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Mitogen - activated protein kinase during oocyte growth in the mouse

Abstract

Ocgenesis is the developmental process that produces healthy and
fertilizable ova. (One crucial aspect of oogenesis is. the acquisition by an cocyte
of the capacity to execute the meiotic divisions which generate the haploid
germ cell. Oocytes that can execute the meiotic divisions which occur during
the process of meiotic maturation are said to be meiotically competent.
Although the molecular aspects of meiotic competence are not known, there
is evidence suggesting that the microtubular network may be involved. At
metaphase, the microtubular network is responsible for assembling the spindle,
an apparatus on which the chromosomes become aligned to be separated
during meiotic divisions.

Previous reports have identified two species of mitojen-activated protein
(MAP) kinase in fully grown, meiotically competent mouise oocytes. During
meiotic maturation, MAP kinase becomes phosphorylated, activated as a
kinase, and associated with the microtubule-organizing centers at thie poles of
the meiotic spindles.

in this study, the role of MAP kinase in the acquisition of meiotic
competence in growing oocytes was investigated. The results presented in this
thesis show that two species of MAP kinase, p42 and p44, are present in their
unphosphorylated forms in oocytes as early as 5 days of age. At this age,
oocytes are small and have not acquired the capacity to resume meiosis. They
are referred to as meiotically incompetent. MAP kinase continues to be present
throughout the growth phase and up to the acquisition of rneiotic competence.

In growing mouse oocytes, a group of partially competent oocytes are
abundant. Such oocytes arrest at metaphase | where they assemble a

morphologically normal spindle. Immunoblotting results of partially competent



oocytes show that MAP kinase is present ard becomes phosphorylated
following culture as is indicated by the retarded mobility on the SDS gels.

Okadaic acid, an inhibitor of protein phosphatases 1 and 2A, induces
incompetent oocytes to enter metaphase. These oocytes contain the slow
migrating phosphorylated forms of p42 and p44, indicating that okadaic acid
causes the phosphorylation of MAP kinase. A time course study shows that
the okadaic acid-induced phosphorylation of MAP kinase occurs coincidentally
with entry into metaphase in incompetent oocytes. In fully competent oocytes,
this phosphorylation occurs after entry into metaphase. In addition, these
oocytes do not assemble a spindle, indicating that phosphorylation of MAP
kinase, although it may be necessary, is not a sufficient event to induce spindle
formation.

The presence of MAP kinase in bovine oocytes is also investigated.
Immunoblotting of bovine oocytes reveals the presence of three species of MAP
kinase. In the immature oocyte, all three species are present in the
unphosphorylated forms. Upon maturation, a partial phosphorylation of two
species corresponding to p42 and p44 is observed. This phosphorylation

seems to be complete by the end of meiotic maturation.
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Protéine-activée par mitogéne kinase durant la ¢roissance
des ovocytes chez la souris

Abrégé

L’ovogenése est le processus developmental qui a pour but de produire
des ovules sains et fécondables. Parmi les aspects de l'ovogenése est
I’acquisition par I’ovule de la capacité de subir les divisions méiotiques qui vont
rapporter I'état haploide des cellules sexuelles. Les ovules qui sont capable
d'accomplir des divisions méiotiques durant le processus appelé maturation
méiotique, sont désignés d’étre méiotiquement compétents. Malgré que les
aspects moléculaires de la competence méiotique sont mal compris, il existe
des preuves qui suggérent la possibilité que le réseau microtubulaire pourrait y
étre impliqué. A metaphase, le réseau microtubulaire est responsable
d’assembler le fuseau métaphasique, un appareil sur lequel les chromosomes
seront alignés afin d’'étre séparés durant la division méiotique.

Fréalablement, des résultats ont identifié deux espéces de la protéine-
activée par mitogéne (PAM) kinase dans les ovules a grandeur complet qui sont
compétent méiotiquement chez la souris. Pendant la maturation, PAM kinase
devient phosphorylé, activé tant que kinase, et s’associe avec les centres
d’organization des microtubules au niveau des poéles des fuseaux méiotiques.

L’étude nrésentée dans la thése a pour but de rechercher le réle du PAM
kinase dans l'acquisition de ia compétence méiotique dans les ovocytes qui
sont en train de croftre et qui ne sont pas atteint leurs grandeurs maximals. Les
résultats présentés la-dedans démontrent que le PAM kinase est présent sous
sa forme nonphosphorylée dans les ovocytes des souris dgées d’aussi peu que
5 jours. A cet age, les ovocytes sont petits et n‘ont pas encore acquis la
capacité d’amorcer la méiose. PAM kinase reste présent pendant la période de
croissance, voire jusqu’'a I’acquisition de la compétence méictique. Parmi les

ovocytes qui ont commencé a croitre se trouve un groupe qui ne sera jamais



capable de compléter la maturation méiotique. PAM kinase se trouve sous la
forme nonphosphorylée chez tels ovocytes. De plus, ces ovocytes qui arrétent
a metaphase | sont capable d’assembler des fuseaux qui ont l'air d’étre
morphologiquement normals.

L'acide okadaique, un inhibiteur des protéines phosphatases, induit les
ovocytes incompétents a entrer en métaphase. De plus, ces ovocytes
manifestent les formes plus lentes du p42 et p44 qui sont phosphorylées, ce
qui indique que |'acide okadaique cause la phosphorylation du PAM kinase.
L’induction de la maturation par I’acide okadaique ést précoce et coincide avec
la phosphorylation de la PAM kinase contrairement aux ovocytes compétents
ou la phosphorylation se produit suivant la maturation. Ces ovocytes
n‘assemblent pas des fuseaux métaphasiques, ce qui indique que méme si la
phosphorylation du PAM kinase n’est pas suffisant a induire la formation du
fuseau métaphasique. Néanmoins, il reste a determiner s’il pourrait y étre
nécessaire.

Les ovocytes du bovin ont été éxaminé pour la présence du PAM kinase.
On a trouvé que trois espéces de cette protéine sont présentes dans les
ovocytes prématurés sous sa forme nonphosphorylée. Ure fois a métaphase,
la forme nonphosphorylée des deux espéces, correspondant a8 p42 et p44,
deviennent phosphorylées partiellement. Vers la fin de la maturation méiotique,
seule la forme phosophorylée du PAM kinase se trouve dans les ovules du

bovin.




TABLE OF CONTENTS

page
Table of Contents . .. . ... . i ittt e it e e e i
Acknowledgements . . . ... ... i e e e e e iv
List of FIgQUIesS . .. v i it ettt s e et i e s s vi
Listof Tables . . ... . it i e i i s s viii
Preface: Formatofthe Thesis .. ...... .. ... .. .. ix
Chapter 1
Introduction ... .. ... . . i i e e 1
1.1. From a primordial germ cell to an egg: An overview . ...... 2
1.2. The mouse oocyte as a model to study meiotic maturation .. 6
1.3. Oocyte growth duringoogenesis . ........... .0 eu. 8
1.3.1 Sizeandgrowth ... ....... . .. it 8
1.3.2. Differentiationandgrowth .. ............. .. s, 9
1.3.32. Protein synthesis during growth 9
1.3.4. Role of the follicle duringgrowth . ... ............... 10
1.3.5. Acquisition of meiotic competence during growth . ...... "
1.3.6. C-hit . e i e e e 12
1.4. Acquisition of meiotic competence ..............c.... 13
1.4.1. Role of oocyte-follicle interaction .. ... ... EEEII I, 14
1.4.1.1. Follicular factors promoting meiotic arrest . . ...... 16
A CAMP . . L e e i e e e 17



B. Calcium ... .. . e e 18
1.4.2. Role of microtubular network ..................... 19
1.4.3. Role of protein phosphorylation . .. . ................ 21

A. Maturation promotingfactor ........... ..o . ... 22

B. Cytostatic factor . ... . ... .. i, 26

C.Cmos . .. e e e e 27

D. Mitogen activated protein kinase . ................. 29
1.8, SUMMaArY . oot e e e e 33
1.6. References . ..........c ..t innenans 34
1.7 FigUIES . . ot e e e e e e e e 54

Chapter 2

Mitogen-activated protein (MAP) kinase during the acquisition
of meiotic competence by growing oocytes of the mouse . .. .... 72

Abstract ... . . ... . e 73
1o To 18 o o o 75
Matcrials and Metheds 79
Results . .. . . . e e e e 84
Discussion . . .. ... .. e e 93
Acknowledgements . . . .. vt i it e e e 99
References .. ... .. i e e e 100
Figures . .. .o e e e e e e e e 106
Tables . ... i e e e 118



Chapter 3

Genaral DisCUSSION & . . v o v it e e e 120
1.  Summary of experimental findings ................... 121
1.1. Acquisition of meiotic competence during oocyte growth . . .. 121
1.2. Expression of MAP kinase in growing oocytes ........... 123
1.3. MAP kinase in partially competentoocytes ............. 124
1.4. Driving incompetent oocytes into metaphase . . .......... 127
1.5. References ... .. ... ittt 130

en



ACKNOWLEDGEMENTS

First, | would like to thank my supervisor, Dr. Hugh Clarke, of the
Department of Obstetrics and Gynecology for his guidance and patience during
my stay in his laboratory.

From the Department of Pathology, | am indebted to Dr. John Richardson
for his invaluable advice during my studies. | extend my thanks for the
department of Pathology for giving me the cpportunity to set my foot in the
graduate program. | am especially grateful to Dr. Edith Zorychta for her
encouragement throughout this thesis. As well, | thank the secretary, Mira
Hoffman for providing me with all the paper work.

From the Department of Obstetrics and Gynecology, | appreciate the
interest and advice of Dr. Reinhart Billiar of the advisory committee throughout
my studies. | extend my appreciation to Dr. Riaz Farookni (I hope | spelled it
right this time!) for his generosity as well as his critique throughout my stay on
the tnird floor. | appreziate the work of the Animal Care technician, Lorraine
Griffin, for keeping the mice healthy. 1 especially recognize the help of the
secretary, Beryl Rodrigues, who provides always an enjoyable work
environment. | am especially thankful for the support of my peers especially for
Deepa Joshi and Asma Al-Amleh. | also would like to thank the Department for

the financial support.




This work was supported by the Medical Research Council of Canada.
Finally, | would like to thank members of my family in Lebanon as well
as in Québec for their support. | especially note my "little" brother, Ghassan

Harrouk, for his understanding and for providing a good home environment.



To the memory of my father .........ccovoiiiiiiiiiiii e




List of figures

Chapter 1

Figure 1. A schematic representation of the development
of mammalian oocytes from oogonia to fully

GrOWN OOCYEES & .« o vttt ot vt et e vt ie e e nnananns

Figure 2. Diagrammatic representation of two aspects of
oogenesis, meiosis and growth, in the life cycle

Of the MOUSE. . & v vttt ottt st e s e is s e o i s nen s o

Figure 3. Diagrammatic representation of the stages of oocyte

MeIotiC MAatUratioN. .. . v v v it ettt ettt s o e nonn e s

Figure 4. Fluctuation of maturation promoting factor (MPF) activity

during the early froglifecycle. . ... ...... ... ... . ...

Figure 5. The cycle of association between the two components

of MPF, p34 and cyclin in the G2/M transition ...... ...

Figure 6. The fluctuation in cyclin abundance in relation to the

activity of MPFand Hl kinase ... . ................

Figure 7. Regulation of P34°%? protein kinase during the G2/M

transition of the cell cycle of the fissionyeast .........

Figure 8. Model for the mechanism of action of c-mos on MAP
kinase and exit from metaphase through the effect

oncytostaticfactor. ... ... .... .. . .. i e

Figure 9. A schematic representation of the opposite effects of
protein phosphorylation on microtubule assembly and

microtubule organizing centers activity ..............

Vi



Chapter 2

Figure 1. Photomicrographs of fully grown mouse oocytes collected
from antral follicles and cultured invitro . .............. 107

Figure 2. p42t™2 and p44*1 in meiotically incompetent and
cComMpetent MOUSE OOCYLES . .« . v vttt v v i v e s et e s an 109

Figure 3. Immunofluorescent analysis of the mouse oocytes during
given states of meiotic maturation ................... 11

Figure 4. Phosphorylation of p42%¥%? and p44™*' and spindle
formation in partially competent oocytes . .. ............ 113

Figure 5. Effect of okadaic acid on meiotically incompetent oocytes. .. 115

Figure 6. p42t%2 and p44%! in meiotically competent bovine
Lo Yo Yo V2 -3 117

Vii




Table 1.

Table 2.

List of tables

The extent of meiotic maturation in growing
mouse oocytes

Partially-competent oocytes in growing mouse
oocytes

viii



@

Preface

Format of the Thesis

This thesis comprises a paper, which is included almost entirely in the
form in which it was submitted for publication. The material that is present
exclusively in the thesis consists of the detailed description of isolating oocytes
from antral follicles, the light microscopy as well as the immunofluorescent
analysis of mouse oocytes at different stages of meiotic maturation and Table
2 which describes the presence of partially competent oocytes. Results
obtained using the bovine oocytes are only described in the thesis. The bovine
samples were supplied by Dr. Lawrence Smith at CRRA, St. Hyacinthe,
Québec.

The introduction, Chapter |, includes a general review of the relevant
literature and the rationale behind investigating the presence of MAP kinase in
small and growing mouse oocytes.

Chapter Il has been submitted to Developmental Biology. The research
described in this chapter was carried out under the supervision of Dr. H. Clarke
of the Department of Obstetrics and Gynecology at McGill University. For this
reason, Dr. Clarke’s name appears as a coauthor for this paper. All
experiments were performed by the candidate.

Chapter Ill describes a general discussion of the results obtained in

Chapter Il.
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INTRODUCTION



1.1. From a primordial germ cell to a mature egqg: An overview

At the time of birth the mammalian ovary contains the total number of
oocytes that the female will have throughout her reproductive life. Prior to and
during its residence in the ovary, an oocyte will undergo three major events:
genesis, growth, and maturatior. Only if these events are executed properly
will the development of the embryo be successful.

In mammalian species, the germ cells begin their development very early
during embryogenesis. In the mouse embryo, the primordial germ cells (PGCs)
are first seen between 7.5-8.5 day post coitum (p.c.) in the region of the
allantois. Two days later, the PGCs start migrating towards the genital ridge
of the presumptive gonads to colcnize this area and to establish their
coexistence with the resident somatic cells. For a few days after arrival at the
gonadal ridge, the PGCs of females continue to proliferate until about day 13.5
p.c. where they undergo a last round of mitotic division before differentiating
in a synchronous manner into meiotic cells, the primary oogonia. In this thesis,
the term oogenesis will be used according to Wilson’s definition (Wilson, 1925)
where oogenesis extends beyond the mere formation of cogonia to include their
migiation to the gonadal ridge, growth, differentiation and the eventual
formation of a mature fertilizabile gamete. Once meiotic, primary oogonia
undergo DNA synthesis to replicate their chromatin material and enter prophase

where they undergo a number of changes at the chromosomal level. In about




two weeks, the meiocyte chromatin undergoes leptotene, zygotene, pachytene,
and then arrests at the diplotene stage of the first meiotic prophase for a long
period ranging from days to years depending on the length of the reproductive
life span of the animal. This step usually referred to as the resting phase
represents a block in the meiotic cell cycie of the oocyte (review: Albertini,
1992). Prior to and during their meiotic arrest, cogonia are active in RNA and
protein synthesis which will be supportive of oocyte growth and metabolism
later on during oogenesis.

Mouse oocytes reach the diplotene stage by day 5 post partum (p.p.)
when the ovary is populated with thousands of small oocytes of 12-20 ym in
diameter. Around the same time, primordial oocytes become surrounded by a
few follicular (somatic) cells, which will form the follicular epithelium. For most
oocytes and follicles, development is arrested at this stage. When oocytes
from this category are released from their preantral follicles, they are incapable
of resuming meiosis spontaneously, and are said to be meiotically incompetent
(Szybek, 1972). In the mouse, around day 3 p.p., a group of follicle-enclosed
oocytes, now termed primary follicles, are selected to start growing in size
leaving behind the large poo! of primordial follicles and their enclosed small
oocytes at the resting stage (Pederson and Peters, 1968; Schultz and
Wassarman, 1977). Within a period of two weeks, the primary oocyte
increases in diameter from 15 ym as a primordiai oocyte to 85 yum as a fuily-

grown mouse oocyte. This increase in diameter is proportional to that of the




oocyte volume, which represents a 300-fold increase, resulting in the formation
of one of the largest cells in the body (Figure 1). During the growth period, the
oocyte becomes engaged in an active biosynthesis process where it
accumulates all the necessary components including proteins, messenger RNA,
and ribosomes that will be needed throughout its growth, maturation, and until
the embryonic genome is turned on at the 2-cell stage of embryogenesis
(Review: Schultz, 1986).

Once fully grown, a prophase-ariested oocyte can reinitiate meiosis either
in response to gonadotropin (Gates, 1971; Baker, 1972), or upon isolation from
its surrounding follicular environment (Pincus and Enzmann, 1935; Edwards,
1965; Donahue, 1968; Szybek, 1972; Schultz and Wassarman, 1977). Thus,
the oocyte will overcome another meiotic block under the appropriate
conditions (Albertini, 1992).

in vivo, the increase in the level of follicle stimulating hormone (FSH)
stimulates the follicle to undergo a number of changes (Baker, 1972). The
granulosacells start dividing mitotically, undergo mucification, and increase the
synthesis and secretion of a high molecular weight proteoglycan hyaluronic acid
(Yanagishita et a/., 1979) and tissue plasminogen activator (Gilula et a/, 1978).
The follicle starts accumulating fluid which forms the antrum in the
preovulatory or Graafian follicles. Subsequently, the surge of plasma level of
luteinizing hormone (LH) causes the ovulation of the oocyte. Upon the LH

surge, the follicle undergoes what is known as the cumulus cell expansion




which leads to the eventual loss of the physical contact between the oocyte
and its associated cumulus cells. The oocyte, in turn, undergoes a series of
events on both the cytoplasmic and nuclear levels known coller*ively as meiotic
maturation, thus overcoming a yet another block of meiotic arrest (Albertini,
1992).

During meiotic maturation, the nucleus or germinal vesicle (GV) breaks
down and the nuclear envelope dissolves in the cytoplasm. The diffuse
interphasic chromatin becomes condensed into metaphase chromosomes and
assembles on an apparatus formed of microtubules known as the meiotic
spindle. At this point, the oocyte reaches metaphase | of the first meiotic
division. The spindle then moves to the periphery of the cytoplasm and
extrudes one set of homologous chromosomes within the first polar body. The
oocyte then arrests, and for the last time. at metaphase Il in preparation for
fertilization. It is at this stage that the oocyte is said to have completed meiotic
maturation. The egg is then ovulated and passes into the oviduct where it
either bec:.nes fertiized or eventually degenerates. Upon fertilization, meiosis
is resumed once more in the egg where the second meiotic division separates
sister chromatids, and one set of chromosomes is expuised from the cytoplasm
in the second polar body. Finally, the haploid maternal and paternal pronuclei
undergo DNA replication and, at mitosis, assemble on a single spindle which

represents the embryonic genome from this point onwards {Figure 2).



In the absence of hormonal stimulation, fully grown mammalian oocytes
undergo similar changes when they are mechanically isolated from their
surrounding follicles. The initial observation describing the ability of oocytes
to “spontaneously" resume meiosis has opened a wide field of research where
a wealth of morphological che 1ges have been well documented (Pincus and
Enzmann, 1935). The capacity of an oocyte to undergo the meiotic maturation
events is referred to hereafter as meiotic competence (Figure 3).

Among the oocytes that undergo maturation, a specific group can
undergo GVBD but arrests at metaphase | failing to reach metaphase ll (Szybek,
1972; Baker, 1972; Wickramasinghe et a/., 1991), referred to in the text as
partially-competent oocytes. Based on this observation, it has been suggested
that meiotic competence is acquired in a two-step process (Sorensen and
Wassarman, 1976). The first step is achieved when GVBD takes place,
followed by chromosome condensation and the assembly of the meiotic
spindle. The second maturational step is involved wvith the progression from

metaphase | to metaphase Il when the first polar body is emitted.

1.2. The mouse oocyte as a model to study meiotic_maturation

In this project, the mouse oocyte was used as a model to study specific
aspects of oogenesis due to several experimental advantages. In the mouse

ovary, a large group of oocytes initiates growth synchronously near the time




of birth. As a result, it is possible to trace the progression of development by
looking at cohort aocytes from successive days following birth. As the oocytes
grow, their mean diameter increases. Thus, populations of oocytes with
increasing diameters can be obtained by isolation from juvenile mice of
increasing ages. Another advantage of using the mammalian oocyte is the fact
that oocyte growth occurs in the absence of celi division, a peculiar
phenomenon that may be exploited to study aspects of growth.

Growing oocytes reach their full size around day 21 of age (Schultz and
Wassarman, 1977}, when they can be ovulated .1 response to gonadotropin
(Gates, 1971). When prophase-arrested oocytes are isolated from their antral
follicles in the absence of gonadotropin, they are capable of resuming meiosis
as described above. Thus, physiologically occuring events could be mimicked
under in vitro conditions where cohort oocytes can grow (Eppig, 1977) and
resume meio is in the absence of gonadetropin surge simply by releasing them
from their surrounding follicles into the appropriate culture medium (Edwards,
1968; Szybek, 1972). Thus, oocytes can be analyzed at specific stages of the
cell cycle and during progression from one stage to the next.

An important property of this model is the fact that mouse oocytes are
transparent, so the oocyte can be easily classified as either a GV-stage, a
GVBD-stage, or a metpahase ll-stage under the light microscopy. This
transparency also allows for immunofluorescent analysis of the whole oocyte

where specific structures can be examined such as chromosomes and



microtubules.
Mouse oocytes, therefore, represent an ideal system to study the
changes that take place during the growth and the acquisition of meiotic

competence in mammalian species.

1.3. Oocyte qrowth during oogenesis

During its growth phase, the mammalian oocyte undergoes a number of
well-documented changes all of which are dependent on the communication
between the oocyte and its surrounding granulosa cells. The first wave of
oocyte growth occurs following birth of the female where a large group of
primary follicles becomes recruited (Pederson and Peters, 1968; Krarup et al.,
1969; Schultz and Wassarman, 1977). The selection to start growth is
believed to be regulated within the ovary by some yet unknown mechanism

(Peters et al., 1973).

1.3.1. Size and growth

Prior to their selection to commence growth, resting primary oogonia are
small in size ranging between 12-20 ym in diameter. In the mouse, within a
period of two weeks, the oocyte reaches its fuil size of 80-85 um in diameter.
The first wave of oocytes which embark on the growth phase shortly after birth

reach their full size around day 21 of age (Pedersen and Peters, 1968; Schultz,




1986).

1.3.2. Differentiation and growth

During oocyte growth, specific changes occur at the ultrastructural level
in both nuclear and cytoplasmic components. In the cytoplasm, complex
organelle reorganization occurs during this period. Mitochondria, Golgi
complexes, and rough endoplasmic reticulum increase numerically and become
dispersed throughout the oocyte (Szollosi, 1972). Moreover, centrosoinal
structures known as microtubule organizing centers (MTOCs) which are located
near the cortex in small oocytes migrate to the perinuclear region in fully grown
oocytes. Along with the changes in the centrosomes, some changes occur at
the level of the microtubular network. Short microtubules present in the
cytoplasm of a small oocyte are replaced by long and diffuse microtubules in
the fully grown oocyte (Albertini, 1992; Wickramasinghe and Albertini, 1992).
Concomitant with the cytoplasmic differentiation and as the oocyte nears its
full size, nuclear and nucleolar reorganization take place where the diffuse
chromatin becomes condensed around the nucleolus (Mattson and Albertini,

1990).

1.3.3. Protein_synthesi ring growth
To ensure that sufficient amounts of molecules are present at specific

stages of oogenesis, growing oocytes rapidly synthesize and store



transcriptional and transliational products that will be needed during subsequent
development. In particular, a growing occyte increases its protein synthesis
rate to about 40 times that of a nongrowing counterpart (Schultz, 1986).

Newly synthesized proteins such as glucose-6-phosphatase, lactate
dehydrogenase (Mangia and Epstein, 1975; Schultz et a/., 1979), and zona
pellucida proteins, ZP1, ZP2, and ZP3 (Bleil and Wassarman, 1980) accumulate
throughout most of the growth period {Schultz et al., 1979; Canipari et al.,

1979).

1.3.4. Role of the follicle during growth

During the growth phase, the oocyte and its surrounding follicle grow
coordinately through a well defined series of morphological stages (Pedersen
and Peters, 1968). Follicie cells are thought to influence the growth of the
oocyte by assuming a nutritional and informational role throughout the growth
phase (Erickson, 1986).

In the small meiotically-incompetent oocyte, only a few follicular cells are
attached to the oocyte. However, when the oocyte is selected to initiate the
growth phase, the granulosa cells that surround the mammalian oocyte, also
known as the cumulus oophorus, become an essential partner for the growth,
development, and the eventual ovulation of the mature egg. First, the
innermost layer of cumulus cells, the corona radiata, sends cytoplasmic

processes through the intervening zona pellucida to contact the oolemma
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{Zamboni, 1974). At some points of contact beiween these processes and the
oocyte, gap junctions can occur through which the granulosa cells nourish the
growing oocyte (Anderson and Albertini, 1976; Moor et a/., 1980). Among the
factors that enter the oocyte through follicle cells are compounds such as
energy sources, cyclic adenosine monophosphate (CAMP), and precursors for
protein and phospholipid biosynthesis. Arrival of these factors to the oocyte
depends on the maintenance of the gap junctions between the oocyte and the
adjacent granulosa cells (Eppig, 1277). Upon disruption of this communication,

oocyte growth is terminated (Canipari et al., 1984).

during growth

Concomitant with reaching its full size, an important facet of oogenesis
is manifested by the oocyte, namely the acquisition of meiotic competence.
The ability of follicle-free oocytes to resume meiosis in vitro has permitted
investigation of whether oocytes at different stages of growth can enter
metaphase. It has been demonstrated that oocytes smaller than 60um remain
arrested at prophase | of meiosis when placed in culture. Slightly larger
oocytes can enter metaphase but a significant number arrests prior to the
completion of the first meiotic division. Oocytes larger than 80um are able to
complete maturation to metaphase Il (Sorensen and Wassarman, 1976;
Wickramasinghe et al., 1991). The three groups of oocytes are meiotically

classified as incompetent, partiaily competent, and fully competent,
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respectively (Sorensen and Wassarman, 1976; Wickramasinghe et a/., 1991).
The same terms will be used throughout this thesis. Oocytes isolated from
mice younger than 14 days of age are incapable of resuming meiosis, and thus
are termerd meiotically incompetent. Mice between 14-16 days of age are
enriched for the partially competent oocytes, as the majority of them arrest at
metaphase | of meiosis. Mice older than 17 days of age contain oocytes which
are almost fully grown and are fully competent (Szybek, 1972; Sorensen and
Wassarman, 1976; Eppig, 1977; Bachvarova et a/., 1980). These results
indicate that meiotic competence is acquired progressively among the growing

population of oocytes.

1.3.6. c- kit

On the molecular level, a potential reguiator of oocyte growth is a
receptor-ligand complex. The receptor, termed c-kit, is a transmembrane
tyrosine kinase receptor (Yarden et a/., 1987; Chabot et a/., 1988). c-kit is
absent in prenatal ovaries, but present in ovaries after the time of birth (Paules
et al., 1989). Itis specifically located on the surface of oocytes (Horie et al.,
1991) where it is believed to play a role in oocyte growth (Packer et a/., 1994).
In contrast, c-kit is absent in granulosa cells (Horie et al., 1991). The c-kit
ligand, on the other hand, is present exclusively in granulosa cells (Horie et a/.,
1991). Upon its secretion, the ligand is believed to interact with the c-kit

receptor which is present on the oocyte surface (Manova et a/., 1993; Packer
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etal., 1994). Histological studies of mutant mice lacking both the receptor and
the ligand showed gonadal abnormalities starting at the 8-9.5 day embryo
where the primordial germ cells had failed to increase in number leaving the
ovary void of germ cells (Bennett, 1956; McCoshen and McCallion, 1975). The
importance of this complex was also studied in the postnatal mouse ovary.
The administration of an antibody against the c-kit receptor in follicles cultured
in vitro resulted in the arrest of oocyte growth of the late fetal and neonatal
ovarian oocytes. Moreover, when growing follicles were cultured in a medium
enriched with the ligand, oocyte growth was dramatically enhanced (Packer et
al., 1994). These experiments have given the c-kit/ligand complex the role of
a mediator of oocyte growth. The molecuiar target(s) of the ligand-stimulated
c-kit receptor are not yet known. ldentification of these targets would provide

a further understanding of the growth phase of oogenesis.

1.4. Acquisition of meiotic competence

The in vivo developmental progress frem an incompetent to a competent
state in mouse oocytes has been suggested to invoive a G2/M cell cycle
transition (Wickramasinghe et a/., 1991; Wickramasinghe and Albertini, 1992).
The G2/M transition is accompanied by a number of well characterized events
especially on the morphological and the biochemical levels. However, little is
known of the molecular nature of this process. On the morphological ievel, and

under the appropriate in vivo or in vitro conditions, competent cocytes can
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resume meiosis. This resumption consists of GVBD, the formation of the first
meiotic spindle at metaphase |, the formation of the second meiotic spindle at
metaphase Il, and the arrest at the polar body stage as discussed earlier. The
property of acquiring meiotic ~ompetence in growing oocytes has been linked
to the age of the animal (Szybek, 1972; Sorensen and Wassarman, 1976;
Wickramasinghe and Albertini, 1991). In turn, the age of the juvenile animal
{In the mouse, before the age of 21-day p.p.) is correlated with the oocyte size
in both mammals and frogs (mouse: Sorensen and Wassarman, 1976;
Wickramasinghe et al/., 1991; pig: Tsafriri and Channing, 1975; frog: Sadler
and Maller, 1983).

Another potential factor for acquiring meiotic competence is the
interaction between the growing oocyte and its follicular microenvironment
where the follicle plays an important roie in preparation for meiotic maturation
(Erickson, 1986).

In the following section, the above cited factors as well as relevant
ultrastructural, biochemical, and whenever available molecular factors that

seem to be involved in the acquisition of meiotic maturation will be covered.

1.4.1. Role of oocyte-follicle interaction

Two alternative hypotheses have been proposed for the role of follicle
cells in the acquisition of meiotic competence in mammalian and amphibian

oocytes. On the one hand, it has been proposed that the oocyte acquires
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meiotic competence through an autonomous intracellular program which is
independent of the cumulus cell association (Canipari et a/., 1984). On the
other hand, under in vivo conditions, intercellular communication between the
follicle ceils and the oocyte is well regulated at the various stages of
development in the resting, growing, and up to the ovulation of the mature egg
{Buccione et al., 1990; Eppig and Schroeder, 1989; Fagbhohum and Downs,
1991). Gap junctions formed between the oocyte and its surrounding follicle
early during the growth phase of the oocyte serve as a channel for transferring
nutrients to the growing oocyte as discussed earlier.

The discrepancy in the literature for the role of the follicle cells during
oogenesis could be attributed to the experimental conditions used to support
either hypothesis. The "oocyte autonomous program” was based on results
under in vitro conditions where oocytes were explanted from their follicular
milieu. Hence, they initiated their inirinsic differentiative program in the
absence of somatic cell input. When oocytes, on the other hand, were
observed under in vivo conditions their development was found to be closely
associated and dependent on their follicle cells. To resolve this difference,
further work on the oocyte autonomous program needs to be conducted in

order to eliminate either hypothesis.
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1.4.1.1. Follicular factors promoting meiotic arrest

The hypothesis that the follicular microenvironment might play a role in
the maintenance of the prophase-arrest of the oocyte was supported by two
fundamental findings. The first came from the classical work of Pincus and
Enzmann {1935) who showed that fully grown rabbit oocytes isolated from
their follicles underwent meiotic maturation in the absence of gonadotropins.
On the other hand, follicle-enclosed oocytes are incapable of resuming meiosis
in vitro in the absence of gonadotropins (Tsafriri, 1978; Eppig, 1991). The
specific origin of the inhibitory factor(s) was attributed to the granulosa ceils
(Sato et al., 1982). Purines such as cAMP (Cho et al., 1974, Dekel and Beers,
1978; Bornslaeger and Schultz, 1985; Bornslaeger et a/., 1986), hypoxanthine
(Eppig et al., 1985; Downs et al., 1985; Eppig and Downs, 1987), guanosine
(Hubbard and Terranova, 1982), phosphodiesterase (PDE) inhibitors such as
isobutyl-1-methylxanthine (IBMX) (3ornslaeger et a/., 1984), and adenosine
(Salustri et al.,, 1985) all exert a reversible inhibitory effect on meiotic
maturation. In addition, a low molecular weight peptide known as oocyte
maturation inhibitor (OMI) (Tsafriri et al., 1982), B-endorphin (O, 1990),
Muiillerian inhibiting substance (Takahashi et a/., 1986), and an atrial natriuretic
peptide (Tornell et al., 1990) have all been implicated in the maintenance of
meiotic arrest. Due to their most documented involvement in meiotic arrest,

only cAMP and calcium are discussed below.
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A. cAMP

Evidence involving cAMP in regulating oocyte growth, resumption of
meictic maturation, and further egg development has been reported in many
systems (Xenopus /aevis ;: Maller and Krebs, 1980; Rana pipiens: Speaker and
Butcher, 1977; sheep: Crosby et al/., 1985; mouse: Cho et a/., 1974;
Wassarman et a/., 1976; Vivarelli et a/., 1983; rat: Magnusson and Hillensjo,
1977). When meiotically incompetent oocytes were cultured in the presance
of dibutyry! cAMP (dbcAMP), a derivatized analog of cAMP, the percentage of
those that acquired meiotic competence consequently increased in a dose-
dependent manner (Chesnel et al., 1994}). This observation supports previous
work which involves cAMP in a stimulatory role during the acquisition of
meiotic competence in growing cocytes (Carroll et al/., 1991). Upon
maturation, the ievel of CAMP in the oocyte decreases (Schultz et a/., 1983).
Concomitantly, the level of cAMP in the follicular fluid and cumulus cells
increases. Taken together, these results suggest that cAMP seems to promote
the acquisition of meiotic competence in small and growing oocytes.

In contrast, cCAMP promotes meiotic arrest in fully grown oocytes. When
denuded, fully grown, dictyate-arrested mouse oocytes were cultured in the
continuous presence of dbcAMP, they arrested at the GV stage (Wassarman
et al., 1976) even after a 16h culture period. Upon transfer into a cAMP-free
medium, these oocytes were capable of resuming meiocsis, demonstrating that

this inhibitory effect is reversible. These results suggest that the G2/M
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transition of the cell cycle in prophase-arrested oocytes is dependent on a

decrease in the intracellular level of cAMP.

B. Calcium

Calcium in its ionic form (Ca*?) is involved in cyclic nucleotide
metabolism, protein phosphorylation, microtubuie assembly, and calcium flux,
all of which are involved in the acquisition of meiotic maturation (Sato and
Koide, 1987).

Ca*? seems to play several roles during oocyte growth, maturation, and
ovulation of mammalian ova (De Felici and Siracusa, 1982; Bae et al., 1985).
In small meiotically incompetent oocytes, Ca*? is not required for the survival
of cumulus-free oocytes cultured /n vitro (De Felici and Siracusa, 1982).
However, the presence of Ca*? is essential for a number of events to occur as
supported by the following findings. When cumulus-enclosed bovine oocytes
were cultured in the absence of calcium and magnesium, they were blocked
from resuming maturation and thus arrested at the GV stage (Liebfried and
First, 1979). Furthermore, Ca*? can overcome the inhibitory effect of dbcAMP
in cumulus-free oocytes only when used at high concentrations as indicated by
the following results. When mouse oocytes arrested at the GV stage with
dbcAMP were cocultured in medium containing less than 1.7 mM Ca*?, they
did not undergo GVBD (Tombes et a/., 1992). However, when the extracellular

calcium level was used at a concentration higher than 10 mM in cAMP-blocked
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mouse oocytes, these latter were capable of resuming meiosis (Powers and
Paleos, 1982). These results suggest that calcium and cAMP might be
regulating meiotic maturation via a common pathway eventhough high Ca*?
promotes maturation whereas cAMP inhibits it.

Once maturation is initiated, external Ca*2is important for preserving the
normal chromosomes and spindle configurations between metaphase | and
metaphase Il, as well as for the formation of the first polar body (Tombes et a/.,
1992). It has been shown that an increase in the intracellular leve! of Ca*? is
responsiblz for an increase in the percentage of oocytes that reach metaphase
Il of meiosis in the pig and mouse species (Paleos and Pow=srs, 1981, Sato et
al.,, 1982; Tombes et a/., 1992). It is possible that partially competent
oocytes, which arrest at metaphase | lack sufficient calcium to reach
metaphase Il.

Upon maturation, the survival of eggs /n vitro depends on Ca*2. Finally,
Ca*? is required for the initiation of development of the egg following
fertilization (Whittingham and Siracusa, 1978; Kline and Kiine, 1992). Thus,

calcium plays a central role prior to, during, and following meiotic maturation.

14.2. Role of microtubular network

One of the hallmarks of meiotic competence is the reorganization of the
cytoskeletal components of the oocytes. in particular, the microtubular

structure of both the cumulus cells (Allworth and Albertini, 1993) and the
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enclosed oocyte (Vandré et a/., 1984, Bornslaeger et a/., 1988) undergo major
changes upon acquiring meiotic competence (Wickramasinghe et al., 1991) and
during meictic maturation (Mattson and Albertini, 1990), as well as during
embryonic mitosis (Schatten et al/., 1985).

The centrosomal structures, or centrioles, which are localized to the
spindle poles during metaphase, are absent in several mammalian species
starting at the pachytene stage of oogenesis. Instead, several microtubular
foci, collectively known as microtubule organizing centers (MTOCs) are
responsible for the nucleation of microtubular growth throughout the oocyte
cell cycle (Szdéllosi et al., 1974). The G2/M transition of the cell cycle and
meiotic competence have been linked to specific changes of MTOCs with
respect to both the binchemical and physical configurations (Wickramasinghe
et al., 1991) Meiotically incompetent oocytes contain dephosphorylated
MTOCs which are localized to the cortex of the cell. These MTOCs nucleate
a diffuse and elaborate microtubular network which spreads throughout the
cytoplasm. When the oocyte becomes competent to resume meiosis, the
MTOCs migrate to the perinuclear region where they become phosphorylated
ang nucleate short microtubules (Centonze and Borisy, 1990). At this point,
they are known to be activated in preparation for the formation of the spindle
poles (Vandré et a/., 1990; Wickramasinghe et al., 1991). This reorgznization
and phosphorylation of MTOCs during the acquisition of meiotic competence

has been described in amphibians as well (Gard, 1991; Onhta et a/., 1993).
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Cnce GVBD takes place and the chromosomes condense, MTOCs become
localized to the spindle poles of the first and second meiotic divisions (Schatten
et al., 1985; Messinger and Albertini, 1991; Wickramasinghe et a/., 1991).
The ultrastructural changes of the microtubules and the MTOCs within an
oocyte are directly correlated with altered phosphorylation patterns of specific

phosphoproteins (Maller et al., 1977)

1.4.3. Role of protein phosphorylation

The decrease in oocyte cAMP at the time of GVBD leads to a decrease
in cAMP-dependent protein kinase activity which, in turn, results in
phosphorylation or dephosphoryiation of a number of proteins (Bitensky and
Gorman, 1973). Concomitantly, a three to five fold increase in cAMP-
independent phosphoprotein synthesis becomes apparent (Bornslaeger et a/.,
1986, 1988; Moiganetal., 1989; Néant et a/., 1989). Protein phosphorylation
is important during meiotic maturation since its inhibition in porcine oocytes
that were matured in vitro inhibited both nuclear envelope breakdown and
chromatin condensation (Jung et al., 1993). Mediators of protein
phosphorylationinclude factors such as Ca*2which together with diacylglycerol
(DAG) is known to activate protein kinase C (PKC). In frog oocytes, DAG levels
increase transiently after exposure to maturation-inducing agents such as
insulin, insulin-like growth factor-1, or progesterone (Chien et a/., 1991). DAG

levels could be increased as well upon microinjection of v-ras into frog oocytes
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(Lacal et a/., 1987). Increasing DAG levels either indirectly by the effect of the
factors mentioned or alone causes GVBD to occur (Garcia de Herreros et al.,
1991). The mechanism of the action of GVBD could be mediated by the effect
of DAG on increasing the level of PKC which in turn activates downstream
kinases (Nishizoka, 1984' Mitchell et al., 1989) thus leading to meiotic
resumption marked by the occurrence of GVBD as seen in many species
(Chaetopterus: Eckberg and Carroll, 1987; Xenopus laevis: Maller et al., 1977;
Karsenti et al.,, 1987; Lohka et 4., 1987, mouse: Schultz et a/., 1983;
Bornslaeger et al., 1986; sheep: Crosby et al., 1984, pig: Jung et al., 1993).
Such kinases include the cdc2 serine/threonine kinase which together with
cyclin B forms the maturation promoting factor (MPF). Once active, MPF is
responsible for a number of cytoplasmic and nuclear modifications during
metaphase.

Other serine/threonine kinases that become active upon meiotic
resumption include the p39 “™° protein and mitogen activated protein (MAP)
kinase (Rossomando et a/., 1289). Both of these kinases have been shown to
play an important role in the microtubular dynamics that take place during
metaphase.

In the following section, the role of MPF, c-mos, and MAP kinase in the

acquisition ot meiotic competence will be discussed.
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A. Maturation Promoting Factor

The transition from interphase to metaphase during oocyte maturation
is mediated by a cytoplasmic factor whose activity was first shown to reside
in maturing amphibian eggs. This was first demonstrated by the pionneering
work of Masui and Markert (Masui and Markert, 1971) who injected the
cytoplasm of a Rana pipiens mature oocyte into an immature oocyte. As a
result, the injected immature oocyte underwent GVBD and completed its
meiotic maturation. This factor was named thereafier the maturation promoting
factor (MPF). Since this original observation, MPF has been shown to be a
universal metaphasic factor (Kishimoto et al., 1982; Kishimoto, 1988) also
referred to as the metaphase-promoting factor, and the M-phase factor
(Xenapus laevis: Schorderet-Slatkine and Drury, 1973; Labbée et a/., 1988a;
Erickson and Maller, 1989; mammals: Balakier, 1978, Fulka, 1983; Sorensen
et al., 1965; Lee et al., 1988; fish: Dettlaf et a/., 1977, marine invertebrates:
Kishimoto and Kanatani, 1976; Labbée et al., 1988b; yeast: Weintraub et a/.,
1982; mammalian culture cells: Sunkara et al., 1979; Nelkin et a/., 1980).

MPF activity is first detected in the maturing oocytes of clams, sea
urchins, starfish, frogs, and mice shortly before GVBD {Masui and Markert,
1971; Wasserman and Masui, 1976; Kishimoto and Kanatani, 1976; Kishimoto
et al., 1984; Sorensen et al., 1985; Hashimoto and Kishimoto, 1988; Labée et

al., 1988b, 1989b; Choietal., 1991). This activity then increases and remaing
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high until the exit from the first meiotic division (metaphase I) when it declines
shortly thereafter. MPF activity increases again at metaphase of the second
meiotic division, and this increased level is maintained through metaphase |l
arrest in the oocyte until fertilization (Figure 4; Dorée et al., 1983; Gerhart et
al., 1984). The rise of MPF activity at two peaks during meiotic maturation,
namely at GVBD and at metaphase I, was found to be concomitant with two
bursts of protein phosphorylation (Dorée et al., 1983).

Unon investigating the molecular nature of MPF, it was found to be
composed of two components (Labbée et a/., 1989b), one of which was first
identified as the cell cycle gene cdc2 in Schizosaccharomyces pombe (S.
pombe). This gene was initially found to code for a homologue of the Xenopus
p34 subunit (Dunphy et a/., 1988; Gauthier et a/., 1988; Labbée et a/., 1989a).
The p34°*? is a serine/threonine kinase which is required for G2/M transition
of the cell cycle manifested during meiotic resumption.

The other component of MPF, called cyclin, is the regulatory subunit
responsible for the activation of the kinase (identified by Draetta et a/., 1989;
Gauthier et a/., 1990). Cyclins are a family of proteins that accumulate during
interphase of the cell cycle and are degraded during mitosis (Murray and
Kirschner, 1989a, 1989b). This degradation inactivates the kinase activity of
p34, and is responsible for the exit from mitosis (Figure 5, Evans et a/., 1983;
Meijer et al., 1989; Murray et a/., 1989). Upon comparison of cyclin

abundance and MPF activity, a strong correlation was found between the
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accumulation/destruction of cyclin, on the one hand, and the increase/decrease
of MPF activity (Figure 6).

During interphase, p34°*? becomes phosphorylated on a tyrosine and a
threonine residue. Cyclin, on the other hand, is synthesized and accumulates
throughout interphase. For MPF to become active at metaphase, both
components of the heterodimer are modified by phosphorylation; p34°“? is
dephosphorylated on its tyrosine residue {Gauthier et a/., 1989) and cyclin is
phosphorylated. Degradation of cyclin marks the exit from metaphase (Figure
5). Once activated, MPF is responsible for turning on a number of downstream
kinases (Solomon et al.,, 1992). Among the substrates for MPF are
centrosomal components (Bailly et a/., 1989) and their associated microtubules
(Verdé et al., 19390), lamins, histone H1, nucleolin (Lewin, 1990), and MAP
kinase (Kosako et a/., 1993), all of which may be invoived in events leading to
nuclear envelope breakdown, chromosome condensation and spindle formation
{Lohka and Maller, 1985; Figure 7).

Nonetheless, it should be pointed out that cyclins alone are not sufficient
for the activation of p34°*2, A family of cdc25 gene products in S. pombe
wera found to positively regulate the activation of p34°*? kinase (Russell and
Nurse, 1986; Kumagi and Dunphy, 1992). Biochemical analysis has shown
that the cdc25 gene product is a phosphatase capable of dephosphorylating the
tyrosine residue. This phosphorylation is crucial for the activation of p34°%?2

(Gould et ar., 1990).
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Other regulators of p34°*? include two of the four major phosphatases
in the cytosol of mammalian cells which dephospherylate serine and threonine
residues (Cohen et al., 1990), referred to as phosphatases 1 and 2A (PP1 and
PP2A). These phosphatases were first identified by genetic analysis of yeast
and Aspergillus {Morris et al., 1989). When PP1 and PP2A are inhibited by the
drug, okadaic acid, p34°®’ becomes activated resulting in the entry to
metaphase (Brautigan et a/., 1989). These phosphatases may be needed for
the arrest of a given cell at interphase, and are overcome by an intracellular
inhibitor at metaphase. The use of okadaic acid has been especially
instrumental in understanding the molecular aspects of meiotic resumption in
oocytes from several species. Such aspects include the involvement of PP1
and PP2A in the control of MPF activily in starfish (Picard et a/., 1989; 1991;
Paulson et al., 1994), Xenopus laevis (Goris et al., 1989), mouse (Rime and
Ozon, 1990; Alexandre et al., 1991; Gavin et al., 1991), bovine and porcine
(Kalous et a/., 1993) oocytes. This control is manifested by an accelerated
GVBD in meiotically competent oocytes (Kalous et a/., 1993). In addition,
meiotically incompetent oocytes occuring either naturally as is the case of small
oocytes (Gavin et al/., 1991), or under the effect of meiotic inhibitors are
capable of resuming meiosis (Alexandre et a/., 1991) in the presence of okadaic

acid.
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B. ic facior

Another cytoplasmic component which is important in cell cycle
regulation is termed cytostatic factor (CSF). CSF is a calcium-sensitive factor
that was first described by Masui (Masui, 1974; Masui and Shibuya, 1987) as
an activity that prevents exit ot Rana pipiens oocytes from the metaphase Il
arrest. A similar activity is present in the metaphase ll-arrested oocytes of the
mouse (Kubiak et al., 1993). CSF is unique to the germ celis (Goldman et a/.,
1987). Upon investigating the activity of CSF, it was found that it first appears
in the cytoplasm of a maturing cocyte at GVBD, remains high through meiotic
maturation and disappears soon after fertilization { Meyerhof and Masui, 1977,
1979).

The site of action of CSF seems to be the cyclin component of MPF.
The exit of an amphibian as well as a mammalian oocyte from metaphase Il
requires the degradation of cyclin B as was discussed in the previous section.
However, in me*aphase li-arrested oocytes the synthesis of cyclin B is
continuous {Weber et a/l., 1991) as well as its degradation (Kubiak et a/.,
1993), resulting in 2 rpid turnover of CSF. Furthermore, the degradation of
cyclin B occurs only in the presence of an intact metaphase spindle (Kubiak et
al.,, 1993). Taken together with the fact that CSF prevents the egg from
exiting metaphase , this implicates CSF in the microtubular network where it

may be monitoring the formation of a functional spindle prior te the exit from

27



metaphase by exerting its effect on the cyclin compenent of MPF.

C. ¢-mos

When the molecular nature of CSF was investigated, one factor seemed
prominent, the c-mos proto-oncogene. c-mos encodes a serine/threonine
protein kinase (Maxwell and Arlinghaus, 1985) of M, 39 KDa, and is expressed
at high levels in the germ cells of vertebrates (Goldman et a/., 1987; Mutter
and Wolgemuth, 1987).

c-mos has been identified as a component of CSF based on the following
results. When either p39°™* mRNA or CSF-containing cytoplasm was
microinjected into a Xenopus blastomere, this latter was arrested at mitotic
metaphase (Sagata et a/., 1988). Furthermore, CSF activity can be depleted
from metaphase |l eggs with c-mos antibodies (Sagata et a/., 1989).

p39°™* is absent in meiotically-incompetent oocytes (Paules et al.,
1989), and is required during meiotic maturation where it is necessary for the
activation of MPF in meiosis | (Sagata eta/., 1988; Q’Keefe et a/., 1989, 1991)
and is also required after GVBD (Sagata et a/., 1988; 1989a). c-mos can, in
the absence of any protein synthesis, induce GVBD and activate MPF in
Xenopus oocytes. However, such treated oocytes cannot complete maturation
to metaphase Il (Yew et al., 1992).

A substrate for c-mos is a tyrosine/threonine protein kinase, termed

mitogen-activated protein kinase kinase, usually referred to as MEK, which is
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directly responsible for the activation of a serine/threonine protein kinase,
referred to as mitogen activated protein (MAP) kinase (Posada et a/., 1993;
Nebrada and Hunt, 1993).

c-mos could exert an effect on the microtubular network either by
activating MAP kinase (Figure 8), or directly since cellular localization
experiments show that p39°™** can associate with and phosphorylate tubulin
(Zhou et ai., 1991). The association between p39™°* and tubulin was shown
by immunoprecipitation where the homodimer, B-tubulin, was preferentially
coprecipitated with p39™*.  The ability to phosphorylate tubulin was
demonstrated in a kinase assay where f-tubulin was the major phosphorylated
product in a p39™*-dependent immune complex kinase assay (Zhou et al.,
1991). This association was extended when ¢c-mos was shown to be required
for spindle function of mouse oocytes (Zhao et al., 1991).
D. i n_- activ rotein kin

Prior to the knowledge of their kinase activity, mitogen-activated protein
(MAP) kinases were known as microtubule-associated protein-2 (MAP-2) kinase
(Jameson and Caplow, 1981). Upon the finding of their kinase activity in
insulin-stimulated adipocytes (Sturgill and Ray, 1986), MAP kinases, also
referred to as extracellular signal regulated kinases (ERK's), have been identified
and characterized in many species ranging from the yeast to the human (S.
cerevisiae: FU3S-KSS1, Cairns et al., 1992; Courshesne et a/., 1989; Elion et

al., 1990; S. pombe: Spk1, Torres et al., 1991; 8Byr1 and Byr2, Nadin-Davis
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and Nasim, 1988; drosophila: Brunner et al., 1994; Xenopus: Ahn et al.,
1991; Ferrell et al., 1991; sea star: Sanghera et a/., 1990; murine: Verlhac et
al., 1993; Sobajima et al., 1993; Gavin et al., 1994; rabbit: Gregory et al.,
1989; human fibroblasts: Ek and Heldin, 1984; Pagés et al.,, 1993) and in
tissue culture cells (3T3 cell line: Kawakami et a/., 1991).

MAP kinase has been characterized (Hoshi et a/., 1989) and is capable
of being active via a number of signal transduction pathways, including tyrosine
kinases, G proteins {(Lange-Carter et a/., 1993) and protein kinase C (Pelech and
Krebs, 1987; Pelech and Sanghera, 1992). MAP kinase is responsible for
activating other downstream factors and is itself regulated by upstream
regulators. The family of MAP kinase includes members of 40-46 kDa isoforms
with p42 and p44 as the most occuring forms among mammalian species.
Both p42 and p44 require phosphorylation on tyrosine and threonine residues
for maximal activation (Ray and Sturgill, 1988; Anderson et a/., 1990), and can
undergo autophosphorylation on both tyrosine and threonine residues {Seger et
al., 1991). This autophosphorylation process, however, does not seem to be
biologically important (Posada and Cooper, 1992).

Among MAP kinase targets are the ribosomal S6 kinase (Sturgill et a/.,
1988; Sturgill and Wu, 1991), the nuclear transcription factors, c-jun and c-fos
(Gille et al., 1992), and a Xenopus p220 kDa microtubule-associated protein
(Shiina et a/., 1992).

One of the most important features of MAP kinase, however, might
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reside in their involvement in the control of the cell cycle where they respond
to various external signals, usually mitogens, to participate in triggering the
transition from GO to G1 and from G2 to M phase (Cobb et a/., 1991; Boulton
et al.,, 1991; Thomas, 1992). In the G2/M transition of the cell cycle, MAP
kinase might be involved in the reorganization of microtubules based on several
findings conducted on murine and frog oocytes. MAP kinase is present in fully
grown, G2-arrested oocytes of the frog (Gotoh et al., 1991a; Ferrell et al.,
1991; Posadaetal., 1991), sea star (Pelech et al., 1988), ciam (Shibuya et a/.,
1993), and mouse (Verlhac et a/., 1993; Sobajima et a/., 1993). When oocytes
are induced to enter metaphase, both species p42 and p44 become
phosphorylated thus rendering MAP kinase active as a kinase (Gotoh et a/.,
1991).

In maturing mouse oocytes, MAP kinase is associated with the MTOCs
(Verlhac et a/., 1993) which are localized at the spindle poles of metaphase |
and |l oocytes. MTOC’s are known to nucleate microtubular assembly at
metaphase (Schatten et a/., 1985). MAP kinase seems to play a role in the
microtubular reorganization during the G2/M transition based on the following
results. When purified M-phase activated MAP kinase from either Xenopus
eggs or mammalian fibroblasts was added to interphase extracts from Xer.opus
oocytes, the interphasic microtubular network exhibited a transition to the
metaphasic form. This transition was manifested by an increased nucleation

of microtubules from the centrosomes. These microtubules were short and
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dynamic as is seen usually at metaphase (Gotoh et a/., 1991).

The effect of activated MAP kinase on the microtubular network seems
to be initiated by the activation ¢f MPF which, in turn, activates MAP kinase
(Gotoh et a/., 1991; Ohta et al., 1993; Figure 9). To determine the effect of
these two kinases, MPF and MAP kinase, on the microtubular network, the
following experiment was designed. The ability of centrosomes to nucleate
microtubules in the presence of either a purified p34°“2/cyclin B complex or
MAP kinase was compared. The results show that the increase in microtubular
network nucleated from centrosomes was greatly enhanced in the presence of
the MPF complex but not in the presence of MAP kinase (Chta et al., 1993).
However, since MAP kinase is activated downstream of MPF, the increased
effect of microtubular nucleation manifested upon the addition of the MPF
complex could be due to a cooperation between the action of both MPF and
MAP kinase.

To learn more about the involvement of MAP kinase in the microtubular
network rearrangement during meiotic maturation, a possible place to study this
effect could be in cells that are incapable of resuming meiosis, thus incapable
of entering metaphase, under either in vivo or in vitro conditions. Such a
system is naturally found in the meiotically incompetent and partiaily competent
oocytes. | have taken advantage of such naturally-arrested cells to study
further the role of MAP kinase in the acquisition of meiotic competence as well

as during mextic maturation of mammalian oocytes.
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1.5. Summary

During mammalian oogenesis, the acquisition of meiotic competence is
of central importance for the conversion of an oocyte into a fertilizable ova.
Understanding the details of this phenomenon could provide insight into cell
cycle regulation which regulates the reproductive life of an organism.

To dissect further this multifaceted event, | studied the expression of
MAP kinase in the mouse oocyte due to its possible involvement in initiating the
cell cycle in meiotically-arrested oocytes. My objective was to document the
changes, if any, of the pattern of MAP kinase among oocytes of various meiotic
potential, namely incompetent, partially-competent, and fully-competent
oocytes. These three groups could be obtained by targeting a specific age in
the juvenile mouse which shows a good synchrony during growth in vivo and
during culture in vitro as well. In the following chapter, | will describe the
experimental evidence for the presence of a key regulator in a number of signal
transduction pathways, MAP kinase, in incompetent, partially-competent, and
fully-competent mouse oocytes. Based on previous results which showed that
MAP kinase becomes activated as a kinase following phosphoryiation, 1 will
describe evidence regarding the phosphcrylation patterns of the two species,
p42 and p44, in all three classes of oocytes. In addition, experiments done
with okadaic acid, a specific phosphatase inhibitor of both PP1 and 2A, will be
described. Taken together, these results should help elucidate the mechanism

underlying the action of this \sinase during the G2/M transition of the cell cycle.
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Figure 1. A schematic representation of the developme.nt of mammalian
oocytes from oogonia to fully grown oocytes. In the fetal life of the female,
the oogonia progress through meiotic prophase in a relatively synchronous
pattern and arrest at the diplotene stage of meiosis shortly after birth.
Diplotene-arrested oocytes either stay in a one-layered follicle, or they initiate
their growth phase. During its growth phase, an oocyte grows in size where
it accumulates all the necessary components that will be used during its
maturation and post-fertilization development. Once fully grown, a follicle-
enclosed oocyte could either become ovulated in preparation for fertilization or

it undergoes degeneration (From Bachvarova, 1985).
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Figure 2. Diagrammatic representation of two aspects of oogenesis, meiosis
and growth, in the life cycle of the mouse (From Schultz and Wassarman,

1977).
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Figure 3. Diagrammatic representation of the stages of oocyte meiotic
maturation. When a fully grown, prophase-arrested oocyte is exposed to a
maturation-inducing environment, it undergoes germinal vesicle breakdown
(GVBD), where the nuclear envelope breaks down and the homologous
chromosomes assemble on the first meiotic spindle at metaphase |. The oocyte
then undergoes telophase | without cell division. Finally, sister chromatids are
separated at metaphase |l where the first polar body is emitted from the
oocyte. At the end of meiotic maturation, the oocyte contains the diploid

chromosomal content (From Wickramasinghe and Albertini, 1993).
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Figure 4. Fluctuation of maturation promoting factor (MPF) activity during
the early frog life cycle. MPF level is low in a fully grown, immature Xenopus
oocyte. Upon stimulation to resume meiosis, the oocyte undergoes GVBD and
the level of the oocyte MPF increases dramatically at metaphase | of meiosis
after which it decreases. At metaphase Il of meiosis, MPF level increases and
stays up by the effect of cytostatic factor until the time of fertilization where
it drops again. This fluctuation in activity continues with every cell division of

the early embryo (From Murrray and Kirschner, 1989b).
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Figure 5. The cycle of association between the two components of MPF,
p34 and cyclin in the G2/M transition. In interphase, cyclin B is synthesized
and accumulates in the cell and p34 becomes phosphorylated on a tyrosine
residue. Prior to metaphase, p34 becomes phosphorylated on a threonine
residue. At metaphase, p34 is dephosphorylated on the tyrosine residue
whereas cyclin becomes phosphorylated. To exit mitosis, a proteolytic

degradation ot cyclin is required (From Lewin, 1990).
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Figure 6. The fluctuation in cyclin abundance relation to the activity of MPF
and H1 kinase. Upon addition of 5 ug/ml of sea urchin cyclin mRNA to an
mRNA-dependent extract, the activity of cyclin in the extract fluctuates at the
same time periods as did both MPF and H1 kinase activity. The activity of all
three parameters dropped as nuclear envelope breakdown (NBD) occured at
metaphase. This activity then increases during the rest of the cell cycle (From

Murray and Kirschner, 1989a).
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Figure 7. Regulation of p34°%? protein kinase during the G2/M transition of
the cell cycle of the fission yeast. Entry into mitosis follows the activation of
p34°“? protein kinase and requires both cdc25* and cdc13*. Exit from mitosis,
howaever, follows the kinase inactivation and requires suc1*. ¢dc13* is also
required for the reorganization of microtubular cytoskeleton leading to the

generation of the mitotic spindle (From Moreno et a/., 1989).
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Figure 8. Model for the mechanism involving c-mos and MAP kinase in the
metaphase arrest through the effect on cytostatic factor (CSF). Exit from
metaphase requires the inactivation of CSF. The CSF arrest induced by c-mos
is mediated by the activation of MAP kinase. CSF activation can also be
mediated through the Ras pathway. Ras can induce the activation of MAP
kinase either by the c-mos effect or by activating Raf. In either case, both MAP
kinase and MPF cooperate in forming CSF. CSF is responsible for blocking the
metaphase to anaphase transition in metaphase 1l eggs (From Haccard et al.,

1993).
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Figure 9. A schematic representation of the opposite effects of protein
phosphorylation on microtubule assembly and microtubule organizing centers
(MTOCSs) activity. The activation of MPF at metaphase results in a number of
phosphorylation processes among which is the activation of a downstream
kinase, MAP kinase. When active, MAP kinase decreases the stability of
microtubules, thus favoring the dynamic configuration of metaphase. In turn,
active MPF might be responsible for regulating directly the nucleation of
metaphasic microtubules through its effect on activating MTOCs (From Ohta

et al., 1993).
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CHAPTER I

MITOGEN-ACTIVATED PROTEIN (MAP) KINASE DURING THE ACQUISITION

OF MEIOTIC COMPETENCE BY GROWING OOCYTES OF THE MOUSE

Wafa Harrouk and Hugh J. Clarke
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ABSTRACT

During the growth phase of oogenesis, oocytes acquire the ability to
undergo meiotic maturation. Although the molecular basis of this meiotic
competence is unknown, specific differences in microtubular organization exist
between incompetent and competent mammalian oocytes. Mitogen-activated
protein (MAP) kinase has been implicated in microtubular regulation and is
present in fully grown competent oocytes of mice, suggesting a possible role
for this protein in the acquisition of meiotic competence. We report that the
MAP kinase species, p42t? and p44 ', were detectable by immunoblotting
in incompetent oocytes at the early stages of oocyte growth and throughout
subsequent growth and acquisition of competence. In partially competent
oocytes, which can enter metaphase but cannot complete the first meiotic
division, both p42f%? and p44£™' pecame phosphorylated, as judged by
retarded electrophoretic mobility, and a morphologically normal spindle was
assembled. In incompetent oocytes, which cannot 2nter metaphase, p427*?
and p44®*’ remained non-phosphorylated. When these oocytes were treated
with okadaic acid, an inhibitor of protein phosphatases 1 and 2A, they entered
metaphase and the slow-migrating phosphorylated forms of p42£%? and p44**
waere observed. These phosphorylated forms appeared more rapidly, relative
to the time of germinal vesicle breakdown, than during maturation of fully

competent oocytes. These results suggest that the acquisition of meiotic
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competence during oocyte growth is not linked to the de novo

appearance of p425%2 or p44£"7, that the failure of partially competent oocytes
to complete meiosis | reflects a defect acting downstream or independently of
MAP kinase phosphorylation, and that meiotically incompetent oocytes contain
both okadaic acid-sensitive phosphatases that directly or indirectly maintain
p42t%2 and p44**' in non-phosphorylated state and kinases that can generate

the phosphorylated forms when these phosphatases are inhibited.
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INTRODUCTION

During mammalian embryogenesis, oogonia proliferate mitotically until a
few days after they have colonized the genital ridge, then enter the meiotic cell
cycle and progress to the diplotene stage of prophase | where the cycle
becomes arrested. Beginning shortly after birth and continuing throughout
reproductive life, groups of diplotene-arrested oocytes then enter a growth
phase during which the diameter increases from about 12 ym to about 80 um,
representing a 300-fold volume increase. Following gonadotrophic stimulation
of the follicle, fully grown oocytes are released from cell cycle arrest and
undergo meiotic maturation. During maturation, oocytes enter metaphase,
complete the first meiotic division, and become arrested at metaphase of the
second meiotic division (Schultz, 1986; Wassarman, 1988]).

When fully grown oocytes are removed from the follicular environment
and placed in culture, meiotic maturation occurs in the absence of
gonadotropins. Such /n vitro-matured oocytes are normal, as judged by their
ability after fertilization to give rise to live animals (Eppig and Schroeder, 1989).
The phenomenon of in vitro maturation has been exploited to investigate
whether non-fully grown oocytes possess the capacity to undergo meiotic
maturation (Sorensen and Wassarman, 1976; Albertini, 1992). In the mouse,

oocytes smaller than 60 ym in diameter remain arrested at prophase | when
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placed in culture. These oocytes are defined as meiotically incompetent.
Slightly larger oocytes enter metaphase but become arrested prior to
completion of the first meiotic division, and are termed partially competent.
Oocytes larger than about 70 ym are able to complete maturation to metaphase
Il in vitro, and are termed fully competent (Sorensen and Wassarman, 1976;
Albertini, 1992). These results indicate that meiotic competence, which
represents the ability to undergo meiotic maturation, is progressively acquired
during oocyte growth.

The acquisition of meiotic competence by growing oocytes appears to
be controlied by both an interaction with the surrounding cumulus granulosa
cells and an autonomous intracellular program (Canipari et al., 1984; Chesnel
etal., 1994). The role of the cumulus cells in promoting competence does not
require gap junctional communication between the two cell types (Bachvarova
et al., 1980; Canipari et al., 1984), suggesting this influence is mediated
through secreted molecules. The oocyte-autonomous events leading to
competence are largely unknown. Several proteins, including tubulin, LDH, and
histone H4, accumulate in growing oocytes (Schuitz et a/., 1979; Wassarman
and Mrozak, 1981; Roller et al., 1989). As well, a 28-kD protein has recently
been identified whose synthesis is linked to the acquisition of competence
(Chesnel et al., 1994). Few other major qualitative changes in the pattern of

protein synthesis occur during this time (Schuitz et a/., 1979; Schultz, 1986;
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Wassarman, 1988). Elevation of intracellular cyclic AMP also promotes the
acquisition of competence (Chesnel et al., 1994).

Several observations suggest that changes in microtubular morphology
or activity rmay play an important role in the acquisition of meiotic competence
(van Blerkom, 1991; Albertini, 1992). Incompetent oocytes contain non-
phosphorylated microtubule-organizing centres (MTOCs) and an interphasic
network of microtubules radiating from the MTOCs. By contrast, prophase-
arrested competent oocytes contain phosphorylated MTOCs which nucleate
much shorter microtubules that are perinuclear in location (Wickramasinghe et
al., 1991; Wickramasinghe and Albertini, 1992). These changes may be
regulated in part by the product of the c-mos proto-oncogene, p39°™*, which
is required during oocyte maturation in amphibians (Sagata et a/., 1988, 1989)
and mice (Paules et al., 1989; O’'Keefe et a/., 1989, 1991). p39°™* can
associate with and phosphoryiate tubulin (Zhou et a/., 1991), and is required
for spindle function in mouse oocytes (Zhao et al., 1991). p39°™* is not
synthesized by meiotically incompetent oocytes (Paules et al., 1989).

Another potential regulator of microtubular activity in oocytes is mitogen-
activated protein (MAP) kinase. This serine/threonine kinase is present in
oocytes of many invertebrate and vertebrate species and, when maturing
oocytes enter metaphase, it becomes phosphorylated and active as a kinase

(Verlhac et al., 1994). Phosphorylation appears to be mediated through p39~
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m¢ (Nebreda and Hunt, 1993; Posada et al., 1993). Activated MAP kinase
phosphorylates a microtubule-associated protein present in frog eggs (Shiina et
al., 1992) and when added to cell-free extracts prepared from frog eggs causes
both the growth rate and the steady-state length of microtubules to decrease
(Gotoh et al., 1991}. In fully grown oocytes of the mouse, two species of MAP
kinase are present, p42"%2 and p44™*' (Sobajima et a/., 1993; Verlhac et a/.,
1993, 1994; Gavin et al.,, 1994) and, in maturing oocytes, MAP kinase is
associated with the MTOCs (Verlhac et al., 1993) that nucleate microtubule
assembly at metaphase (Maro et a/., 1985; Schatten et a/., 1985). Based on
the links between altered microtubules and meiotic competence, and between
microtubules and MAP kinase, we investigated whether changes in the
abundance or phosphorylation of MAP kinase occurred as growing cocytes

acquired meiotic competence.
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MATERIALS AND METHODS

Collection and culture of oocytes

CD-1 mice (originally obtained from Charles River, Canada) were used in
all experiments. To obtain immature oocytes from females aged between 5 and
12 days, the ovaries were placed in phosphate-buffered saline (PBS) devoid of
calcium and magnesium, shredded into several pieces, and transferred into PBS
containing 0.1% collagenase |V (Gibco, Canada), 0.1% DNase (Gibco, Canada).
The fragments were agitated using a mechanical shaker for 30-45 minutes at
37°C, following which the preparation was transferred into a petri dish and the
enzymatic solution was diluted with a Hepes-buffered minimum essential
medium (MEM-H) modified as described (Schroeder and Eppig, 1984) in order
to arrest further digestion. Immature oocytes recognized by the presence of
the germinal vesicle (GV) were collected under a dissecting microscope using
a hand-pulled glass pipette. They were either cultured in modified MEM
supplemented with 0.3% bovine albumin serum (BSA, fraction V, Sigma) in an
atmosphere of 5% CO, in air, or lysed immediately for electrophoresis.

Growing and fully grown immature oocytes were obtained from females
aged between 13-30 days by puncturing medium and large size follicles as
described previousily (Harrouk & Clarke, 1993). Typically, two mice were used

in an experiment. Following sacrifice, the ovaries were dissected and placed
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in minimum essential medium (MEM) buffered using Hepes (pH 7.4) and
containing sodium pyruvate (25uM), antibiotics and bovine serum albumin
(BSA, 3ug/ml, fraction V, Sigma) (Schroeder and Eppig, 1984). After removing
the adhering fat and blood, ovaries were shredded into small fragme .its, which
were examined individually for the presence of medium and large size follicles.
Using forceps and a 30G ¥z needle, these follicles were punctured to release the
immature oocytes, which were easily recognized under the dissecting
microscope by the presence of the germinal vesicle. In a typical experiment,
the yield was about 100 healthy immature oocytes. After several washes to
remove any attached cumuius cells, the immature oocytes were transferred
using a mouth-controlled drawn glass pipet into a plastic dish (Nunc) containing
MEM buffered using NaHCO, and supplemented with fetal bovine serum. The
medium was covered with paraffin oil and incubated at 37°C in an atmosphere
of 5% CO, in air.

Depending on the experiment to be carried out, oocytes were either
cultured for 3h to allow germinal vesicle breakdown (GVBD) to occur and only
those that underwent GVBD following 3h of culture were cultured overnight to
complete maturation. GV oocytes were either lysed or fixed following their

isolation immediately.
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Immunoblotting

Oocytes at the appropriate experimental stage were lysed in a gel loading
buffer (Harlow and Lane, 1988) keeping the number of oocytes per wul
approximately constant, heated at 85°C for 10 minutes, chilled on ice for 10
minutes, centrifuged, and stored at -70°C until use. The proteins in the
samples were separated by electrophoresis in 12% polyacrylamide gels
containing 0.1% sodium dodecyl sulfate (Harlow and Lane, 1988) for 1 h at
200 volts, electrically transferred to nitrocellulose membranes (Schleicher &
Schuell, pore size 0.5 ym) for 1.5 h, 80 volts, at 4°C. The blot was left to dry
overnight and the gel was stained to verify the success of the transfer. Ali
immunoblotting steps from blocking the membrane onwards were carried out
Oat room temperature with gentle agitation. The membrane was blocked by
soaking for 2h in a 3% powdered skim milk in 10 mM Tris (pH 7.5), 140 mM
NaCl {TBS). The primary antibody anti-MAP kinase 691, (Santa Cruz Biotech,
California) was diluted 1:500 in blocking buffer, applied to the blot and agitated
overnight. Following three washes of 15 minutes each in TBS containing 0.1 %
Tween-20 (TBST), abiotinylated secondary artibody (Jackson Immunoresearch
Laboratories) was applied to the blot at a dilution of 1:200 in TBST, 3% BSA.
After 3 washes in TBST, the membrane was incubated in streptavidin-

conjugatedalkaline phosphatase(JacksonlmmunoresearchlLaboratories)diluted
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1:500 in TBST, 3% BSA. After 3 washes in TBST, the bound antibody was
revealed using the NBT/BCIP reagents diluted in appropriate buffer (Harlow &

Lare, 1988).

Immunofluorescence

Oocytes were denuded of their zonae pellucidae by exposing them briefly
to acidified (pH 2.5) Tyrode’s medium. Once the zonae had disappeared, the
oocytes were washed several times in MEM-H and then fixed in a freshly
prepared solution of 2% paraformaldehyde in PBS for 15 minutes at room
temperature. The fixed oocytes were then permeabilized using 0.5% Triton-X
100 in PBS for 15 minutes, following which they were blocked for 15 minutes
in a solution containing PBS, 3% BSA, 10% goat serum, 0.1% Tween-20. The
primary antibody (mouse ariti-a-tubulin, Cedarlane Laboratories), diluted at
1:5000 in the blocking buffer, was applied for 3 h at room temperature. After
3 washes of 15 minutes each in blocking buffer, the oocytes were then
transferred into an FITC-labeled anti-(mouse IgG) secondary antibody (Jackson
Immunoresearch Laboratories) diluted at 1:100 in blocking solution, and
containing the DNA stain, DAPI (1 yg/ml). Following 2 washes in the blocking
buffer, the oocytes were transferred into a drop ot Moviol (Hoechst) on
siliconized microscope slides. The oocytes, which tend to float to the surface

of the Moviol drop, were then picked up using the micropipette, moved down
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to the bottom, and gently covered with a glass coverslip. Preparations were
examined using a Leitz Laborlux S microscope equipped with ultraviolet and

fluorescein filters. Photographs were taken using Kodak TMAX 100.
Drugs

Okadaic acid (Gibco, Canada) was prepared as a stock solution of 100

UM and used at a final concentration of 1 M.
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RESULTS

Meiotic competence of growing oocytes

During the reproductive life of the mouse, only a small number of
oocytes are growing at a particular time, so it is difficult to collect large
numbers of oocytes at dif ferent stages of grow'th. Shortly after birth, however,
a large group of oocytes initiate and progress synchronously through growth
and acaquisition of meietic competence (Sorensen and Wassarman, 1976;
Albertini, 1992). Oocytes collected from mice up to 12 days of age are
meiotically incompetent. QOocytes obtained from slightly older mice are partially
competent, being able to undergo GVBD but not to complete the first meiotic
division in culture. Many oocytes from mice older than 18 days are able to
compiete maturation to metaphase |l in culture. Thus, ovaries harvested from
prepuberal mice at different ages provide a convenient source of oocytes at
specific stages of growth and meiotic competence.

To test the relationship between mouse age and oocyte meiotic
competence in our colony, growing oocytes were collected either by enzymatic
digestion of ovaries of 5- tc 12-day mice or by puncture of ovarian follicles of
13- to 30-day-old mice. The oocytes were incubated for 18 h, and then
classified into one of 3 categories which are easily distinguished under the

dissecting microscope: Germinal vesicle (GV) stage, where the nucleus is
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prominently observed; germinal vesicle breakdown (GVBD) stage, where the
nucleus is no longer visible; and metaphase Il, where the first polar body is
seen protruded from the plasma membrane (Figure 1).

The results (Table 1} show that the majority of oocytes isolated from
mice younger than 14 days of age remained arrested at the GV stage in culture,
indicating that they were meiotically incompetent. The small percentage of
oocytes isolated from the 13-day animals that underwent GVBD in culture were
larger in diameter than the rest of the oocytes in this group (data not shown).
Mice between 14 and 16 days of age contained all three types of oocytes. In
particular, these mice contained relatively large numbers of partially competent
oocytes, which underwent GVBD but failed to complete meiosis | (Table 2).
Finally, most oocytes obtained from mice older than 17 days were able to reach
metaphase |l in culture. These results confirm previous reports (Sorensen and
Wassarman, 1976) and demonstrate that a population of oocytes undergoes
a transition from a meiotically incompetent state in mice younger than 14 days
to a partially competent state at 14-16 days and become fully competent by

17 days of age.

Expression of MAP kinase in meiotically incom
Having established that relatively homogeneous populations of oocytes

at different stages of meiotic competence can be obtained from mice during the
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first three weeks after birth, we examined the abundance of MAP kinase in
these oocytes. One hundred oocytes at the GV-stage were collecied from 5,
8, 10, 15, and 18-day mice. One hundred oocytes either at GV or GVBD stage
were collected from 20-day mice. Lysates were prepared, subjected to SDS-
PAGE, electrically tranferred onto nitrocellulose membranes, and immunoblotted
using an affinity-purified antibody raised against subdomain Xl of the rat £ERK7
gene product (Boulton and Cobb, 13991).

Two doublets of approximate M, 42 and 44 kDa were present in oocytes
of 20-day mice (Figure 2). Based on previous results from our laboratory
(Verlhac et al., 1993) and others (Sobajima et al., 1993; Gavin et al., 1994),
these represent MAP kinase encoded by the mouse ERK2 and ERK17 genes,
respectively, and will be referred to as p42f%? and p44®™’. The slower
migrating form of each doublet represents the phosphorylated protein, while the
faster migrating form is the non-phosphorylated protein (Posada and Cooper,
1992; Verlhac et al., 1993, 1994). The presence of both phosphorylated and
non-phosphorylated p42t%? and p44 ' in the 20-day sample is due to the fact
that it contained both GV- and GVBD-stage oocytes.

Oocytes collected from mice between 5 and 18 days also contained
immunoreactive species of approximate M, 42 and 44 kDa. As no other
immunoreactive species were regularly detected, we conclude that these

represent p425%? and p44f’, All oocytes in these samples were at the GV-
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stage and only the fast-migrating, non-phosphorylated forms of the proteins
were present. Cornparison of the intensity of staining between lanes, which
each contained the same number of oocytes, suggests that the amount of
p42f%2 and p44ff’ increased during oocyte growth. As noted in the
Discussion, total protein content also increases during growth. These results
clearly indicate that p42f%2? and p44f™' are present beginning early during
oocyte growth, and several days before growing oocytes acquire partial or full

meiotic competence.

Phosphorylation of MAP kinase and spindle formation in partially competent
oocytes

As discussed above, growing oocytes pass through a stage of partial
meiotic competence, when they can enter metaphase but cannot complete
meiosis I. These oocytes assemble a spindle, indicating that the point of arrest
lies at the metaphase-anaphase transition (Sorensen and Wassarman, 1976;
Wickramasinghe et a/., 1991). The results of the previous section indicated
that the inability of partially competent oocytes to complete meiosis | was not
correlated with an absence of MAP kinase. We next examined whether MAP
kinase became phosphorylated in metaphase |-arrested oocytes.

Oocytes were collected from 14- to 16-day mice, when the partially

competent oocytes are most abundant (Table 1, Table 2). They were incubated
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for 6, 9, or 18 h and then separated into groups according to their stage of
meiotic maturation. A portion of each group was fixed for immunofluorescent
analysis of spindle configuration, while the remainder was used for
immunoblotting.

Oocytes examined after 6 h or 9 h of incubation had entered metaphase
as is shown by immunofluorescence (Figure 3) and contained predominantly the
slow-migrating, phosphorylated forms of p42f*2and p44*’ (Figure 4A, lanes
2, 3). Based on the results shown in Table 1, these samples contained a
rixture of partially competent oocytes, which would arrest at metaphase |, and
fully competent oocytes which would progress to metaphase il. These could
not be morphologically distinguished at this time. After 18 h of incubation,
however, the partially competent oocytes could be identified by their failure to
emit the first polar body. Immunofluorescent analysis confirmed that these
contained a well-formed spindle (Figure 4B). These oocytes, as well as those
that progressed to metaphase ll, contained predominantly the phosphorylated
forms of p42t¥%? and p44’ (Figure 4A, lanes 4 & 5). These results confirmed
that partially competent oocytes become arrested at metaphase | of maturation

and showed that MAP kinase became phosphorylated in these oocytes.

To further investigate the relationship between MAP kinase and meiotic
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competence, we examined whether p42f%? and p44f’ could become
phosphorylated in meiotically incompetent oocytes. Incompetent and prophase-
blocked oocytes can be induced to enter metaphase by exposure to okadaic
acid, an inhibitor of type 1 and type 2A phosphatases (Rime & Ozon, 1990;
Alexandre et al., 1991; Gavin et al., 1991; Schwartz & Schultz, 1991). We
examined whether MAP kinase became phosphorylated following okadaic acid
treatment of incompetent oocytes.

Oncytes were collected by follicular puncture from 14- to 16-day mice
and incubated for 9 h. Those that remained at the GV stage during this period
were defined as meiotically incompetent. One portion was lysed immediately
for immunoblotting and the other portion was incubated for an additional 9 h
in the presence of 1 M okadaic acid. By the end of this second incubation, all
of the oocytes had undergone GVBD, elthough none had formed a polar body.
Immunoblotting revealed that the GV-arrested oocytes collected after 9 h
incubation contained the fast-migrating, non-phosphorylated forms of p42%?
and p44%’ whereas the okadaic acid-treated oocytes contained the slow-
migrating, phosphorylated forms {Figure bA, lanes 1, 2).

To examine more closely the kinetics of the okadaic acid-induced mobility
shift, the following experiment was performed. Oocytes were isolated from 14-
to 16-day mice, incubated for 3 h, and those that remained at the GV stage

were selected. These oocytes were incubated in medium containing okadaic
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acid and checked every 30 minutes for GVBD. Under these conditions, GVBD
occurred in 48% of the cocytes after 2 h of incubation (data not shown).
These cocytes displayed certain morphological abnormalities, particularly loss
of spherical shape (data not shown). Aliquots of these oocytes were collected
for immunoblot analysis at 2, 4, 6, and 18h after the start of the drug
treatment.

As shown in Figure 5B (lanes 1, 2), the incompetent oocytes that
underwent GVBD during 2 h exposure to okadaic acid contained both the fast-
migrating and the slow-migrating forms of p42f%? and p44fX'. By contrast,
oocytes that remained at the GV stage in the presence of the drug contained
only the fast-migrating, ncn-phosphorylated forms. Qocytes that underwent
okadaic acid-induced GVBD contained both fast- and slow-migrating forms of
MAP kinase after 4, 6, and 9 h of incubation. These results indicate that when
incompetent cocytes are exposed to okadaic acid, a portion of p42f%? and
p44f’ becomes phosphorylated within 2 h.

Immunofluorescent analysis using anti-a-tubulin of the incompetent
oocy’es exposed to okadaic acid for 15 h indicated that no spindle was
assembled (Figure 5C), which is consistent with previous reports (Rime & Ozon,
1990; Alexandre et a/., 1991). The chromatin was condensed and clumped

into several aggregates.
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Expression of MAP kinase in meiotically competent bovine oocytes

In order to test whether bovine oocytes contain similar species of MAP
kinase as seen in mouse oocytes, fifty GV bovine oocytes and forty GV mouse
oocytes were lysed, separated on SDS gels, followed by immunoblotting using
the 691 antibody described above.

Three separate bands were detected in the bovine sample. The two top
bands migrated at the same level as p42 and p44 of the mouse sample,
suggesting that MAP kinase is present in the bovine oocyte and has the same
molecular weight as in the mouse oocyte. A third band whicl: is absent in the
mouse oocyte was also detected in the bovine oocyte. This band migrated
faster than the other two and corresponds to a protein of approximately 40 kDa
(Figure 6A). All three bands represented the unphosphorylated species of
bovine MAP kinase.

To look at the phosphorylation pattern of bovine MAP kinase, fifty
oocytes were lysed at three time points of maturation, Oh, 12h, and 18h which
reoresent the GV, metaphase |, and metaphase ll stages, respectively. Samples
were subjected to SDS-PAGE, electrically transferred onto nitrocellulose
membranes, and immunoblotted using the 691 antibody described above. All
three hands wve-e detected in each lane at each time point. In addition, the two
upper bands, presumably the p42 and p44 isoforms, contained doublets where

each isoform had both the phosphorylated and the unphosphorylated forms of
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the protein as judged by the slower mobility shift on the gel. In addition, a shift
in the p42 band from the unphosphorylated, fast migrating form in the
metaphase | sample (Figure 6B, lane 2), to the phosphorylated, slow migrating
form in the metaphase Il sample (Figure 6B, lane 3) is observed. In contrast to
the mouse oocyte where the switch occurs in both species at the same time,
the bovine forms of both p42 and p44 are switched from the unphosphorylated
to the phosphorylated during the progression from metaphase | to metaphase
Il. This observation might have some involvement in the stepwise process of

meiotic maturation in the bovine oocyte.
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DISCUSSION

It is well-established that as mammalian oocytes progress through the
growth phase of development they acquire the ability to undergo meiotic
maturation (Sorensen and Wassarman, 1976; Albertini, 1992), but the
molecular basis of this meiotic competence is unknown. We investigated
whether the acquisition of competence might be linked to changes in the
quantity or phosphorylation pattern of the two major MAP kinase species
present in mouse oocytes, p42f%2 and p44®™’. To this end, we collected
oocytes from mice aged between 5 days and 21 days post-partum, when a
large population of ococytes progress synchronously through growth. Oocytes
obtained from mice up to 13 days of age were meiotically incompetent,
whereas as those obtained from older mice were partially or fully competent,
consistent with the previous results. Nevertheless, both MAP kinase species
were detectable in oocytes obtained from mice as young as 5 days of age.
These results indicate that the acquisition of competence is not associated with
the de novo appearance of p42&*2 or p44t*/,

During oocyte growth, the quantity of p42%? and p44*' increased as
judged by the intensity of staining inimmunoblots. The amount of each relative
to the other appeared to remain constant during growth, which suggests that

their synthesis is co-ordinately controlled. As increases in the quantity of
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several other proteins and in the total protein content also occur during growth
(Schuitz, 1986; Wassarman, 1988), the present results therefore do not
indicate whether the concentration of p427%? and p44f*’ change during
growth. It is possible that changes in the concentration of p42t%2 or p44t%,
which would not be detected by our methods, are critical for meiotic
competence. It may be more likely, however, that these proteins accumulate
steadily during oocyte growth but do not directly regulate meiotic competence.

Previous results (Sorensen and Wassarman, 1976; Wickramasinghe and
Albertini, 1992), confirmed in the present study, showed that meiotic
competence is acquired in two stages: first, the ability to enter metaphase and
second, the ability to complete the first meiotic division. We observed that
p4257%2 and p44 ' became phosphorylated in partially competent oocytes,
which can enter metaphase but cannot complete meiosis |. This resembles the
situtation in fully competent oocytes, where p425%*? and p44*’ become
phosphorylated during maturation by means of a process requiring protein
synthesis (Verlhac et al., 1993; Gavin et a/., 1994). These results considered
together imply that partially competent oocytes possess the capacity to
synthesize those proteins required to generate phosphorylated p42t*%? and
p44c™' The nature of these proteins is unknown, but could include upstream
activators of MAP kinase such as MEK, Raf, or MEK kinase (Roberts, 1992;

Lange-Carter et al.,, 1993). We conclude that the failure of partially competent
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oocytes to complete meiosis | is not due to an inability to generate
phosphorylated MAP kinase, but rather to a defect acting downstream or
independently.

It should be noted, however, that the partially competent oocytes were
not examined until after 18 h of culture. As phosphorylation of p42%2 and
p445%! normally occur after 2 to 4 h of culture (Sobajima et al., 1993; Verlhac
et al., 1993; Gavin et al., 1994), it is possible that this event is delayed in
partially competent oocytes. This is difficult to test, because partially
competent oocytes cannot be identified until about 12 h of culture when fully
competent oocytes emit the first polar body. If phosphorylation were delayed
in partially competent oocytes, this might disrupt the synchrony of timing
between MAP kinase phosphorylation and another event required for meiosis
.

We also observed that the p425%2 and p44£™’ in meiotically incompetent
oocytes could become phosphorylated, as judged by retarded electrophoretic
mobility, when these oocytes were treated with the inhibitor of protein
phosphatase types 1 ano 2A, okadaic acid. This drug also induces meiotically
incompetent oocytes to enter metaphase (our results, Gavin et al., 1991;
Chesnel et al., 1994) and activates MAP kinase in fully competent oocytes
(Gavinet al., 1994), extracts prepared from oocytes (Nebreda and Hunt, 1993),

and quiescent fibroblasts (Gotoh et a/., 1990). Two inferences may be drawn
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from the observation that phosphorylated forms of p42f%? and p44*! were
observed in the okadaic acid-treated incompetent oocytes. First, incompetent
oocytes apparently possess type 1 or type 2A phosphatases whose activity is
required to maintain MAP kinase in a non-phosphorylated state. Second, they
also possess protein kinases that generate phosphorylated MAP kinase when
the phosphatase activity is inhibited. One possibility is that both kinase and
phosphatase act directly on p425%? and p44’, the predominance of the non-
phosphorylated form being due to relatively higher activity of the phosphatase.
Phosphatases specific for MAP kinase have recently been identified (Keyse and
Emslie, 1992; Charles et al.,, 1992; Sun et al, 1993; Zheng and Guan, 1993;
Ward et al., 1994). However, these dual-specific threonine/tyrosine
phosphatases may not be sensitive to okadaic acid, which does not inhibit
tyrosine phosphatase (Hardie et a/., 1991), thus making it unlikely that the drug
acts on a MAP kinase-specific phosphatase. Alternatively, one of the
components of the MAP kinase phosphorylation pathway, such as a MAP
kinase kinase (Gémez and Cohen, 1991), may be kept inactive in incompetent
oocytes by an okadaic acid-sensitive phosphatase.

Although p42f%2? and p44f*' became phosphorylated in meiotically
incompetent oocytes when phosphatase activity was inhibited, this may not
reflect the natural mechanism that operates during meiotic maturation of

competent oocytes. We observed that okadaic acid-induced phosphorylation
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of p425%2? and p44*' had occurred by 2 h of culture (see also Gavin et al.,
1994). By contrast, their phosphorylation during meiotic maturation requires
between 2 and 4 h of culture (Verlhac et a/., 1993). Also, okadaic acid-
induced phosphorylation can precede entry into metaphase (Gavin et a/., 1994),
whereas phosphorylation during mammalian meiotic maturation can occur only
after entry into metaphase (Sobajima et a/.,, 1993; Verlhac et al., 1993).
Similarly, when p21 is injected into immature Xenopus oocytes, MAP kinase
is activated more rapidly, relative to the activation of maturation-promoting
factor, than during progesterone-induced maturation (Nebreda et al., 1993).
Perhaps okadaic acid and p21™ are able to activate MAP kinase through a
pathway that is different from that used during physiological maturation.

Our results indicate that the acquisition of meiotic competence is not
directly linked to substantial changes in the quantity or phosphorylation
patterns of MAP kinase. This suggests that the differences in microtubular
morphology between incompetent and competent oocytes are not directly
regulated by MAP kinase. To address whether MAP kinase is required for the
microtubular rearrangements during meiotic maturation, it will be necessary to
eliminate this activity from meiotically competent oocytes. Additionally,
however, it is possible that MAP kinase plays a role in oocyte growth. Oocyte
growth requires products of the somatic cells that surrournd the oocyte

(Buccione et al., 1990; Eppig, 1991). Among these is the c-kit ligand (Manova
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et al., 1993}, which could interact with the c-kit receptiors present in the
oocyte {Horie et al., 1991; Keshet et a/., 1991), and recent evidence suggests
a direct role for c-kit ligand in stimulating oocyte growth (Packer et al., 1994).
MAP kinase is a component of the pathway by which ligand-stimulated c-kit,
like other tyrosine kinase receptors, transmits a signal to the cell nucleus
(Pelech and Sanghera, 1992). Given that p425%2 and p44 %’ were present in
oocytes at all stages of growth examined, MAP kinase may be required for the
large and rapid increase in cell size that occurs during the growth phase. This
hypothesis could be tested by depleting p42f%? and p44’ in growing

oocytes.
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Figure 1. Photomicrographs of fully grown mouse oocytes collected from
antral follicles and cultured /in vitro. A, B, C, oocytes at the dictyate,
metaphase |, and metaphase Il stages, respectively. GV, germinal vesicle, ZP,

zona pellucida, PB, polar body. Bar= 10 mm.
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Figure 2.  p42%*? and p44™™’ in meiotically incompetent and competent
mouse oocytes. Ovarian oocytes were collected from mice of different ages and
immunoblotted using antibody 691 raised against subdomain Xl of the rat ERK 1
gene product. All oocytes were at the GV-stage, except the 20-day group
which contains a mix of GV- and GVBD-stage oocytes. Each lane contains 100
oocytes. Lane 1, 20-day mice. Lane 2, 18-day mice. Lane 3, 15-day mice. Lane

4, 10-day mice. Lane 5, 8-day mice. Lane 6, 5-day mice.

109




110




Figure 3. Immunofluorescent analysis of the mouse oocytes during given
stages of meiotic maturation. Qocytes cultured for 18h in MEM were stained
with Hoechst (A, B, C) and reacted with anti-tubulin antibodies (A’, B’, C') at
these stages: A, A’, an oocyte that arrested at the GV stage. B, B’, an oocyte
that underwent GVBD but failed to complete maturation, termed partially-

competent. C, C’, an oocyte that completed maturation and arrested at

metaphase Il. Bar= 10 mm.
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Figure 4.  Phosphorylation of p42*2 and p44**' and spindle formation in
partially competent oocytes. (A). Immunoblot. Ovarian oocytes were collected
from 14- to 16-day mice, incubated for the indicated period of time, and
immunoblotted using antibody 691. Each lane contains 50 oocytes. Lane 1, 18
h, all oocytes contained a GV. Lane 2, 6 h, all oocytes had undergone GVBD.
Lane 3, 9 h, all oocytes had undergone GVBD. Lane 4, 18 h, all oocytes had
undergone GVBD. Lane 5, 18 h, all oocytes had 2mitted the first polar body.
(B). Immunofluorescence. Ovarian oocytes were incubated for 18 h and those
that underwent GVBD but did not emit a polar body were fixed and stained
using an anti-a-tubulin antibody (bottom). Chromosomes were stained using

DAPI (top). Bar = 8 mm.
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Figure 5. Effect of okadaic acid on meiotically incompetent oocytes. (A).
Phosphorylation of p425*2 and p44*’, Ovarian oocytes were collected from
14- to 16-day mice, incubated for 9 h, and those that remained at the GV stage
were selected. One portion was prepared for electrophoresis (left lane): all
oocytes contained a GV. The other portion was incubated in the presence of
1 #M okadaic acid for 9 h and then prepared for electrophoresis (right lane); all
oocytes had undergone GVBD. Immunoblotting was performed using antibody
691. Eech lane contains 50 oocytes. (B). Timing of phosphorylation. Ovarian
oocytes were collected as before and incubated for 3 h. Those that i 2mained
at the GV stage were exposed to 1 yM okadaic acid for the indicated length of
time and immunoblotted using antibody 691. All cocytes in lanes 1, 3, 4, 5
underwent GVBD; all oocytes in lane 2 remained at the GV-stage. Lane 1, 2 h,
Lane 2, 2 h. Lane 3, 4 h. Lane 4, 6 h. Lane 5, 9 h. Each lane contains 50
oocytes. (C). Immunofluorescence. Ovarian oocytes were incubated for 3 h and
those that remained at the GV stage were incubated for an additional 15 h in
the presence of 1 uM okadaic acid, fixed and stained using an anti-a-tubulin

antibody (right). Chromosomes were stained using DAPI (left).
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Figure 6. p42t%? and p44™' in meiotically competent bovine oocytes. A,
a sample of 40 fully grown mouse oocytes (Lane 1) and 50 fully grown bovine
oocytes (Lane 2) were immunoblotted using antibody 691. In both samples,
oocytes were at the GV stage. B, Phosphorylation of p42 and p44 n
meiotically competent bovine oocytes. Each lane contained 50 oocytes.
Bovine oocytes were lysed at 0, 12, and 24h following culture in MEM
corresponding to GV, metaphase |, and metaphase Il stages of meiotic
maturation, respectively. Lane 1, all oocytes were at the GV stage. Lane 2,
all oocytes had undergone GVBD. Lane 3, all oocytes had emitted a polar

body.
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TABLE 1

THE EXTENT OF MEIOTIC MATURATION IN GROWING
MOUSE OOCYTES IN RELATION TO THE AGE OF THE

MOUSE.
Age Total number of GV (%) GVBD (%) PB 1 (%)
(Days) eggs
10 106 100 0 o
13 32 94 6 o
14 110 55 16 29
15 100 31 42 27
16 100 41 7 52
17 166 18 2 80
18 100 8 6 86
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TABLE 2

PARTIALLY-COMPETENT OOCYTES
IN GROWING MOUSE OOCYTES.

Duration of Total number of Metaphase | Metaphase Il
culture (h) GVBD oocytes (%) (%)
9 45 87 13

20 64 16 84
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CHAPTER Il

General Discussion
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1. Summary of experimental findings

In this thesis, | have described experiments done using oocytes from the
CD-1 mouse strain to investigate some of the changes that may be relevant in
elucidating the mechanism underlying the acquisition of meiotic competence in

mammalian species.

1.1. Acquisition of meiotic competence during oocyte growth

The mammalian ovary contains at any given time during the life of the
female a mixed population of follicle-enclosed oocytes in different stages of
development. Basically, two major groups inhabit the ovary, the smail
nongrowing group of oocytes and those that have initiated their growth phase.
The total number of oocytes in the ovary is the largest at the time of birth and
it decreases thereafter with age. This decrease in the number of oocytes is
partly due to the flow of a group of oocytes which start their growth phase
synchronously (Pedersen, 1968). In the mouse, oocytes which start their
growth phase shortly after birth reach their full size in about two weeks.

Around the time they reach their full size, oocytes acquire the capacity
to undergo meiotic maturation wwhen exposed to a maturation-inducing

environment (Sorensenand Wassarman, 1976; Schultzand Wassarman, 1977).
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Previous reports have linked the acquisition of meiotic competence to the
age of the mouse from which oocvtes were isolated. The age of the mouse is
directly linked to the size of the growing oocyte which, in turn, is a factor in
the acquisition of meiotic competence (Sorensen and Wassarman, 1976,
Wickramasinghe et al., 1991).

To establish the synchrony of growth and meiotic competence among
oocytes that will be used in answering the proposed questions, the extent of
meiotic maturation of oocytes isolated at increasing ages of the juvenile mouse
was studied in our breeding colony. This was shown by culturing follicle-free
oocytes in culture medium where competent oocytes underwent GVBD within
3h of culture, and assembled their first meiotic spindle 6h later. Within 4h, the
second meiotic spindle formed and oocytes conpleted their meiotic maturation.

Following a culture period of 18h, oocytes obtained from mice younger
than 13 days of age were incapable of undergoing GVBD, and are thus said to
be meiotically incompetent. Oocytes isolated from mice in the age groups of
14-16 days, were capable of undergoing GVBD but contained a subgroup of
oocytes that arrest following the formation of first meiotic spindle and are
termed partially competent oocytes. Most oocytes isolated from 17 days or
older mice were capable of completing their maturation and extruding their first

polar body. Such oocytes are referred to as fully competent.
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These results confirmed previous reports and established the presence
of a group of oocytes that, during their growth phase, acquire the ability to

undergo maturation in a progressive manner in the juvenile mouse.

1.2. Expression ot MAP kinase in_growing oocytes

Among the fzatures of a growing oocyte is the accumulation of materials
that will be neeced for fertilization and the early stages of embryogenesis.
Such materials include proteins which become expressed after the oocyte starts
its growth phase. Among these proteins are the zona pellucidae proteins,
lactate dehydrogenase and others that are still unidentified.

Previous reports have shown the presence of two species of mitogen-
activated protein (MAP) kinase in fully grown mouse oocytes, namely p42 and
p44. Upon meiotic resumption, both species become phosphorylated, MAP
kinase becomes active as witnessed by its ability to phosphorylate myelin basic
protein, and is localized to the MTOCs on both meiotic spindles of meiosis as
seen by immunofluorescence (Veslhac et a/., 1993).

However, in small and growing oocytes which are incapable of entering
metaphase under the appropriate conditions, neither the presence of MAP
kinase nor its phosphorylation state has been reported.

Using the western blotting technique, both species of MAP kinase, p42

and p44, were found to be present in oocytes isolated from mice as early as 5
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days of age. At this stage, oocytes have just started their growth phase and
are incompetent to resume meiosis. As expected, only the nonphosphorylated
species of p42 and p44 were detected in oocytes collected from incompetent
oocytes. This falls in agreement with previous results where the
phosphorylated species of p42 and p44 are not detecied in GV-arrested
oocytes.

That MAP kinase is present very early during the life of a female
eliminates the possibility that MAP kinase belongs to the group of proteins that
become expressed only after the oocyte has started its growing phase in
preparation for the acquisition of meiotic competence. Alternatively, due to its
presence at an early stage of the oocyte development, it would be interesting
to hypothesize that MAP kinase is an essential protein in the growth process
or such a related event. This hypothesis could be tested by depleting the stock
of p42 and p44 from the oocyte and documenting any changes that occur at
the level of oocyte growth, maturation or at a later stage of embryonic

development.

1.3. MAP kinase in partially competent oocytes

The acquisition of meiotic competence in growing oocytes has been
reported to occur in a stepwise process where the first step is acquired when

oocytes undergo GVBD and reach metaphase | of meiosis I. The second step
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is accomplished when oocytes complete maturation and arrest at metaphase
It of meiosis awaiting either fertilization or parthenogenetic activation (Sorensen
and Wassarman, 1976). This process seems to be related to the age of the
mouse as growing oocytes isolated from mice between 14-16 days of age are
enriched for those oocytes that are capable of undergoing GVBD but arrest at
metaphase | thus failing to complete maturation. The majority of oocytes
isolated from mice 17 days cf age or older are capable of completing meiotic
maturation. The results shown in the previous section on the extent of meiotic
maturation are in accordance with this hypothesis.

Nevertheless, the molecular components regulating the program of partial
meiotic competence exhibited by metaphase l-arrested oocytes are not known.
One molecule that might be involved in this regulation is MAP kinase which
was compared in oocytes with full meiotic competence and those with partial
competence. Parameters that were tested in the two groups were the presence
or absence of MAP kinase, the phosphorylation pattern of both species of MAP
kinase, namely p42 and p44, and the microtubular and chromosomal
configurations.

Upon comparing the pattern of expression of MAP kinase in partially
competent and fully competent oocytes, the two species, p42 and p44, were
both detected in both groups.

Using the retarded mobility shift as an assay to test for the
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phosphorylated species, partially competent oocytes were found to contain the
phosphorylated, slow-migrating species of the protein similar to metaphase Ii
oocytes. The finding that both species of MAP kinase are present and
phosphorylated in metaphase l-arrested oocytes eliminates the implication of
MAP kinase in their failure of complete maturation.
Immunofluorescentresults comparing the chromosomal and microtubular
structures of partially and fully competent oocytes did not reveal any major
deficiencies at least at the morphological level. Partially competent oocytes
which failed to form a polar body following an 18h culture period contained
tivalent chromosomes situated on the equator of a seemingly normal spindle.
Due to the fact that metaphase l-arrested oocytes cannot be identified
any earlier than 12h of culture, it is plausible that these oocytes were slower
in either their phosphorylation process or in the assembly of their spindle.
Alternativ2ly, MAP kinase in metaphasa f-arrested oocytes might be regulated
differently by upstream kinases or is itself regulating downstream substrates in
a different fashion than is usually the situation in fully competent oocytes. To
test these hypotheses requires a fine dissection of the upstream regulators and

downstream substrates of MAP kinase in a given signal transduction pathway.
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Meiotic maturation can be arrested in fully grown, competent mouse
oocytes by increasing the levels of PKC and PKA (Alexandre et a/., 1991).
However, exposure of such oocytes to okadaic acid, a phosphatase inhibitor,
releases them from their meiotic arrest. Meiotically incompetent oocytes are
naturally arrested at the diplotene stage of meiosis. In this thesis, the capacity
of meiotically incompetent oocytes to enter metaphase was tested using
okadaic acid. Such oocytes are those that cannot enter metaphase following
their release from their surrounding follicles even after a 9h of cuiture period.
In the presence of 1uM okadaic acid, incompetent oocytes underwent GVBD
within 9h following their culture. When 1\e oocyte proteins were separated on
SDS gels and immunoblotted for MAP kinase, both species of MAP kinase, p42
and p44, were fourd to be phosphorylated as manifested by their slower
mobility shift than the nonphosphorylated forms present in meiotically-arrested
oocytes. This finding imply that the machinery required for the phosphorylation
of MAP kinase is present in incompetent oocytes but, probably for some
developmentally- regulated purposes, is put on hold by some factor(s). A good
candidate for such a factor i the two phosphatases, 1 and 2A, which are
inhibited by the effect of okadaic acid.

PP1 and PP2A might be regulating either the phosphorylation step of
MAP kinase directly or acting upstream on some regulator of MAP kinase along

the MAP kinase pathway. Once activated, such a regulator would cause the
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MAP kinase directly or acting upstream on some regulator of MAP kinase along
the MAP kinase pathway. Once activated, such a regulator would cause the
phosphorylation of MAP kinase. Endorsing such a hypothesis requires testing
the effect of okadaic acid on the various kinases along the MAP kinase
pathway and documenting any changes in their phosphorylation patterns.
The effect of okadaic acid on the morphology of treated oocytes was
assessed. When the minimal concentration of the drug was used, 1M, some
changes were observed as treated oocytes lost their spherical shape and
became irregularly shaped. Immunofiuorescent analysis of treated cocytes
showed that those oocytes which had undergone GVBD contained condensed
chromosomes that were never capable of forming separate bivalents as is
usually the case in normaliy-occuring GVBD. On the other hand, the
microtubular network was deeply disrupted, as 0 microtubules were detected
by immunofluorescence in such treated oocytes. This implies that the drug has
a double effect on the maturation state of the oocvte. On the positive side,
okadaic acid can induce GVBD in otherwise incompetent oocytes. On the other
hand, however, the drug acts negatively on the formation of metaphase spindle
which might suggest the involvement of phosphatases 1 and 2A in the normal
assembly of spindie microtubules. The cilumped configuration of chromosomes
in okadaic acid treated oocytes could be due to a direct effect of the drug on

the chromosomes. The other possibility might be due to the absence of a
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metaphasic netwark represented by the spindle which plays a role in separating
condensing chromosomes into the homologous bivalents.

A time course experiment showed that the minimum time required for
okadaic acid to drive incompetent oocytes into maturation was 2h.
Immunoblotting results however, do not show a complete shift in the
nonphosphorylated species of p42 and p44 into the phosphorylated forms as
all four forms of MAP kinase were detected, p42, phospherylated p42, p44,
and phosphorylated p44 following the three time points examined ,2, 4, and 6h

in the presence of the drug.
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