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Abstract 

Biomimetic hierarchical surface structures that exhibit features having multiple length 

scales have been used in many technological and engineering applications. Their surface 

topographies are most commonly analyzed using scanning electron microscopy (SEM), which 

only allows for qualitative visual assessments. Here we introduce fractal and lacunarity analyses 

as a method of characterizing the SEM images of hierarchical surface structures in a quantitative 

manner. Taking femtosecond laser-irradiated metals as an example, our results illustrate that, 

while the fractal dimension is a poor descriptor of surface complexity, lacunarity analysis can 

successfully quantify the spatial texture of an SEM image; this, in turn, provides a convenient 

means of reporting changes in surface topography with respect to changes in processing 

parameters. Furthermore, lacunarity plots are shown to be sensitive to the different length scales 

present within a hierarchical structure due to the reversal of lacunarity trends at specific 

magnifications where new features become resolvable. Finally, we have established a consistent 

method of detecting pattern sizes in an image from the oscillation of lacunarity plots. Therefore, 

we promote the adoption of lacunarity analysis as a powerful tool for the quantitative 

characterization of, but not limited to, multi-scale hierarchical surface topographies. 

 

Keywords: Fractal dimension; lacunarity; hierarchical surfaces; texture analysis; laser-induced 

surface topographies; scanning electron microscopy 
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1. Introduction 

 Biomimetic-inspired hierarchical surfaces have received significant attention as a means 

of altering the surface properties of metals, semiconductors, and polymers (Bhushan, et al., 2009; 

Ellinas, et al., 2011; Kietzig, et al., 2009; Noh, et al., 2010; Nosonovsky & Bhushan, 2008). 

Historically, many attempts have been centered upon replicating the lotus leaf (Nelumbo 

nucifera), whose dual-scale surface topography consisting of micrometer-sized papillose 

epidermal cells covered by sub-micron epicuticular waxes, render it superhydrophobic (Barthlott 

& Neinhuis, 1997). Today, various synthetic hierarchical surfaces have been successfully 

fabricated on metallic, polymer, and semiconductor specimens using a range of techniques 

(Bhushan, 2012; Feng, et al., 2011; Kietzig, et al., 2009; Nakayama, et al., 2014) for applications 

in self-cleaning materials (Wang, et al., 2013), improved light harvesting in dye-sensitive solar 

cells (Shao, et al., 2011), drag reduction (Jung & Bhushan, 2010), catalysis (Neumann & Hicks, 

2012; Zhang, et al., 2011), and enhanced adhesion (Ho, et al., 2011), to name a few. 

 The most frequently used technique for characterizing and reporting surface topography 

is scanning electron microscopy (SEM), which provides a visual representation of the micro- and 

nano-scale surface features. The major drawback associated with SEM, however, is that it only 

provides a qualitative assessment of the surface texture. Attempting to compare or rank SEM 

images of surface topographies on the basis of visual inspection alone is deficient since it is often 

performed subjectively and intuitively. Nevertheless, this is common practice in the field of 

surface topography modification due to its convenience (Ahmmed, et al., 2015; Moradi, et al., 

2013; Nayak & Gupta, 2010; Zhang, et al., 2006). For example, Zhu et al. (Zhu, et al., 2011) 

compared the changes in the flower-like morphology of anatase TiO2 with respect to different 

hydrothermal reaction and calcination times by only utilizing SEM images. To mitigate the 
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qualitative nature of visual topography analysis, some authors supplement SEM imaging by 

measuring the surface roughness (e.g. Ra) via profilometry, atomic force microscopy (AFM), or 

confocal microscopy (Demir, et al., 2014; Jagdheesh, et al., 2011; Zou, et al., 2011). This is an 

imperfect solution, however, given that roughness measurements cannot fully describe the 

morphology of the surface structures, nor can they identify the presence of hierarchical 

structures. 

In this work, we introduce fractal and lacunarity analyses as a method of quantifying the 

complexity and texture of surface topographies containing hierarchical structures. The 

hierarchical surface structures analyzed in this study are fabricated by femtosecond (fs) laser 

processing of metallic samples, which yields both randomly organized (laser-induced) and 

regular (laser-inscribed) surface features containing multiple length scales (Ahmmed, et al., 

2014; Ling, et al., 2015). Once the SEM images of laser-induced and laser-inscribed 

topographies have been quantified via fractal and lacunarity analyses, they can be characterized 

and compared in an objective manner. This, in turn, provides a convenient means of reporting 

changes in surface topography with respect to changes in processing parameters. In addition, our 

examination of fractal image processing techniques provides insight into how to better interpret 

fractal-based descriptors of texture, specifically lacunarity, and its dependence on scale and 

pattern sizes. 

2. Background 

 When a specimen is analyzed using SEM, secondary electrons emitted from its surface 

are collected to generate an image that captures the appearance of its surface topography. These 

images, which are essentially a collection of pixels of various intensities grouped in a particular 

order, provide information regarding the surface texture (an appearance), rather than its 
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roughness (a property) (Davies, 2008). Strictly speaking, an image is referred to as a texture 

when it contains an uncountable number of texture elements that exhibit both a random and 

regular arrangement (Davies, 2008). Therefore, texture, or spatial analysis, is often carried out 

using statistical measures (Dale, 2000; Dale, et al., 2002; Davies, 2008) since it involves 

identifying patterns within large data sets. Numerous spatial analysis techniques exist, such as 

the co-occurrence matrix, Fourier transform, wavelet transform, variance-to-mean ratio method, 

and three-term local quadrat variance (3TLQV) (Bharati, et al., 2004; Dale, et al., 2002; Davies, 

2008; Tuceryan & Jain, 1998). In this study, we will utilize fractal mathematics to quantify the 

complexity and spatial heterogeneity of an image.  

2.1. Fractals 

The complex shapes and textures found in nature cannot be easily described using ideal 

primitive shapes (circles, squares, spheres, etc.) (Sarkar & Chaudhuri, 1994). Fractal geometry 

was developed by Mandelbrot (Mandelbrot, 1983) as a means of tackling these irregular non-

Euclidean and non-differentiable objects, such as Cantor dusts, space-filling Peano curves, the 

Koch snowflake (shown in Figure 1a), and Brownian motion. Fractals are mathematical sets or 

objects that exhibit self-similarity at every magnification or scale; this is also known as scale 

invariance (Falconer, 1990; Jelinek & Fernandez, 1998; Mandelbrot, 1983; Pentland, 1984). 

Natural sceneries and surfaces (clouds, mountains, coastlines, and lightning, for example) have 

been observed to exhibit fractal features and can be approximated by fractal functions over a 

limited range of scales (typically three to four orders of magnitude) (Cutting & Garvin, 1987; 

Mandelbrot, 1983; Pentland, 1984). Similarly, hierarchical surface features produced by 

advanced processing techniques (chemical etching, self-assembly, lithography, etc.) can be 

characterized by fractal analysis by using two statistical measures known as the fractal 
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dimension (DF) and lacunarity (λ). Image analysis that employs the use of fractals has been used 

in many areas (Al-Kadi & Watson, 2008; Jelinek & Fernandez, 1998; Karperien, et al., 2013; 

Updike & Nowzari, 2008; Uppal, et al., 2010; Yaşar & Akgünlü, 2005), including image 

segmentation (Dubuisson & Dubes, 1994; Keller, et al., 1989) and the classification of ecological 

(Kenkel & Walker, 1993; Malhi & Román-Cuesta, 2008) and urban (Myint & Lam, 2005) spatial 

distributions.  

2.2. Fractal dimension  

 In conventional Euclidean space, objects may only exist in integer dimensions, i.e. 0-

dimension refers to a point, 1-dimension to a line, 2-dimensions to a surface, and 3-dimensions 

to a volume. Classical mensuration equations for calculating the area or volume of an object can 

be generalized to  

M = AnD (1) 

where M is the desired metric property (area or volume), A is a constant, n is the size of the 

measuring instrument, and D is the relevant Euclidean dimension (Pentland, 1984). In the case of 

a fractal curve such as the Koch snowflake in Figure 1a, however, its true perimeter is infinite 

because the perceivable detail of its boundary increases forever with increasing scale. Instead of 

characterizing these fractal objects with classical measures of perimeter and area, 

mathematicians introduced fractional, or fractal dimensions (DF), which can take non-integer 

values (Mandelbrot, 1983): 

𝐷𝐹 =
ln 𝑁(r)

ln(r)
 (2) 

N(r) refers to the number of new details and r represents the scaling used to arrive at those new 

details. According to Equation (2), DF is the ratio of an object’s level of detail to changes in 

scaling; in other words, it signifies how much new detail can be perceived as the object is viewed 
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at higher and higher magnifications. It can thus be viewed as a measure of roughness or 

complexity, where a larger DF indicates greater complexity. The non-integer dimensional values 

essentially compensate for the details that are lost in Equation (1) since they are smaller than the 

size of the measuring instrument, n. In the case of the Koch curve in Figure 1a, for example, the 

theoretical DF = log 4/log 3 = 1.2619. Since DF falls in between the Euclidean, or topological, 

dimensions 1 and 2, the Koch curve can be described as being “between” a straight line (D = 1) 

and a plane (D = 2).  

 There are several ways to estimate DF from an image, including the mass-radius, dilation, 

cumulative intersection, and box-counting methods (Jelinek & Fernandez, 1998), the latter of 

which is the most frequently used. The description of the box-counting method that follows 

assumes that the image under analysis is a binary image that only contains 1’s (white pixels) and 

0’s (black pixels), which are the foreground and background, respectively. Non-overlapping 

boxes of size r x r are overlain on the image, and the number of boxes that contain foreground 

pixels N(r) are counted. The box sizes are reduced, which results in a functional relationship 

between N(r) and r. The slope of the log-log plot of N(r) against r yields the value of DBC, which 

is an estimate of DF using the box-counting method (Chen, et al., 1993; Keller, et al., 1989). By 

calculating DBC for different images, it is possible to compare their inherent roughness and 

complexities in a quantitative manner. One major drawback with regards to using DF is that it is 

not a unique and sufficient measure, i.e. two images that appear largely different may yield the 

same DF due to similarities in roughness (Dubuisson & Dubes, 1994; Gårding, 1988; Plotnick, et 

al., 1993; Smith Jr, et al., 1996). Additional quantitative properties of images are thus needed in 

order to better facilitate their characterization. One such measure is lacunarity, which computes 

the spatial heterogeneity of an image (Mandelbrot, 1983).  
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2.3. Lacunarity (λ) 

 Mandelbrot aptly declared texture as an abstract and elusive notion that cannot be easily 

grasped, let alone quantified (Mandelbrot, 1983). He introduced lacunarity (lacuna, which in 

Latin means “gap”) as a means of measuring texture, or more specifically, spatial heterogeneity 

(Mandelbrot, 1983). A more rigorous definition of lacunarity is given by Gefen et al. (Gefen, et 

al., 1983), who states that it is the measure of the deviation of an object or fractal from 

translational invariance (Plotnick, et al., 1993). Objects with higher lacunarity are more spatially 

coarse or “clumped”, while lower lacunarity values correspond to an area exhibiting a finer 

texture. The most common algorithm used to calculate the lacunarity of images is the gliding 

box-counting (GBC) method developed by Allain and Cloitre (Allain & Cloitre, 1991). 

 A box of size r x r is placed on the top left corner of a binary image of size M x M, as 

shown in Figure 1b. The number of foreground pixels in the box of size r is counted. The box is 

then moved to the right by a distance ∆r (typically one or two pixels), and the number of 

foreground pixels are counted again. This procedure is repeated until the entire image has been 

covered by the gliding box, where the total number of boxes used is designated as N(r). Then, the 

probability distribution of obtaining k foreground pixels in a box of size r is given by: 

Q(k, r) =
n(k, r)

N(r)
 (3) 

where n(k, r) is the number of boxes of size r that contain k foreground pixels. The first and 

second moments of the mass probability distribution are then calculated by 

𝑍1(r) = ∑ 𝑘Q(k, r)

𝑘=0

 (4) 

𝑍2(r) = ∑ 𝑘2Q(k, r)

𝑘=0

 (5) 

The lacunarity, λ(r), is then determined as follows: 
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𝜆(r) =
𝑍2(r)

[𝑍1(r)]2
 (6) 

which can also be rewritten as 

𝜆(r) = [
𝑠𝑘(r)

�̅�(r)
]

2

+ 1 (7) 

where �̅�(r) and sk(r) are the mean and standard deviation of the number of foreground pixels for 

box size r. Inspection of Equation (7) shows that λ(r) measures the ratio of the standard deviation 

of the probability distribution of foreground pixels to its mean for a particular r, which indicates 

that λ(r) increases as the image becomes more spatially heterogeneous (greater variance).  

 Equations (3)-(7) illustrate two more properties of λ(r). Firstly, λ(r) is a function of the 

box size r, and it is therefore recommended to display λ(r) as a function of a wide range of box 

sizes instead of merely comparing values of λ(r) at an arbitrary box size (Plotnick, et al., 1996; 

Plotnick, et al., 1993). Secondly, the highest value λ(r) is obtained when r = 1 since Q(k=1,r=1) 

= P, where P is the total number of foreground pixels divided by the total number of pixels. Then 

from Equations (4)-(6), one arrives at λ(r=1) = 1/P. Thus, λ(r=1) only depends on the proportion 

of foreground pixels relative to the entire image (Plotnick, et al., 1996; Plotnick, et al., 1993). On 

the other hand, when r approaches the image size M, the normalized standard deviation of the 

number of foreground pixels approaches zero, and thus λ(M) tends to unity, from Equation (7) 

(Plotnick, et al., 1996).  

 There are several studies that have already used fractal and lacunarity analyses to extract 

information from electron microscopy images (Alvarez, et al., 2013; Khorasani, et al., 2011; 

Manera, et al., 2014). For example, Utrilla-Coello et al. (Utrilla-Coello, et al., 2013) investigated 

the micro-scale morphology of retrograded starch, and, using DF and λ, were able to quantify 

observed changes in their SEM images with respect to storage time and temperature. Also, 
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Rivera-Virtudazo et al. (Rivera-Virtudazo, et al., 2009) measured the degree of clumping of 

heat-treated hybrid organosilica materials from transmission electron microscope (TEM) images 

using lacunarity plots. In Section 4.1, we apply both fractal and lacunarity analyses to quantify 

and compare SEM images of surface topographies produced by fs-laser irradiation. We show that 

while the DF is a poor descriptor of surface complexity, lacunarity is a viable technique for the 

analysis of SEM images in the field of laser surface texturing. 

In Section 4.2, we investigate the utility of λ(r) in characterizing hierarchical structures. 

The analysis of hierarchical sets has already been performed using lacunarity, spectral (Fourier) 

and wavelet transforms (Saunders, et al., 2005; Workman, et al., 2015). The latter approach has 

been shown to be superior to both lacunarity and Fourier transforms (Saunders, et al., 2005), 

because discrete wavelet transforms (DWT) decompose an image into multiple detail levels, 

making it a suitable technique for analyzing multi-scale hierarchical structures (Palazoglu, et al., 

2010; Workman, et al., 2015). However, we show in Section 4.2 that by analyzing multiple SEM 

images of a hierarchical surface at different magnifications, lacunarity plots are in fact sensitive 

to multiple length scales present in hierarchical structures. Finally, in Section 4.3, we provide 

new information on how lacunarity plots can be used to detect pattern sizes present within 

images by examining the period at which λ(r) oscillates. 

3. Methods 

 Metallic specimens were irradiated by an 800 nm amplified Ti:Sapphire laser (Coherent 

Libra). The Gaussian beam had a pulse duration of <100 fs and a repetition rate of 10 kHz. 

Laser-induced surface topographies were fabricated on stainless steel 304 (McMaster-Carr) and 

aluminum (Alloy 2024, McMaster-Carr) by mounting the samples onto a linear translation stage 

(Zaber Technologies, Inc.) that manipulated the samples in a raster scan pattern beneath the 
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incident beam at a velocity v. The output power of 4 W was reduced to the desired processing 

power P by a variable attenuator comprised of a half wave-plate and a polarizing beam splitter. 

The sample machining plane relative to the focal point (∆y) was varied in order to obtain 

different types of laser-induced features. In this study, the machined surface was maintained 

between the focal point and the focusing lens, or ∆y ≥ 0.  The 1/e2 theoretical beam diameter at 

the focal point was 31 µm. Some of the samples were scanned more than once, and the number 

of laser passes over the sample is denoted by Ns. 

 Laser-inscribed square pillars were fabricated on copper specimens (99.90% purity, 

McMaster-Carr) mounted on a high-precision three-dimensional linear translation stage 

controlled by an XPS motion/driver controller (Newport Corp.). The trajectories of the stage 

movements were programmed and executed by the Gol3D software (GBC&S). The Gol3D 

software also synchronized the XPS controller with a Uniblitz® shutter system (Vincent 

Associates®) composed of a 25 mm aperture shutter and a shutter driver. The laser power was 

attenuated to 800 mW (pulse energy of 80 µJ) and the translation velocity of the stages was 

maintained at 2 mm/s. The sample surface was placed at ∆y = -0.73 mm and scanned five times 

(Ns = 5). 

 After laser processing, the samples were cleaned with acetone in an ultrasonic bath for 

five minutes. The surface topographies of the laser-irradiated areas were imaged in an SEM 

(Phenom-World and FEI Inspect F50) using an accelerating voltage of 5.0 kV and a probe 

current of approximately 0.1 nA. Although one image was acquired per sample, we know, based 

on previous work, that the surface topographies imparted by fs-laser surface texturing under the 

specified experimental conditions were homogeneous, i.e. the morphology of the surface features 

was uniform in all laser-irradiated areas (Ahmmed, et al., 2015; Ling, et al., 2015). Therefore, 
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the SEM images shown in this work, which only capture a portion of the laser-treated area, are 

representative of the surface topography found in the entire irradiated patch. However, the SEM 

images obtained at high magnification in Section 4.2 display highly random nano-scale 

structures that differ from one point to another within the laser-irradiated areas; we will address 

this issue in Section 4.2. During image acquisition, the brightness and contrast of the SEM 

images were painstakingly adjusted so as to minimize the differences in appearance among them, 

and to ensure consistency during grayscale-to-binary conversion. 

The fractal analysis of SEM images, as explained in Section 2, was performed using 

FracLac, a software plugin developed by Karperien (Karperien, 1999-2014) for ImageJ 

(Rasband, 1997-2014). In order to perform fractal analysis on SEM images, they were converted 

from grayscale to binary format. The grayscale SEM images were transformed by first equalizing 

their histograms, followed by a conversion to binary format using a threshold of 0.5. This 

method was chosen so as to ensure that the number of foreground (white) pixels was 

approximately equal to the number of background (black) pixels for all images (P = 0.5). 

4. Results and Discussion 

4.1. Fractal analysis of surface topographies 

 Figures 2a to 2e display five different surface topographies that were obtained on metallic 

substrates, along with their fractal dimensions and lacunarity plots. Details on the fabrication of 

dual-scale surface topographies on metallic substrates can be found in our previous work 

(Ahmmed, et al., 2015). The values of DBC of the five images are very similar to each other; in 

fact, all the calculated values of DBC in this work lie within the range of 1.85-1.92, from which 

no discernible trend can be detected. This is because, for binary images, the fractal dimension is 

more suited to quantifying the complexity of single objects (Cutting & Garvin, 1987; Jelinek & 
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Fernandez, 1998), whereas the SEM images in Figure 2 contain multiple objects that constitute a 

spatial pattern, or texture. Hence, analyzing textured surfaces is better accomplished by 

lacunarity analysis (Figure 2) since it involves a collection of texture elements arranged in a 

particular order. 

 The log-log graphs of λ(r) versus r in Figure 2 successfully capture the increasing spatial 

heterogeneity of Figures 2a to 2e. Since the undulating grooves on stainless steel 304 (Figure 2a) 

exhibit the finest texture in comparison to the other four topographies, its lacunarity is the lowest 

of the five plots. The columnar structures in Figure 2b are larger and more well-defined than the 

undulating grooves in Figure 2a. As a result, the foreground pixels representing the columnar 

structures in Figure 2b are clumped together, whereas the foreground and background pixels of 

Figure 2a are relatively evenly distributed throughout the image. The grouping of foreground 

pixels in Figure 2b thus leads to a higher pixel variance-to-mean ratio, which in turn results in a 

higher lacunarity, λ(r), than that of Figure 2a. The average feature size of the columnar structures 

in Figure 2b is smaller than that of the maze-like structure in Figure 2c, which in turn is smaller 

than the layered bumps in Figure 2d. Finally, the surface topography displayed in Figure 2e 

exhibits large holes that result in the greatest extent of spatial clumping among the five images. 

 Lacunarity analysis can also be used to track the evolution of a specific type of surface 

topography within a range of experimental parameters. Ahmmed et al. (Ahmmed, et al., 2015) 

showed that when columnar structures are re-scanned by fs-laser pulses several times, they 

become more uniform, aligned and well-defined. Figure 3 illustrates the effect of multiple laser 

scans on the laser-induced surface topography of stainless steel 304. At Ns = 1 (Figure 3a), only 

undulating grooves are observed. Columnar structures are then obtained for Ns = 5 in Figure 3b, 

which increase in size and uniformity with greater Ns. Evidently, the most significant change in 
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surface topography occurs between Ns = 1 and Ns = 5, and this is captured by the λ(r) plots in 

Figure 3. The λ(r) curve for Figure 3a has a much lower lacunarity than the λ(r) curve of Figure 

3b.  

Although the λ(r) plots for Ns = 5, 10, and 50 are in very close proximity to each other, 

close inspection reveals that the λ(r) curves increase slightly with increasing Ns. This indicates 

that the surface topography of laser-irradiated stainless steel 304 becomes more spatially 

heterogeneous (less translationally invariant) when more laser passes are applied. Since the 

columnar structures are larger and more well-defined at higher Ns, the foreground pixels that 

represent them are clustered together in larger-sized clumps, and this in turn increases the size of 

the gaps (background pixels) between groups of foreground pixels. This increases the coarseness 

of the image, which results in a higher lacunarity.  

Displaying λ(r) as a function of r is preferred over reporting one value of λ at some 

arbitrary r because the shape of the λ(r) curve provides information regarding the spatial 

distribution within an image (Plotnick, et al., 1993). For example, the shape of the λ(r) curve for 

Figure 3a typically occurs for images in which the foreground pixels are randomly distributed 

throughout the image (Butson & King, 2006; Dale, 2000; Plotnick, et al., 1996; Plotnick, et al., 

1993). This is consistent with the fine texture captured by the SEM image of the undulating 

grooves (Figure 3a). One approach of generating a single lacunarity index from λ(r) plots is to 

compute the area under the curve (Utrilla-Coello, et al., 2013). That is, if ρ(r) = ln r, then the 

degree of spatial heterogeneity, Θ, is given by: 

Θ = ∫ ln 𝜆(𝜌(𝑟)) 𝑑𝜌(𝑟)
ln 𝑀

0

 (8) 

where M refers to the smaller image dimension. The integral in Equation (8) is computed for the 

lacunarity plots in Figure 3 by numerical integration, and the results are displayed in Table 1. 
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Θ provides a convenient measure of the degree of spatial heterogeneity of an image. 

From Table 1, Θ increases considerably from 0.72 to 1.54 between Ns = 1 and 5 due to the 

abrupt change in surface topography (Figures 3a and 3b). On the other hand, the slight change in 

surface topography for Ns = 5, 10, and 50 is reflected in the small increase in Θ. Figure 3 and 

Table 1 show how lacunarity analysis is suitable for detecting even small changes in topography, 

which would otherwise be difficult to confirm based on qualitative assessments alone. 

Figures 2 and 3 clearly demonstrate that quantifying the laser-induced surface 

topographies using lacunarity analysis provides an objective method of comparing spatial 

texture. However, because λ(r) is only a measure of the degree of translational invariance within 

an image, the comparison of surface topographies with distinctly different appearances should be 

avoided. Furthermore, inferring the surface topography based on λ(r) curves alone is discouraged 

since lacunarity analysis does not distinguish between the different shapes and structures present 

within an image. 

4.2. Hierarchical structures and lacunarity 

Complexity and texture are heavily scale-dependent: a particular surface topography may 

appear coarse at one magnification but very fine at a lower viewing magnification (Davies, 

2008), i.e. texture analysis must be performed in a relative fashion. Texture analysis is further 

complicated by topographies exhibiting features having multiple length scales, such as metallic 

specimens irradiated by fs-laser pulses (Ahmmed, et al., 2014; Ahmmed, et al., 2015; Kietzig, et 

al., 2009; Lehr & Kietzig, 2014; Ling, et al., 2015). Most studies have attempted to extract 

hierarchical information from one dataset at only one scale of viewing. In this case, the features 

containing the larger lateral dimension dominate the output parameter, resulting in the omission 

of features at lower length scales (Workman, et al., 2015). In addition, if a hierarchical object 
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contains features whose length scales differ largely (say, more than one order of magnitude), 

then the smaller features will not be well resolved in the image due to limitations in the sampling 

instrument. 

The straightforward alternative is to image the surface at multiple magnifications instead 

of trying to extract hierarchical information solely from one image. Hence, we proceeded to 

investigate how lacunarity analyses are influenced by the magnification under which SEM 

images of laser-irradiated surface patterns are obtained. Hierarchically structured laser-inscribed 

square pillars (84.8 ± 1.7 µm side length) were micromachined on copper, which were imaged at 

different magnifications ranging from 150x to 120,000x. The lacunarity analysis of SEM images 

of the laser-inscribed square pillars is shown in Figure 4. 

The λ(r) plots in Figure 4 can be divided into three broad regimes. In Figure 4a, λ(r) 

increases steadily for 150x to 1500x. From 1500x-15,000x, however, the lacunarity of the SEM 

images decreases with increasing magnification, as seen in Figure 4b. Finally, Figure 4c shows 

that λ(r) increases once again for higher magnifications, between 15,000x and 120,000x. 

Evidently, not only does the lacunarity of the surface topography vary greatly with scale, its 

trend with respect to increasing magnification reverses within certain scale intervals. 

The SEM image captured at 150x, shown in Figure 4a, is essentially an array of square 

pillars. At this magnification, each pillar is 44 ± 0.6 pixels wide, which makes up approximately 

0.2% of the entire image area. At 300x, each square pillar accounts for 0.8% of the total image, 

but by 1500x (SEM shown in Figure 4a), only one complete square pillar remains, which 

occupies about a quarter of the total image. As a result, the lacunarity of the images increases 

with scale since the size of the pillars (in pixels), and hence the spatial heterogeneity, increases. 

Under low magnification, say 150x, the SEM image is only able to resolve details in the range of 
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50-100 µm since 1 pixel represents approximately 2 µm. At higher magnification, on the other 

hand, the minimum resolvable detail increases and previously indistinguishable features become 

perceivable. From Figure 4, this “turning point” occurs at 1500x since the lacunarity begins to 

decrease from here onwards. 

There are two reasons that the lacunarity starts to decrease beyond 1500x in Figure 4b. 

Firstly, as the square pillar gradually fills the screen, the area surrounding the single pillar, which 

is composed of background pixels, shrinks. This reduces the spatial heterogeneity of the image. 

Secondly, micrometer length scale features become progressively distinguishable after 1500x. 

Since they are still small in relation to the entire image area, the SEM image exhibits a fine 

texture. However, comparison of Figures 4a and 4b indicates that the SEM image at 15,000x is 

more spatially heterogeneous than that taken at 150x since the latter has a lower lacunarity than 

the former. At 15,000x in Figure 4b, the λ(r) plot assumes a linear slope, which suggests that the 

surface topography at that scale exhibits self-similarity (Allain & Cloitre, 1991). It is also at this 

point where the lacunarity begins to increase with scale again. 

Nano-scale features (redeposited nanoparticles, in this case) that were indiscernible at 

1500x become resolved at 15,000x. These nanoparticles increase in size with increasing 

magnification, resulting in greater spatial heterogeneity. As a result, the lacunarity increases until 

we reach the microscope’s magnification limit at 120,000x. At magnifications greater than 

1500x, the surface features become increasingly random and will inevitably differ from other 

areas within the same patch. This does not, however, alter the fact that the lacunarity trends will 

still reverse whenever new features become resolvable. We applied the same analysis in Figure 4 

to a completely different laser-inscribed square pillar topography machined under different 

conditions and observed the same lacunarity trend reversals; this is illustrated in Figure S1 from 
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the accompanying Supplemental Materials. Figure 4 demonstrates that the lacunarity trends 

reverse with every change in the order of magnitude of the magnification due to the introduction 

of new detail at larger scales. At 150x, the SEM image displays objects on the order of 100 µm. 

Then at 1500x, features on the order of 10 µm are resolvable, followed by 1 µm features at 

15,000x, and finally 100 nm features at 120,000x.  

In contrast to the findings of several authors (Dale, 2000; Saunders, et al., 2005), who 

stated that lacunarity analyses could not consistently distinguish between sets containing 

multiple scales, the results in Figure 4 illustrate how lacunarity plots can be used to determine 

the scaling at which new features become resolvable. One additional advantage of using λ(r) to 

characterize hierarchical structures is that it can characterize both regularly and randomly shaped 

hierarchical features. For example, the square pillars (~100 µm) are highly ordered and thus their 

surface profile could be measured easily, but the micro- and nano-scale structures on top of the 

pillars, which are gnarled and randomly distributed, are more difficult to characterize. Many 

hierarchical surfaces that have been reported in literature contain well-defined micro-scale 

features decorated by irregularly shaped nanometer-length structures (Ahmmed, et al., 2014; 

Ellinas, et al., 2011; Gerasopoulos, et al., 2012; Ling, et al., 2015; Noh, et al., 2010). 

Furthermore, lacunarity analysis can also be extended to hierarchical surface topographies that 

contain irregularly shaped and randomly distributed features on all scales, with the ability to 

distinguish between different length scales. 

4.3. Lacunarity dependence on pattern sizes 

Another characteristic of λ(r) plots was raised by Plotnick et al. (Plotnick, et al., 1996). 

They stated that when the size of a certain “random pattern” corresponds to some critical box 

size rc, then λ(r > rc) begins to decline rapidly. This property of lacunarity plots allows for the 
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estimation of the average size of a “random pattern” within an image. Dale (Dale, 2000), 

however, found that pattern sizes cannot be consistently and accurately determined from plots of 

λ(r) because its slope tends to change smoothly rather than abruptly. Since the laser-inscribed 

square pillars observed in this work are regularly spaced and have uniform widths, the λ(r) plots 

should be able to detect their size easily according to the guidelines given by Plotnick et al. 

(Plotnick, et al., 1996). The square markers in Figure 4a indicate the measured pixel widths rpillar 

of the square pillars. Here we see that λ(r = rpillar) for each plot occurs near unity, but certainly 

not when the lacunarity plot begins to decline rapidly. In fact, it is not immediately obvious 

whether there is a characteristic “break-point” rc in the λ(r) curve that one could use to identify 

the size of a random pattern. Since the laser-inscribed square pillars in this work (Figure 4) have 

a well-defined pattern size, we investigated how λ(r) plots change with images containing 

different pattern sizes. 

The λ(r) curves shown in Figure 4a oscillate near 1 for large box sizes. This is a 

distinctive feature of regularly spaced spatial patterns and has also been observed elsewhere 

(Dale, 2000; Plotnick, et al., 1996), but no comprehensive explanation for their occurrence has 

been given yet. These oscillations can be explained by examining the means and standard 

deviations of the pixel distributions, �̅�(r) and sk(r), respectively. Figure 5a shows the values of 

�̅�(r) and sk(r) as a function of r for an SEM image of the laser-inscribed square pillars taken at 

300x magnification.  

The mean number of pixels increases monotonically with r since the gliding box covers a 

larger number of pixels. However, since P = 0.5 for all images due to the grayscale-to-binary 

conversion scheme outlined in the Materials and Methods, the normalized mean, �̅�(r)/𝑟2, is 



 20 

equal to P. This can be verified by plotting �̅�(r) against r2, which yields a slope equal to P. 

Substituting this result into Equation (7) and rearranging, we arrive at: 

𝜆(r) =
1

𝑃2
[
𝑠𝑘(r)

𝑟2
]

2

+ 1 (9) 

Equation (9) shows that the lacunarity of an image with constant P only depends on [sk(r)/r2]2, 

which is the normalized pixel variance. Hence, λ(r) is essentially a measure of degree of 

variation in the number of foreground pixels counted in the gliding box.  

The plot of sk(r) against r reveals a large degree of oscillation with an approximate period 

of r = 110 pixels. This period coincides with the size of one pattern unit rpattern, as indicated in 

Figure 5b. Not only does this pattern unit contain the object of interest (i.e. the square pillar), but 

it also encompasses the surrounding voids between it and the adjacent pillar. Specifically, the 

gliding box of size rpattern = 110 pixels in Figure 5b contains one square pillar (foreground pixels) 

and an L-shaped gap (background pixels). Even if the box is displaced to another location within 

the image, as shown in Figure 5b, it will still cover roughly the same number of foreground and 

background pixels. On the other hand, a gliding box of 1.5rpattern may cover a total of more than 

two square pillars in one location to slightly more than one pillar in another location. As a result, 

sk(r = rpattern) < sk(r = 1.5rpattern). The dip in sk(r) also occurs for 2rpattern, 3rpattern,…nrpattern < M, 

where n is an integer, and this explains why sk(r) oscillates in Figure 5a.  

Therefore, for a set in which objects of interest are regularly spaced, the pattern size 

cannot be determined from detecting changes in the slope of the λ(r) curve, as suggested by 

Plotnick et al. (Plotnick, et al., 1996), but rather by measuring the period of oscillations of sk(r) 

or λ(r) about 1, which begin at r = rpattern. In cases where λ(r) does not exhibit oscillations, such 

as the laser-induced structures displayed in Figures 2 and 3, determining pattern sizes from λ(r) 
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plots should be avoided due to the ambiguity involved in deciding where the slope changes 

abruptly. 

5. Conclusion 

In conclusion, we have shown that the spatial heterogeneity of hierarchical surface 

topographies can be successfully quantified using lacunarity analysis, which allows for the 

objective characterization and comparison of surface topographies. On the other hand, the box-

counting fractal dimension (DBC) was found to be a poor descriptor for the complexity of the 

SEM images. We have also observed that, for surface topographies containing features having 

multiple length scales, lacunarity trends reverse with every order of magnitude increase in 

magnification as a result of the introduction of newly resolvable surface details. Finally, in cases 

where an image contains regularly spaced texture elements, its pattern size can be accurately 

determined by measuring the period of oscillations of its lacunarity curve beginning at box sizes 

larger than the pattern size. Lacunarity analysis is therefore a powerful tool that can be used to 

characterize surfaces topographies containing, but not limited to, hierarchical structures, thereby 

reducing the need for subjective qualitative assessments of SEM images. 
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Figure Captions 

Figure 1. a) Koch snowflake. b) Schematic demonstrating the gliding box-counting algorithm 

for the lacunarity analysis of a binary image of size M. Foreground (white) and background 

(black) pixels are designated by ‘1’ and ‘0’ boxes, respectively. 

 

Figure 2. Log-log plot of λ(r) against r of the SEM images shown in a) undulating grooves on 

stainless steel 304, b) columnar structures on stainless steel 304, c) maze-like structures on 

aluminum, d) layered bumps on aluminum, and e) chaotic structures on stainless steel 304. The 

images shown in a) to e) are representative subsets cropped from the original 1024 x 1023 

images so that the surface topographies can be better perceived. However, λ(r) was evaluated for 

the entire original image (1024 x 1023 pixels). 

 

Figure 3. Log-log plot of λ(r) against r tracking the evolution of laser-induced columnar 

structures formed on stainless steel 304 as a function of the number of fs-laser scans (Ns). The 

steel sample was irradiated at a peak fluence of 1.1 J/cm2 and with 756 pulses-per-spot. The 

SEM images shown in a) to e) are representative subsets cropped from the original 1024 x 882 

images so that the surface topographies can be better perceived. However, λ(r) was evaluated for 

the entire original image (1024 x 882 pixels). 

 

Figure 4. Lacunarity plots of SEM images, obtained at different magnifications, of laser-

inscribed square pillars machined on copper. a) 150x-1500x magnification. Square markers 

correspond to the measured pixel width of the square pillars. b) 1500x-15,000x magnification. c) 
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15,000x-120,000x magnification. The SEM images d) to g) represent the entire image (1024 x 

882). 

 

Figure 5. a) The mean pixel count �̅�(r) and the standard deviation sk(r) as a function of the box 

size r. b) Binary SEM image of laser-inscribed square pillars obtained at 300x magnification. 

 

Figure S1. Lacunarity plots of SEM images, obtained at different magnifications, of laser-

inscribed square pillars machined on copper. a) 150x-1500x magnification. Square markers 

correspond to the measured pixel width of the square pillars. b) 1500x-15,000x magnification. c) 

15,000x-120,000x magnification. The SEM images d) to g) represent the entire image (1024 x 

882). The laser-inscribed surface topography analyzed here was fabricated under different 

processing conditions than those shown in Figure 4 of the main manuscript. 
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