
Enhancing a Theorem Proyer by
Delayed Clause-Construction and

Attribute Sequences

Paul Haroun

Department of Computer Science
McGill University, Montreal

Oct 2005

A thesis submitted to Mc Gill University in partial fulfillment of the requirements

of the degree of Doctor in Philosophy

© Paul Haroun 2005

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page cou nt,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-21651-4
Our file Notre référence
ISBN: 978-0-494-21651-4

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

The perfonnance of a resolution-based automated theorem proyer (ATP) depends

on the speed at which clauses are derived and the efficiency at pruning the search

space. The speed at which clauses are derived depends in part on the number of

operations perfonned to construct derived clauses. Depth-first search based ATPs

derive clauses in a linear manner. In linear derivations, a large percentage of the

derived clauses are intermediate conclusions that are discarded shortly after they

are derived. Therefore, the time spent constructing those clauses is wasted. In this

thesis we present a stalling strategy, called delayed clause-construction (DCC),

that reduces this wasted time by delaying the construction of intennediate

conclusions until they are needed.

Top-down depth-first search algorithrns have the disadvantage of deriving the

sarne clauses over and over again. Bottom-up best-first search approaches solve

this problem by redundancy elimination, but their disadvantages are the lack of

goal-orientation and the large memory requirements. In this thesis we introduce

semi-linear resolution (SLR), a top-down bottom-up search procedure that

combines advantageous characteristics found in best-first search and depth-first

search algorithrns. It requires a mode st arnount of memory and includes

redundancy control. SLR relies on DCC for speed. DCC also provides SLR with

ability to perfonn large inference steps through the use of a mega-inference rule.

In order to improve the efficiency of SLR, we developed a restriction strategy,

called attribute sequences (ATS), that uses sequences of clause characteristics as

a guide to limit the participation of clauses in a linear derivation, thereby reducing

the exp/orable search space. ATS does not compromise completeness.

The perfonnance enhancements ensuing from the use of DCC and A TS in SLR

are shown in this thesis to be quite significant in theory, through mathematical

Abstract IV

analysis, and in practice, through the results obtained from CARINE; an

implementation of SLR .

Sommaire

La performance d'un logiciel d'aide à la preuve (Automated Theorem Prover -

ATP) basé sur la méthode de résolution dépend, d'une part de la vitesse à laquelle

les clauses sont dérivées, et d'autre part de l'efficacité de l'élagage de l'espace de

recherche. La vitesse dépend, en partie, du nombre des opérations nécessaires

pour construire les clauses dérivées. Les A TPs basés sur la recherche en

profondeur dérivent des clauses de façon linéaire. La plupart de ces clauses,

considérées comme des conclusions intermédiaires, sont éliminées juste après

qu'elles aient été dérivées. De plus, juste un terme ou un littéral d'une conclusion

intermédiaire est généralement utilisé lors de l'application d'une règle

d'inférence. Par conséquent, le temps investi à construire une conclusion

intermédiaire entière est gaspi11é. Dans cette thèse, nous présentons une méthode

nommée construction de clause différée (Delayed Clause-Construction - DCC)

qui réduit ce temps gaspillé en retardant, jusqu'à l'apparition d'un besoin, la

construction de conclusions intermédiaires dans une dérivation linéaire.

Les algorithmes descendants de recherche en profondeur possèdent

l'inconvénient de dériver les mêmes clauses à plusieurs reprises. Les approches

ascendantes de recherche du meilleur résolvent ce problème en éliminant la

redondance. Leur inconvénient est cependant lié aux besoins en terme de mémoire

et, généralement, au manque d'orientation vers le but. Nous introduisons la

résolution semi-linéaire (Semi-Linear Resolution - SLR) qui combine les

meilleures caractéristiques de l'algorithme de la recherche en profondeur et de

celui de la recherche du meilleur. Il requiert peu d'espace mémoire et est assez

flexible pour générer de nouvelles règles d'inférence, de nouvelles stratégies, et

de nouvelles règles pour le contrôle de la redondance et pour la simplification.

L'usage de DCC dans SLR contribue à l'amélioration de la performance. La

Sommaire vi

résolution SLR profite également de la stratégie DCC pour pouvoir exécuter de

grandes étapes d'inférence à travers l'utilisation d'une règle de méga-inférence.

Afin d'améliorer l'efficacité de SLR, nous présentons une stratégie basée sur

les attributs des clauses (Attribute Sequences - A TS). A TS sont utilisées comme

guide pour réduire l'espace de recherche sans toutefois sacrifier la complétude.

Cette thèse montre que les améliorations de la performance qui proviennent de

l'usage de DCC et de ATS dans SLR sont assez significatives. Ceci est prouvé du

point de vue théorique à travers les analyses mathématiques, et du point de vue

pratique par les résultats obtenus de l'implémentation expérimentale d'un logiciel

d'aide à la preuve, nommé CARINE.

Acknowledgments

First and foremost, 1 thank God for bestowing upon me the ability to complete

this thesis after many years of continuous effort and sacrifice.

1 thank my supervisor, Prof essor Monty Newbom, for his tremendous patience,

invaluable feedback, his support to enter the theorem proving competition

(CA SC), for all the time he spent carefully reading, correcting and reviewing the

thesis and for all the long hours of discussions on theorem proving.

1 thank my parents for their support which helped me achieve this level of

education. 1 thank my brother Antoine who always believed in me and

continuously encouraged me; something that 1 really needed especially in the last

6 months of writing the thesis. 1 also thank him for his feedback on the

presentation of the thesis.

1 thank my friends Sarita Bassil and Danielle Azar for their help with the

translation of the abstract into French. The abstract is not that difficult that it

requires two experts to translate it, but because 1 changed it several times, 1 had to

ask whoever was available to help me out.

1 also thank Sarita for her feedback and review of parts of this thesis and for

her help in extracting and formatting sorne final results obtained from the

experiments 1 conducted on CARINE. Her efficiency is impressive.

1 thank Geoff Sutcliffe for providing me with the initial results obtained from

running CARINE over the TPTP library and for his encouragement and support

during CASC. 1 "also thank him for his continuous encouragement to improve

CARINE and for his revision of the thesis.

1 thank Geoff Sutcliffe and Christian Suttner for doing an exemplary job in

maintaining the TPTP problem library and for making it available for free to aIl

interested users. 1 thank the organizers of CASC for their enthusiasm and

dedication for organizing a competition that motivates theorem prover authors to

Acknowledgments Vlll

Improve their theorem provers. It also facilitates the personal interaction and

sharing of ideas between computer scientists and users of theorem provers from

all over the world.

1 thank all the contributors who presented the difficult subject of automated

reasoning in a manner that made it easy for others to grasp and understand. 1

thank the people who made their theorem provers freely available to experiment

with.

1 thank the graduate secretary Diti Anastasopoulos and system administrators

from the School of Computer Science of McGill University for their prompt

response.

Table of Contents

1 Introduction ... 1
1.1 Speed and Efficiency .. 2

1.1.1 Speed ... 2
1.1.2 Efficiency .. 3

1.2 Contributions ... 4
1.2.1 Delayed-clause construction ... 5
1.2.2 Attribute sequences ... 6
1.2.3 Semi-linear resolution ... 6

1.3 Overview of the Thesis ... 8
1.4 About the Results .. 9

2 Preliminaries ... 10
2.1 Definitions and Conventions ... 10

2.1.1 Notation ... 10
2.1.2 Operator precedence ... Il
2.1.3 Definitions ... 12
2.1.4 Inference rules ... 28
2.1.5 Simplification rules ... :. 33

2.2 Summary ... 35
3 Delayed Clause-Construction ... 36

3.1 Benefits of DCC .. 37
3.1.1 Performance improvement.. .. 37
3.1.2 The reduction ofmemory requirements .. 37
3.1.3 Efficiency improvement.. .. 38

3.2 Definitions ... 38
3.3 P-idempotent substitution sets in DCC ... 64
3.4 Mega-Inference Rule (MIR) ... 66
3.5 Summary ... 67

4 Semi-Linear Resolution .. 68
4.1 Overview of Top-Down Bottom-Up Approaches 68
4.2 The Given-Clause Algorithm (GCA) .. 70

4.2.1 Cases when GCA is not refutation complete 72
4.2.1.1 Faimess of the selection procedure ... 72
4.2.1.2 Refutation completeness of the inference system 72

4.3 Iteratively-Deepening Depth-First Search .. 73
4.4 Comparison between GCA and IDDFS .. 75
4.5 Semi-Linear Resolution (SLR) ... 77
4.6 Redundancy Control in SLR ... 88
4.7 Advantages and disadvantages ofSLR ... 89

Table of Contents x

4.7.1 Comparison between SLR and GCA .. 89
4.7.2 Comparison between SLR and Mode! Elimination 90

4.8 Completeness ofSLR ... 92
4.9 Summary ... 92

5 Attribute Sequences .. 93
5.1 Number of generated clauses in SLR .. 94
5.2 Search Paths .. 97
5.3 Attribute Sequences .. 99

5.3.1 Restricting the number of search paths under binary resolution. 101
5.3.2 Constructing attribute sequences .. 105
5.3.3 Calculating the number of attribute sequences 109
5.3.4 Minimizing the number ofattribute sequences 115
5.3.5 Attribute sequences and binary factoring 119
5.3.6 Attribute sequences and other inference rules 122

5.4 Summary ... 124
6 CARINE: An Implementation ofSLR .. 125

6.1 Overview ... 125
6.2 Definitions '" .. 126
6.3 Data Structures .. 128

6.3.1 Terms, literaIs, clauses and substitution sets 129
6.3.2 The path table .. 136
6.3.3 Lookup tables .. 137
6.3.4 Clause partitioning and clause grouping lists 138
6.3.5 LiteraI grouping .. 142
6.3.6 LiteraI ordering ... 142

6.4 An Example of SLR with ATS ... 143
6.5 Backtracking in SLR ... 149
6.6 Experimental Results .. 159
6.7 The Effect of DCC and ATS on SLR ... 172
6.8 Summary ... 173

7 Conclusion .. 174
7.1 Summary and Discussion .. 174
7.2 Future Work .. 175

7.2.1 A calculus for substitutions ... 175
7.2.2 Improving semi-linear resolution .. 176

Appendix A ... 178
Appendix B ... ' .. 181
Appendix C ... 195

C.1 Flatterm Representation ... 195
C.1.t Substitution set representation .. 196

C.2 Querying under DCC ... 196
C.2.1 Computing the weight of a non-constructed clause 198
C.2.2 Variable dependencies ... 202
C.2.3 Computing the maximum literaI depth .. 212

Table of Contents Xl

C.2.4 Computing other queries ... 216
Appendix D ... 217
Appendix E ... 220
Appendix F .. 223
Appendix G ... 226

G.l Comparison of different C/C++ compilers .. 226
Appendix H ... 227
Bibliography ... 245
Bibliography (Web Sites) .. 264

List of Tables

Table 2-1: Set and logical symbols and their meanings .. Il
Table 3-1: Example of an application of a term replacement list to a clause 41
Table 3-2: Examples ofp-idempotent and not p-idempotent substitution sets 46
Table 3-3: Partitions of (f = {x ~ f(y),y ~ g(z, w),z ~ f(w), w ~ a} 47
Table 3-4: Examples of confluent and not confluent p-idempotent substitution

sets .. 48
Table 3-5: Examples of acceptable and unacceptable non-constructed clauses ... 52
Table 3-6: Inference rules conclusions in the form «C\D)uE)a(ra) 55
Table 4-1: List of variable parameters used in an implementation of SLR 80
Table 4-2: A list ofprocedure/functions used in an implementation ofSLR 81
Table 5-1: Maximum number of generated clauses in SLR at each iteration 96
Table 5-2: Attribute sequences for k=4 ... 107
Table 5-3: Number of attribute sequences for the first 15 iterations 114
Table 5-4: Comparison between the total number of attribute sequences restricted

by E5.1 0 and the optimized total number of attribute sequences for the
first fifteen iterations .. 117

Table 5-5: Minimized set of attribute sequences up to iteration 4 119
Table 5-6: Attribute sequences up to iteration 4 with binary resolution and

demodulation as inference rule ... 123
Table 6-1: Path table for Derivation 1 of Example 6.3 146
Table 6-2: Path table for Derivation 2 ofExample 6.3 148
Table 6-3: Path table for Derivation la of Example 6.4 152
Table 6-4: Path table for Derivation lb ofExample 6.4 154
Table 6-5: Path table for Derivation 1c ofExample 6.4 156
Table 6-6: Path table for Derivation 2 ofExample 6.4 158
Table 6-7: Comparison of PTCC and IR of sorne theorems 163
Table 6-8: RPSU(t), PTCC(t) and IRS(t) of sorne theorems 166
Table 6-9: RUCT(t), PTCC(t), RPSU(t), IRS(t) of sorne theorems 169
Table 6-10: Number oftheorems solved by CARINE using different configurations

.. 172
Table 6-11 : Average number of generated clauses by (A) and (B) over the 58

theorems solved by (B) ... 173

List of Figures

Figure 1-1: An illustration of a semi-linear resolution proof 7
Figure 2-1: A tree representation of the term j(a, g(a, y), x) 14

Figure 2-2: A graphical representation of a derivation ... 26
Figure 3-1: An example of a linear derivation without DCC 62
Figure 3-2: An example of a linear derivation using DCC 63
Figure 3-3: An example demonstrating the problem with the composition of

substitutions as opposed to the union of substitutions when delayed
clauses are constmcted ... 64

Figure 3-4: Possible implementations of the p-idempotent set ~ u a2 that make it

easy to extract a) and a2 • ... 65

Figure 4-1: A given clause algorithm ... 71
Figure 4-2: An IDDFS algorithm .. 74
Figure 4-3: An SLR algorithm .. 78
Figure 4-4: An MIR algorithm .. 79
Figure 4-5: Percentage ofmerge clauses with respect to the total number of

generated clauses per theorem ... 86
Figure 5-1: An example ofsearch tree showing the set j(Cj,j-)) of clauses

generated using inference mIes that require only one premise 95
Figure 5-2: An example of a relationship between search paths and attribute

sequences .. 101
Figure 5-3: Search paths and attribute sequences for iteration 1 and iteration 2 of

Example 5.1 .. 104
Figure 5-4: A graph of the attribute sequences for iteration 4 108
Figure 5-5: Attribute sequences for iterations 1 to 4 .. 110
Figure 5-6: A graph of attribute sequences of iteration 4 without restrictions on

the lengths of the resolvents ... 112
Figure 5-7: The number of attribute sequences viewed in table form 115
Figure 6-1: Design of CARINE ... 126
Figure 6-2: Flatterm representation of g(x,h(a),j(x,h(a))) in CARINE 129
Figure 6-3: LiteraI representation of -,B(x,j(a,y), a) in CARINE•....••..... 129

Figure 6-4: Clause representation in CARINE .. l30
Figure 6-5: Representation of the substitution set {x ~ f(y),y ~ g(z, w),z ~ a} as a

directed graph (top) and as an array (bottom) in CARINE l33
Figure 6-6: An example of a derivation showing the role of Reid and Vid of the

distinct variables of the participating clauses l35
Figure 6-7: The path table ... l37

List of Figures XIV

Figure 6-8: An example of the partitioning ofunit clauses (unit predicate lists) in
CARINE ... 139

Figure 6-9: An example of the grouping of input clauses in CARINE 140
Figure 6-10: Predicate lists after B3 is deleted from the input clauses 141
Figure 6-15: Chart of the percentage of successful unifications obtained from

running lA and lB over 100 selected theorems 165
Figure 6-16: Chart of RPSU(t) vs.IRS(t) .. 165
Figure 6-17: Chart of R UCT(t) vs IRS(t) 168
Figure 6-18: Chart of PTCC(t), RPSU(t), R UCT(t), and IRS(t) over the selected

100 theorems from the TPTP library v2.6.0 170
Figure 6-19: Inference rate speedup of the 100 selected theorems 171

CHAPTER

1

Introduction

An automated theorem proyer (ATP) is a pro gram that attempts to determine if a

given theory logically implies a given hypothesis. The range of applications of

automated theorem proyers has increased significantly [Sutcliffe site] since the

first attempt at proving the unsatisfiability of a set of clauses several decades ago

[Newell et al. 1957], [Gilmore 1960], [Prawitz & Voghera 1960]. Mathematicians

and scientists use A TPs as tools for checking proofs and for proving sorne open

problems [Veroff 1997], [Wos 1993]. Engineers use ATPs for software

verification [Fensel & Schônegge 1997], hardware verification [Kaufmann et al.

2000], and database transaction verification [Spelt & Even 1998]. The broader

application of ATPs is due to the improved performance of ATPs. However, the

progress in automated theorem proving is relatively slow with respect to other

fields, such as commercial information technology, as indicated in [Sutcliffe et al.

2001]. In addition, there are still potential domains in business and medicine

where A TPs can be used if their performance keeps improving. The performance

of an A TP relies on two factors: speed and efficiency.

In this chapter, we list the major factors that affect the speed and efficiency of

an ATP in general, and point out the ones that we focus on in this thesis. We then

state the main contributions of our research. Finally, we give an overview of the

structure of the thesis.

Chapter 1 - Introduction 2

1.1 Speed and Efficiency

In this section we list the major factors that affect the speed and efficiency of an

A TP and indicate the ones that we focus on in this thesis.

1.1.1 Speed

The speed of an ATP is its inference rate. The inference rate is basically how

fast an A TP is able to deduce facts. This is highly dependent on the following

factors:

(1) Implemented search algorithms, strategies and inference rules. Sorne

algorithms produce clauses faster than others because they perform less

processing on the derived clauses. Also sorne inference rules are simpler than

others and can be implemented with less computer instructions. This leads to a

generation of more clauses in less time.

(2) Data structures. The basic structures that ATPs work with are terms,

literaIs, clauses, and substitution sets. The internaI representation (data structures)

of those basic elements can affect the time it takes to execute operations on them.

(3) Programming language. A program that is written in C, for example,

may fUll faster than the same program written in Java or LISP. This is because

more work has been done on optimizing C compilers. In addition, there are more

processor architectures which are better suited for procedural languages like C

than functional or logic programming languages like ML and Prolog.

(4) Code optimization. Even if two programs that do the same thing, use the

same algorithms and data structures, and are written in the same computer

language under the same platform, they can differ in the speed of their execution

based on the tuning of the code. Also not all compilers of the same language

produce the same machine code for the same machine [Wilson 2004], [Kientzle

2004], [Duvanenko 2004] (see Appendix G).

Chapter I -Introduction 3

(5) System hardware and software platform. It is obvious that more

advanced system architectures (e.g., more powerful processor, wider and faster

system bus, faster memory, etc.) and operating systems [Bach 1986],

[Silberschatz et aL 2001], [McKusick & Neville-Neil 2004], [Stallings 2004] are

highly likelyI to result in a noticeably faster execution of an A TP than oIder

systems.

Even though aIl of the above factors are important in comparing and analyzing the

speed of a theorem proYer, our focus in this thesis is on (1) and (2). In fact, it is a

well-known issue among computer scientists that (1) and (2) have the most impact

on the performance of a system [Garey & Johnson 1979], because (3), (4) and (5)

can improve a system's performance only by a constant factor.

1.1.2 Efficiency

Before we state the factors on which the efficiency of an A TP relies on, we

clarify and differentiate between the three concepts: search space, explorable

search space and explored search space.

• The search space is set of aIl clauses that can be derived from a given set

of clauses (defined in Chapter 2) using a given set of inference rules

(defined in Chapter 2).

• The explorable search space is the set of clauses from the search space

that an ATP can derive. The explorable search space is a proper subset of

the search space if restriction strategies are used in an ATP to avoid the

derivation of certain clauses. Otherwise, the explorable search space is the

same as the search space. If derivation of certain clauses is prohibited due

) We say it is highly likely because there have been at least one case in the past where a newer
generation of a 32-bit processor (Intel's Pentium Pro) did not perfonn better than an older
generation of the 32-bit processor (lntel's Pentium) over certain 16-bit optimized applications
(Microsoft Windows 95 and earlier) [Rupley & Clyman 1995].

Chapter 1 - Introduction 4

to restriction strategies, then the explorable search space lS said to be

pruned.

• If a set of clauses is unsatisfiable (defined in Chapter 2), then the explored

search space is the set of clauses from the explorable search space that the

A TP derives before deriving the empty clause.

The efficiency of an ATP relies on the following factors.

• The size of the explorable search space.

• The amount of redundancy (defined in Chapter 2) which is roughly the

amount of time wasted deriving clauses that do not contribute any new

facts that haven't already been discovered through other clauses.

• The number of unsuccessful attempts to derive a clause. This is the

amount oftime spent trying to resolve clauses that do not resolve together.

In a sense, efficiency is a measure of the amount of work the theorem proyer

performs in order to find a solution to a given problem. An efficient algorithm

uses one or more strategies to reduce the size of the explorable search space, the

amount of redundancy, and the number of failed attempts. In this thesis we focus

mai nI y on reducing the size of the explorable search space.

1.2 Contributions

Our contributions are aimed at resolution-refutationl ATPs whose main search

strategy is depth-first search; henceforth, unless explicitly stated, anytime we

mention the words "theorem prover" or "ATP", we imply resolution-refutation

ATPs using depth-first search.

A resolution-refutation A TP is an A TP based on the resolution calculus (binary

resolution and binary factoring) and seeks a derivation of the empty clause by

following sorne search strategy, e.g., depth-first search.

) Resolution-refutation A TP is formally defined in Chapter 2.

Charter 1 - Introduction 5

The contribution in this thesis is threefold:

• The development of delayed clause-construction (DCC), a method that

improves the inference rate of an A TP.

• The construction of attribute sequences (ATS), a restriction strategy that

improves the efficiency of an ATP.

• The introduction of semi-linear resoZution (SLR), a procedure that

combines top-down with bottom-up search approaches.

An implementation was developed to demonstrate the effectiveness of those

approaches in improving the speed and efficiency of an ATP.

1.2.1 Delayed-clause construction

ATPs based on depth-first search algorithms perform an extensive number of

linear derivations and produce a large number of clauses, referred to as

intermediate conclusions, that are not goal clauses (defined in Chapter 3) but may

lead to goal clauses. The amount of time spent in constructing intermediate

conclusions can reach 65% of the total running time (see Chapter 6), based on the

results obtained from experiments that we conducted. Upon careful observation,

we found that, in a linear derivation, only a small part of an intermediate

conclusion needs to be constructed when it is involved in an application of an

inference rule. By limiting the construction to the needed part of an intermediate

conclusion and delaying the construction of the rest until needed, we can reduce

the time to generate a new clause, thereby improving the inference rate.

We developed an approach, delayed clause-construction, that delays the

construction of intermediate conclusions until needed. The results obtained from

the experiments we performed on DCC demonstrate its potential. Furthermore,

DCC requires a modest amount of memory, is easy to implement, and works with

a wide range of calculi.

Chapter 1 - Introduction 6

1.2.2 Attribute sequences

An attribute is a characteristic of a clause such as weight, length, number of

variables, particular term, particular literaI, etc. An attribute sequence is a

sequence of attributes that correspond to a sequence of resolutions. Even though it

is not possible to know ahead of time which clauses to select in order to obtain a

refutation (i.e., derivation of the empty clause), it is possible to select potential

clauses based on their attributes that may lead to a refutation.

One distinguishing characteristic of ATS is that an attribute sequence can be

constructed ahead of time and then used as a guide to select the potential clauses

that may Iead to a refutation. This implies that no time is wasted during the search

to construct an ATS. Another distinguishing characteristic of ATS is that it can be

used in any resolution-refutation ATP employing a depth-first se arch strategy

without affecting the completeness of the A TP.

Our analysis indicate that the reduction of the size of the explorable search

space is exponential in the depth bound when attribute sequences are used as a

guide to select potential clauses. We conducted experiments on the use of A TS

and the results show that the improvements are significant.

1.2.3 Semi-Iinear resolution

A top-down approach recursively breaks down a goal into subgoals until

eventually the subgoals can be proven immediately by a given set of clauses or by

derived clauses obtained during the search process. A bottom-up approach derives

clauses from the input set until an inconsistency is reached. The advantage of a

top-down approach is that it is goal-oriented. !ts disadvantage is lack of

redundancy control. A bottom-up approach is good in controlling redundancy but

lacks goal-orientation.

Semi-linear resolution is a top-down bottom-up search procedure that includes

DCC for speed and ATS for efficiency. DCC in SLR can be viewed as a mega-

Chavter 1 - Introduction 7

inference rule that combines several inference rules into one. Every application of

a mega-inference rule leads to a goal clause in one big step.

A proof obtained by SLR is generally non-linear but contains Iinearly derived

goals. Bence the name semi-linear resolution. Figure 1-1 shows an example of an

SLRproof.

Bs

>-JF-_ Ancestor G2

resolution

Intermediate conclusions: CIJ, C]2, Cn, C2h C22,

C3h C32, C33, C4h Cs!> CS2, CS3

Input clauses: Bh B2' B3, B4, Bs, B6, B7, Bg, B9'
BIO, B IJ , BJ2

Empty clause

Figure 1-1: An illustration of a semi-linear resolution proof.

Sometimes it is usefui to gather information during a linear resolution that can

heip reduce the search space or eliminate redundancy. We show in an example in

Chapter 6 that the information gathered from within the application of a me ga­

inference rule can help an ATP skip certain attribute sequences in following

derivations. Just because every application of a mega-inference mIe is a big step

in a search, it does not mean that usefui information obtained from the little steps

is ignored. SLR combines both the advantage of moving faster in a search by

taking big steps without losing the information that can be obtained from the

small steps. This is a distinguishing characteristic of SLR.

Chapter 1 - Introduction 8

SLR can be used in a wide range of applications including systems with

limited memory capacities without the need to compromise its refutation

completeness. Examples of applications with limited memory capacities are:

small embedded systems, microcontrollers, mobile devices, miniature robots,

miniature wireless communication devices, etc. The wide range of applications

for SLR is due to the combined top-down bottom-up approach where the main

loop is an iteratively-deepening depth-first search (IDDFS). IDDFS requires a

modest amount of memory which makes it desirable for limited memory devices.

1.3 Overview of the Thesis

Chapter 2 covers the basic minimum preliminaries related to the topics discussed

within the thesis. It contains aIl the definitions and notation necessary to

understand the terminology and symbols used in the following chapters. Chapter 3

is dedicated to the formaI presentation of the delayed clause-construction

procedure.

Chapter 4 presents semi-linear resolution. It describes the procedure in detail

and compares it with the given-clause algorithm. The advantages and

disadvantages of semi-linear resolution are listed and its completeness is

discussed.

Chapter 5 analyzes the size of the explorable search space of semi-linear

resolution from two perspectives. The first is based on the number of generated

clauses and the second is based on the number of attribute sequences. It describes

how attribute sequences can be used as a guide to reduce the size of the

explorable search space of SLR.

Chapter 6 de scribes an implementation of semi-linear resolution called

CARINE. It presents the experimental results obtained from running CARINE on a

sample of 100 theorems selected from the TPTP library (see Appendix A).

Chapter 1 - Introduction 9

Chapter 7 summarizes the contributions, provides conc1uding remarks and

discusses future work.

The appendices inc1ude the details on derivations of certain formulas used in

the thesis. They also inc1ude further information about CARINE, the TPTP library,

a list of the sarnple of 100 theorems selected from the TPTP library, the list of

theorems from the TPTP library that were proved by CARINE, and statistical data.

1.4 About the Results

Unless specifically stated, an test results are obtained from running our A TP

CARINE over the TPTP library with a time limit of 180 seconds per theorem.

Experiments were done under a Linux emulation (Cygwin) on a Pentium 4 based

machine running Microsoft Windows 2000. The processor's speed is 2.6GHz but

we set it to run in Hyper-Threading (HT) mode [Intel site] so that we can run two

copies of our system at the same time and thus, reducing the total time needed to

obtain the provided results. When running two copies of CARINE in HT mode, the

machine roughly acts as two machines running each at about 1.1 GHz. The

memory installed on the machine is 1 GB DDR1 SDRAM [Rosch 2003] running

at 400MHz in Dual Channel which roughly means that in HT mode there would

be little or no degradation in speed when running two copies of CARINE since the

memory banks can be accessed in parallel.

J DDR is a double data rate synchronous dynamic random access memory.

CHAPTER

2

Preliminaries

Theorem proyers are applications of mathematical logic. Mathematical logic

encompasses many branches of logic and correspondingly there are many kinds of

theorem proyers. We are only concemed with classical first-order logic [Smullyan

1995] and specifically the subset of this logic that deals with knowledge

represented in clause form. The theorem proyers that we are interested in are

resolution-refutation based automated theorem proyers and in this chapter we

state the minimum preliminaries that are related to those theorem proyers.

2.1 Definitions and Conventions

Except for a few minor differences in sorne definitions (e.g., "derivation"), most

of the definitions and notation in this section follow the conventions used in

[Riazanov 2003], [Robinson & Voronkov (1) 2001], [Robinson & Voronkov (2)

2001], [Schulz 2000], [Loveland 1978], and [Chang & Lee 1973].

2.1.1 Notation
References on the subjects of set theory, logic and automated reasoning, use

slightly different notation for the same operators. Also, operator precedence varies

between theory and implementation (i.e. computer languages). To avoid any

confusion, we use the notation and the order of precedence of operators described

in this section.

Chapter 2 - Preliminaries 11

Table 2-1 lists the logical and set symbols along with their meaning. Examples

are given to clarify the meaning and depending on the meaning of the symbol, the

letters A and B used in the ex amples are either sets or clauses.

Table 2-1: Set and logical symbols and their meanings

Symbol MeaninK
-',/\,v NOT, AND, OR respectively.

<=> Equivalence. E.g. A <=> B
Forward and backward implication.

=>,Ç:: A => B is the same as B Ç:: A which is read as A implies B
or B logically follows from A.

- Identical.
Right and left proper subset. BeA is the same as A::JB

C,::J
where B is a proper subset of A.

Ç;,;2
Right and left subset. B ç; A is the same as A::J B where B
is a subset of A.

(J,u,\ Set operations: intersection, union, and difference
respectively.
An ordering relation. Read as "less than" even though the

-<
domain may not be a number. For example, "abc" -< "bdf'
means that the string "abc" is less than the string "bdf' when
the ordering relation represents a lexicographical l ordering.

N,Z,IR. Respectively: the set of natural numbers, the set of integers,
the set of real numbers.
Wildcard character. Used as a "don't care" or "aIl values in a

*
domain". For example, (*,2) means a pair where the first
element is any number in the domain and the second element
is a 2.

2.1.2 Operator precedence

1) Expressions within parentheses 0 are evaluated first followed by the

ones within square brackets [] followed by those within braces {}.

2) Logical operators are performed in the order (highest to lowest): -,,/\, v .

1 LexicographicaJ ordering is an ordering similar to the ordering of the words in a dictionary.

ChalJler 2 - Preliminaries 12

3) Set operators are performed III the order (highest to lowest):

n,u, \,E,C,Ç, =.

4) Identical: ==.

5) Implication and equivalence in the order (highest to lowest): ~, <=> .

2.1.3 Definitions

Definition 2.1: Multiset

A multiset M over a set S is a function M: S ~ N , where N is the set of

natural numbers. An element x in M is denoted by x E M . If x E M then

M (x) > 0, otherwise M (x) = O. In other words, M(x) specifies the number of

occurrences of x in M. For example, if M = {a,a,b,c} then M(a) = 2, M(b) = 1,

M(c) = 1. A multiset M over a set Sis finite if M(x) > 0 for a finite number of

x ES. The set of distinct elements of a multiset M is denoted by Set(M), and

defined as Set(M) = {x: M(x) > O}.

The set operations are extended to multisets as follows.

(i) Existence:

XEM <=>M(x»O.

Xf1.M <=>M(x)=O.

(ii) Cardinality:

IMI= IM(x).
XES

(iii) Emptiness:

M ={} <=> IMI=O.

Suppose MI and M 2 are multisets over a set S.

(iv) Proper submultiset:

MI c M 2 <=> "Ix ES: M 2 (x r~ MI (x) and 3y ES: M 2 (y) > MI (y) .

(v) Submultiset:

MI c M 2 <=> "Ix ES: M 2 (x) ~ MI (x) .

Chapter 2 - Preliminaries

(vi) Union:

M) u M 2 <=> \:Ix E S :(M) uM2)(x) = M) (x) +M2 (x) .

(vii) Intersection:

M) nM2 <=> \:Ix ES: (MI nM2)(x) = Min(M) (x),M2 (x)) .

(viii) Difference:

M) \M2 <=> \:IxES:(M) \M2)(x) = Max(M](x)-M2(x),O).

13

In set theory, given the sets S={Ap ... ,An} and T={Bp ... ,Bm}, with n,m~l,

the set (S\{Ap- .. ,A;})u(T\{Bp- .. ,B)),where l~i~n and l~j~m,isequal

to the set (SuT)\{Ap- .. ,A;,Bp ... ,B) [Borowski & Borwein 1991]. We calI it

the special DU law1
• This Iaw also applies to muItisets.

Definition 2.2: List and sequence

A Iist is a countable (possibly infinite) ordered muItiset. A list is denoted by

f = (PI'" "Pn)' where f3p""Pn are its elements. An empty list is denoted by

(). A sequence is a list where each element is computed based on previous

elements in the sequence. The length of a Iist is the number of elements in the Iist

and is denoted by Ifl, where f is a list. For example, if f = (PI' .. " f3n) then

IRI=n.

Definition 2.3: Term

A term is a variable, or an n-ary function of the form ! (fI'" .. , t n), where n ~ 0

and tl' ... ,tn are terms. The terms tl' ... ,tn are the arguments of the function and!

1 DU stands for difference-union law. We calI it special because in general, if A, B, C, D are sets,

then (A\B)u(C\D)*(AuC)\(BuD). E.g. A={1,2}, B={1,4}, C={4,6}, D={5}.

(A \ B)u(C\ D) = {2,4,6}, (A uC) \(Bu D) = {2,6}. However, in the special case where

B ç A and D ç C, DU law is true.

Chapter 2 - Preliminaries 14

is the function symbol. A constant is a function with arity 0, i.e., without any

arguments. The countably infinite set of variables is denoted by <V. The (finite or

countably infinite) set of function symbols is denoted by 'F . The set of all terms

that can be formed from <V and r is denoted by T(<V,r). A formaI and

detailed explanation of the term algebra T(<V,r) is given in [Gallier 1986]. A

ground term is a term with no variables.

Following the conventions used in many textbooks such as [Newbom 2001],

[Sekar et al. 2001], [Bi bel 1987], [Gallier 1986], [Loveland 1978], [Chang & Lee

1973], we use (possibly with subscripts) the letters u, v, w, x, y, z to denote

variables, a,b,c to denote constants, and f,g,h to denote functions with arity

greater than zero.

A term is drawn as a tree. A constant or a variable occupies a single node. A

function with one or more arguments is drawn as a tree rooted at the function

symbol with its children being the arguments of the function. A tree

representation ofthe term f(a,g(a,y),x) is shown in Figure 2-1.

Figure 2-1: A tree representation ofthe term f(a,g(a,y),x).

Chavter 2 - Preliminaries 15

Definition 2.4: Subterm

A term s is a subterm of a term t, denoted l by SEo t, if s = t or s occurs in t.

Therefore, a term is a subterm of itself. s ~o t denotes s is not a subterm of t.

Definition 2.5: MuItiset of arguments

The muItiset of arguments of a function term t is denoted by Args(t). For

example, Args(f(a,a,x,g(b)) = {a,a,x,g{b)} and Args(a) = {}.

Definition 2.6: Term symbol

The term symboI of a variable is the variable itself. The term symboI of a

function is the function symbol.

Definition 2.7: Weight of a term

The weight of a term t, denoted by Weight(t), is the number of term symbols

within it. When a term is represented as a tree, the weight of the term is the

number ofnodes in the tree. The function Weight(t) is computed recursively as

Weight(t) = {I IArgs(t)1

1 + l We ight (s;), where s; E Args(t)
;=]

Example 2.1:

Weight{a) = 1.

Weight{g{f(x,y),g(a,x)) = 7 .

if t is a variable,

if t is a function.

1 We add the 0 (i.e., occurrence) to the symbol E to differentiate it trom the membership relation
used on sets and multisets.

Chapter 2 - Preliminaries 16

Definition 2.8: Maximum term depth

The maximum term depth of a term t, denoted by MaxDepth(t) , is defined

recursively as

MaxDepth(t) = {: + Max {MaxDepth(s)}
sEArgs(t)

Example 2.2:

MaxDepth(f(x)) = 2.

MaxDepth(f(g(x,a,y),b)) = 3.

MaxDepth(f(f(a,g(c,y)),f(a,x))) = 4.

Definition 2.9: Position

if t is a constant or a variable,

if t is a function.

A position is either the empty string 8, or a string of the form i.7r', where i E N

and 7l' is a position. The subterm at position 7l of a term t is denoted by tl". If t

is a variable or a constant, then there is only one valid position 7l in t, and that is

7l = 8 . If t = f(tl' .. ·,ln) , where n ~ 1, then

if 7l = 8,

if 7l = i.7l', where 1:::; i:::; n.

For example, if t = f(g(a,b,c,h(x));y) and 7l = 1.4.1 then tL_ = x. A position

1l is invalid with respect to a term t if there is no subterm in t at position 7l. The

result is the empty string 8. For example, if t = f(a) and 7l = 1.2, then 7l is

invalid with respect to 1 and 11 = 8.
1.2

Chapter 2 - Preliminaries 17

Definition 2.10: Term replacement

If q EO t then the term obtained by replacing aIl occurrences of q in t with the

term s is denoted by I[q ~ s]. If the subterm q at position li in t is replaced by s ,

then the resulting term is denoted by t[q ~ s 1, .. If the subterm at position li is

not important, then t[s]Jr denotes the term obtained by replacing whatever

subterm in t at position li with s.

Definition 2.11: Atom

An atom is an n-ary predicate of the form P(tp ... ,tn), where n ~ 0 and tp- .. ,tn

are terms. The terms tl' ... ,tn are the arguments of the predicate and P is the

predicate symbol. If n = 0 then the atom is a propositional constant.

Definition 2.12: Literai

A literai is an atom or its negation. The negation of an atom is represented as an

atom preceded by the negation sign ... A positive literaI is an atom and a

negative literai is a negated atom. An atom with an equality predicate is written

as 1 =:: r , where 1 and rare terms. Its negation, .. (1 =:: r), is written as 1 * r . A

ground literai is a literaI that contains no variables. The multiset of arguments of

a literai L is denoted by Args(L).

Definition 2.13: Weight of a literai

The weight of a literai L, denoted hy Weight(L), is the sum of the weights of its

arguments plus one, i.e.,

IArgs(L)1

Weight(L) = 1 + L Weight(sJ, where Si E Args(L) .
i=1

Chamer 2 - Preliminaries 18

Definition 2.14: Maximum literai depth

The maximum literai depth of a literaI L, denoted by MaxDepth(L), is the

maximum depth of any of its arguments:

MaxDepth(L) = {O Max {MaxDepth(s»)
sEArgs(L)

Example 2.3:

MaxDepth(-.P) = 0 .

MaxDepth(P(f(x),g(f(a)),y) = 3.

Definition 2.15: Clause

if IArgs(L)1 = 0,

if IArgs(L)1 > o.

A clause is a disjunction of literaIs, L. v ... v Ln (logical representation), or a

finite multiset of literals, {L., .. ·,Ln} (multiset representation). We use both

representations depending on the context.

Definition 2.16: Special clauses

A positive clause is a clause whose literaIs are aIl positive literaIs.

A negative clause is a clause whose literaIs are aIl negative literais.

The empty clause is a clause that has no literais. It is denoted by rjJ.

A unit clause is a clause with one literaI.

A Horn clause is a clause with at most one positive literaI.

An equation is a unit clause whose only literai is a positive equality literaI.

A disequation is a unit clause whose only literai is a negative equality literaI.

A ground clause is a clause with no variables in any of its literais.

Chaoter 2 - Preliminaries 19

A proposition al clause is a clause where the atorns of its literaIs are propositional

constants.

An ordered clause is a clause whose literaIs are ordered according to sorne

ordering relation. Therefore, an ordered clause is a list.

Definition 2.17: Normalized clause

A normalized clause is an ordered clause whose variables follow a certain

narnirig convention. In this thesis we assume the following variable narning

convention. In exarnples where the nurnber of distinct variables in the clauses is 6

or less, we use the narning order x,y,z,u, v, w. If the nurnber of distinct variables

is bigger than 6, we use the narning order XJ ' X2' X3, • .••

Definition 2.18: Length and weight of a clause

The length of a clause C, denoted by Len(C), is the nurnber of literais in it. Since

C is a rnultiset of literaIs then Len(C) = ICi. The weight of a clause, denoted by

Weight(C), is the surn of the weights of aIl its literaIs;

Ici
Weight(C) = IWeight(LJ, where Li E C.

i=J

A clause is said to be too long if its Iength is greater than a lirnit that is either

set by the user or autornatically chosen by the ATP. Sirnilarly, a clause is said to

be too heavy if its weight is greater thari a specified lirnit irnposed by the A TP or

set by the user.

Chapter 2 - Preliminaries

Example 2.4:

Weight(-,Pv Q(x,f(y))) = Weight(-,P) + Weight(Q(x,f(y))) = 1 +4 = 5.

Weight(-,Q(x) v -,Q(x) v P(x, y))

= Weight(-,Q(x) + Weight(-,Q(x) + Weight(P(x,y)

=2+2+3

=7.

Size(Pv Q) = 2.

Size(P(a) v Q(x, y) v Q(x,y)) = 3.

Size(fjJ) = o.

Definition 2.19: Clause attribute

20

A clause attribute1 is a characteristic of a clause. It can be a tenu, literaI, a

Boolean value, a real value, an integer value, etc. The set of aIl attributes of a

clause C is denoted by ..1l(C) and the subset of ..1l(C) where the attributes are

real numbers is denoted by ..1l]R (C) .

Sorne clause attributes are the foIlowing.

• The weight of a clause.

• The length of a clause.

• The number of distinct variables in a clause.

• The number of function symbols in a clause.

• The maximum depth of any literaI in a clause.

• The number of positive literaIs in a clause.

• The number of negative literaIs in ,a clause.

• A term in a clause.

• A literal in a clause.

• A position in a literal in a clause.

1 A clause attribute is similar to a c1ausefeature defined in [Chang & Lee]973] and [Schulz 2000]
but more generaJ. A feature is a number. An attribute can be a number or a Boolean, term, literaI,
etc.

ChaDter 2 - Preliminaries 21

• The depth at which a clause was generated in a linear derivation (see

Definition 2.31):

• The existence of an equality literaI.

• The ratio of the number of distinct variables to the total number of

variables in a clause.

Definition 2.20: Interpretation, model, satisfiability, tautology

An interpretation lof a set of clauses S, ISI ~ l, consists of a non-empty domain

D, and it gives meaning to constants, functions and predicates by relating them to

D as follows.

• Each constant is assigned an element from D.

• Each n-ary (n > 0) function symbol is assigned a mapping from Dn to D.

• Each proposition is assigned a value from the set {faise, true}.

• Each n-ary (n > 0) predicate symbol is assigned a mapping from Dn to

the set {faise, true}.

If there is an interpretation 1 that makes a set of clauses S true, then S is

satisfiable or consistent, and the interpretation 1 is a mode) of S. A clause that is

satisfied by aIl interpretations is a tautology. If no interpretation makes S true,

then S is unsatisfiable or inconsistent.

Definition 2.21: Substitution sets

A substitution set, denoted by one of the Greek symbols a,B,p, represents a

mapping of variables to terms. A finite substitution set has the form

a={v] ~tp ... ,vn ~tn}, where n~O, vp ... ,vn are variables, and tl' ... ,tn are

substitution terms. If n = 0 then a = {} is the empty substitution. The set

Dom(a)={v" ... ,vJ is the domain of a and the set Ran(a)=Set({tp- .. ,tn}) is

Chavter 2 - Preliminaries 22

the range of u. The size of a substitution set u is lui = IDom(u)l. A variable

renaming substitution set is a substitution set where aIl the substitution terms are

variables.

Definition 2.22: Composition of substitution sets

Given the substitution sets u={v] --)fp""vn --)tn,u] --)tn+p""ui --)tn+J and

distinct, and 0 ~ i ~ m where i = 0 means that u = {v] --) 1] " .. , V n --) ln} , then the

composition uB as defined in [Loveland 1978] is

Definition 2.23: Idempotent substitution set

A substitution set u = {v] --) 11" .. , V n --) ln}, where n ~ 1, is idempotent if for aIl

1 ~ i, j ~ n, vj ~o l,. In other words, a substitution set is idempotent when the

substitution terms in a substitution set contain no variables belonging to the

domain. In [Bibel 87] the author defines an idempotent set follows: if uu = a

then a is idempotent.

It is easy to conclude from the definition of the composition of substitution sets

that the composition of two or more idempotent substitution sets is idempotent.

If u,B,J1 are three idempotent substitution sets then the composition aBJ1 IS

associative uBJ1 = (uB) J1 = a(BJ1) [Loveland 1978].

Definition 2.24: Circular substitution

A substitution set u = {v] --) II" •• , V n --) ln}' where n ~ 1, is said to contain a

circular substitution if there exits a subset {Vi --) li , ... , Vi --) li } cu, where
) 1 k k-

Chapter 2 - Preliminaries 23

1 :::; k :::; n , for aIl 1:::; j :::; k, 1:::; iJ. :::; n, such that Vi EO 1; , ... , Vi EO t, ,Vi EO ti and
2 1 k k-I l "

at least one of the fi, , ••• ,f
ik

is a function with arity greater than zero. For example,

0" = {x ~ f(x)} and 0" = {x ~ y,y ~ f(z),z ~ x, w ~ a} contain circular

substitutions.

Definition 2.25: Application of substitution set, instance, and variant

Let A be one of the following: a term, a literaI, a clause, a set of clauses or a

substitution set. Applying a substitution 0" to A means that the variables in A

are replaced by the corresponding substitution terms from 0". This is denoted by

AO" . An instance of A is obtained when sorne substitution set is applied to it. A'

is called a variant of A if A' = AO" and 0" is a variable renaming substitution.

Vars(A) denotes the set of aIl distinct variables in A. If 0" is a substitution set,

then DomA (0") = Vars(A)n Dom(O").

Definition 2.26: Unifier, most general unifier and unification

If Il and t2 are terms then a substitution set 0" is a unifier if tlo" = t20" • Similarly,

if ~ and L2 are literais then a substitution set 0" is a unifier if ~O" = L20" • In

other words, a unifier is a substitution set that when applied to two terms or

literais makes them identical. The definition of a unifier can be extended to any

number of terms or literais.

The most general unifier (mgu1
) is the unifier having the least number of

substitutions and still makes two or more terms or literais equal. Formally, if 0" is

the most general unifier of two or more terms or literais, then for every other

unifier () of these two or more terms or literaIs, there exist a substitution set fl

such that () = O"fl • If fI"'" t n' n;?: 2 , are terms and 0" is the mgu of those terms,

1 We write the plural of mgu as mgu 's rather than mgus. This is suggested by English prof essors
and technical writing experts.

Chapter 2 - Preliminaries 24

then we write (}=mgu(tp ... ,tn), i.e., tj(}= .. ·=tn(}. Similarly, if ~, ... ,Ln'

n ~ 2, are literaIs and () is the mgu of those literaIs, then we write

() = mgu(~, ... , Ln)' i.e., ~() = ... = Ln(}' Unification is the process of finding an

mgu of two or more terms or literaIs.

Definition 2.27: Complementary literaIs

Two literaIs LI and L2 are said to be potentially complementary literaIs if there

exist an mgu (), such that ~() =,L2(}. Two literaIs ~ and ~ are

complementary literais if ~ =.....,~ .

Definition 2.28: Theorem

Given a set of clauses S = {CI" ",Cn } and a clause G, Gis a logical consequence

of S (or S enta ils G) if and only if every interpretation that is a model of S is also

a model of G. If G is a logical consequence of S, then CI /\ ... /\ Cn => G is a

theorem, S is the set ofaxioms, and G is the conclusion of the theorem. To

prove a theorem is to show that G is a logical consequence of S. Since we are

concerned only with refutational theorem proYers, then to prove a theorem is to

show that CI /\ ... /\ Cn /\.....,G => f), i.e., CI /\ ... /\ Cn /\.....,G has no model.

Definition 2.29: Inference rule and inference system

An inference rule is an n + l-ary relation on clauses written as

CJ".Cn 'f
1 r,

C

where CI",Cn are the premises, C is the conclusion, and r is a set of

conditions. An inference rule is sound if and only if the conclusion is logically

implied by the premises. We are only interested in sound inference rules.

Chavter 2 - Preliminaries 25

Henceforth, unless explicitly stated otherwise, the use of the words "inference

mIe" imply "sound inference mIe". An inference, denoted by I, is an instance

(an application) of an inference mie. The multiset of the clauses used as premises

in an inference I is denoted by Prem(I) and the conclusion by C(I). An

inference system is a set of inference mies.

Definition 2.30: Deduction, derivation, refutation, proof

A deduction of a clause D from a given set of clauses S is a sequence

(CI" .. , Cn) , where n > 0 and for aIl, Ci is a logical consequence of

Su{CI'" .,Ci_I}, and D = Cn • A derivation1 of a clause D from a given set S of

clauses is a sequence of inferences (1;, ... , I"), where n > 0 and for aIl 1 ~ i ~ n ,

each clause in Prem(J;), is either in S or is a logical consequence of

SU{C(1;), ... ,C(J;_I)}' and D = C(I,,). D is referred to as a derived clause. The

clauses in Sare referred to as input clauses. A refutation is a derivation of the

empty clause. In the context of resolution-refutation, a proof is a refutation.

A derivation of a clause is graphically represented by a tree. Figure 2-2 is an

example of a derivation of a clause D from a set S = {CI'C2,C3,C4,C5,C6}' The

root no de is D, aIl internaI nodes are derived clauses, and the Ieaves (heavily

marked) are input clauses.

1 The words deduction and derivation are used interchangeably in many references and the
standard definition is the one we use for "deduction". However, we define "derivation" differently
from deduction for the purpose of simplifying our presentation of the topics in this thesis. Our
defmition of derivation explicitly states the instances of the rules used in a deduction. Therefore,

each Ii appearing in the sequence (II' ... ,IJ represents the premises, the conclusion, the mgu,

etc. Whereas, the sequence (CI"'" C
n
>, does not imply the additional information we need in

order to present our ideas (such as delayed clause-construction, etc.) in a simple way.

Chaoter 2 - Preliminaries 26

Input clauses

Figure 2-2: A graphical representation of a derivation.

Definition 2.31: Linear derivation

A Iinear derivation of a clause D from a given set of clauses S is a derivation

(I; , ... , I;,) , with the following properties:

• One of the premises of I; is called the initial clause and is denoted by

• For aIl 2 ~ i ~ n, one clause of PremCI;), caIled the main premise, is

CCI;-l)' The clauses C(l;), .. . ,CCI;,-l) are intermediate conclusions

derived, respectively, at depths t ... , n -1 .

• For aIl 2 ~ i ~ n , the clauses Cinil , CCI;), ... , CCI;_I) are called ancestors of

CCI;) .

• D = C(In) is the final conclusion.

Chapter 2 - Preliminaries 27

• For aIl 1 ~ i ~ n , aIl the premises of I, except for the initial clause and the

main premise are caIled side premises. The multiset of side premises is

denoted by V(I,) and is determined as foIlows:

{prem(~) \ C;nl

• V(I,) = 1

Prem(I,) \ C(I,-J)

i = l,

2 ~ i ~ n.

• For aIl 1 ~ i ~ n, every clause in V(I,) is either a variant of a clause from

S or a variant of an ancestor clause.

• If C(I,) E V(Ij) , where 1 ~ i ~ n - 2 and j > i + 1, then C(I,) is called a

far parent of C(~) .

Definition 2.32: Input derivation

An (linear) input derivation of a clause D from a given set of clauses Sis a linear

derivation (~, ... , I,,) in which every si de premise is a variant of an input clause,

i.e., for ail 1 ~ i ~ n, if CE V(I,) then ce ES, where e is a variable renaming

substituti on.

Definition 2.33: Completeness

An inference system 1 is complete if and only if given a set of clauses S, any

clause that is a logical consequence of Scan be derived from S using the inference

rules in /.

An inference system 1 is refutation complete if and only if given any

unsatisfiable set of clauses S, it can shown using the inference rules in 1 that S has

no mode!. In other words, an inference system 1 is refutation complete if and only

if the empty clause can be derived from any unsatisfiable set of clauses by

applying the inference rules in /.

Charter 2 - Preliminaries 28

Definition 2.34: Redundancy

A clause C is said to be redundant in a set of clauses S if and only if there exist a

subset T of S where each clause in T is shorter than C and T entails C.

Definition 2.35: Resolution-based A TP

A resolution-based A TP is an A TP that is based on the resolution calculus

formed from binary resolution and binary factoring (see section 2.1.4 Inference

mIes). A resolution-based ATP may include other inference mIes.

Definition 2.36: State of completeness

We say, an ATP maintains its state of completeness after it is subjected to a

number of modifications, to mean that if the ATP is refutation complete then it

remains refutation complete and if the A TP is not refutation complete then it may

or may not become refutation complete but it would still be able to prove aIl the

theorems that it used to prove before the modifications have been made.

Definition 2.37: Inference rate

The inference rate of an A TP is the number of inferences performed in a unit of

time. The unit of time is usually a second.

2.1.4 Inference rules

A list of the inference mIes that are relevant to our work are listed below. In order

to simplify the presentation of the mega-inference in Chapter 3, we express these

mIes in a manner that is slightly different from the conventional representation

found in [Riazanov 2003], [Robinson & Voronkov (1) 2001], [Robinson &

Voronkov (2) 2001], [Schulz 2000], [Loveland 1978], and [Chang & Lee 1973].

The differences in the representation can be summarized as follows.

Chapter 2 - Preliminaries 29

• We use the multiset representation of clauses rather than the disjunction of

literaIs.

• We make use of the special DU law to express the conclusions of the

inference rules below as a multiset difference between clauses and their

literaIs.

• We do not include details (e.g., equality literaIs, terms at particular

positions, ...) about the contents of the clauses when listing the premises.

The details are listed in the conditions of the inference rule (beside or

below the rule).

In any inference rule stated below, the variables between the premises are not

shared. In other words, in an inference I, if C E Prem(I) and D E Prem(I)

then Vars(C) n Vars(D) = {} .

BINARY RESOLUTION:

if AEC] and -,BEC2 and

(J" = mgu(A, B) .

The conclusion is called a resolvent and the clauses C] and C2 are its parents.

The positive literaI A and the negative literaI -,B are said to be resolved away

or resolved upon.

BINARY FACTORING:

c if {~,L2} c C and

(J" = mgu(~ , L2) •

Chavter 2 - Preliminaries 30

The conclusion is called a factor. L2 is the factored out literaI. If binary

factoring is performed on a derived clause and a = {}, then the conclusion is

called a merge clause.

HYPERRESOLUTlON:

C .. ·C 1 n

if n ~ 2 and

CI" .. , Cn_1 are positive clauses and

Cn contains n -1 negative literaIs (the rest are positive literaIs) and

For aIl 1 ~ i,j ~ n-l, if i =t: j then Dom(a)nDom(a) = {} and

The conclusion is called a hyperresolvent. The clauses CI"'" Cn_1 are caIled

satellites, and Cn is called the nucleus.

Negative hyperresolution is similar to hyperresolution. Instead of n-l

negative literaIs in the nucleus, there are n -1 positive literaIs, and the satellites

are negative clauses.

PARAMODULATION:

C'u{L} D

«C' u{L[t ~ r]7r} u D) \{l:::::. r})a

if LI7r = t and

(l:::::.r)ED and

a = mgu(t,l).

The conclusion is called a paramodulant. D is called a paramodulator or from

clause. C'u {L} is called a paramodulated clause or into clause.

Chapter 2 - Preliminaries 31

Paramodulation has gone through many refinements since its introduction in

[Robinson & Wos 1969-1] and [Robinson & Wos 1969-2]. A summary of the

successful contributions made throughout the past several decades on

paramodulation and equality reasoning in general can be found in [Nieuwenhuis

& Rubio 2001] and [Degtyarev & Voronkov 2001].

The refinements to paramodulation add restrictions in the set of conditions.

The versions of paramodulation that include additional conditions to the ones

stated above are commonly referred to as restricted paramodulations, whereas

the above stated mIe is referred to as unrestricted paramodulation. In this

thesis, unless the word "restricted" or "unrestricted" is specifically stated, the use

of the word "paramodulation" refers to any kind of paramodulation; whether it is

restricted or unrestricted. One commonly used restricted paramodulation in

modern theorem proYers, such as Vampire [Riazanov 2003] and E [Schulz 2002],

is superposition.

Since superposition is a restricted paramodulation, then the terminology,from

clause and into clause, apply to superposition as weIl.

SUPERPOSITION INTO NON-EQUALITY LlTERAL:

C'u{L} D

if Litt = t and

(l :::::.r)E D and

(J" = mgu(t,l) and

t ~ 11 and

1 (J" -1< r(J" •

Chavter 2 - Preliminaries

SUPERPOSITION INTO A POSITIVE EQUALITY LITERAL:

C'u{L} D

«C'u{L[q ~ r]J u D) \ {I ~ r})o-

if L =. (s ~ t) and

q EO sand

LI" = q and

(l ::::.r)E D and

0- = mgu(q,/) and

q ~ l' and

10- -1< ro- and

so- -1< to- .

SUPERPOSITION INTO A NEGATIVE EQUALITY LITERAL:

C'u{L} D

«C' u{L[q ~ r],,} U D) \ {/::::. r})o-

EQUALITY RESOLUTION:

C

(C\{/*r})o-

if L=.(s*l) and

q EO sand

LI" = q and

(l::::. r) E D and

0- = mgu(q,l) and

q~1' and

10- -1< ro- and

so- -1< 10- •

(l *r)E C and

0- = mgu(l,r).

32

Chapter 2 - Preliminaries

EQUALITY FACTORING:

2.1.5 Simplification rules

if ~ ==(lj ::::lj) and

L2 == (12 :::: r2) and

a = mgu(lp 12) and

33

Simplification rules are used on multiset of retained clauses to remove redundant

clauses and tautologies. In addition, simplification rules are used to replace sorne

clauses by smaller ones, e.g., demodulation (defined below).

In the following list of simplification rules, we state the rule and then indicate

the resulting multiset S'of retained clauses from the original multiset S after the

application of the ruIe.

DEMODULATlON:

C'v{L} D

(C'v{L[t ~ r],,})a

if D = {/:::: r} and

LI". =t and

a = mgu(t, 1) and

t = la (t is an instance of l) and

1,;- rand

la ';- ra.

Retained multiset: S' = (S\ {C'v{L} })v{(C'v{L[t ~ r]".})a}.

The clause (C' v {L[t ~ r],,})a is -called a demodulant. D is called a

demodulator. C'v{L} is called an into clause or demodulated clause.

Demodulation is a restricted paramodulation ruIe in- which the replaced term t in

the demodulated clause is an instance of the term 1 in the demodulator. In addition

Chavter 2 - Preliminaries 34

to the restrictions over the unrestricted paramodulation, demodulation replaces the

demodulated clause by the demodulant.

DESTRUCTIVE EQUALITY RESOLUTION:

C

(C \ {I =/:- r})a

if (1 =/:- r) E C and

1 Ell and

a = mgu(l,r) = {I ~ r}.

Retained multiset: S' = (S \ {C}) u {(C \ {I =/:- r})a}.

SUBSUMPTION:

If CES, DES, and there exists a substitution a such that Ca cD, then C

subsumesD.

Retained muItiset: S' = S \ {D} .

SUSBSUMPTION RESOLUTION:

~ and L2 are literaIs.

if C = C' u {~} and

D = D'u{L2 } and

There exists a substitution a :

~a = -,L2 and

C'a cD' .

Retained muItiset: S' = (S \ {D}) u {(D \ {L2 na} .

T AUTOLOGY DELETION:

If CES and C = C' u {A, -.A} or C = C' u {s :::::; s}, then C is a tautology.

Retained muItiset: S' = S \ {C} .

Chauter 2 - Preliminaries 35

2.2 Summary

In this chapter we presented the basics of first-order logic required for an

understanding of this thesis. We listed the cornrnon inference rules used in

modern ATPs in a rnultiset representation to sirnplify the presented rnaterial in

Chapter 3.

CHAPTER

3

Delayed Clause-Construction

In an ATP, a derived clause can be stored either explicitly as a data structure that

contains references to its literaIs and their terms or implicitly in a data structure

that contains references to the clauses from which it was derived. A clause stored

explicitly in memory is referred to as a constructed clause, otherwise it is referred

to as a non-constructed clause. Clause construction is the process performed by

an A TP to transform a non-constructed clause into a constructed clause.

Discarding a clause C is a two step process performed by an A TP. The first

step is the construction of aIl the non-constructed clauses referring to C. The

second step is the deletion of C from memory.

In a linear derivation a large number of intermediate conclusions are generated

and discarded shortly thereafter, because they are a means to an end (which is a

goal clause). The time spent in constructing and discarding intermediate

conclusions can be substantial. The use of a stalling strategy called delayed

clause-construction (DCC) can reduce this time to a minimum by delaying the

construction of intermediate conclusions until they are needed. However, there are

cases where intermediate conclusions must be constructed.

In this chapter, we begin by a brief discussion on the benefits of DCC and how

it differs from other similar research done recently. We then introduce certain

terms that are necessary to present a formaI definition of delayed clause­

construction. We state and discuss the cases in which intermediate conclusions

must be constructed. We then derive a general formula for expressing an

Chavter 3 - Delaved Clause-Construction 37

intermediate conclusion in terms of constructed clauses, a single substitution set,

and a single term replacement list. Finally, as a consequence of the derived

general formula, we construct a mega-inference rule that combines several rules

into one.

3.1 Benefits of DCC

3.1.1 Performance improvement

The construction time of an intermediate conclusion is linear in its weight. When

a few hundred or thousand short clauses are constructed and discarded, the overall

performance of an ATP may not be affected much (see Chapter 6). However,

when hundreds of thousands of long clauses are constructed, then the overall

performance is affected a lot. The time spent in constructing and discarding

intermediate conclusions can be substantial. The results of the experiments we

conducted (see Chapter 6) reveal that the percentage oftime spent in constructing

clauses can reach 65% of the total running time. By comparison with unification,

which is considered as one of the most time consuming operations in an ATP, the

time spent in constructing clauses is 4.86 times, on average, more than the time

spent in unification (see Appendix F). This implies that clause construction can be

a more time consuming process than unification. Therefore, the use of DCC to

reduce the time spent in constructing clauses can improve the performance of an

ATP (see Chapter 6).

3.1.2 The reduction of memory requirements
When DCC is employed in an A TP, intermediate conclusions are represented in a

compact form that uses less memory than the amount needed to store the

intermediate conclusions in their constructed form. A reduced representation of

derived clauses, which is different from ours (see Chapter 6), was also

accompli shed in WALDMEISTER [Gaillourdet et al. 2003], [Hillenbrand & Lochner

Chavter 3 - Delaved Clause-Construction 38

2002]. However, in W ALDMEISTER, the clauses are constructed first, in order to

detennine infonnation useful for a heuristic assessment, and then they are

"thrown l
" away except for minimal infonnation that allows the ATP to

reconstruct the clause if necessary. In DCC clauses are generally not constructed

except in few cases which are discussed in this chapter.

3.1.3 Efficiency improvement

Based on the theorems and corollaries presented in this chapter, we constructed an

inference ruIe, called a mega-inference rule, that combines several inference rules

into one. The main purpose of a mega-inference rule is to take large steps in a

search, thereby improving the efficiency of an ATP. Examples showing the

benefits of taking large steps in a search are given in [Wos et al. 1992]. The oldest

example of combining multiple inference mIes into one single inference mIe in

order to achieve Iarger steps in a search is hyperresolution. More recent examples

are s-paramodulation [Benanav 1990], the linked inference principle [Veroff &

Wos 1992], and the extended link strategy [Jeff Ho 1999]. However, alI of the

aforementioned references combine multiple applications of a single inference

ruIe, such as binary resolution or paramodulation in one rule. The mega-inference

rule combines different inference rules into one.

3.2 Definitions

In this section, we present the fonnal definitions for term replacement list, p­

idempotent substitution set, constructed and non-constructed clause, goal clause,

and delayed clause that are prerequisites for the understanding of delayed clause­

construction.

1 This is the term used in [HiIIenbrand & Lochner 2002].

Chavter 3 - Delaved Clause-Construction 39

Definition 3.1: Term replacement list

A terrn replacement list is a relation between positions in literaIs and terms. A

finite terrn replacement list has the forrn

- -
where n?:O, 7rp .•. ,7rn are, respectively, valid positions in the literaIs ~, ... ,Ln

of sorne clauses, and tp ... ,tn are, respectively, the terrns replacing the terrns at

positions 7rp- .• , 7r n in L" ... , in. The terrns being replaced are not important as

long as the positions are valid. The empty term replacement list is denoted by

r = (); in this case n = o. The literaIs L" ... , in are references (pointers) to

specifie literaIs in sorne clauses stored in memory; the little arrow ~ on top is

added to emphasize that. This specifie referencing is necessary for the following

reasons.

• If r is applied to an ordered clause that contains identical literaIs, then only

the literaI referenced by a literaI in r is changed.

• If r is applied to a multiset of clauses and any two clauses in this multiset

contain identicalliterals, then only the literaIs specifically referenced by r are

changed.

Sorne properties of r = (L, L, -) tl , ••• , in Ln -) t n) are the following:

• Sorne or aIl of L, 1 , ... , in 1 may be the same. Therefore, {L, 1 , ... , in 1 } is
KI Jrn KI trn

a multiset.

• Dom(r) = Set({L, 1"., , ... , in 1"." }) denotes the domain of r .

• L(r) = Dom(Dom(r)) = Set({L" ... ,in }).

• Ran(r)=Set({tp ... ,tJ) istherangeofT.

Chapter 3 -- Delayed Clause-Construction

Definition 3.2: The application of a term replacement list to a clause

The application of r to a clause C is denoted by Cr . If C = tjJ then Cr = tjJ •

Suppose C={Ap ... ,Am}, m>û and r=(Zllffl -Hp ... ,LnLn ~tn).

Cr is formed as follows.

1. Make a copy of C and call it C' = {A/ , ... , Am'} .

2. For i:= 1 to n

If Li = AJ for sorne 1 S j sm then

Replace A/ with A/[tJJl",

3. Retum C'

C' is Cr.

40

Line 2 checks if Li is pointing to a literaI in C, then the corresponding literaI in

C' is changed.

Example 3.1

C = {AI,A2,AJ = {P(f(a,b)),-,Q(a,x),P(f(a,b))}.

r = (AllI ~ g(b),A2Il ~ b,Allu ~ g(c),A3 1J.2 ~ d, A4 11.2 ~ d,Allu.1 ~ d).

Make a copy of C and caII it C' .

C' = {A/, A2' ,A3'} = {P(f(a,b)), -,Q(a,x),P(f(a,b))}.

Table 3-1 Iists the iterations perforrned to obtain Cr.

Chapter 3 - Delaved Clause-Construction 41

Table 3-1: Example of an application of a term replacement Iist to a clause

Iteration Old literaI Position
Replacement

New literaI
term

1 AI' = P(f(a,b» 1 g(b) AI' := P(g(b»

2 A
2
' = -,Q(a,x) 1 b A

2
' := -,Q(b,x)

3 AI' = P(g(b» 1.1 g(c) ~' := P(g(g(c»)

4 Al' = P(f(a,b» 1.2 d Al' := P(f(a, d»

5 A. ~ C so nothing happens

6 ~' = P(g(g(c») 1.l.l d AI' := P(g(g(d»)

Cr = C' = {A/, A2' ,A3'} = {P(g(d(d))),-.Q(d,x),P(f(a,d))}

In Table 3-1, every entry in the old literai column is a literaI from C' before a

terrn replacement is made. The corresponding entry in the new literai column is

the literaI after the terrn replacement is made. The new literaI becomes the old

literaI the next time a terrn replacement is done to this literaI. For instance, on the

tirst iteration, A/ is equai to the original literai Al before the terrn f(a,b) at

position 1 is replaced with g(b). The new literaI P(g(b)) becomes the old literaI

at iteration 3.

Partitioning property. Every terrn replacement list r can be partitioned into

sequences rpo .. , rn , where n = 11:(r)l, aÎld

for all 15, i,j 5, n, if i * j then 1:(r;)Il 1:(r) = {},

such that if a and fJ are elements of r, and a occurs before p, then if a and

fJ are in the same partition r
J

, 15, j 5, n, then a occurs before fJ in r j .

Chavter 3 - Delaved Clause-Construction 42

Furthennore, the sequences 'l"'" 'n can be applied in any order to a clause C and

the result would still be Cr. For instance, in Example 3.1, the partitions are:

rI = (AllI ~g(b),AIIII ~g(C),A111.I1 ~d),

r2 =(A211 ~b),

r 3 = (A311.2 ~ d) ,

r4 = (A411.2 ~d).

These partitions (sequences) can be applied in any order to C and the result would

still be equal to Cr. For example, ((C'I)r2)r3)r4 = «(C'4)r2)rl)r3 = Cr.

The ability to partition a tenn replacement list into sequences is a very useful

property for an efficient implementation of the application of a tenn replacement

list to a clause. For example, as will be shown later in de1ayed clause­

construction, most of the time only one or two literaIs need to be changed from

one application of an inference rule to another. Because of the partitioning

property of a tenn replacement list, only the partitions related to those literaIs

need to be applied to those literaIs. Furthennore, optimizations on the application

of a sequence can be done based on the positions. For example, if a tenn at

position 1.1 in sorne literai appears severa! times in one of the sequences, then

only the last one is applied. There is no need to apply the others. This is

demonstrated in Example 3.2.

Example 3.2

C = {~,L2} = {P(a,b),Q(x)}.

r=/1.1 ~g(a),1.1 ~g(a),1.1 ~b,1.1 ~c).
\1 LI Il 1

c, = {P(c,b),Q(x)} .

There is no need to go through aIl of, in order to obtain the correct value for

Cr. Since r contains only references to literai ~, then only one partition is

Chapter 3 - Delaved Clause-Construction 43

formed. This partition is equal to r itself. The terms at positions 1 and 1.1 are

changed twice. There is no need to apply them both. Only the application of the

last of each would suffi ce. Furthermore, the term at position 1 is a parent node in

the tree (see Chapter 2 for term representation as a tree) of the term at position

1.1, and the term replacement at position 1 occurs after the term replacement at

position 1.1. Therefore, only the term replacement at position 1 needs to be

performed. This implies that only one term replacement is needed instead of four,

i.e. only the term replacement ~ t ~ c needs to be performed. This obviously

saves a lot of time.

Definition 3.3: Composition of term replacement Iists

The composition of two term replacement lists,

where n, m ;;:: 0 , is defined as

Definition 3.4: Application of a substitution set to a term replacement list

The application of a substitution set CY to r is defined as

rCY=(~CYLI ~tlcy, ... ,LnCYLn ~tnCY).

IfC={A1, ... ,Am }, m>O,then C(rcy) isformedasfollows.

Chapter 3 - Delayed Clause-Construction 44

1. Make a copy of C and call it C' = {A/, ... , Am'}.

2. For i:= 1 to n

If Lp·=Aj for sorne l:::;j:::;m then

Replace A/ with A/[tPlr,

3. Return C'

C' is C,.

The following are sorne properties on the relation between the application of

substitution sets and term replacement lists.

• If C = {AI' ... , An} is a clause and a is a substitution set, then

• If C is a clause and a is a substitution set then C,a = (C,)a .

• If C is a clause, a is a substitution set, and 'l' '2 are term replacement lists,

• If C is a clause, (Y is a substitution set, and L E C , then

L, E C, and L,a E C,a .

• If C is a clause and LE C, then L, E C if and only if either Lé L(,) or

- 1 LE L(,) and, does not change L. If L, E C then we write L, = L.

For ex ample, suppose C = {L} = {P(f(a,b))} and

,= / LI ~ a,LI ~ f(b,c), LI ~ a,LI ~ b) then \1' l.l ,1.2

, does not change Land therefore, L, = L.

1 This property is important because a term replacement list is associated with clauses. Therefore,
a c1ear definition of the notation Li (which is an application ofa term replacement list to a literaI
instead of clause) must be given.

Chapter 3 - Delaved Clause-Construction 45

Definition 3.5: P-idempotent substitution set

A p-idempotent (i.e., potentially idempotent) substitution set is a substitution set

that contains no circular substitutions. When applied recursively a finite number

of times, a p-idempotent substitution set produces an idempotent substitution. A

p-idempotent substitution is distinguished from an idempotent substitution by

" ... " on top of the substitution symbol, such as if and ë·. We write if ~ n (Y to

mean

(Y = if(if(... if(if(if(ifif))) .. .)), for sorne n ~ O.
\ 1

n

n is the minimum number of applications of if over itself needed to bec orne

idempotent. The idempotent set (Y obtained from if is unique, i.e., for aIl m > n ,

if ~ m (Y; for all m < n , the resulting substitution obtained from the application of

if over itself m times remains p-idempotent. When n = 0, if ~o (Y => (Y = if .

Therefore, every idempotent substitution set is p-idempotent. If n is not important,

we write if ~ (Y •

The following are sorne properties of p-idempotent substitution sets:

• If if ~ (Y then Dom(if) = Dom((Y) •

• The composition of p-idempotent substitution sets IS associative, I.e., if

if,ë',li are three p-idempotent substitution sets, then

• The associativity property implies that ififif = if(ifif) = (ifif)if . Therefore, if

if ~ (Y then

(Y = if(if(... if(if(ëf(ifif))) . ..)) = if if ···if, for sorne n ~ o.
, , l "--v---'

Example 3.3

v
n n

if = {x ~ f(y),y ~ g(z, w),z ~ f(w), w ~ a} is p-idempotent because it can be

transformed into an idempotent substitution as follows (using the definition of

composition of substitution sets stated in Chapter 2).

Chapter 3 - Delaved Clause-Construction 46

al = aa = {x ~ f(g(z, w)),y ~ g(f(w),a),z ~ f(a), w ~ a}

a 2 = ala = aal = aëra: = {x ~ f(g(f(w),a)),y ~ g(f(a),a),z ~ f(a), w ~ a}

a 3 = ŒiY = ŒŒ2 = ŒŒŒŒ = {x ~ f(g(f(a),a)),y ~ g(f(a),a),z ~ f(a), w ~ a}

a4 = a3a = Œa3 = ëra:ŒŒŒ = {x ~ f(g(f(a),a)),y ~ g(f(a),a),z ~ f(a), w ~ a}

Since a4 = Œ3 then the transfonnation process is over and a ~ (J' , where

(J' = ŒŒŒŒ = {x ~ f(g(f(a),a)),y ~ g(f(a),a),z ~ f(a), w ~ a}.

Example 3.4

Table 3-2 shows sorne examples of substitution sets in the first column and

whether or not they are p-idempotent in the second column.

Table 3-2: Examples of p-idempotent and not p-idempotent substitution sets

Substitution set P-idempotent Idempotent

(1) {x ~ y,z ~ f(y)} Yes Yes

(2) {x ~ y,y ~ f(z),z ~ w} Yes No

(3) {x ~ y,y ~ Z,z ~ f(x)} No No

In Table 3-2 the substitution set in (2) is p-idempotent because it can be

transfonned into the idempotent substitution set {x ~ f(w),y ~ f(w),z ~ w}.

However, the substitution set in (3) is not p-idempotent because of the circular

substitution. It is not possible to transfonn this substitution set into an idempotent

substitution by applying the substitution on itself a finite number of times.

Partitioning property. A p-idempotent substitution if can be partitioned into

k :2': 0 idempotent substitution subsets, 111' . .. , Ilk such that a = JlI u··· U Ilk •

Furthennore, there exists a partitioning with a minimum number of partitions and

there exists a partition with the following property:

Chapter 3 - Delayed Clause-Construction 47

the subsets Ji" ... , flk are ordered in a way such that for every 1 :::; i :::; k ,

k

for aIl v E Dom(fli) => v ,,-0 U Ran(flj).

J=l

Example 3.5

if = {x ~ f(y),y ~ g(z, w),z ~ f(w), w ~ a} can partitioned into idempotent

substitution sets. The possible partitions are shown in Table 3-3.

Table 3-3: Partitions of (j = {x -+ f(y), y -+ g(z, w),z -+ f(w), W -+ a}

Partitions of ii = {x ~ f(y), y ~ g(z, w),z ~ f(w), w ~ a}

(1) P, = {x ~ f(Y)},P
2

= {y ~ g(z, w)},PJ = {z ~ f(w)},p.{w ~ a}

(2) P, = {x ~ f(y), w ~ a}, Pz = {y ~ g(z, w)},P
3

= {z ~ f(w)}

In Table 3-3, (1) is the partitioning of if into idempotent subsets such that none

of the variables in the domain of fli appears in the range of the following sets.

The partitioning in (2) shows a partitioning with the minimum number of

partitions.

The following definitions and theorems conceming p-idempotent substitution sets

are essential for deriving a general expression for a sound non-constructed

conclusion.

Definition 3.6: Consistency of p-idempotent substitution sets

Two p-idempotent substitution sets ëi and ë' are consistent if and only if

1. Dom(if) () Dom(ë) = {} , and

2, ifuë' is p-idempotent.

Chapter 3 - Delaved Clause-Construction 48

Ihis definition can be extended to any number of p-idempotent substitution sets.

Notice that since idempotent substitution sets are p-idempotent, then the above

definition applies to idempotent substitution sets as weIl.

Definition 3.7: Confluent p-idempotent substitution sets

Iwo p-idempotent substitution sets 0:, and 0:2 are confluent if and only if

~ ~ B and (i2 ~ B . If (i, and (i2 are confluent, we write 0:, U (i2 . Confluent p­

idempotent substitution sets have the following properties.

Property 1. If (il U (i2 then Dom((fI) = Dom((f2) .

Property 2. If (il U (i2' then for any p-idempotent set (i3' such thatlT; and (i3 are

consistent, and (i2 and 0:3 are consistent, (f, u (f3 U (i2 U 0:3 .

Example 3.6

Table 3-4 shows sorne examples of p-idempotent substitution sets that are

confluent and not confluent.

Table 3-4: Examples of confluent and not confluent p-idempotent
substitution sets.

a, 0"2 Confluent

(1) {x ~ f(y),y ~ g(z),z ~ a} {x ~ f(a), y ~ g(z),z ~ a} Yes

(2) {x ~ f(y), y ~ g(z)} {x ~ f(y),y ~ g(w)} No

(3) {x ~ f(w),y ~ g(w)} {x ~ f(w), y ~ g(z),z ~ w} No

~ and (i2 of row (2) in Table 3-4 are not confluent because (i, ~ B, and

(f2~()2' where ~={x~f(g(z)),y~g(z)}, B2={x~f(g(w)),y~g(w)},

but ~ "# B2 • In row (3) lT; and CT2 are not confluent because their domains are not

equal.

Chapter 3 - Delayed Clause-Construction 49

Theorem 3.1

Given a p-idempotent substitution set if, if if ~ (J then i:i .lJ. (J .

Proof:

Since every idempotent substitution set is p-idempotent, then (J is p-idempotent

and (J ~ (J. If if ~ (J then we have if ~ (J and (J ~ (J. This implies that

i:i .lJ. (J by Definition 3.7. Therefore if if ~ (J then if.lJ. (J .0

Theorem 3.2

Given two idempotent substitution sets (J) and (J2 that are consistent, if none of

the variables in Dom((J)) occurs in any of the terms in Ran((J2) ' then

Proof:

The proof is listed in Appendix B due to its technical complexity.

Theorem 3.3

Given k:2: 2 idempotent substitution sets (JI"'" (Jk that are pair-wise consistent,

if for each 1 S; i s; k -1 none of the variables in Dom((Ji) occurs in any of the

terms in any Ran((Jj)' where i + 1 S; j S; k, then (JI u··· U (Jk ~ (JI ••• (Jk'

Proof:

The proof is listed in Appendix B due to its technical complexity.

Chanter 3 - Delaved Clause-Construction 50

Theorem3.4

Given k 2 2 p-idempotent substitution sets 0"1"'" O"k that are pair-wise

consistent, if for each 1 ::; i ::; k -1 none of the variables in Dom(~) occurs in any

of the terms in any Ran(d)), where i + 1 ::; j ::; k, and d] 4 0"] , ••• , d k 4 O"k' then

d u···ud 40""'0" 1 k] k'

Proof:

Since ~ 4 O"w •• ,dk 40"k then by Theorem 3.1 ~.u O"p- •• ,dk .u O"k' Since

d] .u 0"], ••• , dk .u O"k and ~, ... , d k are pair-wise consistent, then by the second

property from Definition 3.7 d 1 u···udk .u 0"] U"'UO"k'

By Definition 3.7, d] u",udk .u 0"] U"'UO"k means ~ u",udk 4 e and

By Definition 3.5 e is unique; therefore e = 0"1'" O"k • Since d 1 u··· U d k 4 e ,

Definition 3.8: Constructed and non-constructed clauses

Abstractly, a clause is constructed when its literaIs are explicitly listed, and it is

no longer expressed in terms of other clauses, substitution sets, and term

replacement lists; otherwise, the clause is referred to as a non-constructed

clause. For example, {P(x),Q(a)} is a constructed clause, whereas {P(X)}O"T is a

non-constructed clause.

"To evaluate an expression representing a non-constructed clause" or simply "to

evaluate a non-constructed clause" means to replace aIl references to literaIs from

constructed clauses by copies of the literaIs themselves and aIl substitution sets

and term replacement lists are then applied to those literaIs. A non-constructed

ChaDter 3 - Delaved Clause-Construction . 51

clause becomes a constructed clause when the expression representing the non­

constructed clause is evaluated. When a constructed clause is constructed, it is

also normalized. Therefore, a constructed clause is a normalized clause.

To avoid confusion between constructed and non-constructed clauses, we use

" ... " on top of a clause label to denote a non-constructed clause. For example,

given the two constructed clauses ~ = {---,Q(x),R(y,x)} and ~ = {Q(f(a))},

their resolvent C = {R(x,f(a))} is a constructed clause. On the other hand,

ë=«~\{--,Q(x)})u(~\{Q(f(a))}))Œ, where Œ={x~f(a)l, is a non-

constructed resolvent. If ë is evaluated and the resulting clause is exactly the

same as C, then ë is said to be an acceptable representation of C or simply, ë
is acceptable.

In general, when a non-constructed conclusion, ë'(I) , of an inference I IS

evaluated and the resulting clause is exactly C(I) , then ë'(I) is acceptable. If

ë'(I) is acceptable, then we write ë'(I) ~ C(I).

Example 3.7

S = {~ , ~ ,P,,} is a set of constructed clauses such that

~ = {~} = {R(f(g(x),y))}, ~ = {L2 } = {g(a):::! bl, and p" = {LJ = {f(x,y):::! a}.

Suppose that !1 = (~, ~) is a linear derivation such that ~ is a paramodulation

from ~ into ~, and ~ is a paramodulation from p" into C(~). The first

inference yields the paramodulant (after normalizing the variables)

CCI;) = {L4} = {R(f(b, x))} , the mgu ŒI = {x ~ a}, and the term replacement list

TI = (~ lu ~ b) . Before using ~ as a paramodulator in inference ~, we rename

its variables according to the naming convention stated in Chapter 2. Let

Chapter 3 - Delayed Clause-Construction 52

~' = ~e = {~'} = {f(z,u) =:: a}, where e = {x ~ z,y ~ u} is a variable renaming

substitution set. The inference I; yields the paramodulant CCI;) = {Ls} = {R(a)},

the mgu 0"2 ={z~b,u~x} and the term replacement list '2 = (L411 ~a).

Table 3-5 shows sorne acceptable and unacceptable non-constructed conclusions

for Example 3.7.

Table 3-5: Examples of acceptable and unacceptable non-constructed clauses

Evaluation

Non-constructed conclusion (variables Acceptable

normalized)

(1) ë·(I.) = «P, u p,) \ {L))T,a, {R(f(b,x»)} Yes

(2) ë'(I) = «C(I.) u P,') \ {L3})T,a, {R(a),J(x,y) :::: a} No

(3) ë'(I,) = «C(I.) u P,') \ {L3'})T,Œ, {R(a)} Yes

(4) ë"(I,) = ««(P, u p,) \ {L,})T,a)u P,') \ {L3'})T,Œ, {R(f(b,x))} No

(5) ë'(I,) = ««(P, u p,) \ {L,})T,a) u P,') \ {L3'nT,' a,
{R(a)} Yes

where T,' = (i,l, ~ a)

(6) ë'(I,) = ««(P, u p,) \ {L,}) u P,') \ {L3'nT,aJT,' a,
{R(a)} Yes

where T,' = (i,t ~ a)

The non-constructed conclusions (2) and (4) in Table 3-5 are unacceptable for

the following reasons.

In (2) the expression indicates that the literaI L3 should be removed from

C(I;) u p/ . L3 is not an element of ~' . It is an element of ~ and the variables in

~ were renamed. Therefore, (C(I;) u ~') \ {L3} = CCI;) U ~'. The evaluation of

(C(I;)u ~')'20"2' as indicated in the Table 3-5, yields {R(a),j(x,y) =:: a} which

Chapter 3 - Delayed Clause-Construction 53

IS not the correct paramodulant {R(a)}. Therefore, the non-constructed

conclusion in (2) is unacceptable. A similar non-constructed conclusion that is

acceptable is given in (3), where L3 is replaced with L3' .

In (4) the literaI referred to in '2 is L4 = R(f(b,x)). L4 does not exist in the

expression ««~ u 1;) \ {L2})'lal)u ~') \ {L3'} • Therefore, '2 has no effect on the

expression ««~ u 1;) \ {L2})'lal)u P;) \ {L3'}. The evaluation of the non­

constructed conclusion in (4), as indicated in Table 3-5, yields {R(f(b,x))}

which is not the correct paramodulant {R(a)}. Therefore, the non-constructed

conclusion in (4) is unacceptable. A similar but acceptable non-constructed

conclusion is given in (5), where '2 is replaced with '2' . Another acceptable non­

constructed conclusion is given in (6). In comparison with the expression in (5),

the substitution set al and the term replacement list '1 in (6) were moved to the

front of the expression. The ability to move substitution sets and term replacement

lists to the end of an expression of a non-constructed conclusion while keeping it

acceptable is a fundamental issue in DCC as will he shown later on.

Definition 3.9: Goal clause

A goal clause is a constructed clause (except if it is the empty clause) derived at

depth k ~ 1 by a linear derivation from a set of constructed clauses, and it

conforms to criteria either initially set by the user or determined automatically by

an ATP. A goal clause is retained in memory and used in derivations under the

same restrictions or a subset of those restrictions imposed on input clauses. Sorne

examples of goal clauses are the following.

• The empty clause which when obtained marks the end of a proof by

refutation.

Chapter 3 - Delaved Clause-Construction 54

• A unit clause that is not subsumed by aIready retained constructed clauses.

Unit clauses are use fuI in UR -resolution [Wos et al. 1992] and in the unit

preference strategy [Wos et al. 1964].

• A lemma as defined in [Loveland 1978] and [Astrachan 1992].

• An equation or disequation. Those are useful when equality based inference

and simplification rules are applied.

Definition 3.10: End of a derivation

We say the end of a derivation is attained when one of the following occurs.

• The empty clause is obtained.

• A goal clause is obtained.

• The depth bound is reached in an iteratively deepening depth first search (see

Chapter 4).

Definition 3.11: General form of the conclusion of an inference rule

We denote the multiset union ofthe literaIs of a multiset of clauses V by 1:.(V).

Formally, if V = {C], ... ,Cn } is a multiset of clauses then the multiset

n

1:.(V)=UC;.
;=]

Using a term replacement list, we can write the conclusion of any of the inference

rules listed in Chapter 2 in the form

«C \ D) Y E)a(ra),

where C = L(Prem(I)), D c L(Prem(I)), E c {-,L}, LE L(Prem(I)), I is

an inference, a is an mgu of sorne terms or literais from the premises, and r is a

term replacement list of sorne terms in sorne literaIs from the premises. Table 3-6

lists the conclusions of the inference rules from Chapter 2 but expressed using r

Chavter 3 - Delayed Clause-Construction 55

instead of L[I -). r]Jr or L[q -). r]Jr. The premlses and the conditions of the

inference mIes remain exactly the same. If r = () then a(ra) = a . In aIl the

inference mIes, except equality factoring, E is not shown because E = { } .

Table 3-6: Inference rules conclusions in the form ((C\D)uE)a(ra)

Inference Rule Conclusion r

Binary «C, uC2) \ {A"B})a(ra) ()
resolution

'--v--' '----v---'
C 0

Binary (C \ {L
2
})a(ra) () y '--v-'

factoring C D

Hyper- «C, u··· uCJ \ {A" ... , An_" ,B" ... "Bn_,})a(ra)
'------v-----" ' D

,
()

resolution
C

Paramodula- «C'u {L} u D) \ {l =:: r})a(ra) (il. ~r)
tion

'-----v-----' L...-.v--'
C D

Superposition

into non-
«C' u {L} u D) \ {l =:: rna(ra) (il. ~r) '-----v-----' L...-.v--'

C 0
equality

Superposition

into a positive
«C' u {L} u D) \ {l =:: r})a(ra) (il. ~ r) '-----v-----' L...-.v--'

C 0
equality

Superposition

into a negative
«C' u {L} u D) \ {l =:: r})a(ra) (il. ~ r) '-----v-----' L...-.v--'

C 0
equality

Equality (C \ {l :/:. rna(ra) () y L...-.v--'

resolution C D

Equality «(C' u {L" L
2
}}) \ {L2 n u {,L;})a(ra) (i:l, ~ r2)

factoring
'--------v--' '--v-' ~

C D E

Demodulation
«C' u{L} u D) \ D)a(ra)

'---v------' y
C D

(il. ~ r)

Chapter 3 - Delaved Clause-Construction 56

Theorem3.5

ln a linear-input derivation, if no intermediate conclusion is a from clause, then

there is no need to construct any intermediate conclusion, and every non­

constructed intermediate conclusion C can be expressed in terms of variants of

constructed clauses, a single substitution set (j, and a single term replacement

list r. (j is the composition of ail the mgu 's resulting from the inferences

performed from the beginning of the derivation up to and including the inference

that produced C. r is the composition of al! the term replacement lists from the

beginning of the derivation up to and including the inference that produced C.

Proof:

The proof is listed in Appendix B due to its technical complexity.

Corollary 3.1

ln a linear derivation, if every far parent and every intermediate conclusion that

is a from clause is constructed, then any intermediate conclusion that is not a far

parent or a from clause can be expressed in terms of the input clauses, the

constructed intermediate clauses, a single substitution set, and a term

replacement list.

Proof:

Suppose S is the set of input clauses used in a derivation ~. Let T be the set of

intermediate conclusions that are far parents and from clauses. Therefore, T is a

set of constructed clauses. Let S' = SuT. S' is a set of constructed clauses. With

S'as a set of constructed clauses, ~ can be viewed as a linear input derivation

where each si de premise is a variant of a clause from S' . In this case, we have the

same conditions as the ones indicated in Theorem 3.5. Therefore, by Theorem 3.5,

we can conclude that any intermediate conclusion that is not a far parent or a

Chapter 3 - Delaved Clause-Construction 57

from clause can be expressed in terms of the input clauses, the constructed

intermediate clauses, a single substitution set, and a term replacement list. 0

Corollary 3.2

In a linear derivation, if every far parent and every intermediate conclusion that

is a from clause is constructed, then any intermediate conclusion C that is not a

far parent or a from clause can be expressed in terms of the input clauses, the

constructed intermediate clauses, a single p-idempotent substitution set if, and a

term replacement list T. if is the union of ail the mgu 's resulting from the

inferences performed from the beginning of the derivation up to and including the

inference that produced C. T is the composition of ail the term replacement lists

from the beginning of the derivation up to and including the Inference that

produced C.

Proof:

Suppose ~=(~, ... ,Ik)' From Corollary 3.1, we can conclude that any

intermediate conclusion ë'(J;) , 1 ~ i ~ k , that is not a far parent or afrom clause

can be written in terms of constructed clauses (input and intermediate

conclusions), a single idempotent substitution set CT' . .i' and a term replacement

list. From Theorem 3.1 and Theorem 3.3 we conclude that the union of consistent

idempotent substitution sets is confluent with the composition of those

substitution sets. Therefore, we can replace CT,'" CT; with if, . .; = CT, u··· u CT; , for

1 ~ i ~ k, and hence, any intennediate conclusion ë'(IJ that is not afrom clause

or a far parent can be expressed in tenns of constructed clauses, a single p­

idempotent substitution set 0;, = CT, u··· U CT, , and a tenn replacement list. 0

Chavter 3 - Delaved Clause-Construction 58

Definition 3.12: Delayed clause

In a Iinear derivation, any intennediate conclusion that is not constructed is a

delayed clause. When the end of a derivation is reached, any deIayed clause that

has not yet been constructed is discarded.

Definition 3.13: Delayed clause-construction

Except for hypeITesoIution, aIl the inference rules Iisted in Chapter 2 perfonn

either a unification on two tenns in one or two literaIs, or perfonn a unification

between two literaIs. In a linear derivation, there is no need to construct a whole

clause (i.e., intennediate conclusion) just to perfonn a unification on a part of it.

However, sometimes there are cases where an intennediate conclusion needs to be

constructed and other times when it is not necessary to construct the clause but it

is better to construct it. From the theorems and coroIlaries stated above, we can

deduce that when a clause is used as a far parent or as a from clause, then its

construction is necessary. If an intennediate conclusion is not a far parent or a

from clause but confonns to certain criteria that would make it potentially useful

beyond its CUITent purpose (i.e. as an intennediate conclusion), then it is worth

constructing the whole clause and storing it for future use. Another reason to

construct an intennediate conclusion is if the time it takes to construct it and

detennine its attributes is less than the time it takes to detennine its attributes

(e.g., length, weight, ...) without constructing it (see Appendix C). The above

three justifications for constructing delayed clauses faIl into one of the three

foIIowing categories used as guidance for an ATP to decide whether to construct a

delayed clause or not.

• Strategies implemented.

• Heuristics.

• The time to construct a clause and then detennine its attributes with the

time to detennine its attributes without constructing it.

Chavter 3 - Delayed Clause-Construction 59

These three issues are discussed further in Chapter 4 when semi-linear resolution

is introduced. The strategy of delaying the construction of intermediate clauses

without the need to maintain more than one substitution set and one term

replacement list, is called delayed clause-construction (DCC).

It is possible to delay the construction of intermediate conclusions if several

substitution sets and several term replacements lists are maintained, but this has

two disadvantages. First, more storage space is required for each substitution set

and term replacement list. Second, more complicated data structures are needed to

create a relationship between the substitution sets and term replacement lists so

that when the time cornes to construct a delayed clause, the construction process

can be do ne efficiently. If more complicated data structures are used, then more

operations are needed for their maintenance, and thus more time is wasted. On the

other hand, if a single substitution set and a single term replacement list are used,

then less storage space is needed and the data structures are quite simple and easy

to maintain, as will be shown in Chapter 6.

Theorem 3.5 and corollaries 3.1 and 3.2 prove that the construction of an

intermediate conclusion can be expressed in terms of constructed clauses, a single

p-idempotent substitution set, and a single term replacement list. Furthermore,

any delayed clause can be constructed at a later time from the information of the

maintained substitution set and term replacement list. We now summarize the

conditions required to be able to delay clauses and use a single substitution set

and term replacement list to construct any of the delayed clauses at a later time.

Let ~ = (I; , ... , ~), k ~ l, be a linear derivation of a goal clause G with Cinit

as its initial clause. The construction. of an intermediate conclusion C(I;),

1 ~ i < k , can be delayed if ë'(I;) ~ C(IJ. From Corollary 3.2 we deduce that

ë'(I;) ~ CCI;) is possible if the following three conditions are satisfied.

Chapter 3 - Delaved Clause-Construction 60

Condition 1: Cinit is a constructed clause and every clause in the multiset union

k

U D(I;) is a constructed clause.
i=J

k k

Condition 2: Vars(Cinit)nVars(UD(J;))={} and for ail CEUD(J;) and for
i=1 i=)

k

aIl DE U D(I;), if C:;t: D then Vars(C) n Vars(D) = {} .
i=)

In other words, no variable is shared between the initial clause and any of the side

premises, and no variable is shared between any of the side premises.

Condition 3: The mgu's resulting from the inferences I;, ... ,I;, must be p-

idempotent and consistent.

Condition 1 ensures that only intermediate conclusions in a linear derivation

can be non-constructed clauses. If one of the intermediate conclusions in a linear

derivation is used as a side premise, that is if an intermediate conclusion is a far

parent, then it must be constructed first.

Condition 2 says that the variable names of any two si de premises must be

disjoint. This ensures that every mgu formed from the unification of terms or

literais at any depth is consistent with aIl the mgu' s formed at earlier depths. This

eliminates variable substitution ambiguity when the union of aIl the mgu's is

formed. Condition 2 is very important because in DCC intermediate conclusions

are generallyl not constructed and normalized. Therefore, variables of aIl clauses

participating in the linear derivation are susceptible to modification. Any

ambiguity concerning the substitution of variables by the substitution terms can

lead to an unsound derivation due to the' dependency of the variables upon each

other. Chapter 6 demonstrates how the renaming of variables in a side premise

can be done efficiently (in almost constant time) without the need to traverse the

clause.

1 Only far parents andfrom clauses are constructed.

Chapter 3 - Delaved Clause-Construction 61

Condition 3 is necessary to maintain a single substitution set which can be

accessed at any time during a linear derivation in order to construct a delayed

clause without leading to an unacceptable constructed clause. Condition 3 is also

necessary for an efficient backtracking in depth-first search. Without Condition 3,

backtracking becomes very inefficient, and practically impossible without the

storage of additional information about the derivation (see section 3.3).

The three conditions ensure that the construction of a delayed clause at any

time during a linear derivation leads to a clause which is exactly the same clause

had the delayed clause been constructed at the time of its generation.

Consequently, any clause obtained by a linear derivation employing DCC is

obtained by a sound derivation. This is demonstrated in Example 3.8.

Example 3.8

S = {B) , B2' B3} is a set of input clauses, where

B) = {l'IJ,L2)} = {P(f(xo)),Q(xo)} '

B2 = {~2,L22} = {-.P(xo),Q(xo)} ,

B3 = {~3,L23} = {-.Q(a),-.Q(f(b)}.

In Figure 3-1 the derivation of the clause C3 = {Q(f(a)),Q(f(b))} from S is

shown. DCC is not used in this derivation, so the intermediate conclusions C) and

C2 are constructed and their variables normalized. B2' = B2B where

B = {xo ~ x)} is variable renaming substitution. The circled literaIs are the

resolved upon literaIs. C) is a far paren.t (indicated by the dashed line) but it is

shown to the right of C2 to emphasize the fact that it is a constructed clause.

When DCC is not used, intermediate conclusions are constructed and the

substitution sets are discarded because they are not needed anymore. However,

when DCC is used, intermediate conclusions are generally not constructed. The

substitution sets are combined. The combination is performed as a union instead

Chapter 3 - Delaved Clause-Construction 62

of a composition for a very important reason. The reason is to be able to extract

the information from the substitution sets in order to construct a delayed clause.

Figure 3-2 performs the same derivation as in Figure 3-1 but with DCC. The

reason why the mgu's must be combined as a union and not as a composition of

substitution sets is demonstrated in Figure 3-3 (see section 3.3).

\
\ , , , ---

Figure 3-1: An example of a linear derivation without DCC.

In Figure 3-2 the initial clause of the linear derivation and si de premises are

labeled B)\Bg ,B: ,C)4 instead of BI'B2 ,B3 ,C) because they are variants of

BI'B2,B3 ,C). B: ,Bg ,B: ,C)4 are detennined as follows: B: = Bl}", Bg = B/)2'

B: = Bi)3' C)4 = C)B4, where BI = {}, B2 = {xo ~ x)}, ~ = {}, and B4 = {xo ~ x2 }

are variable renaming substitution sets. The intermediate conclusions are kept as

non-constructed clauses. ë·(J;) in Figure 3-2 corresponds to CI in Figure 3-1.

Since it is a far parent it is constructed and labeled CI
4

•

Chapter 3 - Delaved Clause-Construction 63

«{P(f(xo))' Q(xo)} u {-,P(xt), Q(x)}) \
, v ''----v-------'

B: B~

({P(f(xo))} u {-,P(xt)}))O't
'------y--J "---v----'

al PI

«{P(f(xo)),Q(xo)} u {-,P(x), Q(x)} u {-,Q(a), -,Q(f(b)}) \
, v ''----v-------'' v '

B: B; Bi

({P(f(xo»} u {-,P(x)} u {Q(xJ} u {-,Q(a)}))(O't ua,)
'------y--J "---v----' ~ '---v---'

~ A ~ A

«{P(f(xo))' Q(xo)} u {-,P(x), Q(x)} u
, v ''----v-------'

B: B:
{-,Q(a), -,Q(f(b))} u {Q(x

2
), Q(f(x,))}) \

, v J \ v 1

B; C,4

({P(f(xo»} u {-,P(x)} u {Q(xo)} u {-,Q(a)} U
'------y--J "---v----' ~ '---v---'

al PI a2 P2

{-,Q(f(b))} u {Q(x,)}»)(O't u 0'2 ua)
'----v----' '---v---'

a, p,

Constructedversion of ë"(IJ

Figure 3-2: An example of a linear derivation using DCC.

Chapter 3 - Delayed Clause-Construction 64

3.3 P-idempotent substitution sets in DCC

In this section we explain why it is necessary in DCC to keep the maintained

single substitution set as a union rather than a composition of the mgu's resulting

from the application of the inference rules.

Suppose that during a linear deduction process the intermediate conclusions are

kept as non-constructed clauses, and the accumulation of mgu's are stored as

composition of substitutions rather than a union of substitutions. If an ATP

decides at depth k to construct an intermediate conclusion that was generated at

depth i < k (i.e., a delayed clause) it would be impossible without the need to

perform the linear derivation again. This is demonstrated in Figure 3-3.

P-idempotent single substitution set. vs. Idempotent single substitution set.
Mgu 's combined as a union. Mgu's combined as a composition.

0'1 U0'2 == {XI ~ f(xo)'xo ~ a} ap'2 = {xo ~ a,xI ~ f(a)}

1 ë'(I) J 1 ë'(l) 1

Construct and Construct and
nonnalize variables. nonnalize variables.

1
C(1) == {Q(xo),Q(f(xo))}

1 1
C(l) = {Q(a),Q(f(a))}

1
Correct Incorrect

Figure 3-3: An example demonstrating the problem with the composition of
substitutions as opposed to the union of substitutions when delayed clauses
are constructed.

In Figure 3-3 the idempotent version of the substitution set from Example 3.8 did

not work because it was not possible to retrieve the subset 0"1 from 0"10"2' When

the composition 0"10"2 was formed, the separation of the substitution sets was lost.

Chapter 3 - Delaved Clause-Construction 65

In a sense, the substitution terms were blended. On the other hand, the p­

idempotent version, which is the union of the mgu's, of the maintained

substitution set does not have this problem. a] can be easily extracted from

~ u a2 • AIl that is needed is to label the elements of ~ u a2 so that they can be

identified as subsets of a] or a 2 • There are several ways to implement the

labeling system. For example, a tag with the depth at which the mgu is formed

can be attached to each substitution term as shown in Figure 3-4 (top). Another

possibility is to maintain an ordered set and mark the beginning and end of each

subset as shown in Figure 3-4 (bottom). Those are simple direct and easy to

implement methods.

a] ua2 = {x] ~ f(xo)'xo ~ a}
10 I;l +-__ --11 Tags indicating the depth at which 1

U u 1 the substitution was added.

1 Start of al

1 End of al Start of a 2 1

Figure 3-4: Possible implementations of the p-idempotent set ~ u a2 that

make it easy to extract (f] and (f2.

Another advantage of maintaining a p-idempotent set of the union of the mgu's

over an idempotent set of the composition of the mgu's is the ability to backtrack

efficiently in a depth-first search algorithm. Wh en backtracking from depth k to

Charter 3 - Delayed Clause-Construction 66

depth k -1, for k > 1, then aU that is needed is the deletion of the substitution

tenns that were added at depth k. An efficient implementation, such as the start­

end labelling (see Figure 3-4), can perfonn the deletion operation in constant

time. Backtracking is not limited only to the previous depth but to any lower

depth. Suppose we want to backtrack to depth j > 1 from k > j , and suppose the

maintained p-idempotent substitution set is au ' then aIl we have to do is remove

a
j
+u from au and we will be back to a\..j.

3.4 Mega-Inference Rule (MIR)

The mega-inference rule is a direct consequence of DCC. From Theorem 3.5 and

CoroUary 3.2 we conclu de that in a derivation 11 of length k, every intennediate

conclusion ë·(IJ, 1 ~ i ~ k, can be expressed as (see Appendix B)

where

• m is the total number of variants of clauses from a set of constructed clauses S

used in 11,

• for aIl l~j~m, rj E{I, ... ,n}, n=ISI, and B: =BrBj.' where Br ES, and
J J J

Bj is variable renaming substitution, such that

j-l

Ran(Bj)n(U Vars(B;)u Vars(Cinit » = {},
q=l q

• al . .i = al u·· . u ai , where al c Cinit and for aIl 1 ~ j ~ i ,

• a j c: L(!D(I.)u· .. u !D(I
j

_ I »,
• Pu = Pl u···u /li' where for aU 1 ~ j ~ i,

Charter 3 - Delaved Clause-Construction 67

Let ru be the conjunction of aIl the conditions of aIl the inference rules applied

in the derivation d, then we can write the mega-inference rule as

BI···Bm
~ ~ -f

1 m ,1 rl .. k·
«Br, u···u Br

m
) \ (au u PU))(]'LJrU(]'U)

3.5 Summary

In this chapter we presented a formaI treatment of delayed clause-construction.

We defined the terms, term replacement list, p-idempotent substitution,

constructed and non-constructed clause, and delayed clause. We showed that in a

linear derivation every intermediate conclusion can be expressed in terms of

constructed clauses, a single p-idempotent substitution set, and single term

replacement list and thus there is no need to construct it. We showed that, in order

to be able to construct a delayed clause at a later time and to perform efficient

backtracking, the substitution set must be the union of p-idempotent mgu's

resulting from the inference rules applied in a linear derivation. We discussed the

three cases in which intermediate conclusions must be constructed. The cases

occurwhen:

• an intermediate conclusion IS a far parent or a from clause (e.g.,

paramodulator),

• an intermediate conclusion satisfies certain criteria based on heuristics that

indicate the clause is worth constructing, or

• the time needed to construct an intermediate conclusion and determine its

attributes is less than the time néeded to determine its attributes without

constructing it.

We listed and discussed in detail the conditions required to obtain a sound linear

derivation using DCC. We derived a general formula for expressing an

intermediate conclusion. Finally, we gave a definition of a mega-inference rule.

CHAPTER

4

Semi-Linear Resolution

In modem A TPs, the most commonly used bottom-up approach is based on a

best-first search algorithm called the given-clause al gorithm , and the most

commonly used top-down approach is based on an iteratively deepening depth­

first search algorithm.

In this chapter, we begin with an overview of the research done on combined

top-down bottom-up search procedures and briefly point out the similarities and

differences between our work and the work that has been done. We then describe

briefly the given-c1ause algorithm and the iteratively deepening depth-first search

algorithm. We present the main advantages and disadvantages of each algorithm.

We introduce and discuss in detail semi-linear resolution which is an iteratively­

deepening depth-first search that shares sorne of the advantages enjoyed by the

given-c1ause algorithm such as redundancy elimination and simplification rules.

Semi-linear resolution implements DCC as a mega-inference rule and uses

attribute sequences (discussed in Chapter 5) to reduce the explorable search space.

Finally, we list the conditions that must exist in order for semi-linear resolution to

be refutation complete.

4.1 Overview of Top-Down Bottom-Up Approaches

A top-down approach recursively breaks down a goal into subgoals until

eventually the subgoals can be proven immediately by a given set of clauses or by

Chapter 4 - Semi-Linear Resolution 69

derived clauses obtained during the se arch process. A bottom-up approach derives

clauses from the input set until an inconsistency is reached. The advantage of a

top-down approach is that it goal-oriented. Its disadvantage is its insufficient

redundancy control [Fuchs & Fuchs 1999]. A bottom-up approach is good in

controlling redundancy but lacks goal-orientation.

In [Astrachan & Loveland 1991] a top-down theorem proYer, METEOR, which

included a bottom-up search through the use of lemmas, revealed the potential of

combining the two approaches. It provided a certain amount of redundancy

elimination which improved the efficiency of the search. Consequently, METEOR

was able to prove more theorems with the addition of the bottom-up approach

than without it [Astrachan 1992].

Schumann [Schumann 1994] combined top-down with bottom-up approaches

by developing a preprocessor, named DELTA, that performed a bottom-up search

and generated unit-clauses that are added to the original clauses. He then used

SETHEO [Letz et al. 1992] to perform a top-down search. The results showed that

the combined approach was able to prove more theorems than SETHEO was able to

prove on its own.

[Fuchs & Fuchs 1999] have shown that by combining the two approaches they

were able to solve almost twice as many hard problems than either approach

could solve alone. They used SPASS [Weidenbach et al. 1999] for the bottom-up

search and SETHEO for the top-down search.

V AMPIRE uses a splitting mIe to integrate a top-down approach into its bottom­

up approach. With the inclusion of this strategy, VAMPIRE solved 98 problems

from the TPTP library [Sutcliffe 1994] that it couldn't solve without the splitting

mle [Riazanov 2003].

SLR shares similar characteristics with the approach used in METEOR. SLR

generates goals and adds them to the input set of clauses and then uses them to

control redundancy. However, instead ofrelying only on Model Elimination (ME)

[Fleisig et al. 1974], [Loveland 1969], as in METEOR, SLR can be used with

Chapter 4 - Semi-Linear Resolution 70

different calculi. SLR also shares (to a certain extent) the best-first search strategy

of the given-clause algorithm. SLR selects the "best" initial clauses first and then

conducts a depth-first search. SLR differs from the methods used by Schumann

and Fuchs in that SLR generates goals, which are similar to lemmas, dynamically

like METEOR, and adds them. to the original set of clauses, rather than going

through a preprocessing phase first. In addition, SLR depends on a mega­

inference mIe to perform large steps and uses attribute sequences to reduce the

explorable search space.

4.2 The Given-Clause Algorithm (GCA)

The given-clause algorithm is a best-first search algorithm that selects the "best"

clause, called the given clause, based on heuristics, and then infers all clauses

from the given clause using a special set of clauses, called the active set. The

general version of the aigorithm is shown in Figure 4-1. We assume that the

parameters are passed by value to the procedure GIVENCLAUSEALGORITHM. Sis

the input set of clauses and 1 is the inference rules that the given-clause algorithm

will use to infer new clauses. The set 1 is either selected by a user or automatically

selected by the A TP.

The variables active, passive, and inferred each is a set of clauses. The variable

given_clause is one clause. Initially passive is S (line 3) and active is empty (Hne

4). A test is performed at line 5 to check if the empty clause is in S. If no empty

clause is found the loop starts.

Chapter 4 - Semi-Linear Resolution 71

GIVENCLAUSEALGORITHM(S:clauses,I:inference _rules)

1. given _ clause:clause

2. iriferred, active, passive: clauses

3. passive:= S
4. active:= {}
5. if t/> in S then return "unsatisfiable"

6. while passive '* {} do
7. given_clause := SELECTCLAusE(passive)
8. REMOVECLAusE(given _clause,passive)
9. ADDCLAUsE(given_clause, active)
10. inferred := INFER(given _clause, active, 1)
Il. if t/> in iriferred then return "unsatisfiable"

12. MOVECLAusEs(inferred, passive)
13. end while
14. return "passive is empty"

Figure 4-1: A given clause algorithm.

A clause is selected from passive and assigned to given _clause (line 7). The

selected clause is then removed from passive (line 8) and added to active (line 9).

In the procedure INFER (line 10), aIl inference rules in 1 are applied to

given _clause and the rest of the clauses in active, such that every time a rule is

applied, given_clause is one of the premises. AlI the conclusions resulting from

the application of the inference rules in INFER are gathered in inferred. A test is

made to find out if the empty clause was obtained (line Il). If the empty clause is

not in infèrred, then the clauses in iriferred are moved to passive. The 100p

continues until passive is empty or the empty clause is obtained.

There are two commonly used va~iations of the GCA, the OTTER Ioop

[McCune 2003] and the DISCOUNT Ioop [Avenhaus et al. 1995], [Denzinger et al.

1997]. They both add simplification rules to the GCA presented in Figure 4-1.

However, the difference between the two lies in the time at which the

simplification rules are applied and on the sets of clauses to which they are

applied to. A comparison between the two is given in [Riazanov 2003].

Chanter 4 - Semi-Linear Resolution 72

Sorne state-of-the-art A TPs that use the given-clause algorithm are E [Schulz

2002], GANDALF [Tammet 1997], OTTER [McCune 2003], SPASS [Weindenbach et

al. 1999], VAMPIRE [Riazanov 2003], and W ALDMEISTER [Hi1lenbrand et al.

1997].

4.2.1 Cases when GCA is not refutation complete

The given-clause algorithm as presented in Figure 4-1 is refutation complete if

the following conditions exist (each condition is explained in detail in the

following sections).

• The selection procedure SELECTCLAUSE is fair.

• The inference mIes in 1 form an inference system that IS refutation

complete.

4.2.1.1 Fairness of the selection procedure
A GCA is said to be fair if the selection procedure SELECTCLAUSE (line 7)

ensures that every clause in passive will eventually be selected.

The set passive, in practice, usually contains enough clauses to keep the loop

running for a very long time (possibly an infinitely long time) if the empty clause

is not obtained. The selection procedure SELECTCLAUSE selects a clause based on

heuristics. If the heuristics do not provide a "fair" selection, then a clause in

passive may never be selected. If this unselected clause is necessary to obtain a

refutation, then the GCA will never derive the empty clause. This implies that an

ATP employing GCA that is using an "unfair" selection process is not refutation

complete.

4.2.1.2 Refutation completeness of the inference system
The refutation completeness of an inference system depends on the inference

mies (Definition 2.33). If 1 is a set of inference mies that are not refutation

complete, then GCA is not refutation complete.

Chapter 4 - Semi-Linear Resolution 73

4.3 Iteratively-Deepening Depth-First Search

An iteratively-deepening depth-first search [Korf 1985J, [Stickel & Tyson 1985J,

combines the advantages of breadth-first search (BFS) and depth-first search

(DFS). In BFS, aH possible clauses that can be generated by an implemented set

of inference rules at each depth are generated before moving to the next depth.

This guarantees a shortest proof possible. However, due to the large number of

clauses that can be generated, the use of BFS requires a lot of storage space. The

memory requirements for BFS grow exponentially with the depth. In DFS,

storage space is a not a problem. The memory requirements for DFS grow linearly

with the depth because DFS explores every bran ch up to the point where no more

clauses can be generated before moving to the next branch. This implies that DFS

does not guarantee a shortest proof. Another more important problem with DFS is

that if a branch extends indefinitely, then DFS can continue exploring this branch

forever. Therefore, an ATP using DFS can get stuck on a single branch that

extends indefinitely without reaching a refutation even though the input clauses

are unsatisfiable. This implies that an ATP using DFS is not refutation complete.

With IDDFS a bound is set for each iteration to force the DFS along a branch to

backtrack once the bound is reached. This solves the problem of exploring

infinitely long branches indefinitely. The bound increases by one with every

iteration, so IDDFS guarantees the shortest proof because it generates aIl clauses

that can be derived at each depth. The downside with IDDFS is the repetitive

derivation of clauses from lower levels, because every time the bound is

increased, clauses derived at depths lower than the bound are derived again.

However, in practice, the number of clauses increases exponentiaHy with every

iteration so the number of clauses that are repeatedly derived at Iower depths is

relatively small by comparison to the total number of clauses derived within an

iteration. An upper bound on the number of repetitions is calculated in [Korf

1985] to be (b /(b _1))2, where b is the branching factor.

Chapter 4 - Semi-Linear Resolution 74

A general IDDFS algorithm is shown on Figure 4-2. The IDDFS algorithm

shown in Figure 4-2 is recursive. The main procedure IDDFS caUs DFS and DFS

caUs itself until either the depth exceeds the bound (line 4) or the empty clause is

obtained (line 6). S is the set of input clauses and 1 is the set of inference rules

selected by a user or automatically selected by an ATP.

IDDFS(S:clauses, I:inference _ rules, max _ bound:integer)

1. input _ clause:clause
2. bound:integer
3. rule:inference rule

4. for bound:= 1 to max bound
5. for each input_clause in S
6. for each rule in 1
7. DFS(input clause, S, l, l, bound, rule, {})
8. end for
9. end for
10. end for

DFS(C:clause, S:clauses, I:inference_rules, depth:integer, bound:integer,

rule: inference_rule, ancestors: clauses)

1. inferred: clauses
2. new clause: clause
3. new rule:inference rule - -

4. if depth > bound then return
5. inferred:= INFER(C, Suancestors\C, rule)
6. if tP in inferred then TERMINA TE("unsatisfiable")
7. for each new _clause in inferred
8. for each new rule in 1
9. DFS(new _clause, S, l, depth+l, bound, new Jule, ancestorsuC)
10. end for
Il. end for

Figure 4-2: An IDDFS algorithm.

Chapter 4 - Semi-Linear Resolution 75

The algorithm picks one clause from S in the order the clauses are stored and

performs a depth-first search starting with this clause (line 7 in IDDFS

procedure). A depth-first search implies that all derivations are linear. The

condition at line 4 in the procedure DFS ensures that the depth-first search does

not exceed the iteration bound. The procedure INFER applies the inference rule

rule with C as the main premise. AlI possible conclusions that can be formed from

C and the clauses in the set Su ancestors \ C using the inference rule rule are

stored in the set inferred. Each clause in inferred is an intermediate conclusion

generated at depth depth. Each clause in inferred is then used as a main premise

for the next application of an inference rule (lines 7-11 in DFS). A depth-first

search is performed from each clause in inferred using all inference rules in J.

The search continues until either the empty clause is obtained or the

max _ bound is reached. If the empty clause is obtained, then the search terminates

and the string "unsatisfiable" is displayed (line 6 in DFS).

IDDFS as presented in Figure 4-2 is refutation complete if max _ bound can be

set to infinity. If max _ bound is chosen too smalI, then the search may terminate

before it finds a refutation. The inference rules binary resolution and binary

factoring form the resolution calculus which is refutation complete [Loveland

1978], [Robinson 1965].

Sorne of the CUITent ATPs that use an iteratively-deepening depth-first search

are METEOR [Astrachan & Loveland 1991], PROTE IN [Baumgartner & Furbach

1994], PTTP [Stickel 1984], [Stickel 1992], SETHEO [Letz et al. 1992], and THEO

[Newborn 2001].

4.4 Comparison between GCA and IDDFS

The main advantages of GCA over IDDFS are:

Chapter 4 - Semi-Linear Resolution 76

• Assuming that weIl tuned heuristics are used to select the "best" clause,

then compared to depth-first search, best-first search can lead to a

refutation in a shorter period of time. This has been confirmed from the

resuIts ofCASC [CASC site).

• It is easy to add simplification mIes because derived clauses exist III

memory and can be can be simplified using rewrite mIes, subsumption and

tautology elimination; thereby reducing redundancy.

• There are no repetitive computations from lower depths Iike in IDDFS.

• Because derived clauses exist in memory, it is easier in a GCA to add

efficient retrieval techniques, such as term indexing, of potentially

unifiable terms. This reduces the number of unsuccessful unifications and

matching failures; thereby, improving the efficiency of a theorem prover.

The main disadvantages of GCA with respect to IDDFS are:

• Storage requirements. Since derived clauses have to be stored, and

generally there a large number of derived clauses, large memory capacities

are required. Secondary storage, such as hard drives, can be used, but their

slower access time can reduce the speed of the theorem prover substantially

especially when simplification mIes and term indexing have to performed

on the secondary storage. To reduce the number of retained clauses, a

number of strategies are used. For instance the weight limit and memory

limit strategies are used in OTTER, and the limited resource strategy is used

in VAMPIRE. Those strategies are effective in reducing the memory

requirements but they compromise completeness in general l
.

• Redundancy control is an expensive procedure. The more clauses there are,

the slower is the redundancy control process. A slow redundancy control

1 According to [Riazanov & Voronkov 2000), any theorem that can be proved in VAMPIRE in time
t without using the limited resource strategy, the same theorem can be proved by VAMPIRE using
the limited resource strategy in time less or equal to t. This does not imply that the limited
resource strategies maintains completeness, but it ensures, at least in princip le, that if a theorem
can be proved without it, then the theorem can still be proved with it, provided that VAMPIRE is
given the appropriate time limit for this theorem.

Chapter 4 - Semi-Linear Resolution 77

process can affect the perfonnance of an A TP. According to [Riazanov &

Voronkov 2000] when the number of retained clauses exceeds 100,000, it

becomes very difficult to manage them efficiently even with state-of-the­

art tenn indexing techniques. In GCA derived clauses are retained rather

than derived again as in IDDFS. This usually leads to a retention of a large

number of derived clauses which, consequently, can slow down the

redundancy control process.

• The need to find good heuristics to select, if not the best clause, something

close to the best. In order to build good heuristics, a lot of analysis

(theoretical and experimental) should be done. Furthennore, a set of

heuristics may work well on a category of theorems but not as weB on

another category oftheorems (see Appendix A for a list of categories).

• The non-linearity of derivations perfonned by GCA does not allow for

specifie implementation optimizations such as the use of DCC. Every

generated clause is constmcted and then subjected to simplification mies

and subsumption tests. If the clause passes the tests it is retained otherwise

it is discarded. So if the implemented inference mies take small steps, such

as binary resolution, then a lot of clauses may be constmcted and discarded

as shown in [Wos et al. 1992].

4.5 Semi-Linear Resolution (SLR)

Semi-linear resolution is mainly an IDDFS with sorne of the advantageous ideas

from the best-search first included. It relies on DCC in the fonn of a mega­

inference rule. The main SLR algorithm is shown in Figure 4-3, and the mega­

inference mIe part is shown in Figure 4-4. The list of parameters (in alphabetical

order) with a brief description of each is given in Table 4-1. The parameters S, !,

and max _ bound are passed by value.

Chapter 4 - Semi-Linear Resolution

SLR(S:c1auses, I:inference _ rules, max _ bound:integer)

1. C init:clause
2. bound:integer
3. SJactors, Goals, initial_clauses:ciauses

4. Goals:= {}
5. SJactors:= FACTORS(S)
6. for bound := 1 to max bound
7.
8.
9.

initial_clauses := SELECTINITIALCLA USES(SuS _ factors u Goals)
for each C init in initial clauses - -

Goals := MIR(C_init, 1, bound, SuS _factorsuGoals, {},
Goals, 1)

10. end for
11. end for

Figure 4-3: An SLR algorithm.

78

Chaoter 4 - Semi-Linear Resolution 79

MIR(C:c1ause, depth:integer, bound:integer, potential_side yremises:c1auses,
T:c1auses, goals:c1auses, rules:inference _rules)

1. side yremises, inferred:clauses
2. applicable Jules:inference _ rules
3. rule:inference rule
4. new clause:c1ause

5. if depth > bound then return(goals)

6. side yremises :=
SELECTSIDEPREMIsEs(potential_ side yremises u goals) uT

7. applicable _rules := SELECTApPLICABLERuLEs(rules, C, side yremises)
8. for each rule in applicable _rules
9. inferred:= INFER(C, sideyremises, rule)
10. if fjJ in inferred th en TERMINA TE("unsatisfiable")
Il. for each new_clause in inferred
12. if PAssEv ALUA TION(new _clause) then
13. CONSTRucT(new clause)
14. ADDCLAusE(new _clause, goals)
15. end if
16. ifMERGECLAusE(new _clause) then
17. CONSTRucT(new clause)
18. ADDCLA uSE(new _clause, T)
19. end if
20. goals := MIR(new_clause, depth+l, bound, sideyremises, T,

goals, rules)
21. ifMERGECLAusE(new_clause) then
22. DELETECLAusE(new _clause, T)
23. end if
24. end for
25. end for
26. return(goals)

Figure 4-4: An MIR algorithm.

Chapter 4 - Semi-Linear Resolution 80

Table 4-1: List of variable parameters used in an implementation of SLR

Variable parameters Description
A subset of 1. This set contains rules that are relevant

to the clauses C _init and side yremises. For example,

applicable _rules paramodulation is not applicable unless either C _init

or one of the side yremises can be used as a

paramodulator.

bound This is the iteration depth bound.

C init Initial clause in a linear derivation.

Set of derived clauses that conform to criteria either
Goals

set by a user or by an ATP.

1 Set of inference rules chosen by a user.

The set of aIl clauses that are inferred from the clause
inferred

C and side yremises using the inference rule rule.

max bound The maximum iteration depth.
-

The set of clauses from which the side premises to be
potential_side yremises

used in the mega-inference rule are selected.

S Set of input clauses.

SJactors Factors ofthe set of input clauses.

Chosen clauses that can be used as si de premises in
side yremises

the mega-inference rule.

Temporary set of constructed clauses used only during

a derivation of a goal clause. For example, merge

clauses obtained during the application of the mega-
T

inference rule are constructed and added to this set but

are deleted once the application of the mega-inference

rule is over.

Chapter 4 - Semi-Linear Resolution 81

A list of the procedures/functions (in alphabetical order) and a brief description of

the functionality of each procedure/function is given in Table 4-2. Detailed

description of the procedures SLR and MIR are given later.

Table 4-2: A li st of procedure/functions used in an implementation of SLR

ProcedurelFunction Description

AOOCLAUSE Adds a clause to a set of clauses.

Perfonns the union of two sets of clauses and
AOOCLAUSES

returns the result in the second parameter.

CONSTRUCT Constructs a clause.

Detennines if the clause is a merge clause or not.

MERGECLA USE Returns true if the clause is a merge clause and

false otherwise.

MIR
Application of the mega-inference rule perfonned

as a depth first search.

Detennines if a clause confonn to certain criteria set

P AssEv ALUA TE
by the user or automatically detennined by an A TP.

Returns true if the clause confonns to the criteria

and false otherwise.

SELECT ApPLICABLERuLES
Selects applicable rules for C _init and

side yremises.

SELECTINITIALCLAUSES
Selects initial clauses that have the potential to lead

to a refutation.

Selects si de premises that have potential

SELECTSIDEPREMISES complementary literaIs or can be used as

paramodulators.

Chavter 4 - Semi-Linear Resolution 82

ProcedurelFunction Description

Main procedure of semi-linear resolution. Performs

SLR an IDDFS using delayed-clause construction and

adds sorne redundancy control.

We now explain the SLR procedure and MIR function in detail.

SLR

Line 4 initializes the set Goals. This is the set that contains the conclusions of the

mega-inference rule as long as the conclusion conforms to certain criteria set by

the user or automatically determined by an ATP. Examples of goal clauses are

given in Chapter 3. The purpose of this set is similar to lemmas and caching in

METEOR except that it does not affect the refutation completeness of SLR. Goals

can be viewed as a set whose functionality with respect to SLR is similar to the

passive set in GCA.

Line 5 calculates the factors of the input clauses. This is necessary to maintain the

completeness of SLR since input clauses are not factored before they are used as

side premises.

Lines 6-11 is the main IDDFS loop.

Line 7 selects the initial clauses for a linear derivation. The selection criteria are

based on heuristics that determine the "best" clauses to start with. The selection is

also based on the values given in attribute sequences (presented in Chapter 5).

Attribute sequences are used to prune the explorable search space. The initial

clauses are selected from the input clauses, the set of factors of the input clauses

and the set Goals which consists of derived constructed clauses. Initially the set

Chauter 4 - Semi-Linear Resolution 83

Goals is empty, but after each application of the mega-inference rule (line 9), the

size of Goals increases when derived clauses conforming to criteria that are either

set by a user or automatically determined by an A TP are constructed and added to

Goals. The addition of new clauses to Goals is done in line 14 of the function

MIR.

MIR

Line 5 checks if the depth has exceeded the bound and if so, it returns the set

goals unchanged.

Line 6 selects the side premises by using lookup tables (see Chapter 6) and

attribute sequences (see Chapter 5). Lookup tables help determine clauses that

have potential complementary literais for resolution and unifiable literaIs for

factoring. They also help in determining unifiable terms, instances of terms, or

generalizations of terms between the initial clause and the si de premises. The

addition of the set T as a union with the selected premises rather than as a union

with the parameters of the function SELECTSIDEPREMISES ensures that ancestor

clauses, such as merge clauses or from clauses, are added to the set of side

premises. The selection of side premises is important because it influences the

selection of applicable inference rules (line 7).

Line 7 selects applicable inference rules. Those are the rules that are relevant to

the initial clause and the selected side premises. For instance if paramodulation is

in rules but none of the si de premises or the initial clause can be used as a

paramodulator then there is no point in choosing paramodulation. In this case,

paramodulation is not an applicable rule. Also attribute sequences (see in Chapter

5) affect the selection of the applicable rules as weIl as the number of applications

of each rule by relying on the Iength of a clause.

Chauter 4 - Semi-Linear Resolution 84

Lines 8-25 is the main depth first search loop in which the application of the

selected inference rules is performed in all possible ways at all depths up to the

depth bound. If the application of an inference rule is successful, then the

conclusions are retumed in the set inferred (line 9). If one of the conclusions is

the empty clause, then the search terminates and the string "unsatisfiable" is

displayed (line 10). If the empty clause is not obtained, then every clause in the

set inferred is evaluated with respect to the criteria that are either set by a user or

automatically determined by an A TP (line 12). If the clause passes the evaluation,

it is constructed (line 13) and added to the set ofderived goals (line 14).

Forward subsumption, where if a clause in S, SJactors, or Goals subsumes

new_clause then new_clause is not added, is performed within the procedure

P AssEv ALUA TE. Back subsumption, where if new _clause subsumes a clause in S,

S Jactors, or Goals then the subsumed clause is deleted, can also be performed at

this point.

Lines 16-19 determine if a conclusion is a merge clause and if so, it is added to

the temporary set T. T is a set of constructed intermediate conclusions that are

generally used as far parents, such as merge clauses and from clauses. However,

there is a case where an intermediate conclusion is constructed and added to T and

is not necessarily a far parent. This case is explained below as Case (2). Clauses

in T are short lived clauses. They are useful within a linear derivation but once the

end of a derivation is reached (see Chapter 3 for the definition of end of

derivation), they are deleted. There are two cases when it is necessary to construct

an intermediate conclusion and added to T during a linear deduction. The two

cases occur when

(1) an intermediate conclusion is a merge clause, or

(2) the time it takes to extract the attribute of an intermediate conclusion

takes longer when the intermediate conclusion is not constructed than

when it is constructed.

ChaDter 4 - Semi-Linear Resolution 85

Those cases are necessary to maintain completeness of SLR and the speed

improvement gained by the employment of DCC. In Figure 4-4 we show only the

case of merge clauses to simplify the algorithm. It is easy to add a condition that

tests for Case (2). We discuss each case in detail.

Case (1)

In [Andrews 1968] and [Anderson & Bledsoe 1970], it was shown that the

resolution method remains refutation complete if ancestor resolutions are

restricted to only resolutions with ancestor clauses that are merge clauses.

Corollary 3.2 states that every clause that is a far parent must be constructed. A

merge clause is a far parent, and thus must be constructed. If SLR is limited to

constructing merge clauses and adding them to the set T, then SLR remains

refutation complete. However, every time a clause is constructed, it is no longer a

delayed clause. So if the number of merge clauses is large, then too many clauses

would be constructed. This implies that only the construction of few clauses is

delayed. The performance improvement of an A TP resulting from the

employment of DCC relies on the number of delayed clauses; the more the

delayed clauses the better the performance. Therefore, if the construction of only

a few clauses is delayed, then the use of DCC leads to a negligible boost in

performance. If the worst case occurs, where every clause is a merge clause, then

DCC becomes useless.

We tested 2323 theorems to determine the percentage of merge clauses with

respect to the total number of generated clauses. We found that, on average, only

0.57% of aU generated clauses are merge clauses and none of the tests revealed a

worst case scenario. The results are sho~ in Figure 4-5.

ChaDler 4 - Semi-Linear Resolution

235 thoorems
; between : 76 theorems
! 0 57% and : 0Véf 2%

"c .' ,~,.<"J2%m.~.w. J
PUZ028.J (45.79%): :

00.00·

45.1)0 ,_~_,."~_"~,,.'_~ __ ~ ___ '~ ____ ~_~h. __ ~~~ ___ ,,_"v.~_.~ __ ~.~~~ _____ v_~, ______ ~ __ •. __ ~~~" A ___ l

PUZ03J.-1 (40.41%)' : i

4t}00

__ , l

,··· .. ··l · ~
PUZOlO·1 (34.59%\ 1 :

~ 35,00 l------------------------~.,f---=",.,... ~,....---;

i 30.00

~

'& 25,00

~

, .
1 !.

1 i
! ~.

1 . .
~ 2IHln-j-----------------------+------r;-.---; :, (+J ~ ..

l' 10.00 ...

5.00 ··1-----------------------t---H-----'

Ave. 0.57% o.oo ... _____________________ .. ~~!..-._---i

500 1000 1500 2!JOO 2500

86

Figure 4-5: Percentage of merge clauses with respect to the total number of
generated clauses per theorem.

The highest value is 45.73% and the lowest is 0%. Higher percentages of

merge clauses normally occur in theorems where the maximal term depth is one

and most of the terms are constants. For instance, PUZ028-3 has zero variables

and a maximal term depth of one, PUZ033-1 contains only propositional clauses,

and most of the input clauses ofPUZOlO-l contain zero or one variable and their

maximal term depth is one. The reason why merge clauses arise more in theorems

where shallow ground terms occur often is because if the unification of literaIs

with shallow terms is successful then it is more likely to produce an mgu that is an

ernpty substitution set. Therefore, identical instances of literaIs are more Iikely to

anse.

Since factoring of identical literaIs is the same as rnerging the identical literaIs,

then there is only the need to check for merge clauses after performing a binary

factoring. If the unification of two literaIs yields an mgu which is an empty

Chapter 4 - Semi-Linear Resolution 87

substitution set, then the literais are identical and the factor is a merge clause. A

merge clause is constructed and added to set T.

We conclude from the result of the experiments that the percentage of merge

clauses to the total number of generated clauses is low enough in general that

constructing them does not affect the performance improvement gained by using

DCC.

Case (2).

When an intermediate conclusion is generated, it is use fuI to determine its

attributes in order to decide whether to continue along the path of this clause or to

backtrack. For instance, an intermediate conclusion may be subsumed by a clause

in Goals. In this case, there is no point in proceeding with the search. Clause

attributes can also be used as part of heuristics upon which the decision of

proceeding along a path or not is made. For instance, THEO [Newbom 2001] uses

an extended search strategy, in which the search continues beyond the iteration

bound if an intermediate conclusion satisfies certain criteria. The criteria are

based on clause attributes. Therefore, clause attributes are important for an ATP

to make a decision that may lead to the pruning of the explorable search space.

When DCC is employed, determining an intermediate conclusion's attributes is

not a straight forward process because an intermediate conclusion is generally not

constructed. The attributes have to be determined from the expression that

represent an intermediate conclusion. Generally, the time it takes to determine a

non-constructed clause attributes is short enough that is does not affect the

performance improvement gained by using DCC. However, it is sometimes better

to construct an intermediate conclusion and then determine its atlributes rather

than determine its attributes in its non-constructed state. We derived a formula

that an A TP can use to determine whether it is faster to construct an intermediate

conclusion and then determine its attributes, or to determine its attributes without

constructing it. The formula is

Chavter 4 - Semi-Linear Resolution 88

-IC(IJI+ 1 C (1;) 1
2

+4·Weight(C(I;))
1··· 1< au - -----'------------

2
E4.1

where cru is a p-idempotent substitution set which forms the union of ail mgu's

resulting from the inference rules applied up to an including depth i, and C(I;) is

the intermediate conclusion at depth i. A detailed derivation and analysis of this

formula is given in Appendix C. An ATP uses E4.1 as follows. If the number of

elements in cru is less than or equal to the value obtained from the right hand

si de of the formula in E4.1, then it is faster to determine an intermediate

conclusion's attribute without constructing it. Otherwise, it is faster to construct

the intermediate conclusion and then determine its attributes.

4.6 Redundancy Control in SLR

Redundancy elimination is performed at the time when a goal is evaluated (Une

12 in MIR procedure in Figure 4-4). If a new goal clause new_clause subsumes

clauses from goals, then the clauses are removed from goals (Le. backward

subsumption), but if new clause is subsumed by a clause in goals, then

new clause is not added to goals (i.e., forward subsumption). Forward and

backward demodulation can be performed in the same manner between a

new_clause and goals.

We conducted an experiment in our experimental ATP CARINE to determine the

number of redundant goals eliminated due to forward subsumption. We restricted

the goals to unit clauses. We ran CARINE over the CNF theorems in TPTP library

v.2.6.0 (see Appendix A). We counted the number of generated unit clauses and

retained unit clauses in each theorem that was proved by CARINE (see Appendix H

Chapter 4 - Semi-Linear Resolution 89

for a list of theorems proved by CARINE). A unit clause is retained if it is not

subsumed by an already retained clause. We found that on average less than 20%

of the unit clauses generated were retained.

Forward and backward subsumption can also be performed between a new goal

and the input set or the factors of the input set without affecting the completeness

of SLR, but forward and backward demodulations between the a new goal and the

input set can affect the completeness in SLR.

Tautology deletion is performed on every constructed clause whether it is in

the temporary set T or in Goals. Tautology deletion is performed at the time of

construction of a clause (lines 13 and 17 in MIR) .

4.7 Advantages and disadvantages of SLR

4.7.1 Comparison between SLR and GCA

In addition to the advantages of iteratively-deepening depth-first search over the

given-clause algorithm, SLR uses DCC which results in a much faster derivation

of clauses and hence, SLR can achieve a much higher inference rate than GCA.

Furthermore, the disadvantages of the IDDFS (shown in Figure 5-2) are not as

strong in SLR because of the following additional strategies.

• The selection of the "best" initial clauses (line 8 in SLR).

• The use of the set Goals which although is much smaller than either the

passive or active sets used in GCA to store derived clauses that can be used

in the seatch. The use of Goals reduces the number of repetitive

computations. The set Goals acts like the set passive in GCA at the time of

initial clause (line 8 in SLR) selection but acts like the set active when the

side premises are selected (line 2 in MIR).

• Simplification and redundancy control can be integrated easily into SLR

without affecting DCC. However, the range of simplifications and

Chapter 4 - Semi-Linear Resolution 90

redundancy control is not as wide as it is in GCA because much fewer

derived clauses are retained.

4.7.2 Comparison between SLR and Model Elimination

In this section we compare SLR with the Model Elimination (ME)

implementation that is used in high performance ATPs such as SETHEO and

METEOR. Henceforth, any mention of ME implies the implementation of ME in an

iteratively-deepening depth-first search with implementation techniques that

result in high inference rate. Since both SLR and ME follow an IDDFS, we focus

our comparison on the implementations issues that result in high inference rate

and flexibility to include additional strategies and equality mIes.

The main difference between SLR and ME is in the way the high inference rate

is achieved. An A TP based on SLR achieves its high inference rate through DCC,

whereas an A TP based on ME achieves its high inference rates based on either

clause compilation following the PTTP approach or on a data oriented

architecture with a reuse of input clauses as proposed in [Letz & Stenz 2001].

PTTP first appeared in [Stickel 1984]. PTTP solved the weakness found in

SLD-resolution of Prolog systems. The weaknesses were lack of completeness

for non-Hom formulas, unsound unification, and unbounded depth-first search. In

addition, PTTP provided a high inference rate through the compilation of input

clauses into procedures of either an actual or abstract machine. The compilation is

possible because of the linearity in the derivation of clauses. Since ME does not

perform ancestor resolutions (Le. no far parents are explicitly involved) in a

derivation, then only input clauses are used as side premises. Since the contents of

input clauses are known before the search starts, the input clauses can be

compiled in a way that will make the application of the extension and reduction

mIes of ME performed efficiently. This leads to the integration of the input

clauses with the search process resulting in a tight relation between the two. The

Chapter 4 - Semi-Linear Resolution 91

drawback resulting from this tight relationship was reported in [Letz & Stenz

2001 p.2086] as follows

"Changing the unification such as to add sorts, for example, or adding new

inferences, e.g. equality handling, or generalizing the backtracking procedure

becomes extremely cumbersome if not impossible in such an architecture."

Unlike PTTP, in a data oriented architecture clauses are viewed as data

structures that are separate from the se arch process which allows an easy

integration of new strategies and the addition of new inference rules,

simplification rules, and redundancy control. This is similar to SLR but instead of

binary resolution and binary factoring, the extension and reduction rules are used

and instead of DCC, a reuse of copies of input clauses is performed. The

motivation behind clause reuse is the same as that of DCC, namely, the time

consuming operations for constructing clauses. Input clauses are copied (i.e.,

constructed) and their variables renamed, then they are used as side premises.

When backtracking is performed, a clause which was used as a side premise is not

deleted but only its instantiated variables are de-instantiated. The next time this

input clause is needed as a side premise, one of its copies that is still remaining in

memory is used. This reduces the number of clause constructions which

ultimately leads an ATP to achieve a high inference rate. The drawback is the

memory requirement. Since the copies of side premises remain in memory after

backtracking, then the reuse approach requires more memory than DCC.

Furthermore, DCC does not waste time making copies. Therefore, SLR which

relies on DCC uses memory more efficiently than the reuse approach, and it

performs less operations in generating new clauses because it does not make

copies of input clauses.

Chapter 4 - Semi-Linear Resolution 92

4.8 Completeness of SLR

If the selection of initial clauses is fair (i.e., any clause or its factor from the input

clauses eventually will be selected) and the inference rules are refutation

complete, then SLR will behave like linear-input resolution performed in an

iteratively-deepening manner. If only merge clauses are added to the set T, then

SLR will behave like linear resolution. The main difference between SLR and

linear resolution is the set Goals. If Goals is left empty, then SLR will become a

linear resolution performed in an iteratively-deepening manner. The set Goals is

used to reduce redundancy and repetitive derivations. Therefore, it does not affect

the completeness of SLR. Since linear resolution is refutation complete, then so is

SLR.

We conclude that SLR is refutation complete if

• the procedure SELECTINITIALCLAUSES is fair, and

• the selected inference rules 1 are refutation complete, and

• merge clauses are constructed and used in ancestor resolutions, and

• max _ bound is infinity (since SLR is an IDDFS).

4.9 Summary

In this chapter we described the given-clause algorithm and iteratively-deepening

depth-first search algorithm briefly. We listed the advantages and disadvantages

of each algorithm. We then presented semi-linear resolution; an iteratively­

deepening depth-first se arch that incorporates delayed-clause construction and

includes sorne of the advantages ofGCA. We listed the advantages ofSLR over a

regular IDDFS and compared the shared strategies between SLR and GCA.

Finally, we listed the conditions required for SLR to be refutation complete.

CHAPTER

5

Attribute Sequences

Semi-linear resolution performs a selection on the initial clauses and side

premises. The selection process is based on two criteria. One relies on lookup

tables and the other on clause attributes. Lookup tables are used to reduce the

number of unsuccessful applications of inference mIes, thereby increasing the

inference rate of SLR. Clause attributes are used to reduce the explorable search

space and improve the efficiency of SLR. Lookup tables are discussed in Chapter

6. In this chapter, we discuss clause attributes and we concentrate mainly on the

length attribute.

Since SLR seeks a refutation, it is possible to reduce the explorable search

space substantially by relying on the relationship between the attributes of input

clauses and the attributes of the empty clause. For instance, the length of the

empty clause is zero. Therefore, the length of the derived clauses must eventually

decrease as the search depth increases, otherwise the empty clause cannot be

obtained. In a linear resolution the relationship between the initial clause, the side

premises and the empty clause can be represented by attribute sequences. An

attribute sequence is a sequence of tuples of clause attributes where each tuple

contains attributes related to the input clâuses and the generated clauses.

In this, chapter we analyze the size of the search space of SLR from two

perspectives, the number of generated clauses and the number of attribute

sequences where the attribute is the length of a clause. In the former, we derive an

upper bound on the number of generated clauses, whereas in the latter we

Chapter 5 - Attribute Sequences 94

compute the number of attribute sequences that can be used as a guide to prune

the search space without compromising completeness. To simplify the analysis of

the number of attribute sequences, we proceed from the simplest case, where

binary resolution is the only inference rule, and then include other inference rules,

such as binary factoring, demodulation, and paramodulation. Finally, we construct

the minimum subset of attribute sequences that can be used as a guide to prune

the search without compromising completeness.

5.1 Number of generated clauses in SLR

In this section, we compute an upper bound on the number of generated clauses

from the SLR algorithrn presented in Chapter 4 (Figure 4-3). Let ni (X) be a

function that returns the number of elements in a set X at iteration i. For example,

~ (initial _ clauses) is the number of initial clauses selected (see Figure 4-3 line 7

in the SLR procedure) at iteration 1. Let Ai c applicable _ rules be the set of

inference rules at iteration i > ° that require only one premise (e.g., binary

factoring, equality resolution equality factoring). Suppose that a /h derived clause

Cj,i_l at depth i -1 generates sorne number of clauses using the inference rules

Ai' then let !(Cj,H) be this set of generated clauses. !(Cj,i_l) is shown in

Figure 5-1 as a rectangle.

In Figure 5-1, at depth 0, the circ1es represent initial clauses. At depth 1, the

circles represent clauses generated from the initial clauses using applicable Jules.

At depth 2 the circles represent clauses generated from the clauses at depth 1

using the inference rules in ÂI' To reduce a crowded representation, we did not

add in Figure 5-1 the clauses generated at depth 2 by the rules from the set

applicable _ rules \ AI .

Charter 5 - Attribute Sequences 95

Depth

initial clauses o

2

!(C,)

Figure 5-1: An example of search tree showing the set !(Cj,i_l) of clauses

generated using inference ru les that require only one premise.

Table 5-1 shows the maximum number bi ,) of clauses that can be generated at

depth i in iterationj. The first column is the iteration depth bound and the second

column is the depth. The total number of generated clauses at each iterationj is

}

"'\' b .
~ l,)

i=l

(E5.1)

The total number of clauses generated up to and including iteration dmax ' denoted

by ngen(dmax) , is the sum of the total number of generated clause at each iteration

1 s j s dmax ' Therefore, using E5.1, ngen(dmax) is calculated by the formula

dmax }

ngen(dmax) = L L bi,} • (E5.2)
)=1 i=l

If we assume a uniform branching factor of b and an initial number of clauses m,

then E5.1 becomes

}

Lm.b l
• (E5.3)

i=l

With a uniform branching factor b and an initial number of clauses m, E5.2

becomes

Chapter 5 - Attribute Sequences 96

dmax)
ngen(m,b,dmax) = 2:2:m.bi . (E5.4)

)=1 i=l

Table 5-1: Maximum number of generated clauses in SLR at each iteration

Bound Depth Maximum number of generated clauses

1 1 bu = nI (initial _ clauses) x nI (side _ premises) x nI (applicable _ rules)

1 bl,2 = n2 (initial_ clauses) x n
2
(side _ premises) x n

2
(applicable _ rules)

2 b
2

,2 = bl.2 x (n
2
(side _ premises) -1) x nI (applicable _ rules \ À

2
) +

2
I b

" f ;~ln2((Cj,I»

1 bl,) = n) (initial_ clauses) x n) (side _ premises) x n] (applicable _ rules)

b
2
,) = bl,3 x (n

3
(side _ premises) -1) x n

3
(applicable _ rules \ ÀJ +

2
I:':l n3(f(C;) 3

b
3

.3 = b
2

) x (n] (side _ premises) - 2) x n
3
(applicable _ ru/es \ À]) +

3
I:2~: n)(f(C;,»

...

bl d = nd (initial _ clauses) x nd (side _ premises) x
1

·~x ~ ~

nd (applicable rules) max -

b2d = bld x(nd (side_premises)-l)x
• max • max max

2 nd (applicable _ rules \ Àd) +
max max

dmax I~~~max ndmax (f(CjJ»

...

bd d =bd -Id x(nd (side_premises)-dmax+l)x
max' max max' max max

dmax
nd (applicable _ rules \ À d) + max max

Ibdmax-I.dmax n (f(C _ »
j=1 dmax },dma.lf.]

Chapter 5 - Attribute Sequences 97

E5.3 is a geometric series and can be written as m·(bJ+I-b)/(b-l). If we

substitute this expression in E5.4, then expand and simplify the resulting

expression, we get

bdmax +1 -b·d -b+d
ngen(m,b,dmaJ=m.b. max 2 max

(b-l)
(E5.5)

In practice, it is usually sufficient to set dmax S; 30 when SLR is used because

when the depth reaches d max = 30 , even for values as small as b = 3 and m = 2 ,

SLR would have to generate (using E5.5) approximately 1015 clauses (see Figure

E-2 in Appendix E for values of m and b in practice).

5.2 Search Paths

If ~ = (I;, ... , I,,) is a linear derivation of length n > 0, then SP(~) is called a

search path and is defined as the sequence

SP(~) = ((Cinit , V(1;», ... , (C(I,,_I),V(I,,») ,

where

Cinit is the initial clause of the derivation ~,

for ail 1 S; i S; n -1, C(I;) is an intermediate conclusion,

for aIl 1 S; i S; n, V(I;) are the side premises.

A refutation search path (RSP) is search path that leads to the empty clause.

In the case where for aIl 1 S; i S; n, 1 S; IPr,em(I;)1 S; 2, we write SP(~) as

SP(~) = ((Ro, Do),"" (Rn_l' Dn_I ») ,

where

Chapter 5 - Attribute Sequences 98

for aIl 1:S; i:S; n -1, Ri = C(IJ .

If Di = R, then the inference rule requires only one prernlse, such as binary

factoring.

Example 5.1:

S = {BI' B2' BJ' B4} is set of constructed clauses.

BI =-,Pv-,Qv D, B2 =-,Dv-,Q, BJ = P, B4 = Q.

BI :-,Pv-,Qv D

B2 :-,Dv-,Q

RI :-,Pv-,Qv-,Q

R2 :-,Pv-,Q

B):P

(resolvent)

(factor/rnerge clause)

(resolvent)

R4 : rjJ (resolvent)

The derivation ~ in Exarnple 5.1 is a linear derivation where the nurnber of

prernises in each inference is either 1 or 2. Therefore, the search path SP(~) is

expressed as (BI' B2), (RI' RI)' (R2 ' BJ), (RJ' B4)). The length of this sequence is 4

and it contains one application of binary factoring and three applications of binary

resolutions. The binary factoring is indicated by the pair (RI.RI)'

SLR explores rnany search paths where sorne of thern lead to an ernpty clause

while others don't. AIso, the search paths that lead to the ernpty clause differ in

length. It is not possible to determine ahead of tirne the search paths that lead to

Chapter 5 - Attribute Sequences 99

the empty clause; otherwise proving unsatisfiability would be relatively easy.

Instead, we have to explore aIl possible paths or at least the potential ones that

may lead to the empty clause. The potential paths are the paths that remain after

eliminating the ones that would certainly not lead to the empty clause. By relying

on the relationship between the clause attributes, the inference mIes involved, and

the bound set for every iteration, we can eliminate many of the unnecessary paths.

Using such relationship, we study sequences of clause attributes and in particular,

the lengths of clauses, at each level in the derivation. By relying on those

sequences, we can reduce the search space explored by SLR independent of the

semantics of the clauses and without compromising completeness.

5.3 Attribute Sequences

An attribute sequence is a sequence of tuples of numbers where each number

within the tuple represents one attribute of one premise of the applied inference

mIe in a linear derivation. Let f(C) E 3t]R(C) denote a function that returns sorne

real valued attribute of a clause C, and if S = {D], ... , Dn} is a multiset of clauses,

then f(S)=(f(D]), ... ,f(Dn)), where f(Di)E3t]R(D) for l~i~n. If

Ô = (I;, . .. , I,,) is a linear derivation of length n > 0 , then

SP(ô) = (Cinit , 1J(I;)), ... , (C(I,,_]),1J(I,,)))

is the search path corresponding to Ô and

A TS(f, ô) = (f(Cinit),f(1J(I;))), .. . , (f(C(In_])), f(1J(In)))),

is the attribute sequence corresponding to SP(Ô) with respect to the attribute f

For instance, an attribute sequence, where the attribute is the length of the clause,

of the refutation search path (BI'B2),(R],R]),(R2 ,BJ,(R3 ,B4)) (from Example

5.1)is

(Len(B]), Len(B2)), (Len(R]), Len(R])), (Len(R2), Len(B3)), (Len(R3), Len(B4))) •

Chauter 5 - Attribute Sequences 100

The set of attribute sequences, ATS, forms the co-domain of a mapping, M,

between search paths, SP (domain), andATS. The mapping M is expressed as

M:SP~ATS.

Let ~(S) be set of aIl derivations that can be formed from a set of clauses S, then

the set of all derivations of length less than k > 0 that can be formed from a set of

clauses S is denoted by

~(S,l..k) = {~: ~ E ~(S) and 1::; I~I s k}.

The set of aIl search paths that can be formed from ~(S,l..k) is denoted by

SP(~(S,l..k». The corresponding set of attribute sequences with respect to an

attributefis denoted by ATS(f,~(S,l..k». The number ofattribute sequences of

lengths between 1 and k > 0 with respect to an attributefthat can be formed from

a given set of clauses Sis

IATS(f,~(S,l..k»I· (E5.6)

In the foIlowing sections, we present an algorithm that generates aIl attribute

sequences, where the attribute is the length of a clause, which correspond to

refutation search paths for a given set of clauses. We derive a formula for

computing the expression in E5.6 when f is the length of a clause and the

inference rule used is binary resolution. We then determine the minimum set of

attribute sequences that can be used as a guide in the selection of clauses in SLR

without compromising completeness and we provide an algorithm that generates

the minimized set of attribute sequences.

We begin our presentation by assuming that binary resolution is the only

inference rule applied in a derivation (other rules are discussed afterwards). We

demonstrate how attribute sequences that correspond to refutation search paths

Chapter 5 - Attribute Sequences 101

can be used as a guide to reduce the number of search paths. In other words, since

we don't know which se arch paths are refutation search paths, we rely on attribute

sequences to find out which ones may lead to a refutation. This is illustrated in

Figure 5-2. The set SP is the set of search paths that can be formed from a given

set of clauses. RSP is the subset of SP where each element of RSP leads to a

refutation. ATS is the set of attribute sequences corresponding to SP. W is the set

of attribute sequences corresponding to RSP. When a search is conducted by an

ATP, the set RSP is not known. By using the set Was a guide, an ATP can reduce

the explorable search space from SP to RSP. This is what SLR does when it

selects initial clauses and side premises. It relies on attribute sequences to reduce

the size of the explorable search space.

M: SP ---+ ATS

Figure 5-2: An exarnple of a relationship between search paths and attribute
sequences.

5.3.1 Restricting the number of s'earch paths under binary
resolution

When searching for a refutation and the bound is set to 1, we are actually seeking

a derivation of the empty clause in one step. 11 is readily noticeable that we do not

ChaTJter 5 - Attribute Sequences 102

need to resolve clauses whose lengths are greater than one, because the Iength of a

resolvent R resulting from the binary resolution of the two clauses, C, and C2 , is

Len(R) = Len(C,) + Len(C2) - 2

and if Len(C,) + Len(C2) > 2, then Len(R) > 0 which is greater than the length of

the empty clause; Len(~) = o. Therefore, when seeking a derivation of Iength 1 of

the empty clause, the sum of the lengths of the clauses forming the premises of

binary resolution must be less or equal to the length of the resolvent (the empty

clause) which is zero, plus two;

Len(C,) + Len(C2) ~ Len(R) + 2 = Len(~)+2 = 0+2 = 2.

In Example 5.1, there is no need to attempt a resolution between BI and B2

when looking for a search path oflength 1 because Len(B,) + Len(B2) = 5 and it

is greater than 2. Only clauses B3 and B4 are potential candidates at this point

because the sum of their lengths is 2. However, since they do not resolve together,

there is no derivation of length 1 that results in the empty clause and the search

for a proof within iteration 1 is over. SLR proceeds with an attempt to find a

derivation of the empty clause in two steps, so the bound is incremented to 2.

Within iteration 2, the sum of the lengths of the premises at depth 0, i.e., the

sum of the Iengths of the initial input clauses, must be less or equal to 4. In

Example 5.1 the choice for the initial clauses, based soIely on their lengths, can he

any of the pairs from the set

{ (B, , B3), (B, ' B4), (B2 ,B3), (B2 , B4), (B3, B4),

(B3,B,), (B4, B,), (B3,B2), (B4 ,B2), (B4,BJ}.

Sorne of the se pairs of clauses resolve while others don't. By eliminating aIl the

pairs of clauses from the above set that don't resolve, we are left with the set

Chapter 5 - Attribute Sequences 103

Since the bound is set to 2, then at depth 1 there is only one step left and hence,

the sum of the length of the resolvent RI and the length of a clause Bi for sorne

1 ~ i ~ 4, must be less or equal to 2 , i.e., Len(RI) + Len(Bi) ~ 2, if the empty

clause is to be produced within a total of 2 steps. The minimum length for any of

the Bi ' s IS 1, so the maxImum length for RJ must be

Len(Rj) = 2 - Len(BJ = 2-1 = 1. Any of the pairs (BI'B3)' (BpB4)' (B3,Bj) or

(B4,BJ) produces a resolvent of length 2 which is greater than 1, the maximum

length allowed for RI' In this case, the resolvent is said to be oversized for the

current depth. In general, when a refutation search path of length k is sought, a

resolvent Rd at depth d > 0 within iteration k is said to be oversized for depth d

if Len(Rd) > k - d .

In SLR, proceeding with the search from an oversized resolvent is a waste of

time, as shown above. Therefore, aIl paths leading to an oversized resolvent must

be avoided. This implies that at depth d > 0 within iteration k, the length of the

resolvent Rd must be restricted by the expression

(ES.7)

We can compute the length of any resolvent Rd' for d > 0, in a refutation search

path (Ro, Do)," ., (Rk-J, Dk - J)) recursively using the formula

Len(Rd) = Len(Rd_j) + Len(Dd_J) - 2.

From ES.7 and ES.8 we conclude that

Len(Rd_1) + Len(Dd_l) ~ k -d + 2.

(ES.8)

(ES.9)

In Example 5.1 the pairs (BI'B3)' (BI'B4), (B3,Bj) and (B4,BJ) pro duce

oversized resolvents for depth 1, and so they are eliminated from the set

{(BI'B3),(BpB4),(B2,B4),(B3,Bj),(B4,Bj),(B4,B2)}' This set is thus reduced to

Chavter 5 - Attribute Sequences 104

the set {(B2 ,B4),(B4,B2)}. B2 and B4 produce the resolvent R1 = -,D. At

iteration 2 and depth 2, k = 2 and d = 2. By using E5.9, and knowing that

Len(R1) = 1, we look for a clause in S that resolves with RI' such that

1 + Len(Bi) ::; 2 - 2 + 2 = 2, for sorne 1::; i ::; 4.In other words, we look for a unit

clause that resolves with R1 • Since there aren't any, then iteration 2 is over

without resulting in a proof of unsatisfiability. Adding the restriction of E5.9 to

SLR, reduces the nurnber of search paths explored by SLR frorn six to three as

shown in Figure 5-3. The search paths and attribute sequences are indicated

below the leaves of the tree.

Iteration 1

Search paths

Attribute sequences (3,2)) (3,1))

Iteration 2

«BbB2),(Rj ,B3 » «Bj ,B2),(Rj,B,» «Bj,B3),(Rj ,B2» «BI ,B3),(RI ,B,» «BI ,B.),(RI ,B2 » «B, ,B4),(RI ,B3 »
«3,2),(3,1» «3,2),(3,1» «3,1),(2,2» «3,1),(2,1» «3,1),(2,2» «(3,1).(2,1»

Figure 5-3: Search paths and attribute sequences for iteration 1 and iteration
2 of Example 5.1.

Charter 5 - Attribute Sequences 105

It is clear from Figure 5-3 that by applying the restriction E5.9 on the lengths of

the clauses many search paths can be avoided. By using E5.9 to reduce the

number of attribute sequences explored, we actually reduce the number of search

paths explored.

5.3.2 Constructing attribute sequences

From a set of given clauses, we can determine aIl the attribute sequences

corresponding to aIl the refutation search paths of the form

(Ro, Do)," ., (Rk_l' Dk_I))· We begin by selecting a length for an initial clause Ro

such that Len(Ro) ~ k (from E5.7). Then, iteratively, for every 0 ~ i ~ k -1, we

compute first the possible range of lengths for Di by the formula

Len(Di) ~ k - i + 1 - Len(Ri) (E5.10)

and then for each of the possible values for Len(DJ, we calculate Len(Ri+l)

using the formula

Len(Ri+l) = Len(RJ + Len(DJ - 2. (E5.11)

The following function, CONSTRUCT A TSBR, computes the attribute sequences for

iteration k using E5.10 and ES.11 and assuming that only binary reso]ution is

used. It then returns the results in the array atsequences.

CONSTRUCT A TSBR(k:integer):array

1. atsequences:array
2. current _ ats:array
3. n _seq:array

4. for initial_length := 1 to k
5. current_ats[1] := initial_length
6. CONSTRUCTRESTOFATSBR(current_ats, 1, 1, k, initial_length,

atsequences, n_seq)
7. end for
8. return (atsequences)

Charter 5 - Attribute Sequences 106

Line 4 of CONSTRUCT A TSBR loops over the range of possible values for the

length of the initial clause Ra. Since there is no need to store Len(Ri) because it

is implied, the three dimensional array atsequences stores aIl the attribute

sequences in a compact format as (Len(Ra),Len(Da),Len(D1), ••• ,Len(Dk _I)). For

example, for k=4, one of the attribute sequences is (0,4),(3,1),(2,1),(1,1)) in

full format. It is stored in the compact format in atsequences[4][5] as (1,4,1,1,1)

such that atsequences[4][5][1]=1, atsequences[4][5][2]=4, and so on. The array

n _seq is a counter of the number of attribute sequences for each length for

iteration k. For example, for k = 4, n _ seq[5]= 14 and that is there are 14 attribute

sequences oflength 5 (the length is measured over the compact format).

CONSTRUCTREsTOFA TSBR (current _ ats:array, ats _length:integer,
depth:integer, k:integer,
resolvent _length:integer, atsequences:array,
n _seq :array) :integer

1. if resolvent _length = 0 th en
2. INCREMENT(n _seq[ats _length])
3. ats_number := n_seq[ats_length]
4. for ats_entry := 1 to ats_length
5. atsequences[ats_length][ats_number][ats_entry] :=

current _ ats[ats _ entry]
6. end for
7. end if
8. return
9. for input _length := 1 to k - depth + 2 - resolvent _length
10. current_ats[depth + 1] := input_length
11. CONSTRUCTRESTOFATSBR(current_ats, ats_length + l, depth + 1, k,

rèsolvent _length + inpuClength - 2,
atsequences, n_seq)

12. end for

Line 5 of CONSTRUCTA TSBR sets the first element of the sequence to the length

of Ra and the rest of the sequence is determined by the function

Chapter 5 - Attribute Sequences 107

CONSTRUCTRESTOF ATSBR. CONSTRUCTREsTOF ATSBR is called recursively and

the recursive terrnination condition at line 1 checks if the resolvent's length is

zero to ensure that no sequences longer than necessary are generated. When the

resolvent's length is zero, the number of attribute sequences of the current length

is incremented and the current sequence is copied into the array atsequences. In

other words, CONSTRUCTREsTOF ATSBR adds the current sequence to the set of

sequences of length, aIs _length. Line 9 of CONSTRucrREsTOF ATSBR loops over

the entire range of lengths that the clauses from the input set of clauses can have

based on the restriction of E5.1 01
•

Table 5-2 lists aIl the 22 attribute sequences in compact notation for k = 4 in the

order they are generated by CONSTRUCT ATSBR and not by their lengths.

Table 5-2: Attribute sequences for k=4

(1,1) 1 (1,2,1) 2 (1,2,2,1) 3 (1,2,2,2,1) 4

(1,2,3,1,1) 5 (1,3,1,1) 6 (1,3,1,2,1) 7 (1,3,2,1,1) 8

(1,4,1,1,1) 9 (2,1,1) 10 (2,1,2,1) Il (2,1,2,2,1) 12

(2,1,3,1,1) 13 (2,2,1,1) 14 (2,2,1,2,1) 15 (2,2,2,1,1) 16

(2,3,1,1,1) 17 (3,1,1,1) 18 (3,1,1,2,1) 19 (3,1,2,1,1) 20

(3,2,1,1,1) 21 (4,1,1,1,1) 22

Figure 5-4 shows a graph of the 22 attribute sequences for k = 4. Every vertex in

the graph contains a pair (Len(Ri),Len(DJ) for 0::; i::; 4. At depth 0, the vertices

represent the possible lengths for the initial pair of clauses (Ro, Do). The

subsequent depths indicate the possible lengths for the pairs (Ri' Di) for 1 ::; i ::; 4.

1 Notice that Une 9 the range goes up to k - depth + 2 - resolvent_length instead of k - depth + 1
- resolvent_length. This is because we start at depth 1 instead ofO. The depth is used as an index
counter for the array. We prefer not to use the zero index in an array for reasons that are not
related to this thesis.

Chapler 5 - Attribute Sequences 108

Iteration 4

Figure S-4: A graph of the attribute sequences for iteration 4.

Any path that starts with a vertex from depth ° and ends with a vertex containing

(0,0) is an attribute sequence. For example, the highlighted path in the figure is

the sequence ((1,3),(2,1),(1,2),(1,1)) or simply(I,3,1,2,1) which is sequence

number 7 in Table S-2. The vertices containing (0,0) indicate that the resolvent is

the empty clause.

Since the number of attribute sequences can be reduced by imposing the

restriction of ES.9, it is important to determine the ratio between the size of the

set of the attribute sequences without the restriction of E5.9 and with the

restriction of ES.9. This ratio reveals the gain in efficiency obtained by imposing

the restriction of ES.9.

Chapter 5 - Attribute Sequences 109

5.3.3 Calculating the number of attribute sequences

Determining the number of attribute sequences with the restriction imposed by

E5.9 requires an observation of the pattern existing within the generated

sequences. For instance, every iteration contains aH the attribute sequences of the

previous iterations as weIl as additional paths, as shown in Figure 5-5. At

iteration k, let the number of paths to anode (0,0) from the vertices (I,x) (i.e.,

whose tirst entry is 1) at depth d he PI. Let the numher of paths to anode (0,0)

from aIl the vertices (y,z) at d + 1 where ° ~ y ~ k -(d + 1) he P2· Then PI = P2.

For example, the number ofpaths starting from the vertices (1,1), (1,2), (1,3) and

(1,4) at depth ° is 9, which is exactly the number of paths starting from the

vertices (0,0), (1,1), (1,2), (2,1), (1,3), (2,2), (3,1) at depth 1 and ending at the

node (0,0) as displayed in Figure 5-5 (we count the empty path from (0,0) to (0,0)

as one path).

In general, for any 1 ~ r ~ k where k > ° is the iteration number, the number of

paths from the vertices (r,x) for aIl 1 ~ x ~ k - r + 1 at depth dis equal to the total

number ofpaths from the vertices (y,z) at depth d + 1, where r -1 ~ Y ~ k -(d + 1)

for aIl ° ~ z ~ k. We can now write a formula for calculating the total number of

attribute sequences within iteration k.

Chavter 5 - Attribute Sequences 110

Depth

o

2 0

3 2

4 3 2

1 . 31 Iteration 2
Iteration 4 teration

Figure 5-5: Attribute sequences for iterations 1 to 4.

Let the total number of attribute sequences with restriction E5.10 on the lengths

of the input clauses from the vertices at depth d within iteration k whose

resolvent's length is r be denoted by nrp(k,d,r), then the total number of

attribute sequences with restriction E5.10 on the length of the input clauses within

iteration k is

k

tnrp(k) = Inrp(k,O,r). (E5.12)
r=)

Chavter 5 - Attribute Sequences 111

The value for nrp(k,d,r) can be computed recursively by

nrp(k d r) = {!_(d+J) , , l nrp(k,d + l,i)
i=r-I

ifr = 0,

ifr > O.
(E5.13)

where r is the length of a resolvent and 0:-:; d :-:; k -1 is the depth.

The value produced by evaluating tnrp(k) is the number of attribute sequences at

iteration k. The total number of attribute sequences from 1 to k is sum

tnrp(l)+···+tnrp(k). Therefore, the value for IATS(j,L\(S,l..k»1 (from E5.6)

when j is the length of a clause, S is a set of input clauses, 1 .. k is the range of

iterations, is computed as

k

IATS(Len,L\(S,l..k»1 = Itnrp(i). (E5.14)
i=1

To compare E5.12 to the number of attribute sequences in each iteration without

imposing the restriction of E5.10, we first determine the number of attribute

sequences without in each iteration without imposing the restriction of E5.10. Let

the length of the longest input clause within a given set of clause be Smax. We

assume that there are clauses in the input set of aIl lengths between 1 and smax.

Since we assume that the restriction of E5.10 are is not imposed, then any

combination oflengths is possible as shown in Figure 5-6.

We notice from Figure 5-6 that for k > 1 not an paths starting from a vertex at

depth 0 continue till depth k. For exampÎe, when k = 2, the path starting with the

vertex containing the pair (1,1) ends with the vertex containing the pair (0,0) at

depth 1 and not at the iteration depth k. When k = 3, certain paths starting with

the vertices containing either (1,2) or (2,1) end at depth 2 instead of depth 3,

Chapter 5 - Attribute Sequences 112

which is the iteration depth. The reason is because those paths arrive at vertices

containing (0,0) that marks the end of an attribute sequence.

Depth

o

Iteration 4

, ,

, ,
, ,

,

, , , ,

Figure 5-6: A graph of attribute sequences of iteration 4 without restrictions
on the lengths of the resolvents.

In order to calculate the exact total number of attribute sequences that may be

explored by SLR without any restriction on the lengths of the clauses, we have to

take into consideration the fact that certain paths are not of length k. A simple

observation of the graph in Figure 5-6 reveals that the number of vertices at depth

d = 0 lS Smax
2

• The number of attribute sequences when k = 1 lS

(Smax
2

-l),smax +1 because every vertex at depth 0 has an out-degree of Smax

except the vertex containing the pair (l, 1) which has an out -degree of one. Let

Chauter 5 - Attribute Sequences 113

np(O) = Smax 2
- Let np(1) = (Smax 2 -1) -Smax + 1 _ When k = 2 , the number of paths,

np(2) , from the vertices at depth 0 to the vertices at depth 2, including the paths

of the vertices that end at (0,0), is np(2) = (np(l) - 2) -smax + 2 _ When k = 3, the

number of paths, np(3) , from the vertices at depth 0 to the vertices at depth 3 is

np(3) = (np(2) - 4) -smax + 4 _ In general, for k > 0, the number of paths, np(k) , in

the graph of Figure 5-6 starting from the vertices at depth d = 0 and ending

either with a vertex containing the pair (0,0), or at depth d = k is

(np(k -1) - 2k-l) -smax + 2k-1
__ The total number of attribute sequences within

k

iteration k without restriction on the lengths of the clauses is tnp(k) = l np(i) -
i=1

By expanding the expressions of np(i) , we get

d+2 d i-I d-i d-I k (d-I J
tnp(k) = ~ smax -smax - ~(2 -smax)+ 2 - (E5.15)

The summation in E5.15 can be expanded, factored and simplified through

algebraic manipulations to reach the formula

S k+4 _ 2 _ S k+3 _ S k+2 + S k+1
tnp(k) = max max max max

(Smax - 2)(smax -1)

(E5.16)

S 4 +2-s 3 + (2k+1 -1)-s 2 _(2k+2 -3)-s +2k+'-2
max max max max

(Smax - 2)(smax -1)

Table 5-3 shows the values for the total number of attribute sequences for the first

fifteen iterations with and without the restriction on the lengths of the input

clauses and the ratio, q np' of the two totals_ The largest input clause is assumed to

Chanter 5 - Attribute Sequences 114

be 7, i.e., smax = 7, which is equal to the rounded average of the longest clauses in

aIl theorems within the TPTP version 2.6.0 library.

Table 5-3: Number of attribute sequences for the tirst 15 iterations

Iteration tnrp(k) tnp(k) qnp = tnrp(k)/tnp(k)

1 1 337 0.002967359
2 3 2,684 0.001117735
3 8 19,089 0.000419090
4 22 133,876 0.000164331
5 64 937,289 0.000068282
6 196 6,560,988 0.000029874
7 625 45,926,497 0.000013609
8 2055 321,484,292 0.000006392
9 6917 2,250,387,321 0.000003074
10 23,713 15,752,705,452 0.000001505
11 82,499 110,268,926,225 0.000000748
12 290,511 771,882,459,348 0.000000376
13 1,033,411 5,403,177,166,633 0.000000191
14 3,707,851 37,822,240,068,478 0.000000098
15 13,402,696 264,755,680,283,073 0.000000051

It is obvious from Table 5-3 that without the restriction on the Iengths of the input

clauses, the total number of attribute sequences is much Iarger than with the

restriction of E5.10. Notice that the ratio qnp decreases by aimost a half with

every Ïteration. Consequently, the higher the iteration, the more apparent is the

advantage of restricting the Iength of the initial clause and si de premises when

conducting a search in SLR. However, even with the restriction imposed by

E5.10, the total number of attribute sequences is still large for iteration 13 and

above. Recall that those are the number of attribute sequences and not number of

search paths. Every attribute sequences corresponds to one or more search paths.

For example, the attribute sequence ((1,3),(2,1),(1,1)) corresponds to aIl search

paths that start with two clauses, where the first has a length of 1 and the second

has a length 3. The pair (2,1) implies that binary resolution is attempted between

aH unit clauses with the resolvent of length 2. So the if the number attribute

Chapter 5 - Attribute Sequences 115

sequences for iteration 13 is 1,033,411, then it does not mean that 1,033,411

search paths are explored. The number of search paths can be more than that.

Fortunately, we can reduce the number of attribute sequences further which

implies that we can reduce the number of refutation search paths.

5.3.4 Minimizing the number of attribute sequences

By applying the restriction on the lengths of the input clauses, we have reduced

the total number of attribute sequences substantially. Consequently, we have

reduced the number of explorable search paths. However, it is possible to

optimize this number further due to the fact that the order of the initial clauses

does not affect the search path. Therefore, a derivation represented by the

sequence (Ro,Do), ... ,(Rk_"Dk_J)) is same as the derivation represented by the

sequence (Do, Ro), .. . , (Rk _P Dk - J)) and the two sequences are equivalent. This

would reduce the total number of attribute sequences by almost a half.

If we view the initial pair of an attribute sequences as shown in Figure 5-7,

then each element ni) within the table represents the number of attribute

sequences that start with the pair (Len(Ro)' Len(Do)) = (i,j). For example, nll

represents the number of attribute sequences that start with (1,1) . Since there is

only one attribute sequence that starts with (1,1) , then ~ J = 1 .

Len(Do)

1 2 ... k

1 nll n12 ... nlk

Len(Ro)
2 n21 n22 ... n2k

.
.

k nkl nk2 ... nkk

Figure 5-7: The number of attribute sequences viewed in table form.

Chapter 5 - Attribute Sequences 116

Within iteration k, ni) = nrp(k,l,i + j - 2) and the sum of the values in a row i is

equal to the number of attribute sequences that start with Len(Ro) = i . Therefore,

"k n=nrp(k,O,i) and tnrp(k)="k nii +2."i-)nii • Since reversing the
~J=) Ij ~l=) ~J=) "

order of the initial clauses produces equivalent derivations and consequently,

equivalent attribute sequences, then ni) = nji . Therefore, aIl attribute sequences

that start with (j,i) can be removed from the restricted attribute sequences search

space leading to a total number of attribute sequences (the highlighted section in

Figure 5-7)

k ~) k ~

tnrp'(k) = Inii + Ini) = Inrp(k,I,2.i-2)+ Inrp(k,l,i+ j-2) (E5.17)
i=) j=) i=) j=)

Furthennore, the attribute sequences of length less than k need not be explored at

iteration k because they have been explored within previous iterations. For

example, the attribute sequence ((1,2), (1, 1)) of length 2 need not be explored

within iteration 3 and above because it has been explored at iteration 2. Therefore,

the total number of attribute sequences can be reduced even further.

The minimized total number of attribute sequences at iteration k with

restriction E5.10 is

tnrp"(k) = tnrp'(k) -tnrp'(k -1) (E5.18)

Table 5-4 lists the values for the minimized total, tnrp"(k), and the restricted

total, tnrp(k) , for the first fifteen iterations. It also shows the ratio

q~P = tnrp"(k)/tnrp(k) , which reflects how much the number of attribute

sequences is reduced when the minimized set of attribute sequences is explored.

Chapter 5 - Attribute Sequences 117

Table 5-4: Comparison between the total number of attribute sequences
restricted by E5.10 and the optimized total number of attribute sequences for
the first fifteen iterations

Iteration tnrp"(k) tnrp(k) q:p = tnrp"(k)/ tnrp(k)

1 1 1 1.000000000
2 1 3 0.333333333
3 3 8 0.375000000
4 8 22 0.363636364
5 24 64 0.375000000
6 75 196 0.382653061
7 243 625 0.388800000
8 808 2055 0.393187348
9 2742 6917 0.396414631
10 9458 23,713 0.398852950
11 33,062 82,499 0.400756373
12 116,868 290,511 0.402284251
13 417,022 1,033,411 0.403539347
14 1,500,159 3,707,851 0.404589882
15 5,434,563 13,402,696 0.405482822

As we can see from Table 5-4, the number of attribute sequences can be reduced

by an average of60% of tnrp(k).

The algorithm to construct the minimized set of attribute sequences (MATS) of

alllengths up to k is described by the procedure CONSTRUCTATSBROPT, which is

similar to CONSTRUCT ATSBR but with one modification done to the range of the

loop in line 4. The upper limit for Len(Ro) is set to the ceiling of k / 2 so that

only one of the sequences starting with the pair (Len(Ro), Len(Do)) and

(Len(Do),Len(Ro)) is constructed, since such sequences are equivalent.

The recurslve procedure CONSTRUCTREsTOF A TSBROPT IS similar to the

procedure CONSTRUCTRESTOFATSBROPT with a conditional statement (lines 9-

10) added to it. The condition in line 9 ensures that Len(Do) is at least as long as

Len(Ro) , in order to avoid constructing attribute sequences that are equivalent.

Chavter 5 - Attribute Sequences

CONSTRUCT A TSBROPT (k:integer):array

1. atsequences:array
2. current _ ats:array
3. n_seq:array

4. for initial_lenglh := 1 to CEILING(k/2)
5. current _ ats[1] := initial_length
6. CONSTRUCTRESTOFATSBROPT(current _ ats, 1, 1, k, initial_length,

atsequences, n_seq)
7. end for
8. return (atsequences)

CONSTRUCTREsTOFATSBROPT(current _ ats:array, ats jength:integer,
depth:integer, k:integer,

118

resolvent _length:integer, atsequences:array,
n _seq:array):integer

1. if resolvent _length = 0 then
2. INCREMENT(n_seq[ats_lengthl)
3. ats _ number := n _ seq[ats _length]
4. for aIs _entry := 1 to ats _length
5. atsequences[aIs _length] [ats _ number] [ats _ entry] :=

currenl _ als[aIs _ entry]
6. end for
7. return
8. end if
9. if depth = 1 then start_base_length := resolvent_length
10. else start _base _length := 1
1 1. for base _length := start _base _length to k - depth + 2 - resolvent _length
12. current_als[depth + 1] := base_length
13. CONSTRUCTREsTOFATSBROPT(current_ats, ats_length + 1, depth +1,

k, resolvent _length + base _length'- 2,
atsequences,n_seq)

14. end for

Table 5-5 lists the attribute sequences of MATS for iterations 1 to 4 where each

set contains the sequences of length k + 1 for 1::; k ::; 4. For example, sequences

nurnber 3 to 5 belong to the set of sequences for iteration 3. The thirteen

sequences are sorted by length.

Chauter 5 - Attribute Sequences 119

Table 5-5: Minimized set of attribute sequences up to iteration 4

(1,1) 1 (1,2,1) 2 (1,2,2,1) 3 (1,3,1,1) 4

(2,2,1,1) 5 (1,2,2,2,1) 6 (1,2,3,1,1) 7 (1,3,1,2,1) 8

(1,3,2,1,1) 9 (1,4,1,1,1) 10 (2,2,1,2,1) Il (2,2,2,1,1) 12

(2,3,1,1,1) 13

The value produced by evaluating tnrp"(k) is the minimized number of attribute

sequences at iteration k. The minimized total number of attribute sequences from

1. to k is sum tnrp"(1)+···+tnrp"(k). The set MATS(j,I!:.(S,1..k» is the

minimum subset of the set ATS(j,I!:.(S,1..k» that can be used as a guide to

reduce the se arch paths without compromising completeness. Therefore, the value

for IMATS(j,I!:.(S,1..k»1 when j is the length of a clause, S is a set of input

clauses, 1 .. k is the range of iterations, is computed as

k

IMATS(Size,I!:.(S,I .. k»1 = Ltnrp"(i). (E5.19)
i=!

5.3.5 Attribute sequences and binary factoring

The inclusion of binary factoring do es not affect the number of attribute

sequences because with respect to attribute sequences, the application of binary

factoring is similar to performing a unit resolution. For example, consider the

refutation search path, sp = (Ro, Do), (R), D)), of length 2. The corresponding

attribute sequence can be either ats) = ((1,2), (1, 1») or ats2 = (2,1),(1,1») . In either

case, one of either Ro or Do is a unit clause. If ats2 is the attribute sequence

corresponding to sp, then Len(Ro) = 2.. If Ro has a factor, say FfIo' then

Size(FfIo)=l. Suppose that the search path sp'=(Ro,Ro),(FfIo,D;») is a

refutation se arch path. Since the tirst pair, (Ro, Ro), contains the same clause, it

Chapter 5 - Attribute Sequences 120

implies by notational convention that this pair represents the application of binary

factoring. We write the corresponding attribute sequence for sp' as

ats' = (Len(Ro), -1),(Len(FRo), Len(D{))) = (2, -1), (1, 1)) .

We use the notation (2, -1), (1, 1)) to indicate that the length of the first element

of the first pair is reduced by one. By comparing ats' with ats2 , we notice that

the sequences are similar except for the negative sign. We extend the domain of

the absolute function, AB S, to incIude attribute sequences as foIlows.

If ats = ((xl' YI)' ... , (xn, Y n)) is an attribute sequence, where Xi and Yi are

integers, then ABS(ats) = (ABS(Xi), ABS(Yi))) for aIl 1 sis n .

We can now write ABs(ats') =ABs(ats2). We calI those attributes sequences

similar. In general, similar attribute sequences are attribute sequences whose

absolute values are equal.

With the use of the definition of similar attribute sequences, we can show that the

attribute sequences generated by the CONSTRUCT ATSBR procedure are effective

even when binary factoring is employed.

Theorem 5.1:

if an attribute sequence, ats, corresponds to a refutation search path, sp, within

iteration k such that sp includes binary factoring, then ABs(ats) belongs to the

minimized set of attribute sequences, MATS, oflength k.

Chapter 5 - Attribute Sequences 121

Proof:

Let sp = (Ro,Do), ... ,(Rk_J,Dk_J))' where Ri' for 1 ~ i ~ k -1, is either a resolvent

or a factor, such that if RI is not a factor of Ro, then Size(Ro) ~ Size(Do) . In other

words, if the first pair represents a binary resolution, then Ro is the smaller clause

between Ro and Do. This does not affect the cornpleteness of any se arch strategy

employing the attribute sequences concept to reduce the search space because as

we have dernonstrated, reversing the order of the initial clauses produce

equivalent search paths. Let ats be the corresponding attribute sequence to sp,

thenats = (Len(Ro),Len(Do))' ... ,(Len(Rk_I),Len(Dk _I))). If Ri is a factor, then

(RH' Di_ l) represents binary factoring and thus, Di_1 = Ri_ l • The corresponding

pair in the attribute sequence is (Len(Ri_ I),-I). Let ats' =ABs(ats). We want to

prove that ats' E MATS. We know that, as long as Len(Ro) ~ Len(Do)' the set

MATS contains aIl the attribute sequences corresponding to refutation se arch

paths. Suppose that ats' !l MATS, then ats' is an attribute sequence not in MATS

but corresponds to sorne refutation search path. This irnplies that MATS does not

contain aIl the attribute sequences that correspond to refutation search paths

which contradicts the fact that MATS contains aIl the attribute sequences

corresponding to the refutation search paths. Therefore, ats' E MATS. 0

From Theorern 5.1 we conclude that we do not need to explicitly generate the

attribute sequences that include binary factoring. For every pair, except for the

last pair, within an attribute sequence where there is a 1 as the second elernent,

i.e., pair of the form (*,1), either a unit resolution or binary factoring rnay be

selected as the inference mIe to be applied. Even though the sequences need not

be explicitly generated, this does not rnean that the possible search paths and

consequently, the explorable search space does not increase.

Chapler 5 - Attribute Sequences 122

5.3.6 Attribute sequences and other inference ru les

We have demonstrated that when using only binary resolution and binary

factoring as inference rules, the number of attribute sequences can be reduced

significantly by restricting the Iengths of the initial clause and side premises. We

now show how other inference mIes, such as demodulation and paramodulation,

can be added.

In demodulation, the length of the conclusion is equal to the length of the

demodulated clause. With respect to an attribute sequence, this is similar to a

binary resolution of two clauses where one of them has a Iength of 2. For

exampIe, suppose that the attribute sequence aIs] = (2,3), (3, 1), (2,1), (1, 1))

corresponds to a refutation search path where only binary resolution is performed.

Suppose the attribute sequence als2 = ((1,3), (3, 1), (2, 1), (1, 1)) corresponds to a

refutation search path where the first inference mIe is demodulation and the next

three inference mIes are binary resolutions. The 1 in the pair (1,3) is the length of

the demodulator. The two sequences aIs] and als2 are identical everywhere

except for the first integer of the first pair. In binary resolution, if one of the

premises is a clause of length 2, then the resolvent maintains the length of the

other premise. In demodulation, the demodulator' s length is always 1 and the

demodulant's length is always the same length as the demodulated clause.

Therefore, we can construct aIl the attribute sequences that include demodulation

by simply copying aIl the sequences in MATS and then replacing the second

element of every pair (*,2) by 1 as shown in Table 5-6.

Chauter 5 - Attribute Sequences 123

Table 5-6: Attribute sequences up to iteration 4 with binary resolution and
demodulation as inference rule

Binary Resolution Binary Resolution and Demodulation
«(1,1)

«(1,2),(1,1» «(1,1),(1,1»

«(1,2),(1,2),(1,1)) «1,1),(1,2),(1,1» ,«(1,2),(1,1),(1,1» ,«1,1),(1,1),(1,1»

«(1,3),(2,1),(1,1))

«2,2),(2,1),(1,1» «2,1),(2,1),(1,1»

«1,2),(1,2),(1,2),(1,1» «(1,1),(1,2),(1,2),(1,1», «(1,2),(1,1),(1,2),(1,1», «1,2),(1,2),(1,1),(1,1», «(1,1),(1,1),(1,2),(1,1» ,

«(1,1),(1 ,2),(1 ,1),(1,1» ,«(1,2),(1,1),(1,1),(1,1» , «1,1),(1,1),(1 ,1),(1 ,1»

«1,2),(1,3),{2,1),(I,I)) «1,1),(1 ,3),(2,1),(1,1»

«(1,3),(2,l),(1,2),(1,1» «1,3),(2,1),(1,1),(1,1»

«(1,3),(2,2),(2,1),(1,1» «(1,3),(2,1),(2,1),(1,1»

«1,4),(3,1),(2,1),(1,1))

«2,2),(2,1),(1,2),(1,1» «2,1),(2,1),(1,2),(1,1» ,«2,2),(2,1),(1,1),(1,1» , «2,1),(2,1),(1,1),(1,1»

«2,2),(2,2),(2,1),(1,1» «2,1),(2,2),(2,1),(1,1» , «2,2),(2,1),(2,1),(1,1» , «2,1),(2,1),(2,1),(1,1»

«2,3),(3,1),(2,1),(1,1))

Table 5-6 shows aIl the attribute sequences when binary resolution and

demodulation are employed. The column labeled "Binary Resolution" contains a

list of the attribute sequences from MATS where binary resolution is the only

inference mIe. The second column lists aIl the attribute sequences that can be

obtained from the sequence in the first column by replacing the occurrences of the

value 2 by 1 in the second element of a pair. We conclude from this table and

from the relation between the length 2 of an input clause in binary resolution and

the length of the demodulator that, even though the number of attribute sequences

increases in proportion of the number of pairs that contain the value 2 as the

second element, it is not necessary to explicitly construct the attribute sequences

for the inclusion of demodulation. Every time the value 2 occurs as the second

element of a pair, we can simply chose either to perform a binary resolution with

a input clause of length 2 or perform a demodulation. The inclusion of binary

factoring do es not affect the inclusion of demodulation so binary factoring can

Charter 5 - Attribute Sequences 124

still be used with demodulation without the need to construct additional attribute

sequences.

The application of paramodulation results in a paramodulant' s Iength that is equal

to the sum of the Iengths of the premises minus one. If the paramodulator' s length

is 1, then we can use the same attribute sequences for demodulation, otherwise the

possible attribute sequences must be added.

Attribute sequences help restrict the search to paths that may lead to a refutation

and avoid the paths that definitely cannot reach the empty clause. Attribute

sequences also help in controlling the amount of application of particular

inference rules.

5.4 Summary

In this chapter we analyzed the size of the explorable search space of SLR from

two perspectives:

1. the maximum number of generated clauses (E5.5).

2. the number of attribute sequences where the attribute is the clause length.

We derived two formulas that can be used to calculate the number of attribute

sequences in two cases. The first formula, E5.14, gives the number of attribute

sequences when a restriction is imposed on the length of a side premise such that

completeness is not compromised. The second formula, E5.16, gives the number

of attribute sequences when no restrictions are imposed on the length of a side

premise. We analyzed the values from those formulas for the first 15 iterations.

We found that when restrictions are imposed on the lengths of the clauses, the

reduction in the size of the explorable search space is exponential in the iteration

depth. Therefore, using A TS with length restriction imposed on the side premises

improves the efficiency of SLR substantially.

CHAPTER

6

CARINE: An Implementation of
SLR

CARINE is an A TP that implements SLR. We developed CARINE to study the

perfonnance of SLR in practice. In this chapter, we present CARINE and discuss

briefly the data structures used in it. We provide examples that demonstrate how

delayed clause-construction and attribute sequences can be used to improve the

inference rate and prune the search space. We then provide test results from

experiments that we conducted to detennine the effect of DCC in practice. The

experiments produced results on the percentage of time spent constructing

clauses, the percentage of successful unifications, and the ratio of unit conflict

tests in a selected number oftheorems from the TPTP v2.6.0 library. We analyze

those results and discuss their relationship with the inference rate speedup. We

provide remarks on when the use of DCC can be most effective in practice.

Finally, we compare the effects of DCC with ATS on SLR.

6.1 Overview

CARINE is an experimental resolution-based automated theorem proyer developed

for the following reasons:

• to demonstrate how delayed clause-construction may be implemented

efficiently using simple data structures

Chapter 6 - CARINE: An Implementation ofSLR 126

• to empirically show that the performance gained by using delayed clause

construction is significant

• to show how simple it is to integrate DCC within semi-linear resolution

• to depict the potential of semi-linear resolution when attribute sequences

are used to restrict the search and improve the overall efficiency of the

theorem proyer

At the highest abstraction level, the design of CARINE, as shown in Figure 6-1, is

quite simple.

File: set of ~ Parser & ~ Inference ---'\ Display:
clauses r------v Compiler I---v' Engine --V Results

Input Process and Search Output

Figure 6-1: Design of CARINE.

The input is a file containing a set of input clauses. Once the clauses are read, they

are parsed and compiled into the appropriate data structures and presented to the

inference engine. Then the inference engine searches for a proof within a user

defined time limit. The search terminates either when a proof is found or when the

time limit expires. At that point, performance and statistical results, as weIl as a

proof (if one is found) are displayed.

6.2 Definitions

We use the following definitions in this chapter to describe certain aspects of the

implementation in a formaI manner.

Chapter 6 - CARINE: An Implementation of SLR 127

An input file is a text file containing a set of input clauses that CARINE reads,

parses, compiles and uses to derive the empty clause. An obj can represent any of

the following: a term, a literaI, a clause or a substitution set. A container can be

any of the following: an input file, a Iist of objs, a single or a multi-dimensional

array, or a string.

NArgs(L)

NArgs(t)

Sign(L)

Pred(L)

Index(cont, obj)

is a function that returns the number of arguments (arity) of

the predicate in the literaI L.

is a function that returns the arity of a term t.

is a function that retums either -1 or 1 depending on whether

the literaI Lis either negative or positive respectively.

is a function that retums the predicate symbol of the literaI L.

is a function that returns the index of obj within the container

cont such that cont exists as a structure in memory and not in

the input file. The index may be a single integer or a tuple of

integers depending on the type of cont.

InpOcc(cont, obj) a function that returns the occurrence of obj within the

container cont such that cont is part of the input file.

The difference between Index(cont,obj) and InpOcc(cont,obj) is the location of

cont. In Index(cont,obj) , cont is in memory whereas in InpOcc(cont,obj) , cont is

in a file on an external storage.

Example 6.1:

NArgs(B(x, a, y)) = 3,

NArgs(a) = 0,

Sign(D(x,y,z,z) = 1,

Pred(B(x,y,z)) = B,

NArgs(~Q) = 0 ,

NArgs(f(a,b, x)) = 3,

Sign(-.Q) = -1 .

Pred(-.P) = P.

NArgs(x) = O.

Chapter 6 - CARINE: An Implementation of SLR

Given the array predicates = [B,Q,P,R]

Index(predicates, P) = 3 ,

Index{predicates,B) = 1,

Index{predicates, G) = 0, since G is not in predicates.

Given the clause C = -,Qv Pv W

Index(C,P) = 2, Index(C, -,Q) = 1 .

Given the input file IFile containing the clauses:

-,PvQ,PvR, PvQvW

InpOcc{IFile,-,PvQ) = 1,

InpOcc(1File, P v Q v W) = 3,

InpOcc(1File, P v Q) = 0,

InpOcc(PvQvW,Q) =2,

InpOcc{ -,P v Q, -,P) = 1.

6.3 Data Structures

128

CARINE is implemented in ANSI C and therefore our description of its data

structures and its algorithms is closely related to a procedurallanguage such as C.

We divide the presentation OfCARINE's data structures into two sections. The first

section describes the data structures for the essential elements that are common to

almost aIl A TPs, including terms, literaIs, clauses and substitution sets. The

second section describes the elements, which may or may not exist in other ATPs,

that are related to the enhancement of the search procedures used in CARINE,

including, the path table, the lookup tables, clause partitioning lists, and clause

grouping lists.

Chapter 6 - CARINE: An Implementation o[SLR 129

6.3.1 Terms, literais, clauses and substitution sets

The data structures used in CARINE for the essential elements found in most

theorem provers are quite simple. Terms are stored in a variation of the flatterm

representation. We use an array of elements each having two fields. Every

element contains a reference code to the term symbol it represents and a pointer to

the next argument of a function or a literaI. The Iast argument points to NULL.

Figure 6-2 shows the term representation of g(x,h(a),j(x,h(a») in CARINE (the

circle with a cross in it represents NULL).

2 3 4 5 6 7 8

g x h a j x h a

Next argument

Figure 6-2: Flatterm representation of g(x,h(a), j(x, h(a») in CARINE.

LiteraIs are stored as arrays of terms. Figure 6-3 shows an example of a literaI

representation in CARINE.

1 -, B 1 2 3 4 5

- x j a y a - ~

'----

Next argument 4 4 4 4

U _i@
.~~

Figure 6-3: Literai representation of -,B(x, j(a, y), a) in CARINE.

Chapter 6 - CARINE: An Implementation ofSLR 130

Input clauses are read from the input file, parsed, compiled and stored as arrays of

pointers to literaIs. With such representation, literaIs can be ordered and accessed

more quickly by comparison with a linked list representation. Figure 6-4 shows

an example of a clause representation. The numbers under the variables in Figure

6-4 are tags used by the A TP to identify the distinct variables within a clause. The

tags are determined based on the first occurrence (when the clause is read from

left to right) of a variable in a clause. For example, in Figure 6-4, x is the first

variable in clause C so it is given the tag 1. Every other occurrence of x is also

given the tag 1. The variable y is the second variable in C so it is given the tag 2.

Clause C

Tags determined
based on the -,B(x,a,y) -,B(x,y,z) B(xj(a),z)
orderof .. 1 2 123 1 3
occurrence of

LiteraIt LiteraI 2 LiteraI 3 variables

Figure 6-4: Clause representation in CARINE.

The tags play an important role in renaming the variables of a clause as we shall

demonstrate later.

Recall that one of the conditions for DCC to be sound is to rename the

variables of the input clauses used in a derivation so that no variable appears in

more than one si de premises. This implies that every side premise in a linear

derivation should he a variant of an input clause. In an actual implementation, a

variant is not constructed because the construction is time consuming.

Instead of constructing a variant of an input clause that is selected to

participate in a linear derivation, a temporary integer code, called a relative

clause identification code denoted by RCid, is assigned to the input clause to

Chapter 6 - CARINE: An Implementation of SLR 131

identify the clause within the derivation. The renaming of variables is performed

on a as-needed basis, and is achieved as follows. When a unification of terms or

literaIs is performed, the tag attached to a variable is added to the RCid to obtain

a unique identification code for the variable. This unique code, called the variable

identification code denoted by Vid, makes the variable distinct from aIl the

variables in the rest of the side premises in a linear derivation. This way there is

no need to construct a variant of an input clause. We now formally define RCid

and Vid and then provide examples to clarify their purpose.

Any input clause, a clause from Goals (see SLR in Chapter 4), or a clause from

the set T (see SLR in Chapter 4) is a constructed clause. Let MVC be a constant,

set by the user or automatically determined by an A TP, that denotes the maximum

number of variables per clause that an A TP can handle. Any constructed clause C

that is introduced into a derivation at depth d is given a relative clause

identification code, denoted by RCidc(d) , which is unique with respect to aH the

clauses within the derivation and is determined by the formula

RCidc(d) = {
o if C is an initial clause (i.e., Cini/),

MVCx(d + 1) otherwise,
(E6.1)

Currently, we set MVC = 32 because most theorems in the TPTP version 2.6.0

problem library do not contain any clauses containing more than 32 distinct

variables.

Let VOffset(v,C) be the offset code tagged to a distinct variable v in a clause C

based on the order of occurrence of v with respect to the other variables in C. The

variable identification code, denoted by Vid(v,C,d) , of a distinct variable v in a

clause C introduced at depth d within a derivation is ca1culated by the formula

Chapter 6 - CARINE: An Implementation of SLR 132

Vid(v,C,d) = RCidC<d) + VOffset(v,C) (E6.2)

For example, suppose the clause in Figure 6-4 is selected twice in a derivation;

once at depth d = 0 as a side premise and another at depth d = 4. Then with

MVC = 32 , the variable identification codes for the variables x, y, z of C are:

d=O:

d=4:

Vid(x,C,O) = 32x(0 + 1) + 1 = 33,

Vid(y,C, 0) = 32x (0+ 1)+ 2 = 34,

Vid(z,C,O) = 32x (0+ 1) + 3 = 35,

Vid(x,C, 4) = 32x (4 + 1)+ 1 = 161,

Vid(y,C,4) = 32x (4 + 1)+ 2 = 162,

Vid(z,C,4) = 32x (4 + 1)+3 = 163.

With the above identification method, any clause can be used in the same

derivation several times without performing any actual copies in memory of the

clause. Renaming its variables is done in almost constant time, because once the

clause identification code changes, the identification codes of the distinct

variables within the clause are changed automatically.

A substitution set is abstractly represented as a directed graph. It is implemented

as a one dimensional array with two fields per element as shown in Figure 6-5. In

this example, the substitution set is {x ~ f(y),y ~ g(z, w),z ~ a}. The

substitution set represented in the bottom half of the Figure 6-5 is read as follows.

The variable x belongs to sorne clause, which in this example is not important.

What is important is the RCid of the clause that contains the substitution term for

x. The RCid of this clause is 32. The variable y is substituted by the term g(z,w).

This term belongs to the clause whose RCid is 64. The variable w has no

Chapter 6 - CARINE: An Implementation o[SLR 133

substitution term. Since the field Reid refers to the clause that contains the

substitution term, then for w there is no RCid. A variable that does not have a

substitution term contains -1 in its RCid field and a pointer to NULL in its

substitution term field. Notice that the variable identification codes in Figure 6-5

are the same as the array indices. This makes the access to a variable' s

substitution term a constant time operation.

Substitution tenns

Variables

Vid

Reid

Pointer to
tenn

-1

~~

x
2

32

4~

fiy) 1

...

...

Array indices
y z
33 65

64 . .. 96

4. ... 4~

1 g(z,w) 1 a

w
66

-1

~~

...

...

MAX VARS -

-1

4~

®

Figure 6-5: Representation of the substitution set {x ~ f(y),y ~ g(z, w),z ~ a}

as a directed graph (top) and as an array (bottom) in CARINE.

Example 6.2:

BJ =G(x)v P(x) , B2 = -,P(f(x)) v Q(x) ,

B3 =-,Q(g(x,y))v R(x), B4 =-,R(a)

VOffiet(x,BJ) = 1, VOffiet(x,B2) = 1,

VOffiet(x,B3) = l, VOffiet(y,B3) = 2.

Chapter 6 - CARINE: An Implementation of SLR 134

The derivation in Figure 6-6 shows the role of Reid and Vid. The RCid is

calculated for the new clause when the clause is introduced into the derivation.

However, to save time, the Vid is calculated for a variable only when the variable

is needed. There is no need to calculate the Vids for aIl the variables in a clause if,

for instance, only one is needed for the unification of two literaIs.

Although the variable x is used in the clauses B), B2' B3' when those clauses are

introduced into the derivation the symbol x is no longer important. CARINE

identifies the variables by their Vids not by their symbols. However, we wrote

each variable in a substitution set with its symbol first followed by its Vid for

convenience. For instance, ~ = {xl ~ j(x33)} is viewed by CARINE as

if) = {1 ~ j(33)}. The Vid renaming guarantees that no two clauses from the side

premises in a linear derivation share the same variable.

The resolvents R: and R~ are not constructed, so we did not substitute the

variables with their substitution terms. R3 is fÏrst generated and then constructed

(with variables normalized) by applying the p-idempotent substitution set

The identification codes given to the participating clauses in the derivation are

calculated as follows.

RCidB, (0) = 0, since it is the initial clause.

RCid B (0) = 32 x (0 + 1) = 32 , this is a si de premise at depth O.
2

RCidB (1) = 32x (1 + 1) = 64, and RCidB (2) = 32x (2+ 1) = 96.
3 4

The identification codes for the variables are

Vid(x, BI, 0) = 0 + 1 = l,

Vid(x, B3) = 64 + 1 = 65,

Vid(x, B2,0) = 32 + 1 = 33,

Vid(y, B3) = 64 + 2 = 66.

Chapter 6 - CARINE: An Implementation o[SLR

RCid=O

R; G(x) v Q(x)
1 33 Not constructed

G(x) v R(x)
Not constructed

1 65

R3 G(x)
Not constructed yet 1

RCid= 32

B2 -,P(j(x» v Q(x)
33 33

RCid=64

B3 -,Q(g(x,y» v R(x)

= {xl ~ f(x33),

6566 65

RCid= 96

-,R(a)

x33 ~ g(x65, y66),

x65 ~ a}

Constructed and
variables
nonnalized

R31 G(f(g(a,x»)

135

Depth

o

2

3

Figure 6-6: An example of a derivati~n showing the role of Reid and Vid of
the distinct variables of the participating clauses.

Chapter 6 - CARINE: An Implementation o[SLR 136

6.3.2 The path table

The path table keeps track of the search state and retains aIl the necessary

information to backtrack, to construct a clause that has been delayed, or to

determine whether a refutation has been reached. The path table is almost a

straight forward implementation of the delayed clause construction as presented in

Chapter 3. RecaIl the generalformula for a derived clause at depth i

ë·(IJ = «B:
1
u···u B~) \ (au u PLJ) au (ruaJ.J ,

where B:
1
,.··, B~ are constructed clauses, and aJj and Pu are the multisets of

deleted literaIs.

We can readily enVISlon this formula implemented as a table with

MAX_DEPTH columns where the combined information from the first column up

to the lh column determine the conclusion ë·(IJ as shown in Figure 6-7.

The "Inference rule" row indicates the inference rule applied at each step. The

"Newly introduced clause" row contains pointers to the clauses that are

introduced at each depth of a derivation. The "Literai deleted from the newly

introduced clause" row contains a pointer to the literaI that is deleted from the

newly introduced clause. Notice that in binary factoring no new clause is

introduced and hence, we leave the corresponding entries of the "Newly

introduced clause" and the "Literai deleted from the newly introduced clause"

fields empty (or pointing to NULL).

The "Previous clause" row contains pointers to the clauses that have been

introduced earlier in the table. When an inference mIe is applied at depth i one of

the literaIs from. the clauses introduced at depth j < i is either modified or

deleted. This literaI is not actually deleted but marked as deleted. The row

"Literai deleted or modified from previous clause" is used for this purpose. A

pointer to the deleted literaI is entered in this row at column i to indicate that this

literaI is marked as "deleted".

Chapter 6 - CARiNE: An Implementation of SIR 137

Depth 1 2 ... i . .. MAX DEPTH -

Inference mIe

Newly introduced clause

RCid ofthe newly
introduced clause

LiteraI deleted from newly
introduced clause

Previous clause
[introduced at depth]

LiteraI deleted or modified
from previous clause

Modified variables

Length of resolvent/factor

Merge clause

Delayed

Figure 6-7: The path table.

The "Modified variables" row lists only the variables that are bound to terrns at

each depth. To deterrnine the set of aIl the variables within a derivation that are

bound to terrns, we have to perforrn the union of the entries ofthis row.

The "Iength of resolvent/factor" row contains the length of the resolvent or

factor at the CUITent depth. The "Merge clause" row indicates whether the factor is

a rnerge clause or not. The "Delayee!' row indicates whether the clause is rnarked

for construction at a Iater tirne based upon the criteria discussed in Chapters 3 and

4.

6.3.3 Lookup tables

There are several operations that require a tirne which is linear, quadratic or even

exponential in the nurnber of elernents existing in the set on which the operations

are applied. Sorne of these operations can be reduced to a constant tirne through

the use of lookup tables. For example, we can build lookup tables that maintain

Chapter 6 - CARINE: An Implementation ofSLR 138

information about clauses that produce resolvents, clauses that have factors and

literaIs that unifY with each other and then every time we need to select a clause

C to participate in the derivation, we first con suit the lookup table to determine

whether C produces any factors or resolves with the clauses already in the path

table.

In CARINE, there are three static lookup tables that are constructed after the

input clauses are compiled and remain unchanged during the whole search, and

one dynamic table that changes during the se arch process. The static tables are:

clause-to-clause resolution table. This table contains information on whether a

pair of input clauses produces resolvents or not.

clause-factors table. This table contains information on whether an input clause

has any factors.

literal-to-literal unification table. This table contains information on whether

any pair of literaIs unifY or not.

The dynamic table is similar to the literal-to-literal unification table except that it

maintains information about the literaI unifications of the literaIs of derived

clauses (i.e., not input clauses) within the set Goals (see Chapter 4) and the

literaIs of the input clauses.

6.3.4 Clause partitioning and clause grouping lists

Partition and group lists are sets of clauses that share a common characteristic.

The difference between partitions and groups is that the intersection of any two

partitions is empty, which is not necessarily the case in groups. In CARINE, input

clauses are partitioned according to their sizes. Unit clauses, whether they are

input clauses or derived clauses, are partitioned into lists, called unit predicate

lists, according to their predicate symbols. Each predicate list is either a list of the

Chapter 6 - CARINE: An Implementation of SLR 139

negative unit clauses or the positive unit clauses of the predicate in question, as

shown in the example of Figure 6-8.

VI: -,P(x,g(a»

V3: -Q(a)

Vs: -.R(a,b)

p

U2: ---,P(f(a) ,b)

V4: P(f(g(b» ,b)

U6: R(b,a)

Unit predicates lists

Q

Unit clauses

R

Figure 6-8: An example of the partitioning of unit clauses (unit predicate
lists) in CARINE.

For instance, the predicate Q has a pointer to the list of unit clauses that contain a

negative literaI of Q. In our example, only one UfIit clause, narnely V3, belongs to

this list. On the other hand, there are no positive unit clauses of Q and thus the list

is ernpty.

Sirnilar to the UfIit predicate lists, thé input clauses are grouped by predicates

forrning predicate lists as shown in the example of Figure 6-9.

Chapter 6 - CARINE: An Implementation of SLR

BI: ---Q(x) v -'p(x,a)v P(b,c)

B2: ---Q(a) v P(f(x),y)

B3: -.R(a,x,y) v Q(y) v P(y,a)

Predicates Iists

p Q

Input clauses

R

Figure 6-9: An example of the grouping of input clauses in CARINE.

140

The structures holding infonnation about the predicates P, Q, and R have pointers to

two lists of clauses; the negative and positive lists. AlI the clauses having at least

one negative literaI of the predicate P, Q or R belong to the negative list of the

corresponding predicate. Similarly, aIl the clauses having at least one positive

literaI of the predicate P, Q or R belong to the positive list of the corresponding

predicate.

Since SLR is refutationally complete, as demonstrated in Chapter 4, any clause

that contains at least one literaI that does not resolve with any other clause can be

removed from the set of retained clauses. This procedure is called pure literai

clause deletion [Plaisted & Zhu 1999]. Using the grouping of the clauses as

described above it is easy to detennine which clauses may be removed without

affecting the completeness of SLR. In the example of Figure 6-9, B3 has the

literaI -.R(a,x,y) that does not resolve with any other literaI from any other clause.

Chapter 6 - CARINE: An Implementation of SLR 141

This can be quickly noticed by simply checking the positive list of the predicate R.

Since it is empty then there exist no clause that can be resolved with BJ over the

literaI -oR (a, x, y) and therefore, BJ can be eliminated from the set of input clauses.

By eIiminating BJ, the positive list of the predicate Q becomes empty trading to

the predicates lists state shown in Figure 6-10.

BI: -Q(x) v ..,P(x,a)v P(b,c)

B2: -Q(a) v P(f(x) ,y)

p

Predicates lists

Q

Input clauses

R

Figure 6-10: Predicate Iists after B3 is deleted from the input clauses.

Similarly, we can remove BI and B2 from the set of input clauses because the

positive list of the predicate Q is empty and thus no clause can resolve with either

BI or B2 over the literaIs -Q(x) or -Q(a()) respectively. By removing BI and B2,

there will be no more clauses in the set of input clauses and therefore, the set is

satisfiable.

The process of pure literaI deletion is implemented in CARINE and it is determined

from the examination of the predicates lists as described in the above example.

Chapter 6 - CARiNE: An Implementation ofSLR 142

6.3.5 Literai grouping

A literaI grouping is a set of literaIs of retained clauses that share a cornrnon

characteristic. In CARINE, a literaI group, called literai instance list, constitute

one literaI that belongs to an input clause and forms the head of the list, and the

rest of the literaIs, forming the tail of the list, are instances of this literaI. Every

distinct literaI frorn the input clauses is the head of a literaI instance list. The tail

of the list is formed of literaIs that belong to derived constructed clauses.

The literaI instance lists are use fuI for determining whether two literaIs rnay unify

or not. This is achieved by checking the lookup tables in 0(1) tirne whether the

head of the lists of the two literaIs unify or not. If they don't unify then their

instances are definitely not going to unify.

The literaI instance lists are helpful for determining potential unit resolutions. If

the head of the list does not unify with a literaI, L, of a clause then none of the

literaIs frorn the tail is going to unify with the literaI L.

6.3.6 Literai ordering

Sorting the literaIs according to sorne ordering relation is cornrnon among

autornated theorern proyers because it facilitates the cornparison of clauses and

provides a faster way to prioritize the selection of clauses for the participation in

particular inference mIes.

In CARINE, the literaIs in each clause are partitioned into negative and positive

literaIs with the negative literaIs Iisted first. Each partition Îs then sorted

according to the arity of the predicate. If two predicates have the same arity then

they are sorted lexicographically according to their predicate syrnbols and if they

have the sarne predicate syrnbol then they are ordered according to their

occurrence within the input clause within the input file. Formally, let PredTable

Chapter 6 - CARINE: An Implementation of SLR 143

be a lexicographically sorted list of aIl predicate syrnbols used in sorne given

input file InputFile. Suppose L] and L2 are two literais frorn an input clause C

belonging to InputFile, L] is less than a L2' denoted by L] -< L2' if one of the

following conditions applies:

1. Sign(~) < Sign(L2)

2. Sign(~) = Sign(L2) and NArgs(L]) < NArgs(L2)

3. Sign(~) = Sign(L2) and NArgs(~) = NArgs(L2) and

Index(PredTable, Pred(~)) < Index(PredTable, Pred(L2))

4. Sign(~) = Sign(L2) and NArgs(L]) = NArgs(L2) and

Index(PredTable,Pred(~)) = Index(PredTable,Pred(L2)) and

InpOcc(C,L]) < InpOcc(C,L2).

Predicate, function, constant and variable syrnbols are stored in a symbol table

(array) along with information about the arity of each predicate and function.

6.4 An Example of SLR with ATS

We present in this section an exarnple of SLR using DCC as perforrned in

CARINE, with sorne detail dernonstrating the role of the path table. We also

dernonstrate how ATS can reduce the search space explored by an SLR based

ATP. Exarnple 6.3 shows in detail iteration by iteration, aIl the derivations

necessary to obtain a proof starting with iteration 1.

In the following exarnple, the set Goals and its initial contents are indicated at the

beginning of each derivation. We assume that aIl derived unit clauses that are not

in Goals are added to Goals. The iteration nurnber is held in the variable, bound,

and the step nurnber is held in the variable, depth. The overall substitution set of

Chapter 6 - CARINE: An Implementation ofSLR 144

the whole derivation is denoted by ëi. The mgu of a local inference (i.e., one

unification of literaIs) at depth i is denoted bya: . The inference rules are labeled

BR for binary resolution and BF for binary factoring in the path table. The value

YES is used in the "Merge clause" row to indicate that the generated clause is a

merge clause. The value YES is used in the "Delayed" row of the path table to

indicate that the clause is marked for construction at later time. A value of NO

indicates that the generated clause is not marked for construction at a later time

either because it has been constructed or it is not necessary to construct it. The

decision on whether a clause should be marked for construction at later time or

not is determined based on the criteria discussed in Chapters 3 and 4.

Example 6.3:

This example is problem SYN035-1 from the TPTP library. The theorem contains

three input clauses and aIl clauses are used in the proof.

s= {BI, B2, B3} is the set of input clauses. BI is the negated conclusion.

BI: ---'p(xl,f(x2,xl}) v ..,P(f(x2,xl),f(x2,xl)) v -Q(x2,f(x2,xl)) v -Q(f(x2,xl),f(x2,xl))

LII L2I L31 L41

B2: P (xl,x2)

LI2

B3: ---'p{xl,f{x2,xl)) V ---'p{f{x2,xl),f(x2,xl)} V Q{x2,xl)

L)3 L23 L33

Iteration 1:

There is nothing to do in iteration 1 because there is only one unit clause. At

iteration 1 the bound is set to 1 and only resolution over unit clauses are

attempted. Since there is only one unit clause then no resolutions are performed.

Chapter 6 - CARINE: An Implementation o[SLR 145

Iteration 2:

If we look back at Table 5-5 of the minimized attribute sequences, we notice that

the only sequence for iteration 2 is (l,2,1). The input clauses in S do not contain a

clause of length 2 and therefore, no resolutions are performed at iteration 2.

Iteration 3:

Derivation 1: (bound = 3, depth = 1, Goals = {}, a = {})

B3: -,P(x33,f (x34,x33)) V -,P(f(x34,x33) ,f(x34,x33)) V Q(x34,x33) +------,

a) = {xl ~ x33, x2 ~ f (x34, x33) }

RI: ...,P(f (x34,x33), f (x34,x33)) V Q(x34,x33)

B2: P(x65,x66) +------------------1

a2 = {x65~ f(x34,x33), x66~ f(x34,x33)}

---------I~V Unit clause R2: Q(x34,x33) • 1 constructed

Variables
renamed

Since R2 is a unit clause and it is not in Goals, it is constructed, labeled VI and

added to Goals giving Goals = {VJ}. VI becomes VI: UII=Q(xl,x2) after the clause

is normalized.

Notice that the variables in B3 and the second occurrence of B2 have been

renamed based on the formula given in E6.2. The mgu of the unification of the

literaIs LI2 from the first occurrence of B2 and LI3 from B3 is a-;. The overall

substitution set, a, is the union of aIl the most general unifiers. The contents of

the path table are shown in Table 6-1. The set ofmodified variables in column 1

are the vru:iables within a) that have been bounded to terms. The value of the

field, "[introduced at depth]", is 0 for B2 because the instance of B2 that is used in

this column was introduced at depth 0 (column 0 is not explicitly entered in the

table).

Chapter 6 - CARINE: An Implementation o[SLR 146

Table 6-1: Path table for Derivation 1 of Example 6.3

Depth 1 2 .. , MAX DEPTH

Inference rule BR BR

Newly introduced clause B3 B2

Reid of the newly
32 64

introduced clause

LiteraI deleted from
LI3 L l2 newly introduced clause

Previous clause B2 B3
[introduced at depth] [0] [0]
LiteraI deleted or
modified from previous L12 L23
clause

Modified variables {xl, x2} {x65, x66}

Length of resolvent/factor 2 1
Merge clause NO NO

Delayed YES YES

When a resolvent is a unit clause, an attempt to find a unit conflict is made. In this

case, there are no unit conflicts. Derivation 1 ends at this point because the bound

is 3, the depth is 2, and, following the attribute sequences discussed in Chapter 5,

the length of the clause chosen from either Goals or S must be 1. Since there are

no clauses of length 1 that can resolve with R2, there is no point in proceeding

with the derivation any further because the empty clause cannot be obtained at

depth 3. The possible attribute sequences for iteration 3 are (l,2,2,1), (l,3,1,1),

and (2,2,1,1). However, there are no more clauses whose sizes satisfy any ofthose

attribute sequences and therefore, iteration 3 ends. The substitution set is

reinitialized, the depth is set to 1, and the bound is incremented to 4. The attrihute

sequences for iteration 4 are (1,2,2,2,1), (1,2,3,1,1), (1,3,1,2,1), (1,3,2,1,1),

(1,4,1,1,1), (2,2,1,2,1), (2,2,2,1,1), and (2,3,1,1,1) (see Table 5-5). None of the

sequences can he followed except (1,4,1,1,1), hecause first, there are no clauses of

length 2 and B3 cannot he factored in order to reduce its length to 2, so aIl the

Chapter 6 - CARINE: An Implementation of SIR 147

sequences that begin with the prefixes (1,2) and (2,2) are eliminated. Second, the

sequences that begin with (1,3,1,2,1) and (1,3,2,1,1) can be eliminated because

they require clauses of Iength 2 at depth 2 and depth 3 respectively, but there are

no clauses of length 2 in Sand from Derivation 1 we realize that the only clause

of length 2 that can be generated from the initial clauses B2 and B3 is not a merge

clause, and thus, it is not added to T, the temporary set of constructed clauses, (see

SLR in Chapter 4) and cannot be used as a far parent at deeper levels of a the

derivation. The sequence (1,4,1,1,1) leads to the empty clause as demonstrated in

Derivation 2.

Derivation 2: (bound= 4, depth = 1, Goals = {VI}, if= 0)

B2: P(xl,x2)

BI: --,P(x33, f(x34,x33» V --,P(f(x34,x33), f(x34,x33» V -Q(x34, f (x34,x33» v

-Q(f(x34,x33),f(x34,x33»

cr; = {xl ~x33, x2~ f(x34,x33)}

RI: --.P(f(x34,x33),f(x34,x33» v -Q(x34,f(x34,x33» V -Q(f(x34,x33),f(x34,x33»

B2: P(x65,x66)

if2 = {x65~f(x34,x33}, x66~f(x34,x33}}

R2: -Q(x34,f(x34,x33)} V -Q(f(x34,x33) ,f(x34'x33}}

VI: Q(x97,x98}

if3 = {x34 ~ x97, x98 ~ f (x34,x33) }

R3: -Q(f (x97 ,x33), f (x97 ,x33)}

VI: Q(xI29,x130}

0'4 = {xI29~ f(x97,x33}, x130~ f(x97,x33}}

The contents of the substitution set if at the end of the derivation is the union of

all the unifiers.

Chapter 6 - CARINE: An Implementation ofSLR

(f= (f, u(f2 u(f3 u(f4

= {xl~x33, x2~f(x34,x33), x34~x97, x65~f(x34,x33), x66~f(x34,x33),
x98~ f(x34,x33), x129~ f(x97,x33), x130~ f(x97,x33)}

148

In Derivation 2, the intermediate clauses RI, R2, and R3 are not constructed due to

DCC. Even though R3 is a unit clause, there is no need to construct it and add it to

Goals since a unit conflict between R3 and VI exists. VI, which belongs to Goals,

behaves just like an input clause within the derivation, i.e., it is assigned an RCid

and its variables renamed. This is because VI has been constructed and retained in

memory. The contents of the path table are shown in Table 6-2.

Table 6-2: Path table for Derivation 2 of Example 6.3

Depth 1 2 3 4 ... MAX DEPTH

Inference mIe BR BR BR BR

Newly introduced BI B2 VI VI clause

Reid ofthe newly
32 64 96 128 introduced clause

LiteraI deleted
from newly LII LI2 UII UII
introduced clause
Previous clause B2 BI BI BI
[introduced at
depth] [0] [0] [0] [0]
Literai deleted or
modified from LI2 L21 L31 L41
previous clause
Modified

{xl, x2} {x65, x66} {x34, x98} {xI29,x130} variables
Length of

3 2 1 0 resolvent/factor

Merge clause NO NO NO NO
Delayed YES YES YES YES

We notice in Derivation 2 that each of the clauses B2 and VI is used twice. In

order to differentiate between the two copies. CARINE uses the RCid as reference

Chapter 6 - CARINE: An Implementation ofSLR 149

and consequently the variables in each copy of the same clause have different

names based on E6.2.

It is clear from the above example, that the use of attribute sequences reduced the

number of unfruitful attempts considerably. Indeed, we reached a refutation in

just two derivations.

6.5 Backtracking in SLR

Backtracking requires O(n) operations, where n is the number of modified

variables. When the parents of a resolvent (or the parent of a factor) are

propositional clauses the number of modified variables is, of course, zero, i.e.

n = o. In general, we have found that most of the time n is much less than the

weight w of the obtained resolvent or factor as long as the resolvent is not the

empty clause. This implies that constructing the resolvent or factor takes longer

than the time to set the modified variables to NULL. Therefore, even though it

takes O(n) to backtrack one step, it is still less than O(w) (see Appendix C)

which is the time to construct the resolvent/factor and dei ete it later on after the

backtracking is performed. We tested 4681 theorems from the TPTP set to

determine an overall average value for the number of modified variables per

unification, n:ve ' and an overall average value for the weight of a generated

clause, w:ve • We found n:ve to be 2 whereas, w:ve is 24.

Figure 6-11 is a graph of nove' the average number of modified variables over

aIl the successful unifications in a theorem, and the corresponding wave ' the

average weight of a generated clause in each theorem for the 4681 theorems. The

graph is drawn on a logarithmic scale due to the relatively high values of wave

with respect to nove. Each cross (x) indicates the average number of modified

variables, nove' in one theorem. Similarly, each dash (-) indicates the average

Chapter 6 - CARINE: An Implementation ofSLR 150

length, wave ' of a generated clause. It is readily noticeable that wave is much

greater than nave most of the time.

~
;.
"0

" "
~
"

100

24

10

2

1·

0.1

Average weighl of a genemted
dause over 4681 theorems

' ••. ~~~~.{: .. ~. ~-~.~y ~ ~. ~~:fj~~"""""""1
.. Ir/"" :::~...:.- :...... ~~ .. ~:~~ •• p:-.... ~ ... "7 ... M'" 1

~w""'··-.!it.:""",,->~·~,,·~'iil·".·"""""""''''='''·'·V'''', ••. M.MO .•• ,,..,WWM·"'i· ~ss:r,l!lÏ!'-""" .•. ,.,, .. , .. , "

~.{J~F::~~L:~::~ " ~~~~;;'~~"I

x
X

"ru ,.. '-;';;'~'-;.;;-~:.;=:~~ ~

Average rrumber ct modifl<!d
variables per unification over
4681 theorems

0.01 ... X-..... -.. - -.. -... --

Theorem x ;;'vëœg;; numi;;d nÏOdffiedWriabie.Per'
unification

• Average ~ight of a generafed dause
",--~-,--_._""------~-,,---_ .. _-,~-,,----,-,,j

Figure 6-11: Ch art of the average number of modified variables per
unification versus average length of generated clause.

Example 6.4:

In this example, we show how backtracldng is performed. We skip the tirst three

iterations and start with iteration 4. The following derivations, although numbered

as 1 and 2, are not necessarily the tirst two derivations that CARINE caries out at

iteration 4. We chose such derivations to depict an instance of backtracking.

Suppose S = {BI, B2, B3, B4} is a set of input clauses, where BI is the negated

conclusion, and

Chapter 6 - CARiNE: An Implementation of SLR

B,: -,P(a,a)

LII

B2: -Q(b) v P(b,a)

L2' L22

B3: -Q(xl) v -,P(x2,xl)

LB L23

B4: Q(xl) v P(xl,a)

L'4 L24

Iteration 4:

Derivation 1 a: (bound = 4, depth = l, Goals = {}, if = {})

B,: -,P(a,a)

B4 : Q(x33) v P(x33,a)

R,: Q(a)

B3: -Q(x65) v --,F(x66,x65)

R2: -,P(x66,a)

B4: Q(x97) v P(x97,a)

0=3 = {x66~x97}

R3:Q(x97)~

= {x33~a,x65~a, x66~x97}

151

Even though B, has no variables, still, an Reid is assigned to it. Derivation 1 a

tenninates at depth 3 because at this point, there are no unit clauses that resolve

with R3. Since R3 is a unit clause that does not exist in Goals, it is constructed,

Chapter 6 - CARiNE: An Implementation ofSLR 152

labeled VI, and added to Goals. RI and R2 are also unit clauses but they are not

added to Goals in this derivation because it is assumed that they have been added

within previous iterations. We do not show them as part of the Goals for the sake

of demonstrating the backtracking process. Goals becomes Goals = {VI}, where

VI : UII = Q (xl) after VI is constructed and norrnalized. The contents of the path

table for Derivation 1 a is shown in Table 6-3.

Table 6-3: Path table for Derivation la of Example 6.4

Depth] 2 3 ... MAX_DEPTH

Inference rule BR BR BR

Newly introduced clause B4 B3 B4

Reid of the newly
32 64 96 introduced clause

LiteraI deJeted from newly L24 LI3 L24 introduced clause

Previous clause BI B4 B3
[introduced at depth] [0] [0] [1]
LiteraI deleted or modified

LII L I4 L23 from previous clause
Modified variables {x33} {x6S} {x66}
Length of resolvent/factor 1 1 1
Merge clause NO NO NO
Delayed YES YES YES

Once depth 3 is reached and no further resolutions with unit clause are possible,

CARINE backtracks to depth 2 and tries to resolve R2 with B2. The two step

backtracking process is quite simple when using the path table:

(1) The variables that have been bound at depth 3 are freed. In our case, x66

is removed from a=, i.e., the "Pointer to term" field (see Figure 6-5) of

location 66 in the substitution set array is set to NULL.

(2) The pointer to column 3 is moved back to the previous column.

Chapter 6 - CARINE: An Implementation ofSLR 153

The derivation, after backtracking is performed, is listed below as Derivation 1 b.

The bound is sti1l4 but the depth is decremented to 2. The set Goals maintains the

additional unit clause VI generated at depth 3 even though backtracking has been

carried out. The substitution set if contains ail the variables that have been

bounded to terms up to and including depth 2, i.e., if = if, U if2 •

Derivation lb: (bound= 4, depth = 2, Goals = {VI), if= {x33~a, x65~a})

B4: Q(x33) v P(x33,a)

if, = {x33~a}

B
a
c
k

r
a
c
k

B3 : -Q(x65) v -,P(x66,x65)

B4 is removed from the path
table, the modified variables

in ëi
3

are freed and the depth

is decremented back to 2.

The contents of the path table after the backtracking is performed are shown

below in Table 6-4. After the backtracking is completed, the resolution proceeds

with B2 as the input clause. Derivation lc lists the steps up to depth 4. In

Derivation 1 c the empty clause is obtained by reso]ution between R3 and the unit

clause VI.

Chapter 6 - CARINE: An Implementation ofSLR 154

Table 6-4: Path table for Derivation 1 b of Example 6.4

Depth 1 2 3 ... MAX DEPTH

Inference rule BR BR

Newly introduced
B4 B3 clause

Reid of the newly
32 64 introduced clause

LiteraI deleted from
newly introduced L24 Ll3
clause

Previous clause BI B4
[introduced at depth] [0] [0]
LiteraI deleted or
modified from LII L I4
previous clause

Modified variables {x33} {x65}
Length of

1 1 resolvent/factor
Merge clause NO NO
Delayed YES YES

Derivation le: (bound= 4, depth = 2, Goals = {VI}, ëf= {x33~a, x65~a})

Chapter 6 - CARINE: An Implementation ofSLR

BI: ,P(a,a)

B4: Q(x33) v P(x33,a)

~ = {x33-)a}

RI: Q(a)

B3: -Q(x65) v ,P(x66,x65)

i:i2 = {x65-) a}

R2: ,P(x66,a)

B2: -Q(b) v P(b,a)

i:i3 = {x66-)b}

R3: -Q(b)

VI: Q(xl29)

i:i4 = {x129-)b}

R4 : ljJ

i:i= ~ ui:i2 ui:i3 ui:i4

= {x33 -) a, x65 -) a, x66 -) b, x129 -) b }

155

Derivation 1 c tenninates at depth 4 when the empty clause is obtained. The

contents of the path table for Derivation le are shown in Table 6-5.

Chapter 6 - CARiNE: An Implementation ofSLR 156

Table 6-5: Path table for Derivation le of Example 6.4

Depth] 2 3 4 ... MAX DEPTH

Inference rule BR BR BR BR

Newly introduced B4 B3 B2 VI clause

Reid of the newly 32 64 96 128 introduced clause

LiteraI deleted trom
new Iy introduced L24 Ln L22 UII
clause

Previous clause BI B4 B3 B2
[introduced at depth] [0] [0] [1] [2]
LiteraI deleted or
modified trom LII LI4 L23 LI2
previous clause

Modified variables {x33} {x6S} {x66} {x129}
Length of 1 1 1 0 resolvent/factor

Merge clause NO NO NO NO
Delayed YES YES YES NO

Example 6.5

This example demonstrates how binary factoring is managed by the path table and

how the temporary set T of constructed clauses is used (we do no show the first 4

iterations, we jump directly to iteration 5). The following derivation is a

continuation of the previous example so the input clauses are the same. We

assume that the set Goals is empty. We show the contents of the temporary set T

of constructed clauses. At the beginning of each derivation the set T is empty (see

SLR in Chapter 4).

Chapter 6 - CARINE: An Implementation of SLR

Derivation 2: (bound= 5, depth = 1, Goals = 0, if = 0, T=O)

B2: -Q(b) v P(b,a)

B4 : Q(x33) v p(x33,a)

R,: P(b,a) v P(b,a)

Contains identical literaIs
but not yet considered a
merge clause because the
literaIs are not merged.

R2: P(b,a) ~ .. -----; Merge clause
'---------'

B3: -Q(x65) v -,P(x66,x65)

B4 : Q(x97) v P(x97,a)

= {x33-+b, x65-+a, x66-+b, x97-+a}

157

Depth3

Depth4

}-DePth5

In Derivation 2, the merge clause R2 is constructed, labeled Cl, and added to the

set T. Tbecomes T={Cd where C,:P(b,a). The empty clause is derived at depth =

bound and hence, there was no need to use the merge clause. Notice that in this

case the merge clause was not needed to obtain a refutation. The contents of the

path table for Derivation 2 are shown in Table 6-6.

Chapter 6 - CARiNE: An Implementation of SLR 158

Table 6-6: Path table for Derivation 2 of Example 6.4

Depth 1 2 3 4 5 ... MAX_DEPTH

Inference mIe BR BF BR BR BR

Newly introduced
B4 - B3 B4 BI clause

Reid of the newly 32 - 64 96 128 introduced clause

LiteraI deleted from
newly introduced LI4 - L23 LI4 L11
clause

Previous clause B2 B2 B4 B3 B4
[introduced at depth] [0] [0] [0] [2] [3]
LiteraI deleted or
modified from LI2 L22 L24 LB L24
previous clause

Modified variables {x33} {} {x65, x66} {x97} {}
Length of 2 1 1 1 0 resolvent/factor
Merge clause NO YES NO NO NO
Delayed YES NO YES YES NO

To construct the merge clause using the above path table, we list the literaIs of the

input clauses B2 and B4, deI ete aIl the literaIs mentioned in the row "Literai

deleted or modified from previous clause" up to colurnn 2, and finaIly apply the

substitution sets from colurnns 1 and 2 over the remaining non-deleted literaIs.

Since only one substitution set, narnely U, is maintained, it may appear difficult

to extract the substitution terms of only the variables that are involved in the first

two columns when u contains aIl the bound variables up to depth 5. However,

this is quite simple because we rely on the information in the modified variables

depth

row. FormaIly, the problem can be statéd as follows. Given Œ = U Œi' we want
;=)

k

to extract O";.k = U u; where k ~ depth from U, and then apply O"; .. k to the
;=)

delayed clause at depth k. ln our case, k = 2 and depth = 5. We want to rebuild

a) U Œ2 from Œ. First, we list aIl the variables in the "Modified variables" row

Chapter 6 - CARINE: An Implementation o[SLR 159

up to column k. Next, we obtain aIl the substitution tenns for those variables from

(J. Since we store Cf as a non-idempotent substitution set, this makes the

extraction of D-;k using the above two simple steps easy and the result is correct.

In our example, the modified variables up to column 2 are {x33}. The substitution

tenn for x33 is b. We can now construct the merge clause. First, we list aIl the

literaIs of B2 and B4

-Q(b) v P(b,a) v Q(x33) v P(x33,a)

LI2 L22 L14 L24

Next, we delete aIl the literaIs L14, LI2, and L22 as entered in the path table in the

rows of "Literai deleted from newly introduced clause" and "Literai deleted or

modifiedfrom previous clause" up to column 2. We are left with P(x33,a). FinaIly,

we apply the substitution set du = d J U d 2 to the remaining literaIs, and we get

[p (x33, a)] d1.2 = P (b, a) which is R2 in Derivation 2.

6.6 Experimental Results

In this section, we present sorne of the experimental results gathered from running

CARINE over a selected set oftheorems from the TPTP library version 2.6.0. We

selected a sample of 100 theorems from aIl the domains in the TPTP library

whose characteristics (number of input clauses, rating, maximum tenn depth,

length of clauses, weight of clauses, etc.) cover most of the characteristics found

in the rest of the theorems in the TPTP library (see Appendix D for the list of the

100 theorems). We set the time limit i~ CARINE to 180 seconds so that CARINE

had 180 seconds to prove each theorem. None of the theorems was proved by

CARINE, so CARINE used up aIl of the given time for each theorem.

We begin by presenting and discussing the results of the percentage of time

spent in constructing clauses. In order to acquire comparable results, we built a

version of CARINE that constructs and discards every generated clause (i.e., no

Chapter 6 - CARINE: An Implementation o[8LR 160

DCC is employed). We use the symbol lA in the following sections to refer to this

version of CARINE and the symbol !B to refer to the version of CARINE where

DCC is employed.

The total time, O(t), spent in the construction process in each theorem, t, is

divided by the total time, Gt(t), given for lA to prove the theorem t, and then

multiplied by 100 to obtain the percent of time spent in constructing clauses;

PTCC(t). The formula of the percentage of time spent constructing clauses is

PTCC(t) = O(t) xl 00
Gt(t)

(E6.3)

The chart III Figure 6-12 shows the PTCC(t) for each of the 100 theorems.

c
0

'li
.5 ..
c
0
0 · ..
" ..
"il
.E
~ • IL ..
• E

'" 1;
• DI

~ • e • IL ..
U
~
IL

70.00 .---~------------_._-----_._---------------_._-------,

60.00

50.00

40.00

30.00

20.00

10.00

•• ..
0.00 .-

48% of theorems:
below average

•...
•••• •• ...

•• ••
•

••

.............

• •

o 10 20 30 40
48

50

Th.orem

Max = 65.57%

•
•

52% of theorems: .. + •
above average •• +

. .. .'-........
Average = 33.68%

1

60 70 80 90 100

Figure 6-12: Chart of the percentage oftime spent constructing clauses.

Chapter 6 - CARiNE: An Implementation of SLR 161

The time spent constructing clauses affects the inference rate. The inference rate

usually degrades as the percentage of time spent constructing clauses goes up.

The inference rate is the number of generated clauses NGen(t) over a period of

time Rt divided by Rt, where Rt is the running time of the A TP over a given

theorem t. The running time is either the time it takes the ATP to find a proof, or

the time that the A TP runs for before it gives up without finding a proof. Since we

are using the same platform for aIl the theorems and the running time is Rt =180

seconds (since CARINE did not prove any of the 100 theorems), we calculate the

inference rate by the formula

IR(t) = NGen(t)
180

(E6.4)

The chart in Figure 6-13 shows the inference rates, calculated by E6.4, where

NGen(t) was acquired through the running of lA and lB over the selected 100

theorems. The theorems in the chart in Figure 6-13 are sorted by the inference

rate obtained from lA. This makes it easier to notice that the inference rate of the

version where the clauses were not constructed is generally substantially higher

than the inference rate of the version where the clauses were constructed.

The increase in inference rate or inference rate speedup (IRS) is calculated as

IRS(t) = IR." (t)
IRA (1)

(E6.5)

From Figure 6-14 we notice that the inference rate speedup increases as the time

spent constructing clauses increases. This implies that the inference rate speedup

is not constant; it depends on the overall time spent in clause construction. The

more time lA spends in clause construction, the slower it is with respect to lB and

hence, the more is the inference rate speedup.

Chapter 6 - CARINE: An Implementation of SLR 162

1,400,000

Max [B] = 1,323,975 inllsec

1,200,000

+
1,000,000

! 800,000 Il c
I!

i
600,000

++

+ +

i

400,000

200,000

Ave [B] = j,547 inf/sec + f Max [A] = 134,324 inf/sec + + + +
AV:? = 65,280 inf/sec~ +++ +

++ +
+ + +

/'

+ + + ++ + +

/ + +++++H++ + T+ +
+ + +

+
o

o 10 20 30 40 50 60 70 80 90 100

Theorem 1 0 Version A + Version 18

Figure 6-13: Ch art comparing the inference rates of CARINE with and
without DCC.

PTCC(t) vs IRS(t)

12.00 ... ,

10.00 +---------------------------------.-L--==-"'-"---=:..="--=~~-==="--=="'--=_;<=+------i

g.
v 8.00t----------------------------::~::~~~====~------------------_t~----! ! IRS (BooOl4-3)=6.3
fi) PTCC(BOOO14-3)=46.07%

!
Il 6.00 +---I-------j
c
I!

~ 0

<D

~ 4.00

0 0 80 0
00

o 0 <0
0

o

O.OO~,~.OO~-----------------r------------------------------~--~====~========~
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00

PTCCtt): Percentage oftime spent in clause construction

Figure 6-14: Chart of the relation between PTCC(t) and IRS(t).

Chapter 6 - CARINE: An Implementation ofSLR 163

We conclude that, in general, the higher the value of PTCC(t), the higher is IRS(t).

Even though this statement is true most of the time, it is not true aIl the time as

can be seen from the chart of Figure 6-14. For instance, if we inspect the results

over the theorems LAT003-1 and BOOOI4-3 that are listed in Table 6-7, we

notice that the percentage of time spent in clause construction when lA was

attempting to find a proof for theorem LAT003-1 is 9.12% higher than that of

BOOOI4-3, however, the inference rate speedup is 6.312.43=2.59 times lower.

We can obviously spot other instances from Figure 6-14 where this case occurs.

We also notice that 2% of the theorems resulted in an inference rate speedup that

is less than 1 and both theorems had a PTCC(t) that is less than 1%. We discuss

why the inference rate speedup from those two theorems was less than 1 later

when we define the unit conflict tests.

Table 6-7: Comparison of PTCC and IR of some theorems

Theorem PTCC[%] I~ [inflsec] IRA [inflsec] IRS

BOOO] 4-3 46.07 635,875 100,854 6.30

LAT003-] 55.19 27],284]]],65] 2.43

The curve-fit l drawn in Figure 6-14 has a margin of error of23.01% on average.

Nevertheless, it can be used to obtain a rough estimate of the inference rate

speedup once the percentage of time spent in clause construction is deterrnined.

This might be helpful for example, in finding out ahead of time if implementing

or tuming on the option of using delayed clause construction is going to result in

the desired inference rate speedup over a range of theorems. For instance, if the

clauses are aIl propositional clauses or the maximal term depth is 1 (i.e., clauses

contain no functions but only variables and constants), then DCC might not

provide a significant speedup in the inference rate.

1 We experimented with several dozens of different curve-fits using polynomial (of different
degrees), logarithmic and trigonometric functions and we found that the curve-fit presented here
provided the least margin of error on average and the expression is relatively simple with respect
to the other tested curve-fits.

Chapter 6 - CARINE: An Implementation o[SLR 164

The reason that a higher PTCC does not al ways translate into a higher IRS when

clauses are no longer constructed is that it is not the only factor that affects the

inference rate speedup. Another factor that affects the inference rate speedup is

the difference in the percentage of successful unifications between version lA and

version lB. In CARINE, a successful unification due to binary resolution or binary

factoring leads to a newly generated clause. Figure 6-15 shows a chart of the

percentage of successful unifications obtained from running lA and lB over the

selected 100 theorems. Therefore, the number of successful unifications is the

same as the number of derived clauses. The percentage of successful unifications,

PSU ATP (t), obtained from running an A TP over a theorem t is caIculated by the

formula

PSU (t) = SU ATP (t) xl 00
ATP TU (t) ,

ATP
(E6.6)

where SUATP(t) is the number of successful unifications that occurred over the

running time period and TU ATP (t) is the total number of attempted unifications

over the running time period. From the chart in Figure 6-15 we can see that the

percentage of successful unifications obtained from lB can be higher or lower

than the percentage of successful unifications obtained from lA. Indeed, 37% of

the theorems resulted in a higher percentage of successful unifications under lB,

8% of the theorems produced around the same percentage of successful

unifications as lA, and 55% had a lower percentage than that with lA. The ratio of

the percentage of successful unifications obtained from running the two versions

of CARINE over a theorern t is

RPSU(t) = PSUB(t) x 100 ~
PSU", (t)

(E6.7)

By plotting RPSU(t) versus IRS(t), as shown in Figure 6-16, we can investigate

the effect of the percentage of successful unifications on the inference rate

speedup.

Chapter 6 - CARINE: An Implementation ofSLR 165

10000 - .. ~
+ i

90.00 + cP i

80.00 ..
c

i 70.00
E c
~

t 60.00

50.00 ..
l;
&

J
40.00

30.00

5"
If 20.00

10.00

0.00

0 ! + +

1
oq> 1

1

~v !

..ri1)0 1
~o +

+ + +t+ 00 +
-<y>0

+ oaooc4'
+

• .cA:P
00 +

+
+ V..f,. + +

1 o~ +
0& +

00 +
+ +~~:++
~ +

1
OI/}0 + + +

.;/:D' ++ + + +

~~ +
+ .-.-.

o 10 20 30 40 50 60 70 80 90 100

Theorem
1 0 Version A + Version 113

Figure 6-15: Chart of the percentage of successful unifications obtained from
running A and lB over 100 selected theorems.

RPSU(t) VS IRS(t)

56% with RPSU(t)<1 37% with RPSU(t»1
10.00 ,. .. ·····1

9.00
0---1PTCC (FLD003.,)-65.57%

8.00

!I- 7.00

J 6.00

o o 0 ~PTCC(BOOO14-3)=46.07%

J !PTCC (CATOt5-3)=55.35% r----o

i 5.00

4.00
PTCC(LATOO3-1)-S5.19%

~ °0
3.00

± ro

o
00

;
IPTCC(FLD080-4)=36.16% 1

o
o

2.00 0 o

0 e 00

1.00
*,,0

PTCC(ROBOO7-4)=56.98% IIPTCC(COl001-2)=O,06% .. J o....----1PTCC (LCl426-1)-O.54%

o.oo+-------------~--------------~--------------~--------------__ -------------"
0.00 0.50 1.00 1.50 2.00 2.50

RPSU(t) : Ratio of the pere.ntage of successul unifications

Figure 6-16: Chart of RPSU(t) vs. IRS(t).

Chapter 6 - CARINE: An Implementation ofSLR 166

We added the PTCC values in Figure 6-16 for sorne theorerns to give an idea of

the relationship between the two main factors, RPSU(t) and PTCC(t), that affect

the inference rate speedup. If the ratio of the percentages of successful

unifications is less than 1, then lB perfonned a lower percentage of successful

unifications than lA. However, if RPSU(t) < 1, it does not necessarily rnean that

the IRS(t) is low. In fact, even though RPSU(CAT015-3)=O.69, the value for

IRS(CAT015-3)=5.49 which is relatively high by cornparison with other IRS

values. This is due to the high value of PTCC(CAT015-3)=55.35%. The reason

why RPSU(t) < 1 is usually due to the fact that it is highly likely that when

theorerns contain constants, the nurnber of successful resolutions in a derivation

decreases as the derivation grows deeper because of the binding of the variables

to constants and function.

Table 6-8 lists sorne theorerns and the corresponding values of RPSU(t),

PTCC(t), and IRS(t).

Table 6-8: RPSU(t), PTCC(t) and IRS(t) of sorne theorerns

Theorem RPSU(t) 1%) PTCC(t) 1%) IRS(t)

BOOOI4-3 1.57 46.07 6.30

CATOI5-3 0.69 55.35 5.49

COLOOI-2 1.00 0.06 1.l0

FLD003-1 1.01 65.57 8.66

FLDOI5-1 LOI 63.83 9.86

FLD080-4 1.81 36.16 2.34

LAT003-1 0.24 55.19 2.43

LCL426-1 1.03 054 0.50

ROB007-4 0.19 56.98 1.30

Chapter 6 - CARiNE: An Implementation o[SLR 167

An interesting observation from Table 6-8 is the value of IRS(LCL426-1)=0.5

which is less than 1 indicating that lB actually performed worse than lA in this

case. The main reason for the worse performance is attributed to two factors:

1. the low value of PTCC(LCL426-1)=0.54% which occurred at the same

time when the percentage of successful unifications is almost unchanged,

i.e., RPSV(LCL426-1)=1.03 (which is close to 1), and

2. the number of times the test for unit conflict is performed.

Even though a unit conflict test is an attempt to unify possible potentially

complementary literaIs from two unit clauses, it is not counted in the number of

attempted unifications. This is because the number of unit conflict can change

dramatically with respect to the number of attempted unifications between clauses

where at least one of them is not a unit clause. For example, the number of unit

conflict tests can sometimes be a million times less (e.g., LDAO 11-1) than the

number of attempted unifications where at least one of them is not a unit clause

while in others it can be 75000 time more (e.g., COLOOI-2). Due to this dramatic

change, we decided to study the effect of unit conflict test separately.

We denote the number of unit conflicts tests performed by an ATP over a

theorem t during a runtime Rt by VCTATP(t). For LCL426-1, lB performed

l34,754,651 attempts to find a unit conflict (i.e,

VCTIB (LCL426-1) = l34, 745,651), and a mere 151,424 successful unifications

from a total of 216,956 attempted unifications. By comparison, for the same

theorem, lA performed 43,338,280 attempts on finding a unit conflict (i.e.,

VCTA (LCL426-1) = 43,338,280), l30,443 successful unification and 192,206

attempted unifications. The ratio

VCTB (LCL426-1) = l34, 754,651 _ 3.11
VCTIA (LCL426-1) 43,338,280

Chapter 6 - CARINE: An Implementation ofSLR 168

indicates that the number of unit conflict attempts tripled, whereas

RPSU(LCL426-1) = 1.03 (see Table 6-8) remained practically the same. To

maintain a relatively high inference rate speedup, the ratio of the number of unit

conflict tests of lB to lA must be (ideally) less or equal to l, if the percentage of

successful unifications remain almost the same, i.e. RPSU(t) is close to 1. The

ratio of the number of unit conflict tests performed while searching for a proof of

a theorem t between the two versions of CARINE is expressed as

RUCT(t) = UCT[j(t) ,
UCT",(t)

RUCTt) vs IRS(t)

61% with RUCT(t)=1 15% with RUCT(t»1

(E6.8)

10.00 24% w!!':' RUCT(t)<1
~-o-----_·,-'~~-~~------------~

9.00 +-----------------------------;
o

8.00+-----------------------------;

g- 7.00 +-----------------------------i
0 .., .. x. 0
0

'" 6.00 +------------------------------i
:l ..
II!: ..
" c
e
~
.E ..
~

'" 9:

5.00

4.00

3.00

2.00

1.00

0.00
0.00 0.50

0

8
00

~o

p

1.00

0

0
0

0

~

1.50 2.00 2.50

INUM2B4-1 1

""0
IGE0089-1 1--0 ~

3.00 3.50 4.00

RUCT(t) : Ratio of the number of unit connict tests

Figure 6-17: Chart of RUCT(t) vs IRS(t).

Chapter 6 - CARINE: An Implementation of SLR 169

Figure 6-17 shows RUCT(t) versus IRS(t) for the selected 100 theorems. We

notice that RUCT(t) >1 for 15% of the theorems and RUCT(t) >3 for only 4%

of the theorems. This is an indication that, generally, the number of unit conflict

tests do es not increase substantially between lB and lA . Even though the R UCT(t)

might occasionally increase substantially, this does not mean that the inference

rate speedup is going to be less than 1 as can be se en in Table 6-9 with the three

theorems GE0004-1, GE0089-I, and NUM284-1.014. For instance,

RUCT(NUM284-1.014)=3.5 is higher than RUCT(LCL426-1)=3.I 1 and even

though the difference in the percentage of successful unifications between both

theorems is very small, i.e., RPSU(LCL426-1)-RPSU(NUM284-I.014)=1.03-

0.98=0.05, the inference rate of lB is double that of lA over NUM284-1.0 14,

whereas the inference rate of lB is half that of lA over LCL426-1.

Table 6-9: RUCT(t), PTCC(t), RPSU(t), IRS(t) of sorne theorerns.

Theorem RUCT(t) PTCC(t) I%} RPSU(t) IRS(t)

ALG003-1 l.36 0.59 1.04 0.97

GEOO04-1 3.48 25.92 0.82 l.38

GE0089-1 3.40 32.82 0.44 1.40

LCL426-1 3.11 0.54 1.03 0.50

NUM284-1.014 3.50 45.46 0.98 2.07

By consulting Table 6-9, we conclude that the reason why the inference rate

speedup for NUM284-1 .014 still went up as opposed to the inference rate speedup

for LCL426-1 which went down is the much higher PTCC(t) ofNUM284-1.014

since both have an RPSU(t) that is close to 1 and their R UCT(t) values are close.

The question that arises at this point, after investigating the three factors PTCC(t),

RPSU(t) and R UCT(t) that affect the inference rate, is which one of those factors

is most tightly related to the inference rate speedup? By inspecting the chart of aIl

three factors along with the IRS(t) over the selected 100 theorems in Figure 6-18,

Chapter 6 - CARINE: An Implementation ofSLR 170

we can conc1ude that PTCC(t) follows the trend of IRS(t) more closely than either

RPSU(t) and RUCT(t).

70.00

60.00

ÇI

r;P',

21 31

IJ

41

IJ

51 61 71 81

Theoram

o % time spent constructing cfauses [PTee] <> Ratio of the % sucœssful unifications [RPSU]

./1 Ratio of the unit conflicfs tests [RUeT] x· Inference Rate Speedup [IRS]

12.00

IJ

10.00

ÇI

1J@l'

91

Figure 6-18: Chart of PTCC(t), RPSU(t), RUCT(t), and IRS(t) over the
selected 100 theorems from the TPTP library v2.6.0.

The theorems in Figure 6-18 are sorted by IRS(t) value. The left si de y-axis is a

measurement in percent units of the percentage of time spent constructing clauses

PTCC(t), whereas the right y-axis indicates the values for aIl the other factors as

weIl as the values for the IRS(t). Since PTCC(t) is the factor that is most tightly

related to the IRS(t), it is interesting to determine at what point the PTCC(t) starts

to affect the IRS(t) values significantly. If we look again at the chart in Figure 6-

14, we notice that after a PTCC(t) of 1 % the inference rate begins to increase, i.e.,

IRS(t) > 1. For PTCC(t) > 33%, the inference rates start to at least double for most

theorems. For PTCC(t) > 50% the inference rates start to at least quadruple on

Chapter 6 - CARINE: An Implementation o[8LR 171

most theorems. By looking again at Figure 6-12, we notice that the average of

PTCC(t) over the selected 100 theorems is 33.68%. Since the inference rate on

most theorems starts to double when PTCC(t) > 33%, we can claim that on

average the inference rate at least doubles when clauses are not constructed. This

observation is confirmed by inspecting the chart in Figure 6-19.

10.00 1--_ _ _ _ _ ... _ _ _ --_ .. _ ... _ _ _ _ _ _ _ _ _ _ -....... _ _ _ _ _ .. _ _ _ ... _ _ _ _ _ _ _ _ _ _ _ _ ---t
Max; 9.86

9.00 +-------------------------------;
•

8.00 t-----------------------------;

Cl. 7.00 +---------------------------------i. !
~ . : .
: 6.00 -1-------------------------------1

S •
B 5.00 +--------------------------------;
c • .. ~
; 4.00 t------------------------------'

~ ~.
3.00 t-----------------------:~~. ----j

Ave; 2.33

2.00 +======:':=====.:~~;;;;~~~~=========1 -
1.00 +-....---~-------------------------'

•
0.00 +------r--~--~-~--~-~--~--~-___r-----;

o 10 20 30 40 50 60 70 80 90 100

Theorem

Figure 6-19: Inference rate speedup of the 100 selected theorems.

We conclude that even though all three factors, PTCC(t), RPSU(t), and RUCT(t),

affect the inference rate speedup, the percentage of time spent in clause

construction, PTCC(t), is the one most tightly related to the inference rate speedup

and when the time spent constructing clauses is 33% or higher, i.e.,

PTCC(t);::: 33%, the use of delayed clause construction may improve the

inference rate of an A TP significantly.

Chapter 6 - CARINE: An Implementation of SLR 172

6.7 The Effect of DCC and A TS on SLR

In this section we present the results that show the effect of DCC and A TS on

SLR. We selected aU the theorems that CARINE was able to solve (see Appendix

H) where the CPU time that CARINE spent to prove a theorem was at least 10

seconds and at most 180 seconds. The total number ofthose theorems is 106. We

then ran CARINE with different configurations on each theorem. The

configurations are the foUowing.

(A) ATS and DCC: Both A TS and DCC used (default configuration of

CARINE)

(B) No ATS: The option ofusing ATS was tumed off.

(C) No DCC: The option ofusing DCC was tumed off.

(D) No ATS and No DCC: The options of using ATS and DCC were

tumed off.

The number oftheorems solved in each configuration is shown in Table 6-10.

Table 6-10: Number of theorems solved by CARINE using different
configurations

ATSandDCC NoATS No DCC No ATS and No DCC

106 58 90 39

The results show that ATS has more effect than DCC on SLR. When ATS was

tumed off, CARINE solved only 58 (about 55%) of the 106 theorems, whereas

when DCC was tumed off, CARINE solved 90 (about 85%) of the 106 theorems.

Furthermore, when we compared the number of generated clauses using

configuration (B) to the number of genenlted clause using configuration (A) over

the 58 theorems that were solved by (B), we found that, on average, the number of

generated clauses almost tripled, as shown in Table 6-11.

Chapter 6 - CARINE: An Implementation o[SLR 173

Table 6-11: Average number of generated clauses by (A) and (D) over the 58
theorems solved by (D)

ATSand DCC NoATS

8,848,098 25,955,223

The results in Table 6-10 and Table 6-11 indicate that by using ATS, the

explored se arch space was reduced significantly leading to a more efficient

search.

6.8 Summary

In this chapter, we introduced CARINE, an implementation of semi-linear

resolution. We described the data structures involved in the implementation and

demonstrated that delayed clause-construction does not require complicated data

structures. DCC can be implemented using a path table.

We provided examples that demonstrate how DCC works in practice. The

examples also show how attribute sequences can reduce the explorable se arch

space.

We provided experimental results and analyzed the relationship between the

inference rate speedup and the factors that affect it. We found that when clauses

are not constructed, the inference rate more than doubles on average but it can

increase up to 10 times.

Finally, we compared different configurations of CARINE to determine the

effect of DCC and A TS on SLR. We found that in terms of number of theorems

solved, the impact of A TS on SLR was greater than DCC.

CHAPTER

7

Conclusion

In this chapter we sum up and discuss our work by referring to the mam

contributions listed in Chapter 1. We then detail further research issues that could

be addressed in future work.

7.1 Summary and Discussion

We developed two strategies, delayed clause-construction and attributes

sequences, to improve the performance of an A TP. We integrated those strategies

into a top-down bottom-up search procedure called semi-linear resolution. We

built an experimental system, called CARINE, that implements semi-linear

resolution. The results obtained from experiments conducted on theorems from

the TPTP library using CARINE demonstrated that the methods presented in this

thesis are promising and can improve the performance of a resolution-refutation

ATP based on depth-first search substantially.

In this thesis we improved the inference rate of CARINE by an average of

approximately 2.5 times and in certain cases by as much as 10 times due the use

of delayed clause-construction. Consequently, CARINE proved 18% more

theorems due to the use of DCC.

We improved the efficiency of CARINE by reducing the explorable search

space using attribute sequences. Consequently, CARINE proved almost twice as

Chapter 7 - Conclusion 175

many theorems due to the use of attribute sequences than without the use of

attribute sequences.

When both DCC and ATS were combined, CARINE was able to prove almost

three times the number of theorems than when neither strategy was used. In

addition our analysis indicated that the reduction in the size of the explorable

search space due to the use of ATS is exponential in the depth bound.

We have shown that an A TP can perform large steps in a search, using a mega­

inference rule, which is a consequence of DCC. Although the mega-inference rule

allows an ATP to take large steps in a search, the information that can be learned

from the small steps is not lost. We have shown that it is possible to obtain

information from small steps in one iteration to reduce the explorable search

space in the following iterations (see Example 6.3).

7.2 Future Work

There are several ways to extend and improve upon the concepts laid out in this

thesis. 'Here we discuss two major issues that we will be working on in the future:

expanding the delayed clause-construction to a calculus for substitutions and

improving the efficiency of semi-linear resolution through the use of attribute

subsequences.

7.2.1 A calculus for substitutions

The potential of delayed clause-construction can go beyond simply delaying or

avoiding the construction of clauses. The framework established in this thesis is a

first attempt to build a system that relies only on the input clauses and a calculus

of substitution sets. With such a system, it would no longer be necessary to

construct clauses and DCC can be extended to non-linear derivations. The

generation of new clauses, obtained by the application of inference rules, will be

done through substitution set operations, such as union, intersection and

Chapter 7 - Conclusion 176

difference. For instance, the umon represent resolutions. We have shown in

Chapter 3 that the final p-idempotent substitution set in a linear derivation is the

union of aIl the mgu' s obtained from the unification of terms or literaIs aIong the

linear derivation. Substitution set difference represents backtracking. We have

shown in Chapter 6 how backtracking is performed by deleting recent mgu's

before backing up to shaIlower depths. Intersection of substitution sets represent

several possibilities depending on the result. We use the intersection operation to

discover ancestor resolution, perform non-linear deductions and control

redundancy. We give only a simple example on how the intersection operation on

substitution sets can help in building non-linear deduction using DCC. For

instance, if the intersection of substitution sets is empty, then we either have a

variant of an input clause and a linearly derived clause that share no variables

with each other, or two linearly derived clauses that share no variables with each

other. A resolution between two linearly derived non-constructed clauses C and D

that share no variables lead to the generation of a new clause N, which is derived

in a non-linear way. Thus, we have non-linear deduction using DCC

7.2.2 Improving semi-linear resolution

There are several ways to improve the efficiency of semi-linear resolution. We

indicated in Chapter 4 that the inclusion of demodulation and paramodulation in

semi-linear resolution is possible. We did not provide multiple ways to control the

application of these rules. The only guide we suggested to control the application

of these rules is through the use of attribute sequences. There are several studies

performed to control paramodulation from generating too many clauses. The

results of those studies are summarized in [Nieuwenhuis & Rubio 2001] and

[Degtyarev & Voronkov 2001]. It is important that these constraints be

implemented, otherwise the efficiency of SLR degrades tremendously.

The inclusion of subsumption to reduce redundancy is also an important factor

in SLR. However, because clauses are not constructed, we have to rely on the

Chapter 7 - Conclusion 177

combined infonnation from the substitution sets and tenn replacement lists to

perfonn the subsumption. This is an issue related mainly to the extension of DCC

to a calculus of substitution set. However, we can also make use of the method

proposed in [Schulz 2004] to perfonn subsumption.

Another improvement to SLR can be achieved by memoization. Memoization

is the process of caching (storing most frequently used or most recently used)

results. This technique can be highly effective over attribute sequences and

subsequences because it eliminates longer sequences based on the knowledge

obtained from shorter sequences (see Example 6.3).

There are many other possibilities to enhance the efficiency of SLR through

attribute sequences pruning. We have only used the length attribute but there are

many other clause attributes (weight, maximum tenn depth, number of constants,

number of variables, etc.) that can be used although not all ofthem allow the ATP

to maintain its state of completeness. Nevertheless, attributes other than the length

can be used as part of heuristic functions. The heuristic functions may be cost

functions that estimate the cost of attribute sequences. Based on the values of the

cost functions, the ATP may decide whether to follow an attribute sequence and

consequently, proceed with its search over the corresponding search paths or

discard the attribute sequence and an the search paths that correspond to it.

As discussed in Chapter 6, literaI ordering is only done initially over the input

clauses. We can order the literaIs in a path table that are not marked deleted. The

inclusion of literaI ordering may provide a more flexible way to select the

potentiai literaIs for resolution. This may lead to the tennination of an unfruitful

path early in the derivation and increase the overall efficiency of an A TP.

Appendix A

The Thousands of Problems for Theorem Provers (TPTP) set is a library of

around 7000 theorerns1 that is currently used by at least 118 scientists2 as test

problerns for their autornated theorern proyers. It is rnaintained and updated by

Geoff Sutcliffe and Christian Suttner [TPTP site]. The TPTP set consists of over

30 dornains containing conjunctive normal form (CNF) and first-order formula

(FOF) problerns.

The studies that we have conducted are over CNF problerns, and hence, we have

used only the theorerns frorn the CNF problerns for our experirnents. Our results

were obtained frorn tests performed on theorerns frorn TPTP version 2.6.0. We

chose TPTP for our experirnents for the following reasons:

• The large variety of CNF theorerns spread over rnany dornains.

• The wide range of characteristics that the theorerns have. For exarnple, the

nurnber of clauses in sorne problerns can be as srnall as 2 and in others as

large as 3240. Also theorerns rnay contain only propositional clauses or

only first-order clauses or a cornbination ofboth.

• The rating of every theorern according to its difficulty. The difficulty of a

theorern is rneasured by a real nurnber between 0 and 1 and is based on

the number of registered3 theOl:ern proyers that were able to solve the

problern. A rating of 0 for a problern irnplies that all registered A TPs

) Version 2.6.0 of the TPTP contains 6973 theorems spread over 31 domains.
2 This is the number of registered users.
3 The registered theorem provers are state-of-the-art A TPs submitted to the editors of the TPTP
Iibrary.

AppendixA 179

solved the problem while a rating of 1 implies that no A TP solved the

problem.

• The growing number of users using the TPTP set which is tuming this set

into a de facto standard for testing new or improved A TPs.

• The good maintenance and support by the editors.

• The comprehensive documentation on every theorem, which includes its

rating, satisfiability status, author, reference, domain, brief description,

and characteristics (number of clauses, literaIs, functors and so on), and

the statistics and synopsis on the overall set.

• The availability of the library for free.

With such a large number of theorems spanning a wide range of characteristics,

we can test our experimental ATP with confidence that the results obtained from

the experiments provide an adequate projection of its speed and efficiency from

an empirical point of view. Testing an ATP over a large number of theorems also

reveals its stability (e.g., does not cause an error which halts the operation of the

machine leading to a reboot of the system) and reliability (e.g., the proof is sound

and the output is correct).

The table below shows sorne statistics on the TPTP version 2.6.0 problem library.

It lists aIl the domain names and their abbreviations. The abbreviations are used as

a prefix for naming theorems. For example, GE0006-1 is a theorem from the

geometry domain. The average number of clauses in each domain for the CNF

problems is indicated along with the minimum and maximum number of clauses

in any theorem within a domain. The average rating for each domain provides a

rough indication on the difficulty of the theorems within the domain. The higher

the rating value in a domain, the more difficult are the problems in this domain.

The NUM and SET domains have the highest ratings. This indicates that a lot of

the problems in those domains are difficult.

AppendixA 180

Number Number Ave. number of Ave.
Domain Abbrv. ofCNF ofFOF clauses CNF rating

problems problems (min-max) ofCNF
General Algebra [M] ALG 12 0 97 (9-24) 0.500
Analysis [M] ANA 21 0 26 (12-50) 0.615
Boolean Aigebra [M] BOO 139 0 16 (7-49) 0.423
Category Theory [M] CAT 62 0 28 (12-37) 0.092
Combinatory Logic [L] COL 165 0 10 (7-22) 0.246
Comj)uting Theory [CS] COM 6 3 27 (11-50) 0.063
Fields [M] FLD 281 0 33 (27-49) 0.588
Geometry [M] GEO 249 77 84 (6-169) 0.554
Graph Theory [M] GRA 1 0 12 0.000
Grol1J>s [M) GRP 791 3 26 (4-328) 0.193
Homological Algebra [M] HAL 0 9 - -
Henkin Models [L] HEN 67 0 20 (10-36) 0.008
Hardware Creation [E] HWC 6 0 42 (9-79) 0.167
Hardware Verification [E] HWV 81 0 140 (21-205) 0.242
Knowledge Representation

KRS 17 0 24 (4-54) 0.000
Schemes [CS]
Lattices [M] LAT 104 0 17 (7-50) 0.378
Logic Calculi [L] LCL 527 4 12 (3-34) 0.377
Left Distributive Algebra [M] LDA 23 0 26 (10-36) 0.732
Management CSS] MGT 78 78 39 (8-85) 0.141
MisceIJaneous MSC 13 1 33 (6-204) 0.180
Natural Language Processing

NLP 258 258 140 (30-285) 0.194
[CS]
Number Theory [M] NUM 315 0 248 (6-409) 0.890
Planning [CS] PLA 32 6 28(10-31) 0.239
Puzzles PUZ 74 4 42 (5-504) 0.127
Rings [M] RNG 104 0 32 (8-74) 0.394
Robbins Algebra [M] ROB 38 0 14 (9-24) 0.487
Set Theory [M] SET 704 326 185 (2-295) 0.746
Software Creation [CS] SWC 423 423 236 (222-333) 0.650
Software Verification [CS1 SWV 20 9 25 (3-41) 0.151
Syntactic SYN 838 299 26] (2-3240) 0.139
Topology [M] TOP 24 0 9] (3-119) 0.535

Total: 5473]500

[CS] = Computer Science [E] = Engineering , [L] = Logic

[M] = Mathematics [SS] = Social Sciences

Appendix B

This appendix contains the proofs of theorems from Chapter 3.

Proof of Theorem 3.2

Theorem3.2

Given two idempotent substitution sets 0"] and 0"2 that are consistent, if none of

the variables in Dom(O"]) occurs in any of the terms in Ran(0"2) ' then

Proof:

To prove that 0"] U 0"2 ~ 0"]0"2 means to show that the application of 0"] U 0"2 a

finite number of times over itself should lead to the set 0"]0"2. This means that

idempotent substitution sets that are consistent. Since 0"] and 0"2 are consistent,

then by Definition 3.6 Dom(0"])nDom(0"2) = {} and 0"] U0"2 is p-idempotent.

Since 0"] U 0"2 is p-idempotent then let

1i = 0"] U0"2

= {v] ~tp ... ,vn ~tn'u] ~s], ... ,um ~sm}·

The application of 1j on ë· gives

ë"ij = (0") u0"2)ë· = {v] ~ t)ë·, ... , Vn ~ t}·,u) ~ si, ... ,um ~ smë).

Appendix B 182

Since 0"] is idempotent then the application of the subset of ë· that is equal to 0"]

has no effect on the substitution terms tp •.. ,tn. Similarly, the application of the

subset of ë· that is equal to 0"2 has no effect on the substitution terms sW .. ,sn.

Therefore,

If none of the variables in Dom(0"]) occurs in Ran(0"2) , then 0"] has no effect on

This implies that ë7f can be written as

The application of ërf over li glves

ë·(iiif) =(0"] u0"2)(ëë)

= {v) -+t/fif, ... ,vn -+t}ë·,u) -+s)ë7f, ... ,um -+smë7f}.

terms t), ... ,tn because 0") is idempotent, so none of the variables v), ... , vn occurs

in any of the terms t), ... ,tn • Furthermore, none of the variables in Dom(O"))

occurs in Ran(0"2) (given). So when ë7i was formed, the application of 0"2 over

tp ... ,tn did not introduce any of the variables in Dom(O")) into any of the

resulting terms t)0"2' ... ' tn0"2. In other ~ords, for aIl 1 ~ i ~ n, for aIl 1 ~ j ~ n,

Vi ~o lj 0"2. Moreover, the subset {v) -+ 1)0"2' ... ' vn -+ tn0"2} of ë7i has no effect on

the substitution terms sp ... ,sm because none of the variables in Dom(O"]) occurs

in Ran(0"2). The only subset of ëë· that may affect ë· is {u) -+ sp ... 'Um -+ sm},

Appendix B 183

but this is the same as set (J'2. So the application of ë1f to ë· is reduced to the

application of (J' 2 to ë· . Therefore

Since (J'2 is idempotent then it has no effect on the terms SI' •• • ,sm. Therefore,

Notice that the set obtained from applying ë1i to ë· 1S same as ë1f,

i.e., ë·(ëë) = ëë· . This implies that any further application to ë· is not going to

pro duce a set different from ëë·. Let () = ëë· then ë· ~ () .

Appendix B 184

Proof of Theorem 3.3

Theorem 3.3

Given k ~ 2 idempotent substitution sets 0"1"'" O"k that are pair-wise consistent,

if for each 1:::; i:::; k -1 none of the variables in Dom(O";) occurs in any of the

terms in any Ran(O"j) ' where i + 1:::; j:::; k, then 0"1 U"'UO"k ~ O"I"'(Jk'

Proof:

This theorem is a generalization of Theorem 3.2. It can be proved by induction.

Base case: k = 2.

Given two idempotent substitution sets 0"1 and 0"2 that are consistent, if for aIl

V E Dom(O"J ~ v flo Ran(0"2)' then 0"1 U 0"2 ~ 0"10"2 by Theorem 3.2.

General case: k > 2.

Suppose that for n < k, 0"1" "'O"n are idempotent, pair-wise consistent, and for

n

every 1:::; i :::; n, for aIl v E Dom(O"i) ~ v flo U Ran(0" j). Assume that for aIl
j=i+1

then their union is p-idempotent by Definition 3.6. Let fi =0"1 u",uO"n' then

ë' ~ 0"1" 'O"n (assumption). The composition of idempotent sets is idempotent

(see Chapter 2); henceO"I '''O"n is idempotent. Let B=O"I'''O"n' then ë' ~B and

B is idempotent.

Suppose that O"n+1 is idempotent, consistent with every O"i' 1:::; i:::; n, and for aIl

v E Dom(O"J ~ v flo Ran(O"n+l) , then 0"1 u"·uO"n+1 = ë' uO"n+l' Since ë' ~ B,

Appendix B 185

then by Theorem 3.1 and the second property III Definition 3.7, ë' ua-n+1 IS

confluent to Bua-n+" i.e., Buan+, D ë' uan+l .

e is idempotent and a-n+1 is idempotent (given). Furthermore, none of the

variables in e occurs in Ran(an+,) because all the variables in e belong to

n

UDom(a;) and they do not occur III Ran(a-n+,) (given). Therefore,
;=1

and e=a- ... a-
1 n'

a- U"'ua- ua- ~ a- ···a a Since by assumption a u",ua ~ a ···a 1 n n+1 1 n n+l' 1 n 1 n

is true for all n < k , then n + 1 = k and so

Therefore, for any k ~ 2, al u··· u a k ~ al ... a k .0

Appendix B 186

Proof of Theorem 3.5

Theorem 3.5 can be stated formally as follows.

Given:

1. A set ofconstructed clauses S = {BW .. ,Bn}' where n ~ 2.

II. A linear derivation ~ = (I;, .. . , ~) , where k ~ 1 , of a goal clause G from S

with Cinil ES, such that

k

1. every clause in the multiset union U V(IJ is a variant of a constructed
i=!

clause from S.

k k

2. Vars(Cini[)nVars(UV(1;))={} and for aH CEUV(1;) and for aH
i=) i=)

k

DE U V(1;), if C"* D then Vars(C) n Vars(D) = {}.
i=\

3. The mgu's (J'P ••• ,(J'k resulting from the inferences I;, ... ,Ik , are

idempotent and consistent.
.-

4. For aH 1 S;; i S;; k, no C(I;) is a from clause. Therefore, if 1; is a

paramodulation, demodulation, or superposition, then the from clause is

a variant of a clause from S.

Appendix B 187

Required to prove:

Every ë'(IJ, 1 ~ i ~ k , can be expressed as

where

• m is the total number of variants of clauses from S used in d,

• for aIl 15: j ~ m, r} E {l, ... ,n}, n = ISI and B~ = BrjO}, where Brj ES, and

0) is variable renaming substitution, such that

)-1

• Ran(O)n(U Vars(B;)uVars(Cinit)) = {},
q=l q

• al., = al u··· u ai , where al c Cinit and for aIl 1 ~ j ~ i ,

• Pu = Pl u··· U Pi , where for al1 1 ~ j ~ i ,

Proof:

For aIl 1 ~ i ~ k , inference I; can be written as

Prem(I;)

CCI;) , YI (EB.1)

Prem(I;) is a multiset of clauses imp1icitly representing a conjunction clauses.

Since d is a linear derivation then by definition (see Chapter 2),

i = 1,

2~i5:k.
(EB.2)

From EB.2 we can forrn the multiset ..l(Prem(I;)) as fol1ows.

Appendix B

{

Cinit U L(1J(I; »
L(Prem(I;» = C(I;_I)U L(1J(I;»

i = 1,

2 ~ i~ k.

188

(ED.3)

Definition 3.11 indicates that the conclusion of an inference I; can be written in

the fonn « Ci \ Di) U Ei)CTi (riCTi) , where Ci = L(Prem(I;» , Di c L(Prem(I;» ,

Ei C {---,Li} , and Li E L(Prem(I;». Since the conclusion of an inference I; can

be written in the fonn «C; \ Di) u E;)CT, (r,CTi) , then a non-constructed version of

C(I;) can be expressed as

(ED.4)

In what follows, CTi is the mgu resulting from the unification of sorne tenns or

literaIs from the premises. Similarly, ri is a tenn replacement list of sorne tenns

from the literaIs of the clauses in the premises of inference I;. Chapter 2 and

Table 3-4 provide more details on the mgu's and tenn replacement lists for

specific inference rules.

Base case: k = 1

ë'(I;) = «CI \DI)uEI)CTI(rICTI)

= «Cinit u L(1J(I;»uEI) \ (al u PI»CTI(rICTI)
Using EB.3 and EB.4

where al c Cinil and PI c L(1J(I;». If El * {} then El contains the negation of

a literaI ~ from Cinit , i.e., El = {---,~} where ~ E (nit' Notice that ~ cannot be

an element from ,[(V(.z;» because in equality factoring, there is only one

premise, so L(V(.z;» = {}.

Case: k =2

Appendix B

ë'(Iz) = ({Cz \ Dz)uEz')(Jz{TP'Z)

= ({ë'CZ;)u L(1J{I;)) u Ez') \ (az/ u /3z))(Jz(T2' (Jz),

Using EB.3 and

EB.4

189

If E2' * {} then 1; is equality factoring, Therefore, L(1J(1;)) = {} and E2'

Suhstituting the expression for ë'(I;) in ë'(I;) , we get

ë·{I;) = ««(Cinit u L(1J(.z;))u Ej) \ (aj u /31))(Jj (TI(Jj))U

L{1J(I2)) U Ez') \ (a2/ U /32))(J2 (T2' (J2)'

We want to move (Jj(TI(Jj) to the front of the ahove expression, In order to do

that, we have to show that the application of (JI and (T)(J)) to L(1J{I;)), Ez',

a 2/, /32 won't affect them.

with a2 . Similarly, E2' is replaced with E2.

From the given, it can he deduced that ,

Vars(Cini,)Î'I Vars(1J(I;) = {} and Vars(1J(.z;))Î'I Vars(1J{I;) = {}.

Since Dom{(JI) c Vars(Cinil) U Vars(1J(.z;)) then Dom«(JI)Î'I Vars('D(I2)) = {},

Therefore, L{1J(I;))(J1 = L{1J{I;)).

Since P2 ç L('D(I;)) then P2(J1 = /32,

Appendix B 190

L(T,) ç Ciml U L('D(I;» this implies that L(T,) cr. L('D(I;» "

Therefore, L('D(I2»(T,0",) = L('D(I2» "

Since P2 ç L('D(I2» then L(T,) cr. /32 "

ë"(I;) can now be written as

ë"(I2) = ««Cinil u L('D(I;»uE,) \ (a, u /3,» u

L('D(I;» u E2) \ (a2 U P2»0", (T,O",)0"2 (T2' 0"2)"

ë"(I;)= «Cinil UL('D(I;»uE, uL('D(J;»uE2)\

(a, uA ua2 u /32»0", (T,0"')0"2(T2' 0"2)

ë"(I2) = «Cinil u L('D(I;»U L('D(I;»uE, uE2) \

(a, ua2 u PI u P2»0",(TIO",)0"2(T2'0"2)

ë"(J;)= «Cinit UL('D(I;)u'D(J;»uE, uE2)\

(al uA ua2 u pz»0",(T,0",)O"z(T2' O"z)

ë"(I2)= «Cinil uL('D(I;)u'D(I;»uE, uE2)\

(a, u p, ua2 u P2»0",O"z(T,0",U2)(T2'0"2)

al (TI al) moved to the

end of expression.

Using the special DU

law (see Chapter 2)"

Union is commutative"

L(V(I,» u L(V(I,» =

L(V(I,) u V(I,)

Distributing a
2

over

al and TI al

We now need to transform T 2' into a term replacement list, T2 , in which every

referenced literaI L'in T2' is replaced by a reference to the original literaI L" By

original literaI we mean the literaI L of the variant of the input clause before 0",

Appendix B 191

and/or T] is applied to L. The purpose of this transformation is to be able to

change the expression (T]0"]0"2)(T2' 0"2) into (T] T2 (0"]0"2)).

Recall that a term replacement list is not concemed with the actual terms being

replaced but with their positions. As long as the positions are valid, the actual

term being replaced is not important. Also, recall that a term replacement list is an

ordered multiset that when applied to a clause, the application is performed from

left to right.

L(T2') c C(~)u L(1)(1;)).

Therefore, for aIl (Ït ~ t) E T2', L' E C(~) or L'E L(1)(I2)).

If L' E C(~) then 3L E Cinil U L(1)(~))uE] such that L' = LO"](T]O"]). L is the

original literaI.

If L'E L(1)(I2)) then since L(1)(1;))O"] (T]O"]) = L(1)(I2)) (shown above), then

L' 0"] (T] 0"]) = L'. L' is the original literaI.

We form T2 from T2' as follows.

For aIl (Lt. ~ t) E T2', if L' E C(~) then we replace it with the original L, and if

L' E L(1)(IJ) then we keep it.

Part II.4 of the given states that no intermediate conclusion is a from clause,

therefore, for aIl (l'L ~ t) E T2' , the terÎn t is a term from a literaI in L('D(I;)).

Since L(1)(1;))O"] = L(1)(1;)) (shown above), then to"] = t .

ë·(J;) can now be written as

Appendix B 192

ëO(I2) = «Cinil u L('D(IJu 'D(I2))) \ Combining " and '2 °

(al u PI ua2 u P2))CTICT2 (TIT2 (apo2))

ëO(J;) = «Cinil u L('D(I;)U 'D(I2))) \

(au u Pt . .2))CTl..2(Tl..2CTl..2)

General case: k > 2

Assume that for aIl i < k , that

ëO(l;) = «Cinil u L('D(I;)uoo oU 'D(I;))) \

(al .. i u PI .. i))CTI . .i(TI .. ,CTI . .i)o

Show that for k = i + l ,

ëO(I;+I) = (Ci +1 \ Di+1)CTi+1 (Ti+ICTI+1)

= «ëo(I;)u L('D(I;+I))) \ (ai+1 u Pi+I))CTi+1 (Ti+ICTi+,),

where a i+, c ëO(J;) andPi+' c L('D(J;+I)) °

The substitution of the expression for ëO(J;) into the expression for ëO(I;+I)

Ieads to

ëO(I;+J) = ««(Cinil u L('D(I;)u ° ° oU 'D(I;))) \ (au u PL;))CTu(TUCTI.J)U

L('D(I;+J))) \ (ai+1 u Pt+1))CTi+1 (Ti+1CTi+l)

ëO(J;+l) = ««Cinil u L('D(1;)u 00 ° u 'D(J;))) \ (au u Pu)) U

L('D(J;+l))) \ (ai+J U Pi+,))CTu(TLPIJCTi+J (Ti+ICTi+1)

Appendix B

The general expression for an intennediate conclusion can be derived from

ë·(IJ= «Cinit uL(V(I;)u···uV(IJ))\

(au u PL;))CTJ..lrLP·U).

i

(EB.S)

193

Cmit ES and every clause in U V(Ij) is a variant of a clause from S. Let
j=1

Cinil = Br ~ = B: ' where 1::; 1j ::; n and (},) is a variable renaming substitution set.
1 1

1

~ renames the variables in Br) such that Ran(~)nVars(~V(~))={}. The

superscript 1 in B;I meanS that this is the first clause in the derivation ~. Let

Appendix B 194

i

be a list version of the multiset U 1J(~) u {Cinil } where the clauses are ordered
j=1

according to their occurrence in the derivation ~. Every clause B;, where
J

1 ~ j ~ m, is a variant of a clause from S. Let Bj be a renaming variable

substitution of the clause Br ES, such that B; = Br BJ. . The expression for
J J J

ë·(IJ from EB.5 can now be written as

(EB.6)

where

m is the total number of variant of clause from S used in fl,

1 ~ rJ ~ n for 1 ~ j ~ m ,

m m

au ç U B; , and Pu ç U B; .
j~ J J~ J

EB.6 is the required to prove expression. 0

Appendix C

We assume that when an intermediate conclusion is constructed, it is stored in a

linear data structure. A linear structure representation is called a flatterm

representation. We present a lower bound, for the flatterm representation, on the

number of operations required to construct an intermediate conclusion. Flatterm

representation is used in CARINE and in other ATPs for short lived clauses,

including OTTER, THEO, and VAMPIRE.

C.I Flatterm Representation

A flatterm representation is a doubly linked list [Sekar et al. 2001] with an

additional pointer to the last term symbol of a term as shown in Figure C-l.

g x h a f x h a

Figure C-l: Flatterm representation of g(x,h(a)l(x,h(a»)

Appendix C 196

C.I.I Substitution set representation

A substitution set is usually represented as an array of pointers to terms. The

indices of the array serve as the hash codes of the variables' identification codes.

For example, the set a = {xl-) f(a),x5 -) x3,x6 -) b} can be stored in an array

as shown in Figure C-2.

o 1 2 3 4 5 6 7 8 9 10

Figure C-2: Substitution set representation of
a = {xI-) f(a),x5 -) x3,x6 -) b} array

Variable
identification
code

substitution

The slots pointing to circle with a cross are assumed to be variables that have no

substitutions and the array indices are equal to the identification codes. It is also

possible to maintain a substitution set as doubly linked list or as a skip list (for a

faster access). Every element in such representation must include the variable

identification code and a pointer to the substitution term.

C.2 Querying un der DCC

There are many queries that could be formed to extract valuable information

about an inferred clause. Such information can be used to tune the heuristics of an

A TP, but more importantly it helps the A TP to evaluate clauses and determine

whether they should be discarded or retained. Sometimes discarding a critical

Appendix C 197

clause may cause the ATP to take a very long time to prove a theorem or it may

even never be able to prove such theorem at aIl. Therefore, it is important to

gather and evaluate the necessary information about an inferred clause in order to

reduce to a minimum the chance of discarding a critical clause. Depending on the

strategies and inference rules implemented in the A TP certain queries may be

more useful than others. We discuss only the most common queries that almost aIl

theorem proyers exploit.

We use the following notations and definitions that are necessary to demonstrate

our analysis:

nt(L) = Weight(L)-1 number ofterm symbols in the literaI L

nt(t) = Weight(t) number of term symbols in the term t

nv(L) number of variables in the literaI L

nf(L) number offunctions with arity greater than zero in the

literaI L

nc(L)

ndv(L) = IVars(L)1

n(L, v)

Cf(v) or cr(v)

number of constants in the literaI L

number of distinct variables in L

number of occurrences of the variable v in the literaI L

the substitution term for the variable v

cr(v) is used instead of Cf(v) when the substitution term for v is obtained after Cf

is transformed into cr .

Example C.l:

L = P(x,x,f(x,y,g(h(a,z),b)),y)

Vars(L) = {x,y,z}

Cf = {x ~ f(y,a,z),y ~ g(a,b)}

cr = Cf ~ cr = {x ~ f(g(a,b),a,z),y ~ g(a,b)}

Appendix C

nt(L) = 11,

ndv(L) = 3,

B(x) = f(y,a,z) ,

nv(L) = 6,

n(L,x) = 3,

(T(x) = f(g(a,b),a,z).

nj{L) = 3,

n(L,y) = 2,

C.2.1 Computing the weight of a non-constructed clause

198

nc(L) = 2,

n(L,z) = 1,

One of the most common clause attributes used by A TPs to guide the search is the

weight of the inferred clause. Usually, if the weight is greater than sorne limit,

which is either set by the user or calculated automatically by the A TP, the clause

is discarded. The weight is also used as part of an ordering relation for clauses

and/or literaIs of the clauses. For example, clauses with lighter weights may have

a higher precedence to participate in an inference rule than longer ones when a

selection mechanism is exercised. Therefore, it is important to be able to compute

such information within DCC in an amount of time that is less than the time it

takes to construct a clause. Otherwise, DCC would not provide a significant

advantage.

First we establish a formula to compute the weight of a conclusion from the

weights and other available data about the premises of an inference rule, and then

we compare the time it takes to compute this formula with the time it takes to

construct the clause. We also discuss the worst case where it would better to

construct the clause (since its takes the same time as computing its weight) and

consequently facilitate the execution of complex queries on it rather than be

content with simply its weight.

The weight of a clause is the sum of the weights of its literaIs so it is natural to

find out how to compute the weight of a literaI without constructing it. This

implies we need to compute the weight of every destination literaI (i.e., a literaI

from the conclusion) from the weight of the source literaI (i.e., a literaI from the

premises).

AppendixC 199

Using the above definitions, we can compute the number of variables in a literaI

by summing up the number of occurrences of every distinct variable in this literaI

as foIlows,

ndv(L)

nv(L) = l n(L, vJ. (EC.t)
i=J

The number of terms in a literaI is the sum of the number of variables, functions

and constants,

nt(L) = nv(L) + nf (L) + nc(L) . (EC.2)

By substituting nv(L) with the right hand si de ofEC.t we get

ndv(L)

nt(L)= L n(L,v)+nf(L)+nc(L). (EC.3)
i=)

Assume that the number of occurrences of a variable v in L is equal to one. If v is

replaced by a substitution which is a function, then the number of terms in the

new literaI, L' , increases by the weight of this function minus one. We can write

this simple formula as: nt(L') = nt(L) + nt(0"(v» -1 . Notice that if the substitution

is a variable or a constant, then nt(a(v» = 1 and thus, nt(L') = nt(L). Therefore,

the number of terms would remain unchanged.

Example C.2:

L = P(x, y, y), nt(L) = 3,

L' = LO" = P(f(a),y, y) .

n(L,x) = 1, a = {x ~ f(a)},

The substitution for x is a function since a(x) = f(a), nt(a(x» = 2. Therefore,

nt(L') = nl(L) + nt(a(x» -1 = 3 + 2 -1 = 4.

Appendix C 200

If the nurnber of occurrences of sorne variable vj in L is greater than one, where

1 ~ j ~ ndv(L) , then the nurnber ofterms in L' becornes

nt(L') = nt(L)+n(L, v)· nt(cr(v) - n(L, v)

= nt(L) + n(L, v)· (nt(cr(v) -1)

If every distinct variable in L has a substitution in cr, then the nurnber of terms in

L' is cornputed by

ndv(L)

nt(L') = nt(L)+ l (n(L, Vi)' (nt(cr(vJ) -1))
;=1 (EC.4)

with nt(cr(vJ) 2:: 1.

However, since it is not necessary for aIl the distinct variables in L to have a

substitution in cr , we can write the above formula as

IDomL (0")1

nt(L') = nt(L) + l (n(L, Vi)' (nt(cr(vi» -1»), (EC.S)
i=l

where IDomL (cr)1 is the cardinality of the set of variables in L that have a

substitution in cr , i.e., Dom L (cr) = Vars(L) (j Dom(cr) .

Example C.3

L = P(x,y,f(a,g(z,x),y,y)

cr = {x ~ f(w,a,b, w),y ~ c,U ~ w}

nt(L)=9, nv(L) = 6,

Œ(X) = f(w,a,b, w),

nt(cr(x» =5,

DomL(Œ)= {x,y},

ndv(L) = 3,

Œ(Y) =c,

nt(cr(y» = 1,

IDomL (Œ)I = 2

n(L,x)=2, n(L,y)=3,

Appendix C 201

If we construct L' , we get

L' = Lcr = P(j(w,a,b, w),c,j(a,(g(z,j(w,a,b, w)),c,c))

and the number ofterms would be 17. Now, ifwe apply the formula EC.S, we get

nt(L') = 9 + n(L, x) . (nt(cr(x))-l) + n(L,y) . (nt(cr(y)) - 1)

= 9+ 2· (5- 1) + 3·(1- 1)

=17

Since the number of terms in a literaI L does not change when the substitution of a

variable from L is a variable or a constant, we can apply the summation only on

the variables that have a substitution which is a function. If we denote the set of

variables Vi in DomL (cr) that have substitutions which are functions (i.e.

nt(cr(Vi)) > 1) by r L (cr) , then EC.S can be written as

!fda)!

nt(L') = nt(L) + l (n(L, vJ· (nt(cr(vi)) - 1)), (EC.6)
i~1

where Vi E r L (cr). Notice that r L (cr) ç DomL (cr) so Ir L (cr)l::; IDomL (cr)l·

If we apply EC.6 to our above example we get

nt(L') = 9+n(L,x)·(nt(cr(x))- 1)

=9+2·(5-1)

=17.

Here, rL(cr)={x} because x is the only variable III DomL(cr) that has a

substitution which is a function, i.e., nt(cr(x)) = 5 > 1.

We conclude that computing the number of terms in any literaI of the inferred

clause is linear in the number of distinct variables that have a substitution term

whose weight is greater than one and thus, takes no more than Q(lr L (cr)1)

operations.

Appendix C 202

Let the literaIs that are not deleted, resolved away, or factored out from the

premises of the inference rule be labeled ~, ... ,Ln and P = {~ , ... , Ln} ,

computing the weight of the conclusion C of length n would then take

n

IlrL, (a)1 ~n.Max{lrL(a)I},
;=1 LEP

(EC.7)

operations. However, there is an additional hidden cost that is not taken into

account. This cost is the time to maintain the weights of the substitution terms.

We have assumed, so far, the number of terms in every substitution for every

variable in a can be obtained in constant time. In other words, nt(a(vJ) must be

stored within a table that can be accessed in 0(1) after the unification process is

complete. The additional time to maintain such information within the table is

hidden within the unification process. In order to fairly evaluate the performance

of DCC when querying the non-constructed clauses for their weights, we need to

investigate the extent of the effect of maintaining a table of the weights of the

substitution terms. In other words, we need to determine the amount of time

consumed by the process which maintains such information. For one resolution

the process is quite simple. However, it becomes complicated when a sequence of

resolutions is performed because of the variables' dependencies. A directed graph

of the dependencies must be constructed and updated after every unification.

C.2.2 Variable dependencies

In DCC p-idempotent substitution set are used and so variables may very likely be

bound to a substitution term which contains one or more variables. For example,

if if = {x ---+ y,y ---+ f(w,g(z»,z ---+ a}, then x depends on y, and y depends on w

and z. We call x and y the dependent variables and w and z the inde pendent

variables. A independent variable in a p-idempotent substitution set either has

no substitution or its substitution contains no variables. All other variables are

considered dependent. Notice that x is directly dependent on y and indirectly

Appendix C 203

dependent on w and z. The depth of dependency of a variable v from the domain

of a p-idempotent substitution set is the longest path in the dependency directed

graph from the variable v to an independent variable. We denote the depth of

dependency of a variable v within a p-idempotent substitution set lf by the

function DDii(v). If lf is implied within the context, then we may drop the

subscript and simply write DD(v). It is clear from the definition that the depth of

dependency of an independent variable is zero. In the above example,

DDii(x) = 2, DDii(y) = l, DDii(w) = 0 and DDii(z) = O. The depth of

dependency of a p-idempotent substitution set is the maximum depth of

dependency of any of its variables. Formally, the depth of dependency of a

substitution set lf is defined as

DD(lf) = Max {DDii(v)}.
vEDom(ii)

The depth of dependency is not fixed in DCC. It may change as the derivation

sequence gets longer as demonstrated in the following example.

Example C.4:

Given the clauses:

consider the following sequence of two resolutions ('R means "the

resolution of'):

and

Appendix C 204

The arrows are labeled with the weight of substitution tenn on the top and the

depth of dependency on the bottom. The weight is calculated after the p­

idempotent substitution is transfonned into an idempotent substitution. For

example, nt(o-(x12)) = 5, where 0- is obtained from if --+ 0-. DDif, (X12) = 2.

Since in DCC we are not really constructing the clauses CI and C2 , we have to

combine the substitution sets ifl and if2 to keep track of the changes of the

variables' substitutions. When we perfonn the union of the two sets, we get

We notice that neither the weights of the substitution tenns (i.e. numbers above

the arrows) nor the depths of the dependencies (i.e. number on the bottom of the

arrows) reflect the correct values. For example, since XII changed, nt(o-~(xI))'

where if~ --+ o-~, should be 2 instead of 1 and D DG; (XII) should be 2 instead of 1.

The concept of depth of dependency is only needed for our analysis of the worst

case scenario and is not actually necessary to be implemented within an ATP and

thus, we will not concem ourselves with the amount of time required to update its

values.

In order to maintain a valid reference to the weight of the substitution of a

variable, we have to update the weight of the substitution of every dependent

AppendixC 205

variable related to an independent variable once the independent variable is bound

to a substitution tenn which is a function, as in the case of XII. Furthennore, the

constructed directed graph of the dependencies should be updated after every

successful unification whenever an independent variable changes its state to

become dependent.

Figure C-3 shows the graph of the dependencies of the variables from the set a=;.
Notice that the directed graph never has any cycles since the substitution set is p­

idempotent and hence has no circular references.

Figure C-3: Graph representation of variable dependencies.

The variable dependency graph is represented as an adjacency list. The list

contains aIl the distinct variables of the premises. With each variable X, a linked

list is attached containing the variables that depend directly on x. Figure C-4

shows the adjacency list of a=;. Notice that the arrows in the adjacency list are

reversed as opposed to the graph.

Appendix C 206

Figure C-4: Adjacency list of variable dependencies

If a variable dependency graph is built to maintain information about the weights

of the substitution terms, then it is important to calculate the time needed to

update the graph and, consequently, the weights of the substitution terms in the

worst case scenario so that we may compare the total time needed to compute the

weight of a clause with the time needed to construct the clause.

Suppose the substitution set is ordered by dependency, such that if the variable Vi

depends on the variable vj ' then i < j and Vi is listed before variable vj • This is

not necessarily a total order relation since if i < j then it does not imply that Vi

depends on vj • For example, in a) the variable XI depends on XII but not on any

of the other variables, so it can be listed anywhere as long as it is before XII. A

total order occurs when every variable depends on aIl the variables that follow it.

For example, over a={x~y,y~z,z~f(w),w~g(u,v)} the variable

dependency relation is a total order. A total order is necessary albeit not sufficient

for the worst case to occur.

When input clauses in a theorem contain functions and such input clauses are

involved in the derivation sequence, there is a high probability that the domain of

Appendix C 207

the substitution set contains variables that are dependent on other variables whose

substitution tenns are functions. The worst case occurs when aIl the distinct

variables of the input clauses involved in a derivation sequence belong to the

domain of the substitution set, and the substitution set is totally ordered by the

variable dependency relation such that every variable is directly dependent on aIl

the variables that follow it within the substitution set. FonnaIly, given a set of

input clauses S = {Bp ... ,Bn}, let -< denotes the ordering dependency relation,

such that Vi -< V j implies that Vi depends (directly or indirectly) on vj ' The worst

case scenarIo occurs at depth d in a derivation when the following three

conditions are met:

d

(1) U Vars(B() = Dom(d), where Bj = BiBj for aIl
j=1 J J]

ij E {l, . .. ,n}, is a

variant of an input clause in S, and Bj is a variable renaming substitution

such that Vj, k j * k, Ran(Bj) () Ran(Bk) = { } , and

(2) Vvi , v] E Dom(d) where i * j, if i < j then Vi -< vj ' and

The following example demonstrates the worst case scenario.

Example c.s:
Suppose that after the application of an inference rule leading to depth d -1 in

DCC the accumulating substitution set is

{
13 7 3 I}

dd_1 = x~ f(y,z, w,u),y~ [(z,u, w, w),z~ g(w,u), w~u

and aIl the distinct variables of the input clauses involved in this derivation

sequence are x, y, z, w, and u. Now suppose that an inference rule is applied

extending the derivation length to d, such that no additional variables appear in

Appendix C 208

the premises of this inference except the independent variable u. Suppose that u

binds with the substitution term h(a). The resulting substitution set ad is

{

13 7 3 J) ad = x~ f(y,z, w,u),y~ f(z,u, w, w),z~ g(w,u), w~u,U ~ h(a) .

The weights of the substitution terms are no longer correct and they require

updating. ad reflects the worst case scenario since aH the above three conditions

are met. AIl the variables in the input clauses involved in the derivation sequence

are in ad (condition 1), the set is totally ordered; x -< y -< z -< w -< u (condition 2),

and every variable is dependent on aH the variables that foHow it;

Domiid(x/ad) = {y,z, w,u} , Domiid(y)(ad) = {z, w,u}, and Domiid(W) (ad) = {u}

(condition 3). To update aH the weights of the substitution terms, we proceed first

with the last dependent variable, w, in ad and walk our way back to the first

element in ad. Notice that we only need to update the variables that are directly

dependent on the variable we are working with. Since aH the variables depend

directly on u, we have to update them aH. This requires lad 1-1 updates.

FoHowing that, we have to update aH the variables that depend directly on w. This

requires lad 1- 2 updates. We continue updating aH the references to the weights

of the substitution terms until we reach x. The total number of updates is

From our above example, we conclude ,that we need lad Hlad 1-1) / 2 operations

to update the weights of the substitution terms in the worst case. Therefore,

whenever the worst case occurs, O(laI2) operations are required to update the

references to the weights of the substitution terms of the substitution set a. Let

a ~ (Y then lai = I(YI and O(laI2) = O(I(Y1
2

) , since I(YI = IDom((Y)I (see Definition

Appendix C 209

2.21) and from the properties of p-idempotent substitution set,

Dom(if) = Dom(<J) (see Definition 3.5). Adding this hidden cost to EC.7, we

obtain the following upper bound on the total number of operations needed to

compute the weight of a derived non-constructed clause

n· Max{lr L (if)l} + O(I<J1
2
).

LeP
(EC.8)

Since we are dealing with the worst case, the first condition dictates that the size

of the substitution set is equal to the total number of distinct variables within the

input clauses involved in the derivation sequence and the third condition implies

that each of those variables has a substitution which is a function and therefore,

we can write

n . AL~{lr L (if)l} + O(I<J
2 1) s n ·I<JI + O(I<J2 1)

= O(Len(C) ·I<JI + 1<J1
2

). (EC.9)

In order for the DCC to be effective, the time to compute the weight of C as

formulated in EC.9 must be less than the time to construct the clause C which is

O(Weight(C» . In other words, Len(C) ·I<JI + 1<J1
2

must be at most Weight(C). We

need Len(C)·I<J1 + 1<J12
sWeight(C) orequivalentlyl

I<JI s -Len(C) + ~Len(C)2 +4·Weight(C)

2 (EC.lO)

Notice that if the size of the substitution set is larger than the value returned from

the evaluation of the right hand side of the above inequality, then there may or

may not be a worst case scenario. For example, if CI = P(x,a)v Q(x) is resolved

1 This is a quadratic inequality of the fonn Ax' + Bx + C :::; 0 whose foots are

x = (-B +-.J B' - 4AC / 2A . Of course, the negative square root is useless to us here.

Appendix C 210

with C2 = -,P(y,y) to produce C = Q(a) with substitution set

if = {x ~ y,y ~ a} , then the size of the substitution set is larger than the right

hand si de of EC.lO, i.e., lai = 2 > (-1 + .JI + 4x 2)/2 = l, where 0= ~ a . Here we

have the worst case scenario because aIl three conditions are met. However, we

also have the best case scenario and the reason is that 0= contains only variables

located at depth one within the input clauses, Cl and C2 • If Dom(0=) contains

only variables located at depth one within the input clauses involved in the

derivation sequence of a DCC, then the size of 0= does not affect the time it takes

to update the references to the weights of the substitution terms. In fact, there

would be no updating at aIl since aIl variables in Dom(0=) would be substituted

by either constants or variables whose weights are always one, thus, r L (if)

would be empty. The time to compute the weight of the inferred clause C in such

cases is simply the time to sum up the weights of aIl the literais remaining from

the premises. The best case requires only O(Len(C)) operations to compute the

weight of the inferred clause. Over 630 theorems from the TPTP library contain

clauses with no functions in them. Those theorems are common in the GRP

(group theory), NLP (natural language processing), PUZ (puzzle), SYN

(syntactic) categories. On the other hand, if the size of the substitution set is less

than the right hand side of EC.lO, then we are guaranteed that the worst case has

not occurred and thus, it is faster to compute the weight of a clause by the formula

EC.U (below) rather than construct the clause.

Suppose that DCC is used and C = {L; ,,' .. , L~} is a non-constructed intermediate

conclusion and 0= the resulting p-idempotent substitution set, such that for

1 ::; i ::; n, L; = Lia where ~, ... , Ln are the literaIs that are not deleted, resolved

away, or factored out from the premises and 0= ~ a. The weight of C is

computed by the formula

Appendix C 211

n

Len(C) = l nt(L;)
;=)

(EC.11)

A quick and easy way to test for the possible existence of the worst case is to

compare the depth of dependency of a substitution set with its size. A necessary

condition but not sufficient condition for the worst case to occur is that the depth

of variable dependency should be equal or greater than the size of the substitution

set. In other words, if DD(0:) < 10:1-1 then we can be sure that the worst case did

not occur and we can continue using DCC; otherwise we have to perform further

tests before deciding whether to proceed with DCC or not. We ran our ATP on

2323 theorems and computed 10:1, as weil as the right hand side (rhs) of EC.lO

after every binary resolution and binary factoring. We counted the number of

times the size of if came out at least as large as the rhs taking into consideration

that aIl the substitution terms are functions and that DD(0:) ~ 10:1-1. The results

revealed that it may (but not definitely) have been better to construct the clauses

rather than simply compute their weights for only 0.39% on average of aIl the

generated clauses. The highest percentage was 71.89% and this high percentage

occurred for only one theorem, PLA002-1. There were four theorems (ANA003-

2, ANA004-2, ANA005-2, ANA003-4) with a percentage between 25% and 28%,

one theorem (ANA004-4) with 13.82% and the rest (from almost ail the

categories within the TPTP set) were between 0% and 5.41%. Figure C-5 shows

the number of clauses where it may (but not for sure) have been faster to construct

the clauses and determine their weights while constructing them rather than

compute their weights and delay their construction.

Appendix C

80.00 --...... -- .. -----.--- -... --...... ----..... ------... -............... ---------............. , .. - .. - .. -., -.. '-... -----.... ------...... ·----, -··'1

70.00

Il
c: 60.00.

S
~
ë 50.00 .

1
" 40.00
:a
'i
&
'5 30.00

J e 20.00
10.00

Ave: 0.39%

PlA002-1 (71.89%1 1

-------.. j

l
1

1

~, ,,.M%,::.r'j
ANA004-:~::~][25:5~17; .. 1

ANA004-4113.82%)_" j

212

0.00 ~ _....:~iiiiiiiiii _~~ ~ ~~~:::
o 500 1000 1500 2000 2500

Theorem

Figure C-5: Number of cases where it may have been better to construct a
clause rather than simply compute its weight.

We conclude that it is much faster to use DCC and ca1culate the weight of the

generated clause without constructing it using EC.11 even though it may be

occasionally (Jess than 0.5% on average) better to construct a clause in order to

determine its weight.

C.2.3 Computing the maximum literai depth

Many A TPs abandon a search path by discarding a clause that contains a literaI

whose maximum term depth is above a certain threshold. Our test results from

THEO [Newbom 2001] have shown that the theorems that THEO was able to prove

contained no clause within the proof with a literaI who se maximum literai depth is

greater than the maximum literai depth plus two of any literai from the input

clauses. In other words, we could have allowed the maximum literai depth for any

literai of any derived clause to be at most equal to the maximum literai depth plus

Appendix C 213

two of any literaI from the input clauses and still got aIl the proofs. Therefore, it

may be helpful to determine the maximum literaI depth of the literaIs In a

generated clause if the A TP makes use of this information.

Suppose one of the premises of an inference contains the literaI L such that

L' = L(J" is a literaI of the conclusion and (J" is the mgu. We want to compute the

maximum literaI depth of L' without constructing it. From the definition of the

maximum literaI depth (see Definition 2.14), we realize that we need to compare

the maximum term depth of every argument in L'. Since L' is not constructed,

we have to compare the maximum term depths of the arguments in L after we

compute their updated maximum term depths.

Notice that only the maximum term depths of the arguments in L that contain

variables that gained a substitution which is a function need to be updated in order

to maintain the correct value of maximum literaI depth. For example, if

L = P(x,f(y)) and (J" = {x --> a,y --> w}, then L' = L(J" = P(a,f(w)) and thus, the

maximum literaI depth remains the same, i.e. MaxDepth(L) = MaxDepth(L') = 2,

since none of the variables x and y have been bounded to terms that are functions.

On the other hand, for L = P(x, y) and (J" = {x --> f(w), y --> w}, L' = L(J" =

P(f(w), w) and MaxDepth(L') = 2 which is different from MaxDepth(L) = l,

since x is bounded to a term which is a function. Furthermore, if a variable occurs

more than once in the literaI, then we only need to compare the updated depth of

the deepest occurrence of such variable. For example, in L = P(f(f(x)),x,g(u))

the variable x occurs twice. The first occurrence, which is an argument of a

function, has a term depth greater than the second one and so we only need to

compare the term depth of the deepest term within the substitution of x with the

maximum literaI depth.

Appendix C 214

If 7r is a position string, then the length of the string 7r, denoted by Len(7r) , is

the number of integers separated by dots. For exampIe, if 7r = 2.1.1 then

Len(7r) = 3. We define Idmax (L,I) to be the function that retums the deepest

occurrence of a term 1 in a literaI L. Formally, if t EO L, then

tdmax (L,t) = Max{Len(7rI), ••• ,Len(7rk)}

where 7r1, ••• , 7rk are positions of 1 in L; i.e., for aIl 1 ~ i ~ k , LIJT, = t .

Example C.6:

L = P(x,g(f(y,z»,g(g(x»)

The updated maximum literaI depth of the literaI L' is computed by the formula

MaxDepth(L') = Max(MaxDepth(L),

Max {tdmax(L, v) + MaxDepth(CT(v»-I})
VEr L (<T) (Ee.I2)

We define Max{} = 0, so if no variable is bounded to a function term, then

r L (CT) = {} and

MaxDepth(L') = Max(MaxDepth(L),Max{})

= Max(MaxDepth(L), 0)

= MaxDepth(L)

The number of comparisons required to çompute MaxDepth(L') is 1 +lrL (CT)I-I,

because we need one comparison to obtain the maximum between MaxDepth(L)

and the result of Max {tdmax (L,v)+MaxDepth(CT(v))-I}) , and IrL (CT)I-l
VErL<<T)

Appendix C 215

compansons between the values in Max {tdmax (L, v) + MaxDepth(a(v» -l}).
vE1L(a)

Therefore, to compute MaxDepth(L') we have to perforrn Ir L (a)! comparisons.

Similar to computing the weight of a clause, there is an additional hidden cost

which is the updating of the maximum terrn depth of the substitution terrns. The

same issue discussed about variable dependency exists here. Therefore, when the

worst case occurs as described in the previous section, the upper bound on the

number of operations required to update the maximum depth of the substitution

terrns is O(!aI
2

) • The total number of operations required to compute

MaxDepth(L') becomes Ir L (a)! + O(laI2). Since we are dealing with the worst

case, then Ir L (a)1 = !a! because aIl the distinct variables in Lare bounded to

substitution terrns which are functions. Therefore, the total number of operations

required to compute EC.12 in the worst case can be written as

(EC.13)

T 0 compute the maximum terrn depth of any terrn within the non-constructed

conclusion C, we find the maximum of aIl the maximum literaI depths of the

literaIs in C, i.e., Max{MaxDepth(L')}. This implies that we need to perforrn
L'EC

Len(C)· O(la! + lal2) operations. However, the maximum terrn depth update of

the substitution terrns need only be done once, Therefore, the total number of

operations needed to compute the maximum terrn depth between all the

arguments of aIl the literaIs of the clause C is

O(Len(C) 'Ial + lal2) (EC.14)

AppendixC 216

We notice that the amount of operations in EC.14 is exactly the same as in EC.9

and hence, we use the same reasoning to determine the limit at which it would be

better to construct the clause rather than simpIy compute the maximum of

maximum literaI depths of its literaIs.

C.2.4 Computing other queries

There are a large number of interesting queries that A TPs perform to obtain

information useful for guiding the search through the selection of certain

strategies and also to determine candidate clauses for particuIar inference ruIes

especially subsumption. We can't go through them aIl. However, we mention a

couple of intuitive ideas that may help to anaIyze the performance of DCC over a

given query.

Terrn indexing [Sekar et al. 2001] andfeature vector indexing [SchuIz 2004] play

an important roIe in retrieving subsets of retained clauses that are candidates for

subsumption testing. Even though we will not deIve into such a broad subject

here, it is worth pointing out that indexing relies on the existence of the clauses in

sorne implemented data structure that is best suited for the ATP. The data

structure is usually a variation of a trie l
• Since DCC does not construct clauses,

term indexing is quite tricky because it has to be performed on substitution sets

rather than actual clauses. Feature vector indexing which performs indexing on a

clause characteristics, referred to as features, such as the number of negative and

positive literaIs, the number of occurrences of symbols in a clause, and the

maximum literaI depth, rather than the actual terms within the clause is easier to

implement than term indexing when using DCC. Most of the clause features can

be calculated efficiently using a similar reasoning as the ones provided in

previous sections: C.2.1, C.2.2, and C.2.3.

1 Trie cornes frorn the word retrieval. Pronounced like "try". It is a variant ofthe tree data structure
and is generally very efficient for retrieving information.

Appendix D

A list of the 100 theorems selected from aIl the domains of the TPTP v2.6.0

library that were used for the experiments whose results are discussed in Chapter

6. The percentage of time spent in clause construction, PTCC(t), the ratio of the

percentage of successful unifications, RPSU(t), the ratio of the number of unit

conflict tests, RUCT(t), and the inference rate speedup, IRS (t), are listed for each

of the theorems.

Theorem PTCC(t) [%] RPSU(t) RUCT(t) IRS(t)

ALG001-1 25.29 1.03 1.00 1.72
ALG003-1 0.59 1.04 1.36 0.97
ALG008-1 17.11 0.93 1.03 1.41
ALG010-1 36.64 0.83 1.00 2.10
ANA001-1 4.90 0.95 1.00 1.11
ANA002-4 45.06 0.98 0.00 3.11
ANA003-4 60.37 1.50 1.00 6.79
ANA004-2 7.07 0.45 1.00 1.00
ANA006-2 39.89 0.88 0.00 2.37
800001-1 10.49 0.43 0.98 2.49
800008-3 31.13 1.25 1.23 2.19
800014-2 49.63 0.59 1.00 3.36
800014-3 46.07 1.57 1.00 6.30
800019-1 9.60 0.42 1.00 2.48
800038-1 15.64 0.74 0.00 1.12
CAT015-3 55.35 0.69 0.00 5.49
CAT020-4 37.56 0.92 0.00 2.25
COL001-2 0.06 1.00 1.00 1.10
COL003-13 27.32 0.90 1.00 1.54
COL065-1 53.63 0.19 1.00 1.16
COL078-1 54.07 0.25 1.00 1.59
COM003-1 46.16 0.95 0.00 3.01
COM004-1 22.46 1.09 1.00 1.63
FLD003-1 65.57 1.01 1.00 8.66
FLD015-1 63.83 1.01 1.00 9.86
FLD042-3 29.62 2.06 1.00 2.38

Appendix D 218

Theorem PTCC(t) [%] RPSU(t) RUCT(t) IRS(t)

FLD043-5 38.67 1.21 1.00 2.34
FLD080-4 36.16 1.81 1.00 2.34

GEOO04-1 25.92 0.82 3.48 1.38

GEOO09-2 37.53 1.00 1.09 2.76

GE0074-2 29.29 1.09 1.01 3.03

GE0089-1 32.82 0.44 3.40 1.40
GE0160-1 36.02 1.20 1.00 2.33

GRA001-1 43.85 1.00 0.00 2.74
GRP196-1 4.87 0.90 0.00 1.15
GRP207-1 12.99 0.75 1.00 1.06
GRP252-1 40.62 0.81 0.00 2.68
GRP392-1 36.56 0.78 0.00 2.14
GRP506-1 14.05 0.73 1.00 1.06
HEN004-2 45.51 1.00 1.23 4.78
HWC003-2 46.15 1.00 0.00 3.23
HWV022-2 32.06 1.08 1.00 1.99
HWV029-2 32.40 1.08 1.00 1.98
HWV033-2 30.99 1.08 1.00 1.98
HWV037-1 38.39 0.65 1.00 2.13
KRS016-1 39.57 0.98 0.00 2.63
LAT003-1 55.19 0.24 1.00 2.43
LAT004-1 55.86 0.19 1.00 2.03
LAT037-1 51.52 0.64 1.00 3.25
LCL 161-1 49.33 0.28 1.00 1.29
LCL229-1 50.09 1.20 1.00 4.34
LCL248-1 50.59 1.22 1.00 4.36
LCL426-1 0.54 1.03 3.11 0.50
LCL427-1 30.65 1.41 1.00 2.18
LDA011-1 34.65 0.52 1.00 1.48
LDA014-1 36.06 0.87 1.00 2.08
MGT035-2 32.66 0.84 1.12 1.94
MGT063-1 22.48 1.09 1.47 1.71
MSC007 -1.008 38.86 1.00 0.00 2.36
MSC007-2.005 34.04 1.00 1.00 2.10
NLP034-1 47.08 0.98 0.00 2.91
NLP049-1 30.95 0.87 1.17 1.82
NLP199-1 37.81 1.00 0.00 2.17
NUM005-1 19.15 1.19 1.00 1.58
NUM006-1 26.50 1.02 1.00 1.78
NUM030-1 32.85 1.14 1.00 1.98
NUM043-1 32.71 1.14 1.00 1.97
NUM284-1.014 45.46 0.98 3.50 2.07
NUM288-1 44.94 0.93 0.00 2.81

Aooendix D 219 -

Theorem PTCC(t) [%1 RPSU(t) RUCT(t) IRS(t)

PLA023-1 35.97 1.17 1.00 2.25

PUZ015-1 8.03 0.85 1.00 1.08
PUZ018-2 41.68 1.08 1.00 2.59
PUZ034-1.004 40.59 1.37 1.00 2.82
RNG026-6 43.85 0.43 1.00 1.51

RNG028-9 43.47 0.49 1.00 1.58
ROB007-1 19.42 0.89 1.00 1.38

ROB007-4 56.98 0.19 1.00 1.30
ROB014-1 54.66 0.19 1.00 1.22
ROB024-1 21.28 0.85 1.00 1.38
SET002-6 31.28 1.09 1.00 1.85
SET012-3 25.57 1.02 1.00 1.74

SET040-6 31.41 1.10 1.00 1.96

SET550-6 31.62 1.10 1.00 1.94
SWC045-1 14.82 0.76 1.00 1.08

SWC197-1 14.47 0.76 1.00 1.08
SWC344-1 14.62 0.76 1.00 1.08
SWC345-1 15.38 0.79 1.00 1.10
SWC390-1 15.51 0.77 1.00 1.07
SWV014-1 20.84 1.01 0.00 1.02
SWV020-1 28.87 1.15 1.00 2.03
SYN440-1 22.83 0.96 0.00 1.50
SYN615-1 58.86 1.07 1.00 6.51
SYN758-1 44.79 0.99 0.00 2.67
SYN802-1 43.86 0.91 0.00 2.62
SYN810-1 44.14 0.85 0.00 2.55
SYN903-1 24.58 0.99 0.00 1.55
TOP001-1 39.67 0.97 1.61 2.47
TOP002-1 29.98 1.01 1.24 1.99
TOP014-1 40.00 1.01 0.00 2.35
TOP019-1 39.27 0.99 1.00 2.33

Appendix E

Figure E-l is a chart of the inference rates from CARINE 0.72 over the TPTP

v2.6.0 library. The specifications of the system to run CARINE are the same as

those described in Appendix H.

1,800,000

1,600.000

1,400,000

1,200.000 + ~ _._

Il ri. 1,000,000

:l

1 800.000

600,000

400.000

200,000,··········· .. ················

a 500 1000 1500 2000

(
....................... ~ , ..

• •

............... "".,..-""" ... " ,

2500

Theorem

3000 3500 4000 4500 5000

Figure E-l: Inference rate of CARINE over 4500 theorems

Awendix E 221

Figure E-2 shows the relation between the average branching factor and the

number of input clauses up to iteration 4 when tested on over 5003 theorems.

140.00

120.00

•
100.00s ...

J!!
illJ
86.28

C)
80.00 c :c ...

c
I!
.c
G> 60.00
C)

I!
G>
>
ct

40.00

20.00

0.00 ••••
0 100 200 300 400 500 600 700 800

Number of input clauses

Figure E-2: Number of input clauses vs. average branching factor up to
iteration 4.

The numbers inside the small boxes and the numbers directly below them

indicate, respectively, the number of theorems between two consecutive vertical

grid lines and their average branching factor. For example, there are 844 theorems

containing between 101 and 200 input clauses and the average of the average

bran ching factors for these 844 theorems is 35.31. The inference mIes used are

binary resolution and binary factoring. Notice the low branching factor for

theorems with over 450 input clauses. Those theorems belong mainly to the SYN

and PUZ categories. The ones with a high branching factor are mainly from the

NUM and SET categories. There are theorems with more than 800 input clauses,

ADDendix E 222

but we were not able to test them; because either the number of term and literai

symbols within the clauses was too large (greater than 500) for our A TP to

handle, or because our A TP was not able to reach iteration 4 within a reasonable

(less than one hour) amount of time due to the extensive amount of generated

clauses.

Appendix F

The graph in Figure F -1 shows that the time spent in clause construction is, in

general, more than the time spent in unification. Details on the setup of the

experiment are given below.

1000···

10

84% of theorems spent equal or more lime in dause constrcution than in
attempted unifications (successful and tJnsoccessful)

MSCOO7-LOO8 (13S.44) ,

17 20 30 40 50

theorem

60

_____.1
•

70 90 100

Figure F -1: Ratio of the time spent in clause construction to the time spent in
attempted unifications (successful and unsuccessful).

Setup: We implemented in CARINE the simplest unification algorithm which was

presented in [Robinson 1965]. This algorithm has an exponential time complexity.

We also implemented in CARINE a very efficient clause construction algorithm for

clauses whose terms are represented as flatterms, i.e. the terms are not shared.

Appendix F 224

Flatterms are commonly used for fast construction as indicated in [Riazanov

2003]. Clause construction does not include unification. It is, as defined in

Chapter 3, the gathering of literaIs and terms and putting them in a clause

structure. Clause construction is done after a successful unification. The

construction algorithm is linear in the weight of the clause.

We ran CARINE for 180 seconds on each theorem from the set listed in

Appendix D. We measured the time spent in unification (whether the unification

was successful or not) of literaIs or terms during the application of an inference

rule. Therefore, the time spent in unification when used in term indexing

techniques is not counted. For ex ample, when unification is used to retrieve aIl the

terms that unify with a query term, we do not measure the time spent in such

unification.

We measured the time spent in clause construction!. The time to calculate the

importance of the clause, i.e. weight, and the time to index the clause are not

counted as part of the time to construct the clause.

The graph given in Figure F -1 is the result of our experiment over the 100

theorems that we have selected from the TPTP v2.6.0 (see Appendix D). We

conclude that the time spent in unification is in generalless than the time spent in

clause construction.

1 The time that the compiler uses to copy symbols or their codes from one memory location to
another is not counted. The time to index a clause (i.e., term indexing) or calculate its weight is not
counted in the measurement. We just measured the time to traverse the clause.

Appendix F 225

Figure F -2 shows that the set Goals is generally small (4810 clauses on average).

Here the set Goals retained only distinct unit clauses.

50000

45000

40000

...
35000 ..

" ii
ë
~ 30000
3
" § 25000
1l c:

'" ..
'6 20000 "6
i
11
" 15000 z

10000

5000

~,~,

-(3E<:lr·l(~?~I,.

846% of theorems produced fess or equal to 4810 distinct unit clauses. ! ·1t .
"''''''''''''''A~ "., ,,,:",,,v'''f

l ; l
.. -!.... : .

: . :

i:· i'

.. l····

,'> ... "~ .
• • •

..... r'"
t :

: !
""t"~· i

: + : .. '

.. ~l t 1

l: ' : ~ : i
},"'~'c="c,,"", .. ,",.,.~''',?l~''''',·,'',·,''''''',·,'''=c,""'."".', ·" .. ,.="." .. '''''''''='''''''''''iiiiiiiI~.:.::.;;:=:=;;;:.·~:·::.:.:::::r;:;;;::::.:~

100 200 300 400

Theorem

Figure F-2: Number of distinct unit clauses retained in the set Goals in
CARINE. The experiment was over 766 theorems that CARINE proved.

Appendix G

G.l Comparison of different C/C++ compilers

According to experiments done by [Wilson 2004] the Intel's C/C++ compiler

version 8.0 can pro duce code for the Pentium III and Pentium 4 processors that is

faster than aIl the other popular compilers on the market. Figure G-l shows that

the Intel C/C++ 8.0 complier performed over three times faster than Open

Watcom 1.2 on average over the several benchmark tests done by Wilson on a

Microsoft Windows based machine with a Pentium class processor.

'0 .,

3.50

3.00

2.50

~ 2.00
II) ..
>
~ 1.50 ..
0:

1.00

0.50

0.00

Compilers

Figure G-l: Comparisons of relative speeds of popular C/C++ compilers.

Appendix H

CARINE proved 949 theorems out of 5473 CNF problems from the TPTP 2.6.0.

These are the results on the 949 theorems proved by CARINE. They were obtained

from running CARINE 0.72 over the whole set of 5473 CNF problems from TPTP

library version 2.6.0. The system used to obtain the results is a Pentium 4 (version

C which is a bit better than earlier versions A and B of the processor) machine

running at 2.6 GHz equipped with 1 GB of DDR RAM. The memory was set to

dual channel with 400 MHz bus. The operating system is Microsoft Windows

2000 but the ATP was running under Cygwin (a Linux emulation under Windows

2000). The compiler is gcc version 3.2. The time limit was 180 seconds. We set

the size of the unit clauses table, which is part of the Goals (see Chapter 4) set, to

32000 entries.

CPU Length Inference Numberof % unit

Theorem time of Rate Rating retained unit retained to
proof total

[secs]
[steps]

[clauses/sec] clauses
generated

ALG002-1 0.22 22 92,627 0 210 1.56
BOO011-1 0.14 3 1,400 0 32 37.65
BOO011-2 0.22 4 19,718 0 1419 33.22
BOO011-4 0.55 6 27,811 0 5244 34.67
BOO018-4 0.2 6 21,585 0 850 20.10
CAT001-3 1.3 8 157,977 0.17 5017 2.88
CAT001-4 0.59 8 129,300 0 2777 4.67
CAT002-3 0.22 7 10,782 0.08 693 33.09
CAT002-4 0.22 10 16,091 0.17 661 20.87
CAT003-3 0.22 6 11,591 0.08 800 34.74
CAT003-4 0.2 6 9,425 0 562 33.69
CAT004-3 4.06 13 51,606 0.25 6341 3.81
CAT004-4 0.2 10 16,190 0.17 599 20.58
CAT005-1 0.69 17 110,978 0 1574 2.47
CAT006-1 1.89 13 58,080 0 2382 2.65
CATOO6-3 0.75 15 147,079 0.17 3557 3.28
CAT006-4 0.31 15 101,229 0.17 1842 6.04
CAT007-1 0.19 7 64,326 0 636 8.44
CAT007-3 0.14 3 207 0 11 73.33
CAT008-1 40.45 13 111,194 0 3536 0.09
CAT010-4 0.36 13 118,628 0.17 1480 4.37
CAT011-1 0.16 5 1,394 0 70 50.36
CAT011-2 0.19 6 4,453 0 276 34.94

AppendixH 228

CPU
Length

Inference Numberof
"10 unit

Theorem time of Rate Rating retained unit retained to
proof total [secs] [steps] [clauses/sec] clauses generated

CAT011-3 0.94 22 137,030 0.25 2689 2.39
CAT011-4 0.44 33 111,702 0.17 1637 3.88
CAT012-1 0.16 5 1,388 0 69 51.11
CAT012-3 0.2 8 7,815 0.08 438 31.29
CAT012-4 0.19 8 3,458 0.17 215 37.99
CAT013-1 0.16 5 1,581 0 89 56.69
CAT013-3 0.19 7 8,258 0.08 441 31.39
CAT013-4 0.17 7 3,894 0 217 38.07
CAT014-1 0.16 5 1,650 0 92 55.76
CAT014-2 0.2 7 10,040 0 484 25.50
CAT014-3 1.14 22 139,179 0.25 3075 2.16
CAT014-4 0.44 25 123,286 0.17 1757 3.72
CAT016-3 0.2 5 7,845 0.08 455 31.86
CAT016-4 0.16 5 4,263 0 230 38.92
CAT017-3 0.23 5 6,826 0.08 455 31.86
CAT017-4 0.17 6 3,918 0 220 38.33
CAT018-1 0.91 17 114,127 0 1265 1.41
CAT019-1 0.12 2 17 0 10 100.00
CAT019-2 0.19 2 11 0 8 100.00
COL001-1 26.56 12 2,183 0 15727 27.18
COL007-1 0.22 1 0 0 3 0.00
COL008-1 0.55 3 553 0 168 59.15
COL009-1 0.53 6 658 0 97 31.29
COL010-1 0.55 3 158 0 44 61.97
COL012-1 0.55 1 0 0 3 0.00
COL013-1 0.56 1 0 0 4 0.00
COL014-1 0.2 1 0 0 3 0.00
COL015-1 0.55 3 556 0 169 59.09
COL016-1 0.56 1 0 0 3 0.00
COL017-1 0.56 3 361 0 112 61.54
COL018-1 0.55 1 0 0 4 0.00
COL019-1 0.58 5 819 0 134 30.73
COL020-1 0.67 10 9,572 0 690 12.26
COL021-1 0.56 3 288 0 90 62.94
COL022-1 0.56 3 316 0 97 61.78
COL023-1 0.66 6 11,073 0 579 8.84
COL024-1 0.56 3 288 0 90 62.94
COL025-1 0.55 3 202 0 55 59.14
COL026-1 0.55 6 704 0 124 36.36
COL027-1 0.67 6 13,464 0 587 7.10
COL029-1 0.55 1 0 0 3 0.00
COL030-1 0.56 7 2,152 0.09 370 32.06
COL031-1 0.55 4 1,169 0 473 76.91
COL035-1 0.64 9 5,955 0.09 1447 38.84
COL039-1 0.56 8 4,546 0.09 871 35.16
COL045-1 0.56 3 257 0 79 62.70
COL048-1 0.55 3 325 0 97 61.01
COL050-1 0.22 6 1,600 0 88 28.03
COL051-1 0.22 7 2,927 0 129 22.28
COL052-1 0.23 10 8,517 0 373 20.32
COL052-2 0.61 11 139,105 0 1912 2.45
COL053-1 0.62 3 10,476 0 4967 77.04
COL054-1 0.22 7 3,268 0 176 28.03
COL055-1 0.17 2 6 0 3 100.00
COL056-1 0.22 6 3,173 0.09 258 39.75
COL058-1 0.2 9 5,220 0 44 5.63
COL058-2 0.69 15 11,326 0 1683 25.32

Appendix H 229

CPU
Length

Inference Numberof
% unit

Theorem time
of

Rate Rating retained unit
retained to

proof total
[secs]

[steps]
[clauses/sec] clauses

generated
COL070-1 0.66 6 11,333 0 671 10.00
COL083-1 0.2 1 0 0 4 0.00
COL084-1 0.19 1 0 0 4 0.00
COL085-1 0.17 1 0 0 2 0.00
COL086-1 0.17 1 0 0 2 0.00
COM001-1 0.19 6 168 0 16 80.00
COM002-1 0.2 12 1,650 0 65 39.88
COM002-2 0.2 12 2,390 0 93 36.90
COM003-2 0.17 8 441 0 15 65.22
FLD005-3 1.69 10 266,434 0 4675 1.18
FLD006-1 0.34 7 53,888 0 3550 19.68
FLD006-3 0.19 3 42 0 9 100.00
FLD007-3 1.99 11 273,834 0.12 10571 2.29
FLD009-3 1.76 12 263,438 0 4907 1.20
FLD010-1 72.02 12 235,208 0 10580 0.06
FLD010-3 0.15 4 640 0 33 62.26
FLD013-3 11 18 292,228 0 18707 0.64
FLD014-3 1.72 13 262,640 0.12 4744 1.19
FLD015-3 1.69 12 266,821 0 4616 1.16
FLD016-3 10.91 9 294,668 0 18663 0.64
FLD017-3 10.92 5 294,206 0 18535 0.63
FlD018-3 0.5 7 222,332 0 1806 1.93
FLD019-3 0.53 6 215,494 0 1871 1.95
FLD020-3 1.69 7 270,220 0 4696 1.17
FLD021-1 0.38 6 77,763 0 6971 23.82
FLD021-3 1.62 7 277,404 0 4541 1.15
FLD022-3 10.84 12 296,490 0 18631 0.64
FLD023-1 0.36 8 82,069 0.12 6967 23.81
FLD023-3 1.62 7 277,606 0 4571 1.15
FLD024-3 1.64 7 274,161 0 4571 1.15
FLD025-3 10.89 23 295,237 0 18652 0.64
FLD027-3 1.87 14 252,631 0 5132 1.24
FLD028-3 11.05 10 295,370 0 18937 0.64
FLD029-3 16.28 22 286,444 0.12 20741 0.48
FlD030-1 0.28 4 23,511 0 2462 38.53
FLD030-3 4.55 9 291,989 0 9808 0.82
FLD030-4 10.73 5 299,413 0 18531 0.63
FLD031-3 0.55 8 207,684 0 1869 1.94
FLD031-5 0.53 10 219,077 0 1977 2.04
FLD032-3 0.58 7 199,022 0 1967 2.04
FLD033-3 1.67 8 276,687 0 4731 1.16
FLD034-1 0.39 6 75,762 0 6968 23.81
FLD034-3 1.62 7 277,401 0 4541 1.15
FLD035-3 10.88 13 297,298 0 18764 0.64
FLD036-3 10.89 13 297,071 0 18776 0.64
FLD037-3 1.64 8 281,435 0 4713 1.16
FLD038-3 1.73 8 267,829 0 4863 1.19
FLD039-1 0.28 2 86 0 13 100.00
FLD039-3 0.56 6 207,093 0 2067 2.14
FLD055-3 4.73 7 281,403 0 10011 0.84
FlD056-3 0.5 4 213,228 0 1724 1.86
FLD058-1 0.41 8 66,541 0 6757 25.06
FLD058-3 1.77 9 261,625 0 4852 1.19
FLD059-3 0.53 9 206,994 0 1731 1.87
FLD059-4 1.7 7 265,191 0 4639 1.17
FLD060-3 18.7 18 241,132 0.12 12451 0.28
FLD064-3 0.52 8 210,940 0 1727 1.87

Appendix H 230

CPU Length Inference Numberof
% unit

Theorem time of Rate Rating retained unit
retained to

proof total
[secs]

[steps]
[clauses/sec] clauses

generated
FLD065-3 0.53 6 206,962 0 1727 1.87
FLD067-1 0.36 7 74,475 0.12 6539 24.65
FLD067-4 4.64 6 286,401 0 9837 0.82
FLD068-4 4.69 11 283,407 0 9904 0.83
FLD069-3 1.76 13 260,142 0 4846 1.20
FLD070-3 1.67 10 269,048 0 4563 1.15
FLD070-4 4.78 7 278,053 0 9848 0.82
FLD071-1 0.36 3 74,561 0 6555 24.69
FLD071-3 1.66 6 270,788 0 4585 1.16
FLD071-4 4.72 4 281,555 0 9824 0.82
GEOO01-1 0.19 17 25,426 0.25 251 7.63
GEOO01-2 0.17 17 21,847 0.25 226 9.13
GEOO02-1 0.2 15 39,220 0.25 298 4.81
GEOO02-2 1.56 15 176,915 0.25 728 0.29
GEOO02-3 0.27 2 7 0.08 20 100.00
GEOO02-4 0.19 16 24,695 0 53 1.77
GEOO03-1 0.17 5 429 0.08 13 92.86
GEOO03-2 0.19 5 353 0.08 13 92.86
GEOO03-3 0.27 2 4 0.08 18 100.00
GEOO06-1 7.42 33 159,701 0.25 2952 0.26
GEOO06-3 26.34 10 85,948 0.17 27864 1.40
GE0011-2 0.19 4 6,074 0.08 72 16.29
GE0011-4 0.3 4 22,323 0.08 515 13.34
GE0011-5 0.28 4 23,989 0.08 482 12.43
GE0014-2 0.19 3 295 0 11 100.00
GE0015-2 0.19 5 689 0.08 26 66.67
GE0015-3 0.17 3 418 0.08 14 100.00
GE0016-2 0.19 3 337 0.08 14 100.00
GE0016-3 0.17 3 529 0.08 18 64.29
GE0017-2 0.17 7 1,241 0.08 36 37.89
GE0017-3 0.19 4 400 0.08 19 86.36
GE0018-2 0.19 5 1,089 0.08 34 37.36
GE0018-3 0.17 5 553 0.08 22 62.86
GE0019-2 0.17 3 371 0.08 13 100.00
GE0019-3 0.17 3 300 0.08 16 100.00
GE0020-2 0.19 7 1,111 0.08 36 37.89
GE0020-3 0.17 3 306 0.08 17 100.00
GE0021-2 0.19 5 1,089 0.08 34 37.36
GE0021-3 0.19 4 495 0.08 22 62.86
GE0022-2 0.17 7 1,759 0.08 92 52.57
GE0022-3 0.17 4 2,541 0.08 43 14.14
GE0024-2 0.19 5 358 0.08 15 93.75
GE0024-3 0.17 5 3,465 0 70 19.77
GE0035-2 0.17 2 6 0.08 9 100.00
GE0035-3 0.17 2 6 0.08 10 100.00
GE0036-2 0.17 14 .5,259 0.25 62 17.08
GE0038-2 0.19 4 416 0.08 15 88.24
GE0038-3 0.17 4 1,529 0.08 23 20.18
GE0039-2 0.19 10 9,221 0.17 422 28.77
GE0040-2 0.19 12 10,663 0.25 144 14.46
GE0041-2 8.17 42 139,064 0.42 3363 0.32
GE0041-3 0.31 5 5,794 0.25 574 41.53
GE0042-2 9.03 27 131,464 0.25 3587 0.32
GE0043-2 8.58 39 134,309 0.42 3581 0.33
GE0054-2 0.17 4 635 0.08 14 43.75
GE0054-3 0.17 2 6 0.08 12 100.00
GE0055-2 0.17 4 641 0.08 16 47.06

Appendix H 231

CPU Length Inference Numberof % unit

Theorem time of
Rate Rating retained unit

retained to
proof total

[secs]
[steps]

[clauses/sec] clauses generated
GE0055-3 0.17 4 2,682 0.08 45 17.58
GE0056-2 0.19 12 4,642 0.08 184 28.75
GE0056-3 0.17 6 2,847 0.08 69 22.55
GE0057-2 0.19 5 558 0.08 19 47.50
GE0057-3 0.19 2 5 0.08 14 100.00
GE0058-2 0.19 12 3,184 0.17 106 26.97
GE0058-3 0.2 8 11,685 0.08 190 11.27
GE0059-2 0.38 16 8,784 0.17 1323 43.74
GE0059-3 0.28 5 4,146 0.17 339 39.70
GE0064-2 0.17 14 9,012 0.17 104 16.43
GE0064-3 0.27 3 1,219 0.17 93 94.90
GE0065-2 0.17 14 9,488 0.25 121 18.03
GE0065-3 0.3 3 1,097 0.17 93 94.90
GE0066-2 0.2 14 7,395 0.25 99 16.20
GE0066-3 0.3 3 1,097 0.17 93 94.90
GE0079-1 0.16 3 13 0 4 100.00
GE0080-1 0.22 3 9 0.08 5 100.00
GE0081-1 0.23 7 665 0.08 31 60.78
GE0082-1 5.67 13 126,348 0.17 2257 1.13
GE0084-1 0.25 10 32,792 0.25 421 11.03
GE0085-1 0.22 7 16,382 0.08 159 14.34
GE0086-1 0.25 6 11,648 0 129 16.43
GE0087-1 0.22 8 14,718 0.08 119 14.99
GE0117-1 0.28 5 1,075 0.08 73 52.14
GE0118-1 0.3 5 1,047 0.08 76 52.05
GE0147-1 1.34 7 35,394 0.17 29671 63.18
GRP001-1 4.55 40 185,071 0 3017 0.36
GRP001-5 0.17 10 4,629 0 36 6.20
GRP003-1 0.17 7 1,747 0 17 9.50
GRP003-2 0.3 21 75,950 0 280 1.27
GRP004-1 0.17 7 2,182 0 22 9.40
GRP004-2 0.33 22 93,091 0 198 0.66
GRP005-1 0.17 4 441 0 7 100.00
GRP006-1 1.02 7 136,421 0 342 0.25
GRP007-1 0.16 3 588 0 18 58.06
GRP009-1 2.7 36 181,506 0 2657 0.55
GRP010-1 2.03 35 153,810 0 1851 0.60
GRP010-4 3.66 22 33,662 0 7366 6.22
GRP012-1 0.3 11 53,397 0 1284 9.65
GRP012-2 3.31 35 183,554 0 2499 0.41
GRP012-4 3.14 31 72,183 0 18234 8.31
GRP013-1 0.77 16 50,610 0 3509 10.41
GRP017-1 0.23 10 70,335 0 1400 10.66
GRP018-1 0.17 3 494 0 16 51.61
GRP019-1 0.17 3 500 0 17 53.13
GRP020-1 0.19 3 595 0 32 53.33
GRP021-1 0.2 3 560 0 31 52.54
GRP022-1 0.33 10 90,324 0 2772 10.91
GRP022-2 0.66 12 106,909 0 3418 5.38
GRP023-1 0.17 3 506 0 17 51.52
GRP023-2 0.22 4 2,332 0 195 40.71
GRP028-1 0.17 4 124 0 4 100.00
GRP028-2 0.19 4 25,337 0 46 1.65
GRP028-3 0.17 4 306 0 5 100.00
GRP028-4 0.16 4 238 0 4 100.00
GRP029-1 0.56 14 143,516 0 451 0.58
GRP029-2 0.48 14 132,767 0 340 0.55

Appendix H 232

CPU Length Inference Numberof 0/0 unit

Theorem time of Rate Rating retained unit retained to
proof total

[secs]
[steps]

[clauses/sec] clauses
generated

GRP030-1 0.62 21 133,118 0 604 0.75
GRP031-1 1.47 20 126,023 0 2167 1.19
GRP031-2 0.25 13 45,200 0 232 2.15
GRP032-3 0.16 4 28,194 0 245 8.87
GRP034-4 18 49 144,337 0 4058 0.16
GRP036-3 0.28 15 71,468 0 1067 6.66
GRP037-3 0.2 9 11,980 0 543 26.84
GRP038-3 0.2 4 31,865 0 494 12.25
GRP041-2 0.19 3 63 0 5 100.00
GRP042-2 0.17 5 253 0 15 100.00
GRP043-2 0.17 7 747 0 36 60.00
GRP044-2 0.19 6 1,479 0 45 42.06
GRP045-2 0.23 9 42,439 0 226 2.47
GRP046-2 0.17 12 1,824 0 41 25.63
GRP047-2 0.47 37 123,696 0 349 0.61
GRP048-2 0.73 60 151,053 0.25 928 0.85
GRP123-1.003 4.72 29 284,995 0 42 0.02
GRP123-3.003 5.62 29 270,148 0 68 0.03
GRP123-6.003 0.39 21 252,756 0 67 0.14
GRP123-7.003 0.39 21 252,756 0 72 0.15
GRP123-8.003 0.42 21 236,902 0 78 0.16
GRP123-9.003 0.39 21 252,756 0 67 0.14
GRP124-2.004 129.05 87 172,617 0 105 0.00
GRP125-1.003 18 21 398,941 0 39 0.00
GRP125-4.003 18.05 27 307,354 0 39 0.00
GRP126-2.004 99.28 56 322,706 0 85 0.00
GRP128-4.003 18.02 41 398,733 0 37 0.05
GRP130-4.003 18 33 412,751 0 31 0.10
GRP135-1.002 18 25 438,119 0 15 0.01
GRP135-2.002 18.02 25 425,357 0 17 0.01
GRP136-1 0.3 4 42,513 0 3640 28.77
GRP137-1 0.31 4 41,142 0 3640 28.77
GRP139-1 0.44 7 46,136 0 3739 18.57
GRP142-1 0.27 3 34,604 0 2629 28.44
GRP143-1 0.33 8 44,876 0 2687 18.32
GRP144-1 0.39 6 46,244 0 2931 16.40
GRP145-1 0.28 5 33,429 0 2641 28.51
GRP146-1 0.45 7 45,111 0 3739 18.57
GRP150-1 0.3 4 31,210 0 2644 28.54
GRP151-1 0.2 1 0 0 7 0.00
GRP152-1 0.83 9 38,790 0 5130 16.07
GRP153-1 0.28 4 33,364 0 2628 28.43
GRP154-1 0.3 5 36,847 0 3139 28.66
GRP155-1 0.3 5 36,847 0 3139 28.66
GRP156-1 0.41 9 43,398 0 3307 18.76
GRP157-1 0.3 5 36,847 0 3139 28.66
GRP158-1 0.3 5 36,847 0 3139 28.66
GRP160-1 0.22 1 0 0 17 0.00
GRP161-1 0.22 1 0 0 9 0.00
GRP162-1 1.08 10 37,355 0 6355 15.86
GRP182-1 0.27 4 34,604 0 2629 28.44
GRP182-2 0.3 4 39,110 0 3297 28.35
GRP182-3 0.27 4 34,600 0 2628 28.43
GRP182-4 0.28 4 41,886 0 3292 28.32
GRP188-1 0.83 9 38,790 0 5130 16.07
GRP188-2 1.88 9 27,320 0 8545 16.75
GRP189-1 0.27 4 34,600 0 2628 28.43

Appendix H 233

CPU
Length

Inference Numberof
% unit

Theorem time
of

Rate Rating retained unit
retained to

proof total
[secs]

[steps]
[clauses/sec] clauses

generated
GRP189-2 0.3 4 39,090 0 3291 28.31
GRP454-1 0.89 7 25,991 0 20782 90.21
GRP457-1 0.86 7 24,316 0 18562 89.16
GRP460-1 0.81 7 23,081 0 16346 87.87
GRP463-1 0.81 7 23,081 0 16346 87.87
GRP508-1 0.53 1 0 0 3 0.00
GRP512-1 0.53 1 0 0 3 0.00
GRP516-1 0.53 1 0 0 3 0.00
GRP520-1 0.55 1 0 0 3 0.00
GRP524-1 0.55 1 0 0 5 0.00
GRP528-1 0.53 1 0 0 5 0.00
GRP532-1 0.55 1 0 0 5 0.00
GRP536-1 0.55 1 0 0 6 0.00
GRP537-1 1.75 16 37,274 0 23358 35.91
GRP540-1 0.55 1 0 0 6 0.00
GRP544-1 0.55 1 0 0 6 0.00
GRP548-1 0.55 1 0 0 6 0.00
GRP552-1 0.53 1 0 0 6 0.00
GRP556-1 0.53 1 0 0 4 0.00
GRP560-1 0.55 1 0 0 4 0.00
GRP564-1 0.55 1 0 0 4 0.00
GRP568-1 0.55 1 0 0 6 0.00
GRP572-1 0.55 1 0 0 6 0.00
GRP576-1 0.53 1 0 0 6 0.00
GRP580-1 0.55 1 0 0 6 0.00
GRP584-1 0.56 1 0 0 6 0.00
GRP588-1 0.55 1 0 0 4 0.00
GRP592-1 0.55 1 0 0 4 0.00
GRP596-1 0.52 1 0 0 4 0.00
GRP600-1 0.55 1 0 0 4 0.00
GRP604-1 0.52 1 0 0 4 0.00
GRP608-1 0.55 1 0 0 4 0.00
GRP612-1 0.53 1 0 0 4 0.00
GRP616-1 0.55 1 0 0 4 0.00
HEN001-1 0.16 2 6 0 6 100.00
HEN001-3 0.22 2 9 0 8 100.00
HEN001-5 0.55 1 0 0 2 0.00
HEN002-1 0.16 2 6 0 6 100.00
HEN002-2 0.15 2 7 0 7 100.00
HE N002-3 0.22 2 9 0 8 100.00
HEN002-4 0.23 2 9 0 9 100.00
HEN002-5 0.53 1 0 0 3 0.00
HEN003-3 0.27 12 25,681 0 782 11.78
HEN003-4 0.28 12 43,146 0 1372 11.69
HEN004-4 3.66 16 47,499 0 20842 12.70
HEN006-4 1.16 10 .121,802 0 15758 11.19
HEN007-4 0.47 6 30,749 0 4767 33.53
HEN008-3 0.31 14 57,268 0 1368 10.15
HEN008-4 0.61 10 28,018 0 5083 30.18
HENOO8-6 0.25 10 7,464 0 755 45.05
HEN012-3 3.48 24 147,922 0 17210 3.37
HWV009-1 8.98 13 196,863 0.08 24159 1.67
HWV009-3 0.87 2 7 0.08 34 100.00
HWV009-4 0.86 2 8 0.08 35 100.00
HWV028-1 0.31 8 39,665 0.08 3936 33.27
HWV030-1 0.31 5 39,242 0.08 3902 33.13
HWV030-2 8.67 4 122,545 0.08 31698 3.00

Appendix H 234

CPU
Length

Inference Numberof
% unit

Theorem time of Rate Rating retained unit retained to
proof total

[secs]
[steps]

[clauses/sec] clauses generated
HWV032-1 0.31 5 39,242 0.08 3902 33.13
HWV032-2 8.72 4 121,842 0.08 31698 3.00
KRS001-1 18 11 353,498 0 12 0.00
KRS002-1 18 16 308,326 0 13 0.01
KRS003-1 18.02 11 258,699 0 13 0.00
KRS004-1 0.17 3 18 0 3 100.00
KRS012-1 0.17 8 218 0 6 50.00
KRS015-1 72 22 266,891 0 14 0.00
KRS017-1 0.15 5 153 0 4 66.67
LAT014-1 0.55 5 1,473 0 540 70.31
LAT033-1 0.22 5 3,236 0 180 27.03
LAT034-1 0.23 5 3,100 0 181 27.14
LAT039-1 0.23 4 7,739 0 569 32.93
LAT039-2 0.22 1 0 0 5 0.00
LAT090-1 14.45 16 4,261 0 18338 30.99
LCL006-1 1.09 17 6,602 0.25 2271 40.13
LCL007-1 0.55 3 13 0 4 100.00
LCL008-1 0.53 11 40 0 14 93.33
LCL009-1 0.88 29 5,768 0 2278 46.80
LCL010-1 0.75 19 8,484 0 1616 26.87
LCL011-1 0.61 25 3,572 0 703 35.24
LCL013-1 0.56 5 13 0 4 100.00
LCL016-1 17.03 145 32,939 0.38 11504 2.09
LCL018-1 144.83 147 2,720 0.5 27170 7.26
LCL022-1 0.59 31 3,822 0 555 27.07
LCL023-1 0.56 25 4,088 0 562 26.97
LCL027-1 0.56 7 284 0 135 91.84
LCL033-1 0.56 13 354 0 51 38.93
LCL035-1 0.55 13 711 0 83 27.39
LCL041-1 2.11 11 13,447 0 3279 15.16
LCL043-1 0.55 5 309 0 117 76.47
LCL044-1 0.55 13 325 0 124 76.54
LCL045-1 0.56 13 414 0.12 160 74.42
LCL046-1 0.53 5 68 0 28 100.00
LCL076-2 0.56 3 21 0 9 100.00
LCL077-2 12.58 11 11,901 0 12525 9.45
LCL079-1 1.14 7 34,018 0 2659 7.49
LCL080-1 1.3 25 9,721 0.38 2143 21.35
lCl081-1 0.67 23 2,245 0 1073 76.92
LCL082-1 0.56 17 929 0 167 40.34
lCL083-2 1.56 23 5,885 0.12 4866 55.30
LCL086-1 4.7 37 3,480 0 6080 37.89
LCl087-1 0.8 23 10,441 0 1136 14.20
lCL088-1 9.27 31 4,395 0 6529 16.17
LCL089-1 60.34 27 1,669 0.12 12976 12.94
LCL094-1 102.31 67 2,288 0.12 17432 7.98
lCL096-1 0.91 15 2,565 0 1901 81.90
LCl097-1 0.56 19 80 0 28 75.68
LCl098-1 0.56 19 61 0 21 75.00
LCL101-1 1.61 21 55,637 0 575 0.65
LCL 102-1 0.62 25 913 0 445 80.47
LCl103-1 20.53 55 17,440 0.75 11256 3.17
LCL104-1 0.62 19 7,365 0 535 12.86
LCL106-1 0.56 13 2,346 0 196 22.32
LCL107-1 2.66 51 6,610 0 2876 16.54
lCL 108-1 0.58 37 2,200 0 199 17.56
LCL111-1 0.86 11 10,915 0 1821 24.43

Appendix H 235

CPU
Length Inference Numberof

% unit

Theorem time
of

Rate Rating retained unit
retained to

proof total
[secs]

[steps]
[clauses/sec] clauses

generated
LCL117-1 0.55 13 35 0 11 84.62
LCL 118-1 0.55 17 1,276 0 155 27.43
LCL120-1 0.52 15 1,652 0 152 22.13
LCL123-1 7.47 149 5,809 0.25 12602 29.22
LCL126-1 0.55 9 164 0 69 85.19
LCL 128-1 26.66 117 550 0.38 6685 46.76
LCL 130-1 0.55 17 540 0.12 54 25.84
LCL 131-1 83.78 95 1,696 0.38 14840 11.84
LCL166-1 34.52 129 12,952 0.62 9217 2.07
LCL169-1 0.55 2 2 0 7 100.00
LCL169-3 0.61 6 7,369 0 3337 75.21
LCL170-1 0.56 2 2 0 7 100.00
LCL 170-3 0.56 6 8,023 0 3335 75.20
LCL 171-1 0.56 2 2 0 7 100.00
LCL172-1 0.56 2 2 0 7 100.00
LCL173-1 0.55 2 2 0 7 100.00
LCL 174-1 0.56 4 54 0 20 100.00
LCL175-1 0.53 2 2 0 7 100.00
LCL175-3 0.56 2 2 0 9 100.00
LCL 176-1 0.53 4 40 0 13 100.00
LCL177-1 0.55 6 60 0 23 100.00
LCL178-1 0.56 6 68 0 25 100.00
LCL181-2 0.17 2 6 0 3 100.00
LCL 185-1 0.56 4 38 0 13 100.00
LCL 186-1 0.53 4 40 0 13 100.00
LCL 187-1 0.55 6 73 0 27 100.00
LCL188-1 0.55 6 62 0 24 100.00
LCL189-1 0.58 6 71 0 28 100.00
LCL190-1 0.53 4 58 0 21 100.00
LCL190-3 0.62 5 7,273 0 3342 75.17
LCL 192-1 0.72 8 21,521 0 2487 21.25
LCL 193-1 0.8 6 17,670 0 2950 24.46
LCL 194-1 0.8 8 16,991 0 2524 21.91
LCL 197-1 0.7 8 15,779 0 1844 20.12
LCL199-1 0.56 12 1,021 0 367 66.37
LCL200-1 0.58 10 986 0 367 66.37
LCL202-1 1 24 42,576 0 10554 29.87
LCL203-1 1.23 24 38,433 0 11674 29.51
LCL205-1 1.3 24 36,545 0 12872 32.37
LCL206-1 1.24 24 37,903 0 12516 31.83
LCL226-1 0.55 4 53 0 19 100.00
LCL230-2 0.17 3 24 0 4 100.00
LCL236-1 0.55 6 73 0 27 100.00
LCL238-1 0.58 10 986 0 386 69.80
LCL257-1 0.59 23 4,559 0 633 25.63
LCL355-1 0.55 3 16 0 5 100.00
LCL356-1 0.63 13 10,683 0 611 12.76
LCL357-1 0.56 5 25 0 9 100.00
LCL358-1 0.7 17 18,557 0.12 1073 11.76
LCL359-1 0.62 29 10,855 0 611 12.76
LCL360-1 0.56 3 18 0 6 100.00
LCL361-1 0.56 11 196 0 80 80.00
LCL362-1 0.61 9 1,285 0 639 82.77
LCL366-1 0.59 13 8,280 0 766 20.89
LCL398-1 0.55 9 165 0 72 90.00
LCL414-1 0.53 5 221 0 89 83.18
LCL416-1 4.69 95 29,420 0.25 2985 2.17

Appendix H 236

CPU
Length Inference Numberof

% unit

Theorem time of Rate Rating retained unit retained to
proof total

[secs]
[steps]

[clauses/sec] clauses generated
LDA003-1 0.31 12 61,484 0 2212 22.05
LDA007-3 0.91 26 126,360 0 6761 5.99
MGT001-1 137.41 44 264,354 0 20 0.00
MGT002-1 74.36 20 382,804 0 13 0.00
MGT003-1 20.31 20 376,558 0 13 0.00
MGT004-1 49.78 35 269,115 0 16 0.00
MGT006-1 18.06 28 284,296 0 14 0.00
MGT007-1 171.09 35 243,151 0 18 0.00
MGT008-1 2.2 21 276,660 0 16 0.02
MGTOO9-1 2.73 21 279,956 0 16 0.02
MGT010-1 129.5 36 305,954 0 19 0.00
MGT013-1 77.94 28 335,253 0 35 0.00
MGT014-1 77.94 28 335,726 0 35 0.00
MGT021-1 74.47 20 230,987 0.08 137 0.00
MGT022-1 72.02 19 380,913 0 7 14.00
MGT022-2 72 19 380,161 0 7 14.00
MGT023-1 73.55 23 209,239 0.17 195 0.00
MGT032-2 0.22 17 500 0 8 21.62
MGT036-1 0.95 16 308,997 0 15 0.02
MGT036-2 18 16 359,237 0 23 0.00
MGT036-3 18 11 473,113 0 7 0.00
MGT041-2 0.19 10 632 0 8 22.22
MGT044-1 0.19 8 22,947 0.08 46 4.43
MGT045-1 0.19 5 1,000 0.08 27 40.30
MGT048-1 0.19 8 22,768 0.08 44 4.26
MGT049-1 0.17 4 1,124 0.08 30 37.04
MGT052-1 0.17 5 353 0 9 50.00
MGT056-1 72 64 189,675 0.08 790 0.01
MGT057-1 2.98 22 179,069 0.08 688 0.19
MGT058-1 100.8 48 205,897 0.25 456 0.00
MGT059-1 0.19 8 5,411 0.08 40 14.55
MGT061-1 90.36 90 140,524 0.17 7573 0.07
MGT065-1 100.5 61 121,149 0.25 2618 0.03
MSC001-1 0.3 18 81,713 0 178 1.25
MSC002-1 1.67 11 130,225 0 4877 2.80
MSC002-2 1.64 11 127,792 0 4877 2.80
MSC003-1 0.17 8 312 0 7 50.00
MSC004-1 0.23 23 4,483 0 10 8.70
MSC005-1 0.56 9 134 0 49 92.45
MSCOO6-1 0.86 47 307,209 0 28 0.07
NLP141-1 0.3 33 27,357 0.08 381 14.33
NLP143-1 0.3 33 27,993 0.08 405 14.43
NLP145-1 0.31 33 27,290 0.08 424 14.80
NLP147-1 0.3 33 27,993 0.08 405 14.43
NLP149-1 0.3 33 27,357 0.17 381 14.33
NLP204-1 0.3 12 7,377 0 193 27.89
NLP208-1 0.3 12 7,377 0.08 193 27.89
NUM001-1 0.23 7 32,096 0 752 10.34
NUM002-1 0.27 13 28,907 0 792 10.29
NUM003-1 0.31 7 38,581 0 1457 12.30
NUM004-1 0.27 13 28,622 0 776 10.19
NUM009-1 9.59 5 86,351 0.08 26263 3.28
NUM014-1 18 6 409,105 0 12 0.00
NUM015-1 0.17 13 2,353 0 21 18.58
NUM016-1 0.16 11 4,719 0 27 10.42
NUM016-2 0.17 14 1,312 0 10 19.23
NUM019-1 0.2 3 435 0 35 53.03

Appendix H 237

CPU Length Inference Numberof
% unit

Theorem time of Rate Rating retained unit
retained to

proof total
[secs] [steps]

[clauses/sec] clauses
generated

NUM020-1 0.2 4 840 0 57 40.43
NUM022-1 0.56 9 525 0 11 16.18
NUM023-1 0.55 2 2 0 9 100.00
NUM024-1 1.3 9 4,535 0 3606 62.43
NUM025-1 0.58 3 576 0 152 50.84
NUM025-2 0.58 3 576 0 152 50.84
NUM139-1 1 3 13 0.25 58 100.00
NUM228-1 1.01 3 10 0.17 57 100.00
PLA001-1 0.22 14 8,400 0.12 90 7.73
PLA002-1 0.17 10 2,935 0 12 11.01
PLA003-1 18 8 330,024 0 25 0.00
PLA006-1 0.47 6 110,847 0 3551 8.16
PLA017-1 1.26 10 92,193 0 3729 3.53
PLA020-1 0.38 4 113,997 0 3545 10.07
PLA022-1 1.64 14 90,468 0.25 4273 3.50
PLA022-2 1.72 14 86,293 0.25 4274 3.50
PUZ001-1 0.16 13 1,331 0 19 29.23
PUZ001-2 0.47 24 131,517 0.17 280 0.70
PUZ002-1 0.17 11 182 0 11 73.33
PUZ003-1 0.17 11 2,612 0 15 17.65
PUZ004-1 0.19 10 279 0 11 45.83
PUZ005-1 72.27 68 253,191 0 67 0.01
PUZ006-1 0.31 41 90,919 0.08 108 1.15
PUZ008-1 0.58 2 3 0 8 100.00
PUZ008-2 0.25 12 1,704 0 15 19.23
PUZ009-1 0.17 8 6,959 0 6 3.90
PUZ012-1 0.17 12 1,382 0 25 39.68
PUZ013-1 0.19 11 405 0 8 44.44
PUZ014-1 0.17 36 6,988 0 14 12.96
PUZ018-1 0.77 43 150,509 0.17 60 0.81
PUZ020-1 0.14 5 3,950 0 41 14.34
PUZ021-1 25.09 40 188,961 0 1817 0.05
PUZ022-1 72.02 9 127,370 0 59 0.00
PUZ023-1 0.17 13 4,718 0 8 100.00
PUZ024-1 18.02 7 297,501 0 35 0.01
PUZ026-1 0.78 52 257,373 0 74 0.38
PUZ027-1 0.22 32 46,395 0 30 7.46
PUZ029-1 18 25 363,808 0 14 0.00
PUZ032-1 0.53 10 1,177 0 22 15.38
PUZ033-1 3.61 25 438,978 0 12 0.00
PUZ035-1 2.2 85 316,402 0 14 2.62
PUZ035-2 4.97 85 330,780 0 14 1.52
PUZ035-5 0.2 10 1,190 0 4 66.67
PUZ035-6 0.56 10 1,102 0 4 66.67
PUZ047-1 0.17 8 1,229 0 13 32.50
RNG001-3 26.5 60 204,889 0.12 357 0.01
RNG002-1 7.53 26 177,232 0 5355 0.41
RNG003-1 7.64 24 176,038 0 5368 0.40
RNG010-2 0.58 1 0 0 12 0.00
RNG011-5 0.56 1 0 0 3 0.00
RNG038-2 0.19 6 28,137 0 424 14.14
RNG039-2 3.03 21 40,374 0.12 10446 8.67
RNG041-1 0.56 11 134,505 0.17 3104 5.42
SET001-1 0.16 4 56 0 6 100.00
SET002-1 0.17 15 23,741 0 12 4.27
SET003-1 0.17 5 100 0 7 53.85
SET004-1 0.16 5 106 0 7 53.85

Appendix H 238

CPU
Length Inference Numberof % unit

Theorem time of Rate Rating retained unit retainedto
proof total [secs)

[steps)
[clauses/sec) clauses

generated
SET005-1 9.84 53 221,466 0 174 0.15
SET006-1 0.16 5 131 0 7 50.00
SET008-1 0.16 7 500 0 26 78.79
SET009-1 0.16 12 1,206 0 18 51.43
SET011-1 4.38 34 200,193 0 194 0.16
SET014-2 10.62 19 185,731 0 3277 0.17
SET043-5 0.17 3 41 0 2 66.67
SET044-5 0.17 7 671 0 5 33.33
SET045-5 0.17 4 106 0 8 66.67
SET046-5 0.16 14 9,213 0 6 3.47
SET054-6 0.81 2 1 0 32 100.00
SET054-7 0.84 2 1 0 32 100.00
SET060-6 4.74 4 103,497 0.08 29104 5.97
SET060-7 4.75 4 103,194 0.08 29093 5.98
SET062-7 0.83 2 4 0.17 37 100.00
SET064-7 0.8 3 23 0.17 45 100.00
SET078-7 0.84 2 7 0.08 46 100.00
SET080-7 0.83 2 8 0.08 48 100.00
SET196-6 2.63 4 80,654 0.25 29806 14.21
SET231-6 0.91 3 8 0.17 45 100.00
SET296-6 0.86 1 0 0.08 17 0.00
SET786-1 0.17 14 8,035 0 6 4.14
SWV001-1 0.94 22 310,563 0 10 0.03
SWV002-1 72.38 12 89,341 0.08 17327 0.29
SWV003-1 0.19 3 2,484 0 129 38.28
SWV005-1 0.95 4 89,891 0.08 5412 8.28
SWV006-1 0.19 5 2,889 0.08 157 41.42
SWV007-1 1.16 11 91,141 0.08 6508 7.95
SWV008-1 74.52 18 73,406 0.17 15685 0.31
SWV009-1 0.17 13 35,788 0 11 1.44
SWV011-1 0.2 2 5 0 3 100.00
SYN003-1.006 0.17 16 735 0 19 32.76
SYN004-1.007 0.27 70 113,837 0 14 0.16
SYN005-1.010 0.17 10 1,400 0 11 100.00
SYN006-1 0.56 6 50 0 7 87.50
SYN008-1 0.17 3 29 0 4 100.00
SYN009-1 0.17 6 29 0 7 100.00
SYN009-2 0.17 9 406 0 8 25.81
SYN009-3 0.19 15 868 0 10 17.54
SYN009-4 0.19 21 14,395 0 9 3.03
SYN011-1 0.19 10 1,084 0 5 45.45
SYN014-2 0.17 4 353 0 14 60.87
SYN015-2 34.13 45 278,287 0 37 0.00
SYN028-1 0.17 8 259 0 6 26.09
SYN029-1 0.16 7 181 0 4 80.00
SYN030-1 0.17 14 1,853 0 6 17.14
SYN031-1 0.17 5 206 0 4 40.00
SYN032-1 0.17 21 3,847 0 5 11.11
SYN033-1 0.17 4 129 0 4 100.00
SYN034-1 0.17 14 9,388 0 6 3.47
SYN035-1 0.17 8 1,924 0 3 4.62
SYN040-1 0.17 2 6 0 3 100.00
SYN041-1 0.17 1 0 0 3 0.00
SYN044-1 0.16 10 913 0 4 36.36
SYN045-1 0.16 4 44 0 4 80.00
SYN046-1 0.17 2 6 0 3 100.00
SYN047-1 0.16 6 175 0 5 62.50

Appendix H 239

CPU Length Inference Numberof
% unit

Theorem time of Rate Rating retained unit retained to
proof total

[secs] [steps] [clauses/sec] clauses generated
SYN048-1 0.16 1 0 0 2 0.00
SYN049-1 0.17 2 6 0 3 100.00
SYN050-1 0.17 3 24 0 4 100.00
SYN051-1 0.16 5 200 0 3 60.00
SYN052-1 0.17 5 294 0 3 60.00
SYN053-1 0.17 6 612 0 4 14.29
SYN054-1 0.17 7 1,729 0 8 17.39
SYN055-1 0.17 13 724 0 11 26.19
SYN057-1 0.17 8 229 0 9 64.29
SYN058-1 0.19 5 53 0 7 100.00
SYN060-1 0.17 4 29 0 4 100.00
SYN061-1 0.17 4 35 0 5 100.00
SYN062-1 0.17 6 59 0 6 100.00
SYN063-1 0.17 4 112 0 4 100.00
SYN063-2 0.17 2 6 0 3 100.00
SYN064-1 0.16 1 0 0 2 0.00
SYN065-1 0.19 3 74 0 4 100.00
SYN066-1 0.17 4 94 0 7 77.78
SYN068-1 0.17 5 188 0 7 46.67
SYN069-1 0.19 19 46,158 0 11 0.55
SYN070-1 18.03 24 280,046 0 35 0.00
SYN071-1 0.28 38 133,214 0 14 0.22
SYN073-1 0.16 2 19 0 4 100.00
SYN074-1 0.59 19 164,561 0.08 203 0.30
SYN075-1 0.58 19 169,960 0.08 206 0.31
SYN079-1 0.16 3 44 0 4 100.00
SYN080-1 0.19 2 11 0 5 100.00
SYN081-1 0.16 6 744 0 4 17.39
SYN082-1 0.17 21 15,759 0 3 6.25
SYN083-1 0.56 3 164 0 43 58.11
SYNOB4-2 72 46 244,093 0 12 0.00
SYN085-1.010 0.19 11 111 0 12 100.00
SYN088-1.010 0.2 11 155 0 22 100.00
SYN089-1.002 0.17 3 71 0 6 100.00
SYN090-1.008 62.42 170 239,112 0 29 0.00
SYN095-1.002 0.17 3 71 0 6 100.00
SYN096-1.008 63.62 170 234,602 0 29 0.00
SYN099-1.003 0.19 7 7,000 0 23 7.90
SYN100-1.005 0.3 44 62,727 0 33 0.72
SYN101-1.002.002 0.19 7 3,421 0 23 14.47
SYN103-1 0.22 1 0 0 7 0.00
SYN104-1 0.22 1 0 0 6 0.00
SYN105-1 0.3 2 3 0 40 100.00
SYN106-1 0.3 2 3 0 40 100.00
SYN107-1 0.31 3 13 0 42 100.00
SYN10B-1 0.31 3 13 0 42 100.00
SYN109-1 0.33 9 19,994 0 243 10.57
SYN110-1 0.34 11 21,476 0 252 10.04
SYN111-1 0.31 9 21,268 0 243 10.58
SYN112-1 0.3 3 17 0 43 100.00
SYN113-1 0.34 8 19,441 0 245 10.62
SYN114-1 0.31 4 1,335 0 94 62.25
SYN115-1 0.42 13 40,460 0 341 5.86
SYN116-1 0.59 10 74,895 0 382 2.19
SYN117-1 0.58 12 76,138 0 381 2.19
SYN118-1 0.23 1 0 0 8 0.00
SYN119-1 0.2 1 0 0 9 0.00

Appendix H 240

CPU Length
Inference Numberof % unit

Theorem time of Rate Rating retained unit
retained to

proof total
[secs]

[steps]
[clauses/sec] clauses

generated
SYN120-1 0.3 2 3 0 40 100.00
SYN121-1 0.34 10 20,979 0 248 10.03
SYN122-1 0.34 10 20,979 0 248 10.03
SYN123-1 0.34 7 19,394 0 243 10.58
SYN124-1 0.31 6 2,739 0 136 33.17
SYN125-1 0.36 6 18,333 0 245 10.65
SYN126-1 0.31 5 2,445 0 127 35.98
SYN127-1 0.3 5 2,527 0 127 35.98
SYN128-1 77.22 15 145,599 0 702 0.02
SYN129-1 77.22 15 145,363 0 702 0.02
SYN130-1 0.22 1 0 0 2 0.00
SYN131-1 0.22 1 0 0 2 0.00
SYN132-1 0.22 1 0 0 5 0.00
SYN133-1 0.22 1 0 0 2 0.00
SYN134-1 0.31 4 2,687 0 134 33.09
SYN135-1 0.3 4 1,370 0 91 61.49
SYN136-1 0.31 4 1,323 0 91 61.49
SYN137-1 1.5 22 122,523 0 468 0.75
SYN138-1 76.77 16 145,959 0 652 0.02
SYN139-1 77.84 35 145,386 0 731 0.02
SYN140-1 77.84 34 145,635 0 732 0.02
SYN141-1 0.41 14 44,580 0 367 5.84
SYN142-1 77.89 38 145,411 0 744 0.02
SYN143-1 77.89 38 144,964 0 744 0.02
SYN144-1 0.56 12 71,000 0 379 2.46
SYN145-1 0.22 1 0 0 14 0.00
SYN146-1 0.31 2 3 0 40 100.00
SYN147-1 0.3 2 3 0 40 100.00
SYN148-1 0.36 8 23,533 0 278 9.80
SYN149-1 0.3 2 3 0 40 100.00
SYN150-1 0.31 3 94 0 46 100.00
SYN151-1 0.31 3 94 0 46 100.00
SYN152-1 0.31 3 94 0 46 100.00
SYN153-1 0.3 4 1,777 0 99 45.62
SYN154-1 0.31 4 1,710 0 96 44.86
SYN155-1 0.41 18 44,388 0 365 5.82
SYN156-1 0.94 29 111,635 0 426 1.15
SYN157-1 0.34 11 19,612 0 250 10.71
SYN158-1 0.33 11 20,112 0 245 10.56
SYN159-1 77.2 58 145,768 0 704 0.02
SYN160-1 0.36 9 18,444 0 247 10.66
SYN161-1 0.33 11 20,106 0 246 10.63
SYN162-1 0.34 11 19,515 0 246 10.63
SYN163-1 77.22 45 145,875 0 705 0.02
SYN164-1 0.22 1 0 0 3 0.00
SYN165-1 0.31 2 3 0 40 100.00
SYN166-1 0.31 8 3,758 0 162 29.72
SYN167-1 0.3 2 3 0 40 100.00
SYN168-1 0.31 4 1,335 0 92 61.74
SYN169-1 0.3 4 1,377 0 91 61.49
SYN170-1 0.31 5 2,000 0 108 38.99
SYN171-1 76.47 31 145,692 0 637 0.02
SYN172-1 0.22 1 0 0 4 0.00
SYN173-1 0.3 3 2,777 0 134 33.09
SYN174-1 0.31 3 2,687 0 134 33.09
SYN175-1 0.3 3 113 0 48 100.00
SYN176-1 0.34 10 19,482 0 243 10.55

Appendix H 241

CPU Length Inference Numberof % unit

Theorem time of
Rate Rating retained unit

retained to
proof total [secs]

[steps]
[clauses/sec] clauses

generated
SYN177-1 0.31 6 4,474 0 183 29.80
SYN178-1 72.83 13 145,636 0 606 0.02
SYN179-1 0.42 17 40,495 0 345 5.93
SYN180-1 72.83 20 145,744 0 607 0.02
SYN181-1 0.92 14 114,164 0 431 1.16
SYN182-1 0.31 6 2,458 0 130 36.52
SYN183-1 0.3 6 2,540 0 130 36.52
SYN184-1 0.23 1 0 0 11 0.00
SYN185-1 0.2 1 0 0 10 0.00
SYN186-1 0.34 5 19,382 0 242 10.54
SYN187-1 0.33 5 19,970 0 242 10.54
SYN188-1 0.34 5 19,382 0 242 10.54
SYN189-1 0.36 7 27,019 0 283 8.35
SYN190-1 1.38 26 121,251 0 450 0.79
SYN191-1 0.42 9 45,476 0 366 5.66
SYN192-1 0.33 12 19,970 0 242 10.54
SYN193-1 0.33 12 19,970 0 242 10.54
SYN194-1 0.41 14 44,378 0 365 5.82
SYN195-1 0.56 13 79,077 0 386 2.21
SYN196-1 0.31 4 2,697 0 135 33.09
SYN197-1 0.3 2 3 0 40 100.00
SYN198-1 0.33 4 2,533 0 135 33.09
SYN199-1 0.31 4 2,697 0 135 33.09
SYN200-1 0.31 4 2,697 0 135 33.09
SYN201-1 0.31 6 2,687 0 134 33.09
SYN202-1 72.81 14 146,169 0 600 0.02
SYN203-1 0.33 11 19,970 0 242 10.54
SYN204-1 77.86 22 145,290 0 730 0.02
SYN205-1 77.84 22 145,836 0 730 0.02
SYN206-1 0.59 10 79,319 0 396 2.15
SYN207-1 0.77 19 102,794 0 406 1.32
SYN208-1 0.34 11 19,382 0 242 10.54
SYN209-1 0.3 7 2,777 0 134 33.09
SYN210-1 0.31 7 2,687 0 134 33.09
SYN211-1 0.31 7 2,687 0 134 33.09
SYN212-1 0.31 7 2,687 0 134 33.09
SYN213-1 0.34 17 22,926 0 258 9.64
SYN214-1 0.36 17 21,650 0 258 9.64
SYN215-1 0.34 17 22,924 0 258 9.64
SYN216-1 0.34 5 19,388 0 242 10.54
SYN217-1 0.33 7 19,982 0 243 10.58
SYN218-1 0.34 5 19,426 0 243 10.57
SYN219-1 0.34 10 20,979 0 248 10.03
SYN220-1 0.31 6 2,735 0 136 33.17
SYN221-1 0.31 6 2,748 0 137 33.17
SYN222-1 0.31 6 2,745 0 137 33.17
SYN223-1 0.3 6 2,827 0 136 33.17
SYN224-1 0.31 6 2,739 0 136 33.17
SYN225-1 0.33 6 20,000 0 244 10.60
SYN226-1 0.31 6 2,735 0 136 33.17
SYN227-1 0.34 6 19,406 0 244 10.61
SYN228-1 0.31 5 2,687 0 134 33.09
SYN229-1 0.3 6 2,840 0 137 33.17
SYN230-1 0.31 6 2,748 0 137 33.17
SYN231-1 0.31 6 2,745 0 137 33.17
SYN232-1 0.31 6 2,745 0 137 33.17
SYN233-1 0.31 6 2,735 0 136 33.17

Appendix H 242

CPU Length Inference Numberof
% unit

Theorem time of Rate Rating retained unit retained to
proof total [secs]

[steps]
[clauses/sec] clauses

.generated
SYN234-1 0.34 6 19,418 0 245 10.65
SYN235-1 0.33 6 20,009 0 246 10.69
SYN236-1 0.33 6 2,570 0 136 33.17
SYN237-1 0.3 2 3 0 40 100.00
SYN238-1 0.3 2 3 0 40 100.00
SYN239-1 0.31 2 3 0 40 100.00
SYN240-1 0.3 2 3 0 40 100.00
SYN241-1 0.3 2 3 0 40 100.00
SYN242-1 0.31 2 3 0 40 100.00
SYN243-1 0.31 3 2,729 0 136 33.25
SYN244-1 0.31 2 3 0 40 100.00
SYN245-1 0.31 2 3 0 40 100.00
SYN246-1 0.31 3 2,716 0 136 33.17
SYN247-1 0.3 2 3 0 40 100.00
SYN248-1 0.36 6 18,497 0 244 10.52
SYN249-1 0.34 6 19,626 0 245 10.51
SYN250-1 0.94 14 111,898 0 432 1.16
SYN251-1 0.3 3 2,823 0 136 33.25
SYN252-1 77.86 35 145,363 0 733 0.02
SYN253-1 77.84 34 145,850 0 732 0.02
SYN254-1 77.83 29 145,476 0 731 0.02
SYN255-1 0.3 3 97 0 46 100.00
SYN256-1 0.3 3 100 0 46 100.00
SYN257-1 0.22 1 0 0 24 0.00
SYN258-1 0.33 2 3 0 40 100.00
SYN259-1 0.3 2 3 0 40 100.00
SYN260-1 0.31 2 3 0 40 100.00
SYN261-1 0.3 2 3 0 40 100.00
SYN262-1 0.31 5 4,084 0 166 29.02
SYN263-1 0.31 6 3,771 0 162 29.62
SYN264-1 0.34 6 19,500 0 244 10.57
SYN265-1 0.3 4 1,377 0 91 61.49
SYN266-1 0.36 12 23,056 0 279 9.90
SYN267-1 0.3 5 2,067 0 108 38.99
SYN268-1 0.3 5 2,063 0 108 38.99
SYN269-1 76.45 31 145,675 0 632 0.02
SYN270-1 0.42 11 45,469 0 367 5.68
SYN271-1 76.47 31 145,802 0 637 0.02
SYN272-1 0.91 19 113,262 0 427 1.15
SYN273-1 76.8 11 145,183 0 669 0.02
SYN274-1 0.2 1 0 0 4 0.00
SYN275-1 0.22 1 0 0 4 0.00
SYN276-1 0.23 1 0 0 26 0.00
SYN277-1 0.3 2 3 0 40 100.00
SYN278-1 0.3 2 3 0 40 100.00
SYN279-1 0.3 3 2,783 0 134 33.09
SYN280-1 0.31 2 3 0 40 100.00
SYN281-1 0.3 2 3 0 40 100.00
SYN282-1 0.31 2 3 0 40 100.00
SYN283-1 0.3 3 2,777 0 134 33.09
SYN284-1 0.31 3 2,687 0 134 33.09
SYN285-1 0.33 6 19,991 0 244 10.60
SYN286-1 0.3 3 2,787 0 135 33.09
SYN287-1 0.3 2 3 0 40 100.00
SYN288-1 0.31 2 3 0 40 100.00
SYN289-1 0.3 3 2,777 0 134 33.09
SYN290-1 0.31 2 3 0 40 100.00

Appendix H 243

CPU
Length

Inference Numberof
% unit

Theorem time of Rate Rating retained unit retained to
proof total

[secs] [steps] [clauses/sec] clauses
generated

SYN291-1 0.3 2 3 0 40 100.00
SYN292-1 0.31 2 3 0 40 100.00
SYN293-1 0.34 5 19,453 0 245 10.62
SYN294-1 0.34 5 19,465 0 246 10.65
SYN295-1 0.3 2 3 0 40 100.00
SYN296-1 0.31 3 2,687 0 134 33.09
SYN297-1 0.3 2 3 0 40 100.00
SYN298-1 0.59 10 79,410 0 396 2.14
SYN299-1 0.58 10 80,731 0 396 2.14
SYN300-1 0.59 10 79,319 0 396 2.15
SYN301-1 0.31 7 2,687 0 134 33.09
SYN310-1 0.28 19 25,182 0 2157 30.92
SYN312-1 0.86 21 107,037 0 17871 19.45
SYN315-1 0.17 5 200 0 3 60.00
SYN318-1 0.19 3 21 0 4 100.00
SYN319-1 0.17 5 147 0 6 60.00
SYN321-1 0.17 5 200 0 3 60.00
SYN323-1 0.17 5 294 0 4 36.36
SYN325-1 0.17 3 35 0 3 100.00
SYN326-1 0.17 4 35 0 5 100.00
SYN327-1 0.17 6 800 0 6 24.00
SYN328-1 0.33 57 171,045 0 10 2.97
SYN331-1 0.17 5 576 0 6 15.38
SYN333-1 0.17 6 100 0 3 60.00
SYN336-1 0.17 1 0 0 5 0.00
SYN338-1 0.17 1 0 0 3 0.00
SYN339-1 0.17 1 0 0 2 0.00
SYN340-1 0.19 1 0 0 2 0.00
SYN341-1 0.17 1 0 0 2 0.00
SYN343-1 0.17 3 53 0 2 66.67
SYN346-1 0.17 2 6 0 3 100.00
SYN350-1 0.17 24 13,294 0 6 4.32
SYN354-1 0.16 9 444 0 5 71.43
SYN554-1 0.22 16 47,636 0 38 0.42
SYN555-1 0.27 5 263 0 14 43.75
SYN558-1 18.11 18 274,247 0 162 0.01
SYN563-1 0.25 14 25,924 0 425 9.01
SYN566-1 0.28 15 70,525 0 98 0.68
SYN570-1 0.19 12 3,989 0 47 10.00
SYN574-1 72.17 25 246,273 0 96 0.00
SYN575-1 72.17 25 247,790 0 96 0.00
SYN578-1 11.73 57 142,362 0 542 0.04
SYN579-1 11.78 57 141,758 0 542 0.04
SYN580-1 18.03 13 231,897 0 108 0.00
SYN581-1 0.27 9 40,052 0 1038 11.25
SYN582-1 0.28 11 38,621 0 1038 11.25
SYN583-1 0.3 11 56,687 0 1683 11.45
SYN585-1 0.27 6 50,919 0 490 3.66
SYN590-1 0.23 13 34,965 0 259 5.38
SYN591-1 12.25 21 237,145 0 284 0.01
SYN592-1 12.12 17 239,689 0 284 0.01
SYN618-1 0.22 14 6,818 0 98 13.46
SYN621-1 0.8 6 19,945 0 8970 56.64
SYN624-1 2.11 7 23,464 0 24111 48.88
SYN626-1 0.69 8 4,107 0 351 18.78
SYN627-1 18.61 15 20,053 0 4446 1.23
SYN631-1 74.94 13 213,605 0.5 6224 0.04

Appendix H 244

CPU
Length Inference Numberof

% unit

Theorem lime of Rate Rating retained unit retained to
proof total [secs)

[steps]
[clauses/sec] clauses generated

SYN653-1 9.73 18 73,312 0.25 385 0.10
SYN654-1 8.77 15 75,678 0 350 0.10
SYN655-1 8.8 15 75,420 0 350 0.10
SYN721-1 0.14 4 64 0 5 100.00
SYN724-1 0.14 11 2,036 0 5 12.50
SYN726-1 0.78 46 294,846 0 29 0.07
SYN727-1 0.17 2 6 0 3 100.00
SYN728-1 0.31 10 303 0 6 33.33
SYN729-1 0.59 6 2,273 0 826 62.48
SYN731-1 0.17 1 0 0 2 0.00
TOP001-2 42.08 16 269,821 0.12 22 0.00
TOP002-2 0.17 2 6 0 3 100.00
TOP004-1 0.3 1 0 0 3 0.00
TOP004-2 0.17 1 0 0 3 0.00

Remark: Notice that the number of retained unit clauses is much less than the

number of generated unit clauses. This is an indication that it may not be

necessary to have extremely large tables to store unit clauses. In fact, we found

that most of the time, the size of a table of 50,000 entries is enough to store

distinct unit clauses that conform to the limits (length of a clause, max term depth,

etc.) assigned by the user.

Bibliography

[Albert et al. 1993]

Albert, Luc, and Casas, Rafael, and Fages, Francois, "Average-case

analysis of unification algorithms", Theoretical Computer Science, vol. 113,

(pp. 3-34), 1993.

[Amble 1987]

Amble, Tore, Logic Programming and Knowledge Engineering, Great

Britain: Addison-Wesley, 1987.

[Andrews 1968]

Andrews, Peter B., "Resolution with Merging", Journal of the ACM

(JACM) vol. 15, issue 3, (pp. 367-381), July 1968.

[Anderson & Bledsoe 1970]

Anderson, Robert and Bledsoe, W. W., "A Linear Format for Resolution

with merging and a New Technique for Establishing Completeness",

Journal of the Association for Computing Machinery (JA CM) vol. 17, issue

3, (pp. 525-534), July 1970.

[Astrachan 1992]

Astrachan, O.L., Investigations in Model Elimination Theorem Proving,

Ph.D. thesis, Duke University, 1992.

[Astrachan & Loveland 1991]

Astrachan, O.L. and Loveland, D.W., "METEORs: High Performance

Theorem Provers using Model Elimination", A Festschrift for W W

Bledsoe, editor: R. Boyer, Kluwer Academic Publishers, 1991.

Bibliography 246

[A venhaus et al. 1995]

Avenhaus, J., and Denzinger, J., and Fuchs, M., "DISCOUNT: a System

for Distributed Equational Deduction", Proceedings of the 6th International

Conference on Rewriting Techniques and Applications (RTA 95), (Lecture

Notes in Computer Science vol. 914), (pp. 397-402), Kaiserslautern, 1995.

[Bach 1986]

Bach, Maurice J., The Design of the Unix Operating System, New Jersey:

Prentice-Hall Inc., 1986.

[Baumgartner & Furbach 1994]

Baumgartner P., and Furbach, U., "PROTEIN: A PROver aith a Theory

Extension Interface", in Proceedings of the 12'h International Conference

on Automated Deduction (CADE-12), editor: A. Bundy, LNAI vol. 812,

(pp. 769-773), Springer, Berlin, 1994.

[Benanav 1990]

Benanav, D. "Simultaneous Paramodulation", CADE-IO, IOlh International

Conference on Automated Deduction (Lecture Notes in Artificial

Intelligence, vol. 449), editor: M. Stickel, (pp. 442-455), Springer-Verlag,

1990.

[Bibel 1987]

Bibel, Wolfgang., Automated Theorem Proving (2nd Edition), Vieweg,

1987.

[Borowski & Borwein 1991]

Borowski, E. J. and Borwein, J. M., The HarperCollins Dictionary of

Mathematics, HarperPerennial (A division of HarperCollins Publishers),

1991.

Bibliography 247

[Boyer & Moore 1998]

Boyer, Robert S. and Moore, Strother J., A Computational Logic

Handbook (2nd Edition), Great Britain: Academic Press, 1998.

[Boyer & Yu 1992]

Boyer, Robert S. and Yu, Yuan, "Automated Correctness Proofs of

Machine Code Programs for a Commercial Microprocessor", CADE-J J J th

Conference on Automated Deduction (Lecture Notes in Artificial

Intelligence, vol. 607), (pp. 416-430), 1992.

[Brand 1975]

Brand, D., "Proving theorems with the modification method", Society for

Industrial and Applied Mathematics (SIAM) (Journal on Computing, vol. 4,

number 4), (pp. 412-430), 1975.

[Bratko 1991]

Bratko, Ivan, Prolog: Programming for Artificial Intelligence, Addison­

Wesley, 1991.

[Carson et al. 1965]

Carson, Daniel F., and Robinson, George A., and Wos, Lawrence,

"Efficiency and Completeness of the Set of Support Strategy in Theorem

Proving", Journal of Association for Computing Machinery, vol. 12 no. 4,

(pp. 536-541), 1965.

[Chang & Lee 1973]

Chang, Chin-Liang, and Lee, Richard Char-Tung, Symbolic Logic and

Mechanical Theorem Proving. US: Academic Press Inc., 1973.

[Chou 1988]

Chou, Shang-Ching, Mechanical Geometry Theorem Proving, Holland: D.

Reidel Publishing, 1988.

Bibliography 248

[Cormen et al. 1992]

Cormen, Thomas H., and Leiserson, Charles E., and Rivest, Ronald, L.,

Introduction to Algorithms, US: McGraw-Hill, 1992.

[Davis 1983J

Davis, Martin., "The Prehistory and Early History of Automated

Deduction", Automation of Reasoning, Classical Papers on Computational

Logic 1957-1966, vol. 1, (pp. 1-22), editors: Jorg Siekmann and Graham

Wrightson, Springer Verlag, 1983.

[Davis 2001]

Davis, Martin, "The Early History of Automated Deduction", Handbook of

Automated Reasoning Volume 1, chap. 1, (pp. 3-15), Cambridge, MA:

Massachusetts Institute ofTechnology, 2001.

[Davis & Putnam 1960]

Davis, Martin, and Putnam, Hilary, "A computing procedure for

quantification theory", Journal of the ACM 7 (3), (pp. 201-215), 1960.

[Davis et al. 1962J

Davis, Martin, and Logemann George, and Loveland, Donald, "A

machine pro gram for theorem proving", Communications of the ACM 5,

(pp. 394-397), 1962.

[Degtyarev & Voronkov 2001]

Degtyarev, Anatoli and Voronkov, Andrei, "Equality Reasoning and

Sequent-Based Calculi", Handbook of Automated Reasoning Volume !,

chap. 10 (pp. 611-706), Cambridge, MA: Massachusetts Institute of

Technology, 2001.

Bibliography 249

[Denzinger et al. 1997]

Denzinger, J., and Kronenberg, M., and Schulz, S., "DISCOUNT - A

Distrihuted and Learning Equational Prover", Journal of Automated

Reasoning, vol. 18, issue 2, (pp. 189-198), 1997.

[Duvanenko 2004]

Duvanenko, Victor J., "Optimizing for Intel Architecture CPU", pp. 28-32,

Dr. Dobb 's Journal, May 2004.

[Duffy 1991]

Duffy, David, Principles of Automated Theorem Proving, Great Britain:

John Wiley, 1991.

[Fleisig et al. 1974]

Fleisig, S., and Loveland, D., and Smiley, A., and Yarmash, D., "An

implementation of the model elimination proof procedure", Journal of the

Association for Computing Machinery, vol. 21, (pp. 124-139), January

1974.

[Fensel & Schonegge 1997]

Fensel, D., and Schonegge, A., "Using KIV to specify and Verify

Architectures of Knowledge-Based Systems.", Proceedings of the 12th

IEEE International Conference on Automated Software Engineering

(ASEC-97), Incline Village, Nevada, Novemher 3-5, 1997.

[Fuchs & Fuchs 1999]

Fuchs, Dirk, and Fuchs, Marc, "Cooperation between Top-Down and

Bottom-Up Theorem Provers", Journal of Artificial Intelligence Research,

vol. 10, (pp. 169-198), 1999.

Bibliography 250

[GaiIlourdet et al. 2003]

Gaillourdet, Jean-Marie , and HilJenbrand, Thomas, and Lochner,

Bernd, and Spies, Hendrik, "The New Waldmeister Loop at Work" , in

CADE-19, 191h International Conference on Automated Deduction, (LNAI

2741), editor: Franz Baader, (pp.317-321), Springer, 2003.

[Gallier 1986]

Gallier, Jean H., Logic for Computer Science: Foundations of Automatic

Theorem Proving, New York: Harper & Row, 1986.

[Garey & Johnson 1979]

Garey, Michael R. and Johnson, David D., Computers and Intractability:

A Guide to the Theory of NP-Completeness, New York: Freeman, 1979.

[Gilmore 1960]

Gilmore, P., "A proof method for quantification theory: its justification and

realization", IBM Journal of Research and Development vol. 4, (pp. 28-35),

1960. Reprinted in Automation of Reasoning, Classical Papers on

Computational Logic 1957-1966 voU, (pp. 151-158), editors: Jorg

Siekmann and Graham Wrightson, Springer Verlag, 1983.

[Harel et al. 2000]

Harel, David and Kozen, Dexter and Tiuryn, Jerzy, Dynamic Logic,

Cambridge, MA: Massachusetts Institute of Technology, 2000.

[Hillenbrand et al. 1997]

Hillenbrand Th., and Buch A., and Vogt R., and Lochner, H.,

"Waldmeister: High-Performance Equational Deduction", Journal of

Automated Reasoning vol.18(2), 1997.

Bibliography 251

[Hillenbrand & Lochner 2002]

Hillenbrand Th. and Lochner, B., "A Phytography of Waldmeister", AI

Communications vo1.l5(2-3), (pp. 127-133),2002.

[Huth & Ryan 2000]

Huth, Michael R. A., and Ryan, Mark D., Logic in Computer Science:

Modelling and reasoning about systems, Cambridge, UK: Cambridge

University, 2000.

[Jeff Ho 1999]

Jeff Ho, Chuen-Hsuen, "Completeness of the LELS Inference Rule in

Automated Theorem Proving", Journal of Information Science and

Engineering, vol. 15, (pp. 153-164), 1999.

[Kaufmann et al. 2000]

Kaufmann, Matt, and Manolios, Panagiotis, and Moore, J. Strother

(editors), Computer-Aided Reasoning: ACL2 Case Studies, Kluwer

Academic Publishers, June, 2000.

[Kientzle 2004]

Kientzle, Tim, "Optimization Techniques", (pp. 22-26), Dr. Dobb 's

Journal, May 2004.

[Korf 1985]

Korf, Richard E., "Depth-First Iterative-Deepening: An Optimal

Admissible Tree Search", Artificial Intelligence, vol. 27, (pp. 97-109),

1985.

[Lassez et al. 1988]

Lassez, J-L., and Maher, M. J., and Marriott, K., "Unification Revisited",

Computer Science, (pp. 1-44), 1988.

Bibliography 252

[Luckham 1970]

Luckham, D., "Refinement theorems in Resolution Theory", Proe. IRIA

1968 Symp. On Automatie Demonstration, (Lecture Notes in Mathematics,

vol. 125), (pp. 163-190), Springer-Verlag, 1970.

[Letz et al. 1992]

Letz, R., and Bayerl, S., and Schumann, J., and W. Bibel, "SETHEO: a

High-Performance Theorem Prover", Journal of Automated Reasoning, vol.

8(2), (pp. 183-212), 1992.

[Letz & Stenz 2001]

Letz, Reinhold and Stenz, Gernot, (editors), "Model Elimination and

Connection Tableau Procedures", Handbook of Automated Reasoning

Volume II, chap. 28, Cambridge, MA: Massachusetts Institute of

Technology, 2001.

[Levesque & Brachman 2004]

Levesque, Hector J. and Brachman, Ronald J., Knowledge

Representation and Reasoning, Morgan Kaufmann, 2004.

[Levy & Newborn 1991]

Levy, David, and Newborn, Monty, How Computers Play Chess, New

York: W.H. Freeman and Company, 1991.

[Loveland 1968]

Loveland, D. W., "Mechanical theorem proving by model elimination",

Journal of the Association for Computing Maehinery, vol. 15(2), (pp. 236-

251), April 1968.

Bibliography 253

[Loveland 1969]

Loveland, D. W., "A simplified format for the mode} elimination

procedure", Journal of the Association for Computing Machinery, vol.

16(3), (pp. 349-363), July 1969.

[Loveland 1978]

Loveland, Donald W., Automated Theorem Proving: a logical basis,

Hungary: North-Holland, 1978.

[Luger & Stubblefield 1998]

Luger, George F., and Stubblefield, William A., Artificial Intelligence:

Structures and Strategies for Complex Problem Solving (third edition),

Reading, MA: Addison-Wesley, 1998.

[McCune 2003]

McCune, William M., Otter version 3.3 Reference Manual, http://www­

unix.mcs.anl.gov/AR/otter/,2003.

[McKusick & Neville-Neil 2004]

McKusick, Marshall Kirk and Neville-Neil, George, The Design and

Implementation of the FreeBSD Operating System, Addison Wesley

Professional, 2004.

[Newbom 2001]

Newborn, Monty, Automated Theorem Proving: Theory and Practice, New

York: Springer-Verlag, 2001.

[Newbom & Wang 2004]

Newborn, Monty and Wang, Zongyan, "Octopus: Combining Leaming

and Parallel Search", Journal of Automated Reasoning, 2004.

Bibliography 254

[Newell et al. 1957]

Newell, A., and Shaw, J., and Simon, H., "Empirical explorations with the

logic theory machine", Proc. West. Joint Comp. Corif., (pp. 218-239), 1957.

[Nieuwenhuis et al. 2001]

Nieuwenhuis, Robert, and Hillenbrand, Thomas, and Riazanov,

Alexandre, and Voronkov, Andrei, "On the Evaluation of Indexing

Techniques for Theorem Proving", Proceedings of the First International

Joint Conference on Automated Reasoning (Lecture Notes in Artificial

Intelligence, vol. 2083), editors: R. Ooré, A. Leitsch, and T. Nipkow, (pp.

257-271), Springer-Verlag, 2001.

[Nieuwenhuis & Rubio 2001]

Nieuwenhuis, Robert and Rubio, Albert, "Paramodulation-Based

Theorem Proving", Handbook of Automated Reasoning Volume 1, chap. 7

(pp. 371-444), Cambridge, MA: Massachusetts Institute of Technology,

2001.

[Nilsson 1998]

Nilsson, Nils J., Artificial Intelligence: A New Synthesis, San Francisco:

Morgan Kaufmann, 1998.

[Nilsson & Maluszynski 2000]

Nilsson, VIf and Maluszynski, Jan, Logic Programming and Prolog (2nd

edition), John Wiley & Sons Ltd., 2000.

[Paterson & Wegman 1978]

Paterson, M. S., and Wegman, M. N., "Linear Unification", Journal of

Computer and System Sciences, vol. 16, (pp. 158-167), 1978.

Bibliography 255

[Plaisted & Zhu 1999]

Plaisted, David A. and Zhu, Yunshan, The Efficiency of Theorem Proving

Strategies: A Comparative and Asymptotic Analysis (2nd edition), Gennany:

Vieweg,1999.

[Prawitz & Voghera 1960]

Prawitz, D., and Prawitz, H., and Voghera, N., "A mechanical proof

procedure and its realization in an electronic computer", Journal of the

A CM, vol. 7(2), (pp. 102-128). Reprinted in Automation of Reasoning,

Classical Papers on Computational Logic 1957-1966 vol. 1, (pp. 202-228),

editors: Jorg Siekmann and Graham Wrightson, Springer Verlag, 1983.

[Quaife 1989]

Quaire, Art, "Automated Development of Tarski's Geometry", Journal of

Automated Reasoning, vol. 5, (pp. 97-118), 1989.

[Randell et al. 1992]

Randell, D. A., and Cohn, A. G., and Cui, Z., "Computing Transitivity

Tables: A Challenge for Automated Theorem Provers", CADE-Il llh

Conference on Automated Deduction (Lecture Notes in Artificial

Intelligence 607), (pp. 786-790), 1992.

[Riazanov 2003]

Riazanov, Alexandre, Implementing an efficient theorem prover, Ph.D.

dissertation, Dept. of Computer Science, University of Manchester, 2003.

[Riazanov & Voronkov 2000]

Riazanov, A. and Voronkov, A., "Limited Resource Strategy in Resolution

Theorem Proving", Preprint CSPP-7, Department of Computer Science,

University of Manchester, October 2000.

Bibliography 256

[Riazanov & Voronkov 2002]

Riazanov, A. and Voronkov, A., "The Design and Implementation of

Vampire", Al Communications, vol. 15(2-3), (pp. 91-110),2002.

[Robinson 1965]

Robinson, J., "A machine oriented logic based on the resolution principle",

Journal of Association Computing Machinery, vol. 12, (pp. 23-41), 1965.

[Robinson 1983]

Robinson, J. A., "Automatic Deduction with Hyper-Resolution",

Automation of Reasoning, Classical Papers on Computational Logic 1957-

1966 vol. 1, (pp. 416-423), editors Jorg Siekmann and Graham Wrightson,

Springer Verlag, 1983. Originally appeared in International Journal of

Computer Mathematics vol. 1, (pp. 227-234)

[Robinson & Voronkov (1) 2001]

Robinson, Alan and Voronkov, Andrei, (editors) Handbook of Automated

Reasoning Volume 1, Cambridge, MA: Massachusetts Institute of

Technology, 2001.

[Robinson & Voronkov (2) 2001]

Robinson, Alan and Voronkov, Andrei, (editors) Handbook of Automated

Reasoning Volume JI, Cambridge, MA: Massachusetts Institute of

Technology, 2001.

[Robinson & Wos 1969-1]

Robinson, G. A. and Wos, L. T., "Paramodulation and theorem proving in

first order theories with equality", Machine Intelligence, vol. 4, (pp. 133-

150), editors R. Meltzer and D. Michie, Edinburgh: Edinburgh University

Press, 1969. Reprinted, in Automation of Reasoning, vol. 2, (pp. 298-313),

editors: J. Siekmann and G. Wrightson, Berlin: Springer-Verlag, 1983.

Bibliography 257

[Robinson & Wos 1969-2]

Robinson, G. A. and Wos, L. T., "Completeness of Paramodulation",

Journal ofSymbolic Logic, vol. 34, (p. 160), 1969.

[Rosen 2000]

Rosen, Kenneth H., Elementary Number Theory and Ils Applications, US:

Addison-Wesley, 2000.

[Rosch 2003]

Rosch, Winn L., Hardware Bible (6th edition), Que Publishing, 2003.

[Rupley & Clyman 1995]

Rupley, Sebastian and Clyman, John, "P6:The Next Step?", PC

Magazine, vol. 14, no. 15, (pp. 102-137), September 12, 1995.

[Schulz 2000]

Schulz, Stephan, Learning Search Control Knowledge for Equational

Deduction, Ph.D. dissertation, Institut fUr Informatik der Technischen

Universitat München, 2000.

[Schulz 2002]

Schulz, Stephan, "E: A Brainiac Theorem Prover", AI Communications

vol. 15(2-3), (pp. 111-126), 2002.

[Schulz 2004]

Schulz, Stephan, "Simple and Efficient Clause Subsumption with Feature

Vector Indexing", Empirically Successful First-Order Reasoning (ESFOR)

held at The 2nd International Joint Conference on Automated Reasoning

(IJCAR), Ireland, 2004.

Bibliography 258

[Schumann 1994]

Schumann, Johann M. Ph., "DEL TA - A bottom-up Preprocessor for

Top-Down Theorem Provers - Systems Abstract", CADE 12 - 12th

International Conference on Automated Deduction, (Lecture Notes in

Computer Science 814), editor: Alan Bundy, (pp. 774-777), France, 1994.

[Sekar et al. 2001]

Sekar R., Ramakrishnan, I. V. and Voronkov, Andrei, "Term Indexing",

Handbook of Automated Reasoning Volume II, chap. 26 (pp. 1853-1964),

Cambridge, MA: Massachusetts Institute ofTechnology, 2001.

[Shankar 1997]

Shankar, N., Metamathematics, Machines, and Godel 's Proof, Cambridge,

UK: Cambridge, 1997.

[Silberschatz et al. 2001]

Silberschatz, Abraham, and Galvin, Peter Baer, and Gagne, Greg,

Operating Systems Concepts (6th Edition), John Wiley & Sons Inc., 200].

[Skiena 1998]

Skiena, Steven S., The Algorithm Design Manual, New York: Springer­

VerIag, 1998.

[Smullyan 1995]

Smullyan, Raymond M., First-Order Logic, New York: Dover, 1995.

[Socher-Ambrosius & Johann 1997]

Socher-Ambrosius, Rolf and Johann, Patricia, Deduction Systems, New

York: Springer-VerIag, 1997.

Bibliography 259

[Spelt & Even 1998]

Spelt, David, and Even, Susan, "An Engineering Approach to Atomic

Transaction Verification: Use of a Simple Object Model to Achieve

Semantics-based Reasoning at Compile-time.", Technical Report, Centre

for Telematics and Information Technology (CTIT), University of Twente,

Enschede, The Netherlands, Sept. 1998.

[Stallings 2004]

Stallings, William, Operating Systems: InternaIs and Design Principles (5th

Edition), Prentice-Hall Inc., 2004.

[Steele 1990]

Steele, Guy L., Common Lisp the language (2nd edition), Digital Press,

1990.

[Stickel 1984]

Stiekel, M.E., "A Prolog technology theorem prover", New Generation

Computing, vol. 2(4), (pp. 371-383), 1984.

[Stickel 1988]

Stiekel, Mark E., "A Prolog technology theorem prover: implementation

by an extended Prolog compiler", Journal of Automated Reasoning vol. 4,

4, (pp. 353-380), 1988.

[Stickel 1990]

Stiekel, M., "A Prolog Technology Theorem Prover", Proceedings CADE

vol. 10, Lecture Notes in Computer Science 449, (pp. 674-675), Springer,

1990.

Bibliography 260

[Stickel 1992]

Stiekel, Mark E., "A Prolog technology theorem prover: a new exposition

and implementation in Prolog", Theoretical Computer Science vol. 104,

(pp. 109-128), 1992.

[Stickel & Tyson 1985]

Stiekel, M. and Tyson, M., "An Analysis of Consecutively Bounded

Depth-First Search with Applications in Automated Deduction",

Proceedings of the Ninth International Joint Conference on Artificial

Intelligence (IJCAI-85), (pp. 1073-1075), San Francisco: Morgan

Kaufmann, 1985.

[Sutcliffe & Tabada 1991]

Sutcliffe, G., and Suttner, c., "Compulsory Reduction in Linear Derivation

Systems", Artificial Intelligence vol. 50, editor Bibel W., (pp. 131-132),

Elsevier, Amsterdam, The Netherlands, 1991.

[Sutcliffe & Suttner 2004]

Suteliffe, G., and Suttner, C., "The CADE-19 ATP System Competition",

Artificial Intelligence Communications, vol. 17 issue 3, (pp. 103-110),2004.

[Sutcliffe et al. 1994]

Suteliffe, G., and Suttner, c., and Yemenis, T., "The TPTP Problem

Library", in CADE-i 2, i 2th International Conference on Automated

Deduction, (LNAI 814), editor A. Bundy, (pp. 252-266), Springer-Verlag,

1994.

[Sutcliffe et al. 2001]

Sutcliffe, Geoff, and Fuchs, Matthias, and Suttner, Christian, "Progress

in Automated Theorem Proving, 1997 -1999", Workshop on empirical

Methods in Artificial intelligence, (pp. 53-60), held at i i h International

Joint Conference on Artificial Intelligence (Seattle, USA), 2001.

Bibliography 261

[Tammet 1997]

Tammet, Tane), "Gandalf", Journal of Automated Reasoning, vol. 18(2),

(pp. 199-204), 1997.

[Turban & Aronson 1998]

Turban, Efraim and Aronson, Jay E., Decision Support Systems and

Intelligent Systems (5th Edition), New Jersey: Prentice-Hall, 1998.

[Veroff & Wos 1992]

Verrof, R. and Wos, L., "The Linked Inference Principle 1: The FormaI

Treatment", Journal of Automated Reasoning, vol. 8, no. 2, (pp. 213-274),

1992.

[Veroff 1997]

Veroff, Robert (editor), Automated Reasoning and Its Applications,

Cambridge, MA: Massachusetts Institute ofTechnology, 1997.

[Voronkov 1995]

Voronkov, A., "The Anatomy of Vampire: implementing Bottom-Up

Procedures with Code Trees", Journal of Automated Reasoning, vol. 15(2),

(pp. 237-265), 1995.

[Wang 1963]

Wang, Dao, "Mechanical mathematics and inferential analysis", Computer

Programming and Formai Systems, editors: Braffort and Hirschberg, North­

Holland, (pp. 1-20), 1963.

[Weidenbach et al. 1999]

Weidenbach, C., and Afshordel, B., and Brahm, U., and Cohrs, c., and

Enge), T., and Keen, E., and Theobalt, C., and Topic, D., "System

Description: SPASS Version 1.0.0", Automated Deduction CADE 16,

Bibliography 262

editor: H. Ganzinger, International Conference on Automated Deduction

(Lecture Notes in Artificial Intelligence), (pp. 378-382), Trento, Italy, 1999.

[Wilson 2004]

Wilson, Matthew, "C/C++ Compiler Optimization: Focusing on speed",

(pp. 16-21), Dr. Dobb 's Journal, May 2004.

[Wos 1993]

Wos, L., "Automated Reasoning Answers Open Questions", Notices of the

AMS 5, no. l, (pp. 15-26) ,January 1993.

[Wos 1996]

Wos, Larry, The Automation of Reasoning: An Experimenter's Notebook

with OTTER Tutorial, New York: Academie Press, 1996.

[Wos & MeCune 1991]

Wos, L., McCune, W., "Automated Theorem Proving and Logie

Programming: A Natural Symbiosis", Logic Programming Il, no. 1, (pp. 1-

53), July 1991.

[Wos et al. 1964]

Wos, L., and Carson, D., and Robinson, G., "The unit preference strategy

in theorem proving", IFIPS Proceedings 1964 FaU Joint Comp. Conf vol.

26, (pp. 616-621), Washington D.C.: Spartan Books, 1964. Reprinted in

Automation of Reasoning, Classieal Papers on Computational Logie 1957-

1966 vol. 1, (pp. 387-393), editors: Jorg Siekmann and Graham Wrightson,

Springer Verlag, 1983.

[Wos et al. 1965]

Wos, L., and Robinson, G., and Carson, D., "Effieieney and eompleteness

of the set of support strategy in theorem proving", Journal of Association

for Computing Machinery, vol. 12, no. 4, (pp. 536-541), 1965.

Bibliography 263

[Wos et al. 1967]

Wos, L. T., and Robinson, G. A., and Carson, D. F., and Shalla L., "The

concept of demodulation in Theorem Proving", Journal of Association for

Computing Machinery, vol. 14, no. 4, (pp. 698-709), 1967.

[Wos et al. 1980]

Wos, L., and Overbeek, R., and Henschen, L., "Hyperparamodulation: A

Refinement of Paramodulation", Proceedings of the Fiflh Conference on

Automated Deduction (CADE-5) (Lecture Notes in Computer Science, vol.

87), editors: Robert Kowalski and Wolfgang Bibel, (pp. 208-210), New

York: Springer-Verlag, 1980.

[Wos et al. 1984]

Wos, L., and Veroff, R., and Smith, B., and McCune, W., "The Linked

Inference Principle, II: The User's Viewpoint", in Proceedings of the

Seventh International Conference on Automated Deduction, vol. 170, (pp.

316-332), Lecture Notes in Computer Science, ed. R. E. Shostak, New

York: Springer-Verlag, 1984.

[Wos et al. 1991]

Wos, L., and Overbeek, R., and Lusk, E., "Subsumption, a Sometimes

Undervalued Procedure", Festschrifl for JA. Robinson, ed. J.-L. Lassez and

Gordon Plotkin, (pp. 3-40), Cambridge MA: MIT Press, 1991.

[Wos et al. 1992]

Wos, Larry, and Overbeek, Ross, and Lusk, Ewing, and Boyle, Jim,

Automated Reasoning: Introduction and Applications (2nd Edition), New

York: McGraw-Hill, 1992.

Bibliography (Web Sites)

The following web sites were valid at the time of submission of this thesis (May

2005).

[CARINE site]

[CASC site]

[E site]

[Gandalf site]

[Intel site]

[Otter site]

http://www.atpcarine.com

http://www.cs.miami.edu/~tptp/CASC/

http://www.eprover.org

http://www4.informatik.tu-muenchen.de/~schulzJWORK/eprover.html

http://deepthought.ttu.ee/itl gandalf/

http://www.intel.com

http://www-unix.mcs.anl.gov/ARIotter/

[ORA Canada site] Odyssey Research Associates Canada (Ottawa, Ontario)

http://www.ora.on.calbiblio/biblio-welcome.html

[Sutc1iffe site] http://www.cs.miami.edu/~tptp/OverviewOfA TP .html

[TPTP site] http://www.cs.miami.edu/~ TPTP

[Waldmeister site] http://www.waldmeister.org

