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Abstract

The abundance of spectral-spatial information captured in airborne and spaceborne
hyperspectral imaging (HSI) data allows end users to characterize the materials within each pixel
based on their light-matter interactions. Such information provides insight to important problems
such as climate change, food security and national defense. End users of HSI data are often
provided with georeferenced raster end products that consist of uniformly distributed square
pixels. When using raster end products, end users implicitly assume image pixels are: 1) directly
comparable, 2) square and 3) uniformly distributed in space. These assumptions do not hold in

HSI. This thesis investigates how raster end products misrepresent HSI data.

Hyperspectral imagers are affected by errors that appear in various spectral bands and
spatial pixels. To confidently compare the spectrum from different pixels, it is critical to know
the location of imaging errors. The first analytical chapter of this thesis develops an algorithm to
localize imaging errors both spectrally and spatially by analyzing HSI data in (i.e., before
geometric correction and rasterization). In 8 HSI datasets, the developed algorithm was used to
determine the effectiveness of various processing methodologies and the consistency of the
spectra collected across the sensor field of view. This chapter highlights imperfections in HSI

data, showcasing the importance of analyzing data in its raw sensor geometry.

The second analytical chapter studies the consequences of assuming that pixels are
square. By deriving and analyzing the sensor point spread function, this chapter emphasizes that
only ~ 55.5% of the signal to any given spectrum originates from the spatial boundaries defined
by the raw pixel resolution. Modifying the algorithm developed in the first analytical chapter, the
overlap in the point spread function of neighbouring pixels was shown to introduce sensor
generated spatial correlations. Using a simulated HSI scene, sensor generated spatial correlations
were found to remove 31.1-38.9% of the spectral variability. A deconvolution algorithm was
developed to restore the lost variability. After deconvolution, the spectral variability from the
simulated imagery was within 6.8% of the original value. When tested on real HSI data, the
algorithms sharpened the imagery while characterizing the spatial correlation structure of the

data. This chapter highlights that the non-square nature of pixels mask and distort the natural



spatial dynamics of the imaged scene, showcasing that the raster data model mispresents HSI

data.

The final analytical chapter quantifies the consequences of assuming that pixels are
uniformly distributed. In raster end products, pixels appear to be uniformly distributed due to the
use of nearest neighbour spatial resampling. This process compromises spatial data integrity as
pixels from the geometrically corrected HSI data are shifted, duplicated and eliminated to
produce a raster end product. By quantifying resampling errors, the uniform pixel distribution
assumption could be studied. In four different HSI datasets, conventional raster end products
were characterized by pixel duplication (up to 75%), pixel loss (up to 75%) and pixel shifting (up
to 1.95 pixels). A novel point cloud data format was developed, fusing digital elevation data with
HSI data while preserving the raw sensor geometry. This data format optimally preserved the
spatial-spectral integrity of HSI data (zero resampling errors) while being up to 13 times smaller
in file size than raster end products. In various data applications (classification, spectra geo-
location and target detection), the hyperspectral point cloud data format outperformed

conventional raster end products.

Overall, this thesis project re-evaluates the use of raster end products, proposing an
alternative format that pushes the boundaries of HSI data acquisition, processing, analysis and

application.
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Résumé

Des images hyperspectrales conteine une abondance d’information spectrale et spatiale qui
permet 1’étude des matériaux présents dans chaque pixel par leurs interactions lumiére-matiére.
Ces informations I’aident des problémes tels que le changement climatique, la sécurité
alimentaire et la défense nationale. Les utilisateurs des données d’imagerie hyperspectrales
recoivent des produits finaux géoréférencés et rastérisés qui comprisent des pixels carrés et
uniformément répartis. Lorsqu'ils utilisent des produits finaux rastérisés, les utilisateurs
présument que les pixels des imagens sont: 1) directement comparables, 2) carrés et 3)
uniformément répartis dans I’espace. Ces hypotheses sont érronés pour des images
hyperspectrales. Cette theése quantifie les erreurs dans les produits finaux rastérisés des images

hyperspectrales.

Les imageurs hyperspectraux sont affectés par des erreurs qui apparaissent dans diverses
bandes spectrales et pixels spatiaux. Le premier chapitre développe un algorithme pour localiser
les erreurs spectrales et spatiales dans imagerie en analysant les images hyperspectrales dans leur
géomeétrie brute de capteur. Dans 8 données d’imagerie hyperspectrale, I'algorithme a déterminé
l'efficacité de diverses méthodologies et la cohérence des spectres recueillis dans le champ de
vision du capteur. Ce chapitre met en évidence les imperfections des données HSI, montrant

I'importance d'analyser le géométrie brute de capteur.

Le deuxieéme chapitre étudie les conséquences de présumer que des pixels sont carrés. En
dérivant et en analysant la fonction d'étalement du point, on a découvert que ~ 55,5 % du signal
d'un spectre donné provient des limites spatiales définies par la résolution brute des pixels. En
modifiant I'algorithme développé, on a montré que le chevauchement de la fonction d'étalement
du point des pixels adjacents introduit des corrélations spatiales générées par le capteur. En
utilisant une scéne hyperspectrale simulée, les corrélations spatiales générées par le capteur ont
¢liminé 31,1-38,9 la variabilité spectrale. Un algorithme de déconvolution a été développé
montrant la variabilité spectrale de I'imagerie simulée se situait a 6,8 % de la valeur originale.
Lorsqu'ils ont été testés sur des images hyperspectrales réelles, les algorithmes ont rendu
l'imagerie plus nette et caractérisent la structure de corrélation spatiale des données. Alors, la

nature non carrée des pixels masque et déforme la dynamique spatiale naturelle de la scéne



imagée, montrant ainsi que le modele de données rastérisés représente faussement les images

hyperspectrales.

Le dernier chapitre quantifie les conséquences de présumer que des pixels uniformément
répartis. Dans les produits finaux rastérisés, les pixels semblent étre uniformément distribués
apres l'utilisation du rééchantillonnage spatial du plus proche voisin. Ce processus compromet
l'intégrité des données spatiales. Dans quatre imageries hyperspectrale, les produits finaux
rastérisés étaient caractérisés par la duplication de pixels (jusqu'a 75 %), la perte de pixels
(Jusqu'a 75 %) et le décalage de pixels (jusqu'a 1,95 pixel). Un nouveau format de données de
nuage de points a été développé, préservant la géométrie brute du capteur. Ce format de données
a préservé de manieére optimale 1'intégrité spatiale et spectrale des images hyperspectrales (zéro
erreur de rééchantillonnage) tout en étant jusqu'a 13 fois plus que les produits finaux rastérisés.
Dans diverses applications (classification, géolocalisation de spectres et détection de cibles), le
format de données de nuages de points hyperspectraux a surpassé les produits finaux rastérisés

conventionnels.

En tout, ce projet de theése réévalue 1'utilisation des produits finaux rastérisés, en proposant
un format alternatif qui repousse les limites de 1'acquisition, du traitement, de I'analyse et de

'application d’imagerie hyperspectrale.



Contributions to Original Knowledge

This thesis project makes several contributions to original knowledge within the field of

hyperspectral remote sensing:

1. Investigates the limitations of georeferenced raster end products in hyperspectral imaging
(HSTI) efforts

a.

Developed a simple tool to identify non-linear imaging errors that are masked in
georeferenced HSI raster end products.

Quantifies the relative spatial contribution to the spectrum from each pixel in HSI
data, highlighting that a large portion of the signal (>44%) originates from
materials outside the square spatial boundaries defined by the spatial resolution.
Showcases negative implications of using the pixel boundaries in HSI data to
define the spatial characteristics of each measured spectra during flight planning,
data cross-validation and data fusion.

Quantifies pixel loss, pixel duplication and pixel shifting errors that are
introduced while generating georeferenced HSI raster end products.

Showcases the negative implications of pixel loss, pixel duplication and pixel
shifting errors in practical remote sensing tasks such as classification, spectra

geolocation and target detection.

2. Overcomes limitations in the raster data model through the development of the Directly

Georeferenced Hyperspectral Point Cloud (DHPC), a novel point cloud data paradigm for
HSI efforts.

a.

C.

d.

DHPC preserves the spectral and spatial integrity of HSI data (zero pixel loss,
duplication and shifting errors) while including surface elevation.

DHPC improves performance in various practical remote sensing tasks (e.g.,
classification, spectra geolocation and target detection) when compared to
conventional raster end products.

DHPC is more compact in data storage requirements than the raster data formats.
This makes HSI data easier to distribute and analyze.

DHPC data representation bridges the gap between ground and hyperspectral

imaging data collected at various spatial scales by providing a clear physical
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interpretation of the collected spectral measurements. This will lead to reduced
errors due to differences in spatial scale between ground and HSI data during
application.

e. DHPC is provided as a comma delimited text file as a list of multivariate
observations (including elevation, reflectance values, position and other desired
variables such as off-nadir look angle) that researchers in various fields are
comfortable manipulating. This makes HSI data more approachable to a wider
array of scientists that are unfamiliar with raster data structures.

3. Lowers the barrier to entry to HSI by developing various algorithms (e.g., data quality
assessment, spatial autocorrelation analysis, image sharpening, data simulation, data
fusion, flight planning) that can be readily implemented by end users of all expertise

levels.
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BY THE NOISE TO SOME DEGREE. A) THE CC WAS INVARIANT TO THE ADDITIVE TRANSFORMATION. B)
MULTIPLICATIVE TRANSFORMATIONS HAD NO IMPACT ON THE CC. C) THE INTRODUCTION OF A SPECTRAL SHIFT
RESULTED IN A SMALL, BUT CLEAR DECREASE IN THE CC. D) THE MULTIPLICATIVE TRANSFORMATION OF A
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FIGURE 3.15. HISTOGRAM-EQUALIZED CASI IMAGERY (24 JUNE WITH THE REFINED PROCESSING) AT 393.068 NM. THE
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IN THE DATA ARE HIGHLIGHTED BY THE RED ARROWS AND WERE LESS NOTICEABLE IN THE IMAGERY THAT WAS
GENERATED FROM THE REFINED PROCESSING. .......ccoiiiiiiiiiiiiiiiiiiicccc it 95

FIGURE 3.16. HISTOGRAM-EQUALIZED SASI IMAGERY (24 JUNE WITH THE REFINED PROCESSING) AT 1003 NM. AN ERROR
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FIGURE 3.17. THE CCS CALCULATED ACROSS THE FIELD-OF-VIEW WITH RESPECT TO THE SPECTRUM COMPLEMENTARY
TO THE WINDOWS IN TABLE 3.3. A) CASI IMAGERY (23 JUNE 2016); B) SASI IMAGERY (23 JUNE 2016); C) CASI
IMAGERY (24 JUNE 2016); D) SASI IMAGERY (24 JUNE 2016). A,C) THE CCS OF THE CASI IMAGERY INCREASED
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FIGURE 4.1. UNMANNED AERIAL VEHICLE PHOTOGRAPH OF THE MER BLEUE PEATLAND IN OTTAWA, ONTARIO, CANADA.
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THERE IS A SUBSTANTIAL CONTRIBUTION FROM MATERIALS WITHIN THE SPATIAL BOUNDARIES OF
NEIGHBOURING PIXELS. ......oiiiiiiiiiiiiiiii bbbt 125

FIGURE 4.4. THE VEGETATION REGION OF INTEREST SELECTED FROM THE MER BLEUE PEATLAND. THE REGION OF
INTEREST IS CHARACTERIZED BY A HUMMOCK-HOLLOW MICROTOPOGRAPHY THAT CORRESPONDS TO SMALL
SCALE PATTERNS (2-4 M) IN SURFACE VEGETATION AND SURFACE REFLECTANCE. HUMMOCKS ARE ELEVATED
MOUNDS OF DENSE VASCULAR COVER WHILE HOLLOWS ARE THE LOWER-LYING AREAS COMPOSED PRIMARILY
OF SPHAGNUM SPP. MOSSES. THE ORTHOPHOTO (0.2 M SPATIAL RESOLUTION) WAS COLLECTED FOR THE NATIONAL
CAPITAL COMMISSION OF CANADA (SOURCE: OTTAWA ORTHOPHOTOS, 2011)...c.ccooiiiiiiiiiiiiiniiiiiiiccccciecccce 126

FIGURE 4.5. THE SPATIAL CONTRIBUTION TO THE SPECTRUM OF THE CENTER COMPACT AIRBORNE SPECTROGRAPHIC
IMAGER 1500 (CASI) PIXEL FROM MATERIALS WITHIN THE BOUNDARIES OF NEIGHBOURING PIXELS. THE RED
SQUARE REPRESENTS THE SPATIAL BOUNDARIES OF THE CENTER PIXEL, AS DETERMINED BY THE RAW PIXEL
RESOLUTION. THE BLACK SQUARES REPRESENT THE SPATIAL BOUNDARIES OF NEIGHBOURING PIXELS. ONLY 55.5%
OF THE SPECTRAL SIGNAL ORIGINATES FROM MATERIALS WITHIN THE SPATIAL BOUNDARIES OF THE CENTER
PIXEL. THE REMAINING 44.5% OF THE SIGNAL COMES FROM THE MATERIALS WITHIN THE SPATIAL BOUNDARIES OF
THE NEIGHBOURING PIXELS. THE UNDERLYING SCENE IN THE FIGURE IS A PHOTOGRAPH OF THE MER BLEUE
PEATLAND COLLECTED FROM AN UNMANNED AERIAL VEHICLE. ........cccccoiiiiiiiiiiiiiiiccse s 130

FIGURE 4.6. SSIMULATED HYPERSPECTRAL IMAGING DATA REPRESENTATIVE OF THE MER BLEUE PEATLAND. THE IMAGES
ARE DISPLAYED IN TRUE COLOUR (RED =639.5 NM + 1.2, GREEN = 551.0 NM + 1.2, BLUE =460.1 NM + 1.2). IN THE
DISPLAY, ALL THREE BANDS ARE LINEARLY STRETCHED BETWEEN 0% AND 12%. A) THE IDEAL SIMULATED IMAGE
THAT WAS DERIVED WITH A UNIFORM POINT SPREAD FUNCTION. B) THE NON-IDEAL SIMULATED IMAGE THAT
WAS DERIVED WITH THE COMPACT AIRBORNE SPECTROGRAPHIC IMAGER 1500 (CASI) POINT SPREAD FUNCTION. C)
THE CORRECTED NON-IDEAL SIMULATED IMAGE THAT WAS DERIVED BY APPLYING THE DEVELOPED
DECONVOLUTION ALGORITHM TO THE NON-IDEAL SIMULATED IMAGE. ALL IMAGES WERE SIMULATED AT THE
SAME SPATIAL RESOLUTION AS THE REAL-WORLD CASI IMAGERY (ACROSS TRACK = 0.55 M, ALONG TRACK = 1.99
M). THE SIMULATED DATASETS WERE USED TO CHARACTERIZE THE IMPLICATIONS OF SENSOR-GENERATED
SPATIAL CORRELATIONS WHILE TESTING THE DEVELOPED ALGORITHMS. ........cccccoiiiiiiiiiiiiiccce 131

FIGURE 4.7. THE MEAN (PLOT A) AND STANDARD DEVIATION (PLOT B) FOR EACH SPECTRAL BAND OF THE IDEAL
(UNIFORM POINT SPREAD FUNCTION) AND NON-IDEAL (COMPACT AIRBORNE SPECTROGRAPHIC IMAGER 1500
POINT SPREAD FUNCTION) SIMULATED IMAGES. THERE WERE NO OBSERVABLE DIFFERENCES IN THE MEAN
SPECTRUM FROM EACH IMAGE. THE ATTENUATION IN STANDARD DEVIATION SUGGESTS THAT SENSOR BLURRING
ELIMINATED SOME OF THE NATURAL VARIABILITY OBSERVED IN THE IDEAL IMAGE. THIS IS PROBLEMATIC GIVEN
THE IMPORTANCE OF SECOND-ORDER STATISTICS IN THE ANALYSIS OF HIGH DIMENSIONAL DATA. .......ccccveevenene 132

FIGURE 4.8. THE MEAN CORRELATION COEFFICIENT AS A FUNCTION OF PIXEL DISPLACEMENT IN THE ACROSS TRACK
(PLOT A) AND ALONG TRACK (PLOT B) DIRECTIONS OF THE IDEAL (UNIFORM POINT SPREAD FUNCTION), NON—
IDEAL (COMPACT AIRBORNE SPECTROGRAPHIC IMAGER 1500 POINT SPREAD FUNCTION) AND CORRECTED NON-
IDEAL SIMULATED IMAGES. THE BARS AROUND EACH MEAN GIVE THE 1-SIGMA WINDOW. THE MEAN AND
STANDARD DEVIATION QUANTIFIED THE STRENGTH AND VARIABILITY OF THE SPATIAL CORRELATIONS PRESENT
WITHIN EACH IMAGE. THE CORRECTED NON-IDEAL IMAGE WAS GENERATED BY APPLYING THE DEVELOPED
DECONVOLUTION ALGORITHM. IN THE IDEAL IMAGE, THERE WAS NO SPATIAL CORRELATION STRUCTURE. THE
COMPACT AIRBORNE SPECTROGRAPHIC IMAGER 1500 POINT SPREAD FUNCTION USED TO SIMULATE THE NON—
IDEAL IMAGE, AND THE ASSOCIATED IMAGE BLURRING, INTRODUCED A SPATIAL CORRELATION STRUCTURE. THE

16



SPATIAL CORRELATION STRUCTURE OF THE IDEAL IMAGE WAS RECOVERED FROM THE NON-IDEAL IMAGE USING
THE DEVELOPED DECONVOLUTION ALGORITHM. ......ccoiiiiiiiiiiiiiiiici s 134

FIGURE 4.9. THE STANDARD DEVIATION IN EACH SPECTRAL BAND OF THE IDEAL (UNIFORM POINT SPREAD FUNCTION),
NON-IDEAL (COMPACT AIRBORNE SPECTROGRAPHIC IMAGER 1500 POINT SPREAD FUNCTION) AND CORRECTED
NON-IDEAL IMAGE. THE CORRECTED NON-IDEAL IMAGE WAS GENERATED BY APPLYING THE DEVELOPED
DECONVOLUTION ALGORITHM. THE ATTENUATION IN THE STANDARD DEVIATION OF THE NON-IDEAL IMAGE
SUGGESTS THAT SENSOR BLURRING ELIMINATED SOME OF THE NATURAL VARIABILITY OBSERVED IN THE IDEAL
IMAGE. THE NATURAL VARIABILITY IN EACH SPECTRAL BAND OF THE IDEAL IMAGE WAS RESTORED FROM THE
NON-IDEAL IMAGE BY APPLYING THE DECONVOLUTION ALGORITHM. .......ccccccciiiiiiiiiiiiiiiiciiccccccccscccnnae 135

FIGURE 4.10. THE EUCLIDEAN DISTANCE (IN UNITS OF REFLECTANCE) BETWEEN THE IDEAL IMAGERY AND BOTH THE
NON-IDEAL (PLOT A) AND CORRECTED NON-IDEAL (PLOT B) IMAGES. THE GRAYSCALE DISPLAY IS LINEARLY
STRETCHED BETWEEN 10% AND 20%. AFTER THE APPLICATION OF THE DECONVOLUTION ALGORITHM, THE
EUCLIDEAN DISTANCE BETWEEN THE IDEAL AND NON-IDEAL IMAGERY DECREASED BY AN AVERAGE OF 1.91%. 136

FIGURE 4.11. HYPERSPECTRAL IMAGING DATA OVER THE MER BLEUE PEATLAND BEFORE AND AFTER THE APPLICATION
OF THE DECONVOLUTION ALGORITHM. THE IMAGES ARE DISPLAYED IN TRUE COLOUR (RED = 639.5 NM + 1.2 GREEN
=551.0 NM + 1.2, BLUE =460.1 NM = 1.2). IN THE DISPLAY, ALL THREE BANDS ARE LINEARLY STRETCHED BETWEEN
0% AND 12%. PANELS (A) AND (C) DISPLAY THE ORIGINAL IMAGERY. PANELS (B) AND (D) REPRESENT THE SAME
TWO SCENES AFTER THE DECONVOLUTION ALGORITHM WAS APPLIED. BOTH IMAGES WERE QUALITATIVELY
SHARPENED BY THE DECONVOLUTION ALGORITHM. .....cc.cciiiiiiiiiiiiiiiic it 137

FIGURE 4.12. HYPERSPECTRAL IMAGING DATA OVER THE MACDONALD-CARTIER INTERNATIONAL AIRPORT (OTTAWA,
ONTARIO, CANADA) BEFORE AND AFTER THE APPLICATION OF THE DEVELOPED DECONVOLUTION ALGORITHM.
THE IMAGES ARE DISPLAYED IN TRUE COLOUR (RED = 639.5 NM + 1.2, GREEN = 551.0 NM =+ 1.196, BLUE = 460.1 NM +
1.2). IN THE DISPLAY, ALL THREE BANDS ARE LINEARLY STRETCHED BETWEEN 0% AND 40%. PANELS (A) AND (C)
DISPLAY THE ORIGINAL IMAGERY. PANELS (B) AND (D) REPRESENT THE SAME TWO SCENES AFTER THE
DECONVOLUTION ALGORITHM WAS APPLIED. BOTH IMAGES WERE QUALITATIVELY SHARPENED BY THE
DECONVOLUTION ALGORITHM. ....ooiiiiiiiiiiiiiiiiiicic ettt n s 138

FIGURE 4.13. A,B) THE 7 ADJACENT ACROSS TRACK PIXELS TO THE EDGE OF THE CALIBRATION TARP IN THE MER BLEUE
IMAGERY BEFORE (PLOT A) AND AFTER (PLOT B) THE DECONVOLUTION ALGORITHM WAS APPLIED. PIXEL 4 WAS
THE CLOSEST TO THE STUDIED EDGE. THE PIXEL NUMBER REPRESENTS THE ORDER OF EACH ADJACENT PIXEL IN
THE ACROSS TRACK DIRECTION. PIXELS 1-3 REPRESENTED SPECTRA FROM THE CALIBRATION TARP WHILE PIXELS
5-7 REPRESENTED SPECTRA FROM VEGETATION. C,D) THE 7 ADJACENT ACROSS TRACK PIXELS TO THE EDGE OF
THE CONCRETE-ASPHALT TRANSITION AT THE CALIBRATION SITE WITHIN THE AIRPORT IMAGERY BEFORE (PLOT
C) AND AFTER (PLOT D) THE DECONVOLUTION ALGORITHM WAS APPLIED. PIXEL 4 WAS THE CLOSEST TO THE
STUDIED EDGE. PIXELS 1-3 REPRESENTED SPECTRA FROM THE CONCRETE WHILE PIXELS 5-7 REPRESENTED
SPECTRA FROM ASPHALT. IN BOTH THE MER BLEUE AND AIRPORT IMAGERY, THE SPECTRA FROM PIXELS 3 AND 5
WERE CLOSER TO THE SPECTRA OF THEIR RESPECTIVE MATERIALS AFTER THE APPLICATION OF THE
DECONVOLUTION ALGORITHM. IN PARTICULAR, SPECTRA FROM PIXEL 5 DROPPED IN MAGNITUDE, ALIGNING WITH
THAT OF PIXELS 6 AND 7 IN BOTH SETS OF IMAGERY. THIS SUGGESTS THAT THE ALGORITHM MITIGATED
INFLUENCES FROM NEIGHBOURING PIXEL MATERIALS. .......ccccooiiiiiiiiiiiiiiicccc e 139

FIGURE 4.14. A) THE MAXIMUM CHANGE IN REFLECTANCE PER PIXEL ACROSS THE EDGE OF THE CALIBRATION TARP IN
THE MER BLEUE IMAGERY. B) THE MAXIMUM CHANGE IN REFLECTANCE PER PIXEL ACROSS THE EDGE ALONG THE
BORDER OF THE CONCRETE-ASPHALT TRANSITION AT THE CALIBRATION SITE WITHIN THE AIRPORT IMAGERY.
THE LARGER THE NUMBER, THE SHARPER THE CHANGE FROM THE TWO MATERIALS THAT DEFINED THE EDGE. THE
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CORRECTED IMAGE WAS GENERATED BY APPLYING THE DEVELOPED DECONVOLUTION ALGORITHM TO THE
REAL-WORLD COMPACT AIRBORNE SPECTROGRAPHIC IMAGER 1500 (CASI) DATA. THE CORRECTED IMAGERY WAS
SHARPER THAN THE ORIGINAL IMAGERY. THE IMAGERY WAS SHARPENED BY THE DEVELOPED DECONVOLUTION
ALGORITHM. ...t b e d e s bbb s 140

FIGURE 4.15. THE MEAN CORRELATION COEFFICIENT AS A FUNCTION OF PIXEL DISPLACEMENT IN THE ACROSS TRACK
(PLOT A) AND ALONG TRACK (PLOT B) DIRECTION OF THE VEGETATION REGION OF INTEREST FROM THE MER
BLEUE CASI IMAGERY. THE BARS AROUND EACH MEAN GIVE THE 1-SIGMA WINDOW. THE MEAN AND STANDARD
DEVIATION QUANTIFIED THE STRENGTH AND VARIABILITY OF THE SPATIAL CORRELATIONS PRESENT WITHIN
EACH IMAGE. THE CORRECTED IMAGE WAS GENERATED BY APPLYING THE DEVELOPED DECONVOLUTION
ALGORITHM TO THE REAL-WORLD MER BLEUE COMPACT AIRBORNE SPECTROGRAPHIC IMAGER 1500 (CASI) DATA.
IN GENERAL, THE DECONVOLUTION ALGORITHM DECREASED THE OBSERVED SPATIAL CORRELATIONS WHILE
INCREASING SPATIAL VARIABILITY. AFTER APPLYING THE DEVELOPED DECONVOLUTION ALGORITHM, THE
MICRO-SPATIAL PATTERNS OF VEGETATION COULD BE OBSERVED MORE CLEARLY IN THE ACROSS TRACK
DIRECTION. THE MICRO-SPATIAL PATTERNS OF VEGETATION COULD NOT BE OBSERVED IN THE ALONG TRACK. 141

FIGURE 4.16. THE MEAN (PLOT A) AND STANDARD DEVIATION (PLOT B) OF THE VEGETATION REGION OF INTEREST FROM
THE MER BLEUE IMAGERY. THE CORRECTED IMAGE WAS GENERATED BY APPLYING THE DEVELOPED
DECONVOLUTION ALGORITHM TO THE REAL-WORLD MER BLEUE COMPACT AIRBORNE SPECTROGRAPHIC IMAGER
1500 (CASI) DATA. THE STANDARD DEVIATION VALUED MEASURED THE VARIABILITY IN EACH SPECTRAL BAND.
ALTHOUGH THERE WAS NO DIFFERENCE IN THE MEAN, THE STANDARD DEVIATION INCREASED AFTER APPLYING
THE DECONVOLUTION ALGORITHM. THIS INCREASE LIKELY OCCURRED AS THE DECONVOLUTION REINTRODUCED
SOME OF THE LOST NATURAL VARIATIONS IN EACH SPECTRAL BAND. ......ccccooiiiiiiiiiiiiiiiceececeee e 142

FIGURE 5.1. PIXEL LOSS AND PIXEL DUPLICATION DURING NEAREST NEIGHBOR SPATIAL RESAMPLING. CONSIDER
SPATIALLY RESAMPLING A HYPERSPECTRAL IMAGING DATASET (GIVEN BY THE COLORED CIRCLES) ACQUIRED
ALONG AN APPROXIMATE TRUE NORTH HEADING WHERE THE PIXEL SPACING IN THE CROSS TRACK IS HALF THAT
OF THE ALONG TRACK. TO GENERATE A RASTERIZED DATA PRODUCT (GIVEN BY THE GREY RASTER GRID AND THE
SMALL BLACK DOTS WHICH DESIGNATE THE CENTER OF EACH CELL), THE DATA MUST BE RESAMPLED ON A
NORTH-ORIENTED GRID. PANELS (A) AND (B) SHOW TWO RESAMPLING GRIDS THAT COULD BE USED FOR THE
NEAREST NEIGHBOR RESAMPLING.........cocoiiiiiiiiiiiiiicc ettt s ene 160

FIGURE 5.2. FLOW CHART OF THE HYPERSPECTRAL IMAGING (HSI) PROCESSING WORKAOW FOR BOTH CONVENTIONAL
RASTERIZED HYPERSPECTRAL IMAGING END PRODUCTS AND THE DIRECTLY-GEOREFERENCED HYPERSPECTRAL
POINT CLOUD (DHPC)........oovvooeeeeoeeeooeeeeeeseeeeoeeeeeseeeeeeeeeeeseeeseeesesseesseeeeeeseeesesese e eesessss e seeses e e seeses e eeesesees e eeesee e eeeeee e 166

FIGURE 5.3. HYPERSPECTRAL IMAGING DATA (R =639.6 NM, G = 550.3 NM, B =459.0 NM) FROM THE pCASI-1920 OVER THE
MER BLEUE PEATLAND. PANELS (A, B) ARE RASTERIZED HYPERSPECTRAL IMAGING DATASETS RESAMPLED TO 1.5
x 1.5 CM (A) AND 3 x 3 CM (B). PANEL (C) REPRESENTS THE DIRECTLY-GEOREFERENCED HYPERSPECTRAL POINT
CLOUD (DHPC) VIEWED FROM ABOVE. PANEL (D) DISPLAYS A VIDEO STILL OF THE DHPC IN A 12 x 12 M REGION
AROUND THE IMAGE ZOOM CENTER. IN ALL PANELS, EACH DISPLAYED BAND IS LINEARLY STRETCHED BETWEEN 0
AND 12%. THE FULL VIDEO CAN BE SEEN IN SUPPLEMENTARY VIDEO S1. THE WHITE STRIPES IN THE DHPC
[CLEARLY VISIBLE IN THE IMAGE ZOOM OF PANEL (C)] REPRESENT AREAS ON THE GROUND THAT WERE NOT
SAMPLED BY THE HYPERSPECTRAL IMAGER DURING DATA ACQUISITION. THESE GAPS ARE NOT PRESENT IN THE
RASTER IMAGES (A, B) AS THEY ARE INTERPOLATED OVER WITH DUPLICATED PIXELS FROM THE EDGES OF THE
STRIPES DURING THE NEAREST NEIGHBOR RESAMPLING. ........ccoccooiiiiiiiiiiiiiiii s 174

FIGURE 5.4. HYPERSPECTRAL IMAGING DATA (R = 640.8 NM, G = 549.9 NM, B =459.0 NM) FOR THE CASI-1500 OVER THE MER
BLEUE PEATLAND. PANELS (A, B) ARE RASTERIZED HYPERSPECTRAL IMAGING DATASETS RESAMPLED TO 50 x 50
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CM (A) AND 200 x 200 CM (B) GRIDS. PANEL (C) REPRESENTS THE DIRECTLY-GEOREFERENCED HYPERSPECTRAL
POINT CLOUD (DHPC) VIEWED FROM ABOVE. PANEL (D) DISPLAYS A VIDEO STILL OF THE DHPC IN A 240 x 240 M
REGION SURROUNDING THE IMAGE ZOOM CENTER. THE FULL VIDEO CAN BE SEEN IN SUPPLEMENTARY VIDEO S2.
IN ALL PANELS, EACH DISPLAYED BAND IS LINEARLY STRETCHED BETWEEN 0 AND 12%.....cccccveveneineiniiecnicierenenes 175

FIGURE 5.5. HYPERSPECTRAL IMAGING DATA (R = 639.6 NM, G = 550.3 NM, B =459.0 NM) FROM THE pCASI-1920 OVER THE
COWICHAN GARRY OAK PRESERVE. PANELS (A, B) ARE RASTERIZED HYPERSPECTRAL IMAGING DATASETS
RESAMPLED TO 2 x 2 CM (A) AND 3 x 3 CM (B) GRIDS. PANEL (C) REPRESENTS THE DIRECTLY-GEOREFERENCED
HYPERSPECTRAL POINT CLOUD (DHPC) VIEWED FROM ABOVE. PANEL (D) DISPLAYS A VIDEO STILL OF THE DHPC IN
A 24 x 24 M REGION SURROUNDING THE IMAGE ZOOM CENTER. THE FULL VIDEO CAN BE SEEN IN SUPPLEMENTARY
VIDEO S3. IN ALL PANELS, EACH DISPLAYED BAND IS LINEARLY STRETCHED BETWEEN 0 AND 22%. THE WHITE
STRIPES IN THE DHPC [CLEARLY VISIBLE IN THE IMAGE ZOOM OF PANEL (C)] REPRESENT AREAS ON THE GROUND
THAT WERE NOT SAMPLED BY THE HYPERSPECTRAL IMAGER DURING DATA ACQUISITION. THESE GAPS ARE NOT
PRESENT IN THE RASTER IMAGES (A, B) AS THEY ARE INTERPOLATED OVER WITH DUPLICATED PIXELS FROM THE
EDGES OF THE STRIPES DURING THE NEAREST NEIGHBOR RESAMPLING. .......ccccccoiiiiiiiiiiiiiinicicceccccececec s 178

FIGURE 5.6. HYPERSPECTRAL IMAGING DATA (R = 640.8 NM, G = 549.9 NM, B =459.0 NM) FOR THE CASI-1500 OVER THE
PARC NATIONAL DU MONT- MEGANTIC. PANELS (A, B) ARE RASTERIZED HYPERSPECTRAL IMAGING DATASETS
RESAMPLED TO 110 x 110 CM (A) AND 260 x 260 CM (B) GRIDS. PANEL (C) REPRESENTS THE DIRECTLY-
GEOREFERENCED HYPERSPECTRAL POINT CLOUD (DHPC) VIEWED FROM ABOVE. PANEL (D) DISPLAYS A VIDEO
STILL OF THE DHPC. THE FULL VIDEO CAN BE SEEN IN SUPPLEMENTARY VIDEO S4. IN ALL PANELS, EACH
DISPLAYED BAND IS LINEARLY STRETCHED BETWEEN 0 AND 12%. THE WHITE STRIPES IN THE DHPC REPRESENT
AREAS ON THE GROUND THAT WERE NOT SAMPLED BY THE HYPERSPECTRAL IMAGER DURING DATA
ACQUISITION. THE WHITE STRIPES IN THE DHPC [CLEARLY VISIBLE IN THE IMAGE ZOOM OF PANEL (C)] REPRESENT
AREAS ON THE GROUND THAT WERE NOT SAMPLED BY THE HYPERSPECTRAL IMAGER DURING DATA
ACQUISITION. THESE GAPS ARE NOT PRESENT IN THE RASTER IMAGES (A, B) AS THEY ARE INTERPOLATED OVER
WITH DUPLICATED PIXELS FROM THE EDGES OF THE STRIPES DURING THE NEAREST NEIGHBOR RESAMPLING..... 180

FIGURE 5.7. PANELS (A-I) DISPLAY SAMPLE HUMMOCK-HOLLOW CLASSIfiCATION MAPS (12 x 12 M PLOT) GENERATED
FROM EACH OF THE TRAINED MODELS (nCASI-1920 HSI DATA FROM THE MER BLEUE PEATLAND). THE nCASI-1920
HSI DATA INCLUDED THE DIRECTLY-GEOREFERENCED HYPERSPECTRAL POINT CLOUD (DHPC) IN ADDITION TO THE
TWO RESAMPLED HYPERSPECTRAL IMAGES. THE HYPERSPECTRAL DATASET USED TO GENERATE EACH PANEL IS
GIVEN BY THE ROW TITLES. THE TRAINING VARIABLES USED TO GENERATE EACH CLASSIfiCATION MODEL WERE
DISPLAYED IN THE SUBTITLE BELOW EACH PANEL. AN RGB IMAGE (R =639.6 NM, G =550.3 NM, B =459.0 NM,
LINEARLY STRETCHED BETWEEN 0 AND 12%) AND SURFACE ELEVATION MAP (LINEARLY STRETCHED FROM 68 TO
69 M) WERE GENERATED BY VIEWING THE DHPC FROM DIRECTLY ABOVE AND ARE DISPLAYED IN PANELS (J) AND
(K), RESPECTIVELY. THE HUMMOCKS APPEAR GREEN IN PANEL (J) WHILE HOLLOWS APPEAR RED. THE WHITE
STRIPES IN THE DHPC DATA DERIVATIVES (G-K) REPRESENT AREAS ON THE GROUND THAT WERE NOT SAMPLED
BY THE HYPERSPECTRAL IMAGER DURING DATA ACQUISITION. THESE GAPS ARE NOT PRESENT IN THE RASTER
DATA DERIVATIVES (A-F) AS THEY ARE INTERPOLATED OVER WITH DUPLICATED PIXELS FROM THE EDGES OF THE
STRIPES. ..ot b bbb s s b e R b E e h R h bbb 184

FIGURE 5.8. BIOMASS ESTIMATION ERRORS (DIFFERENCE BETWEEN MEAN OF PREDICTED AND ACTUAL BIOMASS) FOR
THE DEVELOPED HUMMOCK HOLLOW CLASSIfiCATION MODELS FOR THE pCASI-1920 HYPERSPECTRAL IMAGING
DATA FROM THE MER BLEUE PEATLAND. THIS DATA INCLUDED THE DIRECTLY-GEOREFERENCED HYPERSPECTRAL
POINT CLOUD (DHPC) IN ADDITION TO THE TWO RESAMPLED HYPERSPECTRAL IMAGES. EACH OF THE MODELS
WERE DIFFERENTIATED BY THE TRAINING DATASET (GIVEN BY BAR COLOURS) AND TRAINING VARIABLES. THE



BARS ABOVE 0 CORRESPOND TO HOLLOW BIOMASS ESTIMATION ERRORS WHILE THE BARS BELOW CORRESPOND
TO HUMMOCGKS. ..o s e s s 186

FIGURE 5.9. THE MEAN AND SD OF THE NUMBER OF SPECTRA, NUMBER OF UNIQUE SPECTRA AND NUMBER OF UNIQUE
SPECTRA PROPERLY LOCATED PER EACH 3 x 3 M VIRTUAL VEGETATION PLOT (N = 100) FROM THE MER BLEUE
PEATLAND CASI-1500 DATA. THE CASI-1500 DATA INCLUDED THE DIRECTLY-GEOREFERENCED HYPERSPECTRAL
POINT CLOUD (DHPC) IN ADDITION TO THE TWO RESAMPLED HYPERSPECTRAL IMAGES. THE ERROR BARS GIVE THE
1-SIGMA WINDOW AROUND EACH MEAN VALUE. PROPERLY LOCATED SPECTRA REFER TO THOSE WHICH WERE
CONTAINED WITHIN EACH PLOT BEFORE AND AFTER RASTERIZATION (IN THE CASE OF THE RESAMPLED DATA
PRODUCTS). .o oeeeeeee e eoeeeee oo eeeeeeee oo oo eoeeeeeee e eeeeeee oo 188

FIGURE 5.10. TARGET DETECTION RESULTS FROM THE CASI-1500 HYPERSPECTRAL IMAGING DATA OVER THE MER BLEUE
PEATLAND. ARTIfiCIAL TARGETS (N = 1,000) WERE RANDOMLY PLACED WITHIN THE SCENE. THE CASI-1500 DATA
INCLUDED THE DIRECTLY-GEOREFERENCED HYPERSPECTRAL POINT CLOUD (DHPC) IN ADDITION TO THE TWO
RESAMPLED HYPERSPECTRAL IMAGES. PANEL (A) DISPLAYS THE NUMBER OF TARGETS (OUT OF A MAXIMUM 1,000)
IDENTIAED IN THE TARGET DETECTION. PANEL (B) AND (C) GIVE THE FALSE DISCOVERY AND FALSE NEGATIVE
RATES, RESPECTIVELY ...ttt 190

FIGURE 5.11. FALSE DISCOVERIES AND FALSE NEGATIVES CAUSED BY PIXEL LOSS AND PIXEL DUPLICATION IN A TARGET
DETECTION EXERCISE. CONSIDER SPATIALLY RESAMPLING A HYPERSPECTRAL IMAGING DATASET (GIVEN BY THE
COLORED CIRCLES) ACQUIRED ALONG AN APPROXIMATE TRUE NORTH HEADING WHERE THE PIXEL SPACING IN
THE CROSS TRACK IS HALF THAT OF THE ALONG TRACK. TO GENERATE A RASTERIZED DATA PRODUCT (GIVEN BY
THE RASTER GRID AND THE SMALL BLACK DOTS WHICH DESIGNATE THE CENTER OF EACH CELL), THE DATA MUST
BE RESAMPLED ON A NORTH-ORIENTED GRID. IN THIS SCENE THERE IS ONE TARGET OF INTEREST (PURPLE STAR)
THAT CAN BE DETECTED BY THE HYPERSPECTRAL DATA POINT REPRESENTED BY THE PURPLE CIRCLE. PANEL (A)
SHOWS THAT PIXEL DUPLICATION CAN CAUSE FALSE DISCOVERIES WHILE PANEL (B) SHOWS THAT PIXEL LOSS
CAN CAUSE FALSE NEGATIVES......c.ciiiiiiiiiiic s 195

FIGURE 7.1. FLOWCHART OF THE SPATIAL RESPONSE RESAMPLING (SR?*) WORKFLOW. THE WORKFLOW DEGRADES FINE
SPATIAL RESOLUTION HYPERSPECTRAL IMAGING (HSI) DATA TO THE SPATIAL CHARACTERISTICS OF A COARSER
RESOLUTION SENSOR. ...ttt h et h e b e bkt a et b e s eb e e s e bt b e s e seeue e 226

FIGURE 7.2. THE HYPERSPECTRAL IMAGING DATA USED TO SHOW THE UTILITY OF THE DEVELOPED SPATIAL RESPONSE
RESAMPLING (SR*) WORKFLOW. CASI-1500 AND nCASI-1920 DATA WERE COLLECTED OVER THE MER BLEUE
PEATLAND (MBP), WHILE CASI-1500 AND SASI-640 DATA WERE COLLECTED OVER THE PUERTO JIMENEZ AIRPORT
(PJA). A) HYPERSPECTRAL IMAGING DATA COLLECTED OVER THE MBP WITH THE CASI-1500 (R=640.8 NM, G=549.9
NM, B=459.0 NM, LINEARLY SCALED FROM 0 TO 12 %). THE RED BOX SHOWS THE LOCATION WHERE THE pCASI-1920
DATA WAS COLLECTED. B) HYPERSPECTRAL IMAGING DATA COLLECTED OVER THE MBP WITH THE pCASI-1920
(R=639.6 NM, G=550.3 NM, B=459.0 NM, LINEARLY SCALED FROM 0 TO 12 %). C) HYPERSPECTRAL IMAGING DATA
COLLECTED OVER THE PJA WITH THE CASI-1500 (R=641.2 NM, G=550.3 NM, B=458.3 NM, LINEARLY SCALED FROM 0
TO 20 %). D) HYPERSPECTRAL IMAGING DATA COLLECTED OVER THE PJA WITH THE SASI-640 (R=1240.1 NM AND
LINEARLY SCALED FROM 0 TO 60 %, G=1540.7 NM AND LINEARLY SCALED FROM 0 TO 50 %, B=1846.0 NM AND
LINEARLY SCALED FROM 0 TO 30 %0). ..ttt ettt ettt sttt s 234

FIGURE 7.3. THE POINT SPREAD FUNCTION (PSF) FOR THE CASI-1500 DATA COLLECTED OVER THE MER BLEUE PEATLAND.
A) THE OPTICAL PSF (PSFopr), DETECTOR PSF (PSFper) AND NET PSF (PSFxer) IN THE CROSS TRACK DIRECTION
(UNSUMMED AND SUMMED PSFS ARE DESIGNATED BY THE S=1 AND S=2 TAGS, RESPECTIVELY). B) THE PSFopr,
PSFper, MOTION PSF (PSFumor) AND PSFyer IN THE ALONG TRACK DIRECTION. C) THE PSFyner AS A FUNCTION OF
DISPLACEMENT FROM THE CENTER OF THE PIXEL IN THE EASTING AND NORTHING DIRECTIONS. THE GRID IN THE
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X-Y PLANE CORRESPONDS TO THE PIXEL SIZE IN THE FINAL GEOREFERENCED END PRODUCT. WHEN STUDYING
THE PSFxer IN PANEL C, LESS THAN 37% OF THE SIGNAL ORIGINATES WITHIN THE SQUARE SPATIAL BOUNDARIES
DEFINED BY PIXEL SIZE IN THE FINAL DATA END PRODUCT .......cccccoiiiiiiiiiiiiiiiiiic s 237

FIGURE 7.4. EXAMPLE DATA CROSS-VALIDATION APPLICATION OF THE SPATIAL RESPONSE RESAMPLING (SR?)
WORKFLOW. A) SPATIAL SUBSET OF THE MER BLEUE PEATLAND (MBP) CASI-1500 HYPERSPECTRAL IMAGING DATA
(R=640.8 NM, G=549.9 NM, B=459.0 NM, LINEARLY SCALED FROM 0 TO 12 %). B) ORIGINAL pnCASI-1920
HYPERSPECTRAL IMAGING DATA COLLECTED OVER THE MBP (R=639.6 NM, G=550.3 NM, B=459.0 NM, LINEARLY
SCALED FROM 0 TO 12 %). C) SPATIALLY DEGRADED uCASI-1920 HYPERSPECTRAL IMAGING DATA (R=639.6 NM,
G=550.3 NM, B=459.0 NM, LINEARLY SCALED FROM 0 TO 12 %) GENERATED USING CONVENTIONAL RESAMPLING
METHODOLOGIES (PIXEL AGGREGATE METHOD). D) SPATIALLY DEGRADED pCASI-1920 HYPERSPECTRAL IMAGING
DATA (R=639.6 NM, G=550.3 NM, B=459.0 NM, LINEARLY SCALED FROM 0 TO 12 %) GENERATED USING THE SR?
WORKFLOW. E) THE MEAN OF EACH SPECTRAL BAND FROM THE TWO SPATIALLY DEGRADED pCASI-1920 IMAGES
AND THE ORIGINAL CASI-1500 IMAGERY, SPATIALLY SUBSET TO COVER THE SAME EXTENT. F) THE STANDARD
DEVIATION IN EACH SPECTRAL BAND FROM THE TWO SPATIALLY DEGRADED nCASI-1920 IMAGES AND THE CASI-
1500 IMAGERY, SPATIALLY SUBSET TO COVER THE SAME EXTENT. G) RELATIVE DIFFERENCE IN THE CALCULATED
MEAN REFLECTANCE SPECTRUM BETWEEN THE ORIGINAL CASI-1500 IMAGERY AND THE TWO SPATIALLY
DEGRADED pCASI-1920 IMAGES. H) RELATIVE DIFFERENCE BETWEEN THE CALCULATED STANDARD DEVIATION IN
REFLECTANCE OF THE ORIGINAL CASI-1500 IMAGERY AND THE TWO SPATIALLY DEGRADED pCASI-1920 IMAGES.
THE SIMULATED DATA PRODUCT GENERATED USING THE SR* WORKFLOW WAS THE MOST SPATIALLY CONSISTENT
WITH THE CASI-1500 IMAGERY. THE MEAN IN THE REFLECTANCE WAS CONSISTENT BETWEEN THE TWO
SIMULATED DATA PRODUCTS AND THE CASI-1500 DATA. THE STANDARD DEVIATION CALCULATED FOR THE
SIMULATED IMAGERY DERIVED FROM THE SR? WORKFLOW WAS THE CLOSEST TO THAT OF THE CASI-1500
IMAGERY, INDICATING THAT THE DATASETS ARE CHARACTERIZED BY SIMILAR LEVELS OF SENSOR BLURRING.. 239

FIGURE 7.5. EXAMPLE FLIGHT PLANNING APPLICATION OF THE SPATIAL RESPONSE RESAMPLING (SR2) WORKFLOW. A-F)
SPATIALLY DEGRADED pCASI-1920 HYPERSPECTRAL IMAGING DATA (R=639.6 NM, G=550.3 NM, B=459.0 NM,
LINEARLY SCALED FROM 0 TO 12 %) GENERATED USING THE SR? WORKFLOW WITH THE DATA ACQUISITION
PARAMETERS IN TABLE 7.2. PANELS A-F CORRESPOND WITH SIMULATIONS OF THE SCENE AT SCALE 1 (0.25 M),
SCALE 2 (0.50 M), SCALE 3 (0.75 M), SCALE 4 (1.0 M), SCALE 5 (1.25 M) AND SCALE 6 (1.5 M), RESPECTIVELY. IN
GENERAL, THE HUMMOCKS APPEAR GREEN IN COLOR WHILE HOLLOWS APPEAR RED. USERS CAN ANALYZE THESE
DATASETS TO UNDERSTAND THE REQUIRED SPATIAL RESOLUTION FOR THEIR PARTICULAR APPLICATION. IN THIS
CASE, THE MICROTOPOGRAPHY OF THE MER BLEUE PEATLAND BECOMES LESS OBSERVABLE AT COARSER
R TSy 0) 310§ (0) 1 244

FIGURE 7.6. HUMMOCK AND HOLLOW SPECTRA EXTRACTED FROM THE SPATIALLY DEGRADED pCASI-1920
HYPERSPECTRAL IMAGING DATA GENERATED USING THE SR? WORKFLOW WITH THE DATA ACQUISITION
PARAMETERS IN TABLE 7.2. A) ORIGINAL pnCASI-1920 HYPERSPECTRAL IMAGING DATA (R=639.6 NM, G=550.3 NM,
B=459.0 NM, LINEARLY SCALED FROM 0 TO 12 %). THE ANALYZED EXAMPLE HUMMOCK AND HOLLOW WERE
IDENTIFIED IN THE IMAGE. IN GENERAL, THE HUMMOCKS APPEAR GREEN IN COLOR WHILE HOLLOWS APPEAR RED.
PANELS B AND C SHOW THE EXAMPLE HOLLOW AND HUMMOCK SPECTRA, RESPECTIVELY. PANEL D SHOWS THE
DIFFERENCE BETWEEN THE HOLLOW AND HUMMOCK SPECTRA AT DIFFERENT SPATIAL SCALES. PANEL E SHOWS
THE NORMALIZED DIFFERENCE BETWEEN THE HOLLOW AND HUMMOCK SPECTRA AT DIFFERENT SPATIAL SCALES
IN UNITS OF STANDARD DEVIATION (STD). THESE VALUES WERE OBTAINED BY DIVIDING THE DIFFERENCE
SPECTRUM IN PANEL D BY THE STANDARD DEVIATION IN EACH SPECTRAL BAND OF THE IMAGE FROM WHICH THE
SPECTRA WERE OBTAINED. THE ABSOLUTE VALUE OF THE NORMALIZED DIFFERENCE IS REPRESENTATIVE OF
SEPARABILITY BETWEEN THE EXAMPLE HUMMOCK AND HOLLOW AS A FUNCTION OF WAVELENGTH. AS THE
SPATIAL SCALE BECOMES COARSER, HUMMOCK AND HOLLOW REFLECTANCE SPECTRA BECOME MORE SIMILAR
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DUE TO MIXING WITH NEIGHBOURING ENDMEMBERS. FOR INSTANCE, AT FINE SPATIAL RESOLUTIONS, THE
SPHAGNUM FROM THE HOLLOW SPECTRA CAN BE OBSERVED BY THE SHIFTED GREEN PEAK AND THE HIGH NIR
REFLECTANCE. AT SCALE 3-6, THESE CHARACTERISTICS WERE LOST, AND THE SPECTRA WERE MORE CONSISTENT
WITH THE EXAMPLE HUMMOCK. ......coiiiiiiiiiiiiiiii s 246

FIGURE 7.7. EXAMPLE DATA FUSION APPLICATION OF THE SPATIAL RESPONSE RESAMPLING (SR?*) WORKFLOW FOR
GENERATING A FULL-RANGE IMAGE FROM SEPARATE VNIR AND SWIR HYPERSPECTRAL IMAGERY. THE TWO
TESTED FULL-RANGE DATA PRODUCTS WERE THE SAME IN THE SHORTWAVE INFRARED (SWIR) AND ONLY
DISTINGUISHABLE IN THE VISIBLE NEAR INFRARED (VNIR). THE CONVENTIONAL FULL-RANGE DATA PRODUCT
WAS GENERATED USING A NEAREST NEIGHBOUR RESAMPLING TECHNIQUE, WHILE THE NOVEL DATA FUSION
APPROACH USED THE SR? TECHNIQUE DESCRIBED IN THIS STUDY. A-C) THE FOREST REGION OF INTEREST IN THE
VNIR (R=641.2 NM, G=550.3 NM, B=458.3 NM, LINEARLY SCALED FROM 0 TO 20 % ) AND THE SWIR (R=1240.1 NM AND
LINEARLY SCALED FROM 0 TO 60 %, G=1540.7 NM AND LINEARLY SCALED FROM 0 TO 50 %, B=1846.0 NM AND
LINEARLY SCALED FROM 0 TO 30 %) FOR BOTH FULL-RANGE DATA PRODUCTS. D-F) THE URBAN REGION OF
INTEREST IN THE VNIR AND SWIR (RGB DISPLAY IDENTICAL TO THE FOREST REGION OF INTEREST) FOR BOTH
FULL-RANGE PRODUCTS. G) THE MEAN REFLECTANCE SPECTRUM FROM THE CONVENTIONAL AND SR? FULL-
RANGE END PRODUCTS OVER THE FOREST REGION OF INTEREST. H) THE MEAN REFLECTANCE SPECTRUM FROM
THE CONVENTIONAL AND SR? FULL-RANGE END PRODUCTS OVER THE URBAN REGION OF INTEREST. SUBPLOTS I
AND J DISPLAY THE STANDARD DEVIATION IN THE REFLECTANCE SPECTRUM SHOWN IN SUBPLOTS G AND H,
RESPECTIVELY. THE OFFSET BETWEEN THE VNIR AND SWIR IN SUBPLOTS I AND J SHOWS THAT THE SR?
WORKFLOW IS CRITICAL IN ENSURING THAT THE MERGED SASI-640 IMAGERY AND CASI-1500 IMAGERY ARE
SPATIALLY CONSISTENT. ..ottt b e a bbb s e b e b b ae b e 250

FIGURE 7.8. EXAMPLE DATA FUSION APPLICATION OF THE SPATIAL RESPONSE RESAMPLING (SR?) WORKFLOW FOR
GENERATING A FULL-RANGE IMAGE FROM SEPARATE VNIR AND SWIR HYPERSPECTRAL IMAGERY. THE TWO
TESTED FULL-RANGE DATA PRODUCTS WERE THE SAME IN THE SHORTWAVE INFRARED (SWIR) AND ONLY
DISTINGUISHABLE IN THE VISIBLE NEAR INFRARED (VNIR). THE CONVENTIONAL FULL-RANGE DATA PRODUCT
WAS GENERATED USING A NEAREST NEIGHBOUR RESAMPLING TECHNIQUE, WHILE THE NOVEL DATA FUSION
APPROACH USED THE SR?* TECHNIQUE DESCRIBED IN THIS STUDY. A) THE FOREST REGION OF INTEREST (ROI) IN
THE SWIR (R=1240.1 NM AND LINEARLY SCALED FROM 0 TO 60 %, G=1540.7 NM AND LINEARLY SCALED FROM 0 TO
50 %, B=1846.0 NM AND LINEARLY SCALED FROM 0 TO 30 %). PANELS B AND C SHOW THE ABSOLUTE DIFFERENCE IN
REFLECTANCE ACROSS THE TRANSITION BETWEEN THE VNIR AND SWIR FOR THE TWO STUDIED FULL-RANGE
DATA PRODUCTS IN THE FOREST ROI. D) THE URBAN ROI IN THE SWIR (DISPLAYED IDENTICALLY TO PANEL A).
PANELS E AND F SHOW THE ABSOLUTE DIFFERENCE IN REFLECTANCE ACROSS THE TRANSITION BETWEEN THE
VNIR AND SWIR FOR THE TWO STUDIED FULL-RANGE DATA PRODUCTS IN THE URBAN ROI. G) VIOLIN PLOT
(INCLUDES MEAN AND QUARTILES) OF THE ABSOLUTE DIFFERENCE IN REFLECTANCE ACROSS THE TRANSITION
BETWEEN THE VNIR AND SWIR FOR THE TWO STUDIED FULL-RANGE DATA PRODUCTS IN THE FOREST ROI. H)
VIOLIN PLOT (INCLUDES MEAN AND QUARTILES) OF THE ABSOLUTE DIFFERENCE IN REFLECTANCE ACROSS THE
TRANSITION BETWEEN THE VNIR AND SWIR FOR THE TWO STUDIED FULL-RANGE DATA PRODUCTS IN THE URBAN
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1. Introduction

In hyperspectral remote sensing, contiguous narrow-band spectral information is collected
for each spatial pixel of an image over an area of interest. In the visible to the shortwave infrared
portion of the electromagnetic spectrum (~400- 3000 nm), this spectral information quantifies
the reflectance of the materials within each spatial pixel and the interactions that have occurred
with light as it passes through the atmosphere. The reflective properties of materials are
representative of their chemical and physical properties (Eismann, 2012). After compensating for
atmospheric effects (Berk et al., 1999), the reflectance of pixel materials derived from
hyperspectral imaging (HSI) data can be used to characterize materials over large areas at fine
spatial resolutions. HSI has been successfully applied in a variety of fields such as ecology
(Arroyo-Mora et al., 2018a; Asner et al., 2017; Kalacska et al., 2018; Lassalle et al., 2021;
Turner et al., 2003), forensics (Kalacska and Bell, 2006; Kalacska et al., 2009; Leblanc et al.,
2014; Silvan-Cardenas et al., 2021), agriculture (Aneece and Thenkabail, 2018; Dale et al., 2013;
Migdall et al., 2012; Wang et al., 2019; Yao et al., 2011; Zhong et al., 2020), defense (Khodor et
al., 2021; Xu and Wang, 2007; Yuen and Richardson, 2010), forestry (Asner et al., 2017; Koch,
2010; Peng et al., 2003; Smith et al., 2003; Zhang et al., 2020) and geology (Booysen et al.,
2022; Cloutis, 1996; Murphy et al., 2012; van der Meer et al., 2012), amongst others.

For example, HSI at the spaceborne level has been used to accurately predict the type and
growth stage of the five leading world crops (corn, soybean, winter wheat, rice and cotton) using
Google Earth Engine (Aneece and Thenkabail, 2018). HSI has been used at the airborne level to
map forest functional diversity and canopy functional traits across the Peruvian Andes-to-
Amazon biodiversity hotspot (Asner et al., 2017), in addition to leaf metal content over industrial
brownfields (Lassalle et al., 2021). On a smaller scale, RPAS-HSI has been used in geological
efforts for the detection of rare earth metals (Booysen et al., 2022). In controlled laboratory
environments, HSI has been valuable in agricultural efforts for the early detection of tomato
spotted wilt virus using novel deep learning analytical approaches (Wang et al., 2019). Given
these brief examples, the widespread applicability of HSI provides valuable economic,
environmental and social insight into some of the most challenging problems that the Earth and

its inhabitants face (e.g., climate change, food security and national defense).



During data application, HSI end users are typically provided with raster products for
analysis. Raster end products have been a standard for HSI data for over 40 years (Goetz, 2009;
Vane et al. 1984,; Wilkinson, 1996), likely since virtually all spectral imaging systems view
analyzed scenes as fields of informative continuous variables (e.g., spectral reflectance) that are
discretized into pixel arrays (Couclelis, 1992). In georeferenced raster end products, a reflectance
spectrum is given for each uniformly distributed square pixel that spans the imaged scene. When
using raster end products, end users implicitly assume all image pixels are: 1) directly
comparable, 2) square and 3) uniformly distributed across the image scene. These assumptions
are not true (Fisher, 1997; Schldpfer et al., 2007; Shlien, 1979), and thus the raster model
misrepresents HSI data. In the HSI literature, the consequences of the stated assumptions have
not been well studied, which is alarming given the prevalence of the raster model in data
analytics. When HSI was established, landscape-level and larger studies could only be conducted
using the raster data model due to hardware and software limitations (Kennedy and Meyers,
1977; Wade et al., 2003). However, it is critical to recognize that the raster model is a heritage of
the old computing era (Lim, 2008); more complex data formats may be permissible given current
technologies. The overall goal of this thesis is to investigate how raster end products
misrepresent HSI data, presenting an alternative data representation that pushes the boundaries of

HSI data analytics and application. This thesis is composed of three specific objectives:

(1) Localize imaging errors both spectrally and spatially by analyzing HSI data in its

raw sensor geometry

Hyperspectral imagers are affected by errors (e.g., dead pixels, spectral smile artifacts) that
appear in various spectral bands and spatial pixels (Schlédpfer et al., 2007). To confidently
compare the spectrum from different pixels, it is critical to know the location of imaging errors.
The first analytical chapter of this thesis aims to develop an algorithm to localize data artifacts
both spectrally and spatially by analyzing the imagery in its raw sensor geometry (i.e., before
geometric correction and rasterization). Overall, this chapter strives to highlight imperfections in
HSI data that need to be considered when comparing the spectra from different pixels. It also

aims to showcase the importance of considering the raw sensor geometry in data analytics.

32



(2) Investigate the implications of assuming that pixels are square

The spatial response to the spectrum from any HSI pixel is not uniform across its square
spatial boundaries as it may appear in georeferenced raster end products. The spatial response for
each HSI pixel can be described by the spatial point spread function (PSF). Theoretically, the
overlap in the PSF of neighbouring pixels results in spatial correlations that are unrelated to the
observed scene. The second analytical chapter aims to quantify the consequences of assuming
that pixels are square, exploiting the methods developed in the first analytical chapter to
characterize and mitigate sensor-generated spatial correlations. As with the first analytical
chapter, this work highlights the importance of preserving the raw sensor geometry and

considering the sensor point spread function in HSI data analytics.

(3) Quantify the implications of assuming pixels are uniformly distributed across
imaged scenes and develop an alternative HSI data representation to overcome the

limitations of the raster data model

HSI data pixels are not uniformly distributed across the imaged scene due to various factors
such as sensor design, rugged terrains and sensor movement. To generate raster end products,
pixels are spatially resampled, theoretically introducing pixel duplication, pixel loss and pixel
shifting. Such errors compromise spectral-spatial data integrity. The third analytical chapter aims
to quantify the magnitude of these errors and their practical implications in HSI data
applications. Integrating the knowledge from the first two analytical chapters, the third analytical
chapter strives to develop a novel point cloud data format, fusing digital elevation data with HSI

data while preserving the raw sensor geometry.

Raster end products have remained the standard for HSI for over 40 years. This thesis re-
evaluates their use, proposing an alternative data format that improves data applications. Overall,
this research aims to push the boundaries of hyperspectral remote sensing data acquisition,

processing, analysis and application.

The following thesis chapter (2) reviews HSI sensor design, sensor characterization, data
acquisition and data processing, describing how georeferenced rater end products are generated.
The literature review highlights how raster end products misrepresent HSI data, acknowledging

alternative vector-based end products that may be able to improve on existing HSI techniques.
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The proceeding three chapters (3-5) contain three published manuscripts that directly address the
aforementioned project objectives. Chapter 6 discusses the thesis findings, emphasizing all
significant contributions and describing future research avenues. In chapter 7, two appended
methodological manuscripts are presented (one published, one submitted for publication). These
manuscripts give a detailed description of the important methodologies developed in chapters 4-

5, providing all of the resources (MATAB function and examples) for their implementation.
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Connecting Statement (Chapter 1 to Chapter 2)

The first chapter introduced the thesis structure and project objectives. Chapter 2 introduces
the main theoretical context and technical background required for the thesis objectives. Since
each of the presented manuscripts from this thesis contains their own introduction and literature
review, this chapter will concentrate on general concepts in hyperspectral imaging (data

acquisition, processing, analysis), highlighting the need for the research conducted in this thesis.
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2. Literature Review

In hyperspectral remote sensing, contiguous narrow-band spectral information is measured
for each spatial pixel of an image collected over objects or scenes on the Earth’s surface
(Bioucas-Dias et al., 2013). This spectral information quantifies the spectral radiance (energy
emitted by a surface into a unit solid angle per unit by a projected area over a unit wavelength

2.5t ! -nm ') emitted or reflected by the materials that contribute to each

interval, e.g., uW-cm™
pixel. Radiance can be used to extract the reflectance and emittance of the studied materials,
which are representative of their chemical and physical properties (Eismann, 2012). The term
“hyperspectral imaging” (HSI) is currently synonymous with imaging spectroscopy and was first
coined by Goetz et al. (1985) when discussing early results from data collected by the Airborne
Imaging Spectrometer (AIS). Since then, HSI technology has improved substantially, leading to
successful applications in various fields such as ecology, agriculture, geology and forensics,

amongst many others, as discussed below.

In ecology, the rich spectral information in hyperspectral imagery provides insight into plant
chemical and structural characteristics (Curran, 1989; Gates et al., 1965) that are critical in
studying species richness (e.g., Carlson et al., 2007), invasive species (e.g., Lawrence et al.,
2006) and plant stress (e.g., Pu et al., 2008). For example, Carlson et al. (2007) used HSI data to
map woody vascular plant species richness in lowland tropical forest ecosystems in Hawai’i.
Lawrence et al. (2006) used imagery collected from the Probe-1 sensor to map two invasive
species (leafy spurge and spotted knapweed) in Madison County, Montana using random forest
classification models (>84% overall accuracy). Pu et al. (2008) used CASI airborne HSI data to
detect mortality and vegetation stress caused by a spreading hard wood forest disease in China

Camp State Park, a forested peninsula on the east side of Marin County, California.

In agricultural applications, HSI data can be used to retrieve various crop attributes such as
productivity (e.g., Mariotto et al., 2013), type (e.g., Mariotto et al., 2013), biomass (e.g.,
Marshall and Thenkabail, 2015) and nutrient content (e.g., Liu et al., 2021b). Specifically,
Mariotto et al. (2013) used Hyperion and field spectrometer data from irrigated croplands of the
Syr Darya river basin in Uzbekistan, which contained cotton, maize, wheat, rice and alfalfa. The
study used a crop productivity model capable of predicting yield for all the studied crops
(R?>0.93). The Hyperion data in thus study could also discriminate between crop types (>90%
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overall accuracy). Marshall and Thenkabail (2015) developed accurate crop biomass models for
rice (R?=0.91), cotton (R?>=0.97) and wheat crops (R?=0.94) using Hyperion data collected over
the Central Valley in California. Liu et al. (2021b) quantified the nutrient status and predicted

yield in potato crops across various growth stages and growing seasons.

In geological efforts, HSI data has been exploited for lithological mapping (e.g., Harris et al.,
2005), hydrocarbon exploration (e.g., Horig et al. 2001) and mapping hydrothermal alteration
zones (e.g., van Ruitenbeek et al., 2012). For instance, Harris et al. (2005) used airborne PROBE
HSI data from Baffin Island in Canada to produce a lithological map comparable to existing
geological maps of the area. Horig et al. (2001) used HyMap airborne HSI data to detect
hydrocarbon-bearing substances in a controlled field site. In particular, the SWIR portion of the
electromagnetic spectrum detected the presence of hydrocarbons via the 1730 nm and 2310 nm
absorption features, while the VNIR portion of the spectrum was capable of distinguishing
between different hydrocarbon-bearing materials. In van Ruitenbeek et al. (2012), HyMap HSI
data collected over a well-exposed volcanic sequence in Western Australia was used to study the
distribution of white mica, which allowed for the characterization of the hydrothermal system
and reconstruction of the paleo fluid pathways. Finally, in forensics, HSI data can be used to
detect buried single graves (e.g., Leblanc et al., 2014) and mass graves (e.g., Kalacska et al.,

2009) by analyzing the reflectance properties of the overlying soil and vegetation over time.

Regardless of the application, HSI end users are conventionally provided with georeferenced
raster data products, usually in units of spectral reflectance. In such end products, a reflectance
spectrum is given for each uniformly distributed square pixel that spans the imaged scene. As
mentioned in the thesis introduction, when using raster end products, end users implicitly assume
that all pixels are directly comparable, square and uniformly distributed across the image scene.
These assumptions are untrue for real HSI data (Fisher, 1997; Schlépfer et al., 2007; Shlien,
1979). The raster data model misrepresents HSI data on a fundamental level, which can
theoretically lead to problems in downstream applications. To understand the physical
significance of each spectral measurement and how the raster data model misrepresents HSI data,
information is required with respect to sensor design, sensor characteristics, data acquisition plan

and data processing.

37



The overall goal of this literature review was to provide the main theoretical context and
technical background required for the thesis objectives, which re-evaluate the use of the raster
data model in HSI efforts. This literature review covers five topics: (1) sensor design, (2) sensor
characterization, (3) data acquisition, (4) data processing and (5) data end products. Although
topic (1) describes various sensor architectures, topics (2-5) focus on considerations relevant to
pushbroom HSI due to its popularity in remote sensing efforts. Overall, this literature review
identifies limitations in HSI data processing and representation, presenting potential solutions

that could push the boundaries of data analysis and application.

The literature review was conducted of English language peer-reviewed articles, theses,
books and conference papers relating to the five identified topics (sensor design, sensor
characterization, data acquisition, data processing and data end products) with no time
constraints. The scope of the literature review is also limited to the reflective portion of the
electromagnetic spectrum that covers the visible near-infrared (VNIR) ranging from ~ 400 nm to
1400 nm and the shortwave infrared (SWIR) ranging from ~ 1400 nm to 3000 nm. The literature
was found by keyword search using the logic (“Remote* sens*” OR “hyperspectral” OR
“spectrographic imag*” OR “multispectral”) paired with the keywords given in Table 2.1 (at the
end of the document) using Scopus and google scholar. Relevant literature was selected for
further investigation based on their abstract if it provided important information on any of the
five topics covered in this review. The bibliographies of selected references were also consulted
to extract other relevant sources. A small selection of other references has also been included
regarding topics not directly related to HSI but important to the review topics. A total of 404
references were selected using the described search process, 174 of which were included in this

review.

2.1. Sensor Design
Hyperspectral imagers detect spectrally and spatially dispersed incoming electromagnetic

radiation from the sensor’s field of view. In the VNIR to SWIR, hyperspectral imagers typically
use electro-optical detection mechanisms. Electro-optical detectors are semi-conductors that
quantify incoming electromagnetic radiation. When subjected to electromagnetic radiation,
electro-optical detectors absorb photonic energy, exciting electrons from the valence band to the

conduction band of the semi-conductor (National Research Council, 2010). When sufficiently

38



cooled, virtually all electrons in electro-optical detectors are located in the valence band, and no
electrical current is carried. In these cooled conditions, incident electromagnetic energy can

excite electrons from the valence band to the conduction band, generating a measurable current
that is ideally proportional to the intensity of the incident radiation (National Research Council,

2010).

Different detectors are sensitive to electromagnetic radiation at specific wavelengths. In the
VNIR, silicon-based detectors can be designed to show characterizable sensitivity. For example,
the ITRES Compact Airborne Spectrographic Imager (CASI) uses a silicon-based detector that
covers the spectral range from approximately 0.4 um to 1.0 um (Babey and Anger, 1989; Babey
and Anger, 1993). Indium Gallium Arsenide (InGaAs) and Mercury Cadmium Telluride
(MeCdTe) detectors are prominently used in the SWIR region of the electromagnetic spectrum
(Dhar et al. 2013). MeCdTe-based detectors are particularly interesting as they can be tuned to
cover a wide spectral range anywhere from 0.4 pm to 20 um (Long et al., 2019; Wang et al.,
2017). For instance, the Airborne Visible-Infrared Imaging Spectrometer - Next Generation
(AVIRIS-NG) uses an MCT-based detector that covers the spectral range from approximately
0.4 pum to 2.5 pum (Chapman et al., 2019).

To capture electromagnetic energy across multiple spatial pixels and contiguous spectral
bands, hyperspectral imagers use multiple detectors arranged in either a 1-D or 2-D array. All
sensors spectrally and spatially disperse incoming electromagnetic radiation onto their detectors,
which record the signal during a user-specified integration time. Due to the design of the spectral
dispersion and spatial redirection mechanisms, the digital number (DN) output by each detector
corresponds to electromagnetic radiation within a narrow band spectral range that is reflected
from a specific area on the Earth’s surface. Spectral dispersion is typically carried out using
filters, gratings or prisms (Jia et al., 2020). Spatial redirection of incoming electromagnetic
radiation is typically carried out with elements such as fiber optic cables, lenses and mirrors

(Markham et al., 2018).

Four main hyperspectral sensor types are commonly implemented for remote sensing efforts:
whiskbroom, pushbroom, snapshot and sequential spectral scanning. These sensor types are
differentiated by how they disperse electromagnetic radiation spatially and spectrally across their

detectors. Whiskbroom sensors spectrally disperse incoming electromagnetic radiation from a
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solid angle on the ground across a linear detector array, typically with diffraction gratings or
prisms. Using a mirror, spectral measurements can be taken one pixel at a time across the sensor
field of view (Mouroulis et al., 2000). As the platform moves forward, this process can be
repeated to generate images from multiple solid angle measurements. The whiskbroom sensor
type was a popular choice in the design of early airborne hyperspectral imagers (e.g., Airborne
Visible-Infrared Imaging Spectrometer (AVIRIS) (Green et al., 1998), HyMap (Cocks et al.,
1998)). In pushbroom sensors, detector arrays (2-D array of detectors) are designed so that the
incident radiation is spectrally dispersed across one dimension of the array and spatially
dispersed across the other. These sensors collect a single line of hyperspectral image pixels at a
time. An image is formed by stacking multiple lines that cover a given scene (Mouroulis et al.,
2000). The pushbroom sensor design is the most commonly implemented in current HSI efforts
(e.g., CASI (Babey and Anger, 1989), AVIRS-NG (Chapman et al., 2019), Environmental
Mapping and Analysis Program (EnMap) (Guanter et al., 2015)). Although less common,
snapshot sensor designs have been implemented in Earth Observation efforts (e.g., Aasen et al.
2015; Cao et al. 2018). Snapshot sensors operate by spectrally and spatially dispersing
electromagnetic radiation onto a detector array in a strategic manner, such that spatial-spectral
information is dispersed across multiple 2-D detector subarrays that can be recombined to
generate a full hyperspectral image from a single integration period (Hagen and Kudenov, 2013).
Since pixels are dispersed across two spatial dimensions, no motion is required to generate an
image. Stationary vantage points (laboratory setups, outdoor tripod setups) are advantageous for
mitigating motion blur effects. At the airborne level, snapshot imagers have primarily been used
in remotely piloted aircraft system (RPAS) HSI efforts as the platform can maintain constant
position and viewing angles with a gimbal (Aasen et al., 2018). Snapshot imagers are also
advantageous as the full frame images can be used in structure from motion algorithms that use
multiple full frame hyperspectral images to reconstruct 3D geometry (Aasen et al., 2015). For
instance, Aasen et al. (2015) used Cubert UHD 185-Firefly snapshot images to derive 3D
hyperspectral information for vegetation monitoring. Similar to snapshot sensors, spectral
scanning imagers are capable of collecting full frame images. Unlike in snapshot sensors,
sequential spectral scanning sensors are designed so that the incident radiation is spatially
dispersed in 2D across the detector array. A hyperspectral data cube is formed by collecting

spectral data one band at a time over multiple integration periods through the use of a filter
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wheel, acousto-optic tunable filter, liquid crystal tunable filter or Fabry-Perot interferometer
(Aasen et al., 2018; Liu et al., 2021a). Examples of spectral scanning imagers include the Rikola
FPI and IMEC SMS5X35.

In each of the described designs, electromagnetic radiation is dispersed across a finite
number of detectors. There is often a trade-off between the spectral and spatial resolution of
hyperspectral systems. This dynamic is further complicated as the number of sensor elements has
a direct effect on system calibration; the more detector elements a sensor has, the more difficult
it is to calibrate the system. With these considerations, whiskbroom sensors can collect higher
fidelity spectral information compared to the other sensor designs at the cost of spatial
coherency. Due to the use of a scanning mirror in the whiskbroom design, the sensor field of
view can be large (e.g., up to 70 degrees for HyMap (Cocks et al., 1998)). Although
advantageous for data acquisitions, the mechanical scanning mechanism increases the sensor’s
weight and volume, which can lead to practical disadvantages. For instance, the added weight
and volume could be problematic for RPAS HSI efforts (Aasen et al., 2018). Furthermore, the
scanning mechanism imposes limitations on the integration time for whiskbroom sensors as each
spectral pixel in the cross track direction (direction perpendicular to the scan direction) needs to
be collected independently. The relatively short integration time (<1 ms) of whiskbroom sensors
can result in low signal-to-noise ratios (<150 @600 nm) compared to other sensor designs (Jia et
al., 2020). Due to the lack of a mechanical scanning mechanism, snapshot imagers can collect
data with high signal-to-noise ratios (> 150 @ 600 nm) (Hagen and Kudenov, 2013). Snapshot
imagers are also advantageous because there is greater spatial coherency between the image x
and y directions. However, the spectral and spatial resolution is typically limited since the finite
number of detectors are split between two spatial and one spectral dimension simultaneously
(Hagen and Kudenov, 2013). Generally speaking, spectral scanning sensors can collect the
highest resolution spatial data as electromagnetic radiation is exclusively dispersed in 2 spatial
dimensions across the detector array. Since HSI data is collected one band at a time, dwell times
per image can be quite large compared to snapshot and whiskbroom sensors. If the imaging
platform is not stable over the duration of a single hyperspectral image acquisition, spatial offsets
can be observed between bands, resulting in low spectral fidelity. Pushbroom sensors offer an
intermediate between the whiskbroom, snapshot and spectral scanning imagers, providing high

spatial and spectral resolution pixels that are accurately aligned and cover relatively large
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spectral-spatial regions. As with the snapshot designs, pushbroom sensors have no mechanical
scanning mechanism and thus can have larger integration times (> 1 ms) and signal-to-noise
ratios (>2000 @ 600 nm). For instance, the change from the whiskbroom to pushbroom design
from AVIRS to AVIRS-NG greatly contributed to the increase in signal-to-noise ratio from ~
150 to ~ 2000 @ 600 nm (Curran and Dungan, 1989; Jia et al., 2020). Although the concepts
discussed in the remainder of this literature review apply to all sensor architectures, this work

focuses on pushbroom HSI due to its popularity in remote sensing efforts.

2.2. Sensor Characterization

2.2.1. Radiometric Response
The radiometric response of a sensor describes the relationship between the radiance of

electromagnetic radiation that reaches each detector element and the DN that they record when
the photoelectric effect induces a current (Pathakoti et al., 2018; Vane et al., 1987). The
radiometric response of a sensor is often assumed to be linear. This can be confirmed by varying
the radiance of a controlled electromagnetic radiation source and measuring the response of each
detector (Davis et al., 2002; Schaepman et al., 1998). In the literature, the radiometric response
of each detector is not typically characterized for a wide range of radiance levels as linearity is
assumed (Cocks et al., 1998; Vane et al., 1987). The radiometric response of a sensor is typically
defined by radiometric sensitivity coefficients that are calculated in a well-controlled laboratory
environment by linearly regressing the radiance of incident electromagnetic radiation against the

DN recorded by the excited detector element (Vane et al., 1987).

Although HSI data products derived from lab-based radiometric calibrations can yield high
accuracy spectral information, radiometric sensitivity coefficients can change over time due to
stresses that occur as the sensor is transported, installed and operated (Folkman et al., 2001;
Secker et al. 2001). In such cases, vicarious calibration has been successful in calculating
accurate radiometric sensitivity coefficients from operational imagery using known spectral
references (e.g., Secker et al., 2001; Teillet et al., 2001). For instance, Secker et al. (2001) used
ground-based reflectance data simultaneously collected during HSI data acquisition to derive

new radiometric sensitivity coefficients that resulted in more accurate reflectance spectra.

Although it is widely accepted that the radiometric response is linear, there are noted

exceptions in the literature. For instance, Soffer et al. (2021) found that the WaterSat Imaging
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Spectrometer Experiment (WISE) instrument was characterized by a non-linear radiometric
response for low signal targets (e.g., water, shadows). Correspondingly, a two-part radiometric
refinement (linear for mid to high radiance levels, non-linear for low signal levels) was designed
and implemented to retrieve radiance values consistent with the 6S radiative transfer model.
Although such a correction may not be necessary for all sensors, it is critical to assess the
validity of assuming that the radiometric response is linear. If non-linearities exist, radiometric

sensitivity coefficients may not be sufficient to characterize the radiometric response.

While measuring DN, it is also important to note that the signal is quantized. This
quantization is captured in the radiometric response. In most cases, the quantization is so detailed
(>12 bit) that the measurements vary in a relatively continuous manner (Davis et al., 2002; Green

et al., 1998; Schaepman et al., 1998).

2.2.2. Spectral Response

The spectral response defines the relative spectral contribution to the signal from each
detector as a function of wavelength (Schowengerdt, 2006¢) (see Figure 2.1). The spectral
response of an imager can be measured with a monochromator, a device that transmits
mechanically selectable narrow-band electromagnetic radiation. To derive the spectral response
of each detector, hyperspectral images are taken while varying the monochromator. Each
detector is then mapped against its responsivity to electromagnetic radiation as a function of
wavelength (Skauli, 2012). The spectral resolution of a sensor is defined by the full width at half-
maximum of the spectral response function (see Figure 2.1). Due to the design of pushbroom
hyperspectral imagers and their spectral dispersion mechanisms, the center wavelength of most
spatial pixels varies across the field of view. This distortion is known as the spectral smile effect
(Yokoya et al., 2010) and is typically corrected while processing the data (see Figure 2.2).
Spectral smile is typically less than 0.1 pixels across the sensor field of view. Generally
speaking, hyperspectral imagers collect contiguous spectral information as there is overlap in the

spectral response of neighbouring spectral bands (see Figure 2.1) (Roger and Arnold, 1996).
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Figure 2.1. Example spectral response functions for three adjacent bands from the CASI-1500.
The spectral response functions of the bands displayed in the figure are defined by fourth-order
Butterworth filter functions centred at 597.757 nm, 600.150 nm and 602.543 nm. The spectral
resolution is defined by the full width at half-maximum and is approximately equal to 2.4 nm (see
black double-sided arrow in the figure). Hyperspectral imaging systems collect contiguous
spectral information, which can be seen in the overlap between adjacent spectral response
functions.
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Figure 2.2. Representation of spectral smile and keystone artifacts in pushbroom hyperspectral
imaging data. In the ideal scenario, the spectrum from each pixel collects data on the same
wavelength array. Furthermore, each band from a single hyperspectral image pixel corresponds
to the same area on the ground. In reality, each hyperspectral pixel collects spectral data on a
slightly different wavelength array (spectral smile). Additionally, each band from any given
hyperspectral image pixel corresponds to a slightly different area on the ground (keystone).

2.2.3. Spatial Response

The spatial response defines the spatial contribution to the spectrum from a single pixel. The
spatial response is typically characterized by the net point spread function (PSFi.) or its
normalized Fourier transform, the modulation transfer function (MTF). Formally, the PSF .
gives the relative response of an imaging system to a point source as a function of distance from

the pixel center (Schowengerdt, 2006b). An example PSF is shown in Figure 2.3.
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Figure 2.3. Example point spread function derived for imagery collected by the Compact
Airborne Spectrographic Imager (CASI-1500). The relative spatial contribution to a single pixel
is a function of across track and along track displacement from the pixel center. Figure
reproduced without modifications from Inamdar et al. (2020) under the terms and conditions of
the Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).

Traditionally, the spatial response of a sensor is measured in a controlled laboratory
environment. In the laboratory characterization, the sensor is used to image a well-characterized
point source target. By capturing multiple images while varying the location of the point source,
it is possible to obtain the spatial response of each detector in two dimensions (Jemec et al.,
2017). This characterization does not account for the dynamics of motion that occurs during the
integration time in real data acquisitions. These dynamics can be simulated by convolving the
spatial response by a rectangular pulse function with a width equal to the distance traveled
during a single integration time. The net spatial response function can also be measured from
operational imagery over man-made objects that represent point sources (e.g., mirrors and
geometric patterns) or targets of opportunity (e.g., bridges and coastlines) (see Holt et al. (2021)
Schowengerdt et al. (1974) and Rauchmiller and Schowengerdt (1988) for more details). Due to
sensor optics, detectors and motion during data acquisition, the spatial contribution to each pixel
is non—uniform (often Gaussian in shape), extending past the traditionally square spatial
boundaries designated by the pixel resolution. It is critical to note that pixels are not square as
they appear in conventional raster end products (Fisher, 1997; Smith, 1995). The spatial response

of each spatial pixel is primarily dependent on the altitude, speed, integration time, size of the
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detectors and the optics (Inamdar et al., 2020; Schowengerdt, 2006b). Similar to spectral
resolution, the spatial resolution of a sensor can be defined by the full width at half-maximum of
the spatial response function. Alternatively, spatial resolution can be defined by the ground
instantaneous field of view, which is the geometric projection of a single detector width onto the
Earth’s surface (Schowengerdt, 2006a). Generally speaking, hyperspectral imagers collect
contiguous spatial information as there is overlap in the spatial response of neighbouring spectral

pixels (see Figure 2.4).

Due to the design of pushbroom hyperspectral imagers, there is spatial misregistration
between the spectral bands of each spatial pixel. This distortion is known as the keystone effect
and is the spatial analog of the spectral smile effect (see Figure 2.2) (Yokoya et al., 2010). As
with the spectral smile effect, it is typically corrected while processing the data. Keystone is

typically less than 0.1 pixels across the sensor field of view.
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Figure 2.4. Example spatial response function in the across track direction for three adjacent
pixels from CASI-1500 imagery. Spatial resolution can be defined by the full width at half-
maximum (see black double-sided arrow in the figure). Hyperspectral imaging systems collect
contiguous spatial information, which can be seen in the overlap between adjacent spatial
response functions.

2.3. Data Acquisition
Mission planning is fundamental to collecting high-quality HSI data (Cline et al., 1987; Zhao

et al., 2019). Data acquisition missions must be conducted under stable illumination conditions
so that the atmospheric compensation can accurately mitigate atmospheric absorption and
scattering effects. Soffer et al. (2019) point out that the rate of change in the solar zenith angle
and shadow coverage are minimized at solar noon. As such, acquisitions near solar noon are
ideal in many situations, especially since incoming solar radiation and thus signal levels are
maximized (Vreys et al., 2016b). It is critical to ensure motion is controlled (e.g., stable speed,
attitude, heading and altitude) during data acquisition, considering factors such as wind and pilot

experience in manned aircrafts (Pepe et al., 2018) and gimbal effectiveness (if one is used) and
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flight motion accuracy and precision (effectiveness of flight controller and inertial navigation

system) in RPASs (Arroyo-Mora et al., 2019).

The spatial resolution and the pixel spacing of an image are affected by sensor speed,
altitude, view angle, integration time and frame rate (Schowengerdt, 2006b). Ideally, missions
should be planned to generate pixels with a similar spatial resolution in the cross track and along
track directions. For pushbroom sensors, this can be technically difficult since the resolution in
the along track is determined by the integration time and platform speed (Schowengerdt, 2006b;
Zhao et al., 2019), both of which have impacts on other aspects of the data (e.g., signal to noise
ratio, platform stability, etc.), especially for low altitude platforms such as RPASs (Arroyo-Mora
et al., 2019). Given the discrepancy in the cross track and along track resolutions, the spectrum

from any given pixel rarely corresponds to a square area on the ground (Inamdar et al., 2020).

Sensor speed and altitude are practically limited by the carrying platform of the sensor
(Aasen et al., 2018). HSI data is typically collected using RPAS (fine spatial resolution allowed
by low altitude and speed), manned aerial aircrafts (intermediate spatial resolution due to altitude
and speed) or spaceborne platforms (coarse spatial resolution due to high altitude and speed) (see

Figure 2.5).

Low Altitude High Altitude Spaceborne
Airborne Airborne Observation
Observation Observation

Geographical Extent
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Figure 2.5. The approximate spatial resolution and geographic extent of hyperspectral imaging
systems on various platforms.
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The integration time must be considered simultaneously with the signal-to-noise ratio; a
suitable integration time maximizes the signal over a scene without saturating any detectors
during data acquisition (Clark and Rilee, 2010). It is important to recognize that there is a trade-
off between pixel resolution and area coverage (Aasen et al., 2018). As such, there may be
logistic restrictions to the spatial resolution given area coverage requirements for specific
projects. If the required spatial resolution is unknown, it is ideal to collect finer spatial resolution
data since spatial detector measurements can be summed to boost signal-noise ratios in post-
processing (Cornish, 2014). Furthermore, the data can be resampled to simulate the imaged scene
at a coarser resolution. The spectral resolution of a sensor has similar constraints concerning the
signal-to-noise ratio. However, since spectral detector measurements can be summed to boost
signal-to-noise ratio (Cornish, 2014; Kalacska et al., 2016), it is ideal to collect data at the
highest spectral resolution possible. Additional considerations must also be made with respect to
the implementation of pixel summing. When summing in the spatial domain, the spatial response
is modified. Typically, this results in sharper spatial responses, in the sense that the signal from
the summed pixel has less contributions from the materials outside of its traditional rectangular
pixel boundaries defined by the spatial resolution in the cross track and along track directions.
Summing in the spectral domain also increases the sharpness, as the signal from the summed
pixels has less contributions from outside of their covered spectral region (Schowengerdt,
2006c¢). Overall, the spatial resolution of an HSI system is typically limited by the aircraft.
RPASSs typically offer the highest spatial resolution if there are no monetary restrictions,
followed by manned aircrafts and satellite platforms. However, it is important to recognize that
restrictions, such as weather and airspace logistics, may impede the implementation of specific

platforms (Arroyo-Mora et al., 2019; Vreys et al., 2016b).

2.4. Data Processing

2.4.1. Radiometric Correction, Spectral Smile Correction and Spatial

Keystone Correction
To generate an HSI dataset where every spatial pixel is associated with the spectral radiance

of materials within the pixel instantaneous field of view, it is critical to apply the radiometric

correction, spectral smile correction and spatial keystone correction.

The radiometric correction adjusts the raw DN collected by each detector of an imaging

system, converting the measurement to radiance. The first stage in the radiometric correction is
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to remove additive signals from the instrument itself. The most prominent additive signal
originates from dark current. During data acquisition, the temperature difference between the
environment and the cooled detector elements allows electrons to pass through the conduction
band of the semi-conductor and induce a current (Manea and Calin, 2015; National Research
Council, 2010). Dark current is relatively constant during data acquisition (Chapman et al.,
2019). To measure this additive contribution to the recorded DNs when hyperspectral data is
acquired, multiple frames are collected while the aperture is still closed and the detector array
only records signal from the instrument itself. The signal recorded in these dark frames
(measured dark current) is removed from the signal acquired while the aperture is open (de
Miguel et al., 2014). After removing additive contributions from the instrument, the radiometric
sensitivity coefficients are applied, and the raw DN from each detector is converted into units of
spectral radiance (Warren et al., 2014). As mentioned in section 2.2.1, although a linear sensor
response is typically assumed, it is critical to recognize that non-linearities exist and can affect
imaging systems. For instance, the non-linear refinement implemented by Soffer et al. (2021) for
the WISE hyperspectral imager was critical to obtaining at sensor-radiance values for dark
targets (water, shadows, asphalt, black tarp) that were consistent with 6S simulations. Without
this refinement, many dark targets were characterized by negative radiance values, which have
no real physical significance. This research emphasizes that the linear radiometric response
assumption must be verified when applying conventionally derived radiometric sensitivity

coefficients.

To compare the spectra from various spatial pixels, it is critical to correct for the spectral
smile. In this process, the spectrum from each spatial pixel across the field of view is spectrally
resampled to a common wavelength array (usually that of the central pixel location). The spectral
smile correction is possible as the center wavelength of the spectral bands for each spatial pixel

is determined during sensor characterization (Yokoya et al., 2010).

A similar correction can be applied in the spatial domain with spatial resampling techniques.
In particular, the data can be spatially resampled on a uniform grid, where each pixel is separated
by the same distance. Once again, this correction is possible due to the known location of each
spatial pixel across the spectral domain, as determined during sensor characterization (Y okoya et

al., 2010).



Given enough details about any HSI sensor and its calibration, end users could theoretically
implement the radiometric, spectral smile and spatial keystone correction in their programming
language of choice. However, these steps are practically carried out using software developed by
the sensor manufacturer as the details required to implement such processing are not always

provided.

2.4.2. Deconvolution
Overlap in the spatial-spectral response between adjacent spatial pixels and spectral bands

causes sensor-generated correlations in the imagery (see Figure 2.1 and Figure 2.4) (Inamdar et
al., 2020). These correlations are commonly observed as sensor blurring. Sensor blurring can
impede HSI data applications that depend on the contrast of fine spatial-spectral details in the
imaged scene. The impacts of sensor-induced blurring effects have been characterized at the
satellite level for multispectral data. In Huang et al. (2002), sensor blurring was found to reduce
the natural variability in scenes observed by satellite spectrographic imagers. This reduction in
variability is associated with information loss (Lee and Landgrebe, 1993) and has been found to
negatively affect various remote sensing tasks such as classification (Huang et al., 2002), sub-
pixel feature detection (Radoux et al., 2016) and spectral unmixing (Wang et al., 2018). In
Huang et al. (2002), the land cover classification of a simulated MODIS image that accounted
for the sensor PSF decreased in accuracy by 5.4% compared to a control simulated image that
ignored the PSF, treating pixels as squares. Although some reports acknowledge the implications
of sensor-induced blurring at the airborne level, many studies do not attempt to characterize or
mitigate their impact (e.g., Bergen et al., 2005; Heiskanen, 2006; Simms et al., 2014; Tarrant et
al., 2010; Torres-Rua et al., 2016). Schlédpfer et al. (2007) found sensor-induced blurring
modified fine resolution HSI data (5 m) to a greater degree than the lower resolution data (28.3
m). These results suggest that sensor blurring may be more prominent for airborne sensors due to
their high spatial resolution. The impacts of sensor-induced blurring for fine resolution HSI data

should be further evaluated.

Spectral-spatial blurring can be reduced with deconvolution methodologies (e.g., (Fang et al.,
2017; Henrot et al., 2013; Jackett et al., 2011)), which minimize the contributions of materials
outside the spatial boundaries of the pixel and electromagnetic radiation beyond the spectral
region defined by each band. Generally speaking, deconvolution algorithms act to sharpen the

imagery. It is critical to recognize that deconvolution is an ill-posed problem; due to the
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information loss associated with sensor blurring, a unique solution is often unobtainable even in
the absence of noise (Chaudhuri et al., 2014). Furthermore, deconvolution techniques can
introduce artifacts and struggle with restoring high-frequency features. Henrot et al. (2013) show
that some deconvolution algorithms can introduce ringing artifacts that generate negative values
from non-negative images. Since negative values have no physical significance in HSI data, this
would be problematic in data applications. It is important to consider the trade-off between
sharpness and information content, as per the requirements of the research question. As such,
deconvolution is not always performed in practice, unlike the other processing steps (e.g.,
radiometric correction, atmospheric compensation, geometric correction) which are fundamental

to exploiting the spectral and spatial information in HSI data.

2.4.3. Atmospheric Compensation
HSI data is collected in atmospheric windows that allow for the transmissivity of

electromagnetic radiation (see Figure 2.6). Even in these atmospheric windows, as solar
electromagnetic radiation travels along the Sun-surface-sensor ray path, it interacts with the
molecules and particles in the atmosphere through scattering and absorption mechanisms (Gao et
al., 2009). This is problematic for hyperspectral remote sensing in the VNIR-SWIR as

atmospheric influences mask the surface information encoded in the radiance spectra.
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Figure 2.6. Transmission of electromagnetic radiation in the atmosphere from 200 nm to 13000
nm calculated using MODTRAN for a summertime mid-latitude hazy atmosphere (5 km
visibility). The shaded light-blue region gives the transmissivity (in units of %) of
electromagnetic radiation in the atmosphere as a function of wavelength. The colored bars
display the width of Landsat’s spectral bands from the first generation Multispectral Scanner
System (MSS) to Landsat 9’s Operational Land Imager 2 (OLI-2). All spectral bands are
designed to exploit available atmospheric windows (figure copied from Barsi and Rocchio
(2020) following the NASA Media usage guidelines).

To extract surface information based on the reflectance properties of the surface materials
within each pixel, these atmospheric influences must be compensated for (Asmat et al., 2011;
Gao et al. 2009; Ibrahim et al. 2018). In the reflective portion of the electromagnetic spectrum,
major atmospheric absorptions occur at approximately 0.94, 1.14, 1.38 and 1.88 um from water,
0.76 pm from oxygen and 2.08 um from carbon dioxide (Gao et al., 2009). In addition, path
radiance from backscattered particles in the atmosphere has additive effects that are not
representative of the materials within the sensor’s field of view. Radiation is also observed from
nearby surfaces outside the sensor’s field of view after adjacent electromagnetic radiation is
reflected and scattered into the optics (see Figure 2.7) (Richter et al., 2006). Considering the
accumulative effects of these factors, it is clear that only a portion of the measured signal
originates from the material of interest (Richter and Schldpfer, 2020). The primary objective of
the atmospheric correction is to minimize atmospheric absorption and scattering effects,
observed path radiance and contributions from surface reflected and scattered radiation outside
the field of view. In atmospheric compensation processing, at-sensor radiance is converted into

units of reflectance, which are independent of the atmosphere.
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Figure 2.7. Schematic sketch of the major solar radiation components from the signal measured
by a hyperspectral (HS) imager. The atmospheric compensation attempts to recover the
reflectance (p) of the material that is responsible for the reflected radiance.
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There are three main approaches to atmospheric compensation: 1) scene-based empirical
approach; 2) radiative transfer model approach; and 3) hybrid approach (Gao et al., 2009; Jia et
al. 2020). Scene-based empirical approaches use the spectral information within a given
hyperspectral dataset to remove atmospheric effects. Many of these methods simply scale the
data by a strategically selected spectrum to obtain a measure of relative reflectance. For instance,
the Internal Average Reflectance (IAR) approach (Kruse, 1988) scales HSI data by the average
spectrum to estimate the relative reflectance across the scene. The flat field approach developed
by Roberts et al. (1986) is another empirical method that scales the imagery by the average
spectra of spectrally neutral materials in the scene (i.e. materials whose reflective properties do
not vary substantially with wavelength). In some empirical methods, additional ground truth
reflectance data is utilized. For instance, the empirical line approach linearly fits in situ
reflectance measurements of spectrally invariant surfaces in the scene to their corresponding
sensor readings (Conel et al., 1987). This linear fit is then applied to all pixels for which no
ground control data was acquired. To date, empirical approaches are still common in HSI efforts

(e.g., Quick Atmospheric Correction (QUAC) (Bernstein et al., 2012)).

The radiative transfer model approach uses physically derived expressions for radiative
transfer in the atmosphere to approximate the at-sensor radiance of a perfect reflector, accounting
for atmospheric absorption, path radiance and the adjacent radiance (Gao et al., 2009). This
information makes it possible to measure apparent reflectance, which is scaled from 0 to 1 and
indicates the relative amount of electromagnetic radiation reflected by the surface. The radiative

transfer model, and its constituent equations, depend on various environmental variables that can
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either be directly input from ground-based measurements or retrieved from the HSI data. The
most important atmospheric variables include aerosol type (typically based on geographical
location), atmospheric water vapour column and visibility (Richter and Schlapfer, 2020).
ATREM (Gao et al., 1993), ATCOR (Richter and Schldpfer, 2020), FLAASH (Cooley et al.,
2002) and HATCH (Zheng et al., 2003) are examples of commonly used atmospheric
compensation software that use radiative transfer codes such as LOWTRAN (Kneizys, 1988),
MODTRAN (Berk et al., 1999) and 6S (Vermote et al., 2006).

Scene-based empirical approaches are typically less accurate than the radiative transfer
methods but much faster. For example, the spectra used to calculate relative reflectance can
introduce unnatural absorption features as no materials are truly spectrally neutral (i.e., all
materials have some absorption features) (Clark and King, 1998). Scene-based approaches that
use in situ reflectance measurements may be inaccurate if atmospheric conditions vary spatially
and temporally (Gao et al., 2006). On the other hand, radiative transfer approaches can struggle
with complex and varying atmospheric conditions due to their sensitivity to uncertainty in the
atmospheric gas and aerosol state (Thompson et al., 2016). As such, scene-based empirical

approaches can play a complementary role in difficult atmospheric corrections (Arroyo-Mora et

al., 2021).

In hybrid approaches to atmospheric compensation, scene-based empirical methods are
synergized with radiative transfer approaches (Gao et al., 2006; Jia et al., 2020). In these efforts,
radiative transfer modeling can derive a reasonable estimate of reflectance, which is fine-tuned
by scene-based empirical methods with ground truth hyperspectral point measurements. For
instance, Thompson et al. (2016) developed an atmospheric compensation methodology that
fine-tunes a radiative transfer model-based solution by incorporating in-situ reflectance
measurements via Bayesian inference. Opposite to this approach, other hybrid methods apply
empirical methods first, fine-tuning the results with radiative transfer approaches. For example,
Richter and Schlédpfer (2020) developed an in-flight radiometric calibration module in ATCOR-4
that fine-tunes the sensor observed radiance using in-situ reflectance measurements. With the
fine-tuned radiance values, their radiative transfer model approach to atmospheric compensation

can result in more accurate reflectance spectra (Soffer et al., 2019).
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2.44. Geometric Correction
The purpose of the geometric correction is to locate the position of each image pixel on the

Earth’s surface. This task requires accurate attitude and position data of the imager at a sampling
rate higher than the sensor’s frame rate (reciprocal of frame time). The geometric correction
must also use interior orientation parameters that define the image space of the sensor (i.e.,
imager focal length, principal point location and radial lens distortion) (Barbieux et al., 2016;

Warren et al., 2014).

The sensor’s motion can be characterized at the required frequency for geometric correction
(frequency > sensor frame rate) by a sensor-mounted inertial navigation system (INS). Typically,
the INS of a sensor records global navigation satellite system (GNSS) data (positional), attitude
data and acceleration data (Warren et al., 2014). To obtain highly accurate positional data, a
differential correction is typically applied. This differential correction requires highly accurate
base station GNSS data with a small baseline (ideally 5-10 km for L1 antennas and 60-100 km
for multi-band antennas) (Aasen et al., 2018; Emlid, 2022; Famiglietti et al., 2021). The closer
the base station to the hyperspectral data acquisition site, the more accurate the differential
correction (Farrell, 2008). Generally speaking, base station data is not typically collected at the
frequency required by the geometric correction (frequency > sensor frame rate). This is
problematic as the GNSS data from the INS is usually downsampled to the base station sampling
frequency after differential correction. To accurately upsample the data to the required
frequency, the high-frequency attitude and acceleration data are fused with the differentially
corrected positional data through a Kalman filtering process (Da, 1997). The positional data is
then shifted by the spatial offset from the center of the INS to the sensor’s optical center. In
addition, the roll, pitch and yaw are adjusted by the attitude offset from the INS to the sensor
(Lenz et al., 2014).

The INS-sensor offset, along with the interior orientation parameters, is typically calculated
through a bundle adjustment. In the bundle adjustment, the position offset, attitude offset, focal
length and principal point location are calculated by analyzing a grid of collected hyperspectral
images over multiple ground control points with highly accurate positional data (Barbieux et al.,
2016; Triggs et al., 2000). These images are planned to have a substantial amount of overlap so
that the desired parameters can be calculated based on the relative position of each ground

control point in each of the images (Barbieux et al., 2016; Triggs et al., 2000).
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On a fundamental level, the geometric correction is a geometry problem that projects the
collected data from the image space onto an elevation model in a physical space. Specifically,
each pixel is located at the intersection of the surface elevation model and a straight line
projected from the sensor position at the pixel-dependent look direction (see Figure 2.8). The
look direction is calculated by accounting for the sensor attitude (roll, pitch yaw), focal geometry
and boresight misalignment (Warren et al., 2014). The accuracy of the geometric correction is
dependent on the accuracy of the bundle adjustment and the INS data (Brunn et al., 2003; Miiller
et al., 2002). For relatively flat terrain at high altitudes, a flat surface model can be used (de
Miguel et al., 2014). For low altitude data acquisition, variations in the surface elevation become
increasingly important (Arroyo-Mora et al., 2019). The same can be said for areas of extreme
elevational variations (e.g., mountains). In these cases, a digital surface elevation model must be
acquired, typically from either LiDAR (Liu, 2008) radar altimetry (Leslie, 2018), synthetic
aperture radar altimetry (Raney, 1998) or interferometric synthetic aperture radar altimetry (Gao
et al., 2017). For low altitude acquisitions, a structure from motion workflow can be applied to
generate a dense point cloud, and subsequently a digital surface elevation model, from regular
RGB images (Westoby et al., 2012). LiDAR data can also be acquired using RPAS for digital

surface model generation at low altitudes (Kalacska et al., 2021).
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Figure 2.8. Schematic of the geometric correction. With a known sensor position (p) and look
direction (0 ), the position of each pixel in the image space can be located in a real-world
coordinate space. The pixel is located at the intersection (a) of the input digital surface model
(shown in green) and a straight line projected at the pixel-dependent look direction from the
sensor position. The look direction is the angle at which incoming electromagnetic radiation is
observed by any given pixel of the hyperspectral imager (Miiller et al., 2002). The look direction
is calculated from the sensor’s attitude, focal geometry and boresight misalignment during data
acquisition (Brunn et al., 2003, Miiller et al., 2002). Figure reproduced without modifications
from Inamdar et al. (2021) under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http.//creativecommons.org/licenses/by/4.0/).

2.4.5. Rasterization
Hyperspectral pixels are not uniformly spaced over the imaged scene after the geometric

correction due to factors such as lens distortion, sensor movement and rugged terrains (Galbraith
et al. 2003; Vreys et al. 2016a). To correct this non-uniformity, the geometrically corrected data
are typically spatially resampled on a north-oriented linear grid (Shlien, 1979). Each grid cell is
typically separated by an equal distance in the easting and northing directions, leading to a
rasterized end product with square pixels (Richards and Jia, 1999; Shlien, 1979; Warren et al.,
2014). A nearest neighbour approach is conventionally used when spatially resampling HSI data
(Roy, 2000; Williams et al., 2017). In this technique, the spectrum for each cell in a pre-specified
linear grid is determined by the nearest spectrum from the original imagery that is being
resampled (Shlien, 1979). This resampling is conventionally applied as it does not modify the
value recorded in any measured spectrum and thus preserves spectral data integrity (Schldpfer et

al., 2007). If not properly implemented, the nearest neighbour method can compromise the
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spatial integrity of the collected data. Nearest neighbour resampling can lead to a blocky
appearance due to pixel duplication if oversampling occurs (Arif and Akbar, 2005). On the other
hand, if the data is undersampled during nearest neighbour resampling, pixels can be lost
altogether, eliminating valid spectral information (Arif and Akbar, 2005). Even if properly
implemented, nearest neighbour resampling results in pixel shifting as the true position of each
pixel is moved up to 0.5 pixels in the image x and y directions to fit the pre-specified resampling

grid (Roy, 2000; Shlien, 1979).

In the pushbroom sensor design, the spatial characteristics of collected HSI data are different
between the cross track and along track directions. This creates some difficulties when deciding
on the spatial resampling grid resolution for HSI efforts; the data will either be oversampled or
undersampled depending on the resampling resolution selected, leading to pixel loss and pixel
duplication. Even though pixel loss and duplication are present in virtually all HSI datasets
generated with the nearest neighbor resampling technique, these errors have only been noted in a
limited number of remote sensing studies (Kimerling, 2002; Kollasch, 2005; Williams et al.,
2017). Of these works, only Williams et al. (2017) focused on HSI data (Williams et al., 2017).
Unfortunately, the implications of pixel duplication and pixel loss on HSI data applications have
not been rigorously characterized. Pixel shifting from spatial resampling has been shown to
negatively affect various applications such as multi-temporal datasets compositing and alignment
(Tan et al., 2006), change detection (Roy, 2000) and classification (Alcantara et al., 2012). Tan et
al. (2006) used simulated MODIS data to show that the sensor observation in any grid cell is
only partially derived from materials within the location of the cell; due to pixel shifting, the
average spatial overlap between observations and their corresponding pixel was less than 30%.
In this work, pixel shifting was found to introduce bias when compositing multi-temporal
datasets. Roy (2000) had similar findings, showing that pixel shifting from nearest neighbour
resampling contributed to systematic bias estimates of location and area when compositing data
for the purposes of change detection. Alcantara et al. (2012) mapped abandoned agriculture
using multi-temporal MODIS data, attributing high classification errors to pixel shifting that

caused changes in spectral information reported for a given MODIS pixel over time.

To preserve the information content of a hyperspectral image, the data should not be

rasterized. Rasterization can potentially introduce pixel duplication and loss while shifting the
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known location of pixels to fit a north-south oriented square grid. With best practices, it may be
possible to rasterize the data according to a rectangular pixel regime oriented along the flight line
heading. However, even this approach is limited in its application as the spatial origin of each

pixel will be lost to some degree.

2.5. Data End Products

2.5.1. The Raster Data Model
Raster end products have been a standard for HSI data for over 40 years (Goetz, 2009; Vane

et al., 1984; Wilkinson, 1996) as virtually all spectral imaging systems view analyzed scenes as
fields of informative continuous variables (e.g., spectral reflectance) that are discretized into
pixel arrays (Couclelis, 1992). The concept of rasterization predates the inception of HSI by
more than 20 years. In 1957, Russel Kirsch at the National Bureau of standards created a drum
scanner to digitize analogue photographs into a raster array that was stored on Standards Eastern
Automatic Computer. The digitized image was interesting as the computer could be used to
program pattern recognition routines to analyze the imagery (e.g., counting the percentage of the
image that was black). Visualization of stored images were mediated through an oscilloscope
screen, where the raster data was represented as a collection of plotted points (Kirsch et al.,
1957). In 1971, Michael Noll improved on the display of rasterized images, developing a
television-like scanned-display system with raster computer graphics (Noll, 1971). Since the
seminal work of Kirsch and Noll, the raster data model has become fundamental to displaying
multivariate data stored digital devices. As shown by the work of Kirsch et al. (1957), the raster

data model was important for data analytics (via pattern recognition).

From an analytics perspective, the raster data model is desirable for many reasons. By
viewing spatial phenomena in such a discretized fashion, data are stored as matrices that can be
mathematically manipulated and analyzed with minimal computational requirements (Maguire,
1992). For instance, map algebra can be used to perform point operations (e.g., arithmetic and
Boolean) and spatial operations (e.g., spatial interpolation and filtering) in a computationally
efficient manner (Tomlin, 1990). Another major advantage of the raster data model is that its
structure provides continuous coverage in the spatial extent at a resolution that is always
explicitly defined by the size of the raster cells (Goodchild, 2011). In the context of HSI, this
means that reflectance measurements can be related to spatial areas that continuously span large

spatial extents (Bioucas-Dias et al., 2013; Maguire 1992). When HSI was established, landscape-

61



level and larger studies could only be conducted using the raster data model due to hardware and
software limitations (Wade et al., 2003). Despite its obvious advantages in displaying
multivariate data, the raster model is a heritage of the old computing era that may not be ideal for
data analytics (Lim, 2008); more complex data formats may be permissible given current
technologies. Thus, it is critical to re-evaluate the disadvantages of raster end products in HSI

efforts.

By discretizing continuous spatial phenomena, the raster data model is a simplification of
reality. Although this is advantageous in some respects, it does lead to various disadvantages.
Firstly, both natural and non-natural features in the landscape cannot always be accurately
represented by squares, especially at coarse resolutions (Fisher, 1997). For instance, even a
simple line (e.g., from the edge of a building) is difficult to reconstruct with a string of pixels,
especially when the direction of the line is not in one of the image x or y dimensions. In such
situations, a simple line takes on a jagged stair-step configuration (Maffini, 1987). Secondly,
coordinate transformations for raster end products are a non-trivial task and can introduce
gridding artefacts that compromise data integrity (Tan et al., 2006). Finally, raster end products
have large computer data storage requirements as raster sizes grow quadratically, not linearly
(Bugya and Farkas, 2018). This can be problematic for programming languages that load data
onto the computer memory during analysis (e.g., MATLAB).

2.5.2. The Vector Data Model

The vector data model is a popular alternative to the raster data model for representing spatial
phenomena (Couclelis, 1992; Maffini, 1987; Wilkinson, 1996). In the vector data model, spatial
phenomena are represented with coded points, lines and polygons (Maffini, 1987). Although the
vector data model is typically concerned with representing spatial phenomena as objects with
well-defined boundaries (Couclelis, 1992), it can also be used to represent continuous fields
(Goodchild, 2011). Generally speaking, the vector model is more complex than the raster model.
This added complexity presents both advantages and disadvantages over conventional rasters. As
the vector data model does not store information in matrices, data processing is not nearly as
computationally efficient (Wade et al., 2003). For instance, Wade et al. (2003) compared raster
and vector methods for calculating landscape metrics used in the environmental assessments for
approximately 1000 watersheds in Maryland and Washington, D.C. Given technological

limitations at the time, raster approaches were up to 80 times faster than vector approaches but
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less accurate. Without conforming to a uniform grid, measured quantities in vector data
representations can be georeferenced more accurately (Kennedy and Meyers, 1977).
Furthermore, the flexibility of the vector model allows complex spatial phenomena to be mapped
more accurately (Jakubowski et al., 2013; Maffini, 1987; Wade et al., 2003). Another major
advantage of the vector data model is that it allows for topological processing that manages
spatial relationships between data points to minimize errors and extract information (Cox and

Gifford, 1997).

The use of vector data products in the HSI literature has concentrated on point cloud
representations where each spectral measurement captured by a sensor is coded as a point in
space (e.g. Brell et al., 2019; Oliveira et al., 2019; Vauhkonen et al., 2013). Generally speaking,
hyperspectral point clouds are less popular than their raster counterparts. In comparison to the
17432 peer-reviewed articles retrieved when searching (“hyperspectral image”) on Scopus, only
15 results are obtained when searching (“hyperspectral point cloud”). Although these searches
are not comprehensive, they show the difference in popularity between the use of the vector and
raster data models in HSI. Brell et al. (2019) grouped hyperspectral point cloud generation
methodologies into three main categories: (1) physical measurements with active hyperspectral
LiDAR systems that collect simultaneous hyperspectral and surface elevation data (e.g. Hakala et
al., 2012; Vauhkonen et al., 2013), (2) photogrammetric ranging from multiple full-frame
hyperspectral images (e.g. Aasen et al., 2015; Oliveira et al., 2019) and (3) data fusion
integrating conventional HSI data (from pushbroom, whiskbroom or snapshot sensors) and
surface elevation data (typically from LiDAR or photogrammetric sources) (e.g. Brell et al.,
2016; Brell et al., 2019; Buckley et al., 2013). Given current technological limitations, it is not
feasible to collect high-quality spectral and elevation data with active hyperspectral LiDAR
systems, especially at the fine spectral-spatial resolutions and high signal-to-noise ratios required
for HSI applications (Brell et al., 2019). For instance, difficulties in radiometric calibration and
beam alignment introduce significant challenges in field applications of active hyperspectral
LiDAR systems (Calders et al., 2020; Disney et al., 2018). In photogrammetric ranging point
cloud generation techniques, the necessity of multiple images with significant overlap requires
substantial data storage. These data storage requirements can pose computational and operational
difficulties, especially over large areas at fine spatial resolutions. Photogrammetric ranging

techniques can also struggle in preserving spectral data integrity depending on how the spectral
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information from each elevation point is selected (Aasen et al., 2015). Generally, it is the most
logistically feasible to fuse separate surface elevation and HSI datasets to generate hyperspectral
point clouds. Even in such approaches, it can be challenging to spectrally and spatially align the
utilized datasets due to different sampling strategies, interaction with surface objects and
fundamental differences in spectral-spatial point spread functions, illumination sources and
viewing angles (Brell et al., 2016; Brell et al., 2017; Brell et al, 2019). Overall, many of the
existing hyperspectral point cloud generation methods can be difficult to implement,
computationally expensive and result in large file sizes. Furthermore, they can compromise the

spatial-spectral integrity of the original HSI data set.

2.5.3. Effective Integration of the Vector Data Model in Hyperspectral
Imaging
On a fundamental level, a hyperspectral point cloud is generated when the northing, easting

and elevation of each pixel are calculated during the geometric correction. This vector
information is rarely analyzed by end users, who are provided with the elevation removed,
resampled HSI products in raster format. Overall, the widescale use of georeferenced raster end
products are problematic as the rasterization process compromises data integrity. Section 2.4.5
discusses how rasterization via nearest neighbour resampling negatively affects HSI applications.
However, issues in rasterization are not specific to the use of the nearest neighbour resampling
technique. There is an abundance of studies in the geographic information systems literature that
substantiate the loss of information content in all rasterization processes, regardless of
resampling technique (e.g., Carver and Brunsdon, 1994; Congalton, 1997; Liao et al., 2012). For
instance, Congalton (1997) studied the consequences of rasterizing simple geometric shapes by
quantifying the change in area due to resampling. In this work, substantial errors were observed,
even despite the simplicity of the shapes. In real-world applications where complexity is high
(e.g., coastlines as discussed by Carver and Brunsdon (1994)), this information loss may be more
significant and require fine spatial resolution. Overall, information loss due to rasterization is
inherent; the individual squares that compose the raster data model oversimplify the complex

observations made by each HSI pixel.

An interesting parallel can be drawn between the HSI and LiDAR literature concerning the
highlighted issues in the use of the raster model. On a fundamental level, LiDAR data is

collected as a vector-based point cloud. Through the use of point cloud specific analytical
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techniques and software (e.g., cloudcompare (CloudCompare, 2022) and LAStools (Hug et al.,
2004)), LiDAR data has been effectively used in a variety of remote sensing applications. For
instance, Li et al. (2012) developed an algorithm to segment individual trees from a lidar
airborne point cloud collected over a mixed conifer forest in the Sierra Nevada Mountains. Tree
segmentation is important to forestry as it is critical to deriving structural attributes such as tree
height, crown diameter and canopy-based height. In urban areas, Zhang et al. (2013) developed
an object base classification algorithm to segment ground, buildings, powerlines, vehicles and
vegetation with overall accuracy greater than 92.34 % across three different scenes (town center
of Shenyang City in China, town of Enschede in the Netherlands and a residential area of
Melbourne in Australia). Despite the effectiveness of point cloud specific analytical techniques,
LiDAR point clouds are often spatially resampled by end users to derive raster-based end
products (e.g., digital surface model, digital terrain model, canopy height model, digital elevation
model) that are analyzed in place of the original point cloud due to fast processing speeds and the
accessibility of image processing software in general (Zhang et al., 2015). The use of raster end
products is problematic in LiDAR studies as interpolating the original point cloud data can
introduce data artefacts that ultimately affect data applications (Smith et al., 2004; Suarez et al.,
2005; Tiede et al., 2005). For instance, Jakubowski et al. (2013) compared vector- and raster-
based segmentation approaches for delineating individual trees using LiDAR data. The vector-
based approach used a point cloud segmentation algorithm, while the raster approach applied
object-based image analysis to a derived canopy height model. The analysis showed that the
vector-based segmentation approach produced fewer, more complex and larger tree polygons
that more closely resembled real forest structures. This work was followed up by Zhang et al.
(2015), who approximated crown size using the original LiDAR point cloud more accurately
than studies that used raster LIDAR end products (Gill et al., 2000; Popescu and Wynne, 2004).
Due to the acknowledged issues with the rasterized LiDAR end products, the point cloud data
representation is favored in the literature. For instance, there are 4547 raster based studies in the
LiDAR literature found on Scopus by searching ( "lidar" AND ( "digital elevation model" OR
"digital surface model" OR "digital terrain model" OR "canopy height model" ) ) in comparison
to the 7231 vector-based articles found by searching ( "lidar" AND "point cloud" ANDNOT
"digital elevation model" ANDNOT "digital surface model" ANDNOT "digital terrain model"
ANDNOT "raster" ANDNOT "canopy height model" ). Overall, the LiDAR literature presents a
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compelling case to avoid rasterization of vector-based point cloud data due to the errors

introduced during spatial resampling that impede data applications.

Although the negative impacts of rasterization are broadly acknowledged in the
spectrographic imaging community, there is very limited literature considering the use of vector
end products as a solution to rasterization errors. Acknowledging the problems associated with
rasterization, Krist6f and Pataki (2009) proposed a vector-based data product for MODIS
multispectral data that used swath reflectance (MODO02) and geolocation (MODO03) products to
calculate the footprint of each observation and to represent and process them as rectangular
polygons. Importantly, this work avoided the rasterization process altogether and showed a
precedent for improved data applications using vector end products. Kristof (2015) expanded on
this work, showcasing its practical importance for time series applications. A survey of the
remote sensing literature shows that the developed data format has not been implemented past
these studies. Although Duveiller et al. (2011) and Gomez-Chova et al. (2011) acknowledged the

potential of the vector data representation, the approach was not widely adopted

2.6. Concluding Remarks

Over the last four decades, HSI technologies and data processing approaches (e.g.,
radiometric correction, atmospheric compensation, geometric correction) have advanced
significantly (Jia et al., 2020). In these efforts, pushbroom sensors have become extremely
prominent, making it possible to produce fine spatial and spectral resolution HSI data end
products that cover large geographic extents with high signal-to-noise ratios. Data acquisitions
must be carefully planned based on the limitations of the sensor and the desired characteristics of
the resultant imagery. In mission planning, atmospheric conditions are of utmost concern as they
substantially impact the uniformity and signal-to-noise ratio of the collected data. When
processing hyperspectral data, the radiometric and spectral properties of the sensor need to be
addressed so that the data can be related to real physical units such as wavelength and radiance.
Although data processing can compensate for many undesirable characteristics of hyperspectral
sensors (e.g., variation in the radiometric calibration, spectral smile, spatial keystone), it does not
completely remove their presence from the imagery. As such, error detection methodologies
(e.g., (Berk et al., 1999; Dadon et al., 2010; Guanter et al., 2006; Han et al., 2002) may be

beneficial, especially when comparing spectra derived from different spatial pixels across the
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field of view. Atmospheric compensation is fundamental to converting environmentally
dependent radiance into reflectance. Before HSI data can be spatially analyzed, each
hyperspectral pixel must be located via the geometric correction. After the geometric correction,
HSI data is fundamentally representative of a point cloud data product as each spectrum is non-
uniformly distributed in space. To account for this non-uniformity, rasterization is typically

performed, generating a georeferenced raster end product.

Raster datasets have been the standard since HSI technologies were first developed as many
of the earlier aerial and satellite-based spectral imaging systems digitally sampled all collected
data, producing images with a raster structure based on pixels (Goetz, 2009; Vane et al., 1984;
Wilkinson, 1996). When applying georeferenced raster data products, end users implicitly
assume all image pixels are: 1) directly comparable, 2) square and 3) uniformly distributed
across the image scene. These assumptions do not hold for real HSI data. Although there are
reports that acknowledge the negative impacts of such assumptions, the raster data model is still
standard in HSI remote sensing. Thus, it is critical to investigate these assumptions and their
implications for data applications. It is also fundamental to reconsider the use of raster end

products in favour of vector alternatives that do not make such implicit assumptions.

As defined in chapter 1, this thesis aims to investigate how raster end products misrepresent
HSI data, presenting an alternative data representation that pushes the boundaries of HSI data
analytics and application. Each of the three defined objectives relates to implicit assumptions that
end users make when using raster HSI datasets. The first analytical chapter develops an error
localization methodology that can be used to identify errors in HSI data and assess the
comparability of pixels across the sensor field of view. The second analytical chapter
investigates the consequences of assuming that pixels are square, exploring the significance of
PSFs and their link to spatial and spectral variability in HSI data. This work is supported by
Appendix 7.1, which showcases the importance of considering PSFs in flight planning, data
fusion and data cross-validation. The final analytical chapter investigates the consequences of
assuming that pixels are uniformly distributed in space, developing an alternative point cloud
HSI data representation to overcome the limitations of the raster data model. This work is

supported by Appendix 7.2, which provides the tools to generate the point cloud data model.
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Table 2.1. Key words used in this literature review in addition to (“‘Remote™* sens*” OR

“hyperspectral” OR “multispectral”)

Key Words

atmospheric correction
atmospheric compensation
calibration
cross-validation

data acquisition

data models
deconvolution

direct georeferencing
error detection

flight planning

geometric correction
gridding

modular transfer function
point cloud

point spread function
pushbroom
radiometric correction
rasterization
snapshot

spatial keystone
spectral response
spectral scanning
spectral smile
validation
whiskbroom

spectral response
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Connecting Statement (Chapter 2 to Chapter 3)

The second chapter provided the background literature required to complete the objectives of
this thesis. Chapter 3 addressed objective 1, developing novel algorithms to localize errors in
hyperspectral imaging data. The chapter uses the correlation coefficient as a similarity metric
when identifying errors. The correlation coefficient is an ideal metric as it is widely utilized and
understood in most scientific fields, making the developed algorithms more approachable for end
users. Overall, the developed error localization algorithm was able to determine the effectiveness
of various processing methodologies and the consistency of the spectral information collected
across the sensor field of view. The chapter highlights imperfections in HSI data, showcasing the

importance of analyzing data in its raw sensor geometry.

69



3. The Correlation Coefficient as a Simple Tool for
the Localization of Errors in Spectroscopic
Imaging Data

Deep Inamdar 2, George Leblanc 2", Raymond J. Soffer ! and Margaret Kalacska ?

! Flight Research Laboratory, National Research Council of Canada, Ottawa, ON K1A OR6, Canada;
deep.inamdar@mail.mcgill.ca (D.1.); Raymond.Soffer@nrc-cnrc.gc.ca (R.J.S.)

2 Applied Remote Sensing Laboratory, Department of Geography, McGill University, Montréal, QC
H3A 0B9, Canada; margaret.kalacska@mecgill.ca

* Correspondence: George.Leblanc@nrc-cnrc.gc.ca; Tel.: +1-613-998-3525; Fax: +1-613-952-1704

This chapter is published in Remote Sensing, 10, 231 under the terms and conditions of the

Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Minor modifications have been made with respect to formating style.

DOI: https://doi.org/10.3390/rs10020231

Abstract

The correlation coefficient (CC) was substantiated as a simple, yet robust statistical tool in
the quality assessment of hyperspectral imaging (HSI) data. The sensitivity of the metric was
also characterized with respect to artificially-induced errors. The CC was found to be sensitive to
spectral shifts and single feature modifications in hyperspectral ground data despite the high,
artificially-induced, signal-to-noise ratio (SNR) of 100:1. The study evaluated eight airborne
hyperspectral images that varied in acquisition spectrometer, acquisition date and processing
methodology. For each image, we identified a uniform ground target region of interest (ROI) that
was comprised of a single asphalt road pixel from each column within the sensor field-of-view
(FOV). A CC was calculated between the spectra from each of the pixels in the ROI and the data

from the center pixel. Potential errors were located by reductions in the CCs below a designated
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threshold, which was derived from the results of the sensitivity tests. The spectral range
associated with each error was established using a windowing technique where the CCs were
recalculated after removing the spectral data within various windows. Errors were isolated in the
spectral window that removed the previously-identified reductions in the CCs. Finer errors were
detected by calculating the CCs across the ROI in the spectral range surrounding various
atmospheric absorption features. Despite only observing deviations in the CCs from the 3rd—6th
decimal places, non-trivial errors were detected in the imagery. An error was detected within a
single band of the shortwave infrared imagery. Errors were also observed throughout the visible-
near-infrared imagery, especially in the blue end. With this methodology, it was possible to
immediately gauge the spectral consistency of the HSI data across the FOV. Consequently, the
effectiveness of various processing methodologies and the spectral consistency of the imaging
spectrometers themselves could be studied. Overall, the research highlights the utility of the CC
as a simple, low monetary cost, analytical tool for the localization of errors in spectroscopic

imaging data.

Keywords: imaging spectroscopy, hyperspectral, correlation coefficient, error detection, data

quality assessment

3.1. Introduction
In imaging spectroscopy, contiguous narrow-band spectrographic information is collected for

each spatial pixel in an imaging system. The technology is presently synonymous with
hyperspectral imaging (HSI) and is commonly implemented within the discipline of remote
sensing to characterize the physical and chemical properties of observed materials. This is
performed via spectroscopic and spatial analysis methodologies (Green et al., 1998). Imaging
spectroscopy technologies have shown their utility in numerous remote sensing applications in
geology (Cloutis, 1996; Murphy et al., 2012; van der Meer et al., 2012), defense (Xu and Wang,
2007; Yuen and Richardson, 2010), agriculture (Dale et al., 2013; Migdall et al., 2012; Yao et
al., 2011), forestry (Koch, 2010; Peng et al., 2003; Smith et al., 2003), oceanography (Chang et
al., 2004; Kruse et al., 1997; Ryan et al., 2014), forensics (Kalacska and Bell, 2006; Kalacska et
al., 2009; Leblanc et al., 2014) and ecology (Chambers et al., 2007; Ryan et al., 2014; Turner et
al., 2003), among others. In theory, spectrographic imaging data are spectrally and spatially

piece-wise smooth; neighboring locations and wavelengths are well-correlated due to the high
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spatial-spectral resolution allowed by the narrow band criterion (Bioucas-Dias et al., 2013;

Camps-Valls et al., 2011).

With such an abundance of information, the processing and analysis of HSI data are not
trivial. Relevant spectral signatures are often difficult to identify, especially given the presence
of signal noise, which further impedes information extraction (Plaza et al., 2011). Spatial and
spectral correlations can be exploited to aid in the analysis of imaging spectroscopy data with a
correlation metric. The Pearson product-moment correlation coefficient (CC) is one of the
simplest statistical tools that has been widely implemented to measure levels of correlation (Lee

Rodgers and Nicewander, 1988).

The CC is a measure of linear association between two variables. It is formally given (Lee

Rodgers and Nicewander, 1988) by Equation (1):

__3G-Hu-7)
IG-27T0 -7

(1)

where x, y, X, y represent the two variables of interest and their means, respectively. In
mathematical terms, the CC represents the sum of the centered and normalized cross-product of x
and y (Lee Rodgers and Nicewander, 1988). Each variable is centered by removing its mean. The
denominator normalizes the numerator by the variance of the studied variables. Using the
Cauchy—Swartz inequality, it can be shown (Lee Rodgers and Nicewander, 1988) that the
numerator is always less than or equal to the denominator. Therefore, the value of the CC is
bounded between —1 and 1. The boundary values represent a perfect linear correlation between x
and y. A value of zero corresponds to no linear correlation between the variables. Values greater
than zero indicate a positive correlation between the variables of interest; the opposite is true for
values less than zero. The CC is a useful descriptive measure of correlation since its value does
not depend on the scales of measurement for the studied variables (Lee Rodgers and
Nicewander, 1988). It is important to note that the calculation of the CC is not limited by any
statistical assumptions; however, its value as an input to other statistical metrics may need to

conform to certain restraints (e.g., normally-distributed data).

To date, the CC has been widely implemented to investigate spectrographic imaging

data (Clarisse et al., 2010; Du and Yang, 2008; ElMasry et al., 2007; Huang and He, 2005;
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Koponen et al., 2002; Lu and Peng, 2006; Peng et al., 2003; Qiao et al., 2007; Richter et al.,
2011; Tanabe and Saeki, 1975; Thiemann and Kaufmann, 2002; Toivanen et al., 2005). In these
efforts, the literature has concentrated on applying the statistical tool to establish bands that
linearly associate with quantifiable physical and chemical properties. Exploiting the linear
relation, this method of band selection has been used to create and improve predictive models
that associate hyperspectral data with useful parameters (Clarisse et al., 2010; Du and Yang,
2008; ElMasry et al., 2007; Huang and He, 2005; Koponen et al. 2002; Lu and Peng 2006; Peng
et al. 2003; Qiao et al. 2007; Thiemann and Kaufmann 2002). For example, Peng et al. (2003)
applied the CC to establish bands that strongly correlate with forest leaf area index, improving
predictive models at the landscape level. To a lesser extent, the CC has been applied for the
purposes of data reduction and correction (Du and Fowler, 2007; Huang and He, 2005; Richter et
al., 2011; Toivanen et al., 2005). In 2011, Richter et al. (2011) outlined a corrective method for
HSI data that relied, in part, on the CC. The correction accounted for the effects of the spectral
smile, a spectral non-uniformity in the across track direction that is caused by the optical design
of the spectrometer and results in per pixel changes in wavelength registration across the field-
of-view (FOV) (Richter et al., 2011). In the study, the CC was used to measure uniformity levels
across the FOV, indirectly assessing the effects of the spectral smile defect. A corrective solution
was selected by maximizing this metric. From this application, the CC was shown to be a useful
tool in the assessment of HSI data. Following this example, the CC can be used for the detection
and quantification of other errors. This was exemplified by Tanabe and Saeki (Tanabe and Saeki,
1975), who rigorously quantified the sensitivity of the CC to spectral shifts in infrared spectra.
Such research was fundamental to the application of the CC for error detection in infrared
spectroscopy. Unfortunately, the findings were somewhat limited in their application to
hyperspectral remote sensing as the study was conducted in an ideal environment with a
laboratory-grade spectrometer. Earth observation (EO) remotely-sensed measurements are most
often collected with airborne spectrometers under less than the ideal conditions. Before the CC
can be confidently applied to hyperspectral EO data, the sensitivity of the tool needs to be

characterized with respect to various potential errors and noise levels.

The purpose of this study was to use the CC to develop an easy to implement methodology to
detect issues with HSI data. The methodology was intended explicitly for the detection of errors,

not for the identification of their origin. Although other error detection methodologies exist
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(e.g., Dadon et al., 2010; Guanter et al., 2006; Han et al., 2002; Tan and Acharya, 1999), they
can be expensive to implement and rely on a higher level of mathematical understanding. To
develop a novel method, the CC was first characterized with respect to artificially-induced errors
in ground data. Afterwards, this information was applied to locate the spatial location and
spectral bands associated with errors in real HSI data. The overall objective of this study was to
substantiate the CC metric as a low monetary cost, robust and simple statistical tool in the quality

assessment of EO HSI data through the detection of errors.

3.2. Materials and Methods
3.2.1. In-Situ Ground Hyperspectral Data

In-situ hyperspectral radiance measurements were collected on 23 June 2016, from 16:54:19—
17:00:36 GMT with a Spectra Vista Corporation (Poughkeepsie, NY, USA) HR-10241 ground
spectrometer at the Flight Research Laboratory of the National Research Council of Canada
(NRC) under stable illumination conditions (Figure 3.1). The HR-1024i is a solid-state device
that collects radiance data in a circular FOV. The device collects spectral data over 1024 spectral
bands, which are non-uniformly distributed between 350 and 2500 nm using three independent
detectors: a single 512-chanel silicon photodiode array and two 256-channel indium gallium
arsenide arrays. The three detectors are characterized by nominal spectral resolutions of <3.5 nm
(340 nm—1014 nm), <9.5 nm (971 nm-1911 nm) and <6.5 nm (1897 nm—2523 nm), respectively.
In this study, spectral measurements were acquired with a 4° FOV fore-optics from a height of 1
m at 10 different locations on an asphalt target. Each measurement covered a single 38.3 cm?
segment of asphalt that was contained within the area imaged by the airborne HSI systems
(ITRES Research Limited, Calgary, AB, CA) described in Section 3.2.2. The in-situ datasets

were used to provide ground truth measurements for the characterization of the CC.
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Figure 3.1. A) Experimental setup for acquiring in-situ ground hyperspectral measurements of
an asphalt target using the HR-1024i spectrometer. B) The hemispherical sky photo was
acquired simultaneously with the ground spectrometer measurements as a means of estimating
the potential influence of cloud and visible aerosol (haze) during the time of data acquisition. All
data were collected under stable conditions.

A wavelength (1)-dependent, interpolated and normalized mean in-situ radiance spectrum for
asphalt, R(4), was derived from the collected ground measurements for use in Section 3.2.3. In
particular, ten asphalt radiance spectra were averaged, normalized by the maximum and then
resampled at 0.1 nm intervals using the Akima interpolation method (Akima, 1969) to produce
the “true” spectral signature of asphalt to be used in the characterization phase of the CC tool.
The Akima interpolation method was selected due to its robust ability to provide a smooth
interpolation that closely matched the original input signal (Akima, 1969). The spectrum was
interpolated to place R(A) on a uniform wavelength array and increase the density of spectral

information while preserving the overall shape and content of the original signal.

3.2.2. Airborne Hyperspectral Image Acquisition and Processing
Airborne HSI data were acquired on 23 June 2016 at 14:53:13 GMT and 24 June 2016 at

13:24:16 GMT over the Macdonald—Cartier International Airport (containing the Flight Research
Laboratory calibration site) in Ottawa, Ontario, Canada (Figure 3.2). Asphalt is an ideal target
for real airborne acquisition as it is effectively ubiquitous in urban settings and can be found on
the roadway systems surrounding the studied area. Furthermore, the surface reflectance of the
material has a low amplitude (nearly flat), smoothly varying spectral response and is thus useful

for in-field pseudo-calibration and validation (Puttonen et al., 2009).
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Figure 3.2. Study site at the Macdonald—Cartier International Airport in Ottawa, Ontario,
Canada. The flight line followed a 306.5° True North path as shown by the blue arrow. Ground
calibration measurements were taken on the asphalt surface located by the red X.

Airborne imaging spectrometry data were acquired aboard the NRC’s Twin Otter fixed-wing
aircraft with two complimentary HSI systems. The imagers each recorded an adjacent and
partially-overlapping portion of the reflective electromagnetic spectrum between 366 nm and
2530 nm. Both imagers were manufactured by ITRES Research Limited. The first sensor system,
the Compact Airborne Spectrographic Imager 1500 (CASI), acquired 288 bands (wavelength
samples) within the 366—1053 nm range. The CASI is a variable frame rate, grating-based,
pushbroom imager with a 39.7° FOV across 1500 spatial pixels. The device has a 0.49-mrad
instantaneous FOV with a variable f-number aperture, configurable between 3.5 and 18.0. The
second imaging system was the Shortwave Airborne Spectrographic Imager (SASI). The SASI is
a prism-based pushbroom imager that acquires data from 160 spectral bands within the 885—

2530 nm range with 640 spatial pixels across a 39.8° FOV. The device has an instantaneous
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FOV of 1.14 mrad and an aperture with a constant f-number of 1.8. Imagery is acquired at a
fixed frame rate of 60 hertz with a programmable integration time of <16.6 ms. On both data
acquisition days, imagery was obtained from a nominal height of 1115 m AGL with an

approximate heading of 306.5° True North (Figure 3.2).

Prior to CC analysis, the HSI data underwent three pre-processing steps. The first step was a
correction in the calibration to take into consideration the effects of small, but measurable
pressure and temperature-induced shifts in the spatial-spectral sensor alignment. The second step
was a spectroradiometric calibration that, following removal of estimated signal offset
contributions (electronic offset, dark current, frame shift smear (CASI only), internal scattered
light (CASI only) and 2nd order (CASI only)), converted the resulting radiance-induced digital

pixel signal into units of spectral radiance (uUW-cm 2-sr !

-nm ). The final step was implemented
to remove the laboratory-measured spectral smile by resampling the data from each spatial pixel
to a uniform wavelength array. Although most of the spectral smile effects are removed by this
pre-processing, extremely small residual effects may remain. Geocorrection of the data was not

performed in order to preserve the original spectral response per pixel.

The described pre-processing methodologies utilized NIST traceable calibration data
provided by the sensor manufacturer. Using the initial calibration data, various artefacts were
identified in the resulting calibrated imagery. Independent of this study, the processing
methodology was updated to refine the steps described above, resulting in new calibration
programs and calibration data files. This refined processing removed many of the identified
artefacts in the data. The CC analysis was performed on the raw imagery after being processed
with both the initial and refined calibration files and methodologies. Overall, the study examined
8 datasets: the four raw hyperspectral images collected by the CASI and SASI over the two

acquisition dates processed with both the original and refined processing methodologies.

3.2.3. Characterization of the Correlation Coefficient with Averaged and

Interpolated in-Situ Radiance Hyperspectral Data
Before the CC was applied to the airborne imagery, the sensitivity of the statistical tool

needed to be characterized with respect to the natural variances within asphalt spectra. This was
accomplished by calculating the CC between each of 10 raw in-situ hyperspectral radiance

measurements and their averaged spectral response.
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The sensitivity of the CC to common signal issues in HSI data was also characterized by
artificially inducing errors in R(A), the spectral response derived in Section 3.2.1. Five artificial
errors were introduced independently by modifying R (4) in accordance with Table 3.1 to
generate a variety of transformed signals, R;(A1). The following modifications were applied:
introduction of additive white Gaussian noise (AWGN), additive transformation, multiplicative
transformation, introduction of spectral shift and multiplicative transformation of a single
feature. The transformation models in Table 3.1 were developed to mediate the desired
modifications. Parameters were carefully selected to mimic realistic potential errors. The AWGN
modification was applied to generate a transformed spectral response with a specified signal-to-
noise ratio, SNR. SNR designates the ratio between the energy of the original signal and the
generated noise. For example, to obtain an SNR of 100:1, 4.31% AWGN was added to the
signal. 8, y and 4 represent the additive factor, multiplicative factor and spectral shift (in nm),
respectively, used to carry out each modification. Although there was no reason for the additive
and multiplicative modifications to influence the CC, these tests were included to help provide a
clear understanding of the approach. The multiplicative transformation of a single spectral
feature was mediated through a normal distribution scaled by a and vertically shifted with a
minimum value of 1. ¢ and u corresponded to the standard deviation and mean values,
respectively, of the distribution. A normal distribution was used for the multiplicative factor to
ensure the feature remained continuous along the edges of the spectral feature. u was selected to
capture the atmospheric absorption feature centered at 935 nm. The ¢ of 12 nm was chosen to
ensure that the shoulders of the feature between 899 nm and 971 nm were within 30 of u. a was

varied from 1-50 to control the degree to which the absorption feature was modified.
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Table 3.1. The five modifications applied to R(1) to generate the transformed signal, R;(1).

Modification

Transformation Model

Data Parameters

Introduction of
Additive White
Gaussian Noise

Additive

Transformation Re() =R +
Multiplicative 3
Transformation Re(1) = YR

Introduction of
Spectral Shift

‘Multiplicative

T : ; -(a-p)? o2
ranstormation e o
of a Single Re@) =|a——7=—
feature

R.(1) = R(A) + AWGN

B

R;(A) = R(A—4)

_ ZIRWI?
SNR= Y |AWGN |2’

{SNR|SNReZ,1 <n < 1000}

n
=— <n<
p 100,{n|n6Z,0_n_100}
_n
Y= 100

{n|neZ,50 < n < 150}

n
Azﬁ,{nInEZ,O <n <100}

o=12,u =935,

+1|R)

{a|aeZ,1 < a < 50}

The tested ranges of values for SNR, S, y and 4 were selected to introduce nominal to

substantial errors. The CC was calculated between R(A) and each of the transformed datasets,

R:(4), in accordance with Figure 3.3.

Introduce Error

Y

/W}

Calculate
Correlation
Coefficient

Qutput
Correlation
Coefficient

>

Figure 3.3. Schematic view of the basic algorithm for the characterization of the CC.
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To test the persistence of the acquired trends with the presence of signal noise, the CC
calculations for the last four modifications were repeated with AWGN. In particular, 4.31%
AWGN was introduced to R(A) to acquire a new radiance signal, R4y (4), with an SNR of
100:1, a reasonable value for airborne HSI data. A new transformed signal, R; 4yen(4), Was
acquired by applying transformation models from the last four rows of Table 3.1 to R(A) after
introducing AWGN to generate a signal with an SNR of 100:1. The CC was calculated between

Rawen (A) and each R; 476y (4) in accordance with Figure 3.4.

As a final test of consistency, the standard deviation of the CC was assessed in the presence
of noise. In particular, the AWGN transformation in Table 3.1 was applied to R(4) 1000 times.
A CC was calculated between R(A) and each of its transformations. The standard deviation of

the CCs from each distinct SNR was calculated.

GOy,

Introduce Additive
White Gaussian
Noise

Introduce Additive
White Gaussian
Noise

(SNR = 100:1)

|

(SNR = 100:1)

|

Introduce Error

Calculate QOutput
Rt awan(A) Correlation |————> / Correlation END
Coefficient Coefficient

Figure 3.4. Schematic view of the basic algorithm for the characterization of the CC in the
presence of signal noise.

3.2.4. Application of the Correlation Coefficient to Airborne Hyperspectral

Imagery (Error Detection)
Before applying the CC, a region of interest (ROI) (blue line in Figure 3.5) was identified

across the FOV, along the taxiway located directly south of the calibration site. The ROI was

comprised of a single asphalt road pixel from each column within the sensor FOV. Every attempt
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was made to acquire spectra from asphalt pixels that were uncontaminated by non-asphalt
substances such as paint, vegetation and other non-asphalt hydrocarbons. “Wobbles” in the
imagery in Figure 3.5 are caused by the movement of the aircraft and can be readily accounted
for through various geocorrective methodologies. In this work, it was fundamental to preserve

the original sensor geometry in the analysis, so no geocorrection process was applied.

Legend

m— Region of Interest

¥ calibration site
RGB
B Reo: 756.61 nm
- Green: 689.68 nm
B 555097 nm

Figure 3.5. Non-geocorrected CASI imagery of the data acquisition site. The blue line indicates
the ROI selected for the analysis. The ROI contained a single pixel from each column across the
asphalt road. Ground calibration measurements were taken on the asphalt surface located by the
red X, in accordance with Figure 3.2.

The spectrum from the center asphalt pixel in the ROI was designated as the reference for the
application of the CC since it was the center of the instruments” FOV. The center pixel was
evaluated to ensure that it was a reasonable reference that contained no obvious errors. A CC
was calculated between the spectrum from each pixel in the ROI and the designated central pixel

reference in accordance with Figure 3.6.
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Figure 3.6. Schematic view of the basic algorithm for the application of the CC in the spatial
localization of errors in HSI data.

Theoretically, the CCs should be exactly 1 across the FOV. Although this is not the case in
real data, the CC between well-behaved target spectra will vary around a mean value that is still
quite close to 1. The spatial pixels associated with substantial reductions in the CCs were
recorded as potential locations for errors in the HSI data. Substantial reductions were
characterized by CCs that fell below a designated threshold that was derived from the sensitivity

testing.

To calculate the threshold, a stable spatial region was manually identified by consistent CCs
that varied around a constant mean. Using the mean CC of this region, the SNR of a stable
spectrum was approximated using the noise sensitivity data derived in Section 3.2.3. With the
approximate SNR, the data from the final test in Section 3.2.3 were used to estimate the expected
standard deviation of the CCs derived from stable spectra. Using the estimated standard
deviation and the mean value of the CCs in the stable region, potential errors were detected by
reductions more than 30 below the mean. A 30 threshold was selected to ensure that at least
99.7% of the stable data were not flagged as a potential error. Consequently, CCs below the

threshold were likely associated with errors in the HSI data.

To spectrally isolate the potential errors in the recorded spatial locations, the CCs across the
ROI were recalculated after removing the data in pre-defined spectral windows. The schematic in
Figure 3.7 was carried out for various spectral windows. The spectral windows were designed to
vary in size and spectral location. The window sizes were selected to ensure that windows
contained anywhere from 1 to half of the total spectral bands. For any given size, the window

was spectrally located beginning at the lower boundary of the spectral range. Each window was
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shifted by 5 nm until its edge surpassed the upper boundary of the dataset. For each window size
and location, the average CC was calculated across the spatial regions associated with the
detected potential errors. By maximizing the average CC over these regions, it was possible to

identify the spectral window that was associated with a majority of the studied potential error.

To verify the spectral window and specify the nature of the potential errors, the imagery was
visualized for a single band within the identified spectral ranges. In this visualization, image
intensities were histogram equalized to enhance contrast by making the histogram of the
resulting image equalized to a constant value. To verify that the reductions in the CCs were
associated with these errors, the CCs were calculated across the FOV with respect to the center

pixel after the removal of the identified spectral region.

Radiance
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Radiance Remove Spectral
Spectra from Data within
each pixel in designated

the ROI window

Heg:}f: \ﬁfh?ﬁ"a' (gna:lr(:ll;ifn S ﬁzfgzgesvs:i:ﬁs Output END
designated Coefficient for oated ‘.’Dixelsy Average
window each pixel in ROI

Figure 3.7. Schematic view of the basic algorithm for the application of the CC in the spectral
localization of errors in HSI data.

Atmospheric absorption features were used to locate finer errors in the imagery that might
not be easily visible in the CCs when calculated with the entire spectrum. These features were
manually identified in the spectrum of the center asphalt pixel using the theoretical locations in

Table 3.2 for guidance.
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Table 3.2. The approximate spectral location of known atmospheric absorption features (Pallé et
al., 2009). It is important to note that the wavelength ranges for some atmospheric absorption
features may vary in response to external factors. For instance, the range of the water

absorption features is highly dependent on water vapor and aerosol optical thickness (King et
al., 1992).

Source Start Wavelength (nm) End Wavelength (nm)

02 686 695
HO 713 734
Oz 757 770
HO 806 840
HO 888 997
HO 1087 1176
02 1223 1285
H>O 1300 1521
CO2 1591 1620
HO 1759 1982
COz 1991 2038
COz 2037 2079
CH4 2139 2400

Atmospheric absorption features are distinctive and constant under stable conditions
(Bogumil et al., 2003). As such, the CC was thought to be able to detect inconsistencies in these
regions since error-induced changes located within these features are more easily identifiable. As
depicted in Figure 3.8, a CC was calculated between the spectrum from each pixel in the ROI
and the designated central reference pixel using only the hyperspectral data that corresponded to

each of the approximate wavelength regions identified in Table 3.2.
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Figure 3.8. Schematic view of the basic algorithm for the application of the CC in the
localization of finer errors in HSI data.

For each spectral range, the imagery was visualized for a single band within the specified
window to study the nature of any detected errors. Once again, image intensities were histogram
equalized to enhance contrast and clearly display potential errors. The methodologies presented

in this section were repeated for each of the 8 processed images described in Section 3.2.2.

3.3. Results
3.3.1. In-Situ Ground Hyperspectral Data

The data points in the normalized and averaged in-situ radiance signature were preserved

after the Akima interpolation process was applied to generate R(1) (Figure 3.9).
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Figure 3.9. Averaged and normalized ground spectrum of asphalt before and after interpolation.
The differences between the two curves can be seen in the subplot, which zooms in on the 1185—
1255 nm spectral window. The interpolated curve, R(1), was used for the methodologies
described in Section 3.2.3. The mean squared error between overlapping data points before and
after interpolation was negligible (<107°). The Akima interpolation method generated a
qualitatively smooth R(A).

3.3.2. Characterization of the Correlation Coefficient with Averaged and
Interpolated in-Situ Radiance Hyperspectral Data

The CC between the mean in-situ asphalt radiance and any given individual sample used to
comprise the mean signal was very close to one, ranging from 0.99987-0.99998, with a standard

deviation of 0.000023.

The CCs between R(A) and each of the transformed datasets outlined in Table 3.1 are

recorded in Figure 3.10.
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Figure 3.10. The CC between R(A) and each of the transformed datasets, R;(1). A) The CC
asymptotically reduced from one when the SNR decreased through the introduction of AWGN.
B) The CC was invariant to additive transformations. C) Multiplicative transformations had no
impact on the CC. D) The introduction of a spectral shift resulted in a small but clear decrease
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in the CC. E) The multiplicative transformation of a single feature was detected in the CC by a
gradual reduction.

The CC decreased with the addition of AWGN (Figure 3.10A). At SNR values below 9:1,
the CC was under 0.9. As the SNR increased, the CC raised in an asymptotic fashion. After
reaching an SNR of 1000:1, the CC equilibrated at approximately one. The CC remained
constant at one for all linear transformations (Figure 3.10B,C). As the spectral shift increased
from 0—10 nm, the CC decayed from a value of 1-0.991 (Figure 3.10D). A similar result was
found after the atmospheric absorption feature at 935 nm was modified. In this case, the CC

reduced from one to a value of 0.9970 as the scaling factor increased (Figure 3.10E).

As can be seen in Figure 3.11, the general trends outlined in Figure 3.10B,E persisted even

after the application of AWGN at an SNR of 100:1.
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Figure 3.11. The CC between Ry ¢y (4) and each of the transformed datasets, R 4oy (4). All
signals were characterized by an SNR value of 100:1. The trends from Figure 3.10 persisted,
despite being masked by the noise to some degree. A) The CC was invariant to the additive
transformation. B) Multiplicative transformations had no impact on the CC. C) The introduction
of a spectral shift resulted in a small, but clear decrease in the CC. D) The multiplicative
transformation of a single feature was detected in the CC by a gradual reduction.

The CC remained invariant to linear transformations (Figure 3.11A,B). However, the
average value of the CC reduced to approximately 0.98. Although the detailed relationships in
Figure 3.11C,D were masked by the variation induced by the introduced noise, the first-order
trends are clearly present and identifiable. The CC reduced from 0.980—-0.968 after a 10 nm
spectral shift in Figure 3.11C. As the scaling factor increased from 0-50, the CC decreased from
0.9815-0.975. At an SNR of 100:1, the average standard deviation in the CC for each

modification was approximately 0.001. As seen in Figure 3.12, this value matched the results

89



derived from the final CC test, which calculated the standard deviation in the calculated CC at

various noise levels.

0.025
0.020
0.015
0.010
0.005 L
0.000 + * =
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Signal to Noise Ratio

Standard Deviation

Figure 3.12. The standard deviation of the CCs at various noise levels. There was an asymptotic
increase in the standard deviation of the CCs when the SNR decreased through the introduction
of AWGN.

At a SNR of 100, the standard deviation is approximately 0.001. The standard deviation in

the CC asymptotically increased from zero to approximately 0.22 when the SNR decreased
through the introduction of AWGN.

3.3.3. Application of the Correlation Coefficient to Airborne Hyperspectral
Imagery (Error Detection)
For each hyperspectral image, the calculated CCs recorded in Figure 3.13 adhered very

closely to one across the FOV when calculated with respect to the spectrum from the center
pixel. The CCs for the CASI imagery were consistently lower than that of the SASI by an
average value of 0.0021 (Figure 3.13). In addition, the average standard deviation in the CCs of
the CASI data was over 18-times larger than that of the SASI.

For the CASI imagery, the CCs systematically reduced in value by more than one standard
deviation near the edges of the FOV. This reduction was largest for the CASI data derived from
the original processing methodology. When compared to the imagery collected on the 23rd, the
CASI data from the 24th were characterized by more substantial reductions in the CCs near the
edges of the FOV, especially along the left side. The CCs for the SASI imagery were almost
identical, regardless of the processing methodology or the acquisition date. The CCs for the
SASI imagery were consistently lower than the mean across the FOV from Pixels 548—564. As

seen in Figure 3.13B,D, this reduction appeared to be parabolic in nature, reaching a minimum
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value of approximately 0.995 and 0.997 in the SASI imagery from the 23rd and 24th,

respectively.

The spatial locations associated with distinct reductions in the CCs were identified using the
threshold defined in Section 3.2.4. These locations were used to spectrally isolate the potential
errors to the windows identified in Table 3.3 using the windowed-based methodology described

in Section 3.2.4.
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Figure 3.13. The CCs calculated across the field-of-view with respect to the entire spectrum
from the center pixel. A) The CC of the CASI imagery (23 June 2016); B) SASI imagery (23 June
2016); C) CASI imagery (24 June 2016); D) SASI imagery (24 June 2016). A,C) The CASI
imagery was characterized by systematic reductions near the edges of the FOV. These revealed
potential errors consistent with the spectral smile effect and other cross-track illumination
effects. This reduction was most substantial for the CASI images generated by the old processing
methodology. Compared to the imagery from the 24th, the CCs were more uniform across the
FOV for the CASI data from the 23rd. B,D) The SASI imagery was consistent across all dates
and processing methodologies. There was a notable reduction in the CCs across the FOV from
Pixels 548—564. This revealed the spatial location of an error.

92



Table 3.3. Spatial and spectral localization of large imaging errors. Spatial errors were detected
from the data in Figure 3.13 using the defined threshold. Potential errors were spectrally
located through the window-based methodology described in Section 3.2.4. Errors were detected
along the edges of the CASI imagery in the blue end of the spectra. A single band error was

detected in the SASI imagery from 993—1008 across Pixels 548—564.

Spectrally-Isolated

Imager Date Processing Problematic Pixels Range (nm)
CASI 23 June 2016 Original 1-70 and 1285-1498 366453
CASI 23 June 2016 Refined 1403-1498 396-483
CASI 24 June 2016 Original 1-149 and 1258-1498 366453
CASI 24 June 2016 Refined 1-141 and 1252-1498 396483
SASI 23 June 2016 Original 548-564 993-1008
SASI 23 June 2016 Refined 548-564 993-1008
SASI 24 June 2016 Original 548-564 993-1008
SASI 24 June 2016 Refined 548-564 993-1008

Errors in the imagery were clearly detected though the visualization of the spectral windows

in Table 3.3. An example of the error in the CASI imagery is displayed in Figure 3.14. In the

imagery, the asphalt road is clearly brightest along the edge pixels.
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Figure 3.14. Histogram-equalized CASI image (24 June with the original processing) at 393.068

nm. The asphalt road along the south side of the image was brightest along the edge pixels. The
errors in the data are highlighted by the red arrows.

This general trend held for all CASI imagery and was less prominent with the refined
processing methodology (Figure 3.15). The asphalt road is still brightest along the edge pixels,

but to a lesser degree than in Figure 3.14.
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Figure 3.15. Histogram-equalized CASI imagery (24 June with the refined processing) at
393.068 nm. The asphalt road along the south side of the image was brightest along the edge
pixels. These errors in the data are highlighted by the red arrows and were less noticeable in the
imagery that was generated from the refined processing.

The error within all SASI imagery was located at the same spatial pixels and spectral range.
The error could be displayed by visualizing the only band in the 993—-1008 spectral range
(Figure 3.16).
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Figure 3.16. Histogram-equalized SASI imagery (24 June with the refined processing) at 1003
nm. An error across Pixels 548—564 is identified by the red arrow.

After removing data in the spectral windows in accordance with Table 3.3, there was a
substantial increase in the values of CCs across the FOV in all images (Figure 3.17), especially
at spatial locations associated with the previously identified imaging errors. Comparing Figure
3.13B,D and Figure 3.17B,D, the large reduction in the SASI imagery from Pixels 548—-564 was
completely removed. Furthermore, the CCs along the FOV of the CASI images remained
relatively constant, even at the edge pixels. Overall, there was more consistency between the

images derived by the different processing methodologies and acquisition dates.
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Figure 3.17. The CCs calculated across the field-of-view with respect to the spectrum
complementary to the windows in Table 3.3. A) CASI imagery (23 June 2016); B) SASI imagery
(23 June 2016); C) CASI imagery (24 June 2016); D) SASI imagery (24 June 2016). A,C) The
CCs of the CASI imagery increased greatly, especially along the edges, indicating that the error
was primarily contained within the spectral regions identified in Table 3.3. The CASI data from
the 23rd were relatively consistent between both processing methodologies. Although this trend
generally held for the data from the 24th, C) showed a notable offset. D,B) The large reduction
in the CCs from the SASI imagery at Pixels 548—564 was not present after removing the
problematic band that was found between 993 and 1008 nm.

Comparing Figure 3.13A,C to Figure 3.17A,C, there was more consistency in the CCs of
the CASI imagery from the 23rd between the original and refined processing. Although this
trend holds for the CASI data from the 24th, there was still a notable average offset of 0.0007

between the two curves. Significance testing yielded p-values less than 10~ for all observed

relationships.
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To further the analysis and spectrally locate smaller residual errors in the CASI data from the
24th, five atmospheric absorption features were identified in the spectral range from 365—-1050

nm (Table 3.4).

Table 3.4. ldentified atmospheric absorption features in the spectral range covered by the CASL

Feature Number Source Start Wavelength (nm) End Wavelength (nm)

1 02 680 712
2 H>O 710 745
3 0)) 750 776
4 H>O 804 846
5 HO 883 992

The CCs across the FOV of the CASI images from the 24th were calculated with respect to
the center pixel over the spectral regions identified in Table 3.4 and are shown in Figure 3.18.
The CCs in the 680—712 nm region were highly variable, ranging from 0.95-1 with a subtle low
frequency sinusoidal structure (Figure 3.18A,B). Visual inspection of the associated imagery in
Figure 3.19 indicated that, throughout much of the FOV, there were discrete pixels and groups
of pixels that appeared to be non-uniform across the entire FOV, noticeably varying in brightness
even amongst neighboring pixels. These pixels lead to “striping” artefacts across the entire FOV
in the image data. These trends were apparent in both CASI images. The low frequency
sinusoidal structure could not be clearly visualized in the imagery. The sinusoidal structure was

not a numerical computational effect.
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Figure 3.18. The CCs calculated across the field-of-view of the CASI imagery with respect to the
spectrum from the center pixel. The wavelength regions used to calculate the CCs are identified
in each graph and correspond to the values in Table 3.4. Plots (A,C,E,G,1I) correspond to the
CASI data that were processed with the original methodology. Plots (B,D,F,H,J) correspond to
the CASI data that were processed with the refined methodology. A,B) The CCs for the 680712
nm region were highly variable with a low frequency sinusoidal structure. C,D) The CCs for the
710—-745 nm region were relatively constant across the FOV. A distinct reduction was detected
in the CC of a single pixel near the right edge for the imagery processed with the original
methodology, but not the refined processing. E,F) There was a reduction of approximately 0.021
in the CC for the 750775 nm region near the edges of the FOV. This effect is likely caused by
the smile effect or other cross-track illumination effects. G,H) For the data from the 804—846 nm
window of the imagery processed with the original methodology, there were characteristic
reductions in the CC greater than 0.05 detected. These reductions revealed potential imaging
errors for the spectral window in the following spatial ranges: 256276, 551-576, 912-936 and
1209-1235. These reductions were not present in the CCs for the image derived with the refined
processing. LJ) In the 883—992 nm region, the CCs were relatively constant across the FOV.
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Figure 3.19. Histogram-equalized CASI imagery (24 June with the original processing) at 706.4
nm. The image is zoomed in to display Columns 57-513 from left to right. There are “striping”

artefacts across the FOV. This ripple is clearly visible near the center of the figure, as indicated
by the red arrow.

Although Figure 3.18C remained relatively consistent across the asphalt road, there was a
sudden reduction near the end of the FOV at Pixels 1454 and 1456. After independently
displaying all bands in the specified spectral window in greyscale, errors were spatially located
in Columns 1454 and 1456; these errors were visualized as a bright and dark vertical stripe,

respectively, across the imagery (Figure 3.20). The vertical stripes were not present in the CASI

imagery with the refined processing or Figure 3.18D.
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Figure 3.20. Histogram-equalized CASI (24 June with original processing) imagery at 744.653
nm. The image is zoomed in to display Columns 1248—1482 from left to right. The red and
orange arrows point to the errors in Pixels 1454 and 1456 in the cross-track, respectively. These
errors were visualized as a bright and dark vertical stripe.

There was a reduction of approximately 0.021 in the CC near the edges of the FOV in
Figure 3.18E,F. The effects associated with these reductions could not be visualized within the
imagery. Figure 3.18G was characterized by sporadic reductions in the CC of greater than 0.05.
These reductions revealed potential imaging errors for the spectral window in the following
spatial ranges: 256276, 551-576, 912-936 and 1209-1235. After independently displaying all
of the bands in the specified spectral window in greyscale, it was possible to detect groups of
non-uniform pixels that noticeably varied in brightness. These groups created distinct “striping”
artifacts that can be seen at several spatially-isolated points across the CASI imagery from the
24th with the original processing (Figure 3.21). This effect was not present in the CASI imagery
with the refined processing or Figure 3.18H.
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Figure 3.21. Histogram-equalized CASI imagery (24 June with original processing) at 835.491.
The red lines show the locations of distinct “striping” artefacts.

The CCs in Figure 3.18L,J remained relatively constant with very little variation. The
associated imagery was visualized in greyscale with one of the bands from the identified spectral

range (Figure 3.22). No large errors could be seen in any of the analyzed CASI imagery within

this spectral range.
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Figure 3.22. Histogram-equalized CASI imagery (24 June with original processing) at 931.099
nm. The imagery is stable, with no obvious errors.

3.4. Discussion

By characterizing the sensitivity of the CC before its application to real airborne HSI data, it
was possible to verify the detective capabilities of the metric in the localization of errors in
hyperspectral data. The findings generally agreed with all basic intuition and theoretical
expectation of the CC. Linear transformations, in agreement with theory, had no impacts on the
value of the CC. By calculating the CC between two similar spectra, the value could be used to
gauge the consistency independent of the effects associated with linear transformations. Because
of this property, the CC was shown to be extremely insensitive to the natural variances between
different asphalt spectra. This was important for the detection of errors in HSI data as it implied
that the differences in the calculated CCs were not primarily due to the variations between
asphalt samples. All modifications, aside from the linear transformations, resulted in a consistent
reduction in the CC. Consequently, the CC could detect spectral shifts and modified spectral
features. Although the CC was sensitive to signal noise, all general trends held irrespective of the
AWGN in hyperspectral data with an SNR of 100:1, which is a reasonably high noise level for
airborne HSI data. This trend was fundamental to the application of the CC as it meant that the

metric was sufficiently resistant to noise for the purposes of error detection; so long as errors are
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not being completely masked by noise, the CC can detect their presence. Implementing this

knowledge, the CC was applied to real airborne HSI data.

Through the application of the CC, the quality of remotely-sensed hyperspectral data could
be assessed through error detection in a quantitative manner. This was evident in the analysis of
the eight hyperspectral images that were studied. By calculating the CCs across the FOV with the
entire spectra, it was possible to immediately gauge the spectral consistency of the HSI data
collected by the CASI and SASI, across the FOV. It is important to note that the method was

explicitly designed for the detection of errors, not for the identification of their origin.

In the CASI imagery, the methodology was able to spatially detect errors along the edges of
Figure 3.13A,C by systematic reductions in the CCs near the boundaries of the FOV. The
spectral locations of these effects were found in the blue end of the spectrum, in accordance with
Table 3.3. Visualization of the imagery in Figure 3.14 and Figure 3.15 revealed an error that is
consistent with the effects of the spectral smile or other cross-track illumination effects (San and
Stizen, 2011). With a greater decline in the CCs near the edges of the FOV, this error was more
prominent in the CASI data collected with the original processing methodology. As such, it is
possible to deduce that the refined processing was able to better correct for the effects observed
at the edges. The CASI imagery from the 24th was characterized by slightly lower and more
variable CCs then the data from the 23rd, especially near the edges of the FOV. With this
information, there is some innate variability in the data acquisition of the CASI that could be

quantified from the CCs.

The CCs of the SASI imagery were virtually identical regardless of the processing
methodology and acquisition date. This suggested that the SASI was very stable in its data
acquisition. Furthermore, it was clear that the refined processing methodology did not have a
large impact on the data. Using the developed algorithms, an error was detected in the SASI
imagery at a single spectral band by a reduction in the CCs from Pixels 548-564. This
showcased the developed CC-based methodology as a strong tool in the localization of errors in

imaging spectrometers.

After removing the data within the spectral windows identified in Table 3.3, there was a
greater degree of consistency amongst all of the CASI and SASI images. That being said, not all
datasets perfectly aligned; there was a slight offset between the CASI images collected from the

105



24th. To investigate the discrepancy in the CASI images from the 24th, finer errors were
detected in the regions that surrounded the five atmospheric absorption features in Table 3.4. All
but one of the spectral regions was characterized by non-uniform CCs across the FOV (Figure
3.18). The irregular structure in Figure 3.18A,B was caused by non-uniform pixels, which
noticeably varied in brightness. This error created “striping” artefacts across the image data.
These artefacts have been observed in the literature and are likely due to radiometric calibration
errors (Bachmann et al., 2014). Although the origin of the low frequency sinusoidal structure
could not be established, it is clear that the trend is not a numerical computational effect. As
such, there is likely a subtle wide spatial scale feature. The origin of the subtle feature in the CCs
is still being investigated. The sporadic reduction in the CCs of Figure 3.18C detected errors at
Pixel Columns 1454 and 1456, which were visualized as a bright and dark vertical stripe,
respectively, across the imagery (Figure 3.20). Since this reduction was not present in Figure
3.18D, the refined processing methodology was able to correct for this error. Based on the
structure of the CCs near the edges of the FOV in Figure 3.18E,F, there were potential residual
smile effects or other cross-track illumination effects that could not be clearly visualized in the
imagery. The sporadic reductions in the CC of Figure 3.18G revealed groups of non-uniform
pixels that created distinct “striping” artefacts that can be seen at several points across the CASI
imagery from the 24th with the original processing (Figure 3.21). These errors were not present
in Figure 3.18H or its associated imagery. As such, the refined processing methodology was
able to correct for this error. The relatively constant CCs across the FOV in Figure 3.181,J
corresponded with stable imagery within the designated spectral window, as displayed in Figure
3.22. This information is fundamental as it showcases that the CC method can detect stable
imagery, when it is present. The offset between the CASI imagery collected on the 24th in
Figure 3.17 was likely due to the additional errors that were not corrected in the original

processing methodology.

Although significance testing yielded p-values less than 107> for all observed relationships, it
is important to note that these values did not necessarily imply practical significance. This was
due to an issue inherent to the p-value itself; with such a large sample size and small variance,
significance testing flagged even the most subtle of changes as significantly different (Lin et al.,
2013). Fortunately, this was not an issue within the study as all of the flagged potential errors

could be visualized and verified in the imagery itself. A similar statement can be made for the
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differences observed in the CCs between the distinct processing methodologies and acquisition

devices.

Overall, errors were detected in the CASI and SASI imagery though the application of the
CC. Although more sophisticated error detection methodologies exist (e.g., Dadon et al., 2010;
Han et al., 2002; Tan and Acharya, 1999), they can be monetarily expensive to implement and
rely on a higher level of mathematical understanding. Without a fundamental understanding of a
method, its implementation can lead to inaccurate interpretations. The presented method is
intuitive; the CC is a rather simple statistical tool and its application is straight forward. The
detection can be conducted on radiance spectra prior to atmospheric correction, quickly after
acquisition. After removing the wavelength region associated with large errors, the described
methodologies could be repeated to isolate smaller errors. Although the application was
developed for hyperspectral technologies, it can be easily generalized for data collected by other
imaging spectrometers. This versatility showcases the CC as a strong and simple statistical tool

for the analysis of spectrographic imaging data through the detection of errors.

3.5. Conclusions
This work substantiated the versatility of the CC with respect to the localization of errors in

spectrographic imaging data. The sensitivity of the CC was characterized with respect to subtle
spectral changes in the averaged in-situ level radiance data. Errors were spectrally and spatially
detected in real airborne acquired HSI data. As per the original intent of the study, the
methodology was successfully developed for the detection of errors, not for the identification of
their origin. The method was able to gauge the effectiveness of various processing
methodologies and the imaging systems themselves. Overall, the CC is clearly a strong, simple,
low monetary cost, analytical tool for studying hyperspectral remotely-sensed data quality

through error detection.
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Connecting Statement (Chapter 3 to Chapter 4)

In chapter 3, the developed error localization algorithm was able to determine the
effectiveness of various processing methodologies and the consistency of the spectral
information collected across the sensor field of view. The chapter highlights imperfections in
HSI data, allowing non-expert end users to interactively identify and understand common errors
(e.g., dead pixels, striping, spectral smile). In chapter 3, errors were only detectable as the
imagery was analyzed in its raw sensor geometry. This same analysis could not be applied to
georeferenced raster end products. Although it is possible to identify errors in georeferenced
raster end products, the loss of sensor geometry makes it difficult to interpret them. This study
showcases the importance of analyzing data in its raw sensor geometry before rasterization,
inspiring the analyses in chapters 4 and 5 that re-evaluate the use of the raster data model in

hyperspectral imaging efforts.

Chapter 4 studies the consequences of assuming that pixels are square. By deriving and
analyzing the sensor point spread function, a function that maps the spatial response of a pixel,
this chapter emphasizes that only ~ 55 % of the signal to any given spectrum originates from the
spatial boundaries defined by the raw pixel resolution. Modifying the algorithm developed in
chapter 3, it was possible to show that the overlap in the spatial response of neighbouring pixels
resulted in sensor generated spatial correlations. Chapter 4 highlights that the non-square nature
of pixels acts to mask and distort the natural spatial dynamics of the imaged scene, showcasing

that the raster data model mispresents HSI data.
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Abstract

In hyperspectral imaging (HSI), the spatial contribution to each pixel is non—uniform and
extends past the traditionally square spatial boundaries designated by the pixel resolution,
resulting in sensor—generated blurring effects. The spatial contribution to each pixel can be
characterized by the net point spread function, which is overlooked in many airborne HSI
applications. The objective of this study was to characterize and mitigate sensor blurring effects
in airborne HSI data with simple tools, emphasizing the importance of point spread functions.
Two algorithms were developed to 1) quantify spatial correlations and 2) use a theoretically
derived point spread function to perform deconvolution. Both algorithms were used to
characterize and mitigate sensor blurring effects on a simulated scene with known spectral and

spatial variability. The first algorithm showed that sensor blurring modified the spatial
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correlation structure in the simulated scene, removing 54.0%—75.4% of the known spatial
variability. Sensor blurring effects were also shown to remove 31.1%—-38.9% of the known
spectral variability. The second algorithm mitigated sensor—generated spatial correlations. After
deconvolution, the spatial variability of the image was within 23.3% of the known value.
Similarly, the deconvolved image was within 6.8% of the known spectral variability. When
tested on real-world HSI data, the algorithms sharpened the imagery while characterizing the
spatial correlation structure of the dataset, showing the implications of sensor blurring. This
study substantiates the importance of point spread functions in the assessment and application of

airborne HSI data, providing simple tools that are approachable for all end—users.

Keywords: hyperspectral imaging, point spread function, spatial correlations, image

deconvolution

4.1. Introduction
Hyperspectral remote sensing has received considerable attention over the past three decades

since the development of high—altitude airborne (Babey and Anger, 1989; Cocks et al., 1998;
Green et al., 1998) and spaceborne platforms (Pearlman et al., 2003), leading to a paradigm—
shifting approach to Earth observation. In hyperspectral remote sensing, contiguous narrow—band
spectral information is acquired for each spatial pixel of an image collected over the Earth’s
surface (Bioucas-Dias et al., 2013). The spectral information typically quantifies the absorbance
and reflectance of the materials within each spatial pixel, as well as the interactions that have
occurred with light as it passed through the atmospheric column. The reflectance and absorbance
of materials are representative of their chemical and physical properties (Eismann, 2012).
Assuming the atmospheric interactions (absorption and scattering) can be reasonably well
modelled and removed from the signal of each pixel (Berk et al., 1999), the spectral information
from hyperspectral remote sensing data can be used to identify and characterize materials over
large spatial extents. Hyperspectral remote sensing is commonly known by its imaging modality
term hyperspectral imaging (HSI) (Bioucas-Dias et al., 2013) and has prominent applications in
fields such as geology (Cloutis, 1996; Murphy et al., 2012; van der Meer et al., 2012), agriculture
(Dale et al., 2013; Migdall et al., 2012; Yao et al., 2011), forestry (Koch, 2010; Peng et al., 2003;
Smith et al., 2003), oceanography (Chang et al., 2004; Kruse et al., 1997; Ryan et al., 2014),
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forensics (Kalacska and Bell, 2006; Kalacska et al., 2009; Leblanc et al., 2014) and ecology
(Arroyo-Mora et al., 2018a; Kalacska et al., 2018; Turner et al., 2003).

In HSI, many applications implicitly rely on the assumption that the spatial contribution to
the spectrum from each pixel is uniform across the boundaries defined by the spatial resolution
of the final geocorrected data product. This assumption does not hold for real imaging data
(Huang et al., 2002). Due to technological limitations in spectrographic imagers in general, the
spatial contribution to each pixel is non—uniform, extending past the traditionally square spatial
boundaries designated by the pixel resolution. Consequently, the spectrum from each pixel has
contributions from the materials within the spatial boundaries of neighbouring pixels. Practically,
this phenomenon is observed as a sensor induced blurring effect within the imagery

(Schowengerdt, 20006).

The sensor induced blurring effect of an imaging system can be described by the net point
spread function (PSFe), or alternatively by its normalized Fourier transform, the modulation
transfer function. Formally, the PSF., gives the relative response of an imaging system to a point
source, characterizing the spatial contribution to the spectrum from a single pixel. The PSF.; is
typically a two—dimensional function that depends on the position of the point source in the
across track and along track directions within the sensor’s field of view. In most spectrographic
imagers, blurring effects are induced by sensor optics, detectors, motion and electronics
(Schowengerdt, 2006; Zhang and Moore, 2015). The sensor blurring associated with each of

these components can be modelled independently.

The optical blurring effect occurs as the imaging system spreads the energy from a single
point over a very small area in the focal plane. If the optics of a sensor are only affected by
optical diffraction, a 2-D, wavelength—dependent Airy function can be used to describe the point
spread function associated with the optical blurring effect (PSFop:). In practice, this is rarely the
case as the optics are often affected by aberrations and mechanical assembly quality
(Schowengerdt, 2006). As a result, a 2-D, wavelength—independent Gaussian function is

commonly used as an approximation to the PSF,, (Schowengerdt, 2006):

x2 y?

1 -—— 1 T oou2 1
e 20x°———e *% (1)
ox\2m oy\2m >

PSFopt(x: y) =
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where x and y represent the disposition of the point source from the center of the pixel in the

across track and along track directions while g, and o, represent the standard deviation,

controlling the width of the function in the across track and along track directions, respectively.

The detector blurring is caused by the non—zero spatial area of each detector in the sensor.
This blurring is typically characterized by a uniform rectangular pulse detector point spread
function (PSFy.:) with a width equal to the ground instantaneous field of view (GIFOV)
(Schowengerdt, 2006; Zhang and Moore, 2015):

o GIFOV
1,if [x], [y| < 5
1 GIFOV
PSFaec(x,y) =\, iflxl Iyl = —— 2)
_ GIFOV
| O.if|xl, Iyl > —

The motion blurring is caused by the motion of the sensor while the shutter is open and the
signal from each pixel is being integrated over time. For pushbroom sensors, the blurring is
observed in the along track direction (assuming a constant heading) and can be described by a
uniform rectangular pulse motion point spread function (PSFu.) with a width equal to the speed
of the sensor (v) multiplied by the integration time (/7) (Schowengerdt, 2006; Zhang and Moore,
2015):

' IT Xv
1,if |y| <

1 IT Xv
PSF0t(x,y) = 3 E; iflyl = 5

IT Xv

3)

L 0,if |y| >

For whiskbroom sensors, the PSF..: can be modelled by a uniform rectangular pulse with a

width equal to the scan velocity (s) multiplied by /7 (Zhang and Moore, 2015):

(. . IT Xs
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An example of Equations (1-4) is given in Section 4.2.2.

Practically, the blurring effect of sensor motion and detectors are often characterized

simultaneously as the scan point spread function (PSFcan) (Schowengerdt, 2006):
PSFscan=PSFger * PSEpot - (5)

The electronic blurring effect occurs in sensors that electronically filter the data to reduce
noise. The electronic filtering operates in the time domain as spectral information is collected
during each integration period. Due to the movement of the aircraft, this time dependency has an
equivalent spatial dependency. As such, the data are blurred due to electronic filtering in
accordance with this spatial dependency. The form of the electronic point spread function

(PSFelectronic) 1s dependent on the nature of the filter itself (Schowengerdt, 2006).

The PSFe: can be written as the convolution of the four independent point spread functions
that describe each of the sensor induced blurring effects (Schowengerdt, 2006; Zhang and
Moore, 2015):

PSFpei(x,y) = PSFopt(x: y) * PSFaer(%,y) * PSFy0c(x,Y) ...

(6)
* PSFeectronic(%,Y) .

The dynamics of the PSF,. in many of the popular imaging designs (i.e., pushbroom and
whiskbroom) can be quite distinct between the across track and along track directions (Zhang
and Moore, 2015). For instance, the raw pixel resolution of a pushbroom imaging system is
typically defined by the full-width at half~maximum of the PSF}.., in the along track and the
PSF4e in the across—track. As such, imaging systems are often characterized by different raw

spatial resolutions in the across track and along track directions.

Traditionally, the PSF,, of a sensor is measured in a controlled laboratory environment. In
the laboratory characterization, the sensor is used to image a well-characterized point source
target to obtain the PSF,: in two dimensions (Schowengerdt, 2006). With the measured PSF,:,
the PSFe: of an imaging system during data acquisition can be approximated with equations (1—
6). The PSF.: can also be measured from operational imagery over man—made objects that

represent point sources (e.g., mirrors and geometric patterns) or targets—of—opportunity (e.g.,
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bridges and coastlines) (Rauchmiller and Schowengerdt, 1988; Schowengerdt, 2006;
Schowengerdt et al., 1974).

Generally, HSI system manufacturers have an understanding of the sensor induced blurring
effects that their instruments induce and the point spread functions that describe them. However,
in some cases, this information is not directly shared with end—users. This is problematic, given

the effects of sensor blurring on HSI data.

Sensor blurring effects attenuate high—frequency components and modify the spatial
frequency structure of HSI data (Chaudhuri et al., 2014). Given the relationship between
frequency content and correlation, sensor induced blurring effects should theoretically introduce
sensor—generated spatial correlations. Hu et al. (2012), showed that the spatial correlation
structure of a clean monochromatic image was modified after introducing a sensor—generated
blurring effect. Based on these results, sensor induced blurring should also systematically

introduce spatial correlations in both satellite and airborne imagery.

The impacts of sensor induced blurring effects have been thoroughly analyzed for spaceborne
multispectral sensors (e.g. (Markham, 1985; Markham, et al. 2018; Radoux et al., 2016)). Huang
et al. (2002) determined that sensor—generated blurring effects reduce the natural variability of
various scenes imaged by satellite spectrographic imagers. The nature of this effect was found to
be dependent on the imaged area, with the most information being lost from heterogeneous
scenes characterized by high levels of spatial variability. Sensor induced blurring effects have
been found to impede basic remote sensing tasks such as classification (Huang et al., 2002), sub—
pixel feature detection (Radoux et al., 2016) and spectral unmixing (Wang et al., 2018).
Furthermore, in Aiazzi et al. (2019), the performances of onboard lossless compression of
hyperspectral raw data are analyzed considering the blurring effects. In the literature, many
studies acknowledge the potential for error due to sensor induced spatial blurring effects (e.g.
(Bergen et al., 2005; Heiskanen, 2006; Simms et al., 2014; Tarrant et al., 2010; Torres-Rua et al.,

2016)) but do not characterize the implications.

To a lesser degree, sensor induced blurring effects have also been analyzed at the airborne
level for HSI platforms. For example, Schlidpfer et al. (2007) rigorously analyzed the
implications of sensor blurring by convolving real-world airborne HSI data collected by the

Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) sensor at high (5 m) and low (28.3
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m) spatial resolutions with numerous point spread functions that varied in full-width at half-
maximum. Sensor induced blurring was found to modify the high spatial resolution imaging data
to a greater degree than the low spatial resolution imaging data. Since the low spatial resolution
imagery was on the same scale as data products collected by satellite sensors, these results
suggest that sensor blurring may be more prominent for airborne sensors due to their high spatial
resolution (Schldpfer et al., 2007). Although there are reports that acknowledge the implications
of sensor induced blurring at the airborne level, many studies do not attempt to characterize or

mitigate their impact.

Sensor induced blurring effects can be mitigated through means of image deconvolution.
However, it is important to recognize that deconvolution is an ill-posed problem; due to the
information loss associated with sensor blurring, a unique solution is often unobtainable even in
the absence of noise (Chaudhuri et al., 2014). In remote sensing, many deconvolution algorithms
have been developed to mitigate the effects of sensor induced blurring (Fang et al., 2017; Henrot
et al., 2013; Jackett et al., 2011). Although these methods are effective, they can be difficult to
implement due to the mathematical complexity of the algorithms and the computational expense.
This combination of factors presents difficulties to end—users of HSI data who may lack the

information or expertise to accurately apply these methods.

The PSF e of most HSI systems are characterized to some degree by sensor manufacturers.
Despite this, sensor point spread functions are often ignored by end—users in favour of
parameters such as ground sampling distance, pixel resolution and geometric accuracy. Although
such parameters are extremely important, they do not accurately describe the spatial contribution
to the signal from each pixel or the sensor blurring caused by the overlap in the field of view
between neighbouring pixels. This could be problematic for many remote sensing applications

given the implications of sensor induced blurring effects.

The objective of this study was to characterize and mitigate sensor—generated blurring effects
in airborne HSI data with simple and intuitive tools, emphasizing the importance of point spread
functions. Two algorithms are presented. The first strategically applies a simple correlation
metric, modifying the traditional spatial autocorrelation function, to observe and quantify spatial
correlations. The second uses a theoretically derived PSF. to mitigate sensor—generated spatial

correlations in HSI data. The two algorithms were used to characterize and mitigate the
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implications of sensor induced blurring on simulated HSI data, before and after introducing

realistic sensor blurring. The algorithms were then applied to real-world HSI data.

4.2. Materials and Methods

4.2.1. Airborne HSI Data

Airborne HSI data were acquired on June 24", 2016 aboard a Twin Otter fixed—wing aircraft
with the Compact Airborne Spectrographic Imager 1500 (CASI) (ITRES, Calgary, Canada). The
imagery was collected over two study areas: the Mer Bleue peatland (Latitude: 45.409270°,
Longitude: —75.518675°) and the Macdonald—Cartier International Airport (Latitude:
45.325200°, Longitude: —75.664642°), near Ottawa, Ontario, Canada. The CASI acquires data
over 288 spectral bands within a 3661053 nm range. The CASI is a variable frame rate,
grating—based, pushbroom imager with a 39.8° field of view across 1498 spatial pixels. The
device has a 0.484 mrad instantaneous field of view at nadir with a variable f~number aperture
that is configurable between 3.5 and 18.0 (Soffer et al., 2019). Table 4.1 records the parameters
(heading, speed, altitude, integration time, frame time, time and date) associated with the flight

lines.
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Table 4.1. Flight parameters for the hyperspectral data acquired over the Mer Bleue Peatland
and the Macdonald—Cartier International Airport.

Parameter Mer Bleue Macdopald—Ca}nier
Peatland International Airport
Time (hh.mm.ss GMT) 16.31.15 17.42.05
Date (dd—mm-yyyy) 24-06-2016 24-06-2016
é:;ﬁ‘:i%%ﬂight Line 45.399499 45323259
éfc’ﬁtgrie“t‘];e])o)f Flight Line ~75.514790 ~75.660129
Nominal Heading (°TN) 338.0 309.5
Nominal Altitude (m) 1142 1118
Nominal Speed (m/s) 41.5 41.6
Integration Time (ms) 48 48
Frame Time (ms) 48 48

The two studied sites are spectrally and spatially distinct. The Mer Bleue peatland is a
~8,500—year—old ombrotrophic bog (Lafleur et al., 2003) that is recognized as a Wetland of
International Importance under the Ramsar Convention on Wetlands, a Provincially significant
Wetland, a Provincially Significant Life and Earth Science Area of Natural and Scientific
Interest and a Committee for Earth Observation Satellites Land Product Validation supersite. In
the peatland, there are evident micro—spatial patterns in vegetation that correspond to a
hummock-hollow microtopography (Figure 4.1). A hummock microtopography is a drier
elevated mound with a dense cover of vascular plants while a hollow microtopography is a
lower—laying depression that is wetter and dominated by mosses such as Sphagnum spp.
(Eppinga et al., 2008; Lafleur et al., 2005). Adjacent hummocks and hollows can differ in
absolute elevation by as much as 0.30 m and are separated by an approximate horizontal distance
of 1-2 m (Belyea and Baird, 2006; Malhotra et al., 2016; Wilson, 2012). Given that the
overlying vegetation, and their associated reflective properties, covary with the patterns in
microtopography (Arroyo-Mora et al., 2018a; Arroyo-Mora et al., 2018b; Kalacska et al., 2018),

the Mer Bleue HSI data is likely characterized by a sinusoidal spatial correlation structure with a
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period on the scale of 2—4 m. There are very few large high contrast targets in the Mer Bleue
Peatland. Grey and black calibration tarps were laid out and captured in the imagery to provide

high contrast edges. This Mer Bleue site provides a complex natural scene with which to test the

algorithms.

Figure 4.1. Unmanned aerial vehicle photograph of the Mer Bleue Peatland in Ottawa, Ontario,
Canada. There are evident micro—spatial patterns in vegetation that correspond to the
hummock—hollow microtopography. A hummock microtopography is a drier elevated mound
with a dense cover of vascular plants while a hollow microtopography is a lower—laying
depression that is wetter and dominated by mosses such as Sphagnum spp. Adjacent hummocks

and hollows can differ in absolute elevation by as much as 0.30 m over a horizontal distance of
1-2 m.

The Macdonald—Cartier airport and the surrounding area is primarily composed of man—
made materials that have defined edges between spectrally homogenous matter such as asphalt
and concrete (Puttonen et al., 2009; Soffer et al., 2019). The area surrounding the Macdonald—

Cartier airport contains the Flight Research Laboratory’s calibration site, which is composed of
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asphalt and concrete that have been spectrally monitored over the past decade. This site provides

a scene to test the algorithms that are nearly piece—wise smooth in the spatial domain.

The raw data acquired over the two sites underwent four processing steps. The first three
steps were implemented with proprietary software developed by the sensor manufacturer. The
first step modified the radiometric sensor calibration (traceable to the National Institute of
Standards and Technology) to account for the effects of small, but measurable pressure and
temperature—induced shifts in the spatial-spectral sensor alignment during data acquisition. The
second step applied the modified sensor calibration, converting the raw digital numbers recorded
by each spatial pixel and spectral band of the sensor into units of spectral radiance
(uW-cm 2-sr 'nm™!). The third step removed the laboratory—measured spectral smile by
resampling the data from each spatial pixel to a uniform wavelength array. In the final processing
stage, the imaging data were atmospherically corrected with ATCOR4 (ReSe, Wil, Switzerland),
converting the measured radiance to units of surface reflectance (%) (Soffer et al., 2019). To

preserve the original sensor geometry, the images were not geocorrected.

4.2.2. Deriving the Theoretical Point Spread Function for each CASI Pixel

The theoretical PSF,.; was calculated separately in the across track and along track
directions. The derivation relied on 2 assumptions: (1) the aircraft was flying at a constant
altitude, speed and heading with 0 roll and pitch; (2) the aircraft flight line was perpendicular to
the detector array. With the sensor properties and the flight parameters of the Mer Bleue imagery
(Table 4.1), the GIFOV of the CASI was calculated to be 0.55 m in both the along track and the
across track directions. The PSF,,; was derived from a Gaussian function with a full-width at
half-maximum of 1.1 detector array pixels (value provided by sensor manufacturer) in both the
across track and along track directions. The PSFi.. in the across track direction was derived by
convolving the PSF,,; with the PSFue;, which was a rectangular pulse function with a width equal
to the GIFOV (Figure 4.2A). The PSF.: in the along track direction was calculated based on the
same optical and detector point spread function as in the across track direction. The PSF.: in the
along track was approximated by a rectangular pulse function with a width equal to the along
track pixel spacing or, equivalently, the nominal ground speed of the sensor (41.5 m/s)
multiplied by the integration time (48 ms) for each line. No electronic filters were applied to the
CASI data during data acquisition and thus the dynamics of the PSFeiectronic Were not considered.

The PSF.: in the along track was calculated by convolving the detector, optical and motion point
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spread functions (Figure 4.2B). The total PSF,.; was derived by multiplying the PSF). in the
across track and along track directions (Figure 4.3). Based on this derivation, the pixel
resolution of the CASI imagery was approximately 0.55 m and 1.99 m in the across track and

along track directions, respectively.
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Figure 4.2. The relative spatial contribution to a single Compact Airborne Spectrographic
Imager 1500 (CASI) image pixel as a function of across track (plot A) and along track (plot B)
displacement from the center of the pixel. The optical, detector, motion and net point spread
function (PSF) are displayed separately. The width of the detector point spread function
represents the raw spatial resolution in the across track direction. The width of the motion point
spread function represents the raw spatial pixel resolution in the along track direction. A
substantial portion of the net PSF lies outside the traditional pixel boundaries defined by the raw
resolution of 0.55 m in the across track direction. As such, the spectrum from each pixel has
sizeable contributions from the materials within the spatial boundaries of neighbouring pixels in
the across—track. A substantial portion of the net PSF lies outside the traditional pixel
boundaries defined by the raw resolution of 1.99 m in the along track direction as well. These
contributions are not as significant as they are in the across—track, however, there are still
notable contributions from materials within the spatial boundaries of neighbouring along track
pixels.
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Figure 4.3. The relative spatial contribution to a single Compact Airborne Spectrographic
Imager 1500 (CASI) image pixel as a function of across track and along track displacement from
the center of the pixel. The grid in the x—y plane corresponds with the actual pixel sizes (0.55 m
in the across track direction and 1.99 m in the along track direction). As such, each square
within the grid corresponds to the traditional spatial boundary of a single pixel. Most of the
signal originates from materials within the spatial boundary of the center pixel. It is important to
note that there is a substantial contribution from materials within the spatial boundaries of
neighbouring pixels.

4.2.3. Simulated HSI Data

To investigate the implication of sensor induced blurring, the study simulated two
hyperspectral images at the same approximate spatial resolution of the Mer Bleue CASI dataset
(0.55 m in the across track and 1.99 m in the along track). The two artificial images were only
distinguished by the simulated sensor blurring. The first image (referred to as the ideal image)
represented an ideal scenario where the PSF,.; was uniform across the spatial boundaries of each
pixel. The PSF. of the second image (referred to as the non—ideal image) was modelled after the

derived spatial response of the CASI.

Both datasets were derived from an image that was designed to represent a vegetation plot
within the Mer Bleue Peatland at a spatial resolution 50 times finer than that of the real-world
CASI data. The value for each spectral band and spatial pixel in the high spatial resolution
imagery was randomly generated from a normal distribution. The mean and standard deviation of

the normal distribution for each band were derived from the basic statistics of a 3660—pixel
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vegetation region of interest (Figure 4.4) from the original Mer Bleu CASI imagery. All the
pixels within the region of interest were examined to ensure that vegetation was not
contaminated by any man—made structures or objects. The mean value of each spectral band
from the vegetation region of interest in the Mer Bleue CASI imagery was used as the mean
value of the normal distribution for each band. Due to the change in scale between the pixels
within the high spatial resolution imagery and the real-world CASI imagery, the calculated
standard deviation needed to be scaled up by a factor of 50 before it could be used as the

standard deviation in the normal distribution.
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Figure 4.4. The vegetation region of interest selected from the Mer Bleue Peatland. The region
of interest is characterized by a hummock—hollow microtopography that corresponds to small
scale patterns (2—4 m) in surface vegetation and surface reflectance. Hummocks are elevated
mounds of dense vascular cover while hollows are the lower—lying areas composed primarily of
Sphagnum spp. mosses. The orthophoto (0.2 m spatial resolution) was collected for the National
Capital Commission of Canada (Source: Ottawa Orthophotos, 2011).

126



To simulate the ideal and non—ideal images from the generated high spatial resolution
imagery, the derived PSF . function (Section 4.2.2) was convolved with the high spatial
resolution imagery and spatially resampled to the native resolution of the CASI imagery using a
nearest—neighbour resampling approach. The nearest neighbour resampling approach was
equivalent to directly downsampling the convolved data by a factor of 50 to the native resolution
of the CASI imagery. Given the described simulation process, 100% of the information content
was known for both the ideal and non—ideal datasets and the environment that they represented.
The mean and standard deviation for each spectral band within the two simulated images were
calculated to assess the implication of sensor induced blurring effects on the global statistics of
the simulated HSI data. When comparing the mean of the spectra from two different images, a t—
test with unequal variances was applied separately for each spectral band. The mean spectra from
the two compared images at a particular band were deemed significantly different if the p—value
was less than 0.05. When comparing the standard deviation (and, in extension, variance) in the
spectra from two different images, an F—test for equal variances was applied separately for each
spectral band. The standard deviation in the spectra from the compared images at a particular

band were deemed significantly different if the p—value was less than 0.05.

4.2.4. Visualizing and Quantifying Spatial Correlations
For an ideal sensor, the spatial correlations within HSI data are piece—wise smooth, meaning

that neighbouring pixels are highly correlated (Bioucas-Dias et al., 2013). This correlation
structure can be leveraged to quantify sensor—generated spatial correlations with a correlation
metric. The Pearson product-moment correlation coefficient (CC) has been shown as a strong
tool in the analysis of HSI data (Inamdar et al., 2018). The CC is a measure of linear association
between two variables. It is formally given (Lee Rodgers and Nicewander, 1988) by the

following equation:

_ X(A-A)B;-B)
¢t = VZ(A-A)23(B;-B)% )

where A;, B;, A, B represent the two variables of interest and their means, respectively.

The CC was implemented to characterize the spatial structure of correlations in the HSI data.
In particular, the correlation coefficient was calculated between the spectra of adjacent pixels in

both the across track and along track directions. This process was repeated for distant neighbors.
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The calculated correlation coefficients were grouped by pixel displacement separately in the
across track and along track. The mean and standard deviation of each group was calculated to
quantify the strength and variability of the spatial correlations within each image as a function of
pixel displacement. This algorithm fundamentally represents the horizontal and vertical cross—

section of an autocorrelation function with characterized variability.

4.2.5. Mitigating Sensor Generated Spatial Correlations Using the PSF e

A simple deconvolution algorithm was developed to mitigate sensor—generated blurring
effects in HSI data. The approach utilizes the theoretically derived PSF;.: to mitigate
contributions from the materials within the spatial boundaries of neighbouring pixels. Let So0
represent the reflectance spectrum of any given pixel in an ungeocorrected HSI dataset that is
contaminated by sensor—generated blurring effects. Let S;j represent the spectrum from the pixel
displaced by i rows and j columns from the pixel of interest. Let a;j represent the weighted
contribution of S;; to Sy, as calculated by integrating the PSF,.; over the spatial boundaries of
the pixel from which §;; originated. By removing the relative contribution of all neighbouring
pixels from Sy, it is possible to generate a new approximation, .§0_0, in which sensor—generated
blurring effects have been mitigated:

g - SO,O_ZieZ\i;éO Zjezu;éo ai,jsi,j
0,0~ .

@®)

40,0

The algorithm assumes sub—pixel materials are homogenous. Furthermore, neighbouring
pixels are assumed to be unaffected by sensor blurring effects. Similar assumptions have been
made in other deconvolution studies (e.g., (Huang et al., 2002; Townshend et al., 2000)).
Although these assumptions may not be realistic for real-world spectral imagery, they are
reasonable to simplify the system as the spatial variability within each pixel is often non—

constant and unknown.

4.2.6. Algorithm Application to Simulated HSI Data

The developed algorithms were applied to the simulated datasets. In particular, the spatial
correlation structure of the two simulated images were characterized by the CC based algorithm.
The algorithm was assessed based on its ability to detect discrepancies in the spatial correlation

structure. The deconvolution algorithm was implemented by applying Equation (8) to the
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simulated dataset with a non—ideal PSF),... The deconvolved dataset was referred to as the
corrected non—ideal image. The deconvolution algorithm was assessed based on its ability to
recover the global statistics of the ideal imagery from the non—ideal imagery. The deconvolution
algorithm was also evaluated based on its ability to restore the spatial correlation structure
observed in the ideal image by the CC based algorithm. The study used the same statistical tests
as in Section 4.2.3 (t—test with unequal variances and f—test for equal variances) when comparing
the mean and standard deviation of the spectra between the two images within the vegetation
region of interest. To ensure that the observed trends in global statistics were actually linked to a
decrease of difference between the ideal and non—ideal image after the application of the
deconvolution algorithm, Euclidean distance was calculated on a pixel-by—pixel basis between

the ideal imagery and both the non—ideal and corrected non—ideal images.

4.2.7. Algorithm Application to Real-World HSI Data
The developed algorithms were applied to the collected HSI data at the Mer Bleue peatland

and the calibration site at the airport with a primary focus on the deconvolution algorithm. Image
sharpness was assessed by calculating the slope of a horizonal profile across image structures
with sharp edges that separated two materials with distinct spectral signatures. In the Mer Bleue
image, the edge of the grey calibration tarp was analyzed. In the airport imagery, the edge along
the border of a concrete—asphalt transition was used. The CC based algorithm was then applied
to vegetation within the Mer Bleue image to assess the correlation structure of the images before
and after the application of the deconvolution algorithm. The mean and standard deviation in
each spectral band of the Mer Bleue imagery within the vegetation region of interest was
calculated before and after the application of the deconvolution algorithm. The study used the
same statistical tests as in Section 4.2.3 (t—test with unequal variances and f—test for equal
variances) when comparing the mean and standard deviation of the spectra between the two

images within the vegetation region of interest.

4.3. Results
4.3.1. Theoretical Point Spread Function for Each CASI Pixel

The total PSF,.; was Gaussian in nature, with a maximum value at the origin, dropping off
rapidly to approximately zero past a distance of 2 m (~1 pixel) in the along track and 1 m in the
across track (~2 pixels) directions. Figure 4.5 displays the relative contribution to the spectrum

from a single pixel. Only 55.5% of the signal from each pixel originated from the materials
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within its spatial boundaries. Neighbouring contributions in the across track were larger than in

the along track.

1
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Figure 4.5. The spatial contribution to the spectrum of the center Compact Airborne
Spectrographic Imager 1500 (CASI) pixel from materials within the boundaries of neighbouring
pixels. The red square represents the spatial boundaries of the center pixel, as determined by the
raw pixel resolution. The black squares represent the spatial boundaries of neighbouring pixels.
Only 55.5% of the spectral signal originates from materials within the spatial boundaries of the
center pixel. The remaining 44.5% of the signal comes from the materials within the spatial
boundaries of the neighbouring pixels. The underlying scene in the figure is a photograph of the
Mer Bleue Peatland collected from an unmanned aerial vehicle.

4.3.2. Simulated HSI Data
Panels A and B in Figure 4.6 display the ideal and non—ideal simulated hyperspectral

images, respectively. The mean and standard deviation of each spectral band from the ideal and
non—ideal images are shown in Figure 4.7. The mean values for each spectral band between the

two simulated datasets were not significantly different (two—sample t—test with unequal
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variances applied separately for each spectral band; p—values > 0.792). In fact, the mean spectra
were essentially identical, with an extremely small root-mean—square deviation (0.004%)
relative to the range of the data (28.2%). The variances between the two simulated datasets for
each spectral band were significantly different (F—test for equal variances applied separately for
each spectral band; p—values < 1.29E-26). The standard deviation in each spectral band of the

non—ideal simulated dataset were 31.1%—38.9% smaller when compared to the ideal imagery.

A) B) 0)

=
=]
S
@
=
2
o
=

Figure 4.6. Simulated hyperspectral imaging data representative of the Mer Bleue Peatland. The
images are displayed in true colour (Red = 639.5 nm £+ 1.2, Green = 551.0 nm + 1.2, Blue =
460.1 nm + 1.2). In the display, all three bands are linearly stretched between 0% and 12%. A)
The ideal simulated image that was derived with a uniform point spread function. B) The non—
ideal simulated image that was derived with the Compact Airborne Spectrographic Imager 1500
(CASI) point spread function. C) The corrected non—ideal simulated image that was derived by
applying the developed deconvolution algorithm to the non—ideal simulated image. All images
were simulated at the same spatial resolution as the real-world CASI imagery (across track =
0.55 m, along track = 1.99 m). The simulated datasets were used to characterize the implications
of sensor—generated spatial correlations while testing the developed algorithms.
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Figure 4.7. The mean (plot A) and standard deviation (plot B) for each spectral band of the
ideal (uniform point spread function) and non—ideal (Compact Airborne Spectrographic Imager
1500 point spread function) simulated images. There were no observable differences in the mean
spectrum from each image. The attenuation in standard deviation suggests that sensor blurring
eliminated some of the natural variability observed in the ideal image. This is problematic given
the importance of second—order statistics in the analysis of high dimensional data.

4.3.3. Algorithm Application to Simulated HSI Data
The results of the CC based method when applied to the ideal and non—ideal imagery are

displayed in Figure 4.8. The figures also display the results of the CC based method when
applied to the non—ideal imagery after using the developed deconvolution algorithm (referred to
as the corrected non—ideal image). The corrected non—ideal image can be seen in panel C of
Figure 4.6. In the ideal simulated imagery, the mean of each group was relatively constant at a
value of ~0.982 for all pixel displacements in both the across track and along track directions.
Similarly, the standard deviation around the mean was also constant at a value of ~0.002. For
pixel displacements >1, the mean and standard deviation of each CC group in the non—ideal
imagery was relatively constant at a value of 0.992 and 0.001, respectively. This trend held for
both the across track and along track directions. For a pixel displacement value of 1, the mean
CC was relatively large, at a value of 0.996 and 0.993 in the across track and along track
directions, respectively. The corresponding standard deviations around these mean values were
relatively small, at 0.0006 and 0.0008. The standard deviation in the calculated CCs for the non—

ideal simulated dataset were 54.0%—75.4% smaller when compared to the ideal imagery.

The mean CC for each group in the corrected non—ideal image were similar in magnitude to

the ideal image. For the corrected image in the along track direction, the mean and standard
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deviation of each CC group was relatively constant at values of 0.981 and 0.002, respectively.
This trend held for pixel displacements > 2 in the across—track. The mean CC for pixels
displaced by 1 in the across track direction was relatively large (0.984). The opposite trend was
observed for pixel displacements of 2 in the across—track, with a mean value of 0.978 and a
standard deviation of 0.003. The standard deviation in the CCs of the corrected non—ideal image

were within 23.3% of the values calculated for the ideal image.

The mean and standard deviation of each spectral band in the corrected non—ideal image
were almost identical to those of the ideal image; there was no significant difference in the mean
(two—sample t—test with unequal variances applied separately for each spectral band; p—values >
0.825) or variance (F-test for equal variances applied separately for each spectral band; p—values
> (0.056). The mean spectra were essentially identical, with an extremely small root-mean—
square deviation (0.004%) relative to the range of the data (28.2%). Similarly, the variability in
each spectral band of the ideal and corrected non—ideal images were essentially identical, given
the small root—-mean—square deviation (0.03%) in the standard deviation relative to the range in
the data (2.4%) (Figure 4.9). The standard deviations in each spectral band of the corrected non—
ideal image were within 6.8% of the values calculated for the ideal image. The Euclidean
distance (in units of reflectance) between the ideal imagery and both the non—ideal and corrected
non—ideal images are displayed in Figure 4.10A and Figure 4.10B, respectively. After the
application of the deconvolution algorithm, the Euclidean distance between the ideal and non—

ideal imagery decreased by an average of 1.91%.
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Figure 4.8. The mean correlation coefficient as a function of pixel displacement in the across
track (plot A) and along track (plot B) directions of the ideal (uniform point spread function),
non—ideal (Compact Airborne Spectrographic Imager 1500 point spread function) and corrected
non—ideal simulated images. The bars around each mean give the 1-sigma window. The mean
and standard deviation quantified the strength and variability of the spatial correlations present
within each image. The corrected non—ideal image was generated by applying the developed
deconvolution algorithm. In the ideal image, there was no spatial correlation structure. The
Compact Airborne Spectrographic Imager 1500 point spread function used to simulate the non—
ideal image, and the associated image blurring, introduced a spatial correlation structure. The

spatial correlation structure of the ideal image was recovered from the non—ideal image using
the developed deconvolution algorithm.
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Figure 4.9. The standard deviation in each spectral band of the ideal (uniform point spread
function), non—ideal (Compact Airborne Spectrographic Imager 1500 point spread function) and
corrected non—ideal image. The corrected non—ideal image was generated by applying the
developed deconvolution algorithm. The attenuation in the standard deviation of the non—ideal
image suggests that sensor blurring eliminated some of the natural variability observed in the
ideal image. The natural variability in each spectral band of the ideal image was restored from
the non—ideal image by applying the deconvolution algorithm.
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Figure 4.10. The Euclidean distance (in units of reflectance) between the ideal imagery and both
the non—ideal (plot A) and corrected non—ideal (plot B) images. The grayscale display is linearly
stretched between 10% and 20%. After the application of the deconvolution algorithm, the
Euclidean distance between the ideal and non—ideal imagery decreased by an average of 1.91%.

4.3.4. Algorithm Application to Real-World HSI Data
After applying the deconvolution algorithm to the HSI data, both images were qualitatively

sharper (Figure 4.11 and Figure 4.12). The spectrum from the 7 adjacent across track pixels for
each of the studied edges in the Mer Bleue and Airport imagery were displayed in Figure 4.13.
Pixel 4 was the closest to the studied edge. The pixel number represents the order of each
adjacent pixel in the across track direction. In plots A and B, pixels 1-3 represented spectra from
the calibration tarp while pixels 5—7 represented spectra from vegetation at the Mer Bleue
Peatland. In plots C and D, pixels 1-3 represented spectra from the concrete while pixels 5—7
represented spectra from asphalt from the airport. Plots A and C are from the original imagery,
while plots B and D are from the deconvolved imagery. In both the Mer Bleue and Airport
imagery, the spectra from pixels 3 and 5 were closer to the spectra of their respective materials
after the application of the deconvolution algorithm. In particular, the spectrum from pixel 5
dropped in magnitude, aligning with that of pixels 6 and 7 in both sets of imagery.
Quantitatively, the deconvolution algorithm increased the maximum change in reflectance per

pixel across the two studied edges by a relatively constant factor of 1.4 (Figure 4.14).
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Figure 4.11. Hyperspectral imaging data over the Mer Bleue Peatland before and after the
application of the deconvolution algorithm. The images are displayed in true colour (Red =
639.5 nm £+ 1.2 Green = 551.0 nm + 1.2, Blue = 460.1 nm + 1.2). In the display, all three bands
are linearly stretched between 0% and 12%. Panels (A) and (C) display the original imagery.
Panels (B) and (D) represent the same two scenes after the deconvolution algorithm was
applied. Both images were qualitatively sharpened by the deconvolution algorithm.
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Figure 4.12. Hyperspectral imaging data over the Macdonald—Cartier International Airport
(Ottawa, Ontario, Canada) before and after the application of the developed deconvolution
algorithm. The images are displayed in true colour (Red = 639.5 nm = 1.2, Green = 551.0 nm £
1.196, Blue = 460.1 nm £ 1.2). In the display, all three bands are linearly stretched between 0%
and 40%. Panels (A) and (C) display the original imagery. Panels (B) and (D) represent the
same two scenes after the deconvolution algorithm was applied. Both images were qualitatively
sharpened by the deconvolution algorithm.
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Figure 4.13. A,B) The 7 adjacent across track pixels to the edge of the calibration tarp in the
Mer Bleue imagery before (plot A) and after (plot B) the deconvolution algorithm was applied.
Pixel 4 was the closest to the studied edge. The pixel number represents the order of each
adjacent pixel in the across track direction. Pixels 1-3 represented spectra from the calibration
tarp while pixels 5—7 represented spectra from vegetation. C,D) The 7 adjacent across track
pixels to the edge of the concrete—asphalt transition at the calibration site within the airport
imagery before (plot C) and after (plot D) the deconvolution algorithm was applied. Pixel 4 was
the closest to the studied edge. Pixels 1-3 represented spectra from the concrete while pixels 5—7
represented spectra from asphalt. In both the Mer Bleue and Airport imagery, the spectra from
pixels 3 and 5 were closer to the spectra of their respective materials after the application of the
deconvolution algorithm. In particular, spectra from pixel 5 dropped in magnitude, aligning with
that of pixels 6 and 7 in both sets of imagery. This suggests that the algorithm mitigated
influences from neighbouring pixel materials.
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Figure 4.14. A) The maximum change in reflectance per pixel across the edge of the calibration
tarp in the Mer Bleue imagery. B) The maximum change in reflectance per pixel across the edge
along the border of the concrete—asphalt transition at the calibration site within the airport
imagery. The larger the number, the sharper the change from the two materials that defined the
edge. The corrected image was generated by applying the developed deconvolution algorithm to
the real-world Compact Airborne Spectrographic Imager 1500 (CASI) data. The corrected
imagery was sharper than the original imagery. The imagery was sharpened by the developed
deconvolution algorithm.

When applying the CC based algorithm to the vegetation region of interest from the CASI
data, there were several differences in the correlation structure between the imagery before and
after the application of the deconvolution algorithm (Figure 4.15). Most notably, the algorithm
decreased correlation levels in both the across track and along track directions from 0.998 to
0.994 while increasing the standard deviation in the system approximately by a factor of 3. In the
along track direction, spatial correlations decreased marginally along with pixel displacement.
This trend held in the across—track, however, there was also a sinusoidal trend that repeated
every four pixels (~2 m). This sinusoidal feature dampened by a pixel displacement of 5 in the
original imagery. In the corrected imagery, this sinusoidal structure was far more prominent,

dampening at a pixel displacement of 12.
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Figure 4.15. The mean correlation coefficient as a function of pixel displacement in the across
track (plot A) and along track (plot B) direction of the vegetation region of interest from the Mer
Bleue CASI imagery. The bars around each mean give the 1-sigma window. The mean and
standard deviation quantified the strength and variability of the spatial correlations present
within each image. The corrected image was generated by applying the developed deconvolution
algorithm to the real-world Mer Bleue Compact Airborne Spectrographic Imager 1500 (CASI)
data. In general, the deconvolution algorithm decreased the observed spatial correlations while
increasing spatial variability. After applying the developed deconvolution algorithm, the micro—
spatial patterns of vegetation could be observed more clearly in the across track direction. The
micro—spatial patterns of vegetation could not be observed in the along track.

The mean and standard deviation of the vegetation plot in the original and corrected imagery
is displayed in Figure 4.16. The mean values for each spectral band between the original and
corrected image within the vegetation pixels were not significantly different (two—sample t—test
with unequal variances applied separately for each spectral band; p—values > 0.855). The mean
spectra were essentially identical, with an extremely small root-mean—square deviation
(<0.0035%) relative to the range of the data (31.2%). The variances between the two simulated
datasets for each spectral band were significantly different (F—test for equal variances applied

separately for each spectral band; p—values < 6.143E-37).
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Figure 4.16. The mean (plot A) and standard deviation (plot B) of the vegetation region of
interest from the Mer Bleue imagery. The corrected image was generated by applying the
developed deconvolution algorithm to the real-world Mer Bleue Compact Airborne
Spectrographic Imager 1500 (CASI) data. The standard deviation valued measured the
variability in each spectral band. Although there was no difference in the mean, the standard
deviation increased after applying the deconvolution algorithm. This increase likely occurred as
the deconvolution reintroduced some of the lost natural variations in each spectral band.

4.4. Discussion

The objective of this study was to characterize and mitigate sensor—generated blurring effects
in airborne HSI data with simple and intuitive tools, emphasizing the importance of point spread
functions. By studying the derived CASI PSF. it was possible to understand the potential

implications of sensor induced blurring effects in general.

The CASI PSF . was roughly Gaussian in shape, extending two pixels in the across track
and one pixel in the along track before reaching a value of approximately zero. The spread of this
function meant that approximately 45% of the signal in the spectrum from each CASI pixel
originated from materials within the spatial boundaries of neighboring pixels (Figure 4.5).
Although these values may seem quite large, it is important to recognize that they are not
unreasonable for all imaging spectrometers. For instance, based on the 2D Gaussian PSFi., (full-
width at half~maximum of 28 m in the across track and 32 m in the along track (Markham et al.
2018)) for each Landsat 8 Operational Land Imager pixel (bands 1-7), only ~57.7% of the signal
originates from materials within the spatial boundaries of each pixel. This value is almost

identical to that of the CASI.

With the ideal (perfectly uniform PSF,.;over pixel boundaries) and non—ideal (CASI PSF.e)

simulated images, the effects of sensor induced blurring could be quantified. From the basic
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second—order image statistics, sensor induced blurring reduced the spectral variability, as
measured by the standard deviation, in the simulated scene by 31.1%-38.9% for all spectral
bands. Given the importance of second—order statistics in the analysis of high dimensional data
(Lee and Landgrebe, 1993), the change in standard deviation exemplifies the information loss
associated with sensor blurring. The CC based method further investigated this loss of
information, while verifying the detective and corrective capabilities of the developed

algorithms.

The CASI PSF,.: modified the spatial correlation structure of the image. In particular, spatial
correlations substantially increased for closely neighbouring pixels displaced by 2 in the across
track and 1 in the along track. These results directly reflect the structure of the CASI PSFe:.
Although the PSF.; did not extend spatially more than 2 pixels, spatial correlations were
saturated for all pixel displacements. These saturated correlations showcase that local sensor

blurring can have global impacts on HSI data.

The standard deviation in the calculated CCs indicated that sensor induced blurring
attenuated the natural spatial variability in the image. Once again, this trend held on a global
scale but was more prominent locally. In fact, sensor induced blurring reduced the variability, as
measured by the standard deviation, in the spatial correlation structure of the imaged scene by
54.0%—75.4% for all pixel displacements. As expected, these findings suggest that sensor
generated spatial correlations act to mask and distort the spatial dynamics of the imaged scene

while removing natural variations.

It is important to note that, despite only observing deviations in the CCs from the 34"
decimal places, the CC based method was still sensitive to the simulated blurring effects,
especially the saturated correlations and the asymmetry between the across track and along track
spatial correlations. With this in mind, the CC based algorithm can be applied to assess the
effectiveness of deconvolution algorithms that attempt to mitigate sensor—generated spatial

correlations. This was exemplified by the developed deconvolution algorithm.

When applied to the non—ideal dataset, the deconvolution algorithm brought the spectral
variability, as measured by the standard deviation, within 6.8% of the spectral variability in the
ideal image. In fact, there was no significant difference in the spectral variance between the ideal

and corrected non—ideal datasets. This finding suggests that the deconvolution algorithm
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recovered some of the information that was attenuated by sensor blurring. A closer examination

of the algorithm’s performance with the CC based method revealed similar conclusions.

In the corrected non—ideal image, the standard deviation values around the calculated mean
CCs were relatively constant, similar in magnitude to those observed in the ideal simulated
image. In fact, the spatial structure in the along track of the ideal image was almost completely
recovered from the non—ideal image. A similar statement can be made in the across track for
pixel displacements > 2. Although the algorithm decreased the mean CC for neighbouring pixels
separated by < 3 in the across—track, it did not completely restore the spatial structure. At a pixel
displacement of 1, there were still elevated correlation levels. In addition, the algorithm
introduced an artificial decorrelation at a pixel displacement of 2 in the across—track. This
decorrelation was a consequence of the pure pixel assumption. Although these artifacts may be
problematic for some applications, it is important to recognize that deconvolution is an ill-posed
problem; information will always be lost in a blurred image and thus it is impossible to perfectly
eliminate sensor blurring effects, especially at the attenuated high frequencies (Chaudhuri et al.,
2014). In fact, many algorithms suffer from difficulties in restoring high—frequency spatial
structures in HSI data (Henrot et al., 2013). Despite introducing this decorrelation, the equalized
spatial correlation levels revealed that the algorithm restored the spatial structure of the dataset to
some degree. A similar conclusion could be drawn from the standard deviation of the calculated
CC values. The deconvolution algorithm brought the variability in the spatial correlation

structure of the non—ideal imagery within 23.3% of the spatial variability in the ideal imagery.

To ensure that the increase of spatial and spectral variability was linked to a decrease of
difference between the ideal and non—ideal simulated images, Euclidean distance metrics were
calculated. As shown in Figure 4.10, the Euclidean distance between the ideal and non—ideal
imagery decreased by an average of 1.91% after the application of the deconvolution algorithm.
Along with these findings, the increased spectral and spatial variability continue to suggest that
the simple deconvolution algorithm is restoring some of the information that was lost to sensor

blurring.

To assess the deconvolution algorithm further, it was applied to real-world HSI data. When
applied to both real-world HSI datasets, there was a qualitative increase in image sharpness

(Figure 4.11 and Figure 4.12). In the airport imagery, this was evident from the abundant high
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contrast edges produced by man—made structures like roads, buildings, cars and parking lots.
Although there were fewer high contrast materials in the Mer Bleue imagery, the calibration
tarps and tree crowns clearly showcased the sharpening effect of the deconvolution algorithm.
These observations were supported quantitatively by analyzing the edge of a calibration tarp in
the Mer Bleue imagery and the edges of the calibration site in the airport imagery. In Figure
4.13, the spectra of the adjacent 7 pixels to each of the studied edges were displayed. In both the
Mer Bleue and Airport imagery, the spectra from the pixels immediately neighbouring the edge
pixel were closer to the spectra of their respective materials after the application of the
deconvolution algorithm, indicating that the imagery had been sharpened. This finding was
supported by Figure 4.14, where the horizontal profile across the two edges increased in slope
(an in extension image sharpness) by an approximate factor of 1.4 after the application of the

deconvolution algorithm.

To showcase an application of the developed algorithms, the CC based method was applied
to the vegetation region of interest (Figure 4.4) in the Mer Bleue image to analyze the spatial
correlation structure of the plot before and after the deconvolution was applied. In the original
imagery, spatial correlations decreased marginally over space in both the across track and along
track. This decrease likely corresponded with changes in the peatland over large spatial scales.
With a priori knowledge of the micro spatial patterns in the vegetation and surface elevation
(Figure 4.1) (Arroyo-Mora et al., 2018a; Arroyo-Mora et al., 2018b; Eppinga et al., 2008;
Lafleur et al., 2005), it was possible to observe a subtle sinusoidal structure in the correlation
plots that repeated every 4 pixels (2 m) in the across—track. The period of this sinusoidal
structure agreed with the spatial scale of the patterns in surface vegetation and microtopography
(2—4m) (Belyea and Baird, 2006; Malhotra et al., 2016; Wilson, 2012). These trends were not
apparent in the along track. However, this was to be expected based on the Nyquist sampling
theorem; the sampling frequency in the along track direction (0.5 cycles per m) was less than the
frequency of the patterns in surface vegetation and microtopography (0.25-0.5 cycles per m)
multiplied by 2 and thus undetectable. After applying the deconvolution algorithm, there was an
overall decrease in the spatial correlations. The simulation results suggested that this decrease
was due to the attenuation of sensor induced correlations. The sinusoidal structure in the across
track was more prominent after the deconvolution algorithm was applied. These results suggest

that the deconvolution algorithm highlighted the patterns in microtopography and, in extension,
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vegetation composition. In this particular ecosystem, the microtopography is important as it
covaries with surface vegetation, water table position and carbon uptake from the atmosphere

(Malhotra et al., 2016).

Although more sophisticated deconvolution algorithms exist (Chaudhuri et al., 2014; Fang et
al., 2017; Henrot et al., 2013; Jackett et al., 2011), they may rely on a higher level of
mathematical understanding to implement. Without a fundamental understanding of a method, its
implementation can lead to inaccurate interpretations. This may be problematic for end—users,
who often do not have the appropriate information to implement these methodologies effectively.
The presented method is intuitive; the algorithm is based on the principles of the classical linear
spectral unmixing model and is thus simple to understand and implement. Despite using a
wavelength—independent PSF,,; that was derived based on a theoretical calculation as opposed to
an empirical estimation, the algorithm was capable of sharping real-world HSI data. With a more
rigorous characterization of the optical blurring that accounts for the wavelength dependence of
the point spread function, the performance of the deconvolution algorithm could be improved,
resulting in sharper imagery and a spatial correlation structure more representative of the imaged

scenc.

Before applying the developed deconvolution algorithm, it is critical to consider the
implications and validity of the pure pixel assumption made in Equation 8. Given that HSI may
be characterized by sensor blurring and noise that varies as a function of wavelength, these
assumptions may not be realistic for real-world spectral imagery. They are, however, reasonable
to simplify the system since the spatial variability within each pixel is often non—constant and
unknown. Similar pure pixel assumptions have been made in other deconvolution studies (e.g.,
(Huang et al., 2002; Townshend et al., 2000)) at the satellite level. This is encouraging since the
pure pixel assumption is more likely to hold for airborne systems that collect data at higher
spatial resolution (<3 m). That being said, end—users must be aware that the assumption may lead

to anomalies in the deconvolved data.

As previously mentioned, the pure pixel assumption resulted in artificial decorrelations at
pixel displacements from 1-2 pixels in the across—track. Such artifacts are potentially
problematic for certain applications, likely showing overestimated contrast along edges. Despite

this, the real-world imagery was sharpened with promising results. When analyzing the
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sharpening effects on a pixel-by—pixel basis (Figure 4.13), there was little evidence that showed
any overestimated contrast in the imagery. That being said, given the construction of the
algorithm, overestimated contrast is possible. Furthermore, this algorithm has no constraints on
the positivity of the deconvolved imagery. Since negative reflectance has no real-world
significance, edges between extremely high reflectance and low reflectance materials may need
to be checked for non—positive anomalies. Furthermore, low signal and excessive noise in the
data may negatively affect the performance of the algorithm, also resulting in negative values. As

such, the application of this algorithm may not be ideal for low signal to noise ratio bands.

This work focused on developing a simplistic approach to deconvolution, which is a complex
and ill-posed problem. To satisfy this objective, the pure pixel assumption was necessary,
despite the potential for introducing data anomalies. In this study, there is ample evidence to
suggest that the algorithm is effective at mitigating sensor—generated blurring effects within the
data. With this in mind, if sensor blurring is the major obstacle for a particular application, the
developed methodologies should be sufficient to observe noticeable improvements. From that
point, more complex deconvolution algorithms (e.g., Chaudhuri et al., 2014; Fang et al., 2017,
Henrot et al., 2013; Jackett et al., 2011) can be implemented if the developed algorithm is

introducing too many artifacts in the HSI data.

From both the simulated and real-world HSI data, sensor induced blurring effects were found
to mask and distort the natural spatial dynamics of the imaged scene. These blurring effects
directly corresponded with the structure of the PSF.;. From this work, it is clear that sensor
induced blurring effects are not always identical in the across track and along track directions.
The same can be said for the raw pixel sizes. In fact, for pushbroom sensors, pixels are inherently
more rectangular than square. Although it is possible to obtain nearly identical pixel resolutions
in the across track and along track directions, technical restraints may make it difficult. For
instance, the resolution in the along track is determined by the integration time and platform
speed, both of which have impacts on other aspects of the data (signal to noise ratio, positional
accuracy, etc.), especially for low altitude platforms such as unmanned aerial systems (Arroyo-
Mora et al., 2019). This implies that HSI data characterize the scene on a slightly different scale
in the across track than the along track directions, with different blurring levels. Given the scale—

dependent nature of many natural phenomena, patterns could be observable in one spatial
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dimension, but not the other. This was exemplified by the Mer Bleue imagery, in which the
micro—spatial patterns in surface vegetation could be detected in the across—track, but not the
along track. Without considering the PSFy.: and the heading of the data acquisition flight, sensor
induced blurring effects could be mistaken for directional trends in the data. Similarly, scale—
dependent phenomena observable in either the across track or along track directions could lead to

assumptions of directionality to a trend where none exists.

Given the importance of sensor point spread functions, when applying HSI data, it may be
critical to analyze the imagery in its original sensor geometry, pre—geocorrection. Many
geocorrective methods operate by resampling the raw HSI data on a linear grid with a nearest
neighbour resampling technique (Warren et al., 2014). As such, the location of each point in the
raw imagery is shifted and the original sensor geometry is lost to some degree. Consequently, the
natural spatial correlations of a scene are likely to be distorted even further as sensor—generated
spatial correlations are shifted to fit the pre—specified linear grid. Further research into the spatial
correlation structure of HSI data post geocorrection would give insight into the cumulative

effects of sensor—generated spatial correlations.

Overall, the described methodology provides a framework to characterize and mitigate the
implications of sensor induced blurring; by generating a simulated dataset with known blurring,
it is possible to understand the degree to which sensor blurring (and the associated artificial
spatial correlations) will affect real-world HSI data. At the satellite level, there exists a rich body
of literature that characterizes and discusses the implications of sensor point spread functions on
a wide array of remote sensing tasks such as classification (Huang et al., 2002), sub—pixel feature
detection (Radoux et al., 2016) and spectral unmixing (Wang et al., 2018). Unfortunately, the
implications of sensor point spread functions have yet to be fully investigated to the same degree
at the airborne level. This may be problematic as sensor—generated blurring effects may be more

prominent for airborne platforms (Schlépfer et al., 2007).

4.5. Conclusions
The presented work developed two simple and intuitive algorithms to characterize and

mitigate sensor—generated spatial correlations while emphasizing the implications of sensor point
spread functions. The first algorithm applied the CC to observe and quantify spatial correlations.

The algorithm was able to characterize the structure of spatial correlations. Sensor blurring was
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found to increase spatial correlations and decrease the variance in the system. The second
algorithm developed in the study used a theoretically derived PSF.; to mitigate sensor—generated
spatial correlations in HSI data. The CC-based algorithm showed that sensor blurring generated
spatial correlations that removed 54.0%—75.4% of the natural variability in the spatial correlation
structure of the simulated HSI data. Sensor blurring effects were also shown to remove 31.1%—
38.9% of the spectral variability. The deconvolution algorithm mitigated the observed sensor—
generated spatial correlations while restoring a large portion of the natural spectral and spatial
variability of the scene. In the real-world I data, the deconvolution algorithm quantitatively and
qualitatively sharpened the imagery, decreasing levels of spatial correlation within the imagery
that were likely caused by sensor induced blurring effects. As a result of this effect, the natural
spatial correlations within the imagery were enhanced. The presented work substantiates the
implications of sensor—generated spatial correlations while providing a framework to analyze the
implications of sensor blurring for specific applications. Point spread functions are shown to be
crucial variables to complement traditional parameters such as pixel resolution and geometric
accuracy. The developed tools are simple and intuitive. As a result, they can be readily applied
by end—users of all expertise levels to consider the impact of sensor—generated blurring, and by

extension, spatial correlations, HSI applications.
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Connecting Statement (Chapter 4 to Chapter 5)

Chapter 4 developed novel algorithms to characterized sensor generated spatial correlations
that were caused by the overlap in the spatial response of neighbouring pixels. The study
highlighted that pixels are not square; based on the sensor net point spread function, the spatial
response to any given pixel extends past the square boundaries given by the spatial resolution
and 1s non-uniform. When adopting a raster data structure, even under ideal conditions, less than
55% of the signal originates from within the spatial boundaries of a square pixel. The work in
chapter 4 is supported by Appendix 7.1, which presents a workflow to account for the spatial
point spread function in simulation efforts. This appendix substantiates the importance of
considering point spread functions in flight planning, data fusion and data cross-validation
efforts. Overall, chapters 4 and 7.1 show that the dimensions of each square pixel in
georeferenced raster end products misrepresent the spatial properties of each spectral
measurement and thus should be supplemented by sensor point spread functions for optimal data

analytics.

Chapter 5 expands on chapters 4 and 7.1, further exploring the manner in which the raster
data model misrepresents hyperspectral imaging data. The research explores the negative
consequences of assuming that pixels are uniformly distributed across the imaged scene.
Specifically, chapter 5 quantifies pixel loss, pixel duplication and pixel shifting errors that are
introduced while generating georeferenced HSI raster end products. In the chapter, an alternative
point cloud based data representation is proposed for data analytics. This Directly-Georeferenced
Hyperspectral Point Cloud data format not only preserves the spatial-spectral data integrity of
hyperspectral imaging data (zero pixel loss, pixel duplication and pixel shifting) but is stored at a
fraction of the file size. In various applications (e.g., classification, spectra geo-location, target
detection), the DHPC outperformed the conventional raster data product due to its ability to

preserve spatial-spectral data integrity.
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Abstract

The raster data model has been the standard format for hyperspectral imaging (HSI) over the
last four decades. Unfortunately, it misrepresents HSI data because pixels are not natively square
nor uniformly distributed across imaged scenes. To generate end products as rasters with square
pixels while preserving spectral data integrity, the nearest neighbor resampling methodology is
typically applied. This process compromises spatial data integrity as the pixels from the original
HSI data are shifted, duplicated and eliminated so that HSI data can conform to the raster data
model structure. Our study presents a novel hyperspectral point cloud data representation that
preserves the spatial-spectral integrity of HSI data more effectively than conventional square
pixel rasters. This Directly- Georeferenced Hyperspectral Point Cloud (DHPC) is generated

through a data fusion workflow that can be readily implemented into existing processing
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workflows used by HSI data providers. The effectiveness of the DHPC over conventional square
pixel rasters is shown with four HSI datasets. These datasets were collected at three different
sites with two different sensors that captured the spectral information from each site at various
spatial resolutions (ranging from ~1.5 cm to 2.6 m). The DHPC was assessed based on three
data quality metrics (i.e., pixel loss, pixel duplication and pixel shifting), data storage
requirements and various HSI applications. All of the studied raster data products were
characterized by either substantial pixel loss (~50-75%) or pixel duplication (~35-75%),
depending on the resolution of the resampling grid used in the nearest neighbor methodology.
Pixel shifting in the raster end products ranged from 0.33 to 1.95 pixels. The DHPC was
characterized by zero pixel loss, pixel duplication and pixel shifting. Despite containing
additional surface elevation data, the DHPC was up to 13 times smaller in file size than the
corresponding rasters. Furthermore, the DHPC consistently outperformed the rasters in all of the
tested applications which included classification, spectra geo- location and target detection.
Based on the findings from this work, the developed DHPC data representation has the potential
to push the limits of HSI data distribution, analysis and application.

Keywords: spatial data integrity, spectral data integrity, nearest neighbor resampling, pixel

loss, pixel duplication, pixel shifting, data fusion, geometric correction

S.1. Introduction
In the era of machine learning, the wealth of spatial-spectral information provided by

hyperspectral imaging (HSI) data presents a unique opportunity to model and understand
complex dynamics in a variety of applications (Eismann, 2012). For instance, airborne long-
wave infrared HSI data have been successfully used for mineral exploration, mining and
geohazard monitoring through the detection of rock forming and alteration minerals (Riley and
Hecker, 2013). In vegetation studies for example, visible and near-infrared airborne HSI data
have been used with thermal imagery for the early detection of Xylella fastidiosa, a pathogenic
floral bacterium (Poblete et al., 2020). The success of these applications, in addition to many
others, rely on the use of various cutting- edge analytical techniques that have been specifically
developed to exploit HSI data and its unique properties. For instance, the high dimensionality of
HSI data can be leveraged using deep feature extraction techniques (Chen et al., 2016; Rasti et

al., 2020) that transform raw data in a hierarchical fashion to a lower dimensional data
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representation composed of new variables that are more discriminant, abstract and robust.
Challenges from spectral mixing in HSI data can be minimized using dictionary learning-based
unmixing approaches (Hong et al., 2019; Liu et al., 2019) to understand the material composition
of a single pixel. Even in the presence of signal noise, targets of interest can readily be detected
using ensemble learning techniques (Zhao et al., 2019; Sun et al., 2020) and classified using

graph convolutional neural networks (Qin et al., 2019; Hong et al., 2020a).

In order to obtain spatially coherent HSI data that optimally preserves the captured spectral
information from the conventional sensor types (e.g., pushbroom and whiskbroom) used on
unmanned aerial systems (UAS) (e.g., Lucieer et al., 2014; Arroyo-Mora et al., 2019; Arroyo-
Mora et al., 2021) and manned airborne platforms (e.g., Kalacska et al., 2016), the geometric
correction is essential. In the geometric correction, each pixel of acquired HSI data is located in a
real-world coordinate space at the intersection of an input digital surface model (DSM) and a
straight line that is projected from the sensor position at the pixel dependent look direction
(Miiller et al., 2002; Schroth, 2004; Yeh and Tsai, 2011; Lenz et al., 2014). The look direction
describes the angle from which incoming electromagnetic radiation is observed by a particular
pixel of the imager (Miiller et al., 2002). It is calculated by accounting for the roll, pitch and yaw
while simultaneously considering the focal geometry and boresight misalignment of the imaging
system (Miiller et al., 2002; Warren et al., 2014). The DSMs used to geometrically correct HSI
data are typically derived from either Light Detection and Ranging (LiDAR) (Liu, 2008), radar
altimetry (Leslie, 2018) or Structure-from-Motion photogrammetry (Westoby et al., 2012).

Due to various factors (e.g., lens distortion, sensor movement, rugged terrains) pixels in the
imagery are not uniformly spaced over the imaged scene after the geometric correction
(Galbraith et al., 2003; Vreys et al., 2016). To correct for this non-uniformity, the geometrically
corrected data are often resampled on a north- oriented linear grid. Each cell in this grid is
typically separated by an equal distance in both the easting and northing directions, leading to a

raster with square pixels (Shlien, 1979; Richards and Jia, 1999; Warren et al., 2014).

When spatially resampling HSI data, the nearest neighbor resampling method is
conventionally applied (Roy, 2000; Williams et al., 2017). In this technique, the spectrum for
each cell in the pre-specified linear grid is determined by the nearest spectrum from the

geometrically corrected imaging data that are being resampled (Shlien, 1979). Since this
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resampling process does not change the value recorded in any given spectrum, the nearest
neighbor methodology preserves spectral data integrity (Schlépfer et al., 2007). Nonetheless, the
nearest neighbor method can compromise spatial data integrity. For instance, nearest neighbor
resampling can lead to a blocky appearance due to pixel duplication if oversampling occurs (Arif
and Akbar, 2005). Likewise, if the data are undersampled during nearest neighbor resampling,
pixels can be lost all together, eliminating valid spectral information (Arif and Akbar, 2005).
Even if pixel duplication and loss are near zero, nearest neighbor resampling shifts the position
of each pixel (Shlien, 1979; Roy, 2000), altering the calculated location of each spectral

measurement.

In many of the popular sensor designs (e.g., pushbroom and whiskbroom) the spatial
characteristics of collected HSI data are often different between the cross track and along track
directions (Inamdar et al., 2020). Therefore, it is difficult to select a spatial resolution for the
resampling grid used in the nearest neighbor methodology. Figure 5.1 illustrates this issue,
showing the spatial resampling process for theoretical HSI data. In this example, the pixel
spacing in the cross track is half that of the along track. If the imagery is resampled to the cross
track pixel spacing, there would likely be a substantial amount of pixel duplication due to
oversampling in the along track (Figure 5.1A). In the alternative case where the imagery is
resampled to the along track pixel spacing, there would be a considerable amount of pixel loss
due to undersampling in the cross track (Figure 5.1B). The impact of pixel loss and duplication
on remote sensing applications has not been addressed in the literature. Regardless of the
method, resampling will affect the spatial integrity of HSI datasets so that the end product fits a
raster data structure (Shlien, 1979).
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Figure 5.1. Pixel loss and pixel duplication during nearest neighbor spatial resampling.
Consider spatially resampling a hyperspectral imaging dataset (given by the colored circles)
acquired along an approximate true north heading where the pixel spacing in the cross track is
half that of the along track. To generate a rasterized data product (given by the grey raster grid
and the small black dots which designate the center of each cell), the data must be resampled on
a north-oriented grid. Panels (A) and (B) show two resampling grids that could be used for the
nearest neighbor resampling.

Instead of the conventional raster data structure, hyperspectral data can be represented as a
point cloud, where each spectrum has a distinct position in a three-dimensional space.
Hyperspectral point clouds have been extensively discussed in the remote sensing literature.
Hyperspectral point cloud generation methodologies can be grouped into three main categories
(Brell et al., 2019): 1) physical measurements that collect simultaneous hyperspectral and surface
elevation data from a single sensor (e.g., Vauhkonen et al., 2013), 2) photogrammetric ranging
with multiple full-frame hyperspectral images (e.g., Oliveira et al., 2019) and 3) data fusion that
synergistically integrates surface elevation data with conventional HSI data (e.g., Brell et al.,
2019). With physical measurements, it is critical to recognize that a single airborne sensor is not
capable of collecting both high quality spectral and elevation data (Brell et al., 2019), especially

at fine spectral-spatial resolutions. With photogrammetric ranging, the data storage requirements
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can pose operational and computational difficulties, especially at high spatial resolutions (< 3
cm) over large extents since a large volume of data are collected due to the necessity of multiple
images with significant overlap. There can also be fundamental issues with photogrammetric
ranging hyperspectral point cloud generation related to spectral data integrity depending on the
manner in which the spectral information is assigned to each calculated elevation point (Aasen et
al., 2015). Data fusion utilizing separate surface elevation and HSI datasets are generally the
most feasible, however, their spectral and spatial alignment is challenging due to different
sampling strategies, interaction with surface objects and fundamental differences in sensor
characteristics (e.g., spectral-spatial point spread functions, illumination sources and viewing

angles) (Brell et al., 2016; Brell et al., 2017; Brell et al., 2019).

Despite the abundance of hyperspectral point cloud generation methods, raster datasets have
remained the standard for HSI data for over 40 years (Vane et al., 1984; Wilkinson, 1996; Goetz,
2009). This is likely due to the aforementioned difficulties with hyperspectral point cloud
generation approaches: they can be difficult to implement, computationally expensive, result in
large file sizes and compromise spatial-spectral data integrity. Interestingly, when generating
conventional raster images, a hyperspectral point cloud is generated as each hyperspectral pixel
is assigned an easting, northing and elevation value during the geometric correction (Miiller et
al., 2002; Lenz et al., 2014). This point cloud information is rarely analyzed by end users, who
are provided with the elevation removed, resampled HSI products in raster format. A data fusion
workflow that is implemented via the geometric correction would be straightforward to
implement in existing processing protocols. The lack of spatial resampling in such a data product
would also mean that the point cloud would preserve the spatial-spectral integrity of HSI data

more effectively than rasters.

The objective of our study is to propose a hyperspectral point cloud data representation that
preserves the spatial-spectral integrity of HSI data more effectively than conventional square
pixel raster end products. This data representation, the Directly- Georeferenced Hyperspectral
Point Cloud (DHPC), is generated through a novel data fusion workflow that can be
implemented with the same tools used to generate conventional rasters. Our work herein first
describes four HSI datasets that we use to generate both raster and DHPC end products. This

description incudes an overview of the implemented raster data processing workflow and the
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developed DHPC data fusion workflow. After, we assess the DHPC and raster data products
based on three spatial integrity data quality metrics (i.e., pixel loss, pixel duplication and pixel
shifting) and data storage requirements, which is an important parameter for data distribution.
Finally, we assess the practical implications of the data quality metrics by comparing the DHPC
end products against the conventional raster end products in common HSI applications including
classification, spectra geo-location and target detection. Overall, our study proposes an
alternative data representation to the conventional raster data model that has the potential to push

the limitations of data distribution, analysis and application in HSI.

5.2. Materials and Methods

5.2.1. Data Collection and Processing

5.2.1.1. Study Areas
The study analyzed HSI data collected at three field sites with different topographic features:

the Mer Blue Peatland (MBP), the Cowichan Garry Oak Preserve (CGOP) and the Parc National
du Mont- Mégantic (MMG). These sites are important climate change and conservation study
areas. The MBP is a ~8,500 year old ombrotrophic bog in Ottawa, Ontario, Canada (Lafleur et
al., 2001). It is characterized by a hummock-hollow microtopography that corresponds with
spatial patterns in vegetation and hydrology (Malhotra et al., 2016). A hollow is a wetter low-
lying area that is dominated by Sphagnum spp. mosses, while a hummock is a drier elevated
mound rising from the surface with a dense cover of vascular plants in addition to mosses
(Lafleur et al., 2005; Eppinga et al., 2008). The CGOP is located near Duncan, British Columbia,
Canada. The site is an endangered Garry Oak Meadow with an open forest and an understory
composed of native grasses and herbaceous vegetation. At this site, there is a difference in
elevation (>10 m) between the top of the canopy and the understory. The MMG field site is
located in southern Québec, Canada. The site is composed of mixed northern hardwood and
boreal forest stands. The elevation gradient at this site is relatively large in comparison to the
other two sites, changing by more than 600 m within the 10 km? area surrounding the peak of the
mountain (Savage and Vellend, 2015).
5.2.1.2. Hyperspectral Imaging Data

HSI data were acquired with two hyperspectral imagers: the micro-Compact Airborne
Spectrographic Imager (WCASI-1920, ITRES, Calgary, AB, Canada) and the Compact Airborne
Spectrographic Imager (CASI-1500, ITRES, Calgary, AB, Canada). The imagers were mounted
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on different airframes and captured spectral information at different spatial scales (~1.5-3 cm
and ~0.5-2.5 m, respectively) over the visible-near infrared portion of the electromagnetic
spectrum. The pCASI- 1920 was mounted on a DJI Matrice 600 Pro UAS. It is a variable
framerate pushbroom imager that collects spectral data across a 34.21° field of view over 288
spectral bands (401-996 nm) on a silicon-based focal plane array (Arroyo-Mora et al., 2019).
The CASI-1500 was mounted in a Twin Otter fixed-wing aircraft. It is a variable frame rate,
grating-based, pushbroom imager with a 39.8° field of view that collects spectral information
over 288 spectral bands (366—1,053 nm) with a silicon-based charged coupled device detector
(Soffer et al., 2019). Both pCASI-1920 and CASI-1500 HSI data were collected over the MBP.
LCASI- 1920 data were collected at the CGOP site and CASI-1500 data were collected at the
MMG site. Table 5.1 lists the parameters associated with both the pCASI-1920 and CASI-1500
datasets. The CGOP and MMG HSI data represented terrains with large elevation gradients

relative to the sensor altitude and nominal pixel sizes of the imagery.

The raw hyperspectral data were radiometrically and atmospherically corrected. The
radiometric correction was implemented with proprietary software developed by the sensor
manufacturer while the atmospheric correction was done using ATCOR4 [as described in Soffer
et al. (2019)]. The MMG imagery further had a Lambert + Statistical-Empirical BRDF
topographic correction applied (Richter and Schlipfer, 2020).
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Table 5.1. Parameters for the hyperspectral imaging data acquired over the Mer Bleue Peatland
(MBP), the Cowichan Garry Oak Preserve (CGOP) and the Parc National du Mont- Mégantic

(MMG) with the uCASI-1920 and the CASI-1500. Nominal altitudes are reported as height
above ground level.

Parameter MBP MBP CcGOP MMG
(nCASI-1920) (CASI-1500) (nCASI-1920) (CASI-1500)

Date (dd-mm-yyyy) 15-07-2019 15-07-2019 15-05-2019 18-07-2019
Image Start Time (hh.mm.ss GMT) 15.44.49 15.44.38 18.33.41 15.06.34
Latitude of Flight Line Centre (DD) 45.4102 45.4014 48.8080 45.4588
Longitude of Flight Line Centre (DD) -75.5157 -75.5156 -123.6305 -71.1516
Nominal Heading (°) 156 341 165 171
Nominal Altitude (m) 45 1133 60 2325
Nominal Speed (m/s) 2.7 41.6 2.7 53.5
Integration Time (ms) 9 48 9 48
Frame Time (ms) 11 48 11 48
Cross Track Pixel Resolution (cm) 1.5 55 2.0 113
Cross Track Pixel Spacing (cm) 1.5 55 2.0 113
Along Track Pixel Resolution (cm) 2.4 198 2.4 257
Along Track Pixel Spacing (cm) 3.0 198 3.0 257

5.2.1.3. Conventional Hyperspectral imaging Data (Square Pixel Raster)
To generate conventional HSI end products (georeferenced raster with square pixels), the

radiometrically and atmospherically corrected data were first geometrically corrected and then
spatially resampled. The geometric correction was completed with proprietary software from the
sensor manufacturer using the onboard inertial navigation system data (position and attitude).
The DSMs used for the geometric correction are described in section 5.2.1.5. Conventional
square pixel raster images were generated for each HSI dataset by spatially resampling the
geometrically corrected HSI data on a north- oriented linear grid using a nearest neighbor
methodology. Since there was a discrepancy between the cross track and along track pixel

spacing of the collected HSI data, each HSI dataset was resampled on two different grids.
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Adjacent grid cells were separated by the cross track pixel spacing in the first resampling grid
and the along track pixel spacing in the second resampling grid. Since the along track spacing
was consistently larger than that of the cross track, the first resampling grid oversampled the data
while the second undersampled the data to generate raster data products with square pixels. In
total 8 imaging data sets were generated (two images for each of the HSI datasets described in
Table 5.1).
5.2.1.4. Directly-Georeferenced Hyperspectral Point Cloud (DHPC)

The DHPC data fusion workflow implements a standard geometric correction processing
protocol to create the point cloud (Figure 5.2). The workflow has three major inputs: the
atmospherically corrected HSI data, the inertial navigation data of the sensor (position and

attitude) and a DSM of the area covered by the HSI data.

The first step in the DHPC data fusion workflow modifies the input DSM, blurring it through
convolution with the point spread function of the imaging sensor. This modification makes the
spatial properties of the DSM more consistent with the collected HSI data; each point in the
blurred DSM corresponds to the average elevation of the objects/terrain that would contribute to

a single HSI pixel.

In the second and final step of the data fusion workflow, the HSI data in its original sensor
geometry is projected onto the blurred DSM. This was practically done by applying the
geometric correction described in section 5.2.1.3, using the blurred DSM instead of the original.
As a result of the blurred DSM, each HSI pixel receives the average surface elevation of the
materials contributing to it. With the real-world position (northing, easting, averaged surface
elevation) of each pixel from the imagery in its original sensor geometry, the DHPC is complete.
In our study, each point in the DHPC data product was referred to as a “pixel”. Following the

described workflow, a DHPC was generated for each of the HSI datasets from Table 5.1.
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Figure 5.2. Flow chart of the hyperspectral imaging (HSI) processing workflow for both
conventional rasterized hyperspectral imaging end products and the Directly-Georeferenced

Hyperspectral Point Cloud (DHPC)
5.2.1.5. Digital Surface Models

The DSMs used to geometrically correct the pCASI-1920 data were generated by using a

Structure-from-Motion Multiview Stereo (SfM-MVS) workflow from RGB photography
(Kalacska et al., 2017; Kalacska et al., 2020). In this workflow (Lucanus and Kalacska, 2020)

geo-tagged aerial photographs were collected on June 6th, 2019 (for MBP) and May 11th, 2019
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(for CGOP) over the area covered by the pCASI-1920 imagery, with a Canon EOS 5D Mark III
equipped with a Canon EF 24-70 mm f/2.8 L II USM lens set to a focal length of 24 mm. All
photographs included the geolocation and altitude of the UAS, as recorded by an EMLID Reach
M+ GNSS module. The collected raw GNSS data were postprocessed with RTKLIB (Takasu and
Yasuda, 2009) using local base station data collected from a EMLID Reach RS+ GNSS module
that was receiving incoming corrections from a commercial NTRIP (Networked Transport of
Radio Technical Commission for Maritime Services via Internet Protocol) casting service
(Smartnet North America, Atlanta) on an RTCM3-iMAX (Radio Technical Commission for
Maritime Individualized Master Auxiliary) mount point that used both GPS and GLONASS
constellations. The SIM-MV'S workflow was implemented using Pix4D Mapper Pro [see
Kalacska et al. (2020) for details], ultimately generating a DSM at a spatial resolution of 0.69 cm
for the MBP and 1.52 cm for the CGOP.

For the MBP CASI-1500 data, airborne LiDAR data collected for the National Capital
Commission in 2009 (density 2—4 pts m?) (Arroyo-Mora et al., 2018b) were used to generate a
DSM at a spatial resolution of 0.5 m. Based on ground observations and peat growth modeling,
the MBP has been estimated to grow <0.5 m over the last millennium (Frolking et al., 2010).
Given this slow growth rate, the LIDAR data collected in 2009 is still appropriate to apply to the
peatland.

For the MMG CASI-1500 data, the study used airborne LiDAR data collected in 2018 by the
Ministry of Forests, Wildlife and Parks of Québec as part of the province-wide LiDAR sensor
data acquisition project (density 2.5 pts m2) (Le ministere des Fore’ts, de la Faune et des Parcs,

2021). The dataset was provided as a DSM at a spatial resolution of 1 m.

5.2.2. Data Assessment Metrics
Three spatial data quality metrics were calculated for each DHPC and square pixel raster end

product: pixel loss (PL), pixel duplication (PD) and root mean square error in the radial direction
(RMSE;,). PL (%) is the total percentage of pixels from the original HSI dataset that were not
used in the final data product. PD (%) is the total percentage of pixels in the final data product
that are duplicates. The RMSE; gives a measure of the average distance (cm) the location of each
pixel (as determined from the geometric correction) was shifted while generating the final end

product. Assuming a uniform pixel spacing in the cross track and along track directions, it is
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possible to derive theoretical PL and PD values (see Theoretical Pixel Loss and Pixel
Duplication Derivation) for any given HSI dataset from nominal flight parameters alone.
Following this derivation, theoretical PL (PLH) and PD (PDH) values were calculated for each
of the resampled and DHPC datasets and compared to the measured values. In addition to the
described spatial data quality metrics, data storage requirements for each DHPC and square pixel
raster end product were also calculated.

5.2.2.1. Pixel Loss
The PL was calculated according to Mulcahy (2000) (Eq. 1):

—(1_Yn
PL-(l . )><100%, 1)

Io
where the following holds: U, _represents the number of unique spectra in the analyzed data
product (I;) and T}, represents the number of total spectra in the original imagery from which I

was derived. PL is given as a percentage, indicating the total percentage of pixels from the

original HSI dataset that were not used in the final data product.

5.2.2.2. Pixel Duplication
The PD was calculated according to Mulcahy (2000) (Equation 2):

— Ur,
PD = ( - T—) x 100%, @)

Ir
where the following holds: U, represents the number of unique spectra in the analyzed data

product (I;) while T, represents the total number of spectra in Ir. PD is given as a percentage,

indicating the total portion of pixels in I; that are duplicates of one another.

5.2.2.3. Horizontal Linear Root Mean Square Error in Radial Direction
The RMSE; was calculated according to American Society for Photogrammetric Engineering

Remote Sensing (2015) (Equation 3):

n 5

i=n Y \12 L 2
RMSET — \/ i=1([Pr,N0Tth(sr (l)) Po,NOTth(Sr (1))] +[Pr,EaSt(ST (l)) PO,EaSt(ST (l))] ) (3)

where the following holds: S,(i) represents the spectrum from the ith pixel of the analyzed
data product (Iv); Pr.norn(Sr (i) represents the northing position of Sy(i) in Ir; P rasi(Ir (i),

represents the easting position of Sy(7) in Ir; n represents the total number of spectrum in I;; Py,
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North(Sr(7)) represents the original northing position of S,(i) as calculated during the geometric
correction; and P, rast(S/(7)) represents the original easting position of S,(i) as calculated during
the geometric correction. The RMSE; gives a measure of the average distance (cm) the location

of each pixel (as determined by the geometric correction) is shifted in the final data product.

5.2.2.4. Theoretical Pixel Loss and Pixel Duplication Derivation
This section derives the theoretical PL (PLu) and PD (PDn) of a hypothetical HSI dataset (/)

collected with uniform pixel spacing in the cross track and along track directions. In this section,
I,was assumed to be collected over an area with length W in the cross track direction and length
L in the along track direction. Furthermore, the cross track pixel spacing (Pscross) Was assumed to
be smaller than that of the along track pixel spacing (Psaiong). The total number of spectra in I,

(T;,) was approximated by the following:

TIO = (L/Psalong)(W/PScross)- (4)

The theoretical PL and PD values were calculated for the two resampling approaches
investigated in our study. The first resampling grid oversampled /,, (resampling resolution equal
to the cross track pixel spacing) while the second undersampled I, (resampling resolution equal
to the along track pixel spacing). The total number of pixels in the resampled dataset can be

calculated from:
Ty, = (L/R)(W/Ry), )
where R, is the resolution of the resampled image (I,.).

Considering the first scenario (dataset is oversampled), it is assumed that there is no PL (PLy
=0 %) since R, is always equal to or smaller than pixel spacing throughout /,,. To derive PDy,

the number of total (T; ) and unique (U, ) spectra within the resampled image (Ir) must be

calculated. Since there is no PL, U;_ is equal to T}, .

Starting from the PD formula given in section 5.2.2.2, the derivation follows:

Uj
PDy = (1 - T—) x 100% (6)

Iy
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L/P wW/P
PDH — (1 _( / Salong)( / Scross)> % 100% (7)
(L/Pscross)(W/PScross)
PDy = (1 - PS—) x 100%. (8)
PSglong

Considering the second scenario (dataset is undersampled), it is assumed that there is no PD
(PDn = 0 %) since the resampling resolution is always equal to or greater than the pixel spacing

throughout I,,. To derive PLu, T;  and U, are required. Since there is no PD, U;_is equal to T}

Starting from the PL formula given in 5.2.2.1, the derivation follows:

U
PLy = <1 — —T> X 100% 9
TIO
L/P w /P
PLy = (1 _ (L/Puiong)(W/ S‘”""g)> x 100% (10)
(L/Psalong)(W/PScross)
PLy = (1 —PS—) X 100%. (11)
Psglong

The theoretical PL and PD of the DHPCs required no derivation; since pixels were not

resampled after the geometric correction, there should be zero PLy or PDg.

5.2.3. Hyperspectral Imaging Data Applications

To compare the DHPC to the two resampled data products, two applications were tested with
the MBP nCASI-1920 imagery. The first was a simple classification problem, differentiating two
microforms (hummocks and hollows) in the MBP. The second pCASI-1920 application aimed to
approximate the potential error in biomass estimation for hummocks and hollows (based on the

classification results).

Two applications were also assessed for the MBP CASI-1500 data. The first located unique
spectra within pre-specified vegetation plots. This application was based on common HSI end
user requirements of matching ground control data (e.g., vegetation species counts) with HSI
data (Arroyo-Mora et al., 2018a). The second CASI-1500 application was a sub-pixel target

detection exercise.

5.2.3.1. Hummock and Hollow Classification (WCASI-1920)
Hummocks and hollows were classified from the MBP nCASI-1920 HSI data using a linear

discriminant analysis (LDA) classification (Fisher, 1936). An independent classification model
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was trained and validated for each of the resampled pCASI-1920 images and the DHPC,
resulting in nine different classification models. Each of the models were differentiated by the
utilized training dataset (oversampled raster, undersampled raster or DHPC) and training
variables (elevation only, spectral reflectance only or elevation and spectral reflectance). The
surface elevation data for the rasterized data products were provided during geometric correction
by resampling the surface elevation value associated with each pixel. The performance of each
model was measured by the overall accuracy, producer’s accuracy and user’s accuracy metrics
calculated on the validation dataset. The training and validation datasets for each model
were generated based on both elevation and spectral data with domain knowledge of the
MBP. In this process, trees were masked by removing the upper 2 percentile of the surface
elevation distribution in each dataset. The surface elevation data were then detrended by
removing the median surface elevation in a 10x10 m area around each pixel. Potential
hummocks were identified as the 75-90" percentile of the detrended surface elevation data.
Potential hollows were identified as the bottom 5 percentile. The identified hummocks and
hollows were further filtered to remove bright (i.e., man-made objects) and low (i.e.,
shadows) reflectance objects. In this filtering, hummock and hollow labels that fell within
the top and bottom 5 percentile of the spectral data at 600 nm were removed. Half of the
remaining hollow labels were randomly selected and designated as training data. The other
50 % of hollow labels were designated as validation data. An equal number of hummock
data points were randomly selected and designated as training data and validation data. A
minimum of 60,000 training and validation data points were used for each of the models.
5.2.3.2. Biomass Error Estimation for Hummocks and Hollows (nCASI-1920)

To assess the impact of resampling and the DHPC on a basic modeling question, our study
investigated how classification errors could affect total aboveground biomass estimation. The
biomass of hummocks and hollows were assumed to be Gaussian in nature. For hummocks, this
Gaussian distribution was defined by a mean value of 527 g/m? and a standard deviation (SD) of
43 g/m?. For hollows, this Gaussian distribution was defined by a mean value of 431 g/m” and a
SD of 147 g/m?. Each of these biomass distributions (mean and SD) were based on ground data

from the MBP reported in Bubier et al. (2003).

A biomass value was randomly generated for each observation in the validation dataset based

on its actual microform label. For instance, if an observation was actually labeled a hummock, it
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would be randomly assigned a biomass value from the previously defined hummock biomass
distribution function. The mean of the randomly generated biomass values was calculated
separately for hummocks and hollows based on the predicted labels in the validation dataset. In a
perfect classification, the mean biomass of predicted hummocks and hollows would be nearly
identical to the values used for the field-based biomass distributions. As such, to quantify the
error in the biomass estimation for hummocks and hollows due to misclassification, the
difference between the mean of the predicted and actual biomass distributions (AB,,mf) was
calculated for both hummocks (ABy nk) and hollows (AB nw).

5.2.3.3. Geo-locating Spectra from Pre-Specified Vegetation Plots (CASI-1500)

One-hundred virtual 3 x 3 m vegetation plots were randomly placed across the MBP
(uniform probability distribution over space). The mean number of spectra and unique spectra
per plot were calculated in both the raster data sets and the DHPC generated from the CASI-
1500. A pixel spectrum was located within a plot if its center was within the spatial boundaries
of the plot. The percentage of these spectra located outside the plots before rasterization were
calculated. The tested datasets were evaluated by identifying the mean number of unique spectra
per plot that fell within its spatial boundaries before and after rasterization.
5.2.3.4. Detecting Sub-Pixel Targets (CASI-1500)

A target detection analysis was conducted on each of the MBP CASI-1500 datasets. One-
thousand artificial targets were randomly placed across the MBP (uniform probability
distribution over space). In sub-pixel detection applications, the position of a target within a
pixel’s field of view and the sensor point spread function are of utmost importance (Radoux et
al., 2016). As such, this application assumed that a target can be detected within a pixel of the
imagery in its raw sensor geometry (pre-rasterization) if the point spread function of the pixel
was greater than a pre-defined threshold value at the location of the target. The study tested
threshold values ranging from 0.15 to 0.85 in increments of 0.05. The higher the threshold, the
more difficult it was for a target to be detected within any given pixel of the imagery in its
original sensor geometry. Based on this target detection, the false discovery rate and false
negative rate were then calculated for each of the oversampled, undersampled and DHPC
products. A pixel was a true positive if the detected target was within its spatial boundaries. For

the rasterized data product, the spatial boundaries were given by their pixel boundaries. For the
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DHPC, the boundaries were given by the full width at half maximum (FWHM) of the sensor

point spread function.

5.3. Results

5.3.1. Hyperspectral Imaging Data Assessment

5.3.1.1. Terrain with Small Elevation Gradient Relative to Sensor Altitude and Nominal
Pixel Size
The MBP HSI data are displayed in Figure 5.3 and Figure 5.4. Table 5.2 records the

RMSE,, PL, PD, PLy, PDy and file size of the raster and point cloud datasets. The oversampled
MBP data products were large in file size (30.90 Gb for pCASI-1920 and 40.36 Gb for CASI-
1500) and characterized by high PD (50.25% for pCASI-1920 and 77.70% for CASI-1500). The
PD for the oversampled CASI- 1500 dataset was relatively large in comparison to the theoretical
value (PD#u 72.22%). The undersampled MBP data products were small (7.77 Gb for pCASI-
1920 and 2.57 Gb for CASI-1500) and characterized by a large PL (51.09% for pCASI-1920 and
72.32% for CASI-1500). The RMSE; for the resampled pCASI-1920 and CASI-1500 were 1.1
cm and 66.7 cm, respectively. The DHPC products for the MBP had a small file size (4.55 Gb for
nCASI-1920 and 3.05 Gb for CASI-1500) and were characterized by zero PL, PD and RMSE..
Supplementary Video S1, S2 show the DHPCs in three dimensions.
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Figure 5.3. Hyperspectral imaging data (R = 639.6 nm, G = 550.3 nm, B = 459.0 nm) from the
uCASI-1920 over the Mer Bleue Peatland. Panels (A, B) are rasterized hyperspectral imaging
datasets resampled to 1.5 x 1.5 cm (A) and 3 x 3 cm (B). Panel (C) represents the Directly-
Georeferenced Hyperspectral Point Cloud (DHPC) viewed from above. Panel (D) displays a
video still of the DHPC in a 12 x 12 m region around the image zoom center. In all panels, each
displayed band is linearly stretched between 0 and 12%. The full video can be seen in
Supplementary Video S1. The white stripes in the DHPC [clearly visible in the image zoom of
panel (C)] represent areas on the ground that were not sampled by the hyperspectral imager
during data acquisition. These gaps are not present in the raster images (A, B) as they are
interpolated over with duplicated pixels from the edges of the stripes during the nearest neighbor

resampling.
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Figure 5.4. Hyperspectral imaging data (R = 640.8 nm, G = 549.9 nm, B = 459.0 nm) for the
CASI-1500 over the Mer Bleue Peatland. Panels (A, B) are rasterized hyperspectral imaging
datasets resampled to 50 x 50 cm (4) and 200 % 200 cm (B) grids. Panel (C) represents the
Directly-Georeferenced Hyperspectral Point Cloud (DHPC) viewed from above. Panel (D)
displays a video still of the DHPC in a 240 % 240 m region surrounding the image zoom center.
The full video can be seen in Supplementary Video S2. In all panels, each displayed band is
linearly stretched between 0 and 12%.
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Table 5.2. The file size, pixel loss (PL), pixel duplication (PD), theoretical pixel loss (PLp),
theoretical pixel duplication (PDpy) and horizontal root mean square error (RMSE,) in the radial
direction for the uCASI-1920 and CASI-1500 data over the Mer Bleue Peatland. These data
include the resampled hyperspectral imaging datasets and the Directly-Georeferenced
Hyperspectral Point Clouds (DHPC).

Dataset (Pixel Size) File Size (Gb) PLu (%) PDu(%) PL (%) PD (%) RMSE:
(cm)
Resampled pCASI-1920 30.90 0 50.00 1.15 50.25 1.1
Data (1.5 x 1.5 cm)
Resampled pCASI-1920 7.77 50.00 0.00 51.09 1.61 1.1
Data (3 x 3 cm)
pCASI-1920 DHPC 4.55 0.00 0.00 0.00 0.00 0.0
Resampled CASI-1500 40.36 0.00 72.22 0.8576 77.70 66.7
Data (50 x 50 cm)
Resampled CASI-1500 2.57 72.22 0.00 72.32 0.43 66.7
Data (200 x 200 cm)
CASI-1500 DHPC 3.05 0.00 0.00 0.00 0.00 0.0

5.3.1.2. Terrain with Large Elevation Gradient Relative to Sensor Altitude and Nominal

Pixel Size
The CGOP and MMG HSI data are displayed in Figure 5.5 and Figure 5.6, respectively.

Table 5.3 records the RMSE,, PL, PD, PLy, PDy and file size of the raster and point cloud
datasets. The oversampled CGOP and MMG data products were large in file size (24.40 Gb for
CGOP and 30.67 Gb for MMG) and characterized by high PD (34.29% for CGOP and 59.76%
for MMG). The oversampled CGOP dataset also had a relatively large PL of 11.09% in
comparison to the theoretical value (PLy 0.00%). The undersampled CGOP and MMG data
products were small in file size (10.89 Gb for CGOP and 5.54 Gb for MMG) and characterized
by high PL (46.69% for CGOP and 58.12% for MMG). The PL for the undersampled CGOP
dataset was relatively large in comparison to the theoretical value (PLu 33.33%). The
undersampled MMG and CGOP data products also had relatively high PD (11.49% for CGOP
and 5.52% for MMG) in comparison to the theoretical value (PDu = 0.00%). The RMSE; for the
resampled CGOP and MMG data were 3.9 cm and 86.6 cm, respectively. The DHPC products
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for the CGOP and MMG sites had a small file size (10.16 Gb for CGOP and 4.73 Gb for MMG)
and were characterized by zero PL, PD and RMSE.. Supplementary Video S3, S4 show the

DHPCs in three dimensions.
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Figure 5.5. Hyperspectral imaging data (R = 639.6 nm, G = 550.3 nm, B = 459.0 nm) from the
UCASI-1920 over the Cowichan Garry Oak Preserve. Panels (A, B) are rasterized hyperspectral
imaging datasets resampled to 2 X 2 cm (4A) and 3 % 3 cm (B) grids. Panel (C) represents the
Directly-Georeferenced Hyperspectral Point Cloud (DHPC) viewed from above. Panel (D)
displays a video still of the DHPC in a 24 x 24 m region surrounding the image zoom center.
The full video can be seen in Supplementary Video S3. In all panels, each displayed band is
linearly stretched between 0 and 22%. The white stripes in the DHPC [clearly visible in the
image zoom of panel (C)] represent areas on the ground that were not sampled by the
hyperspectral imager during data acquisition. These gaps are not present in the raster images
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(4, B) as they are interpolated over with duplicated pixels from the edges of the stripes during
the nearest neighbor resampling.
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Figure 5.6. Hyperspectral imaging data (R = 640.8 nm, G = 549.9 nm, B = 459.0 nm) for the
CASI-1500 over the Parc National du Mont- Mégantic. Panels (4, B) are rasterized
hyperspectral imaging datasets resampled to 110 x 110 cm (A) and 260 x 260 cm (B) grids.
Panel (C) represents the Directly-Georeferenced Hyperspectral Point Cloud (DHPC) viewed
from above. Panel (D) displays a video still of the DHPC. The full video can be seen in
Supplementary Video S4. In all panels, each displayed band is linearly stretched between 0 and
12%. The white stripes in the DHPC represent areas on the ground that were not sampled by the
hyperspectral imager during data acquisition. The white stripes in the DHPC [clearly visible in
the image zoom of panel (C)] represent areas on the ground that were not sampled by the
hyperspectral imager during data acquisition. These gaps are not present in the raster images
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(4, B) as they are interpolated over with duplicated pixels from the edges of the stripes during
the nearest neighbor resampling.

Table 5.3. The file size, pixel loss (PL), pixel duplication (PD), theoretical pixel loss (PLp),
theoretical pixel duplication (PDpy) and horizontal root mean square error (RMSE,) in the radial
direction for the uCASI-1920 data from the Cowichan Garry Oak Preserve and the CASI-1500
data from the Parc National du Mont- Mégantic. These data include the resampled hyperspectral
imaging datasets and the Directly-Georeferenced Hyperspectral Point Clouds (DHPC).

Dataset (Pixel Size) File Size (Gb) PLu (%) PDu(%) PL (%) PD (%) RMSE:

(cm)
Resampled pCASI-1920 24.40 0.00 33.33 11.09 34.29 3.9
Data (2 x 2 cm)
Resampled pCASI-1920 10.89 33.33 0.00 46.69 11.49 3.9
Data (3 x 3 cm)
nCASI-1920 DHPC 10.16 0.00 0.00 0.00 0.00 0.0
Resampled CASI-1500 30.67 0.00 56.11 0.36 59.76 86.6
Data (110 x 110 cm)
Resampled CASI-1500 5.54 56.11 0.00 58.12 5.52 86.6
Data (260 x 260 cm)
CASI-1500 DHPC 4.73 0.00 0.00 0.00 0.00 0.0

5.3.2. Hyperspectral Imaging Data Applications

5.3.2.1. Hummock and Hollow Classification
The three models trained on the spectral data alone had the lowest overall classification

accuracies (83.3-83.7%) (Table 5.4). Importantly, there was a discrepancy in these models
between producer’s accuracy and user’s accuracy. For hollows, the user’s accuracies ranged
from 86.3 to 86.8%. These values were higher than the producer’s accuracies which ranged from
79.1 to 79.6%. The opposite trend was observed for hummocks where the user’s accuracy ranged
from 80.8 to 81.2% while the producer’s accuracy ranged from 87.4 to 87.9%. The models
trained on the surface elevation data alone had overall accuracies of 85.8-86.5%. As with the
spectral models, there was a discrepancy between user’s accuracy and producer’s accuracy. In

hollows, the user’s and producer’s accuracies were valued at 82.4-83.0% and 91.1-91.8%,
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respectively. For hummocks, the user’s accuracy and producer’s accuracies were valued at 90.0—
90.8% and 80.5-81.2%, respectively. The classification models trained on both the spectral and
elevation data had the highest overall accuracy, user’s accuracy and producer’s accuracy values
ranging from 90.0 to 91.3% for both hummocks and hollows. Although all classification
accuracies were relatively constant when comparing models trained with identical variables, the

DHPC based classification had higher overall accuracies by 0.3-0.7%.

Table 5.4. Accuracy results for the hummock-hollow classification models (uCASI-1920
hyperspectral imaging (HSI) data from the Mer Bleue Peatland). Each of the models were
differentiated by the training dataset and training variables. The training datasets included the
Directly-Georeferenced Hyperspectral Point Cloud (DHPC) in addition to the three resampled
hyperspectral images. The superscripts> £ corresponded to the inclusion of the spectral
reflectance and surface elevation, respectively.

Classification Model Overall Hollow Hollow Hummock Hummock
(Pixel Size) Accuracy User’s Producer’s User’s Producer’s
(%) accuracy accuracy accuracy  accuracy
(%) (%) (Y0) (%)
Resampled HSI Data £ 85.90 82.39 91.31 90.26 80.48
(1.5 x 1.5cm)
Resampled HSI Data £ 85.84 82.45 91.07 90.03 80.62
(3 x 3cm)
DHPC Data © 86.52 83.03 91.80 90.84 81.24
Resampled HSI Data S 83.35 86.42 79.14 80.76 87.57
(1.5 x 1.5cm)
Resampled HSI Data 5 83.30 86.29 79.17 80.76 87.43
(3 x3cm)
DHPC Data * 83.72 86.76 79.60 81.15 87.85
Resampled HSI Data > E 90.87 91.20 90.47 90.55 91.27
(1.5 x 1.5cm)
Resampled HSI Data 5 E 90.63 91.10 90.06 90.17 91.21
(3 x 3cm)
DHPC Data £ 91.24 91.32 91.14 91.16 91.34
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The output classification map over a 12 x 12 m plot for each model is shown in Figure 5.7.
When trained on spectral data alone (e.g., Figure 5.7H), the classification tracked hummocks
and hollows observable in the RGB image (Figure 5.7J). Isolated hummock pixels were
observed in hollow patches within the classification. The opposite was also observed, with
isolated hollow pixels within hummock patches. These isolated pixels qualitatively decreased
when using elevation data in addition to spectral data (e.g., Figure 5.71), leading to a higher
spatial coherency. There were few isolated pixels in the classification model trained on the
surface elevation data alone. Nevertheless, there were clear areas of misclassification. For
instance, in the north-west corner of the displayed classification map (e.g., Figure 5.7G), the
entire region was classified as hummocks, despite the presence of hollows that can be seen in the

RGB image (see Figure 5.7J) and surface elevation map (see Figure 5.7K).

183



&

Resampled
(I.5x 1.5 cm)

B) C)

Elevation Spectral Reflectance Spectral Reflectance
+Elevation
D) E) F)
2E
o ©
= o
Elevation Spectral Reflectance Spectral Reflectance
+Elevation

H) 1))

Elevation Spectral Reflectance Spectral Reflectance
+Elevation
J) K)
: 69 m
I Hummocks N
[ Hollows
0 6 m A
I_I_I_l_l_l
68 m

Figure 5.7. Panels (A-1) display sample hummock-hollow classification maps (12 % 12 m plot)
generated from each of the trained models (uCASI-1920 HSI data from the Mer Bleue Peatland).
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The uCASI-1920 HSI data included the Directly-Georeferenced Hyperspectral Point Cloud
(DHPC) in addition to the two resampled hyperspectral images. The hyperspectral dataset used
to generate each panel is given by the row titles. The training variables used to generate each
classification model were displayed in the subtitle below each panel. An RGB image (R = 639.6
nm, G = 550.3 nm, B = 459.0 nm, linearly stretched between 0 and 12%) and surface elevation
map (linearly stretched from 68 to 69 m) were generated by viewing the DHPC from directly
above and are displayed in panels (J) and (K), respectively. The hummocks appear green in
panel (J) while hollows appear red. The white stripes in the DHPC data derivatives (G-K)
represent areas on the ground that were not sampled by the hyperspectral imager during data
acquisition. These gaps are not present in the raster data derivatives (A-F) as they are
interpolated over with duplicated pixels from the edges of the stripes.

5.3.2.2. Biomass Error Estimation
The differences between the mean of the predicted and actual biomass distribution for both

hummocks (ABynk) and hollows (ABnw) are displayed in Figure 5.8 (for exact values see
Supplementary Table S1). The hollow distribution had a positive AB nw for all of the
classification models. The opposite trend was observed in hummocks (AB k<0). AB, nw ranged
from 12.72 to 13.18 g/m? for all models trained with the spectral data alone. AB nk ranged from -
-18.09 to -18.47 g/m? for all models trained with the spectral data alone. The models trained on
the elevation data alone had the largest AB, hw values (16.29-16.91 g/m?). In comparison to these
values, the magnitude of the AB, nk values when using elevation data alone were relatively small
(8.79-9.56 g/m?). When using the classification models that incorporated both spectral and
elevation information, both ABy hw and ABy nk decreased in magnitude; AB, nw was equal to 8.34—
8.54 g/m? while ABy nk ranged from -8.48 to -9.45 g/m?. Although all classification accuracies
were relatively constant when comparing models trained with identical variables, the magnitude

of ABy hw and ABy, nk for the DHPC based classifications were always lower by 0.07-0.97 g/m?.
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Figure 5.8. Biomass estimation errors (difference between mean of predicted and actual
biomass) for the developed hummock hollow classification models for the uCASI-1920
hyperspectral imaging data from the Mer Bleue Peatland. This data included the Directly-
Georeferenced Hyperspectral Point Cloud (DHPC) in addition to the two resampled
hyperspectral images. Each of the models were differentiated by the training dataset (given by
bar colours) and training variables. The bars above 0 correspond to hollow biomass estimation
errors while the bars below correspond to hummocks.

5.3.2.3. Geo-Locating Spectra from Pre-Specified Vegetation Plots
The mean and SD of the number of CASI-1500 spectra located per vegetation plot is shown

in Figure 5.9 (for exact values see Supplementary Table S2). For all resampled data products,
spectra that were originally located outside the plot ended up within the boundaries of the plot

after rasterization. The highest mean number of spectra located per plot (36.00) was acquired
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when oversampling the data. Approximately 62% of the identified spectra were duplicates of one
another as there were only a mean of 13.56 unique spectra per plot. Approximately 38% of these
unique spectra on average were from outside of the actual plots before rasterization. The lowest
mean number of spectra located per plot (2.26) was acquired when undersampling the data.
100% of the located spectra were unique. On average, 40% of the spectra were originally from
outside of the actual plots before rasterization. When using the DHPC, it was possible to locate a
mean of 8.46 unique spectra per plot. With this technique, there was zero duplication in these

spectra. Furthermore, none of the located spectra were originally from outside the actual plots.
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Figure 5.9. The mean and SD of the number of spectra, number of unique spectra and number of
unique spectra properly located per each 3 % 3 m virtual vegetation plot (n = 100) from the Mer
Bleue Peatland CASI-1500 data. The CASI-1500 data included the Directly-Georeferenced
Hyperspectral Point Cloud (DHPC) in addition to the two resampled hyperspectral images. The
error bars give the 1-sigma window around each mean value. Properly located spectra refer to
those which were contained within each plot before and after rasterization (in the case of the
resampled data products).

5.3.2.4. Detecting Sub-Pixel Targets
The results of the sub-pixel target detection (n=1,000 targets) are displayed in Figure 5.10.

The total number of identified targets decreased as the threshold value increased. The total
number of targets identified were identical for the oversampled data product and the DHPC,
decreasing from 1,000 at a threshold of 0.15 to 402 at a threshold value of 0.85. The
undersampled data products detected 577 targets at a threshold of 0.15 and 88 at a threshold of
0.85. The false discovery rate decreased linearly as the applied threshold value increased for all

data products. The false discovery rate of the oversampled data products decreased from 90% at
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a threshold value of 0.15 to 80% at a threshold value of 0.85. These false discovery rates were
consistently larger than that of the undersampled data and the DHPC by an average of 50% and
69%, respectively. For all data products, the false negative rate increased linearly as the applied
threshold value increased. The false negative rate was consistently largest for the undersampled
data product increasing from 67% to 93% as the threshold value changed from 0.15 to 0.85.
These false negative rates were consistently larger than that of the oversampled data and the

DHPC by an average of 53% and 64%, respectively.
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Figure 5.10. Target detection results from the CASI-1500 hyperspectral imaging data over the
Mer Bleue Peatland. Artificial targets (n = 1,000) were randomly placed within the scene. The
CASI-1500 data included the Directly-Georeferenced Hyperspectral Point Cloud (DHPC) in
addition to the two resampled hyperspectral images. Panel (A) displays the number of targets
(out of a maximum 1,000) identified in the target detection. Panel (B) and (C) give the false
discovery and false negative rates, respectively.

5.4. Discussion
Our study presents a novel hyperspectral point cloud data representation which preserves the

spatial integrity of HSI data (i.e., zero PL, PD and pixel shifting). Because the data fusion
workflow does not modify the spectra from the original HSI data, the DHPC also preserves
spectral data integrity. Although the raster datasets preserved spectral data integrity with the

nearest neighbor methodology, spatial data integrity was compromised due to PL, PD and pixel
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shifting from the resampling. For the raster data products, there was a trade-off between PD and
PL that was dependant on the resolution of the implemented resampling grid; oversampling
resulted in substantial PD (~35-75%) while undersampling led to substantial PL (~50-75%)
(Table 5.2 and Table 5.3). The PL and PD were primarily caused by the uneven pixel spacing
between the cross track and along track directions. While it may be possible to collect data with
nearly identical pixel spacing in the cross track and along track, there are practical limitations
that make it difficult. For example, the pixel spacing in the along track is dependent on the
integration time, frame time and platform speed, all of which have impacts on other aspects of
the data such as the signal to noise ratio and positional accuracy (Arroyo-Mora et al., 2019;
Inamdar et al., 2020). The PL and PD caused by nearest neighbor resampling have been analyzed
in a limited number of remote sensing studies (e.g., Kimerling, 2002; Kollasch, 2005; Williams
et al., 2017), with only one focusing on HSI data (Williams et al., 2017). However, it was outside
the scope of these studies to quantify the negative effects of PD and PL.

In the resampled MBP and MMG data, the calculated PL and PD metrics were only
marginally larger than the theoretical expectations (PDy and PLy) (Table 5.2 and Table 5.3).
The PD and PL in the CGOP rasters exceeded theoretical expectations by up to ~13%. The
elevated PD and PL were likely a result of non- uniform pixel spacing due to differences in
surface elevation across the scene. In the CGOP there was a difference in pixel spacing between
the top of the canopy (~1.5 cm in cross track) and the understory (~2.0 cm in cross track). As
such, even when resampling to 2.0 cm, the data were being undersampled at the top of the
canopy, leading to PL. Due to the elevation of the surface relative to the sensor altitude, tall
objects (e.g., treetop) blocked the view of lower lying regions of the imagery (e.g., ground
below the canopy), leading to areas on the ground that were not imaged (data holes seen in
Figure 5.5C). Such gaps are notpresent in the resampled images (Figure 5.5A,B) as they have
beeninterpolated over with duplicated pixels from the edges, increasing PD values. The
conservative assumptions made in section 5.2.2.4 while deriving PDy and PLy likely mean
that these metrics can be usedto approximate the lower boundary of PL and PD. As such,
PDynand PLy are valuable for flight planning efforts, allowing data collectors to avoid PL
and PD in their datasets.
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Regardless of whether the HSI dataset was undersampled or oversampled, pixel shifting was
large in the studied rasters (RMSE; = ~0.33—1.33 pixels in the raster MBP and MMG data) in
comparison to the DHPC. The RMSE; values were, however, less than half the pixel spacing in
the along and cross track directions and thus consistent with studies performed at the satellite
level that quantify pixel shifting due to nearest neighbor resampling (e.g., Tan et al., 2006; Roy
et al., 2016). Pixel shifting due to nearest neighbor resampling has been noted to negatively
affect various applications [e.g., aligning multi-temporal datasets (Tan et al., 2006), change
detection (Roy, 2000), classification (Alcantara et al., 2012) and biophysical parameter
estimation (Tian et al., 2002)]. The exceptionally large RMSE; values (~1.30-1.95 pixels) in the
CGOP was likely caused by the non-uniform pixel spacing across the scene due to large changes

in elevation between treetops and ground below canopy relative to the sensor altitude.

In the DHPC data products (Figure 5.3—Figure 5.6), the observable white stripes represented
areas on the ground that were not sampled by the hyperspectral imager during data acquisition.
Such gaps in the imagery were likely caused by non-uniform sensor movement (e.g., sudden
platform movement from changes in wind direction) between consecutive integration periods. It
is important to recognize that these gaps are a true characteristic of the HSI data itself and are not
data artifacts. Such gaps are not present in the resampled images as they have been interpolated
over with duplicated pixels from the edges of the stripes. This example shows how the raster data
model misrepresents HSI data as neighboring pushbroom HSI pixels in the along track direction

are not uniformly spaced across the entire image.

In an ideal HSI end product, each pixel from the HSI data in its original sensor geometry
should be sampled once. Since each pixel has identical data storage requirements (Johnson and
Jajodia, 1998), an ideal HSI end product would have a file size roughly equal to that of the HSI
data before the geometric correction (e.g., 4.09 Gb for the MBP pCASI-1920 data). In the
rasterized data products, NoData pixels are abundant along the edges of the imagery (black
pixels along the edges of Figure 5.6A,B). These additional NoData pixels contribute to the
overall files size of raster data products (Lutes, 2005), increasing the data storage requirements.
PD in the oversampled datasets led to a larger number of pixels, resulting in larger file sizes than
in the ideal scenario (e.g., 30.90 Gb for the MBP nCASI-1920 data). Although the PL in the

undersampled data product meant that many pixels were lost from the original HSI data in its
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raw sensor geometry (theoretically leading to smaller files sizes than in the ideal scenario), there
were generally more pixels overall due to the presence of the NoData pixels. As such, even the
undersampled datasets often had larger file sizes (e.g., 7.77 Gb for the MBP nCASI-1920 data)
than in the ideal scenario. Even with its additional elevation data, the data storage requirements
of the DHPC were only slightly larger than in the ideal scenario (e.g., 4.55 Gb for the MBP
uCASI-1920 DHPC). The small file size was due to the absence of PD and NoData pixels along
the edges of the imagery, making the DHPC ideal for data distribution. This is important given
the data requirements of HSI, especially for high spatial resolution applications (Arroyo-Mora et

al., 2019).

The DHPC outperformed the raster data products in the four studied applications. In the
hummock-hollow classification, models trained with spectral data alone had the lowest overall
accuracy (~83%) and a discrepancy between user’s accuracy and producer’s accuracy. The
discrepancy meant that there was a large portion of hollow pixels that were misclassified as
hummocks, explaining why the magnitude of ABy ik (~18 g/ m?) was larger than ABy nw (~13
g/m?) in the biomass error calculation. Models trained with the surface elevation data alone had
an intermediate overall accuracy (~86%). The discrepancy between user’s accuracy and
producer’s accuracy in these models meant that the magnitude of ABy nk (~9 g/m?) was smaller
than that of ABy hw (~17 g/m?) since a large portion of hummock pixels were being misclassified
as hollows. The classification models trained on both the spectral and elevation data had high
overall accuracy, user’s accuracy and producer’s accuracy for both hummocks and hollows
(~91%), leading to relatively low errors in biomass estimation (magnitude of ~9 g/m?). These
findings show that the integration of surface elevation and spectral information can lead to
improved results for classification problems, agreeing with a number of other studies (e.g.,
Elaksher, 2008; Vauhkonen et al., 2013; Brell et al., 2019; Sothe et al., 2019; Hong et al.,
2020b). For instance, Sothe et al. (2019) improved the overall accuracy of tree species
classification of tropical forests by > 10% by using elevation data in addition to spectral

information.

The DHPC based classification consistently had higher overall accuracies by 0.3—0.7% which
led to lower biomass estimation errors by 0.07—0.97 g/m?. The higher accuracies were likely due

to the reduced levels of PL and PD, the latter of which has been found to impede classification
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accuracy (Chowdhury and Alspector, 2003). Based on the microform spatial distribution in the
19 km? region of MBP (Arroyo-Mora et al., 2018a), by implementing the DHPC, the
aboveground biomass estimation of hollows (~12.7% area coverage) and hummocks (~51.2%
area coverage) would be improved by 179-1,504 kg and 3,415-9,437 kg, respectively. Such a
systematic increase in biomass estimation performance is biologically important since above
ground biomass is one of the primary sources of carbon to peat soil and thus impacts the ability
of peatlands to mitigate the effects of climate change by sequestering carbon (Moore et al.,

2002).

In the geo-location application, a substantial portion of the located spectra in the raster data
products originated from outside the plot before resampling (~40%). These spectra were only
brought within the plot due to the pixel shifting from resampling. If these spectra were used as
training data in any remote sensing application, this could mean that a substantial amount of the
training data would not be valid, potentially leading to error unrelated to the applied algorithm
(Tan et al., 2006). When using the DHPC, 0% of the identified spectra were originally from
outside the plots. By maximizing the total number of unique spectra located per plot, the DHPC
should lead to improved performance in applications that rely on accurately matching field data
to collected imagery [e.g., biophysical parameter estimation (Zhu et al., 2013) and classification

(Alcantara et al., 2012)].

In the sub-pixel target detection application, a trade-off was observed between false
discovery and false negative rates (Figure 5.10B,C). Such a trade-off is commonly discussed in
the target detection literature (e.g., Han et al., 2014); false negatives increase while false
discoveries decrease as target detection thresholds become more strict. The false discovery and
false negative rates were linked to the PD and PL metrics (Figure 5.11). False discoveries were
created when each true positive pixel was duplicated during resampling. Likewise, PL led to
false negatives as true positive pixels were lost during resampling. These principles explain why
the oversampled data product had a large false discovery rate and a low false negative rate while
the opposite was observed in the undersampled data product. The DHPC minimized both false
discovery rates (19% and 69% smaller on average than the undersampled and oversampled
rasters, respectively) and false negative rates (11% and 64% smaller on average than the

oversampled and undersampled rasters, respectively). The reduced error rates could allow
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individuals following up on target detection maps to identify more targets with less searching
power, reducing cost and minimizing physical and environmental risks, [e.g., landmine detection
(Makki et al., 2017) and invasive species detection (Pengra et al., 2007)]. In target detection
applications where the precise location of a target is necessary, it may be problematic to use HSI
data that is spatially resampled with the nearest neighbor approach. Further research should

investigate the performance of target detection algorithms before and after spatial resampling.
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Figure 5.11. False discoveries and false negatives caused by pixel loss and pixel duplication in a
target detection exercise. Consider spatially resampling a hyperspectral imaging dataset (given
by the colored circles) acquired along an approximate true north heading where the pixel
spacing in the cross track is half that of the along track. To generate a rasterized data product
(given by the raster grid and the small black dots which designate the center of each cell), the
data must be resampled on a north-oriented grid. In this scene there is one target of interest
(purple star) that can be detected by the hyperspectral data point represented by the purple
circle. Panel (A) shows that pixel duplication can cause false discoveries while panel (B) shows
that pixel loss can cause false negatives.

In signature matched target detection algorithms, error metrics are often theoretically
calculated based on the modeled probability distributions of the background and target signals.
For reliable error metrics, the modeled distributions must accurately describe the data

(Manolakis et al., 2016). There must also be a statistically significant number of target and
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background pixels. The availability of such datasets are often limited in the literature (Manolakis
et al., 2013). In the theoretical target detection, the PSF was used as a detection statistic,
fundamentally representing the horizontal distance from each pixel center to the nearest target.
Since the location of each simulated target was known, it was possible to calculate error metrics
from the target detection results, as opposed to modeled probability distributions. Such a target
detection workflow is valuable in understanding the limitations of sub-pixel target detection and

the variables that control it (e.g., size and position of a target within a pixel).

Aside from preserving spatial-spectral data integrity and the minimal data storage
requirements, the DHPC is advantageous over other existing hyperspectral point clouds as its
data fusion workflow can be implemented with the same tools used to process conventional
raster end products. Additionally, the DHPC can use HSI and DSM data from a variety of
different data sources and thus is not limited by any particular sensor. Furthermore, by
convolving the DSM by the hyperspectral sensor PSF during the data fusion workflow, the
spatial characteristics of the elevation data become more consistent with that of the HSI data. As
such, the elevation information encoded in each pixel of the DHPC actually corresponds to the
footprint of the spectral information, leading to a more spatially coherent data fusion. This
convolution may come at the cost of fine spatial scale elevation information. Although there are
hyperspectral point clouds that can preserve fine spatial scale elevation information, they can
come at the cost of spectral data integrity, especially over spectrally and spatially heterogeneous
terrains (Brell et al., 2019). Further research into the performance of the DHPC against other

point cloud data representations is advised.

In this work, we developed a hyperspectral point cloud that preserves the spatial-spectral
integrity of HSI data more effectively than conventional rasterized square pixel end products.
Our DHPC methodology has been shown to produce no pixel shift, duplication or loss. Despite
containing additional surface elevation data, the DHPC file size was up to 13 times smaller than
the corresponding rasterized datasets. This is favorable for data distribution, especially since the
DHPC generation workflow can be easily implemented with pre-existing processing protocols.
Importantly, the DHPC consistently outperformed raster data products in various remote sensing

applications (classification, target detection, spectra geolocation). Overall, our research shows
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that the developed DHPC data representation has the potential to push the limits of HSI data

distribution, analysis and application.
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Connecting Statement (Chapter 5 to Chapter 6)

Chapter 5 developed and validated a novel hyperspectral point cloud data representation (the
Directly-Georeferenced Hyperspectral Point Cloud (DHPC)) that preserves the spatial-spectral
integrity of HSI data more effectively than conventional square pixel raster end products.
Although the article theoretically presents all of the information needed to carry out the DHPC
generation workflow, its practical implementation may not be approachable for all end users.
Detailed information on the practical implementation (e.g., code, high-level explanations,
documentation) of the DHPC data fusion workflow was published in MethodsX and can be found
in Appendix 7.2. Chapter 6 provides a discussion of the thesis findings, acknowledging the
limitations of the research and providing future directions to expand on the presented work.

Chapter 6 also summarizes all of the presented work and their significance to the field.
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6. Discussion and Conclusion

6.1. Discussion of Research
The popularity of HSI has increased substantially over the past ten years, as airborne and

spaceborne HSI systems have become more prevalent. At the airborne level, there is a wide array
of HSI instruments that operate on remotely piloted aircraft systems (RPAS) (e.g., HySpex
Mjolnir (Arroyo-Mora et al., 2021), ITRES nCASI-1920 (Arroyo-Mora et al., 2019)) and
manned fixed-wing aircrafts (e.g., AVIRS-NG (Hamlin et al., 2011), APEX (Vreys et al.,
2016a)). Currently, there are several operational spaceborne HSI systems (e.g., DESIS (Alonso
et al., 2019), EnMAP (Guanter et al., 2015)) that have replaced early generation systems such as
Hyperion (Pearlman, 2003). More than 10 HSI satellites are planned to be launched over the next
15 years alone (e.g., HyspIRI, FLORIS, CHIME, OCI, SBG) (Qian, 2021; Chandra et al., 2022).
The widescale availability of HSI data is promising to end users from various fields as these data
can provide invaluable economic, environmental and social insight into some of the most
challenging problems that the Earth and its inhabitants face (e.g., climate change, national
defense, food security, biodiversity conservation). In HSI processing efforts, raster end products
have remained the standard input and output format for over 40 years (Goetz, 2009; Vane et al.,
1984; Wilkinson, 1996). Although the raster data model has been pivotal to how multivariate
data are displayed and represented, it is a heritage of the old computing era (Lim, 2008) and
misrepresents HSI data on a fundamental level during data analytics. The use of the raster data
model requires end users to implicitly assume that all HSI pixels are: 1) directly comparable, 2)
square and 3) uniformly distributed across the image scene. Due to various factors (e.g., sensor
design, rugged terrains, illumination conditions), these assumptions do not hold for HSI data and
can lead to issues in data analytics. This dissertation identified limitations in the raster model and
developed a novel data representation methodology that results in a new paradigm for HSI

conceptualization that has the potential to revolutionize data analysis and application.

Hyperspectral imagers (like all measurement devices) are affected by errors (e.g., dead
pixels, spectral smile artifacts) that appear in various spectral bands and spatial pixels (Schlépfer
et al., 2007). To confidently analyze the spectra from different pixels and understand changes in
spectral information across the imaged scene, the location of these imaging errors must be

determined. Chapter 3 leveraged the correlation coefficient to develop a quality assessment
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methodology that can be readily implemented by end users, even without advanced image
analysis tools. Specifically, the novel approach allows end users to quickly locate common non-
linear errors in the spectral and spatial domain and understand the comparability of pixels across
the sensor FOV. Despite best processing practices, it is virtually impossible to correct all
imaging errors. Thus, not all pixels in any final georeferenced end product are directly
comparable. The variance introduced by a single error could severely influence results obtained
from linear techniques such as the principal component analysis. For instance, Ramsey et al.
(2005) used Hyperion data to detect Chinese tallow, an invasive tree species that causes losses in
native habitats and harvestable land. In the study, Hyperion reflectance data were used to derive
percentage occurrences of senescing foliage, canopy shadows, green vegetation, yellow foliage
and red tallow (a surrogate for Chinese tallow). In these data derivatives, image-related striping
errors could be seen in three of the five canopy composition images, potentially resulting in
inaccurate values that could have been mistaken for natural phenomena. With this in mind, if a
target of opportunity is available (e.g., asphalt road), the comparability of pixels across the field

of view should be assessed using the techniques developed in chapter 3.

In general, the impact of located imaging errors can be minimized via flight planning and
data processing. For instance, in the flight planning tool developed by Naprstek and Inamdar
(2022), the 160 pixels on either edge of the uUCASI-1920 were ignored when calculating the
distance from adjacent flight lines as these pixels were noticeably blurred when compared to
pixels from the center of the FOV. Factored into flight planning, this meant HSI data collected
from adjacent flight lines would have contiguous spatial coverage, even when ignoring the
problematic edge pixels in data analytics. For errors isolated in specific spectral and spatial
locations, problematic pixels can be removed in post-processing without substantial loss in
information content. At the very least, errors should be documented in the metadata to potentially
reduce the possibility of end users confusing imaging errors with physically significant

phenomena in the scene.

The work from chapter 3 also has important implications for data analysis by showcasing the
importance of analyzing HSI data in its raw sensor geometry. The developed quality assessment
technique cannot be directly applied to georeferenced raster end products as the sensor geometry

is lost, and errors are masked after being randomly shifted and duplicated during nearest
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neighbour resampling. The loss of sensor geometry also makes it more difficult to understand the
differences in spatial characteristics (e.g., PSFs, resolution, pixel spacing) between the across

track and along track directions of HSI data.

In HSI, spatial PSFs are important data parameters that are typically ignored by data
providers and end users in favour of less informative metrics such as pixel resolution. Chapter 4
substantiated the importance of PSFs in understanding the physical significance of a pixel. Pixels
are not square (Smith, 1995); by ignoring the true geometry of spectral measurements from each
pixel, HSI data can be misinterpreted, leading to false conclusions about the studied scene. For
instance, the HSI data from chapter 4 over the Mer Bleue Peatland could detect the hummock-
hollow microtopography in the cross track, but not the along track direction. This was due to the
discrepancy in the width of the sensor PSF between the cross track and along track directions.
Without actual knowledge of the peatland, end users might believe that the spatial variability in
the observed scene was present in one dimension but not the other. This interpretation would
hinder our understanding of the ecosystem from the imagery, thus substantiating the importance
of recognizing that imaging pixels are not square. Using the data simulation workflow from
Appendix 7.1, and a modified spatial autocorrelation methodology, it was possible to show that
the overlap in the PSF of neighbouring pixels reduces the spectral and spatial variability
observed in the scene. The reduction in variability is problematic as it is associated with
information loss (Lee and Landgrebe, 1993) and thus negatively affects various remote sensing
tasks such as classification (Huang et al., 2002), sub-pixel feature detection (Radoux et al., 2016)
and spectral unmixing (Wang et al., 2018). The work in Appendix 7.1 further showcased the
importance of accounting for spatial PSFs when performing tasks such as data cross-validation,

flight planning and data fusion.

Based on the analysis in chapter 4, <60% of the signal to a spectrum originates from
materials within the spatial boundaries defined by the pixel resolution (e.g., only 57.8 % of the
signal to each Landsat 8 Operational Land Imager pixel (bands 1-7) originates within the square
pixel spatial boundaries (Inamdar et al., 2020)). This is caused by how pixel resolution is defined
by FWHM. FWHM as pixel resolution only has physical significance if PSFs take the form of
well-defined functions (Gaussian, rectangular pulse, Airy function). Since net PSFs can vary

substantially depending on data acquisition parameters, FWHM has a different physical
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interpretation for each dataset. As such, FWHM is somewhat arbitrary and can lead end users to
make inappropriate assumptions during data applications. This issue is compounded by the fact
that the pixel resolution of georeferenced raster end products can differ substantially from the
FWHM. For instance, based on the spatial characteristics of the geometrically corrected CASI
imagery from Appendix 7.1, <36 % of the signal to each measured spectrum originates from the
square spatial boundaries defined by the final pixel resolution (1 m). This value will likely be
even lower when accounting for pixel shifting due to resampling. These observations have
important implications for HSI data applications as the utility and performance of remote sensing
technologies depend greatly on establishing rigorous relationships with field measurements. For
instance, Pau et al. (2022) attributed poor relationships between HSI data collected by the
National Ecological Observation Network (NEON) and certain ecological variables (e.g., leaf
area index, total biomass) to differences in scale. Such a discrepancy in scale could be avoided
by making plot size decisions based on the PSF instead of conventional parameters such as
spatial resolution (Schweiger, 2020). Ideally, the PSF should always be consulted in addition to
pixel resolution when characterizing the spatial properties of any given spectrum. For this to be
possible, future HSI efforts should append sensor PSFs as metadata to all end products.
Furthermore, whenever pixel resolution is used to describe the spatial properties of a system, it
should be accompanied by additional parameters that give the value real physical significance
(e.g., percent signal contribution to a pixel). For instance, the metadata of the CASI imagery
analyzed in chapter 4 should document that ~55% of the signal from each pixel originated from

the area within the spatial boundaries defined by the pixel resolution.

By highlighting issues in the rasterization process used to generate square pixel end products
and developing an alternative HSI data representation (DHPC) to overcome the described
limitations of the raster data model, the work from chapter 5 will potentially lead to significant
improvements in the way that HSI data are processed, analyzed and applied. In chapter 5,
rasterization via nearest neighbour resampling was shown to introduce substantial levels of pixel
loss, duplication and shifting, especially in areas with large elevational gradients relative to pixel
size. These resampling errors negatively affect data applications, especially when applications
rely on accurately georeferenced spectra (e.g., sub-pixel target detection). The developed DHPC
represents georeferenced HSI in its raw sensor geometry after the geometric correction,

including additional elevation data. The elevation information encoded in the DHPC is
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particularly important for applications dependent on structural information. For instance,
Komoske et al. (2022) show that the spectral properties related to leaf and canopy function traits
and forest health must be leveraged simultaneously with LiDAR-derived forest structure
measures to map biodiversity accurately. As such, implementing the DHPC instead of
conventional rasters would likely lead to improved biodiversity estimation. Although other point
cloud data representations exist (as highlighted in section 2.5.2), they can be difficult to
implement, computationally expensive, result in large file sizes and compromised spatial-spectral
data integrity. The DHPC can be implemented via the same processing protocols and
computational resources as conventional raster end products. Thus, the processing
implementation of the DHPC is approachable for current users and data providers. Given its
minimal data storage requirements, the DHPC is ideal for data distribution and analysis. For
example, when using analytical tools with local memory constraints (e.g., MATLAB), data are
loaded to random access memory (RAM). A compact data representation is important since files
larger than the available RAM must be parsed and continually loaded from local storage to
memory, which is not ideal for performance (Schilling and Harris, 2011). By eliminating
resampling errors (pixel duplication, loss and shifting), which are problematic for data analytics
(e.g., subpixel target detection, geolocation), the DHPC preserves spatial-spectral data integrity
and thus can improve results in multiple applications (e.g., target detection, spectra geolocation,

classification).

Up to this point, the discussion has addressed the main aspects directly related to the
dissertation objectives and findings. However, the work from this dissertation also has important
implications for various general aspects of remote sensing and Earth observation, such as:
uncertainty budgets, data intercomparability, data acquisition and processing, metadata

documentation and data distribution, which will be discussed herein.

This dissertation makes fundamental contributions to reducing the overall uncertainties in the
spectral domain (radiance or reflectance) and spatial domain (spectra location) of HSI data. HSI
data uncertainties are a function of the instrument, calibration, data acquisition and processing
uncertainties. Using best practices, instrument and calibration uncertainties can result in a
radiometric uncertainty of <2 % (Kopp, 2017). Additionally, calibration and processing

uncertainties arise due to spectral smile and keystone corrections (see section 2.4.1 for more
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information). When using radiative transfer modelling for atmospheric compensation,
uncertainties in various factors (e.g., visibility, water vapour, aerosol type, radiometric
calibration quality, spectral smile and keystone) affect reflectance spectra (Cairns, 2003;
Boucher, 2002; Richter and Schlépfer, 2020). If ground spectroscopy data over known reference
materials are used to fine-tune atmospheric correction approaches, atmospheric and radiometric
uncertainties can be reduced (Richter and Schlidpfer, 2020). In such cases, additional instrument
and calibration uncertainties from the utilized ground spectrometer are introduced. When using
best practices, atmospheric correction uncertainties can be <5 %. For instance, ATCOR4 reports
accuracies of <4 % for high reflectance targets (> 40%) and accuracies of < 2 % for low
reflectance targets (< 10%) (Richter and Schlédpfer, 2020). Practically, uncertainties in
reflectance from atmospheric compensation are larger than those reported and vary drastically
depending on data acquisition practices, the atmosphere and the imaged scene. By identifying
and removing errors in HSI systems using the approach developed in chapter 3, instrument and
atmospheric compensation uncertainties can potentially be reduced. Using the developed DHPC
and accounting for sensor PSFs, it would be possible to ensure that the ground spectroscopy data
used to fine-tune atmospheric compensation methodologies are spatially coherent with the HSI

data (no contributions from non-calibration materials), further minimizing overall uncertainties.

By calculating pixel shifting, chapter 5 assessed spatial uncertainty due to the use of nearest
neighbour resampling. The magnitude of the uncertainties due to pixel shifting can be on the
same order of magnitude as the other sources of spatial uncertainties, such as those imposed by
the technical limitations of the inertial navigation system (INS) (e.g., pixel shifting was equal to
0.87 m for MMG data, see chapter 5.3.1). By using the DHPC, the uncertainty due to spatial
resampling is eliminated as the data are analyzed in raw sensor geometry, pre-rasterization. Thus,
the DHPC results in more spatially accurate information. Although spatial and spectral
uncertainties are often analyzed separately from one another, they are interdependent. For
instance, pixel duplication, loss and shifting from resampling will affect reflectance spectra in
raster end products and thus affect uncertainty values calculated via comparison with an
independent reference source (i.e., ground spectroscopy data). As such, the reduction in spatial
uncertainties from the use of the DHPC is likely associated with a reduction in spectral

uncertainties.
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The work from this dissertation has important implications for data intercomparablity. Data
intercomparability is fundamental to applications that rely on the output from multiple data
sources. For instance, global, regional and local vegetation assessments use multiple data sources
(e.g., Landsat 8 and Sentinel-2) to monitor vegetation dynamics over time and space (Moravec et
al., 2021). Data intercomparability is also critical in the cross-validation of satellite data products
using in situ data collected at the ground level and airborne HSI data collected at the airborne
level (Arroyo-Mora et al., 2018b). For instance, the Quality Assurance for Earth Observation
(QA4EO) initiative aims to validate spaceborne (Sentinel-2) spectrographic imaging data using
RPAS HSI data (Hyspex Mjolnir VS-620) and manned fixed-wing aircraft HSI data (CASI and
SASI), in addition to in sifu ground spectroscopy data. This dissertation highlights two important
factors that could potentially affect sensor intercomparability. Firstly, some sensor-related errors,
such as dead pixels, should be removed; otherwise, differences between sensors could be
artificially inflated. Secondly, it is critical to ensure that all compared data are spatially coherent.
When comparing datasets collected at different spatial scales, it is important to spatially degrade
the finer-resolution dataset based on the spatial response function of the coarser-resolution
dataset using tools like the developed SR? workflow. Otherwise, sensors will be comparing
information from different areas on the ground and, by extension, materials. When comparing
datasets collected on similar spatial scales, there will always be differences in spatial response
functions, meaning that measurements from different sensors will always correspond to different
areas on the ground. The spatial mismatch is amplified by resampling errors due to pixel shifting,
duplication and loss. By representing HSI data as a point cloud representation with spatial
dimensions defined by the sensor PSF, it is possible to assess data intercomparability between
different sensors. Specifically, the overlap in PSFs between the closest points in the compared
data products can be calculated and used as a metric of spatial coherency between sensors. By
filtering out points of low spatial coherency, intercomparability between different sensors in the

spatial domain can be ensured.

In general, HSI data acquisition should be planned based on the intended use of the data. In
many scenarios, it is unclear what spatial-spectral resolutions are required. In these cases, RPAS
HSI paired with data simulation can be used to understand the spatial-spectral resolution
requirements of a given data application (as shown in section 7.1). To avoid differences in spatial

characteristics between the cross track and along track directions of HSI data, missions should be
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planned to generate pixels with a similar resolution and spacing in both spatial dimensions.
Although ideal, this can be technically challenging since the resolution in the along track is
determined by the integration time and platform speed, both of which have impacts on other
aspects of the data (signal to noise ratio, positional accuracy, etc.), especially for low altitude
platforms such as unmanned aerial systems (Arroyo-Mora et al., 2019). On that note, the DHPC
is highly recommended, as discrepancies between the cross track and along track spatial
dynamics can lead to excessive pixel loss and duplication (e.g., up to 78 % in imagery analyzed
in chapter 5) in square pixel raster end products. If square pixel raster end products are being
used in data analytics, it is critical to collect HSI data so that it is compatible with the raster data
model. Specifically, pixels should be spatially summed to ensure that the spatial PSF is square.
To minimize pixel loss and duplication in square pixel raster end products, it is also critical to
minimize the angular misalignment between the resampling grid and the flight line heading. For
instance, assuming that the pixel spacing in the cross track and along track directions is equal to
1 m, data products would theoretically have > 15 % pixel duplication and loss if there is a
misalignment of 45 degrees between the flight line heading and the resampling grid. As such,
missions should be planned so that the flight line heading is in one of the cardinal directions.
Given BRDF effects, airspace restrictions, wind directions and area coverage requirements, it
may not always be possible to collect HSI data in a cardinal direction. In these situations, it may
be important to resample the data on a grid that is aligned with the flight line heading to

minimize pixel loss and duplication.

In addition to data acquisition (including flight planning) and processing, the work from this
dissertation also has important implications for metadata documentation and data distribution.
Despite the increased availability of HSI data in general, it is critical to recognize that there is
currently no standard for HSI, though this is slowly changing. In particular, the IEEE Geoscience
and Remote Sensing Society is developing a standard for the characterization and calibration of
ultraviolet through shortwave infrared (250 nm to 2500 nm) HSI devices (Skauli et al., 2021).
Until a comprehensive and widely accepted standard is fully developed, end users must ensure
that they are making informed decisions when purchasing, analyzing and applying HSI data.
Ideally, manufacturers and data providers should strive for transparency, providing informative
metadata that characterize end products (e.g., PSFs, data acquisition parameters, sensor

calibration, processing parameters). Metadata should include uncertainty measurements of

212



spectra geolocation and retrieved reflectance whenever possible so that end users can understand
the limitations of HSI for various applications. In addition to improved metadata, HSI data at
various pre-processing levels (e.g., radiometrically corrected, atmospherically corrected,
geometrically corrected, spatially resampled) should be given by data providers along with all
utilized auxiliary data products (e.g., INS data, calibration files, data processing reports). When
direct georeferencing methodologies are used in HSI processing, the position (easting, northing,
elevation) of each pixel from the original sensor geometry is an intermediate data product of
particular interest as it allows end users to generate vector-based data representations like the
DHPC. Although most data providers do not currently give this information, future spaceborne
HSI efforts such as NASA’s Earth Surface Mineral Dust Source Investigation (EMIT) and
Surface Biology and Geology (SBG) initiative may adopt a similar approach to the DHPC for
improved data analytics (Philip Townsend, Pers. Comm., 2022).

6.2. Impact of Research

By improving the quality of remotely sensed imaging data while simultaneously lowering the
barrier to entry, this dissertation represents a major technological advancement that will allow
policymakers to make more confident and reliable decisions that address important societal,
environmental and economic issues. The research from this dissertation has already been
implemented in the scientific literature with promising results. For instance, Rowan et al. (2021)
implemented the DHPC for the target detection of submerged aquatic vegetation in the water
surrounding the Long Sault Parkway in Ontario, Canada. Submerged aquatic vegetation is
critical to study as it provides valuable ecosystem services, is a significant global carbon sink
helping to mitigate climate change (Fourqurean et al., 2012) and helps improve water quality by
limiting phytoplankton concentration and reducing turbidity (Dennison et al., 1993; Wolter et al.,
2005). In Rowan et al. (2021), the DHPC allowed ground truth data to be accurately associated
with reflectance spectra extracted from the HSI data during target detection. Rowan et al. (2021)
recommended using the DHPC for future submerged aquatic vegetation monitoring and mapping
efforts due to its ability to improve data quality. The DHPC was also implemented by Wallis et
al. (2023) to assess the relationship between spectral reflectance derived from HSI and forest
carbon content in the Parc national du Mont Mégantic in Quebec, Canada. Since forest clearings
account for an estimated 12-15% of global greenhouse gas emissions (van der Werf, 2009),

forest carbon content is critical to study when understanding climate change. In Wallis et al.
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(2023), the analyzed VNIR and SWIR imagery were collected across a large elevation gradient
(elevation changes by > 600 m within the 10 km? area surrounding the peak of the mountain).
Raster end products were avoided as they were characterized by substantial pixel duplication (up
to 60%), pixel loss (up to 58%) and pixel shifting (0.866 m), partially due to the elevation
gradient. In this work, the DHPC was also ideal for associating HSI spectra with ground data due
to the lack of resampling errors. By explicitly defining the spatial extent of each spectrum from
the DHPC with the sensor PSF, it is possible to understand how materials are sampled across the
entire scene. This will ensure end users have a firm understanding of the spatial coverage and
any holes that may arise due to data acquisition and sampling strategies. An understanding of
spatial coverage is fundamental as it shows how well insights derived from Earth observation
represent the studied area of interest (e.g., how accurately HSI-derived forest carbon content

estimates represent an area).

The DHPC has also been adopted by the Canadian Airborne Biodiversity Observatory
(CABO) project, a national initiative using HSI to understand the changes in plant biodiversity
and its relation to land use change, climate change, invasive species and nitrogen deposition
across Canadian ecosystems. The CABO project will provide all collected HSI data (> 200
images) in DHPC data format to ensure optimal data quality. Future investigators using the
CABO data will have the opportunity to use the DHPC data representation in meaningful data
applications (such as the work described in Wallis et al. (2023)).

The research from this dissertation has also led to important contributions to industry and
government. For instance, the error detection methodology implemented in chapter 3 led to the
identification of fundamental errors (e.g., cross track illumination effects, striping artifacts, dead
pixels) in spectrographic imaging data collected and processed with ITRES (Calgary, AB,
Canada) products, including the CASI and SASI sensors and their data processing programs. The
provided input improved the ITRES processing programs, allowing the company to enhance
their product. The research from this dissertation has also had various impacts in government.
For instance, the nominal PSF derivation established in chapter 4 and implemented in the code
from chapters 7.1-7.2 have been integrated into the Hyperspectral Planning Tool (HYPlanT)
(Naprstek and Inamdar, 2022) that was developed for the CABO project. This tool is also in use
by the National Research Council of Canada, Flight Research Laboratory (FRL) to estimate
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parameters such as pixel size, pixel spacing and spatial response functions based on nominal
flight parameters. The FLR is also implementing the SR? workflow (chapter 7.1) in the QA4EO

initiative described earlier.

HSI is an extremely technical field that calls on concepts from remote sensing theory,
mathematics, physics and computer science. Without a firm understanding of such concepts, end
users new to HSI may have difficulties working with the data, creating a high barrier to entry
into the field. This barrier to entry is problematic as novel end users without a sufficient
background in HSI analytics may be unable to successfully extract information relevant to the
application of interest, potentially leading them to disregard the field altogether. The work
presented in this dissertation lowers the barrier to entry for incoming end users from fields
outside of remote sensing. The developed techniques were designed to allow end users of all
expertise levels to understand HSI data on a fundamental level. With such an understanding,
novel end users can confidently apply HSI data to various problems. The DHPC is stored in text
file format as a list of multivariate observations (including elevation, reflectance values, position
and other desired variables such as off-nadir look angle) that researchers in various fields are
comfortable manipulating. This makes the DHPC more approachable to a wider array of
scientists. Overall, by lowering the barrier to entry, data applications will expand drastically as
end users from different fields have the domain knowledge to implement HSI techniques in new,
creative and exciting ways (Cavender-Bares et al., 2022). This will undoubtedly contribute to
solving Earth’s most challenging problems, such as climate change, national defense, food

security and biodiversity conservation using HSI data.

6.3. Limitations and Future Directions of Research
Despite the various advantages of the developed DHPC data format, some challenges must

be addressed before the remote sensing community at large uses the data format. To date, various
data processing and analysis methodologies have been built around the raster data format
(Bioucas-Dias et al., 2013; Signoroni et al., 2019). Before the DHPC data format can be used in
such cases, these workflows must be modified to use vectorized data. In some cases, such
modifications could require major changes that can be difficult to implement (Tomlin, 1990),
particularly when analyzing spatial information via operations such as convolution. Although

there are analogous convolution operators that work on vector data (e.g., Thomas et al., 2019),
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they can be difficult to implement and more computationally expensive when compared to
raster-based techniques. These added difficulties may dissuade end users from using the DHPC
data format. However, it is important to recognize that in many cases, only minor modifications
must be made to processing workflows. This was exemplified by Rowan et al. (2021), who were
able to modify the water compensation workflow reported in Inamdar et al. (2022) to use a
DHPC input instead of a raster data input as per the original algorithm. Interestingly, the first
step in many processing workflows is to vectorize the imaging data (Charmisha et al., 2018;
Rasti et al., 2020; Rasti et al., 2014). For example, autoencoder and recurrent neural network
deep learning techniques often require vectorized inputs (Rasti et al., 2020). Using the DHPC in
these cases, the workflow can be implemented more efficiently as an initial vectorization step
would not be required. With this in mind, HSI data processing may be more computationally

efficient for the DHCP than conventional raster end products in certain situations.

The DHPC was not tested with spaceborne data. This is problematic given the importance of
spaceborne data acquisition to scaling local and regional observations acquired from HSI data at
the airborne level. Although not explicitly tested, some literature showcases the utility of the
DHPC at the spaceborne level. As discussed in section 2.5.3, Kristof and Pataki (2009)
developed a vector-based data product for MODIS multispectral data that used swath reflectance
(MODO02) and geolocation (MODO03) products to calculate the footprint of each observation and
to represent and process them as rectangular polygons. Kristof (2015) further tested the MODIS
vector data representation, showcasing its practical importance for time series applications. Since
the DHPC is fundamentally similar to the MODIS vector data representation, the work from
Kristof and Pataki (2009) and Kristof (2015) suggests that the DHPC will likely allow for

improved data applications (e.g., time series analysis) at the spaceborne level.

Although structural information is fundamental to many data applications (e.g., mapping
biodiversity), high-quality elevation information is not always available. This presents an issue
for the DHPC, especially since the accuracy of the spectra geolocation is dependent on high-
quality surface elevation data (Beekhuizen, 2011). For areas with small elevation gradients
relative to pixel size, a flat elevation model can be used during the generation of DHPC data
products without a large loss in spatial accuracy. For areas with large elevation gradients relative

to spatial resolution, a flat elevation model may be inappropriate and could improperly locate
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spectra during the geometric correction, especially along the edges of the FOV. It is important to
recognize that this issue would equally affect the geometric accuracy of raster end products
generated from direct georeferencing approaches (which would have pixel loss, duplication and
shifting errors in addition to geometric accuracy errors). Although using a flat elevation model
during the generation of the DHPC may be problematic for areas with large elevation gradients
relative to spatial resolution, it is still advised over raster end products as it eliminates pixel

duplication, loss and shifting.

The variability in data application performance between the raster and vector data models
agrees with Wade et al. (2003), who show that when the phenomenon of interest is small relative
to the pixel size, vector-based data representations outperform raster-based methods. This
explains why the performance of the subpixel target detection from chapter 5 improved
substantially when using the DHPC over raster end products. Despite the effectiveness of the
DHPC, it is unlikely that the data representation will always outperform the rasterized datasets.
Certain applications may be invariant to factors such as pixel shifting, duplication and loss. For
instance, although pixel duplication and loss modify the spatial dynamics of the raw imagery,
they theoretically do not affect basic first and second-order statistics like mean and standard
deviation (Schlépfer et al., 2007). As such, applications that exploit this information (e.g.,
Laliberté et al. (2020), which exploits variance to partition plant spectral diversity into alpha and

beta diversity) may not be substantially affected by pixel loss and duplication.

In this dissertation, the developed algorithms were programmed in MATLAB. MATLAB is
one of the most popular programming platforms for HSI efforts and was utilized in this
dissertation as it is a high-level language that can carry out matrix math effectively. However,
MATLAB is monetarily expensive. To solve this issue, the tools developed in this dissertation
will be packaged and distributed as stand-alone programs (as part of the CABO project) that can
be applied by end users of all expertise levels, further lowering the barrier to entry. This form of
distribution does, however, mean that higher level programmers may not be able to modify the
developed tools without completely rewriting them. To solve this problem, it may be beneficial
to rewrite all the algorithms using a free programming language such as Python or R. When

releasing individual scripts, it is critical to use a version control platform such as GitHub.

217



6.4. Conclusion
The goal of Earth observation within the context of environmental science, conservation and

protection is to: 1) Help society observe and monitor the Earth; 2) Understand and predict the
physical interactions between society and the Earth; and 3) Provide decision-makers with the
necessary information to understand the consequences that political and economic decisions
could have on the Earth and its inhabitants (Goryl, 2018). By highlighting limitations in the
raster end products commonly utilized for Earth observation efforts, this dissertation identifies
limitations in how spatial phenomena across the planet are observed and analyzed. Using the
developed DHPC data representation, it is possible to overcome these limitations. Specifically,
the DHPC data representation bridges the gap between in situ ground truth and HSI data by
providing a clear physical interpretation of the collected spectral information. This contribution
is critical to ensuring data intercomparability, which is fundamental when scaling up ground
observations to model global phenomena using information from multiple data sources. This
dissertation also lowers the barrier to entry to HSI by developing various algorithms (e.g., data
analytics, data quality assessment, spatial autocorrelation analysis, image sharpening, data
simulation, data fusion, flight planning) that can be readily implemented by end users of all
expertise levels. This contribution will make HSI more approachable to a wider array of users,
allowing them to solve important problems such as climate change, national defense, food
security and biodiversity conservation. For example, the United Nations Biodiversity Conference
(COP15) sets out to define a global biodiversity framework that specifies regional, national and
global actions that will mitigate biodiversity loss across Earth. Before actions can be taken,
biodiversity must be measured and mapped. HSI data has been shown as a strong tool for the
assessment of biodiversity in vegetation (e.g., Asner and Martin, 2016) and wildlife (e.g.,
Kolman, 2021). The insight from this dissertation has the potential to improve biodiversity
measures and maps derived from HSI data. Specifically, the tools and findings from this
dissertation will ensure that biodiversity maps derived from multiple sensors are
intercomparable, allowing for more accurate temporal studies of biodiversity change over time.
By improving our ability to accurately match ground data to HSI data, the findings from this
dissertation will also improve the quality of biodiversity maps, providing better information for

decision-makers to make policies and take action.
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Abstract

With the increased availability of hyperspectral imaging (HSI) at various scales (0.03-30 m),
the role of simulation is becoming increasingly important in data analysis and applications. There
are few commercially available tools to spatially degrade imagery based on the spatial response
of a coarser resolution sensor. Instead, HSI data are typically spatially degraded using nearest
neighbour, pixel aggregate or cubic convolution approaches. Without accounting for the spatial
response of the simulated sensor, these approaches yield unrealistically sharp images. This article
describes the spatial response resampling (SR?) workflow, a novel approach to degrade HSI data
based on the spatial response of a coarser resolution sensor. The workflow is open source and
widely available for personal, academic or commercial use with no restrictions. The importance
of the SR? workflow is shown with three practical applications (data cross-validation, flight

planning and data fusion of separate VNIR and SWIR images).
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+ The SR? workflow derives the point spread function of a specified HSI sensor based on
nominal data acquisition parameters (e.g., integration time, altitude, speed), convolving it with a

finer resolution HSI dataset for data simulation.

* To make the workflow approachable for end users, we provide a MATLAB function that
implements the SR? methodology.

Keywords: Spatial Resampling, Simulation, Data Cross-Validation, Flight Planning, Data
Fusion, Point Spread Function, Spatial Response, Pushbroom, MATLAB
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7.1.1. Background

Over the past three decades, the abundance of spatial-spectral information captured by
remotely sensed hyperspectral imaging (HSI) data has been actively exploited for various
applications (Eismann, 2012). The utility of HSI data will only increase as remotely piloted
aerial system (RPAS) (e.g., HySpex Mjolnir (Arroyo-Mora et al., 2021), ITRES pnCASI-1920
(Arroyo-Mora et al., 2019), Specim Aisa KESTREL 10 (Kanuk et al., 2018), etc.), airborne (e.g.,
AVIRS-NG (Hamlin et al., 2011), ITRES CASI (Babey and Anger, 1993), APEX (Vreys et al.,
2016)) and spaceborne (e.g., DESIS (Alonso et al., 2019), SHALOM (Feingersh and Dor, 2015),
Carbon Mapper (Shivers et al., 2021), EnMAP (Guanter et al., 2015)) imagers become more
prevalent. With the increased availability of optical remotely sensed data at various spatial and
spectral resolutions, the role of simulation is becoming increasingly important in data analysis
and application. Specifically, data simulation is a valuable tool for sensor optimization and
development (Guanter et al., 2009), flight planning (Zhao et al., 2019), data cross validation and
calibration (Teillet et al., 2001) and algorithm development (Castaldi et al., 2016), amongst
others. Many of the popular remote sensing data analytics software (e.g., ENVI (Harris
Geospatial Solutions inc., Broomfield, CO, USA), CATALYST Professional (PCI Geomatics,
Markham, Ontario, Canada) provide tools to simulate the spectral characteristics of a coarser
spectral resolution sensor based on its spectral response. In the spatial domain, HSI data
simulation is typically carried out via pixel aggregate, nearest neighbor, bilinear and cubic
convolution spatial resampling techniques. Although these approaches can simulate imagery at
any desired pixel size, it is important to recognize that pixel size does not accurately represent

the spatial characteristics of the spectrum collected by coarser resolution imagers.

The spatial response of a sensor can be described by the spatial point spread function (PSF).
The PSF maps the relative response of a single pixel as a function of displacement from the
center of the pixel (Inamdar et al., 2020). Hyperspectral PSFs generally follow a gaussian shape.
Correspondingly, the spectrum from any given pixel is not equally representative of the materials
within its conventionally square pixel boundaries. A substantial portion of the signal to each
pixel (> 40 %) originates from materials outside the pixel boundaries defined by the spatial
resolution (Inamdar et al., 2020). When spatially resampling imagery for data simulation, it is not
appropriate to use a simple average or a nearest neighbour approach as the characteristics of the

simulated sensor are ignored. Instead, spatial resampling should be conducted using a weighted
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average based on the PSF of the simulated sensor. For instance, in the end-to-end simulation
approach described by Blonski et al. (2000), the spatial response of the simulated sensor was
accounted for by convolving a synthetic HSI scene with the spatial PSF. Inamdar et al. (2020)
adopted a similar approach, convolving a theoretically derived PSF with a synthetic dataset to
understand the importance of the spatial response. In this work, the overlap in the PSF of
adjacent pixels was shown to lead to image blurring that reduced the natural spatial and spectral
variance of the simulated scene. It is important to capture this loss of variance in simulation
efforts. Otherwise, the simulated imagery will be unrealistically sharp, affecting downstream
applications. For example, without accounting for the sensor PSF in flight planning efforts,
simulated imagery might detect features of interest that cannot be observed in real imagery. This
may lead end users to select inappropriate data acquisition parameters during aerial campaigns.
Without accounting for sensor PSFs, it can also be difficult to compare, combine and apply
imagery collected across various spatial scales. This is problematic given the increased
availability of RPAS, airborne and spaceborne HSI data (Aasen et al., 2018; Transon et al.,
2018). For instance, in many applications, it is desirable to have full-range HSI data. Due to
technological and monetary restrictions, collecting full-range HSI data from a single sensor at a
high spectral resolution is not generally feasible. Instead, the spectra from separate HSI datasets
covering different portions of the electromagnetic spectrum need to be fused into one coherent
signal. To ensure that the spectra from various data are optimally fused, it is critical to account
for discrepancies in spatial scale between the utilized sensors. In this process, one image must be
spatially degraded to match the spatial characteristics of the other image. Without accounting for
discrepancies in spatial properties, any derived full-range spectrum would be unusable in

conventional spectroscopy analyses such as material identification and characterization.

Expanding on the methodology implemented by Inamdar et al. (2020), the objective of this
study was to develop a spatial resampling workflow that accounts for the spatial response of a
specified sensor. The developed spatial response resampling (SR?) workflow degrades spatial
resolution HSI data to the spatial characteristics of a coarser resolution sensor. In this workflow,
the PSF of the simulated sensor is first derived with nominal data acquisition parameters
(altitude, speed, integration time, etc.). Afterward, the derived PSF is convolved with the input
HSI data. The output is then spatially degraded to the resolution of the simulated sensor with a
nearest neighbour resampling technique. A MATLAB (Mathworks, Natick, MA, USA)
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implementation of the described workflow is provided in this manuscript. This MATLAB script
can be used as-is or adapted as needed. In three practical example applications of the developed
SR? workflow, we show the importance of accounting for the sensor PSF when spatially
resampling fine resolution HSI data for simulation. In the first example, the workflow is applied
for HSI data cross-validation. This example shows the potential of using RPAS-HSI to bridge the
gap between in situ spectroscopy data and coarser resolution HSI data. In the second example,
the workflow is applied to aid in data acquisition planning. In this example, the simulation
workflow establishes suitable scales and, by extension, data acquisition parameters for
identifying a feature of interest. The final example application shows how the workflow can be
implemented for data fusion between sensors that capture spectral information in different
portions of the electromagnetic spectrum. This example generates a single full-range image from

a VNIR and SWIR HSI dataset.

7.1.2. Method Workflow
Following the methodology briefly outlined by Inamdar et al. (2020), the SR? simulation

workflow derives the net PSF (PSFye) of a specified sensor, convolving it with a finer resolution
HSI dataset (Figure 7.1). Before describing the SR* workflow, it is necessary to define the
terminology surrounding the spatial properties of HSI systems. In this work, the pixel resolution
is defined by the full width at half maximum of the sensor PSF. The nominal pixel resolution is
defined by the ground-projected instantaneous field of view (IFOV) (units of meters), which is
the ground distance covered by a single pixel in the cross track direction. Pixel size refers to the
spatial dimensions of each square pixel in the geometrically corrected raster end product. With

these definitions in mind, the workflow can be broken into three steps:

1. Derive PSFqet in two dimensions as a function of pixel displacement in the easting and
northing directions

2. Convolve PSFye from step 1 with input HSI data

3. Spatially resample input HSI data to the pixel size of the simulated sensor with a nearest

neighbour resampling technique.

The PSFyet derivation in step 1 follows the calculations from Inamdar et al. (2020), with a
slight modification to account for cross track pixel summing. In this process, the optical PSF

(PSFopt), motion PSF (PSFnot) and detector PSF (PSFqe) are first derived. After, the cross track
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PSFyet is generated by convolving the PSFop and PSFec while the along track PSFye is obtained
by convolving the PSFopt, PSFimot and PSFge. In many data processing streams, adjacent cross
track pixels are summed to boost signal levels and equalize spatial resolution between the cross
track and along track directions (Epperson and Denton, 1989). In these scenarios, the cross track
PSFnet must be modified to account for the degree to which data summing is applied. The PSFpet

in the cross track direction at summing level s > 2 |s € Z can be defined by the following

expression:
1 1 _
Z PSF, ¢ (x + (k— E) * rx) + PSF, et (x - (k- E) * rx), if s=2|s €2Z
PSFnet,s(x) = < =t k_s—l (1)
2
PSF,..(x) + PSF, e (x + k x1rx) + PSF, . (x — k *1x), otherwise
k=1

where rx is equal to the nominal pixel resolution in the cross track direction (width of the
PSFe), x is the cross track displacement from the pixel center and PSF,,.;(x) is the unsummed
PSFuet in the cross track direction. The total PSFpet in two dimensions is then derived by vector
multiplication of the PSFye in the cross track (after data summing) and along track directions. To
complete step 1, the total PSFye is reparametrized as a function of pixel displacement in the
easting and northing directions via matrix rotation by the nominal flight line heading (° True
North). To generate the convolution kernel for step 2, the total PSF, is spatially degraded to the
same pixel size as the input HSI data. This is accomplished by spatially integrating the PSFyet in
intervals equal to the pixel size of the input HSI data. The output matrix (referred to as the
convolution kernel) is normalized to sum to unity. The kernel is then convolved with the input
HSI data, blurring it based on the spatial characteristics of the simulated sensor. In the blurred
HSI data, each pixel represents the average spectra that would contribute to a single pixel of the
simulated sensor. It is important to note that the pixel size of the input HSI data does not change
after convolution. To complete the simulation workflow, the blurred HSI data are spatially subset
to the same pixel size as the simulated sensor using a nearest neighbour spatial resampling

technique. A flow chart of the described workflow is shown in Figure 7.1.

Although step 3 can be conducted in most commercially available geospatial software (e.g.,
ENVTI’s Resize function, ArcMap’s (Esri, Redlands, CA, USA) Resample function), steps 1-2

may be challenging to implement for end users that are unfamiliar with PSFs and convolution.
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This work presents a MATLAB function (HSI BLUR.m) that carries out steps 1-2 of the data

simulation workflow to make the workflow more approachable for end users of all expertise

levels.
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Figure 7.1. Flowchart of the Spatial Response Resampling (SR’) workflow. The workflow

degrades fine spatial resolution hyperspectral imaging (HSI) data to the spatial characteristics
of a coarser resolution sensor.

7.1.3. MATLAB Function
The developed MATLAB function is based on the DHPC DSM_ BLUR.m function

developed in Inamdar et al. (2021b). The purpose of the DHPC_DSM_BLUR.m function was to
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convolve a digital surface model with the PSF of a coarser resolution HSI dataset for data fusion.
Although not necessarily for data fusion, on a fundamental level, the SR? workflow aims to
accomplish the same task. However, instead of spatially degrading a DSM (1 band image), the
workflow degrades an HSI dataset. Additional modifications have been made to the original
DHPC DSM BLUR.m function to account for spatial summing in the cross track direction. As

such, the PSF calculations are more robust and can simulate a wider array of HSI sensors.

The HSI BLUR MATLAB function carries out four tasks: 1) derive hyperspectral PSF of the
simulated sensor; 2) derive convolution kernel from PSF based on the characteristics of the input
HSI data; 3) convolve input HSI dataset by convolution kernel, 4) output blurred imagery as
ENVI standard data format. The HSI BLUR.m function description defines the input and output

parameters of the workflow.

oo

%% Input Parameters

% flight line heading... Heading of simulated sensor (True North Heading in
degrees, e.g.,north=0, east=90, south=180, west=270).

% FOV_deg. .. Field of view of simulated sensor (degrees).

% pix tot... Number of cross track pixels in simulated sensor.

% alt... Nominal altitude (m above ground level) of simulated
sensor during data acquisition.

% speed. .. Nominal speed (m/s) of simulated sensor during data
acquisition.

% it... Integration time (s) of simulated sensor during data
acquisition.

% cross track sum Summing factor of simulated sensor in cross track
direction

% FWHM opt... Full width at half maximum (pixels) of simulated
sensor's optical point spread function (PSF). If unknown please enter 1.

% IMG loc... String with fold path of the input hyperspectral
imaging dataset.

% IMG name... Name of the input hyperspectral imaging dataset

(must be *.dat). Please DO NOT Include the ".dat" Extension.

oe

oe

$%0utput Parameters

% IMG conv... Hyperspectral imaging dataset blurred through
convolution with simulated sensor PSF

% PSF tot 3d... PSF of simulated sensor. The PSF is a function of
spatial displacement from pixel Center (m) in the Easting and Northing directions

% x c dist... Displacement values associated with columns of
PSF _tot 3d in Easting direction (m)

% y c dist... Displacement values associated with rows of

PSF tot 3d in Northing direction (m)

The PSF derivation (task 1) follows the calculations presented in Inamdar et al. (2020) using
the implementation from Inamdar et al. (2021b). In this process, the nominal pixel size of the
simulated sensor (without considering pixel summing) is first calculated based on the field of

view, number of cross track pixels, integration time and speed.
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%$%%Derive nominal pixel sizes of simulated sensor

pix size x=alt*tand(FOV deg/2)/(pix tot/2); S$nominal cross track resolution (m)
pix size y=max (speed*it,pix size x); %Snominal along track resolution (m)
dt=round (min ([pix size x pix size y])/150,1, 'significant'); % spatial resolution

to which PSF is calculated

Next, the rectangular pulse detector PSF and gaussian optical PSF are calculated and

convolved with one another to derive the net PSF in the cross track direction. It is important to

note that, at this point, the net cross track PSF does not consider the dynamics of spatial pixel

summing.

ESIE

%%% Derive Cross Track PSF of simulated sensor

$%%% Derive Gaussian Optical PSF of simulated sensor

muPDF=0; $ Mean of Gaussian Distribution for Optical PSF

FWHM x=FWHM opt*pix size x; SFWHM of Gaussian Distribution for Optical PSF
sigmaPDF=FWHM_x/(2*sqrt(2*log(2))); %$Standard Deviation of Gaussian for Optical

op_pdx=makedist ('Normal', muPDF, sigmaPDF); %Generate PSF
num_vals=round(pix_size_x*Z/dt);
x=-num vals*dt:dt:num vals*dt; % Displacement from pixel center (m) at which the

Optical PSF will be calculated

op_x_ f=pdf (op_pdx,x); %Calculate value of Optical PSF

%$%%% Derive Rectangular Pulse Detector PSF of simulated sensor
tep f=x>=-pix size x/2& x<=pix size x/2;

0]

oo

%%% Derive Net Cross Track PSF of simulated sensor normalized by the maximum
x_c_spr=conv (op_x f,step f)/max(conv(op x f,step f));

Afterward, the net cross track PSF is convolved with a derived rectangular pulse motion PSF.

The result of this convolution is the net PSF in the along track direction.

the

%%% Derive Along Track PSF of simulated sensor

num_vals=round (it*speed/dt) ;

y=num vals*dt:-dt:-num vals*dt; % Displacement from pixel center (m) at which
along track PSF will be calculated

oe

%$%% Derive motion PSF of simulated sensor
step f 2=y>=-it*speed/2& y<=it*speed/2;

oe

%%% Derive Net Along Track PSF of simulated sensor normalized by the maximum
y_C_spr=conv(x_c_ spr,step f 2)/max(conv(x_c spr,step f 2));

Next,

the cross track net PSF is spatially summed as per the setup of the simulated sensor.

228




oe

$%% Handle cross track summing
if cross_track sum>1

dist inc pix=cross_ track sum-1;

addon2=ceil (pix size x*dist inc pix/2/dt);

x min = min(abs(x c dist));

x len orig=length(x c spr);

x_c_dist=x min-addon2*dt-(x_len orig-1)/2*dt:dt:x min+addon2*dt+ (x len orig-
1) /2*dt;

x_spr new=zeros (l,length(x c dist));

if rem(cross track sum, 2) ==
center pt=(-pix size x/2-(cross_track sum/2-
1) *pix size x):pix size x: (pix size x/2+(cross_ track sum/2-1)*pix size x);
else
center pt=-pix size x* (cross_ track sum-
1) /2:pix_size x:pix size x*(cross track sum-1)/2;
end
index center pt = knnsearch(x c dist',center pt');

for i=l:cross_track sum
start indx=index center pt(i)-(x len orig-1)/2;
end_indx=index_center_pt(i)+(x_len_orig—l)/2;
X spr new(start indx:end indx)=x spr new(start indx:end indx)+x c spr;
end
X_Spr_new=x_Spr new/max (X _sSpr new);

X _C_Spr=x SsSpr new;

end

The net PSF in 2-dimensions is derived through vector multiplication of the cross track and
along track net PSFs. The rows and columns of the resultant matrix correspond with the along
track and cross track displacement (in meters) from the center of the pixel. Since the rows and
columns of the input HSI data correspond to the northing and easting directions, respectively, the
net PSF must be rotated by the flight line heading of the simulated sensor before convolution.

After rotation, task 1 is completed.
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%$%% Calculate Net PSF of simulated sensor in 2-dimensions (along track x cross
track)
PSF _tot 3d no rot=y c spr'*x c spr;

%%% Rotate PSF by flight line heading so that PSF of the simulated sensor is
north oriented
PSF tot 3d=imrotate (PSF_tot 3d no rot,-flight line heading, 'bilinear', 'crop'):;

To complete task 2, the input HSI data must first be imported, and the pixel

size must be extracted.

$%% Read input HSI dataset and extract pixel size
Filename=[IMG loc IMG name '.dat'];

Filename 2=[IMG loc IMG name '.hdr'];

info = enviinfo(Filename 2);

data=hypercube (Filename, Filename 2);

pix size IMG= data.Metadata.MapInfo.PixelSize(1);

To generate the convolution kernel and complete task 2, the rotated net PSF is spatially

integrated in intervals equal to the input HSI dataset pixel size and normalized to sum to unity.

oe

%% Generate Convolution Kernel by integrating PSF of simulated sensor

size_kernel=ceil(max(x_c_dist)/pix_size_IMG)*2+l; $calculate size of convolution
kernel

conv_ker=ones (size kernel,size kernel);
X _vec=-pix size IMG*size kernel/2:pix size IMG:pix size IMG* (size kernel/2-1);
y vec=fliplr(x vec);

for i= l:size kernel
X indx=(x vec(i)<x c dist & x c dist<(x vec(i)+pix size IMG));
for j=l:size kernel
y_indx=(y vec(j)+pix size IMG>y c dist & y c dist>y vec(J));
conv_ker (j,1i)=sum(sum(PSF_tot 3d(y indx,x indx)))/sum(sum(PSF tot 3d));
end
end

%% Normalize convolution kernel to sum to 1
conv_ker=conv_ker/sum(sum(conv_ker)) ;

oe
oe

Afterward, the input HSI dataset is convolved with the derived kernel, blurring the imagery
based on the PSF of the simulated sensor (completing task 3).

%% Convolve input HSI dataset by Convolution Kernel
IMG conv=data.DataCube;

for i=1l:info.Bands

IMG conv (:,:,1)=conv2(data.DataCube(:,:,1),conv_ker, 'same');
i/info.Bands*100

end
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Task 4 is completed by saving the blurred HSI dataset to a new ENVI standard file (Harris
Geospatial Solutions, 2022) in the same location as the input HSI dataset. This new file is named

after the input HSI dataset, appended with “ conv”.

%% Output input HSI dataset to ENVI Standard File

Filename=[IMG loc IMG name ' conv'];
newhcube = assignData(data, ':',':',':',IMG conv);
enviwrite (newhcube, Filename) ;

Below, we provide an example MATLAB code that generates a blurred HSI dataset by
calling HSI BLUR.m.

o)

% Define Input Parameters

FOV_deg=39.86;

pix tot=1500;

alt=1130;

speed=41.15;

it=48/1000;

FWHM opt=1.1

IMG loc='H:\HSI Blur\'

IMG name='Input HSI’ %Name of DSM (must be *.dat). Please do not include the
".dat" extention.

flight line heading=341.4650; %heading of the hyperspectral imager

cross_track sum=2;

o)

% Run Function

[IMG conv,PSF tot 3d,x c dist,y c dist ] =
HSI BLUR(flight line heading, FOV_deg,pix tot,alt,speed,it,cross track sum, FWHM opt,
IMG loc, IMG name) ;

It is important to note that the provided MATLAB function does not apply the final nearest
neighbour spatial resampling stage of the workflow. As previously mentioned, this can be done
in most commercially available image analysis software (e.g., the Resize function from ENVI or

the Resample function in ArcMap).

7.1.4. Example Applications of the Spatial Response Resampling Workflow

In this work, we give three practical example applications of the SR? workflow to show the
importance of accounting for the sensor PSF when spatially resampling HSI data to simulate the
spatial characteristics of a coarser resolution sensor. These applications use HSI data collected
from two field sites: The Mer Bleue Peatland (MBP) in Ontario, Canada and the Puerto Jiménez
Airport (PJA) in Puntarenas, Costa Rica. The MBP is a ~8500-year-old ombrotrophic bog
characterized by a hummock-hollow microtopography (Lafleur et al., 2001). A hollow

microform is at or below the water table in the peatland and is primarily composed of exposed
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mosses (e.g., Sphagnum spp.), while a hummock microform is an elevated mound in the peatland
surface where vascular plants densely cover the underlying mosses (Eppinga et al., 2008; Lafleur
et al., 2005). In the MBP, hummocks and hollows differ in absolute elevation by as much as 0.30
m and are separated by an approximate horizontal distance of 1-2 m (Belyea and Baird, 2006;
Malhotra et al., 2016). In peatlands, hummock-hollow microtopography provides diversity in
ecohydrological structure and biogeochemical function that is integral to the negative feedbacks
that maintain the long-term stability of peatland carbon (Belyea and Malmer, 2004; Eppinga et
al., 2008; Malhotra et al., 2016; Moore et al., 2019). As such, characterization of hummock-
hollow microtopography is critical to understanding and modeling complex hydrological and
biogeochemical processes, in addition to validating satellite-derived products such as water table
depth and net ecosystem exchange (Arroyo-Mora et al., 2018; Kalacska et al., 2018; Kalacska et
al., 2021). The PJA is located on the Osa peninsula and contains many urban features (e.g., roads
and buildings). The PJA was a validation site for the Mission Airborne Carbon 13 (MAC-13)
project, an initiative to derive aboveground biomass/carbon estimates in five highly diverse

ecosystems in Costa Rica (Kalacska et al., 2016).

HSI data were collected using three pushbroom hyperspectral imagers: the micro-Compact
Airborne Spectrographic Imager (WCASI-1920, ITRES, Calgary, AB, Canada), the Compact
Airborne Spectrographic Imager (CASI-1500, ITRES, Calgary, AB, Canada) and the Shortwave
Airborne Spectrographic Imager (SASI-640, ITRES, Calgary, AB, Canada). The nCASI-1920
and the CASI-1500 collect spectral information in the VNIR from 450 to 900 nm, while the
SASI-640 collects spectral information in the SWIR from 900 to 1900 nm. Because the pCASI-
1920 was mounted on a DJI Matrice 600 Pro RPAS, it is capable of collecting finer spatial
resolution data (< 5 cm) (Arroyo-Mora et al., 2019) than the CASI-1500 and SASI-640 sensors,
which are mounted in a Twin Otter fixed-wing manned aircraft. This study specifically analyzes
pCASI-1920 and CASI-1500 data collected from the MBP in addition to CASI-1500 and SASI-
640 data from the PJA (see Figure 7.2). The data acquisition parameters and sensor properties
associated with each dataset are given in Table 7.1. Before application, all HSI data were
radiometrically corrected, atmospherically compensated and geometrically corrected using
software developed by the sensor manufacturer and ATCOR4 (ReSe, Wil, Switzerland), as
described by Soffer et al. (2019) and Osei Darko et al. (2021).
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The first example application shows the utility of the SR? workflow for data cross-validation.
Specifically, the CASI-1500 imagery from the MBP was cross-validated using the pCASI-1920
data. In the second example application, the SR? workflow was applied for flight planning. In
this example, the simulation workflow used the pCASI-1920 data to establish appropriate CASI-
1500 data acquisition parameters for identifying hummocks and hollows within the MBP. The
final example application shows how the SR? workflow can be implemented for data fusion
between sensors that capture spectral information in different portions of the electromagnetic
spectrum. In this application, the CASI-1500 data from the PJA was fused with the SASI-640

data to generate a spatially coherent full-range spectrum.
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Figure 7.2. The hyperspectral imaging data used to show the utility of the developed Spatial
Response Resampling (SR?) workflow. CASI-1500 and uCASI-1920 data were collected over the
Mer Bleue Peatland (MBP), while CASI-1500 and SASI-640 data were collected over the Puerto
Jiménez Airport (PJA). A) Hyperspectral imaging data collected over the MBP with the CASI-
1500 (R=640.8 nm, G=549.9 nm, B=459.0 nm, linearly scaled from 0 to 12 %). The red box
shows the location where the uCASI-1920 data was collected. B) Hyperspectral imaging data
collected over the MBP with the uCASI-1920 (R=639.6 nm, G=550.3 nm, B=459.0 nm, linearly
scaled from 0 to 12 %). C) Hyperspectral imaging data collected over the PJA with the CASI-
1500 (R=641.2 nm, G=550.3 nm, B=458.3 nm, linearly scaled from 0 to 20 %). D)
Hyperspectral imaging data collected over the PJA with the SASI-640 (R=1240.1 nm and
linearly scaled from 0 to 60 %, G=1540.7 nm and linearly scaled from 0 to 50 %, B=1846.0 nm
and linearly scaled from 0 to 30 %).
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Table 7.1. Parameters for the hyperspectral imaging data acquired over the Mer Bleue Peatland

(MBP) and Puerto Jiménez Airport (PJA) with the SASI-644, CASI-1500 and uCASI-1920.

Parameter MBP MBP PJA PJA
(nCASI-1920) (CASI-1500) (CASI-1500) (SASI-640)

Date (dd-mm-yyyy) 15-07-2019 15-07-2019 29-04-2013 29-04-2013
Image start time (hh.mm.ss GMT) 15.44.49 15.44.38 15.07.55 15.07.55
Total Number of Cross Track Pixels 1920 1500 1500 644
Effective Number of Cross Track 1833 1496 1493 640
Pixels
Sensor Field of View (°) 34.21 39.9 39.9 39.7
Nominal Flight Line Heading (° True 156 341 343 343
North)
Nominal Altitude (m | ft) 451148 1133|3717 2586 | 8484 2586 | 8484
Nominal Speed (m/s | kn) 27152 41.6180.9 61.7]120.0 61.7]120.0
Integration Time (ms) 9 48 32 4.1
Full width at half maximum of 1.1 1.1 1.1 1.1
Optical Point Spread Function
(pixels)
Cross Track Summing (pixel) 1 2 1 1
Nominal Cross Track Pixel 0.03 1.1 1.25 2.9
Resolution
Nominal Along Track Pixel 0.03 1.97 1.99 2.9
Resolution
Pixel Size of Georeferenced Raster 0.03 1.0 1.25 3.5

(m)

7.1.4.1. Data Cross-Validation Application
In the remote sensing literature, cross-validation is a process whereby a measurement with

known uncertainty is used to assess the accuracy of an independent measurement. Typically, in

situ data collected at the ground level is used to cross-validate measurements collected at the

airborne level, which can then be used to cross-validate spaceborne measurements. Cross-
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validation of in situ and imaging spectroscopy data at the airborne and spaceborne levels requires
a detailed understanding of the measurement process, the involved spatial-spectral scales and the
processing applied to the data (Hueni et al., 2017). Depending on the sampling strategy and the
characteristics of the target (size, spectral variability), it can be difficult to acquire in situ data
that is spatially coherent with airborne imaging spectroscopy data. Additional problems arise in
cross-validation efforts as it is difficult to collect in situ data that samples materials across the
spatial extent covered by airborne sensors. RPAS-HSI data presents a potential solution to bridge
the gap between airborne HSI data and in sifu data via cross-validation. This study analyzes the
utility of the SR? workflow in cross-validating higher altitude airborne HSI data with finer
resolution RPAS-HSI data.

The uCASI-1920 dataset was input to the SR? workflow to simulate the MBP CASI-1500
data with the flight parameters in Table 7.1. The PSF associated with the MBP CASI-1500 data
can be seen in Figure 7.3. The simulated image was compared to a conventional data simulation
approach where the pCASI-1920 imagery was spatially degraded using a pixel aggregate
averaging approach. In this comparison, the mean and standard deviation of each spectral band
were calculated for the two degraded pCASI-1920 datasets and the original CASI-1500 dataset.
For comparability, the CASI-1500 data were spatially subset to the area covered by the pyCASI-

1920 imagery before calculating the mean and standard deviation of each spectral band.
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Figure 7.3. The point spread function (PSF) for the CASI-1500 data collected over the Mer
Bleue Peatland. A) The optical PSF (PSFop), detector PSF (PSF4ey) and net PSF (PSFe) in the
cross track direction (unsummed and summed PSFs are designated by the s=1 and s=2 tags,
respectively). B) The PSFop, PSFer, motion PSF (PSF o) and PSF e in the along track
direction. C) The PSF e as a function of displacement from the center of the pixel in the easting
and northing directions. The grid in the x-y plane corresponds to the pixel size in the final
georeferenced end product. When studying the PSF e in panel C, less than 37% of the signal
originates within the square spatial boundaries defined by pixel size in the final data end
product.

Figure 7.4A-D shows the original CASI-1500 and pnCASI-1920 imagery, in addition to the
two simulated data products. The mean reflectance spectra (Figure 7.4E) of the two simulated
data products were consistent with the mean spectrum of the CASI-1500 imagery. The standard
deviation (Figure 7.4F) in the reflectance spectra of the conventional data simulation end
product was 45.86 % larger on average than the standard deviation measured from the original
CASI-1500 data (ranging from 23.37 % to 76.91 %) (see Figure 7.4H). The standard deviation

in the reflectance spectra of the SR? data simulation end product was only 22.65 % larger on
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average than the standard deviation measured from the CASI-1500 data (ranging from 6.29 % to
42.62 %) (see Figure 7.4H). Inamdar et al. (2020) show that the overlap in the sensor PSF of
adjacent pixels results in spatial autocorrelation that changes observed spectral variance. If the
spatial properties of the degraded pCASI-1920 imagery are perfectly consistent with that of the
CASI-1500, then the standard deviation in the reflectance spectrum should be identical. It is
important to recognize that the standard deviation values calculated for the original and
simulated CASI-1500 data will never be identical due to factors such as jitter, increased noise
levels, viewing geometries and other sensor-related phenomena, in addition to intrinsic
properties of the observed matter such as material bidirectional reflectance distribution functions.
However, the observed reduction in the standard deviation implies that the simulated dataset
output from the SR? workflow was more spatially consistent with the CASI-1500 data than the
conventional data product. If the conventional data simulation product was used in data cross-
validation efforts, the additional variation in the reflectance spectra could contribute to the
overall errors. The additional errors would unnecessarily increase the overall uncertainty in the
CASI-1500 data during cross-validation efforts. Overall, the SR? workflow ensured that all data

used in cross-validation efforts were spatially consistent for data validation efforts.

238



A) B)

45°24'37"N 45°24'37"N

45°24'36"'N 45°24'36"'N

75°30'58"'W 75°30'56"W 75°30'58"W 75°30'56"W
) D)
45°24'37"N 45°24'37"N
45°24'36"N 45°24'36"N
75°30'58"W 75°30'56"W 75°30'58"W 75°30'56"W
E) F)
45 5.0
—— CASI-1500 4.5 b[—CASI-1500
40 F|—— ,,CASI-1920 (Conventional) -2 £ |—— ,.CASI-1920 (Conventional)
< 35} uCASI-1920 (SR?) RAOF[ " ucASK1920 (SR?)
g0
£ 25
3]
% 20
4
S 15
(3]
=10
5
0 0.0
450 500 550 600 650 700 750 800 850 900 450 500 550 600 650 700 750 800 850 900
Wavelength (nm) Wavelength (nm)
G) H)

N
o

@
o

— Conventional Resampling
—sR?

o
~
=)

=)
N 123 =3
=) =] =]

w
=)

b

—— Conventional Resampling
- gR?

-5
450 500 550 600 650 700 750 800 850 900
Wavelength (nm)

and CASI-1496 STD in Reflectnace (%)

<
e
(‘E’
£
i

Relative Difference between Degraded CASI-1920
and CASI-1496 Mean Reflectnace (%)
Relative Difference between Degraded CASI-1920

0
450 500 550 600 650 700 750 800 850 900
Wavelength (nm)

Figure 7.4. Example data cross-validation application of the Spatial Response Resampling (SR?)
workflow. A) Spatial subset of the Mer Bleue Peatland (MBP) CASI-1500 hyperspectral imaging
data (R=640.8 nm, G=549.9 nm, B=459.0 nm, linearly scaled from 0 to 12 %). B) Original
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UCASI-1920 hyperspectral imaging data collected over the MBP (R=639.6 nm, G=550.3 nm,
B=459.0 nm, linearly scaled from 0 to 12 %). C) Spatially degraded uCASI-1920 hyperspectral
imaging data (R=639.6 nm, G=550.3 nm, B=459.0 nm, linearly scaled from 0 to 12 %)
generated using conventional resampling methodologies (pixel aggregate method). D) Spatially
degraded uCASI-1920 hyperspectral imaging data (R=639.6 nm, G=550.3 nm, B=459.0 nm,
linearly scaled from 0 to 12 %) generated using the SR’ workflow. E) The mean of each spectral
band from the two spatially degraded uCASI-1920 images and the original CASI-1500 imagery,
spatially subset to cover the same extent. F) The standard deviation in each spectral band from
the two spatially degraded uCASI-1920 images and the CASI-1500 imagery, spatially subset to
cover the same extent. G) Relative difference in the calculated mean reflectance spectrum
between the original CASI-1500 imagery and the two spatially degraded uCASI-1920 images. H)
Relative difference between the calculated standard deviation in reflectance of the original
CASI-1500 imagery and the two spatially degraded uCASI-1920 images. The simulated data
product generated using the SR> workflow was the most spatially consistent with the CASI-1500
imagery. The mean in the reflectance was consistent between the two simulated data products
and the CASI-1500 data. The standard deviation calculated for the simulated imagery derived
from the SR? workflow was the closest to that of the CASI-1500 imagery, indicating that the
datasets are characterized by similar levels of sensor blurring.

7.1.4.2. Flight Planning Application
HSI acquisition is monetarily expensive, requiring considerable effort from experts during

flight planning and data acquisition (Arroyo-Mora et al., 2019). As a result, it is practically
infeasible to test multiple data acquisition parameters to determine how to optimally collect data
for a specific scientific question. The SR? workflow presents a solution to this problem, showing
an example where fine resolution HSI data can be used to identify optimal data acquisition
parameters to collect coarser resolution HSI data capable of identifying a user-defined target
with minimal mixing. In the flight planning example application, the SR* workflow used the
nCASI-1920 data to establish appropriate CASI-1500 data acquisition parameters for identifying
hummocks and hollows within the MBP. As previously mentioned, the hummock-hollow
microtopography is key to understanding and modeling complex hydrological and
biogeochemical processes, in addition to validating satellite-derived products such as water table
depth and net ecosystem exchange (Arroyo-Mora et al., 2018; Kalacska et al., 2018; Kalacska et
al., 2021).

In the flight planning data application, the pCASI-1920 imagery was spatially degraded
using the SR? workflow based on the characteristics of the CASI-1500 sensor with various data

acquisition parameters (see Table 7.2). Each set of data acquisition parameters was selected to
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simulate data that the CASI-1500 could potentially acquire at various nominal spatial resolutions
(0.25m, 0.5 m, 0.75 m, 1.00 m, 1.25 m, 1.50 m). Figure 7.5 shows the spatially degraded
nCASI-1920 datasets that simulated various flight configurations of the CASI-1500. At 25 cm,
the hummock-hollow microtopography could be clearly observed. As progressively coarser
resolution CASI-1500 images were simulated, the hummock-hollow microtopography was more

difficult to identify qualitatively.

The detectability of hummocks and hollows was analyzed by extracting spectra from a small
(~1 m) example hummock and hollow at the MBP (see Figure 7.6A). Hollows are mainly
composed of exposed Sphagnum mosses. As such, the spectral properties of hollows differ from
hummocks (Bubier et al., 1997; Vogelmann and Moss, 1993), which are composed of Sphagnum
mosses densely covered by vascular plants. The predominant difference between Sphagnum
moss and vascular plant reflectance is in the location and magnitude of the green peak, the red
edge inflection point and the magnitude of reflectance in the near infrared (Bubier et al., 1997;
Harris et al., 2005; Vogelmann and Moss, 1993). This is due to differences in pigmentation and
cell and canopy structure (Bubier et al., 1997; Harris et al., 2005; Vogelmann and Moss, 1993).
Figure 7.6B-C shows the spectra extracted from the example hollow and hummock within each
simulated scene. The difference between the hollow and hummock spectra at each scale was
displayed in Figure 7.6D. To measure separability, the difference spectrum at each scale was
normalized by the standard deviation in each band of the utilized HSI data. The absolute value of
the normalized difference is representative of separability between the example hummock and

hollow as a function of wavelength in units of standard deviations (STD) (see Figure 7.6E).

At fine spatial resolutions, mixing in the hummock and hollow spectra was less prominent.
For instance, the hollow spectrum at scale 1 (see Figure 7.6B) was representative of Sphagnum
mosses such as Sphagnum divinum, with a notable shift in the green peak towards longer
wavelengths and high reflectance in the near infrared likely due to low near-surface moisture
content. Similarly, the hummock spectrum at scale 1 was representative of vascular plants, with a
red absorption feature from ~650-680 nm (see Figure 7.6C) that was not observable in the
hollow spectrum. As the resolution became coarser, mixing between hummocks and hollows was
more prominent and the difference between the example spectrum from each microform

decreased (Figure 7.6D-E). For example, over the spectral range of the red absorption feature
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typically observed in vascular plants (~650-680 nm), the difference in reflectance between the
example hollow and hummock spectrum was 3.24 % on average at scale 1, ranging from 3.10 to
3.36 %. The corresponding normalized difference was equal to 3.40 STD on average, ranging
from 3.25-3.52 STD. At scale 6, the difference between the hummock and hollow spectrum over
the same spectral range was only 0.49 % on average, ranging from 0.47 % to 0.52 %. The
corresponding normalized difference was equal to 0.77 STD on average, ranging from 0.73 -0.81
STD. This practically implies that hummocks and hollows were more than 4 times as separable
at scale 1 when compared to scale 5 over the 680-700 nm spectral range. Given the generally low
separability of hummocks and hollows at scales 3-6 (normalized difference between hummock
and hollow spectrum < 1.36 STD, see Figure 7.6E), the flight parameters from scales 1-2 were

the most suitable for aerial campaigns interested in the microtopography at the MBP.

When selecting flight parameters, it is critical to consider logistical constraints. For instance,
although an integration time of 6 ms may be technically possible, it would require on-chip
summing in the spectral domain which may result in suboptimal data applications. Similarly,
high altitudes may not be practically feasible. Overall, the simulation workflow is useful in

determining the data acquisition parameters necessary to detect features of interest.
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Table 7.2. Tested CASI-1500 data acquisition parameters for degrading the uCASI-1920 at

multiple spatial scales. The different spatial scales were acquired by modifying sensor altitude
and integration time. The bolded entries indicate the parameters that were varied between
scales. It is important to note that it is not feasible to maintain such precise altitudes over long
durations at the airborne level with manned aircrafts.

Parameter Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6
Number of Cross Track 1500 1500 1500 1500 1500 1500
Pixels
Sensor Field of View (°) 39.86 39.86 39.86 39.86 39.86 39.86
Nominal Flight Line 0 0 0 0 0 0
Heading (° True North)

Nominal Altitude (m | 51711696 103413392 1551|5088 2068|6785 2575|8448 309210144
ft)

Nominal Speed (m/s | 41180 41180 41180 41180 41180 41.15| 80
kn)

Integration Time (ms) 6 12 18 24 30 36
Full width at half 1.1 1.1 1.1 1.1 1.1 1.1
maximum of Optical

Point Spread Function

(pixels)

Cross Track Summing 1 1 1 1 1 1
(pixel)

Swath (m) 375 750 1125 1500 1867 2242
Nominal Pixel 0.25 0.5 0.75 1.0 1.25 1.50

Resolution (m)
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Figure 7.5. Example flight planning application of the Spatial Response Resampling (SR?)
workflow. A-F) Spatially degraded uCASI-1920 hyperspectral imaging data (R=639.6 nm,
G=550.3 nm, B=459.0 nm, linearly scaled from 0 to 12 %) generated using the SR’ workflow
with the data acquisition parameters in Table 7.2. Panels A-F correspond with simulations of the
scene at scale 1 (0.25 m), scale 2 (0.50 m), scale 3 (0.75 m), scale 4 (1.0 m), scale 5 (1.25 m) and
scale 6 (1.5 m), respectively. In general, the hummocks appear green in color while hollows

appear red. Users can analyze these datasets to understand the required spatial resolution for
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their particular application. In this case, the microtopography of the Mer Bleue peatland
becomes less observable at coarser resolutions.
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Figure 7.6. Hummock and hollow spectra extracted from the spatially degraded uCASI-1920
hyperspectral imaging data generated using the SR’ workflow with the data acquisition
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parameters in Table 7.2. A) Original uCASI-1920 hyperspectral imaging data (R=639.6 nm,
G=550.3 nm, B=459.0 nm, linearly scaled from 0 to 12 %). The analyzed example hummock and
hollow were identified in the image. In general, the hummocks appear green in color while
hollows appear red. Panels B and C show the example hollow and hummock spectra,
respectively. Panel D shows the difference between the hollow and hummock spectra at different
spatial scales. Panel E shows the normalized difference between the hollow and hummock
spectra at different spatial scales in units of standard deviation (STD). These values were
obtained by dividing the difference spectrum in panel D by the standard deviation in each
spectral band of the image from which the spectra were obtained. The absolute value of the
normalized difference is representative of separability between the example hummock and
hollow as a function of wavelength. As the spatial scale becomes coarser, hummock and hollow
reflectance spectra become more similar due to mixing with neighbouring endmembers. For
instance, at fine spatial resolutions, the sphagnum from the hollow spectra can be observed by
the shifted green peak and the high NIR reflectance. At scale 3-6, these characteristics were lost,
and the spectra were more consistent with the example hummock.

7.1.4.3. Data Fusion of VNIR and SWIR Imagery
Inamdar et al. (2021a) developed a data fusion approach that synergistically integrated

surface elevation data into HSI data. In their work, a fine spatial resolution digital surface model
was convolved with the PSF of a coarser resolution HSI dataset to make the elevation and
spectral data more spatially consistent. Following the same logic, the SR? workflow can be used
for data fusion between sensors that capture spectral information in different portions of the
electromagnetic spectrum (e.g., visible near infrared (VNIR) and shortwave infrared (SWIR)) at
different spatial scales. In this example application, the CASI-1500 and SASI-640 data collected

over the PJA were fused to generate a full-range (450 nm to 1900 nm) image.

Due to differences in sensor characteristics, the spatial resolution of the SASI-640 imagery
(2.9 m) was coarser than that of the CASI imagery (1.25 m). To ensure that the reflectance
spectrum was spatially coherent between the VNIR and SWIR during data fusion, the CASI
imagery (1.25 m) needed to be spatially degraded. As such, the CASI-1500 data was input to the
data simulation workflow and spatially degraded based on the spatial response of the SASI-640
derived from the flight parameters in Table 7.1. To generate a full-range data product after the
simulation workflow, the spatially degraded CASI-1500 image and unmodified SASI-640 image
were stacked via ENVI using a nearest neighbour resampling technique. To showcase the utility
of the SR? workflow in data fusion, the derived full-range data product was compared against a
conventional full-range data product generated by stacking the unmodified CASI-1500 and
SASI-640 data using a nearest neighbour resampling technique in ENVI. The two data products

were initially evaluated by observing the mean and standard deviation in the reflectance
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spectrum from two 280 m x 280 m (80 x 80 pixels) regions of interest (forest and urban) in the

fused data products.

Figure 7.7A-F shows the studied ROIs from the two generated full-range products in the
VNIR and SWIR. As seen in Figure 7.7G-H, the difference between the mean VNIR reflectance
spectra in the conventional and SR? data products was marginal (< 0.12 %). This was expected as
convolution theoretically has no effects on first-order statistics such as mean (Inamdar et al.,
2020) over large enough regions. Figure 7.71-J shows that the conventional full-range data
product had a larger standard deviation than the SR? workflow derivative. The offset in standard
deviation between the VNIR and SWIR was larger in the conventional full-range product (3.02
% and 2.58 % for the forest and urban ROIs, respectively) than in the SR? derivative (0.58 % and
0.28 % for the forest and urban ROIs, respectively). Based on the results previously discussed by
Inamdar et al. (2020), this implies that the spatial properties of the CASI-1500 data are more
consistent with that of the SASI-640 when using the SR? workflow. To expand on this analysis,
the absolute offset in reflectance spectra between the VNIR and SWIR for the two studied full-
range data products was calculated on a pixel-by-pixel basis (see Figure 7.8) over the studied
ROIs. The VNIR reflectance spectra derived from the SR? workflow were more consistent with
the SWIR data. As seen in the violin plots from Figure 7.8G-H, the mean absolute difference in
reflectance across the transition between the VNIR and SWIR in the SR? full-range end product
was 4.08 % and 3.06 % for the forest and urban ROls, respectively. These values were much
smaller than those recorded for the conventional full-range product, which was 7.72 % and 7.25
% for the forest and urban ROIs, respectively. Visual inspection of the violin plots also reveals
that the distribution of the offset between the VNIR and SWIR portions skews closer to zero for

the SR? data derivative than the conventional end product.

To gain some insight into the cause of the VNIR-SWIR offset, Figure 7.8I-J shows spectra
of various features (tree canopy, shaded tree canopy, building and road) within the two example
ROIs. In the conventional full-range product, the spectra were inconsistent between the VNIR
and SWIR (see Figure 7.8I). For instance, in the shaded tree canopy spectra, the VNIR spectra
appeared to be from a shaded canopy exclusively, while the SWIR spectra appeared to be a
mixture of the shaded canopy and the unshaded surrounding materials. The discrepancy in the

material composition of the shaded canopy spectrum resulted in a large offset of 26.56 %
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between the VNIR and SWIR portions of the electromagnetic spectrum. In the full-range product
generated using the SR? workflow, the shaded canopy VNIR spectrum was consistent with the
SWIR; the offset between the VNIR and SWIR portions of the electromagnetic spectrum was
<0.3% (see Figure 7.8J). These results imply that the large mean absolute offset in the
conventional full-range product (7.72 % and 7.25 % for the forest and urban ROlIs, respectively)
was due to discrepancies in scale and, by extension, pixel material composition between the
CASI-1500 and SASI-640 data. Without applying the SR? workflow, the derived full-range HSI
product cannot be effectively utilized for spectroscopy analyses. Similar arguments can be made
by studying the building and tree canopy spectra. Although the SR? workflow did not improve
the road spectra in Figure 7.81-J, it is crucial to recognize that the extracted pixel was
surrounded by other road pixels. As such, the pixel material composition to each spectrum did
not change when applying the SR? workflow. This implies that the SR? workflow is critical in
heterogeneous areas. Overall, the SR* workflow was shown to be an effective method to ensure
that the VNIR and SWIR portions of the spectra from the full-range HSI datasets are

representative of similar areas on the ground.
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Figure 7.7. Example data fusion application of the spatial response resampling (SR?) workflow
for generating a full-range image from separate VNIR and SWIR hyperspectral imagery. The two
tested full-range data products were the same in the shortwave infrared (SWIR) and only
distinguishable in the visible near infrared (VNIR). The conventional full-range data product




was generated using a nearest neighbour resampling technique, while the novel data fusion
approach used the SR’ technique described in this study. A-C) the forest region of interest in the
VNIR ( R=641.2 nm, G=550.3 nm, B=458.3 nm, linearly scaled from 0 to 20 % ) and the SWIR
(R=1240.1 nm and linearly scaled from 0 to 60 %, G=1540.7 nm and linearly scaled from 0 to
50 %, B=1846.0 nm and linearly scaled from 0 to 30 %) for both full-range data products. D-F)
The urban region of interest in the VNIR and SWIR (RGB display identical to the forest region of
interest) for both full-range products. G) The mean reflectance spectrum from the conventional
and SR’ full-range end products over the forest region of interest. H) The mean reflectance
spectrum from the conventional and SR full-range end products over the urban region of
interest. Subplots I and J display the standard deviation in the reflectance spectrum shown in
subplots G and H, respectively. The offset between the VNIR and SWIR in subplots I and J shows
that the SR’ workflow is critical in ensuring that the merged SASI-640 imagery and CASI-1500
imagery are spatially consistent.
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Figure 7.8. Example data fusion application of the spatial response resampling (SR?) workflow
for generating a full-range image from separate VNIR and SWIR hyperspectral imagery. The two
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distinguishable in the visible near infrared (VNIR). The conventional full-range data product
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was generated using a nearest neighbour resampling technique, while the novel data fusion
approach used the SR’ technique described in this study. A) The forest region of interest (ROI) in
the SWIR (R=1240.1 nm and linearly scaled from 0 to 60 %, G=1540.7 nm and linearly scaled
from 0 to 50 %, B=1846.0 nm and linearly scaled from 0 to 30 %). Panels B and C show the
absolute difference in reflectance across the transition between the VNIR and SWIR for the two
studied full-range data products in the forest ROI. D) The urban ROI in the SWIR (displayed
identically to panel A). Panels E and F show the absolute difference in reflectance across the
transition between the VNIR and SWIR for the two studied full-range data products in the urban
ROL G) Violin plot (includes mean and quartiles) of the absolute difference in reflectance across
the transition between the VNIR and SWIR for the two studied full-range data products in the
forest ROI. H) Violin plot (includes mean and quartiles) of the absolute difference in reflectance
across the transition between the VNIR and SWIR for the two studied full-range data products in
the urban ROL. 1) Spectra from various materials extracted from the conventional data fusion
end product within the studied ROIs. J) Spectra from various materials extracted from the SR’
data fusion end product within the studied ROIs. The offset between the VNIR and SWIR in the
conventional full-range data product would leave the spectra unusable in spectroscopy analyses
such as material identification and characterization.
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7.1.8. Supplemental Material
The supplementary HSI BLUR MATLAB script can be found below:
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function [IMG conv,PSF tot 3d,x c dist,y c dist ] =

HSI BLUR(flight line heading,FOV deg,pix tot,alt, speed,it,cross_ track sum, FWHM opt,
IMG loc,IMG name)

%% HSI BLUR (Blur Hyperspectral Imaging Data to the Spatial Characteristics of a
Specified Sensor)

oe

% [IMG conv,PSF tot 3d,x c dist,y c dist ] =
HSI BLUR(flight line heading,FOV deg,pix tot,alt, speed,it,cross track sum, FWHM opt,
IMG loc,IMG name)

oe

o\

%% Input Parameters

% flight line heading... Heading of simulated sensor (True North Heading in
degrees, e.g.,north=0, east=90, south=180, west=270) .

% FOV _deg... Field of view of simulated sensor (degrees).

% pix tot... Number of cross track pixels in simulated sensor.

% alt... Nominal altitude (m above ground level) of simulated
sensor during data acquisition.

% speed. .. Nominal speed (m/s) of simulated sensor during data
acquisition.

% it... Integration time (s) of simulated sensor during data
acquisition.

% cross track sum Summing factor of simulated sensor in cross track
direction

% FWHM opt... Full width at half maximum (pixels) of simulated
sensor's optical point spread function (PSF). If unknown please enter 1.

% IMG loc... String with fold path of the input hyperspectral
imaging dataset.

% IMG name... Name of the input hyperspectral imaging dataset (must

be *.dat). Please DO NOT Include the ".dat" Extension.

o)

o

opP

$%0utput Parameters

% IMG conv... Hyperspectral imaging dataset blurred through
convolution with simulated sensor PSF

% PSF tot 3d... PSF of simulated sensor. The PSF is a function of
spatial displacement from pixel Center (m) in the Easting and Northing directions
% X c dist... Displacement values associated with columns of

PSF tot 3d in Easting direction (m)

% y_c dist... Displacement values associated with rows of PSF tot 3d

in Northing direction (m)
R e B R I I I I b I b I I I b I b I b I e b b b b b b I I b b I b b b I b b b I I b b I I b b b I b b I I b b b b b b b b b b b

T KRx After running HSI BLUR, the blurred HSI dataset will be saved e

B WU to the same location as the input image as a *.dat file. The B
F BEW output image will be named after the input image with " conv" WRW
B WU appended to the file name. Bk

L KKK A A KK AKAA A A AAXA KK AKX KA AKX KK A KK F AKX KK I A A KKK I A KKKk hh k& kkhk ok kkokhxkkkokxxkk

o°
o©

% Description
% HSI BLUR is used to blur an input HSI dataset to simulate the spatial
% characteristics of another sensor.

%%% Copyright: Deep Inamdar, deep.inamdar@mail.mcgill.ca
%$%% Applied Remote Sensing Laboratory, Department of Geography, McGill University

Code Segment 1 of 4
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oe

% Derive PSF

%%%Derive nominal pixel sizes of simulated sensor
pix size x=alt*tand(FOV_deg/2)/ (pix tot/2); %nominal cross track resolution (m)
pix size y=max (speed*it,pix size x); S%Snominal along track resolution (m)

dt=round (min ([pix size x pix size y])/150,1,'significant'); % spatial resolution to
which PSF is calculated

oe

%% Derive Cross Track PSF of simulated sensor

$%% Derive Gaussian Optical PSF of simulated sensor

muPDF=0; $ Mean of Gaussian Distribution for Optical PSF

FWHM x=FWHM opt*pix size x; SFWHM of Gaussian Distribution for Optical PSF
sigmaPDF=FWHM_x/(2*sqrt(2*log(2))); %$Standard Deviation of Gaussian for Optical PSF
op_pdx=makedist ('Normal', muPDF, sigmaPDF); %Generate PSF
num_vals=round (pix size x*2/dt)
x=-num vals*dt:dt:num vals*dt;
Optical PSF will be calculated
op x f=pdf (op pdx,x); %Calculate value of Optical PSF

oe

’
L
©

Displacement from pixel center (m) at which the

%$%%% Derive Rectangular Pulse Detector PSF of simulated sensor
step f=x>=-pix size x/2& x<=pix size x/2;

%%%% Derive Net Cross Track PSF of simulated sensor normalized by the maximum
_c_spr=conv (op_x_f,step f)/max(conv(op x f,step f));

b
Q

%%%% Derive cross track displacement values associated with the Net PSF of
simulated sensor

x min = min(abs(x));

addon_x=(length(x c_spr)-1)/2;

x c dist=x min-addon x*dt:dt:x min+addon x*dt;

%$%% Derive Along Track PSF of simulated sensor

num_vals=round (it*speed/dt) ;

y=num vals*dt:-dt:-num vals*dt; % Displacement from pixel center (m) at which the
along track PSF will be calculated

%$%%% Derive motion PSF of simulated sensor
step f 2=y>=-it*speed/2& y<=it*speed/2;

oe
oe
oe

% Derive Net Along Track PSF of simulated sensor normalized by the maximum
y_c_spr=conv(x_c spr,step f 2)/max(conv(x_c spr,step f 2));

%%%% Derive along track displacement values associated with the Net PSF of
simulated sensor

y min = min(abs(y));

addon_y=(length(y c_spr)-1)/2;

y c dist=y min+addon y*dt:-dt:y min-addon y*dt;

Code Segment 2 of 4

258




$%%% Handle cross track summing
if cross_track sum>1

dist inc pix=cross track sum-1;

addon2=ceil (pix_ size x*dist inc pix/2/dt);

X min = min(abs(x_c dist));

x len orig=length(x c spr);

x ¢ dist=x min-addon2*dt-(x len orig-1)/2*dt:dt:x mintaddon2*dt+(x len orig-
1) /2*dt;

x_spr_new:zeros(l,length(x_c_dist));

if rem(cross track sum, 2) ==
center pt=(-pix size x/2-(cross_ track sum/2-
1) *pix size x):pix size x: (pix _size x/2+(cross_track sum/2-1)*pix size x);
2lse
center pt=-pix size x*(cross_track sum-
1) /2:pix size x:pix size x*(cross track sum-1)/2;
end
index center pt = knnsearch(x c dist',6center pt');

for i=l:cross track sum

start indx=index center pt(i)-(x len orig-1)/2;

end indx=index center pt(i)+(x len orig-1)/2;

x spr new(start indx:end indx)=x_ spr new(start indx:end indx)+x c spr;
end

X Spr new=x spr new/max (X Spr new);
X C Spr=x Spr new;

end

%%% Make x c spr same spatial dimensions as y c_spr by padding edges
if length(y c spr)>length(x c_spr)
x_c_spr=padarray(x_c_spr, [0 (length(y c spr)-length(x c spr))/2], 'both");
x c dist=fliplr(y c dist);
elseif length(x c spr)>length(y c spr)
y _c_spr=padarray(y c_spr, [0 (length(x c spr)-length(y c_ spr))/2]1,'both'");
y_c dist=fliplr(x c dist);
end

%$%% Calculate Net PSF of simulated sensor in 2-dimensions (along track x cross
track)
PSF _tot 3d no rot=y c spr'*x c spr;

%$%% Rotate PSF by flight line heading so that PSF of the simulated sensor is north

oriented
PSF tot 3d=imrotate (PSF tot 3d no rot,-flight line heading, 'bilinear', 'crop'):;

Code Segment 3 of 4
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%% Derive Convolution Kernel for input HSI dataset

$%% Read input HSI dataset and extract pixel size
Filename=[IMG loc IMG name '.dat'];

Filename 2=[IMG loc IMG name '.hdr'];

info = enviinfo(Filename 2);

data=hypercube (Filename, Filename 2);

pix size IMG= data.Metadata.MapInfo.PixelSize(1);

%$%% Generate Convolution Kernel by integrating PSF of simulated sensor

size kernel=ceil (max(x c dist)/pix size IMG)*2+1; %calculate size of convolution
kernel

conv_ker=ones (size kernel,size kernel);
X _vec=-pix size IMG*size kernel/2:pix size IMG:pix size IMG* (size kernel/2-1);
y vec=fliplr(x vec);

for i= l:size kernel
X indx=(x vec(i)<x c dist & x c dist<(x vec(i)+pix size IMG));
for j=l:size kernel
y indx=(y vec(j)+pix size IMG>y c dist & y c dist>y vec(j)):;
conv_ker(j,i)=sum(sum(PSF_tot_3d(y_indx,x_indx)))/sum(sum(PSF_tot_3d));
end
end

%$%% Normalize convolution kernel to sum to 1
conv_ker=conv_ker/sum(sum(conv_ker));

oo

%% Convolve input HSI dataset by Convolution Kernel
IMG conv=data.DataCube;

for i=1l:info.Bands

IMG conv (:,:,1)=conv2(data.DataCube(:,:,1i),conv_ker, 'same');
i/info.Bands*100

end

%% Output input HSI dataset to ENVI Standard File
Filename=[IMG loc IMG name ' conv'];

newhcube = assignData(data, ':',':',':',IMG conv);

enviwrite (newhcube, Filename) ;

end

Code Segment 4 of 4

260




7.2. Implementation of the Directly-Georeferenced Hyperspectral
Point Cloud (DHPC)

Deep Inamdar !, Margaret Kalacska !, George Leblanc %! and J. Pablo Arroyo-Mora ?

' Applied Remote Sensing Laboratory, Department of Geography, McGill University, Montréal, QC
H3A 0B9, Canada; deep.inamdar@mail.mcgill.ca (D.1.)

2 Flight Research Laboratory, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada;
George.Leblanc@nrc-cnrc.gc.ca (G.L.); juanpablo.arroyomora@nrc-cnrc.gc.ca (J.P.A.-M.)

* Correspondence: Margaret.kalacska@mcgill.ca; Tel.: +1-514-398-4347; Fax: +1-514-398-7437

This chapter is published in MethodsX, 8, 101429 under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Minor

modifications have been made with respect to formating style.

DOI: https://doi.org/10.1016/j.mex.2021.101429

Abstract

Before pushbroom hyperspectral imaging (HSI) data can be applied in remote sensing
applications, it must typically be preprocessed through radiometric correction, atmospheric
compensation, geometric correction and spatial resampling procedures. After these preprocessing
procedures, HSI data are conventionally given as georeferenced raster images. The raster data
model compromises the spatial-spectral integrity of HSI data, leading to suboptimal results in
various applications. Inamdar et al. (2021) developed a point cloud data format, the Directly-
Georeferenced Hyperspectral Point Cloud (DHPC), that preserves the spatial-spectral integrity of
HSI data more effectively than rasters. The DHPC is generated through a data fusion workflow
that uses conventional preprocessing protocols with a modification to the digital surface model
used in the geometric correction. Even with the additional elevation information, the DHPC is
still stored with file sizes up to 13 times smaller than conventional rasters, making it ideal for
data distribution. Our article aims to describe the DHPC data fusion workflow from Inamdar et

al. (2021), providing all the required tools for its integration in pre-existing processing
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workflows. This includes a MATLAB script that can be readily applied to carry out the
modification that must be made to the digital surface model used in the geometric correction. The
MATLAB script first derives the point spread function of the HSI data and then convolves it with
the digital surface model input in the geometric correction. By breaking down the MATLAB
script and describing its functions, data providers can readily develop their own implementation
if necessary. The derived point spread function is also useful for characterizing HSI data,
quantifying the contribution of materials to the spectrum from any given pixel as a function of
distance from the pixel center. Overall, our work makes the implementation of the DHPC data

fusion workflow transparent and approachable for end users and data providers.

* Our article describes the Directly-Georeferenced Hyperspectral Point Cloud (DHPC) data
fusion workflow, which can be readily implemented with existing processing protocols by

modifying the input digital surface model used in the geometric correction.

*  We provide a MATLAB function that performs the modification to the digital surface
model required for the DHPC workflow. This MATLAB script derives the point spread function
of the hyperspectral imager and convolves it with the digital surface model so that the elevation

data are more spatially consistent with the hyperspectral imaging data as collected.

»  We highlight the increased effectiveness of the DHPC over conventional raster end
products in terms of spatial- spectral data integrity, data storage requirements, hyperspectral

imaging application results and site exploration via virtual and augmented reality.

Keywords: Hyperspectral point cloud, Spectral data integrity, Spatial data integrity, Data

fusion
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7.2.1. Background

Over the last four decades, the abundance of high quality spectral-spatial information
captured by pushbroom hyperspectral imaging (HSI) data has been shown to be invaluable in a
variety of remote sensing applications (e.g., classification, change detection, modeling, etc.)
(Eismann, 2021). Before such HSI data products can be effectively used, they must typically
undergo radiometric correction, atmospheric compensation, geometric correction and spatial
resampling methodologies. The end product is a georeferenced raster image. The raster data
model is the most common end product data format in HSI (Vane et al., 1984; Wilkinson, 1996;
Goetz, 2009). However, it is important to recognize that the raster model mispresents HSI data.
For instance, hyperspectral pixels are not square, as they appear in rasters (Smith, 1995). In
reality, the spatial contribution to the spectrum from a single pixel is non-uniform and extends
into the spatial boundaries of neighbouring pixels (Inamdar et al., 2020). Furthermore,
hyperspectral pixels are not uniformly distributed over the imaged scene as they appear in rasters
due to various factors such as sensor design, sensor orientation and rugged terrains (Vreys et al.,
2016). In raster data end products, pixels appear to be uniformly distributed due to the use of
spatial resampling (Shlien, 1979), which can compromise spatial-spectral data integrity and lead

to suboptimal results in HSI applications (Inamdar et al., 2021).

Inamdar et al. (2021) developed a point cloud HSI data representation, the Directly-
Georeferenced Hyperspectral Point Cloud (DHPC), that preserves spatial-spectral data integrity
more effectively than raster data end products. The DHPC is generated through a data fusion
workflow that primarily uses existing processing protocols (i.e., standard radiometric correction,
atmospheric compensation and geometric correction protocols). As such, it can readily be
adapted and applied by data providers without large modifications to their existing processes.
Our work herein first summarizes the results from Inamdar et al. (2021), which substantiates the
effectiveness of the DHPC over conventional square pixel rasters. Next, we describe the DHPC
data fusion workflow, illustrating its similarity to conventional preprocessing workflows. We
highlight a necessary modification that must be made to these conventional preprocessing
workflows to generate the DHPC, providing a novel MATLAB function to carry out this step. In
the following section, we break down and fully explain the MATLAB function so that data
providers can readily develop their own implementation. In the final section of this work, we

provide an example of the DHPC and the intermediate data products that were used to derive it.
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Overall, our work aims to describe the DHPC data fusion workflow and provide all the required

tools for its integration into pre-existing processing workflows.

7.2.2. Method Effectiveness

The effectiveness of the DHPC was substantiated over square pixel rasters by Inamdar et al.
(2021) based on three spatial integrity data quality metrics (i.e., pixel loss, pixel duplication and
pixel shifting), data storage requirements and multiple common HSI applications (i.e.,
classification, spectra geo-location and target detection). The study (Inamdar et al., 2021)
analyzed four different HSI datasets that were collected at three field sites with two hyperspectral
sensors producing data at various spatial scales (~1.5 cm to 2.6 m). Since the spectral
information is not modified in the DHPC data fusion workflow, the data product preserved
spectral data integrity. Furthermore, the DHPC also preserved spatial data integrity with zero
pixel loss, pixel duplication and pixel shifting. In comparison, the rasters preserved the spectral
data integrity at the expense of substantial pixel loss (~50-75%) or pixel duplication (~35-75%),
depending on the resampling grid resolution used in the nearest neighbour methodology.
Furthermore, pixel shifting was relatively large in comparison to the DHPC, ranging from 0.33
to 1.95 pixels. In terms of data storage requirements, the DHPC had a file size that was smaller
than the rasters by up to a factor of 13. In all the studied applications, the DHPC consistently
outperformed the rasters. For instance, in the target detection application, false discovery and
false negative rates were up to 69 % lower in the DHPC than in the studied raster datasets.

Overall, the DHPC is ideal for the analysis, distribution and application of HSI data.

Although not mentioned in Inamdar et al. (2021), the DHPC is also effective for site
exploration via virtual (VR) and augmented (AR) reality. This is particularly useful for remote
field work, which often has high logistical costs (e.g., travel, food, lodging) that limit the number
of individuals that can be involved. By navigating a DHPC in VR or AR, users can study the
field conditions of remote sites in a cost-effective (Kalacska et al., 2021) and repeatable manner
(Le Mouélic et al., 2020; Liberatore and Wagner, 2021). For fragile ecosystems, VR/AR
visualization of the DHPC also allows multiple users to analyze the same field site without
disturbing the natural dynamics of the system. VR/AR visualization of the DHPC makes the
analyzed field site more accessible for individuals that might not have the funding, time or

permission to study the site firsthand. Without the structural information provided by the
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elevation data, the same level of immersion cannot be obtained with conventional rasters, which

are viewed in two-dimensions (Kalacska et al., 2021; Liberatore and Wagner, 2021).

7.2.3. Method Workflow
The data fusion workflow for the DHPC is shown in Figure 7.9. In the first phase of the

DHPC data fusion workflow, the input DSM is blurred through convolution with the HSI sensor
point spread function (PSF). The PSF describes the spatial contribution to a single pixel of the
HSI data as a function of distance from the center of the pixel (Inamdar et al., 2020). As such,
the convolution step makes the elevation data spatially consistent with the HSI data. After the
convolution, each point in the blurred DSM corresponds to the average elevation of the
objects/terrain that would contribute to a single HSI pixel. In the second phase, the
radiometrically and atmospherically corrected HSI data are geometrically corrected using the
blurred DSM and the inertial navigation system data of the sensor recorded during HSI data
acquisition. As a result of the geometric correction, the northing, easting and elevation of each
pixel of the HSI data is calculated at the intersection between the blurred DSM and a straight line
that is projected from the sensor position at the pixel dependent look direction (Figure 7.10).
Because the blurred DSM is used in the geometric correction, each HSI pixel receives the
average surface elevation of the objects/terrain contributing to it. With the projected coordinate
system position (northing, easting and averaged surface elevation) the DHPC is complete. The

general steps for generating the DHPC are:

1. Apply radiometric correction methodology to HSI data in raw sensor geometry
(OPTIONAL).

2. Apply atmospheric compensation methodology to the HSI data from step 1
(OPTIONAL).

3. Derive PSF of the HSI data.

4. Generate blurred DSM by convolving the input DSM with the derived PSF.

5. Apply geometric correction methodology to the HSI data from step 2 using the blurred
DSM.
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Figure 7.9. Flow chart of the hyperspectral imaging (HSI) processing workflow for the Directly-
Georeferenced Hyperspectral Point Cloud (DHPC). Adapted from Inamdar et al. (2021).
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Figure 7.10. Schematic of the geometric correction. With a known sensor position (p) and look
direction (0 L) the position of each pixel in the image space can be located in a real-world
coordinate space. The pixel is located at the intersection (a) of the input digital surface model
(shown in green) and a straight line that is projected at the pixel dependent look direction from
the sensor position. The look direction is the angle at which incoming electromagnetic radiation
is observed by any given pixel of the hyperspectral imager (Miiller et al., 2002). The look
direction is calculated from the attitude, focal geometry and boresight misalignment of the
sensor during data acquisition (Miiller et al., 2002; Warren et al., 2014).

The DHPC data fusion workflow is not limited by any particular software; data processing
can be completed with the user’s software of choice. Steps 1, 2 and 5 above are implemented in
conventional HSI data processing workflows. As a result, data providers have pre-existing
protocols to complete these steps. Steps 1 and 2 are optional because the DHPC can be used to
represent the raw DN (if steps 1 and 2 are omitted) or radiance (if step 2 is omitted) data if
desired. Steps 3—4 are not typically implemented in conventional data preprocessing protocols.
As such, these steps represent a necessary modification that must be made to conventional
preprocessing protocols to generate the DHPC. Because it can be practically difficult to derive
the PSF of the input HSI data and convolve it with the input DSM, we provide a MATLAB
function (see DHPC DSM_BLUR.m in supplementary material) to carry out steps 3—4. In the
following section we break down this script, describing the most important code segments and

their function.
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7.2.4. MATLAB Function
The presented MATLAB function (DHPC DSM_ BLUR.m) carries out four main tasks: 1)

derive hyperspectral PSF; 2) derive convolution kernel for DSM; 3) convolve input DSM by
convolution kernel; 4) output blurred DSM as ENVI standard data format. The inputs and

outputs to the function are outlined in the function description:

oe

%% Input Parameters

% flight line heading... Heading of hyperspectral imager (True North Heading in
degrees, e.g.,north=0, east=90, south=180, west=270).

% FOV_deg... Field of view of hyperspectral imager (degrees).

% pix tot... Number of cross track pixels in hyperspectral imager.

% alt... Nominal altitude (m above ground level) of hyperspectral imager.

% speed... Nominal speed (m/s) of hyperspectral imager.

5 it... Integration time (s) of hyperspectral imager.

% FWHM opt... Full width at half maximum (pixels) of optical point spread
function (PSF). If unknown please enter 1.

% DSM loc... String with folder path of the input digital surface model
(DSM) .

% DSM name. .. Name of DSM (must be *.dat). Please DO NOT Include the ".dat"
Extension.

oe

oo

$%0utput Parameters;

% DSM conv... DSM Blurred through Convolution with Hyperspectral Imager PSF

% PSF tot 3d... PSF as a Function of Hyperspectral Imager as a Function of
Spatial Displacement from Pixel Center (m)

% ® @ diBiEtoso Displacement values associated with Columns of PSF tot 3d in
easting direction (m)

% y_© digiEcso Displacement values associated with Rows of PSF tot 3d in

Northing direction (m)

Task 1 is completed following the derivation from Inamdar et al. (2020). In the MATLAB
function, the net cross track PSF is derived by convolving the Gaussian optical PSF with the

rectangular pulse detector PSF.

%$%% Derive Cross Track PSF

%%%% Derive Gaussian Optical PSF

muPDF=0; % Mean of Gaussian Distribution for Optical PSF

FWHM x=FWHM opt*pix size x; SFWHM of Gaussian Distribution for Optical PSF

sigmaPDF=FWHM x/ (2*sqrt (2*log(2))); %$Standard Deviation of Gaussian for Optical PSF

L8pdx=makedist ('Normal', muPDF, sigmaPDF); %Generate PSF

num vals=round (pix size x*2/dt);

x=-num vals*dt:dt:num vals*dt; % Displacement from pixel center (m) at which the
Optical PSF will be calculated

L8p x f=pdf (L8pdx,x); %Calculate value of Optical PSF

oe

%$%% Derive Rectangular Pulse Detector PSF
tep f=x>=-pix size x/2& x<=pix size x/2;

©)]

oe

%%% Derive Net Cross Track PSF normalized by the maximum
¢ _spr=conv (L8p x f,step f)/max(conv(L8p x f,step f));

W
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Next, the net along track PSF is derived by convolving the net cross track PSF by the

rectangular pulse motion PSF.

%%% Derive Along Track PSF

num vals=round (it*speed/dt) ;
y=num vals*dt:-dt:-num vals*dt; % Displacement from pixel center (m) at which the

along track PSF will be calculated

$%% Derive motion PSF
step f 2=y>=-it*speed/2& y<=it*speed/2;

%% Derive Net Along Track PSF normalized by the maximum
y_c_spr=conv(x_c spr,step f 2)/max(conv(x_c_spr,step f 2));

With the net cross track and along track PSFs, the net PSF in 2-dimensions can be derived
through vector multiplication. The two dimensions of the resultant matrix correspond with the
cross track (columns) and along track (rows) displacement from the center of the pixel. To

convolve the PSF with the north-oriented DSM, the 2-dimensional PSF must be rotated by the

flight line heading.

% Calculate Net PSF in 2-dimensions (along track x cross track)
PSF tot 3d no rot=y c spr'*x c spr;

% Rotate PSF by flight line heading so that PSF is north oriented
PSF tot 3d=imrotate (PSF tot 3d no rot,-flight line heading, 'bilinear', 'crop');

To complete task 2, the input DSM must first be imported and the pixel size must be

extracted.

%$%% Read DSM and extract pixel size
Filename=[DSM loc DSM name '.dat'];

Filename 2=[DSM loc DSM name '.hdr'];

info = enviinfo(Filename 2);
data=hypercube (Filename, Filename 2, [1000]) ;

pix size dsm= data.Metadata.MapInfo.PixelSize(1);

To derive the convolution kernel, the PSF must be spatially integrated in intervals equal to
the DSM pixel size in the northing and easting direction. The kernel must also be normalized to

sum to unity so that the average elevation of the convolved DSM is identical to that of the

original DSM.
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oe

%% Generate Convolution Kernel by integrating PSF

size_kernel:ceil(max(x_c_dist)/pix_size_dsm)*2+l; $calculate size of convolution
kernel

conv_ker=ones (size kernel,size kernel);
X vec=-pix size dsm*size kernel/2:pix size dsm:pix size dsm* (size kernel/2-1);
y vec=fliplr(x vec);

for i= 1l:size kernel
x indx=(x vec(i)<x c dist & x c dist<(x vec(i)+pix size dsm));
for j=l:size kernel
y_indx=(y vec(J)+pix size dsm>y c dist & y c dist>y vec(]j)):
conv_ker (j,i)=sum(sum(PSF_tot 3d(y indx,x indx)))/sum(sum(PSF_tot 3d));
end
end

%$%%% Normalize convolution kernel to sum to 1
conv_ker=conv_ker/sum(sum(conv_ker));

Afterwards, the kernel is convolved with the input DSM (task 3), blurring it based on the

characteristics of the hyperspectral sensor PSF.

%% Convolve DSM by Convolution Kernel

DSM_conv=conv2(data.DataCube,conv_ker,'same');

The final lines of the function write the blurred DSM to a new ENVI standard file (task 4).
This file is saved in the same location as the original DSM. The blurred DSM is named after the

original DSM, with an appended “ conv.dat”.

%% Output DSM to ENVI File

Filename=[DSM loc DSM name ' conv'];
newhcube = assignData(data, ':',':',':',DSM conv);
enviwrite (newhcube, Filename) ;

Below, we provide an example MATLAB code that can be used to call the MATLAB
function and generate the blurred DSM.
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[

%%% Define Input Parameters
flight line heading=156;

FOV_deg=34.21/180*pi;

pix tot=1833;

alt=45;

speed=2.7;

it=9/1000;

FWHM opt=1.01

DSM loc='D:\Hyperspectral Point Cloud\methods x\'
DSM name='MB DSM'

%%% Run Function

FOV_deg,pix tot,alt,speed,it, FWHM opt,DSM loc,DSM name) ;

[DSM conv,PSF tot 3d,x c dist,y c dist ] = DHPC DSM BLUR (flight line heading, ...

With the blurred DSM, the DHPC data fusion workflow can be readily implemented using
pre- existing processing workflows. Although there is no explicit need to output the derived PSF,
it is provided by the MATLAB function to quantify the spatial contribution of the objects/terrain
within any pixel. Overall, the presented MATLAB function makes the implementation of the

DHPC data fusion workflow approachable for end users and data providers.

7.2.5. Example Dataset
Here, we provide an example of the DHPC generated in Inamdar et al. (2021) from the Mer

Bleue Peatland. Peatlands are important study areas due to their ability to sequester atmospheric
carbon and mitigate the effects of climate change. The HSI data (see Table 7.3 for details) input
into the DHPC data fusion workflow was collected by the pfCASI-1920 hyperspectral imager
(ITRES, Calagary, AB, Canada). The pCASI-1920 is a pushbroom imager that collects spectral
information over 288 bands from 401 to 996 nm on a silicon-based focal plane array (Arroyo-
Mora et al., 2019). The DSM (0.69 cm spatial resolution) used in the data fusion workflow was
generated using a Structure-from-Motion Multiview Stereo (SfM-MVS) workflow from RGB
photography collected by a Canon EOS 5D Mark III equipped with a Canon EF 24— 70 mm /2.8
L II USM lens (focal length of 24 mm). In our specific implementation, the radiometric
correction (step 1) was completed with proprietary software developed by the sensor
manufacturer while the atmospheric correction (step 2) was carried out in ATCOR4 (as
described in Soffer et al. (2019)). Steps 3-4 were completed using the presented MATLAB
function. The geometric correction (step 5) was completed using proprietary software developed
by the sensor manufacturer. The results of the geometric correction are output to a ground
coordinate look up table (GLU) that provides the easting, northing and averaged elevation of

each pixel from the HSI data in its original sensor geometry. Similar outputs to the GLU are
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provided by other geometric correction software such as PARGE (Schlédpfer, 2018). To generate
the final DHPC, we compiled the GLU and HSI data (radiometrically corrected and
atmospherically compensated) into a single text file. In this process, the GLU and HSI data were
first imported into MATLAB as three dimensional matrices. The dimensions of the HSI matrix
were 2029 by 1833 by 288 (along track pixels by cross track pixels by spectral bands) that
contained the spectral information from each pixel of the HSI data. The GLU matrix was
imported as a 2029 by 1833 by 3 dimensional matrix that contained the positional information
(northing, easting and averaged elevation) of each pixel from the HSI data calculated during the
geometric correction. The HST and GLU matrices were then concatenated into a single 2029 by
1833 by 291 dimensional matrix. The spatial dimensions of this matrix were then flattened,
creating a 20291833 by 291 matrix. This matrix was exported as a comma delimited text file.
Due to memory limitations, this matrix was written out 1833 rows at a time, generating 2029 text
files that were then merged using the Microsoft Disk Operating System (MS-DOS) copy
command to generate one text file. With the position and spectral information from each pixel of
the original HSI data in a single text file, the DHPC was complete.

Table 7.3. Parameters for the hyperspectral imaging data acquired over the Mer Bleue Peatland
(MBP) with the uCASI-1920.

Parameter MBP puCASI-1920 Data
Number of Cross Track Pixels 1833
Number of Along Track Pixels 2029
Sensor Field of View (°) 34.21
Nominal Flight Line Heading (° True 156
North)
Nominal Altitude (m) 45
Nominal Speed (m/s) 2.7
Integration Time (ms) 9
Full width at half maximum of 1.01
Optical Point Spread Function
(pixels)
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The radiometrically and atmospherically corrected pCASI-1920 imagery and the input DSM
can be seen in Figure 7.11A and Figure 7.11B, respectively. The PSF of the pnCASI-1920 data
(Figure 7.12) was derived using the input parameters from Table 7.3 with the provided
MATLAB function. The MATLAB function also convolved the derived PSF with the input
DSM, generating the blurred DSM (Figure 7.11C) required in the data fusion workflow. The full
UCASI-1920 DHPC can be found at http://doi.org/ 10.5281/zenodo.4694950
(HPC 288band xyz final.txt). The DHPC is accompanied by a meta data file
(HPC 288band xyz final META.txt) that recorded important HSI data parameters such as data
acquisition time, data acquisition date, sensor platform, spectral units, wavelength and full width
at half maximum of each band, wavelength units, file type and map info. Figure 7.11D displays
the RGB bands of the DHPC, viewing the point cloud from above. A video displaying the RGB
bands of the DHPC can be seen in Figure 7.11E (Supplementary Video 1.mp4).
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Figure 7.11. The data products used to generate the DHPC over the Mer Bleue Peatland. A)
Radiometrically and atmospherically corrected Hyperspectral imaging data in raw sensor
geometry from the uCASI-1920 (R=639.6 nm, G=550.3 nm, B=459.0 nm, linearly stretched from
a reflectance value of 0% to 12 % for display purposes). B) Original digital surface elevation
model. C) Blurred digital surface model (linearly stretched from a elevation value of 68 m to 69
m). D) The Directly-Georeferenced Hyperspectral Point Cloud (DHPC) viewed from above
(R=639.6 nm, G=550.3 nm, B=459.0 nm, linearly stretched from a reflectance value of 0% to 12
% for display purposes). E) A video of the DHPC in a 12 x 12 m region (R=639.6 nm, G=550.3
nm, B=459.0 nm, linearly stretched from a reflectance value of 0% to 12 % for display
purposes). The video (Supplementary Video 1.mp4) can be found in the supplemental material.
The full DHPC (HPC 288band xyz_final.txt) is also in the supplementary material.
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Figure 7.12. The point spread function (PSF) for the uCASI-1920. Panel A displays the optical
PSF (PSFopy), detector PSF (PSFaer) and net PSF (PSF ey in the cross track direction. The PSF e
is the convolution of the PSFop and the PSF .t in the cross track direction. Panel B displays the
PSFopt, PSFger, motion PSF (PSFpoy) and PSF e in the along track direction. The PSF e is the
convolution of the PSF o, PSFop: and the PSF e in the along track direction. Panel C displays
the net PSF in both dimensions simultaneously.

For the purposes of site exploration, we also provide the DHPC in polygon file format
(HPC 3band xyz shifted final.ply in supplementary material). This file can be used to visualize
the DHPC in VR and AR. It can be viewed in VR or AR at https://sktb.ly/onA6y. The polygon
file format can only support three color channels. Furthermore, the variables encoded in the
polygon file format must be representable as 32-bit float values. To generate the polygon file, the
GLU and HSI data were first imported into MATLAB as three dimensional matrices as described
above. The blue (459.0 nm), green (550.3 nm) and red (639.6 nm) bands of the HSI matrix were
spectrally subset into a new 2029 by 1833 by 3 matrix. To ensure that the northing and easting
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values could be represented as 32-bit float values, they were centered by subtracting the
minimum northing and easting value, respectively. The new HSI and GLU matrices were then
concatenated, flattened and exported as a comma delimited text file (as done when generating the
full DHPC as a text file). This text file was then imported into CloudCompare Stereo for
conversion to polygon file format. The Mer Bleue Peatland is an ideal area for site exploration
via VR and AR as the ecosystem is generally fragile and difficult to access. The DHPC allows
for widespread accessibility of the site via VR and AR, allowing users to study sections of the

peatland in a repeatable and cost-efficient manner (Kalacska et al., 2021).

In Inamdar et al. (2021), the pCASI-1920 data from Mer Bleue was used to classify the
hummock- hollow microtopography across the peatland. The microtopography at Mer Bleue is
important to study as it covaries with surface vegetation, hydrology and carbon uptake from the
atmosphere (Malhotra et al., 2016). The additional elevational information provided by the
DHPC led to an overall classification accuracy that was ~8% greater than the convention raster
HSI datasets that contained no elevation data. This example shows the significance of the

elevation information encoded in the DHPC.
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