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Abstract

\Ve study the moduli spaces Mn of rank two stable holomorphie SL(2 t C)­

bundles E over Hopf surfaces 1/" with C2(E) = n, and their stabilisation properties.

We show that one cannot construct stabilisation maps Mn ~ M n+ l that are a

natura! holomorphie counterpart to Taubests subtraction procedure that is used to

construct such maps in the topologieal case of moduli spaces of connections. We

also study the fiber of a map that associates to any holomorphie bundle a graph,

and show that, in certain cases, the fiber is the Jacobian of a Riemann surface.

We then show that this map is a Lagrangian fibration, with respect to a Poisson

structure that we will define on Mn. Finally, we generalize the notion of graph to

connections, and show that the graph map thus obtained is not topologically trivial.

li



•

•

•

Résumé

Nous étudions les espaces de modules Mn de fibrés stables holomorphes E

de groupe de structure SL(2, C) sur la surface de Hopf 11., avec c2(E) = n, et

leurs propriétés de stabilisation. Nous montrons que nous ne pouvons pas utiliser

la version holomorphe de la procédure de soustraction de Taubes pour définir des

applications de stabilisation Mn ~ M n+1• Nous étudions aussi la fibre d'une

application qui associe à tout fibré holomorphe un graphe, et montrons que, dans

certains cas, la fibre de cette application est la Jacobienne d'une surface de Riemann.

Nous montrons ensuite que cette application est une fibration Lagrangienne, par

rapport à une structure de Poisson que nous allons définir sur Mn. Finalement,

nous généralisons la notion de graphe dans le cas de connexions, et puis montrons

que l'application graphe ainsi obtenue n'est pas topologiquement triviale.
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Introduction
The moduli spaces of holomorphie vector bundles have been extensively stud­

ied over the past fifty years, starting with the classification of veetor bundies over

the Riemann sphere by Grothendieck [Gr], and over an elliptie curve by Atiyah [At].

The moduli space of all vector bundIes over a space X is however Dot, in general,

a Hausdorff space. One can get around this problem by only considering stable

holomorphie bondIes, as was first remarked by Mumford in the case where X is

an algebraic curve. The notion of stability is intimately linked with the notion of

degree, and therefore requires the existence of a Kahler metrie on X. More recently,

Hitchin [Bh] extended the definition of stability to any compact complex hermitian

manifold. This was done by using a Gauduchon metric to define the degree of a

veetor bundIe. The existence of such metrics on any compact complex manifold

was proven by Gauduchon [G].

On a surface, holomorphie vector bundles also correspond to solutions to the

Yang-Mills equations, Le. instantons. This was first proven for any Hodge surface

by Donaldson [0], and any compact complex surface by Buchdahl [Bh]. From the

topological point of view, Atiyah and Jones [AtJo] studied the global topology of

instanton moduli spaces. They conjeetured that the inclusion of the space Mn of

framed instantons of charge n into the space 8 n of aIl connections should induce

isomorphisms of homotopy groups Hi and homotopy groups 'Tri for suffieiently large

k. This was first proven for SU(2)-instantons on the 4-sphere by Boyer, Hurtubise,

l\tlann, and l\tlilgram [BH1\'I1\'I], and later on ruled surfaces by Hurtubise and ~[il­

gram [H1\'I].

l\tIoduli spaces have also been studied from the point of view of sympLeetic ge­

ometry. l\J[ukai proved in [1\'lu] that the moduli space of simple sheaves on an abelian

or K3 surface has a natura! symplectie structure. Abelian and K3 surfaces have

trivial canonical bundIes, and are therefore sympleetic surfaces. Mukai showed that

the choice of a symplectic structure on such a surface induces a symplectic structure

on the moduli space. This was then generalised to Poisson structures and Poisson

1
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surfaces by Bottacin [Bot]: a Poisson structure on a Poisson surface determines in

a canonical way a Poisson structure on the moduli space of stable sheaves. l'vlod­

uli spaces have also given rise to algebraically completely integrable Hamiltonian

systems. Among others, Hitchin [H] has shown that the cotangent bundles of the

moduli spaces of stable vector bundIes over a Riemann surface, endowed with their

natura! symplectic structures, support algebraically integrable systems. Beauville

[Be] has also shown that, with the symplectic structure defined by Mukai [l'vIu]t

the moduli space of line bundles over K3 surfaces gives an algebraically integrable

system.

There have been numerous explicit descriptions of moduli spaces on Kahler

manifolds. The case of a non Kahler manifold was first studied by Braam and

Hurtubise. In [BH], they considered instantons on Hopf surfaces. The Hopf surface

is one of the simplest elliptic surfaces and it has a homogeneous fibre. It does oot

however possess a cross-section. Let us note that the geoeral case of moduli spaces

on elliptic surfaces with a cross-section bas been studied by Friedman, Morgan and

Witten [FMW]. In this thesis, we propose ta generalise sorne of the results found in

[BH] in regards to the stabilisation and the topology of spaces of connections, and

also in regards to integrable systems and spectral curves.

The first chapter provides a review of sorne of the theory of sheaves that will

prove useful in the study of holomorphie vector bundles. We begîn by discussing

extensions of sheaves, and give an explicit description of the transition matrices of

extensions of vector bundles. \Ve tben tum to deformations of sheaves, and de­

scribe how this relates to moduli spaces of stable sheaves and holomorphie vector

bundIes. \Ve finally give a brief ac~ount of how moduli spaces are constructed on

any compact complex manifold.

In the second chapter we begin by introducing the Hopf surface 11.. and the

results found in [BH]. An important point is the fact that 1l fibres over ]pl t ",ith

fibre an elliptic curve T. A rank two holomorphie SL(2, C)-bundle E on 11.. can

then be considered as a family of bundles over T parametrised by fl, by restricting

E to the fibres T. Rank two SL(2, C)-bundles over an elliptic curve have however

2
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been completely classified by Atiyah [At]. One can then associate to E a divisor in

pl x pl = pl X PicO(T) / ± which gives the isomorphism type of E over each fibre

T. This divisor will be called the graph of E, and will prove to be a useful tool in

the study of holomorphie SL(2, C)-bundles on 11,. As the Hopf surface 11. can be

covered by two copies of C x T, bundles on 11, can he constructed by glueing two

bundles over C x T. We then finish the chapter by classifying bundles over D x T,

where D is a dise in pl .

In the third chapter, we study stabilisation maps on the moduli spaces M~ of

Cramed stable holomorphic SL(2, C)-bundles E on 11" with c2(E) = n. These maps

always exist in the case of moduli spaces oC instantons. One can indeed use Taubes'

subtraetion procedure to "glue inf
' an instanton at a fixed base point Po oC 'H. We

would like to know whether sucb a map can he defined in the holomorphie setting.

Such maps can be realised by "glueing in a jumping Hne" in the case of bundles

over S4, and ruled surfaces (see [BHMM] and [BM]). The holomorphie analogue of

the subtraetion procedure in the case of bundles over 11. seems to be to construet a

sheaf by glueing in a copy oC 0 e 1 at Po, and deform the new sheaf to obtain one

that is locally Cree. Even though this ean done locally in M~, we will see that the

deformation cannot he globally extended to ohtain a weIl defined stabilisation map

M~ ~M~+l'

One can define a map G : Mn ~ p2n+l whieh associates to each bundle in

Mn its graph. This map is surjective for n ~ 2. A natural question to ask is, given

a graph g, how many holomorphie bundles correspond to it? In other words, what

is the fibre of G? In the case where n = 1, it was shown in [BR] that the fibre is

always an elliptie curve, and that G : Ml -+ Im(G) is a principal T-bundle. Let

us note that every hundle E in Ml satisfies a condition that we will denote by

(*): there are no points x E ]pl where EI.r-1(x} = LoœLo, L5 ,...., O. If the graph of

the bundle is the graph of a holomorphie map F : ]pl -+ ]pl, this is equivalent to

requiring that the differential dF does not vanish at certain points. In the fourth

chapter, we generalise this result in the case of graphs that are holomorphie maps

of degree n which satisfy condition (*). \Ve will prove that, given such graph g,

3
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the fibre a-L(g) is the Jacobian of the spectral curve associated to g. This will be

done by using two different methods. The first one was used in [BH]. Given that

the restrictions of such graphs to D x ]pl completely determine the isomorphism

class of the bundle on D x Tt the first method consists in finding the different ways

of glueing them together. The spectral curve S of a bundle E is obtained from the

support of a skyscraper sheaf L. If the graph of E satisfies (*), this sheaf has fibre

C on S. In the second method, we then show that there is a one-to-one correspon­

dence between G-L(g) and the set of holomorphie line bundles on S.

ln chapter five, we use the construction in [Bot] to define a Poisson struc­

ture on the moduli spaces Mn. Let ~ be the set of graphs which do oot satisfy

(*). Giveo a Poisson structure on Mn, we then show that, over the complement

of ~, the graph map G : Mn ~ p2n+l is a Lagrangian fibration whose fibres are

isomorphic to abelian varieties. In the case of n = 1, G is proper, and we actually

have an algebraically completely integrable system. In the sixth chapter, we give a

partial classification of M 2 •

ln the final chapter, we consider the topological side of the problem by study­

ing the moduli spaces of connections. Given a Coo bundle E over 11. with cl(E) =0

and c2(E) = k, we denote by Bk the moduli space of gauge equivalent connections

on E. We will see that the notion of graph cao be extended to connections. Not

every coonection A on E induces a global holomorphie structure. However, as every

fibre of 1r : 11, ~ pl is an elliptic curve, the restriction of A to any fibre 1r- l (x)

defines a holomorphie structure on the restriction of E to 1r- l (x). It would then

seem Datural to think that one can associate to A a graph, as in the holomorphie

case. This will done by constructing a family of Dirac operators {8A} associated to

A, and considering the determinant line bundle C of the family {8A }. The graph

of A will then be defined as the zero set of a section of L" and will correspond to

a divisor in poe. If A defines a holomorphie structure on E, this graph coincides

with the graph defined in the holomophic case. Furthermore, we will again be able

to define a graph map a :Bk ~ poo which associates to each connection A a graph

g. We will show that G is Dot a homotopically trivial map, and that the fibre of G

4
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can he considered as the total space of an Sl-bundle over Bk-
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Chapter 1

Coherent sheaves.

In this chapter, we give a review of sorne of the theory of sheaves that we will use

to study holomorphie vector bundles. The first two sections provide the neeessary

background for the remaining ones. In the third section, we diseuss extensions of

sheaves, and give an explicit expression of the transition matrices of extensions of

veetor bundles. The Serre Construction for holomorphie bundles is then presented

in section four. We tum, in section five, to the deformation theory of sheaves,

and describe how it relates to moduli spaces of sheaves and veetor bundles. The

final section gives a brief account of the construction of moduli spaces on any

compact complex hermitian manifold. We define stability and give Buehdahl's

theorem relating stable holomorphie vector bundles to instantons.

1.1 Commutative and homological algebra.

We begin by recalling certain definitions from commutative and homological alge­

bra, and establish certain results, sorne of them very weil known, that will be of

great use in the rest of the thesis. Let us remark that we follow the presentation of

[GH] and will therefore use their notation. \Ve will not give proofs for all results~

and, unless otherwise stated, we reCer the reader to [GH] for them.

6
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1.1.1 Homological algebra.

'oVe start by establishing some notation that will be used throughout the following

section. 0 = limOEU O(U) will represent the germ of analytic functions defined in

sorne neighbourhood U of the origin in en. It is clearly the ring 0 = C{Zl , ••. , zn}

of convergent power series, which is a local ring. It therefore has a unique ma.ximal

ideal m = {Z17"" Zn}, which is the ideal of Cunctions f E 0 \Vith f(O) = O. The

units are just O· = 0 - m.

We will mainly he using O-modules, usually denoted by M, Nt E, ..., and

we will always assume that they are finitely generated. Important examples of 0­

modules that will often come up are: free O-modules; and if fl,"" ft are functions

in 0, we will often consider

an ideal in 1 generated by fl, ... , ft,

Let us note that since allO-modules are assumed to be finitely generated, Cree

modules will be identified with projective modules.

A complu is given by either

or

(K.)
a (J

---+- K n ---+- K n- l ~ ••• ,

vn 6 vn-l 5
~.n~.n -+ ... ,

fP =0,

•

Here the K's will always be finitely generated O-modules and the maps O-module

homomorphisms. B.(K.) = EBBnCK.) and B*CK-) = ffiHn(K-) are the homology

and cohomology, respectively, that one obtains by taking (co)cycles1(co)boundaries.

Definition 1.1 A projective resolution E.C1\;1) of an O-module 1\;/ is given by an

exact sequence

{J (J a
E.(kI) : ...~ Em ~ Em - l -+ ...~ Eo~ 1\;/ -+ 0,

where the Em are projective(=free) O-modules.

7
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Let us note that a projective resolution is obviously a complex, and that the exact­

ness of the sequence implies that Hn(E.(kI» = 0 for n > 0 and Ho(E.O~I» "J Al.

Let us also remark that projective resolutions exist for any finitely generated 0­

module J.\'1.

Now suppose that kI and N are finitely generated O-modules, and that we

have a projective resolution of lVI

() a ()
E.(M) : ... --+- Em --+- Em - l --+ ...~ Eo~ kI --+- 0,

This resolution will then induce the two complexes Homo(E.(1\tI), N) and E.(lVI)®o

N. Let us note that even though the first part

()o --+ Homo(M, N) --+- Homo(Eo, N) --+ Homo (El , N)

of Homo(E.(M), N) is exact, as is the last part

8
El ®o N ---+ Eo®o N --+- AI ®o N --+ 0

of E.(l\tf) ®o N, the complete sequences are in general not exact. But it is easy to

see that they are complexes. We then have the following

Definition 1.2 Given finitely generated O-modules Nf and N,

{

Extô(Nf, N) = Hn(Hmno(E.(kI), N»,

Tor~(NI,N) = Hn(E.(kI) 00 N).

In the remainder, we will not use Tor. We will therefore only give the properties of

Ext. Let us start by noting that the Ext groups are well-defined and independent

of the projective resolution E.(J.\'1). Let us also remark that since, as we have seen

above,

is exact, we have

8
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The main property of the Ext functor is:

Short exact sequences of O-modules

{

0 ~ 1\;1' ~ k! ~ AtI" ~ 0,

o~ JV' ~ N ~ N" ~ 0,

induce long exact sequences

{

... ~ ExtÔ(l\;!, N) ~ Extô U'vl' ,N) ~ Ext';,+I(At!", N) ~ ,

... ~ Extô(kl, N) ~ Extô(A'l, N") ~ Ext';;,+l(}.;!, N') ~ ,

of Ext's.

For example, given 0 ~ N' ~ N ~ N" ~ 0, we obtain

o~ Homo(M, N') ~ Harno(k!, N) ~ Harno(lv!, N") ~ Ext:'(}.;!, N'),

50 that Exth(k!, - ) measures the extent ta which Harno(k!, - ) fails ta be right

e.'"<act. We alsa have the fallawing

Theorem 1.1 Ext':,(M, N) = 0, for q > 0 and every O-module N ~ M is projec­

tive.

One can actually refine this ta

Corollary 1.1 Exth(lv!, E) = 0, for aU projective O-modules M ~ }';I is projec­

tive.

1.1.2 The Koszul complex and sorne applications.

Koszul complex. Suppose fb'." fr E 0; denate by Ik = {fI,"" Ik} the ideal

generated by the first k functions, and set 1 = Ir.

Definition 1.3 (fI'.'" Ir) is a regular sequence if, for ail k = 1, ... , r, fk is not a

zero divisor in 0/Ik - l •

In particular, if r = 2, we see that f2 is not a zero divisor in 0/11 if and only if fI

and /2 are relatively prime. Therefore,

(/1, 12) is a regular sequence ~ /1 and /2 are relatively prime.

9
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Given a regular sequence, the Koszul complex gives a projective resolution

of the O-module 1. Even though it is well-defined for ail regular sequences, we shaH

present it in the case where r = 2.

Let (fit {2) be a regular sequence. The Koszul complex is therefore defined

to be the sequence

o~ 0 ~ 0 Ef) 0 ~ I -+- 0,

where " : 0 40 0 Ef) 0 is given by 1 Ho (- f2' f1), and 11 : 0 Ef) 0 40 1 is given by

(Yb 92) t-+ f1Yl + 12Y2. It is then clear that TJÀ = O. It actually turns out that the

Koszul complex is exact as shown in

Lemma 1.1 If fl and f2 are relatively prime, the sequence

o~O~OœO~I---+O

is exact.

Proof: Clearly, " is injective and Im71 = {fb f2 } = 1. Moreover, as 71À = 0, we just

have ta verify that Ke1"1J C lm". If (Yb 92) E Kel'11, then f191 = -/292. As fl and f2

are relatively prime, there must exist an a E 0 such that 91 = -a12 and g2 = aIL,

therefore proving that (91,92) = À(a) E lm". 0

Let us now use the Kozsul complex to compute sorne Ext groups involving

the local ring 0, an ideal 1 generated by a two relatively prime functions, and the

quotient sheaf 0/I. These will often be used in the sequel. Locally, we have the

following lemma:

Lemma 1.2 Suppose that l is an ideal generated by two relatively prime functions

x, z E 0, then:

(i) Extb(O, 0) = Extb(O, I) = 0, lor ail i;

(ii) Hamo(I, 0) rv 0 and the isomorphism is generated by the natural restriction

map Hamo(O, 0) 40 Hom.o (l, 0);

(iii) Hamo(I, I) ~ 0 and the isomorphism is also yenerated by the natural re­

striction map Homo(0, 0) 40 Homo(I, 0);

10
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(iv) Exth(I, 0) = C;

(v) Exth(I, 1) = C2; and

(vi) Extb(I, 0) = Extb(I, 1) = 0, for ail i ~ 2.

Proo/: (i) As 0 is free, Exth(O, 1\'1) = 0, for any O-module 1\'1.

(ii), (iii) Any O-homomorphism l ~ 0 is given by two elements a, b E 0 sucb

that x H> a and z ~ b. lVloreover, by O-linearity, az - bx = o. As x and z are

relatively prime, we must have xia and zlb. Thus, a = hx and b = hz for some

h E O. Ct then extends to a O-homomorphism 0 --+ 0 given by 1 ~ h, thus

proving that Horne(I,O) is isomorphic to Homo(O,O) ~ O. But this also tells

us that Ct is given by x ....-+ hx and z H> hz. Thus, Homo(I,O) C Horne(I,I), and

Horn0 (l, 1) = Horne(I,O) ~ O.

If E.(I) is any projective resolution of l, and N is any finitely generated

O-module, we have by definition

Extô(I, N) = Hn(Horno(E.(I) , N».

We choose the Kozsul complex as a projective resolution of 1

a
E.(I) : °---+ El ---+ Eo ---+ 1 ---+ 0,

where Eo = 0 $ 0, El = 0, and 8 : 1 ....-+ (-z,x). To compute Exth(I,O),

we shaH find the first cohomology group of the complex Homo(E.(I) , 0). As

Hom,,(Eo,O) = 0$0, Homo(EltO) = 0, and Exth(Eo,0) = 0, it is obvi­

ous that this complex is simply

a-
0-+ Horno(I, 0) ---+ 0 Et) 0 ---+ 0 ---+ Ext~(I, 0) -+ 0,

where f)* : 0 €a 0 !:::..=l 0 is the transpose of 8. We then have

Im(a-) = {-Iz + gx: I,g E O} = l,

and

Il
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•

•

The proof of (v) is similar. We now use the complex Homo(E.(l) , /). As

Hamo(Eo, l) = leI, Homo (El ,1) = l, and Exth(Eo,l) = 0, it is given by

a·o~ Hama (l, 1)~ leI~ l ~ Exth(l,l)~ 0,

where a· is as above. This time,

and

since 1/12 = {ax + bz : a, bEC}.

(vi) follows from the fact that 1 bas a short projective resolution. 0

The Kozsul complex induces the projective resolution

o- {)~ {) e {) li 0 - 0/1- 0,

of 0/1. The latter can be used to show that

Lemma 1.3 Suppose that l is an ideal generated by two relatively prime functions

X,z E 0, then

(i) Extb(O/1,0) = 0, for i =F 2;

(ii) Ext'b(O/I, 0) ~ 0/1.

Proof: The computations are similar to the ones in Lemma 1.2. For a detailed proof

see [GU] p.690. 0

1.2 Coherent sheaves.

\Ve now consider sheaves that are defined globally on a complex manifold }(. 0 =

ox will then be the structure sheaf of X. \Ve start by giving the following

12
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Definition 1.4 Let X be a complex manifold with structure sheaf 0 and F be a

sheaf of O-modules. Then F is said to be coherent if locally there always is some

exact sequence of sheaves of O-modules

\Ve shaH often use the following properties:

1. Coherent sheaves admit local syzygies

2. IfX isn-dimensional, the éech cohomology groups Hi(X,F) vanishfori > n.

Moreover, if X is compact, they are finite-dimensional complu veCtor spaces.

3. Given an exact sequence

o~ F ~ :F~ :F"~ 0,

of sheaves of O:-modules in which two of the three are coherent, then the Te­

maining one is also.

For proofs of these we refer the reader to [GH] or [Hi].

Let us give sorne examples of coherent sheaves. The simplest are of course

locatly Cree sheaves. As e."<ample of a coherent sheaf that is Dot locatly Cree, let us

introduce sheaves of ideals.

A subsheaf 1 C 0 that is locatly finitely generated is called an ideal sheaf or

sheaf of ideals. These are always coherent. They induce the exact sequence

O~/~O~OII~O,

which implies, by property 3, that 011 is also coherent.

If / is locally generated by functions fb ... , lm, Le. l = {fb···, lm}, then

the support of 011 is defined as

Z - supp(O/I)

- {zeX:/z#O.J

- {z eX: fl(Z) = ... = fm(z) = O}.

13
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Z is an analytic variety, whose structure sheaf Oz = "/1 is a sheaf of rings with

possible nilpotent elements.

Actually, as hinted by the above, most properties of O-modules carry over

to coherent sheaves, Le. projective resolutions exist becomes local syzygies exist,

etc.... We can also sheafify Ext and Tor: Given coherent sheaves:F and Q, we may

define sheaves Extt(F, g) and Torf(:F, Q) with the properties:

Extt(F, g)r :::: Ext';,(Fr , gr),

1.

Ext~(:F,Q) :::: Hmno(F, Q),

2.

3. The exact sequences of Ext and Tor are vaUd; and

4. Extô(F, Q) and Tor,!(F, Q) are coherent sheaves.

These will be used to define global syzygies and global Ext. If X is compact,

then for any coherent sheaf F, there exists a global syzygy

where all the Ei are locally free sheaves.

Global Ext.

Let F and 9 be two coherent sheaves on a compact manifold X. One can therefore

find a global syzygy

for:F. \Ve then define global Ext as the hypercohomology associated to the complex

of sheaves Homo(E.(:F) , Q). It is denoted

Ext(X; F, Q) = l8L (X, Homo (E.(:F) , g).

14
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Global Ext has functorial properties sunHar to those of local Ext. To calculate

global Ext, we use the spectral cohomology sequence {'Er } with

1E~,q = HP(}(, Exth(F, Q)),

1~q => Extp+q(X; F, Q).

This spectral sequence has two very useful properties:

1. For E a LocaUy free sheaf on X 7

ln particular, for any coherent sheaf g,

2. Suppose that Exth(F, Q) = 0 for 0 ~ q < k. Then

Chern classes.

On a smooth quasiprojective variety, we can define the Chem classes of any

coherent sheaf. This is because, by a theorem oC Serre, every coherent sheaf F on

a quasiprojective possesses a global syzygy

where the Ei are locally Cree. We can define the total Chem c1ass of F by the

formula

c(F) = IIc(Ei ) (_l)i .

i

This definition is independent of the global syzygy and it satisfies the \Vhitney

product formula. An important example is the Collowing:

Proposition 1.1 Let X he a compact complex manifold and let E be a holomorphie

rank 2 vector bundle over X for which there are line bundles L, L'and an exact

sequence

o~ L~ E ~ L' ® lz ---.. 0,

15
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where Z is a a subvariety of codimension 2. Then we have

cL(E) = cL(L) + ci(L'),

c2(E) = cl(L) . ci(L') + [Z],

where [Z] E H4 ()(, Z) is the cycle defined by Z.

Proo!: See [F] p.29. 0

1.3 Extensions.

1.3.1 Ext i and Extensions - Local case.

We start by considering finitely generated modules over the local ring 0 = C{Zl , ••• , Zn}.

Let us remark that we are following the presentation of [GH].

Definition 1.5 If A-I and N are O-modules, we define an extension of kl by N to

be a short exact sequence

o~ N --+ E~ A-I ---+ o. (1.1)

•

For brevity this will be referred ta as ''the extension E". Two extensions E and

E' are said to be equivalent if there exists an isomorphism E -+ E' such that the

diagram

o • N-E-A-I-O

l Il
o • lV-E'-l\;I-O

is commutative.

Extensions of l\;I by lV do exist; the simplest e.xample being the trivial or

split extension 1\;1 E9 lV:

where i and p are the usual inclusion and projection. As a description of ail other

possible extensions, we have

16
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Lemma 1.4 There is a bijective correspondence between equivalence

classes of extensions and Exth(A'!! N) 1 with zero corresponding to the trivial ex­

tension.

Proo/: Let E he an extension of Nf by N. The sequence (1.1) then induces the long

exact sequence on Ext

...~ Homo(J.lif, E) ~ Homo(Jvf, ~f) ~ Exth(kf, N) ....

Let lM be the identity map from M to itself. We then associate to Ethe class

a(lM) E Extb(Jvf, N), thus defining a map from extensions to Extb(kl, N). Let

us note that a(lM) represents the obstruction to splitting the sequence (1.1); in

particular, if 8(lM) = 0, it splits, and E is the trivial extension.

Conversely, given a projective resolution of kf

a class in Exth(M, N) is represented by a map E l / E2 -4 N. The data

i 1f
0-El /E2 -Eo-kf-0,

•

then allows us to construct an extension

O~N~F~kl~O

as follows: \Ve define F = (NeEo)/p.(El /E2 ), where Il = iœi: E l /E2 ~ (NeEo).

The inclusion n ~ ne (0) and the projection nEBeo ~ tr(eo) then give us the exact

sequence defining F. 0

Before giving an example, we would like to introduce the global case.

1.3.2 Ext l and Extensions - Global case.

\Ve would DOW like to consider the case of global extensions. We are again following

the presentation in [GH]. In this case, let F, Q, be coherent sheaves on a complex

17
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manifold )(. An exact sequence

of sheaves of O-modules - here g must be coherent - is called a global extension

of g by:F. The equivalence relation and trivial extension are as in the local case.

One might again think that the set of equivalence classes of extensions would be in

bijective correspondence with HO(X, Exth(Q, F)). But this is not the case for the

following reason:

Suppose that we have a global section of HO(X, Exth(Q, F)). We then choose

an open covering U = {Ua} that is sufliciently fine and consider the local extensions

On double covers, Ua n UfJ, the extensions Ea and EfJ must be equivalent. Hence,

there exits an isomorphism CPafJ making the diagram

o- FIUarlis - Ealuaf"Us - Qluanus - 0

Il I~Q~ Il
o- Fluaf"Us - E{Jluaf"Us - gluanus - 0

commute. But the CPo{J May not satisfy the cocycle relations. Indeed, on triple

intersections Ua n U{J n14, the triangle

cpr
EfJ -----_1 E...,

cp{J...,

may not be commutative. The isomorphisms CPof3 may therefore not patch up to

give a global extension. \Vhat is true is

Lemma 1.5 The equivalence classes of global extensions ofQ by:F are in bijective

correspondence tuith Ext l (X; g, F) .

Proo/: For a complete proof, we reCer the reader to [GH]. \Ve shall however give an

oudine in arder ta describe this bijection. We proceed similarly ta the local case,

18
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only, this time using the exact sequences induced by global Ext 's. Let 19 be the

identity map from Q to itself. We therefore associate to each extension its image

8(lg) by the coboundary map induced by the exact sequence

Ext°(X;Q,F) ~ Ext°(X;Q,F) ~ Ext1(X;Q,F)~ ....

As in the local case, 8(lç) is the obstruction to splitting the sequence

o-+ F -+ E -+ Q --t o.

For the converse, we again start with a locally free resolution of the coherent

sheaf Q:

and we choose a covering U = {Uo } that is sufficiently fine so that each element

e E Ext1 (X; Q, F) is given by a cocycle in the hypercohomology group

lBIl (U, Hamo(E.(g), F)).

By studying the long exact sequence on bypercohomology, we see that e is given by

cp EB Tl, where

cp = {Cp?o} with Cp?a E HO(Ua , Homo(lL, F».
Tl = fT/op} with l10p E HO(Uo nUp, Homo(Eo,F».

Now the 'l'a define extensions

and the T/o{J give a mie for patching them up over double intersections that satisfies

the cocycle relations. This then defines a global extension. 0

\Ve will now present two very important examples that we will often use in

the upcoming sections.

1.3.3 Extensions of 1 by O.

Suppose that 0 = C{Zl, Z2} is the local ring in two variables and l = {fI, f2} is a

regular ideal. As we have seen in the previous section, we have the ~"{act sequence

o~I~O ~O/I --+ 0,

19



•

•

•

which, along with the computations of Ext's gave us

Exth(I, 0) ~ Ext'2J(O/1,0) ~ 0/1.

Let us give a complete description of the equivalence classes of extensions of 1 by

O. We begin by stating a theorem due to Serre [Sr]:

Theorem 1.2 Let F be the extension given by t E C. Then

F is LacaUy /Tee <=> t #: O.

If t = 0, then F is the trivial extension. And if t #: 0, it is the extension

In particular, if t = 1, we get the Koszul complex.

These extensions can also be described as the cokernels of the maps

o ~ OEBOEBO

1 Ho (t, -/2, fd

More explicitly, the trivial extension is given by

and the extension corresponding to t #: 0 cornes from

1.3.4 Extensions of vector bundles.

We will study in detail the special case of vector bundles. This presentation follows

that of [DK]. The definition and properties that we stated in the general case cao

be written as

20



• Definition 1.6 Let X be a complex manifold and

o- E' -.!.- E -!- E" - 0, (1.2)

be an exact sequence of vector bundles on X. E is then said to he an extension of

E" hy E'. The trivial or split extension is E' €a E". ~Ioreover, if the ends stay fixed,

any two such sequences are said to be equivalent if there is a commutative diagram

o E' i l E Pt E" 0

---. Il ~ (--- Il ---
O E' ~ E ~ E" 0-_. - 2- -.

In this case, since E" is locally free,

(1.3)

•

•

and by lemma 1.5 we know that

There is a one-ta-one correspondence (E, i,p) ~ 8(1) between equivalence

classes of extensions of E" by E' and the cohomology group H 1(X, Horno(E", E')).

In this case, it is very useful to us illustrate this using éech cohomology. We choose

a cover ~~ = UUQ by open sets over each of which the sequence

0- E' ~E--!-E"-O

splits. Let

jQ : Elua - E'lua œE"lua

he the isomorphisms which split the sequence and are compatible with i and p. By

this we mean that, over each UQ : the diagram

i P
o- E'lua • Elua • E"lua - 0

JII L '1 1j" "1 ~ JIIo - E Ua - E Ua €a E Ua - E Ua - 0
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commutes, where /., and 1r are the usual inclusion ioto the first factor and projection

onto the second factor.

On each overlap Ua n UfJ, we cao then write

where aofJ is an automorphism of E' €a E" over Ua n UfJ of the form

(
0 XOfJ)aafJ = 1 + 0 0 .

XofJ can then be interpreted as being a holomorphie map from E"luonu8 to E'\uonus.

A straightforward computation shows that the cocycle relation X..,fJ = XafJ + X..,a

holds on triple intersections Ua n UfJ nU..,. The extension class 8(1) is therefore

represented by the ëech cocycle (XafJ) on this cover.

Remarks: (i) Suppose that {.Àa } and {Ila} are trivialisations of E' and E",

respectively, on the open cover {Ua}. They induce transition functions g~fJ and g~fJ.

It is then not difficult to verify that E bas transition matrices

G _ [g~fJ .ÀaXafJllp1 ]
ofJ - •

o g"afJ
(1.4)

•

(ii) Let L l , L2 be line bundles on X. Suppose that E,E' are both extensions

of L2 by L t , gjven by the classes X, x' E Hl (T, Li ® Ld, respectively. Since

HO(X, Aut(Ld) = HO (X, Aut(L2»=C, it follows from the definitions tbat

E and E' are isomorphic <=> x' = bX for some bEC- .

Example: Let us gjve an illustration of the above discussion in the case of

X = Pl. Let 0(1) = OP1(P) he the hyperplane bundIe, where p is simply a point in

pl. Its dual is then 0(-1). We would like to fiod an extension of 0(1) by 0(-1).

One has
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• There then exists at least one non-trivial extension of 0(1) by O(-1). Furthermore,

HO(Pl,O(I)) = Cl. As Homo(O(-I),O) ~ 0(1), the trivial bondIe °E9 0 can

therefore be expressed as sucb an extension:

0- 0(-1) - OEa 0 - 0(1) - O. (1.5)

Let us caver pl by the two coordinate patches Uo = (dise about the origin z = 0),

and Ul = pl - (origin). The sequence (1.5) therefore splits on each Ui • We can

assume, without 1088 of generaJity, that p = (origin). As the divisor p is given on Uo

by z and on UI by 1, the transition matri."{ of 0(1) from Uo to UI is 9LO(Z) = 11z.

Let us choose {l, 1/z} as a basis for HO(Pl, O(1» = Cl. This basis then gives us

the foUowing two global sections of Homo(O(-1),0):

As rand s have no common zeroes, 1 ~ (r(z), s(z)) defines an injective bundIe

map from O( -1) to 0 Ea 0, and this induces the following commutative diagram

on UOnUt

•
{

ro(z) = z, on Ua,
r(z) =

ri (z) = 1, on UI ;

(
{

so(z) = 1, on Ua,
and s z) = .

SI(Z) = 11z, on UI ·

• 0(-1)
(z,l) ·oœo [1 - z] • 0(1)

• 0

z[ 1(: ~) l/z (1.6)

1 0(-1) (l,l/z) .0EaO [l/z _ Ij 0(1) • 0

0---

0---

•

Method 1. Suppose that the extension (1.5) is given in HL(Pl, O(-2» by

the cocycle X. Let us then find a representative for x- Referring to (1.6), it is easy

to see that the map l/Jo : 0(1) -+ 0 Et) 0 defined by 1 ~ (1,0) gives a splitting of

(1.5) on Uo- Similarly, the map l/Jl : 0(1) -+ 0 Et) 0 defined by 1 H> (0, -1) gives a

splitting on Ut- H we consider Uo n UI as a subset of Uo, we have

X(l,z) = (ljZ)lPl -lPo <=> X = -1/z_
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• Let us fix the trivialisation of 0(1) on Ua to be 1. Referring to (1.4), we then get

the transition matrix

[ z zX ] [z -1]
C lO

= 0 1/Z = 0 1/z .

Method 2. There is another way of finding the transition matrix of (1.5). On

Ua n Ub (1.6) induces the following commutative diagram

[
1-1 0] ·(0 œ0)

o l/z -1

[~
0 -1 ]

(1,z,l).0(_1)œ(OœO)
1 -z

0(-1) • (OœO)

Z 0 0

(~ I;Z)z 0 1 0

0 0 1

0(-1)( /)0(-1)EB(OEBO)1,1,1 z•
The rows are exact, and 'Y must satisfy the constrains of commutativity. Solving,

we find that 'Y = -1, thus verifying that the transition matrix is

[
z -1]

C lD = 0 l/z .

Let us note that this second construction has the advantage of not requiring

fixed trivialisations. We will use it in the next chapter to find the transition matrices

of extensions over D x T, where D is a dise and T an elliptie eurve.

1.4 The Serre Construction.

•
In this subsection, we will assume that ~Y is a complex manifold, and E is a holo­

morphic rank 2 vector bundle on X. Let L be a tine bundle on X ~ and </J be a non

zero holomorphie bundIe map from L to E. We do not assume that this map has
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constant rank. There may exist points p where if>p = 0, and if> is then not neces­

sarily an injective bundle map. t/J can also be considered as a O-homomorphism

of sheaves from O(L) to O(E), and t/J =F 0 if and only if it is an injective map of

coherent sheaves. Ifwe denote O(F), O(E) also by F, E, we then have the following

weil known result

Proposition 1.2 Let X be a complex manifold and let t/J : L ~ E be a holomorphie

bundle map from the holomorphie line bundle L to the holomorphie rank two bundle

E. Then

(i) There exists a largest effective divisor D on X such that the map L ~ E

factors through the inclusion L C L @ 0 x (D).

(ii) Suppose that the divisor D above is zero. Then there is an exact sequence of

coherent sheaves

o~ L ~ E ~ L' ® Iz ~ 0,

where L' = det E @ L -1 is a holomorphie line bundle and Z is a codimension

two local complete intersection subscheme of X. Moreover, if X is compact,

where [Z] is the cohomology class Poincaré dual to the algebraic cycle associ­

ated to Z.

(iii) In the notation of (i), the divisor D = 0 if and only if the set of p where

q,p = 0 has codimension at least two in X, or equivalently if and only if the

coherent sheaf E / L is torsion free.

Proof: See [F~[].

The Serre construction.

The Serre method consists in reversing this construction. Ifwe start with tine

bundles L, L' and a locally complete intersection 2-codimensional analytic subspace

Z of X, we may ask whether there exist extensions of L' ® Iz by L

o ---+ L ----+ E ----+ L' <8> Iz ----+ 0,
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such that E is locally free. This method works in the case of any complex manifold.

But we shaH restrict ourselves to the case of surfaces. For a more general discussion,

we refer the reader to [Br].

As we have seen in our discussion of global extensions, the answer to our

question lies in Ext1(X; L' ® Iz, L). To compute this group, we use the spectral

sequence with E2 term

E~,q = IP(X; Exto(L' ® Iz , L)) => Extp+q(X; L' ® Iz, L).

By lemma 1.2, we locally have the following situation:

(i) Homo(Iz, 0) ~ 0;

(ii) Homo (Iz, Iz) ~ 0;

(iii) Exth(Iz,O) ~ Ext'b(O/lz,O) ~ O/Iz;

(iv) Ext~(Iz,0) = 0 for k ~ 2.

Globally, the inclusion I z e--.- 0 induces

Homo(L' 0 l z , L) ::: Homo (L', L) = (L')-l 0 L.

Moreover, as Exth(O,O) = 0 and Exth(Iz,O) OI! O/Iz , we see that Exth(L' (8)

lz, L) is a skyscraper sheaf with fibre O/Iz supported on Z. \Ve can now replace

the Ext spectral sequence by

o~ Hl (X, (L')-l ® L) ---+ Ext l (X; L' ® Iz, L)~

Let us consider the extension E corresponding to the element

e E Ext1(X; L' ® Iz, L). Its image in HO (X, Exth(L' ® Iz , L)) is also denoted bye.

Serre's Theorem (1.2) then tells us that E is locally free if and only if e is an invert­

ible element of Exth(X, L'® Iz , L), Le. if it generates the sheaf Exth(X, L' (g)Iz , L)

or if the natura! map

o~ Exth(L' ® I z , L)
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defined by e is onto. If H2 (X, (L')-L ® L) = 0, then there must exist at least one

such element. This is why we have

Theorem 1.3 Suppose in the above situation that X is a surface and that H 2 (X, (L')-L®

L) = o. Then there exist LocaUy free extensions E of L' ® /z by L.

1.5 Deformation of sheaves.

As we shaH see in the next section, deformation theory is a very useful tool in the

study of the local properties of moduli spaces. We give a detailed description in

the cases of sheaves over local rings, and vector bundles. The general case is then

simply a combination of those two. We start with

Definition 1.7 Let X he a complex space and F he any coherent sheaf on X. We

can then define the following:

L A de/ormation of Fis a quadruple gT = (g, T, to, a) where

(i) (T, to) is the germ of a complex space with representative T,

(ii) g is a coherent T-ftat sheaf on X x T, such that a : g{to) ~ F is an

isomorphism of 0 x-modules on X.

2. If g'T' = (g', T', t:" a') is another deformation of F, then a morphism 0/

de/ormations gT ~ g'T' is a pair (t/J, f) where 1 : (T',~) -+> (T, to) is a

morphism of germs and t/J : (id x f)*g ~ g' is an isomorphism on X x T' snch

that a. = a.1 0 i;' (t/J).
o

3. The deformation QT is called complete if for any other deformation g'T' there

exists a morphism (t/J,I) : gr -+> Q'T'. If in addition the tangential map

Tf: TfoT' ~ noT is the same for ail such morphisms, the deformation QT is

called semi-universaL or versaL.

Deformation theory basically gives us the follo\\ing result:

For any coherent sheaf :F on a variety X t the global de/ormations of F are
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given by Ext1(X; F, F). The obstruction to extending the deformations to any order

is an element of Ext2 (X; F, :F).

1.5.1 Local case.

\Ve begin by e,'"<amining the local case. The results of this section are due to Traut­

Mann, and wel"e presented in the more general setting where )( is a Stein space.

We restrict ourselves to the Stein space X = en. In the remainder of this

section, X will aJways denote en. Let us start by giving some notations.

1. Let 0"~ Of be an 0- homomorphism of O-modules. We can then identify

a with a p x q-matrix with entries in O. Moreover, the space of holomorphie

p x q-matrices is identified with 0".

2. Let kI, N be O-modules, and suppose that they have the following projective

resolutions:

- O"n _ O"n-l - _ OPo - kl - 0... A
n

-
1

••• Ao '

and

••• - ~l B {)'ID 5 N - O.

Using the projective resolution of M, we see that Extb(kl, N) is given by the

quotient Zi / Bi, where

zï = {a: OP, ~ NI croAi =O},

and

Bi = {cr : OP, ~ N 1 cr = {3 0 Ai - L forsome {3 : OPi-l ~ N}.

Let us remark that every homomorphism 0"~ lV factors through S, Le.

there exists an F E OJ1tlo, such that the diagram
oqa

3;/ 18
O"-N

cr

commutes.
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Let us note that projective resolutions always exit, in the case of O-modules. It

tums out that defonnations of O-modules actually arise from deformations of their

resolutions. We have the following lemma:

Lemma 1.6 Let

... - Ox B;0k fi; ~ - :F-O

be a resolution of 1\;1. If NT is any deformation, then NT has a resolution

... - OXxT B Ii °kXT ft Ji ~xT - NT - 0,0+ .. 0+

where B, A are holomorphie and vanish on X x {to}.

Proof: It follows from the fiatness of NT and Nakayama's Lemma. For details

see [TrI. 0

The converse is also true, as shown by the following result, due to Douady:

Lemma 1.7 Let A and B be holomorphie matrices on X x T with BoA = 0 and

let N := Coker(A), such that we have the complex

OXxT B OkXT fi ~xT - N - 0,

on X x T. Il the induced sequence

...-OXBOkA~

(1.7)

•

is exact on X, then (1.7) is exact and iV defines a flat deformation of lV(toHx.

Deformations of arder 1.

Let C(E] he the ring C[t]/(t)2, where E is the class of t and let O(E] be SpecC(E].

The space X(E] = J"( x O(E} has the structure sheaf OX(E] = Ox l8lc C(E], and any

f E f(.("(,OX(E]) has a unique decomposition f = fo + Ef~ with fo, f~ E O.

Again, let

. ..-Ox-Ok-~-kI-O
Bo Ao So
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be a resolution of 1\t[. H lV is a deformation of l\tI over O[€], by lemma 1.6, it has a

resolution

where the entries of B b Al are in O.

Let us start by showing that the matrL,,< Al defines an element of Exth(kI, .i\tl).

Let us note that in this case

Zl = {a : 0 9 -+ NI 1 a 0 Ba = O},

and

B l = {a: oq -+ Atl 1 a = {3o Ao forsome {3 : OP -+ M}.

By exactness of (1.8), (Ao + €Ad(Bo + €Bd = 0, and, as €2 = 0, this is

equivalent to AoBl + ALBa = O. It then follows that SOAI defines a homomorphism

a : Ok -+ NI, sucb that (SoAdBo = -(SoAo)Bl = O. Therefore SOAI defines a

class [a] E Exth(M, At/). Conversely, since any map Ok -+ M factors through So,

if [a] E Exth(M, M), it is represented by SoAt, where Al is a suitable holomorphie

matrix. Similarly, since SoAtBo = 0 and SoAo = 0, we have that So(AoQ+AIBo) =

o for any Q E orq , implying that there is a BI with AoBI + AIBo = o. Thus

(Ao+€A1)(Bo+€Bd = 0, and by lemma 1.7, the matrices Bo+€Bl , Ao+€A1 define

a fiat deformation of kl. Let us note that if we choose a different representative of

the class [a], we obtain a deformation that is equivalent to the one given by SoA1.

This can be shown by arguments similar to the ones above.

Obstructions for extending deformations.

Let us now suppose that we want to e..'"dend this to a deformation of order 2, Le., a

defonnation on XxT', where T' is Spec(C[t]/(t)3). \Ve will see that the obstruction

for such an extension is an element in Ext?,(l\!I, 1\t/). In order to describe this element

as a 2-cocycle, we need to specify a third map Co in the resolution of 1'\;[:

... c; Ox B; Ok A;~ - .i\t/ - o.
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• The set of 2-cocycles is then z2 - {a or ~ AJ 1 Ct 0 Co - O}, and the 2­

coboundaries are

B2 = {a : or ---+ At/la = f3 0 Bo forsome f3 : oq ~ ~[}.

As above, any deformation NT of order 1 has a resolution

(1.9)

•

•

where C = Co + fCl , B = Bo + fBl1 and A = Ao + fA l .

Let C', B', A' be holomorphie matrices on J"( x T' inducing C, B, A on X x T.

In the following C' , B', A' will be fixed. For suitable choices of holomorphie matrices

C2 ,B2 ,A2 , we can then express C',B',A' as C' = Co + fC l + f2C2, B' = Bo +
EBI + E2B 2 , and A' = Ao + EAI + E2A2 • If these matrices are the result of a

deformation of order 2, then, by exactness oC the resolution they correspond to,

B' 0 C' = A' 0 B' = o. Conversely, by lemma 1.7 (Douady), if A' 0 B' = 0, then

they define a deCormation NT' := Coker(A') oC order 2. We therefore have to find

out whether or not A' 0 B' = o.
As fi = 0 Cor i ~ 3, and, by exactness oC (1.9), (Ao+EAr)(Bo+EBr) = 0, we

have that A' 0 B' = E2R, where R = AoB2 + AlBI + A2Bo. It is easy to verify that

(SoR)Co = o. We then have a homomorphism p : or ~ M defined by SoR, such

that poCo = 0, thus defining a class [Pl E Ext'b(l\tl, ilt/). \Ve tben have

Lemma 1.8 There exists an extension NT' of NT over X xT' if and only if[p} = o.
Therefore Ext'b(l\t/, llt/) is the group of obstructions for extending NT to T'.

Proof: If the matrices C', B' ,A' are the result of a deformation of order 2, then,

by the above discussion, A' 0 B' = o. As .4' 0 B' = E2R, we then have [pl = o.
Conversely, if [pl = 0, then p = f3 0 Bo, for sorne j3 : oq ~ iltf. As we have seen

in the previous section, this implies that R = AoB3 + A3Bo, for sorne holomorphie

matrices B 3 , A3 • If we set B' = B' + e2B 3 , and A' = A' + e2A 3 , a simple caleulation

gives A' 0 B' = 0, and, by Douady, NT' := Coker(A') defines an extension NT' oC

NT over X x T'. 0
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We can then repeat this process as many times as we want. At each stage,

assuming that we have a l-cocycle of order n, the obstruction to extending it to

order n + 1 is an element of Extb(kI, 1\;/). Thus, for example if Extb(lv/, 1'1) = 0,

extensions to any order always exist.

Example: Let Po E Cl and (x, z) be coordinates at Po. The ideal 1 generated

by x and z is then the ideal sheaf of Po. The set of all deformations of the sheaf

o œ1 is Exth(O €a 1,0 œ1). We have an exact sequence

Exth(I, 1) ~ Exth(O ffi 1,0 $ 1) ~ Exth(!, 0).

The defonnations of 1 are parametrised by Exth(I,I) :: Cl. They simply cor­

respond to changing the point Po in Cl. We have seen in section 1.3.3, that the

elements of Exth(I, 0) "'J C give extensions 0 ~ 0 ~ V ~ 1 ~ o. The deforma­

tions of 0 $ 1 are thèn the cokemels of maps of the fonn

o ~ OœO$O

1 Ho (t, -z + c, x - b)

where t E Exth(I, 0), and (b, c) E Exth(I, 1).

1.5.2 Global case.

We first describe deformations of vector bundles, and then state how these extend

to coherent sheaves.

Deformations of bundles.

The ideas of the local case extend to deformations of vector bundles. Only this time

it is the transition functions that are being deformed. We follow the presentation of

[F], and therefore use their notation. Let E be a vector bundle on J:'(. A. deformation

of E is then a vector bundle E over ~"( x T sucb that the restriction of E to ..<Y" x {ta}

is isomorphic to E. The vector bundle E must be given by transition functions,

which we will DOW describe. Suppose that T is SpecC[e], where Cre] is the ring

C[t]/(t2
) and e is the class of t. Let Aii be transition functions for E with respect

to sorne open cover {Vi} of X. We may assume that E can he trivialised on the
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open cover {Ui x T} of X x T, and we can choose transition functions for e of the

form

Let us consider the linear term Bi; . t. The transition functions A.ij(t) must satisfy

the cocycle relations, thus implying that on triple intersections Ui nUj n Uk we have:

Since Ai; is al-cocycle, this can be rewritten as

and it follows that BijAijl is a l-cocycle for Hum(E, E). Furthermore, any two

choices of Bij differ by a l-coboundary for Hcnn(E, E). Deformations of E thus de­

fine elements in HL(X, Hum(E, E». Conversely, an element Ci; E Hl(X, Hom(E, E»

defines first-order terms in a power series expansion for Aij (t), by the mie Bi; =

CijAi;.

Let us now suppose that we want ta extend this to a defonnation of arder 2,

i.e., a defonnation on X x Spec(C[t]j(t)3). This is equivalent to finding B~j so that

A~j(t) = Aij+Birt+B;rt2 is al-cocycle mod t3
• Given a choice of B~j' we must then

compute the t2 tenn in A';j(t)Ajk(t)A';;'l(t). After a rather technical computation,

one finds that A~j(t)Ajk(t)A'ikl(t)= Id + e, where e is a 2-cocycle. The obstruc­

tion to A~j(t) being al-cocycle mod t3 is then given by e E H2(X, Hcnn(E, E»:

in order for the extension to be possible, this cohomology class must vanish. The

converse is also true. It can indeed be verified that

3Bij such that ~j(t) is al-cocycle Ç:> e = o.

In general, if we have al-cocycle to order n, and we want to lift it to order n + 1,

the obstruction for such an extension is an element in If2(...."'<, Hum(E, E)) .

Deformations of coherent sheaves.

Let F he a coherent sheaf on a complex space X. There exists an open cover
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v = {\Ii} of X such that each \Ii is a Stein space. Therefore FI\Ii has a projective

resolution, for all i. :F is then given by:

(i) projective resolutions ... ~ Oqi ~ OPi --» :F1"i on \Ii;

(ii) transition homomorphisms Tij : :F1"i ~ :F1"i on Vinl-j, that satisfy the cocycle

relation, Le. Tij = Tik • Tkj'

A defonnation of F consists in a deformation of these two things. Combining both

the local and locally free descriptions, we have

For any coherent sheaf F on a variety X 7 the global defonnations of Fare

given by Ext l (X; F, :F). The obstruction to extending the deformation to any order

is an element oIExt2(X;:F,F).

1.6 Moduli spaces.

We finish this chapter by giving a review of some of the results involving moduli

spaces of stable vector bundles and sheaves over any compact complex manifold.

1.6.1 Degree and stability.

Stability was first introduced by Mumford for holomorphie vector bundles over

algebraic corves. Takemoto then generalised it to sheaves over a projective variety.

Let X be a smooth projective variety of dimension d and let H be an ample Hne

bundle on X. Let E be a torsion-free coherent sheaf on X. The degree degH(E) of

E relative to H is then defined to he the number cL(E) . H d- L• The slope J.LH(E) 01

E with respect to H is the rational number ILH(E) = degH(E)/rk(E). (The slope is

also called the normalised degree of E with respect to H.)

Definition 1.8 (~Iumford-Takemoto) A. torsion-Cree coherent sheaf E on .,("'( is H­

stable (resp. H-semistable) if, for aU coherent subsheaves S of E with 0 < rk(S) <

rk(E), we have
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We caU E unstable if it is not semistable and strictly semistable if it is semistable

but not stable. Finally, a subsheaf S of E with 0 < rk(S) < rk(E) is destabilising if

J.LH(S) ~ JLH(E).

Stability can in fact be generalised to vector bundles over any compact com­

plex manifold X of dimension d. One just has ta define the notion ofdegree on }(. A

theorem by Gauduchon [G] states that any hermitian metrie on a complex manifold

has a conformai rescaling 50 that its associated (1,1) form w satisfies aliwd-l = o.
Sucb a metrie is called a Gauduchon metric. Let us assume that X is endowed with

such a metric. Hitchin then suggested the following notion of degree (see [Bh}): if

L is a holomorphie Hne bundIe over X, the degree of L with respect to w is defined,

up to a constant factor, by

deg(L) :=LF AW
d

-
1

,

where F is the curvature of a hermitian connection on L compatible with liL. Any

two sucb forms F differ by a ali-exact Corm. Sînce aliwd-l = 0, we see that the

degree is independent of the choice oC connection, and is thereCore well defined. This

notion oC degree extends that of the Kahler case. Indeed, if X is Kahler, we get

the usual topologicaI degree defined on Kahler manifolds. In general, this degree

is however not necessarily a topological invariant. We shall see in the next chapter

that in the case where X is a HopC surface, the degree of a line bundie can take

values in a continuum.

Having defined the degree of holomorphie tine bundles, we de6ne the degree

oC a torsion-free coherent sheaf E on X by

deg(E) := deg(det (E» 1

where det(E) is the determinant Hne bundie of E; and the slope of E by

JL(E) := deg(E)frk(E).

The definition of stability thereCore extends ta this notion oC degree, and it is defined

exactly as in definition 1.8.

Remarks: It Collows from the definition that:
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(i) Line bundles are always stable.

(ii) In the case of rank 2 vector bundles on a surface, we need only to check

stability with respect to rank 1 torsion free sheaves S.

For the elementary properties of stable (resp. semistable) sheaves, we refer

the reader to [OSS] and [Br]. We shall however state, without proof, the ones that

will be useful to us in the sequel. Let X be a compact complex hermitian manifold,

and let 0 = Ox he its structure sheaf. For any sheaf e, we denote its dual sheaf

bye- = Horno(E,O).

If e is any torsion-free sheaf on X, then

Lemma 1.9 e is stable if and only if E·· is stable.

A very important consequence of stability is

Proposition 1.3 IfE is a stable torsion-free sheaf, then E is simple, i.e., End(E) =

{À • Id : À E C}.

1.6.2 MaduU spaces.

Let X be a compact complex hermitian manifold of dimension d endowed with a

Gauduchon metric. We then have a weIl defined notion of degree and stability.

Let Mn be the moduli space of stable rank 2 SL(2, C) vector bundles E on X

with c2(E) = n. It is a weIl defined space. As E is an SL(2, C)-bundle, det(E) =
O. We then have a natural splitting Horn(E, E) = sieE) €a 0, where si are the

traceless endomorphisms. The discussion on deformation of sheaves then gives us

the following

Theorem 1.4 Suppose that x E Mn is a point corresponding to a stable bundle E.

If lJ2(}(, sieE) = 0, then Mn is smooth at x of dimension hi(X, sl(E)). ln general,

there is an analytie neighbourhood of x in Mn which is isomorphic to the zero set

of h holomorphie functions fI,"" fla defined in a neighbourhood of the origin in

Hl (X, sl(E», where h = dimlJ2(X, sI(E». Moreover, the fi have no constant or
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• linear terms and thus the Zariski tangent space Mn at x may be identified with

HL(X, sl(E»).

Proo/: See [F).

Remark: The moduli spaee Mn of stable torsion-free coherent simple sheaves

on jY with CL (E) = 0 and c2(E) = n is again a well defined space. ~Ioreover, a

theorem analogous to theorem 1.4 also applies in this case.

Buchdahl 's theorem.

Let E be a holomorphie veetor bundle on X. The notion of stability of E is

intimately related to that of a Hermitian-Einstein eonnection on E. This is a

Hermitian eonnection A on E, compatible with aE , whose curvature FA satisfies

the equation

•
A 1 d

FA := * . (d _ 1)! (FA 1\ W -L) = ik

for k E R. k is then constrained by

-21r
k = (d _ l)!Vol(X) . p(E).

We then have the following very important

(1.10)

•

Theorem 1.5 (Buchdahl [Bh]) An indeeomposable holomorphie bundle E on X is

stable if and only if E admits an irreducible Hermitian-Einstein connection. This

conneetion is unique.

This theorem generalises the result of Donaldson [D] for the Kahler case. Uhlenbeck

and Yau (UY] have also generalised the result to a Kahler manifold of arbitrary

dimension.

In the sequel, we will only be interested in SL(2, C) vector bundles. Let

E be such a bundle. Then det(E) = 0 and Il(E) = O. By (1.10), we see that

the Hermitian-Einstein connections on E are precisely the anti-self dual ones, Le.

instantons. Buchdahl's theorem then gives
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Corollary 1.2 An indeeomposable holomorphie SL(2, C)-bundle E on X is stable

if and only if E admits an irredueible anti-self dual connection. This connection is

unzque.

\Ve therefore see that there is a correspondence between indecomposable stable

SL(2, C)-bundles and anti-self dual connections, Le. instantons.
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Chapter 2

Holomorphie bundles over Hopf

surfaces.

In this chapter, we consider holomorphic SL(2, C) vector bundles over Hopf surfaces.

We begin by giving a review of the results found in [BH]. An important fact is that a

Hopf surface 1t is an elliptic fibration over pl. A rank two SL(2, C) vector bundle E

over 1t can therefore be thought of as a family of bundles over T parametrised by pl,

where the family is obtained by restricting E to each fibre T. Rank two SL(2, C)

vector bundles over an elliptic curve have however been completely classified by

Atiyah [At]. It is then possible to associate to E a divisor in pl X ]pl = pl X

PicO(T)j± which gives the SL(2, C)-isomorphism type of E over each fibre T. This

divisor will be called the graph of E. This will be done in the first section.

The Hopf surface 1l can be covered by two copies of C x T. Bundies over

1l can therefore be obtained by glueing two bundies over C x T. Before discussing

bundIes over C x T, we must first consider bundles over T. [n the second section,

we give a brief presentation of Une bundles and extensions of Hne bundies over T,

thus giving us the chance to fix sorne of the notation that will be used in later

chapters. In the third section, we classify bundles over D x T, where D is a simply

connected subset ofC. It was shown in [BH] that in two specific cases, the SL(2, C)­

isomorphism class of a bundIe on D x T is compietely determined by its graph on

D x ]Pl. vVe will show that this can be generalised to two more cases that will be

39



(2.1)

•

•

useful to us in chapter 6. We finish by giving explicit transition matrices for certain

rank two SL(2, C)-bundles on D x T that we will use in chapter 3.

2.1 Holomorphie bundles on Hopf surfaces.

Let À E C, IÀI > 1 be a fi.xed complex number. An action of Z on Cl- = (;2\{(D, O)}

can be given by

Cl- x Z - (;2-

«ZLl Z2), n) r-- (Àn ZL1 ÀnZ2 )

The Hopf surface 11. = 11.>. is then defined as Cl- /Z. 1/. is a comple.~ surface,

difJeomorphic to 53 x SL; and, as bl (1/.) = 1, it eannot be Kahler. Its Dolbeault

cohomology is:

{

C if (P, q) = (0,0), (0, 1), (2, 1) or (2,2),
JP,Q(1/.) = 0

otherwise.

11. can be expressed as a holomorphie fibration

1r : 11. - pl t

which is simply the map 11. -+ C· /e:. Its fibre is the elliptic curve

T - c /,\n ~ C/(21riZ + log(À)Z).

(2.2)

It is useful to have coordinate systems which refiect this fibration. Then z =

ZL/Z2, z' = 1/z are affine coordinates on pl; and t = log Z[, t' = log Z2 give linear

coordinates on T. 11. is then covered by Ua = C x T, Ut = C x T, with the

identification

We give 11. the hermitian metric whose associated (l,l)-form on the cover

•
on the overlap.

cz- is

(Z', t') = (1/Z, t + log z)

w = ~(Vol(S3) X ln IÀI)-~ dzl /\ dii + dZ2 1\ dZ2 .
2 Izd2 + IZ212
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The constant is chosen to make the total volume 1. \Ve have aôw = 0: it is a

Gauduchon metric (see section 1.6.1).

2.1.1 Line bundles.

The set of aU holomorphie Hne bundles on 1l is given by the Picard group Pic(ll)

of 11.. \Ve begin by giving a description of this group. From the exponential sheaf

sequence

o ---7 Z ---7 0 ~ O· ----+- 0,

one obtains

Furthermore, as H2(1l, Z) = 0, ail Hne bundles on 11. have a trivial Chem class,

and Pic(ll) ::: Pico(1l). Line bundles on 11. cao therefore he realised by constant

automorphy factors k E ce .
Let us illustrate the above by constructing the universal (Poincaré) line bun­

dIe V over 1l x ce by using automorphy factors. One starts with a trivial Hne

bundle L on C· x ca. One then has the foUowing Z-action

C·xCxZ

«Zl, Z2), ct, n)
-
t---

cz·xc
«Anzb Anz2 ), ct)

•

which is simply induced by (2.1). This action is trivial on C. V is then obtained

by taking the quotient of L with respect to this action: s E L(:r:,a) is identified with

ks E Lp.%.a). We then see that, for any m E Z, the automorphy factor ct = Am gives

the Hne bundle 7r·(O(m» on 11.. From now on, we will denote 7r-(O(m» by O(m),

and, if L is any bundle, L ~ 1f"-(O(m» by L(m).

For any Hne bundle L on 11., restriction of L ta a fibre is a natura! operation.

As L is given by a constant autoulorphy factor~ its restriction to any fibre must be

an element of Pico(T). We then have a map pl ~ PicO(T) rv T given by associating

to x the bundle LI7r-t(:r:). This map must be constant. Restriction to a fibre then
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• induces an exact sequence

o-.. PiC(Pl) -.. Pico (1l) -.. Pico (T) -.. 0,

o-.. z -.. c- -.. T -.. o.
(2.5)

•

•

Let us note that LI7r-1(x) = L(m) 17l'-1(X) , for any Hne bundle L and any m E Z.

~loreover, since the canonical bundle on T is trhial, the canonical bundle of 1l is

K(1l) '" 0(-2).

We can also compute the cohomology groups Bi(1l, L) of the sheaf of holo­

morphie sections of Lover 11.. The Hne bundle L has a section over 7f'-l(X) if and

only if L is trivial on 7f'-l(x). The sections of L are then constant along 7f'-l(X),

and must be lifted from rl . In other words, L has a global section if and only if

L = O(m), for sorne m E Z. Therefore

if V '" O(m), m ~ 0,

otherwise;

and the on1y divisors on 1/. are sums of fibres of 7f'. Furthermore, as K(1/.) ~ 0(-2),

{

-m - 1 if L '" O(m) m < -2
h2 (1/., L) = ' - ,

o otherwise.

The basic fibration (2.2) induces a topological splitting of the complex tan­

gent bundle of1/.. We then have Td(1l) = 1, and, as a consequence of the Riemann­

Roch theorem,

2.1.2 Rank 2 bundles.

We no,v consider the case of SL(2, C)-bundles over 1l: rank two bundles E with

A2E ~ o. We fi.."C C2(E) = n. In our study of such bundles, one of our main tools

will be restriction to the fibres tr-1(x). Atiyah has given a complete classification

of holomorphie vector bundles over T [At}. We begin by recalling the case of rank

two bundles E with A2E ~ O.
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Proposition 2.1 The SL(2, C)-bundles over an elliptic curoe T are of the Jollowing

types:

(ii) Non trivial extensions 0 ~ La ~ E ~ La ~ 0, L5 ~ "p
(iii) L EB L-, L E Pick(T), k < OP

Proof: Details can be found in [At].

If we now tum our attention to rank two bundles over 11., it has been proven

in [BH] that their restrictions to fibres 7r- l (x) are generically of type (i) or (H).

~[ore precisely, we have the following result:

Proposition 2.2 Let E be an SL(2, C)-bundle over 11.; then EI1r-1(z) is of type iii)

on at most an isolated set of points x E pl p

Proof: See proposition 3.2p2 in [BH] .

The bundIe E can he described further: we can show that there are at most

n points x for which EI",-I(Z) is of type iü). We begin by fixing a generic bondIe

V on 11. such that hO(1r-1(x), V· E) = 0 for at least one x, and sa for generic x.

This forces 7r.(V·E) = o. However, proposition 2.2 implies that R l 1r.(V-E) is a

skyscraper sheaf supported on isolated pointsp These are points x for which one of

the following holds:

EI1r-1(z) has VI1r-1(z) as a subline bundle and is of type i) or ü), or

E\1t-1(z) is of type iü).

By the Grothendieck-Riemann-Roch theorem, [Ha],

where h is the positive generator of H2(Pl, Z). The skyscraper sheaf R1.;r.(V·E) is

therefore supported on at most n points.

Given a local resolution
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of R l 1r.("T.E) around a point z = 0, the multiplicity of the point z = 0 is defined

to be the multiplicity of the zero of det(f(z)) at z = O. It is essentially just the

complex dimension of R l 1r. (V·E) in a neighbourhood of z = 0, and is thus a local

version of the definition of Cl (Rl 1r. (V·E». Let us note that there are different

possibilities for a point of a given multiplicity. For example, suppose that the point

z = 0 bas multiplicity 2. Locally, the sheaf Rl 7r.(V·E) could then he the cokernel

of a map z2 : {) ~ ", or of a map z : oe2 --t OEB2. Taking the above into account,

we have that R l 7r. (V·E) is supported on n points, counting multiplicity.

To obtain a complete description of the restriction on E to the fibres, we have

to repeat this construction for every Hne bundIe on 1/.. One can actually take the

direct image R l 7r. for aliline bundIes simultaneously, as follows: if V is the universal

(Poincaré) Hne bundle over 1/. x C*, and 1r is the projection 1/. x C* ~ pl X ce,
consider Rl 7r.(E ® V). As above, this sheaf is supported on a divisor D, which is

also defined with multiplicity. We can however remark the foUowing:

- Tensoring V by 0(1) does not change the support of Rl 1r•. The divisor ÏJ is

then invariant under the Z-action on C' generated by multiplication by À.

As A2E - 0, E ~ E·. Substituting V· for V therefore does not change the

support of R l 1r., implying that iJ is also invariant under the involution on C

defined by z .-+ 11z.

If we quotient C* by the Z-action, we get Pico(T) - T. If we also quotient by the

involution, we obtain a two sheeted map Pico (T) -+ pl whose branch points are

the half periods of T. By the above remarks, D then descends to a divisor D on

pl x pl = 1r(1l) x PicO (T)/ ±.

Such divisors are in a tinear system 10(i,j)1 on pl x pl = 1r(1/.) x Pico(T)/±.

We can easily see that i = n, j = 1. The above computation tells us that pl x {l}

intersects D in n points, thus implyjng that i = n. ~Ioreover, ü we fix x E pl, then

{x} X pl intersects D in only one point (counting multiplicity), corresponding

to the pair of bundles {Lo, Là} in Pico(T)j± that are subbundles of EI1t- 1(z) ,
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• or

- {x} X pl is included in D, if EI1r-1(:t) is of type Hi).

Henee, j = 1. The divisor D has the following picture in pl x ]pl:

k lines \Vith multiplicity
corresponding to EI1r-1(%}

of type iii)

graph of a rational map
pl ~ pl, of degree (n - k)

The above description can be summarised in the following proposition:

Proposition 2.3 To each SL(2, C)-bundle E on 1l. with c2(E) = n, there is asso­

ciated a divisor D in the linear system IO(n, 1)1 over pl x Pl. This divisor is called

the graph of E.

•
pl = 7r(1{,) --l''~ X

•

2.1.3 Degree and stability.

The metrie that we bave chosen for 'Il is a Gauduchon metric. We therefore have a

weIl defined notion of degree. In section 1.6.1, the degree of any line bundle L was

defined, up to a constant factor, as

deg(L) = i F Aw,

where F is the curvature of any hermitian connection on L compatible with aL.
Furthermore, if E is any torsion-free coherent sheaf on 1{" its degree is defined by

deg(E) := deg(det(E»,
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and its normalised degree by

p.(&) := deg(E)/rk(E).

Let us also recall that stability was defined as follows:

A torsion-free coherent sheaf E on 11. is stable if and only if for every coherent

subsheafSc E with 0 < rk(S) < rk(E), we have

p.(S) < p.(E).

Let us compute the degrees of line bundles and SL(2, C)-bundies on 11., and,

in the latter case, determine which ones are stable.

1) Line bundles. Let L E Pico (11.) correspond to an automorphy factor o. We

define a metric on the trivial bundle over Cl- by

where Is(z)12 is the standard metric. Il Il descends to Lover 1i, and has

curvature

Integrating F against w, one finds that, up to a positive constant factor,

deg(L) = ln 1011 ln IÀI.

For example, deg(O(m» = m. We have aiso seen that line bondIes are always

stable.

2) SL(2, C)-bundles. As A2 (E) ~ 0, we always have deg(E) = o. vVe wouid

however like to know when E is stable. As we have seen in section 1.6.1,

it suffices to know whether any line bundie of non-negative degree admits a

nonzero map into E. The following two propositions were proven in [BH):

Proposition 2.4 Let the graph of E include a non-constant map

pl -+- Pl. Then E is stable.
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The only bundles non stable bundles are therefore among those whose graph

is of the fonn (t ({Xi} X Pl)) + (Pl x {l}).

rvIore specifical1y, we have

Proposition 2.5 Let E have graph

Then there exist line bundles K, K' on 1/. such that the set of line bundles

which map non-trivially to E is {K(m), K'(m), m < O}. If 1 is a half period

, K = K'.

E is then stable if both deg(K) and deg(K') are negative.

2.1.4 Moduli spaces.

Let Mn be the moduli space of stable rank 2 SL(2, C)-bundles E on 1-1. with

c2(E) = n. Before turning to the problem of smoothness of Mn, let us give another

description of stable SL(2, C)-bundles on 1/..

Let E be an SL(2, C)-bundle with c2(E) = n, n > 1. E must then be inde­

composable, and any connection .4 on E mu~t be irreducible. The corollary 1.2 to

Buchdahl's theorem therefore gives

E is stable if and only if E admits an anti-self dual connection.

As the connection given by Buchdahl's theorem is unique, we therefore have a cor­

respondence between stable bundles and anti-self dual connections, Le. instantons.

1t was proven in [BH] that

Proposition 2.6 The moduli space Mn of stable rank 2 SL(2, C)­

bundles E on 1/. with c2(E) = n is a smooth, non-empty complex 4n-dimensional

manifold, diffeomorphic to the moduli space of SU(2) -instantons on E.
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Remark: If E is stable, then HO(1i, End(E» = C and H2(1l, End(E» = O.

Furthermore, the tangent space to Mn at E is H L(ll, sl(E» = can
, where sl

denotes the traceless endomorphisms.

We will also consider the moduli space Mn of stable torsion-free coherent

sheaves E on ~~ \Vith cL(E) = 0 and c2(E) =n. This is again a well-defined moduli

space that we will study in further detail in chapter 3. Let us note that Mn is

contained in Mn, for all n > 1. Proposition 2.6 therefore ensures us that Mn is

never empty.

2.2 Bundles on T.

2.2.1 Line bundles.

Suppose that T is given by the Don-degenerate lattice A in C, with generators

2Wl, 2W2. We would like to construct transition functions for line bundles on T,

using the standard elliptic functions q(z), Ç(z) with expansions at z = 0

q(z) = z + O(ZS)
1

Ç(z) = - + O(z3),
Z

and periodicity relations

q(z + 2Wi) = -0'(z)exp(211i(Z + 2Wi»

(z + 2Wi) = Ç(z) + 211i'

wîth l1i = Ç(Wi)' 211i,2wi satisfy the relation

Theorem 2.1 (Legendre)

We begin by showîng

Lemma 2.1 The function tPi(Z) = e2w·(Cz}e-2'1. z is doubly periodic for i = 1,2.
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Proof: For j = 1,2,

where aij = e-(211i2wj-2w
i
27/j) is a constant. If i = j, we obviously have that aij = l.

And if i #- j, Legendre's relation implies that

and aij = e~21rFI = 1. Therefore, for any i = 1,2 and j = 1,2, tPi(z+2wj) = tPi(Z),

proving double periodicity. 0

Let us cover T by Ul = T - (origin), Uo = discaroundtheorigin.

Line bundles of degree zero.

From the periodicity relations, we see that the function

is doubly-periodic, and therefore weIl defined on the elliptie curve with parameter

z. It has an essential singularity at the origin, and a single zero at 1.1. = z. If we set

we find that pO has a single pole in z at the origin. pl, pO define a section of the tine

bundle LI" with transition function hOl (p, z) = e-p
{(:). This section has a single

zero at the point p. = z, and a single pole at the origin.If we set Pp to be the point

IL = Z on T, LI' corresponds to the divisor Pp - po·

Line bundles of degree one.

Similarly, if we set

we 6nd that (l is holomorphie in z at the origin. r;/, rl define a section of the line

bundle L>.., with transition function 901 (À, z) = cr(z)e->"{(:). This section bas a single

zero at the point À = z. If we set P>.. to be the point À = z on T, L>.. corresponds to

the divisor P>...
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Remark: For any period 2Wi'

where tPi(Z) = e2wi«':}e-2'1i Z
, and 1/Ji(Z) = e-2'1i Z

• By lemma 2.1, tPi(Z) is doubly

periodic. g1O("\ + 2Wi' z) is therefore also a transition function for LÀ.

Line bundles of degree k.

By the ahove, we see that any hundle over T of degree k can he given by the

transition function

and that the divisor associated to this Hne bundle will be kpÀ.
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• 2.2.2 Endomorphisms of rank 2 bundies.

Endomorphisms of rank 2 SL(2, C)-bundle over an elliptic curve T are described in

the following lemma:

Lemma 2.2 Let E be an SL(2, C) -bundle over T. Its global endomorphisms and

SL(2, C)-automorphisms are:

1) E':::!. LoœLo,
L5 i= O,cl(Lo) = 0 ( a 0) a, bEC (a 0 ) aE C-

O b 0 a- L

•
2) E ':::!. LoœLo,
L5 = O,cL(Lo) = 0

gl(2, C) SL(2, C)

3) E type (ii)

4) E':::!. Le L*

cL(L) < 0

(~ ~) a,b E C

f E r(L· 2
)

21ri (a 1)
o a-1

a E C­

I E r(L· 2
)

•

Prool: This lemma is given in [BR] without proof. It is however a straightforward

computation of cohomology groups.
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• As a direct consequence of lemma 2.2, we have:

Lemma 2.3 Let E be an SL(2, C)-bundle over T. Its global traceless endomor­

phisms and the kemel o/the exponential map exp: (global traceless endomorphisms)

-). (SL(2, C)-automorphisms) are:

•
o

1) E ~ Lo œLô,

L~ # O,cl(Lo) = 0

2) E '::: Lo œLô,

L~ = O,cl(Lo) = 0

3) E type (ii)

4) E,:::LœL·

cl(L) < 0

( a 0 )aec 21ri(m 0 )mez
o -a 0 -m

8l(2, C)

()
(

m / )a / 21ri
O-a aeC O-m

1 e r(L· 2
)

1 e r(L· 2
)

meZ\O

•

2.2.3 Extensions of Une bundles.

Let us fix L E Pic-k(T). Then H1(T, L2) = C'lk, and we knOlY that this is the space

of ail possible extensions of L by L·. It is Dot difficult to see that the extensions of

L by L* are

- any type (i) bundle,

- any type (ü) bundle,

- any type (iii) bundle L_j œL*-i' with

L_i E Pic-j(T), 0 < j < k.
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AlI these possibilities occur, with one exception: if k = 1, type (i) bundles La œLà,

with L5 "J " do not occur.

Example: Let us illustrate this in the case where L E Pic-L(T). If we take

any Lo E PicO (T), sucb that L5 =F 0, let us express La œLà as an extension of L*

by L:

0- L-LoœLô-La -o.

In arder ta do so, we have to find an injective bundle map L ~ Lo œLo' Suppose

that L has divisor -P>., and that La is given by the divisor Pp - po. As we have seen

in section 2.2.1, g(z) = O'(z)e-.\({z) and h(z) = e~{z) are then transition functions

from Ua to UL oC L and Lo, respectively.

Let r(z) = {ri(z)h=o,l be the global section of L* @ La given on Uo by

ra(z) = O'(z - (À + Jl)). Similarly, s(z) = {si(z)h=o,17 where So = u(z - (À - Jl)) on

Uo, is a global section oC La @ Lo' As Lo is not a half period, ..\ + JI. # ..\ - JI. in T.

It is then clear that r(z) and s(z) do not have the same zeroes. These two sections

thereCore define an injective bundIe map L ~ LoœLo'
AlI the other cases, stated above, are proven similarly: one cao always find

enough sections 50 that at least two of them do not have common zeroes, thus

defining an injective bundle map.

2.3 Bundles over D X T.

A natural tool for classifying stable bundles is their graph. Fixing the graph, we

would like to know to what extent the graph detennines the bundie over over 1f..

We will split this problem into two parts:

A.local problem: choosing D c pL, what bundles over 7r-L(D) ~ D x T have

this graph over D x PicO (T)/ ± = 0 x pl?

.A global problem: having covered pl by, say, two dises Dl and Dz, and chosen

bundles over 1r-1(Di ) that are compatible on the overlap, in how many distinct

ways can one glue them together to obtain bundIes over 1l?
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In this section, we consider the local problem; Le. we describe the local

geometry of a rank two bundle E over D x T, where D is a dise in Pl. We begin

by recalling the situation over the fibres of 1r. Let x E D.

- If {x} X pl is not included in the graph, let its intersection with the graph be

(x, l), where l is the unordered pair of bundles {La, Lô} C Pic°(T)j± which

map into E over 'fr-Lex).

a) When lis not a halfperiod (i.e., La i= LD) then E l''V LoœLôover 'fr-I(X).

E is determined by the graph.

b) When l is a half period, either L = Lo œLo, or E is of type H).

- H {x} X pl is the graph, tben E over 'fr- l (x) is a sum L œL·, Cl (L) < 0 (type

iii). If {x} x pl bas multiplicity n in the graph, then cl(L) = -k, for some

kEN sucb that k < n .

2.3.1 Extensions of line bundles.

Extensions are a very useful tool in the study of rank two vector bundles. We would

like to show tbat given an S L(2, C)-bundle E over 11., and a dise D C pl, we can

always express E over 'fr-I(D) ~ D x T as an extension of Hne bundles

where the choice of the line bundle L will be determined by E.

Let p E 11., and let D be a dise in pl which contains 1i(p). Let (x, z) be a

coordinate system centered at p E D x T ~ 'fr-I(D). Let E be an SL(2, C)-bundle

on 11. with c2(E) = n, and graph 9 E IO(n,1)1. By the discussion in section 2.1.2,

we know that 9 decomposes into two pieces:

- the graph of a rational map F : pl ~ pl of degree k,

- a sum of (n - k) "vertical fibres" {Xi} x pl, counted with multiplicity.
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Let us now restrict E and its graph ta D x T. \Ve then set

(

number of vertical fibres in )
no = k+ .

D x pl, counted with multiplicity

The integer no can be thought of as a relative second Chem class of EIDxT

in H 4 (D x T, (D - B) x T), where B c D is a 2-ball around p. Obviously, no $ n;

and if EI:riXT = V Et) V*, for some Xi E D and V E Pic-j(T)(j ~ 1), then j < no.

Let x E D. We have seen in section 2.2.3 thatEI:rxT can be expressed as

an extension of L* by L, for any line bundle L on x x T of degree -l < -no. We

would Hke ta show that we can actually fix a Hne bundle L of degree < -no, and

get a local extension

over D x T, where L also denotes the pullback of L ta D x T.

Remark: Punctually, we have more possibilities for the choice of L. Let

x E D. If ElzxT = V_j €a V~j' it is then an extension of L· by L for any Hne bundie

L on x x T of degree -l < -j. But, as we ultimately want to have an extension

over D x T, we will however consider, in the general case, line bundles of degree

< no·

For the remainder of this section, let T = 0 x T. Let us now fix a Hne bundle

L E pic-I(T), for sorne l > no, and let L also denote the pullback of L on D x T.

By the discussion in section 2.2.3, in arder to show that we bave the extension

over D x T, we just need to show that there exists an injective bundle map L ~ E

on D x T. Now, this is obviously the case over T. We therefore just bave ta prove

Proposition 2.7 An injective bundle map L ~ E on T extends to an injective

bundle map L ~ E on D' x T, for sorne open set D' cD.

Proof: We start by showing that sections of L· ® EloxT extend ta a neighbor­

hood W x T of 0 x T in D x T. Let l be the ideal sheaf defining OT in 0 = ODxT.

55



•

•

•

We then have the Collowing exact sequence

o-+ zn-1Ir --+ olra --+ 0lra-1 --+ o.

Since the conormal bundle LV- oC T in D x T is holomorphically trivial, zn-l II"'- ""J

sn-l (N-) ""J 0 and this sequence becomes

0--+0 --+ olra --+ olr-1 -+ O.

Let F = O(L- ® EloxT), Fn - 1 = F® 0lzn-1 and Fn = F® olzn. Let us

note that in this notation, Fo = F. Tensoring the above sequence by F gjves us

By the long cohomology exact sequence, since Hl (T, F) = 0,

and sections from the (n-l)-th Cormal neighborhood of T extend to the n-th formal

neighborhood oCT. Therefore, by Grothendieck's theorem on formal functioDS [Ha],

sections of F extend ta a neighborhood D' x T oC 0 x T in D x T. 0

Remarks: i) In specifie cases, we can choose a line bundle L of smaller degree.

The prooCs in these cases are similar.

ii) We are interested in classifying rank 2 vector bundles over D x T. We

therefore need to know whether or not one cao find a nowhere zero map from L to

a fixed E over D x T. Proposition 2.7 implies that there is no local obstruction,

but we need to find sucb a map globally over D x T. Even though a global nowhere

zero map should be possible to find, there does not seem to be an obvious proof.

2.3.2 Local isomorphisms.

In section 2.2.2, we gave aIl the possible isomorphisms of SL(2, C)-bundles over T.

Let us now describe the situation over D x T. The Collowing two lemmas were

proven in [BH].
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Lemma 2.4 Let E, E' be SL(2, C)-bundles over D x T, D simply connected C C,

which have the same graph in D x pl. Let this graph be that of a rational map

g : D -+ ]pl. Assume that bath E and E' have the property that they do not restrict

to Loe Lo, L3 = 0, over any {x} x T. Then E t'V E'.

Lemma 2.5 Let E, E' be SL(2, C)-bundles over D x T, D simply connected C C,

which have the sarne graph in D x pl. Let this graph be of the form ({zo} X Pl) +
(Pl x {/}). Again, suppose that E and E' have the property, if 1 is a half period,

that they do not restrict ta Lo œLo, L~ = 0, aver any {x} x T. Let E ~ E' over

{zo} x T. Then E t'V E'.

Proof: Let us give a sketch of the proof of lemma 2.5 to illustrate how it can be

extended to two other cases. Suppose that over {zo} x T we have E = L eL·, for

sorne L with Cl (L) = -1. It was then proven in [BH} that, in this case, one can

write E globally as an extension

o-+ L -+ E -+ L· -+ O.

Ez = ElzxT is determined by the extension class e(z) E W = HI(T, L2
). Away

from zo, each Ez is by a nonzero element of W, and therefore corresponds to an

element of P(W) = pl = Pic°(T)/±. Let Lo E PicO(T) be such that 1 = {Lo, Lo}.
As the map portion of the graph is constant, e(z) therefore takes its values in a

Hne V C W; and e(z) can be thought of as a function D -+ C. This function

only vanishes at z = Z00 As the GL(2,C)-isomorphism type is invariant under

rescaling of e(z), we can set e(z) = (z - zo). E is then isomorphic to a standard

extension. The same is true of E'. E and E' are thus isomorphic as GL(2, C)­

bundIes. However, D is simply connected. Therefore, taking an appropriate square

root gives an SL(2, C)-isomorphism. 0

These two lemmas extend to two cases that will be usefuI to us in chapter 6:

Lemma 2.6 Let E, E' be SL(2, C)-bundles aver D x T, D simply connected C C,

which have the sarne graph in D x Pl. Let this graph be of the form 2({zo} X Pl) +
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(Pl X {i}). Again, suppose that E and E' have the property, if l is a half period,

that they do not restrict to Lo E9 Lo, L~ = 0, over any {x} x T. We also suppose

that over {zo} x T we have E ~ E' = L Ef) L*, with cI(L) = -1. Then E ~ E'.

Lemma 2.7 Let E, E' be SL(2, C)-bundles over D x T, D simply connected C C,

which have the same graph in D x pl. Let this graph consist of the two pieces:

the graph of a rational map g : D -+- pl,

a vertical fibre {zo} X Pl.

Again, suppose that E and E' have the property, if g(x) is a half period, that they

do not restrict to LoœLo, Lfi = 0, over {x} x T. Let E "'J E' over {zo} x T. Then

E~E'.

As we are only considering graphs where the vertical bar corresponds to

EzoxT = L œL·, where ct(L) = -1, away from zo, these extensions take values in

P(W) = pl = PicO(T)/ ±. For similar reasons to the ones above, one can show that

they are given by standard extensions, and we thus have E :: E' over D x T.

Remark: In lemma 2.6, we cannot consider bundles E, E' sucb that over

{zo} xTwe have E "'J E' = L(J)L·, with cl(L) = -2. This stems from the fact that,

for snch an L, the extensions of L- by L are in JP(HI(T, L2» = p1. However, there

are divisors in pa which are cones corresponding to singular quadrics (see [BH]) ,

and by the remark following proposition 2.7, this may prevent us from expressing

E as a global extension of L- by L on D x T.

2.3.3 Thansition functions for rank two bundles.

\Ve would like to give an e..xplicit expression of the transition functions of rank

two bundles, that have a given graph, over D x T. These constructions can he

generalised to any bundle of D x T. The notation of sections 2.2.1 and 2.2.3 will

be used in the following.

Let E have graph n(zo x pl) + (Pl x {I}), where {I} = (Lo, Lô), for Lo E
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Pico(T). vVe assume that Lo is not a half period, i.e. L~ i= O. Suppose that

El Zo xT = L E9 L· , where deg(L) = -1. On D x T r we can express E as an extension

O~L~E~L·~O.

This extension is given by a class (X) in 8 1(0 x T, L2) = Cl. Let us cover D x T by

the two open set \10 = D x Uo and Vl = D X Ul • If L is given by the divisor -P>'r

is a transition function for E on D x T, where 9 = u(z)e->'{(z) and 'Y is a multiple

ofX·

We would like ta give an explicit expression for ArI(À). Suppose that Lo

is given by the divisor Do = Pp - Po. Then, as we have seen in the example of

section 2.2.3, there are sections r(z) and s(z) which define an injective bundle map

L ~ Loe Lô. Let i = 0, or 1. Since ri(z) , Si(Z) do not bave the same zeroes, we

have the following exact sequence on \Ii

O(L) Cr;, -Si~ O(La) e O(L~) [Si Ti 1O(L').

As Ui is a non-compact Riemann surface, Hl(\Ii, 0) = 0, and there exist holomor­

phic functions Qü Pi E O(lti), snch that Qiri + {3i S i = 1. This then induces the exact

sequence

59



• On va n VI., these sequences then give us the commutative diagram

1\11(À)9

[

1 -XnGo x nf3o ]

OCL) (x
n

, ro, -so~ O(L) €a O(Lo) €a O(L~) ~O__S_O__To--.,;;;_. O(E)

9 0 0

o h 0

O(L) ( R )1 O(L) €a O(Lo) €a O(L~) [
x ,Tl, -SI 1 -XnGl

o SI

By commutativity, we obtain the two equations

•
{

xR/3th-t = xRgpo + ro1',

-xftG1h = -xRgGo + So"(·

Multiplying the first equation by 0'0 and the second one by f30, and then adding, we

get

And, as Goro + f3oso = 1,

(2.6)

giving us an explicit description of At/CÀ).

The matrices kl(À) will be used in the next chapter, at which point we will

be interested in knowing how they are transformed when we move À by a period

2wiJ for i = 1,2. Let us first look at what happens to 'Y. If we consider 'Y as a

function of À, we have

•
Lemma 2.8 For i = 1,2,
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• Prao/: Ta simplify notation, let a = À + J.L, and b = À - J.L. Adding 2Wi ta À then

corresponds to adding it to a and b. If we replace À by À + 2Wi in the expressions

of r(z) and s(z)r we get

•

ro(À + 2Wi) = ro(À)e-271i (z-(tl+2wd ), and

so(,,\ + 2Wi) = so(À)e-'271i (Z-(b+2wd ).

As 0oro + f3oso = 1 for any À, we must have,

oo(À + 2wi)rO(À + 2Wi) + f3o(À + 2wdso(À + 2Wi)

= oo(À)ro(À) + f3o(À)so(À).

By using equation (2.7), we can rewrite this as

[Oo(À) - oo(À + 2wi)e-271i(Z-(tl+2wi})] ro(À)

+ [.8o(À) - /3o(À + 2wi)e-2'li(Z-(b+2wi»] so(À) = o.

As TO and So have no common zeroes, it implies that

oo(À + 2Wi' z) = oo(À, Z)e2Jli (z-(tl+2wil) , and

/3o(À + 2Wi' z) = f3o(À, z)e2'1i(Z-(b+2w,».

Similarly computations give us

01(À + 2wit z) = 01(À, z)e2'l,(z-(tl+2wi»e-2wi(z} , and

.81("\ + 2Wi' z) = .81 (À, z)e2'li(z-(b+2wil )e-2w,(z).

Inserting these into the expression of '"Y, we obtain

(2.7)

•

In section 2.2.1, we defined tPi(Z) = e2w,(Z)e-271i '::. And, as a + b = 2"\, this can he

written
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This can rewritten as

Remark: Let us note that, since lPiC-1 is doubly periodic on Vi, and tPiC-1 =

e-271iZ[i; h~~::~h]iC everywhere on VQ, then the transition matrices l\tf(À + 2Wi)

and define the same vector bundle.
o g-l
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Chapter 3

Stabilisation maps.

Let E be a fixed rank two Cao vector bundle on 1l with Cl (E) = 0, C2(E) = n. Let

us aIso fix a base point Po in 1l. M~ is then the moduli space of equivalence classes

of pairs (E, 'ljJ) where E is a stable holomorphie structure on E with A2E ::: 0, and

t/J is a trivialisation of E at Po, Le. M~ is the moduli space of framed instantons of

charge n on 1l. In this chapter, we study stabilisation maps M~ --+> M~+l on these

spaces.

If 8n is the moduli space of framed connections on E, where a framed con­

nection is now a pair (A, .,p), where A is anyeonnection and t/J is a framing at Po,

we shaH see in chapter 7 that stabilisation maps

always exista They are constructed by glueing an instanton of charge 1 at Po. We

would like to know ifit is possible to define an analogous map 9n,n+L : M~ --+> M~+l

in the holomorphie setting.

The holomorphie version of the maps f n,n+1 is eonstructed by glueing in a

eopy of OœI at Po, and deforming the new sheaf to obtain a locally Cree sheaf. Let us

reeall that Mn+ l is the moduli space of stable simple coherent sheaves F such that

c2(F) = n. Ifone forgets the Craming, the set of sheaves obtained by glueing in OœI

is a stratum of M n+1 that we will denote by M n+1,n. 'Ve will study the tangent

bundIe of Mn+1 along M n +1•n , which corresponds to the spaee of deformations of
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the sheaves in Mn+l,n. We will see that the locally free deformations are elements

of the normal bundle NMn+l/Mn+l.n t and that the normal bundle is a nontrivialline

hundle. This will then lead us to conclude that this holomorphie stabilisation map

cannot he defined globally on M~.

3.1 Glueings of 0 EB 1.

Throughout this chapter, we assume that l is the ideal sheaf of a point Po E 1/,.

If (x, z) are "standard" coordinates eentered at Po, we have that J is generated by

{x, O'(z)}, where O'(z) is the sigma funetion defined in section 2.2.1.

3.1.1 Glueings.

To glue in a eopy ofOe/, it is neeessary to specify an inclusion ofOel into OEaO.

We begin by giving a description of the set of inclusions of 0 e J into 0 œ0 as

the kemel of a surjective O-homomorphism 0 EB 0 ~ 0/J. As H umo(0,0/l) ~

0/1 ~ C, any such map is given by

o EB 0 [-c al 0/1, (3.1)

wbere [-c a]:I= [0 0] and a, cE C. We eonsider two sueb maps to be equivalent if

their kemels are equal as subsets of 0 e O. If I is the line through the origin in Cl

passing through (a, c), then

o EB 1 = {s E 0 e 0 1 s(po) El}.

k[-c a]
Thus, for any k =ft 0 in C, 0 EB 0 • 0/1 has the same kemel as (3.1). The

set of equivalenee classes of these maps is therefore

({[-c a] 1 a,c E C} - [0 O))/C ~ pl.

Let us denote this set by J~o. We can cover ..Y"o by the two open sets

ua = {[-ë 1] E Xo 1 ë E C} = C,

and

UI = {[I - al E X o 1 a E C} = c.
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3.1.2 Tangent space to Xo•

The tangent bundle of]Pl is ni = 0(2) = Horno(O(-1),0(1)). Consider a Hne

l E ]pl. The tangent space to pl at l cao then be described as

Let a E Xo. The Hne l in ]pl ,...., Xo corresponding to Ct is therefore l = (ker a)po,

and 0/1 = Cl Il. By the above, the tangent space to Xo at Q is given by

3.1.3 Xo as projective resolutions.

When working with projective resolutioDs of Oœl, it is more convenient to describe

Xo as a set of equivalence classes of maps 0 el --+- 0 œO. Two sncb maps are now

considered to be equivalent if their images are equal as subsets of 0 e O. Suppose

that we start with

0E90 [-c al 0/1,

and complete it to an exact sequence

0E91LoE90 [-c al 0/1,

where T is a matrix of the fotm T = [: :] ,with det T # o. The image of

o E9 1 in 0 e 0 is then independent of the choice of band d.

As we have seen, 0 E9 1 can be described as the cokemel of the map

O
(0, -O-(Z) , x) 0 0 J"'\-----. œ ev.

If 0 œJ is the image of T in 0 œ0, it will then have the following projective

resolution

[

a bx b<r(Z)]

(0 -C1(Z) x) c dz do-(z)
0' '. 0 œ0 œ0 · 0 e J.
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• Keeping in mind the above discussion, we choose to coyer Xo by the following

open sets Uo,UI :

and

with the identification

on the overlap.

Uo = {Ti! = [~ ~]; ë E C} =C,

U1 = {~= [~ ~l];ii E C} =C,

• 3.2 The siogular stratum Mn+l,n.

•

In this section we consider the moduli space Mn of stable SL(2, C) vector bundIes

on 11., with C2 = n, as weil as the moduli space Mn of stable simple sheaves of rank

2 on 11" with C2 = n. Theses spaces were introduced in section 1.6.2. For every n,

Mn is contained in Mn.

3.2.1 Definition of Mn+l,ne

If :F is any sheaf in Mn, let sing(:F) be the singular set of :F:

sing(:F) = {p E 1l 1 :Fp isnotfreeover Op}.

Let us consider the subset of Mn+l consisting of sheaves which are locally Cree

everywhere except at a single point, where they are isomorphic to 0 E9 1:

{
_ sing(:F) = a single point Po, }

M n+ l •n = F E M n+ 1 1 .

and :F ~ 0 E9 1 around Po
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• In this subsection, we would like to show that M n+1•n fibers over 11. x Mn

with fiber Xo, i.e. there exists a fibration

Xo • Mn+1,n

p (3.2)

•

•

1l xMn

For any coherent sheaf g, let g- = H O'mo(g, 0) be its the dual sheaf. The

projection P of this fibration is then defined to be the map

P : M n+1•n - 1l x Mn

F t-- (Po,P-)

where Po = sing(F), for all FE M n +1•n . That this map well defined is proven by

(i) P is LacaUy freej

(ii) we have the exact sequence

O-F-F--O/I-O;

(iii) Cl(P-) = 0, and C2(P-) = nj and

(iv) P- is stable.

Prao/: Let FE M n+1•n • Let Po is the unique singular point of F. Fis then locally

free away from Po, and F ~ 0 Et) 1 around Po. Therefore, as H orno(I, 0) ""'J 0, (see

lemma 1.2), P must be locally Cree, proving (i).

(ü) follows from the fact that, away from Po, Fis isomorphic to P-.

(üi) The exact sequence in (ü) gives us

ch(F-) = ch(F) + ch(O/I) .

If [11.] is the positive generator of H4 (1I.,Z), ch(F) = 2+(n+l)[1l], and ch(O/I) =
-[11.}. Therefore ch(P-) = 2 + n[1I.].
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(iv) As Fis torsion free and stable, (iv) follows from lemma 1.9. 0

In order to show that P is a surjective fibration, and that its fiber is ...Y'o, let

us now give a more explicit description of M n+l •n. Let E E Mn. Let us also fi" a

point Po E 11., and a trivialisation of E at Po. For any Hne l E Xo ~ pl, we then

define the following subsheaf Ë,.po of E:

É,.Po = {s E O(E) Is(po) E i}.

Ë"po is simply E away from Po. Moreover, if U is an open set containing Po on

which E is trivialised, then Ë'.Polu = 0 E9 l, and the inclusion

OE9Ic..!.-oœo,

is given by the matrix T corresponding to l. Therefore, (Ë"pO)·· ~ E, and we have

the exact sequence

o- Ë"po - E - 0/1 - O•

By similar arguments to the ones used in lemma 3.1, we cao show that

Lemma 3.2 For any E E Mn, Ë"po is a stable sheaf of rank 2 with Cl (Ë,.PO ) = 0

and C2(Ë,.Po } = n + 1.

o

Remark: Let us note that for any F E Mn+l,n, if Po = sing(F) and :F is

given by 1E "Y'o, then F ~ 1=,:;0'

We cao now define a local section of the map P. Let D be an open disc in

11., and l'V be an open subset of Mn, sucb that any bundle E E l'V is trivialised on

D. Let us then fix a local trivialisation t on D: for any E E l'V, we have t : El D ~

o EB 0ID. Let us fix a Hne l in pl. If we restrict ourselves to D x l-V C 11. x Mn,

we then have the following weU-defined local section of P

D x l-V ~ M n+l •n

(PO, E) 1-+ Ë,.Po
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This local section is of course independent of the choice of l. P is clearly a surjective

fibration \Vith fiber Xo:

1t xMn

Any element :F of Mn+1,n is therefore determined by three things:

(i) its point of singularity Po E 1l;

(H) the map 0 œ0 ~ 0/1 in Xo giving 0 El:) l = kero: around Po;

(Hi) the transition functions Ai; of P-.

3.2.2 Tangent space of Mn+1,ne

Let :F E Mn+l,n. Suppose that it is given by

(i) Po E 1l; (ii) 0: E ,tYo; and (Hi);P- E Mn.

The fibration (3.2) then gives us the following exact sequence of tangent spaces:

Each component can be described in terms of first order deformations as follows:

- Sïnce changing the point Po E 1l is equivalent to deforming I, we have

Tpo1l = Borll, Exth(l, l)) = (DeformationsofI) ,

Deformations of the

equivalence class

of the transition

functions of :F**.

If l = (kero:)po is the line in pl ~ "'Yo corresponding to a, then OII = Cl Il,

and we have seen in section 3.1.2 that

'Tt Cœ1) ( Deformations of the ).LoXO = Home(l, l = ~

map OœO~OII
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3.2.3 The space M n+ 1 at Mn+1,n •

We would like to show

Theorem 3.1 Mn+L is a smooth complex manifold of dimension 4n + 4 along

Mn+L,n'

3.2.4 Proof of Theorem 3.1.

By deformation theory, for any Ë E Mn+L,n, the tangent space to Mn+ L at Ë is

- 1 --TËM n+1 = Ext (11.; E, E)o,

where Ext1(1I.; Ë, Ë)o is the traceless component of Ext1(1I.; Ë, Ë). Furthermore, the

obstruction to the smoothness of M n+1 is in

Ext2 ('H; Ë, Ë). In order to prove the theorem, we need to show that

b) Ext2(1l; Ë, Ë) = o.

These groups can be computed via the cohomology spectral sequence described in

section 1.2. One of the main tools, for this computation, will be the exact sequence

0- Endo(Ë) - Endo(E) - Homo (0, 0/1) - O.

As Ë is isomorphic to E, away from Po, the exactness of this sequence only needs

to be checked locally around Po. This will be given by

Lemma 3.3 There is an exact sequence

o~ Homo(O œ1,0 œ1) ---t Homo(0 œl,°œ0) ---t Homo(0, 0/1) ~ o.

Proof: The exact sequence

Id [0 1]
0- 0 œ1 - 0 œ0 - 0/1 - 0,
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where Id is the identity, induces

f3
0- Homo(OEBI,OEB1) - Homo(OœI,OœO)-

f3
- Homo(O EB 1,0/1) = Hamo(OlO/I) œHorno(I,O/I)l

which is also exact. We have ta show that Im(,B) = Homo(O, 0/1). As Homo(Oœ

1,0 œ0) = Homo(O, 0 e 0) œHamo(l, 0 œ0), we simply need to verify that

ii) Homo (l, 0 œ0) c Ker(.B).

For any (911 92) E Hamo(O,O œ 0), /3(91,92) is the O-homo­

morphism in Homo (0, 0/1) given by 1 ..-+ (-ëg1 + 92)<Po). Any element of

Homo(O, 0/1) can obviously be obtained this way, thus showing that /3(Hamo(O, Oœ

0» = Hamo(O, 0/1), and giving il.
Let us note that Horno(l, 0 œ0) C Hamo(I, 1 œ1). Indeed, as we saw

in the proof of lemma 1.2 (üi), for any O-homomorphism f : 1 -+ 0, there exists

an h E ° such that f is given by x ..-+ hx and z ..-+ hz. We can therefore view

any element of Horne(I, 0 œ0) as a map given by s ..-+ (h 17 h2)s, where sEl,

and h lt h2 E O. Bence, f3 maps every element (hlt h2 ) of Hame(I, 0 œ0) to the

map 1 -+ 0/1 given by s ..-+ [(-ëh1 + h2 )s](po). As s(po) = 0, for any sEl,

f3(h ll h2) = O. Thus Hamo(I,°EB 0) C Ker(,B), proving ii). 0

Remark: The proof of the above lemma actually shows that the maps in

Home(O,O/1) = ,8(Hamo(OœI,OœO» can he thought of as maps (Oœl)po -+

0/1. Therefore, if 0 œ1 is the kemel of the map 0 El' 0 ~ 0/1 in ~Yo, we see that

Homo(OlO/I) = Hamopo«kerO:)po,C2 /(kero:)po) = Ta..-Yo•

CoroUary 3.1 (i) We have the exact sequence

Id [0 1)
0-+ Endo(O œ1) - Endo(O Et) 0) - Homo(O, 0/1) -+ 0,
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(ii) and, as a direct consequence,

Id· [0 1]
0- slo(OœI) - s10 (OœO) - Humo(O,O/I)-O

is also exact, where Id is the identity.

Proo/: (i) As we saw the proof of lemma 1.2 (iii) , HamoCI,O) :: Homo (0, 0),

where the one-to-one correspondence is given by

{
x ~ hx } H {l ~ h}.
y~hy

Thus, Endo(O œ0) "J Homo(O el,°œ0). Furthermore, (ii) is a direct conse­

quence of (i). 0

Globally, we have the short exact sequence

O-Ë-E-O/I-O.

This sequence, with the above results, gives

Corollary 3.2 (i) Homo(Ë, E) ~ Homo(E, E)j

(ii) There is an exact sequence

0- Endo(Ë) - Endo(E) - Hamo(O,O/I) - 0;

(iii) There is an exact sequence

0- slo(Ë) - sloCE) - Homo(O,O/I) - o.

o

Furthermore, we have

Lemma 3.4 (i) There is an exact sequence

H 1('H, sloCE» - H 1C'H, slo(Ë» - HO('H, Homo(O, (11»,

which gives H1(1I., slo(Ë» = Cn+l ;
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(ii) H2 (1I., Homo(Ë, Ë» = 0;

(iii) Exth(Ë, E) is a skyscraper sheaf supported at Po with fiber C3; and

(iv) Ext~(E, E) = 01 for k ~ 2.

Proo/: (iii) and (iv) are a direct consequence of lemma 3.3.

(i) The exact sequence follows from corollary 3.2 (iii) induces the long exact

sequence on cohomology

... ~ W(1I., sla(E» ~ W(1I., slo(E» ~ Jr(1/., Homo(O, 0/1» ~ ...
Since Homo (0, 0/1) is a skyscraper sheaf with fiber 0/1 supported at Po,

Hi (1{., Homo(0, 0/1» = 0, for i ~ 1. ~Ioreover the stability of E implies that

HO(1I., slo(E» = O. Therefore HO(1/., slo(E» = 0, and the above sequence reduces

to

Furthermore, since dim(Mn ) = 4n, H 1(1/., slo(E» = TEMn = can
•

(iï) As H i (1I., Hcnno(O, 0/1» = 0, for i = 1,2, the long exact sequence on

cohomology induced by the sequence ofcorollary 3.2 (ii) gives us that ](2(11., Endo(Ë» ~

H2(1I., Endo(E». By stability of E, ](2(11., Endo(E» = 0, thus implying (H). 0

Proof of Theorem 1:

We use the cohomology spectral sequence {Er} with

1E~,q = HP(1/., Exth(Ë, E»,

1~q => Extp+q (1I.; Ë, Ë).

- E~O = E~'O = H 1(1I., Homo(E, E»; and by lemma 3.4 (i), its traceless

part is Hl (11., slO(Ë» = etn + L•

- E~L = E~·1. As E:;2,2 = 0, and Ei'O = 1P(ll,Homo(E,E» = 0,

by lemma 3.4 (H), we see that ~.L = Ker(d'J. : E~,1 ~ Ei'O) = ~,1.
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Therefore, since Exth(Ë, Ë) is a skyscraper sheaf supported at p with

fiber CJ,

This then proves (i).

- By above, E;;,0 = Ei'o = o.

- By Lemma 3.4 (iv), Ext'b(Ë, Ë) = 0, implying that ~,2 = 0, and E~2 =

o.

- And since Exth (Ë, Ë) is a skyscraper sheaf supported at p,

proving that E~l = O•

o

Description of the tangent space.

Let us consider the exact sequence

Let Ë E Mn+1,n' (3.3) then gives us

T-M l -T-M -N- .E n+ ,n E n+l Mn+l/.,\ffn+l.n,E·

(3.3)

•
Let us give a geometric description ofTËMn+1 = Ext l (1l; É, Ë)o. \Ve suppose that

Ë is given by the data:

(i) Po is its singular point;

(ü) a map 0 œ0 ~ Oll in Xo giving 0 œl = kera around Po; and
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(iii) {Aij } are transition functions for E = (Ët· relative to an open cover V = {\Ii}

of'H..

TËM n+1 is then the set of all first order deformations of these things.

From the spectral sequence, we have the exact sequence

1. Hl('H., slo(Ë)): As we have seen above, we have the exact sequence

where
Deformations of the

equivalence class

of the transition

functions Aij of E

Furthermore, if l = (ker Ct)Po is the line in f1 ~ Xo corresponding to Ct, then

01l = Cl Il, and as we have seen in remark following the proof of lemma 3.3

(
Deformations of the )

RO(H., Hmno(O, 01I» = = Homc{l, Cl Il).
mapOeO~OII

2. HO('H., Exth(Ë, Ë)): Exth(Ë, Ë) is a skyscraper sheaf supported at Po with

fiber Exth(0 œl, 0 œI) = Cl. This fiber is the set of all defonnations of the

sheaf 0 œI. Any deformation of 0 œl is given by a map

9:0 ~ Oœl

1 Ho (t, s)

where t E 0, and sEI. \Ve can actually assume that t E 011. Simi­

larly, we can assume that s = bx + du(z), for b, d E 011. The deformation

corresponding to 9 is then the cokemel of

o ~ OœOœO

1 Ho (t, -(1(z) + b, x - d)
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\Ve see that (h, d) E Exth(I, 1) = Tpo11,; and t E Exth(I, 0) corresponds to

an extension 0 ~ 0 ~ V ~ 1 ~ 0 which is locally free if and only if t i= o.
Hence, if t i= d, 0 œ1 is replaced by a copy of 0 œo. Let us remark that t

is completely determined by the restriction of 9 : 0 ~ 0 El' l to 0po = Cl Il.
Its restricted image is then contained in (0 El' l)po = 1. Restriction to 0po

therefore induces the identification

We can then rewrite (3.3) as

This then implies that NMn+l/Mn+l.n is a line bundle with fiber

where 1= ËPo •

3.3 NormaI bundle.

As we saw in the previous section, the normal bundle NMn.+l/Mn+l.n. is a Hne bundle.

We wouId like to show that it is not a trivial bundle. In the remainder of this

chapter, we will denote the normal bundle NMn,+l/J'-'1n,+l.n by N.

3.3.1 Description of the fiber of N.

Let Ë E Mn+L,n. We would like to describe the fibre Në . Suppose that sing(Ë) =
po. Let V = {Vi} be an open cover of 11, on which E = (Ë)** is trivialised, and let

{Aij } be the transition functions of E with respect to this cover. \Ve assume that

Po is only contained in \10. Then, if et E Xo is sucb that ËI \fo ~ 0 œl = ker et , and

1 is the line in pl corresponding ta 0, we know that

Ë = Ë"Po = {s E O(E) 1 s(po) EL}.
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Let (x, z) be coordinates centered[~p~ in] Vo~ 50 that 1 is generated by {x, u(z)}. If Cl!

corresponds to the matrL,,< T = cd' E has the following projective resolution

on va

[
a bx ba(Z)]

(0 -a(z) x) c dx da(z)
0' '. OœOœO • OœI. (3.4)

Ar (0, -a(z), x)
The fibre JV È corresponds to the sheaves obtained by deforming " • Oœ

OeO. These defonnations therefore affect Ë only on \10. Let us describe how these

deformations affect the transition matrices A iO on Von \Ii. We start by pulling back

A iO through (3.4), and obtain the following commutative diagram on va n Vi:

[

a bx ba(Z)]
o (O,-O'(z),x~ oœoœo_c_d_x_dO'_(z_)_. Oel

1N;(T)

o 1 OœOœo------, OœO

(1,0,0) [~ ~ ~]

where

o -lfa(z) 0

000
[
00][100]M(T) = +
AioT 0 x C1(Z)

o o o

•

Let us note that z i= 0 on va n Vi, since Po ~ Vi for aU i i= O.

'-IVe then deform the lefthand part of this diagram, in such a way as to

conserve commutativity:

o (t, -q(Z),X~ "œ 0 E9"

11 1N;(t, T)

o (1,0,0). oœOœO
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• where

_ [ 0 0 ] [1 t/u(z) 0 ]Ni(t,T) = +
AiOT 0 x u(z)

o -l/u(z) 0

000

o 0 0

•

•

Completing the exact sequence of the first row by

o (t, -u(z),xl 0 Ell 0 Ell 0 [u~; ~ :l0 Ell 0,

and of the second row by

o (l,O,O! OEll OEll 0 [~ : no Ell 0,

we then obtain the new commutative diagram

[

O'(z)

{) Ct, -(j(z),x~ 0 œ 0 El) 0 -x

1 [Ni(t, T)

{) · OœOœO--------, OœO

(l, 0, 0) [~ : :]

where

Mi(t, T) = [t:
l
~] .4iQT [t/:(Z) u~Z)]'

is obtained by taking the quotient. Let us note that

We then see that if tEe "V NE' then it corresponds ta

- Ë, if t = 0; and
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the locally Cree sheaf with transition matrices Bi; on the cover V, where Bi; =

.4ij if i,j 1= 0, and BiO = At/i(t, T) for all i.

Remarks: (i) If instead of (3.5) we use the exact sequence

[0 t 0]
o (1, 0, O~ 0 E9 0 E9 0 0 0 1 • 0 E9 0

in our construction, we obtain the matrices

At/i(t, T) = [1 0] AioT [ tlu(z) 0 ],
o t-1 x u(z)

which again have det(Mi(t, T» = 1. These will be used in 3.4.3.

(H) Let D be a disk around Po which is only contained in 110, Le. such that

D n Vi = 0 if i # O. We then replace the open set \tG in the cover V by the two

open sets D and (\10 - Po). If we now deform Ë on D, instead of 110, the transition

matrices Aij are then not affected. What will change is the transition matrix from

D to ("0 - Po), which is simply the identity Id. Therefore, if we replace AiO by Id

in the above construction, we obtain the matrices

_( [t- 1 0] [tlu(z) 0]M t,T) = T .
o 1 x u(z)

These will be used in section 3.4.2.

3.3.2 Non-triviality of the Nover Mn+1,n.

Let us start by noting that H 2(Mn+1,nt Z) # 0, and that one of its components is

H2 (.,:'<0 , Il) = Z. Indeed, by using the cohomology spectral sequence {'Er} associated

to the fibration (3.2), with

'~tq = HP(ll x Mn, HQ(Xo,Z»,

'~q => W+q(Mn+1,nt Z),

we find that E~2 = HO(1/. x Mn, H2(Xo, Z». Although 11. x Mn is connected, it

is not simply connected because 1rl (11.) = Z. We therefore have cohomology with
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coefficients in the local sheaf H2(XO, Z) = Z. An element in H 2(Xo, Z) however

corresponds to a choice of orientation. Since any complex manifold is orientable,

going around a loop in 1l x Mn does not produce monodromy. H2 (JYo, Z) is then

the constant sheaf Z, and we see that E~2 = H2 (XO' Z) = Z.

To prove that N is topologically non-trivial, it is therefore sufficient to show

that it is not trivial over Xo•

Let us fix E E Mn and Po E 1l. We can therefore consider Xo as being

the liber of P : Mn+l,n -i> 1l x Mn at (Po, E). If ËQ is the element of this fiber

corresponding to Q E Xo, we have seen that the liber of the normal bundle at ËQ is

This then shows that

Lemma 3.5 The restriction of the normal bundle N = NMn+lIMn+l.r& to Ko is

isomorphic to Homo(O(I), O(-1» = O(-2) .

o
We can also give an explicit description of a section s of the normal bundle

Nover Xo• If M(t, T) are the transition matrices given in remark (i) of section

3.4.1, we define s as foUows

s:Xo - N

T ~ kI(t,T)

On the overlap à = 1/ë, and

kI(t, T~) and lfI(ë-2t, Të ) therefore define the same vector bundle. This then shows

that N must have the transition function i?, verifying that N ~ O(-2) over Xo ,.....

pl.

3.3.3 Non-triviality of the normal bundle over Mn .

\Ve fi~ Po E H. and the identity matrix T = Id in Xo. Let us restrict ourselves ta

the subset Pic-l(T) of Mn consisting of vector bundIes E sucb that
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• - the graph of E is n({Po} x Pl) + (Pl x {i}), where 1E PicO(T); and

We begin by· finding transition matrices for E. \Ve know that 11. can be covered by

two copies of C x T. We therefore just have to describe the situation on D x T,

where D is a disk centered at Po. \Ve will use the notation of section 2.3.3. D x T is

covered by the two open sets VO, Vi. Pic-l(T) has coordinate À. If L has divisor P>.,

we denote by E>. the bundle such that EI1r-1(pO) = L œL*. \Ve have seen in section

2.3.3 that E>. has transition matrix

A lO = [9 'Y ]
o 9-L

on vo n Vi, where 9 = u(z)e->'(z).

Let us now define the following section sof Nover the coyer C of Pic- L(T):

• s: C

À

- N

At/(t, À) = kIl (t, Id)

•

where this time we are working with the following transition matrix

[1 0] [ tlu(z) 0 ]kil (t, T) = A10T .
o t- l x u(z)

If we move À by the period 2Wi, we obtain the transition matrix

where the function tPi(Z) and the constant C = e-411i (>.+2wi} were defined in sections

2.2.1 and 2.3.3, respectively. Since diag(tPil(z)C, tPi(Z)C-l) is doubly-periodic on

Ut, the matrices lvl(t, À+2Wi) and 1\I(e-211iZC-lt, À) define the same vector bundle.

N therefore has e-211izC-l as factor of automorphy on Pic-l(T). The restriction of

N to Pic-l(T) is therefore a non-trivialline bundle.
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• 3.4 Stabilisation maps.

•

Let us choose a fi.."'(ed rank 2 Cao vector bundle E on 1/. with cL(E) = 0, c2(E) = n.

We also fi.."'( a base point Po. We consider the moduli spaee M~ of equivalence classes

of pairs (E, 'if;) where E is a stable holomorphie structure on &with A2E -- ", and

1/J is a trivialisation of E at Po. M~ is then the moduli space of framed instantons

of charge n on 1/.. Let us also consider the moduli spaee Bn of framed connections,

where a framed connection is now a pair (A,1/J), where A is any connection and 1/J

is a framing at Po. As we shaH see in chapter 7, stabilisation maps

a1ways existe They are constructed by glueing an instanton of charge 1 at Po. We

would like to know ifit is possible to define an analogous map 9n,n+l : M~ -+ M~+l

in the holomorphie setting.

The holomorphie counterpart of glueing an instanton seems to be the Serre

construction. Given a stable holomorphie vector bundle E on 11., one finds a stable

holomorphie vector bundle E' sucb that

- it can he expressed as an extension

o-+ L -+ E' -+ L· ® 1 -+ 0,

where L is a Hne bundIe, and 1 is the ideal sheaf of Po;

- E' is isomorphie to E away from Po.

(3.6)

•

Unfortunately, as 1P(1t, C) = 0, we cannot express E' globallyas such an extension

(or else, E' would always have c2(E') = 1). Let V = {\ti} he an open cover of 1l

such that Po is only contained in ltO. \Ve can then

- apply the idea given ahove to the restriction of E to VO;

- glue the bundIe thus ohtained to EIC1l-po), using the transition functions of

E.
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By what we have seen in the previous sections, this is the same thing as

glueing 0 El) / at Po, and deforming the new sheaf to obtain a locally free sheaf.

In a neighborhood of (E, 'l/J) in M~, such a map ahvays exists. Defining a such

stabilisation map globally

gn,n+L : M~ ~ M~+L

E H- E'

however implies finding a nowhere zero section of N. And, as N is a non trivial

Hne bundle, this is impossible to do. The map will always depend on the choice of

inclusion ofOœ/ ioto OeO at Po. In addition, the results of section 3.4.3 indicate

that it is impossible to find a canonical choice of Hne bundle L giving the above

exact sequence (3.6) .
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Chapter 4

Fibre of the graph map.

The moduli space Ml of instantons of charge 1 on 11. is weil understood. It was

proven in [BH] that it is the total space of a principal T -bundle given by the graph

map G : Ml -+ p3\Pl x l, where T is an elliptic curve and 1 is a subset of PicO(T)

that will be defined in 4.1.1. In this chapter, we study the fibre of the graph map

G : Mn ---+ p2n+l, for n ~ 2.

fi we restrict ourselves ta a certain subset of p2n+l, we can show that the

fibre of G is the Jacobian of a Riemann surface of genus 2n -1. In the first section,

this result is obtained by the techniques used in [BH]. In this context, the fibre

gives possible glueings for bundies on D x T. In the second section, we approach

the problem from the point of view of spectral curves. One can associate ta each

graph 9 a spectral curve S which is a hyperelliptic curve of genus 2n - 1. \oVe then

show that the elements of the fibre G-l(g) are in one-to-one correspondence with

line bundles on S of a fixed degree. Let us note that our construction also works

for n = 1, and that in this case S is an elliptic curve.

4.1 Fibre of the graph map.

Let

G : Mn - IO(n, 1)1 = p2n+l
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be the map that associates to each SL(2, C)-bundle E with c2(E) = nits graph in

pl x pl.

4.1.1 The image of the graph map.

As we have seen in 2.1.1, one can describe Pico(T) by constant automorphy factors.

If one sets T = c- / {An}, the half periods oC Pico(T) correspond to 1, -1, ..[).., -../X.
Let Cl be the circle in Pic°(T) corresponding to Cactors oC nonn 1. Cl projects to

an interval 1 in Pico(T)/ ± = pl, joining the two half periods +1 and - L

Let pl x 1 denote the set of graphs

{({z} X pl) + (pl x {l}),z E 1P1,1 E I}.

As proven in [BH], we then have

Theorem 4.1 For n > 1, G is surjective.

For n = 1, the image of G is p3\Pl X 1.

4.1.2 The fibre of the graph map.

Any bundle on 1l can be obtained by glueing two bundles on D x T. We begin by

briefly recalling the isomorphism classes oC certain bundles on D x T. Let DcC

be simply connected and E be an SL(2, C)-bundle on D x T such that E does not

restrict to Loe Lo, L~ = 0, over any {x} x T. Let g be the graph oC E. ReCerring

to lemmas 2.4 and 2.5, we have the Collowing possilities

if 9 is the graph of a rational map Il : D -4> pl, the isomorphism class of E is

then uniquely determined by g;

iC 9 is oC the Conn ({zo} X Pl) + (Pl x {i} ), the isomorphism class of E is then

uniquely determined by l, and by the choice of Une bundle in Pie-1 (T) giving

E over {zo} x T .

Let us now suppose that E is a holomorphie SL(2, C)-bundle on 11. with

c2(E) = n that has a graph G(E) = 9 of one of the following two types:
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a) 9 is the graph of a holomorphie map F : pl ~ pl of degree n, if n > 1;

{3) 9 is of the fonn ({zo} X Pl) + (Pl x {i}), if n = L

\Ve again assume that E does not restrict to LoEB Lo, L5 = 0, over any 1f'-l(x). Let

us note that, in case {3), the only possibility for the restriction of E to 1f'-l(ZO) is:

E = L œL·, for sorne L EPie-1 CT). Furthermore, it was proven in [BR] that, in

case (3), the fibre of the graph map is Pic-l(T).

Let Do, Doc be an open cover of pl such that Zo is only contained in Do. In

case a), the above discussion tells us that the restrictions of 9 to Do X pl, Doc X pl

determine, up to SL(2, C)-isomorphism, unique bundles on Do x T, Doc x T. The

elements in the fibre G-l (g) then correspond to choices of glueing. By surjectivity

of G, we know that at least one glueing will give a stable bundle E. Furthermore,

if Aut = AutSL(2,Q (E), one has

G-1(g) ~ r(Do x T, Aut) \ r«Oo n Doc) x T, Aut)/r(Doc x T, Aut). (4.1)

We will use the pushdown A = 1r.(Aut) to determine G-1(g). Relative to

the cover Do, Doc, al! the possible glueings will then be given by Hl(Pl, ..4). Let

Ct = 1f'.(sl(E)), where sI(E) are the traceless endomorphisms of E, and let K and M

be the kemei and the cokemel of the e..'"q)onential map Ct~ ..4. Ifwe set L = a/K,

one bas sequences

O~K~a~L~O,

\Ve will use these sequences to compute HI(PI, A).

4.1.3 Bundles with C2 = 1.

(4.2)

(4.3)

•
Let E be a stable holomorphie bundle E with c2(E) = 1. The graph 9 = G(E) of

E is then of two possible types:

a) 9 is the graph of an automorphism F : pl ~ pl,

{3) 9 is a sum ({zo} X Pl) + (Pl x {i}).
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In both cases, one must exclude the existence of points x in pl such that

EI7r-1(x) I"'.J Lo E9 Lo, L~ = O. In case a), suppose that there is such a point x.

RL 7r.(LoE) is then a skyscraper sheaf supported at x, with fibre en, n > 2. If

l = {Lo, Lo}, this implies that pl x {l} is tangent ta the graph of F, and 50 dFx = 0,

which is impossible, as F is an automorphism. In case (3), it can be shown that the

presence of sueh points eontradicts stability. The argument involves destabilising

bundies (see [BH]).

In [BH}, the cohomology group HI(PI, A) was eomputed in bath cases, and

it was proven:

Theorem 4.2 (Case a). If 9 is an automorphism F : pl ~ pl, then the fibre of

G : Ml ~ pl at 9 is T.

(Case P). If 9 e p3\PI x 1 is a sum ({zo} x Pl) + (Pl x {l}), then the fibre of

G : Ml ~ pl at 9 is isomorphic to Pie-L(T) ~ T .

4.1.4 Bundies with C2 = n.

In this case, we only consider stable holomorphie bundles E with C2(E) = n and

graph 9 = G(E), sueh that

- 9 is the graph of a holomorphie map F : pl ~ pl of degree n; and

- there are no points x in pl where EI7r-1(x) I"'.J Lo œLo, L~ = O.

\Ve have seen, in the previous section, that if sneh a point x in pl e."<ists, then

dF:z: = O. If n > 2, the differential of F must vanish at sorne points in pl. \Ve

therefore have to exciude the cases where the zeroes of dF correpond to points x

sucb that EI7r-1(x) '" Lo œLo, Lfi = O.

Let us restate this by saying that we only consider bundies that have a graph

9 which is the graph of holomorphie map F : pl ~ pl of degree n that satisfies the

condition

If F (x) corresponds to a hall period, then dFx =F o.
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Every bundle having such a graph is stable. G-I(g) is then isomorphic to HI(PI, A) .

Since F is a map of degree n, there are 4n points in ]pl that get mapped to half

periods. Let Zi, i = 1, ... , 4n be these points and p(z) be a polynomial of degree 4n

that has the Zi as roots. Let S be the Riemann surface associated to Vp(z). S is

then a of genus [(4n - 1)/2] = 2n - 1 and

Zi-Idz

Wi = v'p(z)' i = 1, ... , 2n - 1

is a basis of r(f!(S)). \Ve can then show that HI(Pl, A) is the Jacobian of S. This

is done in

Theorem 4.3 Let 9 be the graph of a holomorphie map F : pl ---+ pl of degree n

satislying condition (*). The fibre of the graph map G : Mn ---+ p2n+1 at 9 is then

the Jacobian of a Riemann surface 01 genus 2n - 1.

Prool: Let Zi, i = 1, ... ,4n be points that get mapped by F to half periods, and let

p(z) be a polynomial of degree 4n that has the Zi as roots. Furthermore, let E be

a bundle that bas graph g. There are then only two types of restrictions of E to

fibres T = 'Ir-l(z) of 'Ir : 11. ---+ pl:

- a nontrivial extension of Lo by Lo, with L~ =::! o.

We start by describing Q and K. As det(E) = 0, there is a natural splitting

End(E) = 0 Ef) sl(E). Referring to lemma 2.2, we find that hi (7t"-1 (x), End(E» = 2,

for i = 0, 1, and hO('Ir-1(x), sl(E» = 1, for all x. Grauert's Theorem then implies

that the direct image sheaves Jr'Ir.(End(E», i = 0, 1, and 0 = 'Ir.(sl(E» are locally

free. Therefore 'Ir.(End(E» splits as "Ef) Q.

1) cr = o(-2n): Let "Y is the positive generator of1P(Pl: Z). As 1r.(End(E)) ~

Oeo, we just have to show that cI(1t".(End(E») = -2n,. Sïnce the canonical bun­

dIe of 11. is K'H. ~ 'Ir.KPl, the dualising sheaf of 1r : 11. ---+ ]pl is then holomorphically

trivial; and, by relative Serre dua1ity, 'Ir.End(E) = (Rl 7t".(End(E»)*. Therefore
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• Let h is the positive generator of H4(1l, Z). \Ve then have the following map on

cohomology:

1r_: H-(1l, Z) ~ H·(Pl, Z)

h ~ '"'(,

(j ~ 0, if (j =/; h.

By Grothendieck-Riemann-Roch,

ch(1r!(End(E») . td(pl) = 1r.(ch(End(E» . td(1l». (4.4)

•

•

With these generators, td(ll) = 1 and ch(End(E» = 4-4nh. Therefore 1r.(ch(End(E»·

td(1l» = -4n'"'(. Also, since the tangent bundle of pl is 0(2), td(Pl) = 1 + 'Y. In­

serting these in (4.4), we get eh(1r!(End(E») = -4n1', and cL(1r.(End(E») = -2n'"'(.

We thus obtain the cohomology groups

2) K: Referring to lemma 2.3, we see that K is zero on any open set

eontaining the Zi, Away from the Zi, K is locally the constant sheaf Z: K =

{21t"i diag(m, -ml, m E Z}. There is a Z/2 monodromyon K that corresponds to

branching around Zia It has the eff'eet of interchanging La and Lo. We can a1so give

the following explicit embedding of K into Ct ~ O(-2n):

2 . d· ( ) mdz
1t"~ lag m, -m ~ Cï::\.

vp(z)

To compute the éech cohomology of K, we use the following Leray covering of the

Riemann sphere pL described in [BH]. Suppose that each Zi lies on the equator. Let

Di be closed dises along the equator, eaeh containing a Zi and such that DinDj = 0,

if i =/; j. The cover is defined by

UN = the points in pl - (UiDi) lying north of a line

which passes below the equator;

Us - the points in pl - (UiDi) lying south of a line

which passes above the equator;

Vi - open dise containing Dit such that Vi n \Ij = 0, if i =/; j.
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• Let us fi..'"( trivialisations of K on these open sets. The restriction maps are

ail the identity, except for P~i = -Id, i = 1, ... , 4n, which corresponds to the mon­

odromy about the Zi. The cochains with respect to this covering are CO = K(Us) Ef)

K(UN) = Z2, as K(\Ii) = 0 for all i = 1, ... ,4n; Cl = K(UsN ) Ef) E:~LK(UiS) Ef)

L:~l K(UNi ) = Zl2n, as UNS has 4n components; and C2 = L:~L K(USNi) = z8n,

since USNi has 2 components for aIl i = 1, ... , 4n. Since

(m, n) 1----+ (n - m, ... , n - m, m, ... , m, -n, ... , -n)

Zo = ker(t5 : Co ~ Cl) = 0 and BI = Im(t5 : Co ~ CL) = Z2. The other

coboundary operator is given by

•
where

al - nI +ml + k1

b1 - n2 +ml - k1

a2 - n2+ m2- k2

~ - n3+ m2+ k2

a, - ni +ml ±k,

n'+1 + m, 1= k,

•

a4n-L - n4n-l + m4n-L + k4n- 1

b4n- L - n4n + m4n-l - k4n- 1

b4n nI + m4n + k4n •

(The altemation between + and - in front of the ~ corresponds to monodromy.)

In this case, ZI = ker( t5 : Cl~ c2 ) = Z4n and

B 2 = Im(t5: Cl~ C2 )

- {(aL, bt, ... , a4n, b4n ) E Z8n 1 E:::t (bi - ai) = eveninteger.}
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Combining these, we have

3) AJ: Referring to lemma 2.2, ~'"{p : a ~ A is surjective away from the Zi,; and it

has cokernel Z/2 near the Zi. i\t/ is then a skyscaper sheaf supported on the Zi.

4) A, L: Since A is included in 1r.End(E) = OEeO(-2n), the global sections of A are

±Id and HO (Pl ,A) = Z/2. And as ±Id is Dot an ~'"{poneDtialat Zi, HO(Pl, L) = O.

The long cohomology exact sequences associated to (4.2) and (4.3) are then

and

The inclusion z..n-2 -+ C is the mapping H1(S, Z) -+ Hl(S, 0) giving the lattice

of Jac(S). Therefore, Hl(Pl, L) ~ Jac(S) x Z/2 and

Hl(JP1, A) ~ Jac(S)/(Z/2)4n-2 ~ Jac(S).

o

4.2 Spectral curves and their Jacobian.

4.2.1 Spectral curves.

Let E he an SL(2, C)-bundle with c2(E) = nover 1/., and g he its graph. Given the

fibration 1r : 1/. ~ pl, let us also denote by 1r the projection

1r : 1l x C* -+ pl x ca
(x, a) ......-+ (1r(X) , a) .
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If s : 1l x C' ~ 1l is the projection onto the first factor, we then have the commu­

tative diagram

E ----- 11. • pl

Let us briefly recall the construction of the graph g. If V is the Poincaré

Une bundle over 1l x C*, L := Rltr. (s· E ® V) is a skyscraper sheaf supported on

a divisor S in pl x C*. Furthermore, this divisor is invariant under: the Z-action

on C* generated by '\, and the involution on C* defined by z Ho Ijz. S therefore

descends to a divisor S on pl x pl, that is defined ta he the graph 9 of E. Before

descending to S, S ohviously descends to a divisor S on pl x ce j'L. S is a double

cover of S that can be be considered as a spectral curve of g. We would like to

know if L aIso descends to a skyscraper sheaf L on pl x C* j'L, with support S.

We begin by describing the Z-action on pl xC. This action is induced from

the Z-action on 1/. x ca , the latter being

We see that this action is trivial on 1/., and therefore trivial on Pl. Let us however

show that the fibres of the skyscraper sheaf L are not preserved by this action.

As L := R l 1r. (s· E ® V), we begin by looking at how Z acts on s·E ® V. Let

us first note that it acts triviaUy on s·E. Let us now show that it does not preserve

the fibres of the Poincaré line bundle V on 11. x ce, Le. .,\ does not send V(x,o) to

V(x,,\o). We recall that V can be constructed by constant automorphy factors: one

starts with the trivial Une bundle ë over ce 2 x C* and identifies t E GZt ,':2,0) with

o.t E G'\ZL "'\%2,0)' where the Z-action is trivial on C* . If we make Z act on C* as

weil, then

•

,\-
t-----

,\-
92
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In 11" (Zlt Z2) and (..\Zb .Àz2 ) of course define the same point, say x. The above

however tells us that ..\ sends V(x,a) to V(x~Q) (8) 7r. (O( -1)). Hence, the Poincaré tine

bundIe does not descend on 11. x c- l'Il.
If we pushdown to pL xC-, we encounter the same problem:

for any (z, a) E pL xe-. By the Projection formula,

Thus L(z,a)~ L(z,ÀQ) (8) O(-1), and L does not descend on pL x C /z.

\Ve can however get around this problem by constructing a sheaf L, on pL xC·

such that L,(z,o)~ .c(z,.\o) (8) 0(1). The fibres of L (8) L, will then be preserved by

the action of Z. Let us assume that the graph of E does not have a vertical bar at

the origin Po of Pl. We can describe the bundIe O(-1) as being given by the divisor

-Po. (If the graph has a vertical bar at Po, we will simply take another point of pl

to descihe the divisor of O(-1).) Let l'V = (po x ca) n S be the set of points on S
which lie above Po. If (a, b) is a representation of the pair of points that lie ahove

Po on S, W is then the set of ail translates of this pair by ..\ in S:

w = U(..\ia, ..\ib).
iEZ

rvIoreover, a+b is a dhisor on S. Let us denote T(a+b) := ..\ia+,,\ib the translate

of (a + b) by..\i. We then define a divisor on S as the locally finite sum

1) := L iT-i(a + b).
iEZ

Let .c be the tine bundle on S associated ta the invertible sheaf 0(1). Let us also

denote by L, the tine bundIe thought of as a sheaf on pl xC-.

We fix a section 1 of O(-1). It will then have a zero at Po. \Ve then define
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the following Z-aetion on the sheaf L @ 1:, over pl x C-

L 1:,1 (z, 0:, S ® t) Ho (z, Ào:, Às @ Tt) L 1:,1
® 1(:,0) : • ® 1(:,ÀO)

pl X C () (,\) . pl X C* .
Z,O: Ho Z, ct

L ® 1:, is therefore invariant under this action, and it descends to a sheaf L .­
CL ® 1:,) / '" on pl x T* = (Pl xe-) / "', with support S. Let us note that if we pull

back l to pl X c- and tensor it by r,*, we get back L.

Let us now assume that 9 is the graph of a holomorphie map F : pl ---+ pl

of degree n which satisfies condition (*), Le. there are no points x in pl such that

EI1f_l(X) = Lofi) Lo, L~ = O. The restriction of the skyscraper sheaf L to 5 is then a

line bundie. Furthermore, as the first Chem class of L is given by S, the first Chem

class of li5 is completely determined by the graphe Therefore, one can associate

to each element of the fibre G-I(g) a line bundie Lis on 5, and these line bundies

ail have the same degree. Let us also note that since F has degree n, S is a double

coyer of pl with 4n branch points, and must therefore be a curve of genus 2n - 1.

Renee, if n = 1, 5 is an ellipic curve, and if n > 2, 5 is a hyperelliptie eurve.

4.2.2 Description of Jac(S).

Let E be a holomorphie SL(2, C)-bundle on 11. with c2(E) = n. In this section, we

would like to prove that, if the graph 9 of E is the graph of a holomorphie map

of degree n which satisfies the condition (*), we cao then recover E from the sheaf

L = RLIrI*(s·E @ V). Keeping in mind the discussion at the end of section 4.2.1,

this will then give us a one-to-one correspondence between the fibre G-L(g) of the

graph map at 9 and line bundles on S of a fixed degree.

Let 111 and 112 be two copies of the Hopf surface, with projections onto pl

denoted by 1r1 and 1r2, respectively. Let 111 XPl1l2 be the fibred product induced by

tri : 1lï - pl, for i = 1,2, and let Pi : 11.1 XP11l.2 -1l.ù i = 1,2, he the natura!

94



•

•

projections associated to this product. For i = 1,2, we will a1so denote by Pi the

following projections

Pi 1ll Xpl1l2 X C- - 1ii X C*

(Xb X2, a) 1--- (Pi(Xb X2), a)

and by 1ri the projections

1ri lli X C* - pl X C-

(Xi, 0) r-- (1ri(Xi),O)

Let E be a holomorphie SL(2, C)-bundle on 11.1 with c2(E) = n. We will

assume that the graph of E is a holomorphie map 9 : pl 4' pl of degree n whieh

satisfies the condition (*) defined in section 4.1.4, Le. that there are no points z

in pl sucb that EI1I'-l(z) ~ La œLa, L~ ~ o. We have the following commutative

diagram

Pl

s·E ---... 11.1 X ce __1r_l... pl X C-

sI 1
1rl 1

E ------ 11.1 ----..- P .

~Ioreover, if s is the canonieal identification of 11.2 x C* with 11.1 x C*

•
we also have the following commutative diagram
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Using the notation of the previous suhsection, we have the skyscraper sheaf

L = Rl1rl.(S· E ® V), with support S = supp(L) C pl Xca. \Ve can then obtain E

from L in the following three steps:

- we pullhack L to tl2 X ca, and then push it down to 11,1 X ca to get the

skyscraper sheaf s.(1riL) whose support is now 1rïl(S);

- we tensor s. (1ri L) by V· to counter the influence of V in L;

we 6nally want to push down to tl1• Let us however note that the fibre of s is

not proper. Nevertheless, as s.(1riL) ~ V· = S. (1riRl1rta (s· E ~ V» ® V·, the

presence of both V and V· implies that the Z-action, induced from 1t1 x ca,
is fibre preserving. Taking the quotient with respect to this action, we thus

obtain a sheaf on the compact manifold 111 xe- /Z. We can DOW push down

to 11.1, and find that

E ,..., s*(s.(1riL) ~ V· / .... ).

This will he proven in

Proposition 4.1 Let E be a holomorphie SL(2, C)-bundle on 111 with c2(E) = n.

We assume that the graph of Eisa holomorphie map 9 : pl 4' pl of degree

n, and that there are no points z in pl where EI1f'-I(z) ~ La EB Lo, L5 ~ O. Il

L = Rl1rl.(S·E ~ V), then

where the quotient is taken with respect to the Z-action induced from 1t1 X C.

Proof: As the proof is very technical, we will state sorne of the results that we need

without proof. Their proofs will be given in the next section.

Let us denote by diag(1i) the diagonal in 11,1 Xpl 11,2, i.e. if (t b t2 , z) are

local coordinates at a point in the fibred product, then diag(ll) = {tl = t2}' If
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• we set D = diag(1l) x C* C 111 Xpl 11.2 xe-, D is then an effective divisor in

111 XPl1l2 X C· , and we have the following exact sequence on ?lI XpL 1/.2 X C*:

Pushing down to 1/,2 X C*, we obtain the long exact sequence

•

~ P2.(Pi(s·E ~ V)(D)ID) ~ R1P2. (Pi (s· E ® V» ~

~ R 1P2. (Pi (s· E ® V)(D» ~ ....

We then have the following:

Lemma 4.1 i) P2.(Pi(s·E ~ V» = 0,

ii) R 1P2.(Pi(s· E ~ V» = 1r2L,

iii) P2.(Pi(s·E ® V)(D» is a LocaUy free sheaf of rank two,

iv) R1P2.(Pi(s·E ~ V)(D» = O•

Inserting this into (4.6), we obtain the exact sequence on 11.2 x C

Tensoring by s·V·, and applying the Projection Formula, we have

(4.6)

•

As s is a finite morphism, pushing down on 'Ill x C* again gjves us an exact sequence

Let us note that s.(1r2L ® s·V·) ::: s.(1riL) ® V·. (4.7) can be further simplified,

given

Lemma 4.2 On 111 x C* 1 (sP2).(Pi(s·E ® V)(D) ~ (sP2)·V·'D) ::: s·E.
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•

We thus obtain the exact sequence on 11.1 x C*

We finally want to take the pushdown to 11.1• However, as we have previously

remarked, the fibre of s is not proper. But we can get around this problem, because

we now have a well-defined Z-action on every sheaf of the sequence. Taking the

quotient by Z, we again obtain an exact sequence on 111 x C* IZ

o~ (S1J2). (Pi (s· E ® V)(D) ® (sP2tV·)/..... -+ s·El..... ---+ s.(1riL) ® s·V· 1,." ~ o.
(4.8)

Let us note that the support of s. (1r2L) ® s·V· /"" is now the spectral curve S
associated to the graph of E. BeCore taking the pushdown, let us examine the

restriction ofthis sequence to a fibre T;. = {Xl} xC IZ of s. On T;., s· E - OEBO.

Furthemore, s.(1riL) ® s·V·1- is DOW a skyscraper sheaf with fibre C supported

on the two points p, q E ca IZ corresponding to E over 1r- l (xd. By lemma 4.1,

we know that the sheaf (SP2). (Pi (s·E ® V)(D) ® (SP2)·V·)/,." is locally Cree of rank

two. Its first Chem class must he equal to -2, and we see, by the construction,

that it is actually isomorphie to O(-p) œO(-q). On T;., (4.8) becomes

o-+ O(-p) EB O(-q) -+ 0 EB 0 ---+ <;',q -+ 0, (4.9)

where Cp,q is a skyscraper sheaf supported on {p, q} with fibre C. By Riemann­

Roch, we see that on each T;., the holomorphie sections of (SP2). (Pi (s· E® V)(D)~

(SP2)·V·)1_ are ail trivial, and its pushdown to 111 must then be o. 1'.'10reover, on

eaeh T;., the isomorphism on global holomorphie sections of 0 œ0 and Cp,q given

by (4.9), induces an isomorphism on s.:

(4.10)

•
As s is simply the projection ooto the first factor of a direct product, and E is

invariant under the Z-action, we have s.(s·El_) - E, and (4.10) gives us the

required isomorphism of s.(s.(-iriL) ® S·V·1.....) with E. 0
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4.2.3 Proof of lemmas 4.1 and 4.2.

Before proving the lemmas, we need the following

Lemma 4.3 If Al = ?ll x IP l 11,2 X ca, then

ii) For any (Xlta) E?ll x ca, ilT~l - {Xl} x 1ril(1T'l(xd) x {a}, and p =
D n T~l = (Xl, Xl, a), then

Proof: i) We will use the commutative diagram

111 X C* ----- pl X C* .
1T'1

As OM ~ p; (O"H2 xC- ), for i > 0, R!Pl.(OM) ~ .œPl.(P;(01!2 X C-)). ..\1so,

1rl : fil x C- ~ pl X C- is a fiat morphism, thus implying that, for all i > 0,

and we see that we just have to show that, for i = 0, 1,

(4.11)

•
Furthermore, as 1r2 : 112 x ca - pl xC- is simply the identity on ca , this reduces

to proving that, for 1r2 : 112 - pl, and i = 0,1,
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For any z E pl, let Tz =1ril(z). For i = 0, l, Riemann-Roch then implies

Thus, by Grauert's theorem, R!1r2.(01l2) is an invertible sheaf and

is an isomorphism.

For i = 0, the right-hand side of this map is canonically isomorphic to C,

and the left-hand side is simply 1r2.(01l2)Z. The image of the global section 1 of

Opl via the structural map Opl ~ 1r2.(01l;z) therefore generates the stalk at every

point, showing that 1r2.(O'H2) ~ Opl; and implying that Ch(1r2.(O'H2)) = 1.

By Grothendieck-Riemann-Roch,

\Ve have td(1l2) = 1 and Ch(O'H2) = 1; moreover, as 11.2 has real dimension 4, and

pl has real dimension 2, 1r2. is zero on o-cocycles; implYing that 1r2.(ch(01l2)) = o.
Therefore,

RI1r2.(O'H2) is then an invertible sheaf on pl ofdegree zero, proving that RI1r2.(01l2) ~

Opl.

ü) to iv) D n Ta = p. Let (tL, t 2 , z, z) be coordinates centered at p. D is

then given by {tl - t2 = O}, and Ta = {ti = Xlt Z = 1r1(Xt}, Z' = a}. Therefore, as

(D· Ta)p - l(C[t lt t 2 , Z, Z'J/(tl - t 2 , t l - XL, Z - 1rl(xd, z' - a))

- dirnc(C) = l,

D . Ta = p, and OM(D)ITa = OTa (P) is an invertible sheaf of degree one. The

inclusion OM c:-- OM(D) then induces an isomorphism on holomorphie sections,

and Pl.(O~f(D))= O'H1XC-. Furthermore, by Riemann-Roch,

R1pl.(OM(D»(Z:1.a ) = Hl (Tz: p OTa (P)) = 0,
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•

Cor all (XI, a) E 11..1 X C*. Thus Rlpl.(OA-I(D» = O.

v) As D is an effective divisor, we have the exact sequence

Pushing down to 111 x ce and reCerring ta i) and iv), we obtain

As we have seen, the inclusion OM c.- OM(D) induces an isomorphism 01ilXC- "J

Pl.(OM(D», thus splitting (4.12) and implying v). 0

Prool 01 Lemma 4.1:

We have to prove the Collowing:

iii) P2.(pi(s· E ~ V)(D» is a locally free sheal 01 rank two,

Let us again note that, since 1r2 : 'H2 x C' ~ pl X C- is a fiat morphism, the

commutative diagram

11..1 Xpl 'H2 X ca E!. 'Hl X ca

~ l~l
11.2 X ca ----. pl X ca

1r2

implies that, for aIl i > 0,

(4.13)

•
Let (z,a) E pl X ca and 1(;,Q) = 1rïl(z) x {a}.

i) For generic (z, a), (s·E ~ V)l7(:.a) is a SUffi of non trivialline bundles of

degree zero, and, by Riemann-Roch,
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Renee, 1r1.(S·E 0 V) = 0 and P2.(Pi(s· E 0 V» "J 1r2·(1rI.(S·E 0 V)) = O.

ii) As L = R11r1.(s·E 0 V), ii) fol1ows from (4.13).

iii) and iv) For any (X2, a) E 11.2 X C*, let p = D n T'J:2 = (X2' X2, a), where

T'J:2 = P2 -1(X2' a) = 1r1-1(1r2(X2» x {X2} x {a}. By arguments similar to the

ones used in the praof of lemma 4.3 ii), we see that O(D)IT~ "V OTn (P) and
2 •

deg(0(0) IT-2) = 1. Thus, as pi(s·E 0 V) IT~2 is a sum of line bundles of degree

zero, pies·E 0 V)(D)ITz
2

is a sum of line bundles of degree one. By Riemann-Roch

and

Therefore R 1P2.(Pi(s·E ~ V)(D» = 0, and by Grauert's theorem, (4.14) implies

that P2.(Pi(s·E 0 V)(D» is a locally free sheaf of rank two. 0

Proof of Lemma 4.2:

We have to prove the following:

As SP2 = Plon D,

By lemma 4.3 v), Ple(O(D)ID) '" 0, thus proving the lemma. 0
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Chapter 5

Poisson structure and integrable

systems on Mn-

In this chapter, we begin by using Bottacin's construction [Bot) to define a Poisson

structure on the moduli space Mn of stable SL(2, C)-bundIes E with c2(E) = n on

11.. This structure will be induced, in natural way, from a Poisson structure on 1l.

Let ~ be the subset of p2n+l consisting of graphs which do not satisfy condition (*)

(see section 4.1.4), or which contain vertical bars. We then compute the dimension

of the symplectic leaves of Mn, and show that the graph map Mn ~ p2n+l is a

Lagrangian fibration over the complement of~. Let us note that, to prove the

latter, we will use arguments similar to those found in [Bel.

5.1 Poisson structure on Mn.

\Ve start by recalling some definitions and results of symplectic geometry! that can

be found, for example, in [WeJ.

Let ~~ he a smooth algebraic variety over the complex field C. A (holo­

morphie) Poisson structure on X is a Lie algebra structure {.,.} on Ox satisfying

the Leibniz identity {l, gh} = {ft g}h + g{/, h}. This structure is equivalently

given by an antisymmetrie contravariant 2-tensor 8 E HO (}(, /\2TX), where we set
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• {/t g} = (8, df 1\ dg). If the bracket defined by 0 satisfies the Jacobi identity

{l, {g, h}} + {g, rh, I}} + {h, {/,g}} = 0, (5.1)

•

•

for any f, g, h E feU, Ox), then 8 defines a Poisson structure on )(. For any function

1 E f(U,Ox), the map g Ho {/,g} is a derivation of f(U,Ox). There then exists

a vector field Hf on U such that HI . 9 = {/t g}t for aIl 9 E feU, Ox). The vector

field Hf is called the Hamiltonian -uector field associated to f.

Note that giving 9 E HO(Xt 1\2TX) is equivalent to giving a homomorphism

of vector bundles B : T·X --+ TX, with (9, a 1\ (3) = (B(a), (3) ( or (a, B({3» ,

up to a sign), for I-forms a, (3. If B has maximal rank everywhere, the Poisson

structure is said to be symplectic. For any even r, let

Xr:={pEXlrk(B) =r}.

A basic result [WeI then asserts that the .Yr are subvarities, and that they are

canonically foliated into symplectic leaves, i.e. r-dimensional subvarities which in­

herit a symplectic structure.

Let us define an operator tl: HO(X, 1\2TX) --+ HO(X, 1\3TX) by

d(a, (3, 1) = B(a)8({3, 1) - B({3)8(a, 1) + B('Y)8(a, (3)

-([B(a), B({3)] , 'Y} + ([B(a), B('Y)], (3) - ([B(,8) ,B(1)], a),

for l-forms a, {3, 'Y, where [', .] denotes the usual commutator of vector fields. It is

then easy to verify that

Proposition 5.1 The bracket {.,'}, defined by an element 8 E HO(.Y,A2TX), sat­

isfies the Jacobi identity if and only if dO = o.

The Poisson structure on Mn will be constructed using a Poisson structure on 1/..

The latter are given by the following proposition:

Proposition 5.2 A Poisson structure on 1/. is given by a global section s of the

anticanonical bundle w1l1 •
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Proo/: An element S E HO(1l,A2Tll) = HO(ll,wi/) that satisfies the condition

ds = 0 is, by definition, a Poisson structure on 11.. As 11. is a surface, the map d
must be identically zero. 0

Note that w1tL 1">J 0(2), thus implying that HO(ll, W.;tl) = C3. Poisson struc­

tures on 1l then exist. However, as H2 (1I., IR) = 0, a Poisson structure s on 11.

cannot be symplectic.

5.1.1 Poisson structures on Mn.

We recall that for every E E Mn, we have

and

Let us choose a Poisson structure s E HO(1I., 0(2) on 11.. We define an element 8 =

0& E HO(Mn , fi)2TMn) as foUows: for any E E Mn, O(E) : TÈMn X TEMn ~ C

is defined by

O(E) : H1(1l, sl(E) fi) W1t) X H 1(1I., sl(E) fi) W1t) ~

1P(1l, End(E) @ W~) ~ 1P(11., End(E) fi) W1t) Tt-) c.
(5.2)

•

The first map is the cup-product of two cohomology classes, the second is multipli­

cation by s, and the third is the trace map. Note that the stability of E implies

that HO(1I., End(E)) = C. By Serre duality, it then follows that the trace map

Tr : H 2 (1I., End(E) fi) Wlt) ~ C is an isomorphism.

The graded commutativity of the cup-product makes 8(E) skew-symmetric.

To prove that 0 defines a Poisson structure on Mn, we therefore only have to prove

that it satisfies the closure condition dO = o. The latter is a consequence of the

following theorem, due to F.Bottacin [Bot}:

Theorem 5.1 Let S be a Poisson surface and sE HO(S,wS1) a Poisson structure

on S. The antisymmetric contravariant 2-tensorO = 8& E HO(MO,A2TMO) defines
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a Poisson structure on the moduli space MO of H -stable vector bundles on S. (H

is taken to be a very ample divisor on S.)

In the proof, he shows that d8 = o. A Poisson surface is a smooth algebraic surface

that admits a non-zero Poisson structure. As 11. is not an algebraic surface, it is not

a Poisson surface. The algebraic hypothesis is however only used in the construction

of the moduli spaces of sheaves on S. The arguments proving that dO = 0 therefore

also hold in the case of 11., or for any compact surface, and (} defines a Poisson

structure on Mn.

As we have seen above, giving 8 is equivalent ta giving a homomorphism of

vectors bundles

with 0(0 ~ (3) = (B(a), (3), for I-forms a, f3. From the definition of 8, the homo­

morphism B is clearly the map induced on cohomology by multiplication by the

section s: at point E E Mn, we have

(5.3)

5.1.2 The rank of (J.

We shall now compute the rank of the Poisson structure 8, Le., the dimension of

the symplectic leaves of the Poisson variety Mn.

As 11. is not symplectic, s has a divisor. Let D he this divisor. Sînce W.;{l ~

0(2), D = Tl + T2 , where the 1i are irreducible nonsingular fibres of 1r. ~Iore

specifical1y, as 0(2) = 1r*(O(2», if 0(2) is given on pl by the divisor Zl + Z2, we

see that 1i is the elliptic curve tr-l(Zi), for i = 1,2. For any vector bundie on 11.,

we have the exact sequence

•
o ---t sl(E) ® W1{. ~ sl(E) ---t sl(EID) ---t 0,
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which induces the long exact cohomology sequence

Since the bundle E is stable, HO(ll, End(E» = C and H2(1l, sl(E» = O. Hence,

HO (11., sl(E» = 0 and, by Serre duality: HO (11., sl(E) /2')W1i) = (H2(1l, sl(E»)- = O.

The above sequence then becomes

and we have the following result:

Proposition 5.3 The kernel of the Hamiltonian morphism B(E) i3 given by

ker B(E) = HO(D, sl(EID»'

Hence
rkB(E) = dimMn - dimHO(D, sl(EID»

- 4n - dimHO(D, sl(EID»'

The rank oC the Poisson structure () at the point E E Mn is thereCore deter­

mined by the restriction oC E to the fibres Tl, T2 • For i = 1,2, the restriction Eln
can be oC three possible types:

ii) a nontrivial extension oC Lo by Lo, L5 "J 0;

ReCerring to lemma 2.3, we obtain the dimension oC the cohomology groups:

- If Eln is oC type il, with L5 ~ 0, or oC type ii), then hO (Ti, sl(Eln» = L

- If Eln is of type i), with L~ ~ 0, then hO(Ti , sl(EITJ) = 3.
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- If EITi is of type iii), then hO (Ti, sl(EITJ) = 1 - 2k.

\oVe summarise the above in the eoroUary:

Corollary 5.1 Let Ll be the set of graphs in p2n+l that contain vertical bars, or

that correspond to vector bundles E sueh that, for sorne z E pl, EI7r-1(z) ""J LoœLOt

with Lij ~ o. If E E Mn is such that

i) G(E) E Ll, then rkB(E) ~ 4n - 4;

ii) G(E) E (p2n+l - il), then rkB(E) = 4n - 2.

o

5.2 Integrable systems.

To define algebraieally eompletely integrable systems, we need the following two

definitions from symplectic geometry.

Let (X, w) be a symplectie variety. An irreducible subvariety Y c X is

isotropie if for generie y E Y, the subspace T,Y is an isotropie subspaee of w, i.e.,

wiTrY = O. It is Lagrangian if it is isotropie and dim Y = ~dim X.

The above definitions ean be extended to Poisson varieties. Let (X,8) be

a Poisson variety. An irredueible subvariety Y C X is isotropie (respeetively La­

grangian) if it is generieally an isotropie (respeetively Lagrangian) subvariety of a

sympleetie leaf; i.e., Y is contained in the dosure Z of a symplectic leaf Z c X and

the intersection Y n Z is an isotropic (respectively Lagrangian) subvariety of Z.

We DOW tum to integrable systems. An algebraically completely integrable

Hamiltonian system structure on a family H : ~Y -+ B of abelian varieties is a Pois­

son structure on ...Y with respect to which H : X -+ B is a Lagrangian fibration.

This can be extended to families of abelian varieties with degenerate fibres:

Definition 5.1 Let X be a smooth algebraic variety (not necessarily complete),

B an algebraic variety, ~ a proper closed subvariety of B, and H : ...Y -+ B a
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proper morphism such that the fibres over the complement of A are isomorphic to

abelian varieties. If the morphism H : X ---+ B is a Lagrangian fibration over the

complement of A, a Poisson structure on }t( is said to be an algebraically completely

integrable system structure on H : ~l( ---+ B.

Remark: The definition implies that, away from A, the Hamiltonian vector fields

corresponding to functions on B are tangent to the fibres of H, and are translation

invariant.

We have previously seen that, for aIl n, the graph map

G: Mn -+> p2n+l

is a fibration whose generic fibre is the Jacobian of a spectral curve S. Let A be

the set of graphs in p2n+l that contain vertical bars, or that correspond ta vector

bundles E such that, for some z E pl, EI1f-1(z) ::: Lo œLo, with L~ ~ O. Choose a

graph g in the complement of A. The spectral curve S determined by 9 is then an

elliptic curve if n = l, and a hyperelliptic curve S 2-\ pl of genus 2n - 1 if n > 2.

We have seen in chapter 4 that the fibre of the graph map at 9 is isomorphic to

the Jacobian of S. The fibre G-1(g) is in fact also a Lagrangian subvariety of the

symplectic leaf which contains it. This is proven in the following proposition:

Proposition 5.4 The fibration G : Mn ---t JP2n+1 is Lagrangian over the comple­

ment of A.

Proof: Let us fix a graph 9 E (p2n+l - A), and let S he the spectral curve in

pl x T* which covers g. The curve S then has genus 2n - 1. Let E be anY vector

bundle in Mn having graph g. Referring to coroUary 5.1, the rank of B(E) is

4n - 2. The fibre G-l(g) is therefore contained in a symplectic leaf Z of dimension

4n - 2. Furthermore, the fibre G-1(g) is the Jacobian of the spectral curve S of

genus 2n - 1. Thus dim Jac(S) = 2n - 1 = kdim Z, and we just have to show that

Jac(S) is isotropie, i.e. the Poisson structure 9 vanishes on Jac(S) .

Let L be the line bundle corresponding to E in Jac(aS) = G-l (g). \Ve

then have an injection of tangent spaces TLJac(S) ---+ TeMn (and equivalently a
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• surjection of cotangent spaces TÊM n --.. TiJac(S).) By deformation theory, the

tangent space to Jac(S) at Lis identified with HL(8,Os) = HL(S,Hamos(L,L».

\Ve have also seen that the tangent space to Mn at E is identified with Hl (1l, sl(E) ).

The injection of tangent spaces therefore induces a morphism of sheaves

This morphism can be described as follows: as in section 1.5, let C[t:} = C[tI/(t)2,

where f is the class of t. We set S[t:} = S x SpecC[f} and 1l[f} = 11. x SpecC[f}.

Let 11 be a tangent vector to Jac(S) at L which corresponds to the infinitesimal

deformation L( on S[t:}. The locally Cree sheaf L€ is an extension of L by L on S:

(5.5)

•

•

Our vector 11 is therefore given by the extension class of (5.5) in HL(S, Os). By

using the construction of section 4.2.2 and the exact sequence (5.5), we then obtain

a locally Cree sheaf E( that is an extension of E by E:

The extension class of E( in Hl(ll, sl(E» is then the image of 11 in TEMn .

DuallYt the surjection of cotangent spaces TÊMn ~ Ti Jac(oS) induces a

surjective morphism of sheaves Hl (11., sl(E) ® W1{) ~ H 1(S, OS ® WS). Let us

consider the diagram

By the Yoneda Pairing, this diagram is commutative. As L is an invertible sheaf

on the curve S, the cohomology group H 2 (S, OS ® ws) must be zero. The Poisson

structure (J is therefore vanishes on TL Jac(S). 0
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Chapter 6

Stable holomorphie bundles with

C2 = 2.

In this chapter, we give a partial classification of M 2 • We use the method of [BH]

to find the fiber of the graph map in the following three cases:

ct) G(E) is the graph of a rational map F : pl ~ pl of degree 2,

/3) G(E) decomposes into two pieces: the graph of an automorphism F : pl ~ pl

and a sum ({zo} X Pl) + (Pl x {l}),

'Y) G(E) is a SUDl ({zo} X Pl) + ({Zl} x pl) + (Pl x {I}), where Zo mayequal Zl.

As we have seen in section 4.1.2 of chapter 4, this method consists in taking two

bundles over D x T, and finding the number of ways that we can glue them together

to obtain distinct SL(2, Z)- isomorphism classes of bundles. The isomorphism class

of the bundle however needs to be fixed over each D x T. \Ve were therefore

restricting ourseIves to graphs that completely determine the bundle over D x T,

Le. graphs satisfying the conditions of lemmas 2.4 and 2.5. In the case were C2 = 2,

we can now aIso consider graphs which satisfy the conditions of lemmas 2.6 and 2.7.

After gIueing such bundles, we then obtain graphs over 1(. of type ct), {3), or [). As

in section 4.1.2, finding the fiber G-l (g) of at g E p3 then reduces to computing

the cohomology group H1(Pl, A), where A = 7r.(AutSL(2,C) (E», and E is a bundle
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with graph equal to g.

Let us note that in the case where E is a bundle on D x T with a graph of the

fonn 2({zo} x Pl) + (Pl x {il), and E = L E9 L*, for L E Pic-2(T) on 7r- l (zo), the

graph does not necessarily 6.."( the isomorphism class of E. In this case, we therefore

cannot find the fiber of the graph map using this method.

6.1 Global data, C2 = 2

If E is a vector bundie with C2 = 2, the graph G(E) of E is of three possible

types:

a) G(E) is the graph of a rational map F : pl ~ pl of degree 2,

/3) G(E) decomposes into two pieces: the graph of an automorphism F : pl -+ pl

and a sum ({zo} x pl) + (Pl x {il),

"'{) G(E) is a sum ({zo} x Pl) + ({Zl} x Pl) + (Pl x {I}).

Let us first discuss the possible existence of points x, in pl, sucb that EI1I'-1(z) =
Lo œLo, L5 = O. In case cr, one cannot exclude the existence of such points. As

G(E) is the graph of a rational map F : pl -+ pl of degree 2, the zero x of dF may

correspond to a half-period 1. The fact that pl x {l} is tangent to the graph of F

at x would then imply that Rl 7r.(LoE) is a skyscraper sheaf concentrated over x,

with fiber en, n > 2. And it would then be possible for EI1r- 1(z) = Lo E9 Lo.

In cases f3 and "'{, the existence of such points is impossible. In (3, the map

part of the graph is an automorphism of pl. Such points are therefore excluded

by the fact that dF can never he zero. In "f, the presence of such points would

contradict stability. Indeed, if K and K' are the ma."<Ïmal destabilising bundies of

E, then deg(K) +deg(K) > -2+ (numberofsuchpoints), and, either K or K' would

have to have positive degree (see [BR}).
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Proposition 6.1 (Case a). If 9 is a graph of type Q, the fibre of

G : I 2 ~ pl at 9 is the Jacobian of a hyperellipic curve of genus 3.

Proo/: This is a special case of the above discussion.

Proposition 6.2 (Case f3). If 9 is a graph of type /3, the fibre of G : I 2 ~ pl at

9 is

(i) C2 /Z2 X Pic-l(T) 'if F(zo) is a half period;

(ii) C2 /Z3 x Pic-l(T) if F(zo) is not a half period.

and

Proposition 6.3 (Case 'Y). If 9 is a graph of type 'Y, the fibre ofG : I 2 ~ pl af

gis

i) If l is a half-period

(A) C x piC-l(T) x PiC-l(T) if Zo :F Zl in the graph of E;

(B) CX Pic-l(T), if Zo = Zl in the graph of E and E!1r-1(zo) = LœL*, cl(L) =

-1.

ii) III is not a hall period

(A) a subset 01 ce x Z X (Pic-l (T»2 if Zo :F Zl in the graph of E;

(B) a subset ofCx Z x Pic-l(T), if Zo = Zl in the graph 01 E and EI1r-1(zo) =
L E9 L*,Cl(L) =-L

6.2 Proof of Propositions 6.2 and 6.3:

The proof is similar to that of proposition 6.1. vVe again basically have to compute

the cohomology groups of a, K, 1.vl, A, and L. Because these iovolve the same ideas

in all cases, we shall discuss each sheaf simultaneously for aIl cases.

Before we start, let us fix sorne notation, in each case, that will hold for the

rernainder.
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Vertical bars.

In f3 and 'Y, the graphs contain vertical bars.

{3) The graph contains one vertical bar at Zo. Let us assume that

'Y) (A) The graph contains two vertical bars, at Zo and Z1J and Zo "# Zl. We

assume that

and

(B) The graph contains a double vertical bar, Le., a vertical bar of multiplic­

ity two, at Zo = Zl. We set

Half periods.

As we have seen in section 4.1.4, half periods play a special role in the computa­

tions, because they introduce zeroes in the sheaf K, and also monodromy, which

corresponds to replacing Lo by Lo, around the half period. We will therefore have

ta distinguish further cases, when computing the cohomology of K, ~,,/.

(3) In this case, F is an automorphism of Pl. F must therefore map four dis­

tinct points to the four half periods. Now, is F(zo) a half period? We then

distinguish

i) F(zo) is a half period,

ü) F(zo) is not a half period.

'Y) Here, the graph contains a horizontal bar corresponding to the constant map

F(z) = l, where l is a pair of dualline bundles of degree zero. \Ve thus have

two possibilities:
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i) l is a half period,

ü) l is not a half periode

6.2.1 Computation for a.

Lemma 6.1 If we lollow the notation 01 section 4.1.4, then

. { 0 for i = 0, 2,
fi) cr~ O(-3), and Hl(JPl, a) = .

Cl for ~ = 1.

. { 0 for i = 0,2,
"'{) a "J 0(-2), and HI (JPl , a) = .

C for ~ = l.

Proof: As we have seen in section 4.1.4, for any x which does not correspond to a

vertical bar in the graph of E, hl (1r- l (X), EndE) = 2. The presence of vertical bars

will however make the dimension jump, and R11r.(EndE) is no longer a locally free

sheaf. Indeed, by Riemann-Roch, we find

fi) h 1(1r- 1(zo), EndE) = 4,

"Y) (A) h1(1r- l (Zi), EndE) = 4, for i = 0, 1,

(B) h l (1r- l (zo), EndE) = 4,

Thus, we can write Rl 1r.(EndE) = Fe S, where F is locally Cree of rank 2,

and S is a skyscraper sheaf. Let supp(S) be the the support of S. Then by the

above,

supp(S) = { Zo in {3, and 7(B)
Zo and Zl in "'{(A).

Furthermore, at each point of the support, S has fiber

{

Clin {3, and "'{(il),

et in 7(B),

where the et in "'{(B) is due to the fact that the vertical bar has multiplicity two.

Thus, if h is the positive generator of H2(Pl, Z), we see that

{

2h in {3,
Cl(S) =

4h in "'{.
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By relative duality, 1r.(EndE) = (RL1r.(EndE)r = F·. Therefore, since

CL(O) = CL(7r.(EndE», we have CL(O) = -cL(F). Furthermore, cl(RL7r.(EndE» =
cL(F)+CL(S), and cl(1r~(EndE»= 2cl(a)-cl(S). By Grothendieck-Riemann-Roch,

ch(1r!(EndE» = -8h. Therefore, combining the above, we get

{

-3h in (3,
cL(a) =

-2h in "f.

Hence, as Pic(lP1 ) = Z, we see that a = 0(-3), in {3, and a = 0(-2), in

"f. The cohomology groups stated in the lemma are then a simple consequence of

Riemann-Roch. 0

Remark: In {J, Ct ~ O(-2). It will be useful, for the remainder, to associate

a divisor to Ct.

(A) One can think of Ct as being given by the divisor D = -zo - ZL' Therefore,

any section of 0 must vanish at Zo and Zl •

(B) Here, we will assume that Ct is given by the divisor D = -2zo. Thus, any

section of Ct must vanish at ZO°

Computation of the cohomology groups for K.

Lemma 6.2 Keeping the notation as above, we have

{3) (i) If F(zo) is a hall period, then

(ii) If F(zo) is not a half period, then

-y) (i) If l is a half period, K is then the zero sheaf.
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• (ii) If l is not a half period, then

0, ifi = 0,

W(pl,K) =
Z, if i = l, in {(A),

0, if i = l, in "'{(B),

Z, ifi = 2.

Proof: The table in lemma 2.3 will he very useful:

Let E be an SL(2, C)-bundle over T ..Its global traceless endomorphisms and the

kemel of the exponential map exp: (global traceless endomorphisms) --+ (SL(2, C)­

automorphisms) are:

•

l)l?~LoœLo'

Lfi ;é 0, ci(Lo) = 0

2) l? ~ LoœLo,
L5 = 0, ci(Lo) = 0

(
a 0 )aEC 21t"i(m 0 )mEZ
o -a 0 -m

81(2, C)

3) l? ty~ (ii)

4) l? ~ Lœ L*

clCL) < 0
()

(
m f )a f 21t"î

o -a aECo -m

f E r(L*2)
f E r(L*2)

mEZ\O

•

We begin \Vith

13) i) F(zo) is a half period.

Let Zï, i = l, ... ,3 be the points that get mapped to half periods, and let p(z) be

a polynomial of degree 4 that vanishes at the Zï, i = 0, ... , 3. K is then zero on

any set containing the Zï. Away from the Zi, K is locally the constant sheaf Z. As

braJ;lching around the Zï interchanges Lo and Là, there is a corresponding (Z/2)
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monodromy on K" An explicit embedding of K into a ~ O(-3) is given by

d· 2·( ) mdzlag 7rI m, -m ~ J::'ï::\.
(z - zo) V p(z)

Using a similar Leray covering to the one described in section 4.1.4, one finds

(The computation is very similar.)

ii) F(zo) is not a hall peTiod.

In this case, there are four points, Zj, i = 1, ... , 4 say, that get mapped to half

periods, and they are aIl distinct from Zo. Let p(z) he a polynomial of degree four

that vanishes at the half periods. As above, K is zero on any open set containing

the Zj, i = 1, ... ,4; and, as it is a subsheaf of a, it must also be zero on anyopen

set containing Zo (because every section of Ct vanishes at zo.) Away from the z;, K

is locally the constant Z sheaf. K then embeds in a by

mdz
m H> r=ï=\"

(z - zo) V p(z)

There is again monodromy about the Zi, i = 1, ... ,4. In order to compute co­

homology of K, we shall use the Collowing Leray coyer: we choose open sets

UN, Us, \Ii, i = 1, ... ,4, as above; we add an open set "0 about zoo Let us fix

trivialisations of K on these open sets. The restriction maps are all the identity,

e.xcept for P~j = -Id, i = 1, ... ,4, which corresponds to the monodromy about the

- Co = K(Us ) œK(UN ) = Z2, as K(Vi) =°Cor ail i = 0, ... ,4;

- Cl = K(USN)œEt=o K(UiS)EBE:=o K(UNi ) = Z15, as USN has 5 components;

- C2 = Et=o K(USNi ) = ZLO, as USNi bas 2 components for aIl i = 0, ... ,4.

The first coboundary map is given by

(m, n) ~ (n - m, ... , n - m, m, ... , m, -n, ... , -n)

118



•

•

•

We then obviously have that ZO = ker(8 : CO ----+ Cl) = 0 and BI = Im(8 : Co ----+

Cl) = Z2. Furthermore

8: CL ----+ C 2

(no, ... , n .. , mo, ... , m4, ko, ... , k4 ) ~ (ao, bo, ... ,aol, bol)

where

ao - no+mo+ko

bo - nl +mo +ko

al - ni +ml +k1

bl - n2 +ml - k1

a2 - n2+ m2- k2

~ - na +m2 +k2

a3 - n3 +m3 +ka

ha - n4 +ma - ka

a4 - n4+ m4- k4

b4 - no +m.. + k4-

(The altemation between + and - in front of the ki corresponds to monodromy,

for i = 1, .. _,4.) In this case, Zl = ker(8 : Cl ----+ C2) = ZS and B2 = Im(8 :

Cl ---+ C2) = 2Zl0 . Combin.ing these, we have

We DOW tum to

'"'{) i) l is a hall period.

Referring to lemma 2.3, we see that K is the zero sheaf, in this case.

ii) l is not a hall period_

'vVe DOW have to consider the cases A), B) separately:

(A) Zo # Zl in the graph of E:

By the above remark, since K is a subsheaf of 0:, any section of K must he zero at

Zo and Zl- Away from the Zi, K is the constant sheaf Z. (In this case, the sheaf

is constant because there are no balf periods and,therefore, no monodromy_) K is
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• then zero on any set containing the Zi. An explicit embedding of K into a = 0(-2)

is given by

diag21ri(m, -m) ~ ( ~ r
z - Zo z - z[

We again use a similar Leray covering to the one described above: UN, Us, \'0,

and "'''l, where the last two sets are open neighborhoods of Zo and Zl. U we fix

trivialisations of K, since it is the constant sheaf Z, ail restrictions must be the

identity_

- Co = K(Us ) E9 K(UN ) = Z2, as K(lti) = 0 for i = 0,1;

•
C2 = K(USNO ) E9 K(USNd = Z·, as USNi has 2 components for i = 0,1. The

first coboundary map is DOW

(m,n) ~ (nm,nm,m,m,-n,-n)

and we obtain ZO = ker(cS : Co ~ Cl) = 0 and BI = [m(cS : Co ~ Cl) = z2.
~Ioreover

where

- no+mo+ko

- nI +mo +ko

- nI +ml +k[

- no +ml + kt-

bo

b1

In this case, Zl = ker(cS : Cl ~ 02) = Z3 and B2 = [m(cS : Cl ~ C2) = Z3,

where B2 is given by the condition b1 = ao - bo + al- Combining these, we have

• (B) Zo = Zl in the graph of E:

By the above remark, since K is a subsheaC oC 0, any section of K must he zero at
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zoo Away from Zo, K is the constant sheaf Z. (In this case, the sheaf is constant

because there are no half periods and,therefore, no monodromy.) K is then zero on

any set containing zoo An explicit embedding of K into Q = O( -2) is gÏven by

diag27ri(m, -m) t-+ ( m )2'
Z - Zo

We again use a similar Leray covering to the one described above: UN, Us, VO, where

the last set is an open neighborhood of zo. If we fix trivialisations of K, since it is

the constant sheaf Z , all restrictions must be the identity.

co = K(Us ) Et) K(UN ) = Z2, as K(VO) = 0;

Cl = K(USN ) Et) K(Uos) E9 K(UNO) = Z3, as USN has only one component;

- C2 = K(USNO ) El' K(USNd = Z2, as USNO has 2 components.

We now have
8: Co ---+ Cl

(m, n) t-----t (n - m, m, -n)

gÏving us ZO = ker(5 : Co ---+ Cl) = 0 and BI = Im(8 : Co ---+ Cl) = Z2.

Furthermore
8: Cl ---+ Cl

(n, m, k) t-----t (a, b)

where
a - n+m+k

b - n+m+k.

In this case, Zl = ker(5 : Cl ~ C2) = Z2 and B 2 = Im(8 : Cl ---+ C2) = Z,

where B2 is gÏven by the condition b = a. Combining these, we have
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6.2.2 Proof of proposition 6.2.

In this case, lemma 6.1 tells us that Q: rv 0(-3). A, L are then subsheaves of

tr.(EndE) = 0 œ0(-3), and the global sections of A are ±Id. Furthermore,

as -Id is not an exponential at the Zï, Id is the only global section of L. Thus

HO(Pl, A) = Z/2 and HO(Pl, L) = o.

i) F(zo) is a hall period.

Away from the Zi, as F(z) is never a half period, we have

.4

(
b 0) (e ll

0 ) bEC
o -b 0 e-b

exp : cr -+ A is then surjective, and kI = o. At zo, cr = 0(-3) must be zero, and

±Id are the only possible elements of A. Thus Al = Z/2 at zoo As F(Zï) is a half

period for i = 1, ... ,3, at those points

cr 1 A

(~ ~) (~1 ~1) bEC
and exp : cr -+ A has cokemel J.\'1 = Z/2. .~I is then a skyscraper sheaf with fiber

Z/2 supported at the Zï. The cohomology long exact sequences associated to (4.2)

and (4.3) then gjve

and

o -+ Z/2 -+ (Z/2)4 -+ HI(pl, L) -+ HI(pl, .4) -+ o.

Thus Hl(PI, .4) = HI(PI, L)/{Z/2)2 = (Cl /Z2 x Z/2)/{Z/2)2 = C- /Z2. Since there

are Pic-I(T) possibilities for the choice of the Hne bundle L giving E over tr-l(zo),

the fiber of G at 9 must he Cl /Z2 x Pic-L(T).

ii) F(zo) is not a hall period.
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From the above discussion, we see that !vI is a skyscaper sheaf with fiber Z/2

supported at the Zi, i = 0, .. - , 4. Furthermore, we obtain the exact sequences

and

o~ Z/2 ~ (Z/2)5 ~ HI(L, pl) ~ HL(A, pl) ~ O.

Thus HI(L,Pl) = Cf/71} x Z/2, and Hl(A,Pl) = Cf/Z3. There are now. Pic-2 (T)

possibilities for the choice of Hne bundle L giving E over tr-l(zo), and the fiber of

G : M 2 ~ pl at 9 is Cf /7.,3 X Pic-I(T). 0

6.2.3 Proof of proposition 6.3.

We have seen that a ::: 0(-2), in case "(. A, Lare therefore subsheaves of

1l'.(EndE) = 0 El) O( -2), and the global sections of A are ±Id. Furthermore,

as -Id is not an exponential at the Zi, Id is the only global section of L. Thus

HO(Pl, A) = Z/2 and HO (Pl , L) = O.

i) 1 is a hall period.

In this case K =0, and we are therefore only working with the exact sequence

Away from the Zj, we have

o~ Cl! exp) A~ M -+ o.

.4

(6.1)

•
The cokemel of exp : Cl! ~ A is then At = Z/2. At the Zi, a is zero, and ±Id are

the only two possible germs of..4. \Ve then again have AI = Z/2, implying that

l'vI is the constant Z/2 sheaf. Inserting all of the above into the long cohomology

sequence associated to (6.1), we obtain
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• and Hl (..4, Pl) = C. The only invariants, apart from the graph, are the isomorphism

types over 7T"-l(ZO) and 7T"-l(zd. The fiber G-l(g) is therefore

- C x Pic-l(T) x Pic-l(T) in case (A),

- C x Pic-l(T) in case (B).

ii) 1is not a hall period.

Away from the Zj, we now have

a A

•

•

exp : cr ~ A is then surjective, and 1\;1 = O. At the Zj, we again have cr = 0, and

A = ±Id. M is therefore a skyscaper sheaf with fiber Z/2 supported at the Zj.

In case (1\), as Hl(Pl, K) = H2(Pl, K) = Z, the cohomology long exact

sequences associated to (4.2) and (4.3) then give

and

o ~ Z/2 ~ (Z/2)2 ~ Hl(rl , L) ~ H1(pl, A) ~ O.

Therefore Hl(JPl, A) = Hl (Pl, L) /(Z/2) = (C/Z x Z) / (Z/2) = C x Z. The ooly in­

variants, apart from the graph, are the isomorphism types over 7T"-l(ZO) and 7r- l (Zl)'

The fiber G-l(g) is therefore a subset of C* x Z x Pic-l(T) x Pic-l(T).

In case (B), we have Hl(Pl, K) = 0 and Jtl(Pl, K) = Z. Inserting aIl of the

above into the cohomology long exact sequences associated to (4.2) and (4.3), we

obtain

and
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Therefore Hl(Pl,L) = ex Z, and H1(Pl,A) = (C x Z)/{Z/2) = C x Z. Apart

from the graph, the only invariant is the isomorphism type over rr-1(zo). G-1(g) is

therefore a subset of

- C x Z x Pic-I(T) in case (B). 0
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Chapter 7

Connections on Hopf surfaces.

In this chapter, we consider the topological side ofour problem. We will see that the

notion of graph can he extended to connections. We begin by finding the homotopy

groups and certain cohomology groups of the moduli spaces of connections and

framed connections. We then construct a map that will associate to any connection

a graph. This construction generalises the notion of graph in the holomorphie

setting. We then show that this map is not homotopically trivial, and find that its

generic fibre is the total space of an Sl-bundle.

7.1 Bundies and connections.

Let E he a COQ bundle on 11. with cl(E) = 0 and c2(E) = k. We will then denote by

A = A;C.E the space of connections on E, and by g the gauge group - the group

of bundle automorphisms which cover the identity map on 11.. The moduli space of

gauge equivalence classes of connections on E is 8 = A/g. Let us then fix a point

Po in 11.. A framed connection in E is a pair (A, t), where A is a connection, and t

is a trivialisation of Epo - a linear map t : Epo ~ Cl. If we fix the framing t, we

define go c g to he its stabiliser:

go = {g E Qlg<Po) = Id} .
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The orbit space 8 = A/go is then the space of equivalence classes of framed con­

nections. Furthermore, we have the equivalence

where ~ represents weak homotopy, L\!lap· denotes base point preserving maps, and

klap-(ll, BSU(2»E is the homotopy class corresponding ta E --+ 11..

\Ve finally remark that there is a natural map /3 : B 4> B which forgets the

framing. Since all connections on the Hopf surface 11. are irreducible, the fibre of

this map is SU(2)/C(SU(2)), where C(SU(2)) = ±Id is the centre of 5U(2). The

fibre of {3 is therefore SO(3), and we have the fibration

80(3) • 8

1
B.

For details of this, see (OK}.

7.1.1 Homotopy of B.

We begin by computing the homotopy groups of 8.
Proposition 7.1

- 3 3 3
1rq(B) = 1rq+3(8 ) x 1rq+2(S ) x 1rq (S ),

for aU q, and, in particular,

Proof:

- [5q A (S3 x S1), BSU(2)}o
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E(S3 X 51) ~ E(S4) V E(S3) V E(SI).

Since E distributes over V, by iteratiog the above q times, we get that

Inserting this ioto the above gives

'Trq(S) = [SI/+4 V 8q+3 V 8 Q+l , BSU(2)}o

- [Sq+4, BSU(2)}o x [Sq+3, BSU(2)}o x [Sq+1, BSU(2)}o

= 'Trq+4(BSU(2)) x 'Trq+3(BSU(2)) x 'Trq+1 (BSU(2)).

Let us remark that, as OB)( = X, for any group X, and 'Tri(nX) = 'Tri-1(X),

we have 'Tri(BX) = 1ri-1 (X). Thus, as SU(2) = 53, the above becomes

and we are done.

The first four homotopy groups of 8 3 are

° if p = 1,2;

'Trp(S3) = Z if p = 3;

Z2 ifp = 4.

The above then gives us 1rl(S) = Z2 X Z. 0

7.1.2 Cohomology of B.

Proposition 7.2 B has the same rational cohomology as 1l:

- {Q' if p = 0, 1, 3, 4;IP(B,Q) =
0, othenuise.
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• Proo/: Since 11, ~ S3 X SI, we have the following cofibration

Applying the functor l\tlap·C ,BSU(2», we then obtain the fibration

n3s3 ~ l\1Iap·(S\ BSU(2» _i ... Atfap·(ll, BSU(2»

[fi (7.1)

•

•

Since c2(E) = k, we restrict ourselves to the kth component Q~S3 of the third loop

space. B is then given by the fibration

And, as n~s3 has trivial rational cobomology,

The rational cohomology groups can then be computed using the Kùnneth theorem.

By applying the Leray-Serre spectral sequence to the fibration

we have

H*(Q2S3;Q) = { Q p = 0, 1 .
o p > 2

For details, see [DK]. The Kùnneth theorem therefore gives

_ {Q' if p = 0, 1,3,4;
EP(B;Q) =

0, othenvise.

o

Let us now show that
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CoroUary 7.1

il, if p = 0, 1;

lP(B;Z) = Z2, if P = 2;

ZœTp , if p = 3,4;

Tp , if p > 5,

where Tp is a torsion module, for p > 3.

Proof: By proposition 7.1,

And, as ?r1 (13) is abelian, this implies that Hl (8) = Z2 œZ.

Let us remark that Ext(Zm, Z) = Zm; and

Ext(Z,Z) = Ext(Z,Q) = Ext(Zm,Q) = O•

Therefore, by the Universal Coefficient Tbeorem,

HP(B; Q) = Hom(Hp(B); Q),

and

HP(B; Z) = Hom(Hp(S); Z) œExt(Hp- 1(13); Z).

By (7.4), we see that

HI(S; Z) = Hom(H1(B); il) El' Ext(Ho(S); il)

- Hom(Z2 e z; Z) El' Ext(Z; il)

= Z.

(7.3)

(7.4)

•
Furthermore, as IP(S, Q) = 0, (7.3) implies that H2(8) must be a torsion module.

Therefore Hom(H2(B); Z) = 0; and, as
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i.

(7.4) implies that H2(B; Z) = Z2.

By using similar arguments, we can show that, for p = 3,4,

where Tp = Ext(Hp_l(B); Z). As H2 (B) is a torsion module, T3 must also be a

torsion module. Similarly, we see that T" is also a torsion module. 0

7.2 Stabilisation maps.

From now on, we will use the subscript k if we want to specify the charge of

the connection in a given moduli space. In this section, we use the "subtraction

procedure" of Taubes to construct stabilisation maps for the moduli spaces Bic of

framed connections on 11.. Before doing so, let us remark that the space of all

connections A is an affine space which possesses the following L2-metric: for any

two A,B E A,

liA - BII = (L lA - B12d#) 1/2 , (7.5)

where 1·1 is the Killing metric on su(2,C). This metric is preserved by the actions

of g and go, and therefore descends to the quotients. The spaces 8" and Bic are

endowed with the quotient topologies.

Claim 1 There exists a map 91c,Ic+l : Bic ~ 81c+ 1 that sends a pair (A, t) ta a pair

(A, i)t for any k. This map is continuous with respect to the L2-norm.

This map is obtained by the "subtraction procedure" of Taubes [TI. Let us give

an outline of this construction. We start with an SL(2, C)-bundle E' -+- 5\ with

c2(E') = 1, and choose a connection At 00 E' whose curvature is concentrated at

the south pole s of 54. We also fix a trivialisation t! of E' over S4\n, where n

is the oorth pole. Throughout the following, S4\n will he identified with RI via

the stereographie projection frOID n. Let z : B ~ nt' be a coordinate system

centred at Po and defined on a ball B around Po in 11.. We then identify B with

z(B) C S4\n, and Po E 11. with S E S4\n. \Ve can assume, without 1055 of generality,
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that B = {z : Izi < I} c JR4 .

Given any pair (A, t) E8'0 we can then define a canonical identification of E

with E' over B\s, which will depend on the choice of (A, t). \Ve have already fLxed

a trivialisation t' of E' on S4\n. By using parallel transport of t by A along paths

in B, we can extend t to a trivialisation of Eon B that we will also denote by t. By

identifying these two trivialisations over B\s, we then obtain an SL(2, C)-bundle

Ë over 11. such that C2(Ë) = k + 1. It is important to note that, as every bundle

Ë thus constructed has charge k + I, the isomorphism class of Ë is independent of

the choice of (A, t). The actual bundie we construct does however depend on this

choice. This choice will a1so be used to define connections on Ë.

Before we construct a connection on Ë, let us introduce a bump function

7](z) on Jlt'. We require that 1/ = 0 if Izi < ~ and that 7] = 1 if Izi > ~. Let us also

cover 11. by the following three open sets: U = 8\s, 'H,- = {p E 1(. : dist(p, s) > ~}

and B- = {z E ]R4 : Izi < ~}. As we have chosen A' to have curvature concentrated

at s, one can assume that A' is the product connection on B\B-. (If it is not, one

can always multiply A' by a bump Cunction supported in B-.)

Ë has, by construction, a canonical product structure over U. Let 9 denote

the induced product connection on Ëlu. We then define A = (8 + 7]A + A') on u.
On 1(.-, Ë is canonically identified with E. A is then given on ËI'H- by il = A.

Finally, as Ë is identified with E' on B-, we set ..4 = A' on B-. It is easy to see

that these connections agree where the domains of definition overlap. We thereCore

have a well-defined connection A on Ë.

The map 9k,k+1 : 8k -t 8k+1 is then defined by sending the pair (.4, t) in Bk

to the pair (À, t') in 8k +1• This map well defined, and it is continuous with respect

to the L2-norm defined above.

7.3 Graph map.

Let E be a fixed SL(2,C)-bundle on 11. with c2(E) = n, A be the space of connec­

tions on E and g be the gauge group. We want ta construct a map from B = A/fJ
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to pl X pl that will associate to each connection a "graph" .

As we have seen in section 2.1.2, one can associate a graph 9 to every holo­

morphie SL(2, C)-bundle E on 1/,. This graph basically keeps track of the type of

E on each fibre 7r- l (x), for x E Pl. As we have seen, EI7r-1(x} must have one of the

following three types:

(H) Non trivial extensions 0 ~ La ~ E ~ Lo~ 0, Lij ~ O.

(Hi) L œL*, L E Pick
, k < O.

Thus, if c2(E) = n, its grapb 9 E IO(n, 1)1 decomposes into two pieces:

the graph of a rational map F : pl ~ pl of degree k,

(n - k) vertical fibres {Xi} X pl .

And we know that EI1I'-1(x} is of type (iii) if and only if it bas a vertical bar in its

graph.

Can one associate sueh a graph to a connection on E? Unfortunately, as

1/, is a surface, not every connection defines a holomorphie structure. Indeed, a

eonnection A induces a holomorphie structure if and only if the (0,2) part of its

curvature is zero, i.e., F~,2 = o. And this is obviously not the case, in general. There

are however no (0, 2)-forms on the fibres T:r: = 1f'-l(X) of 7r : 1/, ~ pl. The restriction

to Tx of any connection ..4 on E ~ 1l therefore always defines a holomorphie

structure on EIT~. And EITr , endowed with this holomorphie structure, must have

one of the above three types. It then seems possible to associate to any connection

A a graph that will he a generalisation of the graph of holomorphie SL(2, C)-bundles

on 1l.

\Ve will define the graph ofa conneetion ..4 to he the zero set ofa section of the

determinant bundle of a family of Dirac operators associated to A. The determinant

bundie of a family of elliptic operators is usually defined in the context of K -theory

by using the index of the family. For brevity, we shaU define the determinant
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bundle without introducing the notion of index of a family of operators. For a

general discussion of this construction, we refer the reader to [DK].

7.3.1 Families of Dirac operators.

Let us begin by gjving T a spin structure. On a Kahler manifold X, a spin structure

is defined to he a choiee of square root of the canonical line bundle K = A2T*X ,

Le. a Hne bundie Kl/2 such that K l/2®Kl/2 = K. The spinors are then the (O,p)­

forms whieh take values in Kl/2. As the canonicai bundie of T is holomorphically

trivial, we choose 0 as our spin structure. The spinors are then S+ = {l0'o and

s- = nO,l. \-Vith this structure, the Dirac operator on T is simply 8 : {l0'O -+ nO,l.

Furthermore, given a vector bundie W -+ X with a connection A, the partial

connection 8A : {lo,O(W) -+ {l0,l(W) is also a Dirac operator.

We want to construct a family of Dirac operators on T that is parametrised

by pl X ca. To do this, we start with a family of connections {À zo } parametrised

by pl X ca. The partial connections 8i will then give us the desired family
-"'%a

of operators. Let V he the Poincaré bundie over 11. x C* and 1r the projection

11. x C* ~ pl X ca. (We use the same notation as in section 2.1.1.) For each

(z, Ct) E pl xe, VI1r-1(z,o) is a Une bundIe in PicO(T), where T = 1r-l (z). (The

projection 1l -+ pl is also denoted by 1r.) Let ~zo be the fiat connection on VI1r-l(z,o).

Then, for any A E A,

Àzo = A ® 1Et) 1 ® €.:o

is a connection on (E ® V)I1r-1(z,o}7 where [ represents the appropriate identity

matrLx. Our family of Dirac operators is then 8À = {«3Â:
a

}' for (z, Ct) E pl xC'. Let

us note that each of these partial connections is compatible with the holomorphie

structure of (E ® V)I1r-1(z,o). Indeed, as 2-forms on T have type (1, 1), F~:: = 0

and 8..{:o = 8E0V. Furthermore, for each (z, et) E fI xC·, the dual operator of 8À:a

is

where * is the usual Hodge star operator.
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7.3.2 Determinant line bundie.

As we have stated above, the detenninant line bundle of a family of operators is

closely related to the index of the family. The index of any elliptic operator P is

ind(P) = dim(ker P) - dim(coker P).

We therefore have to give a description of keraA:
a

and eoker [JAao ' for ail pl xe-.

The a-Laplacian is defined ta he the operator ~8 = [Ja- + a-[J. Differentiai

forros satisfying the Laplace equation A811 = 0 are called harmonie forms. The

space of harmonie forms of type (p, q) on T is denoted ~P·q(T). Let us note that

A811 = 0 ~ 811 =0 and B-7] = o.

As T is a Kahler manifold, the Hodge decomposition theorem states that ~P.q(T) =

Hq(T, OP), where OP is the sheaf of holomorphie ~forms. Moreover, since T is a

corve, EJ is zero on ail (O,I)-forms, and [Je is zero on ail (O,O)-forms. We therefore

have

ker8 = K,fJ.O(T) = ftJ(T, 0),

and

For any vector bundle W ~ T, this decomposition also applies to W-valued forros.

Sinee Àza is compatible with the holomorphie structure of E ~ VI1r-l(:,a) for ail

(z, cr) E pl X C*, we then have

- 0 - lker ôA:a = H (T, E ~ V), and coker ÔA
aa

= H (T, E ® V).

Let us not that the spaees Hl (T, E ® V) correspond ta the fibres of the skyseraper

sheaf RLrr.(E ® V) that was used in the holomorphie ease to define the graph.

We have seen in section 2.1.2 that we a1ways have

H the dimension of kerEJÀ:
a

were constant for ail (z, cr) E pl X ce, the collection of

these veetor spaces would then form a locally trivial vector bundle over pl xe-.
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In our case, dim(ker a.:t:Q) jumps at the points in pl x C where V injects in E or

where E is of type (iü). vVe can however still construct a vector hundle with the

kemels. There exists a map t/J : CN --4' r(E ~ V ® S), where CN is the trivial

bundle, such that ait EB 'l/J is surjective (see [OK]). And this gives us the line hundle

on pl X C*. It is the determinant fine bundle of the family {8ti}.

7.3.3 Graph map.

Let A he a connection and aÂ be the family of Dirac operators associated to it. The

graph of A will be defined as the zero set of a section of the determinant bundle of

8;t. We first see that, for ail (z, cr) E pl xe, we have an exact sequence

where i and P are the usual inclusion and projection maps, respectively. Further­

more, the projections fit together to define a homomorphism P of vector bundles

- P N
Ker(8X œt{;) - C

1 j
plxc-~1P1Xc-.

By the exact sequence (7.6),

det Pza = 0~ Ker 8Â 'CO = Coker âx'CO =ft O.

The map clet P then gives us a homomorphism from ANKer(8X)) ta ANCN, and is

therefore a section of.c = (AmazKer(âx))®(ANCN)-. The zero set jj = (det P)-l(O)

will then correspond to the ~'graph" of A. Let us note that, by construction, if A.

defines a holomorphie structure on E, jj is equaI to the divisor defined in section

2.1.2. Furthermore, as in the holomorphie case, we can show that b is invariant

under

- the Z-action on C generated by multiplying by À, and
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• the involution on C* defined by z I-t 1/z.

Let us first show that tensoring V by 0(1) does not change the zero set of

det P. From the exact sequence

(7.7)

•

•

we see that, for ail z E pl, O(l)11r-1(z) ~ O. Let X be a connection on 0(1). On

T = 1r- l (z), there then exists a holomorphie gauge transformation u sueh that

X = du . u-l . Sinee u is holomorphie, this means that the (O,l)-component of

Xlr- 1(z) is zero and 8X,,"-1<:> = 8. Thus, if we set 8E@V~0(1} = 8 Efi!)v ~ [+ [~ 80 (1),

we see that 8 E@v@0(1} = 8EflJV and the seetion that we will get by repeating our

construction with E ~ V ~ 0(1) will have the same zero set as detP. jj is therefore

invariant under the Z-action on C* generated by multiplying by À.

Also, since A2E ~ 0, E ~ E· and, if we substitute V· for V, E ~ V· ~

(E ® V)·. Thus, if we repeat our construction with V· instead of V, since 8(E~V). =
-(aE~V)t, the zero set of the section we obtain will again be D. jj is then invariant

under the involution on C defined by z t-+ 1/z.

D therefore descends to a divisor D on pl x Pl. And D is defined to be the

"graph" of A. Again, if A defines a holomorphie structure on E, it coincides with

the graph defined in section 2.1.2.

Any connection A. on E --+ 11., where E is an SL(2, C)-bundle with cz(E) = n,

has a graph which decomposes into two pieces:

the graph of a Ccc map F : ]pl --+ pl,

vertical fibres {Xi} X pl.

This is exactly as in the holomorphie case, except for the fact that the map portion

need not be holomorphie, and that there may not be a finite number of vertical

bars. As in the holomorphie case, the graph cannot however be made up only of

vertical bars (see [BH]). The set of all possible graphs ean actually be described as
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{SEr(p, xP',O(n,I))
•

•

•

s holomorphie on {x} X pl, }
jC:,

\;Jx E pl, and s =ft 0

where s -=1 0 because the graph cannot be made up only of vertical bars. (\Ve

have to quotient by C* to take into account the action of the gauge group, Le.,

the equivalence classes of connections.) A section s E f(PI X pl, O(n, 1), which

is holomorphie on each {x} X pl, is equivalent to a section B E f(PI, Pl. (O(n, 1»)),

where Pl : pl x pl 4> pl is projection onto the first factor. What is the fibre of

PI.(O(n,I»? For each x E pl,

Pt. (O(n, 1)):r = O(n) 0 PI.(O(I»:r

=O(n) ® HI({x} X pl, 0(1))

=0(n)0C2.

The set of all graphs is therefore

{B E f(PI, O(n) ® ~)IB =ft O}/e-.

As {B E fer l , O(n) 0 Cl)18 #: O} is a infinite-dimensional comple..'"< vector space, we

will denote it Vt". The set of graphs is thus

(Vë - 0) jC* ~ POO,

and we have a map G : B 4> POO. Furthermore, this map extends in a natural \Vay

to the space of framed connections B.

7.4 Fibre of the graph map.

7.4.1 Non-triviality of the graph map.

In the previous section, we constructed a map G : B 4> jp'OO which associates to

each pair eA, t), where A is a connection and t is a framing, the graph of A. If

the connection A induces a holomorphie structure on E, this graph coïncides with

the graph defined on holomorphie SL(2, C)-bundles. In the holomorphie case, the
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graph map is surjective for n ~ 2. Since the infinite complex projective space poo is

the Eilenberg-~IacLanespace K(Z, 2), we have the equivalence [8, POO] = H 2(8, Z).

\Ve have seen in section 7.1.2 that H2(8, Z) = Z2. There then exist maps from B
to poo which are not homotopie to the constant map. In this section, we show that

G : 8 ~ poo is such a map, i.e., G is not topologically trivial.

Let (..4, t) E B. vVe assume that A induces a holomorphie structure on E

and that its graph is of the forro 2k({zoe} x pl) + (Pl x {l}), where Zoo is the point

in pl at infinity. Let us note that we must have c2(E) = 2k. We also assume that

l = {Lo, Lô}, where Lo is given by a divisor of the form D = 2pÀ - 2poi and that

E = L El:) L· on 1r- l (zoo) , for sorne L E Pic-2(T). We shaH see that there is a

natural SU(2)-action on the pair (A, t), and on its graph 9 = G(A). The orbits of

this action then give the commutative diagram

SU(2) . ([(.4, t)]) \.-C_1 B

GI lG
SU(2) . (g) C 1 poe.

We begin by describing the action of SU(2) on 'H. Let us recall that the

fibre of 1r : 'H ~ pl is the elliptic curve T ':::: C/(21riZ + In(..\)Z). Let (Z17 Z2) E C2.

Z = z21Z17 z' = IIz are affine coordinates on pl; and t = log Zl, t' = log Z2 are linear

coordinates on T. 'H is then covered by the two coordinate patches Uo = C x T,

Ul = C x T, with the identification

(z' ,t') = 1/z, t + log z)

on the overlap. SU(2) can he described as

(
ab) _ _

SU(2) = { _ _ laa + bb = 1, for a, il, b, bEC}.
-b a

It acts on Cl- by simple matrbc multiplication. This action preserves the equivalence

classes in pl. If U(l) = ca is considered as the closed subgroup of SU(2) given

by {( a 0 ) la E ca}, we see that it leaves the point at infinity in pl fi.xed.
o a- l
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• ~Ioreover, U(l) acts on T by translation: t ~ t + log a. As Une bundles in PicO(T)

are invariant under translation, we see that the stabiliser of the graph 9 is U(l).

The orbit of 9 is then SU(2)/U(I) "J Pl.

The matrices that fix A must be elements ofU(l) that also fix z in Pl. ±Id are

then the only possibilities. The action of -Id on T is given by t ~ t+1ri. We know

that this translation acts trivially on Lo- \Ve also see that the divisor D = 2p>.. - 2po

of Lo is invariant under this action. As L is fixed under the translations

{t t-+ t + v 1 v E Z{l~..\, ?ri}},

the matrix -Id thereCore fixes A. l\Jloreover, since -Id is in the centre of SU(2), it

also fixes the pair (A, t), and its orbit is SU(2)/± ~ RP3_

The above commutative diagram then becomes

RP3 c lB

• cl G

plc 1 poe.

We have H2(RP3 ,Z) = H2(B,Z) = Z2 and H2(P1,Z) = IP(POO,Z) = Z, and the

horizontal inclusion maps are not topologically trivial. Furthennore, the restriction

of G to RP3 is equal to the Sl-bundle associated to 0(2) --+> pL, which is not

trivial. This then proves that G cannot be homotopically trivial, in the case of

framed connections on a bundle with even second Chem class. The stabilisation

maps Bk -+ 8k+l then imply that it must be true for any k. The graph map

G : B -+ poo is therefore nontrivial.

7.4.2 Fibre of the graph map.

•
\Ve have seen that G : B -+ poo homotopically nontrivial. We can assume that it is

a surjective fibration. Let V be its fibre. Up to homotopy, we then have

- GV-B-JPOO.
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• This fibration will then give rise another fibration:

nroo-v-B.

However, as poo = K(Z, 2),

(7.8) then becomes

SL_V-G,

(7.8)

•

•

and we see that V is the total space of an SL-bundle on B. One can take the

pullback to Bof the universal Sl-bundle on POO .
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Conclusion

In this thesis, we have studied moduli spaces on Hopf surfaces both from a

holomorphie and topological point of view.

For stabilisation maps, we have shown that, in this case, the natural algebro­

geometrie description of Taubes' subtraction procedure does not enable one to con­

struct global stabilisation maps M~ ~ M~+l in the holomorphie setting.

We have a1so generalised the notion of graph to connections. If a given

connection A on a holomorphie SL(2, C)-bundie E, with c2(E) = n, defines a holo­

morphie structure on E, we have seen that the graph of the connection A coïncides

with the graph of E. There is therefore a naturai inclusion from the space of all

holomorphie graphs p2n+l into the space of all topologieal graphs poe .

We have also studied the fibre of the graph map. In the holomorphie case,

we obtained an explicit description of this fibre as the Jacobian of a Riemann sur­

face, for a certain set of graphs. It would be interesting to know if there exists an

analogous description for the fibre in the topologieal case. Ooes the fibre, in this

case, represent the number of ways of glueing two connections? Furthermore, we

have shown that the holomorphie graph map supports a Lagrangian fibration, with

respect to a Poisson structure on Mn. Oc we have a similar situation for moduli

spaces of connections?

Finally, it would be interesting to give a further classification of holomorphie

vector bundles over D x T in terms of their graphs in D x pL. This would enable

us to obtain a more complete classification of vector bundles on 1l. \Ve believe that

the techniques used in this thesis would be useful in the study of moduli spaces of

holomorphie bundies over the more general elliptic fibrations that have been studied

by Friedman and ~Iorgan [Fl'JII.
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