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Abstract 

The perfonnance of a resolution-based automated theorem proyer (ATP) depends 

on the speed at which clauses are derived and the efficiency at pruning the search 

space. The speed at which clauses are derived depends in part on the number of 

operations perfonned to construct derived clauses. Depth-first search based ATPs 

derive clauses in a linear manner. In linear derivations, a large percentage of the 

derived clauses are intermediate conclusions that are discarded shortly after they 

are derived. Therefore, the time spent constructing those clauses is wasted. In this 

thesis we present a stalling strategy, called delayed clause-construction (DCC), 

that reduces this wasted time by delaying the construction of intennediate 

conclusions until they are needed. 

Top-down depth-first search algorithrns have the disadvantage of deriving the 

sarne clauses over and over again. Bottom-up best-first search approaches solve 

this problem by redundancy elimination, but their disadvantages are the lack of 

goal-orientation and the large memory requirements. In this thesis we introduce 

semi-linear resolution (SLR), a top-down bottom-up search procedure that 

combines advantageous characteristics found in best-first search and depth-first 

search algorithrns. It requires a mode st arnount of memory and includes 

redundancy control. SLR relies on DCC for speed. DCC also provides SLR with 

ability to perfonn large inference steps through the use of a mega-inference rule. 

In order to improve the efficiency of SLR, we developed a restriction strategy, 

called attribute sequences (ATS), that uses sequences of clause characteristics as 

a guide to limit the participation of clauses in a linear derivation, thereby reducing 

the exp/orable search space. ATS does not compromise completeness. 

The perfonnance enhancements ensuing from the use of DCC and A TS in SLR 

are shown in this thesis to be quite significant in theory, through mathematical 
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analysis, and in practice, through the results obtained from CARINE; an 

implementation of SLR . 



Sommaire 

La performance d'un logiciel d'aide à la preuve (Automated Theorem Prover -

ATP) basé sur la méthode de résolution dépend, d'une part de la vitesse à laquelle 

les clauses sont dérivées, et d'autre part de l'efficacité de l'élagage de l'espace de 

recherche. La vitesse dépend, en partie, du nombre des opérations nécessaires 

pour construire les clauses dérivées. Les A TPs basés sur la recherche en 

profondeur dérivent des clauses de façon linéaire. La plupart de ces clauses, 

considérées comme des conclusions intermédiaires, sont éliminées juste après 

qu'elles aient été dérivées. De plus, juste un terme ou un littéral d'une conclusion 

intermédiaire est généralement utilisé lors de l'application d'une règle 

d'inférence. Par conséquent, le temps investi à construire une conclusion 

intermédiaire entière est gaspi11é. Dans cette thèse, nous présentons une méthode 

nommée construction de clause différée (Delayed Clause-Construction - DCC) 

qui réduit ce temps gaspillé en retardant, jusqu'à l'apparition d'un besoin, la 

construction de conclusions intermédiaires dans une dérivation linéaire. 

Les algorithmes descendants de recherche en profondeur possèdent 

l'inconvénient de dériver les mêmes clauses à plusieurs reprises. Les approches 

ascendantes de recherche du meilleur résolvent ce problème en éliminant la 

redondance. Leur inconvénient est cependant lié aux besoins en terme de mémoire 

et, généralement, au manque d'orientation vers le but. Nous introduisons la 

résolution semi-linéaire (Semi-Linear Resolution - SLR) qui combine les 

meilleures caractéristiques de l'algorithme de la recherche en profondeur et de 

celui de la recherche du meilleur. Il requiert peu d'espace mémoire et est assez 

flexible pour générer de nouvelles règles d'inférence, de nouvelles stratégies, et 

de nouvelles règles pour le contrôle de la redondance et pour la simplification. 

L'usage de DCC dans SLR contribue à l'amélioration de la performance. La 
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résolution SLR profite également de la stratégie DCC pour pouvoir exécuter de 

grandes étapes d'inférence à travers l'utilisation d'une règle de méga-inférence. 

Afin d'améliorer l'efficacité de SLR, nous présentons une stratégie basée sur 

les attributs des clauses (Attribute Sequences - A TS). A TS sont utilisées comme 

guide pour réduire l'espace de recherche sans toutefois sacrifier la complétude. 

Cette thèse montre que les améliorations de la performance qui proviennent de 

l'usage de DCC et de ATS dans SLR sont assez significatives. Ceci est prouvé du 

point de vue théorique à travers les analyses mathématiques, et du point de vue 

pratique par les résultats obtenus de l'implémentation expérimentale d'un logiciel 

d'aide à la preuve, nommé CARINE. 
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CHAPTER 

1 

Introduction 

An automated theorem proyer (ATP) is a pro gram that attempts to determine if a 

given theory logically implies a given hypothesis. The range of applications of 

automated theorem proyers has increased significantly [Sutcliffe site] since the 

first attempt at proving the unsatisfiability of a set of clauses several decades ago 

[Newell et al. 1957], [Gilmore 1960], [Prawitz & Voghera 1960]. Mathematicians 

and scientists use A TPs as tools for checking proofs and for proving sorne open 

problems [Veroff 1997], [Wos 1993]. Engineers use ATPs for software 

verification [Fensel & Schônegge 1997], hardware verification [Kaufmann et al. 

2000], and database transaction verification [Spelt & Even 1998]. The broader 

application of ATPs is due to the improved performance of ATPs. However, the 

progress in automated theorem proving is relatively slow with respect to other 

fields, such as commercial information technology, as indicated in [Sutcliffe et al. 

2001]. In addition, there are still potential domains in business and medicine 

where A TPs can be used if their performance keeps improving. The performance 

of an A TP relies on two factors: speed and efficiency. 

In this chapter, we list the major factors that affect the speed and efficiency of 

an ATP in general, and point out the ones that we focus on in this thesis. We then 

state the main contributions of our research. Finally, we give an overview of the 

structure of the thesis. 
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1.1 Speed and Efficiency 

In this section we list the major factors that affect the speed and efficiency of an 

A TP and indicate the ones that we focus on in this thesis. 

1.1.1 Speed 

The speed of an ATP is its inference rate. The inference rate is basically how 

fast an A TP is able to deduce facts. This is highly dependent on the following 

factors: 

(1) Implemented search algorithms, strategies and inference rules. Sorne 

algorithms produce clauses faster than others because they perform less 

processing on the derived clauses. Also sorne inference rules are simpler than 

others and can be implemented with less computer instructions. This leads to a 

generation of more clauses in less time. 

(2) Data structures. The basic structures that ATPs work with are terms, 

literaIs, clauses, and substitution sets. The internaI representation ( data structures) 

of those basic elements can affect the time it takes to execute operations on them. 

(3) Programming language. A program that is written in C, for example, 

may fUll faster than the same program written in Java or LISP. This is because 

more work has been done on optimizing C compilers. In addition, there are more 

processor architectures which are better suited for procedural languages like C 

than functional or logic programming languages like ML and Prolog. 

(4) Code optimization. Even if two programs that do the same thing, use the 

same algorithms and data structures, and are written in the same computer 

language under the same platform, they can differ in the speed of their execution 

based on the tuning of the code. Also not all compilers of the same language 

produce the same machine code for the same machine [Wilson 2004], [Kientzle 

2004], [Duvanenko 2004] (see Appendix G). 
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(5) System hardware and software platform. It is obvious that more 

advanced system architectures (e.g., more powerful processor, wider and faster 

system bus, faster memory, etc.) and operating systems [Bach 1986], 

[Silberschatz et aL 2001], [McKusick & Neville-Neil 2004], [Stallings 2004] are 

highly likelyI to result in a noticeably faster execution of an A TP than oIder 

systems. 

Even though aIl of the above factors are important in comparing and analyzing the 

speed of a theorem proYer, our focus in this thesis is on (1) and (2). In fact, it is a 

well-known issue among computer scientists that (1) and (2) have the most impact 

on the performance of a system [Garey & Johnson 1979], because (3), (4) and (5) 

can improve a system's performance only by a constant factor. 

1.1.2 Efficiency 

Before we state the factors on which the efficiency of an A TP relies on, we 

clarify and differentiate between the three concepts: search space, explorable 

search space and explored search space. 

• The search space is set of aIl clauses that can be derived from a given set 

of clauses (defined in Chapter 2) using a given set of inference rules 

(defined in Chapter 2). 

• The explorable search space is the set of clauses from the search space 

that an ATP can derive. The explorable search space is a proper subset of 

the search space if restriction strategies are used in an ATP to avoid the 

derivation of certain clauses. Otherwise, the explorable search space is the 

same as the search space. If derivation of certain clauses is prohibited due 

) We say it is highly likely because there have been at least one case in the past where a newer 
generation of a 32-bit processor (Intel's Pentium Pro) did not perfonn better than an older 
generation of the 32-bit processor (lntel's Pentium) over certain 16-bit optimized applications 
(Microsoft Windows 95 and earlier) [Rupley & Clyman 1995]. 
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to restriction strategies, then the explorable search space lS said to be 

pruned. 

• If a set of clauses is unsatisfiable (defined in Chapter 2), then the explored 

search space is the set of clauses from the explorable search space that the 

A TP derives before deriving the empty clause. 

The efficiency of an ATP relies on the following factors. 

• The size of the explorable search space. 

• The amount of redundancy (defined in Chapter 2) which is roughly the 

amount of time wasted deriving clauses that do not contribute any new 

facts that haven't already been discovered through other clauses. 

• The number of unsuccessful attempts to derive a clause. This is the 

amount oftime spent trying to resolve clauses that do not resolve together. 

In a sense, efficiency is a measure of the amount of work the theorem proyer 

performs in order to find a solution to a given problem. An efficient algorithm 

uses one or more strategies to reduce the size of the explorable search space, the 

amount of redundancy, and the number of failed attempts. In this thesis we focus 

mai nI y on reducing the size of the explorable search space. 

1.2 Contributions 

Our contributions are aimed at resolution-refutationl ATPs whose main search 

strategy is depth-first search; henceforth, unless explicitly stated, anytime we 

mention the words "theorem prover" or "ATP", we imply resolution-refutation 

ATPs using depth-first search. 

A resolution-refutation A TP is an A TP based on the resolution calculus (binary 

resolution and binary factoring) and seeks a derivation of the empty clause by 

following sorne search strategy, e.g., depth-first search. 

) Resolution-refutation A TP is formally defined in Chapter 2. 



Charter 1 - Introduction 5 

The contribution in this thesis is threefold: 

• The development of delayed clause-construction (DCC), a method that 

improves the inference rate of an A TP. 

• The construction of attribute sequences (ATS), a restriction strategy that 

improves the efficiency of an ATP. 

• The introduction of semi-linear resoZution (SLR), a procedure that 

combines top-down with bottom-up search approaches. 

An implementation was developed to demonstrate the effectiveness of those 

approaches in improving the speed and efficiency of an ATP. 

1.2.1 Delayed-clause construction 

ATPs based on depth-first search algorithms perform an extensive number of 

linear derivations and produce a large number of clauses, referred to as 

intermediate conclusions, that are not goal clauses (defined in Chapter 3) but may 

lead to goal clauses. The amount of time spent in constructing intermediate 

conclusions can reach 65% of the total running time (see Chapter 6), based on the 

results obtained from experiments that we conducted. Upon careful observation, 

we found that, in a linear derivation, only a small part of an intermediate 

conclusion needs to be constructed when it is involved in an application of an 

inference rule. By limiting the construction to the needed part of an intermediate 

conclusion and delaying the construction of the rest until needed, we can reduce 

the time to generate a new clause, thereby improving the inference rate. 

We developed an approach, delayed clause-construction, that delays the 

construction of intermediate conclusions until needed. The results obtained from 

the experiments we performed on DCC demonstrate its potential. Furthermore, 

DCC requires a modest amount of memory, is easy to implement, and works with 

a wide range of calculi. 
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1.2.2 Attribute sequences 

An attribute is a characteristic of a clause such as weight, length, number of 

variables, particular term, particular literaI, etc. An attribute sequence is a 

sequence of attributes that correspond to a sequence of resolutions. Even though it 

is not possible to know ahead of time which clauses to select in order to obtain a 

refutation (i.e., derivation of the empty clause), it is possible to select potential 

clauses based on their attributes that may lead to a refutation. 

One distinguishing characteristic of ATS is that an attribute sequence can be 

constructed ahead of time and then used as a guide to select the potential clauses 

that may Iead to a refutation. This implies that no time is wasted during the search 

to construct an ATS. Another distinguishing characteristic of ATS is that it can be 

used in any resolution-refutation ATP employing a depth-first se arch strategy 

without affecting the completeness of the A TP. 

Our analysis indicate that the reduction of the size of the explorable search 

space is exponential in the depth bound when attribute sequences are used as a 

guide to select potential clauses. We conducted experiments on the use of A TS 

and the results show that the improvements are significant. 

1.2.3 Semi-Iinear resolution 

A top-down approach recursively breaks down a goal into subgoals until 

eventually the subgoals can be proven immediately by a given set of clauses or by 

derived clauses obtained during the search process. A bottom-up approach derives 

clauses from the input set until an inconsistency is reached. The advantage of a 

top-down approach is that it is goal-oriented. !ts disadvantage is lack of 

redundancy control. A bottom-up approach is good in controlling redundancy but 

lacks goal-orientation. 

Semi-linear resolution is a top-down bottom-up search procedure that includes 

DCC for speed and ATS for efficiency. DCC in SLR can be viewed as a mega-
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inference rule that combines several inference rules into one. Every application of 

a mega-inference rule leads to a goal clause in one big step. 

A proof obtained by SLR is generally non-linear but contains Iinearly derived 

goals. Bence the name semi-linear resolution. Figure 1-1 shows an example of an 

SLRproof. 

Bs 

>-JF-_ Ancestor G2 

resolution 

Intermediate conclusions: CIJ, C]2, Cn, C2h C22, 

C3h C32, C33, C4h Cs!> CS2, CS3 

Input clauses: Bh B2' B3, B4, Bs, B6, B7, Bg, B9' 
BIO, B IJ , BJ2 

Empty clause 

Figure 1-1: An illustration of a semi-linear resolution proof. 

Sometimes it is usefui to gather information during a linear resolution that can 

heip reduce the search space or eliminate redundancy. We show in an example in 

Chapter 6 that the information gathered from within the application of a me ga­

inference rule can help an ATP skip certain attribute sequences in following 

derivations. Just because every application of a mega-inference mIe is a big step 

in a search, it does not mean that usefui information obtained from the little steps 

is ignored. SLR combines both the advantage of moving faster in a search by 

taking big steps without losing the information that can be obtained from the 

small steps. This is a distinguishing characteristic of SLR. 
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SLR can be used in a wide range of applications including systems with 

limited memory capacities without the need to compromise its refutation 

completeness. Examples of applications with limited memory capacities are: 

small embedded systems, microcontrollers, mobile devices, miniature robots, 

miniature wireless communication devices, etc. The wide range of applications 

for SLR is due to the combined top-down bottom-up approach where the main 

loop is an iteratively-deepening depth-first search (IDDFS). IDDFS requires a 

modest amount of memory which makes it desirable for limited memory devices. 

1.3 Overview of the Thesis 

Chapter 2 covers the basic minimum preliminaries related to the topics discussed 

within the thesis. It contains aIl the definitions and notation necessary to 

understand the terminology and symbols used in the following chapters. Chapter 3 

is dedicated to the formaI presentation of the delayed clause-construction 

procedure. 

Chapter 4 presents semi-linear resolution. It describes the procedure in detail 

and compares it with the given-clause algorithm. The advantages and 

disadvantages of semi-linear resolution are listed and its completeness is 

discussed. 

Chapter 5 analyzes the size of the explorable search space of semi-linear 

resolution from two perspectives. The first is based on the number of generated 

clauses and the second is based on the number of attribute sequences. It describes 

how attribute sequences can be used as a guide to reduce the size of the 

explorable search space of SLR. 

Chapter 6 de scribes an implementation of semi-linear resolution called 

CARINE. It presents the experimental results obtained from running CARINE on a 

sample of 100 theorems selected from the TPTP library (see Appendix A). 
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Chapter 7 summarizes the contributions, provides conc1uding remarks and 

discusses future work. 

The appendices inc1ude the details on derivations of certain formulas used in 

the thesis. They also inc1ude further information about CARINE, the TPTP library, 

a list of the sarnple of 100 theorems selected from the TPTP library, the list of 

theorems from the TPTP library that were proved by CARINE, and statistical data. 

1.4 About the Results 

Unless specifically stated, an test results are obtained from running our A TP 

CARINE over the TPTP library with a time limit of 180 seconds per theorem. 

Experiments were done under a Linux emulation (Cygwin) on a Pentium 4 based 

machine running Microsoft Windows 2000. The processor's speed is 2.6GHz but 

we set it to run in Hyper-Threading (HT) mode [Intel site] so that we can run two 

copies of our system at the same time and thus, reducing the total time needed to 

obtain the provided results. When running two copies of CARINE in HT mode, the 

machine roughly acts as two machines running each at about 1.1 GHz. The 

memory installed on the machine is 1 GB DDR1 SDRAM [Rosch 2003] running 

at 400MHz in Dual Channel which roughly means that in HT mode there would 

be little or no degradation in speed when running two copies of CARINE since the 

memory banks can be accessed in parallel. 

J DDR is a double data rate synchronous dynamic random access memory. 



CHAPTER 

2 

Preliminaries 

Theorem proyers are applications of mathematical logic. Mathematical logic 

encompasses many branches of logic and correspondingly there are many kinds of 

theorem proyers. We are only concemed with classical first-order logic [Smullyan 

1995] and specifically the subset of this logic that deals with knowledge 

represented in clause form. The theorem proyers that we are interested in are 

resolution-refutation based automated theorem proyers and in this chapter we 

state the minimum preliminaries that are related to those theorem proyers. 

2.1 Definitions and Conventions 

Except for a few minor differences in sorne definitions (e.g., "derivation"), most 

of the definitions and notation in this section follow the conventions used in 

[Riazanov 2003], [Robinson & Voronkov (1) 2001], [Robinson & Voronkov (2) 

2001], [Schulz 2000], [Loveland 1978], and [Chang & Lee 1973]. 

2.1.1 Notation 
References on the subjects of set theory, logic and automated reasoning, use 

slightly different notation for the same operators. Also, operator precedence varies 

between theory and implementation (i.e. computer languages). To avoid any 

confusion, we use the notation and the order of precedence of operators described 

in this section. 
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Table 2-1 lists the logical and set symbols along with their meaning. Examples 

are given to clarify the meaning and depending on the meaning of the symbol, the 

letters A and B used in the ex amples are either sets or clauses. 

Table 2-1: Set and logical symbols and their meanings 

Symbol MeaninK 
-',/\,v NOT, AND, OR respectively. 

<=> Equivalence. E.g. A <=> B 
Forward and backward implication. 

=>,Ç:: A => B is the same as B Ç:: A which is read as A implies B 
or B logically follows from A. 

- Identical. 
Right and left proper subset. BeA is the same as A::JB 

C,::J 
where B is a proper subset of A. 

Ç;,;2 
Right and left subset. B ç; A is the same as A::J B where B 
is a subset of A. 

(J,u,\ Set operations: intersection, union, and difference 
respectively. 
An ordering relation. Read as "less than" even though the 

-< 
domain may not be a number. For example, "abc" -< "bdf' 
means that the string "abc" is less than the string "bdf' when 
the ordering relation represents a lexicographical l ordering. 

N,Z,IR. Respectively: the set of natural numbers, the set of integers, 
the set of real numbers. 
Wildcard character. Used as a "don't care" or "aIl values in a 

* 
domain". For example, (*,2) means a pair where the first 
element is any number in the domain and the second element 
is a 2. 

2.1.2 Operator precedence 

1) Expressions within parentheses 0 are evaluated first followed by the 

ones within square brackets [] followed by those within braces {}. 

2) Logical operators are performed in the order (highest to lowest): -,,/\, v . 

1 LexicographicaJ ordering is an ordering similar to the ordering of the words in a dictionary. 
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3) Set operators are performed III the order (highest to lowest): 

n,u, \,E,C,Ç, =. 

4) Identical: ==. 

5) Implication and equivalence in the order (highest to lowest): ~, <=> . 

2.1.3 Definitions 

Definition 2.1: Multiset 

A multiset M over a set S is a function M: S ~ N , where N is the set of 

natural numbers. An element x in M is denoted by x E M . If x E M then 

M (x) > 0, otherwise M (x) = O. In other words, M(x) specifies the number of 

occurrences of x in M. For example, if M = {a,a,b,c} then M(a) = 2, M(b) = 1, 

M(c) = 1. A multiset M over a set Sis finite if M(x) > 0 for a finite number of 

x ES. The set of distinct elements of a multiset M is denoted by Set(M), and 

defined as Set(M) = {x: M(x) > O}. 

The set operations are extended to multisets as follows. 

(i) Existence: 

XEM <=>M(x»O. 

Xf1.M <=>M(x)=O. 

(ii) Cardinality: 

IMI= IM(x). 
XES 

(iii) Emptiness: 

M ={} <=> IMI=O. 

Suppose MI and M 2 are multisets over a set S. 

(iv) Proper submultiset: 

MI c M 2 <=> "Ix ES: M 2 (x r~ MI (x) and 3y ES: M 2 (y) > MI (y) . 

(v) Submultiset: 

MI c M 2 <=> "Ix ES: M 2 (x) ~ MI (x) . 
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(vi) Union: 

M) u M 2 <=> \:Ix E S :(M) uM2 )(x) = M) (x) +M2 (x) . 

(vii) Intersection: 

M) nM2 <=> \:Ix ES: (MI nM2 )(x) = Min(M) (x),M2 (x)) . 

(viii) Difference: 

M) \M2 <=> \:IxES:(M) \M2)(x) = Max(M](x)-M2(x),O). 

13 

In set theory, given the sets S={Ap ... ,An} and T={Bp ... ,Bm}, with n,m~l, 

the set (S\{Ap- .. ,A;})u(T\{Bp- .. ,B)),where l~i~n and l~j~m,isequal 

to the set (SuT)\{Ap- .. ,A;,Bp ... ,B) [Borowski & Borwein 1991]. We calI it 

the special DU law1
• This Iaw also applies to muItisets. 

Definition 2.2: List and sequence 

A Iist is a countable (possibly infinite) ordered muItiset. A list is denoted by 

f = (PI'" "Pn)' where f3p""Pn are its elements. An empty list is denoted by 

( ). A sequence is a list where each element is computed based on previous 

elements in the sequence. The length of a Iist is the number of elements in the Iist 

and is denoted by Ifl, where f is a list. For example, if f = (PI' .. " f3n) then 

IRI=n. 

Definition 2.3: Term 

A term is a variable, or an n-ary function of the form ! (fI'" .. , t n), where n ~ 0 

and tl' ... ,tn are terms. The terms tl' ... ,tn are the arguments of the function and! 

1 DU stands for difference-union law. We calI it special because in general, if A, B, C, D are sets, 

then (A\B)u(C\D)*(AuC)\(BuD). E.g. A={1,2}, B={1,4}, C={4,6}, D={5}. 

(A \ B)u(C\ D) = {2,4,6}, (A uC) \(Bu D) = {2,6}. However, in the special case where 

B ç A and D ç C, DU law is true. 
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is the function symbol. A constant is a function with arity 0, i.e., without any 

arguments. The countably infinite set of variables is denoted by <V. The (finite or 

countably infinite) set of function symbols is denoted by 'F . The set of all terms 

that can be formed from <V and r is denoted by T(<V,r). A formaI and 

detailed explanation of the term algebra T(<V,r) is given in [Gallier 1986]. A 

ground term is a term with no variables. 

Following the conventions used in many textbooks such as [Newbom 2001], 

[Sekar et al. 2001], [Bi bel 1987], [Gallier 1986], [Loveland 1978], [Chang & Lee 

1973], we use (possibly with subscripts) the letters u, v, w, x, y, z to denote 

variables, a,b,c to denote constants, and f,g,h to denote functions with arity 

greater than zero. 

A term is drawn as a tree. A constant or a variable occupies a single node. A 

function with one or more arguments is drawn as a tree rooted at the function 

symbol with its children being the arguments of the function. A tree 

representation ofthe term f(a,g(a,y),x) is shown in Figure 2-1. 

Figure 2-1: A tree representation ofthe term f(a,g(a,y),x). 
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Definition 2.4: Subterm 

A term s is a subterm of a term t, denoted l by SEo t, if s = t or s occurs in t. 

Therefore, a term is a subterm of itself. s ~o t denotes s is not a subterm of t. 

Definition 2.5: MuItiset of arguments 

The muItiset of arguments of a function term t is denoted by Args(t). For 

example, Args(f(a,a,x,g(b)) = {a,a,x,g{b)} and Args(a) = {}. 

Definition 2.6: Term symbol 

The term symboI of a variable is the variable itself. The term symboI of a 

function is the function symbol. 

Definition 2.7: Weight of a term 

The weight of a term t, denoted by Weight(t), is the number of term symbols 

within it. When a term is represented as a tree, the weight of the term is the 

number ofnodes in the tree. The function Weight(t) is computed recursively as 

Weight(t) = {I IArgs(t)1 

1 + l We ight (s;), where s; E Args(t) 
;=] 

Example 2.1: 

Weight{a) = 1. 

Weight{g{f(x,y),g(a,x)) = 7 . 

if t is a variable, 

if t is a function. 

1 We add the 0 (i.e., occurrence) to the symbol E to differentiate it trom the membership relation 
used on sets and multisets. 



Chapter 2 - Preliminaries 16 

Definition 2.8: Maximum term depth 

The maximum term depth of a term t, denoted by MaxDepth(t) , is defined 

recursively as 

MaxDepth(t) = {: + Max {MaxDepth(s)} 
sEArgs(t) 

Example 2.2: 

MaxDepth(f(x)) = 2. 

MaxDepth(f(g(x,a,y),b)) = 3. 

MaxDepth(f(f(a,g(c,y)),f(a,x))) = 4. 

Definition 2.9: Position 

if t is a constant or a variable, 

if t is a function. 

A position is either the empty string 8, or a string of the form i.7r', where i E N 

and 7l' is a position. The subterm at position 7l of a term t is denoted by tl". If t 

is a variable or a constant, then there is only one valid position 7l in t, and that is 

7l = 8 . If t = f(tl' .. ·,ln) , where n ~ 1, then 

if 7l = 8, 

if 7l = i.7l', where 1:::; i:::; n. 

For example, if t = f(g(a,b,c,h(x));y) and 7l = 1.4.1 then tL_ = x. A position 

1l is invalid with respect to a term t if there is no subterm in t at position 7l. The 

result is the empty string 8. For example, if t = f(a) and 7l = 1.2, then 7l is 

invalid with respect to 1 and 11 = 8. 
1.2 
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Definition 2.10: Term replacement 

If q EO t then the term obtained by replacing aIl occurrences of q in t with the 

term s is denoted by I[ q ~ s]. If the subterm q at position li in t is replaced by s , 

then the resulting term is denoted by t[ q ~ s 1, .. If the subterm at position li is 

not important, then t[ s ]Jr denotes the term obtained by replacing whatever 

subterm in t at position li with s. 

Definition 2.11: Atom 

An atom is an n-ary predicate of the form P(tp ... ,tn ), where n ~ 0 and tp- .. ,tn 

are terms. The terms tl' ... ,tn are the arguments of the predicate and P is the 

predicate symbol. If n = 0 then the atom is a propositional constant. 

Definition 2.12: Literai 

A literai is an atom or its negation. The negation of an atom is represented as an 

atom preceded by the negation sign ... A positive literaI is an atom and a 

negative literai is a negated atom. An atom with an equality predicate is written 

as 1 =:: r , where 1 and rare terms. Its negation, .. (1 =:: r), is written as 1 * r . A 

ground literai is a literaI that contains no variables. The multiset of arguments of 

a literai L is denoted by Args(L). 

Definition 2.13: Weight of a literai 

The weight of a literai L, denoted hy Weight(L), is the sum of the weights of its 

arguments plus one, i.e., 

IArgs(L)1 

Weight(L) = 1 + L Weight(sJ, where Si E Args( L) . 
i=1 
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Definition 2.14: Maximum literai depth 

The maximum literai depth of a literaI L, denoted by MaxDepth(L), is the 

maximum depth of any of its arguments: 

MaxDepth( L) = {O Max {MaxDepth(s») 
sEArgs(L) 

Example 2.3: 

MaxDepth( -.P) = 0 . 

MaxDepth(P(f(x),g(f(a)),y) = 3. 

Definition 2.15: Clause 

if IArgs(L)1 = 0, 

if IArgs(L)1 > o. 

A clause is a disjunction of literaIs, L. v ... v Ln (logical representation), or a 

finite multiset of literals, {L., .. ·,Ln} (multiset representation). We use both 

representations depending on the context. 

Definition 2.16: Special clauses 

A positive clause is a clause whose literaIs are aIl positive literaIs. 

A negative clause is a clause whose literaIs are aIl negative literais. 

The empty clause is a clause that has no literais. It is denoted by rjJ. 

A unit clause is a clause with one literaI. 

A Horn clause is a clause with at most one positive literaI. 

An equation is a unit clause whose only literai is a positive equality literaI. 

A disequation is a unit clause whose only literai is a negative equality literaI. 

A ground clause is a clause with no variables in any of its literais. 
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A proposition al clause is a clause where the atorns of its literaIs are propositional 

constants. 

An ordered clause is a clause whose literaIs are ordered according to sorne 

ordering relation. Therefore, an ordered clause is a list. 

Definition 2.17: Normalized clause 

A normalized clause is an ordered clause whose variables follow a certain 

narnirig convention. In this thesis we assume the following variable narning 

convention. In exarnples where the nurnber of distinct variables in the clauses is 6 

or less, we use the narning order x,y,z,u, v, w. If the nurnber of distinct variables 

is bigger than 6, we use the narning order XJ ' X2' X3, • .•• 

Definition 2.18: Length and weight of a clause 

The length of a clause C, denoted by Len( C), is the nurnber of literais in it. Since 

C is a rnultiset of literaIs then Len(C) = ICi. The weight of a clause, denoted by 

Weight( C), is the surn of the weights of aIl its literaIs; 

Ici 
Weight(C) = IWeight(LJ, where Li E C. 

i=J 

A clause is said to be too long if its Iength is greater than a lirnit that is either 

set by the user or autornatically chosen by the ATP. Sirnilarly, a clause is said to 

be too heavy if its weight is greater thari a specified lirnit irnposed by the A TP or 

set by the user. 
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Example 2.4: 

Weight(-,Pv Q(x,f(y))) = Weight(-,P) + Weight(Q(x,f(y))) = 1 +4 = 5. 

Weight( -,Q(x) v -,Q(x) v P(x, y)) 

= Weight(-,Q(x) + Weight( -,Q(x) + Weight(P(x,y) 

=2+2+3 

=7. 

Size(Pv Q) = 2. 

Size(P(a) v Q(x, y) v Q(x,y)) = 3. 

Size(fjJ) = o. 

Definition 2.19: Clause attribute 

20 

A clause attribute1 is a characteristic of a clause. It can be a tenu, literaI, a 

Boolean value, a real value, an integer value, etc. The set of aIl attributes of a 

clause C is denoted by ..1l(C) and the subset of ..1l(C) where the attributes are 

real numbers is denoted by ..1l]R (C) . 

Sorne clause attributes are the foIlowing. 

• The weight of a clause. 

• The length of a clause. 

• The number of distinct variables in a clause. 

• The number of function symbols in a clause. 

• The maximum depth of any literaI in a clause. 

• The number of positive literaIs in a clause. 

• The number of negative literaIs in ,a clause. 

• A term in a clause. 

• A literal in a clause. 

• A position in a literal in a clause. 

1 A clause attribute is similar to a c1ausefeature defined in [Chang & Lee ]973] and [Schulz 2000] 
but more generaJ. A feature is a number. An attribute can be a number or a Boolean, term, literaI, 
etc. 
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• The depth at which a clause was generated in a linear derivation (see 

Definition 2.31): 

• The existence of an equality literaI. 

• The ratio of the number of distinct variables to the total number of 

variables in a clause. 

Definition 2.20: Interpretation, model, satisfiability, tautology 

An interpretation lof a set of clauses S, ISI ~ l, consists of a non-empty domain 

D, and it gives meaning to constants, functions and predicates by relating them to 

D as follows. 

• Each constant is assigned an element from D. 

• Each n-ary (n > 0) function symbol is assigned a mapping from Dn to D. 

• Each proposition is assigned a value from the set {faise, true}. 

• Each n-ary (n > 0) predicate symbol is assigned a mapping from Dn to 

the set {faise, true}. 

If there is an interpretation 1 that makes a set of clauses S true, then S is 

satisfiable or consistent, and the interpretation 1 is a mode) of S. A clause that is 

satisfied by aIl interpretations is a tautology. If no interpretation makes S true, 

then S is unsatisfiable or inconsistent. 

Definition 2.21: Substitution sets 

A substitution set, denoted by one of the Greek symbols a,B,p, represents a 

mapping of variables to terms. A finite substitution set has the form 

a={v] ~tp ... ,vn ~tn}, where n~O, vp ... ,vn are variables, and tl' ... ,tn are 

substitution terms. If n = 0 then a = {} is the empty substitution. The set 

Dom(a)={v" ... ,vJ is the domain of a and the set Ran(a)=Set({tp- .. ,tn}) is 
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the range of u. The size of a substitution set u is lui = IDom(u)l. A variable 

renaming substitution set is a substitution set where aIl the substitution terms are 

variables. 

Definition 2.22: Composition of substitution sets 

Given the substitution sets u={v] --)fp""vn --)tn,u] --)tn+p""ui --)tn+J and 

distinct, and 0 ~ i ~ m where i = 0 means that u = {v] --) 1] " .. , V n --) ln} , then the 

composition uB as defined in [Loveland 1978] is 

Definition 2.23: Idempotent substitution set 

A substitution set u = {v] --) 11" .. , V n --) ln}, where n ~ 1, is idempotent if for aIl 

1 ~ i, j ~ n, vj ~o l,. In other words, a substitution set is idempotent when the 

substitution terms in a substitution set contain no variables belonging to the 

domain. In [Bibel 87] the author defines an idempotent set follows: if uu = a 

then a is idempotent. 

It is easy to conclude from the definition of the composition of substitution sets 

that the composition of two or more idempotent substitution sets is idempotent. 

If u,B,J1 are three idempotent substitution sets then the composition aBJ1 IS 

associative uBJ1 = (uB) J1 = a( BJ1) [Loveland 1978]. 

Definition 2.24: Circular substitution 

A substitution set u = {v] --) II" •• , V n --) ln}' where n ~ 1, is said to contain a 

circular substitution if there exits a subset {Vi --) li , ... , Vi --) li } cu, where 
) 1 k k-
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1 :::; k :::; n , for aIl 1:::; j :::; k, 1:::; iJ. :::; n, such that Vi EO 1; , ... , Vi EO t, ,Vi EO ti and 
2 1 k k-I l " 

at least one of the fi, , ••• ,f
ik 

is a function with arity greater than zero. For example, 

0" = {x ~ f(x)} and 0" = {x ~ y,y ~ f(z),z ~ x, w ~ a} contain circular 

substitutions. 

Definition 2.25: Application of substitution set, instance, and variant 

Let A be one of the following: a term, a literaI, a clause, a set of clauses or a 

substitution set. Applying a substitution 0" to A means that the variables in A 

are replaced by the corresponding substitution terms from 0". This is denoted by 

AO" . An instance of A is obtained when sorne substitution set is applied to it. A' 

is called a variant of A if A' = AO" and 0" is a variable renaming substitution. 

Vars(A) denotes the set of aIl distinct variables in A. If 0" is a substitution set, 

then DomA (0") = Vars(A)n Dom(O"). 

Definition 2.26: Unifier, most general unifier and unification 

If Il and t2 are terms then a substitution set 0" is a unifier if tlo" = t20" • Similarly, 

if ~ and L2 are literais then a substitution set 0" is a unifier if ~O" = L20" • In 

other words, a unifier is a substitution set that when applied to two terms or 

literais makes them identical. The definition of a unifier can be extended to any 

number of terms or literais. 

The most general unifier (mgu1
) is the unifier having the least number of 

substitutions and still makes two or more terms or literais equal. Formally, if 0" is 

the most general unifier of two or more terms or literais, then for every other 

unifier () of these two or more terms or literaIs, there exist a substitution set fl 

such that () = O"fl • If fI"'" t n' n;?: 2 , are terms and 0" is the mgu of those terms, 

1 We write the plural of mgu as mgu 's rather than mgus. This is suggested by English prof essors 
and technical writing experts. 
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then we write (}=mgu(tp ... ,tn), i.e., tj(}= .. ·=tn(}. Similarly, if ~, ... ,Ln' 

n ~ 2, are literaIs and () is the mgu of those literaIs, then we write 

() = mgu(~, ... , Ln)' i.e., ~() = ... = Ln(}' Unification is the process of finding an 

mgu of two or more terms or literaIs. 

Definition 2.27: Complementary literaIs 

Two literaIs LI and L2 are said to be potentially complementary literaIs if there 

exist an mgu (), such that ~() = .....,L2(}. Two literaIs ~ and ~ are 

complementary literais if ~ =.....,~ . 

Definition 2.28: Theorem 

Given a set of clauses S = {CI" ",Cn } and a clause G, Gis a logical consequence 

of S (or S enta ils G) if and only if every interpretation that is a model of S is also 

a model of G. If G is a logical consequence of S, then CI /\ ... /\ Cn => G is a 

theorem, S is the set ofaxioms, and G is the conclusion of the theorem. To 

prove a theorem is to show that G is a logical consequence of S. Since we are 

concerned only with refutational theorem proYers, then to prove a theorem is to 

show that CI /\ ... /\ Cn /\.....,G => f), i.e., CI /\ ... /\ Cn /\.....,G has no model. 

Definition 2.29: Inference rule and inference system 

An inference rule is an n + l-ary relation on clauses written as 

CJ".Cn 'f 
1 r, 

C 

where CI",Cn are the premises, C is the conclusion, and r is a set of 

conditions. An inference rule is sound if and only if the conclusion is logically 

implied by the premises. We are only interested in sound inference rules. 
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Henceforth, unless explicitly stated otherwise, the use of the words "inference 

mIe" imply "sound inference mIe". An inference, denoted by I, is an instance 

(an application) of an inference mie. The multiset of the clauses used as premises 

in an inference I is denoted by Prem(I) and the conclusion by C(I). An 

inference system is a set of inference mies. 

Definition 2.30: Deduction, derivation, refutation, proof 

A deduction of a clause D from a given set of clauses S is a sequence 

( CI" .. , Cn ) , where n > 0 and for aIl, Ci is a logical consequence of 

Su{CI'" .,Ci_I}, and D = Cn • A derivation1 of a clause D from a given set S of 

clauses is a sequence of inferences (1;, ... , I" ), where n > 0 and for aIl 1 ~ i ~ n , 

each clause in Prem(J;), is either in S or is a logical consequence of 

SU{C(1;), ... ,C(J;_I)}' and D = C(I,,). D is referred to as a derived clause. The 

clauses in Sare referred to as input clauses. A refutation is a derivation of the 

empty clause. In the context of resolution-refutation, a proof is a refutation. 

A derivation of a clause is graphically represented by a tree. Figure 2-2 is an 

example of a derivation of a clause D from a set S = {CI'C2,C3,C4,C5,C6}' The 

root no de is D, aIl internaI nodes are derived clauses, and the Ieaves (heavily 

marked) are input clauses. 

1 The words deduction and derivation are used interchangeably in many references and the 
standard definition is the one we use for "deduction". However, we define "derivation" differently 
from deduction for the purpose of simplifying our presentation of the topics in this thesis. Our 
defmition of derivation explicitly states the instances of the rules used in a deduction. Therefore, 

each Ii appearing in the sequence (II' ... ,IJ represents the premises, the conclusion, the mgu, 

etc. Whereas, the sequence (CI"'" C
n 
>, does not imply the additional information we need in 

order to present our ideas (such as delayed clause-construction, etc.) in a simple way. 
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Input clauses 

Figure 2-2: A graphical representation of a derivation. 

Definition 2.31: Linear derivation 

A Iinear derivation of a clause D from a given set of clauses S is a derivation 

(I; , ... , I;, ) , with the following properties: 

• One of the premises of I; is called the initial clause and is denoted by 

• For aIl 2 ~ i ~ n, one clause of PremCI;), caIled the main premise, is 

CCI;-l)' The clauses C(l;), .. . ,CCI;,-l) are intermediate conclusions 

derived, respectively, at depths t ... , n -1 . 

• For aIl 2 ~ i ~ n , the clauses Cinil , CCI;), ... , CCI;_I) are called ancestors of 

CCI;) . 

• D = C(In) is the final conclusion. 
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• For aIl 1 ~ i ~ n , aIl the premises of I, except for the initial clause and the 

main premise are caIled side premises. The multiset of side premises is 

denoted by V(I,) and is determined as foIlows: 

{prem(~) \ C;nl 

• V(I,) = 1 

Prem(I,) \ C(I,-J) 

i = l, 

2 ~ i ~ n. 

• For aIl 1 ~ i ~ n, every clause in V(I,) is either a variant of a clause from 

S or a variant of an ancestor clause. 

• If C(I,) E V(Ij ) , where 1 ~ i ~ n - 2 and j > i + 1, then C(I,) is called a 

far parent of C(~) . 

Definition 2.32: Input derivation 

An (linear) input derivation of a clause D from a given set of clauses Sis a linear 

derivation (~, ... , I,,) in which every si de premise is a variant of an input clause, 

i.e., for ail 1 ~ i ~ n, if CE V(I,) then ce ES, where e is a variable renaming 

substituti on. 

Definition 2.33: Completeness 

An inference system 1 is complete if and only if given a set of clauses S, any 

clause that is a logical consequence of Scan be derived from S using the inference 

rules in /. 

An inference system 1 is refutation complete if and only if given any 

unsatisfiable set of clauses S, it can shown using the inference rules in 1 that S has 

no mode!. In other words, an inference system 1 is refutation complete if and only 

if the empty clause can be derived from any unsatisfiable set of clauses by 

applying the inference rules in /. 
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Definition 2.34: Redundancy 

A clause C is said to be redundant in a set of clauses S if and only if there exist a 

subset T of S where each clause in T is shorter than C and T entails C. 

Definition 2.35: Resolution-based A TP 

A resolution-based A TP is an A TP that is based on the resolution calculus 

formed from binary resolution and binary factoring (see section 2.1.4 Inference 

mIes). A resolution-based ATP may include other inference mIes. 

Definition 2.36: State of completeness 

We say, an ATP maintains its state of completeness after it is subjected to a 

number of modifications, to mean that if the ATP is refutation complete then it 

remains refutation complete and if the A TP is not refutation complete then it may 

or may not become refutation complete but it would still be able to prove aIl the 

theorems that it used to prove before the modifications have been made. 

Definition 2.37: Inference rate 

The inference rate of an A TP is the number of inferences performed in a unit of 

time. The unit of time is usually a second. 

2.1.4 Inference rules 

A list of the inference mIes that are relevant to our work are listed below. In order 

to simplify the presentation of the mega-inference in Chapter 3, we express these 

mIes in a manner that is slightly different from the conventional representation 

found in [Riazanov 2003], [Robinson & Voronkov (1) 2001], [Robinson & 

Voronkov (2) 2001], [Schulz 2000], [Loveland 1978], and [Chang & Lee 1973]. 

The differences in the representation can be summarized as follows. 
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• We use the multiset representation of clauses rather than the disjunction of 

literaIs. 

• We make use of the special DU law to express the conclusions of the 

inference rules below as a multiset difference between clauses and their 

literaIs. 

• We do not include details (e.g., equality literaIs, terms at particular 

positions, ... ) about the contents of the clauses when listing the premises. 

The details are listed in the conditions of the inference rule (beside or 

below the rule). 

In any inference rule stated below, the variables between the premises are not 

shared. In other words, in an inference I, if C E Prem(I) and D E Prem(I) 

then Vars(C) n Vars(D) = {} . 

BINARY RESOLUTION: 

if AEC] and -,BEC2 and 

(J" = mgu(A, B) . 

The conclusion is called a resolvent and the clauses C] and C2 are its parents. 

The positive literaI A and the negative literaI -,B are said to be resolved away 

or resolved upon. 

BINARY FACTORING: 

c if {~,L2} c C and 

(J" = mgu( ~ , L2 ) • 
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The conclusion is called a factor. L2 is the factored out literaI. If binary 

factoring is performed on a derived clause and a = {}, then the conclusion is 

called a merge clause. 

HYPERRESOLUTlON: 

C .. ·C 1 n 

if n ~ 2 and 

CI" .. , Cn_1 are positive clauses and 

Cn contains n -1 negative literaIs (the rest are positive literaIs) and 

For aIl 1 ~ i,j ~ n-l, if i =t: j then Dom(a)nDom(a) = {} and 

The conclusion is called a hyperresolvent. The clauses CI"'" Cn_1 are caIled 

satellites, and Cn is called the nucleus. 

Negative hyperresolution is similar to hyperresolution. Instead of n-l 

negative literaIs in the nucleus, there are n -1 positive literaIs, and the satellites 

are negative clauses. 

PARAMODULATION: 

C'u{L} D 

«C' u{L[t ~ r]7r} u D) \{l:::::. r})a 

if LI7r = t and 

(l:::::.r)ED and 

a = mgu(t,l). 

The conclusion is called a paramodulant. D is called a paramodulator or from 

clause. C'u {L} is called a paramodulated clause or into clause. 
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Paramodulation has gone through many refinements since its introduction in 

[Robinson & Wos 1969-1] and [Robinson & Wos 1969-2]. A summary of the 

successful contributions made throughout the past several decades on 

paramodulation and equality reasoning in general can be found in [Nieuwenhuis 

& Rubio 2001] and [Degtyarev & Voronkov 2001]. 

The refinements to paramodulation add restrictions in the set of conditions. 

The versions of paramodulation that include additional conditions to the ones 

stated above are commonly referred to as restricted paramodulations, whereas 

the above stated mIe is referred to as unrestricted paramodulation. In this 

thesis, unless the word "restricted" or "unrestricted" is specifically stated, the use 

of the word "paramodulation" refers to any kind of paramodulation; whether it is 

restricted or unrestricted. One commonly used restricted paramodulation in 

modern theorem proYers, such as Vampire [Riazanov 2003] and E [Schulz 2002], 

is superposition. 

Since superposition is a restricted paramodulation, then the terminology,from 

clause and into clause, apply to superposition as weIl. 

SUPERPOSITION INTO NON-EQUALITY LlTERAL: 

C'u{L} D 

if Litt = t and 

(l :::::.r)E D and 

(J" = mgu(t,l) and 

t ~ 11 and 

1 (J" -1< r(J" • 
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SUPERPOSITION INTO A POSITIVE EQUALITY LITERAL: 

C'u{L} D 

«C'u{L[q ~ r]J u D) \ {I ~ r})o-

if L =. (s ~ t) and 

q EO sand 

LI" = q and 

(l ::::.r)E D and 

0- = mgu(q,/) and 

q ~ l' and 

10- -1< ro- and 

so- -1< to- . 

SUPERPOSITION INTO A NEGATIVE EQUALITY LITERAL: 

C'u{L} D 

«C' u{L[q ~ r],,} U D) \ {/::::. r})o-

EQUALITY RESOLUTION: 

C 

(C\{/*r})o-

if L=.(s*l) and 

q EO sand 

LI" = q and 

(l::::. r) E D and 

0- = mgu(q,l) and 

q~1' and 

10- -1< ro- and 

so- -1< 10- • 

(l *r)E C and 

0- = mgu(l,r). 

32 
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EQUALITY FACTORING: 

2.1.5 Simplification rules 

if ~ ==(lj ::::lj) and 

L2 == (12 :::: r2 ) and 

a = mgu(lp 12 ) and 

33 

Simplification rules are used on multiset of retained clauses to remove redundant 

clauses and tautologies. In addition, simplification rules are used to replace sorne 

clauses by smaller ones, e.g., demodulation (defined below). 

In the following list of simplification rules, we state the rule and then indicate 

the resulting multiset S'of retained clauses from the original multiset S after the 

application of the ruIe. 

DEMODULATlON: 

C'v{L} D 

(C'v{L[t ~ r ],,})a 

if D = {/:::: r} and 

LI". =t and 

a = mgu(t, 1) and 

t = la (t is an instance of l) and 

1,;- rand 

la ';- ra. 

Retained multiset: S' = (S\ {C'v{L} })v{(C'v{L[t ~ r ]".})a}. 

The clause (C' v {L[t ~ r ],,})a is -called a demodulant. D is called a 

demodulator. C'v{L} is called an into clause or demodulated clause. 

Demodulation is a restricted paramodulation ruIe in- which the replaced term t in 

the demodulated clause is an instance of the term 1 in the demodulator. In addition 
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to the restrictions over the unrestricted paramodulation, demodulation replaces the 

demodulated clause by the demodulant. 

DESTRUCTIVE EQUALITY RESOLUTION: 

C 

(C \ {I =/:- r})a 

if (1 =/:- r) E C and 

1 Ell and 

a = mgu(l,r) = {I ~ r}. 

Retained multiset: S' = (S \ {C}) u {(C \ {I =/:- r} )a}. 

SUBSUMPTION: 

If CES, DES, and there exists a substitution a such that Ca cD, then C 

subsumesD. 

Retained muItiset: S' = S \ {D} . 

SUSBSUMPTION RESOLUTION: 

~ and L2 are literaIs. 

if C = C' u {~} and 

D = D'u{L2 } and 

There exists a substitution a : 

~a = -,L2 and 

C'a cD' . 

Retained muItiset: S' = (S \ {D}) u {(D \ {L2 na} . 

T AUTOLOGY DELETION: 

If CES and C = C' u {A, -.A} or C = C' u {s :::::; s}, then C is a tautology. 

Retained muItiset: S' = S \ {C} . 
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2.2 Summary 

In this chapter we presented the basics of first-order logic required for an 

understanding of this thesis. We listed the cornrnon inference rules used in 

modern ATPs in a rnultiset representation to sirnplify the presented rnaterial in 

Chapter 3. 



CHAPTER 

3 

Delayed Clause-Construction 

In an ATP, a derived clause can be stored either explicitly as a data structure that 

contains references to its literaIs and their terms or implicitly in a data structure 

that contains references to the clauses from which it was derived. A clause stored 

explicitly in memory is referred to as a constructed clause, otherwise it is referred 

to as a non-constructed clause. Clause construction is the process performed by 

an A TP to transform a non-constructed clause into a constructed clause. 

Discarding a clause C is a two step process performed by an A TP. The first 

step is the construction of aIl the non-constructed clauses referring to C. The 

second step is the deletion of C from memory. 

In a linear derivation a large number of intermediate conclusions are generated 

and discarded shortly thereafter, because they are a means to an end (which is a 

goal clause). The time spent in constructing and discarding intermediate 

conclusions can be substantial. The use of a stalling strategy called delayed 

clause-construction (DCC) can reduce this time to a minimum by delaying the 

construction of intermediate conclusions until they are needed. However, there are 

cases where intermediate conclusions must be constructed. 

In this chapter, we begin by a brief discussion on the benefits of DCC and how 

it differs from other similar research done recently. We then introduce certain 

terms that are necessary to present a formaI definition of delayed clause­

construction. We state and discuss the cases in which intermediate conclusions 

must be constructed. We then derive a general formula for expressing an 
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intermediate conclusion in terms of constructed clauses, a single substitution set, 

and a single term replacement list. Finally, as a consequence of the derived 

general formula, we construct a mega-inference rule that combines several rules 

into one. 

3.1 Benefits of DCC 

3.1.1 Performance improvement 

The construction time of an intermediate conclusion is linear in its weight. When 

a few hundred or thousand short clauses are constructed and discarded, the overall 

performance of an ATP may not be affected much (see Chapter 6). However, 

when hundreds of thousands of long clauses are constructed, then the overall 

performance is affected a lot. The time spent in constructing and discarding 

intermediate conclusions can be substantial. The results of the experiments we 

conducted (see Chapter 6) reveal that the percentage oftime spent in constructing 

clauses can reach 65% of the total running time. By comparison with unification, 

which is considered as one of the most time consuming operations in an ATP, the 

time spent in constructing clauses is 4.86 times, on average, more than the time 

spent in unification (see Appendix F). This implies that clause construction can be 

a more time consuming process than unification. Therefore, the use of DCC to 

reduce the time spent in constructing clauses can improve the performance of an 

ATP (see Chapter 6). 

3.1.2 The reduction of memory requirements 
When DCC is employed in an A TP, intermediate conclusions are represented in a 

compact form that uses less memory than the amount needed to store the 

intermediate conclusions in their constructed form. A reduced representation of 

derived clauses, which is different from ours (see Chapter 6), was also 

accompli shed in WALDMEISTER [Gaillourdet et al. 2003], [Hillenbrand & Lochner 
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2002]. However, in W ALDMEISTER, the clauses are constructed first, in order to 

detennine infonnation useful for a heuristic assessment, and then they are 

"thrown l
" away except for minimal infonnation that allows the ATP to 

reconstruct the clause if necessary. In DCC clauses are generally not constructed 

except in few cases which are discussed in this chapter. 

3.1.3 Efficiency improvement 

Based on the theorems and corollaries presented in this chapter, we constructed an 

inference ruIe, called a mega-inference rule, that combines several inference rules 

into one. The main purpose of a mega-inference rule is to take large steps in a 

search, thereby improving the efficiency of an ATP. Examples showing the 

benefits of taking large steps in a search are given in [Wos et al. 1992]. The oldest 

example of combining multiple inference mIes into one single inference mIe in 

order to achieve Iarger steps in a search is hyperresolution. More recent examples 

are s-paramodulation [Benanav 1990], the linked inference principle [Veroff & 

Wos 1992], and the extended link strategy [Jeff Ho 1999]. However, alI of the 

aforementioned references combine multiple applications of a single inference 

ruIe, such as binary resolution or paramodulation in one rule. The mega-inference 

rule combines different inference rules into one. 

3.2 Definitions 

In this section, we present the fonnal definitions for term replacement list, p­

idempotent substitution set, constructed and non-constructed clause, goal clause, 

and delayed clause that are prerequisites for the understanding of delayed clause­

construction. 

1 This is the term used in [HiIIenbrand & Lochner 2002]. 



Chavter 3 - Delaved Clause-Construction 39 .. .. 

Definition 3.1: Term replacement list 

A terrn replacement list is a relation between positions in literaIs and terms. A 

finite terrn replacement list has the forrn 

- -
where n?:O, 7rp .•. ,7rn are, respectively, valid positions in the literaIs ~, ... ,Ln 

of sorne clauses, and tp ... ,tn are, respectively, the terrns replacing the terrns at 

positions 7rp- .• , 7r n in L" ... , in. The terrns being replaced are not important as 

long as the positions are valid. The empty term replacement list is denoted by 

r = ( ); in this case n = o. The literaIs L" ... , in are references (pointers) to 

specifie literaIs in sorne clauses stored in memory; the little arrow ~ on top is 

added to emphasize that. This specifie referencing is necessary for the following 

reasons. 

• If r is applied to an ordered clause that contains identical literaIs, then only 

the literaI referenced by a literaI in r is changed. 

• If r is applied to a multiset of clauses and any two clauses in this multiset 

contain identicalliterals, then only the literaIs specifically referenced by r are 

changed. 

Sorne properties of r = ( L, L, -) tl , ••• , in Ln -) t n) are the following: 

• Sorne or aIl of L, 1 , ... , in 1 may be the same. Therefore, {L, 1 , ... , in 1 } is 
KI Jrn KI trn 

a multiset. 

• Dom( r) = Set( {L, 1"., , ... , in 1"." }) denotes the domain of r . 

• L(r) = Dom(Dom(r)) = Set( {L" ... ,in }). 

• Ran(r)=Set({tp ... ,tJ) istherangeofT. 
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Definition 3.2: The application of a term replacement list to a clause 

The application of r to a clause C is denoted by Cr . If C = tjJ then Cr = tjJ • 

Suppose C={Ap ... ,Am}, m>û and r=(Zllffl -Hp ... ,LnLn ~tn). 

Cr is formed as follows. 

1. Make a copy of C and call it C' = {A/ , ... , Am'} . 

2. For i:= 1 to n 

If Li = AJ for sorne 1 S j sm then 

Replace A/ with A/[tJJl", 

3. Retum C' 

C' is Cr. 

40 

Line 2 checks if Li is pointing to a literaI in C, then the corresponding literaI in 

C' is changed. 

Example 3.1 

C = {AI,A2,AJ = {P(f(a,b)),-,Q(a,x),P(f(a,b))}. 

r = (AllI ~ g(b),A2Il ~ b,Allu ~ g(c),A3 1J.2 ~ d, A4 11.2 ~ d,Allu.1 ~ d). 

Make a copy of C and caII it C' . 

C' = {A/, A2' ,A3'} = {P(f(a,b)), -,Q(a,x),P(f(a,b))}. 

Table 3-1 Iists the iterations perforrned to obtain Cr. 
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Table 3-1: Example of an application of a term replacement Iist to a clause 

Iteration Old literaI Position 
Replacement 

New literaI 
term 

1 AI' = P(f(a,b» 1 g(b) AI' := P(g(b» 

2 A
2
' = -,Q(a,x) 1 b A

2
' := -,Q(b,x) 

3 AI' = P(g(b» 1.1 g(c) ~' := P(g(g(c») 

4 Al' = P(f(a,b» 1.2 d Al' := P(f(a, d» 

5 A. ~ C so nothing happens 

6 ~' = P(g(g(c») 1.l.l d AI' := P(g(g(d») 

Cr = C' = {A/, A2' ,A3'} = {P(g(d(d))),-.Q(d,x),P(f(a,d))} 

In Table 3-1, every entry in the old literai column is a literaI from C' before a 

terrn replacement is made. The corresponding entry in the new literai column is 

the literaI after the terrn replacement is made. The new literaI becomes the old 

literaI the next time a terrn replacement is done to this literaI. For instance, on the 

tirst iteration, A/ is equai to the original literai Al before the terrn f(a,b) at 

position 1 is replaced with g(b). The new literaI P(g(b)) becomes the old literaI 

at iteration 3. 

Partitioning property. Every terrn replacement list r can be partitioned into 

sequences rpo .. , rn , where n = 11:(r)l, aÎld 

for all 15, i,j 5, n, if i * j then 1:(r;)Il 1:(r) = {}, 

such that if a and fJ are elements of r, and a occurs before p, then if a and 

fJ are in the same partition r
J

, 15, j 5, n, then a occurs before fJ in r j . 
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Furthennore, the sequences 'l"'" 'n can be applied in any order to a clause C and 

the result would still be Cr. For instance, in Example 3.1, the partitions are: 

rI = (AllI ~g(b),AIIII ~g(C),A111.I1 ~d), 

r2 =(A211 ~b), 

r 3 = (A311.2 ~ d) , 

r4 = (A411.2 ~d). 

These partitions (sequences) can be applied in any order to C and the result would 

still be equal to Cr. For example, ((C'I)r2 )r3)r4 = «(C'4)r2 )rl )r3 = Cr. 

The ability to partition a tenn replacement list into sequences is a very useful 

property for an efficient implementation of the application of a tenn replacement 

list to a clause. For example, as will be shown later in de1ayed clause­

construction, most of the time only one or two literaIs need to be changed from 

one application of an inference rule to another. Because of the partitioning 

property of a tenn replacement list, only the partitions related to those literaIs 

need to be applied to those literaIs. Furthennore, optimizations on the application 

of a sequence can be done based on the positions. For example, if a tenn at 

position 1.1 in sorne literai appears severa! times in one of the sequences, then 

only the last one is applied. There is no need to apply the others. This is 

demonstrated in Example 3.2. 

Example 3.2 

C = {~,L2} = {P(a,b),Q(x)}. 

r=/1.1 ~g(a),1.1 ~g(a),1.1 ~b,1.1 ~c). 
\1 LI Il 1 

c, = {P(c,b),Q(x)} . 

There is no need to go through aIl of, in order to obtain the correct value for 

Cr. Since r contains only references to literai ~, then only one partition is 
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formed. This partition is equal to r itself. The terms at positions 1 and 1.1 are 

changed twice. There is no need to apply them both. Only the application of the 

last of each would suffi ce. Furthermore, the term at position 1 is a parent node in 

the tree (see Chapter 2 for term representation as a tree) of the term at position 

1.1, and the term replacement at position 1 occurs after the term replacement at 

position 1.1. Therefore, only the term replacement at position 1 needs to be 

performed. This implies that only one term replacement is needed instead of four, 

i.e. only the term replacement ~ t ~ c needs to be performed. This obviously 

saves a lot of time. 

Definition 3.3: Composition of term replacement Iists 

The composition of two term replacement lists, 

where n, m ;;:: 0 , is defined as 

Definition 3.4: Application of a substitution set to a term replacement list 

The application of a substitution set CY to r is defined as 

rCY=(~CYLI ~tlcy, ... ,LnCYLn ~tnCY). 

IfC={A1, ... ,Am }, m>O,then C(rcy) isformedasfollows. 
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1. Make a copy of C and call it C' = {A/, ... , Am'}. 

2. For i:= 1 to n 

If Lp·=Aj for sorne l:::;j:::;m then 

Replace A/ with A/[tPlr, 

3. Return C' 

C' is C,. 

The following are sorne properties on the relation between the application of 

substitution sets and term replacement lists. 

• If C = {AI' ... , An} is a clause and a is a substitution set, then 

• If C is a clause and a is a substitution set then C,a = (C,)a . 

• If C is a clause, a is a substitution set, and 'l' '2 are term replacement lists, 

• If C is a clause, (Y is a substitution set, and L E C , then 

L, E C, and L,a E C,a . 

• If C is a clause and LE C, then L, E C if and only if either Lé L(,) or 

- 1 LE L(,) and, does not change L. If L, E C then we write L, = L. 

For ex ample, suppose C = {L} = {P(f(a,b))} and 

,= / LI ~ a,LI ~ f(b,c), LI ~ a,LI ~ b) then \1' l.l ,1.2 

, does not change Land therefore, L, = L. 

1 This property is important because a term replacement list is associated with clauses. Therefore, 
a c1ear definition of the notation Li (which is an application ofa term replacement list to a literaI 
instead of clause) must be given. 



Chapter 3 - Delaved Clause-Construction 45 

Definition 3.5: P-idempotent substitution set 

A p-idempotent (i.e., potentially idempotent) substitution set is a substitution set 

that contains no circular substitutions. When applied recursively a finite number 

of times, a p-idempotent substitution set produces an idempotent substitution. A 

p-idempotent substitution is distinguished from an idempotent substitution by 

" ... " on top of the substitution symbol, such as if and ë·. We write if ~ n (Y to 

mean 

(Y = if(if( ... if(if(if(ifif))) .. . )), for sorne n ~ O. 
\ 1 

n 

n is the minimum number of applications of if over itself needed to bec orne 

idempotent. The idempotent set (Y obtained from if is unique, i.e., for aIl m > n , 

if ~ m (Y; for all m < n , the resulting substitution obtained from the application of 

if over itself m times remains p-idempotent. When n = 0, if ~o (Y => (Y = if . 

Therefore, every idempotent substitution set is p-idempotent. If n is not important, 

we write if ~ (Y • 

The following are sorne properties of p-idempotent substitution sets: 

• If if ~ (Y then Dom( if) = Dom( (Y) • 

• The composition of p-idempotent substitution sets IS associative, I.e., if 

if,ë',li are three p-idempotent substitution sets, then 

• The associativity property implies that ififif = if(ifif) = (ifif)if . Therefore, if 

if ~ (Y then 

(Y = if(if( ... if(if(ëf(ifif))) . .. )) = if if ···if, for sorne n ~ o. 
, , l "--v---' 

Example 3.3 

v 
n n 

if = {x ~ f(y),y ~ g(z, w),z ~ f(w), w ~ a} is p-idempotent because it can be 

transformed into an idempotent substitution as follows (using the definition of 

composition of substitution sets stated in Chapter 2). 
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al = aa = {x ~ f(g(z, w)),y ~ g(f(w),a),z ~ f(a), w ~ a} 

a 2 = ala = aal = aëra: = {x ~ f(g(f(w),a)),y ~ g(f(a),a),z ~ f(a), w ~ a} 

a 3 = ŒiY = ŒŒ2 = ŒŒŒŒ = {x ~ f(g(f(a),a)),y ~ g(f(a),a),z ~ f(a), w ~ a} 

a4 = a3a = Œa3 = ëra:ŒŒŒ = {x ~ f(g(f(a),a)),y ~ g(f(a),a),z ~ f(a), w ~ a} 

Since a4 = Œ3 then the transfonnation process is over and a ~ (J' , where 

(J' = ŒŒŒŒ = {x ~ f(g(f(a),a)),y ~ g(f(a),a),z ~ f(a), w ~ a}. 

Example 3.4 

Table 3-2 shows sorne examples of substitution sets in the first column and 

whether or not they are p-idempotent in the second column. 

Table 3-2: Examples of p-idempotent and not p-idempotent substitution sets 

Substitution set P-idempotent Idempotent 

(1) {x ~ y,z ~ f(y)} Yes Yes 

(2) {x ~ y,y ~ f(z),z ~ w} Yes No 

(3) {x ~ y,y ~ Z,z ~ f(x)} No No 

In Table 3-2 the substitution set in (2) is p-idempotent because it can be 

transfonned into the idempotent substitution set {x ~ f(w),y ~ f(w),z ~ w}. 

However, the substitution set in (3) is not p-idempotent because of the circular 

substitution. It is not possible to transfonn this substitution set into an idempotent 

substitution by applying the substitution on itself a finite number of times. 

Partitioning property. A p-idempotent substitution if can be partitioned into 

k :2': 0 idempotent substitution subsets, 111' . .. , Ilk such that a = JlI u··· U Ilk • 

Furthennore, there exists a partitioning with a minimum number of partitions and 

there exists a partition with the following property: 
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the subsets Ji" ... , flk are ordered in a way such that for every 1 :::; i :::; k , 

k 

for aIl v E Dom(fli) => v ,,-0 U Ran(flj ). 

J=l 

Example 3.5 

if = {x ~ f(y),y ~ g(z, w),z ~ f(w), w ~ a} can partitioned into idempotent 

substitution sets. The possible partitions are shown in Table 3-3. 

Table 3-3: Partitions of (j = {x -+ f(y), y -+ g(z, w),z -+ f(w), W -+ a} 

Partitions of ii = {x ~ f(y), y ~ g(z, w),z ~ f(w), w ~ a} 

(1) P, = {x ~ f(Y)},P
2 

= {y ~ g(z, w)},PJ = {z ~ f(w)},p.{w ~ a} 

(2) P, = {x ~ f(y), w ~ a}, Pz = {y ~ g(z, w)},P
3 

= {z ~ f(w)} 

In Table 3-3, (1) is the partitioning of if into idempotent subsets such that none 

of the variables in the domain of fli appears in the range of the following sets. 

The partitioning in (2) shows a partitioning with the minimum number of 

partitions. 

The following definitions and theorems conceming p-idempotent substitution sets 

are essential for deriving a general expression for a sound non-constructed 

conclusion. 

Definition 3.6: Consistency of p-idempotent substitution sets 

Two p-idempotent substitution sets ëi and ë' are consistent if and only if 

1. Dom( if) () Dom( ë) = {} , and 

2, ifuë' is p-idempotent. 
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Ihis definition can be extended to any number of p-idempotent substitution sets. 

Notice that since idempotent substitution sets are p-idempotent, then the above 

definition applies to idempotent substitution sets as weIl. 

Definition 3.7: Confluent p-idempotent substitution sets 

Iwo p-idempotent substitution sets 0:, and 0:2 are confluent if and only if 

~ ~ B and (i2 ~ B . If (i, and (i2 are confluent, we write 0:, U (i2 . Confluent p­

idempotent substitution sets have the following properties. 

Property 1. If (il U (i2 then Dom( (fI) = Dom( (f2) . 

Property 2. If (il U (i2' then for any p-idempotent set (i3' such thatlT; and (i3 are 

consistent, and (i2 and 0:3 are consistent, (f, u (f3 U (i2 U 0:3 . 

Example 3.6 

Table 3-4 shows sorne examples of p-idempotent substitution sets that are 

confluent and not confluent. 

Table 3-4: Examples of confluent and not confluent p-idempotent 
substitution sets. 

a, 0"2 Confluent 

(1) {x ~ f(y),y ~ g(z),z ~ a} {x ~ f(a), y ~ g(z),z ~ a} Yes 

(2) {x ~ f(y), y ~ g(z)} {x ~ f(y),y ~ g(w)} No 

(3) {x ~ f(w),y ~ g(w)} {x ~ f(w), y ~ g(z),z ~ w} No 

~ and (i2 of row (2) in Table 3-4 are not confluent because (i, ~ B, and 

(f2~()2' where ~={x~f(g(z)),y~g(z)}, B2={x~f(g(w)),y~g(w)}, 

but ~ "# B2 • In row (3) lT; and CT2 are not confluent because their domains are not 

equal. 
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Theorem 3.1 

Given a p-idempotent substitution set if, if if ~ (J then i:i .lJ. (J . 

Proof: 

Since every idempotent substitution set is p-idempotent, then (J is p-idempotent 

and (J ~ (J. If if ~ (J then we have if ~ (J and (J ~ (J. This implies that 

i:i .lJ. (J by Definition 3.7. Therefore if if ~ (J then if.lJ. (J .0 

Theorem 3.2 

Given two idempotent substitution sets (J) and (J2 that are consistent, if none of 

the variables in Dom((J)) occurs in any of the terms in Ran((J2) ' then 

Proof: 

The proof is listed in Appendix B due to its technical complexity. 

Theorem 3.3 

Given k:2: 2 idempotent substitution sets (JI"'" (Jk that are pair-wise consistent, 

if for each 1 S; i s; k -1 none of the variables in Dom( (Ji) occurs in any of the 

terms in any Ran( (Jj)' where i + 1 S; j S; k, then (JI u··· U (Jk ~ (JI ••• (Jk' 

Proof: 

The proof is listed in Appendix B due to its technical complexity. 
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Theorem3.4 

Given k 2 2 p-idempotent substitution sets 0"1"'" O"k that are pair-wise 

consistent, if for each 1 ::; i ::; k -1 none of the variables in Dom( ~) occurs in any 

of the terms in any Ran( d)), where i + 1 ::; j ::; k, and d] 4 0"] , ••• , d k 4 O"k' then 

d u···ud 40""'0" 1 k] k' 

Proof: 

Since ~ 4 O"w •• ,dk 40"k then by Theorem 3.1 ~.u O"p- •• ,dk .u O"k' Since 

d] .u 0"], ••• , dk .u O"k and ~, ... , d k are pair-wise consistent, then by the second 

property from Definition 3.7 d 1 u···udk .u 0"] U"'UO"k' 

By Definition 3.7, d] u",udk .u 0"] U"'UO"k means ~ u",udk 4 e and 

By Definition 3.5 e is unique; therefore e = 0"1'" O"k • Since d 1 u··· U d k 4 e , 

Definition 3.8: Constructed and non-constructed clauses 

Abstractly, a clause is constructed when its literaIs are explicitly listed, and it is 

no longer expressed in terms of other clauses, substitution sets, and term 

replacement lists; otherwise, the clause is referred to as a non-constructed 

clause. For example, {P(x),Q(a)} is a constructed clause, whereas {P(X)}O"T is a 

non-constructed clause. 

"To evaluate an expression representing a non-constructed clause" or simply "to 

evaluate a non-constructed clause" means to replace aIl references to literaIs from 

constructed clauses by copies of the literaIs themselves and aIl substitution sets 

and term replacement lists are then applied to those literaIs. A non-constructed 
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clause becomes a constructed clause when the expression representing the non­

constructed clause is evaluated. When a constructed clause is constructed, it is 

also normalized. Therefore, a constructed clause is a normalized clause. 

To avoid confusion between constructed and non-constructed clauses, we use 

" ... " on top of a clause label to denote a non-constructed clause. For example, 

given the two constructed clauses ~ = {---,Q(x),R(y,x)} and ~ = {Q(f(a))}, 

their resolvent C = {R(x,f(a))} is a constructed clause. On the other hand, 

ë=«~\{--,Q(x)})u(~\{Q(f(a))}))Œ, where Œ={x~f(a)l, is a non-

constructed resolvent. If ë is evaluated and the resulting clause is exactly the 

same as C, then ë is said to be an acceptable representation of C or simply, ë 
is acceptable. 

In general, when a non-constructed conclusion, ë'(I) , of an inference I IS 

evaluated and the resulting clause is exactly C(I) , then ë'(I) is acceptable. If 

ë'(I) is acceptable, then we write ë'(I) ~ C(I). 

Example 3.7 

S = {~ , ~ ,P,,} is a set of constructed clauses such that 

~ = {~} = {R(f(g(x),y))}, ~ = {L2 } = {g(a):::! bl, and p" = {LJ = {f(x,y):::! a}. 

Suppose that !1 = (~, ~) is a linear derivation such that ~ is a paramodulation 

from ~ into ~, and ~ is a paramodulation from p" into C(~). The first 

inference yields the paramodulant (after normalizing the variables) 

CCI;) = {L4} = {R(f(b, x))} , the mgu ŒI = {x ~ a}, and the term replacement list 

TI = ( ~ lu ~ b) . Before using ~ as a paramodulator in inference ~, we rename 

its variables according to the naming convention stated in Chapter 2. Let 
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~' = ~e = {~'} = {f(z,u) =:: a}, where e = {x ~ z,y ~ u} is a variable renaming 

substitution set. The inference I; yields the paramodulant CCI;) = {Ls} = {R(a)}, 

the mgu 0"2 ={z~b,u~x} and the term replacement list '2 = (L411 ~a). 

Table 3-5 shows sorne acceptable and unacceptable non-constructed conclusions 

for Example 3.7. 

Table 3-5: Examples of acceptable and unacceptable non-constructed clauses 

Evaluation 

Non-constructed conclusion (variables Acceptable 

normalized) 

(1) ë·(I.) = «P, u p,) \ {L) )T,a, {R(f(b,x»)} Yes 

(2) ë'(I) = «C(I.) u P,') \ {L3})T,a, {R(a),J(x,y) :::: a} No 

(3) ë'(I,) = «C(I.) u P,') \ {L3'})T,Œ, {R(a)} Yes 

(4) ë"(I,) = ««(P, u p,) \ {L,})T,a)u P,') \ {L3'})T,Œ, {R(f(b,x))} No 

(5) ë'(I,) = ««(P, u p,) \ {L,})T,a) u P,') \ {L3'nT,' a, 
{R(a)} Yes 

where T,' = (i,l, ~ a) 

(6) ë'(I,) = ««(P, u p,) \ {L,}) u P,') \ {L3'nT,aJT,' a, 
{R(a)} Yes 

where T,' = (i,t ~ a) 

The non-constructed conclusions (2) and (4) in Table 3-5 are unacceptable for 

the following reasons. 

In (2) the expression indicates that the literaI L3 should be removed from 

C( I;) u p/ . L3 is not an element of ~' . It is an element of ~ and the variables in 

~ were renamed. Therefore, (C(I;) u ~') \ {L3} = CCI;) U ~'. The evaluation of 

(C(I;)u ~')'20"2' as indicated in the Table 3-5, yields {R(a),j(x,y) =:: a} which 
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IS not the correct paramodulant {R(a)}. Therefore, the non-constructed 

conclusion in (2) is unacceptable. A similar non-constructed conclusion that is 

acceptable is given in (3), where L3 is replaced with L3' . 

In (4) the literaI referred to in '2 is L4 = R(f(b,x)). L4 does not exist in the 

expression ««~ u 1;) \ {L2})'lal)u ~') \ {L3'} • Therefore, '2 has no effect on the 

expression ««~ u 1;) \ {L2})'lal)u P;) \ {L3'}. The evaluation of the non­

constructed conclusion in (4), as indicated in Table 3-5, yields {R(f(b,x))} 

which is not the correct paramodulant {R(a)}. Therefore, the non-constructed 

conclusion in (4) is unacceptable. A similar but acceptable non-constructed 

conclusion is given in (5), where '2 is replaced with '2' . Another acceptable non­

constructed conclusion is given in (6). In comparison with the expression in (5), 

the substitution set al and the term replacement list '1 in (6) were moved to the 

front of the expression. The ability to move substitution sets and term replacement 

lists to the end of an expression of a non-constructed conclusion while keeping it 

acceptable is a fundamental issue in DCC as will he shown later on. 

Definition 3.9: Goal clause 

A goal clause is a constructed clause (except if it is the empty clause) derived at 

depth k ~ 1 by a linear derivation from a set of constructed clauses, and it 

conforms to criteria either initially set by the user or determined automatically by 

an ATP. A goal clause is retained in memory and used in derivations under the 

same restrictions or a subset of those restrictions imposed on input clauses. Sorne 

examples of goal clauses are the following. 

• The empty clause which when obtained marks the end of a proof by 

refutation. 
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• A unit clause that is not subsumed by aIready retained constructed clauses. 

Unit clauses are use fuI in UR -resolution [Wos et al. 1992] and in the unit 

preference strategy [Wos et al. 1964]. 

• A lemma as defined in [Loveland 1978] and [Astrachan 1992]. 

• An equation or disequation. Those are useful when equality based inference 

and simplification rules are applied. 

Definition 3.10: End of a derivation 

We say the end of a derivation is attained when one of the following occurs. 

• The empty clause is obtained. 

• A goal clause is obtained. 

• The depth bound is reached in an iteratively deepening depth first search (see 

Chapter 4). 

Definition 3.11: General form of the conclusion of an inference rule 

We denote the multiset union ofthe literaIs of a multiset of clauses V by 1:.(V). 

Formally, if V = {C], ... ,Cn } is a multiset of clauses then the multiset 

n 

1:.(V)=UC;. 
;=] 

Using a term replacement list, we can write the conclusion of any of the inference 

rules listed in Chapter 2 in the form 

«C \ D) Y E)a( ra), 

where C = L(Prem(I)), D c L(Prem(I)), E c {-,L}, LE L(Prem(I)), I is 

an inference, a is an mgu of sorne terms or literais from the premises, and r is a 

term replacement list of sorne terms in sorne literaIs from the premises. Table 3-6 

lists the conclusions of the inference rules from Chapter 2 but expressed using r 
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instead of L[I -). r ]Jr or L[ q -). r ]Jr. The premlses and the conditions of the 

inference mIes remain exactly the same. If r = ( ) then a(ra) = a . In aIl the 

inference mIes, except equality factoring, E is not shown because E = { } . 

Table 3-6: Inference rules conclusions in the form ((C\D)uE)a(ra) 

Inference Rule Conclusion r 

Binary «C, uC2 ) \ {A"B})a(ra) ( ) 
resolution 

'--v--' '----v---' 
C 0 

Binary (C \ {L
2
})a(ra) ( ) y '--v-' 

factoring C D 

Hyper- «C, u··· uCJ \ {A" ... , An_" ,B" ... "Bn_,})a(ra) 
'------v-----" ' D 

, 
( ) 

resolution 
C 

Paramodula- «C'u {L} u D) \ {l =:: r})a(ra) (il. ~r) 
tion 

'-----v-----' L...-.v--' 
C D 

Superposition 

into non-
«C' u {L} u D) \ {l =:: rna(ra) (il. ~r) '-----v-----' L...-.v--' 

C 0 
equality 

Superposition 

into a positive 
«C' u {L} u D) \ {l =:: r})a(ra) (il. ~ r) '-----v-----' L...-.v--' 

C 0 
equality 

Superposition 

into a negative 
«C' u {L} u D) \ {l =:: r})a(ra) (il. ~ r) '-----v-----' L...-.v--' 

C 0 
equality 

Equality (C \ {l :/:. rna(ra) ( ) y L...-.v--' 

resolution C D 

Equality «(C' u {L" L
2
}}) \ {L2 n u {,L;})a(ra) (i:l, ~ r2 ) 

factoring 
'--------v--' '--v-' ~ 

C D E 

Demodulation 
«C' u{L} u D) \ D)a(ra) 

'---v------' y 
C D 

(il. ~ r) 
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Theorem3.5 

ln a linear-input derivation, if no intermediate conclusion is a from clause, then 

there is no need to construct any intermediate conclusion, and every non­

constructed intermediate conclusion C can be expressed in terms of variants of 

constructed clauses, a single substitution set (j, and a single term replacement 

list r. (j is the composition of ail the mgu 's resulting from the inferences 

performed from the beginning of the derivation up to and including the inference 

that produced C. r is the composition of al! the term replacement lists from the 

beginning of the derivation up to and including the inference that produced C. 

Proof: 

The proof is listed in Appendix B due to its technical complexity. 

Corollary 3.1 

ln a linear derivation, if every far parent and every intermediate conclusion that 

is a from clause is constructed, then any intermediate conclusion that is not a far 

parent or a from clause can be expressed in terms of the input clauses, the 

constructed intermediate clauses, a single substitution set, and a term 

replacement list. 

Proof: 

Suppose S is the set of input clauses used in a derivation ~. Let T be the set of 

intermediate conclusions that are far parents and from clauses. Therefore, T is a 

set of constructed clauses. Let S' = SuT. S' is a set of constructed clauses. With 

S'as a set of constructed clauses, ~ can be viewed as a linear input derivation 

where each si de premise is a variant of a clause from S' . In this case, we have the 

same conditions as the ones indicated in Theorem 3.5. Therefore, by Theorem 3.5, 

we can conclude that any intermediate conclusion that is not a far parent or a 
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from clause can be expressed in terms of the input clauses, the constructed 

intermediate clauses, a single substitution set, and a term replacement list. 0 

Corollary 3.2 

In a linear derivation, if every far parent and every intermediate conclusion that 

is a from clause is constructed, then any intermediate conclusion C that is not a 

far parent or a from clause can be expressed in terms of the input clauses, the 

constructed intermediate clauses, a single p-idempotent substitution set if, and a 

term replacement list T. if is the union of ail the mgu 's resulting from the 

inferences performed from the beginning of the derivation up to and including the 

inference that produced C. T is the composition of ail the term replacement lists 

from the beginning of the derivation up to and including the Inference that 

produced C. 

Proof: 

Suppose ~=(~, ... ,Ik)' From Corollary 3.1, we can conclude that any 

intermediate conclusion ë'(J;) , 1 ~ i ~ k , that is not a far parent or afrom clause 

can be written in terms of constructed clauses (input and intermediate 

conclusions), a single idempotent substitution set CT' . .i' and a term replacement 

list. From Theorem 3.1 and Theorem 3.3 we conclude that the union of consistent 

idempotent substitution sets is confluent with the composition of those 

substitution sets. Therefore, we can replace CT,'" CT; with if, . .; = CT, u··· u CT; , for 

1 ~ i ~ k, and hence, any intennediate conclusion ë'(IJ that is not afrom clause 

or a far parent can be expressed in tenns of constructed clauses, a single p­

idempotent substitution set 0;, = CT, u··· U CT, , and a tenn replacement list. 0 
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Definition 3.12: Delayed clause 

In a Iinear derivation, any intennediate conclusion that is not constructed is a 

delayed clause. When the end of a derivation is reached, any deIayed clause that 

has not yet been constructed is discarded. 

Definition 3.13: Delayed clause-construction 

Except for hypeITesoIution, aIl the inference rules Iisted in Chapter 2 perfonn 

either a unification on two tenns in one or two literaIs, or perfonn a unification 

between two literaIs. In a linear derivation, there is no need to construct a whole 

clause (i.e., intennediate conclusion) just to perfonn a unification on a part of it. 

However, sometimes there are cases where an intennediate conclusion needs to be 

constructed and other times when it is not necessary to construct the clause but it 

is better to construct it. From the theorems and coroIlaries stated above, we can 

deduce that when a clause is used as a far parent or as a from clause, then its 

construction is necessary. If an intennediate conclusion is not a far parent or a 

from clause but confonns to certain criteria that would make it potentially useful 

beyond its CUITent purpose (i.e. as an intennediate conclusion), then it is worth 

constructing the whole clause and storing it for future use. Another reason to 

construct an intennediate conclusion is if the time it takes to construct it and 

detennine its attributes is less than the time it takes to detennine its attributes 

(e.g., length, weight, ... ) without constructing it (see Appendix C). The above 

three justifications for constructing delayed clauses faIl into one of the three 

foIIowing categories used as guidance for an ATP to decide whether to construct a 

delayed clause or not. 

• Strategies implemented. 

• Heuristics. 

• The time to construct a clause and then detennine its attributes with the 

time to detennine its attributes without constructing it. 
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These three issues are discussed further in Chapter 4 when semi-linear resolution 

is introduced. The strategy of delaying the construction of intermediate clauses 

without the need to maintain more than one substitution set and one term 

replacement list, is called delayed clause-construction (DCC). 

It is possible to delay the construction of intermediate conclusions if several 

substitution sets and several term replacements lists are maintained, but this has 

two disadvantages. First, more storage space is required for each substitution set 

and term replacement list. Second, more complicated data structures are needed to 

create a relationship between the substitution sets and term replacement lists so 

that when the time cornes to construct a delayed clause, the construction process 

can be do ne efficiently. If more complicated data structures are used, then more 

operations are needed for their maintenance, and thus more time is wasted. On the 

other hand, if a single substitution set and a single term replacement list are used, 

then less storage space is needed and the data structures are quite simple and easy 

to maintain, as will be shown in Chapter 6. 

Theorem 3.5 and corollaries 3.1 and 3.2 prove that the construction of an 

intermediate conclusion can be expressed in terms of constructed clauses, a single 

p-idempotent substitution set, and a single term replacement list. Furthermore, 

any delayed clause can be constructed at a later time from the information of the 

maintained substitution set and term replacement list. We now summarize the 

conditions required to be able to delay clauses and use a single substitution set 

and term replacement list to construct any of the delayed clauses at a later time. 

Let ~ = ( I; , ... , ~ ), k ~ l, be a linear derivation of a goal clause G with Cinit 

as its initial clause. The construction. of an intermediate conclusion C(I;), 

1 ~ i < k , can be delayed if ë'(I;) ~ C(IJ. From Corollary 3.2 we deduce that 

ë'(I;) ~ CCI;) is possible if the following three conditions are satisfied. 



Chapter 3 - Delaved Clause-Construction 60 

Condition 1: Cinit is a constructed clause and every clause in the multiset union 

k 

U D(I;) is a constructed clause. 
i=J 

k k 

Condition 2: Vars(Cinit)nVars(UD(J;))={} and for ail CEUD(J;) and for 
i=1 i=) 

k 

aIl DE U D(I;), if C:;t: D then Vars(C) n Vars(D) = {} . 
i=) 

In other words, no variable is shared between the initial clause and any of the side 

premises, and no variable is shared between any of the side premises. 

Condition 3: The mgu's resulting from the inferences I;, ... ,I;, must be p-

idempotent and consistent. 

Condition 1 ensures that only intermediate conclusions in a linear derivation 

can be non-constructed clauses. If one of the intermediate conclusions in a linear 

derivation is used as a side premise, that is if an intermediate conclusion is a far 

parent, then it must be constructed first. 

Condition 2 says that the variable names of any two si de premises must be 

disjoint. This ensures that every mgu formed from the unification of terms or 

literais at any depth is consistent with aIl the mgu' s formed at earlier depths. This 

eliminates variable substitution ambiguity when the union of aIl the mgu's is 

formed. Condition 2 is very important because in DCC intermediate conclusions 

are generallyl not constructed and normalized. Therefore, variables of aIl clauses 

participating in the linear derivation are susceptible to modification. Any 

ambiguity concerning the substitution of variables by the substitution terms can 

lead to an unsound derivation due to the' dependency of the variables upon each 

other. Chapter 6 demonstrates how the renaming of variables in a side premise 

can be done efficiently (in almost constant time) without the need to traverse the 

clause. 

1 Only far parents andfrom clauses are constructed. 
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Condition 3 is necessary to maintain a single substitution set which can be 

accessed at any time during a linear derivation in order to construct a delayed 

clause without leading to an unacceptable constructed clause. Condition 3 is also 

necessary for an efficient backtracking in depth-first search. Without Condition 3, 

backtracking becomes very inefficient, and practically impossible without the 

storage of additional information about the derivation (see section 3.3). 

The three conditions ensure that the construction of a delayed clause at any 

time during a linear derivation leads to a clause which is exactly the same clause 

had the delayed clause been constructed at the time of its generation. 

Consequently, any clause obtained by a linear derivation employing DCC is 

obtained by a sound derivation. This is demonstrated in Example 3.8. 

Example 3.8 

S = {B) , B2' B3} is a set of input clauses, where 

B) = {l'IJ,L2)} = {P(f(xo)),Q(xo)} ' 

B2 = {~2,L22} = {-.P(xo),Q(xo)} , 

B3 = {~3,L23} = {-.Q(a),-.Q(f(b)}. 

In Figure 3-1 the derivation of the clause C3 = {Q(f(a)),Q(f(b))} from S is 

shown. DCC is not used in this derivation, so the intermediate conclusions C) and 

C2 are constructed and their variables normalized. B2' = B2B where 

B = {xo ~ x)} is variable renaming substitution. The circled literaIs are the 

resolved upon literaIs. C) is a far paren.t (indicated by the dashed line) but it is 

shown to the right of C2 to emphasize the fact that it is a constructed clause. 

When DCC is not used, intermediate conclusions are constructed and the 

substitution sets are discarded because they are not needed anymore. However, 

when DCC is used, intermediate conclusions are generally not constructed. The 

substitution sets are combined. The combination is performed as a union instead 
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of a composition for a very important reason. The reason is to be able to extract 

the information from the substitution sets in order to construct a delayed clause. 

Figure 3-2 performs the same derivation as in Figure 3-1 but with DCC. The 

reason why the mgu's must be combined as a union and not as a composition of 

substitution sets is demonstrated in Figure 3-3 (see section 3.3). 

\ 
\ , , , ---

Figure 3-1: An example of a linear derivation without DCC. 

In Figure 3-2 the initial clause of the linear derivation and si de premises are 

labeled B)\Bg ,B: ,C)4 instead of BI'B2 ,B3 ,C) because they are variants of 

BI'B2,B3 ,C). B: ,Bg ,B: ,C)4 are detennined as follows: B: = Bl}", Bg = B/)2' 

B: = Bi)3' C)4 = C)B4, where BI = {}, B2 = {xo ~ x)}, ~ = {}, and B4 = {xo ~ x2 } 

are variable renaming substitution sets. The intermediate conclusions are kept as 

non-constructed clauses. ë·(J;) in Figure 3-2 corresponds to CI in Figure 3-1. 

Since it is a far parent it is constructed and labeled CI
4 

• 
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«{P(f(xo))' Q(xo)} u {-,P(xt), Q(x)}) \ 
, v ''----v-------' 

B: B~ 

({P(f(xo))} u {-,P(xt)} ))O't 
'------y--J "---v----' 

al PI 

«{P(f(xo)),Q(xo)} u {-,P(x), Q(x)} u {-,Q(a), -,Q(f(b)}) \ 
, v ''----v-------'' v ' 

B: B; Bi 

({P(f(xo»} u {-,P(x)} u {Q(xJ} u {-,Q(a)}))(O't ua,) 
'------y--J "---v----' ~ '---v---' 

~ A ~ A 

«{P(f(xo))' Q(xo)} u {-,P(x), Q(x)} u 
, v ''----v-------' 

B: B: 
{-,Q(a), -,Q(f(b))} u {Q(x

2
), Q(f(x,))}) \ 

, v J \ v 1 

B; C,4 

({P(f(xo»} u {-,P(x)} u {Q(xo)} u {-,Q(a)} U 
'------y--J "---v----' ~ '---v---' 

al PI a2 P2 

{-,Q(f(b))} u {Q(x,)}»)(O't u 0'2 ua) 
'----v----' '---v---' 

a, p, 

Constructedversion of ë"(IJ 

Figure 3-2: An example of a linear derivation using DCC. 
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3.3 P-idempotent substitution sets in DCC 

In this section we explain why it is necessary in DCC to keep the maintained 

single substitution set as a union rather than a composition of the mgu's resulting 

from the application of the inference rules. 

Suppose that during a linear deduction process the intermediate conclusions are 

kept as non-constructed clauses, and the accumulation of mgu's are stored as 

composition of substitutions rather than a union of substitutions. If an ATP 

decides at depth k to construct an intermediate conclusion that was generated at 

depth i < k (i.e., a delayed clause) it would be impossible without the need to 

perform the linear derivation again. This is demonstrated in Figure 3-3. 

P-idempotent single substitution set. vs. Idempotent single substitution set. 
Mgu 's combined as a union. Mgu's combined as a composition. 

0'1 U0'2 == {XI ~ f(xo)'xo ~ a} ap'2 = {xo ~ a,xI ~ f(a)} 

1 ë'(I) J 1 ë'(l) 1 

Construct and Construct and 
nonnalize variables. nonnalize variables. 

1 
C(1) == {Q(xo),Q(f(xo))} 

1 1 
C(l) = {Q(a),Q(f(a))} 

1 
Correct Incorrect 

Figure 3-3: An example demonstrating the problem with the composition of 
substitutions as opposed to the union of substitutions when delayed clauses 
are constructed. 

In Figure 3-3 the idempotent version of the substitution set from Example 3.8 did 

not work because it was not possible to retrieve the subset 0"1 from 0"10"2' When 

the composition 0"10"2 was formed, the separation of the substitution sets was lost. 
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In a sense, the substitution terms were blended. On the other hand, the p­

idempotent version, which is the union of the mgu's, of the maintained 

substitution set does not have this problem. a] can be easily extracted from 

~ u a2 • AIl that is needed is to label the elements of ~ u a2 so that they can be 

identified as subsets of a] or a 2 • There are several ways to implement the 

labeling system. For example, a tag with the depth at which the mgu is formed 

can be attached to each substitution term as shown in Figure 3-4 (top). Another 

possibility is to maintain an ordered set and mark the beginning and end of each 

subset as shown in Figure 3-4 (bottom). Those are simple direct and easy to 

implement methods. 

a] ua2 = {x] ~ f(xo)'xo ~ a} 
10 I;l +-__ --11 Tags indicating the depth at which 1 

U u 1 the substitution was added. 

1 Start of al 

1 End of al Start of a 2 1 

Figure 3-4: Possible implementations of the p-idempotent set ~ u a2 that 

make it easy to extract (f] and (f2. 

Another advantage of maintaining a p-idempotent set of the union of the mgu's 

over an idempotent set of the composition of the mgu's is the ability to backtrack 

efficiently in a depth-first search algorithm. Wh en backtracking from depth k to 
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depth k -1, for k > 1, then aU that is needed is the deletion of the substitution 

tenns that were added at depth k. An efficient implementation, such as the start­

end labelling (see Figure 3-4), can perfonn the deletion operation in constant 

time. Backtracking is not limited only to the previous depth but to any lower 

depth. Suppose we want to backtrack to depth j > 1 from k > j , and suppose the 

maintained p-idempotent substitution set is au ' then aIl we have to do is remove 

a
j
+u from au and we will be back to a\..j. 

3.4 Mega-Inference Rule (MIR) 

The mega-inference rule is a direct consequence of DCC. From Theorem 3.5 and 

CoroUary 3.2 we conclu de that in a derivation 11 of length k, every intennediate 

conclusion ë·(IJ, 1 ~ i ~ k, can be expressed as (see Appendix B) 

where 

• m is the total number of variants of clauses from a set of constructed clauses S 

used in 11, 

• for aIl l~j~m, rj E{I, ... ,n}, n=ISI, and B: =BrBj.' where Br ES, and 
J J J 

Bj is variable renaming substitution, such that 

j-l 

Ran(Bj)n(U Vars(B;)u Vars(Cinit » = {}, 
q=l q 

• al . .i = al u·· . u ai , where al c Cinit and for aIl 1 ~ j ~ i , 

• a j c: L(!D(I.)u· .. u !D(I
j

_ I », 
• Pu = Pl u···u /li' where for aU 1 ~ j ~ i, 
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Let ru be the conjunction of aIl the conditions of aIl the inference rules applied 

in the derivation d, then we can write the mega-inference rule as 

BI···Bm 
~ ~ -f 

1 m ,1 rl .. k· 
«Br, u···u Br

m
) \ (au u PU))(]'LJrU(]'U) 

3.5 Summary 

In this chapter we presented a formaI treatment of delayed clause-construction. 

We defined the terms, term replacement list, p-idempotent substitution, 

constructed and non-constructed clause, and delayed clause. We showed that in a 

linear derivation every intermediate conclusion can be expressed in terms of 

constructed clauses, a single p-idempotent substitution set, and single term 

replacement list and thus there is no need to construct it. We showed that, in order 

to be able to construct a delayed clause at a later time and to perform efficient 

backtracking, the substitution set must be the union of p-idempotent mgu's 

resulting from the inference rules applied in a linear derivation. We discussed the 

three cases in which intermediate conclusions must be constructed. The cases 

occurwhen: 

• an intermediate conclusion IS a far parent or a from clause (e.g., 

paramodulator ), 

• an intermediate conclusion satisfies certain criteria based on heuristics that 

indicate the clause is worth constructing, or 

• the time needed to construct an intermediate conclusion and determine its 

attributes is less than the time néeded to determine its attributes without 

constructing it. 

We listed and discussed in detail the conditions required to obtain a sound linear 

derivation using DCC. We derived a general formula for expressing an 

intermediate conclusion. Finally, we gave a definition of a mega-inference rule. 



CHAPTER 

4 

Semi-Linear Resolution 

In modem A TPs, the most commonly used bottom-up approach is based on a 

best-first search algorithm called the given-clause al gorithm , and the most 

commonly used top-down approach is based on an iteratively deepening depth­

first search algorithm. 

In this chapter, we begin with an overview of the research done on combined 

top-down bottom-up search procedures and briefly point out the similarities and 

differences between our work and the work that has been done. We then describe 

briefly the given-c1ause algorithm and the iteratively deepening depth-first search 

algorithm. We present the main advantages and disadvantages of each algorithm. 

We introduce and discuss in detail semi-linear resolution which is an iteratively­

deepening depth-first search that shares sorne of the advantages enjoyed by the 

given-c1ause algorithm such as redundancy elimination and simplification rules. 

Semi-linear resolution implements DCC as a mega-inference rule and uses 

attribute sequences (discussed in Chapter 5) to reduce the explorable search space. 

Finally, we list the conditions that must exist in order for semi-linear resolution to 

be refutation complete. 

4.1 Overview of Top-Down Bottom-Up Approaches 

A top-down approach recursively breaks down a goal into subgoals until 

eventually the subgoals can be proven immediately by a given set of clauses or by 
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derived clauses obtained during the se arch process. A bottom-up approach derives 

clauses from the input set until an inconsistency is reached. The advantage of a 

top-down approach is that it goal-oriented. Its disadvantage is its insufficient 

redundancy control [Fuchs & Fuchs 1999]. A bottom-up approach is good in 

controlling redundancy but lacks goal-orientation. 

In [Astrachan & Loveland 1991] a top-down theorem proYer, METEOR, which 

included a bottom-up search through the use of lemmas, revealed the potential of 

combining the two approaches. It provided a certain amount of redundancy 

elimination which improved the efficiency of the search. Consequently, METEOR 

was able to prove more theorems with the addition of the bottom-up approach 

than without it [Astrachan 1992]. 

Schumann [Schumann 1994] combined top-down with bottom-up approaches 

by developing a preprocessor, named DELTA, that performed a bottom-up search 

and generated unit-clauses that are added to the original clauses. He then used 

SETHEO [Letz et al. 1992] to perform a top-down search. The results showed that 

the combined approach was able to prove more theorems than SETHEO was able to 

prove on its own. 

[Fuchs & Fuchs 1999] have shown that by combining the two approaches they 

were able to solve almost twice as many hard problems than either approach 

could solve alone. They used SPASS [Weidenbach et al. 1999] for the bottom-up 

search and SETHEO for the top-down search. 

V AMPIRE uses a splitting mIe to integrate a top-down approach into its bottom­

up approach. With the inclusion of this strategy, VAMPIRE solved 98 problems 

from the TPTP library [Sutcliffe 1994] that it couldn't solve without the splitting 

mle [Riazanov 2003]. 

SLR shares similar characteristics with the approach used in METEOR. SLR 

generates goals and adds them to the input set of clauses and then uses them to 

control redundancy. However, instead ofrelying only on Model Elimination (ME) 

[Fleisig et al. 1974], [Loveland 1969], as in METEOR, SLR can be used with 
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different calculi. SLR also shares (to a certain extent) the best-first search strategy 

of the given-clause algorithm. SLR selects the "best" initial clauses first and then 

conducts a depth-first search. SLR differs from the methods used by Schumann 

and Fuchs in that SLR generates goals, which are similar to lemmas, dynamically 

like METEOR, and adds them. to the original set of clauses, rather than going 

through a preprocessing phase first. In addition, SLR depends on a mega­

inference mIe to perform large steps and uses attribute sequences to reduce the 

explorable search space. 

4.2 The Given-Clause Algorithm (GCA) 

The given-clause algorithm is a best-first search algorithm that selects the "best" 

clause, called the given clause, based on heuristics, and then infers all clauses 

from the given clause using a special set of clauses, called the active set. The 

general version of the aigorithm is shown in Figure 4-1. We assume that the 

parameters are passed by value to the procedure GIVENCLAUSEALGORITHM. Sis 

the input set of clauses and 1 is the inference rules that the given-clause algorithm 

will use to infer new clauses. The set 1 is either selected by a user or automatically 

selected by the A TP. 

The variables active, passive, and inferred each is a set of clauses. The variable 

given_clause is one clause. Initially passive is S (line 3) and active is empty (Hne 

4). A test is performed at line 5 to check if the empty clause is in S. If no empty 

clause is found the loop starts. 



Chapter 4 - Semi-Linear Resolution 71 

GIVENCLAUSEALGORITHM(S:clauses,I:inference _rules) 

1. given _ clause:clause 

2. iriferred, active, passive: clauses 

3. passive:= S 
4. active:= {} 
5. if t/> in S then return "unsatisfiable" 

6. while passive '* {} do 
7. given_clause := SELECTCLAusE(passive) 
8. REMOVECLAusE(given _clause,passive) 
9. ADDCLAUsE(given_clause, active) 
10. inferred := INFER(given _clause, active, 1) 
Il. if t/> in iriferred then return "unsatisfiable" 

12. MOVECLAusEs(inferred, passive) 
13. end while 
14. return "passive is empty" 

Figure 4-1: A given clause algorithm. 

A clause is selected from passive and assigned to given _clause (line 7). The 

selected clause is then removed from passive (line 8) and added to active (line 9). 

In the procedure INFER (line 10), aIl inference rules in 1 are applied to 

given _clause and the rest of the clauses in active, such that every time a rule is 

applied, given_clause is one of the premises. AlI the conclusions resulting from 

the application of the inference rules in INFER are gathered in inferred. A test is 

made to find out if the empty clause was obtained (line Il). If the empty clause is 

not in infèrred, then the clauses in iriferred are moved to passive. The 100p 

continues until passive is empty or the empty clause is obtained. 

There are two commonly used va~iations of the GCA, the OTTER Ioop 

[McCune 2003] and the DISCOUNT Ioop [Avenhaus et al. 1995], [Denzinger et al. 

1997]. They both add simplification rules to the GCA presented in Figure 4-1. 

However, the difference between the two lies in the time at which the 

simplification rules are applied and on the sets of clauses to which they are 

applied to. A comparison between the two is given in [Riazanov 2003]. 
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Sorne state-of-the-art A TPs that use the given-clause algorithm are E [Schulz 

2002], GANDALF [Tammet 1997], OTTER [McCune 2003], SPASS [Weindenbach et 

al. 1999], VAMPIRE [Riazanov 2003], and W ALDMEISTER [Hi1lenbrand et al. 

1997]. 

4.2.1 Cases when GCA is not refutation complete 

The given-clause algorithm as presented in Figure 4-1 is refutation complete if 

the following conditions exist (each condition is explained in detail in the 

following sections). 

• The selection procedure SELECTCLAUSE is fair. 

• The inference mIes in 1 form an inference system that IS refutation 

complete. 

4.2.1.1 Fairness of the selection procedure 
A GCA is said to be fair if the selection procedure SELECTCLAUSE (line 7) 

ensures that every clause in passive will eventually be selected. 

The set passive, in practice, usually contains enough clauses to keep the loop 

running for a very long time (possibly an infinitely long time) if the empty clause 

is not obtained. The selection procedure SELECTCLAUSE selects a clause based on 

heuristics. If the heuristics do not provide a "fair" selection, then a clause in 

passive may never be selected. If this unselected clause is necessary to obtain a 

refutation, then the GCA will never derive the empty clause. This implies that an 

ATP employing GCA that is using an "unfair" selection process is not refutation 

complete. 

4.2.1.2 Refutation completeness of the inference system 
The refutation completeness of an inference system depends on the inference 

mies (Definition 2.33). If 1 is a set of inference mies that are not refutation 

complete, then GCA is not refutation complete. 
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4.3 Iteratively-Deepening Depth-First Search 

An iteratively-deepening depth-first search [Korf 1985J, [Stickel & Tyson 1985J, 

combines the advantages of breadth-first search (BFS) and depth-first search 

(DFS). In BFS, aH possible clauses that can be generated by an implemented set 

of inference rules at each depth are generated before moving to the next depth. 

This guarantees a shortest proof possible. However, due to the large number of 

clauses that can be generated, the use of BFS requires a lot of storage space. The 

memory requirements for BFS grow exponentially with the depth. In DFS, 

storage space is a not a problem. The memory requirements for DFS grow linearly 

with the depth because DFS explores every bran ch up to the point where no more 

clauses can be generated before moving to the next branch. This implies that DFS 

does not guarantee a shortest proof. Another more important problem with DFS is 

that if a branch extends indefinitely, then DFS can continue exploring this branch 

forever. Therefore, an ATP using DFS can get stuck on a single branch that 

extends indefinitely without reaching a refutation even though the input clauses 

are unsatisfiable. This implies that an ATP using DFS is not refutation complete. 

With IDDFS a bound is set for each iteration to force the DFS along a branch to 

backtrack once the bound is reached. This solves the problem of exploring 

infinitely long branches indefinitely. The bound increases by one with every 

iteration, so IDDFS guarantees the shortest proof because it generates aIl clauses 

that can be derived at each depth. The downside with IDDFS is the repetitive 

derivation of clauses from lower levels, because every time the bound is 

increased, clauses derived at depths lower than the bound are derived again. 

However, in practice, the number of clauses increases exponentiaHy with every 

iteration so the number of clauses that are repeatedly derived at Iower depths is 

relatively small by comparison to the total number of clauses derived within an 

iteration. An upper bound on the number of repetitions is calculated in [Korf 

1985] to be (b /(b _1))2, where b is the branching factor. 
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A general IDDFS algorithm is shown on Figure 4-2. The IDDFS algorithm 

shown in Figure 4-2 is recursive. The main procedure IDDFS caUs DFS and DFS 

caUs itself until either the depth exceeds the bound (line 4) or the empty clause is 

obtained (line 6). S is the set of input clauses and 1 is the set of inference rules 

selected by a user or automatically selected by an ATP. 

IDDFS(S:clauses, I:inference _ rules, max _ bound:integer) 

1. input _ clause:clause 
2. bound:integer 
3. rule:inference rule 

4. for bound:= 1 to max bound 
5. for each input_clause in S 
6. for each rule in 1 
7. DFS(input clause, S, l, l, bound, rule, {}) 
8. end for 
9. end for 
10. end for 

DFS(C:clause, S:clauses, I:inference_rules, depth:integer, bound:integer, 

rule: inference_rule, ancestors: clauses) 

1. inferred: clauses 
2. new clause: clause 
3. new rule:inference rule - -

4. if depth > bound then return 
5. inferred:= INFER(C, Suancestors\C, rule) 
6. if tP in inferred then TERMINA TE("unsatisfiable") 
7. for each new _clause in inferred 
8. for each new rule in 1 
9. DFS(new _clause, S, l, depth+l, bound, new Jule, ancestorsuC) 
10. end for 
Il. end for 

Figure 4-2: An IDDFS algorithm. 
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The algorithm picks one clause from S in the order the clauses are stored and 

performs a depth-first search starting with this clause (line 7 in IDDFS 

procedure). A depth-first search implies that all derivations are linear. The 

condition at line 4 in the procedure DFS ensures that the depth-first search does 

not exceed the iteration bound. The procedure INFER applies the inference rule 

rule with C as the main premise. AlI possible conclusions that can be formed from 

C and the clauses in the set Su ancestors \ C using the inference rule rule are 

stored in the set inferred. Each clause in inferred is an intermediate conclusion 

generated at depth depth. Each clause in inferred is then used as a main premise 

for the next application of an inference rule (lines 7-11 in DFS). A depth-first 

search is performed from each clause in inferred using all inference rules in J. 

The search continues until either the empty clause is obtained or the 

max _ bound is reached. If the empty clause is obtained, then the search terminates 

and the string "unsatisfiable" is displayed (line 6 in DFS). 

IDDFS as presented in Figure 4-2 is refutation complete if max _ bound can be 

set to infinity. If max _ bound is chosen too smalI, then the search may terminate 

before it finds a refutation. The inference rules binary resolution and binary 

factoring form the resolution calculus which is refutation complete [Loveland 

1978], [Robinson 1965]. 

Sorne of the CUITent ATPs that use an iteratively-deepening depth-first search 

are METEOR [Astrachan & Loveland 1991], PROTE IN [Baumgartner & Furbach 

1994], PTTP [Stickel 1984], [Stickel 1992], SETHEO [Letz et al. 1992], and THEO 

[Newborn 2001]. 

4.4 Comparison between GCA and IDDFS 

The main advantages of GCA over IDDFS are: 
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• Assuming that weIl tuned heuristics are used to select the "best" clause, 

then compared to depth-first search, best-first search can lead to a 

refutation in a shorter period of time. This has been confirmed from the 

resuIts ofCASC [CASC site). 

• It is easy to add simplification mIes because derived clauses exist III 

memory and can be can be simplified using rewrite mIes, subsumption and 

tautology elimination; thereby reducing redundancy. 

• There are no repetitive computations from lower depths Iike in IDDFS. 

• Because derived clauses exist in memory, it is easier in a GCA to add 

efficient retrieval techniques, such as term indexing, of potentially 

unifiable terms. This reduces the number of unsuccessful unifications and 

matching failures; thereby, improving the efficiency of a theorem prover. 

The main disadvantages of GCA with respect to IDDFS are: 

• Storage requirements. Since derived clauses have to be stored, and 

generally there a large number of derived clauses, large memory capacities 

are required. Secondary storage, such as hard drives, can be used, but their 

slower access time can reduce the speed of the theorem prover substantially 

especially when simplification mIes and term indexing have to performed 

on the secondary storage. To reduce the number of retained clauses, a 

number of strategies are used. For instance the weight limit and memory 

limit strategies are used in OTTER, and the limited resource strategy is used 

in VAMPIRE. Those strategies are effective in reducing the memory 

requirements but they compromise completeness in general l 
. 

• Redundancy control is an expensive procedure. The more clauses there are, 

the slower is the redundancy control process. A slow redundancy control 

1 According to [Riazanov & Voronkov 2000), any theorem that can be proved in VAMPIRE in time 
t without using the limited resource strategy, the same theorem can be proved by VAMPIRE using 
the limited resource strategy in time less or equal to t. This does not imply that the limited 
resource strategies maintains completeness, but it ensures, at least in princip le, that if a theorem 
can be proved without it, then the theorem can still be proved with it, provided that VAMPIRE is 
given the appropriate time limit for this theorem. 
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process can affect the perfonnance of an A TP. According to [Riazanov & 

Voronkov 2000] when the number of retained clauses exceeds 100,000, it 

becomes very difficult to manage them efficiently even with state-of-the­

art tenn indexing techniques. In GCA derived clauses are retained rather 

than derived again as in IDDFS. This usually leads to a retention of a large 

number of derived clauses which, consequently, can slow down the 

redundancy control process. 

• The need to find good heuristics to select, if not the best clause, something 

close to the best. In order to build good heuristics, a lot of analysis 

(theoretical and experimental) should be done. Furthennore, a set of 

heuristics may work well on a category of theorems but not as weB on 

another category oftheorems (see Appendix A for a list of categories). 

• The non-linearity of derivations perfonned by GCA does not allow for 

specifie implementation optimizations such as the use of DCC. Every 

generated clause is constmcted and then subjected to simplification mies 

and subsumption tests. If the clause passes the tests it is retained otherwise 

it is discarded. So if the implemented inference mies take small steps, such 

as binary resolution, then a lot of clauses may be constmcted and discarded 

as shown in [Wos et al. 1992]. 

4.5 Semi-Linear Resolution (SLR) 

Semi-linear resolution is mainly an IDDFS with sorne of the advantageous ideas 

from the best-search first included. It relies on DCC in the fonn of a mega­

inference rule. The main SLR algorithm is shown in Figure 4-3, and the mega­

inference mIe part is shown in Figure 4-4. The list of parameters (in alphabetical 

order) with a brief description of each is given in Table 4-1. The parameters S, !, 

and max _ bound are passed by value. 
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SLR(S:c1auses, I:inference _ rules, max _ bound:integer) 

1. C init:clause 
2. bound:integer 
3. SJactors, Goals, initial_clauses:ciauses 

4. Goals:= {} 
5. SJactors:= FACTORS(S) 
6. for bound := 1 to max bound 
7. 
8. 
9. 

initial_clauses := SELECTINITIALCLA USES( SuS _ factors u Goals) 
for each C init in initial clauses - -

Goals := MIR(C_init, 1, bound, SuS _factorsuGoals, {}, 
Goals, 1) 

10. end for 
11. end for 

Figure 4-3: An SLR algorithm. 

78 
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MIR( C:c1ause, depth:integer, bound:integer, potential_side yremises:c1auses, 
T:c1auses, goals:c1auses, rules:inference _rules) 

1. side yremises, inferred:clauses 
2. applicable Jules:inference _ rules 
3. rule:inference rule 
4. new clause:c1ause 

5. if depth > bound then return(goals) 

6. side yremises := 
SELECTSIDEPREMIsEs(potential_ side yremises u goals) uT 

7. applicable _rules := SELECTApPLICABLERuLEs(rules, C, side yremises) 
8. for each rule in applicable _rules 
9. inferred:= INFER(C, sideyremises, rule) 
10. if fjJ in inferred th en TERMINA TE("unsatisfiable") 
Il. for each new_clause in inferred 
12. if PAssEv ALUA TION(new _clause) then 
13. CONSTRucT(new clause) 
14. ADDCLAusE(new _clause, goals) 
15. end if 
16. ifMERGECLAusE(new _clause) then 
17. CONSTRucT(new clause) 
18. ADDCLA uSE(new _clause, T) 
19. end if 
20. goals := MIR(new_clause, depth+l, bound, sideyremises, T, 

goals, rules) 
21. ifMERGECLAusE(new_clause) then 
22. DELETECLAusE(new _clause, T) 
23. end if 
24. end for 
25. end for 
26. return(goals) 

Figure 4-4: An MIR algorithm. 
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Table 4-1: List of variable parameters used in an implementation of SLR 

Variable parameters Description 
A subset of 1. This set contains rules that are relevant 

to the clauses C _init and side yremises. For example, 

applicable _rules paramodulation is not applicable unless either C _init 

or one of the side yremises can be used as a 

paramodulator. 

bound This is the iteration depth bound. 

C init Initial clause in a linear derivation. 

Set of derived clauses that conform to criteria either 
Goals 

set by a user or by an ATP. 

1 Set of inference rules chosen by a user. 

The set of aIl clauses that are inferred from the clause 
inferred 

C and side yremises using the inference rule rule. 

max bound The maximum iteration depth. 
-

The set of clauses from which the side premises to be 
potential_side yremises 

used in the mega-inference rule are selected. 

S Set of input clauses. 

SJactors Factors ofthe set of input clauses. 

Chosen clauses that can be used as si de premises in 
side yremises 

the mega-inference rule. 

Temporary set of constructed clauses used only during 

a derivation of a goal clause. For example, merge 

clauses obtained during the application of the mega-
T 

inference rule are constructed and added to this set but 

are deleted once the application of the mega-inference 

rule is over. 
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A list of the procedures/functions (in alphabetical order) and a brief description of 

the functionality of each procedure/function is given in Table 4-2. Detailed 

description of the procedures SLR and MIR are given later. 

Table 4-2: A li st of procedure/functions used in an implementation of SLR 

ProcedurelFunction Description 

AOOCLAUSE Adds a clause to a set of clauses. 

Perfonns the union of two sets of clauses and 
AOOCLAUSES 

returns the result in the second parameter. 

CONSTRUCT Constructs a clause. 

Detennines if the clause is a merge clause or not. 

MERGECLA USE Returns true if the clause is a merge clause and 

false otherwise. 

MIR 
Application of the mega-inference rule perfonned 

as a depth first search. 

Detennines if a clause confonn to certain criteria set 

P AssEv ALUA TE 
by the user or automatically detennined by an A TP. 

Returns true if the clause confonns to the criteria 

and false otherwise. 

SELECT ApPLICABLERuLES 
Selects applicable rules for C _init and 

side yremises. 

SELECTINITIALCLAUSES 
Selects initial clauses that have the potential to lead 

to a refutation. 

Selects si de premises that have potential 

SELECTSIDEPREMISES complementary literaIs or can be used as 

paramodulators. 
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ProcedurelFunction Description 

Main procedure of semi-linear resolution. Performs 

SLR an IDDFS using delayed-clause construction and 

adds sorne redundancy control. 

We now explain the SLR procedure and MIR function in detail. 

SLR 

Line 4 initializes the set Goals. This is the set that contains the conclusions of the 

mega-inference rule as long as the conclusion conforms to certain criteria set by 

the user or automatically determined by an ATP. Examples of goal clauses are 

given in Chapter 3. The purpose of this set is similar to lemmas and caching in 

METEOR except that it does not affect the refutation completeness of SLR. Goals 

can be viewed as a set whose functionality with respect to SLR is similar to the 

passive set in GCA. 

Line 5 calculates the factors of the input clauses. This is necessary to maintain the 

completeness of SLR since input clauses are not factored before they are used as 

side premises. 

Lines 6-11 is the main IDDFS loop. 

Line 7 selects the initial clauses for a linear derivation. The selection criteria are 

based on heuristics that determine the "best" clauses to start with. The selection is 

also based on the values given in attribute sequences (presented in Chapter 5). 

Attribute sequences are used to prune the explorable search space. The initial 

clauses are selected from the input clauses, the set of factors of the input clauses 

and the set Goals which consists of derived constructed clauses. Initially the set 
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Goals is empty, but after each application of the mega-inference rule (line 9), the 

size of Goals increases when derived clauses conforming to criteria that are either 

set by a user or automatically determined by an A TP are constructed and added to 

Goals. The addition of new clauses to Goals is done in line 14 of the function 

MIR. 

MIR 

Line 5 checks if the depth has exceeded the bound and if so, it returns the set 

goals unchanged. 

Line 6 selects the side premises by using lookup tables (see Chapter 6) and 

attribute sequences (see Chapter 5). Lookup tables help determine clauses that 

have potential complementary literais for resolution and unifiable literaIs for 

factoring. They also help in determining unifiable terms, instances of terms, or 

generalizations of terms between the initial clause and the si de premises. The 

addition of the set T as a union with the selected premises rather than as a union 

with the parameters of the function SELECTSIDEPREMISES ensures that ancestor 

clauses, such as merge clauses or from clauses, are added to the set of side 

premises. The selection of side premises is important because it influences the 

selection of applicable inference rules (line 7). 

Line 7 selects applicable inference rules. Those are the rules that are relevant to 

the initial clause and the selected side premises. For instance if paramodulation is 

in rules but none of the si de premises or the initial clause can be used as a 

paramodulator then there is no point in choosing paramodulation. In this case, 

paramodulation is not an applicable rule. Also attribute sequences (see in Chapter 

5) affect the selection of the applicable rules as weIl as the number of applications 

of each rule by relying on the Iength of a clause. 
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Lines 8-25 is the main depth first search loop in which the application of the 

selected inference rules is performed in all possible ways at all depths up to the 

depth bound. If the application of an inference rule is successful, then the 

conclusions are retumed in the set inferred (line 9). If one of the conclusions is 

the empty clause, then the search terminates and the string "unsatisfiable" is 

displayed (line 10). If the empty clause is not obtained, then every clause in the 

set inferred is evaluated with respect to the criteria that are either set by a user or 

automatically determined by an A TP (line 12). If the clause passes the evaluation, 

it is constructed (line 13) and added to the set ofderived goals (line 14). 

Forward subsumption, where if a clause in S, SJactors, or Goals subsumes 

new_clause then new_clause is not added, is performed within the procedure 

P AssEv ALUA TE. Back subsumption, where if new _clause subsumes a clause in S, 

S Jactors, or Goals then the subsumed clause is deleted, can also be performed at 

this point. 

Lines 16-19 determine if a conclusion is a merge clause and if so, it is added to 

the temporary set T. T is a set of constructed intermediate conclusions that are 

generally used as far parents, such as merge clauses and from clauses. However, 

there is a case where an intermediate conclusion is constructed and added to T and 

is not necessarily a far parent. This case is explained below as Case (2). Clauses 

in T are short lived clauses. They are useful within a linear derivation but once the 

end of a derivation is reached (see Chapter 3 for the definition of end of 

derivation), they are deleted. There are two cases when it is necessary to construct 

an intermediate conclusion and added to T during a linear deduction. The two 

cases occur when 

(1) an intermediate conclusion is a merge clause, or 

(2) the time it takes to extract the attribute of an intermediate conclusion 

takes longer when the intermediate conclusion is not constructed than 

when it is constructed. 
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Those cases are necessary to maintain completeness of SLR and the speed 

improvement gained by the employment of DCC. In Figure 4-4 we show only the 

case of merge clauses to simplify the algorithm. It is easy to add a condition that 

tests for Case (2). We discuss each case in detail. 

Case (1) 

In [Andrews 1968] and [Anderson & Bledsoe 1970], it was shown that the 

resolution method remains refutation complete if ancestor resolutions are 

restricted to only resolutions with ancestor clauses that are merge clauses. 

Corollary 3.2 states that every clause that is a far parent must be constructed. A 

merge clause is a far parent, and thus must be constructed. If SLR is limited to 

constructing merge clauses and adding them to the set T, then SLR remains 

refutation complete. However, every time a clause is constructed, it is no longer a 

delayed clause. So if the number of merge clauses is large, then too many clauses 

would be constructed. This implies that only the construction of few clauses is 

delayed. The performance improvement of an A TP resulting from the 

employment of DCC relies on the number of delayed clauses; the more the 

delayed clauses the better the performance. Therefore, if the construction of only 

a few clauses is delayed, then the use of DCC leads to a negligible boost in 

performance. If the worst case occurs, where every clause is a merge clause, then 

DCC becomes useless. 

We tested 2323 theorems to determine the percentage of merge clauses with 

respect to the total number of generated clauses. We found that, on average, only 

0.57% of aU generated clauses are merge clauses and none of the tests revealed a 

worst case scenario. The results are sho~ in Figure 4-5. 
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Figure 4-5: Percentage of merge clauses with respect to the total number of 
generated clauses per theorem. 

The highest value is 45.73% and the lowest is 0%. Higher percentages of 

merge clauses normally occur in theorems where the maximal term depth is one 

and most of the terms are constants. For instance, PUZ028-3 has zero variables 

and a maximal term depth of one, PUZ033-1 contains only propositional clauses, 

and most of the input clauses ofPUZOlO-l contain zero or one variable and their 

maximal term depth is one. The reason why merge clauses arise more in theorems 

where shallow ground terms occur often is because if the unification of literaIs 

with shallow terms is successful then it is more likely to produce an mgu that is an 

ernpty substitution set. Therefore, identical instances of literaIs are more Iikely to 

anse. 

Since factoring of identical literaIs is the same as rnerging the identical literaIs, 

then there is only the need to check for merge clauses after performing a binary 

factoring. If the unification of two literaIs yields an mgu which is an empty 
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substitution set, then the literais are identical and the factor is a merge clause. A 

merge clause is constructed and added to set T. 

We conclude from the result of the experiments that the percentage of merge 

clauses to the total number of generated clauses is low enough in general that 

constructing them does not affect the performance improvement gained by using 

DCC. 

Case (2). 

When an intermediate conclusion is generated, it is use fuI to determine its 

attributes in order to decide whether to continue along the path of this clause or to 

backtrack. For instance, an intermediate conclusion may be subsumed by a clause 

in Goals. In this case, there is no point in proceeding with the search. Clause 

attributes can also be used as part of heuristics upon which the decision of 

proceeding along a path or not is made. For instance, THEO [Newbom 2001] uses 

an extended search strategy, in which the search continues beyond the iteration 

bound if an intermediate conclusion satisfies certain criteria. The criteria are 

based on clause attributes. Therefore, clause attributes are important for an ATP 

to make a decision that may lead to the pruning of the explorable search space. 

When DCC is employed, determining an intermediate conclusion's attributes is 

not a straight forward process because an intermediate conclusion is generally not 

constructed. The attributes have to be determined from the expression that 

represent an intermediate conclusion. Generally, the time it takes to determine a 

non-constructed clause attributes is short enough that is does not affect the 

performance improvement gained by using DCC. However, it is sometimes better 

to construct an intermediate conclusion and then determine its atlributes rather 

than determine its attributes in its non-constructed state. We derived a formula 

that an A TP can use to determine whether it is faster to construct an intermediate 

conclusion and then determine its attributes, or to determine its attributes without 

constructing it. The formula is 
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-IC(IJI+ 1 C (1;) 1 
2 

+4·Weight(C(I;)) 
1··· 1< au - -----'------------

2 
E4.1 

where cru is a p-idempotent substitution set which forms the union of ail mgu's 

resulting from the inference rules applied up to an including depth i, and C(I;) is 

the intermediate conclusion at depth i. A detailed derivation and analysis of this 

formula is given in Appendix C. An ATP uses E4.1 as follows. If the number of 

elements in cru is less than or equal to the value obtained from the right hand 

si de of the formula in E4.1, then it is faster to determine an intermediate 

conclusion's attribute without constructing it. Otherwise, it is faster to construct 

the intermediate conclusion and then determine its attributes. 

4.6 Redundancy Control in SLR 

Redundancy elimination is performed at the time when a goal is evaluated (Une 

12 in MIR procedure in Figure 4-4). If a new goal clause new_clause subsumes 

clauses from goals, then the clauses are removed from goals (Le. backward 

subsumption), but if new clause is subsumed by a clause in goals, then 

new clause is not added to goals (i.e., forward subsumption). Forward and 

backward demodulation can be performed in the same manner between a 

new_clause and goals. 

We conducted an experiment in our experimental ATP CARINE to determine the 

number of redundant goals eliminated due to forward subsumption. We restricted 

the goals to unit clauses. We ran CARINE over the CNF theorems in TPTP library 

v.2.6.0 (see Appendix A). We counted the number of generated unit clauses and 

retained unit clauses in each theorem that was proved by CARINE (see Appendix H 



Chapter 4 - Semi-Linear Resolution 89 

for a list of theorems proved by CARINE). A unit clause is retained if it is not 

subsumed by an already retained clause. We found that on average less than 20% 

of the unit clauses generated were retained. 

Forward and backward subsumption can also be performed between a new goal 

and the input set or the factors of the input set without affecting the completeness 

of SLR, but forward and backward demodulations between the a new goal and the 

input set can affect the completeness in SLR. 

Tautology deletion is performed on every constructed clause whether it is in 

the temporary set T or in Goals. Tautology deletion is performed at the time of 

construction of a clause (lines 13 and 17 in MIR) . 

4.7 Advantages and disadvantages of SLR 

4.7.1 Comparison between SLR and GCA 

In addition to the advantages of iteratively-deepening depth-first search over the 

given-clause algorithm, SLR uses DCC which results in a much faster derivation 

of clauses and hence, SLR can achieve a much higher inference rate than GCA. 

Furthermore, the disadvantages of the IDDFS (shown in Figure 5-2) are not as 

strong in SLR because of the following additional strategies. 

• The selection of the "best" initial clauses (line 8 in SLR). 

• The use of the set Goals which although is much smaller than either the 

passive or active sets used in GCA to store derived clauses that can be used 

in the seatch. The use of Goals reduces the number of repetitive 

computations. The set Goals acts like the set passive in GCA at the time of 

initial clause (line 8 in SLR) selection but acts like the set active when the 

side premises are selected (line 2 in MIR). 

• Simplification and redundancy control can be integrated easily into SLR 

without affecting DCC. However, the range of simplifications and 
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redundancy control is not as wide as it is in GCA because much fewer 

derived clauses are retained. 

4.7.2 Comparison between SLR and Model Elimination 

In this section we compare SLR with the Model Elimination (ME) 

implementation that is used in high performance ATPs such as SETHEO and 

METEOR. Henceforth, any mention of ME implies the implementation of ME in an 

iteratively-deepening depth-first search with implementation techniques that 

result in high inference rate. Since both SLR and ME follow an IDDFS, we focus 

our comparison on the implementations issues that result in high inference rate 

and flexibility to include additional strategies and equality mIes. 

The main difference between SLR and ME is in the way the high inference rate 

is achieved. An A TP based on SLR achieves its high inference rate through DCC, 

whereas an A TP based on ME achieves its high inference rates based on either 

clause compilation following the PTTP approach or on a data oriented 

architecture with a reuse of input clauses as proposed in [Letz & Stenz 2001]. 

PTTP first appeared in [Stickel 1984]. PTTP solved the weakness found in 

SLD-resolution of Prolog systems. The weaknesses were lack of completeness 

for non-Hom formulas, unsound unification, and unbounded depth-first search. In 

addition, PTTP provided a high inference rate through the compilation of input 

clauses into procedures of either an actual or abstract machine. The compilation is 

possible because of the linearity in the derivation of clauses. Since ME does not 

perform ancestor resolutions (Le. no far parents are explicitly involved) in a 

derivation, then only input clauses are used as side premises. Since the contents of 

input clauses are known before the search starts, the input clauses can be 

compiled in a way that will make the application of the extension and reduction 

mIes of ME performed efficiently. This leads to the integration of the input 

clauses with the search process resulting in a tight relation between the two. The 
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drawback resulting from this tight relationship was reported in [Letz & Stenz 

2001 p.2086] as follows 

"Changing the unification such as to add sorts, for example, or adding new 

inferences, e.g. equality handling, or generalizing the backtracking procedure 

becomes extremely cumbersome if not impossible in such an architecture." 

Unlike PTTP, in a data oriented architecture clauses are viewed as data 

structures that are separate from the se arch process which allows an easy 

integration of new strategies and the addition of new inference rules, 

simplification rules, and redundancy control. This is similar to SLR but instead of 

binary resolution and binary factoring, the extension and reduction rules are used 

and instead of DCC, a reuse of copies of input clauses is performed. The 

motivation behind clause reuse is the same as that of DCC, namely, the time 

consuming operations for constructing clauses. Input clauses are copied (i.e., 

constructed) and their variables renamed, then they are used as side premises. 

When backtracking is performed, a clause which was used as a side premise is not 

deleted but only its instantiated variables are de-instantiated. The next time this 

input clause is needed as a side premise, one of its copies that is still remaining in 

memory is used. This reduces the number of clause constructions which 

ultimately leads an ATP to achieve a high inference rate. The drawback is the 

memory requirement. Since the copies of side premises remain in memory after 

backtracking, then the reuse approach requires more memory than DCC. 

Furthermore, DCC does not waste time making copies. Therefore, SLR which 

relies on DCC uses memory more efficiently than the reuse approach, and it 

performs less operations in generating new clauses because it does not make 

copies of input clauses. 
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4.8 Completeness of SLR 

If the selection of initial clauses is fair (i.e., any clause or its factor from the input 

clauses eventually will be selected) and the inference rules are refutation 

complete, then SLR will behave like linear-input resolution performed in an 

iteratively-deepening manner. If only merge clauses are added to the set T, then 

SLR will behave like linear resolution. The main difference between SLR and 

linear resolution is the set Goals. If Goals is left empty, then SLR will become a 

linear resolution performed in an iteratively-deepening manner. The set Goals is 

used to reduce redundancy and repetitive derivations. Therefore, it does not affect 

the completeness of SLR. Since linear resolution is refutation complete, then so is 

SLR. 

We conclude that SLR is refutation complete if 

• the procedure SELECTINITIALCLAUSES is fair, and 

• the selected inference rules 1 are refutation complete, and 

• merge clauses are constructed and used in ancestor resolutions, and 

• max _ bound is infinity (since SLR is an IDDFS). 

4.9 Summary 

In this chapter we described the given-clause algorithm and iteratively-deepening 

depth-first search algorithm briefly. We listed the advantages and disadvantages 

of each algorithm. We then presented semi-linear resolution; an iteratively­

deepening depth-first se arch that incorporates delayed-clause construction and 

includes sorne of the advantages ofGCA. We listed the advantages ofSLR over a 

regular IDDFS and compared the shared strategies between SLR and GCA. 

Finally, we listed the conditions required for SLR to be refutation complete. 



CHAPTER 

5 

Attribute Sequences 

Semi-linear resolution performs a selection on the initial clauses and side 

premises. The selection process is based on two criteria. One relies on lookup 

tables and the other on clause attributes. Lookup tables are used to reduce the 

number of unsuccessful applications of inference mIes, thereby increasing the 

inference rate of SLR. Clause attributes are used to reduce the explorable search 

space and improve the efficiency of SLR. Lookup tables are discussed in Chapter 

6. In this chapter, we discuss clause attributes and we concentrate mainly on the 

length attribute. 

Since SLR seeks a refutation, it is possible to reduce the explorable search 

space substantially by relying on the relationship between the attributes of input 

clauses and the attributes of the empty clause. For instance, the length of the 

empty clause is zero. Therefore, the length of the derived clauses must eventually 

decrease as the search depth increases, otherwise the empty clause cannot be 

obtained. In a linear resolution the relationship between the initial clause, the side 

premises and the empty clause can be represented by attribute sequences. An 

attribute sequence is a sequence of tuples of clause attributes where each tuple 

contains attributes related to the input clâuses and the generated clauses. 

In this, chapter we analyze the size of the search space of SLR from two 

perspectives, the number of generated clauses and the number of attribute 

sequences where the attribute is the length of a clause. In the former, we derive an 

upper bound on the number of generated clauses, whereas in the latter we 
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compute the number of attribute sequences that can be used as a guide to prune 

the search space without compromising completeness. To simplify the analysis of 

the number of attribute sequences, we proceed from the simplest case, where 

binary resolution is the only inference rule, and then include other inference rules, 

such as binary factoring, demodulation, and paramodulation. Finally, we construct 

the minimum subset of attribute sequences that can be used as a guide to prune 

the search without compromising completeness. 

5.1 Number of generated clauses in SLR 

In this section, we compute an upper bound on the number of generated clauses 

from the SLR algorithrn presented in Chapter 4 (Figure 4-3). Let ni (X) be a 

function that returns the number of elements in a set X at iteration i. For example, 

~ (initial _ clauses) is the number of initial clauses selected (see Figure 4-3 line 7 

in the SLR procedure) at iteration 1. Let Ai c applicable _ rules be the set of 

inference rules at iteration i > ° that require only one premise (e.g., binary 

factoring, equality resolution equality factoring). Suppose that a /h derived clause 

Cj,i_l at depth i -1 generates sorne number of clauses using the inference rules 

Ai' then let !(Cj,H) be this set of generated clauses. !(Cj,i_l) is shown in 

Figure 5-1 as a rectangle. 

In Figure 5-1, at depth 0, the circ1es represent initial clauses. At depth 1, the 

circles represent clauses generated from the initial clauses using applicable Jules. 

At depth 2 the circles represent clauses generated from the clauses at depth 1 

using the inference rules in ÂI' To reduce a crowded representation, we did not 

add in Figure 5-1 the clauses generated at depth 2 by the rules from the set 

applicable _ rules \ AI . 
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Figure 5-1: An example of search tree showing the set !(Cj,i_l) of clauses 

generated using inference ru les that require only one premise. 

Table 5-1 shows the maximum number bi ,) of clauses that can be generated at 

depth i in iterationj. The first column is the iteration depth bound and the second 

column is the depth. The total number of generated clauses at each iterationj is 

} 

"'\' b . 
~ l,) 

i=l 

(E5.1) 

The total number of clauses generated up to and including iteration dmax ' denoted 

by ngen( dmax ) , is the sum of the total number of generated clause at each iteration 

1 s j s dmax ' Therefore, using E5.1, ngen(dmax ) is calculated by the formula 

dmax } 

ngen( dmax ) = L L bi,} • (E5.2) 
)=1 i=l 

If we assume a uniform branching factor of b and an initial number of clauses m, 

then E5.1 becomes 

} 

Lm.b l
• (E5.3) 

i=l 

With a uniform branching factor b and an initial number of clauses m, E5.2 

becomes 
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dmax ) 
ngen(m,b,dmax ) = 2:2:m.bi . (E5.4) 

)=1 i=l 

Table 5-1: Maximum number of generated clauses in SLR at each iteration 

Bound Depth Maximum number of generated clauses 

1 1 bu = nI (initial _ clauses) x nI (side _ premises) x nI (applicable _ rules) 

1 bl,2 = n2 (initial_ clauses) x n
2 
(side _ premises) x n

2 
(applicable _ rules) 

2 b
2

,2 = bl.2 x (n
2 
(side _ premises) -1) x nI (applicable _ rules \ À

2
) + 

2 
I b

" f ;~ln2( (Cj,I» 

1 bl,) = n) (initial_ clauses) x n) (side _ premises) x n] (applicable _ rules) 

b
2
,) = bl,3 x (n

3 
(side _ premises) -1) x n

3 
(applicable _ rules \ ÀJ + 

2 
I:':l n3(f(C;) 3 

b
3

.3 = b
2

) x (n] (side _ premises) - 2) x n
3 
(applicable _ ru/es \ À]) + 

3 
I:2~: n)(f(C;,» 

... ... ... 

bl d = nd (initial _ clauses) x nd (side _ premises) x 
1 

·~x ~ ~ 

nd (applicable rules) max -

b2d = bld x(nd (side_premises)-l)x 
• max • max max 

2 nd (applicable _ rules \ Àd ) + 
max max 

dmax I~~~max ndmax (f(CjJ» 

... 

bd d =bd -Id x(nd (side_premises)-dmax+l)x 
max' max max' max max 

dmax 
nd (applicable _ rules \ À d ) + max max 

Ibdmax-I.dmax n (f(C _ » 
j=1 dmax },dma.lf. ] 
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E5.3 is a geometric series and can be written as m·(bJ+I-b)/(b-l). If we 

substitute this expression in E5.4, then expand and simplify the resulting 

expression, we get 

bdmax +1 -b·d -b+d 
ngen(m,b,dmaJ=m.b. max 2 max 

(b-l) 
(E5.5) 

In practice, it is usually sufficient to set dmax S; 30 when SLR is used because 

when the depth reaches d max = 30 , even for values as small as b = 3 and m = 2 , 

SLR would have to generate (using E5.5) approximately 1015 clauses (see Figure 

E-2 in Appendix E for values of m and b in practice). 

5.2 Search Paths 

If ~ = (I;, ... , I,,) is a linear derivation of length n > 0, then SP( ~) is called a 

search path and is defined as the sequence 

SP(~) = ((Cinit , V(1;», ... , (C(I,,_I ),V(I,,») , 

where 

Cinit is the initial clause of the derivation ~, 

for ail 1 S; i S; n -1, C( I;) is an intermediate conclusion, 

for aIl 1 S; i S; n, V(I;) are the side premises. 

A refutation search path (RSP) is search path that leads to the empty clause. 

In the case where for aIl 1 S; i S; n, 1 S; IPr,em(I;)1 S; 2, we write SP(~) as 

SP(~) = ((Ro, Do),"" (Rn_l' Dn_I ») , 

where 
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for aIl 1:S; i:S; n -1, Ri = C(IJ . 

If Di = R, then the inference rule requires only one prernlse, such as binary 

factoring. 

Example 5.1: 

S = {BI' B2' BJ' B4} is set of constructed clauses. 

BI =-,Pv-,Qv D, B2 =-,Dv-,Q, BJ = P, B4 = Q. 

BI :-,Pv-,Qv D 

B2 :-,Dv-,Q 

RI :-,Pv-,Qv-,Q 

R2 :-,Pv-,Q 

B):P 

(resolvent) 

(factor/rnerge clause) 

(resolvent) 

R4 : rjJ (resolvent) 

The derivation ~ in Exarnple 5.1 is a linear derivation where the nurnber of 

prernises in each inference is either 1 or 2. Therefore, the search path SP(~) is 

expressed as (BI' B2), (RI' RI)' (R2 ' BJ), (RJ' B4) ). The length of this sequence is 4 

and it contains one application of binary factoring and three applications of binary 

resolutions. The binary factoring is indicated by the pair (RI.RI)' 

SLR explores rnany search paths where sorne of thern lead to an ernpty clause 

while others don't. AIso, the search paths that lead to the ernpty clause differ in 

length. It is not possible to determine ahead of tirne the search paths that lead to 
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the empty clause; otherwise proving unsatisfiability would be relatively easy. 

Instead, we have to explore aIl possible paths or at least the potential ones that 

may lead to the empty clause. The potential paths are the paths that remain after 

eliminating the ones that would certainly not lead to the empty clause. By relying 

on the relationship between the clause attributes, the inference mIes involved, and 

the bound set for every iteration, we can eliminate many of the unnecessary paths. 

Using such relationship, we study sequences of clause attributes and in particular, 

the lengths of clauses, at each level in the derivation. By relying on those 

sequences, we can reduce the search space explored by SLR independent of the 

semantics of the clauses and without compromising completeness. 

5.3 Attribute Sequences 

An attribute sequence is a sequence of tuples of numbers where each number 

within the tuple represents one attribute of one premise of the applied inference 

mIe in a linear derivation. Let f(C) E 3t]R(C) denote a function that returns sorne 

real valued attribute of a clause C, and if S = {D], ... , Dn} is a multiset of clauses, 

then f(S)=(f(D]), ... ,f(Dn )), where f(Di )E3t]R(D) for l~i~n. If 

Ô = (I;, . .. , I,,) is a linear derivation of length n > 0 , then 

SP(ô) = (Cinit , 1J(I;)), ... , (C(I,,_] ),1J(I,,))) 

is the search path corresponding to Ô and 

A TS(f, ô) = (f(Cinit ),f(1J(I;))), .. . , (f(C(In_])), f(1J(In ))) ), 

is the attribute sequence corresponding to SP(Ô) with respect to the attribute f 

For instance, an attribute sequence, where the attribute is the length of the clause, 

of the refutation search path (BI'B2 ),(R],R]),(R2 ,BJ,(R3 ,B4 )) (from Example 

5.1)is 

( Len( B]), Len( B2 )), (Len(R]), Len( R])), (Len( R2 ), Len( B3 )), (Len( R3 ), Len( B4 ))) • 
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The set of attribute sequences, ATS, forms the co-domain of a mapping, M, 

between search paths, SP (domain), andATS. The mapping M is expressed as 

M:SP~ATS. 

Let ~(S) be set of aIl derivations that can be formed from a set of clauses S, then 

the set of all derivations of length less than k > 0 that can be formed from a set of 

clauses S is denoted by 

~(S,l..k) = {~: ~ E ~(S) and 1::; I~I s k}. 

The set of aIl search paths that can be formed from ~(S,l..k) is denoted by 

SP(~(S,l..k». The corresponding set of attribute sequences with respect to an 

attributefis denoted by ATS(f,~(S,l..k». The number ofattribute sequences of 

lengths between 1 and k > 0 with respect to an attributefthat can be formed from 

a given set of clauses Sis 

IATS(f,~(S,l..k»I· (E5.6) 

In the foIlowing sections, we present an algorithm that generates aIl attribute 

sequences, where the attribute is the length of a clause, which correspond to 

refutation search paths for a given set of clauses. We derive a formula for 

computing the expression in E5.6 when f is the length of a clause and the 

inference rule used is binary resolution. We then determine the minimum set of 

attribute sequences that can be used as a guide in the selection of clauses in SLR 

without compromising completeness and we provide an algorithm that generates 

the minimized set of attribute sequences. 

We begin our presentation by assuming that binary resolution is the only 

inference rule applied in a derivation (other rules are discussed afterwards). We 

demonstrate how attribute sequences that correspond to refutation search paths 
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can be used as a guide to reduce the number of search paths. In other words, since 

we don't know which se arch paths are refutation search paths, we rely on attribute 

sequences to find out which ones may lead to a refutation. This is illustrated in 

Figure 5-2. The set SP is the set of search paths that can be formed from a given 

set of clauses. RSP is the subset of SP where each element of RSP leads to a 

refutation. ATS is the set of attribute sequences corresponding to SP. W is the set 

of attribute sequences corresponding to RSP. When a search is conducted by an 

ATP, the set RSP is not known. By using the set Was a guide, an ATP can reduce 

the explorable search space from SP to RSP. This is what SLR does when it 

selects initial clauses and side premises. It relies on attribute sequences to reduce 

the size of the explorable search space. 

M: SP ---+ ATS 

Figure 5-2: An exarnple of a relationship between search paths and attribute 
sequences. 

5.3.1 Restricting the number of s'earch paths under binary 
resolution 

When searching for a refutation and the bound is set to 1, we are actually seeking 

a derivation of the empty clause in one step. 11 is readily noticeable that we do not 
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need to resolve clauses whose lengths are greater than one, because the Iength of a 

resolvent R resulting from the binary resolution of the two clauses, C, and C2 , is 

Len(R) = Len(C,) + Len(C2 ) - 2 

and if Len(C,) + Len(C2 ) > 2, then Len(R) > 0 which is greater than the length of 

the empty clause; Len(~) = o. Therefore, when seeking a derivation of Iength 1 of 

the empty clause, the sum of the lengths of the clauses forming the premises of 

binary resolution must be less or equal to the length of the resolvent (the empty 

clause) which is zero, plus two; 

Len(C,) + Len(C2 ) ~ Len(R) + 2 = Len(~)+2 = 0+2 = 2. 

In Example 5.1, there is no need to attempt a resolution between BI and B2 

when looking for a search path oflength 1 because Len( B,) + Len( B2 ) = 5 and it 

is greater than 2. Only clauses B3 and B4 are potential candidates at this point 

because the sum of their lengths is 2. However, since they do not resolve together, 

there is no derivation of length 1 that results in the empty clause and the search 

for a proof within iteration 1 is over. SLR proceeds with an attempt to find a 

derivation of the empty clause in two steps, so the bound is incremented to 2. 

Within iteration 2, the sum of the lengths of the premises at depth 0, i.e., the 

sum of the Iengths of the initial input clauses, must be less or equal to 4. In 

Example 5.1 the choice for the initial clauses, based soIely on their lengths, can he 

any of the pairs from the set 

{ (B, , B3), (B, ' B4), (B2 ,B3 ), (B2 , B4), (B3, B4), 

(B3,B,), (B4, B,), (B3,B2 ), (B4 ,B2 ), (B4,BJ}. 

Sorne of the se pairs of clauses resolve while others don't. By eliminating aIl the 

pairs of clauses from the above set that don't resolve, we are left with the set 
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Since the bound is set to 2, then at depth 1 there is only one step left and hence, 

the sum of the length of the resolvent RI and the length of a clause Bi for sorne 

1 ~ i ~ 4, must be less or equal to 2 , i.e., Len( RI) + Len( Bi) ~ 2, if the empty 

clause is to be produced within a total of 2 steps. The minimum length for any of 

the Bi ' s IS 1, so the maxImum length for RJ must be 

Len(Rj) = 2 - Len(BJ = 2-1 = 1. Any of the pairs (BI'B3)' (BpB4)' (B3,Bj) or 

(B4,BJ) produces a resolvent of length 2 which is greater than 1, the maximum 

length allowed for RI' In this case, the resolvent is said to be oversized for the 

current depth. In general, when a refutation search path of length k is sought, a 

resolvent Rd at depth d > 0 within iteration k is said to be oversized for depth d 

if Len( Rd) > k - d . 

In SLR, proceeding with the search from an oversized resolvent is a waste of 

time, as shown above. Therefore, aIl paths leading to an oversized resolvent must 

be avoided. This implies that at depth d > 0 within iteration k, the length of the 

resolvent Rd must be restricted by the expression 

(ES.7) 

We can compute the length of any resolvent Rd' for d > 0, in a refutation search 

path ( Ro, Do)," ., (Rk-J, Dk - J)) recursively using the formula 

Len(Rd) = Len(Rd_j) + Len(Dd_J) - 2. 

From ES.7 and ES.8 we conclude that 

Len(Rd_1) + Len(Dd_l ) ~ k -d + 2. 

(ES.8) 

(ES.9) 

In Example 5.1 the pairs (BI'B3)' (BI'B4), (B3,Bj) and (B4,BJ) pro duce 

oversized resolvents for depth 1, and so they are eliminated from the set 

{(BI'B3),(BpB4),(B2,B4),(B3,Bj),(B4,Bj),(B4,B2)}' This set is thus reduced to 
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the set {(B2 ,B4 ),(B4,B2)}. B2 and B4 produce the resolvent R1 = -,D. At 

iteration 2 and depth 2, k = 2 and d = 2. By using E5.9, and knowing that 

Len( R1) = 1, we look for a clause in S that resolves with RI' such that 

1 + Len( Bi) ::; 2 - 2 + 2 = 2, for sorne 1::; i ::; 4.In other words, we look for a unit 

clause that resolves with R1 • Since there aren't any, then iteration 2 is over 

without resulting in a proof of unsatisfiability. Adding the restriction of E5.9 to 

SLR, reduces the nurnber of search paths explored by SLR frorn six to three as 

shown in Figure 5-3. The search paths and attribute sequences are indicated 

below the leaves of the tree. 

Iteration 1 

Search paths 

Attribute sequences (3,2)) (3,1)) 

Iteration 2 

«BbB2 ),(Rj ,B3 » «Bj ,B2 ),(Rj,B,» «Bj,B3 ),(Rj ,B2» «BI ,B3 ),(RI ,B,» «BI ,B. ),(RI ,B2 » «B, ,B4 ),(RI ,B3 » 
«3,2),(3,1» «3,2),(3,1» «3,1),(2,2» «3,1),(2,1» «3,1),(2,2» «(3,1).(2,1» 

Figure 5-3: Search paths and attribute sequences for iteration 1 and iteration 
2 of Example 5.1. 
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It is clear from Figure 5-3 that by applying the restriction E5.9 on the lengths of 

the clauses many search paths can be avoided. By using E5.9 to reduce the 

number of attribute sequences explored, we actually reduce the number of search 

paths explored. 

5.3.2 Constructing attribute sequences 

From a set of given clauses, we can determine aIl the attribute sequences 

corresponding to aIl the refutation search paths of the form 

( Ro, Do)," ., (Rk_l' Dk_I ))· We begin by selecting a length for an initial clause Ro 

such that Len(Ro) ~ k (from E5.7). Then, iteratively, for every 0 ~ i ~ k -1, we 

compute first the possible range of lengths for Di by the formula 

Len( Di) ~ k - i + 1 - Len( Ri) (E5.10) 

and then for each of the possible values for Len(DJ, we calculate Len(Ri+l ) 

using the formula 

Len(Ri+l) = Len(RJ + Len(DJ - 2. (E5.11) 

The following function, CONSTRUCT A TSBR, computes the attribute sequences for 

iteration k using E5.10 and ES.11 and assuming that only binary reso]ution is 

used. It then returns the results in the array atsequences. 

CONSTRUCT A TSBR(k:integer):array 

1. atsequences:array 
2. current _ ats:array 
3. n _seq:array 

4. for initial_length := 1 to k 
5. current_ats[1] := initial_length 
6. CONSTRUCTRESTOFATSBR(current_ats, 1, 1, k, initial_length, 

atsequences, n_seq) 
7. end for 
8. return (atsequences) 



Charter 5 - Attribute Sequences 106 

Line 4 of CONSTRUCT A TSBR loops over the range of possible values for the 

length of the initial clause Ra. Since there is no need to store Len( Ri) because it 

is implied, the three dimensional array atsequences stores aIl the attribute 

sequences in a compact format as (Len(Ra),Len(Da),Len(D1), ••• ,Len(Dk _I )). For 

example, for k=4, one of the attribute sequences is (0,4),(3,1),(2,1),(1,1)) in 

full format. It is stored in the compact format in atsequences[4][5] as (1,4,1,1,1) 

such that atsequences[4][5][1]=1, atsequences[4][5][2]=4, and so on. The array 

n _seq is a counter of the number of attribute sequences for each length for 

iteration k. For example, for k = 4, n _ seq[ 5]= 14 and that is there are 14 attribute 

sequences oflength 5 (the length is measured over the compact format). 

CONSTRUCTREsTOFA TSBR (current _ ats:array, ats _length:integer, 
depth:integer, k:integer, 
resolvent _length:integer, atsequences:array, 
n _seq :array) :integer 

1. if resolvent _length = 0 th en 
2. INCREMENT(n _seq[ ats _length]) 
3. ats_number := n_seq[ats_length] 
4. for ats_entry := 1 to ats_length 
5. atsequences[ats_length][ats_number][ats_entry] := 

current _ ats[ ats _ entry] 
6. end for 
7. end if 
8. return 
9. for input _length := 1 to k - depth + 2 - resolvent _length 
10. current_ats[depth + 1] := input_length 
11. CONSTRUCTRESTOFATSBR(current_ats, ats_length + l, depth + 1, k, 

rèsolvent _length + inpuClength - 2, 
atsequences, n_seq) 

12. end for 

Line 5 of CONSTRUCTA TSBR sets the first element of the sequence to the length 

of Ra and the rest of the sequence is determined by the function 
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CONSTRUCTRESTOF ATSBR. CONSTRUCTREsTOF ATSBR is called recursively and 

the recursive terrnination condition at line 1 checks if the resolvent's length is 

zero to ensure that no sequences longer than necessary are generated. When the 

resolvent's length is zero, the number of attribute sequences of the current length 

is incremented and the current sequence is copied into the array atsequences. In 

other words, CONSTRUCTREsTOF ATSBR adds the current sequence to the set of 

sequences of length, aIs _length. Line 9 of CONSTRucrREsTOF ATSBR loops over 

the entire range of lengths that the clauses from the input set of clauses can have 

based on the restriction of E5.1 01
• 

Table 5-2 lists aIl the 22 attribute sequences in compact notation for k = 4 in the 

order they are generated by CONSTRUCT ATSBR and not by their lengths. 

Table 5-2: Attribute sequences for k=4 

(1,1) 1 (1,2,1) 2 (1,2,2,1) 3 (1,2,2,2,1) 4 

(1,2,3,1,1) 5 (1,3,1,1) 6 (1,3,1,2,1) 7 (1,3,2,1,1) 8 

(1,4,1,1,1) 9 (2,1,1) 10 (2,1,2,1) Il (2,1,2,2,1) 12 

(2,1,3,1,1) 13 (2,2,1,1) 14 (2,2,1,2,1) 15 (2,2,2,1,1) 16 

(2,3,1,1,1) 17 (3,1,1,1) 18 (3,1,1,2,1) 19 (3,1,2,1,1) 20 

(3,2,1,1,1) 21 (4,1,1,1,1) 22 

Figure 5-4 shows a graph of the 22 attribute sequences for k = 4. Every vertex in 

the graph contains a pair (Len(Ri),Len(DJ) for 0::; i::; 4. At depth 0, the vertices 

represent the possible lengths for the initial pair of clauses (Ro, Do). The 

subsequent depths indicate the possible lengths for the pairs (Ri' Di) for 1 ::; i ::; 4. 

1 Notice that Une 9 the range goes up to k - depth + 2 - resolvent_length instead of k - depth + 1 
- resolvent_length. This is because we start at depth 1 instead ofO. The depth is used as an index 
counter for the array. We prefer not to use the zero index in an array for reasons that are not 
related to this thesis. 
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Iteration 4 

Figure S-4: A graph of the attribute sequences for iteration 4. 

Any path that starts with a vertex from depth ° and ends with a vertex containing 

(0,0) is an attribute sequence. For example, the highlighted path in the figure is 

the sequence ((1,3),(2,1),(1,2),(1,1)) or simply(I,3,1,2,1) which is sequence 

number 7 in Table S-2. The vertices containing (0,0) indicate that the resolvent is 

the empty clause. 

Since the number of attribute sequences can be reduced by imposing the 

restriction of ES.9, it is important to determine the ratio between the size of the 

set of the attribute sequences without the restriction of E5.9 and with the 

restriction of ES.9. This ratio reveals the gain in efficiency obtained by imposing 

the restriction of ES.9. 
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5.3.3 Calculating the number of attribute sequences 

Determining the number of attribute sequences with the restriction imposed by 

E5.9 requires an observation of the pattern existing within the generated 

sequences. For instance, every iteration contains aH the attribute sequences of the 

previous iterations as weIl as additional paths, as shown in Figure 5-5. At 

iteration k, let the number of paths to anode (0,0) from the vertices (I,x) (i.e., 

whose tirst entry is 1) at depth d he PI. Let the numher of paths to anode (0,0) 

from aIl the vertices (y,z) at d + 1 where ° ~ y ~ k -(d + 1) he P2· Then PI = P2. 

For example, the number ofpaths starting from the vertices (1,1), (1,2), (1,3) and 

(1,4) at depth ° is 9, which is exactly the number of paths starting from the 

vertices (0,0), (1,1), (1,2), (2,1), (1,3), (2,2), (3,1) at depth 1 and ending at the 

node (0,0) as displayed in Figure 5-5 (we count the empty path from (0,0) to (0,0) 

as one path). 

In general, for any 1 ~ r ~ k where k > ° is the iteration number, the number of 

paths from the vertices (r,x) for aIl 1 ~ x ~ k - r + 1 at depth dis equal to the total 

number ofpaths from the vertices (y,z) at depth d + 1, where r -1 ~ Y ~ k -(d + 1) 

for aIl ° ~ z ~ k. We can now write a formula for calculating the total number of 

attribute sequences within iteration k. 
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Depth 

o 

2 0 

3 2 

4 3 2 

1 . 31 Iteration 2 
Iteration 4 teration 

Figure 5-5: Attribute sequences for iterations 1 to 4. 

Let the total number of attribute sequences with restriction E5.10 on the lengths 

of the input clauses from the vertices at depth d within iteration k whose 

resolvent's length is r be denoted by nrp(k,d,r), then the total number of 

attribute sequences with restriction E5.10 on the length of the input clauses within 

iteration k is 

k 

tnrp(k) = Inrp(k,O,r). (E5.12) 
r=) 
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The value for nrp(k,d,r) can be computed recursively by 

nrp(k d r) = {!_(d+J) , , l nrp(k,d + l,i) 
i=r-I 

ifr = 0, 

ifr > O. 
(E5.13) 

where r is the length of a resolvent and 0:-:; d :-:; k -1 is the depth. 

The value produced by evaluating tnrp(k) is the number of attribute sequences at 

iteration k. The total number of attribute sequences from 1 to k is sum 

tnrp(l)+···+tnrp(k). Therefore, the value for IATS(j,L\(S,l..k»1 (from E5.6) 

when j is the length of a clause, S is a set of input clauses, 1 .. k is the range of 

iterations, is computed as 

k 

IATS(Len,L\(S,l..k»1 = Itnrp(i). (E5.14) 
i=1 

To compare E5.12 to the number of attribute sequences in each iteration without 

imposing the restriction of E5.10, we first determine the number of attribute 

sequences without in each iteration without imposing the restriction of E5.10. Let 

the length of the longest input clause within a given set of clause be Smax. We 

assume that there are clauses in the input set of aIl lengths between 1 and smax. 

Since we assume that the restriction of E5.10 are is not imposed, then any 

combination oflengths is possible as shown in Figure 5-6. 

We notice from Figure 5-6 that for k > 1 not an paths starting from a vertex at 

depth 0 continue till depth k. For exampÎe, when k = 2, the path starting with the 

vertex containing the pair (1,1) ends with the vertex containing the pair (0,0) at 

depth 1 and not at the iteration depth k. When k = 3, certain paths starting with 

the vertices containing either (1,2) or (2,1) end at depth 2 instead of depth 3, 
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which is the iteration depth. The reason is because those paths arrive at vertices 

containing (0,0) that marks the end of an attribute sequence. 

Depth 

o 

Iteration 4 

, , 

, , 
, , 

, 

, , , , 

Figure 5-6: A graph of attribute sequences of iteration 4 without restrictions 
on the lengths of the resolvents. 

In order to calculate the exact total number of attribute sequences that may be 

explored by SLR without any restriction on the lengths of the clauses, we have to 

take into consideration the fact that certain paths are not of length k. A simple 

observation of the graph in Figure 5-6 reveals that the number of vertices at depth 

d = 0 lS Smax 
2

• The number of attribute sequences when k = 1 lS 

(Smax
2 

-l),smax +1 because every vertex at depth 0 has an out-degree of Smax 

except the vertex containing the pair (l, 1) which has an out -degree of one. Let 
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np(O) = Smax 2 
- Let np(1) = (Smax 2 -1) -Smax + 1 _ When k = 2 , the number of paths, 

np(2) , from the vertices at depth 0 to the vertices at depth 2, including the paths 

of the vertices that end at (0,0), is np(2) = (np(l) - 2) -smax + 2 _ When k = 3, the 

number of paths, np(3) , from the vertices at depth 0 to the vertices at depth 3 is 

np(3) = (np(2) - 4) -smax + 4 _ In general, for k > 0, the number of paths, np( k) , in 

the graph of Figure 5-6 starting from the vertices at depth d = 0 and ending 

either with a vertex containing the pair (0,0), or at depth d = k is 

(np( k -1) - 2k-l) -smax + 2k-1 
__ The total number of attribute sequences within 

k 

iteration k without restriction on the lengths of the clauses is tnp( k) = l np( i) -
i=1 

By expanding the expressions of np(i) , we get 

d+2 d i-I d-i d-I k ( d-I J 
tnp(k) = ~ smax -smax - ~(2 -smax )+ 2 - (E5.15) 

The summation in E5.15 can be expanded, factored and simplified through 

algebraic manipulations to reach the formula 

S k+4 _ 2 _ S k+3 _ S k+2 + S k+1 
tnp( k) = max max max max 

(Smax - 2)(smax -1) 

(E5.16) 

S 4 +2-s 3 + (2k+1 -1)-s 2 _(2k+2 -3)-s +2k+'-2 
max max max max 

(Smax - 2)(smax -1) 

Table 5-3 shows the values for the total number of attribute sequences for the first 

fifteen iterations with and without the restriction on the lengths of the input 

clauses and the ratio, q np' of the two totals_ The largest input clause is assumed to 
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be 7, i.e., smax = 7, which is equal to the rounded average of the longest clauses in 

aIl theorems within the TPTP version 2.6.0 library. 

Table 5-3: Number of attribute sequences for the tirst 15 iterations 

Iteration tnrp(k) tnp(k) qnp = tnrp(k)/tnp(k) 

1 1 337 0.002967359 
2 3 2,684 0.001117735 
3 8 19,089 0.000419090 
4 22 133,876 0.000164331 
5 64 937,289 0.000068282 
6 196 6,560,988 0.000029874 
7 625 45,926,497 0.000013609 
8 2055 321,484,292 0.000006392 
9 6917 2,250,387,321 0.000003074 
10 23,713 15,752,705,452 0.000001505 
11 82,499 110,268,926,225 0.000000748 
12 290,511 771,882,459,348 0.000000376 
13 1,033,411 5,403,177,166,633 0.000000191 
14 3,707,851 37,822,240,068,478 0.000000098 
15 13,402,696 264,755,680,283,073 0.000000051 

It is obvious from Table 5-3 that without the restriction on the Iengths of the input 

clauses, the total number of attribute sequences is much Iarger than with the 

restriction of E5.10. Notice that the ratio qnp decreases by aimost a half with 

every Ïteration. Consequently, the higher the iteration, the more apparent is the 

advantage of restricting the Iength of the initial clause and si de premises when 

conducting a search in SLR. However, even with the restriction imposed by 

E5.10, the total number of attribute sequences is still large for iteration 13 and 

above. Recall that those are the number of attribute sequences and not number of 

search paths. Every attribute sequences corresponds to one or more search paths. 

For example, the attribute sequence ((1,3),(2,1),(1,1)) corresponds to aIl search 

paths that start with two clauses, where the first has a length of 1 and the second 

has a length 3. The pair (2,1) implies that binary resolution is attempted between 

aH unit clauses with the resolvent of length 2. So the if the number attribute 
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sequences for iteration 13 is 1,033,411, then it does not mean that 1,033,411 

search paths are explored. The number of search paths can be more than that. 

Fortunately, we can reduce the number of attribute sequences further which 

implies that we can reduce the number of refutation search paths. 

5.3.4 Minimizing the number of attribute sequences 

By applying the restriction on the lengths of the input clauses, we have reduced 

the total number of attribute sequences substantially. Consequently, we have 

reduced the number of explorable search paths. However, it is possible to 

optimize this number further due to the fact that the order of the initial clauses 

does not affect the search path. Therefore, a derivation represented by the 

sequence (Ro,Do), ... ,(Rk_"Dk_J )) is same as the derivation represented by the 

sequence (Do, Ro), .. . , (Rk _P Dk - J )) and the two sequences are equivalent. This 

would reduce the total number of attribute sequences by almost a half. 

If we view the initial pair of an attribute sequences as shown in Figure 5-7, 

then each element ni) within the table represents the number of attribute 

sequences that start with the pair (Len(Ro)' Len(Do)) = (i,j). For example, nll 

represents the number of attribute sequences that start with (1,1) . Since there is 

only one attribute sequence that starts with (1,1) , then ~ J = 1 . 

Len(Do) 

1 2 ... k 

1 nll n12 ... nlk 

Len(Ro) 
2 n21 n22 ... n2k 

. 
. 

k nkl nk2 ... nkk 

Figure 5-7: The number of attribute sequences viewed in table form. 
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Within iteration k, ni) = nrp(k,l,i + j - 2) and the sum of the values in a row i is 

equal to the number of attribute sequences that start with Len( Ro) = i . Therefore, 

"k n=nrp(k,O,i) and tnrp(k)="k nii +2."i-)nii • Since reversing the 
~J=) Ij ~l=) ~J=) " 

order of the initial clauses produces equivalent derivations and consequently, 

equivalent attribute sequences, then ni) = nji . Therefore, aIl attribute sequences 

that start with (j,i) can be removed from the restricted attribute sequences search 

space leading to a total number of attribute sequences (the highlighted section in 

Figure 5-7) 

k ~) k ~ 

tnrp'(k) = Inii + Ini) = Inrp(k,I,2.i-2)+ Inrp(k,l,i+ j-2) (E5.17) 
i=) j=) i=) j=) 

Furthennore, the attribute sequences of length less than k need not be explored at 

iteration k because they have been explored within previous iterations. For 

example, the attribute sequence ((1,2), (1, 1)) of length 2 need not be explored 

within iteration 3 and above because it has been explored at iteration 2. Therefore, 

the total number of attribute sequences can be reduced even further. 

The minimized total number of attribute sequences at iteration k with 

restriction E5.10 is 

tnrp"(k) = tnrp'(k) -tnrp'(k -1) (E5.18) 

Table 5-4 lists the values for the minimized total, tnrp"(k), and the restricted 

total, tnrp(k) , for the first fifteen iterations. It also shows the ratio 

q~P = tnrp"(k)/tnrp(k) , which reflects how much the number of attribute 

sequences is reduced when the minimized set of attribute sequences is explored. 
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Table 5-4: Comparison between the total number of attribute sequences 
restricted by E5.10 and the optimized total number of attribute sequences for 
the first fifteen iterations 

Iteration tnrp"(k) tnrp(k) q:p = tnrp"(k)/ tnrp(k) 

1 1 1 1.000000000 
2 1 3 0.333333333 
3 3 8 0.375000000 
4 8 22 0.363636364 
5 24 64 0.375000000 
6 75 196 0.382653061 
7 243 625 0.388800000 
8 808 2055 0.393187348 
9 2742 6917 0.396414631 
10 9458 23,713 0.398852950 
11 33,062 82,499 0.400756373 
12 116,868 290,511 0.402284251 
13 417,022 1,033,411 0.403539347 
14 1,500,159 3,707,851 0.404589882 
15 5,434,563 13,402,696 0.405482822 

As we can see from Table 5-4, the number of attribute sequences can be reduced 

by an average of60% of tnrp(k). 

The algorithm to construct the minimized set of attribute sequences (MATS) of 

alllengths up to k is described by the procedure CONSTRUCTATSBROPT, which is 

similar to CONSTRUCT ATSBR but with one modification done to the range of the 

loop in line 4. The upper limit for Len(Ro) is set to the ceiling of k / 2 so that 

only one of the sequences starting with the pair (Len( Ro), Len( Do)) and 

(Len(Do),Len(Ro)) is constructed, since such sequences are equivalent. 

The recurslve procedure CONSTRUCTREsTOF A TSBROPT IS similar to the 

procedure CONSTRUCTRESTOFATSBROPT with a conditional statement (lines 9-

10) added to it. The condition in line 9 ensures that Len(Do) is at least as long as 

Len(Ro) , in order to avoid constructing attribute sequences that are equivalent. 
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CONSTRUCT A TSBROPT (k:integer):array 

1. atsequences:array 
2. current _ ats:array 
3. n_seq:array 

4. for initial_lenglh := 1 to CEILING(k/2) 
5. current _ ats[ 1] := initial_length 
6. CONSTRUCTRESTOFATSBROPT( current _ ats, 1, 1, k, initial_length, 

atsequences, n_seq) 
7. end for 
8. return (atsequences) 

CONSTRUCTREsTOFATSBROPT( current _ ats:array, ats jength:integer, 
depth:integer, k:integer, 
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resolvent _length:integer, atsequences:array, 
n _seq:array):integer 

1. if resolvent _length = 0 then 
2. INCREMENT(n_seq[ats_lengthl) 
3. ats _ number := n _ seq[ ats _length] 
4. for aIs _entry := 1 to ats _length 
5. atsequences[ aIs _length] [ats _ number] [ats _ entry] := 

currenl _ als[ aIs _ entry] 
6. end for 
7. return 
8. end if 
9. if depth = 1 then start_base_length := resolvent_length 
10. else start _base _length := 1 
1 1. for base _length := start _base _length to k - depth + 2 - resolvent _length 
12. current_als[depth + 1] := base_length 
13. CONSTRUCTREsTOFATSBROPT(current_ats, ats_length + 1, depth +1, 

k, resolvent _length + base _length'- 2, 
atsequences,n_seq) 

14. end for 

Table 5-5 lists the attribute sequences of MATS for iterations 1 to 4 where each 

set contains the sequences of length k + 1 for 1::; k ::; 4. For example, sequences 

nurnber 3 to 5 belong to the set of sequences for iteration 3. The thirteen 

sequences are sorted by length. 
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Table 5-5: Minimized set of attribute sequences up to iteration 4 

(1,1 ) 1 (1,2,1) 2 (1,2,2,1) 3 (1,3,1,1) 4 

(2,2,1,1) 5 (1,2,2,2,1) 6 (1,2,3,1,1) 7 (1,3,1,2,1) 8 

(1,3,2,1,1) 9 (1,4,1,1,1) 10 (2,2,1,2,1) Il (2,2,2,1,1 ) 12 

(2,3,1,1,1) 13 

The value produced by evaluating tnrp"(k) is the minimized number of attribute 

sequences at iteration k. The minimized total number of attribute sequences from 

1. to k is sum tnrp"(1)+···+tnrp"(k). The set MATS(j,I!:.(S,1..k» is the 

minimum subset of the set ATS(j,I!:.(S,1..k» that can be used as a guide to 

reduce the se arch paths without compromising completeness. Therefore, the value 

for IMATS(j,I!:.(S,1..k»1 when j is the length of a clause, S is a set of input 

clauses, 1 .. k is the range of iterations, is computed as 

k 

IMATS(Size,I!:.(S,I .. k»1 = Ltnrp"(i). (E5.19) 
i=! 

5.3.5 Attribute sequences and binary factoring 

The inclusion of binary factoring do es not affect the number of attribute 

sequences because with respect to attribute sequences, the application of binary 

factoring is similar to performing a unit resolution. For example, consider the 

refutation search path, sp = ( Ro, Do), (R), D) ), of length 2. The corresponding 

attribute sequence can be either ats) = ((1,2), (1, 1») or ats2 = (2,1),(1,1») . In either 

case, one of either Ro or Do is a unit clause. If ats2 is the attribute sequence 

corresponding to sp, then Len(Ro) = 2.. If Ro has a factor, say FfIo' then 

Size(FfIo)=l. Suppose that the search path sp'=(Ro,Ro),(FfIo,D;») is a 

refutation se arch path. Since the tirst pair, (Ro, Ro), contains the same clause, it 
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implies by notational convention that this pair represents the application of binary 

factoring. We write the corresponding attribute sequence for sp' as 

ats' = (Len(Ro), -1),(Len(FRo ), Len(D{))) = (2, -1), (1, 1)) . 

We use the notation (2, -1), (1, 1)) to indicate that the length of the first element 

of the first pair is reduced by one. By comparing ats' with ats2 , we notice that 

the sequences are similar except for the negative sign. We extend the domain of 

the absolute function, AB S, to incIude attribute sequences as foIlows. 

If ats = ( (xl' YI)' ... , (xn, Y n) ) is an attribute sequence, where Xi and Yi are 

integers, then ABS( ats) = ( ABS( Xi ), ABS( Yi) )) for aIl 1 sis n . 

We can now write ABs(ats') =ABs(ats2 ). We calI those attributes sequences 

similar. In general, similar attribute sequences are attribute sequences whose 

absolute values are equal. 

With the use of the definition of similar attribute sequences, we can show that the 

attribute sequences generated by the CONSTRUCT ATSBR procedure are effective 

even when binary factoring is employed. 

Theorem 5.1: 

if an attribute sequence, ats, corresponds to a refutation search path, sp, within 

iteration k such that sp includes binary factoring, then ABs(ats) belongs to the 

minimized set of attribute sequences, MATS, oflength k. 
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Proof: 

Let sp = (Ro,Do), ... ,(Rk_J,Dk_J))' where Ri' for 1 ~ i ~ k -1, is either a resolvent 

or a factor, such that if RI is not a factor of Ro, then Size( Ro) ~ Size( Do) . In other 

words, if the first pair represents a binary resolution, then Ro is the smaller clause 

between Ro and Do. This does not affect the cornpleteness of any se arch strategy 

employing the attribute sequences concept to reduce the search space because as 

we have dernonstrated, reversing the order of the initial clauses produce 

equivalent search paths. Let ats be the corresponding attribute sequence to sp, 

thenats = (Len(Ro),Len(Do))' ... ,(Len(Rk_I),Len(Dk _I))). If Ri is a factor, then 

(RH' Di_ l ) represents binary factoring and thus, Di_1 = Ri_ l • The corresponding 

pair in the attribute sequence is (Len(Ri_ I),-I). Let ats' =ABs(ats). We want to 

prove that ats' E MATS. We know that, as long as Len(Ro) ~ Len(Do)' the set 

MATS contains aIl the attribute sequences corresponding to refutation se arch 

paths. Suppose that ats' !l MATS, then ats' is an attribute sequence not in MATS 

but corresponds to sorne refutation search path. This irnplies that MATS does not 

contain aIl the attribute sequences that correspond to refutation search paths 

which contradicts the fact that MATS contains aIl the attribute sequences 

corresponding to the refutation search paths. Therefore, ats' E MATS. 0 

From Theorern 5.1 we conclude that we do not need to explicitly generate the 

attribute sequences that include binary factoring. For every pair, except for the 

last pair, within an attribute sequence where there is a 1 as the second elernent, 

i.e., pair of the form (*,1), either a unit resolution or binary factoring rnay be 

selected as the inference mIe to be applied. Even though the sequences need not 

be explicitly generated, this does not rnean that the possible search paths and 

consequently, the explorable search space does not increase. 
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5.3.6 Attribute sequences and other inference ru les 

We have demonstrated that when using only binary resolution and binary 

factoring as inference rules, the number of attribute sequences can be reduced 

significantly by restricting the Iengths of the initial clause and side premises. We 

now show how other inference mIes, such as demodulation and paramodulation, 

can be added. 

In demodulation, the length of the conclusion is equal to the length of the 

demodulated clause. With respect to an attribute sequence, this is similar to a 

binary resolution of two clauses where one of them has a Iength of 2. For 

exampIe, suppose that the attribute sequence aIs] = (2,3), (3, 1), (2,1), (1, 1) ) 

corresponds to a refutation search path where only binary resolution is performed. 

Suppose the attribute sequence als2 = ((1,3), (3, 1), (2, 1), (1, 1)) corresponds to a 

refutation search path where the first inference mIe is demodulation and the next 

three inference mIes are binary resolutions. The 1 in the pair (1,3) is the length of 

the demodulator. The two sequences aIs] and als2 are identical everywhere 

except for the first integer of the first pair. In binary resolution, if one of the 

premises is a clause of length 2, then the resolvent maintains the length of the 

other premise. In demodulation, the demodulator' s length is always 1 and the 

demodulant's length is always the same length as the demodulated clause. 

Therefore, we can construct aIl the attribute sequences that include demodulation 

by simply copying aIl the sequences in MATS and then replacing the second 

element of every pair (*,2) by 1 as shown in Table 5-6. 
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Table 5-6: Attribute sequences up to iteration 4 with binary resolution and 
demodulation as inference rule 

Binary Resolution Binary Resolution and Demodulation 
«(1,1) 

«(1,2),(1,1» «(1,1),(1,1» 

«(1,2),(1,2),(1,1) ) «1,1),(1,2),(1,1» ,«(1,2),(1,1),(1,1» ,«1,1),(1,1),(1,1» 

«(1,3),(2,1),(1,1) ) 

«2,2),(2,1 ),(1,1» «2,1),(2,1),(1,1» 

«1,2),(1,2),(1,2),(1,1» «(1,1),(1,2),(1,2),(1,1», «(1,2),(1,1),(1,2),(1,1», «1,2),(1,2),(1,1),(1,1», «(1,1),(1,1),(1,2),(1,1» , 

«(1,1 ),(1 ,2),(1 ,1),(1,1» ,«(1,2),(1,1 ),(1,1 ),( 1,1» , «1,1 ),(1,1 ),(1 ,1 ),(1 ,1» 

«1,2),(1,3),{2,1),(I,I) ) «1,1 ),(1 ,3),(2,1 ),(1,1» 

«(1,3 ),(2,l ),(1,2 ),(1,1» «1,3),(2,1),(1,1),(1,1» 

«(1,3),(2,2),(2,1 ),(1,1» «(1,3),(2,1),(2,1 ),(1,1» 

«1,4),(3,1),(2,1),(1,1) ) 

«2,2),(2,1),(1,2),(1,1» «2,1 ),(2,1),(1,2),(1,1» ,«2,2),(2,1),(1,1),(1,1» , «2,1),(2,1),(1,1),(1,1» 

«2,2),(2,2),(2,1),(1,1» «2,1),(2,2),(2,1),(1,1» , «2,2),(2,1 ),(2,1),(1,1» , «2,1 ),(2,1),(2,1 ),(1,1» 

«2,3),(3,1),(2,1),(1,1) ) 

Table 5-6 shows aIl the attribute sequences when binary resolution and 

demodulation are employed. The column labeled "Binary Resolution" contains a 

list of the attribute sequences from MATS where binary resolution is the only 

inference mIe. The second column lists aIl the attribute sequences that can be 

obtained from the sequence in the first column by replacing the occurrences of the 

value 2 by 1 in the second element of a pair. We conclude from this table and 

from the relation between the length 2 of an input clause in binary resolution and 

the length of the demodulator that, even though the number of attribute sequences 

increases in proportion of the number of pairs that contain the value 2 as the 

second element, it is not necessary to explicitly construct the attribute sequences 

for the inclusion of demodulation. Every time the value 2 occurs as the second 

element of a pair, we can simply chose either to perform a binary resolution with 

a input clause of length 2 or perform a demodulation. The inclusion of binary 

factoring do es not affect the inclusion of demodulation so binary factoring can 
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still be used with demodulation without the need to construct additional attribute 

sequences. 

The application of paramodulation results in a paramodulant' s Iength that is equal 

to the sum of the Iengths of the premises minus one. If the paramodulator' s length 

is 1, then we can use the same attribute sequences for demodulation, otherwise the 

possible attribute sequences must be added. 

Attribute sequences help restrict the search to paths that may lead to a refutation 

and avoid the paths that definitely cannot reach the empty clause. Attribute 

sequences also help in controlling the amount of application of particular 

inference rules. 

5.4 Summary 

In this chapter we analyzed the size of the explorable search space of SLR from 

two perspectives: 

1. the maximum number of generated clauses (E5.5). 

2. the number of attribute sequences where the attribute is the clause length. 

We derived two formulas that can be used to calculate the number of attribute 

sequences in two cases. The first formula, E5.14, gives the number of attribute 

sequences when a restriction is imposed on the length of a side premise such that 

completeness is not compromised. The second formula, E5.16, gives the number 

of attribute sequences when no restrictions are imposed on the length of a side 

premise. We analyzed the values from those formulas for the first 15 iterations. 

We found that when restrictions are imposed on the lengths of the clauses, the 

reduction in the size of the explorable search space is exponential in the iteration 

depth. Therefore, using A TS with length restriction imposed on the side premises 

improves the efficiency of SLR substantially. 



CHAPTER 

6 

CARINE: An Implementation of 
SLR 

CARINE is an A TP that implements SLR. We developed CARINE to study the 

perfonnance of SLR in practice. In this chapter, we present CARINE and discuss 

briefly the data structures used in it. We provide examples that demonstrate how 

delayed clause-construction and attribute sequences can be used to improve the 

inference rate and prune the search space. We then provide test results from 

experiments that we conducted to detennine the effect of DCC in practice. The 

experiments produced results on the percentage of time spent constructing 

clauses, the percentage of successful unifications, and the ratio of unit conflict 

tests in a selected number oftheorems from the TPTP v2.6.0 library. We analyze 

those results and discuss their relationship with the inference rate speedup. We 

provide remarks on when the use of DCC can be most effective in practice. 

Finally, we compare the effects of DCC with ATS on SLR. 

6.1 Overview 

CARINE is an experimental resolution-based automated theorem proyer developed 

for the following reasons: 

• to demonstrate how delayed clause-construction may be implemented 

efficiently using simple data structures 
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• to empirically show that the performance gained by using delayed clause 

construction is significant 

• to show how simple it is to integrate DCC within semi-linear resolution 

• to depict the potential of semi-linear resolution when attribute sequences 

are used to restrict the search and improve the overall efficiency of the 

theorem proyer 

At the highest abstraction level, the design of CARINE, as shown in Figure 6-1, is 

quite simple. 

File: set of ~ Parser & ~ Inference ---'\ Display: 
clauses r------v Compiler I---v' Engine --V Results 

Input Process and Search Output 

Figure 6-1: Design of CARINE. 

The input is a file containing a set of input clauses. Once the clauses are read, they 

are parsed and compiled into the appropriate data structures and presented to the 

inference engine. Then the inference engine searches for a proof within a user 

defined time limit. The search terminates either when a proof is found or when the 

time limit expires. At that point, performance and statistical results, as weIl as a 

proof (if one is found) are displayed. 

6.2 Definitions 

We use the following definitions in this chapter to describe certain aspects of the 

implementation in a formaI manner. 
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An input file is a text file containing a set of input clauses that CARINE reads, 

parses, compiles and uses to derive the empty clause. An obj can represent any of 

the following: a term, a literaI, a clause or a substitution set. A container can be 

any of the following: an input file, a Iist of objs, a single or a multi-dimensional 

array, or a string. 

NArgs(L) 

NArgs(t) 

Sign(L) 

Pred(L) 

Index( cont, obj) 

is a function that returns the number of arguments (arity) of 

the predicate in the literaI L. 

is a function that returns the arity of a term t. 

is a function that retums either -1 or 1 depending on whether 

the literaI Lis either negative or positive respectively. 

is a function that retums the predicate symbol of the literaI L. 

is a function that returns the index of obj within the container 

cont such that cont exists as a structure in memory and not in 

the input file. The index may be a single integer or a tuple of 

integers depending on the type of cont. 

InpOcc( cont, obj) a function that returns the occurrence of obj within the 

container cont such that cont is part of the input file. 

The difference between Index(cont,obj) and InpOcc(cont,obj) is the location of 

cont. In Index(cont,obj) , cont is in memory whereas in InpOcc(cont,obj) , cont is 

in a file on an external storage. 

Example 6.1: 

NArgs(B(x, a, y)) = 3, 

NArgs(a) = 0, 

Sign(D(x,y,z,z) = 1, 

Pred(B(x,y,z)) = B, 

NArgs( ~Q) = 0 , 

NArgs(f(a,b, x)) = 3, 

Sign( -.Q) = -1 . 

Pred(-.P) = P. 

NArgs(x) = O. 
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Given the array predicates = [B,Q,P,R] 

Index(predicates, P) = 3 , 

Index{predicates,B) = 1, 

Index{predicates, G) = 0, since G is not in predicates. 

Given the clause C = -,Qv Pv W 

Index(C,P) = 2, Index( C, -,Q) = 1 . 

Given the input file IFile containing the clauses: 

-,PvQ,PvR, PvQvW 

InpOcc{IFile,-,PvQ) = 1, 

InpOcc(1File, P v Q v W) = 3, 

InpOcc(1File, P v Q) = 0, 

InpOcc(PvQvW,Q) =2, 

InpOcc{ -,P v Q, -,P) = 1. 

6.3 Data Structures 

128 

CARINE is implemented in ANSI C and therefore our description of its data 

structures and its algorithms is closely related to a procedurallanguage such as C. 

We divide the presentation OfCARINE's data structures into two sections. The first 

section describes the data structures for the essential elements that are common to 

almost aIl A TPs, including terms, literaIs, clauses and substitution sets. The 

second section describes the elements, which may or may not exist in other ATPs, 

that are related to the enhancement of the search procedures used in CARINE, 

including, the path table, the lookup tables, clause partitioning lists, and clause 

grouping lists. 
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6.3.1 Terms, literais, clauses and substitution sets 

The data structures used in CARINE for the essential elements found in most 

theorem provers are quite simple. Terms are stored in a variation of the flatterm 

representation. We use an array of elements each having two fields. Every 

element contains a reference code to the term symbol it represents and a pointer to 

the next argument of a function or a literaI. The Iast argument points to NULL. 

Figure 6-2 shows the term representation of g(x,h(a),j(x,h(a») in CARINE (the 

circle with a cross in it represents NULL). 

2 3 4 5 6 7 8 

g x h a j x h a 

Next argument 

Figure 6-2: Flatterm representation of g(x,h(a), j(x, h(a») in CARINE. 

LiteraIs are stored as arrays of terms. Figure 6-3 shows an example of a literaI 

representation in CARINE. 

1 -, B 1 2 3 4 5 

- x j a y a - ~ 

'----

Next argument 4 4 4 4 

U _i@ 
.~~ 

Figure 6-3: Literai representation of -,B(x, j(a, y), a) in CARINE. 
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Input clauses are read from the input file, parsed, compiled and stored as arrays of 

pointers to literaIs. With such representation, literaIs can be ordered and accessed 

more quickly by comparison with a linked list representation. Figure 6-4 shows 

an example of a clause representation. The numbers under the variables in Figure 

6-4 are tags used by the A TP to identify the distinct variables within a clause. The 

tags are determined based on the first occurrence (when the clause is read from 

left to right) of a variable in a clause. For example, in Figure 6-4, x is the first 

variable in clause C so it is given the tag 1. Every other occurrence of x is also 

given the tag 1. The variable y is the second variable in C so it is given the tag 2. 

Clause C 

Tags determined 
based on the -,B(x,a,y) -,B(x,y,z) B(xj(a),z) 
orderof .. 1 2 123 1 3 
occurrence of 

LiteraIt LiteraI 2 LiteraI 3 variables 

Figure 6-4: Clause representation in CARINE. 

The tags play an important role in renaming the variables of a clause as we shall 

demonstrate later. 

Recall that one of the conditions for DCC to be sound is to rename the 

variables of the input clauses used in a derivation so that no variable appears in 

more than one si de premises. This implies that every side premise in a linear 

derivation should he a variant of an input clause. In an actual implementation, a 

variant is not constructed because the construction is time consuming. 

Instead of constructing a variant of an input clause that is selected to 

participate in a linear derivation, a temporary integer code, called a relative 

clause identification code denoted by RCid, is assigned to the input clause to 
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identify the clause within the derivation. The renaming of variables is performed 

on a as-needed basis, and is achieved as follows. When a unification of terms or 

literaIs is performed, the tag attached to a variable is added to the RCid to obtain 

a unique identification code for the variable. This unique code, called the variable 

identification code denoted by Vid, makes the variable distinct from aIl the 

variables in the rest of the side premises in a linear derivation. This way there is 

no need to construct a variant of an input clause. We now formally define RCid 

and Vid and then provide examples to clarify their purpose. 

Any input clause, a clause from Goals (see SLR in Chapter 4), or a clause from 

the set T (see SLR in Chapter 4) is a constructed clause. Let MVC be a constant, 

set by the user or automatically determined by an A TP, that denotes the maximum 

number of variables per clause that an A TP can handle. Any constructed clause C 

that is introduced into a derivation at depth d is given a relative clause 

identification code, denoted by RCidc(d) , which is unique with respect to aH the 

clauses within the derivation and is determined by the formula 

RCidc(d) = {
o if C is an initial clause (i.e., Cini/ ), 

MVCx(d + 1) otherwise, 
(E6.1) 

Currently, we set MVC = 32 because most theorems in the TPTP version 2.6.0 

problem library do not contain any clauses containing more than 32 distinct 

variables. 

Let VOffset(v,C) be the offset code tagged to a distinct variable v in a clause C 

based on the order of occurrence of v with respect to the other variables in C. The 

variable identification code, denoted by Vid(v,C,d) , of a distinct variable v in a 

clause C introduced at depth d within a derivation is ca1culated by the formula 
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Vid(v,C,d) = RCidC<d) + VOffset(v,C) (E6.2) 

For example, suppose the clause in Figure 6-4 is selected twice in a derivation; 

once at depth d = 0 as a side premise and another at depth d = 4. Then with 

MVC = 32 , the variable identification codes for the variables x, y, z of C are: 

d=O: 

d=4: 

Vid(x,C,O) = 32x(0 + 1) + 1 = 33, 

Vid(y,C, 0) = 32x (0+ 1)+ 2 = 34, 

Vid(z,C,O) = 32x (0+ 1) + 3 = 35, 

Vid(x,C, 4) = 32x (4 + 1)+ 1 = 161, 

Vid(y,C,4) = 32x (4 + 1)+ 2 = 162, 

Vid(z,C,4) = 32x (4 + 1)+3 = 163. 

With the above identification method, any clause can be used in the same 

derivation several times without performing any actual copies in memory of the 

clause. Renaming its variables is done in almost constant time, because once the 

clause identification code changes, the identification codes of the distinct 

variables within the clause are changed automatically. 

A substitution set is abstractly represented as a directed graph. It is implemented 

as a one dimensional array with two fields per element as shown in Figure 6-5. In 

this example, the substitution set is {x ~ f(y),y ~ g(z, w),z ~ a}. The 

substitution set represented in the bottom half of the Figure 6-5 is read as follows. 

The variable x belongs to sorne clause, which in this example is not important. 

What is important is the RCid of the clause that contains the substitution term for 

x. The RCid of this clause is 32. The variable y is substituted by the term g(z,w). 

This term belongs to the clause whose RCid is 64. The variable w has no 
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substitution term. Since the field Reid refers to the clause that contains the 

substitution term, then for w there is no RCid. A variable that does not have a 

substitution term contains -1 in its RCid field and a pointer to NULL in its 

substitution term field. Notice that the variable identification codes in Figure 6-5 

are the same as the array indices. This makes the access to a variable' s 

substitution term a constant time operation. 

Substitution tenns 

Variables 

Vid 

Reid 

Pointer to 
tenn 

-1 

~~ 

x 
2 

32 

4~ 

fiy) 1 

... 

... 

Array indices 
y z 
33 65 

64 . .. 96 

4. ... 4~ 

1 g(z,w) 1 a 

w 
66 

-1 

~~ 

... 

... 

MAX VARS -

-1 

4~ 

® 

Figure 6-5: Representation of the substitution set {x ~ f(y),y ~ g(z, w),z ~ a} 

as a directed graph (top) and as an array (bottom) in CARINE. 

Example 6.2: 

BJ =G(x)v P(x) , B2 = -,P(f(x)) v Q(x) , 

B3 =-,Q(g(x,y))v R(x), B4 =-,R(a) 

VOffiet(x,BJ) = 1, VOffiet(x,B2 ) = 1, 

VOffiet(x,B3) = l, VOffiet(y,B3) = 2. 
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The derivation in Figure 6-6 shows the role of Reid and Vid. The RCid is 

calculated for the new clause when the clause is introduced into the derivation. 

However, to save time, the Vid is calculated for a variable only when the variable 

is needed. There is no need to calculate the Vids for aIl the variables in a clause if, 

for instance, only one is needed for the unification of two literaIs. 

Although the variable x is used in the clauses B), B2' B3' when those clauses are 

introduced into the derivation the symbol x is no longer important. CARINE 

identifies the variables by their Vids not by their symbols. However, we wrote 

each variable in a substitution set with its symbol first followed by its Vid for 

convenience. For instance, ~ = {xl ~ j(x33)} is viewed by CARINE as 

if) = {1 ~ j(33)}. The Vid renaming guarantees that no two clauses from the side 

premises in a linear derivation share the same variable. 

The resolvents R: and R~ are not constructed, so we did not substitute the 

variables with their substitution terms. R3 is fÏrst generated and then constructed 

(with variables normalized) by applying the p-idempotent substitution set 

The identification codes given to the participating clauses in the derivation are 

calculated as follows. 

RCidB, (0) = 0, since it is the initial clause. 

RCid B (0) = 32 x (0 + 1) = 32 , this is a si de premise at depth O. 
2 

RCidB (1) = 32x (1 + 1) = 64, and RCidB (2) = 32x (2+ 1) = 96. 
3 4 

The identification codes for the variables are 

Vid(x, BI, 0) = 0 + 1 = l, 

Vid(x, B3) = 64 + 1 = 65, 

Vid(x, B2,0) = 32 + 1 = 33, 

Vid(y, B3) = 64 + 2 = 66. 
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RCid=O 

R; G(x) v Q(x) 
1 33 Not constructed 

G(x) v R(x) 
Not constructed 

1 65 

R3 G(x) 
Not constructed yet 1 

RCid= 32 

B2 -,P(j(x» v Q(x) 
33 33 

RCid=64 

B3 -,Q(g(x,y» v R(x) 

= {xl ~ f(x33), 

6566 65 

RCid= 96 

-,R(a) 

x33 ~ g(x65, y66), 

x65 ~ a} 

Constructed and 
variables 
nonnalized 

R31 G(f(g(a,x») 

135 

Depth 

o 

2 

3 

Figure 6-6: An example of a derivati~n showing the role of Reid and Vid of 
the distinct variables of the participating clauses. 
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6.3.2 The path table 

The path table keeps track of the search state and retains aIl the necessary 

information to backtrack, to construct a clause that has been delayed, or to 

determine whether a refutation has been reached. The path table is almost a 

straight forward implementation of the delayed clause construction as presented in 

Chapter 3. RecaIl the generalformula for a derived clause at depth i 

ë·(IJ = «B:
1 
u···u B~) \ (au u PLJ) au (ruaJ.J , 

where B:
1
,.··, B~ are constructed clauses, and aJj and Pu are the multisets of 

deleted literaIs. 

We can readily enVISlon this formula implemented as a table with 

MAX_DEPTH columns where the combined information from the first column up 

to the lh column determine the conclusion ë·(IJ as shown in Figure 6-7. 

The "Inference rule" row indicates the inference rule applied at each step. The 

"Newly introduced clause" row contains pointers to the clauses that are 

introduced at each depth of a derivation. The "Literai deleted from the newly 

introduced clause" row contains a pointer to the literaI that is deleted from the 

newly introduced clause. Notice that in binary factoring no new clause is 

introduced and hence, we leave the corresponding entries of the "Newly 

introduced clause" and the "Literai deleted from the newly introduced clause" 

fields empty (or pointing to NULL). 

The "Previous clause" row contains pointers to the clauses that have been 

introduced earlier in the table. When an inference mIe is applied at depth i one of 

the literaIs from. the clauses introduced at depth j < i is either modified or 

deleted. This literaI is not actually deleted but marked as deleted. The row 

"Literai deleted or modified from previous clause" is used for this purpose. A 

pointer to the deleted literaI is entered in this row at column i to indicate that this 

literaI is marked as "deleted". 
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Depth 1 2 ... i . .. MAX DEPTH -

Inference mIe 

Newly introduced clause 

RCid ofthe newly 
introduced clause 

LiteraI deleted from newly 
introduced clause 

Previous clause 
[introduced at depth] 

LiteraI deleted or modified 
from previous clause 

Modified variables 

Length of resolvent/factor 

Merge clause 

Delayed 

Figure 6-7: The path table. 

The "Modified variables" row lists only the variables that are bound to terrns at 

each depth. To deterrnine the set of aIl the variables within a derivation that are 

bound to terrns, we have to perforrn the union of the entries ofthis row. 

The "Iength of resolvent/factor" row contains the length of the resolvent or 

factor at the CUITent depth. The "Merge clause" row indicates whether the factor is 

a rnerge clause or not. The "Delayee!' row indicates whether the clause is rnarked 

for construction at a Iater tirne based upon the criteria discussed in Chapters 3 and 

4. 

6.3.3 Lookup tables 

There are several operations that require a tirne which is linear, quadratic or even 

exponential in the nurnber of elernents existing in the set on which the operations 

are applied. Sorne of these operations can be reduced to a constant tirne through 

the use of lookup tables. For example, we can build lookup tables that maintain 
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information about clauses that produce resolvents, clauses that have factors and 

literaIs that unifY with each other and then every time we need to select a clause 

C to participate in the derivation, we first con suit the lookup table to determine 

whether C produces any factors or resolves with the clauses already in the path 

table. 

In CARINE, there are three static lookup tables that are constructed after the 

input clauses are compiled and remain unchanged during the whole search, and 

one dynamic table that changes during the se arch process. The static tables are: 

clause-to-clause resolution table. This table contains information on whether a 

pair of input clauses produces resolvents or not. 

clause-factors table. This table contains information on whether an input clause 

has any factors. 

literal-to-literal unification table. This table contains information on whether 

any pair of literaIs unifY or not. 

The dynamic table is similar to the literal-to-literal unification table except that it 

maintains information about the literaI unifications of the literaIs of derived 

clauses (i.e., not input clauses) within the set Goals (see Chapter 4) and the 

literaIs of the input clauses. 

6.3.4 Clause partitioning and clause grouping lists 

Partition and group lists are sets of clauses that share a common characteristic. 

The difference between partitions and groups is that the intersection of any two 

partitions is empty, which is not necessarily the case in groups. In CARINE, input 

clauses are partitioned according to their sizes. Unit clauses, whether they are 

input clauses or derived clauses, are partitioned into lists, called unit predicate 

lists, according to their predicate symbols. Each predicate list is either a list of the 
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negative unit clauses or the positive unit clauses of the predicate in question, as 

shown in the example of Figure 6-8. 

VI: -,P(x,g(a» 

V3: -Q(a) 

Vs: -.R(a,b) 

p 

U2: ---,P(f(a) ,b) 

V4: P(f(g(b» ,b) 

U6: R(b,a) 

Unit predicates lists 

Q 

Unit clauses 

R 

Figure 6-8: An example of the partitioning of unit clauses (unit predicate 
lists) in CARINE. 

For instance, the predicate Q has a pointer to the list of unit clauses that contain a 

negative literaI of Q. In our example, only one UfIit clause, narnely V3, belongs to 

this list. On the other hand, there are no positive unit clauses of Q and thus the list 

is ernpty. 

Sirnilar to the UfIit predicate lists, thé input clauses are grouped by predicates 

forrning predicate lists as shown in the example of Figure 6-9. 
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BI: ---Q(x) v -'p(x,a)v P(b,c) 

B2: ---Q(a) v P(f(x),y) 

B3: -.R(a,x,y) v Q(y) v P(y,a) 

Predicates Iists 

p Q 

Input clauses 

R 

Figure 6-9: An example of the grouping of input clauses in CARINE. 
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The structures holding infonnation about the predicates P, Q, and R have pointers to 

two lists of clauses; the negative and positive lists. AlI the clauses having at least 

one negative literaI of the predicate P, Q or R belong to the negative list of the 

corresponding predicate. Similarly, aIl the clauses having at least one positive 

literaI of the predicate P, Q or R belong to the positive list of the corresponding 

predicate. 

Since SLR is refutationally complete, as demonstrated in Chapter 4, any clause 

that contains at least one literaI that does not resolve with any other clause can be 

removed from the set of retained clauses. This procedure is called pure literai 

clause deletion [Plaisted & Zhu 1999]. Using the grouping of the clauses as 

described above it is easy to detennine which clauses may be removed without 

affecting the completeness of SLR. In the example of Figure 6-9, B3 has the 

literaI -.R(a,x,y) that does not resolve with any other literaI from any other clause. 
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This can be quickly noticed by simply checking the positive list of the predicate R. 

Since it is empty then there exist no clause that can be resolved with BJ over the 

literaI -oR (a, x, y) and therefore, BJ can be eliminated from the set of input clauses. 

By eIiminating BJ, the positive list of the predicate Q becomes empty trading to 

the predicates lists state shown in Figure 6-10. 

BI: -Q(x) v ..,P(x,a)v P(b,c) 

B2: -Q(a) v P(f(x) ,y) 

p 

Predicates lists 

Q 

Input clauses 

R 

Figure 6-10: Predicate Iists after B3 is deleted from the input clauses. 

Similarly, we can remove BI and B2 from the set of input clauses because the 

positive list of the predicate Q is empty and thus no clause can resolve with either 

BI or B2 over the literaIs -Q(x) or -Q(a()) respectively. By removing BI and B2, 

there will be no more clauses in the set of input clauses and therefore, the set is 

satisfiable. 

The process of pure literaI deletion is implemented in CARINE and it is determined 

from the examination of the predicates lists as described in the above example. 
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6.3.5 Literai grouping 

A literaI grouping is a set of literaIs of retained clauses that share a cornrnon 

characteristic. In CARINE, a literaI group, called literai instance list, constitute 

one literaI that belongs to an input clause and forms the head of the list, and the 

rest of the literaIs, forming the tail of the list, are instances of this literaI. Every 

distinct literaI frorn the input clauses is the head of a literaI instance list. The tail 

of the list is formed of literaIs that belong to derived constructed clauses. 

The literaI instance lists are use fuI for determining whether two literaIs rnay unify 

or not. This is achieved by checking the lookup tables in 0(1) tirne whether the 

head of the lists of the two literaIs unify or not. If they don't unify then their 

instances are definitely not going to unify. 

The literaI instance lists are helpful for determining potential unit resolutions. If 

the head of the list does not unify with a literaI, L, of a clause then none of the 

literaIs frorn the tail is going to unify with the literaI L. 

6.3.6 Literai ordering 

Sorting the literaIs according to sorne ordering relation is cornrnon among 

autornated theorern proyers because it facilitates the cornparison of clauses and 

provides a faster way to prioritize the selection of clauses for the participation in 

particular inference mIes. 

In CARINE, the literaIs in each clause are partitioned into negative and positive 

literaIs with the negative literaIs Iisted first. Each partition Îs then sorted 

according to the arity of the predicate. If two predicates have the same arity then 

they are sorted lexicographically according to their predicate syrnbols and if they 

have the sarne predicate syrnbol then they are ordered according to their 

occurrence within the input clause within the input file. Formally, let PredTable 
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be a lexicographically sorted list of aIl predicate syrnbols used in sorne given 

input file InputFile. Suppose L] and L2 are two literais frorn an input clause C 

belonging to InputFile, L] is less than a L2' denoted by L] -< L2' if one of the 

following conditions applies: 

1. Sign(~) < Sign(L2) 

2. Sign(~) = Sign(L2) and NArgs(L]) < NArgs(L2) 

3. Sign(~) = Sign(L2) and NArgs(~) = NArgs(L2 ) and 

Index(PredTable, Pred(~)) < Index(PredTable, Pred(L2)) 

4. Sign(~) = Sign(L2 ) and NArgs(L]) = NArgs(L2 ) and 

Index(PredTable,Pred(~)) = Index(PredTable,Pred(L2)) and 

InpOcc(C,L]) < InpOcc(C,L2). 

Predicate, function, constant and variable syrnbols are stored in a symbol table 

(array) along with information about the arity of each predicate and function. 

6.4 An Example of SLR with ATS 

We present in this section an exarnple of SLR using DCC as perforrned in 

CARINE, with sorne detail dernonstrating the role of the path table. We also 

dernonstrate how ATS can reduce the search space explored by an SLR based 

ATP. Exarnple 6.3 shows in detail iteration by iteration, aIl the derivations 

necessary to obtain a proof starting with iteration 1. 

In the following exarnple, the set Goals and its initial contents are indicated at the 

beginning of each derivation. We assume that aIl derived unit clauses that are not 

in Goals are added to Goals. The iteration nurnber is held in the variable, bound, 

and the step nurnber is held in the variable, depth. The overall substitution set of 
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the whole derivation is denoted by ëi. The mgu of a local inference (i.e., one 

unification of literaIs) at depth i is denoted bya: . The inference rules are labeled 

BR for binary resolution and BF for binary factoring in the path table. The value 

YES is used in the "Merge clause" row to indicate that the generated clause is a 

merge clause. The value YES is used in the "Delayed" row of the path table to 

indicate that the clause is marked for construction at later time. A value of NO 

indicates that the generated clause is not marked for construction at a later time 

either because it has been constructed or it is not necessary to construct it. The 

decision on whether a clause should be marked for construction at later time or 

not is determined based on the criteria discussed in Chapters 3 and 4. 

Example 6.3: 

This example is problem SYN035-1 from the TPTP library. The theorem contains 

three input clauses and aIl clauses are used in the proof. 

s= {BI, B2, B3} is the set of input clauses. BI is the negated conclusion. 

BI: ---'p(xl,f(x2,xl}) v ..,P(f(x2,xl),f(x2,xl)) v -Q(x2,f(x2,xl)) v -Q(f(x2,xl),f(x2,xl)) 

LII L2I L31 L41 

B2: P (xl,x2) 

LI2 

B3: ---'p{xl,f{x2,xl)) V ---'p{f{x2,xl),f(x2,xl)} V Q{x2,xl) 

L)3 L23 L33 

Iteration 1: 

There is nothing to do in iteration 1 because there is only one unit clause. At 

iteration 1 the bound is set to 1 and only resolution over unit clauses are 

attempted. Since there is only one unit clause then no resolutions are performed. 
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Iteration 2: 

If we look back at Table 5-5 of the minimized attribute sequences, we notice that 

the only sequence for iteration 2 is (l,2,1). The input clauses in S do not contain a 

clause of length 2 and therefore, no resolutions are performed at iteration 2. 

Iteration 3: 

Derivation 1: (bound = 3, depth = 1, Goals = {}, a = {}) 

B3: -,P(x33,f (x34,x33)) V -,P(f(x34,x33) ,f(x34,x33)) V Q(x34,x33) +------, 

a) = {xl ~ x33, x2 ~ f (x34, x33) } 

RI: ...,P(f (x34,x33), f (x34,x33)) V Q(x34,x33) 

B2: P(x65,x66) +------------------1 

a2 = {x65~ f(x34,x33), x66~ f(x34,x33)} 

---------I~V Unit clause R2: Q(x34,x33) • 1 constructed 

Variables 
renamed 

Since R2 is a unit clause and it is not in Goals, it is constructed, labeled VI and 

added to Goals giving Goals = {VJ}. VI becomes VI: UII=Q(xl,x2) after the clause 

is normalized. 

Notice that the variables in B3 and the second occurrence of B2 have been 

renamed based on the formula given in E6.2. The mgu of the unification of the 

literaIs LI2 from the first occurrence of B2 and LI3 from B3 is a-;. The overall 

substitution set, a, is the union of aIl the most general unifiers. The contents of 

the path table are shown in Table 6-1. The set ofmodified variables in column 1 

are the vru:iables within a) that have been bounded to terms. The value of the 

field, "[introduced at depth]", is 0 for B2 because the instance of B2 that is used in 

this column was introduced at depth 0 (column 0 is not explicitly entered in the 

table). 
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Table 6-1: Path table for Derivation 1 of Example 6.3 

Depth 1 2 .. , MAX DEPTH 

Inference rule BR BR 

Newly introduced clause B3 B2 

Reid of the newly 
32 64 

introduced clause 

LiteraI deleted from 
LI3 L l2 newly introduced clause 

Previous clause B2 B3 
[introduced at depth] [0] [0] 
LiteraI deleted or 
modified from previous L12 L23 
clause 

Modified variables {xl, x2} {x65, x66} 

Length of resolvent/factor 2 1 
Merge clause NO NO 

Delayed YES YES 

When a resolvent is a unit clause, an attempt to find a unit conflict is made. In this 

case, there are no unit conflicts. Derivation 1 ends at this point because the bound 

is 3, the depth is 2, and, following the attribute sequences discussed in Chapter 5, 

the length of the clause chosen from either Goals or S must be 1. Since there are 

no clauses of length 1 that can resolve with R2, there is no point in proceeding 

with the derivation any further because the empty clause cannot be obtained at 

depth 3. The possible attribute sequences for iteration 3 are (l,2,2,1), (l,3,1,1), 

and (2,2,1,1). However, there are no more clauses whose sizes satisfy any ofthose 

attribute sequences and therefore, iteration 3 ends. The substitution set is 

reinitialized, the depth is set to 1, and the bound is incremented to 4. The attrihute 

sequences for iteration 4 are (1,2,2,2,1), (1,2,3,1,1), (1,3,1,2,1), (1,3,2,1,1), 

(1,4,1,1,1), (2,2,1,2,1), (2,2,2,1,1), and (2,3,1,1,1) (see Table 5-5). None of the 

sequences can he followed except (1,4,1,1,1), hecause first, there are no clauses of 

length 2 and B3 cannot he factored in order to reduce its length to 2, so aIl the 
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sequences that begin with the prefixes (1,2) and (2,2) are eliminated. Second, the 

sequences that begin with (1,3,1,2,1) and (1,3,2,1,1) can be eliminated because 

they require clauses of Iength 2 at depth 2 and depth 3 respectively, but there are 

no clauses of length 2 in Sand from Derivation 1 we realize that the only clause 

of length 2 that can be generated from the initial clauses B2 and B3 is not a merge 

clause, and thus, it is not added to T, the temporary set of constructed clauses, (see 

SLR in Chapter 4) and cannot be used as a far parent at deeper levels of a the 

derivation. The sequence (1,4,1,1,1) leads to the empty clause as demonstrated in 

Derivation 2. 

Derivation 2: (bound= 4, depth = 1, Goals = {VI}, if= 0) 

B2: P(xl,x2) 

BI: --,P(x33, f(x34,x33» V --,P(f(x34,x33), f(x34,x33» V -Q(x34, f (x34,x33» v 

-Q(f(x34,x33),f(x34,x33» 

cr; = {xl ~x33, x2~ f(x34,x33)} 

RI: --.P(f(x34,x33),f(x34,x33» v -Q(x34,f(x34,x33» V -Q(f(x34,x33),f(x34,x33» 

B2: P(x65,x66) 

if2 = {x65~f(x34,x33}, x66~f(x34,x33}} 

R2: -Q(x34,f(x34,x33)} V -Q(f(x34,x33) ,f(x34'x33}} 

VI: Q(x97,x98} 

if3 = {x34 ~ x97, x98 ~ f (x34,x33) } 

R3: -Q(f (x97 ,x33), f (x97 ,x33)} 

VI: Q(xI29,x130} 

0'4 = {xI29~ f(x97,x33}, x130~ f(x97,x33}} 

The contents of the substitution set if at the end of the derivation is the union of 

all the unifiers. 
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(f= (f, u(f2 u(f3 u(f4 

= {xl~x33, x2~f(x34,x33), x34~x97, x65~f(x34,x33), x66~f(x34,x33), 
x98~ f(x34,x33), x129~ f(x97,x33), x130~ f(x97,x33)} 
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In Derivation 2, the intermediate clauses RI, R2, and R3 are not constructed due to 

DCC. Even though R3 is a unit clause, there is no need to construct it and add it to 

Goals since a unit conflict between R3 and VI exists. VI, which belongs to Goals, 

behaves just like an input clause within the derivation, i.e., it is assigned an RCid 

and its variables renamed. This is because VI has been constructed and retained in 

memory. The contents of the path table are shown in Table 6-2. 

Table 6-2: Path table for Derivation 2 of Example 6.3 

Depth 1 2 3 4 ... MAX DEPTH 

Inference mIe BR BR BR BR 

Newly introduced BI B2 VI VI clause 

Reid ofthe newly 
32 64 96 128 introduced clause 

LiteraI deleted 
from newly LII LI2 UII UII 
introduced clause 
Previous clause B2 BI BI BI 
[introduced at 
depth] [0] [0] [0] [0] 
Literai deleted or 
modified from LI2 L21 L31 L41 
previous clause 
Modified 

{xl, x2} {x65, x66} {x34, x98} {xI29,x130} variables 
Length of 

3 2 1 0 resolvent/factor 

Merge clause NO NO NO NO 
Delayed YES YES YES YES 

We notice in Derivation 2 that each of the clauses B2 and VI is used twice. In 

order to differentiate between the two copies. CARINE uses the RCid as reference 
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and consequently the variables in each copy of the same clause have different 

names based on E6.2. 

It is clear from the above example, that the use of attribute sequences reduced the 

number of unfruitful attempts considerably. Indeed, we reached a refutation in 

just two derivations. 

6.5 Backtracking in SLR 

Backtracking requires O(n) operations, where n is the number of modified 

variables. When the parents of a resolvent (or the parent of a factor) are 

propositional clauses the number of modified variables is, of course, zero, i.e. 

n = o. In general, we have found that most of the time n is much less than the 

weight w of the obtained resolvent or factor as long as the resolvent is not the 

empty clause. This implies that constructing the resolvent or factor takes longer 

than the time to set the modified variables to NULL. Therefore, even though it 

takes O(n) to backtrack one step, it is still less than O(w) (see Appendix C) 

which is the time to construct the resolvent/factor and dei ete it later on after the 

backtracking is performed. We tested 4681 theorems from the TPTP set to 

determine an overall average value for the number of modified variables per 

unification, n:ve ' and an overall average value for the weight of a generated 

clause, w:ve • We found n:ve to be 2 whereas, w:ve is 24. 

Figure 6-11 is a graph of nove' the average number of modified variables over 

aIl the successful unifications in a theorem, and the corresponding wave ' the 

average weight of a generated clause in each theorem for the 4681 theorems. The 

graph is drawn on a logarithmic scale due to the relatively high values of wave 

with respect to nove. Each cross (x) indicates the average number of modified 

variables, nove' in one theorem. Similarly, each dash (-) indicates the average 
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length, wave ' of a generated clause. It is readily noticeable that wave is much 

greater than nave most of the time. 
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Figure 6-11: Ch art of the average number of modified variables per 
unification versus average length of generated clause. 

Example 6.4: 

In this example, we show how backtracldng is performed. We skip the tirst three 

iterations and start with iteration 4. The following derivations, although numbered 

as 1 and 2, are not necessarily the tirst two derivations that CARINE caries out at 

iteration 4. We chose such derivations to depict an instance of backtracking. 

Suppose S = {BI, B2, B3, B4} is a set of input clauses, where BI is the negated 

conclusion, and 
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B,: -,P(a,a) 

LII 

B2: -Q(b) v P(b,a) 

L2' L22 

B3: -Q(xl) v -,P(x2,xl) 

LB L23 

B4: Q(xl) v P(xl,a) 

L'4 L24 

Iteration 4: 

Derivation 1 a: (bound = 4, depth = l, Goals = {}, if = {}) 

B,: -,P(a,a) 

B4 : Q(x33) v P(x33,a) 

R,: Q(a) 

B3: -Q(x65) v --,F(x66,x65) 

R2: -,P(x66,a) 

B4: Q(x97) v P(x97,a) 

0=3 = {x66~x97} 

R3:Q(x97)~ 

= {x33~a,x65~a, x66~x97} 
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Even though B, has no variables, still, an Reid is assigned to it. Derivation 1 a 

tenninates at depth 3 because at this point, there are no unit clauses that resolve 

with R3. Since R3 is a unit clause that does not exist in Goals, it is constructed, 
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labeled VI, and added to Goals. RI and R2 are also unit clauses but they are not 

added to Goals in this derivation because it is assumed that they have been added 

within previous iterations. We do not show them as part of the Goals for the sake 

of demonstrating the backtracking process. Goals becomes Goals = {VI}, where 

VI : UII = Q (xl) after VI is constructed and norrnalized. The contents of the path 

table for Derivation 1 a is shown in Table 6-3. 

Table 6-3: Path table for Derivation la of Example 6.4 

Depth ] 2 3 ... MAX_DEPTH 

Inference rule BR BR BR 

Newly introduced clause B4 B3 B4 

Reid of the newly 
32 64 96 introduced clause 

LiteraI deJeted from newly L24 LI3 L24 introduced clause 

Previous clause BI B4 B3 
[introduced at depth] [0] [0] [1] 
LiteraI deleted or modified 

LII L I4 L23 from previous clause 
Modified variables {x33} {x6S} {x66} 
Length of resolvent/factor 1 1 1 
Merge clause NO NO NO 
Delayed YES YES YES 

Once depth 3 is reached and no further resolutions with unit clause are possible, 

CARINE backtracks to depth 2 and tries to resolve R2 with B2. The two step 

backtracking process is quite simple when using the path table: 

(1) The variables that have been bound at depth 3 are freed. In our case, x66 

is removed from a=, i.e., the "Pointer to term" field (see Figure 6-5) of 

location 66 in the substitution set array is set to NULL. 

(2) The pointer to column 3 is moved back to the previous column. 
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The derivation, after backtracking is performed, is listed below as Derivation 1 b. 

The bound is sti1l4 but the depth is decremented to 2. The set Goals maintains the 

additional unit clause VI generated at depth 3 even though backtracking has been 

carried out. The substitution set if contains ail the variables that have been 

bounded to terms up to and including depth 2, i.e., if = if, U if2 • 

Derivation lb: (bound= 4, depth = 2, Goals = {VI), if= {x33~a, x65~a}) 

B4: Q(x33) v P(x33,a) 

if, = {x33~a} 

B 
a 
c 
k 

r 
a 
c 
k 

B3 : -Q(x65) v -,P(x66,x65) 

B4 is removed from the path 
table, the modified variables 

in ëi
3 

are freed and the depth 

is decremented back to 2. 

The contents of the path table after the backtracking is performed are shown 

below in Table 6-4. After the backtracking is completed, the resolution proceeds 

with B2 as the input clause. Derivation lc lists the steps up to depth 4. In 

Derivation 1 c the empty clause is obtained by reso]ution between R3 and the unit 

clause VI. 
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Table 6-4: Path table for Derivation 1 b of Example 6.4 

Depth 1 2 3 ... MAX DEPTH 

Inference rule BR BR 

Newly introduced 
B4 B3 clause 

Reid of the newly 
32 64 introduced clause 

LiteraI deleted from 
newly introduced L24 Ll3 
clause 

Previous clause BI B4 
[introduced at depth] [0] [0] 
LiteraI deleted or 
modified from LII L I4 
previous clause 

Modified variables {x33} {x65} 
Length of 

1 1 resolvent/factor 
Merge clause NO NO 
Delayed YES YES 

Derivation le: (bound= 4, depth = 2, Goals = {VI}, ëf= {x33~a, x65~a}) 
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BI: ,P(a,a) 

B4: Q(x33) v P(x33,a) 

~ = {x33-)a} 

RI: Q(a) 

B3: -Q(x65) v ,P(x66,x65) 

i:i2 = {x65-) a} 

R2: ,P(x66,a) 

B2: -Q(b) v P(b,a) 

i:i3 = {x66-)b} 

R3: -Q(b) 

VI: Q(xl29) 

i:i4 = {x129-)b} 

R4 : ljJ 

i:i= ~ ui:i2 ui:i3 ui:i4 

= {x33 -) a, x65 -) a, x66 -) b, x129 -) b } 
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Derivation 1 c tenninates at depth 4 when the empty clause is obtained. The 

contents of the path table for Derivation le are shown in Table 6-5. 
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Table 6-5: Path table for Derivation le of Example 6.4 

Depth ] 2 3 4 ... MAX DEPTH 

Inference rule BR BR BR BR 

Newly introduced B4 B3 B2 VI clause 

Reid of the newly 32 64 96 128 introduced clause 

LiteraI deleted trom 
new Iy introduced L24 Ln L22 UII 
clause 

Previous clause BI B4 B3 B2 
[introduced at depth] [0] [0] [1] [2] 
LiteraI deleted or 
modified trom LII LI4 L23 LI2 
previous clause 

Modified variables {x33} {x6S} {x66} {x129} 
Length of 1 1 1 0 resolvent/factor 

Merge clause NO NO NO NO 
Delayed YES YES YES NO 

Example 6.5 

This example demonstrates how binary factoring is managed by the path table and 

how the temporary set T of constructed clauses is used (we do no show the first 4 

iterations, we jump directly to iteration 5). The following derivation is a 

continuation of the previous example so the input clauses are the same. We 

assume that the set Goals is empty. We show the contents of the temporary set T 

of constructed clauses. At the beginning of each derivation the set T is empty (see 

SLR in Chapter 4). 
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Derivation 2: (bound= 5, depth = 1, Goals = 0, if = 0, T=O) 

B2: -Q(b) v P(b,a) 

B4 : Q(x33) v p(x33,a) 

R,: P(b,a) v P(b,a) 

Contains identical literaIs 
but not yet considered a 
merge clause because the 
literaIs are not merged. 

R2: P(b,a) ~ .. -----; Merge clause 
'---------' 

B3: -Q(x65) v -,P(x66,x65) 

B4 : Q(x97) v P(x97,a) 

= {x33-+b, x65-+a, x66-+b, x97-+a} 
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Depth3 

Depth4 

}-DePth5 

In Derivation 2, the merge clause R2 is constructed, labeled Cl, and added to the 

set T. Tbecomes T={Cd where C,:P(b,a). The empty clause is derived at depth = 

bound and hence, there was no need to use the merge clause. Notice that in this 

case the merge clause was not needed to obtain a refutation. The contents of the 

path table for Derivation 2 are shown in Table 6-6. 
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Table 6-6: Path table for Derivation 2 of Example 6.4 

Depth 1 2 3 4 5 ... MAX_DEPTH 

Inference mIe BR BF BR BR BR 

Newly introduced 
B4 - B3 B4 BI clause 

Reid of the newly 32 - 64 96 128 introduced clause 

LiteraI deleted from 
newly introduced LI4 - L23 LI4 L11 
clause 

Previous clause B2 B2 B4 B3 B4 
[introduced at depth] [0] [0] [0] [2] [3] 
LiteraI deleted or 
modified from LI2 L22 L24 LB L24 
previous clause 

Modified variables {x33} {} {x65, x66} {x97} {} 
Length of 2 1 1 1 0 resolvent/factor 
Merge clause NO YES NO NO NO 
Delayed YES NO YES YES NO 

To construct the merge clause using the above path table, we list the literaIs of the 

input clauses B2 and B4, deI ete aIl the literaIs mentioned in the row "Literai 

deleted or modified from previous clause" up to colurnn 2, and finaIly apply the 

substitution sets from colurnns 1 and 2 over the remaining non-deleted literaIs. 

Since only one substitution set, narnely U, is maintained, it may appear difficult 

to extract the substitution terms of only the variables that are involved in the first 

two columns when u contains aIl the bound variables up to depth 5. However, 

this is quite simple because we rely on the information in the modified variables 

depth 

row. FormaIly, the problem can be statéd as follows. Given Œ = U Œi' we want 
;=) 

k 

to extract O";.k = U u; where k ~ depth from U, and then apply O"; .. k to the 
;=) 

delayed clause at depth k. ln our case, k = 2 and depth = 5. We want to rebuild 

a) U Œ2 from Œ. First, we list aIl the variables in the "Modified variables" row 
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up to column k. Next, we obtain aIl the substitution tenns for those variables from 

(J. Since we store Cf as a non-idempotent substitution set, this makes the 

extraction of D-;k using the above two simple steps easy and the result is correct. 

In our example, the modified variables up to column 2 are {x33}. The substitution 

tenn for x33 is b. We can now construct the merge clause. First, we list aIl the 

literaIs of B2 and B4 

-Q(b) v P(b,a) v Q(x33) v P(x33,a) 

LI2 L22 L14 L24 

Next, we delete aIl the literaIs L14, LI2, and L22 as entered in the path table in the 

rows of "Literai deleted from newly introduced clause" and "Literai deleted or 

modifiedfrom previous clause" up to column 2. We are left with P(x33,a). FinaIly, 

we apply the substitution set du = d J U d 2 to the remaining literaIs, and we get 

[p (x33, a)] d1.2 = P (b, a) which is R2 in Derivation 2. 

6.6 Experimental Results 

In this section, we present sorne of the experimental results gathered from running 

CARINE over a selected set oftheorems from the TPTP library version 2.6.0. We 

selected a sample of 100 theorems from aIl the domains in the TPTP library 

whose characteristics (number of input clauses, rating, maximum tenn depth, 

length of clauses, weight of clauses, etc.) cover most of the characteristics found 

in the rest of the theorems in the TPTP library (see Appendix D for the list of the 

100 theorems). We set the time limit i~ CARINE to 180 seconds so that CARINE 

had 180 seconds to prove each theorem. None of the theorems was proved by 

CARINE, so CARINE used up aIl of the given time for each theorem. 

We begin by presenting and discussing the results of the percentage of time 

spent in constructing clauses. In order to acquire comparable results, we built a 

version of CARINE that constructs and discards every generated clause (i.e., no 
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DCC is employed). We use the symbol lA in the following sections to refer to this 

version of CARINE and the symbol !B to refer to the version of CARINE where 

DCC is employed. 

The total time, O(t), spent in the construction process in each theorem, t, is 

divided by the total time, Gt(t), given for lA to prove the theorem t, and then 

multiplied by 100 to obtain the percent of time spent in constructing clauses; 

PTCC(t). The formula of the percentage of time spent constructing clauses is 

PTCC(t) = O(t) xl 00 
Gt(t) 

(E6.3) 

The chart III Figure 6-12 shows the PTCC(t) for each of the 100 theorems. 
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The time spent constructing clauses affects the inference rate. The inference rate 

usually degrades as the percentage of time spent constructing clauses goes up. 

The inference rate is the number of generated clauses NGen(t) over a period of 

time Rt divided by Rt, where Rt is the running time of the A TP over a given 

theorem t. The running time is either the time it takes the ATP to find a proof, or 

the time that the A TP runs for before it gives up without finding a proof. Since we 

are using the same platform for aIl the theorems and the running time is Rt =180 

seconds (since CARINE did not prove any of the 100 theorems), we calculate the 

inference rate by the formula 

IR(t) = NGen(t) 
180 

(E6.4) 

The chart in Figure 6-13 shows the inference rates, calculated by E6.4, where 

NGen(t) was acquired through the running of lA and lB over the selected 100 

theorems. The theorems in the chart in Figure 6-13 are sorted by the inference 

rate obtained from lA. This makes it easier to notice that the inference rate of the 

version where the clauses were not constructed is generally substantially higher 

than the inference rate of the version where the clauses were constructed. 

The increase in inference rate or inference rate speedup (IRS) is calculated as 

IRS(t) = IR." (t) 
IRA (1) 

(E6.5) 

From Figure 6-14 we notice that the inference rate speedup increases as the time 

spent constructing clauses increases. This implies that the inference rate speedup 

is not constant; it depends on the overall time spent in clause construction. The 

more time lA spends in clause construction, the slower it is with respect to lB and 

hence, the more is the inference rate speedup. 
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We conclude that, in general, the higher the value of PTCC(t), the higher is IRS(t). 

Even though this statement is true most of the time, it is not true aIl the time as 

can be seen from the chart of Figure 6-14. For instance, if we inspect the results 

over the theorems LAT003-1 and BOOOI4-3 that are listed in Table 6-7, we 

notice that the percentage of time spent in clause construction when lA was 

attempting to find a proof for theorem LAT003-1 is 9.12% higher than that of 

BOOOI4-3, however, the inference rate speedup is 6.312.43=2.59 times lower. 

We can obviously spot other instances from Figure 6-14 where this case occurs. 

We also notice that 2% of the theorems resulted in an inference rate speedup that 

is less than 1 and both theorems had a PTCC(t) that is less than 1%. We discuss 

why the inference rate speedup from those two theorems was less than 1 later 

when we define the unit conflict tests. 

Table 6-7: Comparison of PTCC and IR of some theorems 

Theorem PTCC[%] I~ [inflsec] IRA [inflsec] IRS 

BOOO] 4-3 46.07 635,875 100,854 6.30 

LAT003-] 55.19 27],284 ]] ],65] 2.43 

The curve-fit l drawn in Figure 6-14 has a margin of error of23.01% on average. 

Nevertheless, it can be used to obtain a rough estimate of the inference rate 

speedup once the percentage of time spent in clause construction is deterrnined. 

This might be helpful for example, in finding out ahead of time if implementing 

or tuming on the option of using delayed clause construction is going to result in 

the desired inference rate speedup over a range of theorems. For instance, if the 

clauses are aIl propositional clauses or the maximal term depth is 1 (i.e., clauses 

contain no functions but only variables and constants), then DCC might not 

provide a significant speedup in the inference rate. 

1 We experimented with several dozens of different curve-fits using polynomial (of different 
degrees), logarithmic and trigonometric functions and we found that the curve-fit presented here 
provided the least margin of error on average and the expression is relatively simple with respect 
to the other tested curve-fits. 
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The reason that a higher PTCC does not al ways translate into a higher IRS when 

clauses are no longer constructed is that it is not the only factor that affects the 

inference rate speedup. Another factor that affects the inference rate speedup is 

the difference in the percentage of successful unifications between version lA and 

version lB. In CARINE, a successful unification due to binary resolution or binary 

factoring leads to a newly generated clause. Figure 6-15 shows a chart of the 

percentage of successful unifications obtained from running lA and lB over the 

selected 100 theorems. Therefore, the number of successful unifications is the 

same as the number of derived clauses. The percentage of successful unifications, 

PSU ATP (t), obtained from running an A TP over a theorem t is caIculated by the 

formula 

PSU (t) = SU ATP (t) xl 00 
ATP TU (t) , 

ATP 
(E6.6) 

where SUATP(t) is the number of successful unifications that occurred over the 

running time period and TU ATP (t) is the total number of attempted unifications 

over the running time period. From the chart in Figure 6-15 we can see that the 

percentage of successful unifications obtained from lB can be higher or lower 

than the percentage of successful unifications obtained from lA. Indeed, 37% of 

the theorems resulted in a higher percentage of successful unifications under lB, 

8% of the theorems produced around the same percentage of successful 

unifications as lA, and 55% had a lower percentage than that with lA. The ratio of 

the percentage of successful unifications obtained from running the two versions 

of CARINE over a theorern t is 

RPSU(t) = PSUB(t) x 100 ~ 
PSU", (t) 

(E6.7) 

By plotting RPSU(t) versus IRS(t), as shown in Figure 6-16, we can investigate 

the effect of the percentage of successful unifications on the inference rate 

speedup. 
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We added the PTCC values in Figure 6-16 for sorne theorerns to give an idea of 

the relationship between the two main factors, RPSU(t) and PTCC(t), that affect 

the inference rate speedup. If the ratio of the percentages of successful 

unifications is less than 1, then lB perfonned a lower percentage of successful 

unifications than lA. However, if RPSU(t) < 1, it does not necessarily rnean that 

the IRS(t) is low. In fact, even though RPSU(CAT015-3)=O.69, the value for 

IRS(CAT015-3)=5.49 which is relatively high by cornparison with other IRS 

values. This is due to the high value of PTCC(CAT015-3)=55.35%. The reason 

why RPSU(t) < 1 is usually due to the fact that it is highly likely that when 

theorerns contain constants, the nurnber of successful resolutions in a derivation 

decreases as the derivation grows deeper because of the binding of the variables 

to constants and function. 

Table 6-8 lists sorne theorerns and the corresponding values of RPSU(t), 

PTCC(t), and IRS(t). 

Table 6-8: RPSU(t), PTCC(t) and IRS(t) of sorne theorerns 

Theorem RPSU(t) 1%) PTCC(t) 1%) IRS(t) 

BOOOI4-3 1.57 46.07 6.30 

CATOI5-3 0.69 55.35 5.49 

COLOOI-2 1.00 0.06 1.l0 

FLD003-1 1.01 65.57 8.66 

FLDOI5-1 LOI 63.83 9.86 

FLD080-4 1.81 36.16 2.34 

LAT003-1 0.24 55.19 2.43 

LCL426-1 1.03 054 0.50 

ROB007-4 0.19 56.98 1.30 
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An interesting observation from Table 6-8 is the value of IRS(LCL426-1 )=0.5 

which is less than 1 indicating that lB actually performed worse than lA in this 

case. The main reason for the worse performance is attributed to two factors: 

1. the low value of PTCC(LCL426-1 )=0.54% which occurred at the same 

time when the percentage of successful unifications is almost unchanged, 

i.e., RPSV(LCL426-1)=1.03 (which is close to 1), and 

2. the number of times the test for unit conflict is performed. 

Even though a unit conflict test is an attempt to unify possible potentially 

complementary literaIs from two unit clauses, it is not counted in the number of 

attempted unifications. This is because the number of unit conflict can change 

dramatically with respect to the number of attempted unifications between clauses 

where at least one of them is not a unit clause. For example, the number of unit 

conflict tests can sometimes be a million times less (e.g., LDAO 11-1) than the 

number of attempted unifications where at least one of them is not a unit clause 

while in others it can be 75000 time more (e.g., COLOOI-2). Due to this dramatic 

change, we decided to study the effect of unit conflict test separately. 

We denote the number of unit conflicts tests performed by an ATP over a 

theorem t during a runtime Rt by VCTATP(t). For LCL426-1, lB performed 

l34,754,651 attempts to find a unit conflict (i.e, 

VCTIB (LCL426-1) = l34, 745,651), and a mere 151,424 successful unifications 

from a total of 216,956 attempted unifications. By comparison, for the same 

theorem, lA performed 43,338,280 attempts on finding a unit conflict (i.e., 

VCTA (LCL426-1) = 43,338,280), l30,443 successful unification and 192,206 

attempted unifications. The ratio 

VCTB (LCL426-1) = l34, 754,651 _ 3.11 
VCTIA (LCL426-1) 43,338,280 
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indicates that the number of unit conflict attempts tripled, whereas 

RPSU(LCL426-1) = 1.03 (see Table 6-8) remained practically the same. To 

maintain a relatively high inference rate speedup, the ratio of the number of unit 

conflict tests of lB to lA must be (ideally) less or equal to l, if the percentage of 

successful unifications remain almost the same, i.e. RPSU(t) is close to 1. The 

ratio of the number of unit conflict tests performed while searching for a proof of 

a theorem t between the two versions of CARINE is expressed as 

RUCT(t) = UCT[j(t) , 
UCT",(t) 

RUCTt) vs IRS(t) 

61% with RUCT(t)=1 15% with RUCT(t»1 

(E6.8) 
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Figure 6-17: Chart of RUCT(t) vs IRS(t). 
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Figure 6-17 shows RUCT(t) versus IRS(t) for the selected 100 theorems. We 

notice that RUCT(t) >1 for 15% of the theorems and RUCT(t) >3 for only 4% 

of the theorems. This is an indication that, generally, the number of unit conflict 

tests do es not increase substantially between lB and lA . Even though the R UCT(t) 

might occasionally increase substantially, this does not mean that the inference 

rate speedup is going to be less than 1 as can be se en in Table 6-9 with the three 

theorems GE0004-1, GE0089-I, and NUM284-1.014. For instance, 

RUCT(NUM284-1.014)=3.5 is higher than RUCT(LCL426-1)=3.I 1 and even 

though the difference in the percentage of successful unifications between both 

theorems is very small, i.e., RPSU(LCL426-1)-RPSU(NUM284-I.014)=1.03-

0.98=0.05, the inference rate of lB is double that of lA over NUM284-1.0 14, 

whereas the inference rate of lB is half that of lA over LCL426-1. 

Table 6-9: RUCT(t), PTCC(t), RPSU(t), IRS(t) of sorne theorerns. 

Theorem RUCT(t) PTCC(t) I%} RPSU(t) IRS(t) 

ALG003-1 l.36 0.59 1.04 0.97 

GEOO04-1 3.48 25.92 0.82 l.38 

GE0089-1 3.40 32.82 0.44 1.40 

LCL426-1 3.11 0.54 1.03 0.50 

NUM284-1.014 3.50 45.46 0.98 2.07 

By consulting Table 6-9, we conclude that the reason why the inference rate 

speedup for NUM284-1 .014 still went up as opposed to the inference rate speedup 

for LCL426-1 which went down is the much higher PTCC(t) ofNUM284-1.014 

since both have an RPSU(t) that is close to 1 and their R UCT(t) values are close. 

The question that arises at this point, after investigating the three factors PTCC(t), 

RPSU(t) and R UCT(t) that affect the inference rate, is which one of those factors 

is most tightly related to the inference rate speedup? By inspecting the chart of aIl 

three factors along with the IRS(t) over the selected 100 theorems in Figure 6-18, 
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we can conc1ude that PTCC(t) follows the trend of IRS(t) more closely than either 

RPSU(t) and RUCT(t). 
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Figure 6-18: Chart of PTCC(t), RPSU(t), RUCT(t), and IRS(t) over the 
selected 100 theorems from the TPTP library v2.6.0. 

The theorems in Figure 6-18 are sorted by IRS(t) value. The left si de y-axis is a 

measurement in percent units of the percentage of time spent constructing clauses 

PTCC(t), whereas the right y-axis indicates the values for aIl the other factors as 

weIl as the values for the IRS(t). Since PTCC(t) is the factor that is most tightly 

related to the IRS(t), it is interesting to determine at what point the PTCC(t) starts 

to affect the IRS(t) values significantly. If we look again at the chart in Figure 6-

14, we notice that after a PTCC(t) of 1 % the inference rate begins to increase, i.e., 

IRS(t) > 1. For PTCC(t) > 33%, the inference rates start to at least double for most 

theorems. For PTCC(t) > 50% the inference rates start to at least quadruple on 
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most theorems. By looking again at Figure 6-12, we notice that the average of 

PTCC(t) over the selected 100 theorems is 33.68%. Since the inference rate on 

most theorems starts to double when PTCC(t) > 33%, we can claim that on 

average the inference rate at least doubles when clauses are not constructed. This 

observation is confirmed by inspecting the chart in Figure 6-19. 
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Figure 6-19: Inference rate speedup of the 100 selected theorems. 

We conclude that even though all three factors, PTCC(t), RPSU(t), and RUCT(t), 

affect the inference rate speedup, the percentage of time spent in clause 

construction, PTCC(t), is the one most tightly related to the inference rate speedup 

and when the time spent constructing clauses is 33% or higher, i.e., 

PTCC(t);::: 33%, the use of delayed clause construction may improve the 

inference rate of an A TP significantly. 
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6.7 The Effect of DCC and A TS on SLR 

In this section we present the results that show the effect of DCC and A TS on 

SLR. We selected aU the theorems that CARINE was able to solve (see Appendix 

H) where the CPU time that CARINE spent to prove a theorem was at least 10 

seconds and at most 180 seconds. The total number ofthose theorems is 106. We 

then ran CARINE with different configurations on each theorem. The 

configurations are the foUowing. 

(A) ATS and DCC: Both A TS and DCC used (default configuration of 

CARINE) 

(B) No ATS: The option ofusing ATS was tumed off. 

(C) No DCC: The option ofusing DCC was tumed off. 

(D) No ATS and No DCC: The options of using ATS and DCC were 

tumed off. 

The number oftheorems solved in each configuration is shown in Table 6-10. 

Table 6-10: Number of theorems solved by CARINE using different 
configurations 

ATSandDCC NoATS No DCC No ATS and No DCC 

106 58 90 39 

The results show that ATS has more effect than DCC on SLR. When ATS was 

tumed off, CARINE solved only 58 (about 55%) of the 106 theorems, whereas 

when DCC was tumed off, CARINE solved 90 (about 85%) of the 106 theorems. 

Furthermore, when we compared the number of generated clauses using 

configuration (B) to the number of genenlted clause using configuration (A) over 

the 58 theorems that were solved by (B), we found that, on average, the number of 

generated clauses almost tripled, as shown in Table 6-11. 
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Table 6-11: Average number of generated clauses by (A) and (D) over the 58 
theorems solved by (D) 

ATSand DCC NoATS 

8,848,098 25,955,223 

The results in Table 6-10 and Table 6-11 indicate that by using ATS, the 

explored se arch space was reduced significantly leading to a more efficient 

search. 

6.8 Summary 

In this chapter, we introduced CARINE, an implementation of semi-linear 

resolution. We described the data structures involved in the implementation and 

demonstrated that delayed clause-construction does not require complicated data 

structures. DCC can be implemented using a path table. 

We provided examples that demonstrate how DCC works in practice. The 

examples also show how attribute sequences can reduce the explorable se arch 

space. 

We provided experimental results and analyzed the relationship between the 

inference rate speedup and the factors that affect it. We found that when clauses 

are not constructed, the inference rate more than doubles on average but it can 

increase up to 10 times. 

Finally, we compared different configurations of CARINE to determine the 

effect of DCC and A TS on SLR. We found that in terms of number of theorems 

solved, the impact of A TS on SLR was greater than DCC. 



CHAPTER 

7 

Conclusion 

In this chapter we sum up and discuss our work by referring to the mam 

contributions listed in Chapter 1. We then detail further research issues that could 

be addressed in future work. 

7.1 Summary and Discussion 

We developed two strategies, delayed clause-construction and attributes 

sequences, to improve the performance of an A TP. We integrated those strategies 

into a top-down bottom-up search procedure called semi-linear resolution. We 

built an experimental system, called CARINE, that implements semi-linear 

resolution. The results obtained from experiments conducted on theorems from 

the TPTP library using CARINE demonstrated that the methods presented in this 

thesis are promising and can improve the performance of a resolution-refutation 

ATP based on depth-first search substantially. 

In this thesis we improved the inference rate of CARINE by an average of 

approximately 2.5 times and in certain cases by as much as 10 times due the use 

of delayed clause-construction. Consequently, CARINE proved 18% more 

theorems due to the use of DCC. 

We improved the efficiency of CARINE by reducing the explorable search 

space using attribute sequences. Consequently, CARINE proved almost twice as 
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many theorems due to the use of attribute sequences than without the use of 

attribute sequences. 

When both DCC and ATS were combined, CARINE was able to prove almost 

three times the number of theorems than when neither strategy was used. In 

addition our analysis indicated that the reduction in the size of the explorable 

search space due to the use of ATS is exponential in the depth bound. 

We have shown that an A TP can perform large steps in a search, using a mega­

inference rule, which is a consequence of DCC. Although the mega-inference rule 

allows an ATP to take large steps in a search, the information that can be learned 

from the small steps is not lost. We have shown that it is possible to obtain 

information from small steps in one iteration to reduce the explorable search 

space in the following iterations (see Example 6.3). 

7.2 Future Work 

There are several ways to extend and improve upon the concepts laid out in this 

thesis. 'Here we discuss two major issues that we will be working on in the future: 

expanding the delayed clause-construction to a calculus for substitutions and 

improving the efficiency of semi-linear resolution through the use of attribute 

subsequences. 

7.2.1 A calculus for substitutions 

The potential of delayed clause-construction can go beyond simply delaying or 

avoiding the construction of clauses. The framework established in this thesis is a 

first attempt to build a system that relies only on the input clauses and a calculus 

of substitution sets. With such a system, it would no longer be necessary to 

construct clauses and DCC can be extended to non-linear derivations. The 

generation of new clauses, obtained by the application of inference rules, will be 

done through substitution set operations, such as union, intersection and 
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difference. For instance, the umon represent resolutions. We have shown in 

Chapter 3 that the final p-idempotent substitution set in a linear derivation is the 

union of aIl the mgu' s obtained from the unification of terms or literaIs aIong the 

linear derivation. Substitution set difference represents backtracking. We have 

shown in Chapter 6 how backtracking is performed by deleting recent mgu's 

before backing up to shaIlower depths. Intersection of substitution sets represent 

several possibilities depending on the result. We use the intersection operation to 

discover ancestor resolution, perform non-linear deductions and control 

redundancy. We give only a simple example on how the intersection operation on 

substitution sets can help in building non-linear deduction using DCC. For 

instance, if the intersection of substitution sets is empty, then we either have a 

variant of an input clause and a linearly derived clause that share no variables 

with each other, or two linearly derived clauses that share no variables with each 

other. A resolution between two linearly derived non-constructed clauses C and D 

that share no variables lead to the generation of a new clause N, which is derived 

in a non-linear way. Thus, we have non-linear deduction using DCC 

7.2.2 Improving semi-linear resolution 

There are several ways to improve the efficiency of semi-linear resolution. We 

indicated in Chapter 4 that the inclusion of demodulation and paramodulation in 

semi-linear resolution is possible. We did not provide multiple ways to control the 

application of these rules. The only guide we suggested to control the application 

of these rules is through the use of attribute sequences. There are several studies 

performed to control paramodulation from generating too many clauses. The 

results of those studies are summarized in [Nieuwenhuis & Rubio 2001] and 

[Degtyarev & Voronkov 2001]. It is important that these constraints be 

implemented, otherwise the efficiency of SLR degrades tremendously. 

The inclusion of subsumption to reduce redundancy is also an important factor 

in SLR. However, because clauses are not constructed, we have to rely on the 
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combined infonnation from the substitution sets and tenn replacement lists to 

perfonn the subsumption. This is an issue related mainly to the extension of DCC 

to a calculus of substitution set. However, we can also make use of the method 

proposed in [Schulz 2004] to perfonn subsumption. 

Another improvement to SLR can be achieved by memoization. Memoization 

is the process of caching (storing most frequently used or most recently used) 

results. This technique can be highly effective over attribute sequences and 

subsequences because it eliminates longer sequences based on the knowledge 

obtained from shorter sequences (see Example 6.3). 

There are many other possibilities to enhance the efficiency of SLR through 

attribute sequences pruning. We have only used the length attribute but there are 

many other clause attributes (weight, maximum tenn depth, number of constants, 

number of variables, etc.) that can be used although not all ofthem allow the ATP 

to maintain its state of completeness. Nevertheless, attributes other than the length 

can be used as part of heuristic functions. The heuristic functions may be cost 

functions that estimate the cost of attribute sequences. Based on the values of the 

cost functions, the ATP may decide whether to follow an attribute sequence and 

consequently, proceed with its search over the corresponding search paths or 

discard the attribute sequence and an the search paths that correspond to it. 

As discussed in Chapter 6, literaI ordering is only done initially over the input 

clauses. We can order the literaIs in a path table that are not marked deleted. The 

inclusion of literaI ordering may provide a more flexible way to select the 

potentiai literaIs for resolution. This may lead to the tennination of an unfruitful 

path early in the derivation and increase the overall efficiency of an A TP. 



Appendix A 

The Thousands of Problems for Theorem Provers (TPTP) set is a library of 

around 7000 theorerns1 that is currently used by at least 118 scientists2 as test 

problerns for their autornated theorern proyers. It is rnaintained and updated by 

Geoff Sutcliffe and Christian Suttner [TPTP site]. The TPTP set consists of over 

30 dornains containing conjunctive normal form (CNF) and first-order formula 

(FOF) problerns. 

The studies that we have conducted are over CNF problerns, and hence, we have 

used only the theorerns frorn the CNF problerns for our experirnents. Our results 

were obtained frorn tests performed on theorerns frorn TPTP version 2.6.0. We 

chose TPTP for our experirnents for the following reasons: 

• The large variety of CNF theorerns spread over rnany dornains. 

• The wide range of characteristics that the theorerns have. For exarnple, the 

nurnber of clauses in sorne problerns can be as srnall as 2 and in others as 

large as 3240. Also theorerns rnay contain only propositional clauses or 

only first-order clauses or a cornbination ofboth. 

• The rating of every theorern according to its difficulty. The difficulty of a 

theorern is rneasured by a real nurnber between 0 and 1 and is based on 

the number of registered3 theOl:ern proyers that were able to solve the 

problern. A rating of 0 for a problern irnplies that all registered A TPs 

) Version 2.6.0 of the TPTP contains 6973 theorems spread over 31 domains. 
2 This is the number of registered users. 
3 The registered theorem provers are state-of-the-art A TPs submitted to the editors of the TPTP 
Iibrary. 
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solved the problem while a rating of 1 implies that no A TP solved the 

problem. 

• The growing number of users using the TPTP set which is tuming this set 

into a de facto standard for testing new or improved A TPs. 

• The good maintenance and support by the editors. 

• The comprehensive documentation on every theorem, which includes its 

rating, satisfiability status, author, reference, domain, brief description, 

and characteristics (number of clauses, literaIs, functors and so on), and 

the statistics and synopsis on the overall set. 

• The availability of the library for free. 

With such a large number of theorems spanning a wide range of characteristics, 

we can test our experimental ATP with confidence that the results obtained from 

the experiments provide an adequate projection of its speed and efficiency from 

an empirical point of view. Testing an ATP over a large number of theorems also 

reveals its stability (e.g., does not cause an error which halts the operation of the 

machine leading to a reboot of the system) and reliability (e.g., the proof is sound 

and the output is correct). 

The table below shows sorne statistics on the TPTP version 2.6.0 problem library. 

It lists aIl the domain names and their abbreviations. The abbreviations are used as 

a prefix for naming theorems. For example, GE0006-1 is a theorem from the 

geometry domain. The average number of clauses in each domain for the CNF 

problems is indicated along with the minimum and maximum number of clauses 

in any theorem within a domain. The average rating for each domain provides a 

rough indication on the difficulty of the theorems within the domain. The higher 

the rating value in a domain, the more difficult are the problems in this domain. 

The NUM and SET domains have the highest ratings. This indicates that a lot of 

the problems in those domains are difficult. 
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Number Number Ave. number of Ave. 
Domain Abbrv. ofCNF ofFOF clauses CNF rating 

problems problems (min-max) ofCNF 
General Algebra [M] ALG 12 0 97 (9-24) 0.500 
Analysis [M] ANA 21 0 26 (12-50) 0.615 
Boolean Aigebra [M] BOO 139 0 16 (7-49) 0.423 
Category Theory [M] CAT 62 0 28 (12-37) 0.092 
Combinatory Logic [L] COL 165 0 10 (7-22) 0.246 
Comj)uting Theory [CS] COM 6 3 27 (11-50) 0.063 
Fields [M] FLD 281 0 33 (27-49) 0.588 
Geometry [M] GEO 249 77 84 (6-169) 0.554 
Graph Theory [M] GRA 1 0 12 0.000 
Grol1J>s [M) GRP 791 3 26 (4-328) 0.193 
Homological Algebra [M] HAL 0 9 - -
Henkin Models [L] HEN 67 0 20 (10-36) 0.008 
Hardware Creation [E] HWC 6 0 42 (9-79) 0.167 
Hardware Verification [E] HWV 81 0 140 (21-205) 0.242 
Knowledge Representation 

KRS 17 0 24 (4-54) 0.000 
Schemes [CS] 
Lattices [M] LAT 104 0 17 (7-50) 0.378 
Logic Calculi [L] LCL 527 4 12 (3-34) 0.377 
Left Distributive Algebra [M] LDA 23 0 26 (10-36) 0.732 
Management CSS] MGT 78 78 39 (8-85) 0.141 
MisceIJaneous MSC 13 1 33 (6-204) 0.180 
Natural Language Processing 

NLP 258 258 140 (30-285) 0.194 
[CS] 
Number Theory [M] NUM 315 0 248 (6-409) 0.890 
Planning [CS] PLA 32 6 28(10-31) 0.239 
Puzzles PUZ 74 4 42 (5-504) 0.127 
Rings [M] RNG 104 0 32 (8-74) 0.394 
Robbins Algebra [M] ROB 38 0 14 (9-24) 0.487 
Set Theory [M] SET 704 326 185 (2-295) 0.746 
Software Creation [CS] SWC 423 423 236 (222-333) 0.650 
Software Verification [CS1 SWV 20 9 25 (3-41) 0.151 
Syntactic SYN 838 299 26] (2-3240) 0.139 
Topology [M] TOP 24 0 9] (3-119) 0.535 

Total: 5473 ]500 

[CS] = Computer Science [E] = Engineering , [L] = Logic 

[M] = Mathematics [SS] = Social Sciences 
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This appendix contains the proofs of theorems from Chapter 3. 

Proof of Theorem 3.2 

Theorem3.2 

Given two idempotent substitution sets 0"] and 0"2 that are consistent, if none of 

the variables in Dom(O"]) occurs in any of the terms in Ran(0"2) ' then 

Proof: 

To prove that 0"] U 0"2 ~ 0"]0"2 means to show that the application of 0"] U 0"2 a 

finite number of times over itself should lead to the set 0"]0"2. This means that 

idempotent substitution sets that are consistent. Since 0"] and 0"2 are consistent, 

then by Definition 3.6 Dom(0"])nDom(0"2) = {} and 0"] U0"2 is p-idempotent. 

Since 0"] U 0"2 is p-idempotent then let 

1i = 0"] U0"2 

= {v] ~tp ... ,vn ~tn'u] ~s], ... ,um ~sm}· 

The application of 1j on ë· gives 

ë"ij = (0") u0"2)ë· = {v] ~ t)ë·, ... , Vn ~ t}·,u) ~ si, ... ,um ~ smë). 
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Since 0"] is idempotent then the application of the subset of ë· that is equal to 0"] 

has no effect on the substitution terms tp •.. ,tn. Similarly, the application of the 

subset of ë· that is equal to 0"2 has no effect on the substitution terms sW .. ,sn. 

Therefore, 

If none of the variables in Dom( 0"]) occurs in Ran( 0"2) , then 0"] has no effect on 

This implies that ë7f can be written as 

The application of ërf over li glves 

ë·(iiif) =(0"] u0"2)(ëë) 

= {v) -+t/fif, ... ,vn -+t}ë·,u) -+s)ë7f, ... ,um -+smë7f}. 

terms t), ... ,tn because 0") is idempotent, so none of the variables v), ... , vn occurs 

in any of the terms t), ... ,tn • Furthermore, none of the variables in Dom(O")) 

occurs in Ran(0"2) (given). So when ë7i was formed, the application of 0"2 over 

tp ... ,tn did not introduce any of the variables in Dom(O")) into any of the 

resulting terms t)0"2' ... ' tn0"2. In other ~ords, for aIl 1 ~ i ~ n, for aIl 1 ~ j ~ n, 

Vi ~o lj 0"2. Moreover, the subset {v) -+ 1)0"2' ... ' vn -+ tn0"2} of ë7i has no effect on 

the substitution terms sp ... ,sm because none of the variables in Dom(O"]) occurs 

in Ran(0"2). The only subset of ëë· that may affect ë· is {u) -+ sp ... 'Um -+ sm}, 
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but this is the same as set (J'2. So the application of ë1f to ë· is reduced to the 

application of (J' 2 to ë· . Therefore 

Since (J'2 is idempotent then it has no effect on the terms SI' •• • ,sm. Therefore, 

Notice that the set obtained from applying ë1i to ë· 1S same as ë1f, 

i.e., ë·( ëë) = ëë· . This implies that any further application to ë· is not going to 

pro duce a set different from ëë·. Let () = ëë· then ë· ~ () . 
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Proof of Theorem 3.3 

Theorem 3.3 

Given k ~ 2 idempotent substitution sets 0"1"'" O"k that are pair-wise consistent, 

if for each 1:::; i:::; k -1 none of the variables in Dom(O";) occurs in any of the 

terms in any Ran(O"j) ' where i + 1:::; j:::; k, then 0"1 U"'UO"k ~ O"I"'(Jk' 

Proof: 

This theorem is a generalization of Theorem 3.2. It can be proved by induction. 

Base case: k = 2. 

Given two idempotent substitution sets 0"1 and 0"2 that are consistent, if for aIl 

V E Dom(O"J ~ v flo Ran(0"2)' then 0"1 U 0"2 ~ 0"10"2 by Theorem 3.2. 

General case: k > 2. 

Suppose that for n < k, 0"1" "'O"n are idempotent, pair-wise consistent, and for 

n 

every 1:::; i :::; n, for aIl v E Dom( O"i) ~ v flo U Ran( 0" j ). Assume that for aIl 
j=i+1 

then their union is p-idempotent by Definition 3.6. Let fi =0"1 u",uO"n' then 

ë' ~ 0"1" 'O"n (assumption). The composition of idempotent sets is idempotent 

(see Chapter 2); henceO"I '''O"n is idempotent. Let B=O"I'''O"n' then ë' ~B and 

B is idempotent. 

Suppose that O"n+1 is idempotent, consistent with every O"i' 1:::; i:::; n, and for aIl 

v E Dom(O"J ~ v flo Ran(O"n+l) , then 0"1 u"·uO"n+1 = ë' uO"n+l' Since ë' ~ B, 
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then by Theorem 3.1 and the second property III Definition 3.7, ë' ua-n+1 IS 

confluent to Bua-n+" i.e., Buan+, D ë' uan+l . 

e is idempotent and a-n+1 is idempotent (given). Furthermore, none of the 

variables in e occurs in Ran(an+, ) because all the variables in e belong to 

n 

UDom(a;) and they do not occur III Ran(a-n+, ) (given). Therefore, 
;=1 

and e=a- ... a-
1 n' 

a- U"'ua- ua- ~ a- ···a a Since by assumption a u",ua ~ a ···a 1 n n+1 1 n n+l' 1 n 1 n 

is true for all n < k , then n + 1 = k and so 

Therefore, for any k ~ 2, al u··· u a k ~ al ... a k .0 
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Proof of Theorem 3.5 

Theorem 3.5 can be stated formally as follows. 

Given: 

1. A set ofconstructed clauses S = {BW .. ,Bn}' where n ~ 2. 

II. A linear derivation ~ = (I;, .. . , ~ ) , where k ~ 1 , of a goal clause G from S 

with Cinil ES, such that 

k 

1. every clause in the multiset union U V(IJ is a variant of a constructed 
i=! 

clause from S. 

k k 

2. Vars(Cini[)nVars(UV(1;))={} and for aH CEUV(1;) and for aH 
i=) i=) 

k 

DE U V(1;), if C"* D then Vars(C) n Vars(D) = {}. 
i=\ 

3. The mgu's (J'P ••• ,(J'k resulting from the inferences I;, ... ,Ik , are 

idempotent and consistent. 
.-

4. For aH 1 S;; i S;; k, no C(I;) is a from clause. Therefore, if 1; is a 

paramodulation, demodulation, or superposition, then the from clause is 

a variant of a clause from S. 
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Required to prove: 

Every ë'(IJ, 1 ~ i ~ k , can be expressed as 

where 

• m is the total number of variants of clauses from S used in d, 

• for aIl 15: j ~ m, r} E {l, ... ,n}, n = ISI and B~ = BrjO}, where Brj ES, and 

0) is variable renaming substitution, such that 

)-1 

• Ran(O)n(U Vars(B;)uVars(Cinit )) = {}, 
q=l q 

• al., = al u··· u ai , where al c Cinit and for aIl 1 ~ j ~ i , 

• Pu = Pl u··· U Pi , where for al1 1 ~ j ~ i , 

Proof: 

For aIl 1 ~ i ~ k , inference I; can be written as 

Prem(I;) 

CCI;) , YI (EB.1) 

Prem(I;) is a multiset of clauses imp1icitly representing a conjunction clauses. 

Since d is a linear derivation then by definition (see Chapter 2), 

i = 1, 

2~i5:k. 
(EB.2) 

From EB.2 we can forrn the multiset ..l(Prem(I;)) as fol1ows. 
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{

Cinit U L( 1J(I; » 
L(Prem(I;» = C(I;_I)U L(1J(I;» 

i = 1, 

2 ~ i~ k. 

188 

(ED.3) 

Definition 3.11 indicates that the conclusion of an inference I; can be written in 

the fonn « Ci \ Di) U Ei )CTi ( riCTi) , where Ci = L( Prem(I;» , Di c L( Prem(I;» , 

Ei C {---,Li} , and Li E L(Prem(I;». Since the conclusion of an inference I; can 

be written in the fonn «C; \ Di) u E; )CT, (r,CTi ) , then a non-constructed version of 

C(I;) can be expressed as 

(ED.4) 

In what follows, CTi is the mgu resulting from the unification of sorne tenns or 

literaIs from the premises. Similarly, ri is a tenn replacement list of sorne tenns 

from the literaIs of the clauses in the premises of inference I;. Chapter 2 and 

Table 3-4 provide more details on the mgu's and tenn replacement lists for 

specific inference rules. 

Base case: k = 1 

ë'(I;) = «CI \DI)uEI)CTI(rICTI) 

= «Cinit u L(1J(I;»uEI ) \ (al u PI»CTI(rICTI) 
Using EB.3 and EB.4 

where al c Cinil and PI c L(1J(I;». If El * {} then El contains the negation of 

a literaI ~ from Cinit , i.e., El = {---,~} where ~ E (nit' Notice that ~ cannot be 

an element from ,[(V(.z;» because in equality factoring, there is only one 

premise, so L(V(.z;» = {}. 

Case: k =2 
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ë'(Iz) = ({Cz \ Dz)uEz')(Jz{TP'Z) 

= ({ë'CZ;)u L(1J{I;)) u Ez') \ (az/ u /3z))(Jz(T2' (Jz), 

Using EB.3 and 

EB.4 

189 

If E2' * {} then 1; is equality factoring, Therefore, L(1J(1;)) = {} and E2' 

Suhstituting the expression for ë'(I;) in ë'(I;) , we get 

ë·{I;) = ««(Cinit u L(1J(.z;))u Ej) \ (aj u /31))(Jj (TI(Jj))U 

L{1J(I2)) U Ez') \ (a2/ U /32))(J2 (T2' (J2)' 

We want to move (Jj(TI(Jj) to the front of the ahove expression, In order to do 

that, we have to show that the application of (JI and (T)(J)) to L(1J{I;)), Ez', 

a 2/, /32 won't affect them. 

with a2 . Similarly, E2' is replaced with E2. 

From the given, it can he deduced that , 

Vars(Cini,)Î'I Vars(1J(I;) = {} and Vars(1J(.z;))Î'I Vars(1J{I;) = {}. 

Since Dom{(JI) c Vars(Cinil ) U Vars(1J(.z;)) then Dom«(JI)Î'I Vars('D(I2)) = {}, 

Therefore, L{1J(I;))(J1 = L{1J{I;)). 

Since P2 ç L('D(I;)) then P2(J1 = /32, 
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L(T,) ç Ciml U L('D(I;» this implies that L(T,) cr. L('D(I;» " 

Therefore, L('D(I2»(T,0",) = L('D(I2» " 

Since P2 ç L('D(I2» then L(T,) cr. /32 " 

ë"(I;) can now be written as 

ë"(I2 ) = ««Cinil u L('D(I;»uE,) \ (a, u /3,» u 

L('D(I;» u E2) \ (a2 U P2»0", (T,O", )0"2 (T2' 0"2)" 

ë"(I;)= «Cinil UL('D(I;»uE, uL('D(J;»uE2)\ 

(a, uA ua2 u /32»0", (T,0"')0"2(T2' 0"2) 

ë"(I2) = «Cinil u L('D(I;»U L('D(I;»uE, uE2 ) \ 

(a, ua2 u PI u P2»0",(TIO",)0"2(T2'0"2) 

ë"(J;)= «Cinit UL('D(I;)u'D(J;»uE, uE2)\ 

(al uA ua2 u pz»0",(T,0",)O"z(T2' O"z) 

ë"(I2)= «Cinil uL('D(I;)u'D(I;»uE, uE2)\ 

(a, u p, ua2 u P2»0",O"z(T,0",U2)(T2'0"2) 

al (TI al) moved to the 

end of expression. 

Using the special DU 

law (see Chapter 2)" 

Union is commutative" 

L(V(I,» u L(V(I,» = 

L(V(I,) u V(I,) 

Distributing a
2 

over 

al and TI al 

We now need to transform T 2' into a term replacement list, T2 , in which every 

referenced literaI L'in T2' is replaced by a reference to the original literaI L" By 

original literaI we mean the literaI L of the variant of the input clause before 0", 
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and/or T] is applied to L. The purpose of this transformation is to be able to 

change the expression (T]0"]0"2)( T2' 0"2) into (T] T2 (0"]0"2)). 

Recall that a term replacement list is not concemed with the actual terms being 

replaced but with their positions. As long as the positions are valid, the actual 

term being replaced is not important. Also, recall that a term replacement list is an 

ordered multiset that when applied to a clause, the application is performed from 

left to right. 

L(T2') c C(~)u L(1)(1;)). 

Therefore, for aIl (Ït ~ t) E T2', L' E C(~) or L'E L(1)(I2)). 

If L' E C(~) then 3L E Cinil U L(1)(~))uE] such that L' = LO"](T]O"]). L is the 

original literaI. 

If L'E L(1)(I2)) then since L(1)(1;))O"] (T]O"]) = L(1)(I2 )) (shown above), then 

L' 0"] (T] 0"]) = L'. L' is the original literaI. 

We form T2 from T2' as follows. 

For aIl (Lt. ~ t) E T2', if L' E C(~) then we replace it with the original L, and if 

L' E L(1)(IJ) then we keep it. 

Part II.4 of the given states that no intermediate conclusion is a from clause, 

therefore, for aIl (l'L ~ t) E T2' , the terÎn t is a term from a literaI in L('D(I;)). 

Since L(1)(1;))O"] = L(1)(1;)) (shown above), then to"] = t . 

ë·(J;) can now be written as 
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ëO(I2) = «Cinil u L('D(IJu 'D(I2))) \ Combining " and '2 ° 

(al u PI ua2 u P2))CTICT2 (TIT2 (apo2)) 

ëO(J;) = «Cinil u L('D(I;)U 'D(I2))) \ 

(au u Pt . .2))CTl..2(Tl..2CTl..2) 

General case: k > 2 

Assume that for aIl i < k , that 

ëO(l;) = «Cinil u L('D(I;)uoo oU 'D(I;))) \ 

(al .. i u PI .. i))CTI . .i(TI .. ,CTI . .i)o 

Show that for k = i + l , 

ëO(I;+I) = (Ci +1 \ Di+1 )CTi+1 (Ti+ICTI+1) 

= «ëo(I;)u L('D(I;+I))) \ (ai+1 u Pi+I))CTi+1 (Ti+ICTi+,), 

where a i+, c ëO(J;) andPi+' c L('D(J;+I)) ° 

The substitution of the expression for ëO(J;) into the expression for ëO(I;+I) 

Ieads to 

ëO(I;+J) = ««(Cinil u L('D(I;)u ° ° oU 'D(I;))) \ (au u PL;))CTu(TUCTI.J)U 

L('D(I;+J ))) \ (ai+1 u Pt+1 ))CTi+1 (Ti+1CTi+l) 

ëO(J;+l) = ««Cinil u L('D(1;)u 00 ° u 'D(J;))) \ (au u Pu)) U 

L('D(J;+l))) \ (ai+J U Pi+,))CTu(TLPIJCTi+J (Ti+ICTi+1) 
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The general expression for an intennediate conclusion can be derived from 

ë·(IJ= «Cinit uL(V(I;)u···uV(IJ))\ 

(au u PL;))CTJ..lrLP·U). 

i 

(EB.S) 

193 

Cmit ES and every clause in U V(Ij ) is a variant of a clause from S. Let 
j=1 

Cinil = Br ~ = B: ' where 1::; 1j ::; n and (},) is a variable renaming substitution set. 
1 1 

1 

~ renames the variables in Br) such that Ran(~)nVars(~V(~))={}. The 

superscript 1 in B;I meanS that this is the first clause in the derivation ~. Let 
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i 

be a list version of the multiset U 1J(~ ) u {Cinil } where the clauses are ordered 
j=1 

according to their occurrence in the derivation ~. Every clause B;, where 
J 

1 ~ j ~ m, is a variant of a clause from S. Let Bj be a renaming variable 

substitution of the clause Br ES, such that B; = Br BJ. . The expression for 
J J J 

ë·(IJ from EB.5 can now be written as 

(EB.6) 

where 

m is the total number of variant of clause from S used in fl, 

1 ~ rJ ~ n for 1 ~ j ~ m , 

m m 

au ç U B; , and Pu ç U B; . 
j~ J J~ J 

EB.6 is the required to prove expression. 0 
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We assume that when an intermediate conclusion is constructed, it is stored in a 

linear data structure. A linear structure representation is called a flatterm 

representation. We present a lower bound, for the flatterm representation, on the 

number of operations required to construct an intermediate conclusion. Flatterm 

representation is used in CARINE and in other ATPs for short lived clauses, 

including OTTER, THEO, and VAMPIRE. 

C.I Flatterm Representation 

A flatterm representation is a doubly linked list [Sekar et al. 2001] with an 

additional pointer to the last term symbol of a term as shown in Figure C-l. 

g x h a f x h a 

Figure C-l: Flatterm representation of g(x,h(a)l(x,h(a») 
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C.I.I Substitution set representation 

A substitution set is usually represented as an array of pointers to terms. The 

indices of the array serve as the hash codes of the variables' identification codes. 

For example, the set a = {xl-) f(a),x5 -) x3,x6 -) b} can be stored in an array 

as shown in Figure C-2. 

o 1 2 3 4 5 6 7 8 9 10 

Figure C-2: Substitution set representation of 
a = {xI-) f(a),x5 -) x3,x6 -) b} array 

Variable 
identification 
code 

substitution 

The slots pointing to circle with a cross are assumed to be variables that have no 

substitutions and the array indices are equal to the identification codes. It is also 

possible to maintain a substitution set as doubly linked list or as a skip list (for a 

faster access). Every element in such representation must include the variable 

identification code and a pointer to the substitution term. 

C.2 Querying un der DCC 

There are many queries that could be formed to extract valuable information 

about an inferred clause. Such information can be used to tune the heuristics of an 

A TP, but more importantly it helps the A TP to evaluate clauses and determine 

whether they should be discarded or retained. Sometimes discarding a critical 



Appendix C 197 

clause may cause the ATP to take a very long time to prove a theorem or it may 

even never be able to prove such theorem at aIl. Therefore, it is important to 

gather and evaluate the necessary information about an inferred clause in order to 

reduce to a minimum the chance of discarding a critical clause. Depending on the 

strategies and inference rules implemented in the A TP certain queries may be 

more useful than others. We discuss only the most common queries that almost aIl 

theorem proyers exploit. 

We use the following notations and definitions that are necessary to demonstrate 

our analysis: 

nt(L) = Weight(L)-1 number ofterm symbols in the literaI L 

nt(t) = Weight(t) number of term symbols in the term t 

nv(L) number of variables in the literaI L 

nf(L) number offunctions with arity greater than zero in the 

literaI L 

nc(L) 

ndv(L) = IVars(L)1 

n(L, v) 

Cf(v) or cr(v) 

number of constants in the literaI L 

number of distinct variables in L 

number of occurrences of the variable v in the literaI L 

the substitution term for the variable v 

cr(v) is used instead of Cf(v) when the substitution term for v is obtained after Cf 

is transformed into cr . 

Example C.l: 

L = P(x,x,f(x,y,g(h(a,z),b)),y) 

Vars(L) = {x,y,z} 

Cf = {x ~ f(y,a,z),y ~ g(a,b)} 

cr = Cf ~ cr = {x ~ f(g(a,b),a,z),y ~ g(a,b)} 
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nt(L) = 11, 

ndv(L) = 3, 

B(x) = f(y,a,z) , 

nv(L) = 6, 

n(L,x) = 3, 

(T(x) = f(g(a,b),a,z). 

nj{L) = 3, 

n(L,y) = 2, 

C.2.1 Computing the weight of a non-constructed clause 

198 

nc(L) = 2, 

n(L,z) = 1, 

One of the most common clause attributes used by A TPs to guide the search is the 

weight of the inferred clause. Usually, if the weight is greater than sorne limit, 

which is either set by the user or calculated automatically by the A TP, the clause 

is discarded. The weight is also used as part of an ordering relation for clauses 

and/or literaIs of the clauses. For example, clauses with lighter weights may have 

a higher precedence to participate in an inference rule than longer ones when a 

selection mechanism is exercised. Therefore, it is important to be able to compute 

such information within DCC in an amount of time that is less than the time it 

takes to construct a clause. Otherwise, DCC would not provide a significant 

advantage. 

First we establish a formula to compute the weight of a conclusion from the 

weights and other available data about the premises of an inference rule, and then 

we compare the time it takes to compute this formula with the time it takes to 

construct the clause. We also discuss the worst case where it would better to 

construct the clause (since its takes the same time as computing its weight) and 

consequently facilitate the execution of complex queries on it rather than be 

content with simply its weight. 

The weight of a clause is the sum of the weights of its literaIs so it is natural to 

find out how to compute the weight of a literaI without constructing it. This 

implies we need to compute the weight of every destination literaI (i.e., a literaI 

from the conclusion) from the weight of the source literaI (i.e., a literaI from the 

premises). 
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Using the above definitions, we can compute the number of variables in a literaI 

by summing up the number of occurrences of every distinct variable in this literaI 

as foIlows, 

ndv(L) 

nv(L) = l n(L, vJ. (EC.t) 
i=J 

The number of terms in a literaI is the sum of the number of variables, functions 

and constants, 

nt( L) = nv( L ) + nf (L ) + nc( L) . (EC.2) 

By substituting nv(L) with the right hand si de ofEC.t we get 

ndv(L) 

nt(L)= L n(L,v)+nf(L)+nc(L). (EC.3) 
i=) 

Assume that the number of occurrences of a variable v in L is equal to one. If v is 

replaced by a substitution which is a function, then the number of terms in the 

new literaI, L' , increases by the weight of this function minus one. We can write 

this simple formula as: nt( L') = nt( L) + nt( 0"( v» -1 . Notice that if the substitution 

is a variable or a constant, then nt(a(v» = 1 and thus, nt(L') = nt(L). Therefore, 

the number of terms would remain unchanged. 

Example C.2: 

L = P(x, y, y), nt(L) = 3, 

L' = LO" = P(f(a),y, y) . 

n(L,x) = 1, a = {x ~ f(a)}, 

The substitution for x is a function since a(x) = f(a), nt(a(x» = 2. Therefore, 

nt(L') = nl(L) + nt(a(x» -1 = 3 + 2 -1 = 4. 
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If the nurnber of occurrences of sorne variable vj in L is greater than one, where 

1 ~ j ~ ndv(L) , then the nurnber ofterms in L' becornes 

nt(L') = nt(L)+n(L, v)· nt(cr(v) - n(L, v) 

= nt(L) + n(L, v)· (nt(cr(v) -1) 

If every distinct variable in L has a substitution in cr, then the nurnber of terms in 

L' is cornputed by 

ndv(L) 

nt(L') = nt(L)+ l (n(L, Vi)' (nt(cr(vJ) -1)) 
;=1 (EC.4) 

with nt( cr( vJ) 2:: 1. 

However, since it is not necessary for aIl the distinct variables in L to have a 

substitution in cr , we can write the above formula as 

IDomL (0")1 

nt(L') = nt(L) + l (n(L, Vi)' (nt(cr(vi» -1»), (EC.S) 
i=l 

where IDomL (cr)1 is the cardinality of the set of variables in L that have a 

substitution in cr , i.e., Dom L (cr) = Vars( L) (j Dom( cr) . 

Example C.3 

L = P(x,y,f(a,g(z,x),y,y) 

cr = {x ~ f(w,a,b, w),y ~ c,U ~ w} 

nt(L)=9, nv(L) = 6, 

Œ(X) = f(w,a,b, w), 

nt(cr(x» =5, 

DomL(Œ)= {x,y}, 

ndv(L) = 3, 

Œ(Y) =c, 

nt(cr(y» = 1, 

IDomL (Œ)I = 2 

n(L,x)=2, n(L,y)=3, 
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If we construct L' , we get 

L' = Lcr = P(j(w,a,b, w),c,j(a,(g(z,j(w,a,b, w)),c,c)) 

and the number ofterms would be 17. Now, ifwe apply the formula EC.S, we get 

nt(L') = 9 + n(L, x) . (nt(cr(x))-l) + n(L,y) . (nt(cr(y)) - 1) 

= 9+ 2· (5- 1) + 3·(1- 1) 

=17 

Since the number of terms in a literaI L does not change when the substitution of a 

variable from L is a variable or a constant, we can apply the summation only on 

the variables that have a substitution which is a function. If we denote the set of 

variables Vi in DomL (cr) that have substitutions which are functions (i.e. 

nt( cr( Vi)) > 1 ) by r L (cr) , then EC.S can be written as 

!fda )! 

nt(L') = nt(L) + l (n(L, vJ· (nt(cr(vi )) - 1)), (EC.6) 
i~1 

where Vi E r L (cr). Notice that r L (cr) ç DomL (cr) so Ir L (cr)l::; IDomL (cr)l· 

If we apply EC.6 to our above example we get 

nt(L') = 9+n(L,x)·(nt(cr(x))- 1) 

=9+2·(5-1) 

=17. 

Here, rL(cr)={x} because x is the only variable III DomL(cr) that has a 

substitution which is a function, i.e., nt(cr(x)) = 5 > 1. 

We conclude that computing the number of terms in any literaI of the inferred 

clause is linear in the number of distinct variables that have a substitution term 

whose weight is greater than one and thus, takes no more than Q(lr L (cr )1) 

operations. 
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Let the literaIs that are not deleted, resolved away, or factored out from the 

premises of the inference rule be labeled ~, ... ,Ln and P = {~ , ... , Ln} , 

computing the weight of the conclusion C of length n would then take 

n 

IlrL, (a)1 ~n.Max{lrL(a)I}, 
;=1 LEP 

(EC.7) 

operations. However, there is an additional hidden cost that is not taken into 

account. This cost is the time to maintain the weights of the substitution terms. 

We have assumed, so far, the number of terms in every substitution for every 

variable in a can be obtained in constant time. In other words, nt(a(vJ) must be 

stored within a table that can be accessed in 0(1) after the unification process is 

complete. The additional time to maintain such information within the table is 

hidden within the unification process. In order to fairly evaluate the performance 

of DCC when querying the non-constructed clauses for their weights, we need to 

investigate the extent of the effect of maintaining a table of the weights of the 

substitution terms. In other words, we need to determine the amount of time 

consumed by the process which maintains such information. For one resolution 

the process is quite simple. However, it becomes complicated when a sequence of 

resolutions is performed because of the variables' dependencies. A directed graph 

of the dependencies must be constructed and updated after every unification. 

C.2.2 Variable dependencies 

In DCC p-idempotent substitution set are used and so variables may very likely be 

bound to a substitution term which contains one or more variables. For example, 

if if = {x ---+ y,y ---+ f(w,g(z»,z ---+ a}, then x depends on y, and y depends on w 

and z. We call x and y the dependent variables and w and z the inde pendent 

variables. A independent variable in a p-idempotent substitution set either has 

no substitution or its substitution contains no variables. All other variables are 

considered dependent. Notice that x is directly dependent on y and indirectly 
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dependent on w and z. The depth of dependency of a variable v from the domain 

of a p-idempotent substitution set is the longest path in the dependency directed 

graph from the variable v to an independent variable. We denote the depth of 

dependency of a variable v within a p-idempotent substitution set lf by the 

function DDii(v). If lf is implied within the context, then we may drop the 

subscript and simply write DD(v). It is clear from the definition that the depth of 

dependency of an independent variable is zero. In the above example, 

DDii(x) = 2, DDii(y) = l, DDii(w) = 0 and DDii(z) = O. The depth of 

dependency of a p-idempotent substitution set is the maximum depth of 

dependency of any of its variables. Formally, the depth of dependency of a 

substitution set lf is defined as 

DD(lf) = Max {DDii(v)}. 
vEDom(ii) 

The depth of dependency is not fixed in DCC. It may change as the derivation 

sequence gets longer as demonstrated in the following example. 

Example C.4: 

Given the clauses: 

consider the following sequence of two resolutions ( 'R means "the 

resolution of'): 

and 
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The arrows are labeled with the weight of substitution tenn on the top and the 

depth of dependency on the bottom. The weight is calculated after the p­

idempotent substitution is transfonned into an idempotent substitution. For 

example, nt(o-(x12 )) = 5, where 0- is obtained from if --+ 0-. DDif, (X12 ) = 2. 

Since in DCC we are not really constructing the clauses CI and C2 , we have to 

combine the substitution sets ifl and if2 to keep track of the changes of the 

variables' substitutions. When we perfonn the union of the two sets, we get 

We notice that neither the weights of the substitution tenns (i.e. numbers above 

the arrows) nor the depths of the dependencies (i.e. number on the bottom of the 

arrows) reflect the correct values. For example, since XII changed, nt(o-~(xI))' 

where if~ --+ o-~, should be 2 instead of 1 and D DG; (XII) should be 2 instead of 1. 

The concept of depth of dependency is only needed for our analysis of the worst 

case scenario and is not actually necessary to be implemented within an ATP and 

thus, we will not concem ourselves with the amount of time required to update its 

values. 

In order to maintain a valid reference to the weight of the substitution of a 

variable, we have to update the weight of the substitution of every dependent 
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variable related to an independent variable once the independent variable is bound 

to a substitution tenn which is a function, as in the case of XII. Furthennore, the 

constructed directed graph of the dependencies should be updated after every 

successful unification whenever an independent variable changes its state to 

become dependent. 

Figure C-3 shows the graph of the dependencies of the variables from the set a=;. 
Notice that the directed graph never has any cycles since the substitution set is p­

idempotent and hence has no circular references. 

Figure C-3: Graph representation of variable dependencies. 

The variable dependency graph is represented as an adjacency list. The list 

contains aIl the distinct variables of the premises. With each variable X, a linked 

list is attached containing the variables that depend directly on x. Figure C-4 

shows the adjacency list of a=;. Notice that the arrows in the adjacency list are 

reversed as opposed to the graph. 
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Figure C-4: Adjacency list of variable dependencies 

If a variable dependency graph is built to maintain information about the weights 

of the substitution terms, then it is important to calculate the time needed to 

update the graph and, consequently, the weights of the substitution terms in the 

worst case scenario so that we may compare the total time needed to compute the 

weight of a clause with the time needed to construct the clause. 

Suppose the substitution set is ordered by dependency, such that if the variable Vi 

depends on the variable vj ' then i < j and Vi is listed before variable vj • This is 

not necessarily a total order relation since if i < j then it does not imply that Vi 

depends on vj • For example, in a) the variable XI depends on XII but not on any 

of the other variables, so it can be listed anywhere as long as it is before XII. A 

total order occurs when every variable depends on aIl the variables that follow it. 

For example, over a={x~y,y~z,z~f(w),w~g(u,v)} the variable 

dependency relation is a total order. A total order is necessary albeit not sufficient 

for the worst case to occur. 

When input clauses in a theorem contain functions and such input clauses are 

involved in the derivation sequence, there is a high probability that the domain of 
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the substitution set contains variables that are dependent on other variables whose 

substitution tenns are functions. The worst case occurs when aIl the distinct 

variables of the input clauses involved in a derivation sequence belong to the 

domain of the substitution set, and the substitution set is totally ordered by the 

variable dependency relation such that every variable is directly dependent on aIl 

the variables that follow it within the substitution set. FonnaIly, given a set of 

input clauses S = {Bp ... ,Bn}, let -< denotes the ordering dependency relation, 

such that Vi -< V j implies that Vi depends (directly or indirectly) on vj ' The worst 

case scenarIo occurs at depth d in a derivation when the following three 

conditions are met: 

d 

(1) U Vars(B() = Dom(d), where Bj = BiBj for aIl 
j=1 J J ] 

ij E {l, . .. ,n}, is a 

variant of an input clause in S, and Bj is a variable renaming substitution 

such that Vj, k j * k, Ran( Bj ) () Ran( Bk) = { } , and 

(2) Vvi , v] E Dom( d) where i * j, if i < j then Vi -< vj ' and 

The following example demonstrates the worst case scenario. 

Example c.s: 
Suppose that after the application of an inference rule leading to depth d -1 in 

DCC the accumulating substitution set is 

{
13 7 3 I} 

dd_1 = x~ f(y,z, w,u),y~ [(z,u, w, w),z~ g(w,u), w~u 

and aIl the distinct variables of the input clauses involved in this derivation 

sequence are x, y, z, w, and u. Now suppose that an inference rule is applied 

extending the derivation length to d, such that no additional variables appear in 
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the premises of this inference except the independent variable u. Suppose that u 

binds with the substitution term h(a). The resulting substitution set ad is 

{ 

13 7 3 J ) ad = x~ f(y,z, w,u),y~ f(z,u, w, w),z~ g(w,u), w~u,U ~ h(a) . 

The weights of the substitution terms are no longer correct and they require 

updating. ad reflects the worst case scenario since aH the above three conditions 

are met. AIl the variables in the input clauses involved in the derivation sequence 

are in ad (condition 1), the set is totally ordered; x -< y -< z -< w -< u (condition 2), 

and every variable is dependent on aH the variables that foHow it; 

Domiid(x/ad) = {y,z, w,u} , Domiid(y)(ad) = {z, w,u}, and Domiid(W) (ad) = {u} 

(condition 3). To update aH the weights of the substitution terms, we proceed first 

with the last dependent variable, w, in ad and walk our way back to the first 

element in ad. Notice that we only need to update the variables that are directly 

dependent on the variable we are working with. Since aH the variables depend 

directly on u, we have to update them aH. This requires lad 1-1 updates. 

FoHowing that, we have to update aH the variables that depend directly on w. This 

requires lad 1- 2 updates. We continue updating aH the references to the weights 

of the substitution terms until we reach x. The total number of updates is 

From our above example, we conclude ,that we need lad Hlad 1-1) / 2 operations 

to update the weights of the substitution terms in the worst case. Therefore, 

whenever the worst case occurs, O(laI2) operations are required to update the 

references to the weights of the substitution terms of the substitution set a. Let 

a ~ (Y then lai = I(YI and O(laI2) = O(I(Y1
2

) , since I(YI = IDom( (Y)I (see Definition 
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2.21) and from the properties of p-idempotent substitution set, 

Dom(if) = Dom(<J) (see Definition 3.5). Adding this hidden cost to EC.7, we 

obtain the following upper bound on the total number of operations needed to 

compute the weight of a derived non-constructed clause 

n· Max{lr L (if)l} + O(I<J1
2
). 

LeP 
(EC.8) 

Since we are dealing with the worst case, the first condition dictates that the size 

of the substitution set is equal to the total number of distinct variables within the 

input clauses involved in the derivation sequence and the third condition implies 

that each of those variables has a substitution which is a function and therefore, 

we can write 

n . AL~{lr L (if)l} + O(I<J
2 1) s n ·I<JI + O(I<J2 1) 

= O( Len( C) ·I<JI + 1<J1
2

). (EC.9) 

In order for the DCC to be effective, the time to compute the weight of C as 

formulated in EC.9 must be less than the time to construct the clause C which is 

O(Weight( C» . In other words, Len( C) ·I<JI + 1<J1
2 

must be at most Weight( C). We 

need Len(C)·I<J1 + 1<J12 
sWeight(C) orequivalentlyl 

I<JI s -Len(C) + ~Len(C)2 +4·Weight(C) 

2 (EC.lO) 

Notice that if the size of the substitution set is larger than the value returned from 

the evaluation of the right hand side of the above inequality, then there may or 

may not be a worst case scenario. For example, if CI = P(x,a)v Q(x) is resolved 

1 This is a quadratic inequality of the fonn Ax' + Bx + C :::; 0 whose foots are 

x = (-B +-.J B' - 4AC / 2A . Of course, the negative square root is useless to us here. 
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with C2 = -,P(y,y) to produce C = Q(a) with substitution set 

if = {x ~ y,y ~ a} , then the size of the substitution set is larger than the right 

hand si de of EC.lO, i.e., lai = 2 > (-1 + .JI + 4x 2)/2 = l, where 0= ~ a . Here we 

have the worst case scenario because aIl three conditions are met. However, we 

also have the best case scenario and the reason is that 0= contains only variables 

located at depth one within the input clauses, Cl and C2 • If Dom( 0=) contains 

only variables located at depth one within the input clauses involved in the 

derivation sequence of a DCC, then the size of 0= does not affect the time it takes 

to update the references to the weights of the substitution terms. In fact, there 

would be no updating at aIl since aIl variables in Dom( 0=) would be substituted 

by either constants or variables whose weights are always one, thus, r L (if) 

would be empty. The time to compute the weight of the inferred clause C in such 

cases is simply the time to sum up the weights of aIl the literais remaining from 

the premises. The best case requires only O(Len(C)) operations to compute the 

weight of the inferred clause. Over 630 theorems from the TPTP library contain 

clauses with no functions in them. Those theorems are common in the GRP 

(group theory), NLP (natural language processing), PUZ (puzzle), SYN 

(syntactic) categories. On the other hand, if the size of the substitution set is less 

than the right hand side of EC.lO, then we are guaranteed that the worst case has 

not occurred and thus, it is faster to compute the weight of a clause by the formula 

EC.U (below) rather than construct the clause. 

Suppose that DCC is used and C = {L; ,,' .. , L~} is a non-constructed intermediate 

conclusion and 0= the resulting p-idempotent substitution set, such that for 

1 ::; i ::; n, L; = Lia where ~, ... , Ln are the literaIs that are not deleted, resolved 

away, or factored out from the premises and 0= ~ a. The weight of C is 

computed by the formula 
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n 

Len( C) = l nt( L;) 
;=) 

(EC.11) 

A quick and easy way to test for the possible existence of the worst case is to 

compare the depth of dependency of a substitution set with its size. A necessary 

condition but not sufficient condition for the worst case to occur is that the depth 

of variable dependency should be equal or greater than the size of the substitution 

set. In other words, if DD( 0:) < 10:1-1 then we can be sure that the worst case did 

not occur and we can continue using DCC; otherwise we have to perform further 

tests before deciding whether to proceed with DCC or not. We ran our ATP on 

2323 theorems and computed 10:1, as weil as the right hand side (rhs) of EC.lO 

after every binary resolution and binary factoring. We counted the number of 

times the size of if came out at least as large as the rhs taking into consideration 

that aIl the substitution terms are functions and that DD( 0:) ~ 10:1-1. The results 

revealed that it may (but not definitely) have been better to construct the clauses 

rather than simply compute their weights for only 0.39% on average of aIl the 

generated clauses. The highest percentage was 71.89% and this high percentage 

occurred for only one theorem, PLA002-1. There were four theorems (ANA003-

2, ANA004-2, ANA005-2, ANA003-4) with a percentage between 25% and 28%, 

one theorem (ANA004-4) with 13.82% and the rest (from almost ail the 

categories within the TPTP set) were between 0% and 5.41%. Figure C-5 shows 

the number of clauses where it may (but not for sure) have been faster to construct 

the clauses and determine their weights while constructing them rather than 

compute their weights and delay their construction. 
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Figure C-5: Number of cases where it may have been better to construct a 
clause rather than simply compute its weight. 

We conclude that it is much faster to use DCC and ca1culate the weight of the 

generated clause without constructing it using EC.11 even though it may be 

occasionally (Jess than 0.5% on average) better to construct a clause in order to 

determine its weight. 

C.2.3 Computing the maximum literai depth 

Many A TPs abandon a search path by discarding a clause that contains a literaI 

whose maximum term depth is above a certain threshold. Our test results from 

THEO [Newbom 2001] have shown that the theorems that THEO was able to prove 

contained no clause within the proof with a literaI who se maximum literai depth is 

greater than the maximum literai depth plus two of any literai from the input 

clauses. In other words, we could have allowed the maximum literai depth for any 

literai of any derived clause to be at most equal to the maximum literai depth plus 
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two of any literaI from the input clauses and still got aIl the proofs. Therefore, it 

may be helpful to determine the maximum literaI depth of the literaIs In a 

generated clause if the A TP makes use of this information. 

Suppose one of the premises of an inference contains the literaI L such that 

L' = L(J" is a literaI of the conclusion and (J" is the mgu. We want to compute the 

maximum literaI depth of L' without constructing it. From the definition of the 

maximum literaI depth (see Definition 2.14), we realize that we need to compare 

the maximum term depth of every argument in L'. Since L' is not constructed, 

we have to compare the maximum term depths of the arguments in L after we 

compute their updated maximum term depths. 

Notice that only the maximum term depths of the arguments in L that contain 

variables that gained a substitution which is a function need to be updated in order 

to maintain the correct value of maximum literaI depth. For example, if 

L = P(x,f(y)) and (J" = {x --> a,y --> w}, then L' = L(J" = P(a,f(w)) and thus, the 

maximum literaI depth remains the same, i.e. MaxDepth(L) = MaxDepth(L') = 2, 

since none of the variables x and y have been bounded to terms that are functions. 

On the other hand, for L = P(x, y) and (J" = {x --> f(w), y --> w}, L' = L(J" = 

P(f(w), w) and MaxDepth(L') = 2 which is different from MaxDepth(L) = l, 

since x is bounded to a term which is a function. Furthermore, if a variable occurs 

more than once in the literaI, then we only need to compare the updated depth of 

the deepest occurrence of such variable. For example, in L = P(f(f(x)),x,g(u)) 

the variable x occurs twice. The first occurrence, which is an argument of a 

function, has a term depth greater than the second one and so we only need to 

compare the term depth of the deepest term within the substitution of x with the 

maximum literaI depth. 
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If 7r is a position string, then the length of the string 7r, denoted by Len(7r) , is 

the number of integers separated by dots. For exampIe, if 7r = 2.1.1 then 

Len(7r) = 3. We define Idmax (L,I) to be the function that retums the deepest 

occurrence of a term 1 in a literaI L. Formally, if t EO L, then 

tdmax (L,t) = Max{Len(7rI ), ••• ,Len(7rk )} 

where 7r1, ••• , 7rk are positions of 1 in L; i.e., for aIl 1 ~ i ~ k , LIJT, = t . 

Example C.6: 

L = P(x,g(f(y,z»,g(g(x») 

The updated maximum literaI depth of the literaI L' is computed by the formula 

MaxDepth(L') = Max(MaxDepth(L), 

Max {tdmax(L, v) + MaxDepth(CT(v»-I}) 
VEr L (<T) (Ee.I2) 

We define Max{} = 0, so if no variable is bounded to a function term, then 

r L (CT) = {} and 

MaxDepth(L') = Max(MaxDepth(L),Max{}) 

= Max( MaxDepth( L), 0) 

= MaxDepth(L) 

The number of comparisons required to çompute MaxDepth(L') is 1 +lrL (CT)I-I, 

because we need one comparison to obtain the maximum between MaxDepth( L) 

and the result of Max {tdmax (L,v)+MaxDepth(CT(v))-I}) , and IrL (CT)I-l 
VErL<<T) 
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compansons between the values in Max {tdmax (L, v) + MaxDepth(a(v» -l}). 
vE1L(a) 

Therefore, to compute MaxDepth( L') we have to perforrn Ir L (a)! comparisons. 

Similar to computing the weight of a clause, there is an additional hidden cost 

which is the updating of the maximum terrn depth of the substitution terrns. The 

same issue discussed about variable dependency exists here. Therefore, when the 

worst case occurs as described in the previous section, the upper bound on the 

number of operations required to update the maximum depth of the substitution 

terrns is O(!aI
2

) • The total number of operations required to compute 

MaxDepth( L') becomes Ir L (a)! + O(laI2). Since we are dealing with the worst 

case, then Ir L (a)1 = !a! because aIl the distinct variables in Lare bounded to 

substitution terrns which are functions. Therefore, the total number of operations 

required to compute EC.12 in the worst case can be written as 

(EC.13) 

T 0 compute the maximum terrn depth of any terrn within the non-constructed 

conclusion C, we find the maximum of aIl the maximum literaI depths of the 

literaIs in C, i.e., Max{MaxDepth(L')}. This implies that we need to perforrn 
L'EC 

Len( C)· O(la! + lal2 ) operations. However, the maximum terrn depth update of 

the substitution terrns need only be done once, Therefore, the total number of 

operations needed to compute the maximum terrn depth between all the 

arguments of aIl the literaIs of the clause C is 

O( Len( C) 'Ial + lal2) (EC.14) 
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We notice that the amount of operations in EC.14 is exactly the same as in EC.9 

and hence, we use the same reasoning to determine the limit at which it would be 

better to construct the clause rather than simpIy compute the maximum of 

maximum literaI depths of its literaIs. 

C.2.4 Computing other queries 

There are a large number of interesting queries that A TPs perform to obtain 

information useful for guiding the search through the selection of certain 

strategies and also to determine candidate clauses for particuIar inference ruIes 

especially subsumption. We can't go through them aIl. However, we mention a 

couple of intuitive ideas that may help to anaIyze the performance of DCC over a 

given query. 

Terrn indexing [Sekar et al. 2001] andfeature vector indexing [SchuIz 2004] play 

an important roIe in retrieving subsets of retained clauses that are candidates for 

subsumption testing. Even though we will not deIve into such a broad subject 

here, it is worth pointing out that indexing relies on the existence of the clauses in 

sorne implemented data structure that is best suited for the ATP. The data 

structure is usually a variation of a trie l
• Since DCC does not construct clauses, 

term indexing is quite tricky because it has to be performed on substitution sets 

rather than actual clauses. Feature vector indexing which performs indexing on a 

clause characteristics, referred to as features, such as the number of negative and 

positive literaIs, the number of occurrences of symbols in a clause, and the 

maximum literaI depth, rather than the actual terms within the clause is easier to 

implement than term indexing when using DCC. Most of the clause features can 

be calculated efficiently using a similar reasoning as the ones provided in 

previous sections: C.2.1, C.2.2, and C.2.3. 

1 Trie cornes frorn the word retrieval. Pronounced like "try". It is a variant ofthe tree data structure 
and is generally very efficient for retrieving information. 
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A list of the 100 theorems selected from aIl the domains of the TPTP v2.6.0 

library that were used for the experiments whose results are discussed in Chapter 

6. The percentage of time spent in clause construction, PTCC(t), the ratio of the 

percentage of successful unifications, RPSU(t), the ratio of the number of unit 

conflict tests, RUCT(t), and the inference rate speedup, IRS (t), are listed for each 

of the theorems. 

Theorem PTCC(t) [%] RPSU(t) RUCT(t) IRS(t) 

ALG001-1 25.29 1.03 1.00 1.72 
ALG003-1 0.59 1.04 1.36 0.97 
ALG008-1 17.11 0.93 1.03 1.41 
ALG010-1 36.64 0.83 1.00 2.10 
ANA001-1 4.90 0.95 1.00 1.11 
ANA002-4 45.06 0.98 0.00 3.11 
ANA003-4 60.37 1.50 1.00 6.79 
ANA004-2 7.07 0.45 1.00 1.00 
ANA006-2 39.89 0.88 0.00 2.37 
800001-1 10.49 0.43 0.98 2.49 
800008-3 31.13 1.25 1.23 2.19 
800014-2 49.63 0.59 1.00 3.36 
800014-3 46.07 1.57 1.00 6.30 
800019-1 9.60 0.42 1.00 2.48 
800038-1 15.64 0.74 0.00 1.12 
CAT015-3 55.35 0.69 0.00 5.49 
CAT020-4 37.56 0.92 0.00 2.25 
COL001-2 0.06 1.00 1.00 1.10 
COL003-13 27.32 0.90 1.00 1.54 
COL065-1 53.63 0.19 1.00 1.16 
COL078-1 54.07 0.25 1.00 1.59 
COM003-1 46.16 0.95 0.00 3.01 
COM004-1 22.46 1.09 1.00 1.63 
FLD003-1 65.57 1.01 1.00 8.66 
FLD015-1 63.83 1.01 1.00 9.86 
FLD042-3 29.62 2.06 1.00 2.38 
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Theorem PTCC(t) [%] RPSU(t) RUCT(t) IRS(t) 

FLD043-5 38.67 1.21 1.00 2.34 
FLD080-4 36.16 1.81 1.00 2.34 

GEOO04-1 25.92 0.82 3.48 1.38 

GEOO09-2 37.53 1.00 1.09 2.76 

GE0074-2 29.29 1.09 1.01 3.03 

GE0089-1 32.82 0.44 3.40 1.40 
GE0160-1 36.02 1.20 1.00 2.33 

GRA001-1 43.85 1.00 0.00 2.74 
GRP196-1 4.87 0.90 0.00 1.15 
GRP207-1 12.99 0.75 1.00 1.06 
GRP252-1 40.62 0.81 0.00 2.68 
GRP392-1 36.56 0.78 0.00 2.14 
GRP506-1 14.05 0.73 1.00 1.06 
HEN004-2 45.51 1.00 1.23 4.78 
HWC003-2 46.15 1.00 0.00 3.23 
HWV022-2 32.06 1.08 1.00 1.99 
HWV029-2 32.40 1.08 1.00 1.98 
HWV033-2 30.99 1.08 1.00 1.98 
HWV037-1 38.39 0.65 1.00 2.13 
KRS016-1 39.57 0.98 0.00 2.63 
LAT003-1 55.19 0.24 1.00 2.43 
LAT004-1 55.86 0.19 1.00 2.03 
LAT037-1 51.52 0.64 1.00 3.25 
LCL 161-1 49.33 0.28 1.00 1.29 
LCL229-1 50.09 1.20 1.00 4.34 
LCL248-1 50.59 1.22 1.00 4.36 
LCL426-1 0.54 1.03 3.11 0.50 
LCL427-1 30.65 1.41 1.00 2.18 
LDA011-1 34.65 0.52 1.00 1.48 
LDA014-1 36.06 0.87 1.00 2.08 
MGT035-2 32.66 0.84 1.12 1.94 
MGT063-1 22.48 1.09 1.47 1.71 
MSC007 -1.008 38.86 1.00 0.00 2.36 
MSC007-2.005 34.04 1.00 1.00 2.10 
NLP034-1 47.08 0.98 0.00 2.91 
NLP049-1 30.95 0.87 1.17 1.82 
NLP199-1 37.81 1.00 0.00 2.17 
NUM005-1 19.15 1.19 1.00 1.58 
NUM006-1 26.50 1.02 1.00 1.78 
NUM030-1 32.85 1.14 1.00 1.98 
NUM043-1 32.71 1.14 1.00 1.97 
NUM284-1.014 45.46 0.98 3.50 2.07 
NUM288-1 44.94 0.93 0.00 2.81 
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Theorem PTCC(t) [%1 RPSU(t) RUCT(t) IRS(t) 

PLA023-1 35.97 1.17 1.00 2.25 

PUZ015-1 8.03 0.85 1.00 1.08 
PUZ018-2 41.68 1.08 1.00 2.59 
PUZ034-1.004 40.59 1.37 1.00 2.82 
RNG026-6 43.85 0.43 1.00 1.51 

RNG028-9 43.47 0.49 1.00 1.58 
ROB007-1 19.42 0.89 1.00 1.38 

ROB007-4 56.98 0.19 1.00 1.30 
ROB014-1 54.66 0.19 1.00 1.22 
ROB024-1 21.28 0.85 1.00 1.38 
SET002-6 31.28 1.09 1.00 1.85 
SET012-3 25.57 1.02 1.00 1.74 

SET040-6 31.41 1.10 1.00 1.96 

SET550-6 31.62 1.10 1.00 1.94 
SWC045-1 14.82 0.76 1.00 1.08 

SWC197-1 14.47 0.76 1.00 1.08 
SWC344-1 14.62 0.76 1.00 1.08 
SWC345-1 15.38 0.79 1.00 1.10 
SWC390-1 15.51 0.77 1.00 1.07 
SWV014-1 20.84 1.01 0.00 1.02 
SWV020-1 28.87 1.15 1.00 2.03 
SYN440-1 22.83 0.96 0.00 1.50 
SYN615-1 58.86 1.07 1.00 6.51 
SYN758-1 44.79 0.99 0.00 2.67 
SYN802-1 43.86 0.91 0.00 2.62 
SYN810-1 44.14 0.85 0.00 2.55 
SYN903-1 24.58 0.99 0.00 1.55 
TOP001-1 39.67 0.97 1.61 2.47 
TOP002-1 29.98 1.01 1.24 1.99 
TOP014-1 40.00 1.01 0.00 2.35 
TOP019-1 39.27 0.99 1.00 2.33 
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Figure E-l is a chart of the inference rates from CARINE 0.72 over the TPTP 

v2.6.0 library. The specifications of the system to run CARINE are the same as 

those described in Appendix H. 
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Figure E-l: Inference rate of CARINE over 4500 theorems 
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Figure E-2 shows the relation between the average branching factor and the 

number of input clauses up to iteration 4 when tested on over 5003 theorems. 
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Figure E-2: Number of input clauses vs. average branching factor up to 
iteration 4. 

The numbers inside the small boxes and the numbers directly below them 

indicate, respectively, the number of theorems between two consecutive vertical 

grid lines and their average branching factor. For example, there are 844 theorems 

containing between 101 and 200 input clauses and the average of the average 

bran ching factors for these 844 theorems is 35.31. The inference mIes used are 

binary resolution and binary factoring. Notice the low branching factor for 

theorems with over 450 input clauses. Those theorems belong mainly to the SYN 

and PUZ categories. The ones with a high branching factor are mainly from the 

NUM and SET categories. There are theorems with more than 800 input clauses, 
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but we were not able to test them; because either the number of term and literai 

symbols within the clauses was too large (greater than 500) for our A TP to 

handle, or because our A TP was not able to reach iteration 4 within a reasonable 

(less than one hour) amount of time due to the extensive amount of generated 

clauses. 
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The graph in Figure F -1 shows that the time spent in clause construction is, in 

general, more than the time spent in unification. Details on the setup of the 

experiment are given below. 

1000··· 

10 

84% of theorems spent equal or more lime in dause constrcution than in 
attempted unifications (successful and tJnsoccessful) 

MSCOO7-LOO8 (13S.44) , 

17 20 30 40 50 

theorem 

60 

_____.1 
• 
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Figure F -1: Ratio of the time spent in clause construction to the time spent in 
attempted unifications (successful and unsuccessful). 

Setup: We implemented in CARINE the simplest unification algorithm which was 

presented in [Robinson 1965]. This algorithm has an exponential time complexity. 

We also implemented in CARINE a very efficient clause construction algorithm for 

clauses whose terms are represented as flatterms, i.e. the terms are not shared. 
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Flatterms are commonly used for fast construction as indicated in [Riazanov 

2003]. Clause construction does not include unification. It is, as defined in 

Chapter 3, the gathering of literaIs and terms and putting them in a clause 

structure. Clause construction is done after a successful unification. The 

construction algorithm is linear in the weight of the clause. 

We ran CARINE for 180 seconds on each theorem from the set listed in 

Appendix D. We measured the time spent in unification (whether the unification 

was successful or not) of literaIs or terms during the application of an inference 

rule. Therefore, the time spent in unification when used in term indexing 

techniques is not counted. For ex ample, when unification is used to retrieve aIl the 

terms that unify with a query term, we do not measure the time spent in such 

unification. 

We measured the time spent in clause construction!. The time to calculate the 

importance of the clause, i.e. weight, and the time to index the clause are not 

counted as part of the time to construct the clause. 

The graph given in Figure F -1 is the result of our experiment over the 100 

theorems that we have selected from the TPTP v2.6.0 (see Appendix D). We 

conclude that the time spent in unification is in generalless than the time spent in 

clause construction. 

1 The time that the compiler uses to copy symbols or their codes from one memory location to 
another is not counted. The time to index a clause (i.e., term indexing) or calculate its weight is not 
counted in the measurement. We just measured the time to traverse the clause. 
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Figure F -2 shows that the set Goals is generally small (4810 clauses on average). 

Here the set Goals retained only distinct unit clauses. 
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Figure F-2: Number of distinct unit clauses retained in the set Goals in 
CARINE. The experiment was over 766 theorems that CARINE proved. 
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G.l Comparison of different C/C++ compilers 

According to experiments done by [Wilson 2004] the Intel's C/C++ compiler 

version 8.0 can pro duce code for the Pentium III and Pentium 4 processors that is 

faster than aIl the other popular compilers on the market. Figure G-l shows that 

the Intel C/C++ 8.0 complier performed over three times faster than Open 

Watcom 1.2 on average over the several benchmark tests done by Wilson on a 

Microsoft Windows based machine with a Pentium class processor. 
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Figure G-l: Comparisons of relative speeds of popular C/C++ compilers. 
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CARINE proved 949 theorems out of 5473 CNF problems from the TPTP 2.6.0. 

These are the results on the 949 theorems proved by CARINE. They were obtained 

from running CARINE 0.72 over the whole set of 5473 CNF problems from TPTP 

library version 2.6.0. The system used to obtain the results is a Pentium 4 (version 

C which is a bit better than earlier versions A and B of the processor) machine 

running at 2.6 GHz equipped with 1 GB of DDR RAM. The memory was set to 

dual channel with 400 MHz bus. The operating system is Microsoft Windows 

2000 but the ATP was running under Cygwin (a Linux emulation under Windows 

2000). The compiler is gcc version 3.2. The time limit was 180 seconds. We set 

the size of the unit clauses table, which is part of the Goals (see Chapter 4) set, to 

32000 entries. 

CPU Length Inference Numberof % unit 

Theorem time of Rate Rating retained unit retained to 
proof total 

[secs] 
[steps] 

[clauses/sec] clauses 
generated 

ALG002-1 0.22 22 92,627 0 210 1.56 
BOO011-1 0.14 3 1,400 0 32 37.65 
BOO011-2 0.22 4 19,718 0 1419 33.22 
BOO011-4 0.55 6 27,811 0 5244 34.67 
BOO018-4 0.2 6 21,585 0 850 20.10 
CAT001-3 1.3 8 157,977 0.17 5017 2.88 
CAT001-4 0.59 8 129,300 0 2777 4.67 
CAT002-3 0.22 7 10,782 0.08 693 33.09 
CAT002-4 0.22 10 16,091 0.17 661 20.87 
CAT003-3 0.22 6 11,591 0.08 800 34.74 
CAT003-4 0.2 6 9,425 0 562 33.69 
CAT004-3 4.06 13 51,606 0.25 6341 3.81 
CAT004-4 0.2 10 16,190 0.17 599 20.58 
CAT005-1 0.69 17 110,978 0 1574 2.47 
CAT006-1 1.89 13 58,080 0 2382 2.65 
CATOO6-3 0.75 15 147,079 0.17 3557 3.28 
CAT006-4 0.31 15 101,229 0.17 1842 6.04 
CAT007-1 0.19 7 64,326 0 636 8.44 
CAT007-3 0.14 3 207 0 11 73.33 
CAT008-1 40.45 13 111,194 0 3536 0.09 
CAT010-4 0.36 13 118,628 0.17 1480 4.37 
CAT011-1 0.16 5 1,394 0 70 50.36 
CAT011-2 0.19 6 4,453 0 276 34.94 
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CPU 
Length 

Inference Numberof 
"10 unit 

Theorem time of Rate Rating retained unit retained to 
proof total [secs] [steps] [clauses/sec] clauses generated 

CAT011-3 0.94 22 137,030 0.25 2689 2.39 
CAT011-4 0.44 33 111,702 0.17 1637 3.88 
CAT012-1 0.16 5 1,388 0 69 51.11 
CAT012-3 0.2 8 7,815 0.08 438 31.29 
CAT012-4 0.19 8 3,458 0.17 215 37.99 
CAT013-1 0.16 5 1,581 0 89 56.69 
CAT013-3 0.19 7 8,258 0.08 441 31.39 
CAT013-4 0.17 7 3,894 0 217 38.07 
CAT014-1 0.16 5 1,650 0 92 55.76 
CAT014-2 0.2 7 10,040 0 484 25.50 
CAT014-3 1.14 22 139,179 0.25 3075 2.16 
CAT014-4 0.44 25 123,286 0.17 1757 3.72 
CAT016-3 0.2 5 7,845 0.08 455 31.86 
CAT016-4 0.16 5 4,263 0 230 38.92 
CAT017-3 0.23 5 6,826 0.08 455 31.86 
CAT017-4 0.17 6 3,918 0 220 38.33 
CAT018-1 0.91 17 114,127 0 1265 1.41 
CAT019-1 0.12 2 17 0 10 100.00 
CAT019-2 0.19 2 11 0 8 100.00 
COL001-1 26.56 12 2,183 0 15727 27.18 
COL007-1 0.22 1 0 0 3 0.00 
COL008-1 0.55 3 553 0 168 59.15 
COL009-1 0.53 6 658 0 97 31.29 
COL010-1 0.55 3 158 0 44 61.97 
COL012-1 0.55 1 0 0 3 0.00 
COL013-1 0.56 1 0 0 4 0.00 
COL014-1 0.2 1 0 0 3 0.00 
COL015-1 0.55 3 556 0 169 59.09 
COL016-1 0.56 1 0 0 3 0.00 
COL017-1 0.56 3 361 0 112 61.54 
COL018-1 0.55 1 0 0 4 0.00 
COL019-1 0.58 5 819 0 134 30.73 
COL020-1 0.67 10 9,572 0 690 12.26 
COL021-1 0.56 3 288 0 90 62.94 
COL022-1 0.56 3 316 0 97 61.78 
COL023-1 0.66 6 11,073 0 579 8.84 
COL024-1 0.56 3 288 0 90 62.94 
COL025-1 0.55 3 202 0 55 59.14 
COL026-1 0.55 6 704 0 124 36.36 
COL027-1 0.67 6 13,464 0 587 7.10 
COL029-1 0.55 1 0 0 3 0.00 
COL030-1 0.56 7 2,152 0.09 370 32.06 
COL031-1 0.55 4 1,169 0 473 76.91 
COL035-1 0.64 9 5,955 0.09 1447 38.84 
COL039-1 0.56 8 4,546 0.09 871 35.16 
COL045-1 0.56 3 257 0 79 62.70 
COL048-1 0.55 3 325 0 97 61.01 
COL050-1 0.22 6 1,600 0 88 28.03 
COL051-1 0.22 7 2,927 0 129 22.28 
COL052-1 0.23 10 8,517 0 373 20.32 
COL052-2 0.61 11 139,105 0 1912 2.45 
COL053-1 0.62 3 10,476 0 4967 77.04 
COL054-1 0.22 7 3,268 0 176 28.03 
COL055-1 0.17 2 6 0 3 100.00 
COL056-1 0.22 6 3,173 0.09 258 39.75 
COL058-1 0.2 9 5,220 0 44 5.63 
COL058-2 0.69 15 11,326 0 1683 25.32 
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CPU 
Length 

Inference Numberof 
% unit 

Theorem time 
of 

Rate Rating retained unit 
retained to 

proof total 
[secs] 

[steps] 
[clauses/sec] clauses 

generated 
COL070-1 0.66 6 11,333 0 671 10.00 
COL083-1 0.2 1 0 0 4 0.00 
COL084-1 0.19 1 0 0 4 0.00 
COL085-1 0.17 1 0 0 2 0.00 
COL086-1 0.17 1 0 0 2 0.00 
COM001-1 0.19 6 168 0 16 80.00 
COM002-1 0.2 12 1,650 0 65 39.88 
COM002-2 0.2 12 2,390 0 93 36.90 
COM003-2 0.17 8 441 0 15 65.22 
FLD005-3 1.69 10 266,434 0 4675 1.18 
FLD006-1 0.34 7 53,888 0 3550 19.68 
FLD006-3 0.19 3 42 0 9 100.00 
FLD007-3 1.99 11 273,834 0.12 10571 2.29 
FLD009-3 1.76 12 263,438 0 4907 1.20 
FLD010-1 72.02 12 235,208 0 10580 0.06 
FLD010-3 0.15 4 640 0 33 62.26 
FLD013-3 11 18 292,228 0 18707 0.64 
FLD014-3 1.72 13 262,640 0.12 4744 1.19 
FLD015-3 1.69 12 266,821 0 4616 1.16 
FLD016-3 10.91 9 294,668 0 18663 0.64 
FLD017-3 10.92 5 294,206 0 18535 0.63 
FlD018-3 0.5 7 222,332 0 1806 1.93 
FLD019-3 0.53 6 215,494 0 1871 1.95 
FLD020-3 1.69 7 270,220 0 4696 1.17 
FLD021-1 0.38 6 77,763 0 6971 23.82 
FLD021-3 1.62 7 277,404 0 4541 1.15 
FLD022-3 10.84 12 296,490 0 18631 0.64 
FLD023-1 0.36 8 82,069 0.12 6967 23.81 
FLD023-3 1.62 7 277,606 0 4571 1.15 
FLD024-3 1.64 7 274,161 0 4571 1.15 
FLD025-3 10.89 23 295,237 0 18652 0.64 
FLD027-3 1.87 14 252,631 0 5132 1.24 
FLD028-3 11.05 10 295,370 0 18937 0.64 
FLD029-3 16.28 22 286,444 0.12 20741 0.48 
FlD030-1 0.28 4 23,511 0 2462 38.53 
FLD030-3 4.55 9 291,989 0 9808 0.82 
FLD030-4 10.73 5 299,413 0 18531 0.63 
FLD031-3 0.55 8 207,684 0 1869 1.94 
FLD031-5 0.53 10 219,077 0 1977 2.04 
FLD032-3 0.58 7 199,022 0 1967 2.04 
FLD033-3 1.67 8 276,687 0 4731 1.16 
FLD034-1 0.39 6 75,762 0 6968 23.81 
FLD034-3 1.62 7 277,401 0 4541 1.15 
FLD035-3 10.88 13 297,298 0 18764 0.64 
FLD036-3 10.89 13 297,071 0 18776 0.64 
FLD037-3 1.64 8 281,435 0 4713 1.16 
FLD038-3 1.73 8 267,829 0 4863 1.19 
FLD039-1 0.28 2 86 0 13 100.00 
FLD039-3 0.56 6 207,093 0 2067 2.14 
FLD055-3 4.73 7 281,403 0 10011 0.84 
FlD056-3 0.5 4 213,228 0 1724 1.86 
FLD058-1 0.41 8 66,541 0 6757 25.06 
FLD058-3 1.77 9 261,625 0 4852 1.19 
FLD059-3 0.53 9 206,994 0 1731 1.87 
FLD059-4 1.7 7 265,191 0 4639 1.17 
FLD060-3 18.7 18 241,132 0.12 12451 0.28 
FLD064-3 0.52 8 210,940 0 1727 1.87 
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CPU Length Inference Numberof 
% unit 

Theorem time of Rate Rating retained unit 
retained to 

proof total 
[secs] 

[steps] 
[clauses/sec] clauses 

generated 
FLD065-3 0.53 6 206,962 0 1727 1.87 
FLD067-1 0.36 7 74,475 0.12 6539 24.65 
FLD067-4 4.64 6 286,401 0 9837 0.82 
FLD068-4 4.69 11 283,407 0 9904 0.83 
FLD069-3 1.76 13 260,142 0 4846 1.20 
FLD070-3 1.67 10 269,048 0 4563 1.15 
FLD070-4 4.78 7 278,053 0 9848 0.82 
FLD071-1 0.36 3 74,561 0 6555 24.69 
FLD071-3 1.66 6 270,788 0 4585 1.16 
FLD071-4 4.72 4 281,555 0 9824 0.82 
GEOO01-1 0.19 17 25,426 0.25 251 7.63 
GEOO01-2 0.17 17 21,847 0.25 226 9.13 
GEOO02-1 0.2 15 39,220 0.25 298 4.81 
GEOO02-2 1.56 15 176,915 0.25 728 0.29 
GEOO02-3 0.27 2 7 0.08 20 100.00 
GEOO02-4 0.19 16 24,695 0 53 1.77 
GEOO03-1 0.17 5 429 0.08 13 92.86 
GEOO03-2 0.19 5 353 0.08 13 92.86 
GEOO03-3 0.27 2 4 0.08 18 100.00 
GEOO06-1 7.42 33 159,701 0.25 2952 0.26 
GEOO06-3 26.34 10 85,948 0.17 27864 1.40 
GE0011-2 0.19 4 6,074 0.08 72 16.29 
GE0011-4 0.3 4 22,323 0.08 515 13.34 
GE0011-5 0.28 4 23,989 0.08 482 12.43 
GE0014-2 0.19 3 295 0 11 100.00 
GE0015-2 0.19 5 689 0.08 26 66.67 
GE0015-3 0.17 3 418 0.08 14 100.00 
GE0016-2 0.19 3 337 0.08 14 100.00 
GE0016-3 0.17 3 529 0.08 18 64.29 
GE0017-2 0.17 7 1,241 0.08 36 37.89 
GE0017-3 0.19 4 400 0.08 19 86.36 
GE0018-2 0.19 5 1,089 0.08 34 37.36 
GE0018-3 0.17 5 553 0.08 22 62.86 
GE0019-2 0.17 3 371 0.08 13 100.00 
GE0019-3 0.17 3 300 0.08 16 100.00 
GE0020-2 0.19 7 1,111 0.08 36 37.89 
GE0020-3 0.17 3 306 0.08 17 100.00 
GE0021-2 0.19 5 1,089 0.08 34 37.36 
GE0021-3 0.19 4 495 0.08 22 62.86 
GE0022-2 0.17 7 1,759 0.08 92 52.57 
GE0022-3 0.17 4 2,541 0.08 43 14.14 
GE0024-2 0.19 5 358 0.08 15 93.75 
GE0024-3 0.17 5 3,465 0 70 19.77 
GE0035-2 0.17 2 6 0.08 9 100.00 
GE0035-3 0.17 2 6 0.08 10 100.00 
GE0036-2 0.17 14 .5,259 0.25 62 17.08 
GE0038-2 0.19 4 416 0.08 15 88.24 
GE0038-3 0.17 4 1,529 0.08 23 20.18 
GE0039-2 0.19 10 9,221 0.17 422 28.77 
GE0040-2 0.19 12 10,663 0.25 144 14.46 
GE0041-2 8.17 42 139,064 0.42 3363 0.32 
GE0041-3 0.31 5 5,794 0.25 574 41.53 
GE0042-2 9.03 27 131,464 0.25 3587 0.32 
GE0043-2 8.58 39 134,309 0.42 3581 0.33 
GE0054-2 0.17 4 635 0.08 14 43.75 
GE0054-3 0.17 2 6 0.08 12 100.00 
GE0055-2 0.17 4 641 0.08 16 47.06 
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CPU Length Inference Numberof % unit 

Theorem time of 
Rate Rating retained unit 

retained to 
proof total 

[secs] 
[steps] 

[clauses/sec] clauses generated 
GE0055-3 0.17 4 2,682 0.08 45 17.58 
GE0056-2 0.19 12 4,642 0.08 184 28.75 
GE0056-3 0.17 6 2,847 0.08 69 22.55 
GE0057-2 0.19 5 558 0.08 19 47.50 
GE0057-3 0.19 2 5 0.08 14 100.00 
GE0058-2 0.19 12 3,184 0.17 106 26.97 
GE0058-3 0.2 8 11,685 0.08 190 11.27 
GE0059-2 0.38 16 8,784 0.17 1323 43.74 
GE0059-3 0.28 5 4,146 0.17 339 39.70 
GE0064-2 0.17 14 9,012 0.17 104 16.43 
GE0064-3 0.27 3 1,219 0.17 93 94.90 
GE0065-2 0.17 14 9,488 0.25 121 18.03 
GE0065-3 0.3 3 1,097 0.17 93 94.90 
GE0066-2 0.2 14 7,395 0.25 99 16.20 
GE0066-3 0.3 3 1,097 0.17 93 94.90 
GE0079-1 0.16 3 13 0 4 100.00 
GE0080-1 0.22 3 9 0.08 5 100.00 
GE0081-1 0.23 7 665 0.08 31 60.78 
GE0082-1 5.67 13 126,348 0.17 2257 1.13 
GE0084-1 0.25 10 32,792 0.25 421 11.03 
GE0085-1 0.22 7 16,382 0.08 159 14.34 
GE0086-1 0.25 6 11,648 0 129 16.43 
GE0087-1 0.22 8 14,718 0.08 119 14.99 
GE0117-1 0.28 5 1,075 0.08 73 52.14 
GE0118-1 0.3 5 1,047 0.08 76 52.05 
GE0147-1 1.34 7 35,394 0.17 29671 63.18 
GRP001-1 4.55 40 185,071 0 3017 0.36 
GRP001-5 0.17 10 4,629 0 36 6.20 
GRP003-1 0.17 7 1,747 0 17 9.50 
GRP003-2 0.3 21 75,950 0 280 1.27 
GRP004-1 0.17 7 2,182 0 22 9.40 
GRP004-2 0.33 22 93,091 0 198 0.66 
GRP005-1 0.17 4 441 0 7 100.00 
GRP006-1 1.02 7 136,421 0 342 0.25 
GRP007-1 0.16 3 588 0 18 58.06 
GRP009-1 2.7 36 181,506 0 2657 0.55 
GRP010-1 2.03 35 153,810 0 1851 0.60 
GRP010-4 3.66 22 33,662 0 7366 6.22 
GRP012-1 0.3 11 53,397 0 1284 9.65 
GRP012-2 3.31 35 183,554 0 2499 0.41 
GRP012-4 3.14 31 72,183 0 18234 8.31 
GRP013-1 0.77 16 50,610 0 3509 10.41 
GRP017-1 0.23 10 70,335 0 1400 10.66 
GRP018-1 0.17 3 494 0 16 51.61 
GRP019-1 0.17 3 500 0 17 53.13 
GRP020-1 0.19 3 595 0 32 53.33 
GRP021-1 0.2 3 560 0 31 52.54 
GRP022-1 0.33 10 90,324 0 2772 10.91 
GRP022-2 0.66 12 106,909 0 3418 5.38 
GRP023-1 0.17 3 506 0 17 51.52 
GRP023-2 0.22 4 2,332 0 195 40.71 
GRP028-1 0.17 4 124 0 4 100.00 
GRP028-2 0.19 4 25,337 0 46 1.65 
GRP028-3 0.17 4 306 0 5 100.00 
GRP028-4 0.16 4 238 0 4 100.00 
GRP029-1 0.56 14 143,516 0 451 0.58 
GRP029-2 0.48 14 132,767 0 340 0.55 
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CPU Length Inference Numberof 0/0 unit 

Theorem time of Rate Rating retained unit retained to 
proof total 

[secs] 
[steps] 

[clauses/sec] clauses 
generated 

GRP030-1 0.62 21 133,118 0 604 0.75 
GRP031-1 1.47 20 126,023 0 2167 1.19 
GRP031-2 0.25 13 45,200 0 232 2.15 
GRP032-3 0.16 4 28,194 0 245 8.87 
GRP034-4 18 49 144,337 0 4058 0.16 
GRP036-3 0.28 15 71,468 0 1067 6.66 
GRP037-3 0.2 9 11,980 0 543 26.84 
GRP038-3 0.2 4 31,865 0 494 12.25 
GRP041-2 0.19 3 63 0 5 100.00 
GRP042-2 0.17 5 253 0 15 100.00 
GRP043-2 0.17 7 747 0 36 60.00 
GRP044-2 0.19 6 1,479 0 45 42.06 
GRP045-2 0.23 9 42,439 0 226 2.47 
GRP046-2 0.17 12 1,824 0 41 25.63 
GRP047-2 0.47 37 123,696 0 349 0.61 
GRP048-2 0.73 60 151,053 0.25 928 0.85 
GRP123-1.003 4.72 29 284,995 0 42 0.02 
GRP123-3.003 5.62 29 270,148 0 68 0.03 
GRP123-6.003 0.39 21 252,756 0 67 0.14 
GRP123-7.003 0.39 21 252,756 0 72 0.15 
GRP123-8.003 0.42 21 236,902 0 78 0.16 
GRP123-9.003 0.39 21 252,756 0 67 0.14 
GRP124-2.004 129.05 87 172,617 0 105 0.00 
GRP125-1.003 18 21 398,941 0 39 0.00 
GRP125-4.003 18.05 27 307,354 0 39 0.00 
GRP126-2.004 99.28 56 322,706 0 85 0.00 
GRP128-4.003 18.02 41 398,733 0 37 0.05 
GRP130-4.003 18 33 412,751 0 31 0.10 
GRP135-1.002 18 25 438,119 0 15 0.01 
GRP135-2.002 18.02 25 425,357 0 17 0.01 
GRP136-1 0.3 4 42,513 0 3640 28.77 
GRP137-1 0.31 4 41,142 0 3640 28.77 
GRP139-1 0.44 7 46,136 0 3739 18.57 
GRP142-1 0.27 3 34,604 0 2629 28.44 
GRP143-1 0.33 8 44,876 0 2687 18.32 
GRP144-1 0.39 6 46,244 0 2931 16.40 
GRP145-1 0.28 5 33,429 0 2641 28.51 
GRP146-1 0.45 7 45,111 0 3739 18.57 
GRP150-1 0.3 4 31,210 0 2644 28.54 
GRP151-1 0.2 1 0 0 7 0.00 
GRP152-1 0.83 9 38,790 0 5130 16.07 
GRP153-1 0.28 4 33,364 0 2628 28.43 
GRP154-1 0.3 5 36,847 0 3139 28.66 
GRP155-1 0.3 5 36,847 0 3139 28.66 
GRP156-1 0.41 9 43,398 0 3307 18.76 
GRP157-1 0.3 5 36,847 0 3139 28.66 
GRP158-1 0.3 5 36,847 0 3139 28.66 
GRP160-1 0.22 1 0 0 17 0.00 
GRP161-1 0.22 1 0 0 9 0.00 
GRP162-1 1.08 10 37,355 0 6355 15.86 
GRP182-1 0.27 4 34,604 0 2629 28.44 
GRP182-2 0.3 4 39,110 0 3297 28.35 
GRP182-3 0.27 4 34,600 0 2628 28.43 
GRP182-4 0.28 4 41,886 0 3292 28.32 
GRP188-1 0.83 9 38,790 0 5130 16.07 
GRP188-2 1.88 9 27,320 0 8545 16.75 
GRP189-1 0.27 4 34,600 0 2628 28.43 
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CPU 
Length 

Inference Numberof 
% unit 

Theorem time 
of 

Rate Rating retained unit 
retained to 

proof total 
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GRP189-2 0.3 4 39,090 0 3291 28.31 
GRP454-1 0.89 7 25,991 0 20782 90.21 
GRP457-1 0.86 7 24,316 0 18562 89.16 
GRP460-1 0.81 7 23,081 0 16346 87.87 
GRP463-1 0.81 7 23,081 0 16346 87.87 
GRP508-1 0.53 1 0 0 3 0.00 
GRP512-1 0.53 1 0 0 3 0.00 
GRP516-1 0.53 1 0 0 3 0.00 
GRP520-1 0.55 1 0 0 3 0.00 
GRP524-1 0.55 1 0 0 5 0.00 
GRP528-1 0.53 1 0 0 5 0.00 
GRP532-1 0.55 1 0 0 5 0.00 
GRP536-1 0.55 1 0 0 6 0.00 
GRP537-1 1.75 16 37,274 0 23358 35.91 
GRP540-1 0.55 1 0 0 6 0.00 
GRP544-1 0.55 1 0 0 6 0.00 
GRP548-1 0.55 1 0 0 6 0.00 
GRP552-1 0.53 1 0 0 6 0.00 
GRP556-1 0.53 1 0 0 4 0.00 
GRP560-1 0.55 1 0 0 4 0.00 
GRP564-1 0.55 1 0 0 4 0.00 
GRP568-1 0.55 1 0 0 6 0.00 
GRP572-1 0.55 1 0 0 6 0.00 
GRP576-1 0.53 1 0 0 6 0.00 
GRP580-1 0.55 1 0 0 6 0.00 
GRP584-1 0.56 1 0 0 6 0.00 
GRP588-1 0.55 1 0 0 4 0.00 
GRP592-1 0.55 1 0 0 4 0.00 
GRP596-1 0.52 1 0 0 4 0.00 
GRP600-1 0.55 1 0 0 4 0.00 
GRP604-1 0.52 1 0 0 4 0.00 
GRP608-1 0.55 1 0 0 4 0.00 
GRP612-1 0.53 1 0 0 4 0.00 
GRP616-1 0.55 1 0 0 4 0.00 
HEN001-1 0.16 2 6 0 6 100.00 
HEN001-3 0.22 2 9 0 8 100.00 
HEN001-5 0.55 1 0 0 2 0.00 
HEN002-1 0.16 2 6 0 6 100.00 
HEN002-2 0.15 2 7 0 7 100.00 
HE N002-3 0.22 2 9 0 8 100.00 
HEN002-4 0.23 2 9 0 9 100.00 
HEN002-5 0.53 1 0 0 3 0.00 
HEN003-3 0.27 12 25,681 0 782 11.78 
HEN003-4 0.28 12 43,146 0 1372 11.69 
HEN004-4 3.66 16 47,499 0 20842 12.70 
HEN006-4 1.16 10 .121,802 0 15758 11.19 
HEN007-4 0.47 6 30,749 0 4767 33.53 
HEN008-3 0.31 14 57,268 0 1368 10.15 
HEN008-4 0.61 10 28,018 0 5083 30.18 
HENOO8-6 0.25 10 7,464 0 755 45.05 
HEN012-3 3.48 24 147,922 0 17210 3.37 
HWV009-1 8.98 13 196,863 0.08 24159 1.67 
HWV009-3 0.87 2 7 0.08 34 100.00 
HWV009-4 0.86 2 8 0.08 35 100.00 
HWV028-1 0.31 8 39,665 0.08 3936 33.27 
HWV030-1 0.31 5 39,242 0.08 3902 33.13 
HWV030-2 8.67 4 122,545 0.08 31698 3.00 
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HWV032-1 0.31 5 39,242 0.08 3902 33.13 
HWV032-2 8.72 4 121,842 0.08 31698 3.00 
KRS001-1 18 11 353,498 0 12 0.00 
KRS002-1 18 16 308,326 0 13 0.01 
KRS003-1 18.02 11 258,699 0 13 0.00 
KRS004-1 0.17 3 18 0 3 100.00 
KRS012-1 0.17 8 218 0 6 50.00 
KRS015-1 72 22 266,891 0 14 0.00 
KRS017-1 0.15 5 153 0 4 66.67 
LAT014-1 0.55 5 1,473 0 540 70.31 
LAT033-1 0.22 5 3,236 0 180 27.03 
LAT034-1 0.23 5 3,100 0 181 27.14 
LAT039-1 0.23 4 7,739 0 569 32.93 
LAT039-2 0.22 1 0 0 5 0.00 
LAT090-1 14.45 16 4,261 0 18338 30.99 
LCL006-1 1.09 17 6,602 0.25 2271 40.13 
LCL007-1 0.55 3 13 0 4 100.00 
LCL008-1 0.53 11 40 0 14 93.33 
LCL009-1 0.88 29 5,768 0 2278 46.80 
LCL010-1 0.75 19 8,484 0 1616 26.87 
LCL011-1 0.61 25 3,572 0 703 35.24 
LCL013-1 0.56 5 13 0 4 100.00 
LCL016-1 17.03 145 32,939 0.38 11504 2.09 
LCL018-1 144.83 147 2,720 0.5 27170 7.26 
LCL022-1 0.59 31 3,822 0 555 27.07 
LCL023-1 0.56 25 4,088 0 562 26.97 
LCL027-1 0.56 7 284 0 135 91.84 
LCL033-1 0.56 13 354 0 51 38.93 
LCL035-1 0.55 13 711 0 83 27.39 
LCL041-1 2.11 11 13,447 0 3279 15.16 
LCL043-1 0.55 5 309 0 117 76.47 
LCL044-1 0.55 13 325 0 124 76.54 
LCL045-1 0.56 13 414 0.12 160 74.42 
LCL046-1 0.53 5 68 0 28 100.00 
LCL076-2 0.56 3 21 0 9 100.00 
LCL077-2 12.58 11 11,901 0 12525 9.45 
LCL079-1 1.14 7 34,018 0 2659 7.49 
LCL080-1 1.3 25 9,721 0.38 2143 21.35 
lCl081-1 0.67 23 2,245 0 1073 76.92 
LCL082-1 0.56 17 929 0 167 40.34 
lCL083-2 1.56 23 5,885 0.12 4866 55.30 
LCL086-1 4.7 37 3,480 0 6080 37.89 
LCl087-1 0.8 23 10,441 0 1136 14.20 
lCL088-1 9.27 31 4,395 0 6529 16.17 
LCL089-1 60.34 27 1,669 0.12 12976 12.94 
LCL094-1 102.31 67 2,288 0.12 17432 7.98 
lCL096-1 0.91 15 2,565 0 1901 81.90 
LCl097-1 0.56 19 80 0 28 75.68 
LCl098-1 0.56 19 61 0 21 75.00 
LCL101-1 1.61 21 55,637 0 575 0.65 
LCL 102-1 0.62 25 913 0 445 80.47 
LCl103-1 20.53 55 17,440 0.75 11256 3.17 
LCL104-1 0.62 19 7,365 0 535 12.86 
LCL106-1 0.56 13 2,346 0 196 22.32 
LCL107-1 2.66 51 6,610 0 2876 16.54 
lCL 108-1 0.58 37 2,200 0 199 17.56 
LCL111-1 0.86 11 10,915 0 1821 24.43 
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LCL117-1 0.55 13 35 0 11 84.62 
LCL 118-1 0.55 17 1,276 0 155 27.43 
LCL120-1 0.52 15 1,652 0 152 22.13 
LCL123-1 7.47 149 5,809 0.25 12602 29.22 
LCL126-1 0.55 9 164 0 69 85.19 
LCL 128-1 26.66 117 550 0.38 6685 46.76 
LCL 130-1 0.55 17 540 0.12 54 25.84 
LCL 131-1 83.78 95 1,696 0.38 14840 11.84 
LCL166-1 34.52 129 12,952 0.62 9217 2.07 
LCL169-1 0.55 2 2 0 7 100.00 
LCL169-3 0.61 6 7,369 0 3337 75.21 
LCL170-1 0.56 2 2 0 7 100.00 
LCL 170-3 0.56 6 8,023 0 3335 75.20 
LCL 171-1 0.56 2 2 0 7 100.00 
LCL172-1 0.56 2 2 0 7 100.00 
LCL173-1 0.55 2 2 0 7 100.00 
LCL 174-1 0.56 4 54 0 20 100.00 
LCL175-1 0.53 2 2 0 7 100.00 
LCL175-3 0.56 2 2 0 9 100.00 
LCL 176-1 0.53 4 40 0 13 100.00 
LCL177-1 0.55 6 60 0 23 100.00 
LCL178-1 0.56 6 68 0 25 100.00 
LCL181-2 0.17 2 6 0 3 100.00 
LCL 185-1 0.56 4 38 0 13 100.00 
LCL 186-1 0.53 4 40 0 13 100.00 
LCL 187-1 0.55 6 73 0 27 100.00 
LCL188-1 0.55 6 62 0 24 100.00 
LCL189-1 0.58 6 71 0 28 100.00 
LCL190-1 0.53 4 58 0 21 100.00 
LCL190-3 0.62 5 7,273 0 3342 75.17 
LCL 192-1 0.72 8 21,521 0 2487 21.25 
LCL 193-1 0.8 6 17,670 0 2950 24.46 
LCL 194-1 0.8 8 16,991 0 2524 21.91 
LCL 197-1 0.7 8 15,779 0 1844 20.12 
LCL199-1 0.56 12 1,021 0 367 66.37 
LCL200-1 0.58 10 986 0 367 66.37 
LCL202-1 1 24 42,576 0 10554 29.87 
LCL203-1 1.23 24 38,433 0 11674 29.51 
LCL205-1 1.3 24 36,545 0 12872 32.37 
LCL206-1 1.24 24 37,903 0 12516 31.83 
LCL226-1 0.55 4 53 0 19 100.00 
LCL230-2 0.17 3 24 0 4 100.00 
LCL236-1 0.55 6 73 0 27 100.00 
LCL238-1 0.58 10 986 0 386 69.80 
LCL257-1 0.59 23 4,559 0 633 25.63 
LCL355-1 0.55 3 16 0 5 100.00 
LCL356-1 0.63 13 10,683 0 611 12.76 
LCL357-1 0.56 5 25 0 9 100.00 
LCL358-1 0.7 17 18,557 0.12 1073 11.76 
LCL359-1 0.62 29 10,855 0 611 12.76 
LCL360-1 0.56 3 18 0 6 100.00 
LCL361-1 0.56 11 196 0 80 80.00 
LCL362-1 0.61 9 1,285 0 639 82.77 
LCL366-1 0.59 13 8,280 0 766 20.89 
LCL398-1 0.55 9 165 0 72 90.00 
LCL414-1 0.53 5 221 0 89 83.18 
LCL416-1 4.69 95 29,420 0.25 2985 2.17 



Appendix H 236 

CPU 
Length Inference Numberof 

% unit 

Theorem time of Rate Rating retained unit retained to 
proof total 

[secs] 
[steps] 

[clauses/sec] clauses generated 
LDA003-1 0.31 12 61,484 0 2212 22.05 
LDA007-3 0.91 26 126,360 0 6761 5.99 
MGT001-1 137.41 44 264,354 0 20 0.00 
MGT002-1 74.36 20 382,804 0 13 0.00 
MGT003-1 20.31 20 376,558 0 13 0.00 
MGT004-1 49.78 35 269,115 0 16 0.00 
MGT006-1 18.06 28 284,296 0 14 0.00 
MGT007-1 171.09 35 243,151 0 18 0.00 
MGT008-1 2.2 21 276,660 0 16 0.02 
MGTOO9-1 2.73 21 279,956 0 16 0.02 
MGT010-1 129.5 36 305,954 0 19 0.00 
MGT013-1 77.94 28 335,253 0 35 0.00 
MGT014-1 77.94 28 335,726 0 35 0.00 
MGT021-1 74.47 20 230,987 0.08 137 0.00 
MGT022-1 72.02 19 380,913 0 7 14.00 
MGT022-2 72 19 380,161 0 7 14.00 
MGT023-1 73.55 23 209,239 0.17 195 0.00 
MGT032-2 0.22 17 500 0 8 21.62 
MGT036-1 0.95 16 308,997 0 15 0.02 
MGT036-2 18 16 359,237 0 23 0.00 
MGT036-3 18 11 473,113 0 7 0.00 
MGT041-2 0.19 10 632 0 8 22.22 
MGT044-1 0.19 8 22,947 0.08 46 4.43 
MGT045-1 0.19 5 1,000 0.08 27 40.30 
MGT048-1 0.19 8 22,768 0.08 44 4.26 
MGT049-1 0.17 4 1,124 0.08 30 37.04 
MGT052-1 0.17 5 353 0 9 50.00 
MGT056-1 72 64 189,675 0.08 790 0.01 
MGT057-1 2.98 22 179,069 0.08 688 0.19 
MGT058-1 100.8 48 205,897 0.25 456 0.00 
MGT059-1 0.19 8 5,411 0.08 40 14.55 
MGT061-1 90.36 90 140,524 0.17 7573 0.07 
MGT065-1 100.5 61 121,149 0.25 2618 0.03 
MSC001-1 0.3 18 81,713 0 178 1.25 
MSC002-1 1.67 11 130,225 0 4877 2.80 
MSC002-2 1.64 11 127,792 0 4877 2.80 
MSC003-1 0.17 8 312 0 7 50.00 
MSC004-1 0.23 23 4,483 0 10 8.70 
MSC005-1 0.56 9 134 0 49 92.45 
MSCOO6-1 0.86 47 307,209 0 28 0.07 
NLP141-1 0.3 33 27,357 0.08 381 14.33 
NLP143-1 0.3 33 27,993 0.08 405 14.43 
NLP145-1 0.31 33 27,290 0.08 424 14.80 
NLP147-1 0.3 33 27,993 0.08 405 14.43 
NLP149-1 0.3 33 27,357 0.17 381 14.33 
NLP204-1 0.3 12 7,377 0 193 27.89 
NLP208-1 0.3 12 7,377 0.08 193 27.89 
NUM001-1 0.23 7 32,096 0 752 10.34 
NUM002-1 0.27 13 28,907 0 792 10.29 
NUM003-1 0.31 7 38,581 0 1457 12.30 
NUM004-1 0.27 13 28,622 0 776 10.19 
NUM009-1 9.59 5 86,351 0.08 26263 3.28 
NUM014-1 18 6 409,105 0 12 0.00 
NUM015-1 0.17 13 2,353 0 21 18.58 
NUM016-1 0.16 11 4,719 0 27 10.42 
NUM016-2 0.17 14 1,312 0 10 19.23 
NUM019-1 0.2 3 435 0 35 53.03 
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NUM020-1 0.2 4 840 0 57 40.43 
NUM022-1 0.56 9 525 0 11 16.18 
NUM023-1 0.55 2 2 0 9 100.00 
NUM024-1 1.3 9 4,535 0 3606 62.43 
NUM025-1 0.58 3 576 0 152 50.84 
NUM025-2 0.58 3 576 0 152 50.84 
NUM139-1 1 3 13 0.25 58 100.00 
NUM228-1 1.01 3 10 0.17 57 100.00 
PLA001-1 0.22 14 8,400 0.12 90 7.73 
PLA002-1 0.17 10 2,935 0 12 11.01 
PLA003-1 18 8 330,024 0 25 0.00 
PLA006-1 0.47 6 110,847 0 3551 8.16 
PLA017-1 1.26 10 92,193 0 3729 3.53 
PLA020-1 0.38 4 113,997 0 3545 10.07 
PLA022-1 1.64 14 90,468 0.25 4273 3.50 
PLA022-2 1.72 14 86,293 0.25 4274 3.50 
PUZ001-1 0.16 13 1,331 0 19 29.23 
PUZ001-2 0.47 24 131,517 0.17 280 0.70 
PUZ002-1 0.17 11 182 0 11 73.33 
PUZ003-1 0.17 11 2,612 0 15 17.65 
PUZ004-1 0.19 10 279 0 11 45.83 
PUZ005-1 72.27 68 253,191 0 67 0.01 
PUZ006-1 0.31 41 90,919 0.08 108 1.15 
PUZ008-1 0.58 2 3 0 8 100.00 
PUZ008-2 0.25 12 1,704 0 15 19.23 
PUZ009-1 0.17 8 6,959 0 6 3.90 
PUZ012-1 0.17 12 1,382 0 25 39.68 
PUZ013-1 0.19 11 405 0 8 44.44 
PUZ014-1 0.17 36 6,988 0 14 12.96 
PUZ018-1 0.77 43 150,509 0.17 60 0.81 
PUZ020-1 0.14 5 3,950 0 41 14.34 
PUZ021-1 25.09 40 188,961 0 1817 0.05 
PUZ022-1 72.02 9 127,370 0 59 0.00 
PUZ023-1 0.17 13 4,718 0 8 100.00 
PUZ024-1 18.02 7 297,501 0 35 0.01 
PUZ026-1 0.78 52 257,373 0 74 0.38 
PUZ027-1 0.22 32 46,395 0 30 7.46 
PUZ029-1 18 25 363,808 0 14 0.00 
PUZ032-1 0.53 10 1,177 0 22 15.38 
PUZ033-1 3.61 25 438,978 0 12 0.00 
PUZ035-1 2.2 85 316,402 0 14 2.62 
PUZ035-2 4.97 85 330,780 0 14 1.52 
PUZ035-5 0.2 10 1,190 0 4 66.67 
PUZ035-6 0.56 10 1,102 0 4 66.67 
PUZ047-1 0.17 8 1,229 0 13 32.50 
RNG001-3 26.5 60 204,889 0.12 357 0.01 
RNG002-1 7.53 26 177,232 0 5355 0.41 
RNG003-1 7.64 24 176,038 0 5368 0.40 
RNG010-2 0.58 1 0 0 12 0.00 
RNG011-5 0.56 1 0 0 3 0.00 
RNG038-2 0.19 6 28,137 0 424 14.14 
RNG039-2 3.03 21 40,374 0.12 10446 8.67 
RNG041-1 0.56 11 134,505 0.17 3104 5.42 
SET001-1 0.16 4 56 0 6 100.00 
SET002-1 0.17 15 23,741 0 12 4.27 
SET003-1 0.17 5 100 0 7 53.85 
SET004-1 0.16 5 106 0 7 53.85 
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SET005-1 9.84 53 221,466 0 174 0.15 
SET006-1 0.16 5 131 0 7 50.00 
SET008-1 0.16 7 500 0 26 78.79 
SET009-1 0.16 12 1,206 0 18 51.43 
SET011-1 4.38 34 200,193 0 194 0.16 
SET014-2 10.62 19 185,731 0 3277 0.17 
SET043-5 0.17 3 41 0 2 66.67 
SET044-5 0.17 7 671 0 5 33.33 
SET045-5 0.17 4 106 0 8 66.67 
SET046-5 0.16 14 9,213 0 6 3.47 
SET054-6 0.81 2 1 0 32 100.00 
SET054-7 0.84 2 1 0 32 100.00 
SET060-6 4.74 4 103,497 0.08 29104 5.97 
SET060-7 4.75 4 103,194 0.08 29093 5.98 
SET062-7 0.83 2 4 0.17 37 100.00 
SET064-7 0.8 3 23 0.17 45 100.00 
SET078-7 0.84 2 7 0.08 46 100.00 
SET080-7 0.83 2 8 0.08 48 100.00 
SET196-6 2.63 4 80,654 0.25 29806 14.21 
SET231-6 0.91 3 8 0.17 45 100.00 
SET296-6 0.86 1 0 0.08 17 0.00 
SET786-1 0.17 14 8,035 0 6 4.14 
SWV001-1 0.94 22 310,563 0 10 0.03 
SWV002-1 72.38 12 89,341 0.08 17327 0.29 
SWV003-1 0.19 3 2,484 0 129 38.28 
SWV005-1 0.95 4 89,891 0.08 5412 8.28 
SWV006-1 0.19 5 2,889 0.08 157 41.42 
SWV007-1 1.16 11 91,141 0.08 6508 7.95 
SWV008-1 74.52 18 73,406 0.17 15685 0.31 
SWV009-1 0.17 13 35,788 0 11 1.44 
SWV011-1 0.2 2 5 0 3 100.00 
SYN003-1.006 0.17 16 735 0 19 32.76 
SYN004-1.007 0.27 70 113,837 0 14 0.16 
SYN005-1.010 0.17 10 1,400 0 11 100.00 
SYN006-1 0.56 6 50 0 7 87.50 
SYN008-1 0.17 3 29 0 4 100.00 
SYN009-1 0.17 6 29 0 7 100.00 
SYN009-2 0.17 9 406 0 8 25.81 
SYN009-3 0.19 15 868 0 10 17.54 
SYN009-4 0.19 21 14,395 0 9 3.03 
SYN011-1 0.19 10 1,084 0 5 45.45 
SYN014-2 0.17 4 353 0 14 60.87 
SYN015-2 34.13 45 278,287 0 37 0.00 
SYN028-1 0.17 8 259 0 6 26.09 
SYN029-1 0.16 7 181 0 4 80.00 
SYN030-1 0.17 14 1,853 0 6 17.14 
SYN031-1 0.17 5 206 0 4 40.00 
SYN032-1 0.17 21 3,847 0 5 11.11 
SYN033-1 0.17 4 129 0 4 100.00 
SYN034-1 0.17 14 9,388 0 6 3.47 
SYN035-1 0.17 8 1,924 0 3 4.62 
SYN040-1 0.17 2 6 0 3 100.00 
SYN041-1 0.17 1 0 0 3 0.00 
SYN044-1 0.16 10 913 0 4 36.36 
SYN045-1 0.16 4 44 0 4 80.00 
SYN046-1 0.17 2 6 0 3 100.00 
SYN047-1 0.16 6 175 0 5 62.50 
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SYN048-1 0.16 1 0 0 2 0.00 
SYN049-1 0.17 2 6 0 3 100.00 
SYN050-1 0.17 3 24 0 4 100.00 
SYN051-1 0.16 5 200 0 3 60.00 
SYN052-1 0.17 5 294 0 3 60.00 
SYN053-1 0.17 6 612 0 4 14.29 
SYN054-1 0.17 7 1,729 0 8 17.39 
SYN055-1 0.17 13 724 0 11 26.19 
SYN057-1 0.17 8 229 0 9 64.29 
SYN058-1 0.19 5 53 0 7 100.00 
SYN060-1 0.17 4 29 0 4 100.00 
SYN061-1 0.17 4 35 0 5 100.00 
SYN062-1 0.17 6 59 0 6 100.00 
SYN063-1 0.17 4 112 0 4 100.00 
SYN063-2 0.17 2 6 0 3 100.00 
SYN064-1 0.16 1 0 0 2 0.00 
SYN065-1 0.19 3 74 0 4 100.00 
SYN066-1 0.17 4 94 0 7 77.78 
SYN068-1 0.17 5 188 0 7 46.67 
SYN069-1 0.19 19 46,158 0 11 0.55 
SYN070-1 18.03 24 280,046 0 35 0.00 
SYN071-1 0.28 38 133,214 0 14 0.22 
SYN073-1 0.16 2 19 0 4 100.00 
SYN074-1 0.59 19 164,561 0.08 203 0.30 
SYN075-1 0.58 19 169,960 0.08 206 0.31 
SYN079-1 0.16 3 44 0 4 100.00 
SYN080-1 0.19 2 11 0 5 100.00 
SYN081-1 0.16 6 744 0 4 17.39 
SYN082-1 0.17 21 15,759 0 3 6.25 
SYN083-1 0.56 3 164 0 43 58.11 
SYNOB4-2 72 46 244,093 0 12 0.00 
SYN085-1.010 0.19 11 111 0 12 100.00 
SYN088-1.010 0.2 11 155 0 22 100.00 
SYN089-1.002 0.17 3 71 0 6 100.00 
SYN090-1.008 62.42 170 239,112 0 29 0.00 
SYN095-1.002 0.17 3 71 0 6 100.00 
SYN096-1.008 63.62 170 234,602 0 29 0.00 
SYN099-1.003 0.19 7 7,000 0 23 7.90 
SYN100-1.005 0.3 44 62,727 0 33 0.72 
SYN101-1.002.002 0.19 7 3,421 0 23 14.47 
SYN103-1 0.22 1 0 0 7 0.00 
SYN104-1 0.22 1 0 0 6 0.00 
SYN105-1 0.3 2 3 0 40 100.00 
SYN106-1 0.3 2 3 0 40 100.00 
SYN107-1 0.31 3 13 0 42 100.00 
SYN10B-1 0.31 3 13 0 42 100.00 
SYN109-1 0.33 9 19,994 0 243 10.57 
SYN110-1 0.34 11 21,476 0 252 10.04 
SYN111-1 0.31 9 21,268 0 243 10.58 
SYN112-1 0.3 3 17 0 43 100.00 
SYN113-1 0.34 8 19,441 0 245 10.62 
SYN114-1 0.31 4 1,335 0 94 62.25 
SYN115-1 0.42 13 40,460 0 341 5.86 
SYN116-1 0.59 10 74,895 0 382 2.19 
SYN117-1 0.58 12 76,138 0 381 2.19 
SYN118-1 0.23 1 0 0 8 0.00 
SYN119-1 0.2 1 0 0 9 0.00 
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SYN120-1 0.3 2 3 0 40 100.00 
SYN121-1 0.34 10 20,979 0 248 10.03 
SYN122-1 0.34 10 20,979 0 248 10.03 
SYN123-1 0.34 7 19,394 0 243 10.58 
SYN124-1 0.31 6 2,739 0 136 33.17 
SYN125-1 0.36 6 18,333 0 245 10.65 
SYN126-1 0.31 5 2,445 0 127 35.98 
SYN127-1 0.3 5 2,527 0 127 35.98 
SYN128-1 77.22 15 145,599 0 702 0.02 
SYN129-1 77.22 15 145,363 0 702 0.02 
SYN130-1 0.22 1 0 0 2 0.00 
SYN131-1 0.22 1 0 0 2 0.00 
SYN132-1 0.22 1 0 0 5 0.00 
SYN133-1 0.22 1 0 0 2 0.00 
SYN134-1 0.31 4 2,687 0 134 33.09 
SYN135-1 0.3 4 1,370 0 91 61.49 
SYN136-1 0.31 4 1,323 0 91 61.49 
SYN137-1 1.5 22 122,523 0 468 0.75 
SYN138-1 76.77 16 145,959 0 652 0.02 
SYN139-1 77.84 35 145,386 0 731 0.02 
SYN140-1 77.84 34 145,635 0 732 0.02 
SYN141-1 0.41 14 44,580 0 367 5.84 
SYN142-1 77.89 38 145,411 0 744 0.02 
SYN143-1 77.89 38 144,964 0 744 0.02 
SYN144-1 0.56 12 71,000 0 379 2.46 
SYN145-1 0.22 1 0 0 14 0.00 
SYN146-1 0.31 2 3 0 40 100.00 
SYN147-1 0.3 2 3 0 40 100.00 
SYN148-1 0.36 8 23,533 0 278 9.80 
SYN149-1 0.3 2 3 0 40 100.00 
SYN150-1 0.31 3 94 0 46 100.00 
SYN151-1 0.31 3 94 0 46 100.00 
SYN152-1 0.31 3 94 0 46 100.00 
SYN153-1 0.3 4 1,777 0 99 45.62 
SYN154-1 0.31 4 1,710 0 96 44.86 
SYN155-1 0.41 18 44,388 0 365 5.82 
SYN156-1 0.94 29 111,635 0 426 1.15 
SYN157-1 0.34 11 19,612 0 250 10.71 
SYN158-1 0.33 11 20,112 0 245 10.56 
SYN159-1 77.2 58 145,768 0 704 0.02 
SYN160-1 0.36 9 18,444 0 247 10.66 
SYN161-1 0.33 11 20,106 0 246 10.63 
SYN162-1 0.34 11 19,515 0 246 10.63 
SYN163-1 77.22 45 145,875 0 705 0.02 
SYN164-1 0.22 1 0 0 3 0.00 
SYN165-1 0.31 2 3 0 40 100.00 
SYN166-1 0.31 8 3,758 0 162 29.72 
SYN167-1 0.3 2 3 0 40 100.00 
SYN168-1 0.31 4 1,335 0 92 61.74 
SYN169-1 0.3 4 1,377 0 91 61.49 
SYN170-1 0.31 5 2,000 0 108 38.99 
SYN171-1 76.47 31 145,692 0 637 0.02 
SYN172-1 0.22 1 0 0 4 0.00 
SYN173-1 0.3 3 2,777 0 134 33.09 
SYN174-1 0.31 3 2,687 0 134 33.09 
SYN175-1 0.3 3 113 0 48 100.00 
SYN176-1 0.34 10 19,482 0 243 10.55 
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CPU Length Inference Numberof % unit 

Theorem time of 
Rate Rating retained unit 

retained to 
proof total [secs] 

[steps] 
[clauses/sec] clauses 

generated 
SYN177-1 0.31 6 4,474 0 183 29.80 
SYN178-1 72.83 13 145,636 0 606 0.02 
SYN179-1 0.42 17 40,495 0 345 5.93 
SYN180-1 72.83 20 145,744 0 607 0.02 
SYN181-1 0.92 14 114,164 0 431 1.16 
SYN182-1 0.31 6 2,458 0 130 36.52 
SYN183-1 0.3 6 2,540 0 130 36.52 
SYN184-1 0.23 1 0 0 11 0.00 
SYN185-1 0.2 1 0 0 10 0.00 
SYN186-1 0.34 5 19,382 0 242 10.54 
SYN187-1 0.33 5 19,970 0 242 10.54 
SYN188-1 0.34 5 19,382 0 242 10.54 
SYN189-1 0.36 7 27,019 0 283 8.35 
SYN190-1 1.38 26 121,251 0 450 0.79 
SYN191-1 0.42 9 45,476 0 366 5.66 
SYN192-1 0.33 12 19,970 0 242 10.54 
SYN193-1 0.33 12 19,970 0 242 10.54 
SYN194-1 0.41 14 44,378 0 365 5.82 
SYN195-1 0.56 13 79,077 0 386 2.21 
SYN196-1 0.31 4 2,697 0 135 33.09 
SYN197-1 0.3 2 3 0 40 100.00 
SYN198-1 0.33 4 2,533 0 135 33.09 
SYN199-1 0.31 4 2,697 0 135 33.09 
SYN200-1 0.31 4 2,697 0 135 33.09 
SYN201-1 0.31 6 2,687 0 134 33.09 
SYN202-1 72.81 14 146,169 0 600 0.02 
SYN203-1 0.33 11 19,970 0 242 10.54 
SYN204-1 77.86 22 145,290 0 730 0.02 
SYN205-1 77.84 22 145,836 0 730 0.02 
SYN206-1 0.59 10 79,319 0 396 2.15 
SYN207-1 0.77 19 102,794 0 406 1.32 
SYN208-1 0.34 11 19,382 0 242 10.54 
SYN209-1 0.3 7 2,777 0 134 33.09 
SYN210-1 0.31 7 2,687 0 134 33.09 
SYN211-1 0.31 7 2,687 0 134 33.09 
SYN212-1 0.31 7 2,687 0 134 33.09 
SYN213-1 0.34 17 22,926 0 258 9.64 
SYN214-1 0.36 17 21,650 0 258 9.64 
SYN215-1 0.34 17 22,924 0 258 9.64 
SYN216-1 0.34 5 19,388 0 242 10.54 
SYN217-1 0.33 7 19,982 0 243 10.58 
SYN218-1 0.34 5 19,426 0 243 10.57 
SYN219-1 0.34 10 20,979 0 248 10.03 
SYN220-1 0.31 6 2,735 0 136 33.17 
SYN221-1 0.31 6 2,748 0 137 33.17 
SYN222-1 0.31 6 2,745 0 137 33.17 
SYN223-1 0.3 6 2,827 0 136 33.17 
SYN224-1 0.31 6 2,739 0 136 33.17 
SYN225-1 0.33 6 20,000 0 244 10.60 
SYN226-1 0.31 6 2,735 0 136 33.17 
SYN227-1 0.34 6 19,406 0 244 10.61 
SYN228-1 0.31 5 2,687 0 134 33.09 
SYN229-1 0.3 6 2,840 0 137 33.17 
SYN230-1 0.31 6 2,748 0 137 33.17 
SYN231-1 0.31 6 2,745 0 137 33.17 
SYN232-1 0.31 6 2,745 0 137 33.17 
SYN233-1 0.31 6 2,735 0 136 33.17 
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Theorem time of Rate Rating retained unit retained to 
proof total [secs] 

[steps] 
[clauses/sec] clauses 

.generated 
SYN234-1 0.34 6 19,418 0 245 10.65 
SYN235-1 0.33 6 20,009 0 246 10.69 
SYN236-1 0.33 6 2,570 0 136 33.17 
SYN237-1 0.3 2 3 0 40 100.00 
SYN238-1 0.3 2 3 0 40 100.00 
SYN239-1 0.31 2 3 0 40 100.00 
SYN240-1 0.3 2 3 0 40 100.00 
SYN241-1 0.3 2 3 0 40 100.00 
SYN242-1 0.31 2 3 0 40 100.00 
SYN243-1 0.31 3 2,729 0 136 33.25 
SYN244-1 0.31 2 3 0 40 100.00 
SYN245-1 0.31 2 3 0 40 100.00 
SYN246-1 0.31 3 2,716 0 136 33.17 
SYN247-1 0.3 2 3 0 40 100.00 
SYN248-1 0.36 6 18,497 0 244 10.52 
SYN249-1 0.34 6 19,626 0 245 10.51 
SYN250-1 0.94 14 111,898 0 432 1.16 
SYN251-1 0.3 3 2,823 0 136 33.25 
SYN252-1 77.86 35 145,363 0 733 0.02 
SYN253-1 77.84 34 145,850 0 732 0.02 
SYN254-1 77.83 29 145,476 0 731 0.02 
SYN255-1 0.3 3 97 0 46 100.00 
SYN256-1 0.3 3 100 0 46 100.00 
SYN257-1 0.22 1 0 0 24 0.00 
SYN258-1 0.33 2 3 0 40 100.00 
SYN259-1 0.3 2 3 0 40 100.00 
SYN260-1 0.31 2 3 0 40 100.00 
SYN261-1 0.3 2 3 0 40 100.00 
SYN262-1 0.31 5 4,084 0 166 29.02 
SYN263-1 0.31 6 3,771 0 162 29.62 
SYN264-1 0.34 6 19,500 0 244 10.57 
SYN265-1 0.3 4 1,377 0 91 61.49 
SYN266-1 0.36 12 23,056 0 279 9.90 
SYN267-1 0.3 5 2,067 0 108 38.99 
SYN268-1 0.3 5 2,063 0 108 38.99 
SYN269-1 76.45 31 145,675 0 632 0.02 
SYN270-1 0.42 11 45,469 0 367 5.68 
SYN271-1 76.47 31 145,802 0 637 0.02 
SYN272-1 0.91 19 113,262 0 427 1.15 
SYN273-1 76.8 11 145,183 0 669 0.02 
SYN274-1 0.2 1 0 0 4 0.00 
SYN275-1 0.22 1 0 0 4 0.00 
SYN276-1 0.23 1 0 0 26 0.00 
SYN277-1 0.3 2 3 0 40 100.00 
SYN278-1 0.3 2 3 0 40 100.00 
SYN279-1 0.3 3 2,783 0 134 33.09 
SYN280-1 0.31 2 3 0 40 100.00 
SYN281-1 0.3 2 3 0 40 100.00 
SYN282-1 0.31 2 3 0 40 100.00 
SYN283-1 0.3 3 2,777 0 134 33.09 
SYN284-1 0.31 3 2,687 0 134 33.09 
SYN285-1 0.33 6 19,991 0 244 10.60 
SYN286-1 0.3 3 2,787 0 135 33.09 
SYN287-1 0.3 2 3 0 40 100.00 
SYN288-1 0.31 2 3 0 40 100.00 
SYN289-1 0.3 3 2,777 0 134 33.09 
SYN290-1 0.31 2 3 0 40 100.00 
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Inference Numberof 
% unit 

Theorem time of Rate Rating retained unit retained to 
proof total 

[secs] [steps] [clauses/sec] clauses 
generated 

SYN291-1 0.3 2 3 0 40 100.00 
SYN292-1 0.31 2 3 0 40 100.00 
SYN293-1 0.34 5 19,453 0 245 10.62 
SYN294-1 0.34 5 19,465 0 246 10.65 
SYN295-1 0.3 2 3 0 40 100.00 
SYN296-1 0.31 3 2,687 0 134 33.09 
SYN297-1 0.3 2 3 0 40 100.00 
SYN298-1 0.59 10 79,410 0 396 2.14 
SYN299-1 0.58 10 80,731 0 396 2.14 
SYN300-1 0.59 10 79,319 0 396 2.15 
SYN301-1 0.31 7 2,687 0 134 33.09 
SYN310-1 0.28 19 25,182 0 2157 30.92 
SYN312-1 0.86 21 107,037 0 17871 19.45 
SYN315-1 0.17 5 200 0 3 60.00 
SYN318-1 0.19 3 21 0 4 100.00 
SYN319-1 0.17 5 147 0 6 60.00 
SYN321-1 0.17 5 200 0 3 60.00 
SYN323-1 0.17 5 294 0 4 36.36 
SYN325-1 0.17 3 35 0 3 100.00 
SYN326-1 0.17 4 35 0 5 100.00 
SYN327-1 0.17 6 800 0 6 24.00 
SYN328-1 0.33 57 171,045 0 10 2.97 
SYN331-1 0.17 5 576 0 6 15.38 
SYN333-1 0.17 6 100 0 3 60.00 
SYN336-1 0.17 1 0 0 5 0.00 
SYN338-1 0.17 1 0 0 3 0.00 
SYN339-1 0.17 1 0 0 2 0.00 
SYN340-1 0.19 1 0 0 2 0.00 
SYN341-1 0.17 1 0 0 2 0.00 
SYN343-1 0.17 3 53 0 2 66.67 
SYN346-1 0.17 2 6 0 3 100.00 
SYN350-1 0.17 24 13,294 0 6 4.32 
SYN354-1 0.16 9 444 0 5 71.43 
SYN554-1 0.22 16 47,636 0 38 0.42 
SYN555-1 0.27 5 263 0 14 43.75 
SYN558-1 18.11 18 274,247 0 162 0.01 
SYN563-1 0.25 14 25,924 0 425 9.01 
SYN566-1 0.28 15 70,525 0 98 0.68 
SYN570-1 0.19 12 3,989 0 47 10.00 
SYN574-1 72.17 25 246,273 0 96 0.00 
SYN575-1 72.17 25 247,790 0 96 0.00 
SYN578-1 11.73 57 142,362 0 542 0.04 
SYN579-1 11.78 57 141,758 0 542 0.04 
SYN580-1 18.03 13 231,897 0 108 0.00 
SYN581-1 0.27 9 40,052 0 1038 11.25 
SYN582-1 0.28 11 38,621 0 1038 11.25 
SYN583-1 0.3 11 56,687 0 1683 11.45 
SYN585-1 0.27 6 50,919 0 490 3.66 
SYN590-1 0.23 13 34,965 0 259 5.38 
SYN591-1 12.25 21 237,145 0 284 0.01 
SYN592-1 12.12 17 239,689 0 284 0.01 
SYN618-1 0.22 14 6,818 0 98 13.46 
SYN621-1 0.8 6 19,945 0 8970 56.64 
SYN624-1 2.11 7 23,464 0 24111 48.88 
SYN626-1 0.69 8 4,107 0 351 18.78 
SYN627-1 18.61 15 20,053 0 4446 1.23 
SYN631-1 74.94 13 213,605 0.5 6224 0.04 



Appendix H 244 

CPU 
Length Inference Numberof 

% unit 

Theorem lime of Rate Rating retained unit retained to 
proof total [secs) 

[steps] 
[clauses/sec] clauses generated 

SYN653-1 9.73 18 73,312 0.25 385 0.10 
SYN654-1 8.77 15 75,678 0 350 0.10 
SYN655-1 8.8 15 75,420 0 350 0.10 
SYN721-1 0.14 4 64 0 5 100.00 
SYN724-1 0.14 11 2,036 0 5 12.50 
SYN726-1 0.78 46 294,846 0 29 0.07 
SYN727-1 0.17 2 6 0 3 100.00 
SYN728-1 0.31 10 303 0 6 33.33 
SYN729-1 0.59 6 2,273 0 826 62.48 
SYN731-1 0.17 1 0 0 2 0.00 
TOP001-2 42.08 16 269,821 0.12 22 0.00 
TOP002-2 0.17 2 6 0 3 100.00 
TOP004-1 0.3 1 0 0 3 0.00 
TOP004-2 0.17 1 0 0 3 0.00 

Remark: Notice that the number of retained unit clauses is much less than the 

number of generated unit clauses. This is an indication that it may not be 

necessary to have extremely large tables to store unit clauses. In fact, we found 

that most of the time, the size of a table of 50,000 entries is enough to store 

distinct unit clauses that conform to the limits (length of a clause, max term depth, 

etc.) assigned by the user. 
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