INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

Iin the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Mt 48106-1346 USA
800-521-0600

®

UMI






Moduli spaces of vector bundles
on a Hopf surface,

and their stability properties

BY RUXANDRA MORARU,
DEPARTMENT OF MATHEMATICS AND STATISTICS,
McGILL UNIVERSITY, MONTREAL

A thesis submitted to the faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of Ph.D.

August, 2000

(©Ruxandra Moraru, 2000



l*l National Library ' nationale

of Canada du
v '.Sn:wices utv;bbhog"‘raphtq'uos

305 Wellington Street 305, rve Welinglon

Ouawa ON K1A ON4 Otawa ON K1A ON4

Canada Carace Your S Vowe rdédrence

Our B Nowe réisence

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format

électronique.
The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-70103-4



Acknowledgments

During the preparation of this thesis, I received funding from NSERC, and
from my supervisor, Dr. Jacques Hurtubise. I am pleased to have this opportunity
to offer him my deepest gratitude for his generosity, invaluable insight and infallible
support. I am also grateful to other members of the mathematics department,
notably Dr. Georg Schmidt and Dr. Peter Russell. The typesetting of the thesis
was performed using the A S — Tg X macro package. Finally, I wish to dedicate

this thesis to my parents Angela and Alexandru Moraru.

=



Abstract

We study the moduli spaces M,, of rank two stable holomorphic SL(2,C)-
bundles E over Hopf surfaces ‘H, with c2(E) = n, and their stabilisation properties.
We show that one cannot construct stabilisation maps M, — M, that are a
natural holomorphic counterpart to Taubes’s subtraction procedure that is used to
construct such maps in the topological case of moduli spaces of connections. We
also study the fiber of a map that associates to any holomorphic bundle a graph,
and show that, in certain cases, the fiber is the Jacobian of a Riemann surface.
We then show that this map is a Lagrangian fibration, with respect to a Poisson
structure that we will define on M,,. Finally, we generalize the notion of graph to

connections, and show that the graph map thus obtained is not topologically trivial.



Résumeé

Nous étudions les espaces de modules M, de fibrés stables holomorphes F
de groupe de structure SL(2,C) sur la surface de Hopf H, avec cx(F) = n, et
leurs propriétés de stabilisation. Nous montrons que nous ne pouvons pas utiliser
la version holomorphe de la procédure de soustraction de Taubes pour définir des
applications de stabilisation M, — M,,;. Nous étudions aussi la fibre d’une
application qui associe a tout fibré holomorphe un graphe, et montrons que, dans
certains cas, la fibre de cette application est la Jacobienne d’une surface de Riemann.
Nous montrons ensuite que cette application est une fibration Lagrangienne, par
rapport a une structure de Poisson que nous allons définir sur M,,. Finalement,
nous généralisons la notion de graphe dans le cas de connexions, et puis montrons

que ’application graphe ainsi obtenue n’est pas topologiquement triviale.
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Introduction

The moduli spaces of holomorphic vector bundles have been extensively stud-
ied over the past fifty years, starting with the classification of vector bundles over
the Riemann sphere by Grothendieck [Gr], and over an elliptic curve by Atiyah [At].
The moduli space of all vector bundles over a space X is however not, in general,
a Hausdorff space. One can get around this problem by only considering stable
holomorphic bundles, as was first remarked by Mumford in the case where X is
an algebraic curve. The notion of stability is intimately linked with the notion of
degree, and therefore requires the existence of a Kahler metric on X. More recently,
Hitchin [Bh] extended the definition of stability to any compact complex hermitian
manifold. This was done by using a Gauduchon metric to define the degree of a
vector bundle. The existence of such metrics on any compact complex manifold
was proven by Gauduchon [G].

On a surface, holomorphic vector bundles also correspond to solutions to the
Yang-Mills equations, i.e. instantons. This was first proven for any Hodge surface
by Donaldson [D], and any compact complex surface by Buchdahl [Bh]. From the
topological point of view, Atiyah and Jones [AtJo| studied the global topology of
instanton moduli spaces. They conjectured that the inclusion of the space M, of
framed instantons of charge n into the space B, of all connections should induce
isomorphisms of homotopy groups H; and homotopy groups 7; for sufficiently large
k. This was first proven for SU(2)-instantons on the 4-sphere by Boyer, Hurtubise,
Mann, and Milgram [BHMM], and later on ruled surfaces by Hurtubise and Mil-
gram [HM].

Moduli spaces have also been studied from the point of view of symplectic ge-
ometry. Mukai proved in [Mu] that the moduli space of simple sheaves on an abelian
or K3 surface has a natural symplectic structure. Abelian and K3 surfaces have
trivial canonical bundles, and are therefore symplectic surfaces. Mukai showed that
the choice of a symplectic structure on such a surface induces a symplectic structure

on the moduli space. This was then generalised to Poisson structures and Poisson



surfaces by Bottacin [Bot|: a Poisson structure on a Poisson surface determines in
a canonical way a Poisson structure on the moduli space of stable sheaves. Mod-
uli spaces have also given rise to algebraically completely integrable Hamiltonian
systems. Among others, Hitchin [H] has shown that the cotangent bundles of the
moduli spaces of stable vector bundles over a Riemann surface, endowed with their
natural symplectic structures, support algebraically integrable systems. Beauville
[Be] has also shown that, with the symplectic structure defined by Mukai [Mu],
the moduli space of line bundles over K3 surfaces gives an algebraically integrable

system.

There have been numerous explicit descriptions of moduli spaces on Kaihler
manifolds. The case of a non Kihler manifold was first studied by Braam and
Hurtubise. In [BH], they considered instantons on Hopf surfaces. The Hopf surface
is one of the simplest elliptic surfaces and it has a homogeneous fibre. It does not
however possess a cross-section. Let us note that the general case of moduli spaces
on elliptic surfaces with a cross-section has been studied by Friedman, Morgan and
Witten [FMW]. In this thesis, we propose to generalise some of the results found in
(BH] in regards to the stabilisation and the topology of spaces of connections, and
also in regards to integrable systems and spectral curves.

The first chapter provides a review of some of the theory of sheaves that will
prove useful in the study of holomorphic vector bundles. We begin by discussing
extensions of sheaves, and give an explicit description of the transition matrices of
extensions of vector bundles. We then turn to deformations of sheaves, and de-
scribe how this relates to moduli spaces of stable sheaves and holomorphic vector
bundles. We finally give a brief account of how moduli spaces are constructed on
any compact complex manifold.

In the second chapter we begin by introducing the Hopf surface H and the
results found in [BH]. An important point is the fact that H fibres over P!, with
fibre an elliptic curve T. A rank two holomorphic SL(2, C)-bundle E on ¥ can
then be considered as a family of bundles over T parametrised by P!, by restricting
E to the fibres T. Rank two SL(2, C)-bundles over an elliptic curve have however



been completely classified by Atiyah [At]. One can then associate to E a divisor in
P! x P! = P! x Pic’(T)/% which gives the isomorphism type of E over each fibre
T. This divisor will be called the graph of E, and will prove to be a useful tool in
the study of holomorphic SL(2, C)-bundles on H. As the Hopf surface H can be
covered by two copies of C x T, bundles on H can be constructed by glueing two
bundies over C x T'. We then finish the chapter by classifying bundles over D x T,
where D is a disc in P!. .

In the third chapter, we study stabilisation maps on the moduli spaces M2 of
framed stable holomorphic SL(2, C)-bundles E on #, with ¢c;(F) = n. These maps
always exist in the case of moduli spaces of instantons. One can indeed use Taubes’
subtraction procedure to “glue in” an instanton at a fixed base point py of H. We
would like to know whether such a map can be defined in the holomorphic setting.
Such maps can be realised by “glueing in a jumping line” in the case of bundles
over S*, and ruled surfaces (see [BHMM] and [BM]). The holomorphic analogue of
the subtraction procedure in the case of bundles over H seems to be to construct a
sheaf by glueing in a copy of O & I at py, and deform the new sheaf to obtain one
that is locally free. Even though this can done locally in M2, we will see that the
deformation cannot be globally extended to obtain a well defined stabilisation map
M) > M2

One can define a map G : M,, — P?"*+! which associates to each bundle in
M,, its graph. This map is surjective for n > 2. A natural question to ask is, given
a graph g, how many holomorphic bundles correspond to it? In other words, what
is the fibre of G? In the case where n = 1, it was shown in [BH] that the fibre is
always an elliptic curve, and that G : M; — Im(G) is a principal T-bundle. Let
us note that every bundle F in M, satisfies a condition that we will denote by
(+): there are no points z € P! where E|;-1(;) = Lo @ Lo, L = O. If the graph of
the bundle is the graph of a holomorphic map F : P! — P!, this is equivalent to
requiring that the differential dF does not vanish at certain points. In the fourth
chapter, we generalise this result in the case of graphs that are holomorphic maps
of degree n which satisfy condition (*). We will prove that, given suck graph g,



the fibre G~!(g) is the Jacobian of the spectral curve associated to g. This will be
done by using two different methods. The first one was used in [BH]. Given that
the restrictions of such graphs to D x P! completely determine the isomorphism
class of the bundle on D x T, the first method consists in finding the different ways
of glueing them together. The spectral curve S of a bundle F is obtained from the
support of a skyscraper sheaf L. If the graph of E satisfies (), this sheaf has fibre
C on S. In the second method, we then show that there is a one-to-one correspon-
dence between G~!(g) and the set of holomorphic line bundles on S.

In chapter five, we use the construction in [Bot] to define a Poisson struc-
ture on the moduli spaces M,. Let A be the set of graphs which do not satisfy
(*). Given a Poisson structure on M,, we then show that, over the complement
of A, the graph map G : M, — P?*! is a Lagrangian fibration whose fibres are
isomorphic to abelian varieties. In the case of n = 1, G is proper, and we actually
have an algebraically completely integrable system. In the sixth chapter, we give a
partial classification of M.

In the final chapter, we consider the topological side of the problem by study-
ing the moduli spaces of connections. Given a C* bundle F over H with ¢,(E) =0
and c;(E) = k, we denote by By the moduli space of gauge equivalent connections
on E. We will see that the notion of graph can be extended to connections. Not
every connection A on F induces a global holomorphic structure. However, as every
fibre of 7 : % — P! is an elliptic curve, the restriction of A to any fibre 7#~!(x)
defines a holomorphic structure on the restriction of E to 7~ !(z). It would then
seem natural to think that one can associate to A a graph, as in the holomorphic
case. This will done by constructing a family of Dirac operators {34} associated to
A, and considering the determinant line bundle £ of the family {3,}. The graph
of A will then be defined as the zero set of a section of £, and will correspond to
a divisor in P™. If A defines a holomorphic structure on E, this graph coincides
with the graph defined in the holomophic case. Furthermore, we will again be able
to define a graph map G : By — P which associates to each connection A a graph
g- We will show that G is not a homotopically trivial map, and that the fibre of G



. can be considered as the total space of an S'-bundle over B.



Chapter 1

Coherent sheaves.

In this chapter, we give a review of some of the theory of sheaves that we will use
to study holomorphic vector bundles. The first two sections provide the necessary
background for the remaining ones. In the third section, we discuss extensions of
sheaves, and give an explicit expression of the transition matrices of extensions of
vector bundles. The Serre Construction for holomorphic bundles is then presented
in section four. We turn, in section five, to the deformation theory of sheaves,
and describe how it relates to moduli spaces of sheaves and vector bundles. The
final section gives a brief account of the construction of moduli spaces on any
compact complex hermitian manifold. We define stability and give Buchdahl’s

theorem relating stable holomorphic vector bundles to instantons.

1.1 Commutative and homological algebra.

We begin by recalling certain definitions {rom commutative and homological alge-
bra, and establish certain results, some of them very well known, that will be of
great use in the rest of the thesis. Let us remark that we follow the presentation of
[GH] and will therefore use their notation. We will not give proofs for all results,

and, unless otherwise stated, we refer the reader to [GH] for them.



1.1.1 Homological algebra.

We start by establishing some notation that will be used throughout the following
section. O = limgey O(U) will represent the germ of analytic functions defined in
some neighbourhood U of the origin in C*. It is clearly the ring O = C{z,..., 2.}
of convergent power series, which is a local ring. It therefore has a unique maximal
ideal m = {z|,..., 2,}, which is the ideal of functions f € O with f(0) = 0. The
units are just O* =0 —m.

We will mainly be using O-modules, usually denoted by M, N, E,..., and
we will always assume that they are finitely generated. Important examples of O-
modules that will often come up are: free O-modules; and if fi,..., fi are functions

in O, we will often consider

I={fi,.--, fx} an ideal in I generated by f,..., f,

M=0/{f1,...,fk}.
Let us note that since all O-modules are assumed to be finitely generated, free

modules will be identified with projective modules.
A complez is given by either
(K) — K-S K ., & =0,

or

(K") — K L gt L, 82 =0.

Here the K’s will always be finitely generated O-modules and the maps O-module
homomorphisms. H.(K) = ®H,(K) and H*(K-) = ®H"(K") are the homology

and cohomology, respectively, that one obtains by taking (co)cycles/(co)boundaries.

Definition 1.1 A projective resolution E (M) of an O-module M is given by an

exact sequence
EM):...~—Ep 5En,1-%5 ... 5 E— M —0,
where the E,, are projective(=free) O-modules.

7



Let us note that a projective resolution is obviously a complex, and that the exact-
ness of the sequence implies that H,(E (M)) = 0 for n > 0 and Ho(E (M)) = M.
Let us also remark that projective resolutions exist for any finitely generated O-
module M.

Now suppose that M and N are finitely generated (O-modules, and that we

have a projective resolution of M
EM):...—Ep 5E. % ... 5 E— M—0,

This resolution will then induce the two complexes Homo(E (M), N) and E (M)®o
N. Let us note that even though the first part

0 —» Homo(M, N) — Homo(Eo, N) -2 Homo(E,, N)
of Homo(E (M), N) is exact, as is the last part
E\@oN 25 Ey@ N — M@ N — 0

of E (M) ®o N, the complete sequences are in general not exact. But it is easy to

see that they are complexes. We then have the following

Definition 1.2 Given finitely generated O-modules M and N,

Ezty(M,N) = H*(Homo(E (M), N)),
Tor(M, N) = H,(E.(M) ®o N).

In the remainder, we will not use Tor. We will therefore only give the properties of
Ezxt. Let us start by noting that the Ezt groups are well-defined and independent
of the projective resolution F (M). Let us also remark that since, as we have seen

above,

0 — Homo(M, N) — Homo(E,, N) - Homeo(E1, N)

is exact, we have

Ext%(M, N) = Homo(M, N).



The main property of the Ezt functor is:

Short ezact sequences of O-modules

O- M ->M->M'->0,
0N ->N->N"20,

induce long eract sequences

... = Ext}(M,N) - Ezt(M',N) = Eztgt'(M",N) > ...,
... = Ext3(M,N) = Ext}(M,N") - Exty!' (M,N') — ...
of Ext’s.

For example, given 0 - N' =+ N — N” — 0, we obtain
0 = Homo(M,N’') = Homo(M, N) = Homo(M,N") — ExtL,(M,N'),

so that Extl,(M, — ) measures the extent to which Homo(M, — ) fails to be right

exact. We also have the following

Theorem 1.1 Ext},(M,N) =0, for ¢ > 0 and every O-module N <& M is projec-

tive.
One can actually refine this to

Corollary 1.1 Eztl,(M,E) = 0, for all projective O-modules M < M is projec-

tive.

1.1.2 The Koszul complex and some applications.

Koszul complez. Suppose fy,..., fr € O; denote by Iy = {fi,-..., fi} the ideal
generated by the first k& functions, and set [ = I,.

Definition 1.3 (fi,..., f;) is a regular sequence if, forall k =1,...,r, frisnot a

zero divisor in O/ I;_,;.

In particular, if r = 2, we see that f, is not a zero divisor in OQ/I; if and only if f;

and f, are relatively prime. Therefore,

(f1, f2) is a regular sequence < f, and f; are relatively prime.

9



Given a regular sequence, the Koszul complex gives a projective resolution
of the O-module I. Even though it is well-defined for all regular sequences, we shall

present it in the case where r = 2.

Let (fi, f2) be a regular sequence. The Koszul complez is therefore defined

to be the sequence

0— 0500051 —0,

where \: O 5> O® Oisgiven by 1 = (—f,, fi),and n: O O — [ is given by
(91, 92) — fig1 + f292- It is then clear that nA = 0. It actually turns out that the

Koszul complex is exact as shown in

Lemma 1.1 If f| and f, are relatively prime, the sequence
0—0-H000-5HT—0

18 ezact.

Proof: Clearly, A is injective and Imn = {f,f,} = I. Moreover, as nA = 0, we just
have to verify that Kern C ImA. If (g1, g2) € Kern, then fig; = — fog,. As f) and f,
are relatively prime, there must exist an @ € O such that g, = —af> and g» = af,,

therefore proving that (g1,¢92) = A(a) € ImA. O

Let us now use the Kozsul complex to compute some Ezxt groups involving
the local ring O, an ideal I generated by a two relatively prime functions, and the
quotient sheaf @/I. These will often be used in the sequel. Locally, we have the

following lemma:

Lemma 1.2 Suppose that I is an ideal generated by two relatively prime functions

T,z € O, then:
(i) Ext,(0,0) = Exty,(0,I) =0, for all i;

(ii) Homo(I,0) = O and the isomorphism is generated by the natural restriction
map Homo(O,O) - Homo(I,O);

(iit) Homo(I,I) = O and the isomorphism is also generated by the natural re-

striction map Homo(O, Q) — Homo(I, O);

10



(iv) Exth(I,0) =C;
(v) Exty(I,I) = C?; and
(vi) Exzto(I,0) = Exty,(I,1) =0, for alli > 2.

Proof: (i) As O is free, Ext},(O, M) = 0, for any O-module M.
(i), (iii) Any O-homomorphism I = O is given by two elements a,b € O such
that £ — a and z — b. Moreover, by O-linearity, az — br = 0. As z and z are
relatively prime, we must have zla and z|b. Thus, ¢ = hz and b = hz for some
h € O. a then extends to a O-homomorphism O — O given by 1 — h, thus
proving that Homo(I, Q) is isomorphic to Homp(O,O) = O. But this also tells
us that a is given by z — hz and z — hz. Thus, Homo(I,O) C Homo(I,I), and
Homo(I,I) = Homo(I,0) = O.

If E(I) is any projective resolution of I, and N is any finitely generated
O-module, we have by definition

Ezty(I,N) = H*(Homo(E (I}, N)).
We choose the Kozsul complex as a projective resolution of /
E(I):0— E, -2 Ey— T —0,

where Eg = O O, E, = Q,and 8 : 1 = (—z,z). To compute Ezxt}(I,0),
we shall find the first cohomology group of the complex Homo(E (I),0). As
Homo(Ey, ©) = O & O, Homo(E,,0) = O, and EztL,(Ey, O) = 0, it is obvi-

ous that this complex is simply
0 — Homo(I,0) — 00 0 L 0 — Exth,(I,0) — 0,
where * : O O 23 o is the transpose of 3. We then have
Im@)={-fz+g9z:f,ge 0} =1,

and

H'(Homo(E.(I),0)) = O/ ~C.

11



The proof of (v) is similar. We now use the complex Homo(FE (I),I). As
Homo(Eo,I) =1& I, Homo(E,,I) = I, and Ext},(Eo, I) = 0, it is given by

0 — Homo(I,LI) — I® T 25 I — Exth(I,I) — 0,
where 3* is as above. This time,
Im(8) = {fr* + gzz+ hz?: f,g,h € O} = I?;

and

H'(Homo(E.(I),0)) = I/I* ~ C?,

since I/I? = {az + bz : a,b € C}.

(vi) follows from the fact that I has a short projective resolution. [

The Kozsul complex induces the projective resolution
0—o o0 Elo o/ —o,
of O/I. The latter can be used to show that

Lemma 1.3 Suppose that I is an ideal generated by two relatively prime functions
z,z € O, then

(i) Exti,(O/I,0) =0, fori#2;
(ii) Ext3(0/I,0) ~ O/I.

Proof: The computations are similar to the ones in Lemma 1.2. For a detailed proof

see [GH] p.690. O

1.2 Coherent sheaves.

We now consider sheaves that are defined globally on a complex manifold X. O =

Ox will then be the structure sheaf of X. We start by giving the following
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Definition 1.4 Let X be a complex manifold with structure sheaf O and F be a
sheaf of O¥-modules. Then F is said to be coherent if locally there always is some

exact sequence of sheaves of O-modules
or) — 09— F —0.

We shall often use the following properties:

1. Coherent sheaves admit local syzygies

0 — Ok 5 Okn-t) 5 50k 4 Fofs.

2. If X is n-dimensional, the Cech cohomology groups H'(X, F) vanish fori > n.

Moreover, if X is compact, they are finite-dimensional complex vector spaces.
3. Given an exact sequence
0—F —F—F"'—0,

of sheaves of O-modules in which two of the three are coherent, then the re-

maining one is also.

For proofs of these we refer the reader to [GH] or [Hi].

Let us give some examples of coherent sheaves. The simplest are of course
locally free sheaves. As example of a coherent sheaf that is not locally free, let us
introduce sheaves of ideals.

A subsheaf I C O that is locally finitely generated is called an ideal sheaf or

sheaf of ideals. These are always coherent. They induce the exact sequence

0—I—>0—0/I —0,

which implies, by property 3, that O/I is also coherent.
If I is locally generated by functions fi,..., fm, i.e. I = {fi,...,fm}, then
the support of O/I is defined as

Z = supp(O/I)
{Z €X: Iz # Oz}
= {z€X:fi(z) =...= fm(z) =0}
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Z is an analytic variety, whose structure sheaf Oz = O/I is a sheaf of rings with
possible nilpotent elements.

Actually, as hinted by the above, most properties of O-modules carry over
to coherent sheaves, i.e. projective resolutions exist becomes local syzygies exist,
etc.... We can also sheafify Ext and Tor: Given coherent sheaves F and G, we may

define sheaves Ext&(F,G) and TorQ(F,G) with the properties:

( Exth(F,G). = Extt(F.,G.),

| Tor{(F,6): = Tord (¥, G:);

[ Extd(F,G) = Homo(F, G),

| Torf(F,9): = F®0G;

3. The ezact sequences of Ext and Tor are valid; and
4. Exty(F,G) and Tor®(F,G) are coherent sheaves.

These will be used to define global syzygies and global Ext. If X is compact,
then for any coherent sheaf F, there exists a global syzygy

0—& &1 — ... & — & — F —0,

where all the &; are locally free sheaves.

Global Ext.

Let F and G be two coherent sheaves on a compact manifold X. One can therefore

find a global syzygy
0—& — & — ... =& — & — F—0

for 7. We then define global Ext as the hypercohomology associated to the complex
of sheaves Homo(€.(F),G). It is denoted

Ext(X; F,G) = H' (X, Homo(E.(F), ).
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Global Ext has functorial properties similar to those of local Ezt. To calculate
global Ext, we use the spectral cohomology sequence {'E,} with

lEg-‘l — HP(‘X, En‘é(?,g)),
'ERS = ExtP*(X; F, G).

This spectral sequence has two very useful properties:
1. For € a locally free sheaf on X,
Ext?(X;E&,6) 2 HY(X,€* ®o0 G).
In particular, for any coherent sheaf G,

Ext(X; 0,G6) = HY(X, G).

2. Suppose that Extl,(F,G) =0 for 0 < q < k. Then

Ext*(X; F,G) = H(X, Ext5 (F, G)).

Chern classes.
On a smooth quasiprojective variety, we can define the Chern classes of any
coherent sheaf. This is because, by a theorem of Serre, every coherent sheaf F on

a quasiprojective possesses a global syzygy
0— & &1 —...m €& —&E —F —0,

where the &; are locally free. We can define the total Chern class of F by the

formula
o(F) = [[ e(€) M.

This definition is independent of the global syzygy and it satisfies the Whitney

product formula. An important example is the following:

Proposition 1.1 Let X be a compact compler manifold and let E be a holomorphic

rank 2 vector bundle over X for which there are line bundles L,L' and an ezact

sequence

0—L—F—LQ®Iz;—0,
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where Z is a a subvariety of codimension 2. Then we have

ci(E) = a(L) + (L),
c2(E) = ¢ (L) - (L") + [Z],

where [Z] € HY(X, Z) is the cycle defined by Z.

Proof: See [F] p.29. O

1.3 Extensions.

1.3.1 Ext! and Extensions - Local case.

We start by considering finitely generated modules over the local ring O = C{z,,...,z,}-

Let us remark that we are following the presentation of [GH].

Definition 1.5 If M and N are O-modules, we define an eztension of M by N to

be a short exact sequence
00— N—FE—M-—0. (1.1)

For brevity this will be referred to as “the extension E”. Two extensions E and

E' are said to be equivalent if there exists an isomorphism E — E’ such that the

diagram
0 N E M 0
0 N E' M 0

is commutative.

Extensions of M by N do exist; the simplest example being the trivial or
split extension M & N:

0—N-"SMoN-2 M-—0,

where ¢ and p are the usual inclusion and projection. As a description of all other

possible extensions, we have
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Lemma 1.4 There i3 a bijective correspondence between equivalence
classes of extensions and Exty,(M, N), with zero corresponding to the trivial ez-

tension.

Proof: Let E be an extension of M by N. The sequence (1.1) then induces the long

exact sequence on Ezt
... — Homo(M, E) — Homo(M, M) -5 ExtL,(M, N). ...

Let 1,s be the identity map from M to itself. We then associate to E the class
(1) € Exty(M, N), thus defining a map from extensions to Extl,(M,N). Let
us note that d(1s) represents the obstruction to splitting the sequence (1.1); in
particular, if (1)) = 0, it splits, and F is the trivial extension.

Conversely, given a projective resolution of M
E,—E —Ey—M—0,

a class in Ext},(M, N) is represented by a map E,/E» 2 N. The data

i ~

00— E;/Ez EO

M 0,

E\/E; -~ N,

then allows us to construct an extension
0O— N—DF—05M-—0590

as follows: We define F = (N® Ey)/u(FE,/E,), where p = i®i: E|/E; - (NBEy).
The inclusion n — n & (0) and the projection n & ey — 7(ep) then give us the exact

sequence defining F. O

Before giving an example, we would like to introduce the global case.

1.3.2 Ext! and Extensions - Global case.

We would now like to consider the case of global extensions. We are again following

the presentation in [GH]. In this case, let F,G, be coherent sheaves on a complex
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manifold X. An exact sequence
0 —F —>€&—G—0

of sheaves of (J-modules - here G must be coherent — is called a global extension
of G by F. The equivalence relation and trivial extension are as in the local case.
One might again think that the set of equivalence classes of extensions would be in
bijective correspondence with H°(X, Extl,(G, F)). But this is not the case for the
following reason:

Suppose that we have a global section of H(X, Ext} (G, F)). We then choose

an open covering U = {U,} that is sufficiently fine and consider the local extensions
0 — Flu, — Ea ~— Gy, — 0.

On double covers, U, N Ug, the extensions &, and £; must be equivalent. Hence,

there exits an isomorphism ¢,z making the diagram

l Pas

0 —= Fluarits — Elutariss — Gluarss — 0

commute. But the ¢,3 may not satisfy the cocycle relations. Indeed, on triple

intersections U, N U NU,, the triangle

Ea
socy Y@w
£ £,

P8

may not be commutative. The isomorphisms @,s may therefore not patch up to

give a global extension. What is true is

Lemma 1.5 The equivalence classes of global extensions of G by F are in bijective

correspondence with Ext'(X; G, F).

Proof: For a complete proof, we refer the reader to [GH]. We shall however give an

outline in order to describe this bijection. We proceed similarly to the local case,
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only, this time using the exact sequences induced by global Ext’s. Let 1; be the
identity map from G to itself. We therefore associate to each extension its image

9(1¢) by the coboundary map induced by the exact sequence
Ext’(X; G, F) — Ext’(X; G, F) - Ext'(X; 6, F) — ...
As in the local case, d(1¢) is the obstruction to splitting the sequence
0 —F —€&—G—0.

For the converse, we again start with a locally free resolution of the coherent
sheaf G:

EG): ... =& & —E —G—0;

and we choose a covering Y = {U,} that is sufficiently fine so that each element

e € Ext'(X;G, F) is given by a cocycle in the hypercohomology group
H' (U, Homo(E.(G), F)).

By studying the long exact sequence on hypercohomology, we see that e is given by
@ @1, where

¢ = {pa} with po € H*(Us, Homo (&, F)).
n= {‘f)ag} with Nag € H"(ue nu,g,Homo(So, .7‘-))
Now the ¢, define extensions

0 — Fly, — & — Glu, — 0,

and the 7,4 give a rule for patching them up over double intersections that satisfies

the cocycle relations. This then defines a global extension. [

We will now present two very important examples that we will often use in

the upcoming sections.

1.3.3 Extensions of I by O.

Suppose that O = C{z,, z»} is the local ring in two variables and I = {f1, fo} isa

regular ideal. As we have seen in the previous section, we have the exact sequence

0—I—>0—00/I —0,
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which, along with the computations of Ezt’s gave us
Ezth(I,0) = Ext3(0O/1,0) = O/I.

Let us give a complete description of the equivalence classes of extensions of I by

O. We begin by stating a theorem due to Serre [Sr]:
Theorem 1.2 Let F be the extension given by t € C. Then
F is locally free & t # 0.
If t =0, then F is the trivial extension. And if ¢ # 0, it is the extension

0— O (=f2, f) 060 t 1 fo] I 0.

In particular, if £ = 1, we get the Koszul complex.

These extensions can also be described as the cokernels of the maps

O - 06080
1 ~- (ts—fzrfl)

More explicitly, the trivial extension is given by

1 0 O
0—0Off) poogoll L 2l ooy
and the extension corresponding to ¢ # 0 comes from
fo t 0
0— o0t ppoe0t™ 2 Tl pg0 .

1.3.4 Extensions of vector bundles.

We will study in detail the special case of vector bundles. This presentation follows

that of [DK]. The definition and properties that we stated in the general case can

be written as
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Definition 1.6 Let X be a complex manifold and

0 E“t.E-2.E" 0, (1.2)

be an exact sequence of vector bundles on X. E is then said to be an eztension of
E" by E’. The trivial or split extension is E' @& E"”. Moreover, if the ends stay fixed,

any two such sequences are said to be equivalent if there is a commutative diagram

pl " 0

’ Zl E[
. @3
0 E’ 12 E2 D2 E" 0.

0

In this case, since E” is locally free,
Ext'(#;E".E') = HY(H,(E")* ® E'),
and by lemma 1.5 we know that

There is a one-to-one correspondence (E,i,p) — (1) between equivalence

classes of extensions of E" by E' and the cohomology group H'(X, Homo(E", E')).

In this case, it is very useful to us illustrate this using Cech cohomology. We choose

a cover X = |JU, by open sets over each of which the sequence

0—E ‘e E-2.E" 0
splits. Let
Ja : Ely, —= E'|ly, ® E"|v,
be the isomorphisms which split the sequence and are compatible with ¢ and p. By
this we mean that, over each U,, the diagram

0 — E'|y, — Elu, P By, —0

o]

0 — E'ly, = E'ly, ® E"|y, — E"|y, — 0
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commutes, where ¢ and 7 are the usual inclusion into the first factor and projection
onto the second factor.

On each overlap U, N U, we can then write
Ja = Jglag,

where a,g is an automorphism of E’' @ E” over U, N Uj of the form

0 s
aaﬂ=1+(0 Y;ﬂ)'

Xag can then be interpreted as being a holomorphic map from E”|y,ny, to E'|v,nu;-
A straightforward computation shows that the cocycle relation x,5 = Xag + X+a
holds on triple intersections U, N Ug N U,. The extension class 9(1) is therefore
represented by the Cech cocycle (xag) on this cover.

Remarks: (i) Suppose that {A.} and {u,} are trivialisations of £’ and E",
respectively, on the open cover {U,}. They induce transition functions g,; and gg5.

It is then not difficult to verify that E has transition matrices

9hs AaXashp'
Gaa=[ S (1.4)
0 gcﬂ

(i) Let L,L, be line bundles on X. Suppose that E,E’ are both extensions
of L, by L, given by the classes x,x’ € HY(T,L3 ® L), respectively. Since
HO(X, Aut(L,)) = H°(X, Aut(L,)) = C*, it follows from the definitions that

FE and E’ are isomorphic & x’ = by for some b € C".

Ezample: Let us give an illustration of the above discussion in the case of
X =P!. Let O(1) = Op:(p) be the hyperplane bundle, where p is simply a point in
P!. Its dual is then O(—1). We would like to find an extension of O(1) by O(-1).

One has

H'(P', Homo,,(0(1);0(-1))) = H'(P*,0(-2)) = C.
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There then exists at least one non-trivial extension of O(1) by O(—1). Furthermore,
HO(P',0O(1)) = C?. As Homo(O(-1),0) = O(1), the trivial bundle O & O can

therefore be expressed as such an extension:
0——O0(-1) — 080 ——0(1) — 0. (1.5)

Let us cover P! by the two coordinate patches Uy = (disc about the origin z = 0),
and U, = P! — (origin). The sequence (1.5) therefore splits on each U;. We can
assume, without loss of generality, that p = (origin). As the divisor p is given on U
by z and on U, by 1, the transition matrix of O(1) from Uj to Uy is g1o(2) = 1/2.
Let us choose {1,1/z} as a basis for H*(P!,O(1)) = C?. This basis then gives us
the following two global sections of Homo(O(-1),0):

ro(z) = 2z, on Uy, so(z) =1, on Uy,
r(z) = and s(z) = )
ri(z) =1, on Uy; s1(z) =1/z, on Uj.

As r and s have no common zeroes, 1 — (r(2), s(z)) defines an injective bundle

map from O(-1) to O & O, and this induces the following commutative diagram
onlUpyNnl,

(Z, 1) [1 - Z]

0 O(-1) 000 o(1) 0
!
(1)
z 1/z (1.6)
01

Method 1. Suppose that the extension (1.5) is given in H!(P!,O(-2)) by
the cocycle x. Let us then find a representative for x. Referring to (1.6), it is easy
to see that the map ¢y : O(1) > O & O defined by 1 — (1,0) gives a splitting of
(1.5) on Up. Similarly, the map ¢, : O(1) —» O & O defined by 1 — (0, —1) gives a
splitting on U;. If we consider Uy N U, as a subset of Uy, we have

x(1,2) = (1/z)¢1 — o & x=-1/z.
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Let us fix the trivialisation of O(1) on Uj to be 1. Referring to (1.4), we then get

Gw:[z zx:|=|:z —l].
0 1/z 0 1/z

Method 2. There is another way of finding the transition matrix of (1.5). On

the transition matrix

Us N Uy, (1.6) induces the following commutative diagram

[ 1 0 -1
(1,z1) 01 -z
O(-1) ———0(-1)e (0 0) (O® 0O)
z 00
: 010 ( £ )
0 1/z
| 0 01
0 1/z -1

The rows are exact, and v must satisfy the constrains of commutativity. Solving,

we find that v = —1, thus verifying that the transition matrix is

oo
Gw = .
0 1/z

Let us note that this second construction has the advantage of not requiring
fixed trivialisations. We will use it in the next chapter to find the transition matrices

of extensions over D x T, where D is a disc and T an elliptic curve.

1.4 The Serre Construction.

In this subsection, we will assume that X is a complex manifold, and E is a holo-
morphic rank 2 vector bundle on X. Let L be a line bundle on X, and ¢ be a non

zero holomorphic bundle map from L to E. We do not assume that this map has
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constant rank. There may exist points p where ¢, = 0, and ¢ is then not neces-
sarily an injective bundle map. ¢ can also be considered as a O-homomorphism
of sheaves from O(L) to O(F), and ¢ # 0 if and only if it is an injective map of
coherent sheaves. If we denote O(F), O(E) also by F, E, we then have the following

well known result

Proposition 1.2 Let X be a complez manifold and let ¢ : L — E be a holomorphic

bundle map from the holomorphic line bundle L to the holomorphic rank two bundle
E. Then

(1) There ezists a largest effective divisor D on X such that the map L —» E
factors through the inclusion L C L ® Ox (D).

(i1) Suppose that the divisor D above is zero. Then there is an exact sequence of

coherent sheaves

0-L->E->L®Iz;—0,

where L' = det E® L™! is a holomorphic line bundle and Z is a codimension

two local complete intersection subscheme of X. Moreover, if X is compact,
c2(E) = (L) - a(L') + (2],

where [Z] is the cohomology class Poincaré dual to the algebraic cycle associ-
ated to Z.

(iit) In the notation of (i), the divisor D = 0 if and only if the set of p where
®p = 0 has codimension at least two in X, or equivalently if and only if the

coherent sheaf E/L is torsion free.

Proof: See [FM].

The Serre construction.
The Serre method consists in reversing this construction. If we start with line
bundles L, L' and a locally complete intersection 2-codimensional analytic subspace

Z of X, we may ask whether there exist extensions of L' ® Iz by L
0 —L—FE—L®I; —0,

25



such that FE is locally free. This method works in the case of any complex manifold.
But we shall restrict ourselves to the case of surfaces. For a more general discussion,
we refer the reader to [Br].

As we have seen in our discussion of global extensions, the answer to our
question lies in Ext'(X;L' ® Iz,L). To compute this group, we use the spectral

sequence with E, term
EP = H?(X; Exto(L' ® Iz, L)) = ExtP*Y(X; L' ® I, L).
By lemma 1.2, we locally have the following situation:
(i) Homo(I2,0) = O;

(ii) Homo(Iz,1z) = O;

(iii) Exty(lz,0) = Extd(0O/I2,0) = O/Iz;

(iv) Ezt§(Iz,0) =0 for k > 2.

Globally, the inclusion Iz ~— QO induces
Homo(L' ® Iz,L) = Homo(L',L) = (L')"' ® L.

Moreover, as Ezt,(0O,0) = 0 and Extl(Iz,0) = O/Iz, we see that Exth(L' ®
Iz, L) is a skyscraper sheaf with fibre O/Iz supported on Z. We can now replace
the Ext spectral sequence by

0 — HY(X, (L)' ® L) — Ext'(X;L' ® I, L) —»

— HY(X,Ext{(L'® Iz,L)) — H3(X,(L')"'Q L).
Let us consider the extension E corresponding to the element
e € Ext!(X;L’' ® Iz, L). Its image in H°(X, Ezt.,(L' ® Iz, L)) is also denoted by e.
Serre’s Theorem (1.2) then tells us that E is locally free if and only if e is an invert-
ible element of Ext},(X,L'® Iz, L), i.e. if it generates the sheaf Ext}(X,L'®1z, L)

or if the natural map

O — EztL (L' ® Iz, L)

26



defined by e is onto. If H?(X,(L')"' ® L) = 0, then there must exist at least one

such element. This is why we have

Theorem 1.3 Suppose in the above situation that X is a surface and that H*(X, (L')"'®
L) = 0. Then there erist locally free ertensions E of L' ® Iz by L.

1.5 Deformation of sheaves.

As we shall see in the next section, deformation theory is a very useful tool in the
study of the local properties of moduli spaces. We give a detailed description in
the cases of sheaves over local rings, and vector bundles. The general case is then

simply a combination of those two. We start with

Definition 1.7 Let X be a complex space and F be any coherent sheaf on X. We

can then define the following:
1. A deformation of F is a quadruple Gr = (G, T, to, a) where

(i) (T, tp) is the germ of a complex space with representative T,

(ii) G is a coherent T-flat sheaf on X x T, such that a : G(ty) — F is an

isomorphism of Ox-modules on X.

2. If G'r = (@', T, t;,a’) is another deformation of F, then a morphism of
deformations Gr — G'r is a pair (@, f) where f : (T',t5) — (T,t) is a
morphism of germs and ¢ : (id x f)*G — G’ is an isomorphism on X x T’ such

that a =o' °je'(,(¢)-

3. The deformation Gr is called complete if for any other deformation G’z there
exists a morphism (¢, f) : Gr — G'r. If in addition the tangential map
Tf:TyT"' — T, T is the same for all such morphisms, the deformation Gr is

called semi-universal or versal.

Deformation theory basically gives us the following result:

For any coherent sheaf F on a variety X, the global deformations of F are

27



given by Ext!(X; F, F). The obstruction to ectending the deformations to any order
is an element of Ext’(X; F, F).

1.5.1 Local case.

We begin by examining the local case. The results of this section are due to Traut-
mann, and were presented in the more general setting where X is a Stein space.
We restrict ourselves to the Stein space X = C*. In the remainder of this

section, X will always denote C*. Let us start by giving some notations.

1. Let O? -2~ ©9 be an O- homomorphism of @-modules. We can then identify
a with a p x g-matrix with entries in Q. Moreover, the space of holomorphic

p X g-matrices is identified with OP9.

2. Let M, N be O-modules, and suppose that they have the following projective
resolutions:

e O e QPP e OP = M — 0,
n—-1 0

and

. — O —B’Oq"-g,—N—»O.

Using the projective resolution of M, we see that Extl,(M, N) is given by the
quotient Z*'/B*, where

Zi={a:0"—>N|aoA;=0},

and

B'={a:0% -5 N | a=fo0A;_ forsome 8 : O"-* — N}.

Let us remark that every homomorphism 07 —

N factors through S, i.e.
there exists an F' € OP%_ such that the diagram

0"0
&/ ls
Op—a—-N

commutes.
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Let us note that projective resolutions always exit, in the case of O-modules. It
turns out that deformations of O-modules actually arise from deformations of their

resolutions. We have the following lemma:

Lemma 1.6 Let
e 0% — 0% — O, — F—0
X BD X AO X
be a resolution of M. If Nt is any deformation, then Nt has a resolution

R o}xrmo}xr ATA O%xr — Nr — 0,
where B, A are holomorphic and vanish on X x {to}.

Proof: 1t follows from the flatness of Nr and Nakayama’s Lemma. For details
see [Tr]. O

The converse is also true, as shown by the following result, due to Douady:

Lemma 1.7 Let A and B be holomorphic matrices on X x T with Bo A =0 and
let N := Coker(A), such that we have the complez

XxT B O%xr a O%xr — N —0, (1.7)
on X x T. If the induced sequence
..— 0% 5 % x o%
is ezact on X, then (1.7) is ezact and N defines a flat deformation of N(to)|x-

Deformations of order 1.

Let Cle] be the ring C[t]/(t)?, where € is the class of ¢t and let 0[¢] be SpecCle]-
The space X[e] = X x O[e] has the structure sheaf Ox[e] = Ox ®c Cle], and any
f € I'(X,Oxle]) has a unique decomposition f = fy + €f. with f;, f. € O.

Again, let
— 05— 0% — O — M —0
XBO on X SD
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be a resolution of M. If N is a deformation of M over O[¢|, by lemma 1.6, it has a

resolution

.. T o 0&[(] e N _— 0, (1.8)

e — e O .
X By +eBy X Ag+eA,
where the entries of By, A; are in O.

Let us start by showing that the matrix A, defines an element of Ezt, (M, M).

Let us note that in this case
Z'={a:0? > M | ao By =0},

and

B'={a:07 5 M | a= 0 A forsome §: O° — M}.

By exactness of (1.8), (A¢ + €4,)(By + €B,) = 0, and, as €& = 0, this is
equivalent to AgB; + A By = 0. It then follows that SyA, defines a homomorphism
a : 0% — M, such that (SpA,)By = —(SoAo)B1 = 0. Therefore SyA, defines a
class [a] € Exty, (M, M). Conversely, since any map O% — M factors through S,
if (a] € Exty(M, M), it is represented by SoA;, where A, is a suitable holomorphic
matrix. Similarly, since SpA; By = 0 and SpAg = 0, we have that Sp(AeQ+ A,1By) =
0 for any @ € O™, implying that there is a B, with AyB; + A;By = 0. Thus
(Ao +€A,)(By+€B;) =0, and by lemma 1.7, the matrices By +€B;, Ag+€A; define
a flat deformation of M. Let us note that if we choose a different representative of
the class [a], we obtain a deformation that is equivalent to the one given by SpA,;.

This can be shown by arguments similar to the ones above.

Obstructions for extending deformations.
Let us now suppose that we want to extend this to a deformation of order 2, i.e., a
deformation on X x T, where T" is Spec (C[t]/(t)%). We will see that the obstruction
for such an extension is an element in Ext% (M, M). In order to describe this element
as a 2-cocycle, we need to specify a third map Cj in the resolution of M:

iee — O — 0% — O — M — 0.
Co XBo x40 X 4
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The set of 2-cocycles is then Z2 = {a : O" - M | a o Cy = 0}, and the 2-

coboundaries are
B?={a:0" > M | a = 0 B, forsome 3 : 0% — M}.
As above, any deformation N7 of order 1 has a resolution

.o '6’ orv[cl _B. O:’\-[El 71’ OK,[CI — NT — 0, (1.9)

where C = Cy +¢C,, B = By +€B), and A = Ag + €4,.

Let C’, B’, A’ be holomorphic matrices on X x T’ inducing C, B,Aon X xT.
In the following C', B’, A’ will be fixed. For suitable choices of holomorphic matrices
C,, B3, A;, we can then express C',B', A’ as C' = Cy + €C, + €2C,, B’ = By +
eB, + 2By, and A' = Ay + €A, + €2A,. If these matrices are the result of a
deformation of order 2, then, by exactness of the resolution they correspond to,
B' o C’' = A' o B’ = 0. Conversely, by lemma 1.7 (Douady), if A’ o B’ = 0, then
they define a deformation Ny := Coker(A') of order 2. We therefore have to find
out whether or not A’o B’ = 0.

As ¢ =0 for ¢ > 3, and, by exactness of (1.9), (dg +€A,)(Bo +€B;) =0, we
have that A’ o B’ = R, where R = A¢B; + A\ B, + A,By. It is easy to verify that
(SoR)Cp = 0. We then have a homomorphism p : O" — M defined by SpR, such
that po Cy =0, thus defining a class [p] € Ext3 (M, M). We then have

Lemma 1.8 There erists an eztension N1 of Ny over X xT" if and only if [p] = 0.
Therefore Ext%, (M, M) is the group of obstructions for extending Nt to T'.

Proof: If the matrices C', B’, A’ are the result of a deformation of order 2, then,
by the above discussion, A' o B’ = 0. As A’ o B’ = €2R, we then have [p| = 0.
Conversely, if [p] = 0, then p = B o By, for some 3 : 07 — M. As we have seen
in the previous section, this implies that R = A¢B3; + A3 By, for some holomorphic
matrices By, A;. If we set B' = B’ + €2B;, and A’ = A’ + €243, a simple calculation
gives A’ o B' = 0, and, by Douady, N := Coker(A:’) defines an extension Np+ of
Nrover X xT'. O
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We can then repeat this process as many times as we want. At each stage,
assuming that we have a 1-cocycle of order n, the obstruction to extending it to
order n + 1 is an element of Ext%(M, M). Thus, for example if Ext2, (M, M) =0,

extensions to any order always exist.

Ezample: Let py € C? and (z, z) be coordinates at py. The ideal I generated
by z and z is then the ideal sheaf of pg. The set of all deformations of the sheaf
Oalis Ext,(Oa& I,0&I). We have an exact sequence

ExtL(I,I) - ExtL(O e I,0 @ I) —» Exth(I,0).

The deformations of I are parametrised by Eztl,([,I) =2 C?. They simply cor-
respond to changing the point py in C*. We have seen in section 1.3.3, that the
elements of Ext},(I,0) = C give extensions 0 - O - V — I — 0. The deforma-

tions of O @ I are then the cokernels of maps of the form

O - 020600
1 = (t,—z+c,x—b),

where t € Ezt},(I,0), and (b,c) € ExtL (I, I).

1.5.2 Global case.

We first describe deformations of vector bundles, and then state how these extend
to coherent sheaves.
Deformations of bundles.

The ideas of the local case extend to deformations of vector bundles. Only this time
it is the transition functions that are being deformed. We follow the presentation of
[F], and therefore use their notation. Let £ be a vector bundle on X. A deformation
of E is then a vector bundle £ over X x T such that the restriction of £ to X x {#o}
is isomorphic to E. The vector bundle £ must be given by transition functions,
which we will now describe. Suppose that T is SpecCle], where Cle] is the ring
C[t]/(t?) and e is the class of t. Let A;; be transition functions for E with respect

to some open cover {U;} of X. We may assume that £ can be trivialised on the
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open cover {U; x T} of X x T, and we can choose transition functions for £ of the

form

Ai(t) = Aij + Bij - t + O(£2).

Let us consider the linear term B;; - t. The transition functions 4;;(t) must satisfy

the cocycle relations, thus implying that on triple intersections U;NU; NUi we have:
BijAjx + AijBjr = Bi.
Since A;; is a 1-cocycle, this can be rewritten as
B A + Aij(Bj A7) A = Bu AL,

and it follows that B,-,-A,-‘jl is a 1-cocycle for Hom(E, E). Furthermore, any two
choices of B;; differ by a 1-coboundary for Hom(E, E). Deformations of E thus de-
fine elements in H'(X, Hom(E, E)). Conversely, an element C;; € H'(X, Hom(E, E))
defines first-order terms in a power series expansion for A;;(t), by the rule B;; =
CijAij.

Let us now suppose that we want to extend this to a deformation of order 2,
i.e., a deformation on X x Spec(C[t]/(¢)?). This is equivalent to finding B;; so that
Al;(t) = Ayj+B;j-t+Bj;-t* is a 1-cocycle mod t*. Given a choice of BY;, we must then
compute the ¢ term in Agj(t)A;-,,(t)A’,-‘k' (t). After a rather technical computation,
one finds that A;j(t)A;,c(t)A',-“,c1 (t) = Id + ©, where O is a 2-cocycle. The obstruc-
tion to A};(t) being a 1-cocycle mod ¢* is then given by © € H*(X, Hom(E, E)):
in order for the extension to be possible, this cohomology class must vanish. The

converse is also true. It can indeed be verified that
3B;; such that A;(t) is a 1-cocycle <> © =0.

In general, if we have a 1-cocycle to order n, and we want to lift it to order n + 1,

the obstruction for such an extension is an element in H%(X, Hom(E, F)).

Deformations of coherent sheaves.

Let F be a coherent sheaf on a complex space X. There exists an open cover
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VY = {V;} of X such that each V; is a Stein space. Therefore F|y; has a projective
resolution, for all i. F is then given by:

(i) projective resolutions ... = O% — OPi — Fly. on V;;

(it) transition homomorphisms 7;; : Fl|y; = Fly; on ViNVj, that satisfy the cocycle

relation, i.e. 7y; = Ty - Tkj.

A deformation of F consists in a deformation of these two things. Combining both
the local and locally free descriptions, we have

For any coherent sheaf F on a variety X, the global deformations of F are
given by Ext!(X; F, F). The obstruction to extending the deformation to any order
is an element of Ext*(X; F, F).

1.6 Moduli spaces.

We finish this chapter by giving a review of some of the results involving moduli

spaces of stable vector bundles and sheaves over any compact complex manifold.

1.6.1 Degree and stability.

Stability was first introduced by Mumford for holomorphic vector bundles over
algebraic curves. Takemoto then generalised it to sheaves over a projective variety.
Let X be a smooth projective variety of dimension d and let H be an ample line
bundle on X. Let £ be a torsion-free coherent sheaf on X. The degree degy(€) of
£ relative to H is then defined to be the number c,(£) - H4!. The slope uy(E) of
& with respect to H is the rational number pgy(€) = degy(€)/rk(£). (The slope is
also called the normalised degree of £ with respect to H.)

Definition 1.8 (Mumford-Takemoto) A torsion-free coherent sheaf £ on X is H-
stable (resp. H-semistable) if, for all coherent subsheaves S of £ with 0 < rk(S) <
rk(£), we have

pa(S) < puu(E) (resp.pu(S) < pu(€))-
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We call £ unstable if it is not semistable and strictly semistable if it is semistable
but not stable. Finally, a subsheaf S of £ with 0 < rk(S) < rk(€) is destabilising if
pru(S) 2 pu(€)-

Stability can in fact be generalised to vector bundles over any compact com-
plex manifold X of dimension d. One just has to define the notion of degree on X. A
theorem by Gauduchon [G] states that any hermitian metric on a complex manifold
has a conformal rescaling so that its associated (1,1) form w satisfies 30w?! = 0.
Such a metric is called a Gauduchon metric. Let us assume that X is endowed with
such a metric. Hitchin then suggested the following notion of degree (see [Bh]): if
L is a holomorphic line bundle over X, the degree of L with respect to w is defined,

up to a constant factor, by

deg(L) := / FAwi,
X

where F is the curvature of a hermitian connection on L compatible with d;. Any
two such forms F differ by a 30-exact form. Since 99w%! = 0, we see that the
degree is independent of the choice of connection, and is therefore well defined. This
notion of degree extends that of the Kahler case. Indeed, if X is Kihler, we get
the usual topological degree defined on Kahler manifolds. In general, this degree
is however not necessarily a topological invariant. We shall see in the next chapter
that in the case where X is a Hopf surface, the degree of a line bundle can take
values in a continuum.

Having defined the degree of holomorphic line bundles, we define the degree
of a torsion-free coherent sheaf £ on X by

deg(€) := deg(det(£)),
where det(£) is the determinant line bundle of £; and the slope of £ by
1(€) = deg(€)/1k(E).

The definition of stability therefore extends to this notion of degree, and it is defined

exactly as in definition 1.8.
Remarks: It follows from the definition that:
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(i) Line bundles are always stable.

(ii) In the case of rank 2 vector bundles on a surface, we need only to check

stability with respect to rank 1 torsion free sheaves S.

For the elementary properties of stable (resp. semistable) sheaves, we refer
the reader to [OSS] and [Br]. We shall however state, without proof, the ones that
will be useful to us in the sequel. Let X be a compact complex hermitian manifold,
and let O = Oy be its structure sheaf. For any sheaf £, we denote its dual sheaf
by £ = Homo(€,O).

If £ is any torsion-free sheaf on X, then
Lemma 1.9 £ is stable if and only if £** is stable.
A very important consequence of stability is

Proposition 1.3 If£ is a stable torsion-free sheaf, then £ is simple, i.e., End(£) =
{A-Id: A e C}.

1.6.2 Moduli spaces.

Let X be a compact complex hermitian manifold of dimension d endowed with a
Gauduchon metric. We then have a well defined notion of degree and stability.
Let M, be the moduli space of stable rank 2 SL(2,C) vector bundles E on X
with c(E) = n. It is a well defined space. As E is an SL(2, C)-bundle, det(E) =
O. We then have a natural splitting Hom(E, E) = sl(E) & O, where sl are the

traceless endomorphisms. The discussion on deformation of sheaves then gives us

the following

Theorem 1.4 Suppose that x € M,, is a point corresponding to a stable bundle E.
If H3(X, sl(E) = 0, then M, is smooth at T of dimension h'(X, sl(E)). In general,
there is an analytic neighbourhood of x in M, which is isomorphic to the zero set
of h holomorphic functions fy,..., fn defined in a neighbourhood of the origin in
HY(X,sl(E)), where h = dim H%(X, sl(E)). Moreover, the f; have no constant or
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linear terms and thus the Zariski tangent space M, at r may be identified with

H'(X,sl(E)).
Proof: See [F].

Remark: The moduli space M,, of stable torsion-free coherent simple sheaves
on X with ¢,(£) = 0 and ¢;(€) = n is again a well defined space. Moreover, a

theorem analogous to theorem 1.4 also applies in this case.

Buchdahl’s theorem.
Let E be a holomorphic vector bundle on X. The notion of stability of E is
intimately related to that of a Hermitian-Einstein connection on E. This is a
Hermitian connection A on E, compatible with g, whose curvature F satisfies
the equation

B 1 d—1y __ =
FA.—*'(—&—:—i-)T(FA/\w )—‘lk (1.10)

for Kk € R k is then constrained by

=27
= @=vaixy HE):

k
We then have the following very important

Theorem 1.5 (Buchdahl [Bh]) An indecomposable holomorphic bundle E on X is
stable if and only if E admits an irreducible Hermitian-Einstein connection. This

connection is unique.

This theorem generalises the result of Donaldson [D] for the Kahler case. Uhlenbeck
and Yau [UY] have also generalised the result to a Kihler manifold of arbitrary

dimension.

In the sequel, we will only be interested in SL(2,C) vector bundles. Let
E be such a bundle. Then det(E) = O and u(E) = 0. By (1.10), we see that
the Hermitian-Einstein connections on E are precisely the anti-self dual ones, i.e.

instantons. Buchdahl’s theorem then gives
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Corollary 1.2 An indecomposable holomorphic SL(2,C)-bundle E on X is stable
if and only if E admits an irreducible anti-self dual connection. This connection is

unique.

We therefore see that there is a correspondence between indecomposable stable

SL(2, C)-bundles and anti-self dual connections, i.e. instantons.
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Chapter 2

Holomorphic bundles over Hopf

surfaces.

In this chapter, we consider holomorphic SL(2, C) vector bundles over Hopf surfaces.
We begin by giving a review of the results found in [BH|. An important fact is that a
Hopf surface H is an elliptic fibration over P!. A rank two SL(2, C) vector bundle E
over ‘H can therefore be thought of as a family of bundles over T parametrised by P!,
where the family is obtained by restricting E to each fibre T. Rank two SL(2,C)
vector bundles over an elliptic curve have however been completely classified by
Atiyah [At]. It is then possible to associate to E a divisor in P! x P! = P! x
Pic’(T)/+ which gives the SL(2, C)-isomorphism type of E over each fibre T. This
divisor will be called the graph of E. This will be done in the first section.

The Hopf surface H can be covered by two copies of C x T. Bundles over
‘H can therefore be obtained by glueing two bundles over C x T. Before discussing
bundles over C x T, we must first consider bundles over 7T'. In the second section,
we give a brief presentation of line bundles and extensions of line bundles over T,
thus giving us the chance to fix some of the notation that will be used in later
chapters. In the third section, we classify bundles over D x T, where D is a simply
connected subset of C. It was shown in [BH] that in two specific cases, the SL(2, C)-
isomorphism class of a bundle on D x T is completely determined by its graph on

D x P'. We will show that this can be generalised to two more cases that will be
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useful to us in chapter 6. We finish by giving explicit transition matrices for certain

rank two SL(2, C)-bundles on D x T that we will use in chapter 3.

2.1 Holomorphic bundles on Hopf surfaces.

Let A € C,|A| > 1 be a fixed complex number. An action of Z on C** = C?\{(0,0)}

can be given by
C*xZ — C*>
. (2.1)
((z1,22),m) +H——= (A2, A"20)
The Hopf surface H = H, is then defined as C**/Z. H is a complex surface,
diffeomorphic to S3 x S*; and, as b;(#H) = 1, it cannot be Kihler. Its Dolbeault

cohomology is:

C if (p,q) =(0,0),(0,1),(2,1) or (2,2),

0 otherwise.

HM(H) = {
‘H can be expressed as a holomorphic fibration
7 :H — P, (2.2)
which is simply the map H — C?*/C". Its fibre is the elliptic curve
T=C/\"=C/(2miZ + log(N)Z).

It is useful to have coordinate systems which reflect this fibration. Then z =
z1/22,2 = 1/z are affine coordinates on P!; and t = log z;, t' = log 2, give linear
coordinates on T. #H is then covered by Uy = C x T, U, = C x T, with the
identification

(,¢) =(1/z,t +logz) (2.3)

on the overlap.

We give H the hermitian metric whose associated (1, 1)-form on the cover
C* is

i 1dz; A dz; +dz; A dz;
= =(Vol(S?) x In|A|)"z ——0——2— 2
w 2( O(S)X I I) |3112+|22|2

(2.4)
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The constant is chosen to make the total volume 1. We have 80w = 0: it is a

Gauduchon metric (see section 1.6.1).

2.1.1 Line bundles.

The set of all holomorphic line bundles on H is given by the Picard group Pic(H)
of H. We begin by giving a description of this group. From the exponential sheaf
sequence

0—Z—>D 00— 0 —0,

one obtains

Pic(H) = H'(H, O)/H'(H,Z) = C/Z = C".

Furthermore, as H%(#,Z) = 0, all line bundles on A have a trivial Chern class,
and Pic(#H) = Pic’(#). Line bundles on H can therefore be realised by constant
automorphy factors £ € C*.

Let us illustrate the above by constructing the universal (Poincaré) line bun-
dle V over H x C* by using automorphy factors. One starts with a trivial line

bundle L on C** x C*. One then has the following Z-action

C*xC xZ — C*xC

((z1,22),a,m) —=  ((A"z1,A"z;),a)

which is simply induced by (2.1). This action is trivial on C*. V is then obtained
by taking the quotient of L with respect to this action: s € Lz o) is identified with
ks € L(xz,a)- We then see that, for any m € Z, the automorphy factor & = A™ gives
the line bundle 7*(O(m)) on H. From now on, we will denote 7*(O(m}) by O(m),
and, if L is any bundle, L ® 7*(O(m}) by L(m).

For any line bundle L on H, restriction of L to a fibre is a natural operation.
As L is given by a constant automorphy factor, its restriction to any fibre must be
an element of Pic’(T). We then have a map P! — Pic®(T) = T given by associating

to = the bundle L|,-1(;). This map must be constant. Restriction to a fibre then
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induces an exact sequence

0 — Pic(P!) — Pic®(¥#) — Pic®(T) — 0,

(2.5)
0-Z->C ->T—>0.

Let us note that L|z~i(zy = L(m)|z-1(z), for any line bundle L and any m € Z.
Moreover, since the canonical bundle on T is trivial, the canonical bundle of # is
K(H) = 0(-2).

We can also compute the cohomology groups H*(#, L) of the sheaf of holo-
morphic sections of L over H. The line bundle L has a section over 7~ !(z) if and
only if L is trivial on m~!(z). The sections of L are then constant along ©~!(z),
and must be lifted from P!. In other words, L has a global section if and only if

L = O(m), for some m € Z. Therefore

h°(’H,L)={ m+1 if V=0O(m), m>0,

0 otherwise;

and the only divisors on H are sums of fibres of 7. Furthermore, as K(#) = O(-2),

h2(’}£,L)={ —m—1 if L=O(m), m< -2,

0 otherwise.

The basic fibration (2.2) induces a topological splitting of the complex tan-
gent bundle of 7. We then have Td(*) = 1, and, as a consequence of the Riemann-

Roch theorem,

hY(M,L) = h°(H, L) + h*(H, L).

2.1.2 Rank 2 bundles.

We now consider the case of SL(2, C)-bundles over H: rank two bundles E with
A2E = O. We fix c;(E) = n. In our study of such bundles, one of our main tools
will be restriction to the fibres #~!(z). Atiyah has given a complete classification
of holomorphic vector bundles over T [At]. We begin by recalling the case of rank
two bundles E with A2E = O.
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Proposition 2.1 The SL(2, C)-bundles over an elliptic curve T are of the following
types -

(i) Lo ® L3, Lo € Pic(T).
(ii) Non trivial eztensions 0 = Ly - E — Lo - 0,L3 = O.
(iii)) L& L*, L € Pic*(T),k < 0.

Proof: Details can be found in [At].
If we now turn our attention to rank two bundles over H, it has been proven
in [BH] that their restrictions to fibres #~!(z) are generically of type (i) or (ii).

More precisely, we have the following result:

Proposition 2.2 Let E be an SL(2, C)-bundle over H; then E|,-.(5) is of type iii)

on at most an isolated set of points € P'.
Proof: See proposition 3.2.2 in [BH].

The bundle £ can be described further: we can show that there are at most
n points = for which E|y-1(;) is of type iii). We begin by fixing a generic bundle
V on H such that h%(x~!(z),V*E) = 0 for at least one z, and so for generic .
This forces 7.(V*E) = 0. However, proposition 2.2 implies that R'7,(V*E) is a

skyscraper sheaf supported on isolated points. These are points z for which one of

the following holds:
— Elz-1(z) has V|,-1(z) as a subline bundle and is of type i) or ii), or
— E|z-1(g) is of type iii).
By the Grothendieck-Riemann-Roch theorem, [Hal,
ch(R'n,(V*E)) = —ch(m(V*E)) = nh,

where h is the positive generator of H*(P!,Z). The skyscraper sheaf R'w,(V*E) is
therefore supported on at most n points.

Given a local resolution

0 — oom L&, gom R'm.(V*E) —= 0
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of R'x,(V*E) around a point z = 0, the multiplicity of the point z = 0 is defined
to be the multiplicity of the zero of det(f(z)) at z = 0. It is essentially just the
complex dimension of R'w,(V*E) in a neighbourhood of z = 0, and is thus a local
version of the definition of ¢;(R!7.(V*E)). Let us note that there are different
possibilities for a point of a given multiplicity. For example, suppose that the point
z = 0 has multiplicity 2. Locally, the sheaf R'w,(V*FE) could then be the cokernel
of a map z2: O — O, or of a map z : 0%2 - O®2, Taking the above into account,

we have that R'w,(V*E) is supported on n points, counting multiplicity.

To obtain a complete description of the restriction on E to the fibres, we have
to repeat this construction for every line bundle on H. One can actually take the
direct image R'~, for all line bundles simultaneously, as follows: if V' is the universal
(Poincaré) line bundle over H x C*, and = is the projection H x C — P! x C,
consider R'm,(E ® V). As above, this sheaf is supported on a divisor D, which is

also defined with multiplicity. We can however remark the following:

— Tensoring V by O(1) does not change the support of Rl7,. The divisor D is

then invariant under the Z-action on C* generated by multiplication by A.

— As A’E = O,F = E*. Substituting V* for V therefore does not change the

support of R!'w,, implying that D is also invariant under the involution on C°
defined by z — 1/z.

If we quotient C* by the Z-action, we get Pic’(T) = T. If we also quotient by the
involution, we obtain a two sheeted map Pic’(T) — P! whose branch points are
the half periods of T. By the above remarks, D then descends to a divisor D on
P! x P! = n(H) x Pic®(T)/+.

Such divisors are in a linear system |O(%, )| on P! x P! = m(#) x Pic®(T)/+.
We can easily see that i = n,j = 1. The above computation tells us that P! x {{}

intersects D in n points, thus implying that i = n. Moreover, if we fix € P!, then

— {z} x P! intersects D in only one point (counting multiplicity), corresponding

to the pair of bundles {Lo, L3} in Pic®(T)/+ that are subbundles of E|,-1(),
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or
— {z} x P! is included in D, if E|z-1(z) is of type iii).

Hence, j = 1. The divisor D has the following picture in P! x P!:
] k lines with multiplicity
I T - corresponding to E|,-1(z)
of type iii)
/\/‘_\\ |
/ graph of a rational map
P! — P!, of degree (n — k)

P! =n(H) —

The above description can be summarised in the following proposition:

Proposition 2.3 To each SL(2,C)-bundle E on H with c,(E) = n, there is asso-
ciated a divisor D in the linear system |O(n,1)| over P! x P'. This divisor is called

the graph of E.

2.1.3 Degree and stability.

The metric that we have chosen for H is a Gauduchon metric. We therefore have a
well defined notion of degree. In section 1.6.1, the degree of any line bundle L was

defined, up to a constant factor, as

deg(L) =[ FAw,
H

where F is the curvature of any hermitian connection on L compatible with 3;.

Furthermore, if £ is any torsion-free coherent sheaf on H, its degree is defined by

deg(€) := deg(det(£)),
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and its normalised degree by

H(E) = deg(€)/1k(£).

Let us also recall that stability was defined as follows:

A torsion-free coherent sheaf £ on H is stable if and only if for every coherent

subsheaf S C € with 0 < rtk(S) < rk(E), we have

#(S) < u(€)-

Let us compute the degrees of line bundles and SL(2, C)-bundles on #, and,

in the latter case, determine which ones are stable.

1)

2)

Line bundles. Let L € Pic’(H) correspond to an automorphy factor a. We

define a metric on the trivial bundle over C** by
| s(z) [IP= |s(2)]2 - |2|~2n It/ tmIN

where |s(2)|? is the standard metric. || || descends to L over H, and has

curvature

F=(-In|a|/In|A|)- (3d1n]|z[*).
Integrating F’ against w, one finds that, up to a positive constant factor,
deg(L) =In|a|/In]A|.

For example, deg(O(m)) = m. We have also seen that line bundles are always

stable.

SL(2,C)-bundles. As A%(E) = O, we always have deg(E) = 0. We would
however like to know when E is stable. As we have seen in section 1.6.1,
it suffices to know whether any line bundle of non-negative degree admits a

nonzero map into E. The following two propositions were proven in [BH]:

Proposition 2.4 Let the graph of E include a non-constant map
P! — P!. Then E is stable.
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The only bundles non stable bundles are therefore among those whose graph

is of the form .
(Z({z.-} x Pl)) + (P! x {1}).
i=1

More specifically, we have

Proposition 2.5 Let E have greph

(Z({xi} x P‘)) + (P x {t}).

Then there ezist line bundles K, K’ on H such that the set of line bundles
which map non-trivially to E is {K(m), K'(m),m < 0}. If l is a half period
, K=K

E is then stable if both deg(K') and deg(K') are negative.

2.1.4 Moduli spaces.

Let M, be the moduli space of stable rank 2 SL(2,C)-bundles E on H with
c2(E) = n. Before turning to the problem of smoothness of M,,, let us give another
description of stable SL(2, C)-bundles on H.

Let E be an SL(2, C)-bundle with c;(E) =n, n > 1. E must then be inde-
composable, and any connection A on E must be irreducible. The corollary 1.2 to

Buchdahl’s theorem therefore gives
E is stable if and only if E admits an anti-self dual connection.

As the connection given by Buchdahl’s theorem is unique, we therefore have a cor-
respondence between stable bundles and anti-self dual connections, i.e. instantons.

It was proven in [BH] that

Proposition 2.6 The moduli space M, of stable rank 2 SL(2,C)-
bundles E on H with co(E) = n is a smooth, non-empty complezr 4n-dimensional

manifold, diffeomorphic to the moduli space of SU(2)-instantons on E.
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Remark: If E is stable, then H°(#H, End(E)) = C and H*(H, End(E)) = 0.
Furthermore, the tangent space to M, at E is H'(H,sl(E)) = C™, where sl

denotes the traceless endomorphisms.

We will also consider the moduli space M,, of stable torsion-free coherent
sheaves £ on X with ¢,(€) = 0 and ¢2(£) = n. This is again a well-defined moduli
space that we will study in further detail in chapter 3. Let us note that M,, is
contained in M, for all n > 1. Proposition 2.6 therefore ensures us that M, is

never empty.

2.2 Bundleson T.

2.2.1 Line bundles.

Suppose that T is given by the non-degenerate lattice A in C, with generators
2w, 2ws. We would like to construct transition functions for line bundles on T,

using the standard elliptic functions o(z), {(z) with expansions at z =0

o(z) = z+ 0O(z%)
() = 1 +0(),

and periodicity relations

o(z + 2w;) = —a(2)exp(2ni(z + 2w;))
¢(z + 2w;) = ((z) + 2m;,

with n; = ((w;). 2m;, 2w; satisfy the relation

Theorem 2.1 (Legendre)

2m2ws — 2102w = vV —1.
We begin by showing

Lemma 2.1 The function ¢;(z) = e*¥$Ge~2= {s doubly periodic for i =1,2.
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Proof: For j = 1,2,
oi(z + 2wj) = di(2)aij,
where a;; = e~(?%2i—2%21;) j5 3 constant. If i = j, we obviously have that o;; = 1.

And if i # j, Legendre’s relation implies that
2n;2w; — 2n;2w; = £27v -1,

and a;; = e¥27V=1 = |_ Therefore, forany i = 1,2 and j = 1,2, oi(z+2w;) = ¢i(2),
proving double periodicity. O
Let us cover T by U, = T - (origin), Up = discaroundtheorigin.

Line bundles of degree zero.

From the periodicity relations, we see that the function

P 2) = L gt

is doubly-periodic, and therefore well defined on the elliptic curve with parameter

z. It has an essential singularity at the origin, and a single zero at u = z. If we set

Pl ) = L2 = eonitipiu, ),

we find that p° has a single pole in z at the origin. p!, p° define a section of the line
bundle L,, with transition function hg, (i, z) = e~#¢(*). This section has a single
zero at the point x4 = z, and a single pole at the origin.If we set p, to be the point

u=zonT, L, corresponds to the divisor p, — pq.

Line bundles of degree one.

Similarly, if we set
(A, 2) = o(z — A) = a(z)e" gl 2),

we find that @® is holomorphic in z at the origin. ¢!, ¢° define a section of the line
bundle L,, with transition function go; (), 2) = o(z)e~*¢(*). This section has a single
zero at the point A = 2. If we set p, to be the point A = z on T, L, corresponds to

the divisor p,.
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Remark: For any period 2w;,
gro(A + 2w;, z) = ¢i(2)gro(A, 2)¥;(2),

where ¢;(z) = e*¢Gle=2%2 and 1;(z) = e ?%*. By lemma 2.1, ¢;(z) is doubly

periodic. gyo(A + 2w, z) is therefore also a transition function for L,.

Line bundles of degree k.
By the above, we see that any bundle over T of degree k can be given by the

transition function

(gﬂl (A. Z))k = (U(Z) )ke—k,\q:)’

and that the divisor associated to this line bundle will be kp,.
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2.2.2 Endomorphisms of rank 2 bundles.

Endomorphisms of rank 2 SL(2, C)-bundle over an elliptic curve T are described in

the following lemma:

Lemma 2.2 Let E be an SL(2,C)-bundle over T. Its global endomorphisms and

SL(2, C)-automorphisms are:

1) E~ L[;@La,
L} #0,c1(Lo) =0

a 0
a,be C
0 b

a 0
aceC

2 E~Ly® La,
Li=0,c1(Lo) =0

gl(2,C)

SL(2,C)

3) E type (it)

1l a
+ aceC
01

4) E~LeL*
Cl(L)<0

(a f)a,bGC
0 b

feT(L?)

21ri(a f )
0 at

acC
fer(L?

Proof: This lemma is given in [BH] without proof. It is however a straightforward

computation of cohomology groups.
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As a direct consequence of lemma 2.2, we have:

Lemma 2.3 Let E be an SL(2,C)-bundle over T. Its global traceless endomor-

phisms and the kernel of the ezponential map exp: (globel traceless endomorphisms)

— (SL(2, C)-automorphisms) are:

1) E~Loe L,
L3 # O,ci(Le) =0

a 0
acC

2) E~Ly® L},
Lg = 0, Cl(Lo) =0

sl(2,C)

3) E type (ii)

0 b
beC
00

(+2)

4) E~xLeL
CI(L)<0

a

(a f )aeC
0 —-a

fel(L?

2.2.3 Extensions of line bundles.

21ri(m f)
0 —-m

fel(L?)
m € Z\0

Let us fix L € Pic™*(T). Then H'(T, L?) = C?*, and we know that this is the space
of all possible extensions of L by L*. It is not difficult to see that the extensions of

L by L* are
— any type (i) bundle,

— any type (ii) bundle,

— any type (iii) bundle L_; & L

* ., with

L_jePic(T), 0<j<k
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All these possibilities occur, with one exception: if k = 1, type (i) bundles Ly & L,

with L3 = O do not occur.

Ezample: Let us illustrate this in the case where L € Pic™'(T). If we take
any Lo € Pic®(T), such that L2 # O, let us express Lo ® L as an extension of L*
by L:
0 —L—Lo®Ly——L*—0.

In order to do so, we have to find an injective bundle map L — Ly @ Lj. Suppose
that L has divisor —p,, and that L, is given by the divisor p, —py. As we have seen
in section 2.2.1, g(z) = o(z)e~*(*) and h(z) = e#(*) are then transition functions
from Uy to U, of L and L, respectively.

Let r(z) = {ri(z)}i=o, be the global section of L* ® L, given on U, by
ro(z) = o(z — (A + u)). Similarly, s(z) = {si(2)}i=0,1, where sg = o(z — (A — p)) on
Uy, is a global section of L* ® Lj. As Ly is not a half period, A\+u #A—pin T.
It is then clear that r(z) and s(z) do not have the same zeroes. These two sections
therefore define an injective bundle map L — Lo @ Lg.

All the other cases, stated above, are proven similarly: one can always find
enough sections so that at least two of them do not have common zeroes, thus

defining an injective bundle map.

2.3 Bundles over D x T.

A natural tool for classifying stable bundles is their graph. Fixing the graph, we
would like to know to what extent the graph determines the bundle over over H.

We will split this problem into two parts:

— A local problem: choosing D C P!, what bundles over #~!(D) = D x T have
this graph over D x Pic®(T)/+ =D x P!?

— A global problem: having covered P! by, say, two discs D, and D,, and chosen
bundles over #~!(D;) that are compatible on the overlap, in how many distinct

ways can one glue them together to obtain bundles over H?
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In this section, we consider the local problem; i.e. we describe the local
geometry of a rank two bundle E over D x T, where D is a disc in P!. We begin
by recalling the situation over the fibres of 7. Let £ € D.

— If {z} x P! is not included in the graph, let its intersection with the graph be
(z,1), where ! is the unordered pair of bundles {Lg, L3} C Pic’(T)/+ which

map into E over m~!(z).

a) When [ is not a half period (i.e., Ly # Lj) then E = Ly® L] over 7~ !(z).
E is determined by the graph.
b) When ! is a half period, either L = Lo & Ly, or E is of type ii).
— If {z} x P! is the graph, then E over 7~ !(z) isasum L& L*, ¢;(L) < 0 (type

iii). If {z} x P! has multiplicity n in the graph, then ¢,(L) = —k, for some
k € N such that &£ < n.

2.3.1 Extensions of line bundles.

Extensions are a very useful tool in the study of rank two vector bundles. We would
like to show that given an SL(2, C)-bundle E over H, and a disc D C P!, we can

always express E over 7~!}(D) = D x T as an extension of line bundles
O-L—->FE—->L" -0,

where the choice of the line bundle L will be determined by FE.

Let p € H, and let D be a disc in P! which contains 7 (p). Let (z,z) be a
coordinate system centered at p € D x T = #~!}(D). Let E be an SL(2, C)-bundle
on H with c;(E) = n, and graph g € |O(n,1)|. By the discussion in section 2.1.2,

we know that g decomposes into two pieces:
— the graph of a rational map F : P! — P! of degree &,

— a sum of (n — k) “vertical fibres” {z;} x P!, counted with multiplicity.
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Let us now restrict £ and its graph to D x T. We then set

number of vertical fibres in
Ng = k + .
D x P!, counted with multiplicity

The integer ny can be thought of as a relative second Chern class of E|pxr
in HY(D x T, (D — B) x T), where B C D is a 2-ball around p. Obviously, ng < n;
and if E|;,x7 =V ® V*, for some z; € D and V € Pic™(T)(j > 1), then j < no.

Let £ € D. We have seen in section 2.2.3 that E|.xr can be expressed as
an extension of L* by L, for any line bundle L on z x T of degree — < —ny. We
would like to show that we can actually fix a line bundle L of degree < —ng, and
get a local extension

0O—-L—>FE—-L" -0

over D x T, where L also denotes the pullback of L to D x T.

Remark: Punctually, we have more possibilities for the choice of L. Let
z € D. If E|loxr = V_;®V_,, it is then an extension of L* by L for any line bundle
L on £ x T of degree —! < —j. But, as we ultimately want to have an extension
over D x T, we will however consider, in the general case, line bundles of degree

< Nyg.

For the remainder of this section, let T =0 x T. Let us now fix a line bundle
L € Pic™!(T), for some [ > ng, and let L also denote the pullback of L on D x T.

By the discussion in section 2.2.3, in order to show that we have the extension
0O—-L—o>E—->L" >0

over D x T, we just need to show that there exists an injective bundle map L — F

on D x T. Now, this is obviously the case over T. We therefore just have to prove

Proposition 2.7 An injective bundle map L — E on T extends to an injective

bundle map L — E on D’ x T, for some open set D' C D.

Proof. We start by showing that sections of L* ® E|yxr extend to a neighbor-
hood W xT of 0 xT in D x T. Let Z be the ideal sheaf defining Or in O = Opy.
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We then have the following exact sequence
0 —IYT" — O0/T" — O/ — 0.

Since the conormal bundle N* of T in D x T is holomorphically trivial, Z"~!/I" =

S*=1(N*) 22 O and this sequence becomes
0 —0 —0/T" —0O/T" ! —0.

Let F = O(L* ® Eloxt), Fae1 = F QO/I™ ! and F, = F @ O/I™. Let us

note that in this notation, Fy = F. Tensoring the above sequence by F gives us
0 —wF —0F, —m F,.1 —0.
By the long cohomology exact sequence, since H'(T, F) = 0,
... — HYT,F,) — HYT, Fn_1) — 0,

and sections from the (n-1)-th formal neighborhood of T extend to the n-th formal
neighborhood of T. Therefore, by Grothendieck’s theorem on formal functions {Ha|,
sections of F extend to a neighborhood D' xT of 0 xTin DxT. O

Remarks: i) In specific cases, we can choose a line bundle L of smaller degree.
The proofs in these cases are similar.

ii) We are interested in classifying rank 2 vector bundles over D x T. We
therefore need to know whether or not one can find a nowhere zero map from L to
a fixed £ over D x T. Proposition 2.7 implies that there is no local obstruction,
but we need to find such a map globally over D x T'. Even though a global nowhere

zero map should be possible to find, there does not seem to be an obvious proof.

2.3.2 Local isomorphisms.

In section 2.2.2, we gave all the possible isomorphisms of SL(2, C)-bundles over T.
Let us now describe the situation over D x T. The following two lemmas were

proven in [BH].



Lemma 2.4 Let E, E’' be SL(2,C)-bundles over D x T, D simply connected C C,
which have the same graph in D x P'. Let this graph be that of a rational map
0: D — P'. Assume that both E and E' have the property that they do not restrict
to Ly ® Lo, L2 = O, over any {z} x T. Then E = E'.

Lemma 2.5 Let E, E' be SL(2,C)-bundles over D x T, D simply connected C C,
which have the same graph in D x P'. Let this graph be of the form ({z} x P!) +
(P' x {l}). Again, suppose that E and E' have the property, if | is a half period,
that they do not restrict to Lo & Lo, L2 = O, over any {z} x T. Let E = E’ over
{z0} xT. Then E= FE'.

Proof: Let us give a sketch of the proof of lemma 2.5 to illustrate how it can be
extended to two other cases. Suppose that over {20} X T we have E = L & L*, for
some L with ¢;(L) = —1. It was then proven in [BH] that, in this case, one can

write E globally as an extension
0O—>L—->F—>L"—0.

E. = E|.xr is determined by the extension class e(z) € W = H(T, L?). Away
from 29, each E; is by a nonzero element of W, and therefore corresponds to an
element of P(W) = P! = Pic’(T)/+. Let Ly € Pic’(T) be such that [ = {Lo, Lg}.
As the map portion of the graph is constant, e(z) therefore takes its values in a
line V C W; and e(z) can be thought of as a function D — C. This function
only vanishes at z = z5. As the GL(2,C)-isomorphism type is invariant under
rescaling of e(z), we can set e(z) = (z — z). E is then isomorphic to a standard
extension. The same is true of E’. E and E’ are thus isomorphic as GL(2,C)-
bundles. However, D is simply connected. Therefore, taking an appropriate square

root gives an SL(2, C)-isomorphism. O

These two lemmas extend to two cases that will be useful to us in chapter 6:

Lemma 2.6 Let E, E' be SL(2,C)-bundles over D x T, D simply connected C C,
which have the same graph in D x P'. Let this graph be of the form 2({z} x P') +
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(P! x {l}). Again, suppose that E and E' have the property, if | is a half period,
that they do not restrict to Lo ® Lo, L3 = O, over any {z} x T. We also suppose
that over {z} x T we have E= E'=L@® L*, withc,(L) = -1. Then E= FE'.

Lemma 2.7 Let E, E' be SL(2, C)-bundles over D x T, D simply connected C C,

which have the same graph in D x P'. Let this graph consist of the two pieces:
— the graph of a rational map o: D — P!,
— a vertical fibre {20} x P'.

Again, suppose that E and E' have the property, if o(z) is a half period, that they
do not restrict to Lo ® Lo, L3 = O, over {z} xT. Let E = E' over {2} x T. Then
Ex=FE.

As we are only considering graphs where the vertical bar corresponds to
E..xr = L ® L*, where ¢;(L) = —1, away from z,, these extensions take values in
P(W) = P! = Pic(T)/£. For similar reasons to the ones above, one can show that

they are given by standard extensions, and we thus have £ = E’ over D x T.

Remark: In lemma 2.6, we cannot consider bundles E, E’ such that over
{20} xT we have E = E' = L® L*, with ¢;(L) = —2. This stems from the fact that,
for such an L, the extensions of L* by L are in P(H(T, L?)) = P3. However, there
are divisors in P? which are cones corresponding to singular quadrics (see [BH]),
and by the remark following proposition 2.7, this may prevent us from expressing

E as a global extension of L* by Lon D x T.

2.3.3 Transition functions for rank two bundles.

We would like to give an explicit expression of the transition functions of rank
two bundles, that have a given graph, over D x T. These constructions can be
generalised to any bundle of D x T. The notation of sections 2.2.1 and 2.2.3 will
be used in the following.

Let E have graph n(z x P') + (P! x {{}), where {l} = (Lo, L}), for Lo €
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Pic’(T). We assume that Ly is not a half period, i.e. L? # O. Suppose that
E|;oxr = L® L*, where deg(L) = —1. On D x T, we can express E as an extension

0—L—F—L"-—0.

This extension is given by a class (x) in H'(D x T, L2) = C2. Let us cover D x T by
the two open set Vp = D x Uy and V; = D x U;. If L is given by the divisor —p,,

M(A)=Mm(/\,z)=["’ ! ]
0 gt

is a transition function for E on D x T, where g = o(z)e~*(*) and v is a multiple
of x.

We would like to give an explicit expression for M(A). Suppose that Lg
is given by the divisor Dy = p, — pe. Then, as we have seen in the example of
section 2.2.3, there are sections r(2) and s(z) which define an injective bundle map
L —> Ly® Ly. Let i =0, or 1. Since r;(z), si(z) do not have the same zeroes, we

have the following exact sequence on V;

o) L5 oLy @ 0L [Si ri] O(L*).

As U; is a non-compact Riemann surface, H!'(V;, ©) = 0, and there exist holomor-

phic functions «;, 8; € O(V;), such that a;r; + 5;s; = 1. This then induces the exact

sequence

1 —22"0.' Inﬂi

o) =% o1y @ 0(Le) © O(L3) -

O(E).
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On V3 N Vi, these sequences then give us the commutative diagram

1 —z"ap z"ﬂo]
o) & =) oy g oy ooy Lo 2 ™ 1 o
g 0 O
g 0 R 0 M)
0 0 h!
o) O(L) ® O(Lo) ® O(L;) O(E)

(I",Tl,—sl)

1 —z"a; "/
0 8y T

{ z"Bih~! = z"gfBy + o7,

—z"ah = —z"gag + so7.

By commutativity, we obtain the two equations

Multiplying the first equation by ag and the second one by Sy, and then adding, we
get

" (abrh™" — Boarh) = (aoro + Bose) Y-
And, as agrg + Bose = 1,

v = z"(apbh”! — foarh), (2.6)

giving us an explicit description of M ().

The matrices M (A) will be used in the next chapter, at which point we will
be interested in knowing how they are transformed when we move A by a period
2w;, for ¢ = 1,2. Let us first look at what happens to . If we consider v as a

function of A\, we have

Lemma 2.8 Fori=1,2,

YA+ 2w;) = 1(N)o; ' (2)C,

where C = e~ im(A+2uwi)
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Proof: To simplify notation, let @ = A + u, and b = A — u. Adding 2w; to A then
corresponds to adding it to a and b. If we replace A by A + 2w; in the expressions

of r(z) and s(z), we get

ro(A + 2w;) = ro(A)e 2m(=—(a+2i)) - and @.7)
so(\ + 2w;) = so(A)e~2m(z—(b+2w)) .
As agrg + Fosg = 1 for any A, we must have,
ap(A + 2w;)To(A + 2w;) + Bo(A + 2w;)se(A + 2w;)
= ao(A)ro(A) + Bo(A)so(A).-
By using equation (2.7), we can rewrite this as
[ao(A) — ao(A + 2w;)e~2m(=(a+2u)] £y(X)
+ [Bo(A) = Bo(A + 2w;)e#m(z=(+2w))] g4(A) = 0.

As 1y and s have no common zeroes, it implies that

ao(A + 2w;, 2) = ao(), z)e2nil==(e+24))  and

Bo(X + 2w;, 2) = Bo(A, z)e2Mlz=b+2w))

Similarly computations give us

ar (A + 2w;, z) = oy (], 2)emz-(a+2ui))g—2wiC(z)  and

Br(A + 2w;, 2) = Bi(A, z)e?m(z-(+2wi)) g=2wi(z),
Inserting these into the expression of v, we obtain
YA + 2w;, 2) = 7(,\)8"2‘0-‘((3)62711‘26—27':'(G+b+4‘~'i).

In section 2.2.1, we defined ¢;(2) = e*¢(*}¢=2m=_ And, as a + b = 2.\, this can be
written
YA + 2wy, 2) = ¥(N)o; ' (2)C.,

where C = e~im(A+25)

As g(A + 2w;) = 67 g(A\);, lemma 2.8 then implies that

MO 20 = [¢;1 0 ] [g(A) 7(A)cw,-] [w.- 0 ]
0 ¢ 0 g'(W) 0 !
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. This can rewritten as

-1 -1, -1 1
Moa+2w)=| % C O g 7€ | | WO 0
0 ¢ct||o g e

Remark: Let us note that, since ¢;C ! is doubly periodic on V;, and ¢;C~! =

e~ 2" is holomorphic everywhere on V;, then the transition matrices M(\ + 2w;)
C 1y

and | 97 (
0 gt

define the same vector bundle.
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Chapter 3

Stabilisation maps.

Let £ be a fixed rank two C*® vector bundle on H with ¢,(£) = 0, ¢c,(£) = n. Let
us also fix a base point pg in #. M? is then the moduli space of equivalence classes
of pairs (E, 1) where E is a stable holomorphic structure on £ with A2E = O, and
v is a trivialisation of E at py, i.e. MQ is the moduli space of framed instantons of
charge n on H. In this chapter, we study stabilisation maps M2 — MY, on these
spaces.

If B, is the moduli space of framed connections on £, where a framed con-
nection is now a pair (A, 1), where A is any connection and ¥ is a framing at py,

we shall see in chapter 7 that stabilisation maps
fn,n+l B Bn - B.n+1

always exist. They are constructed by glueing an instanton of charge 1 at p,. We
would like to know if it is possible to define an analogous map gn pn+1 : M2 - M2,
in the holomorphic setting.

The holomorphic version of the maps f, ,+, is constructed by glueing in a
copy of O®I at py, and deforming the new sheaf to obtain a locally free sheaf. Let us
recall that M, is the moduli space of stable simple coherent sheaves F such that
c2(F) = n. If one forgets the framing, the set of sheaves obtained by glueing in O® 1
is a stratum of M,,, that we will denote by M, ,;,. We will study the tangent

bundle of M,,,, along Mp ., which corresponds to the space of deformations of
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the sheaves in Mp1; .. We will see that the locally free deformations are elements
of the normal bundle Ny, ., /.., ., and that the normal bundle is a nontrivial line
bundle. This will then lead us to conclude that this holomorphic stabilisation map
cannot be defined globally on M.

3.1 Glueingsof O 1.

Throughout this chapter, we assume that I is the ideal sheaf of a point py € H.
If (z, z) are “standard” coordinates centered at py, we have that I is generated by

{z,0(z)}, where o(z) is the sigma function defined in section 2.2.1.

3.1.1 Glueings.

To glue in a copy of O@ 1, it is necessary to specify an inclusion of O® I into O 0.
We begin by giving a description of the set of inclusions of O @ I into O & O as
the kernel of a surjective O-homomorphism O & O = O/I. As Homo(O,0/I) =
O/I = C, any such map is given by

oeol=t Yo (3.1)

where [—c a] # [0 0] and a,c € C. We consider two such maps to be equivalent if
their kernels are equal as subsets of O @ O. If [ is the line through the origin in C?
passing through (a,c), then

OelI={secO0d0|s(p) €l}.

kf—
Thus, forany k #0in C, O O —[—c-—a]— O/I has the same kernel as (3.1). The

set of equivalence classes of these maps is therefore
({[~c a] | a,ceC} —[0 0})/C =P
Let us denote this set by X,. We can cover X, by the two open sets
Up={[-¢ 1]€Xo|ceC}=C,
and

U1={[1 —a]EXolaGC}=C
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3.1.2 Tangent space to Xj.

The tangent bundle of P! is TP! = O(2) = Homo(O(—1),0(1)). Consider a line
[ € P'. The tangent space to P! at ! can then be described as

TP'|, = Homc(l,C?/1).

Let @ € Xo. The line ! in P! = X, corresponding to « is therefore | = (ker a),,,

and O/I = C?/I. By the above, the tangent space to X, at « is given by

T.Xo = Homo, ((ker a),,, C* /(ker a),,).

3.1.3 X, as projective resolutions.

When working with projective resolutions of O@ /[, it is more convenient to describe
Xo as a set of equivalence classes of maps O® I - O® O. Two such maps are now
considered to be equivalent if their images are equal as subsets of O & Q. Suppose
that we start with

[-¢c 4]

00— 0O/I,
and complete it to an exact sequence

oel-L-oeo 9o/

b
where T is a matrix of the form T = ¢ , with detT # 0. The image of

c d
O &I in OO is then independent of the choice of b and d.

As we have seen, O @ I can be described as the cokernel of the map
0 0.70().2) , 0 ®0.

If O® I is the image of T in O & O, it will then have the following projective

resolution

a bz bo(z)
¢ dz do(z)

009G hooeo ool
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Keeping in mind the above discussion, we choose to cover Xj by the following
open sets Uy, Uy:
10

U0={T5= [
1

™

];EeC}zc,

U[={Té=[ ];aEC}=C,
1 0

with the identification

on the overlap.

3.2 The singular stratum M, ,.

In this section we consider the moduli space M,, of stable SL(2,C) vector bundles
on H, with ¢; = n, as well as the moduli space M,, of stable simple sheaves of rank

2 on ‘H, with ¢, = n. Theses spaces were introduced in section 1.6.2. For every n,
M., is contained in M,,.

3.2.1 Definition of M.

If F is any sheaf in M, let sing(F) be the singular set of F:
sing(F) = {p € H | F, isnotfreeover O, }.

Let us consider the subset of M, consisting of sheaves which are locally free

everywhere except at a single point, where they are isomorphic to O & I:

Mn-H,n =4 Fe€ Mn+l I
and F = O @ I around py

sing(F) = a single point py, }
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In this subsection, we would like to show that M, . fibers over H x M,
with fiber X, i.e. there exists a fibration

XO _— Mn+1.n
P (3.2)

HxM,
For any coherent sheaf G, let G* = Homo(G, O) be its the dual sheaf. The
projection P of this fibration is then defined to be the map

P:Mn+l.n — HxM,
F (Po,f") ’

where py = sing(F), for all F € Mp41 .. That this map well defined is proven by
Lemma 3.1 If F € My, ., then
(i) F* is locally free;

(ii) we have the exact sequence

0 F F o/ — 0;

(iii) ¢i(F**) =0, and c(F**) = n; and
(iv) F** is stable.

Proof: Let F € Mp41 0. Let pg is the unique singular point of . F is then locally
free away from pg, and F = O @ I around py. Therefore, as Homo (I, O) = O, (see
lemma 1.2), F* must be locally free, proving (i).

(ii) follows from the fact that, away from po, F is isomorphic to F**.

(iii) The exact sequence in (ii) gives us
ch(F**) = ch(F) + ch(O/I).

If [H] is the positive generator of H*(H,Z), ch(F) = 2+ (n+1)[H], and ch(O/I) =
—[#]. Therefore ch(F**) = 2 + n[H].
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(iv) As F is torsion free and stable, (iv) follows from lemma 1.9. O

In order to show that P is a surjective fibration, and that its fiber is .Xj, let
us now give a more explicit description of Mp;;,. Let E € M,,. Let us also fix a
point py € H, and a trivialisation of E at py. For any line [ € X, = P!, we then

define the following subsheaf E; ,, of E:
Eip = {s € O(E)|s(po) € I}.

E‘,',,o is simply F away from p,. Moreover, if U is an open set containing po on

which FE is trivialised, then E',,polu = 0 & I, and the inclusion
ool .-000,

is given by the matrix T corresponding to {. Therefore, (E,,m)" = F, and we have

the exact sequence
0—~E,,,,0——~E——-—0/I—-—-0.
By similar arguments to the ones used in lemma 3.1, we can show that

Lemma 3.2 For any E € M,, Ei,, is a stable sheaf of rank 2 with cl(E'l,m) =0
and cz(Epp,) =n+1.

a

Remark: Let us note that for any F € M, 1., if pp = sing(F) and F is

given by [ € Xj, then F = E;o.

We can now define a local section of the map P. Let D be an open disc in
H, and W be an open subset of M,, such that any bundle E € W is trivialised on
D. Let us then fix a local trivialisation ¢ on D: for any £ € W, we have t : E|p =
O & O|p. Let us fix a line [ in PL. If we restrict ourselves to D x W C H x M,
we then have the following well-defined local section of P

DxW = Muiin
(PO,E) —> El,po
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This local section is of course independent of the choice of I. P is clearly a surjective

fibration with fiber Xg:
Xo

Mn+1,n
P

HxM,
Any element F of My, , is therefore determined by three things:
(i) its point of singularity p € H;

(ii) the map O O = O/I in X, giving @ & I = ker a around py;

(iii) the transition functions A;; of F**.

3.2.2 Tangent space of M. ,.

Let F € My, - Suppose that it is given by
(i) po € H; (ii)a€ Xo; and (iii) F** € M,,.
The fibration (3.2) then gives us the following exact sequence of tangent spaces:
0 —= (TXp)a — TrMus1n — TpoH & Tre- M, — 0.
Each component can be described in terms of first order deformations as follows:
— Since changing the point py € H is equivalent to deforming I, we have
TpoH = HY(H, Ext(I,I)) = (Deformationsofl) ,

Deformations of the

equivalence class
- T}'nMn - Hl(’}‘t, Slo(}-")) =
of the transition

functions of F**.
— If { = (ker @)y, is the line in P! = X, corresponding to a, then O/ = C?/I,

and we have seen in section 3.1.2 that

Deformations of th
TuXo=Homc(L, G2/l = | o orow O
map O 0 — O/I
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3.2.3 The space M, at M, ..

We would like to show
Theorem 3.1 M,,, is a smooth complex manifold of dimension 4n + 4 along

Mn+l,n-

3.2.4 Proof of Theorem 3.1.
By deformation theory, for any Ee Mpi10, the tangent space to M, at E is
Té./qn.pl = Ext‘(’H; E, E)o,

where Ext'(#; E, E)o is the traceless component of Ext'(#; E, E). Furthermore, the
obstruction to the smoothness of Mo is in

Ext?(H;E, E). In order to prove the theorem, we need to show that
a) Ext!(H; E, E)o = C*"+4; and
b) Ext*(H;E,E) =0.

These groups can be computed via the cohomology spectral sequence described in

section 1.2. One of the main tools, for this computation, will be the exact sequence
0 — Endo(E) — Endo(E) — Homo(O,0/I) — 0.

As E is isomorphic to E, away from po, the exactness of this sequence only needs

to be checked locally around po. This will be given by
Lemma 3.3 There is an ezact sequence

0> Homo(OI[,088I) — Homo(O® 1,0 O) — Homeo(O,0/I) — 0.
Proof: The exact sequence

0—0orlh 000l oy .o
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where Id is the identity, induces
0 — Homo(O® 1,0® ) —= Homo(O® 1,0 0) ——

2 Homo(O®I,0/I) = Home(O,0/I) ® Homo(I,O/I),

which is also exact. We have to show that Im(3) = Homo (O, O/1). As Homo(O &
1,0 O) = Homo(O,0 & O) ® Homo(I,0O & O), we simply need to verify that

i) B(Homo(O,0 & 0)) = Homo(O,0/I), and
ii) Homo(I,0 & O) C Ker(8).

For any (91,92) € Hompo(O,0 & O), B(g1,92) is the O-homo-
morphism in Homo(O,O/I) given by 1 — (—~ég; + g2)(po)- Any element of
Homo (O, O/I) can obviously be obtained this way, thus showing that 3(Homo (O, O®
0)) = Homo(O, O/I), and giving i).

Let us note that Homo(I,0 & O) C Homo(I,I ® I). Indeed, as we saw
in the proof of lemma 1.2 (iii), for any O-homomorphism f : I — O, there exists
an h € O such that f is given by £ — hz and z — hz. We can therefore view
any element of Homo(I,O @ O) as a map given by s — (h;, hy)s, where s € I,
and h,, h, € O. Hence, 8 maps every element (h;, h;) of Homo(I,O & O) to the
map I — O/I given by s — [(—¢h, + h2)s|(po). As s(py) = 0, for any s € I,
B(hi, h2) = 0. Thus Homo(I,O & O) C Ker(B), proving ii). O

Remark: The proof of the above lemma actually shows that the maps in
Homo(O,0/I) = B(Homo(O® I, 0& O)) can be thought of as maps (O® I),, —
O/I. Therefore, if O® I is the kernel of the map O & O = O/I in X,, we see that

Homo(0,0/I) = Homo, ((ker @)y, C*/(ker a)p,) = TaXo.

Corollary 3.1 (i) We have the ezact sequence

0 = Endo(O @ I) 29+ Endo(0 © 0) by Homo(0,0/1) - 0,
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(it) and, as a direct consequence,
: 01
0 — slo(@® 1) - slo(© @ 0) L Homo(0,0/1) — 0

is also ezact, where Id is the identity.

Proof: (i) As we saw the proof of lemma 1.2 (iii), Homeo(I,O) = Home (O, O),

where the one-to-one correspondence is given by

z+— hz
< {1~ h}.
y—> hy
Thus, Endo(O & O) = Homo(O & I,0 @ O). Furthermore, (ii) is a direct conse-
quence of (i). O

Globally, we have the short exact sequence

0 E E O/ — 0.

This sequence, with the above results, gives
Corollary 3.2 (i) Homo(E, E) ~ Homo(E, E);
(it) There is an ezact sequence

0 — Endo(E) — Endo(E) — Homo(0,0/I) — 0;

(iii) There is an ezact sequence

0 — slo(E) — slo(E) —— Homo(0,0/I) —- 0.

Furthermore, we have
Lemma 3.4 (i) There is an ezact sequence
H'(H, slo(E)) —= H'(H, slo(E)) —= H°(H, Homo(0, 0/1)),
which gives H'(H, slo(E)) = Cin+!;
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(it) H*(H, Homo(E, E)) =0;

(iii) ExtL,(E,E) is a skyscraper sheaf supported at py with fiber C*; and
(iv) Exzth(E,E) =0, for k > 2.

Proof: (iii) and (iv) are a direct consequence of lemma 3.3.

(i) The exact sequence follows from corollary 3.2 (iii) induces the long exact

sequence on cohomology
... = H'(H, slo(E)) = H'(H,slo(E)) = H'(H, Homo(O,0/1)) — ...

Since Homo (O, QO/I) is a skyscraper sheaf with fiber O/I supported at py,
H(H, Homo(©,0/I)) = 0, for i > 1. Moreover the stability of £ implies that
HO(H, slo(E)) = 0. Therefore H*(H, slo(E)) = 0, and the above sequence reduces

to
0 —» HY(H, Homo(O, O/I)) = H'(H, slo(E)) = H'(H, slo(E)) — 0.

Furthermore, since dim(M,) = 4n, H'(#, slo(E)) = TgM, = C".

(ii) As H'(H, Homo(O,0/1)) =0, for i = 1,2, the long exact sequence on
cohomology induced by the sequence of corollary 3.2 (ii) gives us that H2(#H, Endo(E)) =
H?*(#H, Endo(E)). By stability of E, H?(H, Endo(E)) = 0, thus implying (ii). O

Proof of Theorem 1:

We use the cohomology spectral sequence {E,} with

'EPS = HP(H, Extl,(E, E)),
'EPg = ExtP*(3; E, E).

(i) Ext\(H;E,E) = E.? @ E%L.
— ELY = E;® = H'(H, Homo(E, E)); and by lemma 3.4 (i), its traceless
part is H'(H, slo(E)) = Cn+t,

— E% = E}. As E;** = 0, and E>* = H*(H,Homo(E,E)) = 0,
by lemma 3.4 (ii), we see that Ey' = Ker(d, : E3' — E>°) = EJ'.
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Therefore, since E'ztlo(E', E) is a skyscraper sheaf supported at p with
fiber C3,

E%!' = HY(#, Ext},(E,E)) = C°.
This then proves (i).
(ii) Ext?(¥#; E,E) = EX* ® EL' @ E2.
— By above, E2? = E2* = 0.

— By Lemma 3.4 (iv), Ezt3(E, E) = 0, implying that E>* = 0, and E%? =
0.

— And since Ea:té,(E', E) is a skyscraper sheaf supported at p,
E;' = H\(H, ExtL,(E, E)) =0,

proving that EL' = 0.

Description of the tangent space.

Let us consider the exact sequence

TMH+1JL . TMn+lan+l,n - NM3+[/¢\4"+1‘"' (3'3)

Let E € Mpi1,. (3.3) then gives us
TE‘Mn+l,n TE-:M'H']' N)\;ln-f-l/-‘“n-&-l.mé'

Let us give a geometric description of Tz M, ,; = Ext!(#;E, E);. We suppose that
E is given by the data:

(i) po is its singular point;
(i) a map O® O > O/I in X, giving @ @ I = ker a around py; and
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(iii) {A;;} are transition functions for E = (E)** relative to an open cover V = {V;}
of H.

T,;M,,+1 is then the set of all first order deformations of these things.

From the spectral sequence, we have the exact sequence
H'(H,slo(E)) — Ext'(H;E,E) — H°(H, ExtL(E, E)).

1. H'(H, slo(E)): As we have seen above, we have the exact sequence

HY(H, slo(E)) —= HY(H,slo(E)) — H°(H, Homo (O, 0/I)),

where
Deformations of the
. equivalence class
H (H,slo(E)) = = TeMy.
of the transition
functions A;; of E
Furthermore, if | = (ker a)p, is the line in P! = X, corresponding to «, then

O/I = C?/l, and as we have seen in remark following the proof of lemma 3.3

Deformations of the

H°(M, Homo(O, O/I)) = ( a
map OO0 = O/I

2. H(M, Exth(E,E)): ExtL(E, E) is a skyscraper sheaf supported at py with
fiber EztL,(O® 1,06 I) = C3. This fiber is the set of all deformations of the
sheaf O @ I. Any deformation of O @ I is given by a map

0:0 - Oal
1 — (¢5s)
where t € O, and s € I. We can actually assume that ¢t € O/I. Simi-

larly, we can assume that s = bz + do(z), for b,d € O/I. The deformation

corresponding to @ is then the cokernel of

0o - 0080
1 — (t,—o(z)+b,z—d) .
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We see that (b,d) € Ext,,(I,I) = Ty, H; and t € Exty (I, O) corresponds to
an extension 0 - O - V — I — 0 which is locally free if and only if ¢ # 0.
Hence, if t # 0, O & [ is replaced by a copy of O @ O. Let us remark that ¢
is completely determined by the restriction of 8 : O - O & [ to O,, = C?/L.
Its restricted image is then contained in (O & I),, = [. Restriction to O,

therefore induces the identification
Ezty(I,0) = Home ;(C*/1,1).
We can then rewrite (3.3) as
TzMniin — TgMnyr — H(H, Ezty(1, O)).
This then implies that N, ., /um.,,.. iS a line bundle with fiber

NJ\;In-H/Mn-Q-l,u,E' = HO(u, E.’L’té)(l, 0)) = Hmn@/l(@/ls l)v

-~

where | = E,.

3.3 Normal bundle.

As we saw in the previous section, the normal bundle Ny, , /..., . is a line bundle.
We would like to show that it is not a trivial bundle. In the remainder of this
chapter, we will denote the normal bundle Ny, /um..,,. by V.

3.3.1 Description of the fiber of N.

Let E € My - We would like to describe the fibre Nz. Suppose that sing(E) =
po- Let V = {V;} be an open cover of H on which E = (E)** is trivialised, and let
{A;;} be the transition functions of E with respect to this cover. We assume that
Do is only contained in V,. Then, if a € X is such that E'Iyo =20l =kera, and

[ is the line in P! corresponding to a, we know that

E = Eip = {s € O(E) | s(po) € 1}.
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Let (z, z) be coordinates centered at pg in V}, so that [ is generated by {z, o(z)}. Ifa

a -
corresponds to the matrix T = , E has the following projective resolution
c d
onVp
a br bo(z)
o (0, —a(z), 7) c dr do(z)

OO0 0

Ol (3.4)

0, —o(z2),
The fibre Nz corresponds to the sheaves obtained by deforming O ——( o(2).7)

Oa
O@O. These deformations therefore affect £ only on V,. Let us describe how these
deformations affect the transition matrices A;p on V5N V;. We start by pulling back
Ao through (3.4), and obtain the following commutative diagram on V5N V;:
a bz bo(z)
o (0.-0(2),2) ¢ dr dofz)

0080 Ol
1 Ni(T) Ao
O—————— 0800860 OO
(1,0,0) 010
001
where
0 -1 0
00 10 O /o(2)
Ni(T) = +]o 0 0
AT 0 z o(2)
0 0 0

Let us note that z # 0 on V5NV, since py ¢ V; for all 7 # 0.

We then deform the lefthand part of this diagram, in such a way as to

conserve commutativity:

(t. —o(2).2)

(¢ OO0 0
1 Ni(t,T)
o_(lﬁi.o@o@o
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where

00 ] [1 tjo(z) O jl 0 ~1/oz)

Ni(t,T) =
&1 [AmT 0 T o(z)

Completing the exact sequence of the first row by

o(z) t 0
RO P S S PPY)
and of the second row by
010
OMOGBO@O 00 Oa0, (3.5)

we then obtain the new commutative diagram

[a(z) t 0

0 &=95) hopeol 2 2 ]l pao

1 Ni(t, T) M;(t,T)
06080 000

O—
0 0 ¢

M T) = [ t;l (1; ] AT [ t/o(z) ?) ] ’
T oz

is obtained by taking the quotient. Let us note that

where

det(M;(t, T)) = 1.
We then see that if ¢ € C =2 N, then it corresponds to
— E,ift =0; and
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— the locally free sheaf with transition matrices B;; on the cover V, where B;; =
Aij if l,j % 0, and Bio = ]\/Ii(t,T) for all .
Remarks: (i} If instead of (3.5) we use the exact sequence

0 ¢t 0
001

(1,0,0)

O—080800 080

in our construction, we obtain the matrices

M,{t,T)=[1 0 ]Aior[t/a(z) 0 ]
0 t! z  o(z)

which again have det(M;(¢,T)) = 1. These will be used in 3.4.3.

(i1) Let D be a disk around py which is only contained in Vj, i.e. such that
DNV;=0if i # 0. We then replace the open set V; in the cover V by the two
open sets D and (Vp — pp). If we now deform E on D, instead of Vp, the transition
matrices A;; are then not affected. What will change is the transition matrix from
D to (Vy — po), which is simply the identity Id. Therefore, if we replace A;p by I'd

in the above construction, we obtain the matrices

S, T) = t™L o T t/o(z) O .
0 1 T o(z)

These will be used in section 3.4.2.

3.3.2 Non-triviality of the N’ over M, ;.

Let us start by noting that H2(My41,Z) # 0, and that one of its components is
H?*(Xy,Z) = Z. Indeed, by using the cohomology spectral sequence {'E} associated
to the fibration (3.2), with

'E3? = HP(H x My, H(X,, Z)),

'ERS = HPY Y Maiq0,Z),
we find that E%2 = H*(H x M,, H*(X,,Z)). Although H x M, is connected, it

is not simply connected because 7 (H) = Z. We therefore have cohomology with

79



coefficients in the local sheaf H?(Xy,Z) = Z. An element in H?(Xy,Z) however
corresponds to a choice of orientation. Since any complex manifold is orientable,
going around a loop in # x M,, does not produce monodromy. H?(Xy,Z) is then
the constant sheaf Z, and we see that E%? = H?(X,,Z) = Z.

To prove that A is topologically non-trivial, it is therefore sufficient to show

that it is not trivial over Xj.

Let us fix E € M, and p € H. We can therefore consider X, as being
the fiber of P : Mpy1n = H X M, at (py, E). If E, is the element of this fiber
corresponding to a € Xj, we have seen that the fiber of the normal bundle at E,is

N, = Homo, (C°/(ker a)p,, (ker a)p,).
This then shows that
Lemma 3.5 The restriction of the normal bundle N = Ny, /m.,,. to Xo i3
isomorphic to Homo(O(1), O(-1)) = O(-2).
O

We can also give an explicit description of a section s of the normal bundle
N over X,. If M(t,T) are the transition matrices given in remark (i) of section
3.4.1, we define s as follows

L) IXQ —_— N
T +— M(¢T)
On the overlap @ = 1/¢, and
M(t,T}) = diag(1/8,&) M(&2t, Tz).

M(t,T:) and M(é~2t,T:) therefore define the same vector bundle. This then shows
that A" must have the transition function &, verifying that A" ~ O(—2) over X, &
PL.

3.3.3 Non-triviality of the normal bundle over M,,.

We fix py € H and the identity matrix T = Id in X,. Let us restrict ourselves to
the subset Pic™!(T) of M,, consisting of vector bundles E such that
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— the graph of E is n({po} x P') + (P! x {{}), where ! € Pic*(T); and
- El‘ﬂ'"l(po) =L& L., Le PiC-I(T).

We begin by finding transition matrices for E. We know that H can be covered by
two copies of C x T. We therefore just have to describe the situation on D x T,
where D is a disk centered at po. We will use the notation of section 2.3.3. D x T is
covered by the two open sets Vj, V. Pic™'(T) has coordinate A. If L has divisor p,,
we denote by E) the bundle such that E|r-1(,,) = L @ L*. We have seen in section

2.3.3 that E\ has transition matrix

on Vy N V;, where g = o(z)e~*¢(2),
Let us now define the following section § of A over the cover C of Pic™!(T):
§:C — N
A —-  M(t,A) =Mt Id)

where this time we are working with the following transition matrix

1 0 t 0

My(t,T) = a,r | 7@ :
0 t! r o(2)

If we move A by the period 2w;, we obtain the transition matrix
M(t, A + 2w;) = diag(é;}(2)C, ¢5(z)C)M(e~m*Ctt, A),

where the function ¢;(z) and the constant C = e~*%(*+24) were defined in sections
2.2.1 and 2.3.3, respectively. Since diag(¢;"'(z)C, ¢;(z)C~!) is doubly-periodic on
U,, the matrices M (¢, A+ 2w;) and M(e~2%=C~¢, A) define the same vector bundle.
N therefore has e=2%*C~! as factor of automorphy on Pic™!(T). The restriction of
N to Pic™!(T) is therefore a non-trivial line bundle.
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3.4 Stabilisation maps.

Let us choose a fixed rank 2 C*™ vector bundle £ on H with ¢;(£) =0, ¢2(€) = n.
We also fix a base point pg. We consider the moduli space M? of equivalence classes
of pairs (E, ) where E is a stable holomorphic structure on £ with A2E = (0, and
1 is a trivialisation of E at pg. MQ is then the moduli space of framed instantons
of charge n on H. Let us also consider the moduli space B, of framed connections,
where a framed connection is now a pair (A, ¥’), where A is any connection and v

is a framing at pg. As we shall see in chapter 7, stabilisation maps

fan+1 : By = Bpyy

always exist. They are constructed by glueing an instanton of charge 1 at p,. We

would like to know if it is possible to define an analogous map g, n41 : M2 — M2,

in the holomorphic setting.
The holomorphic counterpart of glueing an instanton seems to be the Serre
construction. Given a stable holomorphic vector bundle E on H, one finds a stable

holomorphic vector bundle E’ such that
- it can be expressed as an extension
0>L->E S>L"'®I—0, (3.6)
where L is a line bundle, and I is the ideal sheaf of py;
- E' is isomorphic to E away from pg.

Unfortunately, as H%(H,C) = 0, we cannot express E’ globally as such an extension
(or else, E' would always have c;(E") = 1). Let ¥V = {V;} be an open cover of H
such that pg is only contained in V3. We can then

- apply the idea given above to the restriction of E to Vj;

- glue the bundle thus obtained to E|(3_,,), using the transition functions of
E.
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By what we have seen in the previous sections, this is the same thing as
glueing O & I at py, and deforming the new sheaf to obtain a locally free sheaf.
In a neighborhood of (E,%) in M2, such a map always exists. Defining a such

stabilisation map globally

gn,n+l:M?1 - M?;-p-l
E —» F

however implies finding a nowhere zero section of N. And, as NV is a non trivial
line bundle, this is impossible to do. The map will always depend on the choice of
inclusion of O I into O @ O at py. In addition, the results of section 3.4.3 indicate
that it is impossible to find a canonical choice of line bundle L giving the above

exact sequence (3.6).
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Chapter 4

Fibre of the graph map.

The moduli space M, of instantons of charge 1 on H is well understood. It was
proven in [BH] that it is the total space of a principal T-bundle given by the graph
map G : M; — P3\P! x I, where T is an elliptic curve and [ is a subset of Pic?(T)
that will be defined in 4.1.1. In this chapter, we study the fibre of the graph map
G: M, — P forn>2. |

If we restrict ourselves to a certain subset of P2**! we can show that the
fibre of G is the Jacobian of a Riemann surface of genus 2n — 1. In the first section,
this result is obtained by the techniques used in [BH]. In this context, the fibre
gives possible glueings for bundles on D x T. In the second section, we approach
the problem from the point of view of spectral curves. One can associate to each
graph g a spectral curve S which is a hyperelliptic curve of genus 2n — 1. We then
show that the elements of the fibre G~!(g) are in one-to-one correspondence with
line bundles on S of a fixed degree. Let us note that our construction also works

for n = 1, and that in this case S is an elliptic curve.

4.1 Fibre of the graph map.

Let
G: M, — |O(n,1)| = p*!
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be the map that associates to each SL(2, C)-bundle E with c;(E) = n its graph in
P! x P!.

4.1.1 The image of the graph map.

As we have seen in 2.1.1, one can describe Pic?(T) by constant automorphy factors.
If one sets T = C* /{\"}, the half periods of Pic’(T) correspond to 1, —1, VA, —V/A.
Let C; be the circle in Pic’(T) corresponding to factors of norm 1. C, projects to
an interval I in Pic?(T)/+ = P!, joining the two half periods +1 and —1.

Let P! x I denote the set of graphs

{({z} xP) + (P' x {1}),z€ P, L e I}.
As proven in [BH], we then have

Theorem 4.1 For n > 1, G is surjective.
For n = 1, the image of G is P3\P! x I.

4.1.2 The fibre of the graph map.

Any bundle on H can be obtained by glueing two bundles on D x T. We begin by
briefly recalling the isomorphism classes of certain bundles on D x T. Let D C C
be simply connected and E be an SL(2, C)-bundle on D x T such that E does not
restrict to Lo @ Lo, L2 = O, over any {z} x T. Let g be the graph of E. Referring

to lemmas 2.4 and 2.5, we have the following possilities

— if g is the graph of a rational map o : D — P!, the isomorphism class of E is

then uniquely determined by o;

— if g is of the form ({zp} x P!) + (P! x {{}), the isomorphism class of E is then
uniquely determined by [, and by the choice of line bundle in Pic~!(T) giving
E over {z} x T.

Let us now suppose that £ is a holomorphic SL(2,C)-bundle on H with
c2(E) = n that has a graph G(E) = g of one of the following two types:
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a) g is the graph of a holomorphic map F : P! — P! of degree n, if n > 1;
B) g is of the form ({z} x P!) + (P! x {l}), if n = 1.

We again assume that E does not restrict to Lo @ Lo, L2 = O, over any 7~ !(z). Let
us note that, in case (), the only possibility for the restriction of E to w~!(z) is:
E = L& L*, for some L € Pic™'(T). Furthermore, it was proven in [BH] that, in
case 3), the fibre of the graph map is Pic™'(T).

Let Dy, Do be an open cover of P! such that z, is only contained in Dy. In
case a), the above discussion tells us that the restrictions of g to Dy x P!, Dy, x P!
determine, up to SL(2, C)-isomorphism, unique bundles on Dy x T, Dy, x T. The
elements in the fibre G~!(g) then correspond to choices of glueing. By surjectivity
of G, we know that at least one glueing will give a stable bundle E. Furthermore,

if Aut = Auts[,(g,c) (B), one has
G~(g) ~ ['(Dy x T, Aut) \ [((Dp N D) x T, Aut)/T(De x T,Aut).  (4.1)

We will use the pushdown A = 7,(Aut) to determine G~'(g). Relative to
the cover Dy, Do, all the possible glueings will then be given by H!(P', A). Let
a = «,.(sl(E)), where sl(E) are the traceless endomorphisms of E, and let K and M
be the kernel and the cokernel of the exponential map a —» A. If weset L = a/K,
one has sequences

0—wK—a—L—0, (4.2)

0—L—>A—0M—0. (4.3)

We will use these sequences to compute H'(P!, A).

4.1.3 Bundles with ¢; = 1.

Let E be a stable holomorphic bundle £ with c;(E) = 1. The graph g = G(E) of
E is then of two possible types:

a) g is the graph of an automorphism F : P! — P!,
B) gis asum ({z0} x P!) + (P! x {{}).

86



In both cases, one must exclude the existence of points = in P! such that
Elz-1zy = Lo ® Lo, L} = O. In case a), suppose that there is such a point z.
R'm.(LoE) is then a skyscraper sheaf supported at z, with fibre C*,n > 2. If
| = {Lo, Lo}, this implies that P! x {} is tangent to the graph of F, and so dF; =0,
which is impossible, as F is an automorphism. In case 3), it can be shown that the

presence of such points contradicts stability. The argument involves destabilising
bundles (see [BH]).

In [BH], the cohomology group H'(P', A) was computed in both cases, and

it was proven:

Theorem 4.2 (Case a). If g is an automorphism F : P' — P!, then the fibre of
G: M, —»>PatgisT.

(Case B). If g € P3\P! x I is a sum ({z} x P') + (P! x {l}), then the fibre of
G : M, - P at g is isomorphic to Pic™'(T) = T.

4.1.4 Bundles with ¢; =n.

In this case, we only consider stable holomorphic bundles E with c;(E) = n and

graph g = G(FE), such that

— g is the graph of a holomorphic map F : P! — P! of degree n; and

— there are no points z in P! where E|;-1(;) = Lo ® Lo, L = O.
We have seen, in the previous section, that if such a point r in P! exists, then
dF, = 0. If n > 2, the differential of F must vanish at some points in P!. We
therefore have to exclude the cases where the zeroes of dF correpond to points z
such that E'I,,-l(z) =L Lo,Lg =0.

Let us restate this by saying that we only consider bundles that have a graph
g which is the graph of holomorphic map F : P! — P! of degree n that satisfies the

condition
If F(z) corresponds to a half period, then dF; # 0.
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Every bundle having such a graph is stable. G~!(g) is then isomorphic to H'(P!, A).
Since F is a map of degree n, there are 4n points in P! that get mapped to half
periods. Let 2;,7 = 1,...,4n be these points and p(z) be a polynomial of degree 4n
that has the z; as roots. Let S be the Riemann surface associated to Vo(z). S is
then a of genus [(4n — 1)/2] =2n — 1 and

i~1
2 'dz
W= ———,t=1,...,2n—1

C V()
is a basis of I'(Q2(S)). We can then show that H!(P!, A) is the Jacobian of S. This

is done in

Theorem 4.3 Let g be the graph of a holomorphic map F : P! — P! of degree n
satisfying condition (x). The fibre of the graph map G : M, — P?**+! 4t g is then

the Jacobian of a Riemann surface of genus 2n — 1.

Proof: Let z;,i =1, ...,4n be points that get mapped by F to half periods, and let
p(2) be a polynomial of degree 4n that has the z; as roots. Furthermore, let E be
a bundle that has graph g. There are then only two types of restrictions of E to
fibres T = n~1(z) of 7 : H — P!:

- Lo® L§, L} # O, with ¢;(Lo) = 0;
- a nontrivial extension of Ly by Lo, with L ~ O.

We start by describing a and K. As det(E) = O, there is a natural splitting
End(E) = O @sl(E). Referring to lemma 2.2, we find that h*(r~!(z), End(E)) = 2,
for i = 0,1, and A’(r~!(z),sl(E)) = 1, for all z. Grauert’s Theorem then implies
that the direct image sheaves R'm.(End(E)), i =0, 1, and a = 7,(sl(E)) are locally
free. Therefore 7,(End(E)) splits as O & a.

1) @ = O(—2n): Let v is the positive generator of H*(P!,Z). As 7.(End(E)) ~
O@a, we just have to show that ¢,(7.(End(E))) = —2n+. Since the canonical bun-
dle of H is K3 ~ m* Kp:1, the dualising sheaf of # : H — P! is then holomorphically
trivial; and, by relative Serre duality, r.End(E) = (R!7,(End(E)))". Therefore

c1(m(End(E))) = 2¢,(7.(End(E))).

88



Let h is the positive generator of H*(#,Z). We then have the following map on
cohomology:
n.: H*(H,Z) — H*(P,2Z)
h — 7,
o — 0, ifc#h
By Grothendieck-Riemann-Roch,

ch(m:(End(E))) - td(P") = . (ch(End(E)) - td(#)). (4.4)

With these generators, td(*) = 1 and ch(End(E)) = 4—4nh. Therefore 7,(ch(End(E))-
td(#)) = —4n~y. Also, since the tangent bundle of P! is O(2), td(P') =1 + ~. In-
serting these in (4.4), we get ch(m(End(E))) = —4n+, and ¢, (r.(End(E))) = —2n¥.
We thus obtain the cohomology groups

H°(P',0) =0, H'(P! a)=C""', HP!a)=0.

2) K: Referring to lemma 2.3, we see that K is zero on any open set
containing the z; . Away from the z;, K is locally the constant sheaf Z: K =
{271 diag(m, —m), m € Z}. There is a Z/2 monodromy on K that corresponds to
branching around z;. It has the effect of interchanging Ly and L;. We can also give
the following explicit embedding of K into a ~ O(—2n):

mdz

Vp(z)

To compute the Cech cohomology of K, we use the following Leray covering of the

271 diag(m, —m) —>

Riemann sphere P! described in [BH]. Suppose that each z; lies on the equator. Let
D; be closed discs along the equator, each containing a z; and such that D;ND; = 0,
if 2 # j. The cover is defined by

Ux = the points in P! — (U;D;) lying north of a line
which passes below the equator;

Us = the points in P! — (U;D;) lying south of a line
which passes above the equator;

Vi = open disc containing Dj;, such that V;NV; =0, if i # j.
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Let us fix trivialisations of K on these open sets. The restriction maps are
all the identity, except for p¥; = ~Id,i = 1,...,4n, which corresponds to the mon-
odromy about the z;. The cochains with respect to this covering are C° = K(Us) &
K(Uy) =2% as K(V;) =0foralli =1,...,4n; C' = K(Usn) ® S, K(Uis) ®
Z  K(Uni) = Z'**, as Uy has 4n components; and C? = Z,_l K(Uswi) = Z8",

since Usy; has 2 components for all ¢ =1,...,4n. Since
§:C° — C!
b
(m,n) — (n—m,...,n—m,m,...,m,—n,...,—n)

Z° = ker(d : C®* — C') =0 and B! = Im(§ : C° — C') = Z2. The other

coboundary operator is given by

§:Ct — (C?
(Moo oy Tny My ooy My Ky kan) — (1,01, .-, Qany ban)
where
a, = n + m; + kl
bl = no +m; — kl
a = ng+my — ko
bg = ng + mqg + kg
a = n+mtk
b = i +m Fk
Qan—1 = Nyn_1 + Myn_1 + Kin—1
bain-t = Nan +Man_y — Kkan—1
Qg = Nan + Myn — Kan
bin = ny + Myn + Kyn-

(The alternation between + and — in front of the &; corresponds to monodromy.)

In this case, Z' = ker(6 : C' — C?) = Z*" and
B®= Im(6:C' — C?)
{(al,bl, -y G4qn,bap) € Z8" | Z o (b —a)) = eveninteger.}
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Combining these, we have
H°(P',K)=0, H'(P',K)=2""?% H*P,K)=2Z/2

3) M: Referring to lemma 2.2, exp : @« — A is surjective away from the z;,; and it

has cokernel Z/2 near the z;. M is then a skyscaper sheaf supported on the z;.
H“(]Pl,M) = (Z/2)*, H' (P, M)=H*P' M)=0.

4) A, L: Since A is included in 7,End(E) = O®O(—2n), the global sections of A are
+Id and H°(P!, A) = Z/2. And as £Id is not an exponential at z;, H°(P', L) = 0.

The long cohomology exact sequences associated to (4.2) and (4.3) are then
0 — 2" 2?2 5 C" ! — HY(P,L) — Z/2 — 0,

and

0—Z/2— (Z/2)" — HYP',L) — H'(P',A) — 0.

The inclusion Z*"*~2 — C is the mapping H'(S,Z) — H'(S, O) giving the lattice
of Jac(S). Therefore, H'(P', L) ~ Jac(S) x Z/2 and

H'Y(P', A) ~ Jac(S)/(Z/2)**~2? ~ Jac(S).

4.2 Spectral curves and their Jacobian.

4.2.1 Spectral curves.

Let E be an SL(2, C)-bundle with co(E) = n over M, and g be its graph. Given the

fibration 7w : H — P!, let us also denote by 7 the projection

T HxC — P'xC

(z,a) — (7(z),)-
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If s : H x C* — H is the projection onto the first factor, we then have the commu-

tative diagram

SE— - HXxC — P xC

E -H P!

T

Let us briefly recall the construction of the graph g. If V is the Poincaré
line bundle over H x C*, L := R'w,(s*E ® V) is a skyscraper sheaf supported on
a divisor S in P! x C". Furthermore, this divisor is invariant under: the Z-action
on C* generated by A, and the involution on C* defined by z — 1/2. S therefore
descends to a divisor S on P! x P!, that is defined to be the graph g of E. Before
descending to S, S obviously descends to a divisor S on P! x C*/Z. S is a double
cover of S that can be be considered as a spectral curve of g. We would like to

know if L also descends to a skyscraper sheaf L on P! x C*/Z, with support S.

We begin by describing the Z-action on P! x C*. This action is induced from

the Z-action on H x C°*, the latter being

CIxC 2. CIxC

(21, 22,@) = (Az1, A2z, Aa) .
We see that this action is trivial on #, and therefore trivial on P!. Let us however
show that the fibres of the skyscraper sheaf L are not preserved by this action.

As L := R'7,(s*E® V), we begin by looking at how Z actson s"E® V. Let
us first note that it acts trivially on s*E. Let us now show that it does not preserve
the fibres of the Poincaré line bundle V on H x C*, i.e. A does not send V(;q) to
Viz,20)- We recall that V' can be constructed by constant automorphy factors: one

starts with the trivial line bundle C over C*? x C* and identifies t € C(;, -,.a) With

ate C(Azl Az2,a); Where the Z-action is trivial on C* . If we make Z act on C* as

well, then

C2xC xC 2+ C2xC xC

(21, 22,0,8) +—= (Az1,Azp, Aa, )
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In H, (z1,22) and (A2, A2;) of course define the same point, say z. The above
however tells us that A sends V{z,q) t0 V(z2q) @ 7*(O(—1)). Hence, the Poincaré line
bundle does not descend on H x C*/Z.

If we pushdown to P! x C*, we encounter the same problem:
R'r.(s'E® V) (sa) — R'T.(S"E®V @ " (O(=1)))(z.0)»
for any (z,a) € P! x C*. By the Projection formula,
R'7.(s"E®V @ 1*(0(-1))) = R'm.(s"E® V) ® O(~1).

Thus L, 4) 2. L(: 2a) ® O(-1), and L does not descend on P! x C*/Z.

We can however get around this problem by constructing a sheaf £ on P! xC*
such that L, q) A Lz 2a) ® O(1). The fibres of L ® £ will then be preserved by
the action of Z. Let us assume that the graph of E does not have a vertical bar at
the origin pp of P'. We can describe the bundle O(—1) as being given by the divisor
—po. (If the graph has a vertical bar at pg, we will simply take another point of P!
to descibe the divisor of O(—1).) Let W = (pp x C*) N S be the set of points on S
which lie above py. If (a,b) is a representation of the pair of points that lie above
po on S, W is then the set of all translates of this pair by A in S:

W = J(Na, X'D).
i€Z
Moreover, a +b is a divisor on S. Let us denote T%(a +b) := A'a+ A'b the translate
of (a + b) by A’. We then define a divisor on S as the locally finite sum
D:=) iT  (a+b).
i€Z

Let £ be the line bundle on S associated to the invertible sheaf O(D). Let us also
denote by £ the line bundle thought of as a sheaf on P! x C*.

We fix a section v of O(—1). It will then have a zero at pyp. We then define
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the following Z-action on the sheaf L ® L over P! x C’

z,0,80t)— (2, \a, As ®
L® £|(;,a) ( ) ; 72 L® C|(z',\a)

A
1 1
P xC o) . a) P'xC.

L ® C is therefore invariant under this action, and it descends to a sheaf L :=
(LR L)/ ~on P! xT* = (P! x C*)/ ~, with support S. Let us note that if we pull
back L to P! x C* and tensor it by £*, we get back L.

Let us now assume that g is the graph of a holomorphic map F : P! — P!
of degree n which satisfies condition (*), i.e. there are no points z in P! such that
Elx_,(zy = La® Lo, L} = O. The restriction of the skyscraper sheaf L to S is then a
line bundle. Furthermore, as the first Chern class of L is given by S, the first Chern
class of L|s is completely determined by the graph. Therefore, one can associate
to each element of the fibre G~!(g) a line bundle L|z on S, and these line bundles
all have the same degree. Let us also note that since F has degree n, S is a double
cover of P! with 4n branch points, and must therefore be a curve of genus 2n — 1.

Hence, if n = 1, § is an ellipic curve, and if n > 2, S is a hyperelliptic curve.

4.2.2 Description of Jac(S).

Let E be a holomorphic SL(2, C)-bundle on H with c;(E) = n. In this section, we
would like to prove that, if the graph g of E is the graph of a holomorphic map
of degree n which satisfies the condition (*), we can then recover E from the sheaf
L = R'm.(s*E ® V). Keeping in mind the discussion at the end of section 4.2.1,
this will then give us a one-to-one correspondence between the fibre G~!(g) of the

graph map at g and line bundles on S of a fixed degree.

Let #, and #, be two copies of the Hopf surface, with projections onto P*
denoted by m; and m, respectively. Let #, xp: H, be the fibred product induced by
m; : H; — P!, fori = 1,2, and let p; : H; xp1 Ha — H;,i = 1,2, be the natural
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projections associated to this product. For : = 1,2, we will also denote by p; the

following projections
Di - HIXPLHZXC. —_— H; x C
(z1, 72, @) F—e  (pi(z1,22), @)
and by m; the projections
T - H.’ x C —_— Pl x C*
(z,0)  — (m(z:)0)
Let E be a holomorphic SL(2,C)-bundle on #H, with c;(E) = n. We will
assume that the graph of E is a holomorphic map g : P! — P! of degree n which
satisfies the condition (*) defined in section 4.1.4, i.e. that there are no points z

in P! such that E|;-1(;) 2 Lo & Lo, L2 = O. We have the following commutative

diagram

Hy xprHy x C Py, x C

41 T
» m i
s*E H, xC P'xC
s
r y
E - H, L . P.

Moreover, if § is the canonical identification of H; x C* with H,; x C*

§IH2XC‘ ——)’HIXC‘

(z2,) +— (72,0)

we also have the following commutative diagram

H, x C < Hy x C

H,.
95



Using the notation of the previous subsection, we have the skyscraper sheaf
L = R'm.(s"E ® V), with support S = supp(L) C P! x C*. We can then obtain E

from L in the following three steps:

— we pullback L to H, x C*, and then push it down to H; x C* to get the

skyscraper sheaf §.(m3L) whose support is now 7 *(S);
— we tensor 5.(m3L) by V* to counter the influence of V' in L;

— we finally want to push down to #,. Let us however note that the fibre of s is
not proper. Nevertheless, as 5.(m3L) @ V* = 5.(m3R'm.(S"EQ V)) ® V", the
presence of both V' and V* implies that the Z-action, induced from #; x C*,
is fibre preserving. Taking the quotient with respect to this action, we thus
obtain a sheaf on the compact manifold H, x C*/Z. We can now push down
to #H,, and find that

E=s'(3.(mL)@V*/.).

This will be proven in

Proposition 4.1 Let E be a holomorphic SL(2, C)-bundle on H, with c;(F) =n.
We assume that the graph of E is a holomorphic map g : P! — P! of degree
n, and that there are no points z in P' where E|p-1(;) = Lo @ Lo, L2 = O. If
L=R'm.s"E®YV), then

E=s.(5.(mL)®V*)/~),
where the quotient is taken with respect to the Z-action induced from H; x C.

Proof: As the proof is very technical, we will state some of the results that we need
without proof. Their proofs will be given in the next section.

Let us denote by diag(H) the diagonal in H; xp:1 H,, ie. if (¢1,ts,2) are
local coordinates at a point in the fibred product, then diag(#) = {t; = t.}. If



we set D = diag(H) x C C H; xp: Ha x C*, D is then an effective divisor in

H, xp: Ha x C*, and we have the following exact sequence on H,; xp: Hy x C*:
0 pi(s"EQV) o pl(s"E®V)(D) —» pi(s"E®V)(D)|p = 0. (4.5)
Pushing down to H,; x C*, we obtain the long exact sequence
0 — p2.(PI(s"E®V)) — po.(pi(s"E ® V)(D)) —

— p2.(pi(s"E ® V)(D)|p) — R'pr.(pi(s"E® V)) —
— R'pp.(p}(S"E@ V)(D)) —> ... (4.6)

We then have the following;:

Lemma 4.1 i) p;,(pi(s"E® V)) =0,

ii) Ripo. (p}(s*E ® V)) = m3L,

iii) p2,(pi(s*E @ V)(D)) is a locally free sheaf of rank two,
iv) R'pa.(pi(s"E ® V(D)) = 0.

Inserting this into (4.6), we obtain the exact sequence on H, x C*
0 = pa.(pi(s*E @ V)(D)) — p2.(pi(s’E ® V)(D)|p) — m3L — 0.
Tensoring by 3*V*, and applying the Projection Formula, we have
0 — p2.(Pi(s"EQ® V)(D) ® (3p2)" V) —>
—r p2. (PI(S"E®@ V)(D)® (5p2)'V*|p) — 3L @ §'V* — 0.
As §is a finite morphism, pushing down on H; xC* again gives us an exact sequence
0 — (3p2).(pi(s"E ® V)(D) ® (3p2)°V™) —

— (5p2)s(P1(s"E® V)(D) ® (5p2)"V*|p) — 5.(mL @5 V™) — 0. (4.7)

Let us note that 5,(m3L ® §*'V*) = 5.(m3L) ® V*. (4.7) can be further simplified,

given
Lemma 4.2 On H; x C*, (3p2).(pi(s"E @ V)(D) ® (5p2)*V*|p) = s"E.
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We thus obtain the exact sequence on H; x C*
0 — (3p2).(PI(S"E® V)(D)® (5p2)'V*) — s"E —> 5, (mL)®@V* — 0.

We finally want to take the pushdown to #H,. However, as we have previously
remarked, the fibre of s is not proper. But we can get around this problem, because
we now have a well-defined Z-action on every sheaf of the sequence. Taking the

quotient by Z, we again obtain an exact sequence on ¥, x C*/Z

0 — (5p2).(Pi(S"E® V)(D)® (5p2)'V*) /. — s*E/. — 5.(m3L) @5 V" /. = 0.

(4.8)
Let us note that the support of 3,(73L) ® 3°V*/. is now the spectral curve S
associated to the graph of E. Before taking the pushdown, let us examine the
restriction of this sequence to a fibre T; = {z,} xC*/Z of 5. On T}, s"E = 08 O.
Furthemore, 3.(73L) ® 3*V* /.. is now a skyscraper sheaf with fibre C supported
on the two points p,q € C*/Z corresponding to E over 7~ !(z,). By lemma 4.1,
we know that the sheaf (5p2).(pi(s*E ® V)(D) @ (5p2)*V*)/~ is locally free of rank
two. Its first Chern class must be equal to —2, and we see, by the construction,

that it is actually isomorphic to O(—p) ® O(—gq). On T , (4.8) becomes

1?

0—O0(-p)®0O(—q) - 080 —C,; —0, (4.9)

where C,, is a skyscraper sheaf supported on {p,q} with fibre C. By Riemann-
Roch, we see that on each T , the holomorphic sections of (5p;).(pi(s"E®V)(D)®
(5p2)*V*)/~ are all trivial, and its pushdown to H; must then be 0. Moreover, on
each T7 , the isomorphism on global holomorphic sections of O @ O and G, ; given

by (4.9), induces an isomorphism on s,:
0 — s.(s"E/.) = 5. (5.(m3L) @ 5°V") /. — 0. (4.10)

As s is simply the projection onto the first factor of a direct product, and E is
invariant under the Z-action, we have s,(s*E/.) = FE, and (4.10) gives us the

required isomorphism of s,(5.(73L) ® §*V*/.) with E. O
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4.2.3 Proof of lemmas 4.1 and 4.2.

Before proving the lemmas, we need the following
Lemma 4.3 If M = H; xp1 Ha x C*, then
i) P1.(Oum) = R'p1.(Ou) = Oyyxc;

i) For any (zy,0) € H, x C, if Ty, = {z1} x 75 (7 (z1)) x {a}, and p =
DNT, =(x,z,a), then

Oum(D)lr,, = Or, (p);
i1i) p1,(Om(D)) = Oy xc s
w) R'p.(Om(D)) = 0;

v) P1.(Om(D)|p) = Oy xc -

Proof: i) We will use the commutative diagram

M=H xpHa xC By, x

D 2

H, xC P! xC.

m

As OM = P;(O'ngo)y for ¢ >0, Riplo(oM) = RiPl.(PE(Ouzxc'))- AlSO,
m : Hy x C = P! x C is a flat morphism, thus implying that, for all ¢ > 0,

R'p1. (p3(Osyxcr ) = 75 (R 720 (Orip e )); (4.11)
and we see that we just have to show that, fori =0,1,
R'm3. (Osyxc ) = Opie -

Furthermore, as m : Hy x C* —— P! x C* is simply the identity on C*, this reduces

to proving that, for m3 : Hy — P!, and i =0, 1,

Ri‘ll’g, (0’;‘2) = OPL.
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For any z € P!, let T. = m;'(2). For i =0, 1, Riemann-Roch then implies
R'm.(On,): = H(T., Oy,l1.) =C.
Thus, by Grauert’s theorem, Rimy,(04,) is an invertible sheaf and
R'my,(O4,) ® C(z) — H (T, Ou,1.)

is an isomorphism.

For i = 0, the right-hand side of this map is canonically isomorphic to C,
and the left-hand side is simply 72,(O%,):. The image of the global section 1 of
Op: via the structural map Op: — m2,(Oy,) therefore generates the stalk at every
point, showing that m;,(0%,) = Op:; and implying that ch(m,,(0Oy,)) = 1.

By Grothendieck-Riemann-Roch,

ch(m2)(Ox,)) - td(Ha) = 72.(ch(Ox,)) - td(P').

We have td(#H;) = 1 and ch(Oy,) = 1; moreover, as H, has real dimension 4, and
P! has real dimension 2, 7,, is zero on 0-cocycles; implying that 7, (ch(Oy,)) = 0.

Therefore,
ch(m2:(Os,)) =0 => ch(R'72.(O,)) = ch(m2.(Ox,)) = 1.

R'7;,(O4y,) is then an invertible sheaf on P! of degree zero, proving that R!m,,(Oy,) =
Op:1.

ii) to iv) DNT, = p. Let (¢,t2, 2,2’} be coordinates centered at p. D is
then given by {t, — t; =0}, and T, = {t| = z, 2 = m1(z1), 2’ = a}. Therefore, as

(D-T,), = UC[ti,t2,2,2]/(t1 —ta,t1 — 21,2 — 71 (1), 2 — @)
= dim¢(C) =1,

D -T, = p, and Opn(D)|r, = Or,.(p) is an invertible sheaf of degree one. The
inclusion @y; = Oy¢(D) then induces an isomorphism on holomorphic sections,

and p;.(Oax (D)) = Oy, xc - Furthermore, by Riemann-Roch,

RIpl.(OIW(D))(::x,a) = Hl (T:I.'n OT.;. (P)) = 01
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for all (z,,a) € H, x C*. Thus R'p,,(On (D)) =0.

v) As D is an effective divisor, we have the exact sequence
0 = Or = Op(D) = Op(D)|p — 0.
Pushing down to H; x C* and referring to i) and iv), we obtain
0 = On,xcs = P1.(Op(D)) — pl,(O‘;I(D)ID) — Oy xc = 0. (4.12)
As we have seen, the inclusion Oyy < Oy(D) induces an isomorphism Oy, xc» =

P1.(On(D)), thus splitting (4.12) and implying v). O

Proof of Lemma 4.1:

We have to prove the following:
i) p2.(PI(s"E®V)) =0,
i) R'p, (pi(s"E @ V)) = 3L,
i1i) po,(PI(s*E ® V)(D)) is a locally free sheaf of rank two,
iv) R'p.(pi(s"E® V)(D)) =0.

Let us again note that, since 7 : Ha x C* — P! x C* is a flat morphism, the

commutative diagram

'Hlxpl'Hsz' &Hlxc

D2 ™
H, xC P xC
T2
implies that, for all ¢ > 0,
Ripo. (pi(s"E®@ V)) = m3(R'm.(s"E® V). (4.13)

Let (z,a) € P! x C* and T{;q) = 7 '(z) x {a}.
i) For generic (z,a), (s*E ® V)|r,,,, is a sum of non trivial line bundles of

degree zero, and, by Riemann-Roch,
T (S E® V)(za) = H (T(z,0), (S"E® V)1, ,,) = 0.
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Hence, m,(s*E® V) =0 and p,,(pi(s*"E® V)) X m*(m,(s"E®V)) =0.

ii) As L = R'm,(s*E ® V), ii) follows from (4.13).

iii) and iv) For any (z3,a) € H, x C*, let p = DN T,, = (z,, T2, a), where
T:, = p2"Y(z2,@) = m Y (ma(z2)) x {z2} x {a}. By arguments similar to the
ones used in the proof of lemma 4.3 ii), we see that O(D)|r,, = Or,,(p) and
deg(O(D)|r,,) = 1. Thus, as pi(s*E ® V)|r,, is a sum of line bundles of degree
zero, py(s*E ® V)(D)|r., is a sum of line bundles of degree one. By Riemann-Roch

P2.(Pi(s°E @ V)(D))(z2.0) = H' (T2, Pi(s"E @ V)(D)lr,) = C°, (4.14)

and

R'p2.(pi(s"E @ V)(D))(zs,0) = H' (T, pi(s"E ® V)(D)l1,) = 0.

Therefore R'p.,(pi(s"E ® V)(D)) = 0, and by Grauert’s theorem, (4.14) implies
that po, (pi(s*E ® V)(D)) is a locally free sheaf of rank two. O

Proof of Lemma 4.2:

We have to prove the following:
OnH, x C, (3p2).(pi(s*E ® V)(D) ® (5p2)*V*|p) = s°E.
As Spp =p, on D,
(5p2)«(P1(s*E ® V)(D) @ (3p2)*V*|p)

= p..(pi(s"E® V)(D) ® p}V"|p) = s"E ® p1.(O(D)| ).

By lemma 4.3 v), p,,(O(D)|p) = O, thus proving the lemma. O
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Chapter 5

Poisson structure and integrable

systems on M,,.

In this chapter, we begin by using Bottacin’s construction [Bot| to define a Poisson
structure on the moduli space M, of stable SL(2, C)-bundles E' with c;(E) = n on
‘H. This structure will be induced, in natural way, from a Poisson structure on H.
Let A be the subset of P2**! consisting of graphs which do not satisfy condition ()
(see section 4.1.4), or which contain vertical bars. We then compute the dimension
of the symplectic leaves of M,, and show that the graph map M, — P>**! jsa
Lagrangian fibration over the complement of A. Let us note that, to prove the

latter, we will use arguments similar to those found in [Be].

5.1 Poisson structure on M,,.

We start by recalling some definitions and results of symplectic geometry, that can
be found, for example, in [We].

Let X be a smooth algebraic variety over the complex field C. A (holo-
morphic) Poisson structure on X is a Lie algebra structure {-,-} on Oy satisfying
the Leibniz identity {f,gh} = {f.g}h + g{f,h}. This structure is equivalently
given by an antisymmetric contravariant 2-tensor § € H%(X, AT X), where we set
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{f.g} = (0,df A dg). If the bracket defined by 0 satisfies the Jacobi identity

{/.{g.h}} +{g. {h. f}} + {h. {f.9}} =0, (5.1)

for any f, g, h € T'(U, Ox), then 8 defines a Poisson structure on X. For any function
f € T'(U,Ox), the map g — {f, g} is a derivation of ['(U, Ox). There then exists
a vector field H; on U such that Hy - g = {f, g}, for all g € ['(U, Ox). The vector
field H; is called the Hamiltonian vector field associated to f.

Note that giving 8 € H°(X, A?TX) is equivalent to giving a homomorphism
of vector bundles B : T*X — TX, with (8,a A 8) = (B(a),8) ( or (a, B(8)),
up to a sign), for 1-forms a,3. If B has maximal rank everywhere, the Poisson

structure is said to be symplectic. For any even r, let
X,={peX|rk (B) =r}.

A basic result [We| then asserts that the X, are subvarities, and that they are
canonically foliated into symplectic leaves, i.e. r-dimensional subvarities which in-

herit a symplectic structure.

Let us define an operator d : H*(X, A2TX) — H°(X, AT X) by

d(@,8,7) = B(a)8(B,7) — B(B)(a,7) + B(1)8(e, B)
—({[B(a), B(B)],7) + ([B(a), B(7)], B) — ([B(B), B()], a),

for 1-forms a, 3,7, where [-, -] denotes the usual commutator of vector fields. It is

then easy to verify that

Proposition 5.1 The bracket {-,-}, defined by an element 6 € H°(X, A’ TX), sat-
isfies the Jacobi identity if and only if d6 = 0.

The Poisson structure on M,, will be constructed using a Poisson structure on H.

The latter are given by the following proposition:

Proposition 5.2 A Poisson structure on H is given by a global section s of the

anticanonical bundle wy;'.
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Proof: An element s € H*(H,A’TH) = H°(H,wy') that satisfies the condition
ds = 0 is, by definition, a Poisson structure on . As H is a surface, the map d

must be identically zero. O

Note that wy' = ©O(2), thus implying that H°(H,w5") = C*. Poisson struc-
tures on H then exist. However, as H*(#,R) = 0, a Poisson structure s on #

cannot be symplectic.

5.1.1 Poisson structures on M,,.

We recall that for every E € M,, we have
TeM, = HY(H, si(E)),

and

TpM, = H' (M, sl(E) ® wy)-

Let us choose a Poisson structure s € H(H, O(2)) on #. We define an element § =
0, € H'(M,,®?TM,) as follows: for any E € M,, 8(E) : TgM, x TgM, — C
is defined by

6(E) : H'(H, sl(F) @ wy) x HY(H,sl(F) ® wy) — (5.2)
H?(M, End(E) ® w) = H2(H, End(E) ® wx) — C.
The first map is the cup-product of two cohomology classes, the second is multipli-
cation by s, and the third is the trace map. Note that the stability of E implies
that H%(H, End(E)) = C. By Serre duality, it then follows that the trace map
Tr : H*(H, End(E) ® wy) — C is an isomorphism.

The graded commutativity of the cup-product makes §(E) skew-symmetric.
To prove that @ defines a Poisson structure on M,,, we therefore only have to prove

that it satisfies the closure condition dd = 0. The latter is a consequence of the

following theorem, due to F.Bottacin [Bot]:

Theorem 5.1 Let S be a Poisson surface and s € H°(S,w5"') a Poisson structure

on S. The antisymmetric contravariant 2-tensor 0 = 8, € H*(M°, A>T M®) defines
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a Poisson structure on the moduli space M° of H-stable vector bundles on S. (H

is taken to be a very ample divisor on S.)

In the proof, he shows that df = 0. A Poisson surface is a smooth algebraic surface
that admits a non-zero Poisson structure. As H is not an algebraic surface, it is not
a Poisson surface. The algebraic hypothesis is however only used in the construction
of the moduli spaces of sheaves on S. The arguments proving that d6 = 0 therefore
also hold in the case of H, or for any compact surface, and & defines a Poisson
structure on M,,.

As we have seen above, giving 8 is equivalent to giving a homomorphism of
vectors bundles

B :T.Mn — TMn,

with 8(a ® 8) = (B(a), 8), for 1-forms «, 8. From the definition of 6, the homo-
morphism B is clearly the map induced on cohomology by multiplication by the

section s: at point £ € M,,, we have

B(E) : H\(H, si(E) ® wy) = H'(H, sl(E)). (5.3)

5.1.2 The rank of 6.

We shall now compute the rank of the Poisson structure 8, i.e., the dimension of
the symplectic leaves of the Poisson variety M,,.

As H is not symplectic, s has a divisor. Let D be this divisor. Since w;;' =
0(2), D = T) + T,, where the T; are irreducible nonsingular fibres of #. More
specifically, as O(2) = n*(0O(2)), if O(2) is given on P' by the divisor z; + 23, we
see that T; is the elliptic curve 7~!(2;), for ¢ = 1,2. For any vector bundle on #,

we have the exact sequence

0 — sl(E) ® wy — sl(E) — sl(E|p) — 0, (5.4)
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which induces the long exact cohomology sequence

0 — H°(H, sl(E) ® wy) — H°(M,sl(E)) — H°(H,sl(E|p))

—s HY(H, sl(E) ® wy) 28 H\(H, sI(E)) — ....

Since the bundle E is stable, H*(#, End(FE)) = C and H?(H,sl(E)) = 0. Hence,
HO(H, sl(E)) = 0 and, by Serre duality, H(H, sl(E) @wy) = (H*(H, sl(E)))* = 0.

The above sequence then becomes
0 — H%H,sl(E\p)) — H'(H,sl(E) ® wy) 2B HY(H,sl(E)) — ...,
and we have the following result:
Proposition 5.3 The kernel of the Hamiltonian morphism B(E) is given by
ker B(E) = H*(D, sl(E|p))-
Hence

rk B(E) = dim M, — dim H%(D, sl(E|p))

= 4n —dim H°(D, sl(E|p))-

The rank of the Poisson structure 8 at the point E € M,, is therefore deter-
mined by the restriction of E to the fibres T, T,. For i = 1,2, the restriction E|r,
can be of three possible types:

i) Lo ® L§, Lo € Pic’(Ty);
ii) a nontrivial extension of Lo by Lo, L3 = O;
iii) L@ L*, L € Pic*(Ty), k < 0.
Referring to lemma 2.3, we obtain the dimension of the cohomology groups:
— If E|r, is of type i), with L3 2 O, or of type ii), then h*(T}, sl(E|r,)) = 1.

— If Elr, is of type i), with L2 = O, then h%(T}, si(E|r,)) = 3.
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— If E|r, is of type iii), then h°(T}, sl(E|r,)) =1 — 2k.
We summarise the above in the corollary:

Corollary 5.1 Let A be the set of graphs in P?>"*! that contain vertical bars, or
that correspond to vector bundles E such that, for some z € P!, E lx=1(z) = Lo ® Lo,
with L3 = O. If E € M,, is such that

1) G(E) € A, thenrtk B(E) < 4n —4;

ii) G(E) € (B! — A), then tk B(E) = 4n — 2.

5.2 Integrable systems.

To define algebraically completely integrable systems, we need the following two
definitions from symplectic geometry.

Let (X,w) be a symplectic variety. An irreducible subvariety ¥ C X is
isotropic if for generic y € Y, the subspace T,Y is an isotropic subspace of w, i.e.,
wlr,y = 0. It is Lagrangian if it is isotropic and dim ¥ = }dim X.

The above definitions can be extended to Poisson varieties. Let (X,6) be
a Poisson variety. An irreducible subvariety Y C X is tsotropic (respectively La-
grangian) if it is generically an isotropic (respectively Lagrangian) subvariety of a
symplectic leaf: i.e., Y is contained in the closure Z of a symplectic leaf Z C X and
the intersection Y N Z is an isotropic (respectively Lagrangian) subvariety of Z.

We now turn to integrable systems. An algebraically completely integrable
Hamiltonian system structure on a family H : X — B of abelian varieties is a Pois-
son structure on X with respect to which H : X — B is a Lagrangian fibration.

This can be extended to families of abelian varieties with degenerate fibres:

Definition 5.1 Let X be a smooth algebraic variety (not necessarily complete),
B an algebraic variety, A a proper closed subvariety of B, and H : X — B a
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proper morphism such that the fibres over the complement of A are isomorphic to
abelian varieties. If the morphism H : X — B is a Lagrangian fibration over the
complement of A, a Poisson structure on X is said to be an algebraically completely

integrable system structure on H : X — B.

Remark: The definition implies that, away from A, the Hamiltonian vector fields
corresponding to functions on B are tangent to the fibres of H, and are translation

invariant.

We have previously seen that, for all n, the graph map
G . Mn — P2n+l

is a fibration whose generic fibre is the Jacobian of a spectral curve S. Let A be
the set of graphs in P2**! that contain vertical bars, or that correspond to vector
bundles E such that, for some z € P!, E|z-1(;) = Lo @ Lo, with L2 = O. Choose a
graph g in the complement of A. The spectral curve S determined by g is then an
elliptic curve if n = 1, and a hyperelliptic curve S 223 ptoof genus 2n — 1 if n > 2.
We have seen in chapter 4 that the fibre of the graph map at g is isomorphic to
the Jacobian of S. The fibre G~1(g) is in fact also a Lagrangian subvariety of the

symplectic leaf which contains it. This is proven in the following proposition:

Proposition 5.4 The fibration G : M,, — P?"+! s Lagrangian over the comple-
ment of A.

Proof: Let us fix a graph g € (P>*! — A), and let S be the spectral curve in
P! x T* which covers g. The curve S then has genus 2n — 1. Let E be any vector
bundle in M, having graph g. Referring to corollary 5.1, the rank of B(E) is
4n — 2. The fibre G~!(g) is therefore contained in a symplectic leaf Z of dimension
4n — 2. Furthermore, the fibre G~!(g) is the Jacobian of the spectral curve S of
genus 2n — 1. Thus dim Jac(S) = 2n —1 = 1 dim Z, and we just have to show that
Jac(S) is isotropic, i.e. the Poisson structure # vanishes on Jac(S5).

Let L be the line bundle corresponding to E in Jac(S) = G~'(g). We
then have an injection of tangent spaces TpJac(S) — TgM,, (and equivalently a
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surjection of cotangent spaces TgM, — T;Jac(S).) By deformation theory, the
tangent space to Jac(S) at L is identified with H'(S,035) = H(S, Homo,(L, L)).
We have also seen that the tangent space to M, at E is identified with H'(#, sl(E)).

The injection of tangent spaces therefore induces a morphism of sheaves
H'Y(S,035) — H'(H, sI(E)).

This morphism can be described as follows: as in section 1.5, let Cle] = C[t]/(¢)?,
where ¢ is the class of t. We set S[e] = S x SpecCle] and #Hfe] = H x SpecCle].
Let n be a tangent vector to Jac(S) at L which corresponds to the infinitesimal

deformation L, on S[e]. The locally free sheaf L, is an extension of L by L on S:
0—L—L —L—0. (5.5)

Our vector 7 is therefore given by the extension class of (5.5) in H'(S,0s). By
using the construction of section 4.2.2 and the exact sequence (5.5), we then obtain

a locally free sheaf E, that is an extension of F by E:
0—F—E  —F—0O.

The extension class of E, in H'(H, sl(E)) is then the image of 7 in TgM,,.
Dually, the surjection of cotangent spaces TgM, — T;Jac(S) induces a
surjective morphism of sheaves H'(H,sl(E) @ wy) — H'(S,05 @ wg). Let us

consider the diagram

H'(H,sl(E) ® wy)xH'(H,sl(E) ® wy) — H*(H, End(E) ® wx)

HY(S,0:Qws) x HY(S,0:; Qws) H?*(S,05 ® ws).
By the Yoneda Pairing, this diagram is commutative. As L is an invertible sheaf

on the curve S, the cohomology group H?(S,Os ® ws) must be zero. The Poisson

structure @ is therefore vanishes on T} Jac(S). O
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Chapter 6

Stable holomorphic bundles with

co = 2.

In this chapter, we give a partial classification of M;. We use the method of [BH]
to find the fiber of the graph map in the following three cases:

a) G(FE) is the graph of a rational map F : P! — P! of degree 2,

B) G(E) decomposes into two pieces: the graph of an automorphism F : P! — P!
and a sum ({z} x P!) + (P! x {{}),

v) G(E) is a sum ({20} x P') + ({21} x P!) + (P! x {{}), where 2z, may equal z;.

As we have seen in section 4.1.2 of chapter 4, this method consists in taking two
bundles over D x T, and finding the number of ways that we can glue them together
to obtain distinct ASL(2, Z)- isomorphism classes of bundles. The isomorphism class
of the bundle however needs to be fixed over each D x T. We were therefore
restricting ourselves to graphs that completely determine the bundle over D x T,
i.e. graphs satisfying the conditions of lemmas 2.4 and 2.5. In the case were c; = 2,
we can now also consider graphs which satisfy the conditions of lemmas 2.6 and 2.7.
After glueing such bundles, we then obtain graphs over H of type a), 8), or 7). As
in section 4.1.2, finding the fiber G~!(g) of at g € P then reduces to computing
the cohomology group H'(P', A), where A = m.(AutsL2,c(E)), and E is a bundle
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with graph equal to g.

Let us note that in the case where E' is a bundle on D x T with a graph of the
form 2({z} x P') + (P! x {I}), and E = L @ L*, for L € Pic™*(T) on 7~ %(z), the
graph does not necessarily fix the isomorphism class of E. In this case, we therefore

cannot find the fiber of the graph map using this method.

6.1 Global data, c; =2

If E is a vector bundle with ¢c; = 2, the graph G(F) of E is of three possible
types:

a) G(FE) is the graph of a rational map F : P! — P! of degree 2,

B) G(E) decomposes into two pieces: the graph of an automorphism F : P! — P!
and a sum ({2} x P') + (P! x {{}),

v) G(E) is asum ({z} x P') + ({1} x P!) + (P! x {l}).

Let us first discuss the possible existence of points z, in P!, such that E|r-1(z) =
Lo ® Lo, L2 = O. In case a, one cannot exclude the existence of such points. As
G(FE) is the graph of a rational map F : P! — P! of degree 2, the zero = of dF may
correspond to a half-period I. The fact that P! x {l} is tangent to the graph of F’
at = would then imply that R'x.(LoE) is a skyscraper sheaf concentrated over z,
with fiber C*,n > 2. And it would then be possible for E|;-1(zj = Lo @ Lo.

In cases B and +, the existence of such points is impossible. In 3, the map
part of the graph is an automorphism of P!. Such points are therefore excluded
by the fact that dF’ can never be zero. In =, the presence of such points would
contradict stability. Indeed, if K and K are the maximal destabilising bundles of
E, then deg(K) +deg(K') > —2+ (numberofsuchpoints), and, either K or K would
have to have positive degree (see [BH]).

112



Proposition 6.1 (Case «). If g is a graph of type a, the fibre of
G : T, — P! at g is the Jacobian of a hyperellipic curve of genus 3.

Proof: This is a special case of the above discussion.
Proposition 6.2 (Case 3). If g is a graph of type B, the fibre of G : T, — P! at
g s
(i) C*/Z? x Pic™'(T) if F(z) is a half period;
(ii) C?/Z3 x Pic™'(T) if F(20) is not a half period.
and
Proposition 6.3 (Case v). If g is a graph of type v, the fibre of G : T, — P! at
g s
t) Ifl is a half-period

(A) C x Pic™Y(T) x Pic™!(T) if 20 # z, in the graph of E;
(B) CxPic™Y(T), if zo = z, in the graph of E and Ele-1(zey = LOL*,c1 (L) =
-1.

i) Ifl is not a half period

(A) a subset of C* x Z x (Pic™'(T))? if 29 # 2, in the graph of E:

(B) a subset of Cx Z x Pic™'(T), if 20 = z, in the graph of E and Elz-1(z) =
Lo L, ¢ (L) =-1.

6.2 Proof of Propositions 6.2 and 6.3:

The proof is similar to that of proposition 6.1. We again basically have to compute
the cohomology groups of a, K, M, A, and L. Because these involve the same ideas
in all cases, we shall discuss each sheaf simultaneously for all cases.

Before we start, let us fix some notation, in each case, that will hold for the

remainder.
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Vertical bars.

In 8 and +, the graphs contain vertical bars.

B) The graph contains one vertical bar at z,. Let us assume that

Elr-1(zq) = L® L*, ¢y (L) = —1.

7v) (A) The graph contains two vertical bars, at zp and 2, and z; # z,. We

assume that
Elp-tz = L& L*, ¢ (L) = -1
and

EI«"(:;) = L' D Lr., CL(L') = -1.

(B) The graph contains a double vertical bar, i.e., a vertical bar of multiplic-

ity two, at 2o = z;. We set
Elg-t(z0) =L® L, cy(L) = —-1.

Half periods.
As we have seen in section 4.1.4, half periods play a special role in the computa-
tions, because they introduce zeroes in the sheaf K, and also monodromy, which
corresponds to replacing Ly by Lj, around the half period. We will therefore have

to distinguish further cases, when computing the cohomology of K, M.

B) In this case, F is an automorphism of P!. F must therefore map four dis-
tinct points to the four half periods. Now, is F(z) a half period? We then
distinguish

i) F(zp) is a half period,
ii) F(2,) is not a half period.
v) Here, the graph contains a horizontal bar corresponding to the constant map

F(z) =, where [ is a pair of dual line bundles of degree zero. We thus have
two possibilities:
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i) [ is a half period,

ii) ! is not a half period.

6.2.1 Computation for a.

Lemma 6.1 If we follow the notation of section 4.1.4, then

_ 0 fori=0,2,
B) a = O(-3), and H(P',a) =
C fori=1.
. 0 1 =0,2,
v) a2 O(=2), and Hi(P!,a) = fori=0,2
C fori=1.

Proof: As we have seen in section 4.1.4, for any z which does not correspond to a
vertical bar in the graph of E, h!(r~!(z), EndE) = 2. The presence of vertical bars
will however make the dimension jump, and R'~x,(EndE) is no longer a locally free

sheaf. Indeed, by Riemann-Roch, we find
B) h'(r~'(z),EndE) = 4,

v) (A) hY{r~!(z),EndE) = 4, for i = 0,1,

(B) h'(r~!(z), EndE) =4,

Thus, we can write R'7,(EndE) = ¥ @ S, where F is locally free of rank 2,
and § is a skyscraper sheaf. Let supp(S) be the the support of S. Then by the
above,

2 in 8, and v(B)
z9 and z; in y(A).

supp(S) = {
Furthermore, at each point of the support, S has fiber
C® in B, and v(A),
C!' in(B),

where the C* in v(B) is due to the fact that the vertical bar has multiplicity two.
Thus, if h is the positive generator of H2(P!,Z), we see that

2h in 8,
C[(S) ==
4h in 7.
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By relative duality, 7.(EndE) = (R!'m.(EndE))" = F*. Therefore, since
ci(a) = ¢;(m.(EndE)), we have ¢,(a) = —c,(F). Furthermore, ¢;(R'7.(EndE)) =
c1{(F)+c¢(S), and ¢, (m(EndE)) = 2¢,(a)—c;(S). By Grothendieck-Riemann-Roch,
ch(m(EndE)) = —8h. Therefore, combining the above, we get

—-3h in B,
ci(a) = {
—2h in 7.

Hence, as Pic(P!) = Z, we see that a = O(-3), in 8, and a = O(-2), in
7. The cohomology groups stated in the lemma are then a simple consequence of
Riemann-Roch. O

Remark: In 8, a =2 O(—2). It will be useful, for the remainder, to associate

a divisor to a.

(A) One can think of a as being given by the divisor D = —zy — z;. Therefore,

any section of a must vanish at z, and z;.

(B) Here, we will assume that a is given by the divisor D = —2z,. Thus, any

section of @ must vanish at z,.

Computation of the cohomology groups for K.

Lemma 6.2 Keeping the notation as above, we have
B) (i) If F(z) is a half period, then
H'(P',K) =0,H'(P',K) =Z* H*(P',K) =Z/2.
(ii) If F(z) is not a half period, then
H°(P', K) =0,H'(P',K) = Z3 H*(P',K) =Z/2.
v) (i) Ifl is a half period, K is then the zero sheaf.
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(i) Ifl is not a helf period, then

(0, ifi=0,
v ZY ] ) = 17 ] A b}
HI(PL,K) = ﬁ lf‘l. n 7( )
0, ifi=1, inv(B),

{ Z, ifi=2.

Proof: The table in lemma 2.3 will be very useful:
Let E be an SL(2,C)-bundle over T. Its global traceless endomorphisms and the
kernel of the exponential map exp: (global traceless endomorphisms) — (SL(2, C)-

automorphisms) are:
1) Ex= Ly ® Ly, 0 0
) 0® % * a€C|2m ™ meZ
L3#O,c1(Lo) =0 0 —a 0 -m

2) E~ Lo ® La,
L2=0,c,(Lo) =0

. 0 b 00
3) E type (ii) beC
00 00
m
a f 27 f
4) E~LeL aeC 0 -m
0 —a

ca(L) <0 fer(L?
m € Z\0

sl(2,C)

fel(L?

We begin with

B) i) F(z) is a half period.
Let z;,i = 1,...,3 be the points that get mapped to half periods, and let p(z) be
a polynomial of degree 4 that vanishes at the z;,7 = 0,...,3. K is then zero on
any set containing the z;. Away from the z;, K is locally the constant sheaf Z. As
branching around the z; interchanges L, and Lj, there is a corresponding (Z/2)
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monodromy on K. An explicit embedding of K into a = O(—3) is given by

mdz
(z — 20)v/P(z)

Using a similar Leray covering to the one described in section 4.1.4, one finds

diag27i(m, —m) —

HO(P', K) =0, HY(P!, K) = 2%, H*(P',K) = Z/2.

(The computation is very similar.)

i1) F(z0) is not a half period.
In this case, there are four points, z;,7 = 1,...,4 say, that get mapped to half
periods, and they are all distinct from z,. Let p(z) be a polynomial of degree four
that vanishes at the half periods. As above, K is zero on any open set containing
the z;, ¢ =1,...,4; and, as it is a subsheaf of a, it must also be zero on any open
set containing 2o (because every section of a vanishes at 2,.) Away from the z;, K

is locally the constant Z sheaf. K then embeds in a by

i mdz
(z ~ 20) /P(2)
There is again monodromy about the 2;,7 = 1,...,4. In order to compute co-

homology of K, we shall use the following Leray cover: we choose open sets
Un,Us,V;,i = 1,...,4, as above; we add an open set Vj about z,. Let us fix
trivialisations of K on these open sets. The restriction maps are all the identity,
except for p¥; = —Id,i=1,...,4, which corresponds to the monodromy about the

z;.
—C'=K(WUs)® K(Unx)=1Z% as K(V;)=0foralli =0,...,4;
— C' = K(Usy)®X 1o K(Uis)®X sy K(Un:i) = Z'°, as Usy has 5 components;
— C?* =31, K(Usyi) = Z', as Usy; has 2 components for all i =0, ..., 4.
The first coboundary map is given by

§:C° — C!

(m,n) — (n—m,...,n—m,m,...,m,-n,...,—n)
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We then obviously have that Z°® = ker(d : C° — C') =0and B = Im(6 : C* —
C') = Z2. Furthermore

6:C' — (C?
(noy---,n4, Mo, ..., My, ko, ..., k) —> (ao,bo,...,a4,b4)’
where
ap = ng+mp+ko
bo = ny+mg+kg
aa = m+m+k
bh = no+m;—k
a; = npo+mg—ks
by = nz3+ma+k
a3 = ng+my+k;
bs = ny+m3—ks
ag = ng+my—ky
by = no+my+ ks

(The alternation between + and — in front of the k; corresponds to monodromy,
fori =1,...,4.) In this case, Z' = ker(§ : C' — C?) = 2% and B%2 = Im(S :

C! — C?) = 2Z'°. Combining these, we have

HY(K,P') =0, H\(K,P') = Z°, H*(K,P") = Z/2.

We now turn to
v) i) l is a half period.

Referring to lemma 2.3, we see that K is the zero sheaf, in this case.

1) | is not a half period.

We now have to consider the cases A), B) separately:

(A) z9 # z; in the graph of E:
By the above remark, since K is a subsheaf of a, any section of K must be zero at
z9 and z;. Away from the z;, K is the constant sheaf Z. (In this case, the sheaf

is constant because there are no half periods and,therefore, no monodromy.) K is

119



then zero on any set containing the z;. An explicit embedding of K into a = O(-2)

is given by
— = .
(z — 20)(z — 21)

We again use a similar Leray covering to the one described above: Uy, Us, V,,

diag27i(m, —m)

and Vi, where the last two sets are open neighborhoods of z; and z;. If we fix
trivialisations of K, since it is the constant sheaf Z, all restrictions must be the

identity.
—C'=KUs)® K(Uxy) =22 as K(Vi)=0fori=0,1;
— C' = K(Usn)® Xt K(Uis)®3 }_o K(Uni) = Z5, as Usy has 2 components;

— C? = K(Usno) ® K(Usn,) = Z*, as Usy; has 2 components for i =0,1. The

first coboundary map is now

§:C° — !
(m,n) +— (Npm,Npm,m,m, —n, —n)

and we obtain Z° = ker(6 : C® — C!') =0 and B! = Im(6 : C* — C!) = Z2.

Moreover
§:C' — C?
(no, nt, mo, my, ko, k1) > (ao, bo, ay,b1)
where
ag = mng+mg+ky
bo = n[+mO+ko
a = n1+ml+k[
b]_ = no+m1+k[.

In this case, Z! = ker(§ : C' — C?) = Z% and B?> = Im(6 : C' — C?) = Z3,

where B? is given by the condition b, = ag — by + a;. Combining these, we have
HO(P',K)=0,H' (P',K) =2, H*P', K)=2.

(B) zo = z; in the graph of E:

By the above remark, since K is a subsheaf of «, any section of K must be zero at
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Zp. Away from 2, K is the constant sheaf Z. (In this case, the sheaf is constant
because there are no half periods and,therefore, no monodromy.) K is then zero on

any set containing zg. An explicit embedding of K into a = O(-2) is given by

m
(z- 20)2’

We again use a similar Leray covering to the one described above: Uy, Us, Vj, where

diag27i(m, —m) —

the last set is an open neighborhood of z,. If we fix trivialisations of K, since it is

the constant sheaf Z , all restrictions must be the identity.
— C'=K(Us)® K(Uy) =22, as K(V) =0;
— C'= K(Uswn) ® K(Ups) ® K(Uno) = Z3, as Usy has only one component;
— C? = K(Uswno) ® K(Usni) = Z2, as Usyo has 2 components.

We now have
§:C° — C!
(m,n) — (n—m,m,—n) ’
giving us Z2° = ker(d : C* — C') =0 and B! = Im(§ : C° — C') = Z2.

Furthermore

§:Ct — C?
(n,m,k) —> (a,b)’
where
a = n+m+k
= n+m+k.

In this case, Z! = ker(d : C'! — C?) = Z? and B? = Im(§ : C' — C?) = Z,

where B? is given by the condition b = a. Combining these, we have

H°(P', K) = H'(P',K) =0,H*(P',K) = Z.
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6.2.2 Proof of proposition 6.2.

In this case, lemma 6.1 tells us that a = O(-3). A, L are then subsheaves of
7.(EndE) = O & O(-3), and the global sections of A are +Id. Furthermore,
as —Id is not an exponential at the z;, Id is the only global section of L. Thus
HO(P',A) =Z/2 and H°(P',L) = 0.

1) F(zo) is a half period.
Away from the z;, as F'(z) is never a half period, we have

a A
b 0 e 0
beC
0 -b 0 e®

exp : @« — A is then surjective, and M = 0. At z5, = O(~3) must be zero, and

+Id are the only possible elements of A. Thus M = Z/2 at z3. As F(z;) is a half
period fori =1,...,3, at those points

(43 I A
0 b +1 b

beC
00 0 +1

and exp : « = A has cokernel M = Z/2. M is then a skyscraper sheaf with fiber

Z/2 supported at the z;. The cohomology long exact sequences associated to (4.2)
and (4.3) then give

0522 ->C* > H (P, L)>2Z/2 - 0,
and
0—>2Z/2— (Z/2)* > H'(P',L) - H'(P', 4) > 0.

Thus H'(P!, A) = H' (P!, L)/(Z/2)* = (C?/2%x Z/2)/(Z/2)* = C?/Z2. Since there
are Pic™!(T) possibilities for the choice of the line bundle L giving E over 7~!(z),
the fiber of G at g must be C?>/22? x Pic™'(T).

it) F(29) ts not a half period.
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From the above discussion, we see that M is a skyscaper sheaf with fiber Z/2

supported at the z;, : =0,...,4. Furthermore, we obtain the exact sequences
02> C*—> HY(L,P') > 2/2—0,
and
0—>2/2— (Z/2)° - H'(L,P') - H'(A,P') > 0.

Thus HY(L,P') = C?/Z% x Z/2, and H'(A,P') = C?/Z>. There are now Pic™%(T)
possibilities for the choice of line bundle L giving F over 7~ !(z), and the fiber of
G: M; > PlatgisC?/Z23 x Pic™(T). O

6.2.3 Proof of proposition 6.3.

We have seen that a = (O(-2), in case v. A,L are therefore subsheaves of
7.(EndE) = O & O(-2), and the global sections of A are +Id. Furthermore,
as —Id is not an exponential at the z;, Id is the only global section of L. Thus
H°(P!, A) =Z/2 and H°(P!,L) =0.

i) 1 is a half period.

In this case K = 0, and we are therefore only working with the exact sequence
0oaB A M0 (6.1)

Away from the z;, we have

a A
0 b +1 b

beC
00 0 =1

The cokernel of exp : &« — A is then M = Z/2. At the 2;, « is zero, and +Id are

the only two possible germs of A. We then again have M = Z/2, implying that
M is the constant Z/2 sheaf. Inserting all of the above into the long cohomology

sequence associated to (6.1), we obtain
0>Z/2—2Z/2—C— H'(A,P') -0,
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and H'(A,P!) = C. The only invariants, apart from the graph, are the isomorphism
types over 77!(z) and 7~!(z;). The fiber G~!(g) is therefore

—~ € x Pic™!(T) x Pic™!(T) in case (A),
— € x Pic™!(T) in case (B).

ii) | is not a half period.

Away from the z;, we now have

a A
b 0 e 0
beC
0 -b 0 e®

exp : @ — A is then surjective, and M = 0. At the z;, we again have a = 0, and

A = xId. M is therefore a skyscaper sheaf with fiber Z/2 supported at the z;.

In case (A), as H'(P!, K) = H?(P',K) = Z, the cohomology long exact
sequences associated to (4.2) and (4.3) then give

0Z->C—oH'P,L)—-Z 0,

and

0-2Z/2 - (Z/2)° - H'(P',L) - H'(P', A) - 0.
Therefore H'(P!, A) = H'(P',L)/(Z/2) = (C/ZxZ)/(Z/2) = C* xZ. The only in-
variants, apart from the graph, are the isomorphism types over 7~!(z) and 7~!(z;).

The fiber G~'(g) is therefore a subset of C* x Z x Pic™'(T) x Pic™'(T).
In case (B), we have H!(P!, K) = 0 and H?*(P!, K) = Z. Inserting all of the

above into the cohomology long exact sequences associated to (4.2) and (4.3), we

obtain

0—-C—HYP',L)—>Z -0,

and

0—+2Z/2— (Z/2)>— H'(P',L) » H'(P', 4) - 0.
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. Therefore H'(P!,L) = C x Z, and H'(P', A) = (C x 2)/(Z/2) = C x Z. Apart
from the graph, the only invariant is the isomorphism type over 7~!(z). G™!(g) is

therefore a subset of

— € x Z x Pic™"(T) in case (B). O
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Chapter 7

Connections on Hopf surfaces.

In this chapter, we consider the topological side of our problem. We will see that the
notion of graph can be extended to connections. We begin by finding the homotopy
groups and certain cohomology groups of the moduli spaces of connections and
framed connections. We then construct a map that will associate to any connection
a graph. This construction generalises the notion of graph in the holomorphic
setting. We then show that this map is not homotopically trivial, and find that its

generic fibre is the total space of an S!-bundle.

7.1 Bundles and connections.

Let E be a C*™ bundle on H with ¢,(E) = 0 and c;(E) = k. We will then denote by
A = Ay g the space of connections on F, and by G the gauge group — the group
of bundle automorphisms which cover the identity map on H. The moduli space of
gauge equivalence classes of connections on E is B = A/G. Let us then fix a point
po in H. A framed connection in E is a pair (4,t), where A is a connection, and ¢
is a trivialisation of E,, — a linear map ¢t : E,, — C2. If we fix the framing t, we

define Gy C G to be its stabiliser:

Go = {9 € Gla(po) = Id}.
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The orbit space B = .A/Go is then the space of equivalence classes of framed con-

nections. Furthermore, we have the equivalence
B ~ Map*(H, BSU(2))g,

where = represents weak homotopy, Map* denotes base point preserving maps, and
Map*(H, BSU(2))E is the homotopy class corresponding to E — H.

We finally remark that there is a natural map 8 : B — B which forgets the
framing. Since all connections on the Hopf surface H are irreducible, the fibre of
this map is SU(2)/C(SU(2)), where C(SU(2)) = +1d is the centre of SU(2). The
fibre of 8 is therefore SO(3), and we have the fibration

S0(3) B

For details of this, see [DK].

7.1.1 Homotopy of B.

We begin by computing the homotopy groups of B.
Proposition 7.1

11',;(8) = 7rq+3(5'3) x 1rq+g(53) x wq(Ss),

for all q, and, in particular,
m (B) = Zg x Z.
Proof:

T(B) = m (Mep*(S® x S!, BSU(2)))
= [S9, Map*(S® x St, BSU(2))].

= [STA(S? x S'), BSU(2)].

= [Z9(S® x SY), BSU(2)}
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As S3 A St = S4,
£(S? x SY) & £(SY) v £(S%) v £(SY).

Since ¥ distributes over V, by iterating the above g times, we get that

TI(S3 x S') = TI(S4) v £9(S3) v T9(SY)

— Sq+4 vV Sq+3 \V; Sq'H.

Inserting this into the above gives

To(B) = [S9 v 8§93 v S, BSU(2)].
= [§9*4, BSU(2)]. x [S%*}, BSU(2)]. x [S+!, BSU(2)]

= g+a(BSU(2)) x mg4a(BSU(2)) x me41(BSU(2)).

Let us remark that, as QBX = X, for any group X, and m;(QX) = m;_,(X),
we have 7;(BX) = m;_(X). Thus, as SU(2) = S3, the above becomes

7q(B) = Tg4a(5%) X mas2(S°%) x To(S%),

and we are done.

The first four homotopy groups of S3 are

0 ifp=1,2;
(S8 =48 Z ifp=3;

The above then gives us 7 (B) = Z, x Z. O

7.1.2 Cohomology of B.

Proposition 7.2 B has the same rational cohomology as H:

Q if p=0,1,3,4

0, otherwise.

H?(B,Q) ={
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Proof: Since H ~ S% x S!, we have the following cofibration
SvS e H-L.oSASL

Applying the functor Map*( ,BSU(2)), we then obtain the fibration
i

0383 ~ Map* (S84, BSU(2))

Map*(H, BSU(2))

p (7.1)

Map*(S3 v S',BSU(2)) ~ S* x 0253
Since cy(E) = k, we restrict ourselves to the kth component Q353 of the third loop

space. B is then given by the fibration

-

Q3S® —+ B~ Map*(H, BSU(2))s —— S* x Q255. (7.2)
And, as Q3 S°? has trivial rational cohomology,
H*(B; Q) ~ H*(S* x 22S%; Q).

The rational cohomology groups can then be computed using the Kiinneth theorem.

By applying the Leray-Serre spectral sequence to the fibration
0283 — P(NS?) — OS3,

we have

H (%% Q) = { 0 0>
p

For details, see [DK]. The Kiinneth theorem therefore gives

. Q if p=0,1,3,4;
H”(B;Q)={

0, otherwise.

Let us now show that
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Corollary 7.1

[z, fp=01
< Z,, ) =2;
wEz={ T I°P
Z&T, if p=34;
\ T,, if p>3,

where T, is a torsion module, for p > 3.
Proof: By proposition 7.1,
1!'1(3) =Zg XZ=Zz@Z

And, as TFI(B) is abelian, this implies that H, (é) =Z, D Z.
Let us remark that Ext(Z,,Z) = Z,,; and

Ext(Z,Z) = Ext(Z,Q) = Ext(Z,,Q) = 0.
Therefore, by the Universal Coefficient Theorem,
HP(B; Q) = Hom(H,(B); Q),

and

HP(B;Z) = Hom(H,(B); Z) ® Ext(H,-.(B); Z).

By (7.4), we see that

H'(B;Z) = Hom(H,(B); Z) ® Ext(Ho(B); Z)
= Hom(Z,®Z;Z)® Ext(Z;Z)

= Z.

(7.3)

(7.4)

Furthermore, as H%(B, Q) =0, (7.3) implies that H,(B) must be a torsion module.

Therefore Hom(H,(B); Z) = 0; and, as
Ext(H,(B); Z) = Ext(Zy; Z) ® Ext(Z; Z) = Z,,
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(7.4) implies that H(B; Z) = Z,.

By using similar arguments, we can show that, for p = 3,4,
HP(B;Z)=Z & T,,

where T, = Ext(Hp_l(B_);Z). As Hg(B) is a torsion module, T3 must also be a

torsion module. Similarly, we see that T} is also a torsion module. [J

7.2 Stabilisation maps.

From now on, we will use the subscript k£ if we want to specify the charge of
the connection in a given moduli space. In this section, we use the “subtraction
procedure” of Taubes to construct stabilisation maps for the moduli spaces B, of
framed connections on M. Before doing so, let us remark that the space of all

connections A is an affine space which possesses the following L?-metric: for any
two A,B€ A,

1/2
la- 8= ([ 14-Bra) (73)
where | - | is the Killing metric on su(2,C). This metric is preserved by the actions

of G and G,, and therefore descends to the quotients. The spaces B, and By are

endowed with the quotient topologies.

Claim 1 There ezists a map gi 41 : By — By that sends a pair (A,t) to a pair

(A, 1), for any k. This map is continuous with respect to the L2-norm.

This map is obtained by the “subtraction procedure” of Taubes [T]. Let us give
an outline of this construction. We start with an SL(2, C)-bundle E’' — S*, with
c(E') = 1, and choose a connection A’ on E’ whose curvature is concentrated at
the south pole s of S*. We also fix a trivialisation ¢’ of E’ over S%\n, where n
is the north pole. Throughout the following, S*\n will be identified with R via
the stereographic projection from n. Let z : B — R* be a coordinate system
centred at py and defined on a ball B around py in H. We then identify B with
z(B) € S*\n, and py € H with s € S*\n. We can assume, without loss of generality,
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that B={z: |z} <1} CR.

Given any pair (4,t) € B, we can then define a canonical identification of E
with E' over B\s, which will depend on the choice of (A4, ¢). We have already fixed
a trivialisation t' of E' on S*\n. By using parallel transport of ¢t by A along paths
in B, we can extend ¢ to a trivialisation of £ on B that we will also denote by ¢. By
identifying these two trivialisations over B\s, we then obtain an SL(2,C)-bundle
E over H such that c,(E) = k + 1. It is important to note that, as every bundle
E thus constructed has charge & + 1, the isomorphism class of E is independent of
the choice of (A,t). The actual bundle we construct does however depend on this
choice. This choice will also be used to define connections on E.

Before we construct a connection on E, let us introduce a bump function
7(z) on R*. We require that n = 0 if |z| < } and that 7 = 1 if |z| > 2. Let us also
cover H by the following three open sets: U = B\s, H~ = {p € H : dist(p,s) > 3}
and B~ = {z € R' : |z] < }}. As we have chosen A’ to have curvature concentrated
at s, one can assume that A’ is the product connection on B\B~. (If it is not, one
can always multiply A’ by a bump function supported in B~.)

E has, by construction, a canonical product structure over U. Let & denote
the induced product connection on E|y. We then define A = (8 + nA + A’) on U.
On H-, E is canonically identified with E. A is then given on E|u- by A = A.
Finally, as E is identified with E' on B~, we set A = A’ on B~. It is easy to see
that these connections agree where the domains of definition overlap. We therefore
have a well-defined connection A on E.

The map gex+1 : By — By, is then defined by sending the pair (A4,t) in By
to the pair (A, #) in Bi;,. This map well defined, and it is continuous with respect

to the L2-norm defined above.

7.3 Graph map.

Let E be a fixed SL(2,C)-bundle on A with c,(E) = n, A be the space of connec-

tions on £ and G be the gauge group. We want to construct a map from B = A/G

132



to P! x P! that will associate to each connection a “graph”.

As we have seen in section 2.1.2, one can associate a graph g to every holo-
morphic SL(2,C)-bundle E on H. This graph basically keeps track of the type of
E on each fibre 77!(z), for z € P'. As we have seen, E|r-1(;j must have one of the

following three types:
(i) Lo ® Lj, Lo € Pic®(T).
(ii) Non trivial extensions 0 > Lo - E — Ly — 0, L2 = O.
(iii) L& L*, L € Pic*,k < 0.
Thus, if c;(E) = n, its graph g € |O(n, 1)| decomposes into two pieces:
— the graph of a rational map F : P! — P! of degree k,
— (n — k) vertical fibres {z;} x P!.

And we know that E|,-1( is of type (iii) if and only if it has a vertical bar in its
graph.

Can one associate such a graph to a connection on E? Unfortunately, as
H is a surface, not every connection defines a holomorphic structure. Indeed, a
connection A induces a holomorphic structure if and only if the (0,2) part of its
curvature is zero, i.e., Fj',ﬂ = 0. And this is obviously not the case, in general. There
are however no (0, 2)-forms on the fibres T, = 7~!(z) of 7 : H — P!. The restriction
to T, of any connection 4 on £ — M therefore always defines a holomorphic
structure on E|r.. And E|r,_, endowed with this holomorphic structure, must have
one of the above three types. It then seems possible to associate to any connection
A a graph that will be a generalisation of the graph of holomorphic SL(2, C)-bundles
on H.

We will define the graph of a connection A to be the zero set of a section of the
determinant bundle of a family of Dirac operators associated to A. The determinant
bundle of a family of elliptic operators is usually defined in the context of K-theory

by using the index of the family. For brevity, we shall define the determinant
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bundle without introducing the notion of index of a family of operators. For a

general discussion of this construction, we refer the reader to [DK].

7.3.1 Families of Dirac operators.

Let us begin by giving T a spin structure. On a Kihler manifold X, a spin structure
is defined to be a choice of square root of the canonical line bundle K = A’T*X,
i.e. a line bundle K'/2 such that K/2® K'/2 = K. The spinors are then the (0, p)-
forms which take values in K!/2. As the canonical bundle of T is holomorphically
trivial, we choose @ as our spin structure. The spinors are then S* = Q% and
S— = Q%!. With this structure, the Dirac operator on T is simply 3 : Q%% — Q%!
Furthermore, given a vector bundle W — X with a connection A, the partial
connection d4 : Q%°(W) — Q%}(W) is also a Dirac operator.

We want to construct a family of Dirac operators on T that is parametrised
by P! x C*. To do this, we start with a family of connections {zim} parametrised
by P! x C*. The partial connections 9 i, Will then give us the desired family
of operators. Let V be the Poincaré bundle over H x C* and 7 the projection
H x C — P! x C°. (We use the same notation as in section 2.1.1.) For each
(z,a) € Pt x C*, V|z-1(z,q) is a line bundle in Pic’(T), where T = n~!(z). (The
projection H — P! is also denoted by 7.) Let £;, be the flat connection on V-1, 4.
Then, for any A € A,

-

Aza=A®I®I®§za

is a connection on (E ® V)|z-1(:,a), Where I represents the appropriate identity
matrix. Our family of Dirac operators is then d; = {9;_}. for (z,a) € P! xC*. Let
us note that each of these partial connections is compatible with the holomorphic
structure of (E ® V)|z-1(z,a)- Indeed, as 2-forms on T have type (1,1), nga =0
and 835 _ = Oggv. Furthermore, for each (z,a) € P! x C*, the dual operator of 85__
is

e =~ * 04

where * is the usual Hodge star operator.
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7.3.2 Determinant line bundle.

As we have stated above, the determinant line bundle of a family of operators is

closely related to the index of the family. The index of any elliptic operator P is
ind(P) = dim(ker P) — dim(coker P).

We therefore have to give a description of ker d4_ and coker d;_, for all P! x C".
The 8-Laplacian is defined to be the operator A; = 33* + 8*3. Differential
forms satisfying the Laplace equation Azn = 0 are called harmonic forms. The

space of harmonic forms of type (p,q) on T is denoted KP9(T). Let us note that
A;n=0&0n=0and 3*'n=0.

As T is a Kéhler manifold, the Hodge decomposition theorem states that XP4(T) =
HY(T,QP), where € is the sheaf of holomorphic p-forms. Moreover, since T is a

curve, 3 is zero on all (0,1)-forms, and 3" is zero on all (0,0)-forms. We therefore

have
ker 8 = K®(T) = HY(T, ),
and
coker 9 = ker 3* = K*(T) = H'(T, O).

For any vector bundle W — T, this decomposition also applies to W-valued forms.
Since A, is compatible with the holomorphic structure of E ® V|z-1(:,q) for all
(z,a) € P! x C*, we then have

kerd;_ = HYT,E®V), and coker 85, =HYT,E®V).

Let us not that the spaces H'(T, E ® V') correspond to the fibres of the skyscraper
sheaf R'7,(E ® V') that was used in the holomorphic case to define the graph.

We have seen in section 2.1.2 that we always have
dimH (T, E® V) =dim H(T,E® V).

If the dimension of ker3;_ were constant for all (z,a) € P! x C*, the collection of

these vector spaces would then form a locally trivial vector bundle over P! x C.
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In our case, dim(ker 5.;“') jumps at the points in P! x C* where V injects in E or
where E is of type (iii). We can however still construct a vector bundle with the
kernels. There exists a map ¥ : C¥ — [(E® V ® S), where CV is the trivial
bundle, such that 8; @ ¥ is surjective (see [DK]). And this gives us the line bundle

L= (A" ker(d; ® ¢)) ® (AVNCV)*

on P! x C*. It is the determinant line bundle of the family {9;}.

7.3.3 Graph map.

Let A be a connection and 5,; be the family of Dirac operators associated to it. The
graph of A will be defined as the zero set of a section of the determinant bundle of

d5;. We first see that, for all (z,a) € P! x C*, we have an exact sequence
0 — Ker 85 — Ker (3;_ ®v) > C¥ % Coker (5;_) = 0, (7.6)

where 7 and P are the usual inclusion and projection maps, respectively. Further-

more, the projections fit together to define a homomorphism P of vector bundles

= P
Ker(d; ® ¥) — CV
P! x C —Ld- P! x C.
By the exact sequence (7.6),

det P., = 0 <=> Ker 35 _ = Coker 93 _ #0.

The map det P then gives us a homomorphism from A¥Ker(d3)) to ANCY, and is
therefore a section of £ = (A™*Ker(9;3))®(ANCY)*. The zero set D = (det P)~}(0)
will then correspond to the “graph” of A. Let us note that, by construction, if 4
defines a holomorphic structure on E, D is equal to the divisor defined in section
2.1.2. Furthermore, as in the holomorphic case, we can show that D is invariant

under

— the Z-action on C* generated by multiplying by A, and

136



— the involution on C* defined by z — 1/z.

Let us first show that tensoring V' by (O(1) does not change the zero set of

det P. From the exact sequence
0 — Pic(P') — Pic’(H) — Pic%(T) — 0, (7.7)

we see that, for all z € P!, O(1)|r-1(;) =~ O. Let x be a connection on O(1). On
T = m~!(z), there then exists a holomorphic gauge transformation u such that
1

X = du-u~!. Since u is holomorphic, this means that the (0, 1)-component of

X=-1(z) is zero and 5,(' y = 0. Thus, if we set 55@\/@0(1) = 5E®V QI+I® 50(1),

-1
we see that 5;5@;@0(1) -—i Oegv and the section that we will get by repeating our
construction with E® V ® @(1) will have the same zero set as detP. D is therefore
invariant under the Z-action on C* generated by multiplying by A.

Also, since A2E ~ @, E ~ E* and, if we substitute V* for V, EQ V* ~
(E®V)*. Thus, if we repeat our construction with V* instead of V, since dggv)- =
—(BEegv)!, the zero set of the section we obtain will again be D. D is then invariant
under the involution on C* defined by z — 1/z.

D therefore descends to a divisor D on P! x P!. And D is defined to be the
“graph” of A. Again, if A defines a holomorphic structure on E, it coincides with

the graph defined in section 2.1.2.

Any connection A on E — M, where FE is an SL(2, C)-bundle with ¢c;(E) = n,

has a graph which decomposes into two pieces:
— the graph of a C*® map F : P! - P!,
— vertical fibres {z;} x P'.

This is exactly as in the holomorphic case, except for the fact that the map portion
need not be holomorphic, and that there may not be a finite number of vertical
bars. As in the holomorphic case, the graph cannot however be made up only of

vertical bars (see [BH]). The set of all possible graphs can actually be described as
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follows

s € [(P' x P*,0(n, 1))
vz e P!, ands # 0

holomorphic on {z} x P!,
s P {z} } )

where s # 0 because the graph cannot be made up only of vertical bars. (We
have to quotient by C* to take into account the action of the gauge group, i.e.,
the equivalence classes of connections.) A section s € ['(P! x P!, O(n, 1)), which
is holomorphic on each {z} x P!, is equivalent to a section § € ['(P*, p,,(O(n, 1)),
where p; : P! x P! = P! is projection onto the first factor. What is the fibre of
p1.(0O(n,1))? For each z € P!,

P.(O(n,1)): = O(n) @ p1.(O(1)):
=0O(n)® H'({z} x P!, 0(1))
=0(n) @ C2.

The set of all graphs is therefore
{s e L(P', O(n) ® C*)|5 # 0}/C.

As {5 € ['(P!, O(n) ® C?)|3 # 0} is a infinite-dimensional complex vector space, we
will denote it V. The set of graphs is thus

(V& - 0)/C =P,

and we have a map G : B — P°. Furthermore, this map extends in a natural way

to the space of framed connections B.

7.4 Fibre of the graph map.

7.4.1 Non-triviality of the graph map.

In the previous section, we constructed a map G : B — P*® which associates to
each pair (A,t), where A is a connection and t is a framing, the graph of A. If
the connection A induces a holomorphic structure on E, this graph coincides with

the graph defined on holomorphic SL(2, C)-bundles. In the holomorphic case, the
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graph map is surjective for n > 2. Since the infinite complex projective space P> is
the Eilenberg-MacLane space K(Z,2), we have the equivalence [B,P*] = H%(B, Z).
We have seen in section 7.1.2 that H2(B,Z) = Z,. There then exist maps from B
to P which are not homotopic to the constant map. In this section, we show that
G : B — P is such a map, i.e., G is not topologically trivial.

Let (A,t) € B. We assume that A induces a holomorphic structure on E
and that its graph is of the form 2k({z} x P!) + (P! x {{}), where z, is the point
in P! at infinity. Let us note that we must have c;(E) = 2k. We also assume that
! = {Lo, Ly}, where Lg is given by a divisor of the form D = 2p, — 2p,; and that
E = L& L* on 7Y (2x), for some L € Pic™?(T). We shall see that there is a
natural SU(2)-action on the pair (A, t), and on its graph g = G(A). The orbits of
this action then give the commutative diagram

SU(2) - ((A ) —B
G G

SU(2) - (g) —— P=.

We begin by describing the action of SU(2) on H. Let us recall that the
fibre of T : # — P! is the elliptic curve T = C/(27iZ + In(A\)Z). Let (2, 25) € C2.
z = 23/21,2' = 1/z are affine coordinates on P'; and t = log z;, ' = log 2, are linear
coordinates on 7. H is then covered by the two coordinate patches Uy = C x T,

U, = C x T, with the identification
(2, ¥)=1/z,t +logz)

on the overlap. SU(2) can be described as

-b a

b _ i}
SU(2)={( “ )|aa+bb=1, for a,a,b,b € C}.

It acts on C?* by simple matrix multiplication. This action preserves the equivalence

classes in P!. If U(1) = C* is considered as the closed subgroup of SU(2) given

a O
by { ) |a € C}, we see that it leaves the point at infinity in P! fixed.
0 a”
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Moreover, U(1) acts on T by translation: t — ¢ + loga. As line bundles in Pic?(T)
are invariant under translation, we see that the stabiliser of the graph g is U(1).
The orbit of g is then SU(2)/U(1) = P'.

The matrices that fix A must be elements of U(1) that also fix z in P*. +Id are
then the only possibilities. The action of —Id on T is given by t — t +7i. We know
that this translation acts trivially on L. We also see that the divisor D = 2p, — 2p,

of Ly is invariant under this action. As L is fixed under the translations
InA |
{t*—) t+v|ve Z{—z-,ﬂ’i}},

the matrix —Id therefore fixes A. Moreover, since —Id is in the centre of SU(2), it
also fixes the pair (A4, t), and its orbit is SU(2)/+ = RP3.

The above commutative diagram then becomes

RPPc— -8B
G G

P' e P>
We have H2(RP?,Z) = H?*(B,Z) = Z, and H*(P',Z) = H*(P®,Z) = Z, and the
horizontal inclusion maps are not topologically trivial. Furthermore, the restriction
of G to RP3 is equal to the S'-bundle associated to O(2) — P!, which is not
trivial. This then proves that G cannot be homotopically trivial, in the case of
framed connections on a bundle with even second Chern class. The stabilisation
maps B — Bi,; then imply that it must be true for any k. The graph map

G : B — P® is therefore nontrivial.

7.4.2 Fibre of the graph map.

We have seen that G : B — P> homotopically nontrivial. We can assume that it is

a surjective fibration. Let V" be its fibre. Up to homotopy, we then have

Vv — B-S.p~.
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This fibration will then give rise another fibration:

QP® —V —B (7.8)
However, as P® = K(Z, 2),

QP®=K(Z,1)=S"

(7.8) then becomes
St —V—8,

and we see that V is the total space of an S'-bundle on B. One can take the
pullback to B of the universal S'-bundle on P*®.
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Conclusion

In this thesis, we have studied moduli spaces on Hopf surfaces both from a
holomorphic and topological point of view.

For stabilisation maps, we have shown that, in this case, the natural algebro-
geometric description of Taubes’ subtraction procedure does not enable one to con-
struct global stabilisation maps M2 — M2 _, in the holomorphic setting.

We have also generalised the notion of graph to connections. If a given
connection A on a holomorphic SL(2, C)-bundle E, with co(E) = n, defines a holo-
morphic structure on E, we have seen that the graph of the connection A coincides
with the graph of E. There is therefore a natural inclusion from the space of all
holomorphic graphs P?"*! into the space of all topological graphs P>=.

We have also studied the fibre of the graph map. In the holomorphic case,
we obtained an explicit description of this fibre as the Jacobian of a Riemann sur-
face, for a certain set of graphs. It would be interesting to know if there exists an
analogous description for the fibre in the topological case. Does the fibre, in this
case, represent the number of ways of glueing two connections? Furthermore, we
have shown that the holomorphic graph map supports a Lagrangian fibration, with
respect to a Poisson structure on M,. D¢ we have a similar situation for moduli
spaces of connections?

Finally, it would be interesting to give a further classification of holomorphic
vector bundles over D x T in terms of their graphs in D x P!. This would enable
us to obtain a more complete classification of vector bundles on . We believe that
the techniques used in this thesis would be useful in the study of moduli spaces of
holomorphic bundles over the more general elliptic fibrations that have been studied

by Friedman and Morgan [FM].
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