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Abstract

In brain mapping, the regions of the brain that are ‘activated’ by a task or external stimulus
are detected by thresholding an image of test statistics. Often the experiment is repeated
on several different subjects or for several different stimuli on the same subject, and the
researcher is interested in the common points in the brain where ‘activation’ occurs in all
test statistic images. The conjunction is thus defined as those points in the brain that show
‘activation’ in all images. We are interested in which parts of the conjunction are noise,
and which show true activation in all test statistic images. We would expect truly activated
regions to be larger than usual, so our test statistic is based on the volume of clusters
(connected components) of the conjunction. Our main result is an approximate P-value for
this in the case of the conjunction of two Gaussian or x? test statistic images. The results

are applied to a functional magnetic resonance experiment in pain perception.



Résumé

En cartographie cérébrale, les régions du cerveau qui sont activées par une tache ou un
stimulus externe sont détectées par seuillage d’une image de statistiques de test. L’expérience
est souvent répétée sur plusieurs sujets différents ou selon différents stimuli sur le méme sujet.
Le chercheur est alors intéressé par les points d’activation communs & toutes les images de
statistiques de test. La conjonction est définie comme étant ’ensemble des points dans le
cerveau qui démontre une activation dans toutes les images. Nous désirons départager les
parties de la conjonction qui sont réelles de celles qui sont formées de bruit parmi toutes les
images de statistiques de test. Puisque nous nous attendons & ce qu’une activation réelle
suscite une conjonction plus grande qu’une conjonction due au hasard, notre statistique
de test est basée sur le volume des amas (c’est-a-dire des composantes connectées) de la
conjonction. Notre résultat principal est une valeur p approximative pour cette statistique
de test dans le cas d’une conjonction de deux images gaussiennes ou x2. Les résultats sont
appliqués & des images par résonance magnétique fonctionnelle obtenues dans le cadre d’une

expérience sur la perception de la douleur.



Statement of Originality

In this thesis, I have derived an approximation to the distribution of the volume of one cluster
of the excursion set of the conjunction of two independent, smooth, stationary Gaussian (x?)
random fields. I have solved this problem for general dimension. I have used some tools from
integral geometry to find the mean value of this distribution. This mean value is simplified

to a closed form. I have applied these results to an fMRI experiment in pain perception.
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Chapter 1

Introduction

1.1 Brain mapping

In recent years new technologies have been developed to produce informative images about
the living human brain. Two of these techniques are positron emission tomography (PET)
and functional magnetic resonance imaging (fMRI). These two techniques have enabled neu-
rologists to study the functional activation of the living human brain under different condi-
tions. The data collected by these techniques are smooth images of the brain activity over
the time of an experiment. By analyzing this type of data we can detect whether a region
in the brain is activated or not.

The simplest way of doing this is to assume that the time course of the images at each
point have a Gaussian distribution whose mean follows a linear model with regressors for fhe
presence or absence of the different conditions applied during the course of the experiment
(Friston et al., 1995, Worsley et al., 2002). The condition is then detected by a simple T
or F test statistic. This is repeated at each point or voxel in the image, and the result is
a 3D image of test statistics, X(t), t € S C RP. Here D = 3 and the search region S is
usually the whole brain. We expect a small number of isolated regions of S to be activated,
producing high values of the test statistic image X (t). These can then be detected by the
excursion set of X (t), defined as the set of points ¢ where X (t) exceeds a threshold z.

Figure 1.1 shows an application to an fMRI experiment in pain perception, fully described
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in Worsley et al. (2002). During the course of the experiment, a subject was given an
alternating 9s hot and 9s warm stimulus to the left calf, interspersed with 9s periods of rest,
repeated 10 times. The T statistic X (t) (110 degrees of freedom) for the contrast between
the hot and warm stimulus should show those areas of the brain that are activated by the hot
pain, compared to just the warm touch. Figure 1.1(b) shows the search region S (the part
of the brain covered by the fMRI data), together with the excursion set above a threshold
x = 3.17 chosen so that the P-value at any point is 0.001.

1.2 Detecting activation

1.2.1 Value of the random field

There are two common approaches to detecting the activated regions in such an image. The
first is based on setting the threshold z so that the probability that X exceeds x anywhere
in the unactivated parts of S is controlled to be say a = 0.05. This is done conservatively
by assuming that the unactivated parts cover the whole search region S. The threshold is
then chosen so that
P{sup X(t) > z} = a.
tes
Under the assumption that X is a smooth isotropic random field, good approximations are

available for this based on the expected Euler characteristic of the excursion set
A={teS: X(t) >z}

(Adler, 1981; Worsley, 1994, 1995). Figure 1.1(c) shows the excursion set above a threshold

z = 4.86 chosen so that the P-value of the maximum in S is a = 0.05.

1.2.2 Volume of clusters of the excursion set

The second method is based on the volume or Lebesgue measure of connected components
or clusters of the excursion set (see Figure 1.1(d)). To do this, we first set the threshold z to

a high value, typically chosen so that if there is no activation, P{X(t) > z} = 0.001, so that
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(b)

() (d)

Figure 1.1: Application to pain perception. (a) The brain (back left facing the camera),
together with a slice of the T statistic image X (t) (110 df) for a difference between the
hot and warm stimulus. (b) Search region S (transparent), and excursion set (blobs) above
z = 3.17 chosen so that the P-value at any point is less than or equal to 0.001. (c¢) Excursion
set above z = 4.86 chosen so that the P-value of the maximum of X (t) inside S is at
least 0.05. (d) The clusters of the excursion set above £ = 3.17 whose volume exceeds
v = 0.61cc, chosen so that the P-value of the maximum volume is 0.05, coloured by their
volume (the large cluster has a volume of 14.15cc). Note that both methods (c) and (d)
detect activation in the right primary somatosensory area, (white cluster in (d)), and the

left and right thalamus (green and red clusters in (d)).
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we expect 0.1% of the search region to be above threshold if there is no activation. Suppose

there are N disjoint clusters C, with volumes V,,, n=1,..., N:
A=UN_C,, Vi.=|Cu,n=1,...,N,

where | - | denotes Lebesgue measure. Then the activated regions are those clusters of the
excursion set with volumes V,, exceeding some threshold v. The threshold v is then chosen

conservatively so that, if the whole search region S is unactivated, then
. S0l = a
P{lg}%xN Vizvl=a

Under the assumption that X is a smooth isotropic random field, good approximations are
available for some common test statistics (Friston et al., 1994; Cao, 1999; Hayasaka et al.,
2004). Figure 1.1(d) shows the clusters whose volumes exceed the threshold v = 0.61cc,
chosen so that a = 0.05.

These approximations assume that the search region S is sufficiently large that the clus-
ters rarely intersect the boundary of S. A key step in deriving these approximations is
that for high thresholds z the cluster volumes are approximately independent, so that a

There are very good approximations to the expected number of clusters E(N) from work
on the expected Euler characteristic of the excursion set (Adler, 1981; Worsley, 1994, 1995).
This means that the most important (and most challenging) problem is to find the distribu-
tion of the volume of a single randomly chosen cluster (see Figure 1.2(d)).

The motivation for the second method comes from the expectation that activation might
be more diffuse and produce larger components of the excursion set. In contrast, the first
method is based on the expectation that activation will be more focused and produce larger
values of the test statistic image. The volume should therefore be more sensitive to activation
that is spread over a large region, whereas the value of the test statistic image should be

more sensitive to activation that is focused on small isolated regions.



CHAPTER 1. INTRODUCTION 12

(a) Gaussian random field X(t)~N(0,1) (b) Excursion set A above x=2.3263, P<0.01

e}

b

0 10 2t0' T30 40 0 0 20 30 40

(d) Histogram of the N=21 volumes

volume Vn

Figure 1.2: Example of clusters in D = 2 dimensions. (a) Gaussian random field,
X(t) ~ N(0,1) at each point, with V{X} = 1 in each direction. (b) The excursion set
A above threshold z = 2.3263, chosen so that P{X(t) > z} = 0.01. (c) Clusters (connected
components) Cy, of the excursion set, ordered by their volume (area) V,. To avoid the bound-
ary, only those clusters whose centers are within 5% of the boundary in (b) are shown. (d)
Histogram of the cluster volumes, together with the asymptotic density from Friston et al.

(1994) (curved line).
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1.3 Conjunctions

Often the experiment is repeated on several different subjects or for several different stimuli
on the same subject, and the researcher is interested in the common points in the brain
where ‘activation’ occurs in all test statistic images. The conjunction is thus defined as
those points in the brain that show ‘activation’ in all subjects. As before, we are interested
in parts of the conjunction which are noise, and those which show true activation in all test
statistic images.

The simplest case is where we have two test statistic images X1(t) and X,(t) with excur-
sion sets A; and A; above a common threshold z. This is illustrated in Figure 1.3 for two
runs of the same subject performing the same pain perception experiment. The conjunction
A, is then

A, = AN A,

Another way of looking at this is that A, is just the excursion set of the minimum X, (t) of

the two random fields X;(t) and X,(t):

Xu(t) = min{X(t), X2(t)},
A, = {teS:X,(t) >z}

(see Figure 1.4). Making inference using conjunctions is therefore equivalent to making
inference using the minimum of the two random fields. For example, if the component

random fields are independent and identically distributed then
P{X.(t) > z} = P{X,(t) > z}*.

Extensions to more than two random fields are obvious.

1.4 Conjunction cluster volume

To detect activation using the minimum random field, the first method, based on its value,
has been solved by Worsley & Friston (2000) for an arbitrary number of independent random
fields, and by Taylor (2001) for two correlated Gaussian random fields (see Figure 1.3(d)).
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(©) (d)

Figure 1.3: Application to conjunctions of pain perception. (a) The first run of the pain
perception data (same as in Figure 1.1) threshold at = 1.88. (b) The second run at the
same threshold. (c) The conjunction, the intersection of the excursion sets in (a) and (b).
The threshold was chosen so that the P-value of the conjunction at any point is 0.001. (d)
The conjunction threshold at z = 3.06 chosen so that the P-value of the maximum of the
conjunction os 0.05. The aim of this thesis is to find a threshold for the volume of the

conjunction clusters in (c), analogous to that in Figure 1.1(d), illustrated in Figure 5.1.
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However the second method, based on volume of clusters, is so far unsolved. This will be
the subject of this thesis.

As we can see above, the key problem is to find the distribution of a single cluster of the
excursion set. For the case of a single random field, Nosko (1969) made use of the fact that
clusters are roughly circular in shape (see Figure 1.2(c)), so it was only necessary to find
an approximate distribution for the radius. This in turn depends only on the square root
of the height of the central peak above the threshold x, which itself can be found from the
distribution of the maximum of the random field. The resulting theoretical cluster volume
density is added to Figure 1.2(d).

However the case of two conjunctions is quite different. As we can see from Figure 1.5,
clusters of the conjunction of two random fields are more elliptical in shape. We shall attack
this problem in Chapter 3 by approximating the clusters as the intersection of two discs
with random radii, themselves approximated by the Nosko method. Things become more
complicated for the the conjunction of three random fields (see Figure 1.5). Here the clusters
are more triangular in shape, and sometimes concave. For more conjunctions the shapes of
the clusters become much more erratic, and the volume distribution becomes more highly
skewed. For the conjunction of 10 random fields, clusters have highly irregular shapes with
a very large number of very small clusters.

Thus the aim of this thesis is to find an accurate approximation to the distribution of
volumes of cluster conjunctions, as simulated in Figure 1.6. It seems that the Nosko method,
or in fact any method that is based on modelling cluster shape, will be extremely difficult
to apply. For these reasons, this thesis will be concerned only with the conjunction of two
random fields (as in the top left panel of Figure 1.6), for which we will find reasonably

accurate results.

1.5 OQutline of the thesis

Let Xi1(t), Xo(t), t € S, be two independent, stationary, random fields. Define another
random field X, (t) as follows: X.(t) = min{X;(t), X2(t)}, t € S. Let A, be the excursion
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Threshold x=1.2816
A2=(t:X2(t)>x) Conjunction A,

Figure 1.4: Example of the conjunction of two random fields X;(t) and X,(t) in D = 2
dimensions, X;(t) ~ N(0,1) at each point, with V{X;} = 1 in each direction, j = 1,2.
The conjunction is the intersection of the excursion sets of each field, or equivalently, the
excursion set of X,(t) = min{Xi(t), X2(t)}. The threshold z = 1.2816 is chosen so that
P{X.(t) > z} = 0.01.
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2 conjunctions > 1.2816 3 conjunctions > 0.78767

Figure 1.5: Example of conjunction clusters in D = 2 dimensions, ordered by cluster volume.
The random fields have the same distributions as that in Figure 1.2. The threshold is chosen
so that probability of a conjunction at a point is 0.01. Note that the clusters become much

more erratic in shape as the number of conjunctions increases.
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2 conjunctions > 1.2816 . 3 conjunctions > 0.78767

14 20 — —
12
10 15
E® BT
8 6 3
4 5
2
0 0 . . mn___=u
0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 25
volume V volume V
n n
4 conjunctions > 0.47827 10 conjunctions > -0.33439
20 v . T - 40 x . . .

0 0.5 1 1.5 2 25 0 05 1 1.5 2 2.5
volume Vn volume Vn

Figure 1.6: Histograms of the conjunction cluster volumes in Figure 1.5 . The aim of this
thesis is to find a theoretical distribution for these histograms, but we shall only be successful

in the first case of 2 conjunctions.
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set of X, when the level is z, i.e.,
A, ={te S: X.(t) >z}

A, will be composed of disjoint clusters Ci,...,Cxy. Consider one of these clusters Cfj,
say and let V; be its volume. Then, our main interest in Chapter 3 of this thesis will be
in approximating the probability distribution of the random variable V; when the random
fields X7, X5 are both Gaussian or both x? random fields. Finally we will approximate the
distribution of max, V,,, the largest cluster.

First, Theorems 2.4.1 and 2.4.2 are used to approximate the shape of the clusters of the
excursion set of the Gaussian field. The volume of one cluster of the conjunction according
to these theorems will be the volume of the common overlap between two balls with random
radius and random centers. In Chapter 3 we will use the Fundamental Kinematic Formula
to find an approximate mean value of the volume of one cluster of the excursion set of the
conjunction. The joint distribution of the radii and the center is calculated in a closed form.
This joint distribution is used to simulate random observation frorq the distribution of the
cluster volume of the conjunction. The same work is also repeated for the x? random field
but with Theorems 2.4.3, 2.4.4 and 2.4.5. We also compared our results on a special case,
the cosine Gaussian field.

Since the cluster volume has a complicated form it is not easy to find its probability
distribution in closed form so in Chapter 4 we will do a simulation to check the validity of
the theory developed in Chapter 3. We did the simulation only for two dimensional Gaussian
fields since the complexity of the computation becomes high as the dimension increases.

In Chapter 5 we will apply the theory developed in Chapter 3 to real data taken from

two fMRI images. In Chapter 6 we will present our conclusions.



Chapter 2

Random field theory

In this chapter we will give a brief introduction to random field theory that we need to solve
the problem of conjunctions. This introduction will include some definitions as well as some
important results in random field theory. Most of the material in this chapter are based on
Adler (1981). We will also recal some mathematical tools from integral geometry which will
be used in the sequel. We will assume that all probabilistic concepts from now until the end

of this thesis are defined in a fixed probability space (2, F,P).

2.1 Random fields

We are interested in real valued random fields. The random field X (t),t € S C R? is a col-
lection of random variables X (t),t € S together with a collection of measures or distribution

.....

such that

for every B € B(RP). For a given w € , X(t,w) is a deterministic real valued function on
RP which is a realization of the field X (t). The set {(t, X (t)) : t € RP} is called the sample
function or sample path of X.

The random field X is said to be strictly homogenuous or stationary if for any k, any set

of real numbers z;, ..., z; and any (k + 1) points 7,15, ..., t, in R the following condition

20
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on its finite-dimensional distribution holds
P{X(t1) <zy,..., X (k) Sz} =P{X(t1+7) <34, , Xt +7) < zi}-

This means that the random field is invariant under translation of the parameter space.
For every random field X (t) we can define two functions, the mean and the covariance

functions. The mean function is
ut) =E{X(t)}, t €S,
and the covariance function is
R(s,t) = E{(X(s) — u(s))(X(t) — pu(t))}, st € S.

A Gaussian field X (t) with covariance function R is isotropic if its covariance function
depends only on ||t —s||, i.e. if R(s,t) = R(||t —s]|) where |[t]| = VttT.

In this thesis we will consider two types of random fields: the Gaussian random field and
the x? random field. The x? is derived from the Gaussian field. A random field X (t),t € S,
is said to be a Gaussian field over S if its finite dimensional distribution is multivariate
Gaussian. To define the x? random field, let X;(t),..., X, (t),t € R?, be independent zero
mean, unit variance and stationary Gaussian random fields. Then Adler (1981), page 169,

defines the x? field as follows
Ut) =) Xi(t)? t e R
i=1

Note that for every t € R, U(t) is a x? random variable with v degrees of freedom.

In testing for brain functional and structural changes, the regions in the brain where the
random field is above a high level are of main interest since these regions are related to high
changes. The set of points in the brain related to high changes is estimated by the excursion
set of the random field. The definition of the excursion set of a random field is given as
follows: »
Definition: Excursion set. Let X (t) : R” — R be a random field. For any fixed real
number z and any subset S of R we define the excursion set of the field X above the level
z in S to be the set

A={teS: X(t) >z}
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The Lebesgue measure of the excursion set is

pp(A) = /5 14dt.

By taking the expectation of the last equation and then changing the order of the integration
we get
B{up(4)} = [ PIX(®) 2 s}t
s
If the field is homogeneous then the integration on the right-hand side is easy to integrate,

and we have the following important formula

E{up(A)} = up(S)P{X(0) > z}.

2.2 Continuity and differentiability of random fields

In this section we give the definitions of the stochastic version of the real analysis concepts
of the limits and derivatives of random functions.
A sequence of random variables {X,,} is said to converge to another random variable X

in the mean square (m.s.) sense if
E|X, - X|?—0 as n — 00.
We will denote this limit by 1.i.m,, e X, = X. A field X(t) is continuous in m.s if

lim E{(X(t + h) — X(t))?} = 0.

Iajj—0

In fact the field X(t) will be continuous in m.s if and only if its autocorrelation function
is continuous. Also if X (t) is continuous in m.s. then its mean function is continuous. A

random field X (t) is said to have a m.s partial derivative in the ** direction and is denoted

by X;(t) if

X(t + he;) — X(t)
h

where e; is the i*® unit vector in the standard basis of RC. We will denote X (t) to be the

= X;(t).

l.i.mh_.g

vector of the m.s. first order partial derivatives for the field X(t) and X (t) to be the matrix

of m.s. second order partial derivatives of X (t).
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The random field is almost surely continuous at t* if for every sequence t, for which
It, — t*|| — 0 as n — oo we have X(t,) —** X(t*). X is almost surely continuous on
A C RP if it is almost surely continuous at every point in A. This type of continuity is
called sample function or sample path continuity. Also almost sure differentiability can be
defined in the same fashion.

The moduli of continuity of X and its first and second order partial derivatives are defined
by .

§(h) = supys_gy<n | X (t) — X(s)l,

&i(h) = SUP||s—t|<h |Xj (t) — XJ‘(S)L

&ii(Rh) = supys_yj<n | Xii(t) — Xi(s)|-
We will assume that all Gaussian random fields used in this thesis in addition to the Gaussian
random fields used to define the x? random field will satisfy the following conditions. The
random field has almost surely continuous partial derivatives up to second order with finite
variances in an open neighborhood of S and the joint distribution of the random field and
these partial derivatives is non-degenerate. Assume also that the moduli of continuity of X-ij

satisfies the following condition
P{rr%z;pc{fi(h),éij(h)} >e}=o0(hP)ash 0.

When we are interested in the conjunction of the x? random field we will assume that its
moduli of continuity satisfy the same conditions.

Let A = V{X } be the D x D variance-covariance matrix of the partial derivatives of
X (t) with elements Ay = Cov(Xy, X;),k,l = 1,2,...,D. The following theorem is proved
in Adler (1981), page 114:

Theorm 2.2.1. Let X(t) be a stationary Gaussian random field over RP. Then

(a) X ~ Normaln(0,A) and is independent of X, X,
~(b) conditional on X, X|X ~ Normal(—XA, M(A)) and the elements of M(A) are such
that Cov(Xij,XulX) = €(t,J, k,1) — X\ijAu where the function €(i, j, k,1) is symmetric in its

arguments.
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2.3 Horizontal window conditioning

To study the behavior of a random field near local maxima we need to condition on the
event that the random field has a local maximum at some point in its parameter space.
Since this event has zero probability we need to define the horizontal window conditioning
(HW), denoted by ||. HW conditioning has been introduced by Kac and Slepian (1959). To
define the HW conditioning let X (t) be a random field on RP. Let us define the new field
X.(t) = X(t)||A, where A is the event that X (t) has a local maximum with height = at
t = 0, by approximating the event A by a sequence of events A(h, h'), where

A(h,h') = {X(t) has a local maximum of height in (x,z + h)

at some point in the ball ||t]] < A'}.
The distribution of X,(t) is given by
P{X.(t) € B} = ’lliII(l) ’},in})]P’{X(t) € B | A(h, 1)},

where B is a Borel set. If the field X (t) is ergodic then we can write the right hand side of
the last equation as a ratio of two expectations. For more information about how to do this

see page 150 of Adler (1981).

2.4 Random field near local maxima

In this section we will report five theorems describing the behavior of a random field near
local maxima. The first'two are for the Gaussian random field and the others are for x2.
The following two theorems will be very useful to solve the conjunction problem when the
underlying field is Gaussian. These two theorems are due to Nosko (1969) and are reported
by Adler (1981), Section 6.8. Let X be a real valued, stationray, zero mean, unit variance,

ergodic, Gaussian random field satisfying the conditions of Section 6.6 of Adler (1981).

Theorm 2.4.1. Approzimation of a random field over a cluster: Given that the

random field X (t) takes the value x at t = 7, then with probability approaching one as
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T — 00, the field has the following representation over that component of the excursion set

containing T:
X(t) =z +X(r)(t—7)T - la(t— 1At - 7)T + o(1/z), (24.1)
where A = V{X}.

According to this theorem we can say that the random field X (t) near high local maxima

has a deterministic shape which is quadratic.

Theorm 2.4.2. Approzimate distribution of the height of local mazima of a
stationary Gaussian random field: Given that the field X (t) satisfying the conditions
above has a local mazimum at t = 0 with height exceeding x, the conditional distribution of

my; = X(0) — z (i.e, the excess height above the level x) is given by
limg—oP{zm,; > vlm,; > 0} = exp(—v). (2.4.2)

The following three theorems will be used to solve the problem of conjunctions for the x?
random fields. These theorems are due to Cao (1999). We will assume that we are dealing
with D-dimensional, real-valued, stationary, ergodic, Gaussian random fields X with zero

mean, unit variance, and A = V{X7}.

Theorm 2.4.3. Given that a X2 field U(f),t € RP, has a local mazimum at 0 with height

x, then £~U(t) — —2A as = — oo.

This means that the curvature of the x? random field is deterministic near its local

maxima.

Theorm 2.4.4. Given that a x? field U(t),t € RP has a local mazimum at 0 with height
U = U(0) ezceeding x, then

lim P{U >z +9|U >z} =™ ¥/?
T—00
for v> 0.

Theorm 2.4.5. Assume that 0 is a local mazimum of a x? field U(t) with height x. Then
as T — 00, Up(t/\/T) — = converges uniformly to the elliptic paraboloid —t* At in the neigh-
borhood of t = 0.
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This theorem also says that the x? has a deterministic form near its local maxima which

is an elliptic paraboloid.

2.5 Integral geometry

In this section we describe some tools and results form integral geometry which will be used
in the next chapter. One of these tools is the Euler characteristic of a set. A very important
result is the Fundamental Kinematic Formula. Let X? denote the collection of all compact
convex subsets of RP. A finite union of compact convex sets will be called a polyconvez
set. Also we shall say a polyconvex set K in R? is of dimension D if it is not contained in
a finite union of hyperplanes of ®”. The union and intersection of polyconvex sets is also
polyconvex. In other words, the family of polyconvex sets in R? is a distributive lattice and
we will denote it by PolyConv(D).

The Euler characteristic function (EC or x) is an additive functional on KP such that
for any K € KP, K = U™, K;, K; a compact convex set,

X(K) =D x(K:) =Y x(E:NKj) +...+ (1" x(Ki N K3 N Kz N ... N Ko).
i i<j

and where for a compact convex set K

E) = 1 if K # ¢,
0 if K = ¢.
The Euler characteristic describes the set K in a purely topological way, without reference
to any kind of metric. For D=2, x equals the number of connected components minus the
number of holes while for D = 3 x equals to the number of connected components minus
the number of tunnels plus the number of cavities.

Since the excursion set above a high level decomposes into disjoint convex sets (Adler
(1981) page 138), the Euler characteristic of this set will be a good approximation to the
number of convex components.

Let C be a subset of RP. Let a; = 27%/2/T'(i/2) be the surface area of a unit (i — 1)-

dimensional sphere in ®¢. Let M be the inside curvature matrix of 8C at a point t and
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let detr;(M) be the sum of the determinants of all i x ¢ principal minors of M for i =
0,1,2,...,D — 1. We define p;(C), the i-dimensional Minkowski functional or intrinsic

volume of C, to be

pi(C) =

/ detrp_l_,-(M)dt, 1= O, ].,...,D - ].,

ap—i Joc

and pp(C) to be the Lebesgue measure of C. In this thesis we will be interested in the case
when C' is the D-dimensional ball B(r) with radius r centered at the origin. The value of y;

for general D and C = B(r) is

1s(B(r)) = (1: ) 0 (25.3)

where w; = 7/2/T'(i/2 + 1) is the volume of the i-dimensional unit ball.
The following theorem is the Kinematic Fundamental Formula, well known in integral
geometry, and it is useful in many areas where we are interested in problems of rigid random

motion of convex sets or bodies.

Theorm 2.5.1. Kinematic Fundamental Formula: For all A,K € PolyConv(D) and
for 0 < k < D we have

Dok 4 K (D!

/ (AN gK)dg = Z [ ] [D] tirk(A)pp-i(K),
Ep i=0 k 7

where p;(A) is the i Minkowski functional of the polyconvez set A and Ep is the set of all

1
rigid motions in R and g € Ep. The factor [ ] is given by the following formula

J

1= ()ans

and w; 1s the volume of the i-dimensional unit ball.

As an application of this theorem, if A and K are convex, the ratio

Jg, (AN gK)dg
J&, vo(ANgK)dg

(2.5.4)
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is the mean value of the k™ intrinsic volume of A N gk, taken over all gK in R congruent
to K that meet A. The reason for this is that uo(A N gK) takes the value 1 if A and gK
intersect, and zero otherwise.

To approximate the value of P{sup,cg X(t) > z} for a random field X(t), t € S, we
need to define the EC intensities of an isotropic random field X (t). Let X;,- be the vector
of the first 3 components of X, and X, i be the ¢ x ¢ matrix of the first ¢ rows and columns of

X. Then the i-dimensional EC intensity of X (t) is defined by
pi{z) = E{l(XZx}det(——Xﬁ)lei = 0}p|i(0),

where py;(.) is the density of X i~ Then Worsley (1995) shows that

Pisup X(t) 2 2} ~ B{x(4)} = > m(S)pi(a),

=0
where A = {t € S: X(t) > z}.

We are interested in the values p;(z) for ¢ = 0,1,2,3 for two different types of random
fields: Gaussian, and x? with v degrees of freedom. Since the random fields are isotropic, let
A = Mp, where Ip is the D x D identity matrix, be the roughness matrix of all the Gaussian
random fields, so that ) is the roughness parameter. From Cao and Worsley (1999) we report
the following. For the Gaussian field,

ooe—y2/2d
T =

\/_e—z2/2
p(z) = VA—-

.’128_22/2
pa(z) = /\W

s 26—z2/2 2 -1
ps(z) = A ——(‘2(7)'2——2



CHAPTER 2. RANDOM FIELD THEORY ' 29

and for the x2 random field with v degrees of freedom
00 1//2 -1 —y/2
w0 = [
iE(V 1)/2 —z/2
) = VA

pi() V22020 (1 /2)
A z¥/?le=o/2(g — (v — 1

p2($) = 3= ,,/2_1( ( ))
2m 2 I'(v/2)

po(z) = N2 p=32e=3/2(g2 — (v — 1)z + (v — 1) (v — 2))
3 (27372 2/2-1T(12)

2.6 EC densities of the conjunction

Worsley and Friston (2000) gave a method to approximate the mean value of the Euler
characteristic of the excursion set of the field X.(t)=min]_,{X;(t)} where X;(t)'s are in-
dependent, isotropic, random fields. We will describe this method in this section. Let
b; = I'((i + 1)/2)/T(1/2). Let pi be the EC intensity of Xj(t) in R, 1 < k£ < D and
B C RP. Define the upper triangular Toeplitz matrix My, and the vector u(B) to be

por/bo pw/br ...  por/bp po(B)bo
M, = 0 pOk./bO . p(D—-l)I.c/bD~1 uB) = ﬂl(.B)bl
0 o ... por/bo pp(B)bp

Then the following relation holds
E{u(A.)} = HMk (),
where
A, ={te S: X.(t) >z}
The last formula gives us the mean vector of Minkowski functionals of the excursion set of
X.. To find the approximate value of P{sup;cg X.(t) > z} we need only to find the mean

value of the EC of the excursion set of the random field X, which is the first component of

the vector E{u(A4.)}. So we have the following formula

E{po(A.)} = (1,0,...,0)( ] [ M) u(S). (2.6.5)
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Let N be the number of clusters in S above high level z. Since the number of clusters above

high level z can be approximated by po(A,) we can use (2.6.5) to approximate E(N).

2.7 Poisson clumping heuristic

The mosaic process is a formalization of throwing sets down at random. Let B be a collection
of sets in RP. Let C be a probability distribution over B. Let a; € R be the events of a

Poisson process with rate 1. We define the mosaic process as
A= U; (at (S B,'),

where B; € B are chosen randomly according to C and @ denotes the Minkowski sum. The
a; are called the centers and a; ® B; are called the clumps.

According to Theorem 6.9.3 of Adler (1981), the local maxima of a Gaussian random field
above sufficiently high level z occur randomly according to a Poisson process with a spatial
rate v,. For high levels each cluster will contain one local maximum, therefore the random
nﬁmber N of clusters above level z in a set S tgnds towards a Poisson random variable with

probability function

(up(8)yz)reHo (S
n!

P{N=n}= ,n=0,1,2,...,

as r — o0, where Y 18 given by
-1 —z2
Mll/ZxD 1o—z?/2

(2m) %"

Yz

b

where A is the same as that defined in Theorem 2.2.1.

The clusters of the excursion set of a Gaussian random field for large x can be viewed as
clumps that are centered at points of a Poisson point process so we will model the conjunction
problem by a mosaic process. In the next chapter we will use the theory in Sections 2.6 and
2.7 to approximate the mean value of the volume of one cluster of the field X,. Also this
will enable us to find an approximation of the distribution of the largest volume of of the

clusters of the excursion set of X, above high level z.



Chapter 3
Volumes of clusters of conjunctions

In this Chapter we will consider the problem of finding an approximation to the probability
distribution of the volume of one cluster of the excursion set of the conjunction of two
independent isotropic random fields satisfying suitable conditions. We will develop the theory
only for two types of random fields: the Gaussian and the x? random fields. These two fields
are the only two fields that have a deterministic shape near local maxima. Other types of
fields such as T or F fields have random shapes (Cao, 1999). For example, the excursion
set of isotropic Gaussian and x? fields near high local maxima are balls, whereas they are
random ellipsoids for T and F fields. This will enable us to approximate the probability
distribution of the maximum volume of the clusters.

In this Chapter the Gaussian random field will be considered and an approximation to the
distribution of the volume of one cluster of the excursion set of the field min{X;(t), Xa(t)}
will be given for any dimension. The mean value of the volume will be given in a closed form

based on this approximation. Also calculations for a special case will be given.

3.1 Distribution of the volume of a cluster

Let Xi(t) and X5(t), t € S, be two independent smooth stationary Gaussian random fields
with V{X;(t)} = V{X5(t)} = Mp where Ip is the identity matrix of order D. Let ti,
ty be local maximizers of X;(t) and X,(t) respectively. According to Theorem 2.4.1, for

high thresholds, the component of the excursion set that contains t; is a D-dimensional ball

31
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with center t; and radius R; = /2W;/z), j = 1,2. According to Theorem 2.4.2 W, =
Xi1(ty) — z,Wa = Xs(t2) — z are independent exponentially distributed random variables
with mean 1/z. Using the Jacobian method it is easy to show that the density of the radius
Rj is
1,2
ij (’I‘j) = x2/\rje‘T’\T?1{,j>o}. (3.1.1)

The conjunction of the two fields occurs when the two balls overlap. So let H = ||ty —t4||
be the distance between the centers of the two balls and let V' be the volume of the overlap
of the two balls. We are interested in the probability distribution of V given that there is an
overlap, that is, the distribution of V given G = {0 < H < R; + R,}. Since the distributions
of t; and t; are uniform over S, then the density function of H given Ri, Ry, G is

DhpP-1
2)D 1{0<h<r1+r2}- (3.1.2)

fH(thl =7, Ry = Tz,g) = m—

The joint cdf of (R, Rs), given G can be found as follows:

wp(v1 + vg)?

P(G|R, = v1, Ry = v} = ,
{gl 1 (%] 2 U2} ,uzD(S)

P{R, <r,Ry <79,G} = / / P{G|R; = v1, Ry = va} fr, (v1) [, (v2)dvaduy
o Jo

o Nwppp(S)~! /
0

T1L f72 2
—ZZ A\ (v2 402
(1)1 + ’U2)D’Ul’l)2€ 2 ’\(”1+”2)dvgdv1

0
and

P{G} = k 'z*N2wpup(S) !,
where

o0 o0
_ 123 (02 .2
ko= // (v +v2)Dv1v26 72 M%) dyo duy
o Jo

00 o0 2 D i+1, D4+1—i — 222 A(v?4v2)

= E oy T e T 2T T2 dugdy
0o Jo t
D

i=0

D Ry 1,232 * ; _1.23,2
E ( ] ) / ,Ui+1e—-2-m Avf dvy / ,U1D+1—ze—§a: Avg dvy
t/ Jo 0

=0

D
= 2P/2(g2)\)~D/22 Z (1: ) L@E/2+ 1)C{D —i)/2+ 1).

=0
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The joint cdf of (Ry, Rs) given G is
P{R; <r,Ry <13,G}
P{G}

T1 fT2 2

22 \(v2 402

= n/ (v1 + v2)Pvivge™2 Mvi+2) dyn duy
0 Jo

FRlsz (7‘1, 7'2|g) =

and the joint pdf of (R, Ry) given G is the derivative:
z2 )
fRi,Ry(T1,72|G) = krima(r1 + T2)D€—TA(T%+@1{r1>o,r2>0}- (3.1.3)

The joint density of (Rj, Rg, H) given G is the product of the two conditional densities
fH(thl =Ty RZ =T, g) and le,Rz(rla T2|g)- So

TRy R u(r1,72,G) = fu(h|R1 =711, Ry =12,G) fRr, Ry (T1,72|G)

DpP-1 IR
T (4P Lorytray(R)RTara(ry + ) "€ 2 L fry>0,m,50)
- —zz—A (2 T
= KDhP Mg pysr (R)raroe™ 2 (D1 S0 0000y (3.1.4)

We need the following three special cases later in simulation and in application,

for D=1,

NE 2232 2
fRyRo, 1 (11,72, R|G) = Nor T 1r2e_T(rl+T2)1[0,r1+r2](h)1{71>0,r2>0}7
for D=2,
SRR (1,72, B|G) = Q:ff T1T2€_£§_A(T%+T"2’)1[0,r1+r2](h)l{r1>o,r2>o},
and for D=3,
" fRura,H(T1,72,R|G) = %;—:znrze“%(r%”%)1[0,r1+r2](h)l{n>0,,2>0}. (3.1.5)

To do more inference about the distribution of the volume of the clusters we need to
know what is the intersection volume between two D-dimensional balls. We give it in the

following theorem:

Theorm 3.1.1. Intersection volume of two D-dimensional balls: Consider two D-

dimensional balls of radii Ry, Ry separated by a distance H between their centers and let
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Ry < Rg) be the ordered Ry and Ry. Let

Ty = (sz) + H? —R§1))/2H,

T = H—x,.
Let g be a function defined by the following formula

g(D,r,a) = wD_1/ 2 —y?) T dy
a

VRPT(BE) (1
proy v (

where F' is the hypergeometric function defined by

2

D—-1 3 qa?

,_T

Flah,e) = 30 @0

=0 (C),Z'

,5’—7'_2-

)
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and (a); = ['(a +1)/T'(a). The volume of the intersection of the two D-dimensional balls is

wDRg) if 0< H < Rp)— Ry,

g(D’ R(l)a xl) + g(Da R(2)’ "EZ) Zf R(2) - R(l) <HS R(l) + R(z),

Proof: Let By, B; be two D-dimensional balls with radii Ry, R) respectively. Let H

be the distance between their centers. If 0 < H < Ryg) — R(y), then B; C By, so V =volume

of Bl=wDRg). If H > R(1) + R(g) then By N By is empty. If Rip — Ry < H < Ry + Ry

then B; N By= is the union of two disjoint D-dimensional sphérical caps one in B; and the

other one in By. So V is the sum of their volumes. To find V' we need to find the volume of

a spherical cap. The volume of a spherical cap of height A in a D-dimensional ball of radius

r can be obtained by integrating a (D — 1)-dimensional ball with radius vr? — 22 from r —h

tor, ie.,
T D-1
wD—l/ (7'2 - .’E2) z d.’l?,
r—h

which is equal to

varPL(52) an(1 D-1
o (

7 7

3 a?
’2,7‘2 ?
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by using the trigonometric substitution z = r cos(f). We need to find the heights of the two
caps that form By N By. The spheres of the balls By and B, intersect in a circle with radius
a, say. Let z;, zo be the distances between the centers of the balls and the center of this

circle. Then we have

(H—13)*+a® = R}, (3.1.6)
z1+22 = H, (317)
z3+d° = Rpy. (3.1.8)

Let h; and h; denote the heights of the two caps of By, and B, respectively. From equations
(3.1.6), (3.1.7) and (3.1.8) we get

Ty = (3%2)+H2 —Rfl))/m,

Iy = H - "1"21‘
hi = Ry —,
h2 = R(z) — To.

Then
Ry _ R2) _
V = wp. / (RYy — 23T de +wpy / (RYy — 2% do
T T2
= g(Da R(l)a 1131) + g(D’ R(l); 331).

This completes the proof. For D=1, 2 and 3 there is a simple formula for V. These simple
formulas will be used later in simulations and applications, so we give them in the following

three corollaries:

Corollary 3.1.2. for D=1,
V = (Ruy + R2) — H) 1Ry Ry Ruy+ Ry} (H) + 2R 1) Lo, gy~ Ry (H)-

Corollary 3.1.3. for D=2,

R, ) .
o E§=1 —2{20; —sin(20;)} if Re) — Ray < H < Ry + Ry,
WR%l) ‘ if 0 < H < Rp) — Ry,

where 61 = cosTH((Rfyy+ H?— Rpy))/(2HR(y))), 62 = cos™' (R + H* ~ RYy))/(2HR(»)).
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Corollary 3.1.4. for D=3,

2R3 if 0<H < R — Ra,
V= (R} + RYy)) — m(Rfyht + Ripyho — 3(h3 + R3))
if Ry — Ruy < H < Ry + R,

where

hy = (H* + Ry — RBfy))/(H), hy=H—hy.

3.2 [E{V} using the balls model

The distribution of V is not in closed form. However we can find a closed form for the mean
of the distribution, which we shall use later to adjust the approximation using the Poisson
clumping heuristic in Section 2.7. Using (3.1.4) and the Kinematic Fundamental Formula
we can find the mean of the distribution of V given G as follows.

In the Kinematic Fundamental Formula, let A be a fixed D-dimensional ball with radius
R; and K be a D-dimensional ball with radius Ry which moves around A uniformly. Then
the conjunction occurs when the two balls overlap. The overlap of the two balls is a cluster
related to the conjunction. The intrinsic volumes y;(B,) for i = 0,1, ..., D of a ball B, with
radius r is given by pi(B,) = (?)wpri/wp_;. Substituting this information in (2.5.4) and
using the Kinematic Fundamental Formula to simplify the integrals we get the the expected

volume of the overlap of the two balls conditional that there is an overlap and conditional

on Rj, R;. Let V be the volume of one cluster of the excursion set of min{X;(t), Xa(t)}.
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The ratio of the two integrals in 2.5.4 is

[Ij [D] pp(A)pp(K)
>ivo [;] [IZ] —llli(A),uD—i(K)

__ mpRp
D —5—
Yo (7) RS
RPRY
(Rl + Rz)
Using the total probability law E{V|G} = E{E{V(H)|R1, R2,G}} and (3.1.4), the mean

of Vis

E{V(H)IV(H) > 0, Ry, Ry, G} =

7'1 7"2

Epa{V} =E{V|G} = wD// e+ 72) DfR1,R2('r1v7'2|g)d7'1d"'2

mu 2
— WD// D+1 D+1 (r? +r2)d,r1,r2

KW D 2
- (329)

3.3 [E{V} using the Poisson clumping heuristic

In this section we will describe how to approximate the mean value of the volume of a cluster
of the excursion set of a stationary field X (t), t € S C RP in a different way. Let A be the

excursion set of X above a level z. Then we can write

up(A) = /51Ath
Taking the expectation for both sides and considering stationarity of X we get
B(uo(4)} = [ B{Lajdt
- / P{X(t) > z}dt
= uf;(S)]P’{X(O) > 1} (3.3.10)

Since the excursion set above a high level is composed of disjoint components we can

write it as follows

A=C,UCU...UC,
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where N is the number of these clusters. Then if V; = up(Cj),
pp(A)y =Vi+Vo+ ...+ Vy,

and so
E{up(A)} =E{E{Vi+ Vo +...+ Vy|N}} = E{NE{V}}.

where V' denotes the volume of one cluster of the excursion set. If S is large, the number of

clusters is independent of their sizes, and we have the following formula
E{up(A)} = E{N}E{V}
and so combining this with (3.3.10),
E{V} = up(8)po(z) /E{N}, (3.3.11)

where po(z) = P{X(0) > z}. E{N} can be approximated by the mean value of the Euler
characteristic function using (2.6.5). Since S is large, the d = D term is the most important,
SO
E{N} =~ up(S)pp(z).
When X(t) = X.(t) is a conjunction of two isotropic random fields, each with EC

densities p;, then the zero and D-dimensional EC densities of the conjunction are

polz) = pi,

p«p(T) = bp Z/’z(x)PD z(x)

=0 b bD —t

This can obtained from (2.6.5) by writing E{x(A«)} as a linear combination of the Minkowiski
functionals of S. This can be done by simplifying the right hand side of (2.6.5) and then
picking the coefficients of uo(S) and pp(S). Hence an approximation to E{V} is

Epcu{V} = 22,
PxD

In Figure 3.1 (a)-(c) we note that for large values of  the mean values of V obtained
by both balls model and Poisson clumping heuristic are close to each other. Also the value

of Egaus{V} becomes closer to Epcy{V'} as the dimension D increases, which is a good
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Figure 3.1: Two different approximations to the expected volume of a single cluster:

Egaus{V} (dotted) and Epcy{V} (solid) plotted against threshold z.
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advantage of the balls model because we are interested in application for higher dimensions.
This gives an indication that the approximation of the distribution of V' from the balls model

is working well for large thresholds and high dimensions.

3.4 Distribution of the maximum cluster volume

In this section we will describe how to approximate the distribution of the maximum volume
of the clusters of the conjunction using the Poisson clumping heuristic approach given by
Aldous (1989) and used by Friston et al(1994) to find the distribution of the maximum
volume for the excursion set of a single Gaussian random field. Let C;,Cs,...,Cn be the
clusters of the excursion set A, of the random field X,. Let V; denote the volume of cluster
i. Let Vjhae denote the maximum of the Vi, Vs, ..., V. If N is the number of clusters of X,

above z, then N has approximately a Poisson distribution with mean E{N}, i.e,
E{N})"
P{N =n} ~ (——{;z—'le_E{N}, forn=0,1,2,....
The cdf of Vg is

P{Vmae <IN 21} Y P{Vi<v,1<i<nN=n|N>1}

n=1
= > P{N=n|N>1}P{Vi<v,1<i<1N=n}
n=1

1 = (E{N})" & n
BV S 1] 2 e Ry <up
exp(—E{N}P{V > v}) — exp(-E{N})

= e CETVT) : (3.4.12)

%

where V' denotes the volume of any one cluster. Note that for large E{N} we have
P{Vinaz < v|N > 1} = exp{—E{N}P{V > v}}.

The last formula means that we can write the distribution of V.., in terms of E{ N} and
the distribution of V. In Section 3.1 we found the joint distribution of (R;, Ry, H)|G which
can be used to approximate the distribution of V', and E{N} can be approximated according

by the expected EC using (2.6.5). So we can now get the approximate distribution of Vipges.
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3.5 Correcting the mean of the distribution of V

Friston et al. (1994) and Cao (1999) found that the approximate distribution of V' could
be considerably improved by re-scaling V' so that its expectation agreed with that given by
(3.3.11) using the Poisson clumping heuristic. In other words, we suppose that E{V'} given
by the Poisson clumping heuristic (3.3.11) is much more accurate than that given by the
balls model in (3.2.9). .In one particular case, discussed in the next Section 3.6, Epcu{V'} is

exact. We will correct the distribution of V' given G in the same way, to give

- Epcu{V}

|4 V,

~ Epaf{V}
so that E{V} = Epcp{V}. We will show that using the distribution of V instead of V, we

get a better approximation to the distribution of the volume of a single cluster.

3.6 Example of a one-dimensional stationary Gaussian
random field

In this section we will consider an example of a one-dimensional stationary Gaussian random
field. In this case we have exact results which can be compared to our approximate results.
This example is the cosine random field which satisfies the regularity conditions mentioned
in Chapter 3 of Adler (1981). Let Z;, Zs, Z3, Z4 be independent standard normal random
variables. We can define the following two cosine random fields over S = [0, 27].

X1(t) = Zy sin(t) + Zy cos(t),

Xa(t) = Zssin(t) + Z4 cos(t).
Figure 3.2 show a realization of X; and X, where the conjunction of them has one cluster.

The derivatives are
X1(t) = Z; cos(t) — Zysin(t),

X,(t) = Zs cos(t) — Zysin(t).
Note that the derivative fields X;(t) and X,(t) are independent Normal(0,1), so A = 1. Let

Y, = sngl(t) =4/Z%+ Z%,
Yo= sngz(t) =1/Z3 + Z3.
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Figure 3.2: An example of the one dimensional conjunction of two cosine Gaussian Random
fields. The threshold is = 1.5.
Then we can write
Xi(t) =Y cos(t — 6,),
Xo(t) = Yacos(t — 6s),
where 0}, 0, are independent U(0, 27) and Y7, Y> are independent with the following density,

f(y) = yexp(—3%) 10

This follows from the fact that Z7 + Z2 is distributed as a x? random variable with 2 degrees
of freedom. We need to find the distribution of Y; given that Y; > x where z is a large

threshold. Now

2 2

If we regard the random fields X; as periodic on [0, 27], so that we neglect the boundary,

2 P
P{Y;>y|Y; >z} =exp (— - ——) 1{y>a}- (3.6.13)

then the excursion set has one single cluster uniformly centered on [0, 27r] whose radius is
cos™1(z/Y;). If z > 0 then this cluster size never exceeds half S, so the conjunction is always

empty or a single cluster but never more than one cluster. This fact, considered with the fact
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that § is ‘periodic’, means that all the approximations used to derive the Poisson clumping
heuristic are exact, and so

w1l —d(x)

E{V}=Epcu{V}= 2 oG

On the other hand,

1

3.7 The x? random field

Following the same techniques used for the Gaussian field but working with the Theorems

2.4.3, 2.4.4 and 2.4.5 we have that the radii of the clusters are asymptotically distributed as

R, = \/2W1/a:5\, Ry = \/Wz/xi,

where A = \/z and Wy, Wa are independent and exponentially distributed random variables
with mean 1/z. This is the same as for the Gaussian field in Section 3.1, so we can use the

same theory of Section 3.1 but with X replaced by .
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Simulation

Before we apply the theory that we have developed in Chapter 3 to real brain images we need
to check if that developed theory works well or not, that is, whether the approximations we
have found for the distribution of V' and V,,,; are close to the true distribution. Simulation
is a good way to check the validity of that theory. For higher dimensions the simulations
will take a long time to get a large enough sample so we will restrict our simulation to the

case where the dimension is two and the random field is Gaussian.

4.1 Simulation of V from the balls model

By Corollary 3.1.3 V is

v - PO ﬂ}l{% ~sin(26)} if Ry — By < H < Ry + R, (4.11)
WR%I) if 0 < H < Rpy — Ry,

where 6; = cos™((R;) + H? — Rfy))/2HR1)), 6, = cos™((R%y + H? — RY,))/2HR(3). Any
inference about the distribution of V' can be drawn based on a large sample from the density
of the random vector (R;, R, H) given G. If we use the probability integral transform to
draw this sample we will face the following two problems in simulation: the Newton-Raphson
method may not converge and the cost in calculations. So we have to use another method
of simulation. The envelope accept-reject method is a general method and works for a large

family of distributions. The following theorem is from Christian and Casella (1999):

44
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Theorm 4.1.1. If there exists a density g2, a function g; and a constant M such that
91(z) < f(z) < Mga()

then the algorithm
1. generate X ~ ga(x), U ~U(0,1).
2. accept X if U < g1(X)/Mga(X).
3. otherwise, accept X if U < f(X)/Mga(X).

produces random variables that are distributed according to f.

We can use the last theorem to simulate from the density (3.1.3)

83

4+

2
34

2 _ 2
rira(r1 + 12)%e 2)1{r1>0,r2>0}

fR1,R2 (7‘1, T2|g) =

by finding a suitable g; and gs. To find g2 we need only to dominate the term (ry + r2) by
writing it as (r1 + r2) = (r1,1).(1,72) and then applying the Schwartz inequality. The g;
bound can be obtained by applying the inequality 2,/ri7; < (ry + r2). This method will
make simulation more easy since we will get ¢g; and g, as the product of two ihdependent
densities up to normalizing constan‘ts.

Assume that R; and Ry are simulated from the density (3.1.3). Then we simulate H
from the density (3.1.2) by inverting its cdf as follows

1. Generate ¢ from U(0, 1).

2. Let H = ¢"/?(R; + Ry).
Then (Ry, Ry, H) is distributed according to fg, g, x(r1,72, h|G).

Another way of simulating observations from the density (3.1.3) is by writing it as a finite
mixture distribution of D + 1 components which are easy to simulate. This can be done by
expanding the term (r; + r3)P using the Binomial theorem. Let

L 12 220(i /2 + 1 .
L:/{; 7'1+16 Zz)‘ldrlz'—(xT(A)/i72-;T)- fOI' ZZO,].,...,D.
Then

(o ol ile o]
_ 1.2yv(,2..,2
P / (r1 4 r2)Priree 25 AN1H12) gy dpy
0 Jo

- 5

=0
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We can rewrite the density as follows

D
D . 1,24y,.2 - 1.2 2
— i1 —1a2xr2, D41—i_—la2ndq—1q—1
fri,R(T1,72|G) = "EE (l TIp_iri e 2= Moy timtema ¥ AT T T

i=0

D
= Zpifi(Tl)fD—i(TZ)a
1=0

where
(?)IiID_i
pi = i ,
Zi:O ( 7 )LID_,:
fir) = Thrired,
fouilrs) = Tpka e dnd

The two densities fi(r;) and fp_i(r2) are easy to simulate. The following algorithm is to
simulate from this finite mixture

1. Simulate ¢ from 0,1,..., D with probabilities pg, p1, ..., pp respectively.

2. Simulate R; from f;(r1) and R, from fp_;(rs).

3. Simulate V using (4.1.1).

4.2 Simulation of V and V,,,; from random fields

An efficient method for simulating stationary Gaussian random field is to smooth white noise

using the fast fourier transform (FFT). This method is based on the following theorem.

Theorm 4.2.1. A strictly stationary continuous Gaussian random field with zero mean,
variance o and auto-correlation function R(t) = exp(—&£71t/4) can be obtained by con-
volving a white noise random field of variance 0?2P7P/%,/|3| with a Gaussian kernel of

covariance X,
f(x) = exp(—2"£ 7 2/2)/ v/ (2m)P[5].

This theorem means that a standard Gaussian random fields can be generated by smooth-
ing a white noise field with a Gaussian kernel with covariance matrix X. The covariance

matrix A of the partial derivatives of the Gaussian field and X are related by the formula

A=(25)™!
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see Holmes (1994). In medical imaging, filter widths are commonly expressed in terms of
Full Width at Half Maximum (FWHM) rather than ¥. For a one dimensional filter, the
FWHM is the width of the filter at half its maximum. For a Gaussian shaped filter with
variance o2, FWHM= ¢v/81n 2.

This was used to simulate a sample of 5000 realizations of the sample paths of the random
field of the conjunction of two independent isotropic Gaussian random fields in a rectangular
region S. At each realization we threshold the sample path by a large threshold z and then
find the area of each cluster of the excursion set of the conjunction. To do this we used the
MATLAB function bwlabel which takes a binary images (value 0 where X (t) < z, 1 where
X(t) > z) and assigns integer labels to each pixel so that all pixels in a cluster have the
same label (label 0 is assigned to pixels outside the clusters).

We want to use the simulation to check two things: our approximation to the distribution
of V, the volume of one cluster, and our approximation to the distribution of V,,,4, the volume
of the largest cluster in a finite region S. Before doing this, we must deal with the boundary
of S.

A cluster that touches the boundary will be reduced in size, which would give a biased
distribution for V, so it is important to remove the boundary effect if we want to simulate
V accurately. We cannot simply ignore any cluster that touches the boundary, since big
clusters are more likely to touch the boundary than small ones, which would again bias the
distribution of V. Instead we took advantage of the fact that our simulations are periodic
on S because we used the fast Fourier transform. To remove the effect of the boundary of
S we joined the clusters that touch the opposite sides of the rectangular region S as one
cluster. To do this we wrote our own MATLAB function bwlabel2, which produces the same
results as bwlabel, but clusters that touch the opposite boundaries are connected as the
same cluster. The bwlabel2 is better to verify the distribution of V' while bwlabel is closer
to reality.

Another problem is the discrete sampling of the random field at pixels. The smoothness
of the field, measured by FWHM, should be high relative to the pixel size (which is 1) to
ensure adequate coverage of the clusters. However in real applications the FWHM is not

large relative to the pixel size, and we measure cluster volume by the number of pixels in the
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cluster multiplied by the size of one pixel. To investigate the effect of this on the accuracy
of our approximations, we tried varying the FWHM. To see the effect of the smoothness on
the approximation we used FWHM=2.5, 5 and 10.

Also in real applications images are not periodic and boundary effects have an important
effect on the distribution of V,,,,. To assess this, we also tried varying the shape of S while
maintaining its area constant. In these simulations we used bwlabel so that clusters that
touch the boundary were reduced in size, and we focussed on the distribution of V,,,, rather
than V.

We chose a threshold z such that P{X,(t) > 2} = a. We will considered three thresholds
corresponding to a =0.01, 0.001 and 0.0001 - the middle value is the default for statistical
packages such as SPM and FMRISTAT.

Also we simulated 5000 samples with A = 1 from the density (3.1.5). The simulated data
are then described by their empirical distributions as in Figures 4.1-4.3

We note from Figures 4.1 (a)-(b) that the corrected distribution of V, corrected by
adjusting the mean, gives better results than the uncorrected one. The P-values obtained
by the approximate distribution of V' from the balls model are over estimates of the true
P-values obtained from the simulation which means that the P-values obtained by the balls
model is conservative. Also as we expect, the approximation becomes better as = gets
larger. In Figure 4.2 (a)-(i) the approximate distribution of V;,., is bad when FWHM=2.5,
and becomes better when FWHM=5 and z is large. When FWHM=10 the approximation
is the best for the largest two thresholds.

The boundary of S for the images in Figure 4.3 (a)-(c) is 256 and the boundary of S for
the images in Figure 4.3 (d)-(f) is 320 while the boundary of S for the images in figure 4.3
(g)-(i) is 544. So we note that the boundary does not have a big effect on the approximation
to the distribution of V.4, so we can ignore it. Also we note that the approximation is bad
when £=1.8575 since in this case the excursion set is more likely to cut the boundary. Finally,
for x > 1.8575 we can use the theory safely to test wether a given cluster is significant or

not.
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(@ x=1.8575 (b) 1_x=2.3263 (c) 1_x=2.7305

031
0.2 0.2 0.2
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00 ; .'IZ 00 0j5 ‘; 1j5 00 0?5 ;

vV \ \

Figure 4.1: The bold line is the uncorrected cdf of V from the balls model and the thin line
is its correction for the mean. The dotted line is the empirical cdfs of V from simulation

using bwlabel2. The image size is 128 x128 and FWHM=10.
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Figure 4.2: The solid line is the corrected theoretical cdf of V.4, and the dotted is the true
cdf of Vypae from 64x64 simulated images. FWHM=2.5 in (a)-(c), FWHM=5 in (d)-(f) and
FWHM=10 in (g)-(i). The boundary effect was removed using bwlabel2.
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Figure 4.3: The solid line is the corrected theoretical cdf of V.4, and the dotted is the true
cdf of Vi, from simulated rectangular images with FWHM=10. The image size is 64x64
in (a)-(c), 32x128 in (d)-(f) and 16x256 in (g)-(i). The boundary effect was kept using
bwlabel.
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Application

We now consider real brain images and apply the theory of Chapter 3 to them. We have
two brain images (Figures 1.3(a,b)) which are following the T random field with 110 de-
grees of freedom. Since the number of degrees of freedom is large we can approximate
the data as Gaussian random fields. This approximation was improved by applying the
transformation ®!(F()) to the data, where F is the cdf of the T distribution with 110
degrees of freedbm, and @ is the cdf of the standard Normal distribution. The smoothness
was taken as FWHM=8mm (Worsley et al., 2002), so this gives A = 4log(2)/FWHM? =
0.0433mm™2. The volume of the search region S is 970,000mm?3. If the parameter space
of the random fields is re-scaled so that A\ = 1, then the re-scaled volume of S becomes
p3(S) = 970000 x 0.0433%2 = 8746.3, which is now unitless.

The two images are threshold at # = 1.8575 (1.88 for the untransformed T' statistic
images), which corresponds to a = 0.001 for the conjunction. The mean number of conjunc-
tion clusters above this threshold, if there is no activation, is E{N} = 26.96. MATLAB was
used to find and locate the clusters of the conjunction. The observed number of clusters is
N = 60.

To find the P-values of the observed volumes of the clusters of the conjunctions, 10,000
observations from the joint density of (R, Ry, H) given G were generated according to 3.1.5
and the volume V is calculated according to Corollary 3.1.4. The expected volume of a

single cluster, found using the Poisson clumping heuristic, is E{V} = 0.3244(unitless), or
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36.0mm?3. Table 5.1 lists the volumes of all 60 clusters and their approximate P-values.
The clusters with P-value less than 0.05 are shown in Figure 5.1. The largest cluster
covers the right primary somatosensory area. This is to be expected, since the left leg
received the hot and warm stimuli. The next two largest clusters cover the left and right
thalamus. These regions are thought to be involved in the perception of pain, as opposed to

just the sensation of touch which activates the primary somatosensory area.
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Frequency Volume, mm® Volume (A =1) Approximate P-value

20 38.5 0.35 0.274
13 76.9 0.69 0.154
2 115.4 1.04 0.097
5 153.8 1.39 0.066
1 192.3 1.73 0.047
2 230.7 2.08 0.034
1 346.1 3.12 0.015
2 384.5 3.47 0.012
2 423.0 3.81 0.010
1 461.4 4.16 0.008
1 499.9 4.51 0.006
1 576.8 5.20 0.004
1 615.2 5.55 0.004
3 692.1 6.24 0.002
1 884.4 7.97 0.001
1 1345.8 12.14 0

1 41144 37.10 0

1 6075.4 54.78 0

1 22379.2 201.79 0

Table 5.1: Approximate P-values of the volumes of all 60 clusters of the conjunctions of
the two T-statistic images. Because the volume is measured by the number of voxels times
the volume of a single voxel, some clusters have equal size, so the first column (Frequency)
counts the number of such clusters. The cluster volume is measured in mm® and on the
unitless scale of A = 1. Only those clusters with P-values less than 0.05 (rows 5-19) are

shown in Figure 5.1.



CHAPTER 5. APPLICATION 59

()

Figure 5.1: Application to conjunctions of pain perception. (a) The conjunction, the inter-
section of the excursion sets in Figures 1.3(a) and (b), the same as in Figure 1.3(c). The
threshold z = 1.88 was chosen so that the P-value of the conjunction at any point is 0.001.
(b) The conjunction threshold at z = 3.06 chosen so that the P-value of the maximum of the
conjunction is 0.05, the same as in Figure 1.3(d). (d) The clusters of the excursion set above
z = 1.88 whose volume exceeds v = 0.186¢c, chosen so that the P-value of the maximum
volume is 0.05, colored by their volume (the large cluster has a volume of 22.38cc). Note
that both methods (b) and (c) detect activation in the right primary somatosensory area,
(white cluster in (c)), and the left and right thalamus (green and orange clusters in (c)).
More regions are detected in the conjunction of two runs, than in one single run (Figure

1.1), because the amount of data has doubled.
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Conclusion

For two random fields X;(t) and X5(t), t € S, we can define a new random field X.(t) =
min{X;(t), X2(t)}. A conjunction of X;(t) and X,(t), above z occurs when the event
{t € S: X.(t) > z} occurs. For smooth and stationary Gaussian or x? random fields this
event has a simple form which is a union of convex sets. In this thesis, I have attacked
the problem of finding an approximation to the distribution of the volume of one of these
convex sets. I used Theorems 2.4.1, 2.4.2, 2.4.4 and 2.4.5 to find the shapes of one clusters
of X; when the threshold is high. If the fields are isotropic then these clusters are disjoint
balls with random radii and random centers uniformly distributed on S. The Gaussian and
x? random fields have a deterministic curvatures which allows us to find the distribution of
the radii. The conjunction of the two fields occurs when two such balls overlap. Then the
distribution of the volume of the overlap was found.

I have followed the same method above to attack the problem for more than two con-
junctions and I have found that there is a difficulty to get an answer. This is because the
condition G which represents the occurrence of the conjunctions has no simple theoretical
representation. Moreover, it is difficult or impossible to express the volume of the overlap
of more than two balls in a simple closed form. For these reasons we can say that the balls
model of the clusters is not sufficient to solve the problem for more than two conjunctions.
Since the cluster volume of two conjunctions V' is a function of the radii and the distance

between two balls, it is difficult to find a closed form for the approximate distribution of V
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from the balls model. The best we could do was to find the joint distribution of the two
radii and the distance between the two balls in closed form. Then any information about
the approximate distribution of V' can be obtained from this joint distribution.

In Figure 1.5 we note that the clusters become more erratic in shape as the number of
conjunctions increases. Also we note that as the number of conjunctions increases a very
small threshold is needed for the conjunction to be likely to occur. As the threshold decreases
the clusters of the component Gaussian random fields will become less like balls and more
like the complement of balls, then the conjunction is the intersection of the complements of
balls. So in future work it seems to be possible to attack this problem when the number of
conjunctions n is very large and the threshold z is very small.

Also the same approach in Chapter 3 can be followed to solve the conjunction of two
random fields of different type, i.e. one is Gaussian and the other one is x2?. This problem
is simple and easy to do, but we need to look for an application in reality.

For T and F random fields it is difficult to solve the conjunction problem since the
curvatures of these fields are random. But it is easy to attack this problem in the one
dimensional case when we are interested in applications of these fields to one dimensional

real data.
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