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Mitogen - a(~ivaled protein kinase during oocyte growth in the mouse 

Abstract 

Oogenesis is the developmental process that produces healthy and 

fertilizablH OVéJ. One' crucial aspect of oogenesis if, the acquisition by an oocyte 

of the capacity to execute the meiotic divisions which generate the haploid 

germ cell.. Oocyt1es that can execute the meiotic dl''I'isions which occur during 

thl3 proC4:!SS of meiotic maturation are said to bl') meiotically competent. 

Although the molecular aspects of meiotÎc competence are not known, there 

is evidenoce sugoesting that the microtubular netwo.'l: may be involved. At 

metaphase, the; rnicrotubular network is responsible for asserTIbling the spindle, 

an apparatus on which the chromosomes beco:-ne al"lgned to be separated 

during meiotic divisions. 

PrE!vious repo,ts have identified two species of mitO\1en-activated protein 

(MAP) kinase in fully grown, meioticallv competent mOul',~e oocytes. During 

meiotic maturation, MAP kinase becomes phosphorylatt:.d, activated as a 

kinase, and associa1.ed vvith the microtubule-organizing centers at the poles of 

the meiotic spindles. 

ln this study, the role of MAP kinase in the acquisition of meiotic 

competence in growing oocytes was investigated. The results presented in this 

thesis show that two species of MAP kinase, p42 and p44, are present in their 

unphosphorylated forms in oocytes as early as 5 days of age. At this age, 

oocytes are small and have not acquired the capacity to resume meiosis. They 

are referred to as meiotically incompetent. MAP kinase continues to be present 

throughout the growth phase and up to the acquisition of rneiotic competence. 

ln growing mouse oocytes, a group of partially competent oocytes are 

abundant. Such oocytes arrest at metaphase 1 where they assemble a 

morphologically normal spindle. Immunoblotting results of partially competent 
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oocytes show that MAP kinase is present and becomes phosphorylated 

fo"owing culture as is lndicated by the retarded mobility on the SOS gels. 

Okadaic acid, an inhibitor of prote in phosphatases 1 end 2A, induces 

incompetent oocytes to enter metaphase. These oocytes contain the slow 

migrating phosphorylated forms of p42 and p44, indicating that okadaic acid 

causes the phosphorylation of MAP kinase. A time course study shows that 

the okadaic acid-induced phosphorylation of MAP kinase occurs coincidentally 

with entry into metaphase in incompetent oocytes. In fully competent oocytes, 

this phosphorylation occurs after entry into metaphase. In addition, these 

oocytes do not assemble a spindle, indicating that phosphorylation of MAP 

kinase, although it may be necessary, is not a sufficient event to induee spindle 

formation. 

The presence of MAP kinase in bovine oocytes is also investigated. 

Immunoblotting of bovine oocytes reveals the presence of three species of MAP 

kinase. In the immature oocyte, a" three species are present in the 

unphosphorylated forms. Upon maturation, a partial phosphorylation of two 

species corresponding to p42 and p44 is observed. This phosphorylation 

seems to be complete by the end of meiotic maturation . 
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M. Sc. 

L'ovogenèse est le processus developmental qui a pour but de produire 

des ovules sains et fécondables. Parmi les aspects de l'ovogenèse est 

l'acquisition par l'ovule de la capacité de subir les divisions méiotiques qui vont 

rapporter l'état haploïde des cellules sexuelles. Les ovules qui sont capable 

d'accomplir des divisions méiotiques durant le processus appelé maturation 

méiotique, sont désignés ct' être méiotiquement compétents. Malgré que les 

aspects moléculaires de la competence méiotique sont mal compris, il existe 

des preuves qui suggèrent la possibilité que le réseau microtubulaire pourrait y 

être impliqué. À metaphase, le réseau microtubulaire est responsable 

d'assembler le fuseau métaphasique, un appareil sur lequel les chromosomes 

seront alignés afin d'être séparés durant la division méiotique. 

Préalablement, des résultats ont identifié deux espèces de la protéine­

activée par mitogéne (PAM) kinase dans les ovules à grandeur complet qui sont 

compétent méiotiquement chez la souris. Pendant la maturation, PAM kinase 

devient phosphorylé, activé tant que kinase, et s'associe avec les centres 

d'organization des microtubules au niveau des pôles des fuseaux méiotiques. 

L'étude présentée dans la thèse a pour but de rechercher le rôle du PAM 

kinase dans l'acquisition de la compétence méiotique dans les ovocytes qui 

sont en train de croître et qui ne sont pas atteint leurs grandeurs maximals. Les 

résultats présentés là-dedans démontrent que le PAM kinase est présent sous 

sa forme nonphosphorylée dans les ovocytes des souris âgées d'aussi peu que 

5 jours. À cet âge, les ovocytes sont petits et n'ont pas encore acquis la 

capacité d'amorcer la méiose. PAM kinase reste présent pendant la période de 

croissance, voire jusqu'à l'acquisition de la compétence méir~ique. Parmi les 

ovocytes qui ont commencé à croître se trouve un groupe qui ne sera jamais 
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capable de compléter la maturation méiotique. PAM kinase se trouve sous la 

forme nonphosphorylée chez tels ovocytes. De plus, ces ovocytes qui arrêtent 

à metaphase 1 sont capable d'assembler des fuseaux qui ont l'air d'être 

morphologiquement normals. 

L'acide okadaique, un inhibiteur des protéines phosphatases, induit les 

ovocytes incompétents à entrer en métaphase. De plus, ces ovocytes 

manifestent les formes plus lentes du p42 et p44 qui sont phosphorylées, ce 

qui indique que l'acide okadaique cause la phosphorylation du PAM kinase. 

L'induction de la maturation par l'acide okadaique ést précoce et coïncide avec 

la phosphorylation de la PAM kinase contrairement aux ovocytes compétents 

ou la phosphorylation se produit suivant la maturation. Ces ovocytes 

n'assemblent pas des fuseaux métaphasiques, ce qui indique que même si la 

phosphorylation du PAM kinase n'est pas suffisant à induire la formation du 

fuseau métaphasique. Néanmoins, il reste à determiner s'il pourrait y être 

nécessaire. 

Les ovocytes du bovin ont été éxaminé pour la présence du PAM kinase. 

On a trouvé que trois espéces de cette protéine sont présentes dans les 

ovocytes prématurés sous sa forme nonphosphorylée. Urie fois à métaphase, 

la forme nonphosphorylée des deux espéces, correspondant à p42 et p44, 

deviennent phosphorylées partiellement. Vers la fin de la maturation méiotique, 

seule la forme phosophorylée du PAM kinase se trouve dans les ovules du 

bovin . 
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Preface 

Format of the Thesis 

This thesls comprises a paper, which is included almost entirely in the 

form in which it was submitted for publication. The material1that is present 

exclusively in the thesis consists of the detailed dc:!scription of isolating oocytes 

from antral follicles, the light microscopy as WE!II as the immunofluorescent 

analysis of mouse oocytes at different stages of meiotic maturation and Table 

2 which describes the presence of partially competent ooc'{tes. Results 

obtained using thd bovine oocytes are only described in the thesis. The bovine 

samples were supplied by Dr. Lawrence Smith at CRRA, St. Hyacinthe, 

Québec. 

The introduction, Chapter l, includes a general review of the relevant 

literature and the rationale behind investigating thu presence of MAP kinase in 

small and growing mouse oocytes. 

Chapter Il has been submitted to De ve/opmcm ta/ Bi%gy. The research 

described in this chapter was carried out under the supervision off Dr. H. Clarke 

of the Department of Obstetrics and Gynecology at McGiII University. For this 

reason, Dr. Clarke's name appears as a coauthor for this paper. Ali 

experiments were performed by the candidate. 

Chapter III describes a general discussion 4:>f the result:s obtained in 

Chapter Il . 

ix 
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INTRODUCTION 
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1.1. From a primordial germ cell to a mature e99: An overview 

At the time of birth the mammalian ovary contains the total number of 

oocytes that the female will have throughout her reproductive life. Prior ta and 

during its residence in the ovary, an oocyte will undergo three major events: 

genesis, growth, and maturatior. Only if these events are executed properly 

will the development of the embryo be successful. 

ln mammalian species, the germ cells begin their development very early 

during embryogenesis. In the mouse embryo. the primordial germ cells (PGCs) 

ara first seen between 7.5-8.5 day post coitum (p.c.) in the region of the 

allantois. Two days later, the PGCs start migrating towmds the genital ridge 

of the presumpth/e gonads 'to colcnize this area alld to establish thair 

coexistence with the resident somatic cells. For a few days after arrivai at the 

gonadal ridge, the PGCs of females continue to proliferate until about day 13.5 

p.c. where they undergo a last round of mitotic division before differentiating 

in a synchronous manner into meiotic cells, the primary oogonia. In this thesis, 

the term oogenesis will be used accordlng to Wilson's definition (Wilson, 1925) 

where oogenesis extends beyond the mere formation of oogonia to include their 

migiation to the gonadal ridge, growth, differentiation and the eventual 

formation of a mature fertilizable gamete. Once meiotic, primary oogonia 

undergo DNA synthesis ta replicate theïr chromatin mate rial and enter prophase 

where they undergo a number of changes at the chromosomal levaI. In about 

2 
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two weeks, the meiocyte chromatin undergoes leptotene, zygotene, pachytene, 

and then arrests at the diplotene stage of the first meiotic prophase for a long 

period ranging from days to years depending on the length of the reproductive 

life span of the animal. This step usually referred to as the resting phase 

represents a block in the meiotic cell cycle of the oocyte (review: Albertini, 

1992). Prior to and during their meiotic arrest, Qogonia are active in RNA and 

protein synthesis which will be supportive of oocyte growth and metabolism 

later on during oogenesis. 

Mouse oocytes reach the diplotene stage by day 5 post partum (p.p.) 

when the ovary is populated with thousands of small oocytes of 1 2-20 pm in 

diameter. Around the same time, primordial oocytes become surrounded by a 

few follicular (somatic) cells, which will form the follicular epithelium. For most 

oocytes and follicles, development is arrested at this stage. When oocytes 

from this category are released trom their preantral follicles, they are incapable 

of resuming meiosis spontaneously, and are said to be meiotîcally incompetent 

(Szybek, 1972). In the mouse, araund day 3 p.p., a group of follicle-enclosed 

oocytes, now termed primary follicles, are selected to start growing in size 

leaving behind the large pool of primordial follicles and their enclosed small 

oocytes at the resting stage (Pederson and Peters, 1968; Schultz and 

Wassarman, 1977). Within a period of two weeks, the primary oocyte 

increases in diameter fram 15 pm as a primordial oocyte to 85 pm as a fuily­

grown mouse oocyte. This increase in diameter is praportional to that of the 

3 
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oocyte volume, which represents a 300-fold increase, resulting in the formation 

of one of the largest cells in the body (Figure 1). During the growth period. the 

oocyte becomes engaged in an active biosynthesis process where it 

accumulates ail the necessary components including proteins, messenger RNA, 

and ribosomes that will be needed throughout its growth, maturation, and until 

the embryonic genome is turned on at the 2-ce!l stage of embryogenesis 

(Review: Schultz, 1986). 

Once fully grown, a prophase-anested oocyte can reinitiate meiosis either 

in response to gonadotropin (Gates, 1 ~n1; Baker, 1972), or upon isolation from 

its surrounding follicular environment (Pincus and Enzmann, 1935; Edwards, 

1965; Donahue, 1968; Szybek, 1972; Schultz and Wassarman, 1977). Thus, 

the oocyte will overcome anot/1er meiotic block under the appropriate 

conditions (Albertini, 1992). 

ln vivo, the increase in the level of follicle stimulating hormone (FSH) 

stimulates the follicle to undergo a number of changes (Baker, 1972). The 

granulosa cells start dividing mitotically, undergo mucification, and increase the 

synthesis and secretion of a high molecular weight proteoglycan hyaluronic acid 

(Yanagishita et al., 1979) and tissue plasminogen activator (Gilula et al, 1978). 

The tollicle starts accumuléJting fluid which forms the antrum in the 

preovulatory or Graafian follic;les. Subsequently, the surge of plasma level of 

luteinizing hormone (LH) causes the ovulation of the oocyte. Upon the LH 

surge, the follicle undergof3s what is known as the cumulus cell expansion 

4 
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which leads to the eventual loss of the physical contact between the oocyte 

and its associa1ed cumulus cells. The oocyte, in turn, undergoes a series of 

events on both the cytoplasmic and nuclear levels known coller"ively as meiotic 

maturation, thus overcoming a yet another block of meiotic ar rest (Alberti ni, 

1992). 

During meiotic maturation, the nucleus or germinal vesicle (GV) breaks 

down and the nuclear envelope dissolves in the cytoplasm. The diffuse 

interphasic chromatin becomes condensed into metaphase chromosomes and 

assembles on an ~pparatus formnd of microtubules known as the meiotic 

spindle. At this point, the oocyte reaches metaphase 1 of the first meiotic 

division. The spindle th en moves to the periphery of the cytoplasm and 

extrudes one set of homologous chromosomes within the first polar body. The 

oocyte then arrests, and for the last time. at metaphase Il in preparation for 

fertilization. It is at this stage that the oocyte is said to have completed meiotic 

maturation. The egg is then ovulated and passes into the oviduct where it 

either bec: 'Ines fertiiized or eventually degenerates. Upon fertilization, meiosis 

is resumed once more in the egg where the second meiotic division separates 

sister chromatids, and one set of chromosomes is expulsed from the cytoplasm 

in the second polar body. Finally, the ha plo id maternai and paternal pronuclei 

undergo DNA replication and, at mitosis, assemble on a single spindle which 

represents the embryonic genome from this point onwards (Figure 2) . 

5 



• 

• 

ln the absence of hormonal stimulation, fully grown mammalian oocytes 

undergo similar changes when they are mechanically isolated from their 

surrounding follicles. The initial observation describing the ability of oocytes 

to "spontaneously" resume meiosis has opened a wide field of research where 

a wealth of morphological ché.. 1ges have been weil documented (Pincus and 

Enzmann, 1935). The capacity of an oocyte to undergo the meiotic maturation 

avents is referred to hereafter as meiotic competence (Figure 3). 

Among the oocytes that undergo maturation, a specifie group can 

undergo GVBD but arrests at metaphase 1 failing ta reach metaphase Il (Szybek, 

1972; Baker, 1972; Wickramasinghe et al., 1991), referred to in the text as 

partially~competent oocytes. Based on this observation, it has been suggested 

that meiotic competence is acquired in a two-step process (Sorensen and 

Wassarman, 1976). The tirst stpp is achieved when GVBD takes place, 

followed by chromosome condensation and the assembly of the meiotic 

spindle. The second maturational step is involved with the progression from 

metaphase 1 to metaphase Il when the first polar body is emitted. 

1.2. The mouse oocyte as a model to study meiotic maturation 

ln this project, the mouse oocyte was used as a model to study specifie 

aspects of oogenesis due ta several experimental advantages. In the mouse 

ovary, a large group of oocytes initiates growth synchronously near the time 

6 
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of birth. As a result, it is possible ta trace the progression of development by 

looking at cohort oocytes from successive days following birth. As the oocytes 

grow, their mean diameter increases. Thus, populations of oocytes with 

increasjng diameters can be obtained by isolation fram juvenile mice of 

increasing ages. Another advantage of using the mammalian oocyte is the fact 

that oocyte grawth occurs in the absence of cell division, a peculiar 

phenomenon that may be exploited ta study aspects of grawth. 

Growing oocytes reach their full size around day 21 of age (Schultz and 

Wassarman, 1977), when they can be ovulated ;., response to gonadotropin 

(Gates, 1971). When prophase-arrested oocytes are isolated from their antral 

follicles in the absence of gonadotropin, they are capable of resuming meiosi:~, 

as described above. Thus, physiologically occuring events could be mimicked 

under in vitro conditions where cohort oocytes can grow (Eppig, 1977) and 

resume meio ~is in the absence of gonadotropin surge simply by releasing them 

from their surrounding follicles into the appropriate culture medium (Edwards, 

1968; Szybek, 1972). Thus, oocytes can be analyzed at specific stages of the 

cell cycle and during progression tram one stage to the next. 

An important pro pert y of this model is the fact that mouse oocytes are 

transparent, so the oocyte can be easily classified as either a GV-stage, a 

GVBD-stage, or a metpahase II-stage under the light microscopy. This 

transparency also allows for immunofluorescent analysis of thp. whole oocyte 

where specifie structures can be examined slJch as chromosomes and 

7 
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microtubules. 

Mouse oocytes, therefore, represent an ideal system to study the 

changes that take place during the growth and the acquisition of meiotic 

competence in mammalian species. 

1.3. Oocyte arowth during oogenesis 

During its growth phase, the mammalian oocyte undergoes a number of 

well-documented changes ail of which are dependant on the communication 

between the oocyte and its surrounding granulosa cells. The first wave of 

oocyte growth occurs following birth of the female where a large group of 

primary follicles becomes recruited (Pederson and Peters, 1968; Krarup et al., 

1969; Schultz and Wassarman, 1977). The selection to start growth is 

believed to be regulated within the ovary by some yet unknown mechanism 

(Peters et al., 1973). 

1.3.1. Size and growth 

Prior to their selection to commence growth, resting primary oogonia are 

small in size ranging between 12-20 pm in diameter. In the mouse, within a 

period of two weeks, the oocyte reaches its full size of 80-85 pm in diameter. 

The first wave of oocytes which embark on the growth phase shortly after birth 

reach their full size around day 21 of age (Pedersen and Peters, 1968; Schultz, 

8 
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1986) . 

1.3.2. Differentiation and growth 

During oocyte growth, specific changes occur at the ultrastructurallevel 

in both nuclear and cytoplasmic components. In the cytoplasm, complex 

organelle reorganization occurs during this period. Mitochondria, Golgi 

complexes, and rough endoplasmic reticulum increase numerically and become 

dispersed throughout the oocyte (Szollosi, 1972). Moreover, centrosomal 

structures known as microtubule organizing centers (MTOCs) which are located 

near the cortex in small oocytes migrate to the perinuclear region in fully grown 

oocytes. Along with the changes in the centrosomes, some changes occur at 

the level of the microtubular network. Short microtubules present in the 

cytoplasm of a small oocyte are replaced by long and diffuse microtubules in 

the fully grown oocyte (Albertini, 1992; Wickramasinghe and Albertini, 1992). 

Concomitant with the cytoplasmic differentiation and as the oocyte nears its 

full size, nuclear and nucleolar reorganization take place where the diffuse 

chromatin becomes condensed around the nucleolus (Mattson and Albertini, 

1990). 

1.3.3. Protein synthesis during growth 

Ta ensure that sufficient amounts of molecules are present at specifie 

stages of oogenesis, growing oocytes rapidly synthesize and store 

9 
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transcriptional and translational products that will be needed during subsequent 

development. In particular, a growing oocyte increases its protein synthesis 

rate to about 40 times that of a nongrowing counterpart (Schultz, 1986). 

Newly synthesized proteins such as glucose-6-phosphatase, lactate 

dehydrogenase (Mangia and Epstein, 1975; Schultz et al., 1979), and zona 

pellucida proteins, ZP1 , ZP2, and ZP3 (Sleil and Wassarman, 1980) accumulate 

throughout most of the growth period (Schultz et al., 1979; Canipari et al., 

1979). 

1.3.4. Role of the foUicle during growth 

During the growth phase, the oocyte and its surrounding follicle grow 

coordinately through a weil defined series of morphological stages (Pedersen 

and Peters, 1968). Follicle cells are thought to influence the growth of the 

oocyte by assuming a nutritional and informational role throughout the growth 

phase (Erickson, 1986). 

ln the small meiotically-incompetent oocyte, only a few follicular cells are 

attached to the oocyte. However, when the oocyte is selected to initiate the 

growth phase, the granulosa cells that surround the marnmalian oocyte, also 

known as the cumulus oophorus, become an essential partner for the growth, 

development, and the eventual ovulation of the mature egg. First, the 

innermost layer of cumulus cells, the corona radiata, sends cytoplasmic 

processes through the intervening zona pellucida to contact the oolemma 
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(Zamboni, 1974). At sorne points of contact be~ween these processes and the 

oocyte, gap junctions can occur through which the granulosa cells nourish the 

growing oocyte (Anderson and Albertini, 1976; Moor et al., 1980). Among the 

factors that enter the oocyte through follicle cells are compounds such as 

energy sources, cyclic adenosine monophosphate (cAMP), and precursors for 

protein and phospholipid biosynthesis. Arrivai of these factors to the oocyte 

depends on the maintenance of the gap junctions between the oocyte and the 

adjacent granulosa ce Ils (Eppig, 1 ~77). Upon disruption of this communication, 

oocyte growth is terminated (Canipari et al., 1984). 

1.Z.5. Acquisition of meiolic competence during growth 

Concomitant with reaching its full size, an important facet of oogenesis 

is manifested by the oocyte, namely the acquisition of meiotic competence. 

The ability of follicle-free oocytes to resume meiosis in vitro has permitted 

investigation of whether oocytes at different stages of growth can enter 

metaphase. It has been demonstrated that oocytes smaller than 60pm remain 

arrested at prophase 1 of meiosis when placed in culture. Slightly larger 

oocytes can enter metaphase but a significant number arrests prior to the 

completion of the first meiotic division. Oocytes larger than 80pm are able to 

complete maturation to metaphase Il (Sorensen and Wassarman, 1976; 

Wickramasinghe et al., 1991). The three groups of oocytes are meiotically 

classified as incompetent, partially competent, and fully competent, 
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respectively (Sorensen and Wassarman, 1976; Wickramasinghe et al., 1991) . 

The same terms will be used throughout this thesis. Oocytes isolated from 

mice younger than 14 days of age are incapable of resuming meiosis, and thus 

are terrnp.r! meiotically incompetent. Mice between 14-16 days of age are 

enriched for the partially competent oocytes, as the majority of them arrest at 

metaphase 1 of meiosis. Mice older than 17 days of age contain oocytes which 

are almost fu"y grown and are fully competent (Szybek, 1972; Sorensen and 

Wassarman, 1976; Eppig, 1977; Bachvarova et al., 1980). These results 

indicate that meiotic competence is acquired progressively among the growlng 

population of oocytes. 

1.3.6 . 

On the molecular level, a potential regulator of oocyte growth is a 

receptor-ligand complex. The receptor, termed c-kit, is a transmembrane 

tyrosine kinase receptor (Yarden et al., 1987; Chabot et al., 1988). c-kit is 

absent in prenatal ovaries, but present in ovaries after the time of birth (Paules 

et al., 1989). It is specifically located on the surface of oocytes (Horie et al., 

1991) where it is believed to play a role in oocyte growth (Packer et al., 1994). 

ln contrast, c-kit is absent in granulosa cells (Horie et al., 1991). The c-kit 

ligand, on the other hand, is present p.xclusively in granulosa cells (Horie et al., 

1991). Upon its secretion, the ligand is believed to interact with the c-klt 

receptor which is present on the oocyte surface (Manova et al., 1993; Packer 
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et al., 1994). Histologieal studies of mutant mice lacking both the receptor and 

the ligand showed gonadal abnormalities starting at the 8-9.5 day embryo 

where the primordial germ cells had failed to increase in number leaving the 

ovary void of germ cells (Bennett, 1956; MeCoshen and McCallion, 1975). The 

importance of this complex was also studied in the postnatal mouse ovary. 

The administration of an antibody against the c-kit receptor in follicles cultured 

in vitro resulted in the arrest of oocyte growth of the late fetal and neonatal 

ovarian oocytes. Moreover, when growing follicles were cultured in a medium 

enriehed with the ligand. oocyte growth was dramatieally enhaneed (Packer et 

al., 1994). These experiments have given the c-kit/ligand complex the role of 

a lTlediator of oocyte growth. The molecular target(s) of the ligand-stimulated 

c-kit receptor are not yet known. Identification of these targets would provide 

a further understanding of the growth phase of oogenesis. 

1.4. Acquisition of meiotic competence 

The in vivo developmental progress tram an incompetent to a competent 

state in mouse oocytes has been suggested to involve a G2/M cell cycle 

transition (Wickramasinghe et al., 1991; Wick~'amasinghe and Albertini, 1992). 

The G2/M transition is accompanied by a number of weil çharacterized events 

espeeially on the morphological and the biochemicallevels. However, little is 

known of the molecular nature of this process. On the morphologicallevel, and 

under the appropriate in vivo or in vitro conditions, competent oocytes can 

13 



• 

• 

resume meiosis. This resumption consists of GVBD, tht:! formation of the first 

meiotic spindle at metaphase Il the formation of the second meiotic spindle at 

metaphase Il, and the arrest at the polar body stage as discussed earlier. The 

property of acquiring meiotic :,::ompetence in growing oocytes has been linked 

to the age of the animal (Szybek, 1972; Sorensen and \l\Iassarman, 1976; 

Wickramasinghe and Albertini, 1991). In turn, the age of the juvenile animal 

(In the mouse, bafore the age of 21-day p.p.) is correlated wÎth the oocyte size 

in both mammals and frogs (mouse: Sorensen and Wassarman, 1976; 

Wickramasinghe et al., 1991; pig: Tsafriri and Ch::mning, 1975; frog: Sadler 

and Mailer, 1983). 

Another potential factor for acquiring meiotic competence is the 

interaction between the growing oocyte and its follicular microenvironment 

where the follicle plays an important role in preparation for meiotic maturation 

(Erickson, 1986). 

ln the following section, the above cited factors as weil as relevant 

ultrastructural, biochemical, and whenever available moleculalr factors that 

seem to be involved in the acquisition of meiotic maturation will be covered. 

1.4.1. Role of oocyte-follicle interactioQ 

Two alternative hypotheses have been proposed for the role of follicle 

cells in the acquisition of meiotic competence in mammalian ,and amphibian 

oocytes. On the one hand, it has been proposed that the oocyte acquires 
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meiotic competence through an autonomous intracellular program which is 

independent of the cumulus cell association (Canipari et al., 1984). On the 

other hand, under in vivo conditions, intercellular communication between the 

follicle cells and the oocyte is weil regulated at the various stages of 

development in the resting, growing, and up to the ovulation 0 f the mature egg 

(Buccione et al., 1990; Eppig and Schroeder, 1'J89; Fagbohum and Downs, 

1991). Gap junctions formed between the oocyte and its surrounding follicle 

early during the growth phase of the oocyte serve as a channel for transferring 

nutrients to the growing oocyte as discussed earlier. 

The discrepancy in the literature for the role of the follicle cells during 

oogenesis could be attributed ta the experimental conditions used to support 

either hypothesis. The "oocyte autonomous program" was based on results 

under in vitro conditions where oocytes were explanted from their follicular 

milieu. Henee, they initiated their imrinsic differentiative prograrn in the 

absence of somatie cell input. When oocytes, on the other hand, were 

observed under in vlva conditions their development was found to be closely 

associated and dependent on their tollicle cells. To resolve this difference, 

further work on the oocyte autonomous program needs to be conducted in 

order to eliminate either hypothesis . 
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1.4.1.1. Eollicular factors promoting meiotic arrnt 

The hypothesis that the follicular microenvironment might play a role in 

the maintenance of the prophase-arrest of the oocyte was supported by two 

fundamental findings. The first came from the classical work of Pincus and 

Enzmann (1935) who showed that fully grown rabbit oocytes isolatad from 

their follicles underwent meiotic maturation in the absence of gonadotropins. 

On the other hand, follicle-enclosed oocytes are incapable of resuming meiosis 

in vitro in the absence of gonadotropins (Tsafriri, 1978; Eppig, 19911. The 

specifie origin of the inhibitory factor(sl was attributed to the granulosa cells 

(Sato et al., 1982). Purines such as cAMP (Cho et al., 1974; Oekel and Beers, 

1978; Bornslaeger and Schultz, 1985; Bornslaeger et al., 1986), hypoxanthine 

(Eppig et al., 1985; Oowns et al., 1985; Eppig and Oowns, 1987), guanosine 

(Hubbard and Terranova, 1982), phosphodiesterase (POE) inhibitors such as 

isobutyl-1-methylxanthine (1 BMX) (iJornslaeger et al., 1984), and adenosine 

(Salustri et al., 1985) ail exert a reversible inhibitory effect on maiotic 

maturation. In addition, a low molecular weight peptide known as oocyte 

maturation inhibitor (OMI) (Tsafriri et al., 1982), p-endorphin (0, 1990), 

Müllerian inhibiting substnnce (Takahashi et al., 1986), and an atrial natriuretic 

peptide (Tomell et al., 1990) have ail been implicated in the maintenance of 

meiotic arrest. Due to their most documented !nvolvement in meiotic arrest, 

only cAMP and calcium are discussed below . 
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A . cAMP 

Evidence involving cAMP in regulating oocyte growth, resumption of 

melotic maturation, and further egg development has been reported in many 

systems (Xenopus laevis : Mailer and Krebs, 1980; Rana pipiens: Speaker and 

Butcher, 1977; sheep: Crosby et al., 1985; mouse: Cho et al., 1974; 

Wassarman et al., 1976; Vivarelli et al., 1983; rat: Magnusson and Hillensjo, 

1977). When meiotically Incompetent oocytes were cultured in the presance 

of dibutyry! cAMP (dbcAMP), a derivatized analog of cAMP, the percentage of 

those that acquired meiotic competence consequently increased in a dose­

dependent manner (Chesnel et al., 1994). This observation supports previous 

work which involves cAMP in a stimulatory role during the acquisition of 

meiotic competence in growing oocytes (Carroll et al., 1991). Upon 

maturation, the level of cAMP in the oocyte decreases (Schultz et al., 1983). 

Concomitantly, the level of cAMP in the follicular fluio and cumulus cells 

increases. Taken together, these (esults suggest that cAMP seems to promote 

the acquisition of meiotic competence in small and growing oocytes. 

ln contrast, cAMP promotes meiotic arrest in fully grown oocytes. When 

denuded, fully grown, dictyate-arrested mouse oocytes were cultured in the 

contil1uous presence of dbcAMP, they arrested at the GV stage (Wassarman 

et al., 1976) even after a 16h culture period. Upon transfer into a cAMP-free 

medium, these oocytes were capable of resuming meiosis, demonstrating that 

this inhibitory effect is reversible. These results suggest that the G2/M 
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transition of the cell cycle in prophase-arrested oocytes is dependant on a 

decrease in the intracellular level of cAMP. 

B. Calcium 

Calcium in its ionic form (Ca+ 2) is involved in cyclic nucleotide 

metabolism, prlJtein phosphorylation, microtubuie assembly, and calcium flux, 

ail of which are involved in the acquisition of meiotic maturation (Sato and 

Koide, 1987). 

Ca+ 2 seems to play several raies during oocyte growth, maturation, and 

ovulation of mammalian ova (De Felici and Siracusa, 1982; Bae et al., 1985). 

ln small mftiotically incompetent oocytes, Ca+ 2 is not required for the survival 

of cumuills-free oocytes cultured in vitro (De Felici and Siracusa, 1982). 

However, the presence of Ca+ 2 is essential for a number of events to occur as 

supported by the following findings. When cumulus-enclosed bovine oocytes 

were cultured in the absence of calcium and magnesium, they were blocked 

from resuming maturation and thus arrested at the GV stage (Liebfried and 

First, 1979). Furthermore, Ca+ 2 can overcome the inhibitory effect of dbcAMP 

in cumulus-free oocytes only when used at high concentrations as indicated by 

the following results. When mouse oocytes arrested at the GV stage with 

dbcAMP were cocultured in medium containing less than 1.7 mM Ca+ 2, they 

did not undergo GVBD (Tombes et al., '992). However, when the extracellular 

calcium level was used at a concentration higher than '0 mM ln cAMP-blocked 
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mouse oocytes, these latter were capable of resuming meiosis (Powers and 

Palaos, 1982). These results suggest that calcium and cAMP might be 

regulating meiotic maturation via a common pathway eventhough high Ca+ 2 

promotes maturation whereas cAMP inhibits it. 

Once maturation is initiated, external Ca+ 2 is important for preserving the 

normal chromosomes and spindle configurations between metaphase 1 and 

metaphase Il, as weil as for the formation of the tirst polar body (Tombes et al., 

1992). It has been shown that an increase in the intracellular le\:el of Ca+ 2 is 

responsibla for an increase in the percentage of oocytes that reach metaphase 

Il of meiosis in the pig and mouse species (Paleos and Pow~rs, 1981; Sato et 

al., 1982; Tombes et al., 1992). It is possible that partially competent 

oocytes, which arrest at metaphase 1 lack sufficient calcium to reach 

metaphase Il. 

Upon maturation, the survival of eggs in vitro depends on Ca+ 2
• Final/y, 

Ca+ 2 is required for the initiation of development of the egg following 

fertilization (Whittingham and Siracusa, 1978; Kline and Kline, 1992). Thus, 

calcium plays a central rola prior to, during, and following meiotic maturation. 

1.4.2. Role of microtubular network 

One of the hallmarks of meiotic competence is the reorganization of the 

cytoskeletal components of the oocytes. In particular, the microtubular 

structure of both the cumulus cells (Allworth and Albertini, 1993) and the 
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enclosed oocyte (Vandré et al., 1984; Bornslaeger et al., 1988) undergo major 

changes upon acquiring meiotic competence (Wickramasinghe et al., 1991) and 

during meiotic maturation (Mattson and Albertini, 1990), as weil as during 

embryonic mitosis (Schatten et al., 1985). 

The centrosomal structures, or centrioles, which are localized to the 

spindle poles during metaphase, are absent in several mammalian species 

starting at the pachytene stage of oogenesis. Instead, several microtubular 

foci, collectively known as microtubule organizing centers (MTOCs) are 

responsible for the nucleation of microtubular growth throughout the oocyte 

cell cycle (Szollosi et al., 1974). The G2/M transition of the cell cycle and 

meiotic competence have been linked to specific changes of MTOCs with 

respect to both the bl 'lchemical and physical configurations (Wickramasinghe 

et al., 1991) Meiotically incompetent oocrtes contain dephosphorylated 

MTOCs which are localized to the cortex of the cell. These MTOCs nucleate 

a diffuse and elaborate microtubular network which spreads throughout the 

cytoplasm. When the oocyte becomes competent to resume meiosis, the 

MTOCs migrate to the perinuclear region where they become phosphorylated 

ami nucleate short microtubules (Centonze and Borisy, 1990). At this point, 

they are known to be activated in preparation for the formation of the spindle 

poles (Vandré et al., 1990; Wickramasinghe et al., 1991). This reorgenization 

and phosphorylation of MTOCs during the ar.;Quisition of meiotic competence 

has been described in amphibians as weil (Gard, 1991; Ohta et al., 1993) . 
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Once GVBD takes place and the chromosomes condense, MTOCs become 

localized to the spindle poles of the first and second meiotic divisions (Schatten 

et al., 1985; Messinger and Albertini, 1991; Wickramasinghe et al., 1991). 

The ultrastructural changes of the microtubules and the MTOCs withi., an 

oocyte are directly correlated with altered phosphorylation patterns of specifie 

phosphoproteins (Mailer et al., 1977) 

1.4.3. Role of protein phosphorylation 

The decrease in oocyte cAMP at the time of GVBD leads to a decrease 

in cAMP-dependent protein kinase activity which, in turn, results in 

phosphorylation or dephosphorylation of a number of proteins (Bitensky and 

Gorman, 1973). Concomitantly, a three to five fold increase in cAMP­

independent phosphoprotein synthesis becomes apparent (Bornslaeger et a/., 

1986,1988; Morgan etai., 1989; Néant etai., 1989). Protein phosphorylation 

is important during meiotic maturation since its inhibition in porcine oocytes 

that were matured in vitro inhibited both nuclear envelope breakdown and 

chromatin condensation (Jung et al., 1993). Mediators of protein 

phosphorylation include factors such as Ca+ 2 which together with diar.ylglycerol 

(DAG) is known to activate protein kinase C (PKC). In frog oocytes, DAG levels 

increase transiently after exposure to maturation-inducing agents such as 

insulin, insulin-like growth factor-1, or progesterùn~ (Chien et al., 1991). DAG 

levels could be increased as weil upon microinjection of v-ras into frog oocytes 
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(Lacal et al., 1987). Increasing DAG levels either indirectly by the effect of the 

factors mentioned or alone causes GVBD to occur (Garcia de Herreros et al., 

1991). The mechanism of the action of GVBD could be mediated by the effect 

of DAG on increasing the level of PKC which in turn activates downstream 

kinases (Nishizoka, 1984' Mitchell et al., 1989) th us leading to meiotic 

resumption marked by the occurrence of GVBD as seen in many species 

(Chaetopterus: Eckberg and Carroll, 1987; Xenopus laevis: Mailer et al., 1977; 

Karsenti et al., 1987; Lohka et ai., 1987; mouse: Schultz et al., 1983; 

Bornslaeger et al., 1986; sheep: Crosby et al., 1984; pig: Jung et al., 1993). 

Such kinases include the cdc2 serine/threonine kinase which together with 

cyclin B forms the maturation promoting factor (MPF). Once active, MPF is 

responsible for a number of cytoplasmic and nuclear modifications during 

metaphase. 

Other serine/threonine kinases that become active upon meiotic 

resumption include the p39 c-mos protein and mitogen activated protein (MAP) 

kinase (Rossomando et al., 1989). Both of these kinases have been shown to 

play an important role in the microtubular dynamics that take place during 

metaphase. 

ln the foUowing section, the role of MPF, c-mos, and MAP kinase in the 

acquisition ot meiotic competence will be discussed . 

22 



• A. Maturation Promoting Factor 

The transition from interphase to metaphase during oocyte maturation 

is mediated by a cytoplasmic factor whose activity was first shown to reside 

in maturing amphibian eggs. This was first demonstrated by the pionneering 

work of Masui and Markert (Masui and Markert, 1971) who injected the 

cytoplasm of a Rana pipiens mature oocyte into an immature oocyte. As a 

result, the injected immature oocyte underwent GVBO and completed its 

meiotic maturation. This factor was named thereafier the maturation promoting 

factor (MPF). Since this original observation, MPF has been shown to be a 

universal metaphasic factor (Kishimoto et al., 1982; Kishimoto, 1988) also 

referred to as the metaphase-promoting factor, and the M-phase factor 

(Xenopus laevis: Schorderet-Slatkine and Drury, 1973; Labbée et al., 1988a; 

Erickson and Mailer, 1989; mammals: Balakier, 1978; Fulka, 1983; Sorensen 

et al., 1 ~ô5; Lee et al., 1988; fish: Oettlaf et al., 1977; marine invertebrates: 

Kishimoto and Kanatani, 1976; Labbée et al., 1988b; yeast: Weintraub et al., 

1982; mammalian culture cells: Sunkara et al., 1979; Nelkin et al., 1980). 

MPF activity is first detected in the maturing oocytes of clams, sea 

urchins, starfish, frogs, and mice shortly before GVBO (Masui and Markert, 

1971; Wasserman and Masui, 1976; Kishimoto and Kanatani, 1976; Kishimoto 

et al., 1984; Sorensen et al., 1985; Hashimoto and Kishimoto, 1988; Labée et 

al., 1988b, 1989b; Choi et al., 1991). This activity then increases and remains 
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high until the exit from the first meiotic division (metaphase 1) when it declines 

shortly thereafter. MPF activity increases again at metaphase of the second 

meiotic division, and this increased level is maintained through metaphase Il 

arrest in the oocyte until fertilization (Figure 4; Dorée et al., 1983; Gerhart et 

al., 1984). The rise of MPF activity at two peaks during meiotic maturation, 

namely at GVBD and at metaphase Il, was found to be concomitant with two 

bursts of protein phosphorylation (Dorée et al., 1983). 

Unon investigating the molecular nature of MPF, it was found ta be 

composed of two components (Labbée et al., 1989b), one of which was first 

identified as the cell cycle gene cdc2 in Schizosaccharomyces pombe (S. 

pombe). This gene was initially found to code for a homologue of the Xenopus 

p34 subunit (Dunphy et al., 1988; Gauthier et al., 1988; Labbée et al., 1 CJ89a). 

The p34cdC2 is a serine/threonine kinase which is required for G2/M transition 

of the cell cycle manifested during meiotic resumption. 

The other compone nt of MPF, called cyclin, is the regulatory subunit 

responsible for the activation of the kinase (identified by Draetta et al., 1989; 

Gauthier et al., 1990). Cyclins are a family of proteins that accumulate during 

interphase of the cell cycle and are degraded during mitosis (Murray and 

Kirschner, 1989a, 1989b). This degradation inactivate3 the kinase activity of 

p34, and is responsible for the exit trom mitosis (Figure 5, Evans et al., 1983; 

Meijer et al., 1989; Murray et al., 1989). Upon comparison of cyclin 

abundance and MPF activity, a strong correlation was found between the 
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accumulation/destruction of cyclin, on the one hand, and the increase/decrease 

of MPF activity (Figure 6). 

During interphase, p34cdc2 becomes phosphorylated on a tyrosine and a 

threonine residue. Cyclin, on the other hand, is synthesized and accumulates 

throughout interphase. For MPF ta become active at metaphase, both 

components of the heterodimer are modified by phosphorylation; p34cdc2 is 

dephosphorylated on its tyrosine residue (Gauthier et al., 1989) and cyclin is 

phosphorylated. Degradation of cyclin marks the exit from metaphase (Figure 

5). Once activated, MPF is responsible for turning on a number of downstream 

kinases (Solomon et al., 1992). Among the substrates for MPF are 

centrosomal components (Bailly et al., 1989) and their associated microtubules 

(Verdé et al., 1990), lamins, histone H1, nucleolin (Lewin, 1990), and MAP 

kinase (Kosako et al., 1993), ail of which may be involved in events leading to 

nuclear envelope breakdown, chromosome condensation and spindle formation 

(Lohka and Mailer, 1985; Figure 7). 

Nonetheless, it should be pointed out that cyclins alone are not sufficient 

for the activation of p34cdc2
• A family of cdc25 gene products in S. pombe 

were found to positively regulate the activation of p34cdc2 kinase (Russell and 

Nurse, 1986; Kumagi and Dunphy, 1992). Biochemical analysis has shown 

that the cdc25 gene product is a phosphatase capable of dephosphorylating the 

tyrOSine residue. This phosphorylation is crucial for the ar:.tivation of p34cdc2 

(Gould et al., 1990) . 
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Other regulators of p34cdc2 include two of the four major phosphatases 

in the cytosol of mammalian cells which dephosphory/ate serine and threonine 

residues (Cohen et al., 1990), referred to as phosphatases 1 and 2A (PP1 and 

PP2A). These phosphatases were first identified by genetic analysis of vaast 

and Aspergillus (Morris et al., 1989). When PP1 and PP2A are inhibited bV the 

drug, okadaic acid, p34cdc
,l becomes activated resulting in the entrv to 

metaphase (Brautigan et al., 1989). These phosphatases may be needad for 

the arrest of a given cell at interphase, and are overcome by an intracollular 

inhibitor at metaphase. The use of okadaic acid has been especially 

instrumental in understanding the molecular aspects of meiotic resumption in 

oocytes fram several species. Such aspects include the involvement of PP1 

and PP2A in the control of MPF activity in starfish (Picard et al., 1989; 1991; 

Paulsoll et al., 1994), Xenopus laevis (Goris et al., 1989), mouse (Rime and 

Ozon, 1990; Alexandre et al., 1991; Gavin et al., 1991), bovine and porcine 

(Kalous et al., 1993) oocytes. This control is rnanifested by an accelerated 

GVBD in meiotically competent oocytes (Kalous et al., 1993). In addition, 

meiotically Incompetent oocytes occuring either naturally as is the case of small 

oocytes (Gavin et al., 1991), or under the effect of meiotic inhibitors are 

capable of resuming meiosis (Alexandre et al., 1991) in the presence of okadaic 

acid . 
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B. Cytostatic factDr 

Another cytoplasmic compone nt which is important in cell cycle 

regulation is termed cytostatic factor (CSF). CSF is a calcium-sensitive factor 

that was first described by Masui (Masui, 1974; Masui and Shibuya, 1987) as 

an activity that prevents exit ot Rafla pipiens oocytes from the metaphase Il 

arrest. A similar activity is present in the metaphase II-arrested oocytes of the 

mouse (Kubiak et al., 1993). CSF is unique to the gerrn cells (Goldman et al., 

1987). Upon investigating the activity of CSF, it was found that it first appears 

in the cytoplasm of a maturing oocyte at GVBD, remains high through meiotic 

méituration and disappears soon after fertilization ( Meyerhof and Masui, 1977, 

1979). 

The site of action of CSF seems to be the cyclin component of MPF. 

The exit of an amphibian as weil as a mammalian oocyte from metaphase Il 

requires the degradation of cyclin B as was discussed in the previolJs section. 

However, in me~at1hase II-arrested oocytes the synthesis of cyclin B is 

continuo us (Weber et al., 1991) as weil as its degradation (Kubiak et al., 

1993), resulting in il '-lpid turnover of CSF. Furthermore, the degradation of 

cyclin B occurs only in the presence of an intact metaphase spindle (Kubiak et 

al., 1993). Taken together with the fact that CSF prevents the egr:J from 

exiting metaphase , this implicates CSF in the microtubular network where it 

may be monitoring the formation of a functional spindle prior to the exit from 
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metaphase by exerting its effect on the cyclin component of MPF . 

C. c-mos 

When the molecular nature of CSF was investigated r one factor seemed 

prominent, the c-mos proto-oncogene. c-mos encodes a serine/threonine 

protein kinase (Maxwell and Arlinghaus, 1985) of !Ar 39 KOa, and is expressed 

at high levels in the germ cells of vertebrates (Goldman et al., 1987; Mutter 

and Woigemuth, 1987). 

c-mos has been identified as a component of CSF based on the following 

results. When either p39c
-
moa mRNA or CSF-containing cytoplasm was 

microinjected into a Xenopus blastomere, this latter was arrested at mitotic 

metaphase (Sagata et al., 1988). Furthermore, CSF activity can be depleted 

from metaphase Il eg9s with c-mos antibodies (Sagata et al., 1989). 

p39c
-
moa is absent in meiotically-incompetent oocytes (Paules et al., 

1989), and is required during meiotic maturation where it is necessary for the 

activation of MPF in meiosis 1 (Sagata et al., 1988; Q'Keefe et al., 1989, 1991) 

and is also required after GVBD (Sagata et al., 1988; 1989a). c-mos can, in 

the absence of any protein synthesis, induce GVBD and activate MPF in 

Xenopus oocytes. However, such treated oocytes cannot complete maturation 

to metaphase Il (Yew et al., 1992). 

A substrate for c-mos is a tyrosine/threonine protein kinase, termed 

mitogen-activated protein kinase kinase, usually referred to as MEK, which is 
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directly responsible for the activation of éI serine/threonine protein kinase, 

referred to as mitogen activated protein (MAP) kinase (Posada et al., 1993; 

Nebrada and Hunt, 1993). 

c-mos could exert an effect on the microtubular network either by 

activating MAP kinase (Figure 8), or directly since cellular localization 

experiments show that p39c
-
mo

- can associate with and phosphorylate tubulin 

(Zhou et al., 1991). The association between p39mo
- and tubulin was shown 

by immunoprecipitation where the homodimer, p-tubulin, was preferentially 

coprecipitated with p39n10
". The ability to phosphorylate tubulin was 

demonstrated in a kinase assay where P-tubulin was the major phosphorylated 

product in a p39mo--dependent immune complex k.inase assay (Zhou et al., 

1991). This association was extended when c-mos was shown to be required 

for spindle function of mouse oocytes (Zhao et al., 1991). 

D. Mitoge" - activated protei" kinase 

Prior to the knowledge of their kinase activity, mitogen-activated protein 

(MAP) kinases were known as microtubule-associated protein-2 (MAP-2) kinase 

(Jameson and Caplow, 1981). Upon the finding of their kinase activity in 

insulin-stimulated adipocytes (Sturgill and Ray, 1986), MAP kinases, also 

referred to as extracellularsignal regulated kinases (ERK's), have been identified 

and characterized in many species ranQing fram the yeast to the human (S. 

cerevisiae: FU3S-KSS1, Cairns et al., 1992; Courshesne et al., 1989; Elion et 

al., 1990; S. pombe: Spk1, Torres et al., 1991; 9yr1 and Byr2, Nadin-Davis 
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and Nasim, 1988; drosophila: Brunner et al., 1994; Xenopus: Ahn et al., 

1991; Ferrell et al., 1991; sea star: Sanghera et al., 1990; murine: Verlhac et 

al., 1993; Sobajima et al., 1993; Gavin et al., 1994; rabbit: Gregory et al., 

1989; human fibroblasts: Ek and Heldin, 1984; Pagès et al., 1993) and in 

tissue culture cells (3T3 cell line: Kawakami et al., 1991). 

MAP kinase has been characterized (Hoshi et al., 1989) and is capable 

of being active via a number of signal transduction pathways, including tyrosine 

kinases, G proteins (Lange-Carter et al., 1993) and protein kinase C (Pelech and 

Krebs, 1987; Pelech and Sanghera, 1992). MAP kinase is responsible for 

activating other downstream factors and is itself regulated by upstream 

regulators. The family of MAP kinase includes members of 40-46 kOa isoforms 

with p42 and p44 as the most occuring forms among mammalian species. 

Both p42 and p44 require phosphorylation on tyrosine and threonine residues 

for maximal activation (Ray and Sturgill, 1988; Anderson et al., 1990), and can 

undergo autophosphorylation on both tyrosine and threonine residues (Seger et 

al., 1991). This autophosphorylation process, however, does not seem to be 

biologically important (Posada and Cooper, 1992). 

Among MAP kinase targets are the ribosomal S6 kinase (Sturgill et al., 

1 988; Sturgill and Wu, 1991), the nuclear transcription factors, c-jun and c-fos 

(Gille et al., 1992), and a Xenopus p220 kDa microtubule-associated protein 

(Shiina et al., 1992). 

One of the most important features of MAP kinase, however, might 
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reside in their involvement in the control of the cell cycle where they respond 

to various external signais, usually mitogens, to participate in triggering the 

transition fram GO to G 1 and from G2 to M phase (Cobb et al., 1991; Boulton 

et al., 1991; Thomas, 1992). In the G2/M transition of the cell cycle, MAP 

kinase might be involved in the reorganization of microtubules based on several 

findings conducted on mu ri ne and frog oocytes. MAP kinase is present in fully 

grown, G2-arrested oocytes of the frog (Gotoh et al., 1991 a; Ferrell et al., 

1991; Posada et al., 1991), sea star (Pelech et al., 1988', clam (Shibuya et al., 

1993), and rnouse (Verlhac et al., 1993; Sobajima et al., 1993). When oocytes 

are induced to enter metaphase, both species p42 and p44 become 

phosphorylated th us rendering MAP kinase active as a kinase (Gotoh et al., 

1991 ). 

ln maturing mouse oocytes, MAP kinase is associated with the MTOCs 

(Verlhac et al., 1993) which are localized at the spindle poles of metaphase 1 

and Il oocytes. MTOC's are known to nucleate microtubular assembly at 

metaphase (Schatten et al., 1985). MAP kinase seems to play a role in the 

microtubular reorganization during the G2/M transition based on the following 

results. When purified M-phase activated MAP kinase from either Xenopus 

eggs or mammalian fibroblasts was added to interphase extracts from Xef.'opus 

oocytes, the interphasic microtubular network exhibited a transition to the 

metaphasic form. This transition was manifested by an increased nucleation 

of microtubules from the centrosomes. These microtubules were short and 
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dynamic as is seen usually at metaphase (Gotoh et al., 1991 , . 

The effect of activated MAP kinase on the microtubular network seems 

to be initiated by the activation cf MPF which, in turn, activates MAP kinase 

(Gotoh et al., 1991; Ohta et al., 1993; Figure 9). To aetermine the effect of 

these two kinases l MPF and MAP kinase, on the microtubular network, the 

following experiment was designed. The ability of centrosomes to nucleate 

microtubules in the presence of either a purified p34cdc2/cyclin 8 complex or 

MAP kinase was compared. The results show that the increase in microtubular 

network nucleated from centrosomes was greatly enhanced in the presence of 

the MPF cornplex but not in the presence of MAP kinase (Ohta et al., 1993). 

However, since MAP kinase is activated downstream of MPF, the increased 

effect of microtubular nucleation manifested upon the addition of the MPF 

complex could be due to a cooperation between the action of both MPF and 

MAP kinase. 

To learn more about the involvement of MAP kinase in the microtubular 

network rearrangementduring meiotic maturation, a possible plac~ to study this 

effect could be in cells that are incapable of resuming meiosis, thus incapable 

of entering metaphase, under either in vivo or in vitro conditions. Such a 

system is naturally found in the meiotically incompetent and partiaily competent 

oocytes. 1 have taken advantage of such naturally-arrested cells to study 

further the role of MAP kinase in the acquisition of meiotic competence as weil 

as during mehltic maturation of mammalian oocytes . 
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• 1.5. Summary 

During mammalian oogenesis, the acquisition of meiotic competence is 

of central importance for the conversion of an oocyte into a fertilizable ova. 

Understanding the details of this phenomenon could provide insight into cell 

cycle regulation which regulates the reproductive life of an organism. 

To dissect further this multifaceted event, 1 studied the expression of 

MAP kinase in the mouse oocyte due to its possible involvement in initiating the 

cell cycle in meiotically-arrested oocytes. My objective was to document the 

changes, if any, of the pattern of MAP kinase among oocytes of various meiotic 

potential, namely incompetent, partially-competent, and fully-competent 

oocytes. These three groups could be obtained by targeting a specifie age in 

the juvenile rnouse which shows a good synchron'y' during growt" in vivo and 

during culture in vitro as weil. In the following chapter, 1 will describe the 

experimental evidence for the presence of a key regulator in a number of signal 

transduction pathways, MAP kinase, in incompetent, partially-competent, and 

full'/-competent mouse oocytes. Based on previous results which showed that 

MAP ki.lase becomes activated as a kinase following phosphorylation, 1 will 

describe E!vidence regarding the phosphorylation patterns of the two species, 

p42 and p44, in a,'1 three classes of oocytes. In addition, experiments done 

with okadaic acid, a specifie phosphatase inhibitor of both PP1 and 2A, will be 

described. Taken togetner, these results should help elucidate the mechanism 

underlying the action of this kinase during the G2/M transition of the cell cycle .. 
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Figure 1. A schematic representation of the developr1Ent of mammalian 

oocytes from oogonia to fully grown oocytes. In the fetal life of the female, 

the oogonia progress through meiotic prophase in a relatively synchronous 

pattern and arrest at the diplotene stage of meiosis shortly after birth. 

Diplotene-arrested oocytes either stay in a one-Iayered follicle, or they initiate 

their growth phase. During its growth phase, an oocyte grows in size where 

it accumulates ail the necessary components that will be used during its 

maturation and post-fertilization development. Once fully grown, a follicle­

enclosed oocyte could either become ovulated in preparation for fertilization or 

it undergoes degeneration (From Bachvarova, 1985) . 
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Figure 2. Diagrammatic representation of two aspects of oogenesis, meiosis 

and growth, in the life cycle of the mouse (From Schultz and Wassarman, 

1977) . 
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Figure 3. Diagrammatic representation of the stages of oocyte meiotic 

maturation. When a fully grown, prophase-arrested oocyte is exposed to a 

maturation-inducing environment, it undergoes germinal vesicle breakdown 

(GVBD), where the nuclear envelope breaks down and the homologous 

chromosomes assemble on the first meiotic spindle at metaphase 1. The oocyte 

then undergoes telophase 1 without cell division. Finally, sister chromatids are 

separated at metaphase Il where the first polar body is emitted from the 

oocyte. At the end of meiotic maturation, the oocyte contains the diploid 

chromosomal content (From Wickramasinghe and Albertini, 1993) . 
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Figure 4. Fluctuation of maturation promoting factor (MPF) activity during 

the early frog life cycle. MPF level is low in a fully grown, immature Xenopus 

oocyte. Upon stimulation to resume meiosis, the oocyte undergoes GVBD and 

the level of the oocyte MPF increases dramatically at metaphase 1 of meiosis 

after which it decreases. At metaphase Il of meiosis, MPF level increases and 

stays up by the effect of cytostatic factor until the time of fertilization where 

it drops again. This fluctuation in activity continues with every cell division of 

the early embryo (From Murrray and Kirschner, 1989b) . 
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Figure 5. The cycle of association between the two c'Jmponents of MPF, 

p34 and cyclin in the G2/M transition. In interphase, cyclin B is synthesized 

and accumulates in the cell and p34 becomes phosphorylated on a tyrosine 

residue. Prior to metaphase, p34 becomes phosphorylated on a threonine 

residue. At metaphase, p34 is dephosphorylated on the tyrosine residue 

whereas cyclin becomes phosphorylated. To exit mitosis, a proteolytic 

degradation ot cyclin is required (From Lewin, 1990) . 
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Figure 6. The fluctuation in cyclin abundance relation to the activity of MPF 

and H1 kinase. Upon addition of 5 p9/ml of sea urchm cyclin mRNA to an 

mRNA-dependent extract, the activity of cyclin in the extract fluctuates at the 

same time periods as did both MPF and H1 kinase activity. The activity of ail 

three parameters dropped as nuclear envelope breakdown (NBC) occured at 

nletaphase. This activity th en increases during the rest of the cell cycle (From 

Murray and Kirschner, 1989a) . 
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Figure 7. Regulation of p34cdc2 protein kinase during the G2/M transition of 

the cell cycle of the fission yeast. Entry into mitosis follows the activation of 

p34cdc2 protein kinase and requires both cdc25 + and cdc13 +. Exit from mitosis, 

however, follows the kinase inactivation and requires suc1 +. cdc13+ is also 

required for the reorganization of microtubular cytoskeleton leading to the 

generation of the mitotic spindle (From Moreno et al., 1989) . 
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Figure 8. Model for the mechanism involving c-mos and MAP kinase in the 

metaphase arrest through the effect on cytostatic factor (CSF). Exit from 

metaphase requires the inactivation of CSF. The CSF arrest induced by c-mos 

is mediated by the activation of MAP kinase. CSF activation can also be 

mediated through the Ras pathway. Ras can induce the activation of MAP 

kinase either by the c-mos effect or by activating Raf. In either case, bath MAP 

kinase and MPF cooperate in forming CSF. CSF is responsible for blocking the 

metaphase to anaphase transition in metaphase Il eggs (From Haccard et al., 

1993) . 
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Figure 9. A schematic representation of the opposite effects of protein 

phosphorylation on microtubule assembly and microtubule organizing centers 

(MTOCs) activity. The activation of MPF at metaphase results in a number of 

phosphorylation processes among which is the activation of a downstream 

kinase, MAP kinase. When active, MAP kinase decreases the stability of 

microtubules, thus favoring the dynamic configuration of metaphase. In turn, 

active MPF might be responsible for regulating directly the nucleation of 

metaphasic microtubules through its effect on activating MTOCs (From Ohta 

etai., 1993) . 
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CHAPTER Il 

MITOGEN-ACTIVATED PROTEIN (MAP) KINASE DURING THE ACQUISITION 

OF MEIOTIC COMPETENCE BY GROWING OOCYTES OF THE MOUSE 

Wafa Harrouk and Hugh J. Clarke 
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ABSTRACT 

During the gro""th phase of oogenesis, oocytes acquire the ability to 

undergo meiotic maturation. Although the molecular basis of this meiotic 

competence is unknown, specifie differences in microtubular organization exist 

between incompetent and competent mammalian oocytes. Mitogen-activated 

protein (MAP) kinase has been implicated in microtubular regulation and is 

present in fully grown competent oocytes of mice, suggesting a possible role 

for this protein in the acquisition of meiotic competence. We report that the 

MAP kinase species, p42ERK2 and p44ERKt
, were detectable by immunoblotting 

in incompetent oocytes at the early stages of oocyte growth and throughout 

subsequent growth and acquisition of competence. In partially competent 

oocytes, which can enter metaphase but cannot complete the first meiotic 

division, both p42ERK2 and p44ERKt became phosphorylated, as judged by 

retarded electrophoretic mobility, and a morphologically normal spindle was 

assembled. In incompetent oocytes, which cannot IJnter metaphase, p42ERK2 

and p44ERKt remained non-phosphorylated. When these oocytes were treated 

with okadaic acid, an inhibitor of protein phosphatases 1 and 2A, they entered 

metaphase and the slow-migrating phosphorylated forms of p42ERK2 and p44ERKt 

were observed. These phosphorylated forms appeared more rapidly, relative 

ta the time of germinal vesicle breakdown, than during maturation of fully 

competent oocytes. These results suggest that the acquisition of meiotic 
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competence du ring oocyte growth is not linked ta the de nova 

appearance of p42ERK2 or p44ERK1
, that the failure of partially competent oocytes 

ta complete meiosis 1 retlects a defect acting downstream or independently of 

MAP kinase phosphorylation, and that meiotically incompetent oocytes contain 

both ol<adaic acid-sensitive phosphatases that dlrectly or indirectly maintain 

p42ERK2 and p44ERK1 in non-phosphorylated state and kinases that can generate 

the phosphorylated forms when these phosphatases are inhibited . 
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INTRODUCTION 

During mammalian embryogenesis, oogonia proliferate mitotically until a 

few days after they have colonized the genital ridge, then enter the meiotic cell 

cycle and progress to the diplotene stage of prophase 1 where the cycle 

becomes arrested. Beginning shortly after birth and continuing throughout 

reproductive life, groups of diplotene-arrested oocytes then enter a growth 

phase during which the diameter increases from about 12 pm to about 80 pm, 

representing a 300-fold volume increase. Following gonadotrophic stimulation 

of the follicle, fully grown oocytes are released from cell cycle arrest and 

undergo meiotic maturation. During maturation, oocytes enter metaphase, 

complete the first meiotic division, and become arrested at metaphase of the 

second meiotic division (Schultz, 1986; Wassarman, 1988). 

When fully grown oocytes are removed trom the follicular environment 

and placed in culture, meiotic maturation occurs in the absence of 

gonadotropins. Such in vitro-matured oocytes are normal, as judged by theïr 

ability after fertilization to give rise to live animais (Eppig and Schroeder, 1989). 

The phenomenon of in vitro maturation has been exploited to investigate 

whether non-fully grown oocytes possess the capacity to undergo meiotic 

maturation (Sorensen and Wassarman, 1976; Albertini, 1992). In the mouse, 

oocytes smaller than 60 pm in diameter remain arrested at prophase 1 when 
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placed in culture. These oocytes are defined as meiotica1ly incompetent. 

Slightly larger oocytes enter metaphase but become arrested prior to 

completion of the first meiotic division, and are terrned partially competent. 

Oocytes larger than about 70 pm are able to complete maturation to metaphase 

Il in vitro, and are termed fully competent (Sorensen and Wassarman, 1976; 

Albertini, 1992). These results indicate that meiotic competence, which 

represents the ability to undergo meiotic maturation, is progressively acquired 

during oocyte growth. 

The acquisition of meiotic competence by growing oocytes appears to 

be controlled by both an interaction with the surrounding cumulus granulosa 

cells and an autonomous intracellular program (Canipari et al., 1984; Chesnel 

et al., 1994). The role of the cumulus cells in promoting competence does not 

require gap junctional communication between the two cell types (Bachvarova 

et al., 1980; Canipari et al., 1984), suggesting this influence is mediated 

through secreted molecules. The oocyte-autonomous events leading to 

competence are largely unknown. Several proteins, including tubulin, LDH, and 

histone H4, accumulate in growing oocytes (Schultz et al., 1979; Wassarman 

and Mrozak, 1981; Roller et al., 1989). As weil, a 28-kD protein has recently 

been identified whose synthesis is linked to the acquisition of competence 

(Chesnel et al .. , 1 994). Few other major qualitative changes in the pattern of 

protein synthesis occur during this time (Schultz et al., 1979; Schultz, 1986; 
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Wassarman, 1988). Elevation of intracellular cyclic AMP also promotes the 

acquisition of competence (Chesnel et al., 1994). 

Several observations suggest that changes in microtubular morphology 

or activity may play an important role in the acquisition of meiotic competence 

(van Blerkom, 1991; Albertini, 1992). Incompetent oocytes conta in non­

phosphorylated microtubule-organizing centres (MTOCs) and an interphasic 

network of microtubules radiating tram the MTOCs. By contrast, prophase­

arrested competent oocytes conta in phosphorylated MTOCs which nucleate 

much shorter microtubules that are perinuclear in location (Wickramasinghe et 

al., 1991; Wickramasinghe and Albertini, 1992). These changes may be 

regulated in part by the product of the c-mos proto-oncogene, p39c
-
mos, which 

is required during oocyte maturation in amphibians (Sagata et al., 1988, 1989) 

and mice (Paules et al., 1989; O'Keefe et al., 1989, 1991). p39c-mos can 

associate with and phosphorylate tubulin (Zhou et al., 1991), and is required 

for spindle function in mouse oocytes (Zhao et al., 1991). p39c-mos is not 

synthesized by meiotically incompetent oocytes (Paules et al., 1989). 

Another potential regulatorof microtubular activity in oocytes is mitogen­

activated protein (MAP) kinase. This serine/threonine kinase is present in 

oocytes of many invertebrate and vertebrate species and, when maturing 

oocytes enter met a phase, it becomes phosphorylated and active as a kinase 

(Verlhac et al., 1994). Phosphorylation appears to be mediated through p39c-
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ma. (Nebreda and Hunt, 1993; Posada et al., 1993). Activated MAP kinase 

phosphorylates a microtubule-associated protein present in frog eggs (Shiina et 

al., 1992) and when added to cell-free extracts prepared from frog eggs causes 

both the growth rate and the steady-state length of microtubules to decrease 

(Gotoh et al., 1991). In fully grown oocytes of the mouse, two species of MAP 

kinase are present, p42ERK2 and p44ERK1 (Sobajima et al., 1993; Verlhac et al., 

1993, 1994; Gavin et al., 1994) and, in maturing oocytes, MAP kinase is 

associated with the MTOCs (Verlhac et al., 1993) that nucleate microtubule 

assembly at metaphase (Marc et al., 1985; Schatten et al., 1985). ~ased on 

the links between altered microtubules and meiotic competence, and between 

microtubules and MAP kinase, we investigated wh ether changes in the 

abundance or phosphorylation of MAP kinase occurred as growing oocytes 

acquimd meiotic competence . 
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MATERIALS AND METHODS 

Collection and culture of oocytes 

CD-1 mice (originally obtained from Charles River, Canada) were used in 

ail experiments. To obtain immature oocytes from females aged between 5 and 

12 days, the ovaries were placed in phosphate-buffered saline (PBS) devoid of 

calcium and magnesium, shredded into several pieces, and transferred into PBS 

containing O. 1 % collagenase IV (Gibco, Canada), 0.1 % DNase (Gibco, Canada). 

The fragments were agitated using a mechanical shaker for 30-45 minutes at 

37°C, following which the preparation was transferred into a petri dish and the 

enzymatic solution was diluted with a Hepes-buffered minimum essential 

medium (MEM-H) modified as described (Schroeder and Eppig, 1984) in order 

to arrest further digestion. Immature oocytes recognized by the presence of 

the germinal vesicle (GV) were collected under a dissecting microscope using 

a hand-pulled glass pipette. They were either cultured in modified MEM 

supplemented with 0.3% bovine albumin serum (BSA, fraction V, Sigma) in an 

atmosphere of 5% CO2 in air, or Iysed immediately for electrophoresis. 

Growing and fully grown immature oocytes were obtained from females 

aged between 13-30 days by puncturing medium and large size follicles as 

described previously (Harrouk & Clarke, 1993). Typically, two mice were used 

in an experiment. Following sacrifice, the ovaries were dissected and placed 
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in minimum essential medium (MEM) buffered using Hepes (pH 7.4) and 

containing sodium pyruvate (25pM), antibiotics and bovine serum albumin 

(BSA, 3pg/ml, fraction V, Sigma) (Schroeder and Eppig, 1984). After removing 

the adhering fat and blood, ovaries were shredded into small fragmt; Its, which 

were examined individually for the presence of medium and large size follicles. 

Using forceps and a 30G % needle, these follicles were punctured to release the 

immature oocytes, which were easily recognized under the dissecting 

microscope by the presence of the {;erminal vesicle. In a typical experiment, 

the yield was about 100 healthy immature oocytes. After several washes to 

remove any attached cumulus cells, the immature oocytes were transferred 

using a mouth-controlled drawn glass pipet into a plastic dish (Nunc) containing 

MEM buffered using NaHC03 and supplemented with fetal bovine serum. The 

medium was covered with paraffin oil and incubated at 37°C in an atmosphere 

of 5% CO2 in air. 

DependlOg on the experiment to be carried out, oocytes were either 

cultured for 3h ta allow germinal vesicle breakdown (GVBD) to occur and only 

those that underwent GVBD following 3h of culture were cultured overnight to 

complete maturation. GV oocytes were either Iysed or fixed following their 

isolation immediately . 
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Immunoblotting 

Oocytes at the appropriate experimental stage were Iysed in a gelloading 

buffer (Harlow and Lane, 1988) keeping the number of oocytes per pl 

approx;mately constant, heated at 85°C for 10 minutes, chilled on ice for 10 

minutes, centrifuged, and stored at -70 oe until use. The proteins in the 

samples were separated by electrophoresis in 12 % polyacrylamide gels 

containing 0.1 % sodium dOdecyl sulfate (Harlow and Lane, 1988) for 1 h at 

200 volts, electrically transferred to nitrocellulose membranes (Schleicher & 

Schuell, pore size 0.5 pm) for 1.5 h, 80 volts, at 4°C. The blot was left to dry 

overnight and the gel was stained to verify the success of the transfer. Ali 

immunoblotting steps from blocking the membrane onwards were carried out 

Oat room temperature with gentle agitation. The membrane was blocked by 

soaking for 2h in a 3% powdered skim mi!k in 10 mM Tris (pH 7.5),140 mM 

NaCI (TBS). The primary antibody anti-MAP kinase 691, (Santa Cruz Biotech, 

California) was diluted 1 :500 in blocking butfer, applied ta the blot and agitated 

overnight. Following three washes of 15 minutes each in TBS containing 0.1 % 

Tween-20 (TBST), a biotinylated secondary antibody (Jackson Immunoresearch 

Laboratories) was applied to the blot at a dilution of 1 :200 in TBST, 3% BSA. 

After 3 washes in TBST, the membrane was incubated in streptavidin­

conjugated alkaline phosphatase (Jackson Immunoresearch Laboratories) diluted 
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1 :500 in TBST, 3% BSA. After 3 washes in TBST, the bound antibody was 

revealed using the NBT/BCIP reagents diluted in appropriate buffer (Harlow & 

Lane, 1988). 

Immunofluorescence 

Oocytes were denuded of their zonae pellucidae by exposing them briefly 

to acidified (pH 2.5) Tyrode's medium. Once the zonae had disappeared, the 

oocytes were washed several times in MEM-H and then fixed in a freshly 

prepared solution of 2% paraformaldehyde in PBS for 15 minutes at room 

temperature. The fixed oocytes were then permeabilized using 0.5% Triton-X 

100 in PBS for 15 minutE:s, following which they were blocked for 1 5 minutes 

in a solution containing PBS, 3% BSA, 10% goat serum, 0.1 % Tween-20. The 

primary antibody (mouse anti-a-tubulin, Cedarlane Laboratories), diluted at 

1 :5000 in the bloc king buffer, was applied for 3 h at room temperature. After 

3 washes of 15 minutes each in blocking buffer, the oocytes were then 

transferred into an FITC-Iabeled anti-(mouse IgG) secondary antibody (Jackson 

Immunoresearch Laboratories) diluted at 1: 100 in bloc king solution, and 

containing the DNA stain, DAPI (1 pg/ml). Following 2 washes in the blocking 

buffer, the oocytes were transferred into a drop of Moviol (Hoechst) on 

siliconized microscope slides. The oocytes, which tend to float to the surface 

of the Moviol drop, were then picked up using the micropipette, moved down 
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to the bottom, and gently covered with a glass coverslip. Preparations were 

examined using a Leitz Laborlux S microscope equipped with ultraviolet and 

fluoresceln filters. Photographs were taken using Kodak TMAX 100. 

Drugs 

Okadaic acid (Gibco, Canada) was prepared as a stock solution of 100 

pM and used at a final concentration of 1 pM . 
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RESULTS 

Meiotic competence of growing oocytes 

During the reproductive life of the mouse, only a small number of 

oocytes are growing at a particular time, ')0 it is difficult to collect large 

numbers of oocytes at dii ierent stages of grovi/th. Shortly after birth, however, 

a large group of oocytes initiate and progress ;synchronously through growth 

and acquisition of meiotic competence (Sorensen and Wassarman, 1976; 

Albertini, 1992). Oocytes collected from mice up to 12 days of age are 

meiotically incompetent. Oocytes obtained from sl\,ght!y older mice are partially 

competent, being able to undergo GVBD but not tOI ''complete the first meiotic 

division in culture. Many oocytes frorr mice aider \than 18 days are able to 

comp'iete maturation to metaphase Il in culture. Thus .. ovaries harvested tram 

prepuberal mice at different ages provide a convenient source of oocytes at 

specific stages of growth and meiotic competence. 

To test the relationship between mouse age and oocyte meiotic 

competence in our colony, growing oocytes were collected either by enzymatic 

digestion of ovaries of 5- ta 12-day mice or by puncture of ovarian follicles of 

13- to 30-day-old mice. The oocytes were incubated for 18 h, and then 

classified into one of 3 categories which are easily distinguished under the 

dissecting microscope: Germinal vesicle (GV) stage, where the nucleus is 
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prominently observed; germinal vesicle breakdown (GVBD) stage, where the 

nucleus is no longer visible; antj metaphase Il, where the first polar body is 

seen protruded from the plasma membrane (Figure 1). 

The results (Table 1) show that the majority of oocytes isolated from 

mice younger than 14 days of age remained arrested at the GV stage in culture, 

indicating that they were meiotically incompetent. The small percentage of 

oocytes isolated from the 13-day animais that underwent GVBD in culture were 

larger in diam~ter than the rest of the oocytes in this group (data not shown). 

Mice between 14 and 16 days of age contained ail three types of oocytes. In 

particular, these mice contained relatively large numbers of partially competent 

oocytes, which underwent GVBD but failed to complete mp.iosis 1 (Table 2). 

Finally, most oocytes obtained from mice older than 17 days were able to Hlach 

metaphase 1/ in culture. These results confirm previous reports (Sorensen and 

Wassarman, 1976) and demonstrate that a population of oocytes undergoes 

a transition from a meiotically incompetent state in mice younger than 14 days 

to a partially competent state at 14-16 days and become fully competent by 

17 days of age. 

Expression of MAP kinase in meiotically incompetent and competent oocytes 

Having established that relatively homogeneous populations of oocytes 

at different stages of meiotic competence can be obtained from mice during the 
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first three weeks after birth, we examined the abundance of MAP kinase in 

these oocytes. One hundred oocytes at the GV-stage were collected from 5, 

8, 10, 15, and 18-day mice. One hundred oocytes either at GV or GVBD stage 

were collected fram 20-day mice. Lysates were prepared, subjected to sOS­

PAGE, electricallytranferred onto nitrocellulose membranes, and immunoblotted 

using an affinity-purified antibody raised against subdomain XI of the rat ERK1 

gene product (Boulton and Cobb, 1991). 

Two doublets of approximate Mr 42 and 44 kDa were present in oocytes 

of 20-day mice (Figure 2). Based on previous results trom our laboratory 

(Verlhac et al., 1993) and ethers (Sobajima et al., 1993; Gavin et al., 1994), 

these represent MAP kinase encoded by the mouse ERK2 and ERK1 genes, 

respectively, and will be referred to as p42ERK2 and p44ERK1
• The slower 

migrating form of each doublet represents the phosphorylated protein, while the 

faster migrating ferm is the non-phosphorylated protein (Posada and Cooper, 

1992; Verlhac et al., 1993, 1994). The presence of both phosphorylated and 

non-phosphorylated p42ERK2 and p44ERK1 in the 20-day sample is due to the fact 

that it contained both GV- and GVBD-stage oocytes. 

Oocytes collected from mice between 5 and 1 8 days also contained 

immunoreactive species of approximate Mr 42 and 44 kOa. As no other 

immunoreactive species were regularly detected, we conclude that these 

reJjresent p42ERK2 and p44ERKt
• Ali oocytes in these samples were at the GV-
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stage and only the fast-migrating, non-phosphorylated forms of the proteins 

were present. Cornparison of the intensity of staining between lanes, which 

each contained the sa me number of oocytes, suggests that the amount of 

p42ERK2 and p44ERK1 increased during oocyte growth. As noted in the 

Discussion, total protein content also increases during growth. These results 

clearly indicate that p42ERK2 and p44ERJl1 are present beginning early during 

oocyte growth, and several days before growing oocytes acquire partial or full 

meiotic competence. 

Phosphorylation of MAP kinase and soindle fQrmation in partially competent 

oocytes 

As discussed above, growing oocytes pass through a stage of partial 

meiotic competence, when they can enter metaphase but cannot complete 

meiosis 1. These oocytes assemble a spindle, indicating that the point of arrest 

lies at the metaphase-anaphase transition (Sorensen and Wassarman, 1976; 

Wickramasinghe et al., 1991). The results of the previous section indicated 

that the inability of partially competent oocytes to complete meiosis 1 was not 

correlated with an absence of MAP kinase. We next examined whether MAP 

kinase became phosphorylated in metaphase I-arrested oocytes. 

Oocytes were collected from 14- to 16-day mice, when the partially 

competent oocytes are most abundant (Table 1, Table 2). They were incubated 
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for 6, 9, or 18 h and then separated into groups according to their stage of 

meiotic maturation. A portion of each group was fixed for immunofluorescent 

analysis of spindle configuration, while the remainder was used for 

immunoblotting. 

Oocytes examined after 6 h or 9 h of incubation had entered metaphase 

as is shown by immunofluorescence (Figure 3) and contained predominantly the 

slow-migrating, phosphorylated forms of p42ERK2and p44ERK1 (Figure 4A, lanes, 

2, 3). Based on the results shown in Table 1, these samples contained a 

mixture of partially competent oocytes, which would arrest at metaphase l, and 

fully competent oocytes which would progress to metaphase Il. These could 

not be morphologically distinguished at this time. After 18 h of incubation, 

however, the partially competent oocytes could be identified by their failure to 

emit the first polar body. Immunofluorescent analysis confirmed that these 

contained a well-formed spindle (Figure 48). These oocytes, as weil as those 

that progressed to metaphase Il, contained predominantly the phosphorylated 

forms of p42ERK2 and p44ERK1 (Figure 4A, lanes 4 & 5). These results confirmed 

that partially competent oocytes become arrested at metaphase 1 of maturation 

and showed that MAP kinase became phosphorylated in these oocytes. 

Okadaic acid-induced phosphorylation of MAP kinase in incompetent oocyte~ 

To further investigate the relationship between MAP kinase and meiotic 
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competence, we examined whether p42ERK2 and p44ERK1 could become 

phosphor'{lated in meiotically incompetent oocytes. Incompetent and prophase­

blocked oocytes can be induced ta enter metaphase by exposure to okadaic 

acid, an inhibitor of type 1 and type 2A phosphatases (Rime & Ozon, 1990; 

Alexandre et al., 1991; Gavin et al., 1991; Schwartz & Schultz, 1991). We 

examined whether MAP kinase became phosphorylated following okadaic acid 

treatment of incompetent oocytes. 

Ol)cytes were collected by follicular puncture fram 14- to 16-day mice 

and incubated for 9 h. Those that remained at che GV stage during this period 

were defined as meiotically incompetent. One portion was Iysed immediately 

for immunoblotting and the other portion was incubatAd for an additional 9 h 

in the presence of 1 pM okadaic acid. By the end of this second incubation, ail 

of the oocytes had undergone GVBD, although none had formed a polar body. 

Immunoblotting revetjled that the GV-arrested oocytes collected aft9r 9 h 

incubation contained the fast-migrating, non-phosphorylated forms of p42ERK2 

and p44ERKI
, whereas the okadaic acid-treated oocytes contained the slow­

migrating, phosphorylated forms (Figure 5A, lanes 1, 2). 

To examine more closely the kinetics of the okadaic acid-induced mobility 

shift, the following experiment was performed. Oocytes were isolated from 14-

to 16-day mice, incubated for 3 h, and those that remained at the GV stage 

were selected. These oocytes were incubated in medium containing okadaic 
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acid and checked every 30 minutes for GVBD. Under these conditions, GVBD 

occurred in 48% of the oocytes after 2 h of incubation (data not shown). 

These oocytes displayed certain morphological abnormalities, particularly IOS5 

of spherical shape (data not shown). Aliquots of these oocytes were collected 

for immunoblot analysis at 2, 4, 6, and 18h after the start of the drug 

treatment. 

As shown in Figure 5B (Ianes 1, 2), the incompetent oocytes that 

underwent GVBD during 2 h e;<posure to okadaic ncid contained both the fast­

migrating and the slow-migrating forms of p42ERK2 and p44ERK1
• Sy contrast, 

oocytes that remained at the GV stage in the presence of the drug contained 

only the fast-migrating, non-phosphorylated forms. Oocytes that underwent 

okadaic acid-induced GVBD contained both fast- and slow-migrating forms of 

MAP kinase after 4, 6, and 9 h of incubation. These results indicate that when 

incompetent oocytes are exposed to okadaic acid, a portion of p42ERK2 and 

p44ERK1 becomes phosphorylateù within 2 h. 

ImmunofllJorescent analysls using anti-a-tubulin of the incompetent 

oocytes exposed to okadaic acid for 15 h indicated that no spindle was 

assembled (Figure 5C), which is consistent with previous reports (Rime & Ozon, 

1990; Alexandre et al., 1991). The chromatir. was condensed and clumped 

into several aggregates . 
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Expression of MAP kinase in meiotically competent bovine oocytes 

ln order to test wheth6r bovine oocytes contain similar species of MAP 

kinase as seen in mouse oocytes, fifty GV bovine oocytes and fort y GV mouse 

oocytes were Iysed, separated on SDS gels, followed by immunoblotting using 

the 691 antibody described above. 

Three separate bands were detected in the bovine sample. The two top 

bands migrated at the same level as p42 and p44 of the mouse sample, 

suggesting that MAP kinase is present in the bovine oocyte and has the same 

molecular weight as in the mouse oocyte. A third band which is absent in the 

mouse oocyte was a\so detected in the bovine oocyte. This band migrated 

faster than the other two and corresponds to a protein of approximately 40 kDa 

(Figure 6A). Ali three bands represented the unphosphorylated species of 

bovine MAP kinase. 

To look at the phosphorylation pattern of bovine MAP kinase, fifty 

oocyt~s were Iysed at three time points of maturation, Oh, 12h, and 18h which 

reQresentthe GV, metaphase l, and metaphase Il stages, respectively. Samples 

were subjected to SOS-PAGE, electrically transferred onto nitrocellulose 

membranes, and immunoblotted using the 691 antibody described above. Ali 

three bands we~e detected in each la ne at each time point. In addition, the two 

upper bands, presumably the p42 and p44 isoforms, contained doublets where 

each isoform had both the phosphorylated and the unphosphorylated forms of 
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the protein as judged by the slower mobility shift on the gel. In addition, a shift 

in the p42 band trom the unphosphorylated, fast migrating torm in the 

metaphase 1 sample (Figure 6B, lane 2), to the phosphorylated, slow migrating 

form in the metaphase Il sample (Figure 6B, lane 3) is observed. In contrast to 

the mouse oocyte where the switch occurs in both species at the same time, 

the bovine forms of bath p42 and p44 are switched trom the unphosphorylated 

ta the phosphorylated during the progression trom metaphase 1 to metaphase 

Il. This observation rT'ight have sorne involvement in the stepwise process of 

meiotic maturation in the bovine oocyte . 

92 



• 

• 

DISCUSSION 

It is well-established that as mammalian oocytes progress through the 

growth phase of development they acquire the ability to undergo meiotic 

maturation (Sorensen and Wassarman, 1976; Albertini, 1992), but the 

molecular basis of this rneiotic competence is unknown. We investigated 

whether the acquisition of competence might be linked to changes in the 

quantity or phosphorylation pattern of the two major MAP kinase species 

present in mouse oocytes, p42ERK2 and p44ERK
'. To this end, we collected 

oocytes trom mice aged between 5 days and 21 days post-partum, when a 

large population of oocytes progress synchronously through growth. Oocytes 

obtained fram mice up to 13 days of age were meiotically incompetent, 

whereas as those obtained from older mice were partially or fully competent, 

consistent with the previous results. Nevertheless, both MAP kinase species 

were detectable in oocytes obtained fram mice as young as 5 days of age. 

These results indicate that the acquisition of competence is not associated with 

the de novo appearance of p42ERK2 or p44ERK
'. 

During oocyte growth, the quantity of p42ERK2 and p44ERK
' increased as 

judged by the intensity of staining in immunoblots. The amount of each relative 

to the other appeared to remain constant during grawth, which suggests that 

their synthesis is co-ordinately controlled. As increases in the quantity of 
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several other proteins and in the total protein content also occur during growth 

(Schultz, 1986; Wassarman, 1988), the present results therefore do not 

indicate whether the concentration of p42ERK2 and p44ERK7 change during 

growth. It is possible that changes in the concentration of p42ERK2 or p44ERK7
, 

which would not be detected by our methods, are critical for meiotic 

competence. It may be more likely, however, that these proteins accumulate 

steadily during oocyte growth but do not directly regulate meiotic competence. 

Previous results (Sorensen and Wassarman, 1976; Wickramasinghe and 

Albertini, 1992), confirmed in the present study, showed that meiotic 

competence is acquired in two stages: first, the ability to enter rnetaphase and 

second, the ability ta complete the first meiotic division. We observed that 

p42ERK2 and p44ERK7 became phosphorylated in partially competent oocytes, 

which can enter metaphase but cannot complete meiosis 1. This resembles the 

situtation in fully competent oocytes, where p42ERK2 and p44ERK7 become 

phosphorylated during maturation by means of a process requiring protein 

synthesis (Verlhac et al., 1993; Gavin et al., 1994). These results considered 

together imply that partially competent oocytes possess the capacity to 

synthesize those proteins required to generate phosphorylated p42ERK2 and 

p44ERK7
• The nature of these proteins is unknown, but could include upstream 

activators of MAP kinase such as MEK, Raf, or MEK kinase (Roberts, 1992; 

Lange-Carter et al., 1993). We conclude that the failure of partially competent 
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oocytes to complete meiosis 1 is not due to an inability to generate 

phosphorylated MAP kinase, but rather to a defect acting downstream or 

independently. 

It should be noted, however, that the partially competent oocytes were 

not examined until after 18 h of culture. As phosphorylation of p42ERK2 and 

p44ERK1 normally occur after 2 to 4 h of culture (Sobajima et al., 1993; Verlhac 

et al., 1993; Gavin et al., 1994), it is possible that this event is delayed in 

partially competent oocytes. This is difficult to test, because partially 

competent oocytes cannot be identified until about 12 h of culture when fully 

competent oocytes amit the first polar body. If phosphorylation were delayed 

in partially competent oocytes, this might disrupt the synchrony of timing 

between MAP kinase phosphorylation and another event required for meiosis 

1. 

We also observed that the p42ERK2 and p44ERK1 in meiotically incompetent 

oocytes could become phosphorylated, as judged by retarded electrophoretic 

mobility, when these oocytes were treated with the inhibitor of protein 

phosphatase types 1 ami 2A, okadaic acid. This drug also induces meiotically 

incompetent oocytes to enter metaphase (our results, Gavin et al., 1991; 

Chesnel et al., 1994) and activates MAP kinase in fully competent oocytes 

(Gavin et al., 1994', extracts prepared trom oocytes (Nebreda and Hunt, 1993), 

and quiescent fibroblasts (Gotoh ct al., 1990). Two inferences may be drawn 
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from the observation that phosphorylated forms of p42ERK2 and p44ERK1 were 

observed in the okadaic acid-treated incompetent oocytes. First, incompetent 

oocytes apparently possess type 1 or type 2A phosphatases whose activity is 

required to méjintain MAP kinase in a non-phosphorylated state. Second, they 

also possess protein kinases that generate phosphorylated MAP kinase when 

the phosphatase activity is inhibited. One possibility is that both kinase and 

phosphatase act directly on p42ERK2 and p44ERK1
, the predominance of the non­

phosphorylated form being due to relatively higher activity of the phosphatase. 

Phosphatases specifie for MAP kinase have recently been identified (Keyse and 

Emslie, 1992; Charles et al., 1992; Sun et al, 1993; Zheng and Guan, 1993; 

Ward et al., 1994). However, these dual-specifie threonine/tyrosine 

phosphatases may not be sensitive to okadaic acid, whieh does not inhibit 

tyrosine phosphatase (Hardie et al., 1991), th us ma king it unlikely that the drug 

aets on a MAP kinase-specifie phosphatase. Alternatively, one of the 

components of the MAP kinase phosphorylation pathway, such as a MAP 

kinase kinase (G6mez and Cohen, 1991), may be kept inactive in incompetent 

oocytes by an okadaic acid-sensitive phosphatase. 

Although p42ERK2 and p44ERK1 became phosphorylated in meiotically 

ineompetent oocytes whsn phosphatase activity was inhibited, this may not 

reflect the natural mechanism that operates during meiotic maturation of 

competent oocytes. We observed that okadaic acid-induced phosphof\"lation 
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of p42ERK2 and p44ERKt had occurred by 2 h of culture (see also Gavin et al., 

1994). Sy contrast, their phosphorylation during meiotic maturation requires 

between 2 and 4 h of culture (Verlhac et al., 1993). Also, okadaic acid­

induced phosphorylation can precede entry into metaphase (Gavin et al., 1994), 

whereas phosphorylation during mammalian meiotic maturation can occur only 

after entry into metaphase (Sobajima et al., 1993; Verlhac et al., 1993). 

Similarly, when p21'1t$ is injected into immature Xenopus oocytes, MAP kinase 

is activated more rapidly, relative to the activation of maturation-promoting 

factor, than during progesterone-induced maturation (Nebreda et al., 1993). 

Perhaps okadaic acid and p21'·" are able to activate MAP kinase through a 

pathway that is different from that used during physiological maturation. 

Our results indicate that the acquisition of meiotic competence is not 

directly linked to substantial changes in the quantity or phosphorylation 

patterns of MAP kinase. This suggests that the differences in microtubular 

morphology between incompetent and competent oocytes are not directly 

regulated by MAP kinase. To address whether MAP kinase is required for the 

microtubular rearrangements during meiotic maturation, it will be necessary to 

eliminate this activity fram meiotically competent oocytes. Additionally, 

however, it is possible that MAP kinase plays a raie in oocyte growth. Oocyte 

growth requires products of the somatic cells that surround the oocyte 

(Buccione et al., 1990; Eppig, 1991). Among these is the c-kit ligand (Manova 
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et al., 1993), which could interact with the c-kit receptors present in the 

oocyte (Horie et al., 1991; Keshet et al., 1991), and recent evidence suggests 

a direct raie for c-kit ligand in stimulating oocyte growth (Packer et al., 1994). 

MAP kinase is a component of the pathway by which ligand-stimulated c-kit, 

like other tyrosine kinase receptors, transmits a signal to the cell nucleus 

(Pelech and Sanghera, 1992). Given that p42ERK2 and p44ERKt were present in 

oocytes at ail stages of growth examined, MAP kinase may be required for the 

large and rapid increase in cell size that occurs during the growth phase. This 

hypothesis could be tested by depleting p42ERK2 and p44ERKt in growing 

oocytes . 
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Figure 1. Photomicrographs of fully grown mouse oocytes collected from 

antral follicles and cultured in vitro. A, B, C, oocytes at the dictyate, 

metaphase 1, and metaphase Il stages, respectively. GV, germinal vesicle, ZP, 

zona pellucida, PB, polar body. Bar= 10 mm . 
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Figure 2. p42ERK2 and p44ERKt in meiotically incompetent and competent 

mouse oocytes. Ovarian oocytes were collected from mice of different ages and 

immunoblotted using antibody 691 raised against subdomain XI of the rat ERK1 

gene product. Ali oocytes were at the GV-stage, except the 20-day group 

which contains a mix of GV- and GVBD-stage oocytes. Each la ne contains 100 

oocytes. Lane 1, 20-day mies. Lane 2, 18-day mice. Lane 3, 15-day mice. Lane 

4, 10-day mice. Lane 5, 8-day mice. Lélne 6, 5-day mice . 
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Figure 3. Immunofluorescent analysis of the mouse oocytes during given 

stages of meiotic maturation. Oocytes cultured for 18h in MEM wera stained 

with Hoechst (A, B, C) and reacted with anti-tubulin antibodies (A', B', C') at 

these stages: A, A', an oocyte that arrested at the GV stage. B, B', an oocyte 

that underwent GVBD but failed to complete maturation, termed partially­

competent. C, C', an oocyte that completed maturation and arrested at 

metaphase Il. Bar = 10 'l1m . 
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Figure 4. Phosphorylation of p42ERK2 and p44ERK1 and spindle formation in 

partially competent oocytes. (Al. Immunoblot. Ovarian oocytes were collected 

from 14- to 16-day mice, incubated for the indicated period of time, und 

immunoblotted using antibody 691. Each lane contains 50 oocytes. Lane 1, 18 

h, ail oocytes contained a GV. Lana 2, 6 h, ail oocytes had undergone GVBD. 

Lane 3, 9 h, ail oocytes had undergone GVBD. Lane 4, 18 h, ail oocytes had 

undergone GVBD. Lane 5, 18 h, ail oocytes had emitted the first polar body. 

(B). Immunofluorescence. Ovarian oocytes were incubated for 18 h and those 

that underwent GVBD but did not emit a polar body were fixed and stained 

using an anti-a-tubulin antibody (bottom). Chromosomes were stained using 

DA PI (top). Bar = 8 mm . 

113 



• A 8 
1 2 1 2 3 4 5 

44- '"~ 

42-

44 --- !!t 42 -

• 114 



• 

• 

Figure 5. Effect of okadaic acid on meiotically incompetent oocytes. (A). 

Phosphorylation of p42ERK2 and p44ERKI
• Ovarian oocytes were collected trom 

14- to 16-day mice, incubatad for 9 h, and those that remained at the GV stage 

were selected. One portion was prepared for electrophoresis (left lane)~ ail 

oocytes contained a GV. The other portion was incubated in the presence of 

1 pM okadaic acid for 9 h and then prepared for electrophoresis (right Jane); ail 

oocytes had undergone GV8D. Immunoblotting was performed using antibody 

691. Each Jane contains 50 oocytes. (8). Timing of phosphorylation. Ovarian 

oocytes were collected as before and incubated for 3 h. Those that ,amained 

at the GV stage were exposed to 1 pM okadaic acid for the indicated Jength of 

time and immunoblotted using antibody 691. Ali oocytes in Janes 1, 3, 4, 5 

underwent GV8D; ail oocytes in Jane 2 remained at the GV-stage. Lane 1, 2 h. 

Lane 2, 2 h. Lane 3, 4 h. Lane 4, 6 h. Lane 5, 9 h. Each lane contains 50 

oocytes. (C). Immunofluorescence. Ovarian oocytes were incubated for 3 h and 

those that remained at the GV stage were incubated for an additionaJ 1 5 h in 

the presence of 1 pM okadaic acid, fixed and stained using an anti-a-tubulin 

antibody (right). Chromosomes were stained using DAPI (left) . 

115 



• 

• 
-

A 

B 

44----..,.-
42 ~ 

1 2 

44-. '<-.-
42-. 

1 2 

116 



• 

• 
h 

Figure 6. p42ERK2 and p44ERK1 in meiotically competent bovine oocytes. A, 

a sample of 40 fully grown mouse oocytes (Lane 1) and 50 fully grown bovine 

oocytes (Lane 2) were immunoblotted using antibody 691. In both samples, 

oocytes were at the GV stage. B, Phosphorylation of p42 and p44 ;!1 

meiotically competent bovine oocytes. Each lane cClntained 50 oocytes. 

Bovine oocytes were Iysed at 0, 12, and 24h following culture in MEM 

corresponding to GV, metaphase 1, and metaphase Il stages of meiotic 

maturation, respectively. lane 1, ail oocytes were at the GV stage. Lane 2, 

ail oocytes had undergone GVBD. Lane 3, ail oocytes had emitted a polar 

body . 
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TABLE 1 

THE EXTENT OF MEIOTle MATURATION IN GROWING 
MOUSE OOCYTES IN RELATION TO THE AGE OF THE 

MOUSE. 

Age Total number of GV (%) GVBD(%) PB 1 (%) 
(Days) e99s 

10 106 100 0 0 

13 32 94 6 0 

14 '110 55 16 29 

15 100 31 42 27 --
16 100 41 7 52 

17 166 18 2 80 

18 100 8 6 86 
-
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TABLE 2 

PARTIALL Y -COMPETENT OOCYTES 
IN GROWING MOUSE OOCYTES. 

Ouration of Total number of Metaphase 1 Metaphase Il 
culture (h) GVBD oocytes (0/0) (%) 

9 45 87 13 

20 64 16 84 
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CHAPTER III 

General Discussion 
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1. Summ@ry of experimental findings 

ln this thesis, 1 have described experiments do ne using oocytes fram the 

CD-1 mouse strain to investigate some of the changes that may be relevant in 

elucidating the mechanism underlying the acquisition of meiotic competence in 

mammalian species. 

1.1. Acquisition of meiotic competence during oocyte growth 

The mammalian ovary contains at any gi'"len time during the life of the 

female a mixed population of follicle-enclosed oocytes in different stages of 

development. Basically, two major groups inhabit the ovary, the small 

nongrowing group of oocytes and those that have initiated their growth phase. 

The total number of oocytes in the ovary is the largest at the time of birth and 

it decreases thereafter with age. This decrease in the number of oocytes is 

partly due to the flow of a group of oocytes which start their growth phase 

synchronously (Pedersen, 1968). In the mause, oocytes which start their 

growth phase shortly after birth reach their full size in about two weeks. 

Around the time they reach thei; full size, oocytes acquire the capacity 

to undergo meiotic maturation when exposed to a maturation-inducing 

environ ment (Sorensenand Wassarman, 1976; Schultz and Wassarman, 1977). 
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Previous reports have linked the acquisition of meiotic competence to the 

age of the mouse fram which oocytes were isolated. The age of the mouse is 

directly linked to the size of the growing oocyte which, in turn, is a factor in 

the acquisition of meiotic competence (Sorensen and VVassarman, 1976, 

Wickramasinghe et al., 1991). 

To establish the synchrony of growth and meiotic competence among 

oocytes that will be used in answering the proposed questions, the extent of 

meiolÏc maturation of oocytes isolated at increasing ages of the juvenile mouse 

was studied in our breeding colony. This was shown by culturing follicle-free 

oocytes in culture medium where competent oocytes underwent GVBD within 

3h of culture, and assembled their first meiotic spindle 6h later. Within 4h, the 

second meiotic spindle formed and oocytes completed their meiotic maturation. 

Following a culture period of 18h, oocytes obtained from mice younger 

than 13 days of age were incapable of undergoing GVBD, and are thus said to 

be meiotically incompetent. Oocytes isolated from mice in the age groups of 

14-16 days, were capable of undergoing GVBD but contained a subgroup of 

oocytes that arrest following the formation of first meiotic spindle and are 

termed partially competent oocytes. Most oocytes isolated from 17 days or 

olde,. mice were capable of completing their maturation and extruding theïr tirst 

polar body. Such oocytes are referred to as fully competent . 
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These results confirmed previous reports and established the presence 

of a group of oocytes that, during their growth phase, acquire the ability to 

undergo maturation in a progressive manner in the juvenile mouse. 

1.2. Expression ol~.JYIAP kinase in growing oocytes 

Amang the flJatures of a growing oocyte is the accumulation of materials 

that will be neeoed for fertilization and the early stages of embryogenesis. 

Such materials include proteins which become expressed after the oocyte starts 

its growth phase. Among these proteins are the zona pellucidae proteins, 

lactate dehydrogenase and others that are still unidentified. 

Previous reports have shown the presence of two species of mitogen­

activated protein (MAP) kinase in fully grown mouse oocytes, namely p42 and 

p44. Upon meiotic resumption, both species become phosphorylated, MAP 

kinase becomes active as witnessed by its ability to phosphorylate myelin basic 

protein, and is localized to the MTOCs on both meiotic spindles of meiosis as 

seen by immunofluorescence (Vellhac et al., 1993). 

However, in small and growing oocytes which are incapable of entering 

metaphase under the appropriate conditions, neither the presence of MAP 

kinase nor its phosphorylation state has been reported. 

Using the western blotting technique, both species of MAP kinase, p42 

and p44, were found ta be present in oocytes isolated trom mice as early as 5 
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days of age. At this stage, oocytes have just started their growth phase and 

are incompetent to resume meiosis. As expected, only the nonphosphorylated 

species of p42 and p44 were detected in oocytes collected trom incom~ letent 

oocytes. This 1alls in agreement with previous results where the 

phosphorylated species of p42 and p44 are not detected in GV-arrested 

oocytes. 

That MAP kinase is present very early during the life of a female 

eliminates the possibility that MAP kinase balongs to the group of proteins that 

become expressed only after the oocyte has started its growing phase in 

preparation for the acquisition of meiotic competence. Alternatively, due to its 

presence at an early stage of the oocyte development, it would be interesting 

to hypothesize that MAP kinase is an essential protein in the growth process 

or such a related event. This hypothesis could be tested by depleting the stock 

of p42 a'ld p44 from the oocyte and documenting any changes that occur at 

the level of oocyte growth, maturation or at a later stage of embryonic 

development. 

1.3. MAP kinase in Dartially competent oocytel 

The acquisition of meiotic competence in growing oocytes has been 

reported to occur in a stepwise process where the first step is acquired when 

oocytes undergo GVBD and reach metaphase 1 of meiosis 1. The second step 
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is accomplished when oocytes complete maturation and arrest at metaphase 

Il of meiosis awaiting either fcrtilization or parthenogenetic activation (Sorensen 

and Wassarman, 1976). This process seems to be related to the age of the 

mouse as growing oocytes isolated from mice between 14-16 days of age are 

enriched for those oocytes that are capable of undergoing GVBD but arrest at 

metaphase 1 th us failing to complete maturation. The majority of oocytes 

isolated from mice 17 days of age or older are capable of completing meiotic 

maturation. The results shown in the previous section on the extent of meiotic 

maturation are in accordance with this hypothesis. 

Nevertheless, the molecular components regulating the program of partial 

meiotic competence exhibited by metaphase I-arrested oocytes are not known. 

One molecule that might be involved in this regulation is MAP kinase which 

was compared in oocytes with full rneiotic competence and those with partial 

competence. Parameters that were tested in the two groups were the presence 

or absence of MAP kinase, the phosphorylation pattern of both species of MAP 

kinase, namely p42 and p44, and the rnicrotubular and chromosomal 

configurations. 

Upon comparing the péJttern of expression of MAP kinase in partially 

competent and fully competent oocytes, the two species, p42 and p44, were 

both detected in both groups. 

Using the retarded mobility shift as an êlssay to test for the 
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phosphorylated species, partially competent oocytes were found to contain the 

phosphorylated, slow-migrating species of the protein similar to metaphase Il 

oocytes. The finding that both species of MAP kinase are present and 

phosphorylated in metaphase I-arrested oocytes eliminates the implication of 

MAP kinase in their failure of complete maturation. 

Immunofluorescent results campa ring the chromosomal and microtubular 

structures of partially and fully competent oocytes did not reveal any major 

deficiencies at least at the morphological level. Partially competent oocytes 

which failed to form a polar body following an 18h culture period contained 

bivalent chromosomes situated on the equator of a seemingly normal spindle. 

Due to the fact that metaphase I-arrested oocytes cannot be identified 

any earlier than 12h of culture, it is plausible that these oocytes were slower 

in either their phosphorylation process or in the assembly of their spindle. 

Alternativ Jly, MAP kinase in metapha~.a I-arrested oocytes might be regulated 

differently by upstream kinases or is itself regulating downstream substrates in 

a different fashion than is usually the situation in fully competent oocytes. To 

test these hypotheses requires a fine dissection of the upstream regulators and 

downstream substrates of MAP kinase in a given signal transduction pathway . 

126 

1 



• 

• 

• 

Meiotic maturation can be arrested in fully grown, competent mouse 

oocytes by increasing the levels of PKC and PKA (Alexandre et al., 1991). 

However, exposure of such oocytes to okadaic acid, a phosphatase inhibitor, 

releases them from their meiotic arrest. Meiotically incompetent oocytes are 

naturally arrested at the diplotene stage of meiosis. In this thesis, the capacity 

of meiotically incompetent oocytes to enter metaphase was tested using 

okadaic acid. Such oocytes are those that cannot enter metaphase following 

their release fram their surraunding follieles even after a 9h of culture period. 

ln the presence of lpM okadaic acid, incompetent oocytes underwent GVBD 

within 9h following their culture. When t'le oocyte proteins were separated on 

SOS gels and immunoblotted for MAP kinase, both species of MAP kinase, p42 

and p44, were fou,...1 to be phosphorylated as manifested by their slower 

mObility shift than the nonphosphorylated forms present in meiotically-arrested 

oocytes. Th:s finding imply that the machinery required for the phosphorylation 

of MAP kinase is present in incompetent oocytes but, probably for sorne 

developmentally- regulated purposes, is put on ho Id by sorne factor(s). A good 

candidate for such a factor i~ the two phosphatases, 1 and 2A, which are 

inhibited by the effect of okadaic acid. 

PP1 and PP2A might be regulating either the phosphorylation step of 

MAP kinase directly or acting upstream on sorne regulator of MAP kinase along 

the MAP kinase pathway. Once activated, such a regulator would cause the 
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MAP kinase directly or acting upstream on some regulator of MAP kinase along 

the MAP kinase pathway. Once activated, such a regulator would cause the 

phosphorylation of MAP kinase. Endorsing such a hypothesis requires testing 

the effect of okadaic acid on the various kinases along the MAP kinase 

pathway and documenting any changes in their phosphorylation patterns. 

The effect of okadaic acid on the morphology of treated oocytes was 

assessed. When the minimal concentration of the drug was used, 1pM, sorne 

changes were observed as treated oocytes lost their spherical shape and 

became irregularly shaped. Immunofluorescent analysis of treated oocytes 

showed that those oocytes which had undergone GVBD contained condensed 

chromosomes that were never capable of forming separate bivalents as is 

usually the case in normaliy-occuring GVBD. On the other hand, the 

microtubular network was deeply disrupted, as 110 microtubules were dettlcted 

by immunofluorescence in such treated oocytes. This implies that the drug has 

a double effect on the maturation state of the oocyte. On the positive side, 

okadaic acid can induce GVBD in otherwise incompetent oocytes. On the other 

hand, however, the drug acts negatively on the formation of metaphase spindle 

which might suggest the involvement of phosphatases 1 and 2A in the normal 

assembly of spindle microtubules. The clumped configuration of chromosomes 

in okadaic acid treated oocytes could be due to a direct effect of the drug on 

the chromosomes. The other possibility might be due to the absence of a 
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metaphasic netwt'lrk represented by the spindle which plays a raie in separating 

condensing chromosomes into the homologous bivalents. 

A time course experiment showed that the minimum time required for 

okadaic acid to drive incompetent oocytes into maturation was 2h. 

Immunoblotting results however, do not show a complete shift in the 

nonphosphorylated species of p42 and p44 into the phosphorylated forms as 

ail four forms of MAP kinase were detected, p42, phosphorylated p42, p44, 

and phosphorylated p44 following the three time points examined ,2,4, and 6h 

in the presence of the drug . 
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