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Abstract 

In brain mapping, the regions of the brain that are 'activated' by a task or external stimulus 

are detected by thresholding an image of test statistics. Often the experiment is repeated 

on sever al different subjects or for several different stimuli on the same subject, and the 

researcher is interested in the common points in the brain where 'activation' occurs in aH 

test statistic images. The conjunction is thus defined as those points in the brain that show 

'activation' in aH images. We are interested in which parts of the conjunction are noise, 

and which show true activation in aH test statistic images. We would expect truly activated 

regions to be larger than usual, so our test statistic is based on the volume of clusters 

(connected components) of the conjunction. Our main result is an approximate P-value for 

this in the case of the conjunction of two Gaussian or X2 test statistic images. The results 

are applied to a functional magnetic resonance experiment in pain perception. 
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Résumé 

En cartographie cérébrale, les régions du cerveau qui sont activées par une tâche ou un 

stimulus externe sont détectées par seuillage d'une image de statistiques de test. L'expérience 

est souvent répétée sur plusieurs sujets différents ou selon différents stimuli sur le même sujet. 

Le chercheur est alors intéressé par les points d'activation communs à toutes les images de 

statistiques de test. La conjonction est définie comme étant l'ensemble des points dans le 

cerveau qui démontre une activation dans toutes les images. Nous désirons départager les 

parties de la conjonction qui sont réelles de celles qui sont formées de bruit parmi toutes les 

images de statistiques de test. Puisque nous nous attendons à ce qu'une activation réelle 

suscite une conjonction plus grande qu'une conjonction due au hasard, notre statistique 

de test est basée sur le volume des amas (c'est-à-dire des composantes connectées) de la 

conjonction. Notre résultat principal est une valeur p approximative pour cette statistique 

de test dans le cas d'une conjonction de deux images gaussiennes ou X2
• Les résultats sont 

appliqués à des images par résonance magnétique fonctionnelle obtenues dans le cadre d'une 

expérience sur la perception de la douleur. 

5 



Statement of Originality 

ln this thesis, 1 have derived an approximation to the distribution of the volume of one cluster 

of the excursion set of the conjunction of two independent, smooth, stationary Gaussian (X2
) 

random fields. 1 have solved this problem for general dimension. 1 have used sorne tools from 

integral geometry to find the mean value of this distribution .. This mean value is simplified 

to a closed form. 1 have applied these results to an fMRI experiment in pain perception. 
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Chapter 1 

Introduction 

1.1 Brain mapping 

In recent years new technologies have been developed to produce informative images about 

the living human brain. Two of these techniques are positron emission tomography (PET) 

and functional magnetic resonance imaging (fMRI). These two techniques have enabled neu­

rologists to study the functional activation of the living human brain under different condi­

tions. The data collected by these techniques are smooth images of the brain activity over 

the time of an experiment. By analyzing this type of data we can detect whether a region 

in the brain is activated or not. 

The simplest way of doing this is to assume that the time course of the images at each 

point have a Gaussian distribution whose mean follows a linear model with regressors for the 

presence or absence of the different conditions applied during the course of the experiment 

(Friston et al., 1995, Worsley et al., 2002). The condition is then detected by a simple T 

or F test statistic. This is repeated at each point or voxel in the image, and the result is 

a 3D image of test statistics, X (t ), tES C RD. Here D = 3 and the search region S is 

usually the whole brain. We expect a small number of isolated regions of S to be activated, 

producing high values of the test statistic image X(t). These can then be detected by the 

excursion set of X(t), defined as the set of points t where X(t) exceeds a threshold x. 

Figure 1.1 shows an application to an fMRI experiment in pain perception, fully described 

8 



CHAPTER 1. INTRODUCTION 9 

in Worsley et al. (2002). During the course of the experiment, a subject was given an 

alternating 9s hot and 9s warm stimulus to the left calf, interspersed with 9s periods of rest, 

repeated 10 times. The T statistic X(t) (110 degrees of freedom) for the contrast between 

the hot and warm stimulus should show those areas of the brain that are activated by the hot 

pain, compared to just the warm touch. Figure 1.1(b) shows the search region S (the part 

of the brain covered by the fMRI data), together with the excursion set ab ove a threshold 

x = 3.17 chosen so that the P-value at any point is 0.001. 

1.2 Detecting activation 

1.2.1 Value of the random field 

There are two common approaches to detecting the activated regions in such an image. The 

first is based on setting the threshold x so that the probability that X exceeds x anywhere 

in the unactivated parts of S is controlled to be say Q = 0.05. This is done conservatively 

by assuming that the unactivated parts coyer the whole search region S. The threshold is 

then chosen so that 

P{supX(t) ~ x} = Q. 

tES 

Under the assumption that X is a smooth isotropie random field, good approximations are 

available for this based on the expected Euler characteristic of the excursion set 

A = {t ES: X(t) ~ x} 

(Adler, 1981; Worsley, 1994, 1995). Figure 1.1(c) shows the excursion set above a threshold 

x = 4.86 chosen so that the P-value of the maximum in S is Q = 0.05. 

1.2.2 Volume of clusters of the excursion set 

The second method is based on the volume or Lebesgue measure of connected components 

or clusters of the excursion set (see Figure 1.1(d)). To do this, we first set the threshold x to 

a high value, typically chosen so that if there is no activation, P{ X (t) ~ x} = 0.001, so that 
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Figure 1.1: Application to pain perception. (a) The brain (back left facing the camera), 

together with a slice of the T statistic image X(t) (110 df) for a difference between the 

hot and warm stimulus. (b) Search region S (transparent), and excursion set (blobs) above 

x = 3.17 chosen so that the P-value at any point is less than or equal to 0.001. (c) Excursion 

set above x = 4.86 chosen so that the P-value of the maximum of X(t) inside S is at 

least 0.05. (d) The clusters of the excursion set above x = 3.17 whose volume exceeds 

v = 0.61cc, chosen so that the P-value of the maximum volume is 0.05, coloured by their 

volume (the large cluster has a volume of 14.15cc). Note that both methods (c) and (d) 

detect activation in the right primary somatosensory area, (white cluster in (d)), and the 

left and right thalamus (green and red clusters in (d)). 
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we expect 0.1% of the search region to be above threshold if there is no activation. Suppose 

there are N disjoint clusters en with volumes Vn, n = 1, ... , N: 

where 1 . 1 denotes Lebesgue measure. Then the activated regions are those clusters of the 

excursion set with volumes Vn exceeding sorne threshold v. The threshold v is then chosen 

conservatively so that, if the whole search region S is unactivated, then 

Under the assumption that X is a smooth isotropie random field, good approximations are 

available for sorne common test statisties (Friston et al., 1994; Cao, 1999; Hayasaka et al., 

2004). Figure 1.1(d) shows the clusters whose volumes exceed the threshold v = 0.61cc, 

chosen so that Ct = 0.05. 

These approximations assume that the search region S is sufficiently large that the clus­

ters rarely intersect the boundary of S. A key step in deriving these approximations is 

that for high thresholds x the cluster volumes are approximately independent, so that a 

Bonferroni approximation is quite accurate: 

JlD{ max Vn ~ v} ~ JE{N}JlD{Vi ~ v}. 
l:;;n:;;N 

There are very good approximations to the expected number of clusters JE(N) from work 

on the expected Euler characteristie of the excursion set (Adler, 1981; Worsley, 1994, 1995). 

This means that the most important (and most challenging) problem is to find the distribu­

tion of the volume of a single randomly chosen cluster (see Figure 1.2(d)). 

The motivation for the second method cornes from the expectation that activation might 

be more diffuse and pro duce larger components of the excursion set. In contrast, the first 

method is based on the expectation that activation will be more focused and produce larger 

values of the test statistic image. The volume should therefore be more sensitive to activation 

that is spread over a large region, whereas the value of the test statistie image should be 

more sensitive to activation that is focused on small isolated regions. 
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Figure 1.2: Example of clusters in D = 2 dimensions. (a) Gaussian random field, 

X(t) rv N(O, 1) at each point, with V{X} = 1 in each direction. (b) The excursion set 

A above threshold x = 2.3263, chosen so that JP>{ X (t) 2: x} = 0.01. (c) Clusters (connected 

components) Cn of the excursion set, ordered by their volume (area) Vn . To avoid the bound­

ary, only those clusters whose centers are within 5% of the boundary in (b) are shown. (d) 

Histogram of the cluster volumes, together with the asymptotic density from Friston et al. 

( 1994) (curved line). 
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1.3 Conjunctions 

Often the experiment is repeated on several different subjects or for several different stimuli 

on the same subject, and the researcher is interested in the common points in the brain 

where 'activation' occurs in aU test statistic images. The conjunction is thus defined as 

those points in the brain that show 'activation' in aU subjects. As before, we are interested 

in parts of the conjunction which are noise, and those which show true activation in an test 

statistic images. 

The simplest case is where we have two test statistic images XI(t) and X2(t) with excur­

sion sets Al and A2 above a common threshold x. This is illustrated in Figure 1.3 for two 

runs of the same subject performing the same pain perception experiment. The conjunction 

A* is then 

A* = Al nA2 . 

Another way of looking at this is that A* is just the excursion set of the minimum X*(t) of 

the two random fields XI(t) and X2 (t): 

X*(t) min{XI(t), X2(t)}, 

A* = {tES:X*(t)~x} 

(see Figure 1.4). Making inference using conjunctions is therefore equivalent to making 

inference using the minimum of the two random fields. For example, if the component 

random fields are independent and identically distributed then 

Extensions to more than two random fields are obvious. 

1.4 Conjunction cluster volume 

To detect activation using the minimum random field, the first method, based on its value, 

has been solved by Worsley & Friston (2000) for an arbitrary number of independent random 

fields, and by Taylor (2001) for two correlated Gaussian random fields (see Figure 1.3(d)). 
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Figure 1.3: Application to conjunctions of pain perception. (a) The first run of the pain 

perception data (same as in Figure 1.1) threshold at x = 1.88. (b) The second run at the 

same threshold. (c) The conjunction, the intersection of the excursion sets in (a) and (b). 

The threshold was chosen so that the P-value of the conjunction at any point is 0.001. (d) 

The conjunction threshold at x = 3.06 chosen so that the P-value of the maximum of the 

conjunction os 0.05. The aim of this thesis is to find a threshold for the volume of the 

conjunction clusters in (c), analogous to that in Figure 1.1(d), illustrated in Figure 5.1. 
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However the second method, based on volume of clusters, is so far unsolved. This will be 

the subject of this thesis. 

As we can see above, the key problem is to find the distribution of a single cluster of the 

excursion set. For the case of a single random field, Nosko (1969) made use of the fact that 

clusters are roughly circular in shape (see Figure 1.2(c)), so it was only necessary to find 

an approximate distribution for the radius. This in turn depends only on the square root 

of the height of the central peak above the threshold x, which itself can be found from the 

distribution of the maximum of the random field. The resulting theoretical cluster volume 

density is added to Figure 1.2(d). 

However the case of two conjunctions is quite different. As we can see from Figure 1.5, 

clusters of the conjunction of two random fields are more elliptical in shape. We shaH attack 

this problem in Chapter 3 by approximating the clusters as the intersection of two discs 

with random radii, themselves approximated by the Nosko method. Things become more 

complicated for the the conjunction of three random fields (see Figure 1.5). Here the clusters 

are more triangular in shape, and sometimes concave. For more conjunctions the shapes of 

the clusters become much more erratic, and the volume distribution becomes more highly 

skewed. For the conjunction of 10 random fields, clusters have highly irregular shapes with 

a very large number of very small clusters. 

Thus the aim of this thesis is to find an accurate approximation to the distribution of 

volumes of cluster conjunctions, as simulated in Figure 1.6. It seems that the Nosko method, 

or in fact any method that is based on modelling cluster shape, will be extremely difficult 

to apply. For these reasous, this thesis will be concerned only with the conjunction of two 

random fields (as in the top left panel of Figure 1.6), for which we will find reasonably 

accurate results. 

1.5 Outline of the thesis 

Let X 1(t), X 2 (t), tES, be two independent, stationary, random fields. Define another 

random field X*(t) as follows: X*(t) = min{X1(t),X2 (t)}, tES. Let A* be the excursion 
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Figure 1.4: Example of the conjunction of two random fields X 1(t) and X2(t) in D = 2 

dimensions, Xj(t) t'V N(O, 1) at each point, with V{Xj } = 1 in each direction, j = 1,2. 

The conjunction is the intersection of the excursion sets of each field, or equivalently, the 

excursion set of X*(t) = min{X1 (t), X2 (t)}. The threshold x = 1.2816 is chosen so that 

JID{X*(t) :2: x} = 0.01. 
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Figure 1.5: Example of conjunction clusters in D = 2 dimensions, ordered by cluster volume. 

The random fields have the same distributions as that in Figure 1.2. The threshold is chosen 

so that probability of a conjunction at a point is 0.01. Note that the clusters become much 

more erratic in shape as the number of conjunctions increases. 
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thesis is to find a theoretical distribution for these histograms, but we shaH only be successful 
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set of X* when the level is x, i.e., 

A* will be composed of disjoint clusters CI, ... , CN . Consider one of these clusters CI, 

say and let Vi be its volume. Then, our main interest in Chapter 3 of this thesis will be 

in approximating the probability distribution of the random variable Vi when the random 

fields Xl, X2 are both Gaussian or both X2 random fields. Finally we will approximate the 

distribution of maxn Vn , the largest cluster. 

First, Theorems 2.4.1 and 2.4.2 are used to approximate the shape of the clusters of the 

excursion set of the Gaussian field. The volume of one cluster of the conjunction according 

to these theorems will be the volume of the common overlap between two balls with random 

radius and random centers. In Chapter 3 we will use the Fundamental Kinematic Formula 

to find an approximate mean value of the volume of one cluster of the excursion set of the 

conjunction. The joint distribution of the radii and the center is calculated in a closed form. 

This joint distribution is used to simulate random observation fro~ the distribution of the 

cluster volume of the conjunction. The same work is also repeated for the X2 random field 

but with Theorems 2.4.3, 2.4.4 and 2.4.5. We also compared our results on a special case, 

the cosine Gaussian field. 

Since the cluster volume has a complicated form it is not easy to find its probability 

distribution in closed form so in Chapter 4 we will do a simulation to check the validity of 

the theory developed in Chapter 3. We did the simulation only for two dimensional Gaussian 

fields since the complexity of the computation becomes high as the dimension increases. 

In Chapter 5 we will apply the theory developed in Chapter 3 to real data taken from 

two fMRI images. In Chapter 6 we will present our conclusions. 



Chapter 2 

Random field theory 

In this chapter we will give a brief introduction to randorn field theory that we need to solve 

the problern of conjunctions. This introduction will include sorne definitions as well as sorne 

important results in random field theory. Most of the material in this chapter are based on 

Adler (1981). We will also recal sorne mathematical tools frorn integral geometry which will 

be used in the sequeL We will assume that all probabilistic concepts from now until the end 

of this thesis are defined in a fixed probability space (0, F, 1P). 

2.1 Random fields 

We are interested in real valued random fields. The randorn field X (t), tES C ~D is a col­

lection of randorn variables X (t), tES together with a collection of measures or distribution 

functions of the forrn Ftl, ... ,tn on BURD), the Borel sigma field on RD, for n = 1,2, ... , t i E RD 

such that 

for every B E B(RD ). For a given w E O,X(t,w) is a deterrninistic real valued function on 

RD which is a realization of the field X(t). The set {(t, X(t)) : t E RD} is called the sample 

function or sample path of X. 

The randorn field X is said to be strictly homogenuous or stationary if for any k, any set 

of real nurnbers Xl, ... ,Xk and any (k + 1) points T, t l , ... , tk in ~D the following condition 

20 
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on its finite-dimensional distribution holds 

This means that the random field is invariant under translation of the parameter space. 

For every random field X (t) we can define two functions, the mean and the covariance 

functions. The mean function is 

J-L(t) = lE{X(t)}, tES, 

and the covariance function is 

R(s, t) = lE{(X(s) - J-L(s))(X(t) - J-L(t))}, s,t E S. 

A Gaussian field X(t) with covariance function R is isotropie if its covariance function 

depends only on lit - sil, Le. if R(s, t) = R(lIt - sil) where IItll = vite. 
In this thesis we will consider two types of random fields: the Gaussian random field and 

the X2 random field. The X2 is derived from the Gaussian field. A random field X(t), tES, 

is said to be a Gaussian field over S if its finite dimensional distribution is multivariate 

Gaussian. To define the X2 random field, let X1(t), ... , X,.,(t) , t E ~D, be independent zero 

mean, unit variance and stationary Gaussian random fields. Then Adler (1981), page 169, 

defines the X2 field as follows 
,., 

U(t) = LXi (t)2, t E ~D. 
i=l 

Note that for every t E ~D, U(t) is a X2 random variable with 1/ degrees of freedom. 

In testing for brain functional and structural changes, the regions in the brain where the 

random field is ab ove a high level are of main interest since these regions are related to high 

changes. The set of points in the brain related to high changes is estimated by the excursion 

set of the random field. The definition of the excursion set of a random field is given as 

follows: 

Definition: Excursion set. Let X(t) : ~D ---t ~ be a random field. For any fixed real 

number x and any subset S of ~D we define the excursion set of the field X above the level 

x in S to be the set 

A={tES:X(t) ~x}. 



CHAPTER 2. RANDOM FIELD THE ORY 22 

The Lebesgue measure of the excursion set is 

By taking the expectation of the last equation and then changing the order of the integration 

we get 

lE{j.lD(A)} = fs JP>{X(t) ~ x}dt. 

If the field is homogeneous then the integration on the right-hand side is easy to integrate, 

and we have the following important formula 

lE{j.lD(A)} = j.lD(S)JP>{ X(O) ~ x}. 

2.2 Continuity and differentiability of random fields 

In this section we give the definitions of the stochastic version of the real analysis concepts 

of the limits and derivatives of random functions. 

A sequence of random variables {Xn } is said to converge to another random variable X 

in the mean square (m.s.) sense if 

as n ~ 00. 

We will denote this limit by l.i.mn-+ooXn = X. A field X(t) is continuous in m.s if 

lim lE{(X(t + h) - X(t))2} = O. 
IIhll-+o 

In fact the field X (t) will be continuo us in m.s if and only if its autocorrelation function 

is continuous. Also if X (t) is continuous in m.s. then its mean function is continuous. A 

random field X(t) is said to have a m.s partial derivative in the ith direction and is denoted 

by .. t(t) if 

1· X(t + hei) - X(t) X· ( ) 
.l.mh-+O h = i t . 

where ei is the ith unit vector in the standard basis of RD. We will denote X(t) to be the 

vector of the m.s. first order partial derivatives for the field X (t) and X (t) to be the matrix 

of m.s. second order partial derivatives of X(t). 
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The random field is almost surely continuo us at t* if for every sequence tn for which 

IItn - t*11 -t 0 as n -t 00 we have X(tn) -ta.s X(t*). X is almost surely continuous on 

A ç lRD if it is almost surely continuous at every point in A. This type of continuity is 

called sample function or sample path continuity. Aiso almost sure differentiability can be 

defined in the same fashion. 

by 

The moduli of continuity of X and its first and second order partial derivatives are defined 

ç(h) = sUPlis-tll<h IX(t) - X(s)l, 

çj(h) = sUPlls-tll<h IXj(t) - Xj(s)l, 

çij(h) = sUPlls_tll<h IXij(t) - Xij(s)l· 

We will assume that all Gaussian random fields used in this thesis in addition to the Gaussian 

random fields used to define the X2 random field will satisfy the following conditions. The 

random field has almost surely continuo us partial derivatives up to second order with finite 

variances in an open neighborhood of S and the joint distribution of the random field and 

these partial derivatives is non-degenerate. Assume also that the moduli of continuity of Xij 

satisfies the following condition 

When we are interested in the conjunction of the X2 random field we will assume that its 

moduli of continuity satisfy the same conditions. 

Let A = Vif {X} be the D x D variance-covariance matrix of the partial derivatives of 

X(t) with elements Àkl = Cov(Xk, Xl), k, l = 1,2, ... , D. The following theorem is proved 

in Adler (1981), page 114: 

Theorm 2.2.1. Let X( t) be a stationary Gaussian random field over lRD . Then 

(a) X rv NormalN(O, A) and is independent of X,X, 

(b) conditional on X, XIX rv Normal ( -XA, M(A)) and the elements of M(A) are such 

that Cov(Xij,XkIIX) = E(i,j,k,l) - ÀijÀkl where the function E(i,j,k,l) is symmetric in its 

arguments. 
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2.3 Horizontal window conditioning 

To study the behavior of a random field near local maxima we need to condition on the 

event that the random field has a local maximum at sorne point in its parameter space. 

Since this event has zero probability we need to define the horizontal window conditioning 

(HW), denoted by Il. HW conditioning has been introduced by Kac and Slepian (1959). To 

define the HW conditioning let X (t) be a random field on RD. Let us define the new field 

Xx(t) = X(t)IIA, where A is the event that X(t) has a local maximum with height x at 

t = 0, by approximating the event A by a sequence of events A(h, h'), where 

A(h, h') = {X(t) has a local maximum of height in (x, x + h) 

at sorne point in the ball IItli < h'}. 

The distribution of Xx(t) is given by 

IP{Xx(t) E B} = lim lim IP{X(t) E B 1 A(h, h')}, 
h-+Oh'-+O 

where Bisa Borel set. If the field X(t) is ergodic then we can write the right hand side of 

the last equation as a ratio of two expectations. For more information about how to do this 

see page 150 of Adler (1981). 

2.4 Random field near local maxima 

In this section we will report five theorems describing the behavior of a random field near 

local maxima. The first· two are for the Gaussian random field and the others are for X2
• 

The following two theorems will be very useful to solve the conjunction problem when the 

underlying field is Gaussian. These two theorems are due to Nosko (1969) and are reported 

by Adler (1981), Section 6.8. Let X be a real valued, stationray, zero mean, unit variance, 

ergodic, Gaussian random field satisfying the conditions of Section 6.6 of Adler (1981). 

Theorm 2.4.1. Approximation of a random field over a cluster: Given that the 

random field X (t) takes the value x at t = 7, then with probability approaching one as 
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X --t 00, the field has the following representation over that component of the excursion set 

containing T: 

X(t) = x + X(T)(t-T)T - ~x(t-T)A(t- Tf + 0(1/x), 

where A = V{X}. 

(2.4.1) 

According to this theorem we can say that the random field X (t) near high local maxima 

has a deterministic shape which is quadratic. 

Theorm 2.4.2. Approximate distribution of the height of local maxima of a 

stationary Gaussian random field: Given that the field X (t) satisfying the conditions 

above has a local maximum at t = 0 with height exceeding x, the conditional distribution of 

mx = X (0) - x (i.e, the excess height above the level x) is given by 

limx--+ooJP>{xmx > vlmx > O} = exp ( -v). (2.4.2) 

The following three theorems will be used to solve the problem of conjunctions for the X2 

random fields. These theorems are due to Cao (1999). We will assume that we are dealing 

with D-dimensional, real-valued, stationary, ergodic, Gaussian random fields X with zero 

mean, unit variance, and A = V{X}. 

Theorm 2.4.3. Given that a X2 field U( t), t E RD, has a local maximum at 0 with height 

x, then x-1Ü( t) --t -2A as x --t 00. 

This means that the curvature of the X2 random field is deterministic near its local 

maxima. 

Theorm 2.4.4. Given that a X2 fidd U( t), tE RD has a local maximum at 0 with height 

U = U (0) exceeding x, then 

lim JP>{U > x + vlU > x} = e-v
/

2 

x--+oo 

for v> O. 

Theorm 2.4.5. Assume that 0 is a local maximum ofax2 field U(t) with height x. Then 

as x --t 00, UAt/..jX) - x converges uniformly to the elliptic pamboloid -t!' At in the neigh­

borhood of t = o. 
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This theorem also says that the X2 has a deterministic form near its local maxima which 

is an elliptic paraboloid. 

2.5 Integral geometry 

In this section we describe sorne tools and results form integral geometry which will be used 

in the next chapter. One of these tools is the Euler characteristic of a set. A very important 

result is the Fundamental Kinematic Formula. Let KP denote the collection of aIl compact 

convex subsets of RD. A finite union of compact convex sets will be called a polyconvex 

set. Aiso we shall say a polyconvex set K in RD is of dimension D if it is not contained in 

a finite union of hyperplanes of RD. The union and intersection of polyconvex sets is also 

polyconvex. In other words, the family of polyconvex sets in RD is a distributive lattice and 

we will denote it by PolyConv(D). 

The Euler characteristic function (EC or X) is an additive functional on KP such that 

for any K E KP, K = Ub,l Ki, Ki a compact convex set, 

X(K) = L X(Ki) - L X(Ki n Kj) + ... + (_1)m+lX(Kl n K 2 n K3 n ... n Km). 
i i<j 

and where for a compact convex set K 

X(K) = {: 
if K =1= <p, 

if K = <p. 

The Euler characteristic describes the set K in a purely topological way, without reference 

to any kind of metric. For D=2, X equals the number of connected components minus the 

number of holes while for D = 3 X equals to the number of connected components minus 

the number of tunnels plus the number of cavities. 

Since the excursion set above a high level decomposes into disjoint convex sets (Adler 

(1981) page 138), the Euler characteristic of this set will be a good approximation to the 

number of convex components. 

Let C be a subset of RD. Let ai = 27fi / 2/f(i/2) be the surface area of a unit (i - 1)­

dimensional sphere in Ri. Let M be the inside curvature matrix of ac at a point t and 
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let detri(M) be the sum of the determinants of aIl i x i principal minors of M for i = 

0,1,2, ... , D - 1. We define J.Li(C) , the i-dimensional Minkowski functional or intrinsic 

volume of C, to be 

J.Li(C) = _1_ r detrD_l_i(M)dt, i = 0, 1, ... , D - 1, 
aD-i lac 

and J.LD(C) to be the Lebesgue measure of C. In this thesis we will be interested in the case 

when C is the D-dimensional baIl B(r) with radius r centered at the origin. The value of J.Li 

for general D and C = B(r) is 

(D) WD i J.Li(B(r)) = . -r, 
~ WD-i 

(2.5.3) 

where Wi = 1[i/2/f(i/2 + 1) is the volume of the i-dimensional unit baIl. 

The following theorem is the Kinematic Fundamental Formula, weIl known in integral 

geometry, and it is useful in many areas where we are interested in problems of rigid random 

motion of convex sets or bodies. 

Theorm 2.5.1. Kinematic Fundamental Formula: For all A, K E PolyConv(D) and 

for ° :::; k :::; D we have 

r D-k[. + k] [Dl-1 

lED J.Lk(A n gK)dg = ~ ~ kiJ J.Li+k(A)J.LD-i(K) , 

where J.Li(A) is the ith Minkowski functional of the polyconvex set A and ED is the set of aU 

rigid motions in RD and 9 E ED. The factor [;J is given by the foUowing formula 

and Wi is the volume of the i-dimensional unit ball. 

As an application of this theorem, if A and K are convex, the ratio 

JED J.Lk(A n gK)dg 

JED J.Lo(A n gK)dg . 
(2.5.4) 
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is the mean value of the kth intrinsic volume of A n gK, taken over aH gK in RD congruent 

to K that meet A. The reason for this is that J.Lo(A n gK) takes the value 1 if A and gK 

interseet, and zero otherwise. 

To approximate the value of lP{SUPtES X(t) 2:: x} for a random field X(t), tES, we 

need to define the EC intensities of an isotropie random field X (t). Let Xli be the vector 

of the first i eomponents of X, and Xli be the i x i matrix of the first i rows and eolumns of 

X. Then the i-dimensional EC intensity of X (t) is defined by 

where Pli(.) is the density of Xli. Then Worsley (1995) shows that 

D 

lP{sup X(t) 2:: x} ~ lE{X(A)} = LJ.Li(S)Pi(X), 
tES i=O 

where A = {t ES: X (t) 2:: x}. 

We are interested in the values Pi(X) for i = 0,1,2,3 for two different types of random 

fields: Gaussian, and X2 with 1/ degrees of freedom. Sinee the random fields are isotropie, let 

A = ,UD , where ID is the D x D identity matrix, be the roughness matrix of all the Gaussian 

random fields, so that ). is the roughness parameter. From Cao and Worsley (1999) we report 

the following. For the Gaussian field, 

po(X) 

P3(X) 
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and for the X2 random field with v degrees of freedom 

po(x) 

Pl(X) 

1
00 yv/2-1e-y/2 

- x 2V/2f(v /2) dy 

= ...f).. X(v-l)/2e-x/2 

v'21f2(v-2)/2f(v /2) 

À xV/2-1e-x/2(x - (v - 1)) 

27r 2v / 2- 1 f(v /2) 
À3/2 x(v-3)/2e-x/2(x2 - (2v - l)x + (v - l)(v - 2)) 

(27r )3/2 2v / 2- 1 f(v /2) 

2.6 Ee densities of the conjunction 

29 

Worsley and Friston (2000) gave a method to approximate the mean value of the Euler 

characteristic of the excursion set of the field X * (t) =min~=l { Xi (t)} where Xi (t )' s are in­

dependent, isotropic, random fields. We will describe this method in this section. Let 

bi = f((i + 1)/2)/f(1/2). Let Pik be the EC intensity of Xk(t) in 3{i, 1 :S k :S D and 

B ç RD. Define the upper triangular Toeplitz matrix M k and the vector J-L(B) to be 

o 

o o 

pDk/bD 

P(D-l)k/bD-l 

Then the following relation holds 
n 

JE{J-L(A*)} = (II Mk)J-L(S), 
k=l 

where 

The last formula gives us the mean vector of Minkowski functionals of the excursion set of 

X*. To find the approximate value of lP{SUPtESX*(t) ~ x} we need only to find the mean 

value of the EC of the excursion set of the random field X* which is the first component of 

the vector lE{J-L(A*)}. So we have the following formula 
n 

JE{J-Lo(A*)} = (1,0, ... ,0) (II Mk)J-L(S). (2.6.5) 
k=l 
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Let N be the number of clusters in S above high level x. Since the number of clusters above 

high level x can be approximated by J1o(A*) we can use (2.6.5) to approximate lE(N). 

2.7 Poisson clumping heuristic 

The mosaic process is a formalization of throwing sets down at random. Let B be a collection 

of sets in ~D. Let C be a probability distribution over B. Let 3.ï E ~D be the events of a 

Poisson process with rate 'Ij;. We define the mosaic process as 

where Bi E B are chosen ~andomly according to C and EB denotes the Minkowski sumo The 

3.ï are called the centers and 3.ï EB Bi are called the clumps. 

According to Theorem 6.9.3 of Adler (1981), the local maxima of a Gaussian random field 

above sufficiently high level x occur randomly according to a Poisson process with a spatial 

rate lx' For high levels each cluster will contain one local maximum, therefore the random 

number N of clusters above level x in a set S tends towards a Poisson random variable with 

probability function 

as x --t 00, where IX is given by 

where A. is the same as that defined in Theorem 2.2.1. 

The clusters of the excursion set of a Gaussian random field for large x can be viewed as 

clumps that are centered at points of a Poisson point process so we will model the conjunction 

problem by a mosaic process. In the next chapter we will use the theory in Sections 2.6 and 

2.7 to approximate the mean value of the volume of one cluster of the field X*. Aiso this 

will enable us to find an approximation of the distribution of the largest volume of of the 

clusters of the excursion set of X* ab ove high level X. 



Chapter 3 

Volumes of clusters of conjunctions 

In this Chapter we will consider the problem of finding an approximation to the probability 

distribution of the volume of one cluster of the excursion set of the conjunction of two 

independent isotropic random fields satisfying suitable conditions. We will develop the theory 

only for two types of random fields: the Gaussian and the X2 random fields. These two fields 

are the only two fields that have a deterministie shape near local maxima. Other types of 

fields such as T or F fields have random shapes (Cao, 1999). For example, the excursion 

set of isotropie Gaussian and X2 fields near high local maxima are balls, whereas they are 

random ellipsoids for T and F fields. This will enable us to approximate the probability 

distribution of the maximum volume of the clusters. 

In this Chapter the Gaussian random field will be considered and an approximation to the 

distribution of the volume of one cluster of the excursion set of the field min{X1(t), X 2(t)} 

will be given for any dimension. The mean value of the volume will be given in a closed form 

based on this approximation. Also calculations for a special case will be given. 

3.1 Distribution of the volume of a cluster 

Let X 1(t) and X 2 (t), tES, be two independent smooth stationary Gaussian random fields 

with V{X1(t)} = V{X2(t)} = >'ID where ID is the identity matrix of order D. Let tI, 

t2 be local maximizers of X 1(t) and X 2(t) respectively. According to Theorem 2.4.1, for 

high thresholds, the component of the excursion set that contains t j is a D-dimensional ball 

31 
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with center t j and radius Rj = J2Wj /xÀ, j = 1,2. According to Theorem 2.4.2 WI = 

XI(t l ) - x, W2 = X 2(t2) - x are independent exponentially distributed random variables 

with mean l/x. Using the Jacobian method it is easy to show that the density of the radius 

Rj is 

(3.1.1) 

The conjunction of the two fields occurs when the two balls overlap. So let H = IIt2 - tili 

be the distance between the centers of the two balls and let V be the volume of the overlap 

of the two balls. We are interested in the probability distribution of V given that there is an 

overlap, that is, the distribution of V given 9 = {a :::; H :::; RI + R2 }. Since the distributions 

of tl and t2 are uniform over S, then the density function of H given RI, R2' 9 is 

DhD - l 

fH(hlRl = rI, R 2 = r2, Ç) = ( )D 1{0<h<rl+r2}· 
rI + r2 

(3.1.2) 

The joint cdf of (RI, R2), given Q can be found as follows: 

and 

JP>{RI :::; 1"1, R2 :::; 1"2, Q} - lrl r2 
JP>{QIRI = VI, R2 = V2} fRl (vdfR2(V2) dv2dvl 

X4À2WDJ-LD(S)-1 1rl r2 
(VI + V2)DvlV2e-"': À(V~+V~)dV2dvl 

where 

/\,-1 100100 

(VI + V2)DvlV2e-~x2À(V~+V~)dv2dvl 

{OO {OO t (~)v1+1v?+1-ie-~X2À(Vr+V~)dV2dVl 
Jo Jo .=0 

= t (~) {OO v~+1e-~x2ÀvrdVl {OO vf+l-ie-~X2ÀV~dv2 
=0 h k 

D 

- 2D/2(X2 À)-D/2-2 ~ (~)r(i/2 + l)r((D - i)/2 + 1). 
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The joint cdf of (RI, R 2 ) given ç is 

and the joint pdf of (RI, R 2) given Q is the derivative: 

(3.1.3) 

The joint density of (RI, R2' H) given Q is the product of the two conditional densities 

fH(hIRI = rb R 2 = r2, Q) and fRl,R2(rI, r2IQ)· 80 

We need the following three special cases later in simulation and in application, 

for D=l, 

for D=2, 

and for D=3, 

(3.1.4) 

(3.1.5) 

To do more inference about the distribution of the volume of the clusters we need to 

know what is the intersection volume between two D-dimensional balls. We give it in the 

following theorem: 

Theorm 3.1.1. Intersection volume of two D-dimensional balls: Consider two D­

dimensional balls of radii RI, R 2 separated by a distance H between their centers and let 
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R(l) :::; R(2) be the ordered RI and R 2. Let 

Let 9 be a function defined by the following formula 

g(D, r, a) = WD-I l r 

(r2 - y2) D;-l dy 

forDr(~) D-I (1 D -1 3 a2
) 

= Dr(D/2) - ar F 2' --2-' 2' r2 ' 

where F is the hypergeometric function defined by 

F( b ) = ~ (aMb)i zi 
a, ,c,z ~ () .. , 

i=O C t Z• 

34 

and (a)i = r(a + i)/r(a). The volume of the intersection of the two D-dimensional balls is 

if 0:::; H :::; R(2) - R(l)' 

if R(2) - R(l) :::; H :::; R(l) + R(2) , 

Pro of: Let BI, B 2 be two D-dimensional balls with radü R(l), R(2) respectively. Let H 

be the distance between their centers. If 0:::; H :::; R(2) - R(l), then BI ç B2' so V =volume 

of BI=WDRfl). If H > R(l) + R(2) then BI n B 2 is empty. If R(2) - R(l) :::; H :::; R(l) + R(2) 

then BI n B 2= is the union of two disjoint D-dimensional spherical caps one in BI and the 

other one in B2 . 80 V is the sum of their volumes. To find V we need to find the volume of 

a spherical cap. The volume of a spherical cap of height h in a D-dimensional ball of radius 

r can be obtained by integrating a (D -1)-dimensional ball with radius vr2 - x2 from r - h 

to r, Le., 

I
r 

2 2 D-l 
WD-I (r - X )-2-dx, 

r-h 

which is equal to 

forDr(~) D-I (1 D -1 3 a2
) 

Dr(D/2) - ar F 2' --2-' 2' r2 ' 
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by using the trigonometric substitution x = r cos( 0). We need to find the heights of the two 

caps that form BI n B 2 • The spheres of the balls BI and B 2 intersect in a circle with radius 

a, say. Let Xl, X2 be the distances between the centers of the balls and the center of this 

circle. Then we have 

Xl +X2 - H, 

X~ + a2 
Rr2)' 

(3.1.6) 

(3.1.7) 

(3.1.8) 

Let hl and h 2 denote the heights of the two caps of BI and B 2 respectively. From equations 

(3.1.6), (3.1.7) and (3.1.8) we get 

X2 = (Rr2) + H 2 
- Rrl))/2H, 

Xl H- X2, 

hl - R(l) - Xl, 

h 2 - R(2) - X2· 

Then. 

l
R

(l) 2 2 D-l lR
(2) 2 2 D-l 

V = WD-I (R(l) - X )-2-dx + WD-I (R(2) - X )-2-dx 
Xl X2 

g(D, R(l), xd + g(D, R(1), xt}. 

This completes the proof. For D=l, 2 and 3 there is a simple formula for V. These simple 

formulas will be used later in simulations and applications, so we give them in the following 

three corollaries: 

Corollary 3.1.2. for D=l, 

Corollary 3.1.3. for D=2, 

V = {l:~=l R~) {20j - sin(20j )} 

7rRrl) 

if R(2) - R(l) ~ H ~ R(l) + R(2) , 

if 0 ~ H ~ R(2) - R(l), 
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Corollary 3.1.4. for D=3, 

4; Rfl) 

V = 2; (Rfl) + Rf2») -1f(RZI)hl + RZ2)h2 - Hh~ + h~)) 

where 

3.2 E{V} using the balls model 

The distribution of V is not in closed forme However we can find a Closed form for the mean 

of the distribution, which we shall use later to adjust the approximation using the Poisson 

clumping heuristic in Section 2.7. Using (3.1.4) and the Kinematic Fundamental Formula 

we can find the mean of the distribution of V given 9 as follows. 

In the Kinematic Fundamental Formula, let A be a fixed D-dimensional ball with radius 

RI and K be a D-dimensional ball with radius R2 which moves around A uniformly. Then 

the conjunction occurs when the two balls overlap. The overlap of the two balls is a cluster 

related to the conjunction. The intrinsic volumes f-Li(Br ) for i = 0,1, ... , D of a ball Br with 

radius r is given by f-Li(Br ) = (~)wDri/wD_i. Substituting this information in (2.5.4) and 

using the Kinematic Fundamental Formula to simplify the integrals we get the the expected 

volume of the overlap of the two balls conditional that there is an overlap and conditional 

on RI,R2. Let V be the volume of one cluster of the excursion set of min{XI (t),X2(t)}. 
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The ratio of the two integrals in 2.5.4 is 

RD pD 
W 1 -'''2 

D ,,~ (I?) Ri pD-i 
L.....t=O t 1-'''2 

RfRg. 
= wD (RI + R2)D· 

Using the total probability law lE{VIQ} = lE{lE{V(H)IR1 , R2' Q}} and (3.1.4), the mean 

of V is 

(3.2.9) 

3.3 E{V} using the Poisson clumping heuristic 

In this section we will describe how to approximate the mean value of the volume of a cluster 

of the excursion set of a stationary field X (t ), tES C RD in a different way. Let A be the 

excursion set of X above a level x. Then we can write 

JLD(A) = fs lAdt. 

Taking the expectation for both sides and considering stationarity of X we get 

lE{JLD(A)} fs lE{lA}dt 

= fs IP{X(t) ~ x }dt 

JLD(S)IP{X(O) > x}. (3.3.10) 

Since the excursion set ab ove a high level is composed of disjoint components we can 

write it as follows 
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where N is the number of these clusters. Then if Yj = f-LD(Cj ), 

and so 

lE{J-lD(A)} = lE{lE{Vi + Y2 + ... + VNIN}} = lE{NlE{V}}. 

where V denotes the volume of one cluster of the excursion set. If Sis large, the number of 

clusters is independent of their sizes, and we have the following formula 

lE{J-lD(A)} = lE{ N}E{V} 

and so combining this with (3.3.10), 

E{V} = J-lD(S)Po(x)/E{N}, (3.3.11) 

where po(x) = lP{X(O) > x}. lE{N} can be approximated by the mean value of the Euler 

characteristic function using (2.6.5). Since Sis large, the d = D term is the most important, 

so 

When X(t) = X*(t) is a conjunction of two isotropic random fields, each with EC 

densities Pi, then the zero and D-dimensional EC densities of the conjunction are 

This can obtained from (2.6.5) by writing lE{J-l(A*)} as a linear combinat ion of the Minkowiski 

functionals of S. This can be done by simplifying the right hand side of (2.6.5) and then 

picking the coefficients of J-lo(S) and J-lD(S). Hence an approximation to E{V} is 

In Figure 3.1 (a)-(c) we note that for large values of x the mean values of V obtained 

by both balls model and Poisson clumping heuristic are close to each other. Aiso the value 

of lEBalls{V} becomes closer to EpCH{V} as the dimension D increases, which is a good 
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Figure 3.1: Two different approximations to the expected volume of a single cluster: 

lEBalls{V} (dotted) and lEPCH{V} (solid) plotted against threshold x. 
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advantage of the balls model because we are interested in application for higher dimensions. 

This gives an indication that the approximation of the distribution of V from the balls model 

is working weIl for large thresholds and high dimensions. 

3.4 Distribution of the maximum cluster volume 

In this section we will describe how to approximate the distribution of the maximum volume 

of the clusters of the conjunction using the Poisson clumping heuristic approach given by 

Aldous (1989) and used by Friston et al.(1994) to find the distribution of the maximum 

volume for the excursion set of a single Gaussian random field, Let Cl, C2 , ... , CN be the 

clusters of the excursion set A* of the random field X*. Let Vi denote the volume of cluster 

i. Let Vmax denote the maximum of the Vi, \12, ... , VN . If N is the number of clusters of X* 

above x, then N has approximately a Poisson distribution with mean lE{N}, Le, 

The cd! of Vmax is 

lP{N = n} ~ (1E{~} )n e-IE{N}, for n = 0,1,2, .... 
n. 

00 

lP{Vmax ::; viN ~ 1} LlP{Vi ::; v, 1 ::; i ::; n, N = nlN ~ 1} 
n=l 
00 

LlP{N = nlN ~ l}lP{Vi ::; v, 1 ::; i ::; liN = n} 
n=l 

~ 1 f (1E{ N} )n e-lE{N}lP{V < v}n 
lP{N ~ 1} n=l n! -

= 
exp(-lE{N}lP{V ~ v}) -exp(-lE{N}) 

1 - exp ( -lE{N}) 

where V denotes the volume of any one cluster. Note that for large lE{N} we have 

lP{Vmax ::; viN ~ 1} ~ exp{-lE{N}lP{V ~ v}}. 

(3.4.12) 

The last formula means that we can write the distribution of Vmax in terms of 1E{ N} and 

the distribution of V. In Section 3.1 we found the joint distribution of (RI, R2' H)IQ which 

can be used to approximate the distribution of V, and 1E{ N} can be approximated according 

by the expected EC using (2.6.5). So we can now get the approximate distribution of Vmax . 



CHAPTER 3. VOLUMES OF CLUSTERS OF CONJUNCTIONS 41 

3.5 Correcting the mean of the distribution of V 

Friston et al. (1994) and Cao (1999) found that the approximate distribution of V could 

be considerably improved by re-scaling V so that its expectation agreed with that given by 

(3.3.11) using the Poisson dumping heuristic. In other words, we suppose that E{V} given 

by the Poisson dumping heuristic (3.3.11) is much more accurate than that given by the 

balls model in (3.2.9) .. In one particular case, discussed in the next Section 3.6, EpCH{V} is 

exact. We will correct the distribution of V given 9 in the same way, to give 

V = EpCH{V}V 
EBaU{V} , 

so that E{V} = EpCH{V}. We will show that using the distribution of V instead of V, we 

get â better approximation to the distribution of the volume of a single duster. 

3.6 Example of a one-dimensional stationary Gaussian 

random field 

In this section we will consider an example of a one-dimensional stationary Gaussian random 

field. In this case we have exact results which can be compared to our approximate results. 

This example is the cosine random field which satisfies the regularity conditions mentioned 

in Chapter 3 of Adler (1981). Let Zl, Z2, Z3, Z4 be independent standard normal random 

variables. We can define the following two cosine random fields over S = [0,2n]. 

XI(t) = Zl sin(t) + Z2COS(t), 

X2(t) = Z3 sin(t) + Z4 cos(t). 

Figure 3.2 show a realization of Xl and X2 where the conjunction of them has one duster. 

The derivatives are 
Xl (t) = Zl cos(t) - Z2 sin(t), 

X2(t) = Z3 cos(t) - Z4 sin(t). 

Note that the derivative fields XI(t) and X2(t) are independent Normal(O, 1), so .À = 1. Let 

Yi = supXI(t) = J Zr + Zi, 
s 

1'2 = supX2(t) = J zJ, + Zl· 
s 
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Figure 3.2: An example of the one dimensional conjunction of two cosine Gaussian Random 

fields. The threshold is x = 1.5. 

Then we can write 
X 1(t) = Yi cos(t - 01), 

X 2(t) = 12 cos(t - O2 ), 

where Ol, O2 are independent U(O, 211") and Yi, Y2 are independent with the following density, 

This follows from the fact that Zr + Zi is distributed as a x2 random variable with 2 degrees 

of freedom. We need to find the distribution of Yj given that Yj > x where x is a large 

threshold. Now 

(
x2 y2) 

JP>{Yj > yi Yj > x} = exp 2 - 2 l{y>x}. (3.6.13) 

If we regard the random fields X j as periodic on [0,211"], so that we neglect the boundary, 

then the excursion set has one single cluster uniformly centered on [0,211"] whose radius is 

cos-l(x/Yj). If x > a then this cluster size never exceeds half S, so the conjunction is always 

empty or a single cluster but never more than one cluster. This fact, considered with the fact 
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that S is 'periodic', means that aIl the approximations used to derive the Poisson clumping 

heuristic are exact, and so 

lE{V} = lE {V} = El - <I>(x) 
PCH V 2. <jJ(x) 

On the other hand, 

1~ lE{V} ;:::;; lEBaU{V} = - -. 
x 2 

3.7 The X2 random field 

Following the same techniques used for the Gaussian field but working with the Theorems 

2.4.3, 2.4.4 and 2.4.5 we have that the radii of the clusters are asymptotically distributed as 

where 5. = À/x and W1 , W2 are independent and exponentially distributed random variables 

with mean l/x. This is the same as for the Gaussian field in Section 3.1, so we can use the 

same theory of Section 3.1 but with À replaced by ).. 
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Simulation 

Before we apply the theory that we have developed in Chapter 3 to real brain images we need 

to check if that developed theory works weIl or not, that is, whether the approximations we 

have found for the distribution of V and Vmax are close to the true distribution. Simulation 

is a good way to check the validity of that theory. For higher dimensions the simulations 

will take a long time to get a large enough sample so we will restrict our simulation to the 

case where the dimension is two and the random field is Gaussian. 

4.1 Simulation of V from the balls model 

By Corollary 3.1.3 V is 

{ 2:~=1 ~{20j - sin(20j )} if R(2) - R(l) ::;; H ::;; R(l) + R(2); 
V = 

7rR~l) if 0::;; H ::;; R(2) - R(l)' 
(4.1.1) 

where 01 = cos-l((R~l) + H2 - R~2»)/2HR(1»), O2 = cos-l((R~2) + H2 - R~1»)/2HR(2»). Any 

inference about the distribution of V can be drawn based on a large sample from the density 

of the random vector (RI, R2' H) given Q. If we use the probability integral transform to 

draw this sample we will face the following two problems in simulation: the Newton-Raphson 

method may not converge and the cost in calculations. So we have to use another method 

of simulation. The envelope accept-reject method is a general method and works for a large 

family of distributions. The following theorem is from Christian and Casella (1999): 

44 
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Theorm 4.1.1. If there exists a density g2, a function gl and a constant M such that 

then t0e algorithm 

1. generate X '" g2(X), U rv U(O, 1). 

2. accept X if U::; gl(X)jMg2(X). 

3. otherwise, accept X if U ::; f(X)jMg2(X). 

produces random variables that are distributed according to f. 

by finding a suit able gl and g2. To find g2 we need only to dominate the term (Tl + T2) by 

writing it as (Tl + T2) = (Tl, 1).(1, T2) and then applying the Schwartz inequality. The gl 

bound can be obtained by applying the inequality 2y'T1T2 ::; (Tl + T2)' This method will 

make simulation more easy since we will get gl and g2 as the product of two independent 

densities up to normalizing constants. 

Assume that R1 and R2 are simulated from the density (3.1.3). Then we simulate H 

from the density (3.1.2) by inverting its cdf as follows 

1. Generate q from U(O, 1). 

2. Let H = q1/2(R1 + R2). 

Then (R1' R2' H) is distributed according to fRl> R2,H(r1, T2, hIQ). 

Another way of simulating observations from the density (3.1.3) is by writing it as a finite 

mixture distribution of D + 1 components which are easy to simulate. This can be done by 

expanding the term (Tl + T2)D using the Binomial theorem. Let 

100 Hl -!.:z:2Àr2 2i
/

2r(ij2 + 1) . 
Ii = 0 Tl e 2 1dT1 = (X2.À)i/2+1 for 'l = 0, 1, ... , D. 

Then 
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We can rewrite the density as follows 

where 

D 

K L (~)IiID_ir1+1e-%X2Àr~rf+1-ie-%X2Àr~Ii-lID~i 
i=O Z 

D 

LPdi(rl)fD-i(r2), 
i=O 

Pi = 

fi(rl) 

fD-i(r2) 

(~)IiID-i 
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The two densities fi(rt} and fD-i(r2) are easy to simulate: The following algorithm is to 

simulate from this finite mixture 

1. Simulate i from 0,1, ... , D with probabilities PO,Pb'" ,PD respectively. 

2. Simulate RI from lï(rl) and R2 from fD-i(r2). 

3. Simulate V using (4.1.1). 

4.2 Simulation of V and Vmax from random fields 

An efficient method for simulating stationary Gaussian random field is to smooth white noise 

using the fast fourier transform (FFT). This method is based on the following theorem. 

Theorm 4.2.1. A strictly stationary continuo us Gaussian random field with zero mean, 

variance (72 and auto-correlation function R(t) = exp(-f'I:-1 t/4) can be obiained by con­

volving a white noise random field of variance (722D7rD/2 Jj"Eï with a Gaussian kernel of 

covariance I:, 

f(x) = exp ( -il'I:-1x/2)/ J(27r)DII:I. 

This theorem means that a standard Gaussian random fields can be generated by smooth­

ing a white noise field with a Gaussian kernel with covariance matrix I:. The covariance 

matrix A of the partial derivatives of the Gaussian field and I: are related by the formula 

A = (2I:)-1 
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see Holmes (1994). In medical imaging, filter widths are commonlyexpressed in terms of 

Full Width at Half Maximum (FWHM) rather than L:. For a one dimensional filter, the 

FWHM is the width of the filter at half its maximum. For a Gaussian shaped filter with 

variance (52, FWHM= (5v8ln 2. 

This was used to simulate a sample of 5000 realizations of the sample paths of the random 

field of the conjunction of two independent isotropie Gaussian random fields in a rectangular 

region S. At each realization we threshold the sample path by a large threshold x and then 

find the area of each cluster of the excursion set of the conjunction. To do this we used the 

MATLAB function bwlabel which takes a binary images (value 0 where X(t) ::; x, 1 where 

X(t) > x) and assigns integer labels to each pixel so that aU pixels in a cluster have the 

same label (label 0 is assigned to pixels outside the clusters). 

We want to use the simulation to check two things: our approximation to the distribution 

of V, the volume of one cluster, and our approximation to the distribution of V max, the volume 

of the largest cluster in a finite region S. Before doing this, we must deal with the boundary 

of S. 

A cluster that touches the boundary will be reduced in size, which would give a biased 

distribution for V, so it is important to remove the boundary efIect if we want to simulate 

V accurately. We cannot simply ignore any cluster that touches the boundary, since big 

clusters are more likely to touch the boundary than small ones, which would again bias the 

distribution of V. Instead we took advantage of the fact that our simulations are periodic 

on S because we used the fast Fourier transform. To remove the efIect of the boundary of 

S we joined the clusters that touch the opposite sides of the rectangular region S as one 

cluster. To do this we wrote our own MATLAB function bwlabel2, which pro duces the same 

results as bwlabel, but clusters that touch the opposite boundaries are connected as the 

same cluster. The bwlabel2 is better to verify the distribution of V while bwlabel is closer 

to reality. 

Another problem is the discrete sampling of the random field at pixels. The smoothness 

of the field, measured by FWHM, should be high relative to the pixel size (which is 1) to 

ensure adequate coverage of the clusters. However in real applications the FWHM is not 

large relative to the pixel size, and we measure cluster volume by the number of pixels in the 
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cluster multiplied by the size of one pixel. To investigate the effect of this on the accuracy 

of our approximations, we tried varying the FWHM. To see the effect of the smoothness on 

the approximation we used FWHM=2.5, 5 and 10. 

Aiso in real applications images are not periodic and boundary effects have an important 

effect on the distribution of Vmax . To assess this, we also tried varying the shape of S while 

maintaining its area constant. In these simulations we used bwlabel so that clusters that 

touch the boundary were reduced in size, and we focussed on the distribution of Vmax rather 

than V. 

We chose a threshold x such that P{ X* (t) ~ x} = Œ. We will considered three thresholds 

corresponding to Œ =0.01, 0.001 and 0.0001 - the middle value is the default for statistical 

packages such as SPM and FMRISTAT. 

Aiso we sirnulated 5000 samples with >. = 1 from the density (3.1.5). The simulated data 

are then described by their empirical distributions as in Figures 4.1-4.3 

We note from Figures 4.1 (a)-(b) that the corrected distribution of V, corrected by 

adjusting the mean, gives better results than the uncorrected one. The P-values obtained 

by the approximate distribution of V from the balls model are over estimates of the true 

P-values obtained from the simulation which means that the P-values obtained by the balls 

model is conservative. Aiso as we expect, the approximation becomes better as x gets 

larger. In Figure 4.2 (a)-(i) the approximate distribution of Vmax is bad when FWHM=2.5, 

and becomes better when FWHM=5 and x is large. When FWHM=lO the approximation 

is the best for the largest two thresholds. 

The boundary of S for the images in Figure 4.3 (a)-(c) is 256 and the boundary of S for 

the images in Figure 4.3 (d)-(f) is 320 while the boundary of S for the images in figure 4.3 

(g)-(i) is 544. So we note that the boundary does not have a big effect on the approximation 

to the distribution of Vmax so we can ignore it. Aiso we note that the approximation is bad 

when x=1.8575 since in this case the excursion set is more likely to cut the boundary. Finally, 

for x ~ 1.8575 we can use the theory safely to test wether a given cluster is significant or 

not. 
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Figure 4.1: The bold line is the uncorrected cd! of V from the balls model and the thin line 

is its correction for the mean. The dotted line is the empirical cd! s of V from simulation 

using bwlabe12. The image size is 128x 128 and FWHM=lO. 
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Figure 4.2: The solid line is the corrected theoretical cd! of Vmax and the dotted is the true 

cd! of Vmax from 64x64 simulated images. FWHM=2.5 in (a)-(c), FWHM=5 in (d)-(f) and 

FWHM=10 in (g)-(i). The boundary effect was removed using bwlabel2. 
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Figure 4.3: The sol id line is the corrected theoretical cd! of Vmax and the dotted is the true 

cd! of Vmax from simulated rectangular images with FWHM=lO. The image size is 64x64 

in (a)-(c), 32x128 in (d)-(f) and 16x256 in (g)-(i). The boundary effect was kept using 

bwlabel. 
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Application 

We now consider real brain images and apply the theory of Chapter 3 to them. We have 

two brain images (Figures 1.3(a,b)) which are following the T random field with 110 de­

grees of freedom. Since the number of degrees of freedom is large we cau approximate 

the data as Gaussian random fields. This approximation was improved by applying the 

transformation ~-I(F()) to the data, where F is the cd! of the T distribution with 110 

degrees of freedom, and ~ is the cd! of the standard Normal distribution. The smoothness 

was taken as FWHM=8mm (Worsley et al., 2002), so this gives À = 410g(2)jFWHM2 = 

0.0433mm-2• The volume of the search region S is 970,000mm3 • If the parameter space 

of the random fields is re-scaled so that À = 1, then the re-scaled volume of S becomes 

f-L3(S) = 970000 X 0.04333
/
2 = 8746.3, which is now unitless. 

The two images are threshold at x = 1.8575 (1.88 for the untransformed T statistic 

images), which corresponds to a = 0.001 for the conjunction. The mean number of conjunc­

tion clusters ab ove this threshold, if there is no activation, is E{ N} = 26.96. MATLAB was 

used to find and locate the clusters of the conjunction. The observed number of clusters is 

N=60. 

To find the P-values of the observed volumes of the clusters of the conjunctions, 10,000 

observations from the joint density of (RI, R2' H) given 9 were generated according to 3.1.5 

and the volume V is calculated according to Corollary 3.1.4. The expected volume of a 

single cluster, found using the Poisson clumping heuristic, is E{V} = 0.3244(unitless), or 

52 
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36.0mm3. Table 5.1lists the volumes of aH 60 clusters and their approximate P-values. 

The clusters with P-value less than 0.05 are shown in Figure 5.1. The largest cluster 

covers the right primary somatosensory area. This is to be expected, since the left leg 

received the hot and warm stimuli. The next two largest clusters coyer the leftand right 

thalamus. These regions are thought to be involved in the perception of pain, as opposed to 

just the sensation of touch which activates the primary somatosensory area. 
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Frequency Volume, mm3 Volume (À = 1) Approximate P-value 

20 38.5 0.35 0.274 

13 76.9 0.69 0.154 

2 115.4 1.04 0.097 

5 153.8 1.39 0.066 

1 192.3 1.73 0.047 

2 230.7 2.08 0.034 

1 346.1 3.12 0.015 

2 384.5 3.47 0.012 

2 423.0 3.81 0.010 

1 461.4 4.16 0.008 

1 499.9 4.51 0.006 

1 576.8 5.20 0.004 

1 615.2 5.55 0.004 

3 692.1 6.24 0.002 

1 884.4 7.97 0.001 

1 1345.8 12.14 0 

1 4114.4 37.10 0 

1 6075.4 54.78 0 

1 22379.2 201.79 0 

Table 5.1: Approximate P-values of the volumes of an 60 clusters of the conjunctions of 

the two T-statistic images. Because the volume is measured by the number of voxels times 

the volume of a single voxel, sorne clusters have equal size, so the first column (Frequency) 

counts the number of such clusters. The cluster volume is measured in mm3 and on the 

unitless scale of À = 1. Only those clusters with P-values less than 0.05 (rows 5-19) are 

shown in Figure 5.1. 
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Figure 5.1: Application to conjunctions of pain perception. (a) The conjunction, the inter­

section of the excursion sets in Figures 1.3(a) and (b), the same as in Figure 1.3(c). The 

threshold x = 1.88 was chosen so that the P-value of the conjunction at any point is 0.001. 

(b) The conjunction threshold at x = 3.06 chosen so that the P-value of the maximum of the 

conjunction is 0.05, the same as in Figure 1.3( d). (d) The clusters of the excursion set above 

x = 1.88 whose volume exceeds v = 0.186cc, chosen so that the P-value of the maximum 

volume is 0.05, colored by their volume (the large cluster has a volume of 22.38cc). Note 

that both methods (b) and (c) detect activation in the right primary somatosensory area, 

(white cluster in (c)), and the left and right thalamus (green and orange clusters in (c)). 

More regions are detected in the conjunction of two runs, than in one single run (Figure 

1.1), because the amount of data has doubled. 
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Conclusion 

For two random fields XI(t) and X 2 (t), tES, we can define a new random field X*(t) = 

min{XI (t),X2 (t)}. A conjunction of XI(t) and X 2 (t), above x occurs when the event 

{t ES: X*(t) 2: x} occurs. For smooth and stationary Gaussian or X2 random fields this 

event has a simple form which is a union of convex sets. In this thesis, l have attacked 

the problem of finding an approximation to the distribution of the volume of one of these 

convex sets. l used Theorems 2.4.1, 2.4.2, 2.4.4 and 2.4.5 to find the shapes of one clusters 

of Xl when the threshold is high. If the fields are isotropie then these clusters are disjoint 

balls with random radii and random centers uniformly distributed on S. The Gaussian and 

X2 random fields have a deterministie curvatures which allows us to find the distribution of 

the radii. The conjunction of the two fields occurs when two such balls overlap. Then the 

distribution of the volume of the overlap was found. 

l have followed the same method above to attack the problem for more than two con­

junctions and l have found that there is a difficulty to get an answer. This is because the 

condition 9 which represents the occurrence of the conjunctions has no simple theoretieal 

representation. Moreover, it is difficult or impossible to express the volume of the overlap 

of more than two balls in a simple closed form. For these reasons we can say that the balls 

model of the clusters is not sufficient to solve the problem for more than two conjunctions. 

Since the cluster volume of two conjunctions V is a function of the radii and the distance 

between two balls, it is difficult to find a closed form for the approximate distribution of V 

56 
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from the balls model. The best we could do was to find the joint distribution of the two 

radii and the distance between the two balls in closed form. Then any information about 

the approximate distribution of V can be obtained from this joint distribution. 

In Figure 1.5 we note that the clusters become more erratic in shape as the number of 

conjunctions increases. Also we note that as the number of conjunctions increases a very 

small threshold is needed for the conjunction to be likely to occur. As the threshold decreases 

the clusters of the component Gaussian random fields will become less like balls and more 

like the complement of balls, then the conjunction is the intersection of the complements of 

balls. 80 in future work it seems to be possible to attack this problem when the number of 

conjunctions n is very large and the threshold x is very small. 

Aiso the same approach in Chapter 3 can be followed to solve the conjunction of two 

random fields of different type, Le. one is Gaussian and the other one is X2 • This problem 

is simple and easy to do, but we need to look for an application in reality. 

For T and F random fields it is difficult to solve the conjunction problem since the 

curvatures of these fields are random. But it is easy to attack this problem in the one 

dimensional case when we are interested in applications of these fields to one dimensional 

real data. 
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