
Comparison of methodologies 

for induction motor design

Devon D. S. Kibby

Master of Engineering

Department of Computer and Electrical Engineering

McGill University

Montreal, Quebec

July 2013

A thesis submitted to McGill University in partial fulfillment of the requirements of 
the degree of Master of Engineering 

© Devon D. S. Kibby, 2013 





ACKNOWLEDGEMENTS

I would like to thank my supervisor, Prof. David Lowther, for giving me the invaluable 

gift of his time, as well as, his intellectual and financial support that enabled me to attend 

and complete my studies at McGill.  Discussing all the research in this thesis with 

someone as knowledgeable and experienced in the field as Prof. Lowther has truly been 

an honor.

Secondly, I would like to thank all my friends and family, in Montreal and abroad, for 

their support and encouragement.  

i



ABSTRACT

In the last few decades, the world of electric machine design, specifically induction 

machine design, has been reinvigorated by the introduction of power electronics.  Where 

designers were once limited to a single alternating current waveform with constant 

voltage and frequency, power electronics have thrown all those assumptions out the 

window.  The change has necessitated new design methods that go beyond the typical 

induction motor electrical equivalent circuit seen in every textbook for the last century 

and have sent designers back to first principles.

With that sentiment, early induction motor invention and improvements are explored. It is 

shown that even though the development and commercialization of the induction motor 

was quite rapid, the theory and understanding of the underlying physics kept pace.  Basic 

design methodologies and tools, including the Hopkinson magnetic circuit and the 

Steinmetz equivalent circuit, from the so-called “'Golden Age' of induction motor 

development” are traced forward through textbook examples to support the claim.

Newer electric machine analyses are presented in the form of the modern treatment of the 

magnetic equivalent circuit, MEC, and the finite element method, FEM.  A derivation of 

the MEC element from the magnetic scalar potential is completed utilizing the theory of 

tubes and slices to give a more tangible justification to the field assumptions made.  The 

knowledge from these assumptions is then applied to the FEM to show how to construct 

an MEC element using the FEM.  Tellegen's theorem is applied to the MEC and a brief 
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example given showing how one might compute the first-order sensitivity of a small 

change in stator windings in an induction motor to a small change in torque.

A brief overview of the engineering design process is described with a focus on 

augmentation with computer aided design tools, CAD.  The equivalence shown between 

the MEC and FEM is used to support the idea that a FEM-based electric machine CAD 

package could be modified to utilize MEC assumptions or knowledge in order to reduce 

computation time when coarser models are favored, such as in the early design stages.
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ABRÉGÉ

Depuis les dernières quelques décennies, l'industrie de la conception de la machine 

électrique, spécifiquement la conception de moteur à induction, a été revigoré par 

l'introduction des électroniques de puissance. Là ou les concepteurs étaient jadis limités à 

un courant alternatif avec fréquence et voltage constant, l'électronique de puissance est 

venue compliquer les lignes directrices de la conception. Ces changements ont nécessité 

des nouvelle méthodes qui vont au-delà du circuit équivalent typique mentionné dans 

tous les livres de référence depuis le dernier siècle et ont reporté les concepteurs aux 

principes de base.

C'est à partir de cette complication que l'évolution du moteur à induction depuis son 

invention est revisitée. Il a été démontré que, malgré son développement et sa 

commercialisation notablement rapides, la théorie du moteur à induction et notre 

compréhension des principes physiques ont suivi le rythme. Les méthodologies de base et 

outils de conception provenant du soi-disant âge d'or du moteur à induction, notamment 

le circuit magnétique Hopkins et le circuit équivalent Steinmetz, sont retracés dans les 

exemples à travers les livres de référence pour supporter la thèse.

L'analyse des machines électriques actuelles est présentée sous la forme du circuit 

magnétique équivalent (MEC) moderne et par le calcul par éléments finis (FEM). Une 

dérivation du MEC à partir du potentiel magnétique vectoriel est réalisée en utilisant la 

théorie des tubes et tranches pour justifier les hypothèses concernant les champs 
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électromagnétiques. Par la suite, ces hypothèses sont appliquées au calcul FEM pour 

démontrer la création d'un MEC à partir du calcul FEM. Le théorème de Tellegen est 

appliqué au MEC et un exemple concret est élaboré pour démontrer comment calculer la 

sensibilité de premier ordre entre un petit changement dans le bobinage électrique du 

stator et un petit changement dans le couple.

Un bref aperçu du procédé de conception est apporté avec un focus sur la contribution 

des logiciels de conception assistée par ordinateur (CAD). L'équivalence démontrée entre 

la méthode du MEC et celle par le calcul FEM est utilisée pour soutenir l'idée que les 

logiciels CAD basés sur le calcul FEM pourraient être modifiés pour inclure les 

hypothèses apportées par le MEC dans le but d'économiser le temps de calcul lorsque, 

durant les étapes préliminaires de la conception, un modèle simple suffirait.
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CHAPTER 1

Introduction

``The scientist merely explores 
that which exists, 

while the engineer creates 
what has never existed before.'' 

Theodore von Kármán [1]

The process by which an engineer creates that which “has never existed before” is termed 

engineering design.  Design, by definition, is the process of conception by imagination. 

The nothingness from which these designs, ideas, and plans spring remains implied and 

unmentioned; enigmas of the mind. Many of these ideas grow out of necessity to create 

useful machines, working to cleverly harness the natural phenomena of the universe.  

The design process aims to solve a problem that is inherently poorly posed, incomplete, 

and to which no feasible solution may exist.  Reducing failure in the search for solutions 

has captured the attention of many who study and work to improve the engineering 

design process itself.  The critiquing, cataloging, and subdivision of the engineering 

design process has yielded an abundance of terms to describe and identify occurrences in 

a general design process; from the novelty of a design problem to selecting the best suited 

design methodology to describing a design stage and its proximity to a final solution, a 

reader will undoubtedly find a plethora of information in literature [2], [3]. 

One end result of such detailed breakdowns and descriptions is the creation of targeted 
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tools specialized for specific types of problems and specific stages in the design process.  

They provide a resource to aid the designer in more effectively navigating the solution 

search space.  The assistance provided can help to lower the level of domain experience 

needed, save time for known problems by using standardized design methodologies , and 

hopefully find a better solution more quickly than might otherwise be realizable.

In the modern age many new aids have presented themselves in the form of computer 

aided design, CAD, tools.  These supports utilize the power of computers to perform 

modern mathematical analysis and graphical visualization in order to augment, reduce, or 

even fundamentally refocus portions of the design process.  In many cases, what once 

could only be realized by expensive experiments and multiple physical design 

verifications, is now replaced by virtual experiments until the designer is sure the solution 

meets their requirements.

The ability of computers to perform flawless arithmetic calculations at incredible speed 

has fueled the rise of computational methods to power these CAD tools, such as: the 

finite difference method, the finite element method, and the boundary element method.  

The use of these computational methods highlights a shift to a design methodology that 

works directly from first principles rather than empirical results or previous work.  While 

working from first principles might not be faster than previously popular methods, it 

allows the designer to explore a larger search space, encompassing more design 

candidates.  With the ever increasing demand for more efficient, better performing, and 
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smaller devices, designers are slowly embracing the use of CAD tools as previous 

methods have begun to show their limitations.

To find out where old methods are failing, first a little more has to be understood about 

the overall process.  A cursory study of many successful design processes reveals a highly 

iterative structure.  When designers find a solution to a problem, the success is 

remembered.  Later, when a designer is presented with a problem that the designer 

perceives to be similar, knowledge of the previous success is translated to a new possible 

solution.  The acute reader might call this strategy, “learning.”  By relying on previous 

solutions it is highly unlikely for the new solution to fail categorically.  In the same vein, 

learning from the failed new solution and refining it in a second attempt, is a popular way 

to try again.  The refinements or iterations then continue until successful or time runs out 

or the budget is exceeded.

While the aforementioned method, referred to in literature as a type of “case-based 

reasoning” [4], [5], is a tried and true method; it along with simplified analytical methods 

are no longer generating as many reliably successful solutions when faced with 

demanding modern design criteria because modern solutions can not always be found in 

the previous cases.  However, it is not time to throw out everything humanity knows from 

previous designs and methodologies.  One simple tweak is to accept the assistance CAD 

tools can offer.
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Previous iterations of CAD tools have not really understood the holistic needs of 

designers well.  If the tool is difficult to use, slow, inaccurate, and gives results that are 

hard to interpret, one can be assured that its adoption will be nil.  However, some 

undesirable characteristics on their own are not necessarily deal breakers.  The needs of a 

designer vary at different stages of the design process, the variation allows for trade-offs 

in the CAD tools to help maximize their effectiveness.

In the early stage of the design process, the designer might have an idea of a general area 

to search, say that of an electric motor or maybe even more specifically of an induction 

motor.  The designer might know some rough parameters that are desirable, such as 

maximum dimensions or horsepower output.  At this stage, it is desirable to quickly 

narrow the search space.  Thus speed is the dominating factor over accuracy and results 

should be given in easy to understand global device parameters.  Quick and easy to digest 

results allow for fast design iterations.

Somewhere in the design process, when the designer is satisfied that the search space is 

sufficiently narrowed, the speed versus accuracy trade-off shifts and begins to favor 

higher accuracy and detail.  At this stage the designer wishes to spend more energy on 

focusing the search to precisely identify one or many possible solutions in the narrowed 

search space.  It is assumed the first stage has yielded an area where a solution exists, 

thus feasibility is satisfied and expending more time and energy searching the area is 

acceptable.  As the search progresses, the CAD tool now needs to give more and more 
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detailed results.  These results may come slower and be more complex, but allow for 

methodical refinement towards a viable solution.

As the bar of solution accuracy is raised progressively higher, a change in modeling 

technique may even be necessary.  By the end of the process the designer wants assurance 

that the chosen design will function in reality as it does in the model.  In cases such as a 

complicated induction motor design, this means incorporating precise material properties, 

very fine geometric discretizations, and understanding not only the magnetic field 

distributions in the motor, but also coupled phenomena such as thermal properties, stress 

distributions, etc.

 A designer who can efficiently utilize all this information and assist the computer in 

knowing when to switch between design stages will undoubtedly be empowered by 

adopting CAD tools.  It remains to be seen if a non-learned designer can manage this, but 

if history is indicative of how far humanity has progressed technologically, experience 

counts for something.
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CHAPTER 2

History of the induction motor and its design

More than a decade ago, Boldea and Nasar stated that there are “more than 3 kW of 

electric motors per person” [6, pp. 1] in developed countries, predominately from 

induction motors.  Since then that number has undoubtedly grown, as these extremely 

useful devices continue to pervade our everyday lives.  With a multi-decade resurgence of 

research in the field, the century-old induction motor is undoubtedly slated to remain a 

fixture of modern life.

Independently invented by Galileo Ferrais and Nikola Tesla in the mid 1880s, induction 

motors provided an elegant way to convert alternating current to mechanical energy 

utilizing abundant materials and mechanically simplistic means.  The unique innovation 

demonstrated by Ferrais and Tesla was the construction of a rotating magnetic field.  

Whereas previous solutions utilized mechanical means, commutators, to reverse current 

direction in rotor windings and progressively shift the device's magnetic poles, the 

induction motor instead achieved an equivalent phenomena innately using only careful 

winding placement and multiple phase AC.

The developments leading up to the discovery were observed experimentally by the 

scientific community as two phenomena: the so-called “Arago rotations” [7, pp. 285] and 

its inverse, the effect of induced current on a magnetic field.  These rotations were 
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observed by Francois Arago in 1824 when he noted that a magnetic needle suspended 

above a copper plate would begin to spin when the copper disc was spun.  However, the 

scientific explanation given at the time was incorrect; in 1831 Michael Faraday 

experimentally disproved the theories of Charles Babbage and John Herschel and 

suggested that the revolving copper disk cut the lines of magnetic flux created by the 

permanent magnetic field in the needle, which in turn induced momentary currents, “eddy 

currents”, in the copper plate on either side of the needle.  These momentary currents then 

created their own magnetic field which interacted with field of the needle and produced a 

force on the needle, causing it to spin with the disk [7, pp. 285-286].

While these discoveries demonstrated the principle of energy conversion by induced 

currents, it did not show how to use an external electrical source to provide the energy to 

power the conversion to mechanical energy.  Practical applications of Faraday's 

explanation languished until nearly 50 years later when Walter Baily and Marcel Deprez 

independently discovered a means of producing a rotating magnetic field from an 

electrical source.  Walter Baily's alternative “Mode of Producing Arago's Rotation” [8] in 

1879 demonstrated a device with four electromagnets that were switched on and off  in 

pairs by turning a commutator-like wheel to produce a rotating magnetic field. Baily 

notes in his 1897 publication that this is a simplification of the situation where one uses 

infinite electromagnets to produce a uniform rotating magnetic field, which is more or 

less analogous to the previous work done by Babbage and Herschel in 1825 who 

physically rotated a horseshoe [7, pp. 285-286].
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The final attribution came from Marcel Deprez who took Baily's work just one step 

further and described how to electrically create a rotating magnetic field.  Deprez 

explains in his 1883 paper [9] that the “l'action magnétique dirigée suivant la ligne des 

pôles,” magnetic action directed along pole lines, can be broken into components upon 

which coils could be placed.  These coils could then be excited with two different 

currents of varying intensity to create, “une résultante dont la position dépendra du 

rapport des courants,” a resultant field direction that is dependent on the ratio of the 

currents.  

Interestingly, Silvanus Thompson, an expert engineer of the time and author of many 

books [10, pp. 62], [11, pp. 703] that provide historical and technical context, attributes 

this “theorem” to Deprez, but departs from Deprez's descriptions for a much more 

mathematically rigorous explanation to which he references Ferrais.  From a reading of 

Deprez's original publication it is easy to see how it went undiscovered with the 

conclusion essentially independently redrawn by Ferrais and Tesla for their own works, 

as Deprez's work was not widely circulated or known until the early 1890s [7, pp. 288].  

In Deprez's paper there is discussion of a needle tracing out an arc between two poles 

which are separated in space by 90º, but nothing as explicit as given by Thompson or that 

would meet this author's definition of “proved mathematically” as described by Kline.  It 

makes more sense for the needle displacement to be restricted and thus the discovery 

used to make an electric compass or measurement device rather than an electric motor.  
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Perhaps this historical footnote was added post hoc since Thompson's forth edition book 

“Dynamo-electric machinery” published in 1893 mentions Deprez's notion “that a 

rotating magnetic field might be produced by the combination at right angles of two 

alternating currents” [11, pp. 703] occurring in 1885 with no reference to Deprez's 1883 

paper mentioned in later editions [10, pp. 63]. Perhaps some insight to this might be 

gleaned from a rather boorishly and completely unrelated anecdote left by Thompson – 

“It has been noisily claimed, but without the shadow of reason, for Marcel Deprez, who 

did not, however, discover it until...” [11, pp. 19]

Some modern historical analyses [13] of the rotating magnetic field issue credit Tesla for 

the discovery in 1882.  Furthermore, the Muzej Nikole Tesle in Belgrade claims to have 

early drawings done by Tesla of two-phase and three-phase alternating current motors 

dated March 10, 1884 [14].

By the mid 1880's the battle between alternating current, AC, and direct current, DC, was 

ramping up.  One of the things AC systems sorely lacked was a practical AC motor. 

While all motors are technically AC motors, those that existed at the time were not self-

starting and had to be spun up before being energized. The commercial opportunity was 

glaringly obvious as evidenced by the ensuing patent battles following Tesla's patent [15], 

[16] filed on November 20, 1887.

Tesla filed a flurry of patents between October 1887 and their lumped assignment on May 
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1st, 1888.  The patents very explicitly and with unmatched completeness covered creation 

of a rotating magnetic field by electrical means, motor types and topologies arising from 

this discovery, as well as other subsequent advancements such as those related to 

electrical distribution.  Filings later in the aforementioned period show a true induction 

motor with short-circuited rotor windings, a commutator-less device; a feature Tesla 

claimed [17] he sought since seeing a the brutal sparking of commutator brushes on a 

Gramme generator being operated as a DC motor during a lecture demonstration in 1877. 

Ferraris, on the other hand, published [18] the bulk of his discoveries in March of 1888 

with an English translation [19] appearing in December of 1895.  The original 17 page 

paper was broken into 6 parts: part 1 wasted no time in showing visually, verbally, and 

mathematically how a rotating field could be created by two alternating currents 

described by a sine function; part 2 described a device used for experiments in the 

autumn of 1885 built of a copper cylinder suspended inside two coils; part 3, mounted the 

rotor onto a bearing mounted shaft, enlarged the dimensions and made a practical AC 

motor; part 4 presented a mathematical model and suggested some novel measurement 

parameters to describe induction motor performance; part 5 concluded based upon the 

incorrect mathematical model presented in part 4 that the induction motor was not “of 

any commercial importance as a motor”;  and finally part 6 presented an anecdotal 

experiment with a beaker of mercury as a rotor.  Ferraris' thoughts on the subject were 

fatally flawed in predicting the induction motor to be a low-efficiency device, deterring 

him from further research on such devices [19, pp. 283], [7, pp. 289].

10



Tesla and others, however, continued work on commercialization of the induction motor; 

Tesla, after the award and subsequent sale of his patents, joined Westinghouse in 1888 

and worked until 1889 with little success.  After Tesla's departure from Westinghouse, 

Tesla's assistant, Charles F. Scott, redesigned the motors with a moderate degree of 

success, though commercially the product was a failure. The sorry commercial state of 

the induction motor languished until 1891 when Maschinenfabrik Oerlikon of Zurich and 

AEG of Germany demonstrated 20 and 100 horsepower induction motors, a far cry from 

Tesla's fractional horsepower fan motor and Scott's 3 and 10 horsepower motors.  The 

engineers responsible for the 20 and 100 horsepower machines were Charles E. L. Brown 

and Michael von Dolivo-Dobrowolsky, respectively [7, pp. 292].

Brown and Dobrowolsky's success was a result of experimentation dating back to the 

mid-1888s after  Dobrowolsky learned of Tesla's work [7, pp. 293]. During these 

experiments Dobrowolsky invented [20] a special “squirrel-cage” rotor made up of 

copper bars running through an iron rotor stack.  The bars were short-circuited together 

by a ring at each end of the rotor [11, pp. 707], akin to Tesla's aforementioned short-

circuited rotor coils. Other improvements came from the use of three phases instead of 

two, distributed windings in stator slots as opposed to salient poles, and the translational 

use from DC motors of rheostats to increase rotor resistance and decrease rotor inrush 

current during starting [21].  Kline attributes [7, pp. 294] the improvements to an 

experimental comparison Dobrowolsky did when sizing up a smaller 1/10 hp motor to 5 
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hp.  It is also likely that his academic and industrial knowledge led him to an 

understanding of “magnetic circuit” theory, a design method gaining use during the time, 

which would emphasize the need to minimize leakage fluxes.

Brown's smaller motors became popular in subsequent part of the 1890s for their 

“inexpensive, rugged, and reliable” [7, pp. 294] nature since they didn't utilize any 

failure-prone pieces such as, slip rings or starting rheostats.  Larger motors used 

Dobrowolsky's rheostat method to increase starting torque, but were also more expensive 

for this reason.  S. P. Thompson includes a chapter titled “Some examples of modern 

polyphase motors” in his 1895 book [10, pp. 210-216], the pages are dominated by 

Brown's commercial offerings and only a paragraph dedicated to Westinghouse's Tesla 

motor.  Whether this is due to Thompson's affiliation with the European locale or because 

Westinghouse's motor was less popular is unknown. 

An American engineer who joined Westinghouse after Tesla's departure, B.G. Lamme, 

wrote a history [22] of the induction motor in 1921, which “covers principally those 

developments with which the writer [Lamme] has been in more or less personal contact” 

[22, pp. 203].  Lamme tells the mostly American side of developments from 1891 and 

onward.  The paper sheds light on the timing and reasons for many developments with 

excellent historical context, though in the context of design processes the semi-

autobiographical narrative provided by Lamme is perhaps the most valuable.

12



It is very evident by Lamme's writing organization that half a dozen companies across the 

world were all working on developing the induction motor, creating their own design 

methodologies, unique motor features and characteristics, and sharing as little as possible 

with each other.  The latter taking the form of the discouraging statement [22, pp. 206],

It is one of the greatest misfortunes of the engineering profession 
that so few of the great pioneers and the development engineers 
have recorded the steps which have led to success or failure.

The competitive nature of the time is best illustrated by Lamme's attendance at the 1893 

World's Fair in Chicago, where Westinghouse's display was evidently “right across an 

aisle from” AEG [22, pp. 206].  Lamme of course noted a few of the features and 

inquired as to some “regulating characteristics” to which “the German engineer looked at 

him and replied – 'Ah, you are from the Westinghouse company', and he volunteered 

nothing further.”

In comparing the 1890 and 1891 developments of Brown and Dobrowolsky to that of 

their overseas equivalents, it is evident that the Americans were behind due to 

Westinghouse's financial troubles and some legacy design choices, namely supply 

frequency and salient stator poles.  The same advancements Dobrowolsky patented in 

late-1889 with his caged rotor were tried over 2 years later at Westinghouse in 1892.  It is 

therefore historically interesting that P. L. Alger in his short 1976 article titled “The 

History of the Induction Motors in America” would attribute this discovery to Lamme, 

even going as far to note that Westinghouse and General Electric “signed a cross-
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licensing agreement in 1896” [23] to avoid litigation over the use of such caged rotor 

types.

The technological gap was short-lived as the 1893 World's Fair showed that the 

“Europeans and Americans were independently developing polyphase apparatus along 

very similar lines” [22, pp. 206].  The same year, “the induction motor business in this 

country [America] really got into motion” [22, pp. 207].  Only two years thereafter, in 

1895, Lamme noted that “the polyphase motor had become pretty firmly established as a 

commercial device” [22, pp. 209].

The motor's rapid development over the 1893 to 1895 span was less and less subject to 

the woes of the “cut and try” method from the 1880's.  Lamme goes to great length to 

illustrate the point that “many of the well known actions of the induction motor were 

fairly well comprehended as early as 1894 and '95” [22, pp. 212].  These analytical 

developments stemmed from the application of Maxwell's equations to the induction 

motor.  The analyses done by Louis Duncan, Maurice Hutin, and Maurice Leblanc went 

beyond Ferraris and derived equations to much more accurately predict the performance 

curves of the induction motor [7, pp. 301].  However, further levels of abstraction were 

necessary to bring forth a suitable design method.

The evolution leading up to these analyses was a long time coming. In the mid-1880s the 

sentiment of the engineering community was well summarized by the preface dated June 
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1884 of Thompson's book on electric machines [12, pp. xii]:

Of the laws of induction of magnetism in circuits consisting partly of 
iron, partly of strata of air or of copper wire, we know, in spite of the 
researches  of Rowland, Stoletow, Strouhal, Ewing, and Hughes, very 
little indeed.  Our coefficients of magnetic permeability and magnetic 
susceptibility,  though convenient as symbols, are little more than 
convenient methods of  expressing our ignorance. We want some new 
philosopher to do for the magnetic  circuit what Dr. Ohm did for the 
voltaic circuit fifty years ago.  Until we know the true law of the 
electro-magnet, there can be no true or complete theory of the dynamo.

The idea of a magnetic circuit arose repeatedly as researchers attempted to simplify the 

magnetostatic models rooted in the mathematically-heavy first principles of Ampere's and 

Faraday's laws.  Translating the mathematical meaning into tangible devices proved to be 

nontrivial for designers.  Many hoped, as Thompson said, for someone to step forth and 

propose a set of simplified equations to distill the knowledge from a distributed field 

model into a lumped parameter model, akin to the electric circuit.

In 1855 a theoretically complete magnetic circuit was put forth by Maxwell that gave 

mathematical representation to Faraday's intuitions and analogies.  Maxwell derived his 

magnetic circuit by the representation of magnetic flux as a slow incompressible fluid 

flowing through a linearly resistive medium.  He further defined the interrelation of 

electrical current and magnetomotive force, describing all the requirements of its basic 

modern equivalent [24, pp. 160].  However, as Jordon notes, the work remained 

unnoticed as the applications to which the magnetic circuit would be applied had yet to 

be created.
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By 1886 much debate had occurred as designers sought to create better devices, but the 

study of such devices remained largely akin to that of a black box; as discussed above the 

very literal “cut and try” method was standard procedure; the only quantified and 

measured parameters were the input and output.  In the spring of 1886, John and Edward 

Hopkinson published their “rendering of the magnetic equivalence circuit, which was 

theoretically complete, structurally simple, articulated a wealth of detail, and had proved 

itself in the practical design of dynamos” [24, pp. 138].  The latter being the most 

important as the Hopkinsons likely applied their analytical methods to designs for 

Edward Hopkinson's employer, Mather and Platt.  Jordan notes, as is highlighted above in 

Lamme's paper on the closed-door nature of commercial competition, that “Hopkinson 

kept much to himself about these design methods” [24, pp. 140].

During the same time as the Hopkinsons, Gisbert Kapp presented his solution to the 

magnetic circuit in stages starting in 1885.  As an “accomplished writer and speaker, and 

an important expositor and synthesizer of electrical engineering knowledge” [24, pp. 

142], Kapp's solution [25] sparked great debate for a number of issues, but its acceptance 

within a few short years was quite swift.  Jordan presents a quote, which provides ample 

insight to its acceptance even among such animosity from others.  One professor, William 

E. Ayrton, remarked that the paper was “of great interest, because it has placed the results 

of experiments in a form both practical and suitable for engineers to use... [It was] rather 

stranger that [designers] had not at their fingers' end the information that would enable 
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them to foretell the output from a dynamo” [24, pp. 146].

While all of these developments happened prior to Tesla's first tangible induction motor, 

they provided the basis for further analytical developments in the 1890's.  The 

significance cannot be understated as Jordan concludes by quoting John Perry, an 

assistant to Lord Kelvin and later professor [26, pp. 581]:

I think, however, that it is my duty, even now, to point out that this 
paper of  Mr. Kapp's is really, in quite an exceptional matter, a 
very useful one, for  by the method described in it we can calculate 
the characteristics of a dynamo  in a most straightforward way 
from the beginning to the end without difficulty,  so that even the 
youngest member of the Society, in dealing with dynamos,  can 
make the calculation.  Mr. Kapp has with great clearness put 
forward his  whole method, and the principles underlying it. In a 
manufacturer, such a course  of action is exceptional, and he has 
well earned our gratitude. Others may have anticipated him, using  
a method somewhat similar to his, but Mr. Kapp was the first  to 
make this valuable practical method of calculation public 
property [emphasis].

Looking again at analyses of the induction motor in the early-1890's; such as those put 

forth by the aforementioned Louis Duncan, Maurice Hutin, and Mauirce Leblanc; time 

has shown that relationships found between machine parameters is correct, however, the 

method fails to accurately predict machine performance.  Kline notes that this is due to 

Maxwell's treatment of induction coefficients as constant, the derived work thereby 

making the same assumption.  With iron being a main component of induction machines, 

this assumption ignored effects of hysteresis, eddy currents, and variable permeability; 

having an irrevocable affect on its accuracy [7, pp. 307].
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In 1894 by combining the theory of Maxwell; complex number analysis of AC-systems; 

the abstractions of Hopkinson and Kapp; and improving upon the work of Duncan, Hutin, 

and Leblanc; Kapp and Charles P. Stienmetz put forth an induction motor model that 

aptly “eliminated these coefficients by modifying traditional magnetic circuit theory with 

two new parameters borrowed from their transformer theories: 'leakage inductance' and 

'primary admittance'” [7, pp. 306].  The hybridization of methods and the way in which 

these new non-empirical parameters were defined gave rise to a much more accurate 

representation of the losses caused by leakages, hysteresis, and eddy currents.

One example of the other methods competing with Kapp and Steinmetz's theory was the 

“circle diagram” created independently by Alexander Hayland and Bernard Behrend [27], 

[28].  The graphical method utilized two empirical coefficients and Behrend's leakage 

coefficient in order to graphically complete the required vector algebra and thereby 

calculate machine performance parameters. The method remained into the 1950s, when 

one imagines the advent of computers heavily favored the methods of Steinmetz [7, pp. 

309].

Improvements to Kapp and Steinmetz's work came with the publication [72] by 

Steinmetz of his transformer equivalent circuit in 1897 [23, pp. 1381].  Anecdotally, 

Klein notes [7, pp. 308] that Steinmetz did not publicly apply his equivalent circuit to the 

induction motor until 1917, but others undoubtedly saw the connection to the induction 
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motor well before then.  The development of the equivalent circuit allowed any induction 

motor design to be connected and simultaneously analyzed in conjunction with other 

devices on the same network using circuit theory.

The final semi-mathematical design method used by designers from the beginning of 

induction motor design are their uniquely developed empirical equations.  These 

equations related parameters to dimensions and various operational characteristics of 

related motors, as well as empirical corrections to the more analytical and universal 

induction motor theory.  Few papers were published with these types of equations, design 

rules, or data; those that were, were authored mainly by academics; as the knowledge was 

and still is well protected in the vein of competition.  

With engineers working for dozens of companies large and small spread across the world, 

many of the discoveries and much of the knowledge was very likely discovered 

repeatedly in silence.  For example Lamme describes that in 1895 and 1896 he moved 

from graphical solution methods to “mathematical equations, derived directly from the 

geometry of the vector diagrams” [22, pp. 214].  By “analyzing magnetic conditions, with 

a view to predetermining all the 'leakages' or 'stray fields', etc. and checking with existing 

machines” he was able to “reproduce, by calculation, the reactance conditions of 

practically all the existing machines” [22, pp. 212-213].  Nowhere in that specific section 

of the article does Lamme mention Kapp or Steinmetz.  Instead three pages later he, with 

little deference, mentions the work of Steinmetz in the context of the era being the 
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“'Golden Age' of induction motor development” [22, pp. 216]:

During this time [1894 to 1900] the theory of the induction motor 
was worked out and applied in practical forms of calculation, and 
the methods of calculation, developed in  that time, hold with 
slight modification until today [1921].  The method of analysis and  
calculation derived by the writer in connection with the 
development of the cage tyyp [sic] motor, as already described was  
used throughout the following years by the Westinghouse 
engineers and is the basis of their present methods. In the General 
Electric Company the methods devised by Dr. C. P. Steinmetz, 
during this period, are also used very generally throughout that 
company. These methods are naturally very closely related to each 
other, although expressed in somewhat different form.

It is rather ominous that Lamme commented on the achievements of the afore-described 

era as being so successful that there had been no “radical departures” in the type of 

induction motors built 25 years later in 1921 [22, pp. 216].

Indeed this period might be called the “Age of Induction Motor 
Analysis,” as well as development, for practically all the modern 
analysis is based upon fundamentals developed during this time.  
All the analytical work was not published, but the methods of those  
times were carried into practical fields, with marvelous results, 
and it may be said that methods of today are largely refinements of  
those twenty years ago.  These refinements have led to refinements 
in the machines, but not to any new principles which have allowed 
any radical departures in types.

Considering Steinmetz's equivalent circuit remains a facet, if not the facet, of nearly 

every induction motor textbook one can read in 2013, one can only assume that the 

methods of Lamme, Steinmetz, and the many silent others remain in use in one way or 

another today.
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For further evidence that Lamme's words remain true well after his article and death, see  

P. L. Alger and R. E. Arnold's article [23] from 1971.  The article curtly details the history 

and developments of the induction motor, from Tesla to Westinghouse and General 

Electric.  The article features an ingratiating paragraph on Steinmetz and his analysis 

method, the only analysis method mentioned, with the rest of the article dedicated to 

advancements on new starting methods, cast rotors, magnetic steel, conductor insulations, 

overload devices and the effect on increased output ratings.  In no way is a “radical 

departure in types” seen, as Lamme indicated, rather a steady “refinement in the 

machines” as materials improved.

If Lamme could publish his article in 2013, he would undoubtedly begin it in much the 

same way, bemoaning the silence of his fellow engineers in telling of their successes and 

failures.  Rather oddly he would probably conclude in much the same way as to say that 

the methods of the “practical fields... of today are largely refinements of those of twenty 

years ago [strikethrough]” [22, pp. 216] over a century ago. 
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CHAPTER 3

First principles and reduced-order models

3.1   Electric machine modeling methods

The effectiveness of analytical methods in industry notwithstanding, the research world 

has focused on new developments with the advent of modern computing.  Currently, in 

the world of electric machine design, stand two seemingly distinct analysis methods: the 

mathematically complex finite element method, FEM, and the comparatively reduced-

order, pragmatic magnetic equivalent circuit, MEC.  Through decades of research each 

method has reached a level of fluency, FEM more than MEC, such that carefully obtained 

FEM and MEC results are able to describe certain phenomena and match global machine 

parameters measured in experiments.

The FEM provides a general mathematical framework with which to apply first 

principles, i.e. equations governing electromagnetics, to a discrete geometry without any 

a priori knowledge.  The method has reached a certain maturity in engineering as seen in 

the volumes of work that have been done to research, understand, and document how to 

use finite elements to solve many types of problems.  In the field of electric machines 

starting with Silvester [35, pp. 223-225] and Chari's publication in 1970, work on 

applying the FEM to these devices has been substantial with entire textbooks dedicated to 

the subject [37] and commercial products [29]-[33] that cater to solving the field 

problems presented by such machines.
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By solving Maxwell's equations directly with the FEM, the designer gains automatic 

inclusion of many effects that are ignored and empirically accounted for in analytical 

methods, for example leakage inductance and harmonic effects [38, pp. 21].  The 

geometric basis that provides this advantage by working with the lowest level of 

abstraction, the fields, is also the biggest disadvantage as the complexity of the 

calculations can quickly become time prohibitive to solve.  In addition once the field 

solution is obtained, more calculations are necessary to find the motor parameters used to 

compare against other designs, simulation methods, and experimental results.

For these reasons and the fact that a designer has to explicitly specify the geometry, the 

FEM is rarely used as the primary design tool, instead it is more commonly “used to 

calculate the detailed performance of a previously engineered machine” [38, pp. 21].  

However, in cases of novel designs where no accurate analytical technique exists, 

working from first principles with the FEM is the only option.  The granularity in the 

types of analysis, innate inclusion of as many phenomena as needed, and the ability to 

provide a solution as accurate as computation time allows, uniquely sets the FEM apart 

from analytical methods.  It is noted that the FEM is not the only method used in previous 

works, the finite difference and boundary element methods do exist and are widely used; 

however, the finite difference method can be considered a 0-order finite element method 

and the boundary element method is generally less favored than the FEM when nonlinear 

and transient analysis are needed.
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On the other hand, the MEC, a lumped parameter network, works a posteriori by utilizing 

only Faraday’s and Ampere's laws, as well as physical and geometric assumptions 

derived from the designer's tacit knowledge of the flux paths being represented. It is the a 

posteriori knowledge in these assumptions that cause the MEC to retain accuracy, but 

reduce computational complexity.  

While there has not been nearly as many researchers working on the MEC, its first 

developments can be seen as an amalgamation of the basic magnetic circuit principles of 

the 1880's and the work of Laithwaite [39] and Carpenter [40].  Amrhein attributes [38, 

pp. 22] the “first useful MEC application” to “Faucher in 1982,” though the bulk of 

knowledge about the MEC remained scattered until Ostović published his book [47] 

based upon his journal publications[42]-[46] and PhD thesis [41].  Since the book's 

publication in 1989, the MEC has begun to appear more frequently in literature as many 

sought to improve upon Ostović's work.

Many papers exist applying the MEC to the induction motor analysis problem.  Amrhein 

in his PhD thesis references the work of Sewell et al. [48], Perho [49], and Sudhoff et al. 

[50].  In more recent personal communications with Amrhein, the work of Bash et al. [51] 

and Derbas et al. [52] was recommended.  While the latter two papers are not directly 

applied to the induction motor they represent some of the current ideas on the MEC.  

Yilmaz, who shares the same supervisor as Amrhein, has published a metapaper [53] 

comparing papers which performed MEC analysis against FEM or experimental results. 
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While most show agreement with the FEM or experimental results, the multitude of 

assumptions and MEC implementations for real devices, in this author's opinion, lack a 

certain transparency seen in the more rigorously defined algorithms of the FEM.  

The inherent lack of rigor in the MEC makes following and replicating the results of 

literature difficult for a number of reasons.  Firstly, the MEC's geometric basis is much 

more loosely defined because the shape of the device and its flux paths are fit to the MEC 

element, whereas in the FEM, one could argue that the elements are fit to the shape.  

Secondly, the MEC mesh generation is very dependent on the individual designer's 

preferences with an arbitrary mesh generator being nonexistent or possibly impossible.  

These negatives are also the MEC's greatest features as it allows a designer to provide 

knowledge that directly results in lower computation complexity with only minimal loss 

of accuracy, given “correct” knowledge.

Another way designers can use their knowledge is by selecting which phenomena they 

wish to incorporate into their model and how to do so most efficiently.  Literature 

provides a few possible ways a designer can attempt to get the best out of the FEM, 

MEC, and electrical equivalent circuit, EES, by modeling different components with 

different methods, so called hybridization [54] or coupling [55], [56].  For example 

Gyselinck et al. [54] compare the effect upon the operation of an induction motor when 

its feed, a three-phase transformer, is modeled by FEM, MEC and EES.  The paper notes 

that when using only EES, the magnetic interactions between the three-phases in the 
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transformer are not taken into account and that performance change is not translated into 

the induction motor results.  Interestingly, the paper finds a certain congruence when 

using FEM and MEC, as both methods take the interaction phenomena into account.

Other papers by Dular [57] follow in a similar vein, but apply perturbation methods to 

FEM formulation.  In this case, Dular solves three problems in order to get one final field 

solution, one of which corresponds to the formulation for ideal flux tubes, the same idea 

used in derivation of the MEC.  Further indication that the FEM's generality could 

somehow be constrained and reduced in complexity to act as the MEC.

Finding a certain similarity in the results from FEM and MEC is a common theme in 

many papers [53].  Even from the rebirth of these lumped parameter methods, Ostovic in 

his 1988 publication [44] on an MEC for the induction motor concluded, “the magnetic 

equivalent-circuit method, being essentially a kind of finite-element analysis...”  With 

that sentiment a somewhat trite exploration into what conditions could be applied to the 

FEM to reduce it to MEC was completed and is presented below.

3.2   Combining the magnetic equivalent circuit and finite element method

The reader is referred to any primer on the finite-element method for the derivation and 

basic principles, which are not repeated here.  A popular reference for FEM in 

electromagnetics by Jin [63], from which the FEM equations used below are taken.  For 

the MEC related primers see the PhD thesis of Amrhein [38, pp. 30-33] or Ostović's book 
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[47, pp. 6].  Note the method and notation of Amrhein is used in derivation of the MEC 

below.

3.2.1   Magnetic equivalent circuit

As previously mentioned, the MEC can be derived from Ampere's and Faraday's law, 

given a few assumptions.  The first of which is that wave phenomena can be neglected as 

the frequency of excitation compared to the dimension is small.  The derivation begins by 

first examining Ampere's Law

∮
C

H⋅dl =∬
S

J i⋅dA (1)

where “H is the magnetic field intensity and Ji is the imposed source current density” [38, 

pp. 30].  That is the current density created solely by electric current encircling the 

element, neglecting eddy currents in this basic version of the MEC.  While this may be 
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discerning considering the application of the MEC to the induction motor, the pure flux 

method presented can later, through flux linkages, be connected to the electrical system 

of a machine, for example to model the currents in the rotor bars and their effect on the 

rotor teeth and core fluxes.

Define a magnetic scalar potential, u, as

H = ∇ u (2)

Combining (1) and (2) under the assumption that the only imposed current density 

present is from a conductor with current Ii surrounding the circumference of the element 

yields,

∮
C

∇ u⋅dl =∬
S

J i⋅dA = I i (3)

It is advantageous to begin introducing lumped parameters to simplify and abstract away 

from having to work with the field parameters directly.  Therefore the magnetic motive 

force, MMF, is defined from location a to b as Fab, as shown in Fig. 1.

F ab =∫
a

b

∇ u⋅dl – I i = ub – ua – I i (4)
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Since the path C in (1) is defined as a contour, summing all the MMF across the path 

yields

∑
C

FC = 0 (5)

As with electric circuits, (5) is a form of Kirchhoff's voltage law, KVL. Such conditions 

are beneficial to satisfy as knowledge of solution methods used for electric circuits can be 

easily translated.  In order to find Kirchhoff's current law, KCL, for the MEC consider 

magnetic flux density, B, and the integral form of Gauss's Law for magnetism,

∯
S

B⋅dA = 0 (6)

Naturally, magnetic flux density, B, is related to magnetic field intensity, H, by the 

permeability of the material in which the field exists.

B =μ H (7)

Substituting (2) into (7) and the result into (6), KCL is realized. 

∯
S

μ(∇ u)⋅dA = 0 (8)
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Again it is helpful to abstract this into a lumped parameter, the integral of the magnetic 

flux density across the surface, S, is termed the magnetic flux through a surface or S.

φS =∬
S

μ(∇ u)⋅dA = 0 (9)

Such that (8) reduces to

∑
S

φS = 0 (10)

Amrhein notes [38, pp. 31] that the derivation of KCL is needed to model materials with 

flux sources, such as permanent magnets.

At this point in the derivation, few assumptions have been put upon the equations, to 

abstract it further away from the field representation and closer to that of a lumped 

parameter network, it is helpful to introduce the intermediate idea of the tubes and slices 

method [61], [60].  While a slight digression, Hammond and Sykulski's method [59, pp. 

4] helps illustrate the mechanics of the MEC through a much simpler problem, 

calculating the inductance of a piece of material.
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3.2.2   Tubes and slices

Consider a cuboid of iron with an MMF imposed across the vertically facing faces, ie 

from a to b. The flux runs perpendicular to the MMF faces through the iron.  As the flux 

pushes through the iron, it experiences the MMF difference seen mathematically in (4).  

As it progresses the current MMF potential becomes closer and closer to the potential at 

b, these intermediate walls of potential are referred to as “slices” [59, pp. 4].  The walls 

conform to the equipotentials surfaces of the field, meaning the MMF at every point on 
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the slice has the same potential as every other point on the same slice wall.  Conversely,  

consider the path which the flux follows from a to b.  Instead of an infinitesimally small 

line, consider if the iron itself was subdivided into infinitesimally thin sheets through 

which flux flows. These “tubes” [59, pp. 4] uniformly distribute and contain the flux such 

that it never interacts with any other flux sheet, but are devised in such a way that they do 

not change any of the flow characteristics.  By definition the tubes and slices are always 

perpendicular to each other at every point, even through the geometry need not 

necessarily be rectangular.

In order to make useful calculations, one needs a graphical field solution showing the 

tubes and slices.  By applying the rule that the tubes and slices need always be 

perpendicular and propagating the tubes and slices from the boundaries, a graphical field 

solution can be constructed through trial and error.

Hammond and Sykulski [59, pp. 55] do not apply their method to electrical machines, but 

instead to calculating the permeance.

A measure of flux per current-turn, permeance, represented by P, is commonly referred to 

as being analogous to conductance in electric circuits.  It is defined as the ratio of flux to 

MMF,

φ = P⋅F (11)
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Consider now the small rectangular-like section with depth enclosed by the walls of two 

tubes and the walls of two slices.  It is known that at wall x1 there is a MMF, F1, and at 

wall x2 there is a MMF, F2. The walls of the tubes have sides at y1 and y2 and depth from 

z1  to z2.  Assume the permeability to be constant in the section and the magnetic scalar 

potential, u, to be only a function of x.  Additionally, the piece has overall length l and 

cross-sectional area A.  Equation (3), KVL, reduces to,

∮
l

μ(∇ u)⋅dl = ∇ u⋅l+u2 – u1= I i (12)

Equation (8), KCL, reduces to,

∯
A

μ(∇ u)⋅dA =μ⋅A⋅∇ u=φ (13)

Rearranging (11),

I i+u1−u2

l
= ∇ u (14)

Substituting (14) into (13),

φ =
μ⋅A

l
(u1 − u2 + I i) (15)
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Noticing that the last part of (15) corresponds to the MMF, the remaining terms must be 

the permanence to fulfill (11).

P =
μ⋅A

l
(16)

 As mentioned, Hammond and Sykulski use the result to subdivide a geometry using the 

above rules and then measure each appropriately subdivided piece to calculate a 

permeance.  By considering each piece of tube to be in series and then each slice in 

parallel, or vice versa, an approximated permeance is found.  Any consideration of 

current is unnecessary, however it is noted that the inductance of a structure can be found 

using this method as they define inductance as merely flux over the MMF, the same as 

the permeance [59, pp. 55].

The accuracy of such methods is reasonably comparable to FEM results, as is 

demonstrated by Hammond and Sykulski throughout the book.  Overall the assumptions 

made in the derivation, namely the constraints put upon the field hold well, however 

nowhere near as well as in electric circuits.  The reason is the relative material properties 

at material interfaces.  In an electric circuit, the difference in conductances between non-

conducting air and conducting copper is very high, on the order of 106 , where as in a 

magnetic circuit, the difference from vacuum to a material considered flux-carrying like 

iron is rarely greater than 104 [47, pp. 9].  The smaller difference means that flux is held 

onto less tightly by iron and is therefore free to take a possibly easier path even though 

the material can intrinsically carry less flux.  The leakage is not taken into account 
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directly as in the FEM, but can be introduced with MEC elements spanning areas of 

potential flux leakage.

While many parts of the magnetic circuit can be seen as analogous to the electric circuit, 

the comparison if taken literally can dangerously misrepresent the physics at play.  In the 

electric circuit governed by conductance, the inverse of which is resistance, energy is 

literally  lost as heat due to the material's resistance to electric current, thus reducing the 

potential.  However in the magnetic case, the material property is permeability, which is a 

measure of how well a material supports a magnetic field.  This can be viewed more 

tangibly for its role in defining how much energy can be stored as magnetic field in the 

material, since inductance and permeance are a function of permeability.  A basic result 

from electric circuits is that an inductor, L, can store energy equal to,

E L =
L I 2

2
(17)

ignoring any magnetic saturation effects, the higher the permeability, the higher the 

inductance, the more energy that can be stored.  Interestingly, the permeance only 

depends on geometric and material parameters, making it or its inverse, the reluctance, 

equally easy to calculate.

R =
1
P

(18)
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3.2.3   Finite element method

Now that the MEC element has been derived, an examination of the FEM is needed to 

see how to place the same conditions of Hammond and Sykulski's tubes and slices 

method upon the FEM elements.  For the sake of simplicity two triangular elements with 

linear basis functions will be used, as that is all that needed to model the complexity of 

the MEC element.  Jin's derivation for magnetostatics is unable to model flux sources in 

its current form [63, pp. 119], thus to include this phenomena the methods similar to 

Weiss et al. [62] have been introduced in the form of a one-dimensional element “cut”.  

In the “cut” domain the equivalent current density created by current flowing around the 

element (Fig. 1), Ji , is zero and a “current sheet” that represents the “uniform 

magnetization of the permanent magnet” is substituted with an equivalent current density, 

JM [62]. The permanent magnet material is not shown in Fig. 1, but is alluded to in the 

derivation KCL for the MEC, (10).  A more detailed treatment of flux sources is given in 

[47] and [38].

The classical definition of the the magnetic vector potential for 2-D used below, Az, is 

defined differently than the magnetic scalar potential used above, u, however their 

relationship is shown below with respect to MEC parameters.  That is that a difference in 

u is MMF potential and a difference in Az is magnetic flux.  Jin's terminology is adopted 

here forth to distinguish between the MEC and FEM steps with a few substitutions to 

avoid confusion between the terminology used in Jin's general FEM derivation and the 

terminology for the magnetostatic case. 
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Fig. 3: 2D FEM discretization of basic MEC element. Dashed 
  lines indicate 1-D “cuts.”

∇×( 1
μ ∇×Az ẑ)= ( J i + J M ) ẑ (19)

Where Az is defined in relation to the magnetic flux density, B, as

B = ∇×(Az ẑ ) (20)

Given Fig. 3, the nodal coordinates and nodal element compositions can be written as 

node x−coord y−coord
1 xa ya

2 xb ya

3 xa yb

4 xb yb

element nodes
1 1, 2, 4
2 1, 3, 4
3 1, 2
4 3, 4

(21)

The FEM used below uses only triangular elements with linear basis functions because 

that is all that is needed to satisfy the degrees of freedom in the MEC system.  Working 
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the FEM through by hand, the linear shape functions are given by,

N j
e
( x , y) =

1

2Δe
(a j

e
+b j

e x+c j
e y) j = 1,2,3 (22)

Where the exponent, e, is the element number; the subscript denotes the j-th shape 

function; Δe is the area of the element defined in (25) below; and the coefficients a, b, and 

c for triangular elements 1 and 2 (Fig. 3) are given in below in (23) and (24), respectively 

[63, pp. 96].

a1
1
= xb yb – ya xb b1

1
= ya− yb c1

1
= 0

a2
1
= xb ya – yb xa b2

1
= yb− ya c2

1
= xa− xb

a3
1
= x a ya – ya xb b3

1
= 0 c3

1
= xb−xa

(23)

a1
2
= xa yb – yb xb b1

2
= 0 c1

2
= xb−xa

a2
2
= xb ya – yb xa b2

2
= yb− ya c2

2
= xa−xb

a3
2
= xa yb – ya xb b3

2
= ya− yb c3

2
= 0

(24)

The area of each element, Δe, where the e exponent designates the element number, is 

given by the equation,

Δ
e
=

1
2
(b1

e c2
e
− b2

e c1
e
) (25)

The elemental stiffness matrix entries are given by the formula [63, pp. 98] with 

substitutions relating to the magnetostatic case [63 pp. 119] for the triangular elements
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K jk
e
=

1

4 Δ
e
μ
(b j

e bk
e
+c j

e ck
e
) (26)

And the triangular element contribution to the right hand side of the FEM system, 

designated by a non-italic b,

b j
e
= Δ

e

3
J i

e
(27)

Note that Ji in element 1 is pointing in the postive z-direction and in element 2 in the 

negative z-direction.  It is important to remember that the derivation seeks to model the 

MEC using the FEM with the same degree of complexity; it does not seek to accurately 

model the real device directly, which results in some otherwise nonsensical application of 

parameters.  The issues arise from the hand-waving treatment of sources in the MEC 

compared to the FEM.  In order to model the sources in the FEM, the location of the 

elements containing the current density and their geometric information is essential and 

required information.  Typically the flux carrying medium does not contain the current 

density and is simply excited by other elements or boundary conditions.  On the other 

hand, the MEC disregards all the geometric information required to calculate the double 

integral in (1), instead quickly concluding that there is some surface associated with the 

MEC element that integrates to Ii, the current in the wire surrounding the element.  By 

doing so it ignores the specifics of where exactly the current is located, the current 

density in the conductor, and associated phenomena.
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Working from Ampere's law and applying the geometric information, the “cut” one-

dimensional line elements contributions are found,

1
μ( ya− yb)

[ 1 −1
−1 1 ] [AZ 1

AZ 2
]= l

2 [ J M 1

J M 1
] (28)

1
μ( ya− yb)

[ 1 −1
−1 1 ] [AZ 3

AZ 4
]= l

2 [ J M 2

J M 2
] (29)

Since all the coordinates are now in terms of a difference, it is advantageous to define 

these differences in terms of length, l, and width, w,

l = xa − xb

w = y a − yb
(30)

Calculating and assembling the global stiffness matrix and right hand side, 

1
2μw l [

l 2
+w2

+2 l −w2
−2 l −l2 0

−w2
−2 l l 2

+w2
+2 l 0 −l2

−l 2 0 l 2
+w2

+2 l −w2 – 2 l
0 −l 2

−w2
−2 l l 2

+w2
+2 l

][
AZ 1

AZ 2

AZ 3

AZ 4

]= l w
6 [

0
J i

−J i

0
] + l

2 [
J M 1

J M 1

J M 2

J M 2

] (31)

Applying the knowledge that the potential at nodes 1 and 2 are equal and nodes 3 and 4 

are equal, as shown by the equipotential edges drawn in Fig. 1, (31) reduces to,

1
2μw l [ l 2

−l 2

−l 2 l 2 ][2AZ 1

2AZ 3
]= l w

6 [ J i

−J i ] +
l
2 [2 J M 1

2 J M 2
] (32)
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Writing out and simplifying,

l
μw

(AZ 1
−AZ 3

)= J i
l w
6
+(J M 1

−J M 2
)⋅(1)⋅l (33)

Recall a per unit depth has been assumed, a 1 has been added to the JM term to note 

dimensional congruence between the terms on the right hand side of (33). Comparing 

with the MEC, (16) and (18), the length over the permeability and width is the reluctance. 

The difference of AZ's multiplying the reluctance looks a lot like the flux, it is in fact by 

definition.  To check, recall Amrhein's definition of the flux, (9), and apply the 

knowledge of tubes and slices where B is always perpendicular to the surface dA along 

the slice,

φ =∬B⋅dA =∣B∣w (34)

The definition for B when using the 2-D vector potential, Az, simplifies to,

B = ∇×(AZ ẑ )=
∂ Az

∂ y
î +

∂ A z

∂ x
ĵ (35)

Because of the assumptions placed upon the potentials, the partial with respect to the x-

direction is zero. Thus the definition for B as the curl of AZ reduces to a one-directional 

field, here forth treated as a magnitude since direction is implicit in the MEC.  Since AZ is 

being modeled by linear basis functions in the FEM used above, the reconstructed 

solution for AZ is a plane defined by the coordinates of the three nodes of the element and 

their respective solved AZ values.  In order to take the partial derivative the constants, C's, 
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for the following equation need to be found.

AZ = C1 x+C 2 y+C3 (36)

Solving for the equation of the plane, rearranging into form of the equation above, and 

taking the partial with respect to the y-direction of (36) yields,

∂AZ

∂ y
= C 2 =

AZ 1
– AZ 3

ya− yb
(37)

Substituting into (35) and noting again that the partial with respect to the x-direction is 

zero, 

∣B∣= B =
∂ AZ

∂ y
=

AZ 1
– AZ 3

ya− yb

=
AZ 1

– AZ 3

w
(38)

Thus the flux can be found in terms of AZ as,

φ =∣B∣ w = B w = w
(AZ 1 – AZ 3)

w
= AZ 1

– AZ 3
(39)

Which shows that the difference of the AZ's is in fact the flux between those two points.

The remaining right hand side of (33) must be the MMF terms as seen in (15).  Relating 

these terms between the two methods is a bit nontrivial as discussed above. 

Mathematically speaking, in the flux carrying medium with a current density of zero, (19) 

reduces to Laplace's equation, which is the governing equation for the field in the MEC 
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element.  In the FEM, under the assumptions that have been made above regarding the 

value of Ji in each element, the governing equation is Poisson's equation.  Given the 

assumptions on the field, namely that the variation of Az with respect to the y-direction is 

the only nonzero contribution, Poisson's equation (19) can be solved analytically for an 

element.

∂
2 Az

∂ y2 = μ
−1 J i (40)

Integrating to find Az yields,

A z =μ
−1 J i y2

+ C a y + Cb (41)

Where Ca and Cb are constants of integration.  The analytical analysis shows that direct 

solution of the physics give an equation that is of polynomial order 2.  Whereas in the 

FEM above, linear basis functions are being utilized to approximate the analytical 

solution, forcing the FEM solution to be linear.  Including the current density inside the 

FEM element creates this issue, however, looking at the FEM solution it is possible to 

manipulate the arbitrary Ji to force equivalent to the MEC.  Manipulating Ji in this 

fashion is nonsensical in any real device, but removing the dependence of the FEM upon 

all the geometric information required to define a source is non-trivial.  

Another possible way to apply Ji over the FEM elements would be to have a delta 

function with value of half ±Ii at nodes 2 and 3.  Equation (27) would have to be 
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evaluated from its definition since the value of Ji would not be constant over the element.  

Though this definition might break previous assumptions in the FEM derivation done by 

Jin.  A second way would be to add a linear 1-D element along nodes 1 and 3, then Ji 

inside the actual triangular elements would be set to zero.  Further research is needed to 

find which is “the best” or “least nonsensical” manipulation of Ji that yields equivalence.

Taking the first term of the right-hand side of (33) and setting it equal to Ii of the MEC. 

The nonsensical definition for Ji which achieves equivalence can be solved for as,

J i =
6 I i

l w
(42)

The definition for the current sheet JM1 and JM2 given by the 1-D “cuts” is slightly more 

concrete.  Applying the definition given (1) and (4), which relates a current density of a 

MMF,

∫
0

1

∫
0

l

J M i
dx dz = J M i

l = u i (43)

Therefore a method to achieve equivalence to (15) is found as (33) can now be written in 

the MEC parameters as,

R⋅φ = F 12 (44)

44



3.2.4   Usages

Focusing on the broader picture of the design process, the above work shows that the 

more general FEM can be reduced to the MEC given specific design knowledge of the 

fields.  Adding in that many including Hammond and Sykulski have shown how to relate 

permeance, a MEC parameter, to inductance, an EEC parameter, these analyses should be 

viewed less as discrete methods and more as a spectrum, which provides variable levels 

of detail.  Understanding the spectrum of analyses can help a designer visualize how to 

sacrifice computational speed for accuracy and vice versa, as well as giving a more 

concrete meaning to the shift of modeling methods needed during the design process.

One such approach is the use of FEM to tune an EEC of an electric machine [64]-[69].  

As previously mentioned, FEM models can be computationally expensive, but can take 

into account a number of phenomena that EEC do not.  The tuning idea uses an FEM 

field solution to calculate the EEC lumped parameters, thus effects such as iron saturation 

are more or less accounted for in later EEC calculations.  The advantage of which is 

evident when a designer needs to evaluate the performance of the electric machine with 

respect to other connected components.  

For example Dyck et al. [64] looked at a FEM model of an induction motor driven by a 

PWM bridge electric circuit.  The high switching frequency of the PWM necessitated a 

very small time step to be used when evaluating the coupled model, so much so that 

calculating that many FEM solutions was cost prohibitive.  The authors instead proposed 
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to “decouple” the PWM model directly from the field model by substituting an EEC 

induction motor model, allowing for computationally quick analysis even using the 

needed small time steps.  The decoupling is accomplished by introducing an intermediate 

step where an FEM field solution is used to calculate the lumped parameter values of the 

EEC model from the proposed induction motor geometry.  A fine example of selecting 

the right computational tools for the problem at hand.

3.3   Examples of early stage current induction motor design procedure  

While all these FEM-involved methods are revolutionary in their own right.  The true 

difficulty in design of electric machines is that all the methods presented solve the 

problem where knowledge is plentiful and solutions are scare, the opposite situation that 

a designer faces.  The norm for routine design is that the solution is generally well 

known, for example a designer's known parameters might be the amount of startup 

torque, maximum rotational velocity, and the type of electrical feed available.  The 

knowns tell the designer nothing about the geometry or size of the design being searched 

for.  Additionally, high-level methods like the FEM provide field results, which do not 

provide any direct relations to machine parameters, for example decrease the airgap to 

increase torque.

The difficulties in such inverse-type processes were solved early on by making a number 

of assumptions based upon the knowns and parameters sought, applying these 

assumptions to analytical results, as well as applying empirical knowledge or previous 
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design experiences. The traditional design process or at least the beginning of the process 

remained more or less unchanged since the early 1900s as evidenced by design 

calculation examples in books by Hird, 1908 [70]; Hamdi, 1994 [74]; and Boldea and 

Nasar, 2002 [6].

3.3.1   Historical 1908 example

Hird begins by proposing a design for a three-phase motor, that produces 100 horsepower 

at “500 revolutions per minute on a circuit of 500 volts and 25 periods” [70, pp. 228].  

First Hird converts horsepower to watts, assumes an efficiency of 90%, and a power 

factor of 0.92. Using this information he calculates the volt-amperes each phase must 

carry and discusses the voltage and current trade-offs between star or delta winding 

connections. “The number of poles is fixed by the speed and periodicity, … the number 

of poles must be 6” [70, pp. 228].  Using a graph which relates the “output coefficient”, 

the total volt-amperes over the feed voltage, to a coefficient representing the diameter 

squared times the length of the rotor core, “d2l”, Hird is able to choose a diameter and 

length that satisfy the coefficient relation.  At this point the initial design sizing is roughly 

complete and the now antique circle diagram is utilized to calculate performance.

3.3.2   Modern 1994 example

Fast forwarding 86 years to Hamdi's design example, he begins by giving his knowns, 

“0.25 kW, 1380 rev/min, 415 V, star connected, 50 Hz, three-phase, 4-pole, squirrel-cage 

induction motor” [74, pp. 139].  In nearly the identical first step, Hamdi assumes an 
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efficiency of 70% and a power factor of 0.70, and calculates a volt-amperes loading.  

Hamdi deviates from Hird and uses a different formula for calculating his “output 

coefficient”, though the coefficient is calculated for the same reason, finding the product 

“D2L”.  A diameter and length are chosen and further analysis is completed using slightly 

more modern techniques, including, of course, the Steinmetz equivalent circuit.

3.3.3   Modern 2002 example

Boldea and Nasar make reference to this design method in their example as well stating, 

“here we are going to use the widely accepted Dis
2L output constant concept...” [6, pp. 

512].  The popularity of relating what is essentially a rotor volume measurement, D2L, to 

an output coefficient is heavily grounded in how much energy can be sustained in that 

volume.  The physics of the situation provide the upper bound based upon maximum 

field strengths and heat dissipation, eg how much flux can iron carry before it saturates 

and can the energy lost as heat in the motor be dissipated before the copper melts.  The 

relationship of D2L to the output coefficient has changed as materials and cooling 

methods have advanced, but the underlying physics have not.  It is interesting to note that 

relating the rotor volume to the power output was recognized so early on in motor design 

history and remains the lowest common denominator today. Unfortunately one assumes 

the relationship to be highly empirical and most likely based upon a designer's previous 

designs, as Boldea and Nasar's begin their chapter on induction motor design by stating , 

“For the most part, [induction motor] design methodologies are proprietary” [6, pp. 509].
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3.4   Tellegen's theorem for the magnetic equivalent circuit

Given the methods and examples thus far, the modern designer seems to be faced with 

starting the design process using the D2L sizing concept, blindly guessing geometries to 

calculate field solutions using FEM, or using prior motor designs as briefly discussed in 

the introduction.  One tool that seems absent is the use of sensitivity analysis to help 

better understand how input geometries relate to output parameters.  Tellegen's theorem is 

commonly used in other fields, such as electric circuit design, however it appears to have 

been applied quite sparingly in the motor design area.

Tellegen's theorem is a fundamental theorem of network theory, which relies only upon 

KCL and KVL. Its lack of assumptions [71, pp. 2] make it nearly universally applicable; 

nonlinear, time-varying, or any number of complications present no issues given its 

generality.  Literature in the field more or less starts with a reference to Tellegen's 

original paper in 1952 or the gold standard reference by Penfield et al. [71] published in 

1970.  The research community has used Tellegen in a number of ways, for example 

Dyck et al. [73] derives Tellegen's theorem for electromagnetic fields and applies it in 

order to image a hole in an aluminum block.

Utilizing a field-based version of Tellegen's theorem in the motor design case may be 

seen as non-ideal since a more computationally expensive method such as the FEM will 

be needed to solve the field problem.  The situation will undoubtedly arise where a 

designer needs to evaluate more FEM solutions than is feasible.  The MEC presents a 
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strong case because it satisfies KCL and KVL, as shown above; it is easy to parameterize 

because it is lacks a rigidity in the way geometry is represented as real devices; and it is a 

relatively reduced-order model making it more suitable for quick repeated calculations 

for maximum responsiveness from the designer's perspective.  To the best of the writer's 

knowledge, Tellegen's theorem has not been applied to the MEC before.

3.4.1   Derivation of Tellegen for magnetic equivalent circuit

The following derivation roughly follows the steps set out by Penfield et al. [71, ch. 2, 

pp. 4-22] with adaptations to the MEC parameters.  Consider a network having no ports, 

made of branches, nodes, and parts. Applying KCL, where C is a sort of connection 

matrix that describes the connections between the branches, nodes, and parts; Φ is the 

independent flux with the subscript β denoting the branch through which the 

independent flux flows; taking all the independent fluxes together gives the net flux, φ , 

which is given with subscript α denoting the branch through which the net flux flows.

φα =∑
β

CβαΦβ (45)

Similarly for KVL, where Fα is the MMF across each branch α. 

∑
α

Cβα F α = 0 (46)
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Multiplying (45) by Fα 

φα F α =∑
β

CβαΦβ Fα =∑
β

ΦβCβα F α (47)

Taking the sum of (47) over α

∑
α

φα F α =∑
β

Φβ(∑
α

Cβα Fα) (48)

Applying (46) to (48) yields

∑
α
φα F α = 0 (49)

Since the MEC circuit topology does not change, previously calculated models can 

provide new information to revised designs.  Cohn's theorem does just that, by estimating 

the change or sensitivity of a one-port network based upon the changes in variable 

elements that make up the network. Independently proved by many as early as the late-

1920s and subject to a litany of generalizations and alternative derivations [71, pp. 79-

80], Cohn's theorem is a basic result of one of the many ways Tellgen's theorem can be 

applied in the analysis of sensitivity.

Penfield et al. present their derivation of Cohn's theorem [71, pp. 79-80] in terms of 

electrical impedances and parameters.  As shown with Tellegen above, a similar 

derivation can be done for MEC elements and parameters, however a few generalizations 

of (49) are needed.  Penfield et al. introduce the idea of a Kirchhoff operator [71, pp. 14-
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15], which “are defined as those which yield, from a set of currents (voltages) that obey 

Kirchhoff's current (voltage) law, a set of numbers or functions that also obey Kirchhoff's 

current (voltage) law” [71, pp. 113-115], i.e. if some operation or transformation is done 

to the system which obeys KCL and KVL, the transformed system still obeys KCL and 

KVL.  Such constraints allow for Tellegen to be applied to both the pre- and post-

operated upon system as well as the pre- and post-operated upon system which shares the 

same network topology.  A general form [71, pp. 14-15] of Tellegen's theorem can be 

expressed as

∑
p

Λ ' φ p Λ ' ' F p =∑
α
Λ ' φα Λ ' ' Fα (50)

Where Λ is the arbitrary Kirchhoff operator and the prime denotes that two different 

operators can be applied [71, pp. 14-15].  To get to Cohn's theorem, Penfield et al. applies 

Tellegen to a “one-port network with port” reluctance R, “made of two-terminal elements 

with” reluctances Rα [71, pp. 79-80].  The latter condition is satisfied by definition in the 

MEC since reluctances are only two terminal elements.  Since each small change in a 

reluctance element, δRα, causes a corresponding change in flux and MMF distributions in 

the network, the overall reluctance changes by a small amount as well, δR.  

Consider a combination of (11) and (18),

φ
2
⋅δ R = φ⋅δ(Rφ)− δφ⋅Rφ = φ⋅δ F − δφ⋅F (51)

Where center dots have been added above to highlight which variable the δ, a small 
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change, is operating on.

Using the general form of Tellegen's above, interchanging the Kirchhoff operators and 

subtracting the equation from itself, gives the difference form of Tellgen's theorem

∑
p

(Λ ' φ p Λ ' ' F p −Λ ' ' φ p Λ ' F p)=∑
α
(Λ ' φα Λ ' ' F α −Λ ' ' φα Λ ' F α) (52)

Applying the difference form to (52), selecting Λ' to be the Fourier transform, Λ'' to be 

“the small changes” [71, pp. 79-80], and taking the sum over p yields

φ⋅δ F − δφ⋅F =∑
α
(φα⋅δ F α − δφα⋅F α) (53)

Since (51) holds for each branch it can be applied to simplify (53), thus Cohn's theorem 

for the MEC is found

φ
2
⋅δ R =∑

α
φα

2
⋅δ Rα (54)

The result allows for a small change in R to be related back to a small change in the 

overall reluctance of the system knowing only the fluxes at each branch α and the overall 

flux at the port. Similarly a Cohn's theorem using MMF and permeance can be found 

using the same steps

F 2
⋅δ P =∑

α
F α

2
⋅δ Pα (55)
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3.4.2   An example application

An interesting result is the similarity of Cohn's theorem to the torque equation derived by 

Ostović [47, pp. 75-85], 

T = T loss + J
d 2

γ

dt 2 +∑
pn

F j
2 dP j

d γ
(56)

Where T is the torque, Tloss is the torque lost to purely mechanical losses, J is the total 

inertia on the shaft, γ is the angle of rotation, Pj is the permeance at the j-th node, and the 

sum over pn denotes only the elements that are parametrically nonlinear.  In the case of 

the induction motor, parametrically nonlinear elements are relegated to the air gap, where 

their nonlinearity arises from changing geometries as the rotor angle, γ, is swept.

Therefore in the MEC, Cohn's theorem can also be seen in some instances to be the 

sensitivity of the torque, since a small change in gamma causes a small change in the 

permanences of the elements in the air gap.  There are many other applications to be 

explored, one for example would be using the above results to look at changes in stator 

windings specifically the change in the number of turns around a tooth or teeth.  

Combining (51) with (55) and acknowledging that the left-hand side of (55) represents a 

the change in torque yields,

δT =∑
α
(φα⋅δ F α − δφα⋅F α) (57)

Summing over all the branches is unnecessary if the small change is due to the stator 
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windings, since only the stator teeth branches will have nonzero contributions.  The 

MMF and flux in the stator teeth have a special relation to the electrical  input to the 

system through flux linkages.  Ostović expresses this relationship through a very 

extensive system of matrices to mathematically model the different winding types found 

in real devices [47, ch. 3, pp. 140-189].  For a single-layer winding Ostović gives the 

following formula [47, pp. 168] for the stator teeth MMF, Fst, due to the electric current, 

i,

F st = w ' ' i (58)

Where w'' is defined as the MMF transform matrix.  If the sum is only over the stator 

teeth, then adopting the element and node names from Appendix A and applying to (57) 

gives,

δT st =∑
j

all st

φ st , j⋅δ F 12 − δφst , j⋅F12 (59)

Where st denotes stator tooth.  

From (4) and (11),

F 12 = u2, j−u1, j+F st , j (60)

φst , j = (u2, j – u1, j)P st , j (61)
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Substituting (60) and (61) into (59) gives,

δT st =∑
j

all st

φ st , j⋅δ(u2, j – u1, j+F st , j) – δ(P st , j (u2, j – u1, j))(u2, j –u1, j+F st , j) (62)

Assuming there is no small change in the potential at u1 or u2 and substituting (58) for Fst,

δT st =∑
j

all st

φ st , j⋅δ(w ' ' i ) (63)

Ostović breaks w'' down into a number of matrices which describe the winding topology 

[47, pp. 167],

w ' ' = M tmmf
−1 I k , k

' M sat M tc M cc i (64)

Where Mtmff, the tooth MMF matrix, defines the relationship between slot ampere-turns 

and tooth MMF; I' is the incomplete identity matrix [47, pp. 331, eqn. A.I.8]; Msat, the slot 

ampere-turns matrix, translates between ampere-turns in slots and coil ampere-turns; Mtc, 

the turns per coil matrix, contains only diagonal entires of the number of turns for each 

coil; and Mcc, the coil currents matrix, which equates phase currents with coil currents 

[47, pp. 167-169].  The only matrix for which the small change will be applied is Mtc, the 

turns per coil matrix.   Thus the sensitivity of the torque to small changes in the number 

of stator windings is,

δT st =∑
j

all st

φ st , j⋅(M tmmf
−1 I k ,k

' M sat δ M tc M cc i) j (65)
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Even though no notation has been given it is noted that i is a vector and M's and I are 

matrices, matrix vector multiplication rules apply.

Sensitivity analysis with Tellegen's theorem can provide helpful direction to a designer as 

a design is iteratively tweaked and moved closer to the final design specifications.  The 

analysis can also be helpful at the end of the design process if a designer needs to, for 

example, evaluate how changes due to manufacturing tolerances will affect performance 

bounds.  The  first-order [71, pp. 79-80] analysis is also computationally inexpensive 

since the only information needed beyond the MEC topology used is a current solution.  

Further study is needed to refine and quantify the accuracy and computational efficiency 

of these methods.  Other's including Amrhein have alluded to the advantageous 

“parameterization” [38, pp. 27] capabilities of the MEC, perhaps applying Tellegen is the 

unexplored secret.
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CHAPTER 4

Conclusion

In the last few decades, the world of electric machine design, specifically induction 

machine design, has been reinvigorated by the introduction of power electronics.  Where 

designers were once limited to a single alternating current waveform with constant 

voltage and frequency, power electronics have thrown all those assumptions out the 

window.  The change has necessitated new design methods that go beyond the typical 

induction motor EEC seen in every textbook for the last century and have sent designers 

back to first principles.

The engineering design process for electric machines is undoubtedly a nontrivial task.  A 

designer usually sets off with a rough idea about values of terminal parameters and 

overall dimensions, that provide at best a cursory summary of the machine and at worst 

describe one that is fictitious.  At the beginning of the design process, the goal is to 

quickly narrow the design space, making sure rough machine parameters are satisfied and 

leaving the finer details of the design specifications for later.  The CAD tools needed to 

assist the designer in this phase must perform quick calculations to maximize rough 

design iterations.  

As the designer refines the coarse design and needs finer-grain control over how it is 

being modeled, the CAD tool is faced with the difficulty that its current analysis method 

is inadequate.  The obvious choice is to move to another more complicated model.  
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However, moving from one analysis method to another creates problems of its own, such 

as when exactly to transition and how to integrate the knowledge from the previous stage. 

What is needed is a spectrum of analyses, rather than a discrete set of tools.

In the electric machines area, literature has mainly focused on three methods: the EEC, 

the MEC, and the FEM.  The EEC has been in use for more than a century, simplicity and 

age notwithstanding,  its empirically-tuned parameters continue to provide results for the 

majority of designs.  Unlike the EEC, the FEM approaches analysis with no abstraction 

from the physics and is able to accurately incorporate as many phenomena as needed at 

the cost of complexity.  The MEC straddles the area between EEC and FEM, its MMF 

and magnetic-flux formulation remain arguably truer to the underlying physics and allow 

it to model phenomena, such as iron saturation, more easily than the EEC.  However, the 

MEC has seen markedly less research than the EEC and FEM even as some authors [38, 

pp. 99] make the case for an MEC-based CAD package.

The need for such a tool to bridge between the EEC and FEM is not an unreasonable 

request.  The MEC undoubtedly provides an excellent compromise between the speed of 

the EEC and the customizable accuracy of the FEM.  Its treatment of the physics at play 

leads to a reduced-order model that is full of ancillary benefits, such as being able to 

apply a circuit-based sensitivity analysis using Tellegen's theorem. The doubt arises 

because the creation of another design package may be a fruitless pursuit.  

59



It has been shown above that the generality of the FEM can be used to create an MEC 

element, given suitable knowledge or assumptions.  In the interest of creating a spectrum 

of analyses, rather than creating an entirely new design package centered on the MEC, 

why not augment the readily available, better documented, and already polished FEM 

tools with the MEC knowledge.
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Appendix A

Fig. 4:   A “simple” topology for an induction motor MEC, adapted from [47, pp. 99]
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