow, which can yield realistic
simulations of flows about aircraft configurations and thus save much of the costs
otherwise implied by tunnel testing and experiments. The Navier-Stokes cquations,
which take into account the full viscous behaviour of the fluid, are of course able to
accurately represent the flow phenomena. However, even with today's
supercomputers, their solution for real aircraft configurations is very difficult, and
various simpler models are used. One of these models is the boundary layer concept
introduced by Prandtl, which takes into account the viscous effects only within a thin
layer in the vicinity of the body, while outside this layer the flow is considered
inviscid. For the large Reynolds numbers encountered in aircraft flight, where the
viscous forces are very small as compared to the inertial forces, this approximation

proves satisfactory and provides a basis for a simpler approach to the problem.

In the inviscid flow outside the boundary layer, the motion of the fluid is
described either by the potential flow theory or by the Euler equations. The potential
flow theory allowed the first useful predictions for flows about real aircrafts in the
transonic range, starting with the solutions to the transonic small-perturbations
equation of the potential (the pioneering work has been done by Murman and Cole
[29], followed by Bailey and Ballhaus [2] in the U.S.A. and Albone, Hall and Joyce

[1] in Great Britain, who extended the method for three-dimensional flows) and



Chapter 1 Introduction

following with solutions to the full potential equation (methods of Garabedian and
Korn [9] and Jameson [15]). It proved however unreliable when the flow
discontinuities (shocks) are not weak, because it doesn’t ensure the conservation of
the normal momentum. It is now generally agreed that potential flow assumption
may be used as far as the Mach number in front of the shock wave is lower than
1.25.

The Euler equations, as a limiting case of the Navier-Stokes equations in the
absence of viscosity, admit a correct representation of strong shocks, taking account
of the rotational effects. Thus, outside the viscous layer, they provide a more realistic
solution for the flow, especially for the transonic and supersonic flows, when shocks
develop at various locations on the aircraft. The use of the Euler equations is made
easier by the fact that for unsteady flows they are hyperbolic partial differential
equations, although for steady flows they are of elliptic type for locally subsonic and
hyperbolic type for locally supersonic flow. This makes possible the use of the same
method, time integration, for any kind of flow, subsonic, transonic, or supersonic.
Furthermore, steady and unsteady flows allow the same basic tehnique to be applied:
in unsteady flows the equations are integrated in time starting from real initial
conditions, while in steady {lows the initial conditions are assumed and the equations

are integrated in virtual time until the steady state is attained.

Of course, Euler equations solutions are more demanding on computer time
than the potential flow solution. Therefore, their use is justified only in the presence
of flow discontinuities, and hence, a correct representation of these discontinuities
is a main issue for Euler methods. Two different approaches have been developed
towards this goal. The first one is shock fitting: the shock is explicitly accounted for
in the numerical scheme, its position is updated at every time step, and the correct
Rankine-Hugoniot relations are applied across it. The flow is thus divided in smooth

‘regions, within which any numerical method can be applied, connected by correct
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discontinuous jumps. The explicit fitting of shocks results in complicated computer
codes and increase in computer time, although the results obtained by this method
are relatively accurate. This approach has been widely used by several rescarchers,
in principal Moretti [7], [43], [28] and Zanetti and Colasurdo [42]. They use the
Euler equations in characteristic form and follow the position of the shock by
marking the grid lines that it crosses. It is to be emphasized here that these methods
succeeded in solving very complicated flows, as those about ablated bodies (sce [43))
where shock-capturing methods like MacCormack or Lax-Wendroff tended to fail,
and which could be simulated up to that date only by Godunov's methaod, which will

be presented further.

The second approach, and the one used in this work, is shock capturing. This
was originally suggested by von Neuman and Richtmyer [41] and is based on a
comparison with real fluid flows: in these, we may belicve that there are no
dicontinuities, but very thin regions of severe variation. Inclusion of terms modeling
viscosity (“artificial viscosity") in the Euler equations makes the solution behave in
a similar manner, the discontinuity is smeared over a certain region which is

negligible, but still resolvable on a practical computational mesh.

Considerable work in this area has been done by Lax. In a paper [20] that had
a great influence on the evolution of computational fluid dynamics, he shows that the
use of the Euler equations in conservative variables (or conservation) form leads to
sufficiently accurate representations of discontinuities. In a subsequent paper [21),
Lax and Wendroff define the conservative differencing schemes, and show that the
use of conservative variables and of a conservative differencing scheme consistent
with the equations can guarantee that the discontinuities are correctly solved for and
they move with the correct speed. The scheme devised by Lax and Wendroff has

been widely used afterwards, and various variations have appeared later, many of
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them generated by the need of a simpler method to treat the nonlinearity in the

Euler equations.

MacCormack’s method [22], [23], can be regarded as a particular variation of
the Lax-Wendroff method. It uses the same shock-capturing approach, generally
treating discontinuities by the means of artificial viscosity, although variants using
shock-fitting also exist ([23]). It is more efficient and easier to program than the
original Lax-Wendroff method because it does not need the explicit computation of
the Jacobians in the Euler equations. It was extensively studied and many variants
have been proposed, both implicit and explicit, with or without time splitting. The
variant used in this study is a finite-volume explicit method without time splitting,
and uses an artificial viscosity of the type introduced by Lapidus [19] in order to

prevent numerical instabilities and oscillations near discontinuities.

Jameson [18] introduced another numerical method which is equivalent to
central differencing in space, and uses a Runge-Kutta method for time integration.
Because central differencing is not stable, this method incorporates a carefully
designed dissipation operator which allows odd and even point coupling and
suppresses oscillations near shocks. This method has also been very well developed,
and adapted to multiple grid techniques [16], triangular meshes [17], and unsteady
flows [40]. It has been effectively used for flow simulation around real aircraft
configurations by several companies, being very efficient in terms of computer time,
and allowing vectorizable algorithms for parallel processing. It was chosen as the

second method for the comparison in the present study.

MacCormack’s and Jameson’s methods are different ways of using the Taylor
series expansions for all the terms in the differential equations. This is based upon
the assumption that the distribution of the variables is continuous; at a discontinuity

the expansions are not valid, hence the solution is forcibly smoothed by the use of
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additional means. Godunov [10}, opened the way to a more realistic treatment of the
problem: he builds the full solution to the hydrodynamic equations by piccing
together a great number of discontinuous, nonlinear solutions which are valid even
at discontinuities. His method belongs to the same class of shock capturing methods,
the discontinuous solutions being linked in a conservative difference scheme. The

main element of Godunov’s method is a Riemann-problem study. for which he

describes an iterative solver.

Another aspect that Godunov |10] emphasized was that of monotonicity. He
showed that a desirable quality of the solution obtained by a finite difference scheme
would be that, given an initial solution which is a monotone function, the solution
obtained by time integration is also monotone. Such algorithms are nccessarily first-
order accurate if they are expressed in simple linear-combination form, as shown in

[10] and [32], so being the case with Godunov’s initial method also.

Following the same approach as Godunov’s method, i.e. the use of Riecmann
solvers and of monotonicity preserving schemes, a great number of methods for flows
with strong discontinuities have been developed, some of the most successful ones
being the MUSCL schemes of Van Leer [39], the piecewise parabolic method (PPM)
of Woodward and Colella [6], and the later essentially non oscillatory (ENO)
schemes developed initially by Harten, Engquist, Osher and Chakravarthy |13], with
recent extensions in finite-volume formulation for two dimensions by Casper and
Atkins [3], [4]. Results obtained with these methods are clearly superior, for
complicated flows, to those obtained by ordinary methods. All these methods are

basically extensions to a higher degree of accuracy of Godunov’s method.

A different way to obtain higher order accuracy was initiated by Harten and
Zwas [14], [12]. They used a special way to couple together a higher order method,

very accurate in smooth regions but oscillating near discontinuities, with a first order
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method which guarantees a monotone solution near discontinuities. The two methods
can be chosen from the wide range of existing ones, the result being known as a

hybrid method.

The first objective of the present work is the comparison of the performance
of the three methods developed by MacCormack ({22], [23]), Jameson ([18]) and
Godunov ([10]) presented above for a variety of fluid flow problems. For each
method, a quasi-one-dimensional and a bidimensional code have been created, on a
personal computer. Problems, which have been studied by other authors also, have
been chosen in order to assess the accuracy of these methods. The results are
compared and the main conclusions drawn from this comparison represent the basis

for subsequent developments.

The second objective is to develop improved time integration schemes which
can be regarded as extensions of these methods, while still bringing about an
improvement in the performance. A first one is similar to Jameson’s method, but
uses a weighted average of the cell node variables for the computation of ftuxes. This
flux computation is so constructed that it takes into account, in a simple but effective
manner, the physics of signal propagation (in locally subsonic flows, two signals
propagate in the flow direction, while in locally supersonic flows information comes
only from upstream). This represents an extension of the two-stage method
developed by Mateescu and Lauzon [27], with a more efficient implementation for
multi-dimensional flows. The scheme so constructed is tested and shown to be less
prone to oscillations and to converge faster. It is also stable in the absence of
dissipation, as is shown in a quasi-one-dimensional case, although for practical
computations in two dimensions a certain amount of dissipation may be needed in

order to avoid marginal stability.
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The second method is a hybrid between MacCormack’s and Godunov's
methods. The hybrid improves overall accuracy by raising to second order in smooth
regions, hence the mesh to be used can be coarser, which can result in a better
computer efficiency. For the great majority of mesh points, only the sccond order
method is applied; in the neighborhood of discontinuities, & mathematically
constructed switch detects oscillations and the first order flux computation by
Godunov’s method is activated. For these points, of course, the computational time
grows; however, since the number of discontinuitics in real fluid {low is limited, this
extra computer time is not exhaustive, and results in a more exact representation ol

shocks than with the use of the artificial viscosity.



Chapter 2

BASIC EQUATIONS

This chapter presents the numerical approach used in the analysis of
compressible flows. The Euler equations in differential and integral form, their finite-
volume discretization, together with the physical boundary conditions, which

completely define a flow problem, are discussed.
2.1 Problem formulation

For the numerical study of a flow problem, the region of interest of the flow
must be delimited to form a finite computational domain. The boundaries of this
computational domain can be actual, solid-wall boundaries, associated with the bodies
around (or through) which the flow takes place, and artificial boundaries, introduced

because the domain can not be extended to infinity.

Once the computational domain has been established, the numerical solution
supposes four main steps:
1) Spatial discretization of the computational domain in a finite number of
components (generation of a mesh).
2) Discretization of the partial differential equations of motion.

3) Numerical implementation of the boundary conditions.



Chapter 2 Busic equations

4) Solution of the discretized equations, subjected to these boundary

conditions.

2.2 The Euler equations

The integral form of the Euler equations can be derived by applying Reynold's
Transport Theorem to a control volume v bounded by the surface du for cach of the

three equations of conservation of mass, momentum and energy (|25]), and can be

expressed as

L [Rz0do+ [ RENED PEeNdAr [a(Enda -0 @.1)

du au

where the function f{F7¢) is a vector of flow variables describing the fluid state, ()
is the local normal unit vector to the surface dv, V(%) is the local {luid velocity and
Z(nfy is a vector related to the pressure forces. The other variables have been
denoted by the usual notation, ¢ being the time and dv and « the elements of
volume and area, respectively. In a vectorial formulation, [ and g have three

components corresponding to the three conserved variables: mass, momentum and

energy, i.e.

(%)
fE0)=|p 70 VT (22)
PEHEED

0
g&R)=|  HKROHD (2:3)
EOURZD VFD)]

In equations (2.2), (2.3), p is the density, E is the total specific energy, and p

is the pressure, related to the other variables through the equation of state,
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p=(Y-Dp(E- %2) (24)

¥ being the specific heats ratio.

Using (2.1), (2.2) and (2.3), one can express the Euler equations for the two-

dimensional flow case as:
9 [fdA+ [ (FF+JG)ads=0 (2.5)
arA oA

the control volume being in this case replaced by the control area A, with 34 the
frontier of this area and ds the element of length along the frontier. The function f
is the state vector, and F and G are the x- and the y-component flux vectors, which

are vector-valued functions of four components. They are given by:

p | pu | pv

PR L B L B (2.6)
pv puv pviip
PE (pE+p)u [(pE+p)v

In equation (2.6), « and v are the components of the velocity along the x- and y-axis

respectively.

For the case of a quasi one~-dimensional flow in a duct of variable cross-
sectional area S{x), the Euler equations can be written in integral form as
0 Py g
= £fdA+ afA (7F)-fids= LPdA 2.7)
in this case the variation of the control area being dA (x) = S(x)dx. The new state

and flux vectors have three components:

P N OdS
- =| oy2 - 292 2.8
f=\pui, F=| pu*p |, P S de 2.8)
PE (pEPu 0

10
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Basic equations

The differential, strong conservation law, form of the Euler equations can be

obtained directly from (2.5) and (2.7) by applying Gauss'

corresponding form for two-dimensional flows is:

theorems, The

of, oF, 0G (2.9)
ot ox dy
where f, F, and G are the same as in (2.6).
For quasi one-dimensional flows, the equations become:
_a(gf) + A5 - s (2.10)
f; F and P being the same as in (2.8).
2.3 Finite-volume discretization
2.3.1 Quasi one-dimensional flows
A. //
_ R : n
hl-‘l 2_'" R aRe - hl+‘:
X 2 -
X, X Xy, X axis
A
- X -
Fig. 2.1

To obtain the discretized finite-volume formulation of the Euler equations for

a quasi one-dimensional flow, consider a duct with an axially variable area

S(x)=h(x)1=h(x), where h(x) represents the height of the duct, which has an unitary

11
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width. The computational domain is divided in a finite number Imax of quadrilateral

cells of area A4, , i=1, Imax, and the equation (2.7) is discretized for the control area

A, as can be seen in Fig. 2.1.
The first integral in (2.7) can be written as

3 7 4. 4 0%
—ffdA-g A=A~ (2.11)

where f; is an average value for the cell, assigned to the geometrical center of the

cell, x;.

The second integral becomes:

f (7Fy-idt= Fiy i~ Frophty, 2.12)
A,
while the third one can be written as:

Fur
f PdA = f £ !:ch f pah |=| B; (B fr) (2.13)
0 0
Vg

the tilde over p, denoting also an average value of the pressure for the cell i.

Equations (2.11), (2.12) and (2.13) give:
] 0
'-v;]’.»'-vg)*I Jgi

i

(B~ 1) (2.14)

( vy :*'/

Using fo1 the time derivative a discretization of the form

ml n
at At
and dropping the tilde for the average value, one obtains:

12
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0
nl_ on_ At At )
;=g _Z‘.(‘F:"V:hﬁ'/.-_F;'-V:b.-'-v.-) Y Pif(-f,) (2.16)
i 7
where the superscript n is used to denote f(z,), the time being discretized as

1, =t,+At, with ¢, the initial time moment.

As a particular case, for the one-dimensional flows, when /i{v)=constant, the

Euler equations become:

i .n At
f;} =f;l - A“,.(F}i'/:hFl.-‘/:) (2‘17)

2.3.2 Two-dimensional flows

The two-dimensional finite-volume discretized form of the Euler equations can
be obtained directly from (2.5). Expressing again the first integral in terms of the

average value for the cell, f;, following the notation in equation (2.6) and Fig. 2.2, the

equations can be written:

of,
L |
i5L= 0 (2.18)

where Q; is the sum of the fluxes corresponding to the four sides of the cell (ij):

Qf(() 'AAS) 1+ (QUHAS) 1, +(QAS) .\, (Q TIAS) (2.19)

i-Ve

in which the subscripts (ix;j) and (i,j*'2} are used to define the four sides of the

cell, of length As;..; and As;;.,,, and:

Q=iFjG (2.20)

is the total flux vector.

13
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Fig. 2.2

For example, for the side (i+4j), the flux becomes:

(Q-738) 1= (FBS) s~ (GAR) 1,5 (2.21)

or, in terms of flow variables:

Pq

B, pqu+p(s-J,)
(Q7AS) = o (2.22)
Pgv-p(%-x)

(PE+*P)g
where p, i, v, p and E are appropriate values for the corresponding variables on the

side (i+'j), which are approximated differently according to the method used, and

q= Vn .Asfal/:‘j= U.Ax‘v'/:uf_ V.AIYJ'OV:‘]'= U(}g _-Kt) - V(X3 - X4) (2‘23)
represents the flux of the velocity component normal to the side (i+ %), denoted by

V, , through this side of length As,,,,..

14
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2.4 Boundary conditions

In order for a given flow problem to be completely defined, the system of the
Euler equations has to be supplemented by the appropriatc boundary conditions, as
well as by the initial conditions for the flow variables. The problem to be solved can
be fully described as an initial value problem, i.e. solving the system of partial

differential equations:

of 8F 9G (2.24)

within the computational domain, with initial conditions:

x5 4)=4(%)) (2.25)

subjected to the corresponding boundary conditions at the inflow, outflow and solid
wall boundaries.

The inflow and outflow boundaries are treated according to the theory of
characteristics, as described in Appendix A. A set of boundary variables can be
prescribed at each boundary, depending upon the local character of the flow; these
variables are usually the ones that can be easily detemined by experiment (for
example, the pressure at a subsonic outflow boundary) and constitute physical
boundary conditions. The other variables are computed from the solution within the
domain (numerical boundary conditions). The exact way in which inflow/outflow

boundary conditions are treated can be found in Chapter 4.

In two-dimensional flows, boundary conditions must also be specified on the
solid walls. The boundary condition which is suited for the Euler equations (inviscid
fluid) is the impermeability (or flow tangency) condition:

V=0 (2.26)
which implies that there is no flux of fluid flow through the surface. For finite-volume

discretizations with flow variables defined at the center of the cell, this means that

15
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one only needs a pressure evaluation at the solid boundary, as will be shown in

Section 4.2 on numerical boundary conditions.

2.5 Neondimensionalization

For numerical computations, in order to have all variables at about the same
magnitude around unity, and thus minimize the rounding-off errors, the equations
are used in nondimensional form. The choice of the nondimensional parameters is

such that the resulting equations are formally identical to the dimensional ones. The

nondimensional time, space and flow variables, denoted by the superscript "*, are
defined by:
+Vv.
t* = el ] A = A n ? X* = X
Ln.f (me)- chf
* _ ,,V * _ u * v
Yy E==— , uU=— , V=— 2.27)
Ln.‘f Vrr.'f v:'c'f
* * a E
p*= P pr= P 5 E*= ~
p.rd' pn[( Vm{') ( Vn:f)h

The subscript "ref" denotes reference variables which have to be chosen according to
the flow character. For the present study, the reference variables used are:
i) V,, =4, (stagnation speed of sound).
ii) p,, =P, (stagnation density).
iii) L, = (AX), e (average step on x).

The Euler equations written in nondimensional variables remain identical to
(2.5), (2.7) for the integral form, respectively (2.9), (2.10) for the differential form.
The discretized equations in nondimensional form are also identical to (2.16), (2.17),
(2.18). Therefore, all subsequent analysis will be done in terms of the nondimensional

variables, disregarding the superscript "*".

16
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2.6 Convergence criterion

In the case of steady state flows, the integration in virtual time must be
stopped when the distribution of the flow variables becomes, within a certain degree
of accuracy, stationary; this translates also into satisfying, to a certain precision, the
equations of motion. Different convergence criteria can therefore be established to
this regard. According to the advice given by Roe (sec [33], page 73), in this study,
convergence has been considered when the difference between all the components

of the state vector at two successive time steps satisfies:
|fml _fnl <e (228)

for all the cells of the discretization. The quantity € was usually taken as 107,

17
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CLASSICAL TIME INTEGRATION METHODS

This chapter describes the explicit time integration methods developed by
Godunov, MacCormack and Jameson, based on a finite-volume discretization. The
basic conservation forms of the discretized equations are (2.14) for one-dimensional
flows, respectively (2.18) for two-dimensional flows, which are valid for all the
methods to be described in this study. The differences between the method ; come
from the way the flux variables F and G are computed at the cell interfaces, and

from the discretization of the time derivative.

3.1 Godunov’s method

3.1.1 The Riemann problem

The Riemann problem is the initial value problem defined by the partial

differential equation

of, OF 0 (3.1)
ot dx
with the particular initial conditions:
f,, x<0
- r=0)=¢ X’ 3.2
f1%40) {f}g’.l'.?o 3:2)

where the system of equations (3.1) is supposed to be hyperbolic, that is all the

eigenvalues of the Jacobian

18
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Acry -8 (3.3)

af
are real and distinct. The independent variables are the time 7, and the space
coordinate x; in the case of the Euler equations, the dependent variables fand F are
the state and flux vectors for one-dimensional tlows, respectively, given by (2.8).
Because the state vector is a function of the flow variables p, u«t, and p, the flux vector
is also a function of the same variables, and hence a function of the state vector, and

it is convenient to denote it by:
= V() @G-

For the Euler equations of fluid dynamics, the Riemann problem has a
solution which is known from the generalization of the flow in a shock tube (sec [35]
for example). The solution is represented by 3 waves moving from the initial
discontinuity atx=0 with different speeds: a rarefaction wave, a contact discontinuity
(slip line) and a shock wave, as represented in Fig. 3.1; the rarefaction is not a simple
wave, but a fan of waves whose extension between the head and the tail waves

depends on the initial data (3.2).

dw/di=u’

rarsfaction
N dxldl:Us

Solution to a Riemann problem

Fig. 3.1

19
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If the initial data (3.2) is known, there is an analytical solution for this
Riemann problem, i.e. we can find f{x,¢) for any 1>¢,. This solution, which implies an
iterative process, is due to S. K. Godunov, and will be presented briefly in this

chapter.

The shock wave propagates with the speed U, from the initial discontinuity at
x=(} into the region with lower pressure, supposed to lie at the right (x>0) in Fig.
3.1. Before the shock, the fluid remains in the same initial state
Fu= 1P e Pt P B}’ while behind the shock the fluid is compressed and
accelerated, such that the state behind the shock will be f, =[ pr, Pritg, prEg ]’ The
expansion fan propagates into the region of higher pressure (to the left in Fig. 3.1)
such that after the tail expansion wave the state of the fluid will be
f; =l prpr,pE.]", while before the head expansion wave the fluid is not
perturbed, the state being the initial left state f, =[p,,p,u,,p,E,]". The fluid
initially at.x<0 is separated from the fluid initially at x>0 by a contact discontinuity.
Across this discontinuity, the velocity of the fluid « and the pressure p are
continuous, #, =ty =u"' and p, =pp =p " respectively, but the density can be

discontinuous, p; # pp.

To compute the solution, one first evaluates the pressure at the contact
discontinuity p°. Using the momentum equation, the absolute value of the mass flux | 2|
swept across the right wave (which can be either a shock or a rarefaction) can be
expressed ( see Appendix B, eq. B.19) as:

| - 22| (35)
| Up-u |

This mass flux can be expressed as a function of the ratio of the two pressures

p’ and p,, for either case of a shock or an expansion (eq. B.43 and B.44):
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i

| it PP '(b[i_;“] (3.0)

where the unified expression for @ is;

1;—114 -Y—;—l , wz1 (compression)
o(wy-{ 37
(W) W y-1 1-n . (
' , w=1l  (expansion)
2y S
l-w =Y

The same expression can be established for the leit wave:

|, | =M=\PLPL"]’(%) (3.8)

|u,-u] )

with ®(w) given by the same equation (3.7).

Once |ni, | and |ni,| are known, p’ can be computed from the following

g
relation established by eliminating " between (3.5) and (3.8), with duc account paid

to the fact that across a rarefaction the mass flux has a negative value:

e T T
A ;7 73]
p' = LA (3.9)
1
| dng,| |, |

Using these formulae, the following iterative procedure due mainly to
Godunov (slight improvements have been brought by Chorin [5]} can be defined to
find p* if the left and right states (p,,u,,p,) and (p,,t,,p,) respectively are

known;

i) Construct a starting value for the pressure at the contact discontinuity, p°,

for example:

21
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. Pr'PL R
T R? 1. (3.10)

P

iy Compute ni,, m, using the value p;” for the pressure p° in (3.6) and

R? I

(3.8)
iii) Compute a new value for the pressure p’, g, i>0, with relation (3.9)

iv} Check for convergence using a certain convergence criterion, for example:

|5/ - pii| < (3.11)

v) If convergence has not been obtained yet, repeat from step ii), with

/)I: ) pi"

This procedure does converge in practical computations unless one is in the
presence of a very strong rarefaction, in which case negative values for the pressure
arc lightly to be obtained, and the above iterative process is slightly modified. The
modification used in the present study is due to Chorin [5]; namely, if convergence

is not obtained after L iterations, the value obtained at step iii) is replaced by:

p:" = max (Ep’pr':l) + (1 —“)Pi. (312)

with a=q,=", and €, an admissible truncation error for the pressure, taken for the

-6

present work as €, =10, The value of L is set to L =20, and the equation (3.12) is

modified if convergence has not been reached in AL iterations by setting:

a "
@=a,= &1 (3.13)
2
For the test cases used, this modification was not needed at any point; the process

i)-v) generally converged in 2-4 steps.

If the value of the pressure at the contact discontinuity p* has been found and

| rir,,| , |, | determined accordingly from (3.6), (3.8), the velocity u" can be readily

computed using:
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. _ Prppt bl ug |y | uy
| s, | | i, |

relation obtained from (3.5) and (3.8) by eliminating this time the pressure p°.

(3.14)

The complete solution =[Py Ppitp PpE,]" at a point P(xat,) — xp and 1,
being the space and time coordinates of P in the time-space diagram in Fig. 3.1 —
is determined by situating the point P in one of the five regions of the diagram
according to the following possible cases:

e If P is situated to the right of the slip line {x,>u,) and the right wave is a shock,

the velocity of the shock, U, is found from the continuity equation (B.13):

U.- Prir” PR (3.15)

pR_ph
Then, if P is situated to the right of the shock {x,>U.,):

1) (PpsttpsPp) =(PysttpsPy)
If P is to the left of the shock, then

if) (PpottpsPp) =(Prott*\p")

where p, can also be found using the continuity equation in the form (B.17):

up

p. =
K U-u

&

(3.16)

e If P is situated to the left of the slip line (x,,<u'z,,) and the left wave is a
rarefaction, one evaluates first the speeds of the head and tail waves of the
rarefaction. The head wave moves with speed % =i, - ¢, , while the tail wave moves
with speed % =u*-¢, ,where ¢, can be coxtnputed by considering the Riemann
invariant Wy, ]t)ropagated from the left of the rarefaction along the right-running

characteristic C, (see Appendix A):

oo 2Ly 20, 4, (3.17)
2, Y"’l Y‘l A

23



Chapter 3 Classical time integration methods

Then, if P lies to the left of the rarefaction, x,<(«, -¢,)¢,, the solution is:
) (PpottpPp) = (P tt;sP))

If P lies to the right, x,>(« " ~c, )¢, then:
V) (PpsttpPp) = (Prstt P ")

where p, can be obtained from the isentropic law:

Pr._p

LTS (3.18)
Pr (Py)
v) If P lies between the head and the tail waves of the rarefaction,
(u,-¢,)t,<x,<(u'-cg)t, then the solution is found as follows:
- obtain p, by the isentropic law (3.18);
- equate the slope of the characteristic through P with that of the line through P and

the origin to get:

xp

Up=Cp= ™ (3.19)
I)
¢, being the speed of sound at point P;
- use the Riemann invariant to obtain:
2c 2c
W, =W e et Up= o u, (3.20)
sk y-1 y-1
Solving for ¢,
-1
Cp= CL*'YT( u,-u,) (3.21)

Inserting this expression into (3.19) and solving for u;:

A -
Up= (Lo ! IUL) (3.22)

Equation (3.22) gives the velocity at point P in terms of known variables; then
one can find ¢, from (3.21) and the density is obtained from the isentropic law and

the definition of the speed of sound:

24
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ppe|—— (3.23)
Ypf,pl_

If, on the contrary, the right wave is a rarefaction and the left one a shock, the
five possible positions for point P are mirror images of the preceding ones, with the

Riemann invariant w, replaced by:

w, = — Ry, (3.24)

and the treatment is similar.

Because the solution of the Riemann problem at a certain point P depends
only on the left and right initial states f,=[p,.p,u,.p,E,|" and

£= P g P glizs P Ex]” and on the coordinates of the point (x,,1,), it can be denoted
by:

=01 P plips P pEp] " = @ (s 11 £, ).

where @® is a vector-valued function of its variables. This solution represents the

building stone of Godunov’s method.
3.1.2 One-dimensional flows

For one-dimensional flows, Godunov’s method for time integration can be

expressed in the form given by equation 2.17, where the fluxes are computed from:

F}% = F;?I;:/- =y (PRm(O,-éz—t;f;-”, f;:’l)) (325)

Relation (3.25) states that the flux at the interface x;, ,, between the cells i and

i+1 is computed as the solution, at time ¢, =¢, +At/2 , of the Riemann problem
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obtained by considering the two cells separated by an imaginary diaphragm which is

"broken" at time ¢,

For stability of the solution, the computation of a flux at a certain cell
interface should not be influenced by waves propagating from neighboring interfaces.
Since the wave speeds are w=c, this stability condition translates into the current
CFL condition:

CFL=1 (3.26 a)
or, in terms of the time step:

Ax
~ max(|u]+e)
i

(3.26 b)

3.1.3 Two-dimensional flows

For a two-dimensional flow, there is no corresponding equivalent to the
analytical one-dimensional Riemann problem solver. Therefore, when treating two-
dimensional flows, the problem is split into two one-dimensional problems, treated
under the basic assumption that waves pertaining to these two "separate” one-

dimensional flows do not interact.

For a given cell (ij) the computation of the flux on each side is done using the
normal and tangential components of the velocity at that side. The two cells
neighboring on the chosen side are supposed to interact giving birth to a one-
dimensional Riemann problem in the normal component of the velocity only, while

the tangential velocity component is preserved.

For example, referring to Fig. 2.2 and equation (2.22), for the side (i+4j),

the initial conditions for the corresponding one-dimensional Riemann problem are:
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f{_:[P[_opl_V,,L,p,_E,_]T‘ x<0 .
Ax k) - . (3.27)
f,ﬁ[p,\,,p,\,l/nh_,p“E,\,]’ v ¥20
where subscript L refers to cell (i,j), subscript R to cell (i+1f), and }, is the

respective velocity component normal to side (i+%2jf) computed {rom:

Ay  Ax

A 4

e Urye TR RS

(3.28)

and a similar relation for the left side, As being the length of the side (i+ Yj):

As= \/(A,\')?' "(A}’ 2 (329 il)
Av=x-v; , Ay=p-y, (3.29 b)

The values of the flow variables on the side (i+2j} arc obtained by solving

the Riemann problem:

Y
pv, e (ph'm(O,%f; A (3.30)
1 p% )
p(v-lp 3

To find the cartesian components of the velocity needed in (2.22), the tangential
component on the side (i+3j), denoted by V,, is also needed. It is found as follows:

first, the tangential components to the left (cell (ij)) and to the right (cell (i+1,j))

are computed:
=-u=—=-v,—= (3.31)

and similarly for the right cell. The solution V, at the interface is taken to be V. if
the interface (i+j) is left of the slip line, respectively V. if the interface is right

of the slip line. The Cartesian components # and v are then computed by projection

of the velocity vector:

V=V i+ V t=ulivy (3.32)
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which yields:

- ”A}' Vrg
VAT, 533
e o |

A\ A

Ve ViR V’A};

Finally, the computed values: p, V,,p,u,v, together with the energy E obtained from
the equation of state are used in (2.22), (2.23) to compute the fluxes on side (i+ 4]},
and the process is repeated for all four sides of the cell with corresponding initial

values for the Riemann problem.

For stability, the two-dimensional scheme requires that the time step As satisfy
the Courant-Friederichs-Levy condition:
At At
Ars 2 ¥ (3.34)
At.\"" At,
where A7, and Ar, are the time steps that would guarantee stability for the split one-

dimensional schemes:

At = A (3.35 a)
min 35a
i (luy |"' c,;j)

Ay..
At min———2% Yy (335 b)
i (1vglvey
Ax =X, Xy DAY=V Vi (3.35¢)
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3.2 MacCormack’s method
3.2.1 Quasi one-dimensional flows

MacCormack’s method is a two-step, predictor-corrector method., in which the
two steps use different directions for the computation of the derivatives in the Euler
equations. In finite-volume formulation, it can be expressed as:

® predictor step (corresponding to backward differencing)
_ 0

f;'m = £~ .%f( F;‘”j’r-v.- - F}f“lllf"/:) ! %’ p! (Mo 1) (3.36 a)
i 40

® corrector step (corresponding to forward differencing)

0
£ = s T By B ) 5 T ()] B36D)
F- ’- ’- O

The order backward-forward chosen above is not the only possible one. Other
variants use forward-backward schemes, or even schemes reversing the order at each
time step: forward-backward at, say, odd time steps, followed by backward-torward

at even time steps.

Relations (3.36) can formally be expressed in the conscrvative form (2.16)

using the notation:

1 »
o ERRE ENE
ST o Lpp 0 P

(3.37)
2

One may notice that the intermediate time step n+1 does not appear explicitly in the

conservative difference scheme (2.16) but only in the expressions of the fluxes (3.37).
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Chapter 3 Classical time integration methods

For stability, this scheme requires the same CFL number condition given by
(3.26).

3.2.2 Two-dimensional schemes

The variant used in this study is a non-split backward-forward scheme for
which the two steps are defined by:

¢ predictor step (backward)

7T _ e AL
i (3.38)

P

e corrector step (forward)

leAlf

g l[ £ At 77] (3.39)
2 ;

where the fluxes in the two steps are computed differently according to:

O:]", = Qij“'(ﬁ AS) Qi:‘ld (AAS) Qi; (7 As) st Oi:j‘-l (A1AS), ., (3.40)

O = QT (7As) 1, 1 O (FAS) 1+ O -(7BS) 3y QT (fiAS) 1y (341)

iV

For example, a typical term appearing in the computation of the fluxes is:

Pi9;
- n‘ —A _ pg‘qi;)u;"p;]{,Aj,}'%J (3 42)
Qij (" s)i"/;J' Ballyf_p0p ’
Py Vi ~ Py iy

| (P5Ej+Pi) 95
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Chapter 3 Classical time integration methods

where the velocity flux is defined by:

’ -
q,;-’ uuf Ay, - |'!;’.f.\.\'. . (3.43)

g by

The maximum time step At =, -, can be evaluated |25] from the Courant number

stability condition:

1
344
CJJ 1 l 3.4

A< min
i

gl | 1l

Avx Ay

(AX)® (Ap)*

3.2.3 Artificial viscosity

Although MacCormack’s scheme has certain dissipative propertics, when the
flow field contains discontinuities this implicit dissipation is generally not enough to
maintain stability. Therefore, the scheme is augmented by the addition of an explicit
artifical viscosity. For the present study, the formulation introduced by Lapidus | 19]
has been used, in which terms describing diffusion of mass, momentum and energy
are added to the respective equations. Only the modification required in the two-
dimensional flows will be presented, for the quasi one-dimensional flows the

extension being straightforward.

The values f,-}"l calculated from (3.39) are replaced by the new ones f,.:,\""
obtained by smoothing first in the x direction and then in the y dircction according

to the following relations:

@ for the x direction:

1 I At \ N i vy el
" = 7 =S CAY|8 AN (£1))] (3.45)
i
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e for the y direction:

-A’CA
A,

g

Sl gl
Ay

A vt AT (] (3.46)

wliere the difference operators are defined as:

Nug=uyuy; o 8 up=uu, (3.47)

v ¥ g il

and C is a constant of order unity. Its value must be adapted to each flow case,

therefore it will be indicated in the section on numerical results.

Equations (3.45), (3.46) are equivalent to adding to the Euler equations a

ditfusion term of the type:

clor2f2ie]wr g

Being of the third order, this term does not affect the truncation error of the

Bv‘ of
dy| dy

difference equation, as is underlined by Lapidus in [19].
3.3 Jameson’s method

This scheme uses a Runge-Kutta method for advancing the solution in time
and central differences for the estimation of the flux values. The Runge-Kutta
method can be chosen from the wide variety of existing ones; in this study, the most

frequently encountered four-stage method is used.
The fundamental feature of Jameson’s method is that it keeps the spatial

operator separate from the time-marching operator. Thus, if a steady state solution

is looked for, it does not depend on the value of the time step used for integration,

32



Chapter 3 Classical time integration methods

whereas in MacCormack’s method, for example, it can be shown that the second-

&Ff

order term

depends on the spatial differencing operations, This allows the use

of a local time step based on the maximum value for the local Courant number 1o

accelerate convergence without altering the steady state solution (sce [18]).
3.3.1 Quasi one-dimensional flows

For convenience, equation (2.14) is recast in the form:

af
—=-0. 348

where Q,(f) is the total flux operator for quasi one-dimensional flows, defined as:

|0
Q(h) = % (Fa iy~ Frp By ) - Zl P\l 1) - DL (349)
i q0

The fluxes at an interface are obtained through an averaging process cquivalent to
central differencing if the area of the duct is constant. In this study, the average value

of the flow variables in the two cells neighboring the interface has been used, as

defined by the equation:

1
Wisy = 5 (W;t Wiy ) (3.50)

where w is either p, u or p.

In (3.49), D,(f) is the artificial dissipation operator, introduced in order to
make the spatial operator stable by preventing odd and even point decoupling which
is characteristic to central differencing, and to avoid oscillations near discontinuities.
These two goals are accomplished by the use of the second and fourth order

differences, with coefficients which depend on the local change in static pressure,
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being expressed in conservation law form as:

D) =d,, f-d,f (3.51)

-4
where the terms on the right hand side have the form:

-3£,03£-£,)) (3:52)

72

o= AU £y~ ) -l

. » 2 q .
The coefficients €, and ¢} are defined from:

I

) = k®max(v s V) (3.53)

and:

€8 = max{0,(£®-e5))} (3.54)
where v, is a switch based on the normalized second order difference of pressure:

_|Pa2p7 |

(3.55)
| Pt 2P Py |

;

and k@ |, k™ are arbitrary constants with typical values of 1/4 and 1/256

respectively.

The fourth order difference terms, with coefficient €, are important in
smooth regions of the flow, calculations made without them failing to converge to a
completely steady state; instead, after having reached a state close to the steady one,
they oscillate indefinetely about it with a low amplitude. Near the shocks, however,
they have been found to introduce overshoots, therefore they are switched off by

subtracting € from k™ in equation (3.54).
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Equation (3.48) is integrated in time using a four step Runge-Kutta scheme:

AL (3.56 )

PUMPLE _’—T\)_f O (™) (3.56 b)

£ fO- %’ Q£ (3.56 ¢)

£ = -0 Q1) (3.56 d)

= f}"’——%—'[ QM) 2Q(fD)1 20,191 Q1] (3.56 ¢)
£ g (3.56 1)

The time-stepping method defined by (3.56) has the above-mentioned
advantage of being independent of the time step, because at the steady state
Q(f)=0,sothat f1=F® and so forth up to £ = /",

However, the dissipative terms are relatively expensive in terms of computer
time. In order to avoid their evaluation for each of the four stages of the Runge-
Kutta process (3.56), Jameson suggests that their evaluation be made only in the first

stage, after which their value is frozen. Using the notation:

QL) = 0N~ D(1 (3.57)

where Q,(f) is only the flux operator:

0
1
F,h,-F, 11,.,./:) oy P; (IJM - l)f.f./__) (3.58)

!

Q[f) = %}(

¢
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the above simplification results in the following set of equations to be used instead

of (3.56):

f’ﬂ') - £ (3.59 a)
PRy %{ oY ﬂn)),..%f D.(fO) (3.59 b)
£ - [ %f QO+ %’ D(FO) (3.59 ¢)
£ = £9-AtQ(£®)+ AtD( 1) (3.59 d)

1= (0~ o) 120120 P)+ QI s AtDFO) (359 ¢)
nl f(-l) (359D

If relations (3.59) are used instead of (3.56), the steady state solution is no longer

independent of the time step.

When applied to the linear wave equation, this scheme is stable under the

Courant number condition:

CFL<2/2 (3.60)

3.3.2 Two-dimensonal flows

The two-dimensional discretization can be obtained if equation (2.18) is

supplemented by the dissipation terms and recast into the form:

A%

Ayl =-Qi(N+ Dy =-Qyh (3.61)
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Then, the Runge-Kutta process for the two-dimensional version of the scheme can

be expressed by the following set of equations:

/3.”) = £ (3.62 a)
£5)= - ,A—' Q) (3.62 b)
24,
=105 OAr™) (362 )
24,
fg_-"’) - f}n)-AtO,-( £ {3.62 )
£ = 50~ 2 0,(£)120,(1)120,(®)s ()] (3.62 ¢)
= £ (3.62 1)

The flux term at the cell interfaces, Q,(f), is given by (2.19), F and & being
computed using average values for the flow variables between the values in the two
neighboring cells. For example, between cells (i+1,j) and (ij), tflow variables arc

taken to be:

LY _

w u’ﬁ" lV’-
ey~ 2 ’ g “—T

1y (3.63)
where w is either p, u, v, or p.

The dissipation operator contains terms pertaining to the two coordinate

directions:

Dy(f)= DN+ D(f) (3.64)

37



Chapter 3 Classical time integration methods

given by:
D()=d., f-d., 0, D(H=4d, Wi dyvf (3.65)

where the right hand side terms have a form similar to (3.52), for example:

d.

)
I'VJ { I"/J I‘IJ ) €; (p" -3

g

3£-£, )} (3.66)

Ly -1y
the cocfficients being computed in a manner similar to the quasi one-dimensional
case (eqs. 3.53-3.55).

Finally, for steady state computations, one can also freeze the dissipation at
the first stage (3.62 b) of the Runge-Kutta process, resulting in equations similar to
(3.59). This improves the computer efficiency, without impediments on the
convergence process. The stability condition, in terms of the CFL number, can be

expressed in the same form (3.60).
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NUMERICAL BOUNDARY CONDITIONS

The finite-volume methods used to solve the Euler equations require the
specification of all the flux terms on the cell interfaces which lic on the boundary of
the computational domain. This is in contrast with the physics of the problem
because in reality a certain flow regime is established when only a certain
combination of flow parameters is specified on a boundary, not all of them. This can
best be illustrated for the case of a steady quasi one-dimensional flow in a duct.
Supposing the flow comes from an infinite tank where two flow parameters are
known, for example the stagnation pressure p, and the stagnation speed of sound
¢, and the exit pressure from the duct, p_, is given, then the flow regime in the
duct is fully determined. However, the numerical scheme needs, for the computation
of the fluxes, three combinations of independent flow variables at each boundary. For
the unknown variables (e.g. p_, «,, ), the only possibility which occurs, in accord
with the theory of characteristics, is to use the information from the interior of the
computational domain to update their values. The madality by which the boundary

variables are updated is called a numerical boundary-condition procedure.

In the case of two-dimensional flows, a boundary-condition procedure must
also be applied for the solid wall boundaries. This chapter describes the classical
boundary procedures used in the present study as well as the basic implementation
features for each method. To simplify the presentation, only the two-dimensional casc

is developed; the quasi one-dimensional case results immediately, by discarding the
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Chapter 4 Numerical boundary conditions

y-axis equation and components.
4.1 Inflow and outflow boundaries

The inflow and outflow boundary-condition procedures must obey the rules
imposed by the theory of characteristics applied to the partial differential equations
of the flow (see Appendix A). For the two-dimensional Euler equations, at a subsonic
inflow there are three incoming characteristics, and one outgoing characteristic.
Therefore three boundary conditions must be specified at a subsonic inflow, and one
is determined by the solution inside the domain. At a supersonic inflow, all four

conditions must be specified from upstream.

At a subsonic outflow, three characteristics leave the domain while only one
enters the domain, corresponding to the information supplied to the system from the
surrounding world. Therefore, only one boundary condition can be imposed from
downstream (usually the pressure) while three boundary values are determined from
inside. At a supersonic outflow, all four characteristics leave the domain, hence the

four variables are determined from the interior.
4.1.1 Subsonic inflow boundary

For all the methods used in this study, the inflow boundary-condition
procedure is identical, in order to have a meaningful comparison between the
methods. The three quantities imposed from upstream are:
® stagnation pressure, p,.
® flow direction, tanf, = -:ﬂ
® stagnation enthalpy, H. K

The flow parameters on the boundary are updated according to the following

scheme:

40



Chapter 4 Numerical botundary conditions

i) Evaluate pressure at inflow, p_. using an extrapolation from the interior of the
domain.

ii) Compute p_, using the isentropic law:

pin Y
P Po| = ' (l b
Py

iii) Compute velocity magnitude:

V.o=duives 2| H- __Y__,P?'f‘ (-1.2)

in~ m Ve

iv) Compute velocity components,

v, =V,sinl, , u, =V, cosl, (4.3)

in

The implementation was different only for step i). For Godunov and Jameson
methods, supposing the inflow boundary lies on a line x=constant and the first two

cells have the same length Ax, p. can be extrapolated as:

Pin,* 15p;-05p;; (4.4)

For MacCormack’s method, at the predictor step (backward) the inflow pressure is

given by:

piuj: 2pl;'up.’;’ (45 E!)

while at the corrector step (forward):
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Chupter 4 Numerical boundary conditions

Pay P} (45 b)

4.1.2 Subsonic outflow boundary

For Godunov’s method, the boundary procedure uses a fictitious cell denoted

by the indices (Imax+1, j) where the flow parameters are taken to be:

(4.6)

plm.-u-nl‘j N plm;u;j * u[.'mu'tl,/': u!m.-uy' ' Vim:u‘-l‘)"= V!m:uu' v P Tl f =P [y

The fluxes on the outflow interface are then computed using the solution to the

Riemann problem:

—

mfn AL,
Frnacirsy = ¥ ( v (0 T g j— ]) “7

For the methods of MacCormack and Jameson, a nonreflecting type boundary
condition developed by Rudy and Strikwerda [34] for steady state flows was used.
The incoming characteristic variable for the one-dimensional problem is p- p cut, the
bar denoting linearized quantities. A boundary condition which would eliminate the

incoming waves would therefore be:

op ou
= -pe—=0 4.8
ot pe ot (48)

but this does not impose p = p_ . To ensure that both conditions are satisfied, a linear
combination of them gives:
ca

d u
P _ valp-p )= 4.9
at P ar'“( ex) =0 (4.9)
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where a is a numerical parameter without any physical meaaing (taken as 0.8 in
actual computations). Equation (4.9) artificially counstructs a value for the exit
pressure p which attenuates the waves coming from the exterior of the domain, and

becomes equal to p_ . when the steady state is reached.

The following boundary procedure can be constructed starting {rom this

equation:

i) Extrapolate «, v, £ at the outflow boundary, giving . v, £ 1.

[ ext

. ) -1 -1 A 1 . )
ii) Using the values p; ', p.. ', u. ', ¢ from the previous time step, compute the

new value for the pressure from the discretized form of equation (4.9):

i

ol n-l o "l
n_ Py -l-ﬂ"At'pm;I Pev Coy (”c'.\'_ LA ) (4|0)
“ 1raAt
iii) Use the energy equation to compute p..:
I
pn _ Pex
er T
w2 w2 (4.] l)
L - ( u('\' : ( V('.\‘

(Y"l) Em ”

—

iv) Compute the outflow fluxes using the values p_, u ., v, p.. in equation (2.22).

The use of a nonreflecting boundary procedure of this kind results in a

decrease of the number of time iterations required to reach a steady state.

4.1.3 Supersonic inflow boundary

At a supersonic inflow, all parameters are specified through the use of the
stagnation pressure p, , stagnation speed of sound ¢, flow direction #_, and inflow

Mach number M_ . The inflow pressure is given by:
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) Po
Py vl “‘1—] (4]2)
(1 | -;—A/!;,‘,)?‘
whereas the density is:
o
o2
D, - Py — = LB (4.13)
-1, 2377 -1, 2\37
(l * __YZ_M}')T l (1 "'li_jwin)? !

The velocity magnitude can be expressed as:

V.o-M.oc =M |yP (4.14)

m n=in 11
in

which gives for the x- and y-components:

pi . p
u:‘n = COSO,-” .M'n., \ Y —= ’ Vin = Smom'/wm Y = (415)
P P i

The values obtained for p,,, u,,, v,,, p;, are used in (2.22) to compute the inflow

fluxes.
4.1.4 Supersonic outflow boundary

For this type of boundary, all flow variables p_,, «_, v_, p,, are extrapolated
from within the computational domain. In the case of the Godunov and Jameson

Ax

methods, supposing the last two cells have the same length Ax -1

Imax = the

extrapolation formula to obtain p_ = p,, .. ..., for example, takes the form:
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p""d' ) pff"-'l\""'-'lf =15 plm:u'.f ~0.5-p Imax-f (4.16)
and similarly for the other variables,
In MacCormack’s method, taking into consideration the directions of

differentiation in the two steps, outflow values for p_ are obtained as follows:

o predictor step (backward):

n i : .
Pes= Pty (.17 a)
® corrector step (forward):
Lo S S
p’-’-\'J a plm-'l.\"'/:J‘ 2 plm.-uu' -p Tnax-1f (4' 17 h)

Similar extrapolation formulae are used for the other variables.

4.2 Solid wall boundaries

At a solid wall, the tangency condition V=0 (2.27), or the cquivalent
V =0 implies that only the pressure is needed for the cvaluation of the fluxes.

Indeed, one has (see 2.22):

pyq

A.qay o | PUrpAY 4.18
Q) =| 0oy oA (4.13)
(pErP)q

where g=V _-As=0.
This implies that, at a solid boundary:
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0

S aa | PAY 4.19
(Q-jis) =| ! Dhx (4.19)
0

Hence, for finite-volume methods with the state defined at the center of the cell, only

the pressure is needed at a solid boundary.
4.2.1 The image cell method

For Godunov's scheme, the flow tangency condition (2.27) can be
implemented in a way which is consistent with the computation of the fluxes inside
the computational domain. Since a solid wall is a streamline of the flow, it can be
artificially obtained by considering a mirror-image state on the other side of the wall,
with the same values for the flow parameters, except for the normal velocity

component which changes sign.

Fig. 4.1

Consider the lower boundary (j=1), and cell (;1) with flow parameters
P Vn,;,’ V,“, p;, inside the computational domain. To compute fluxes on the
boundary (i,'2), an image cell is created, in a position which is symmetric to that of
cell (i, 1) relative to the boundary (see Fig. 4.1). The flow parameters in this cell,

denoted by (;,0), are taken to be:
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pr:(l = p.il : l/n T ‘/-
(4.20)
Pi=Py V.° Y

The normal velocity components in the two neighboring cells being equal but of
opposite sign ensure that the normal velocity at the wall is ¥, 01 thus, the wall
(A

is a streamline as it was desired.

The fluxes on the boundary are then computed using the value of the pressure
Py, calculated from the solution to the Riemann problem with initial states

La=lPus Pp Ve, P&yl and fiu=[py, Pio¥ PioEin]":

mep O
£y, = R(0, S fn) (4.21)

A completely similar approach is used at the upper wall j=Jnw.
4.2.2 The predictor-corrector characteristics method

In the basic paper describing his method [ 18}, Jameson suggests either the use
of the normal momentum equation or the extrapolation from the interior of the

domain in order to compute the pressure at a solid wall boundary.

For nonorthogonal meshes, as those used in this study, the normal momentum
equation, which requires derivatives normal to the wall, is difficult to use and can
lead to errors ( see again [18]). On the other hand, a simple extrapolation procedure
did not allow a sufficiently accurate evaluation of the pressure at the boundary,
especially when relatively coarse grids were used. Therefore, a more accurate
boundary procedure based on the analysis of the characteristics of the Euler

equations in a reference frame normal to the boundary has been implemented with
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satisfactory resuits.

The cigenvalues A and the corresponding characteristic variables w in this

reference frame are (see Appendix A, eq. A.38):

v, 1 . p-LZ | [w]
A, c?
V, W,
n A, ! 2
A' o == = N "f = p = (4'22)
Vic A V== W,
b7 l pc 3
4 D
I V”-C ) - Vn"'ﬁ_E ] W ]

where bar quantitics are linearized state quantities, taken as those at the previous

step.

Since at a solid wall i/, must vanish, A, should be a negative value, which
corresponds to a wave propagating from the boundary inside the computational
domain. This means one is allowed to impose one boundary condition, corresponding
to w,, while the information pertaining to the other three characteristic variables
must come from the interior. Let subscript "pr" denote predicted values for the flow
variables, which are obtained by extrapolation from the interior of the domain; the
predicted value for the normal velocity V, at the wall will not be in general equal to
zero. Then the following relations can be written:

® for w;:

ppr_ !:_I:‘,r =p- % (4.23 a)
c* c*
¢ for w.:
Vi.= Vi (4.23 b)
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@ forw;:

(4.24)

and the only flow variable needed to be computed from (4.24) is the pressure.

The resulting boundary procedure can be summarized as follows:

i) Compute the predicted values for the pressure p

- and the normal velocity vV,

o
using an extrapolation from inside the domain.
i) Correct the value of the pressure according to (4.24), which ensures that ¥, =0.

iii) Use the value obtained for the pressure, p, to compute the boundary fluxes in
equation (4.19).
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NEWLY DEVELOPED METHODS

This chapter describes the basic ideas which have led to improvements of the
methods described in Chapter 3, as well as their numerical implementation. For the
first method presented, the starting point was Jameson’s Runge-Kutta time-
integration scheme. A two-stage method which updates separately the flux and the
cell-node variables was developed by Mateescu and Lauzen [27]; this method takes
into account the physically permissible directions of perturbation propagation and
was shown to provide a better accuracy of the solution. However, it is rather difficuilt
to implement for multi-dimensional flows. Therefore, an easier way to take account
of the physics of the problem has been looked for ([26]), resulting in the a-method
to be described.

The second method that has been developed uses the concept of linear hybrid
methods, introduced by Harten and Zwas [12], [14]. In their work, the first-order
method used for hybridization is a general, strongly diffusive, finite-difference
scheme, which does not take into consideration the permissible directions of signal
propagation. Using a more physical method, such as that developed by Godunov, is

succeptible to give better results, especially for very complicated flow patterns.
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5.1 The biased flux methed (a-method)

5.1.1 Theoretical considerations

In Jameson’s method, fluxes at an interface are computed using an average
of the values corresponding to the two neighboring cells (sce cquations 3.50 and
3.63). This represents of course an approximation which would only be exact it the

flow variables varied linearly, a case which is not likely to occur in real flows.

Furthermore, for the computation of the flux vector, relation (3.50) uses on
an equal basis the information from the two cells. However, in supersonic flows, no
information comes from downwind, while in subsonic flows the information should
come from both downwind and upwind, but on an unequal basis. Many flux-splitting
schemes which take into consideration these effects arc already in use. The flux-

splitting is however expensive in terms of compuier time.

The present method suggests a different way to compute the fluxes, which can
easily be implemented in an existing computer code based on Jameson's method,

improving the performance. It is based on a more realistic approach to the physics
of the flow.

Consider a subsonic quasi one-dimensional flow in a nozzle. The flow is
supposed to come from an infinite tank with stagnation conditions; the information
specified at the exit of the duct is usually the pressure, p,.. This information is
“transmitted” to the whole flow in the duct, such that at the entrance of the duct the
flow regime that occurs depends on p,,. Therefore, when working with primitive
variables, the pressure is a good choice for the information which propagates

upstream (corresponding to the characteristic variable w; in Appendix A).
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The same choice is suggested by the specific form of the flux vectors, given by
cquations (2.6) and (2.8). According to the flux splitting techniques, the one-

dimensional flux vector can be written:

pu o} 01
F=|pu*rp|=ul pujt pl:F"-» F? (5.1)
pHu |pH]| |0

The first component, F", corresponds to a convection with the velocity « of the
respective scalar quantities. The second term, F?, represents the contribution of the

pressure to the flux, which can be considered separately.

The aspects discussed above are taken into consideration by replacing

cquation (3.63), in the case of a two-dimensional flow, by:

P iUy
a3

pl.,/ 'ui»-% Py
A W MAY | 2 G
v = F(Pisgr Yy Viongo Pivs)

F, (5.2)

Mg
P iy Vines

P Mg ui“/:,/’flil'/:‘/'

where the flow variables at the cell interface are computed from a weighted average:

a’0.4(1-a") =a'u.: 4y,
p,‘.l/_.‘,' = a.v,- p ,;j" (1 a.\',-) p,’.u * Uy, g a.\',- u,;,"‘ ( 1 "a.\',-) ui»l,j
(5.3)

2 v a4t -} =afp +(1-af)-
V‘r‘i'/.“j—a.\',- V.r;/" (1 a.\‘,-) Vf&l,j H pfb'/g'j a,\".pj‘i‘* (1 a.r,) pj’le

The superscript notation implies that the weights & can be chosen differently
for different flow variables, while the subscript indicates that a different value can be
used for the a- and y-direction fluxes. Further, the values of the weights depend
mainly on the local character of the flow in the cell situated upstream (cell (i)} in eq.

5.3). In particular, for subsonic flows, the weight for the pressure o’ is chosen to be
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smaller than 0.5, while for the other flow variables a”, a¥, a® are greater than 0.5,
In subsonic flows, this simulates an upwind propagation of the outflow pressure

signal, while all other information propagates downwind. The optimal values for the

weights have been determined by numerical experiments, as will be discussed further.

5.1.2 Quasi one-dimensional flow

In this case, the flux vector is computed with the one-dimensional

correspondent of formula (3.2):

F}"/: B 7( Pives Yy Pr'*‘/:) (54)

where the flow variables are obtained by interpolations of the form:

Pas=alp; (1-af)p,, (5.5)

and similarly for the other variables. The weights are chosen as:

L

u_ o p_ .
a; =a;=a;=a,>05, for u;>¢; (supersonic flow)

(5.6)

af <a;=a,>05; af-a, <05, for u,<c (subsonic flow)

In locally supersonic flows, numerical experiments indicate that an optimaj
value for the coefficient «, exists, lying between 0.75 and 0.8, depending on the flow.
A value of 1 would correspond to a first-order upwind scheme, with a resulting first-
order accuracy. Results of several tests with various values for @, can be summarized
as follows:

i} For values of @, between 0.5 and the optimal value, the iterations converge in less

time steps, as the value of a, increases, with practically the same accuracy.
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ii) After the optimal value, a further increase in the value of &, brings about a loss
in the accuracy of the computed results, as compared to the analytical isentropic flow

solution.

These effects can be followed in Table 5.1, for the case of a supersonic flow
in a quasi onc-dimensional duct of area A (x) =0.2+0.1x, x€[0,1] and entrance
Mach number M, =14, discretized in 60 cells. The initial distribution of flow
variables has been chosen to be the same over the whole length of the duct, equal
to that in the entrance section; the RMS error in the Mach number distribution is
calculated using the exact analytic solution. As suggested by these results, the value
a,=0.775 has been used in all quasi one-dimensional locally supersonic flows

reported subsequently in this study, unless otherwise specified.

Table 5.1 -
@, 0.6 0.7 0.775 0.8 0.9 0.5
(Jameson)

Number
of time 112 107 99 99 96 127
steps’
RMS
error in | 1.12:10% | 1.1310* |113410% |1.1310% |1.2010" |1.1210°
Mach no. _

* for convergence to 10 in all three equations.

For a locally subsonic flow, the appropriate values for a,, a; have also been
determined by numerical experiment. While the optimal choice is dependent of the
flow, it has been found through a large number of tests that the best range lies
between 0.23+-0.3 for a«; and 0.7+0.775 for «,. The great majority of the

computations failed to converge if a, weze increased more than 0.78, or if @, were
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decreased more than 0.2. However, the optimal vaiues were always very close to

these limits. A good choice, which worked for all the flows treated in this work, was:
a,=0.75 ; a;=0.25

Examples of the variation of the accuracy and required number of iterations for the

case of a steady subsonic flow in a duct of area A (x) - 0.3-0.1x, x&€|0.1]. and exit

pressure p,.=0.658p, are given in Table 5.2. Again, the RMS crror is calculated using

the exact analytic solution.

Table 5.2
Flux a,=0.6 a,=0.75 Jameson Jameson
averaging a;= 0.3 @;=0.25
method No No No With
dissipation dissipation dissipation dissipation
Number of 327 303 Did not 323
time steps converge
RMS error in 6.95-10" 5.04410* _ 7.24-10"
Mach number

* for convergence to 10 in all three equations.

A very important advantage of this method can be seen from Table 5.2:
convergence is obtained without the use of the artificial dissipation, if the flow ficld
does not contain shocks. This leads to a greater computationai efficiency, since the
dissipation terms are about as expensive to compute as the flux terms: as will he

shown, it also improves the accuracy of the results.

A typical convergence history for this method, displaying the evolution of the

RMS variation in density between two successive time steps, is shown in Fig. 5.1.
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Fig. 5.1 - Convergence history for subsonic quasi one-dimensional duct flow,

«w-method.

5.1.3 Two-dimensional flow

In this case, the x- and y-direction fluxes are computed from:

Fig™ T (P o o Vivsgr Pion)
6.7

—
Eone = F (P s Ui Vijwss Prj)

The interpolation formulae take the form:

Py = @ P (1-08) Py
(5.8)

cal Py.
P = @ Py (1-ay) 00y
and similarly for the other variables,

The weights are chosen according to the local character of the flow:
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P oo VN S for .

Qo acc @ >05 for u,> e,

oY = 2o = - .

ag=ac=a =a,>05 . a) -0, <05, for uy< ¢y
(5.9)

P = fan .

@ = = ay ca>05, for v> e,

v u_ VP _ R .
G CVRN R L 0.5, for Vi< Gy

In the above relations the direction of the flow has been assimilated to the v-axis,
since in aerodynamic flows the velocities along the v-axis are relatively small. Henee,
the entire upwinding effect has been related to w. A supersonic flow along the y-axis

is not likely to occur, hence on this axis the centered differences are generally used.
5.2 The hybrid method MacCormack-Godunov

The hybrid method is built according to the principies set out in [12], [14].
Consider a r-th order accurate scheme, » = 2, for the solution of a nonlincar system

of conservation laws:

of, of g (5.10)
ot ox

In conservation form, the scheme can be expressed in the form of an operator, L, ,

acting on f;,as (see also eq. 2.17):

(L 0= £ = £ -0 (Fiy) - Fy, (5.11)

Here, o stands for % ,and F™" is the numerical flux computed witii the r-th order

scheme at time step n.
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Similarly, a first-order accurate sheme is defined by the operator:

(Llf) f"" ( l n_ 1 IJ (512)

A first-order monotone scheme will ensure a nonoscillatory behavior near

discontinuities.

A hybrid scheme is defined in the same conservation form as:

(Lf);zﬁ'ml = -0 (Fy.- Fly (.13)

where the numerical flux is computed as a blending of the first- and r-th order

accurate fluxes:

F;-'/ _On .lvn - (1 0”|/ )-F.-ﬂ'/” (514)

The parameter 0 is a scalar quantity (a switch) which satisfies 0 < 0,,,, <1, and it is
constructed such that at discontinuities § = 1; therefore, close to discontinuities, the
hybrid scheme (5.13) behaves basically as the nonoscillatory first-order scheme (5.12).
In the smooth regions of the flow, 8 = 0({Ax)"™"), such that r~th order accuracy is

obtained via the (L) operator in such regions.
5.2.1 One-dimensional flow

The first step is to write MacCormack’s method in conservation form as:

(LMcf) ml —f. —O‘( MC‘n F}g.C'n) (515)

where (see also eq. 3.37):
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I il n a1
MCon F; 4 FM MO Fl ! F; 3
1:;"|/; = ) ]:J - —— (n ' l 6)

7 v 2

The hybrid method can be therefore expressed as:

(LA = £ = £ - o (Fiv, - ) (5.17)
where:
oy =0 Fiyl v (100, Fa, " (5.18)

In (5.18), F %" denotes the flux computed by Godunov's method, given by (3.25).

The switch @ must detect the discontinuities. Since the density is the only
primitive flow variable which is discontinuous both at shocks and at contact
discontinuities, it can be used to construct an appropriate expression for . In the

present study two forms have been used for this switch. The first one is:

i

[P R/

M max g p ]
!

(5.19)

(see also [14]). Here X is a positive constant (taken as 1 in the actual computations)
and m is an exponent which must satisfy m =1 because @ is supposed to be of

order 0(Ax) in the smooth regions of the flow.

The second form used for @ is suggested in [12]:

0,, =max(0,,0,,) (5.20)
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with the quantity 5}. defined from:

m

|AinIA p I_ |A,-,|/_.p ]
|Ai-'/.-p | ' lAﬂ/_p |

s for |A’..,/:p |+]A,'.:/_.p | > Ep

.- (5.21)

0 , for |A’.%p |+]A.,.p]l< €,

In (5.21), €, is a suitably chosen measure of insignificant variation in p, /1 satisfies
m=1, such that the solution behaves like the second-order sclieme in smooth

regions (m=4 has been taken in agtual computations), and A, p =p,, - p;.

The switch defined by (5.20), (5.21) is a very sensible way to detect
discontinuities. It is more expensive computationally than the form (5.19), but offers
the advantage that when its value becomes 8=0, the first order fluxes need not be
computed, For most flows, the results obtained with the two forms are identical. The

form that has been used will be indicated for each numerical example.

For stability, the hybrid scheme must satisfy the most restrictive of the stability
conditions of the constitutive schemes. Since both MacCormack’s and Godunov's

schemes have the CFL number at the stability bound equal to 1, this results in:

CFL=1 (5.22)

as the stability condition for the present hybrid method.
5.2.2 Two-dimensional flow

For a two-dimensional flow, a switch must be used for each direction. For

example, for the side (i+'zj), the flux becomes (see eq. 2.21):
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(Q78) = {[07F 4 (1-0%) FH | (A0) -

(5.23)
-{0FG Y (1-0%) GMUAN Y, ;
while for the side (ij+2), the flux is:
(Q'ﬁs),u.v: - {[0-"F("-l‘ ( 1 _0.:') FM('] (A_I’) }’Lf"-"-' (i 1'”

-{07GC(1-07) G (AN,

The two switches §* and 07 take into consideration the variation of the flow
parameters on the respective axes. For example, using the form defined by (5.19),

they are given by:

"
g | o Py (5.25)
lni:ix [ pl'il‘]'- p:‘ll
i

for the x-variation of the flow parameters, and:

m
Bi’i‘v: - x | pl:,"ll pl:[l (5.2())
ln.(}x l pl;]“l - p,r;jl
J

for the y-axis variation. Similarly, the second form for § becomes for the x-axis:

0= max(af,'.‘rl-, 6';:1‘,') (3.27)

where the quantity 5:‘, is defined as:
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™

AP 17 18,0
B0 |1 1 o

IA,'.I/..J‘p | : IAJ'-‘/:Jp I

."-‘/.-J'p | > Ep

0. (5.28
0;;- (5.28)

0 , for |A,, P4, Pl <€,

Hence, for a two-dimensional flow, the fluxes are computed separately for
cach cell interface by the two methods (F°, G with Godunov’s method, respectively
M7, GM with MacCormack’s method). The switches are then computed for each
interface using the valucs of p at the previous time step in (5.26); the resulting hybrid
fluxes are then given by (5.23) and (5.24), and the state vector can be updated for the

next time step.

The stability condition for the hybrid scheme can be evaluated using the same

cquation (3.44) given for MacCormack’s method.



Chapter 6

NUMERICAL RESULTS

The time integration methods presented in Chapter 5 are validated through
a series of test cases for internal quasi one-dirensional and two-dimensional flows,
as well as an external two-dimensional flow about a symmetrical acrofoil. The results

are compared with those obtained by the well-established methods in Chapter 3.
6.1 Quasi one-dimensional test cases

Test case I. The first test has been performed for a subsonic isentropic {low,
with an entrance Mach number M, =0.6, in a channel with a circular arc bump on the
lower wall. The channel length is L=3¢, where ¢ is the length of the bump, this one
being situated between x/c=1 and x/c=2. The height of the channel is ¢ and that of

the bump is i=0.Ic.

A solution obtained by Jameson’s method is displayed in Fig. 6.1; it required
that the coefficients of the adaptive dissipation be set to A@=] and k=1/64,
Although the adaptive dissipation is relatively large, some oscillations in the
numerical solution still appear near the trailing edge of the bump. Another solution,
with k¥=1/4 and k™=1/256, is presented in Fig. 6.2. As can be expected, the
maximum Mach number on the bump is closer to the real value, but the smaller
amount of dissipation allowed odd/even point decoupling. As well as the first

solution, it is still unacceptable from the point of view of the accuracy.
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Results obtained by the a-method developed in Chapter 5 are displayed in
Fig. 6.3. The coefficients used for the weighted average were set to a,=0.75, a;=0.25.
The treatment of the boundary conditions and the Courant number were the same
as in the first two cases. Dissipation terms were not needed to obtain this solution.
The improvement over the precedent solutions is remarkable; the Mach number
distribution on the bump is correct and the solution is almost free from oscillations.
Due to the drop of dissipation terms, a greater computational efficiency is obtained
(see Table 6.1). For comparison, Fig. 6.4 shows results obtained with Jameson’s
method after the same number of time steps, if dissipation terms are neglected (the

solution fails to converge in this case).

Table 6.1
Jameson’s method, with a-method, without
dissipation terms, £ =1 dissipation terms
Time per iteration 100% 76.3%
Number of iteraticns 512 521

until convergence to 10

RMS error in Mach no.
(w.r.t. the exact solution) 0.009423 0.002621
after 500 time steps

Figure 6.5 shows the results obtained by MacCormack’s method. As can be
seen, the solution exhibits a much less pronounced oscillatory character than that
obtained with Jameson’s method; only very slight oscillations exist near the trailing
edge. The hybrid method (Fig. 6.6) eliminates these oscillations; the behavior of the
solution becorres monotonic. The switch @ has been used in the form given by (5.21).
However, for this flow, the cost of the hybridization is probably not justified (Table
6.2).
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Table 6.2

a-method MacCormack Hybrid
method

Relative computer
time to 100% 102.3% 121.5%
convergence
RMS error in
Mach no. (w.r.t. 0.002621 0.008551 0.004498
the exact solution)

Test case 2. The second test, used to verify the shock capturing properties of
the methods, was the flow suggested in [36]; a flow with a stationary shock in a duct
of variable cross-section S(x) = 1.398+0.347tanh (0.8x-4), where x€[0,10]. The
inflow conditions are supersonic, with p, =0.502, «, =1.299, p_ =03809 and
M, =1.26 at x=0; at the outflowx=10, the pressure is specified, p,_=0.7475 . Under
these flow conditions, a shock appears in the duct at x,=4.8198. The initial conditions
for the numerical computation have been chosen, in this case, identical to the exact
solution; due to numerical errors, the converged solution will be different. As in [36],

the figures show the variation of the density with the axial position.

Fig..6.7 represents the results obtained by MacCormack’s method, with
artificial viscosity terms included; the constant in the artificial viscosity term (cqs. 3.45
and 3.46) has been set to C=0.5. The numerically induced oscillations near the shock
can be clearly seen. The number of time steps required for convergence to the

accuracy 10* in all equations, with a Courant number of 0.9, was 1093,

The hybrid method developed in Chapter 5 (using the switch defined in 5.21)

brings a sensible improvement in the results (Fig. 6.8). The shock is much better
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solved for, and for the same precision, the number of time steps required was only
573 (sec also Table 6.3). This is largely due to the dissipation contained implicitly in
the fluxes computed by Godunov’s method, and to the correct account for the physics

of the problem.

The solution obtained by Jameson’s method is shown in Fig. 6.9; the constants
for the adaptive dissipation were taken to be A?=1.0, £%=0.0156; the oscillations,
this time stronger behind the shock, are associated with a certain odd/even points
decoupling before the shock. An increase of the amount of dissipation (k?=2.5,
k™=0.039) eliminates the oscillations, but the shock is not well situated in the duct
(Fig. 6.10).

The a-method offers a better solution for the shock position, with less
oscillations (Fig. 6.11). A certain amount of dissipation has been added (k=0.25,

k9=1/256).

Table 6.3 compares the performance of the methods for this particular flow.

Table 6.3

MacCormack Hybrid Jameson a-method
Iterations to
convergence’ 1093 573 375 423
Relative
computer cost 141.8% 100% 171.3% 193.22%
RMS error in
density (w.r.t. the 0.076 0.0241 0.0943 0.0512
exact solution) |

" for convergence to 10” in all three equations.
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Test case 3. The iast one-dimensional flow used for testing was the shock-tube
flow suggested by Sod [37]. The flowfield contains the two kinds of possible
discontinuities: a shock and a contact discontinuity, and also a rarefaction region.
Results on this case have been reported by many authors (for example, {39]). At =0,
a diaphragm situated at x=0.5 separates the two regions with p,=1.0, 1,=0.0, p,=1.0,
respectively p,=0.125, 1,=0.0, p,=0.1. A discretization of the shock tube 0 = v < |
in 100 points is considered, and the results are printed when the shock wave reaches
x=0.75, corresponding to the non-dimensional time 7= 14. The numerical procedure
is exactly the same as for steady-state flows, except that the values of the boundary
variables are held constant at the ends of the duct (equal to the left- and right-state
values respectively) and instead of testing for convergence, the position of the shock
is tracked, in order to stop the calculations when it reaches v=0.75. The following
figures show the density distribution, since it is discontinuous both at the contact
discontinuity and at the shock. MacCormack’s and Jameson’s methods produced an

oscillatory distribution, with overshoots near the discontinuities, as can be scen in Fig.
6.12 and 6.13.

Godunov’s method offers a much better result for this flow, because of its
nonoscillatory character, as seen in Fig. 6.14. The contact discontinuity is however
smeared over a large number of points, which was to be expected, since it is smeared
at the rate n** (see [12]) for this first-order method, n being the number of time steps

(n=45). Also the head region of the rarefaction is less accurately computed (the

corner is rounded).

Because a second-order method smears tho contact discontinuity at the rate

n* (see again [12]), the hybrid method offers the best results in this case (Fig. 6.15).
The switch was computed using (5.19).
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The a-method, as well as MacCormack’s and Jameson’s method, had to be
started with a very small value for the Courant number (0.2 in the case of
MacCormack’s method, 0.6 for Jameson’s and a-method); this is due to the strong
nonlincarities which appear in the diaphragm region, until the waves separate. After
several time steps, the Courant number has been set to a convenient larger value.
Godunov's method allowed a Courant number of 0.9 since the beginning, while for
the hybrid method a value of 0.6 could be used. The results obtained with the a-

method, using dissipation terms, are shown in Fig. 6.16.
6.2 Two-dimensional test cases

Test case 4. The subsonic flow in a circular arc bump channel, with an
entrance Mach number M, =0.5. The geometry is the same as for the test case 1; the
grid used was uniform in the x-direction, while y-spacing varied with x, although it
was kept constant for each x (see Fig. 6.17). Results for this flow have also been
reported in [8] and {30].

Fig. 6.18 shows the distribution of the Mach number over the bottom and the
top walls (first row of cells near the walls) obtained with Godunov’s method; the grid
size is 99X 33. As can be seen, there is a great lack of symmetry in the results. As
pointed out in |8], this is largely due to the lower accuracy of the numerical boundary
conditions at the wall (in the region of the bump), as well as to the first-order

accuracy of the method.

The second order methods of Jameson and MacCormack give almost identical
results; a solution is shown in Fig. 6.19. It is closer to symmetry, but oscillations
appear near the trailing and leading edges of the bump. The solution has been
obtained on a relatively coarse grid (33x13). For MacCormack’s method, the

coefficient of the artificial viscosity was set to C=0.5; for Jameson’s method, the
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coefficients of the adaptive dissipation were 47'=1 and A™=0.0156.

As in the one-dimensional case, the solution with the a-method could be
obtained without the use of dissipation terms for the xv-axis: dissipation is however
computed for the y-axis, where central differences are used (see eq. 5.9). The
solution, represented in Fig. 6.20, shows an improvement over the results okiained
with Jameson’s method - the oscillations near the leading and trailing edges have
disappeared. The maximum value of the Mach number over the bump is 0.6785,
which agrees better (taking into account the coarse grid) with the value of (.68
obtained by Ni in [30] than the value 0.6735, obtained by Jameson's method. Also the
value near the leading edge of the bump is better (0.381 for the a-method, 0.4317 for
Jameson’s method on the same grid, while the value obtained by Ni using a tine grid
in this region is 0.262). The drop of the dissipation terms for the x-axis results again
in an increased computer efficiency, as can be scen from Table 6.4 (results for a

33x13 grid and convergence to 10™ in all four equations).

Table 6.4
Jameson a-mc!‘hod
Iterations to convergence 3127 3319 |
Relative time/iteration 100% 92.4%
Relative computer cost 100% 98.1%

The results obtained with the hybrid method are similar in quality to those in

Fig. 6.20, but for this flow without discontinuities the use of hybridization is not
justified.

A very clear picture of the performance of the methods can be built using the
isoparameter diagrams. Fig. 6.21 represents the iso-Mach lines obtained with

Godunov’s method. The pattern is free from oscillations, but the asymmetry is clearly
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visible.

Fig. 6.22 is obtained with Jameson’s method. Comparing it with Fig. 6.21, one
can notice the better symmetry, but also the oscillations introduced in the pattern of
the lines. Finally, Fig. 6.23 represents the solution obtained by the a-method. It is

clearly the best; its symmetry is remarkable, and it also lacks the oscillatory character.

Test case 5. The flow in the same channel is computed, this time with a Mach
number M,,=0.675 at the entrance. For these flow conditions, a shock appears on the
bump. A relatively precise computation with a second-order nonoscillatory method
(|8]) situates the shock at 0.72%c of the bump chord-length (x/L=0.573), the

maximum Mach number attained being around 1.32.

Fig. 6.24 shows a solution obtained with Godunov’s method on a 99x33 grid;
due to the first-order accuracy, the maximum Mach number is 1.163, the shock

position being 0.65%¢, not in good agreement with th: more exact value in [8].

The hybrid method, using the switch (5.21), brings an improvement in the
solution which can be seen in Fig. 6.25; the shock location is exact, and the maximum
Mach number is 1.24. It required an average of about 25% more time per iteration

than Godunov’s method, which is completely justified for this flow.

The a-method (using dissipation on the x-axis), gave for this case the solution
in Fig. 6.26, perfectly similar to Jameson’s and MacCormack’s methods. This method
predicts a maximum Mach number of 1.322 before the shock, at the axial location

x/L=0.570, which is in very good agreement with the previous results obtained by
Eidelman, Colella and Shreeve [8].

Test case 6. The supersonic flow in a circular arc bump channel; the height of
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the bump is #=0.04c in this case, such that the shock at the leading edge of the

bump is an oblique shock, and the flow remains supersonic. The entrance Mach

number is M;,=1.65. This test case very clearly shows the accuracy and the shock

capturing properties of the methods.

Fig. 6.27 shows the solution for the Mach number distribution over the walls
obtained with Godunov’s method. The shocks are completely {rec from oscillations.
However, the iso-Mach diagram, Fig. 6.28, clearly demounstrates the dissipative
character of this first-order method: the shocks are smeared, especially the trailing

edge oblique shock, which is weaker. The interactions and reflections of the ditferent

waves are almost indistinguishable.

The solution obtained using Jameson’s method is shown in Fig. 6.29 and 6.30.
The oscillatory behavior of the numerical solution can be clearly noticed in these
figures. However, the shock structure in Fig. 6.30 is clearly superior to that in Fig
6.28, due to the second-order accuracy. The same quality of solution is obtained with
both the MacCormack’s and the a-method, this one having however less oscillations.
It is shown in Fig. 6.31 and 6.32.

This flow, due to its more complicated shock pattern, demonstrates the
advantages of using the hybrid method. The Mach number distribution over the walls,
Fig. 6.33, is free from oscillations and the shocks are sharper than in the case of
Godunov’s method. However, the shock on the upper wall is too smeared, as can be
seen from the comparison with the results in [8]; this is probably due to a too small
value for €, in (5.21). The iso-Mach diagram in Fig.6.34 is betier than that obtained
by Godunov’s method: there are no more recirculating zones before the first oblique

shock as in Fig. 6.30, the lines are smooth, without oscillations, and the shock

structure is clearly represented.
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Table 6.5 shows the relative computational costs required by the three
methods; the Courant numbers used have been 0.9 for Godunov’s and hybrid
methods, and 2.1 for Jameson’s method. Convergence was considered to be reached
when the residues in all the four equations were below 10". The a-method was
similar in terms of computer efficiency to Jameson’s method for this case, since

dissipation terms have been used for both directions.

Table 6.5

Godunov Jameson a-method { Hybrid
Time steps to
convergence 514 217 215 539
Rclative time per
iteration 105.3% 100% 100% 145%
Relative CPU time to
convergence 249% 100% 99.1% 361%

Test case 7. To further test the accuracy of the methods, the external flow over

a NACA 0012 airfoil at zero degrees incidence was also computed, for a free stream
Mach number M _=1.2.

The first order Godunov’s method produces a very smooth isobar pattern, but

the fish-tail shock is almost indistinguishable (Fig. 6.35).
The hybrid method, as well as the second-order methods developed by

MacCormack and Jameson and the a-method developed in Chapter 5 lead to a clear

shock representation, as can be seen in Fig. 6.36, 6.37 and 6.38.
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A very interesting comparison can be done using the Mach number
distribution in the bottom row of cells (next to the airfoil and its symmetry axis).
Godunov’s method produces the result in Fig. 6.39 (the airfoil is situated between
x=1/3 and x=2/3); the hybrid method (Fig. 6.40) gives an almost similar result in this
respect. It can easily be noticed that the behavior of the solution is better than in the
case of the second-order methods, as seen in Fig. 6.41 and Fig. 6.42, from this point
of view, although the shocks are slightly sharper for the case of second-order
methods. However, this can probably be further controlled by the value of the

threshold ¢, in eq. (5.21); the value, used for this case has been 0.003.

The algebraically generated grid used for these airfoil computations is partially

shown in Fig. 6.43.
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upper and lower walls by Jameson’s method, compared with the results obtained by

Ni in [30] (x).

M

1

0.8

0.6

o

brae- iyt P X

0.4

0.2

1

v

:'/bx‘.

x/ \

v .x.xxl;h- ‘:’-x [ b \ S
X
X

1

s
0y

AN

R"\N WO
By e e

%

]

W

.
:rx-—l —

0.2

0.4
x/L

06

0.8

Fig. 6.20 - Subsonic 2-D bump channel flow. The Mach number distributions on the

upper and lower walls by the a-method, compared with the results obtained by Ni in

[30] (x).

83



Chaprer 6 Numerical results

——

/llhtrillrl"tllurlullt

—

TITT T AR AT T T T (T b T3 TITiTd
92°G

i -
o %

Fig. 6.21 - Subsonic 2-D bump channel flow. Iso-Mach lines by Godunov's method.

1g'e—"]

[0 VI I O N T 1 N Y N I I |

TT T T I I TN T T I ITTTTTTT UL

R

Fig. 6.22 - Subsonic 2-D bump channel flow. Iso-Mach lines by Jameson’s method.

[

34



Chapter 6 Numerical results

TP Tl AT T eI T g T Y errIpierinicyTrrrTvrTorlTd UL TTTVE4 T T O
= z
= @ -
C -
= __/'\? 4

= &, 1/\‘6 3
- T o A :
E A3 e SO 1A =

Fig. 6.23 - Subsonic 2-D bump channel flow. Iso-Mach lines by the a-method.

0.8

0.6

0.4

0.2 0.2 0.4 0.6 0.8 1

x/L

Fig. 6.24 - Transonic 2-D bump channel flow. The Mach number distributions on the

upper and lower walls by Godunov’s method.

85



Chapter 6 Numerical resudts

M

: * e T dail i X
" - . mew:mwﬂxxuﬂ
'V &
e - *
0.4
! ! L ‘ s
0.2, 0.2 0.4 0.6 0.8 !

x/L

Fig. 6.25 - Transonic 2-D bump channel flow. The Mach number distributions on the

upper and lower walls by the hybrid method.

M

1.2

| [| | 1 N
0.2, 0.2 0.4 0.6 0.8 1

x/L

Fig. 6.26 - Transonic 2-D bump channel flow. The Mach number distributions on the

upper and lower walls by the a-method.

86



Chapter 6 Numerical results

M -

1.8

171

1.6

1.5

1.4

! : ! !
0 0.2 0.4 C.6 0.8 1

x/L

Fig. 6.27 - Supersonic 2-D bump channel flow. The Mach number distributions on

1.3

the upper (circles) and lower (asterisks) walls by Godunov’s method.

IIFTIIH”III‘(!IHlllHlllilIlllllilrlTlll’illl)’Il‘l] ll\lllll rl‘llll‘lllll(lillll'I{lI

'ff ’

/ / / sl
l 4 S - .;-"' .I
é f"fe ;: :‘;.*‘ ’/ ; S r“/f ,.-::'/# ,/"
dr i a '_..o—"’_ -]
=
;S LY S S
L 4 ¢ Sty g;}"'__b_\ I
S et .f’ ri o FE T

T

p ,.../ 3 ):
: o))

LALLLLLL L LU AL LLLLL LLLJ.LL:’-‘E.LLA'JJJJ..kL

Fig. 6.28 - Supersonic 2-D bump channel flow. The iso-Mach lines by Godunov’s
method.

37



Chapier 6

Nwmerical resules

2.2
20 ¥
A
1.8 [ o .
3«* ot \“‘
ik RN e Rt
R TUOY me L Wk panha ittt *
< KN e &3 & »i
h")( L by \ X K ‘\};
y ‘\
¥ Ve N
* w TN
141 Y X
. *, \ 1
% f\“ o
S
12 1 L ! [ R
=0 0.2 0.4 0.6 0.8 1

Fig. 6.29 - Supersonic 2-D bump channel flow. The Mach number distributions on
the upper (circles) and lower (asterisks) walls by Jameson's method, &7=0.75,

compared with the solution in 8] (x).

TT T I T T I T T 3T i 0T T iT i i 8T irITERTTYd

Fig. 6.30 - Supersonic 2-D bump channel flow. The iso-Mach lines by Jameson’s
method.

88



Chapter 6

Numerical results

M
2 - - —_—
bl
! 4
1.9 A
18 . .
* o
- * o \ =
1.7 ", N . N \ (3'< &
o P"ﬂmwwm F
1.6 >:< x X} Uq_\
15 P X
1.4 | & LS
Lol
_ ""’J.@
1.3
....... - L L 1 1
129 0.2 0.4 06 0.8 1

Fig. 6.31 - Supersonic 2

x/L

-D bump channel flow. The Mach number distributions on

the upper (circles) and lower (asterisks) walls by the a-method, compared with the

solution in [§] (x).

P T

Bermien bl bl

(IR T B

TR Il\ll‘lll"nll“ @ll l"l r1ll"|1

\b.'\‘~
",-
Ly 3 ‘:_\\

f-’
-
N
—
—_
—_—

S
7

sy
.,
,
= B
e

"
—_—

} ,*',v'/¢ !
T -5 m.’u".s..n".(' bbbt b 1 Nt

Fig. 6.32 - Supersonic 2-D bump channel flow. The iso-Mach lines by the a-method.

89



Chapter 6 Numerical yesults

M
2|
19| X
\\
.:".

1.8 "

. .'ﬂ\ B

_ LA W
1.7 ¥ o'

{i . 3.‘{‘:#&.‘0':ﬁ*ﬁ&"ifﬁfﬂ}.\iﬂ*&?{ﬂ%&\«
1.6 Ny \ : ~
.1, h!'

e - \\

1.5 Byt X
Py
Y

1.4

. ~
1.3

L reem—m o b e L |

124 0.2 0.4 0.6 0.8 1

x/L

Fig. 6.33 - Supersonic 2-D bump channel flow. The Mach number distributions on
the upper (circles) and lower (asterisks) walls by the hybrid method, compared with

the solution in [3] (x).

lllilllllllllll(lllllillllilililllllIl'llllruill\.“luj'lillll(l

o ra .." . T
/ d]' ,‘ S A LA ':',L, o . N N
! /,r’ o {:‘/{ R
£ N TR
t.a(rfl.l)xllli:lllxlnlnl;'.:'

f,"‘}
o
||!ro|||11||||||||||Ef“l"l‘u‘{fnl 1}1’

T e d i Tl 1t bhiTi¥7fF:rii1iddT1q17

Fig. 6.34 - Supersonic 2-D bump channel flow. The iso-Mach lines by the hybrid

method.

90



Chapter 6 Numerical resuldts

!""'T'1T'IT_‘ TITF T T T T T3 7rTrTt Hlnr} TITrTT ll TTTTmTIrITTT LA NN SR RARE A NRK
- =

t - 7 o i E
||'.f - Y N & K4 7
N i ! & 4

N E Ve

h| i ; rd / ' 4
mf L ! s ‘ e /

N rd /
A , S

) .
(X 1 ©r is s | ! N
;1] - | " Y . P
:{-'r | | f g o ._J 1.' A
i D - ! oA )
.;.ﬂ) ‘\ i l I f ",.’ . ./ " ! ! L] Ié N
“‘i”l Lo I | I F ’// .f "'.' l. a ]
ll‘ \ l 1 / 1' ./ » I / l -
| LI A 4 s/

b WSS - /o |
. !. s v I [ ; v '.' F e { J ‘} | -
I Co RS B 1 A - I I i B
]\ ; I { |, f' K s ’ i D / 1
i .;""‘-\H | i 7 ~ g4 i -
T I VA ]
L AN
i [‘ii /" ;¢ S £87 J & i
l||llllll\\lllll..l|ll llllll.l.i.l."_‘..“.‘ I[Lll.f'l“.nu lllllIl_..ll._L..l...tu.u-l.-(JLl.lila:.llLI-J Alu.uul.\l..l IJJl

Fig. 6.35 - The isobar lines obtained with Godunov’s method for the flow at M_=1.2
past the NACA 0012 airfoil.
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Conclusions

The results presented in Chapter 6 lead to a set of conclusions about the use

of the finite-volume shock capturing schemes studied herein.

First, it has been shown that the use of numerical means (artificial viscosity,
adaptive dissipation) in order to control the stability and the oscillatory behavior of
the second-order methods may result in a depreciation of the accuracy of the solution
(e.g. Fig. 6.1). Although this effect can only be verified for quasi one-dimensional
flows, where an analytical solution exists, it is to be expected that the same situation
will be encountered in two-dimensional flows. The solutions in Fig. 6.19 and 6.20
show this to be the case: the @#-method, which does not use dissipation on the x-axis,
produces a higher (even if only slightly) maximum Mach number on the bump than
Jameson’s method. The use of the artificial dissipation is made more complicated by

the fact that the coefficients involved must be tuned up for every flow casc.

In this sense, the w-method developed in Chapter 5 can be considered an
improvement over Jameson’s method. It introduces a very simple and cfficicnt bias
in the estimation of the fluxes, with a more realistic model for the physics of the
flow. This can be clearly seen especially for subsonic flows, where its use does not
require dissipation terms. It leads to correct flow solutions in less computer time in
this case. For supersonic flows without shocks, the method generally requires less

time steps than Jameson’s method (Table 5.1). When shocks are present, the use of
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the adaptive dissipation becomes necessary; however, the amount of dissipation

needed is always small, such that the discontinuities are more exacly computed.

Second, the results indicate that a nonoscillatory behavior is a very desirable
feature for a numerical method applied to the Euler equations, which admit
discontinuous solutions. This is especially valid when pressure/velocity distributions
are needed along a certain surface in the flow: overshoots specific to second-order

methods (e.g. Fig. 6.29) are climinated.

Third, it is shown that the first-order accuracy of Godunov’s method is not
able to provide a clear representation of the flowfield; when wave interactions are

involved, it only gives a vague picture of them (Fig. 6.28).

For these reasons, the hybrid method MacCormack-Godunov becomes a
valuable tool for the analysis of flowfields containing discontinuities. It offers a clear
representation of these discontinuities, void of oscillations, and the second-order
accuracy in smooth regions enables the method to represent well enough the wave
structures involved. Although the CPU time per iteration is greater for this method
than for a common second-order method, it proves out {(e.g. Table 6.3) that the total
time needed for convergence to a steady state may be in some cases reduced, due to

the more correct treatment of the physics of the flow.

The a-method developed in Chapter 5 can possibly be improved if the
adaptive dissipation necessary in the presence of shocks will be reduced only to the
second-order term; the fourth-order term, necessary in the smooth regions only, and
which is in fact the most expensive, can probably be eliminated. This would bring an
even higher efficiency for all flow regimes; numerical experiments are further

necessary for the implementation of this feature.
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Appendix A

Characteristic form of the Euler equations

Several algebraical forms of the system of conservation laws known as the
Euler equations are possible, depending on the choice of dependent flow variables.
The density, momentum and total energy, obeying the conservation form of the
equations, are called conservative variables. The variables which can be directly
determined by experiment, such as density, speed and pressure, are called the
primitive variables. Quantities that propagate along specific directions in a wave-like
manner, known as characteristic variables, can also be defined. This appendix
presents the form of the time-dependent Euler equations using these different

variables, as well as the implications on the treatment of boundary conditions.
A.]1 Quasi one-dimensional time-dependent Euler equations

The Euler equations in conservative variables (2.10) can be transformed by

expanding the derivatives:

Of, 95, s9F, p9S5_ pg (A1)
gt ot ox ox
Since the area of the duct depends only on x, ? =0, ? = ‘—f— , and hence one
X dx
obtains:
of, s9F _ pg. pdS (A2)
ot ox dx



Appendix A Characteristic form of the Euler equations

which, after dividing by S and replacing F and P with their expressions in (2.8),

becomes:

' pwds ]
S dx
of, oF | _puds (A3)

or ox S dv
_puHdS

S dy|

Here #-E1 L - Llﬂ is the stagnation enthalpy, which is constant for adiabatic
poY-lp

flows.

Equation (A.3) can also be written in the form:

o, 4% g (Ad)

at ox

where Q denotes the source terms in the right hand side of (A.3), and

0 1 0

OF -(3”/)"72 (3-v)u  v-1 (A.5)

(y-Du’-yuE '5/1-3—315_-1-112 Yu

is the Jacobian matrix in terms of the conservative variables.

Introducing the state vector in terms of primitive variables,

f,= (A6)

p
u
P



Appendix A Characteristic form of the Euler equations

and defining the Jacobian matrix T which connects the two state vectors:

1 0 0
o ju e 0 (A7)
of, | u? ou b
2 v -1
the equations can be written:
of, af :
T—L+ATL=-Q (A.8)
ar ox

By muitiplication to the I=ft by 7" results the final form of the Euler equations in
primitive variables:
of, af,

_]’ -+ A =
ar  Fox <

(A.9)

where A, is the Jacobian matrix in terms of primitive variables, and Q, is a source

term. They are given by:

' ouds | e 0]
S dx I
Q,=T"0- 0 , A,=T'AT=|0 u > (A10)
-puct ds
S dx 0 pc* u|

The characteristic form of the Euler equations is obtained considering wave-
like solutions of (A.9) of the form:

£(x 8= £(x-A8) (A.11)
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Characteristic form of the Euler equations
which, inserted into (A.9), leads to the eigenvalue problem:

det|A,-Al| =0

(A.12)
Hence, the eigenvalues A of the Jacobian are the speeds of propagation of the waves.

The Jacobian matrix A, turns out to have the eigenvalues A, =u, A,=u+c,

= b
and A, =u-c, which can be obtained by the similarity transformation:

u 0 O
M1AM=10 urc O |=A (A.13)
0 0 u-c
the matrix M being formed with the right eigenvectors of 4,
1 £ P 10 -L
2¢  2c ct
m-lo L 1 mi=lo 1 L (A.14)
2 2 |7 pc
g P¢ -Pc 0 1
2 2 ! pc
Multiplying eq. (A.9) from the left by M/ gives:
M' 2+ M'A (MM"‘)-ai’ =M1Q (A.15)
ot P ox P
or:

220,

of
MV—Lo AMT_E= M1
ot ox O"’

(A.16)

Assuming that the coefficient matrices are locally constant, (A.16) can be written:

A4
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— -1 =1
(M 1;,) A (M j;,)
at ox

=M"Q, (A.17)
where the overbar is used for locally constant values.

Denoting by:

p-5
W c-
W=lw =M f=|ur £ (A.18)
- P pC
| W y P
| P
one obtains from (A.17) the characteristic form of the Euler equations:
W u 0 0 W, 0
i W |+ 0 wre 0 i W= ..1_d_S -uec (A.lg)
ot ox S dy
Wi [0 0 uw-c W te
The scalar equations obtained from (A.19) are all of the form:
ow, _ ow;
—ls A —l=q., 71=1,2,3 (A.20)
ar iax U

where A =u, A,=t+c, and A,=u-c are the eigenvalues of A, and the source terms ¢,

are easily identified from (A.19). These equations can be written:

Dw,
[ l] =q,‘y l'=13213 (A’zl)
Dt )
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where (Dw;/Dt),. is the total time derivative of the quantity w; along the curve C;
“t

which is defined by the equation:
dy
2] = A, 22
( T )c. i (A.22)

Equations (A.21) describe the wave-like propagation of the quantities w; along
these curves with speeds A;. Hence, w, = p -% propagates along the characteristic
curve C,, defined by (dx /dt b, = . The quantﬁ)—' W, =1t % propagates with velocity
1u+c along the characteristic C,, defined by (dx/dt). =u+c. Finally, w; =u-L-

pc
propagates with velocity w-c along C; , defined by (dx /dt Jg,=H-¢-

The characteristic curve C, is the particle path, and the C, and C;
characteristics are also called Mach lines. The variables w; are the so-called Riemann

variables.

Since for an isentropic flow the pressure and the density are related by:

2
y-1

de (A23)

NS

the Riemann variables w, and w; can also be expressed in the form:

W, = ur 2 , W= u-2C (A.24)

y-1 ’ y-1
For the particular case of a one-dimensional flow, when S(x)=constant, and
hence in equation (A.21) g;=0, i=1,2,3, the characteristic relations become:

( Dw’.

_] =0 < w,=constant along C, (A.25)
Dt ¢
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In this case the Riemann variables w; are also called Riemann invariants.

A.2 Two-dimensional time-dependent Euler equations
The two-dimensional Euler equations in conservative variables (2.9) can also
be written:

O, 40, pof (A.26)
ar ax oy

where 4 and B are the two (conservative) Jacobians:

A= 9F , B-= 9G (A.27)
of af
Defining the Jacobian matrix:
1 ¢ 0 0
u p 0 0
_ of _ A28
=== v 0 p 0 (A-28)
F
utiv?
u
5 pu pv y-1

where f is the state vector in terms of conservative variables, given by (2.6), and [, is

the state vector in terms of primitive variables:
(A.29)

the Euler equations can successively be written as:
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Appendix A
af, of, of,
T—af . ATa—’ L BTa—" =0
A
4 (A.30)
T! 7*%4 T"AT%- T-IBTE{I_’=%~. %4.3 fl_’zo
ot ox gy at Tax oy

The new Jacobians in terms of primitive variables are:

0 u 0 1 0O v 0 O
A,-T'AT- ®l, B=-T'BT- || (A3
r P 0 0 Vv —
0 0 o« O P
0 pc* 0 u| 0 0 p&t v

The problem of finding the characteristic form of the equations reduces to
P g q

looking for wave-like solutions of eq. (A.30) of the form:
£(x 3, 8) = £ (xk o+ yk - Af) (A.32)

where k'=k i +k )f is a unit vector in the direction of propagation of the wave. After

substitution in (A.30), this leads to the eigenvalue problem:

det|A -AI|=0 (A33)

where 1 is the fourth order identity matrix, and Ap =A kB

The eigenvalues have a simple form; they are:

A-8
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).3 :ukx-a- Vkr' o 17[1 C (}\31)

Similar to the one-dimensional case, the characteristic variables for a given value of
(k.,k,) can be obtained by multiplying the primitive variables with Af 1 where M s
the matrix formed with the right eigenvectors of Ap. The overbar denotes that the

matrix is considered locally constant. It is given by:

10 £ 2
2% 2% 1 0 0 -
=

k&
0 & -2 0 & -k 0

= .- | (A39)

k& 0 &k k. =
0 —[\’.‘. 7‘? -?J N Y ope
I
55 5E 0 -k -k o
0 0 %- %— L v pe

and the coresponding form of the characteristic variables is;

-Z
ML kuk
U=k
v 0 Ll I B A.36
W=M fl',- e A (A.36)
w X p c
f
- k- ky £
. ¥

The two-dimensional case is thus much more complex than the one-

dimensional case because the wave-like solutions can travel along an infinity of

A9
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dircctions determined by the vector £, the characteristic variables themselves being

also a function of £.

The compatibility relations along the characteristic surfaces are of the form:

%’ (M MYVI=0 (A.37)

where Ap =:Apkxi-l Bkj.

Py

A.3 lmplications on boundary conditions treatment
A.J3.1 Quasi one-dimensional case

Consider a quasi one-dimensional flow, with the inflow boundary at v=x;, and

ouflow atx=x,, and P, and P, two points on these boundaries, at a given time (Fig.
A.l.

t b Ge G ’
// C17' Pex

—

/’ flow /
P e Cy direction

in G

Cal.

X
X; i X
in supersonic ex
t 4 /l/ozv A 03
C1 flow v P
= . - ex
in \ direction //
G © 7,
: "™~ X
Xin subsonic Xax

Fig. A.l
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At the inflow, the characteristics C, and C, have slopes 1 and w-+c, which are
positive if the flow is in the positive v direction. Hence, these two characteristics will
always carry information from the inlet boundary towards the interior of the domain;
this means that the values of the transported quantities must be known at P, The
third characteristic C; has the slope t-¢, which is negative for subsonic inflow
conditions, and positive if the inflow is supersonic, Therefore, in the subsonic case,
information comes from the interior towards the boundmry along C, and no

boundary condition associated with C; can be fixed. In the supersonic case, the

information enters the domain along C;, and hence a corresponding boundary

condition has to be imposed.

Similar considerations at the outflow lead to the following table:

Table A.l
Subsonic Supersonic
Inflow -two conditions specified -three conditions specified
(corresponding to w, and w,) (corresponding to w,, w, and w;)

-one jnformation from the

interior (w;)

(corresponding to w;) interior (w,, w, and w,)

-information from the interior

corresponding to w, and w,

Outflow -one condition imposed -all information comes from the

A.3.2 Two-dimensional case

The treatment of the two-dimensional case can be done under the assumption

that waves travel in a direction normal to the boundary. Then, the number of

A-11
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boundary conditions to be imposed will correspond to the number of characteristic
directions associated with £ = if (the unit vector normal to the boundary surface) that

enter the computational domain.

If ©=7 is introduced in (A.34) and (A.36), the eigenvalues and the

characteristic variables become:

AM=hy= V=V, | d=Vie, L =V-c

n n 4 n
W
i’ Vv, (A.38)
W= “;:; = '/;’.l‘__p-_.;
W, pe
Vb
pe

Hence, for a locally supersonic flow on the direction normal to the boundary,
all information comes from upstream, while for a locally subsonic flow, three

characteristics propagate from upstream, and one from downstream.

The following table summarizes the appropriate treatment of the boundary

conditions:

A-12
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Characteristic form of the Euder equations

Table A2

Subsonic

Supersonic

Inflow

-three conditions specified

(corresponding to wy, w., and w;)

-one information from the

interior (corresponding to w,)

-four conditions specified
(corresponding to w,, w,, w, and

w,)

QOutflow

-one condition imposed
(corresponding to w.)
-information from the interior

corresponding to w;, w., and w;

-all information comes from the

interior (w,, w,, w; and w))

A-13




Appendix B

CONTINUITY RELATIONS ACRGSS PLANAR WAVES

In this appendix the basic relations required for the implementation of

Godunov’s method are developed.
B.1 The Euler equations for a discontinuity

Consider a discontinuity surface I defined by the equation Z (x, y, z, £)=0,

moving with the velocity U, .

Fig. B.1

The integral form of the Euler equations (2.1} applied to the infinitesimally small

volume v attached to it, as seen in Fig. B.1, can be written ([25]) as:

ai: ffdu ; f F-adA=0 (B.1)

v ou

B-1



Appendix B Continuity refations across planar waves

where F is the total flux term, Fa7 = f(F. )7V g(F.r).

~ The time derivative must account for the motion of the surface £, and henee

of the control volume v :

9

arffdu = f—a—f(fu L fﬁ%( du) - ,‘%fdu .’./'L—‘Jg-ﬁdxl (3.2)

af L LI

i1 0 u 1 Ju

The second integral in (B.1) can be written, in the limit v—0, as:

.I.F.ﬁdA = [‘F'ﬁdA (B.3)

du x

Inserting equations (B.2) and (B.3) into (B.1), one obtains, for v—0, that:

f(l_i'fi-f_.x‘ﬁ)dfho (B

z

Integrating over an infinitesimally small element of the discontinuity surface and
taking into account the different values of the flux and state vectors on the two sides

of the discontinuity, the Euler equations become:

[E]-5-| £]Dyi=0 (B.5)

where the notation:

[A]=Ap-4, (B.6)

denotes the jump in the variable A across the discontinuity.

Because the total time derivative expressing the change of the surface ¥ is:

92 %, p vy (B.7)
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using also the definition of the normal unit vector:

PR (B.S)
VZ |
cquation (B.5) takes the form:
[F]VE + %[ £1=0 (B.9)

Equation (B.5), or its equivalent (B.9), expressed for each component of the
vectors fand F, leads to a system of scalar equalities. These relations, in the case the

discontinuity is a shock, are known as the Rankine-Hugoniot relations.

B.2 Case of a planar shock wave

EhhiEngnongangging

[T T ETLE VT TERTRTIN )
x axis

Fig. B.2

Consider the one-dimensional unsteady shock moving with a constant positive

velocity U, along the x axis, as shown in Fig. B.2. The position of the shock is

described by the equation:

2 (x,8) = x- Ut=0 (B.10)

Because in this case the total flux vector is F = iF, using the form (B.9), the Euler

cquations can be written:

B-3
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6p)

-1
(o 1)

Y\
' (FRﬁFL)i."_ :

0 B.11
ox ( )

where f and F are the one-dimensional state and flux vectors given by (2.8).

From (B.11) one can obtain the jump relation connecting the varjables on the

two sides of the shock:

uln=1£ (B.12)

Expressing the jump relation (B.12) for each of the three components of the

state and flux vectors results in:

® the continuity equation:

U(Pp=Pp) = Pl U, (B.13)

e the momentum equation:
Ulp pg=p ) = (0 gt Pr) = (0 1211 Py) (B.14)
® the energy equation:

UppEp=p ) =P rEp PR) (P B P ) Uy, (B.15)

The continuity equation can be written

pA’( Uv— UR) = pL( (js— ul,) (B l(’)

Define the mass flux which is swept over by the shock in unit time per unit area:

mr=p(U-uy)=p, (U-u) (B.17)
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The same mass flux can be obtained from the momentum equation written as:

Pt Uy~ U= p oo (uy - U = - iy ) = p - ppy (B.18)

which lcads to:

=200t (B.19)
Up-ty
Similarly, the energy equation can be written as:
m(Ey - Ep) = pru,-Prip (B.20)

An useful set of relations can be obtained by combining equations (B.17),
(B.19) and (B.20). From (B.17), eliminating U, between the two equalities, the mass

flux can be expressed /as:

U u
i (Ut ) PrPy

(B.21)
Pr=Py
which, combined to (B.19), gives:
= J (PL-Pr)P P _ J PLPr (B.22)
PP 00,

where U = 1 is the specific volume.

Inserting this expression in equation (B.19), the difference in velocities across

the shock results to be:

Up

= \/(pL_PR)(ﬁR"ﬁL) (B.23)

e \j (Pr=PD)(Pr=P))
¢ PrPy
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If the internal specific energy, ¢, defined by:

e- L P. 1 5. 0 (B.24)

is used instead of the total specific energy E, its discontinuity at the shock results
from (B.20):

_ L
p],uL p[\'ul\' —:-?: ( Uper ul.) (B:S)
AN : -
- m

Equations (B.22), (B.23) and (B.25) are one of the forms of the Rankine-Hugoniot
relations.

In terms of the specific volume, the continuity equation can be written:

h= _i.(uk- U) = -_1.( u, - U) (B.26)
ﬁR K ﬂ.L A E

or, expressing the shock speed:

mv o+ u,=m vu, = U (B.27)
This leads to:
u, =l v u,- b, (B.28)

which, inserted into (B.25), allows one to write:

B-6
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P vy ) - plt,

] 2 . . 2
3 |- (a0 0 uyy- A, )|

€r s
1., o \2 P~ Pr Pr Pr o
P (T 0,)- ‘im (Vg 0,)" Im :- i (B.29)
(P PR),
S (00,
Writing equation (B.29) as:
1 1 (P PrR)
Y _]p/.ﬁ/_‘Y__TPRﬁR: _2—(‘()13"71.) (B.30)
gives for the specific volume U, the expression:
4] ﬂ' A _‘l ﬁ
.= (Y Dp 0 (Y-1)p 0, (B31)

(Y+Dp,r(Y-1)p,

This expression can be inserted into (B.22) in order to express the mass flux in a

form casy to use in Godunov’s method:

(PP (Y D)p+(Y-1)pp]
\ 2(pL-PR)0p

(Y+D)p (Y -1)py (B.32)
\ 20,

+1 -1
[Tt

Since the mass flux has a positive value in the case of a shock, it can be written in

the more concise form:

B-7
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a1l = 1= [P D P’ (BSS
VPRP 12

where for the shock case p, =p, . and the function @ has the form:

D) = RALYWIS Sl ST (B.34
2 3

- ——

B.3 Case of a planar rarefaction fan

HIHIGI Illlllll[II\llllllll[l‘llllllll TG IMERNE
Q

] >
> 1]
g Rarefaction 3
iz mm |§ fa
=
IlIIIIll[l]IllllI[Iill[li!ll!lllll!l IR ———-
X axis
Fig. B.3

Unlike flow across shock waves, across the rarefaction fan the flow is
isentropic. The sudden increase in density across an infinitesimally small element dv
in the rarefaction fan (Fig. B.3) can be related to the variation of the velocity (see

[24]) through the equation:

dp __du (B.35)

l:l
LR (B.36)
€ \Pgr
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The velocity differential becomes:

du - -()d_p = -Cp L Tﬁr.)_ (B37)
p Pr p
By integration:
“y Iy, y-1 y
fdu::—jc‘,‘.[i] T (B.38)
iy, [\ R p

onc can obtain the difference between the velocities on the two sides of the

rarefaction:

—_—

Y-l
2y

P
Pr

(B.39)

p—

Y_
2 2
. =Cr Pr|{2 | =Cr
dp-tp=—1-|— = -
Y‘l pR

The mass flux swept over in unit time per unit area by the rarefaction fan, expressed

from the momentum equation in a form similar to (B.19), will therefore be:

PP (Y-1N(pmpe)

m "
LU -1
2¢,|1- LR
Pp
B.40
2, (B.40)
(I-v)pp(1-—
- R
-l
2\] y& I- LR
Pr Pr

Taking into account the fact that for an expansion the mass flux is negative, its

absolute value can be written in the same condensed form as (B.33):

B-9
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|rir] s \/p,‘.p,‘.*l)[ p’]
Pr

(B
where for this case of an expansion p, <p, and:
Cy-l l-w e
P . . w< |
(W) " = v (B.A42)
VY 3
[-w =Y

B.4 General form of the mass flux

The function ¢ defined by (B.34) and (B.42) is continnous at w=/ and takes
the value (1) =\/y , corresponding to the case of a sonic wave, i pe ypp .
Combining the two expressions for this function gives a general relation for the mass
flux, valid for both cases of a shock and an expansion,

| 7| = [P g '(I)( fp"i ] (B.43)

R

where:

L;1V| Y; , w1
Bl - ! N (B.44)
M=y 1w el
2 ot
L d 1-w 2
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