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Abstract

The ongoing deepening penetration of renewable energy sources is posing significant
challenges to electric power system operation and planning. High levels of renewable
energy, particularly from wind and solar sources, introduce significant variability and
uncertainties that system operators must integrate into operational planning problems to
ensure secure and cost-effective operation. Solving NP-hard (Non Deterministic
Polynomial-time) operational planning problems such as the unit commitment,
security-constrained unit commitment, and ac optimal power flow (AC-OPF) repeatedly is
essential for ensuring reliable and economical daily operations. However, their numerous
constraints and the inclusion of uncertainties and variability can substantially prolong
solution times and may render these problems intractable for large systems. Nevertheless,
existing empirical evidence and prior research indicate that these problems often include
numerous unnecessary constraints.

This thesis seeks to advance the state-of-the-art of optimization-based constraint
screening approaches for power system operational planning problems. We leverage
constraint learning to achieve efficient constraint screening outcomes. Constraint learning
embeds trained machine learning models directly into constraint screening approaches.
Constraint learning is primarily led by discovering insights from previously solved
operations planning instances which inherit the economical aspect of their objective
functions as well as the observed demand patterns.

In optimization-based constraint screening for operational planning problems, robust
optimization is often employed to ensure the operator’s ability to handle a broad range
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of possible scenarios, where scenarios refer to probable realizations of the system’s sources
of uncertainty. In this realm, we propose polyhedral uncertainty sets that are capable of
capturing spatial correlations in the uncertainty space of variable renewable energy and
demand, called net load. Polyhedral uncertainty sets offer coverage levels similar to those of
convex hulls without the over conservatism of multidimensional bounding boxes. Afterward,
we extend the optimization-based approach known as umbrella constraint discovery (UCD),
in the context of polyhedral uncertainty sets integrated in unit commitment problems. The
classical UCD approach identifies non-redundant constraints by enforcing a consistency logic
on the set of constraints. Furthermore, we augment UCD with an upper bound cost-driven
constraint derived by fitting an appropriate regression model using past solved instances of
the unit commitment problem. This new formulation called techno-economic UCD screens
out redundant and inactive constraints that are not necessary to achieve optimal solutions
for unit commitment with significant computational enhancement. This is a key departure
from UCD, which is only capable of screening out redundant constraints.

Furthermore, we extend the optimization-based bound tightening technique for constraint
screening problem in the context of the AC-OPF problem using constraint learning. Due to
the non-convexity of the AC-OPF problem, we investigate how different convex relaxations
of the AC-OPF perform when performing line constraint screening.

Next, we propose an interpretable machine learning algorithm for real-time constraint
generation for the security-constrained unit commitment problem. Our proposed approach
is simplifying and accelerates the conventional constraint generation approach by leveraging
machine learning approaches to learn the active set of pre- and post-contingency constraints.
Those are then used to warm-start the constraint generation process used in the practical
solution of security-constrained unit commitment problems to reveal the constraints set
necessary and sufficient to guarantee the feasibility and optimality of the solution at a fraction
of the computational cost needed by state-of-the-art approaches.

Finally, we develop a novel approach to determine the distance of an optimization
problem solution to its non-redundant constraints defining its feasible region, or even its
violated constraints in cases when problems are infeasible. Here, the notion of “distance”
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to a problem’s constraints is associated with the ability of the power system to respond to
uncertain events, i.e., how flexible it is. For this purpose, we propose novel system
flexibility metrics which are calculated by solving an associated inverse optimization
problem. We reveal that when applying this approach to the loadability set of a power
system, it can accurately determine the feasibility of uncertain net load vector, and it is
able to identify which constraints are closest to that uncertain net load vector.
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Résumé

L’augmentation de la proportion des sources d’énergie renouvelable pose d’importants défis
à l’exploitation et à la planification des grands réseaux électriques. Les niveaux élevés
d’énergie renouvelable, en particulier à partir de sources éoliennes et solaires, introduisent
des incertitudes et des niveaux de variation de la production significatives que les
opérateurs doivent intégrer dans la planification opérationnelle pour garantir un
fonctionnement sûr et économique. La résolution de manière répétée de problèmes de
planification opérationnelle de difficulté NP (polynomiaux non déterministes) tels que
l’engagement des unités, l’engagement des unités contraint par la sécurité et l’écoulement
optimal de puissance en courant alternatif (AC-OPF) est essentiel pour les opérations
quotidiennes. Cependant, leurs nombreuses contraintes et l’inclusion d’incertitudes peuvent
considérablement prolonger les temps de résolution et rendre ces problèmes inextricables
pour les grands systèmes. Néanmoins, des preuves empiriques et des recherches antérieures
indiquent que ces problèmes incluent souvent de nombreuses contraintes inutiles.

Cette thèse vise à faire progresser l’état de l’art des approches de dépistage des
contraintes basées sur l’optimisation pour les problèmes de planification opérationnelle des
systèmes électriques. Nous utilisons l’apprentissage de contraintes pour obtenir des
résultats efficaces de dépistage des contraintes. L’apprentissage de contraintes intègre
directement des modèles d’apprentissage automatique formés dans les approches de
dépistage des contraintes. L’apprentissage de contraintes est principalement dirigé par la
découverte d’informations à partir d’instances de planification d’opérations résolues
précédemment, qui héritent de l’aspect économique de leurs fonctions objectives ainsi que
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des schèmes de production et demande déjà observés.
Dans le dépistage des contraintes basé sur l’optimisation pour les problèmes de

planification opérationnelle, l’optimisation robuste est souvent utilisée pour garantir la
capacité de l’opérateur à gérer un large éventail de scénarios possibles, où un scénario
correspond à une réalisation probable des sources d’incertitude d’un réseau. Dans ce
domaine, nous proposons les ensembles d’incertitudes polyédriques capables de capturer les
corrélations spatiales dans l’espace d’incertitude de l’énergie renouvelable variable et de la
demande, appelée charge nette. L’ensemble d’incertitudes offre des niveaux de couverture
similaires à ceux des enveloppes convexes, mais sans le conservatisme excessif des bôıtes
multidimensionnelles. Ensuite, nous étendons l’approche basée sur l’optimisation appelée
découverte de contraintes parapluie (DCP), dans le contexte de l’ensemble d’incertitudes
polyédriques intégré dans les problèmes d’engagement des unités de production. L’approche
classique DCP identifie les contraintes non redondantes en imposant une logique de
cohérence à l’ensemble des contraintes. De plus, nous augmentons DCP avec une contrainte
axée sur les coûts de borne supérieure dérivée en ajustant un modèle de régression
approprié à l’aide d’instances passées du problème d’engagement des unités. Cette nouvelle
formulation appelée DCP technico-économique élimine les contraintes redondantes et
inactives qui ne sont pas nécessaires pour obtenir des solutions optimales pour
l’engagement des unités avec une amélioration significative des performances de calcul. On
voit ici une avancée des plus utile, étant donné que le DCP technico-économique est en
mesure d’identifier non-seulement les contraintes redondantes mais lesquelles devraient être
actives.

De plus, nous étendons la technique de resserrement des bornes basée sur l’optimisation
pour le problème de dépistage des contraintes dans le contexte de l’AC-OPF en utilisant
l’apprentissage de contraintes. En raison de la non-convexité de l’AC-OPF, nous étudions
comment différentes relaxations convexes du problème d’AC-OPF performent dans le
dépistage des contraintes des contraintes de ligne.

Ensuite, nous proposons un algorithme d’apprentissage automatique interprétable pour la
génération de contraintes en temps réel pour le problème d’engagement des unités contraint
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par la sécurité. Notre approche proposée simplifie et accélère l’approche conventionnelle
de génération de contraintes en utilisant des approches d’apprentissage automatique pour
apprendre l’ensemble actif de contraintes avant et après une contingence, puis pour amorcer
l’approche de génération de contraintes afin de révéler l’ensemble critique de contraintes non
contraignantes qui sont également nécessaires pour garantir la faisabilité et l’optimalité de
la solution.

Enfin, nous développons une nouvelle approche pour déterminer la distance entre une
solution de problème d’optimisation et ses contraintes formant l’intérieur de sa région de
faisabilité, ou même ses contraintes violées dans les cas où les problèmes sont infaisables. Ici,
la notion de ≪ distance ≫ par rapport aux contraintes d’un problème est associée à la capacité
du système électrique à réagir à des événements incertains, c’est-à-dire à sa flexibilité. À cette
fin, nous proposons des métriques de flexibilité du système qui sont calculées en résolvant un
problème d’optimisation inverse associé. On révéle que lorsqu’on applique cette approche à
l’ensemble de capacité de charge d’un système électrique, elle peut déterminer avec précision
la faisabilité de vecteurs de charge nette incertaine, et elle est capable d’identifier quelles
contraintes sont les plus proches de ce vecteur de charge nette.
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Chapter 1

Introduction

The integration of renewable energy sources (RES) is growing rapidly worldwide today.
The International Energy Agency (IEA) predicts that between 2021 and 2026, renewable
electricity capacity additions will increase approximately by 60% to almost 4800 GW globally
by 2026. The percentage of renewable energy in total energy generation is forecasted to be
33%, surpassing coal-fired electricity generation by 2025 [1].

However, many issues can emerge from the massive penetration of renewable generation
into the grid. The majority of RES production, such as wind generation and photovoltaic
(PV) generation, is dependent on weather conditions, which makes it intermittent,
variable, and uncertain in nature. These inherent characteristics of renewable generation
lead to increased variability and uncertainty in the grid, and they undermine the security
and reliability of power system operation [2]. Consequently, this has driven the emergence
of techniques for power system operation and planning under uncertainty in academia and
industry [3].

In fact, the unit commitment (UC) problem is one of the primary optimization
problems for power systems operation and electricity market clearing [4], being solved daily
multiple times by major Independent System Operators (ISOs) in the United States such
as the New England ISO, California ISO, and PJM, and regional transmission organization
(RTO) to schedule 3.8 trillion kilowatt-hours (kWh) of energy production and clear a $ 400
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billion electricity market annually [5]. The problem seeks the most economically-efficient
power generation schedule, while a large number of physical and engineering constraints
are satisfied. However, solving this problem remains a challenge given the nature of UC
and its large size.

1.1 Unit Commitment Problem Overview

ISOs established wholesale electricity markets to enable competition among generating
resources which clear hourly and sub-hourly markets while determining corresponding
clearing prices. Grid reliability must be maintained in all electricity markets besides
balancing supply and demand. Reliability in the context of power systems can be seen as a
combination of security and adequacy [6]. Security refers to the ability of the system to
withstand and recover from disturbances such as equipment failures [7, 8], extreme weather
events and natural disasters [9, 10], or cyber-physical attacks [11,12]. In contrast, adequacy
focuses on possessing appropriate generation and transmission infrastructure to meet the
changes in the forecasted demand [2, 13].

Moreover, power system operators are now inclined to dispatch traditional generation in a
sub-hourly manner to address the potentially rapid fluctuations induced by RES generation.
Thus, to incorporate RES into UC, we define the net load to be the load from customers minus
non-dispatchable renewable generation at a given time. Moreover, ISOs are responsible for
maximizing the utilization of their regional generation resources and transmission network
by running day-ahead and real-time markets. The heart of the electricity market clearing is
the security-constrained unit commitment (SCUC) which on top of clearing the market, it
is taking into account the need to make sure security and adequacy are satisfied with a high
level of confidence [14].

The SCUC problem has been intensively studied in the literature over the years, and it
is evidenced by several review papers and dedicated books [4, 15–18]. The SCUC
determines which generators should be turned on and their output levels for each hour (or
sub-hour period) of the next day. The objective of the SCUC is to minimize the global
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generation production and start-up and shut-down costs, while ensuring network and
generating units’ constraints are met [19]. Alternatively, the SCUC can be adapted to the
maximization of social welfare as an objective function [20]. However, the demand side is
fairly inelastic which makes the adoption of minimizing production cost more common in
SCUC formulations. Mathematically, the SCUC problem is a non-convex, large-scale mixed
integer program (MIP) with many binary and continuous variables, equality, and inequality
constraints. SCUC is known to be NP-hard (Nondeterministic Polynomial-time hard)
problem [21].

The North American Electric Reliability Corporation (NERC) develops and enforces
reliability standards for bulk power systems, which include high-voltage transmission lines,
power plants, and other equipment that make up the interconnected power grid in North
America. Furthermore, the complexity of SCUC is even more stressed because of the
standards set by NERC, whereby network outage scenarios (contingencies) have to be
considered in the SCUC problem formulation [16]. Because of SCUC’s inherent
computational burden and for obvious economic reasons, system operators have typically
considered the loss of one or two components at most as part of SCUC through the
well-known N − 1 and N − 2 security criteria [22]. NERC standards can be fulfilled by
following either preventive [23] or corrective [24] control approaches, where the values of
decision variables when operating under contingencies are respectively forbidden or allowed
to change with respect to those under the normal state. Actually, corrective paradigms, if
not already automated like primary frequency control, often necessitate immediate
operator actions, such as the rapid dispatch of multiple generating units within a tight
time frame (typically between 10 to 20 minutes) to prevent further adverse situations such
as component overloading and load shedding. In contrast, preventive actions, taken as part
of SCUC solution, prevent overloading in the post-contingency steady states by
maintaining the same decision variables values in the pre-and post-contingency states. As a
result, a preventive approach for power system operation results in more costly optimal
solutions [25] because operation decisions have to be consistent with pre- and all
post-contingency conditions. Nevertheless, the implementation of a SCUC instance that
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implements preventive control is significantly simpler since it determines a single set of
decision variables per time period. The efficiency of SCUC’s computational performance is
crucial in practice, as there are typically short time windows for clearing electricity
markets. Therefore, a preventive SCUC can provide an effective compromise between cost
optimization and computational burden.

This thesis primarily focuses on the deterministic SCUC problem that is being used
in electricity market clearing in many jurisdictions in North America [16]. In the next
subsection, we review SCUC: its mathematical formulation, state-of-art-solution techniques
in solving electricity market clearing problems, and future emerging challenges of market
clearing problems.

1.1.1 Unit Commitment Formulation and Solution Methods

In electricity markets, ISOs manage day-ahead and real-time markets. To solve the
day-ahead market, a SCUC is solved for the 24 hours of the next operating day. The
corresponding optimization problem considers several time periods.1 This results in a large
number of possible commitment decisions that need to be evaluated, which leads to a high
computational complexity. Theoretically, all ac and dc load flow equations and possible
contingencies can be imposed into one multi-period ac optimal power flow (AC-SCOPF)
problem. Practically, the mainstream industry practice is to solve a SCUC which is
formulated as a UC relaxation followed by an auxiliary security analysis called the
simultaneous feasibility test (SFT) to iteratively add pre and post-contingency violated
transmission constraints [6, 16,26]. The overall SCUC solution process runs as follows:

1. The ISO clears the market by solving a unit commitment to optimize the generators’
commitments by determining their on/off statuses and their active power schedules.
Voltage controls and reactive power management are primarily handled outside of the
market clearing and enforced as linear constraints on active power [27]. Impacts of

1As just mentioned, 24 in North American markets. Note, however, that some other markets, like that
of England and Wales, have sub-hourly time steps (48 half-hourly steps in the British case).
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losses are considered in the load forecast [16].

2. Next, a security analysis is run. It requires running dc load flows for each credible
operating state and the generation schedules (found by the market clearing algorithm)
and then identifying line flow violations.

3. The previously-identified violations are added in the next iteration in the unit
commitment by introducing new constraint whose role is to make sure identified
violations cannot take place. These added violations are formulated as linear
inequality constraints using power transfer distribution factors (PTDFs) [26].

4. This process is repeated until all violations have been removed.

This pure optimization-based iterative method is also called a constraint generation
algorithm [28].

At an abstract level, SCUC is minimizing the operating cost of the given set of resources,
subject to the physical constraints of these resources and those of the entire system, a high
level formulation of this problem can be cast as follows [16]:

min f(u, g) =
∑

m∈M
Cm(gm) (1.1)

Subject to:

∑
m∈M

(Amgm + Bmum) ≤ D (1.2)

(um, gm, Cm) ∈ Πm, ∀m ∈ M (1.3)

Decision variables include the commitment status of the generating units
um = {0, 1}—0 if off, 1 if on—, and the power output schedules gm. The objective function
(1.1) minimizes the operating cost of the given set of generating units. The constraint (1.2)
describes the physical operational constraints of the transmission network which include
the power balance, transmission flow limits, and reserve requirements. The constraints
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(1.3) abstractly represents the physical limits of generators’ binary and continuous
production variables.

Most studies have formulated SCUC as a MILP problem. Furthermore, the problem has
been investigated in different ways to improve the MILP formulation performance considering
two metrics: tightness and compactness [29]. The tightness of a MILP formulation measures
the feasible region size that the solver has to search to find the optimal integer solution. If
the search space of a formulation is smaller, then it can be considered a tighter formulation
compared to others. Ideally, a tight MILP problem provides a linear programming (LP)
relaxation feasible region which corresponds exactly to the convex hull of the feasible integer
points [30]. Hence, the tightness can be determined using the distance between the LP and
MILP solutions which is called the integrality gap [30, 31]. Measures of this type depend
on how the solver approaches the problem. For instance, it may be possible to estimate the
tightness by decoupling the problem performance from the solver’s strategies (e.g., heuristics
and pre-resolve). On the other hand, the compactness of an MILP problem corresponds to
its size, which is primarily influenced by the number of binary and continuous variables, as
well as constraints. A prominent approach for enhancing compactness is the elimination of
redundant and non-binding constraints [32, 33]. In addition, another research stream has
attempted to reduce the number of binary variables to improve MILP compactness [34,35].
Also, spatial and temporal decomposition techniques [36–38] have been suggested to enhance
the UC solution time. Typically, a more compact problem formulation will require less
computer memory, and, therefore, will run faster and face a lower risk of memory overrun.
Finally, for further reading on the subject, the reader invited to look at recent papers that
assess and compare current state-of-the-art unit commitment formulations [19,30].

1.1.2 Unit Commitment under Uncertainty

The ongoing surge in the deployment of RES—particularly wind and solar power
generation—is causing increased disturbances when balancing supply and demand during
real-time operations. In the formulation of the UC problem, system operators depend on
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different input data in determining certain parameters. Forecasts of load and renewable
energy are examples of such parameters. Unfortunately, these parameters are uncertain, as
RES output power depends on the weather, which is inherently stochastic in nature and is
subject to high levels of variability and forecasting uncertainty. As a consequence of RES
emerging in recent years, the conventional SCUC problem formulation has been shown to
exhibit limitations in the presence of these uncertain parameters [39].

In day-ahead electricity market planning, utilities and system operators must select which
generating units to commit to meet the expected demand for the following day before the
exact renewable generation is known. Broadly speaking, the dilemma of how to achieve
optimal decisions in the presence of uncertainty is directly linked to the field of optimization
under uncertainty [3], which includes stochastic optimization [4], robust optimization [40],
chance-constrained optimization [41], and distributionally-robust optimization [42]. As a
matter of fact, the type of optimization formulation depends on the available information
about the uncertain parameters and how we could model and represent these parameters on
the specific problem.

Consequently, uncertain parameters in UC can be described broadly in three categories.
The first family models uncertain parameters using probability distributions, resulting in
stochastic programming or chance-constrained programming problems. In the second
approach, a range of possible realizations including worst-case scenarios of the uncertain
parameters are taken into account to optimize the objective function; this set is referred to
as an uncertainty set and yields a robust optimization framework. Third,
distributionally-robust optimization optimizes performance in worst-case distributions
based on a family of inexact probability distributions restricted to an ambiguity set. A
comprehensive review of stochastic, robust, chance-constrained, and distributionally-robust
optimizations in power systems operation and planning can be found in [3].

In order to operate the system at the lowest expected cost and benefit from RES, the
stochastic unit commitment problem aims to determine the optimal day-ahead
commitment of generators and their planned generation output. This stochastic problem
optimizes the fixed cost of committing generators and the variable dispatching cost based
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on a representative subset of possible realizations of uncertainty. The problem is primarily
described as a two-stage stochastic program [43]. In the first stage, generating units are
optimized and committed without perfect knowledge of uncertain parameters (based on the
most-likely forecasted scenario), and then uncertainty is revealed in the form of realized
forecast errors. To balance the system after uncertainty realization while respecting all
constraints, the system is allowed to dispatch generators in the second stage. In the last
decade, there has been a revival of interest in stochastic unit commitment as a way of
assessing the effect of renewable resource integration on power system operating costs and
reserve requirements [44, 45]. Nevertheless, stochastic optimization approaches do suffer
from computational intractability due to the need to consider excessively large numbers of
scenarios to achieve a realistic uncertainty characterization [46]. In light of the attractive
tradeoff between tractability and accuracy, two-stage robust optimization has replaced
stochastic methods to deal with uncertainty in day-ahead generation scheduling [47, 48].
Therefore, we mainly consider robust approaches for the generation scheduling and
short-term characterization of operational flexibility in this thesis.

When optimizing day-ahead generation operations in the presence of power injection
uncertainty (e.g., demand less non-dispatchable generation, also known as net load), one
must characterize how this uncertainty propagates through the power system regarding
quantities such as voltages and transmission line flows (to be kept within bounds). Based
on this information, we can formulate optimization problems to limit the potentially
negative impacts of uncertainty.

1.1.3 Operational Flexibility Characterization under Unit

Commitment

The ongoing transformation of the conventional power systems paradigm leads to the study
of the emerging concept of power system flexibility [2]. Power system flexibility is defined as
the system’s ability to accommodate any component outage or variation in its net load to
keep the system secure [2,49,50]. The ultimate goal is to have enough flexibility to cope with
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the increasing RES levels so that economic and secure operation can still be maintained. In
the literature, several definitions and metrics have been proposed to study the need for, and
the provision of power system flexibility. Broadly, quantifying power system flexibility for
bulk power system operation with RES can be classified into two main categories: implicit
and explicit methods with respect to RES uncertainties [51].

The implicit approach addresses a pre-defined uncertainty and solves generation
scheduling problems [50, 51]. Most contributions in this category use stochastic techniques
and robust approaches which model uncertain parameters using probability distributions
and worst-case scenarios, respectively [48], [52]. However, this category of approaches only
focuses on how to optimally exploit existing generation assets to deal with a given amount
of uncertainty. In short, research in the first family aims to address the question of how to
manage a certain level of uncertainty using existing generation assets.

Conversely, the motivation for explicit approaches found in the literature is that future
power systems are expected to operate near their conventional generators’ flexible capacity
limits due to the high shares of variable renewable energy [53]. Furthermore, they recognize
that unit commitment problem solutions may be overly costly if worst-case realizations of
uncertainty have to lead to feasible solutions by dispatching expensive generators. Moreover,
they acknowledge that in extreme cases it may not even be possible find feasible UC solutions
[54]. Thus, the practicality of classical robust UC, meant to support a wide range of operating
conditions, could be severely limited under very deep penetrations of renewables. In order
to address these shortfalls, the second class of approaches tackles the reverse question: how
much uncertainty can be adopted using existing flexible resources? This necessitates the
assessment of system flexibility for given operating conditions [51].

1.2 Optimal Power Flow

The optimal power flow (OPF) optimization problem seeks to find optimal operating
conditions subject to physical and engineering constraints of electricity networks [33, 55].
The OPF incorporates physical constraints to model the power flow equations and
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engineering constraints such as voltage, generator output, angle difference, and line flow
limits. The AC-OPF problem, when formulated with the ac power flow equations, is
nonconvex and NP-hard [55]. Furthermore, the number of variables and constraints
becomes large as the network size increases, posing more computational challenges for large
realistic systems.

Numerous algorithms have been utilized to locate locally optimal AC-OPF solutions
which tend, often, to coincide with globally optimal solutions [56]. In recent years, there
have been various attempts to develop convex relaxation techniques for AC-OPF problems,
which involve replacing the AC power flow constraints with a convex outer approximation of
its feasible set [57, 58]. Convex relaxation is a technique that aims to convert a non-convex
feasible region into a larger convex region using constraints that are less restrictive than the
non-linear AC power flow equations. The constraints are designed to maintain convexity and
carefully formulated to ensure the feasibility of the solutions within the convex region. The
interested reader may refer to [59] for a comprehensive survey. Convex relaxations are useful
as they provide a lower bound on the optimal objective value for the non-convex problem,
they can determine whether the problem is infeasible, and, under certain conditions, can
provide a globally optimal solution to the original non-convex problem [60].

The power flow equations dictate how uncertainties in power injections propagate into
corresponding uncertainties in voltages and power flows. The choice of the power flow
formulation, such as whether to use the full non-linear AC power flow equations (be its
traditional version expressing voltage phasors in polar coordinates or the less common
version expressing voltage phasors in rectangular coordinates), a linearized version, or a
convex relaxation, can have a significant impact on the complexity of the problem [3]. In
the rest of this chapter, we will discuss some of the challenges and solution approaches
related to the use of different power flow formulations when dealing with power injection
uncertainty.
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1.3 The Challenges of Operational Planning Problems

in Sustainable Power Systems

One aspect of UC/SCUC/OPF problems which has been understudied in previous research
is that in many real-life situations, these problems are solved repeatedly with similar
patterns in input data, often multiple times per day. Variability in operating conditions
show up in problem input data. These are a consequence of renewable energy integration in
power systems, uncertain demand-side behavior and asset failures. The majority of power
systems parameters, such as generator characteristics and the topology of the transmission
network, remain nearly unchanged from one solution instance to another. Moreover, the
computational complexity of operational planning problems could be exacerbated if a
significant number of uncertainties, sub-hourly operation features, and distributed energy
resources are taken into account. Finding optimal solutions may become a daunting task in
light of these additional challenges. Hence, machine learning is a promising alternative in
support of these optimization problems. The purpose of this thesis is to present
methodologies for using ML to efficiently extract information from previously-solved
instances and leverage that information to increase the speed at which similar instances
can be solved in the future. ML is a field that involves the development of algorithms and
statistical models that can automatically learn from data and make predictions or decisions
quickly and accurately without being explicitly programmed to do so.

1.4 Synergy Between Operational Cost Optimization

in Power Systems and Machine Learning

Despite the extensive body of academic literature on machine learning approaches for power
systems over the past 30 years, the practical applications have been limited in practice. The
primary practical application is load forecasting, such as Artificial Neural Network Short
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Term Load Forecaster tool [61], and few approaches have been associated with decision
trees for security assessment [62]. In academia, numerous ML classification and prediction
approaches, including artificial neural networks and, more recently, deep learning, have been
employed for system stability assessment and frequency control [63, 64]. These methods
encompass both supervised and unsupervised learning techniques. However, a breakdown of
machine learning approaches in a recent review publication [65] reveals that, in reliability
and energy management and security assessment applications, supervised learning is the
predominant approach compared to unsupervised and reinforcement learning. We refer the
interested reader to more general textbooks for further information about machine learning
[66,67].

Notably, there has been a recent research interest in employing machine learning for
enhancing computations in operational planning problems, which constitutes the main focus
of this thesis and will be discussed in detail in this section. Substituting ML predictions
for optimizations is not the appropriate strategy in critical decision-making problems in
power systems, as it does not ensure the provision of optimal operating points that will
not violate any line limits [68]. In other words, machine learning methods do not offer
assurances regarding potential constraint violations in their output. This is a significant
drawback, especially when replacing operational planning problems [69]. Moreover, power
system operators struggle to trust methods they don’t comprehend, especially when these
methods haven’t offered any performance guarantees regarding the feasibility and optimality
of their solutions [62].

1.4.1 Fusing Optimization and Machine Learning: Operation

Research Background

The synergy between mathematical optimization and machine learning (ML) has gained
prominence in recent years. In the operations research community, the use of machine
learning is becoming increasingly widespread to facilitate the formulation and the solution
of optimization problems [70–73]. For instance, ML has been used to direct branching in
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MIP solution algorithms [74], aid in heuristic selection [75], and in data-driven scheduling
heuristics approaches in exact MIP solvers [76]. An article published recently by Bengio
et al. [72] discusses recent attempts to solve combinatorial optimization problems using
machine learning methods. Moreover, another prominent paper [73] has highlighted two
main directions in the current research on the nexus of constrained optimization and machine
learning. The first direction is known as ML-augmented constrained optimization (CO),
which emphasizes the use of machine learning to enhance the performance of CO problem
solvers [72, 77]. The references [74–76] are examples of the former family. The second
venue is end-to-end learning, which encompasses a broad range of work, including efforts to
create machine learning architectures that can quickly and approximately solve predefined
CO problems without relying on optimization solvers [71]. These architectures are typically
trained using sets of solved instances or execution traces, with the goal of predicting solutions
that are both fast and accurate. There is another emerging research venue that hybridizes
learning and optimization by embedding learning inside a complex optimization problem.
From a power systems operational planning perspective, we can summarize these emerging
research venues in two main categories as follows:

• Optimization proxies: The concept of optimization proxies involves replacing a
resource-intensive optimization model with a machine-learning proxy that can be
used in real-time or in computationally demanding scenarios such as the unit
commitment problem [78, 79]. However, a significant challenge in developing such
proxies is to train them for large-scale optimization problems that incorporate
physical, engineering, and operational constraints. This is also referred to as
end-to-end learning.

• Learning to optimize: The notion involves substituting certain parts of optimization
models with machine learning models.

The research areas mentioned in this section demonstrate how ML can be used to learn
or solve optimization problems more efficiently. This goal was achieved by either enhancing
the performance of MIP solvers or using optimization proxies. However, these ML-based
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methods have a major disadvantage in addressing engineering problems. In fact, all models
are not adequate in enforcing constraints. This is due to the fact that the methods do not
take advantage of prior knowledge about the mathematical optimization problem in the first
place [80]. Therefore, our focus on this research falls within the last class which is mainly
on how to fuse machine learning to learn constraints to speed up the solution of operational
planning problems such as security-constrained unit commitment and optimal power flow.

1.4.2 Applications in Power Systems Operational Planning

In recent years, there has been considerable interest in using machine learning to speed up
the solution of the UC/SCUC/OPF problems. This body of research is divided into two
primary clusters which reconcile with the previously-discussed research directions regarding
the intersection of artificial intelligence and operation research. The first direction focuses on
end-to-end learning techniques that directly learn then predict the optimization decisions,
effectively replicating the LP and MIP solvers. The second direction involves developing
methods to identify a simplified version of the UC/OPF problem which, in turn, is easier to
solve.

The majority of research on optimization proxies for UC focuses on utilizing different
types of machine learning techniques such as K-nearest neighbors [79], neural network
(NN) models [78, 81] to map uncertain load profiles to optimal problem decisions.
Similarly, different neural networks have been utilized to obtain optimization proxies.
These includes deep-NN in economic dispatch [82] and dc-OPF [83], as well as conventional
NN for dc-OPF [84]. Nevertheless, power systems are considered critical infrastructures
whose service is vital to society; therefore, systems operators tend to be risk-averse, which
creates challenges for the adoption of optimization proxies (ML-based tools) for decision
making [62]. This is because ML-based approaches do not provide any guarantees in terms
of feasibility nor optimality. In other words, the publications [78, 79, 81–83] detail
significant computational speed improvements and empirically analyze the accuracy and
feasibility of the obtained solutions. Assessing the worst-case performance of ML-based
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methods based on discrete samples from the entire training and test datasets provides only
an empirical lower bound for the worst-case guarantee [84]. Furthermore, recent research
indicates that neural networks achieving high accuracy on unseen test data can be
vulnerable to adversarial examples, resulting in significantly reduced accuracy on inputs
crafted adversarially [85, 86]. The presence of adversarial examples in power system
applications has also been demonstrated [87].

Furthermore, for the practical application of machine learning models to problems like
the UC and OPF, it is essential to have transparency, interpretability, and most
importantly performance guarantees. On the other hand, identifying the set of problem
constraints that are binding at the optimal solution is typically less complex than
predicting the optimal decisions. Consequently, this second category of approaches, which
fuses machine learning and optimization, is much more attractive for practical applications,
as it focuses on identifying the most likely active sets of constraints. With this information
on hand, locating optimal solutions for UC [88, 89] and OPF [80, 90–92] is expected to be
significantly faster and require fewer computing resources.

However, we believe that there is even more value in using ML for optimization: ML
can be used to learn constraints [93–95]. ML enables learning functions that map decisions
to the outcome of interest by leveraging data. Through ML, we can create predictive
models for a certain outcome we seek to constrain, and subsequently embeds these models
in optimization problems, a notion known as constraint learning [93]. These learned models
can then be integrated into optimization problems as function approximations, by
exploiting MILP reformulation capabilities inherent in numerous ML models [95]. In
real-life engineering optimization problems, there are often constraints or objectives for
which no explicit formulas exist. Nevertheless, in the presence of data, it is possible to
utilize the data to mathematically formulate constraints that lack explicit formulas. Our
objective is to close this gap by leveraging constraint learning.

The selection of the ML model relies on whether the constraint to be learned produces
a discrete set of values (classification) or a continuous range of values (regression) [93]. If
a classification model is used, it learns a feasible set or constraints, whereas a regression
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model learns an explicit function. The recent big data boom in smart grid (SG), where vast
amount of data generated from different sources such as smart meters, phasor measurement
unit (PMU), power market pricing and bidding data, and power system monitoring and
control equipment historians provides vast possibilities to extract useful insights about the
operation, planning and economics of power systems. As long as there is data available, which
is the case in modern power systems [96], constraint learning is expected to be feasible.

1.5 Problem Identification

The computational performance of UC/SCUC is an extremely critical practical issue given
the small time window mandated in most electricity markets to produce feasible and optimal
schedules. Therefore, it is vital for system operators to solve SCUC problems quickly and
robustly to secure the system’s operation. On the other hand, the unit commitment problem
has proven to be very difficult to solve. The size of these problems is enormous, and the
existence of many integer variables renders it prone to difficult convergence [16,33,97].

The improvement of computational performance has the potential to enable electricity
markets to implement several enhancements which could provide substantial economic
benefits and boost market efficiency [16, 89], such as more accurate modeling of massive
distributed energy resources (DER) [98], modeling the interdependency between electricity
and gas networks [99], sub-hourly unit commitment and dispatch [100], among others.

To better illustrate our underlying motivation for this work with respect to the state-of-
the-art, we present the following illustrative MILP example:

min
x∈N, y∈R

x + y (1.4)
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Figure 1.1: Types of constraints in MILP

Subject to:

y ≥ 1 (1.5)

x + y ≤ 8 (1.6)

y − x ≤ −1 (1.7)

y ≤ 4 (1.8)

x + y ≥ 3.5 (1.9)

The five constraints of problem (1.4)–(1.9) are depicted in Fig. 1.1. By inspection, it is
clear that the solution of this problem is point A = (3, 1). Let us now discuss the nature of
the five constraints with respect to the objective function and the corresponding feasibility
region:

• Binding constraint: Constraint (1.5) is an active or binding constraint that holds with
equality at the optimum. If this constraint is removed both the feasible region and,
therefore, the problem’s solution would both change.



1. Introduction 18

• Non-binding constraint: Constraint (1.6) does not hold with equality at the optimal
point. If this constraint is removed, the feasible region changes but the optimal solution
remains the same (for this particular objective function). This type of constraint can
also be referred to as an inactive or a non-binding constraint.

• Redundant constraint: Constraint (1.8) does not hold with equality at the optimal
point either. Note, however, that this is a very particular inactive constraint since, if
removed, the feasible region is unaffected. This means that the optimal solution for
any given objective function remains the same even when this constraint is eliminated
from the problem.

• Critical non-binding constraint: Constraint (1.9) is not binding at the optimum either.
However, the optimal solution would change from A to B = (2, 1) if removed. This
is a non-binding constraint that cannot be eliminated without affecting the optimal
solution. Moreover, if (1.9) is removed (1.7) will become a critical binding constraint
of the problem.

As a means of simplifying an optimization problem to obtain an instance with lower
computational complexity than the original one, it is generally advisable to remove the
inactive (1.6) and redundant (1.8) constraints. The reduction in complexity—the problem is
made more compact—results primarily in less pressure on computer random access memory
resources, a critical asset in the solution of large MIP problems.

In this context, we make a distinction between the two notions: that of binding
constraints, and that of potentially binding or so-called umbrella constraints. Umbrella
constraints are constraints that shape the feasibility region of an optimization
problem [33, 97]. These constraints might not be active or binding for a particular solution
obtained to minimize/maximize a certain objective function, but they have the “potential”
to be binding for another objective function.

Most of the research in power systems which tackles UC/SCUC problem compactness is
focused on identifying umbrella constraints. This approach is acceptable for power systems,
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Figure 1.2: Types of constraints screening approaches

albeit it yields inadequate identification of the active and critical non-binding constraints.
Hence, the elimination procedure may lead to sub-economical time savings as a result of
eliminating only redundant constraints. On the other hand, if the potential binding and
critical non-binding constraints are known ahead of solution time, UC/SCUC could be run
subject to those constraints only, one expects further computational gains over solutions
obtained with the full set of umbrella constraints. In fact, even further could be possible if
the identified potential binding and critical non-binding set remains constant when a power
system is facing similar net load patterns. Hence, system operators would save significant
time, which can be used to make better decisions and plan for more sophisticated and, in
turn, more economical control actions. Broadly speaking, constraints screening in generation
scheduling problems in the power systems literature have been investigated using three main
approaches: optimization-based methods, constraint generation approaches, and machine
learning techniques. This thesis is devoted to enhance constraints screening capabilities in
power systems. The work reported in the second and third chapters of this thesis respectively
lie where labels A and B sit in Fig. 1.2.
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1.6 State-of-the-Art on Constraint Screening in Power

Systems

1.6.1 Optimization-Based Constraint Screening Approaches

Various optimization-based approaches have been proposed for constraint screening for the
UC/SCUC problem. Leveraging the fact that a candidate unit commitment solution can
easily be checked for feasibility, standard state-of-the-art approaches add constraints in an
iterative way to a reduced base problem [101], which is a unit commitment problem with
no transmission constraints [8]. This constraint generation approach is a well-known
iterative technique where violated constraints from the original UC are gradually added to
the reduced one until the solution to the latter is feasible in the former [102]. This method
is applied to SCUC in [23, 103] to filter out post-contingency constraints. The drawback of
the constraint generation method is that it is computationally expensive if the required
number of iterations to guarantee a feasible solution is large. To alleviate the
computational burden, decomposition techniques based on Bender’s decomposition [104]
and column-and-constraint-generation algorithms [105] have been proposed for the direct
current optimal power flow (DCOPF) problem only.

Alternatively, the notion of umbrella constraint was introduced when identifying
redundant constraints which do not alter the feasibility region of the original UC problem
when they are removed from the original problem [33, 97]. Similarly,
references [32, 106–108] use a bound tightening technique [109] and solve two optimization
problems for each transmission line in the power system over LP relaxations of the feasible
region to remove as many redundant constraints as possible from the full UC formulation.
Also, the authors of [110] used Clarkson’s redundancy removal algorithm that is based on
LP and requires solving multiple maximization problems [111] for each possible line flow
contingency constraint in a security constrained optimal power flow (SCOPF). The pricipal
drawback of [110] is the ignorance of correlated patterns in historical samples of the load
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and renewable generation. Recently, an analytical approach was proposed by [112] based
on an iterative heuristic approach to eliminate nonbinding constraints from UC problems
on top of redundant constraints. Initially, the authors propose solving the UC problem
without network constraints. After that, they modify this initial generator’s schedule by
transferring a percentage of total generation output to the nodes with either the highest or
the lowest power transfer distribution factors for a given line. Then, they examine whether
this modified solution creates congestion on the line. If it does not, the corresponding line
constraint is deemed inactive.

In addition, the variability and uncertainty of renewable power generation have
introduced new challenges to the operational planning problems [2]. The representation of
uncertainty can take the form of scenarios or uncertainty sets for stochastic and robust
optimization approaches, respectively. The computational burden of stochastic
programming prompts to migrate towards tractable approaches for optimization under
uncertainty, namely robust and chance-constrained optimization [68, 113]. Moreover, RES
manifest cross-correlation over space and time. Predicting spatial and temporal scenarios
has been of interest of power systems operation and planning community for a while
now [50, 114–116]. When modeling multivariate correlated scenarios, uncertainty sets take
the form of boxes, polyhedral [114], and ellipsoidal sets [115]. An “uncertainty budget” is
utilized to control the size and conservativeness of renewables’ uncertainty sets in the form
of polyhedra in [54,116] and in the form of ellipsoids in [117]. Conversely, references [48,50]
take a distinct approach by defining prediction regions for wind power as the convex hulls
of spatial and temporal scenarios. However, decision-making problems in power systems
which include network constraints need different forms of uncertainty sets. For instance,
integrating polyhedral uncertainty envelopes with a linear programming problem results in
a linear programming problem, whereas the same problem with the ellipsoidal uncertainty
sets is a second-order cone programming (SOCP) problem. Even though SOCP is convex,
its nonlinearity is deemed a practical pitfall [114].

In fact, the dominant technique in the literature that is optimization-based bound
tightening (OBBT) [118, 119] was primarily proposed to enhance the quality of convex
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relaxations solutions by tightening convex relaxation formulations [120]. The general
procedure of OBBT is to perform successive minimization/maximization of a desired
variable while considering the constraints of the relaxation. The current research on
screening AC-based constraints originates from the literature on bound tightening, which
aims to enhance the quality of convex relaxations by tightening the voltage magnitude and
angle difference limits. As a result, this leads to distinct variations in the methodology and
substantial differences in the rationale and understanding compared to basic constraint
screening. However, the bound tightening method has been extended to screen out line
flow constraints in ACOPF [121]. Using OBBT, the authors of [121] identify line flow
limits that never become active by solving one minimization and one maximization
optimization problem associated with each line flow limit. In a broader sense, several
constraints are satisfied indirectly through other constraints in the problem, allowing them
to be eliminated confidently before requesting the solver’s assistance.

1.6.2 Machine Learning and Constraint Generation Approaches

ML-based approaches are beginning to emerge as promising tools for reducing the
computational complexity of traditional optimization algorithms. Several ML techniques
have been proposed to predict the set of redundant constraints for the optimal power
flow [80,90,122,123] and unit commitment problems [88,89]. In the same vein, some papers
have suggested the use of statistical learning algorithms to provide a proxy for the unit
commitment status [79, 124]. Particularly, replacing the MIP unit commitment problem
with a machine learning algorithm can achieve the most computational time savings, but it
is incapable of guaranteeing optimality and/or feasibility. From a power system operator
perspective, these approaches are still considered as black boxes and lack transparency and
interpretability to replace entirely the MIP decision-making problem [62]. As a matter of
fact, these ML-based methods seek to learn from the information provided by the MIP
optimal solution to build a simpler formulation of the original MIP that is faster to solve.

The main limitation of these ML-based methods when applied to physical and engineered
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Table 1.1: Machine Learning approaches for constraint screening in power systems
operation planning

Publications Objective Problem Limitation
[88] learn active line constraints UC infeasibility and suboptimality of UC solution
[28] learn binding and critical non-binding line constraints UC contingencies are not considered
[89] learn non redundant constraints SCUC constraints identification based on heuristics
[123] learn active constraints DCOPF suboptimality of the DCOPF solution
[90] learn active constraints DCOPF suboptimality of the DCOPF solution

systems is their failure to accurately enforce constraints [80]. This drawback can be linked to
the fact that these algorithms cannot utilize pre-existing knowledge about the mathematical
structure (which captures the physical and engineering limitations of the system) of the
optimization problem. For best results, the learning methods should exploit any known
structure of the optimization problem in consideration. Machine learning reduces the time
spent on online solving by moving the selection of necessary constraints to an offline process,
which is particularly beneficial when solving a similar problem multiple times.

The publications summarized in Table 1.1 are in the spirit of constraint learning using
ML classification approaches in power systems operation problems which include OPF, UC,
and SCUC.

1.7 Gaps in the State of the Art

1.7.1 Optimization-based Constraint Screening Approaches

Within the context of constraint screening for the UC problem with deep penetration of
correlated uncertainties, advancement in three aspects is required to close the gap between
computationally-tractable, robust, and optimal solutions to the UC constraint screening
problem. First, it is necessary to design a computationally-tractable scalable optimization
approach that can handle a high degree of uncertainty. Second, it is critical to define a
robust and tractable uncertainty set that can capture stochastic dependence between
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different uncertainties—i.e., loads and renewable generation—, and be used as an input to
a robust optimization approach [114]. Third, to yield optimal solutions in constraint
screening problems means screening out not only redundant constraints with respect to the
feasibility region but also as guided by the UC problem’s objective function. In other
words, a UC’s non-active constraints can be part of its minimal feasible region, but they
are never active constraints as they do not oppose the minimization of the UC’s objective
function [88,108].

From a methodological point of view, previous work [33, 97] developed MILP and LP
formulations respectively, for umbrella constraint discovery (UCD) with a single residual
demand parameter vector. The authors of [125] enhanced the original UCD notion
from [33, 97] that has lighter computational demands and is better adapted when residual
demand uncertainty is considered. The merit of the enhanced approach in [125] is the
direct identification of umbrella constraints in lieu of the identification of non-umbrella
constraints. This is so because in practical UC problems, the number of umbrella
constraints is much smaller than that of non-umbrellas. References [106, 121] considered
uncertain residual demand parameters for robust optimization problems. However, these
studies built box-shaped uncertainty sets for the univariate system net load (i.e., load less
renewable generation) and ignored the inherent spatio-temporal couplings of renewable
generation and demand. Although robust optimization techniques immunize the system
according to very stringent potential events, it is easy to yield sub-economical outcomes as
seen in [50]. The conservativeness of a robust solution is directly related to the size of the
uncertainty set [114]. By size here, we mean the extent of possible random events which
the UC will be able to provide a robust solution; larger uncertainty sets, which capture
both very likely and very rare events, incur larger operating costs than smaller uncertainty
sets because that do not capture all of the very rare events.

On the other hand, previous research on AC constraint screening has mainly been derived
from the bound tightening literature [118, 119]. The primary goal of this literature is to
enhance the quality of convex relaxations by tightening the limits on voltage magnitudes
and angle differences. The bound tightening technique has been used in computing the
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feasible space of optimal power flow problems [126]. Nevertheless, the methodology used
in AC constraint screening exhibits some dissimilarities compared to the primal objective
of this technique, where there are key variations in motivation as well. The objective of
bounding-based techniques is to eliminate a maximum number of redundant constraints
from the complete ACOPF formulation [121]. However, even if all the redundant constraints
are identified and screened out, some constraints may still be present in the reduced ACOPF
problem that are superfluous because they do not hinder the ACOPF cost minimization, as
explained already in Section 1.5.

1.7.2 Machine-Learning and Constraint Generation Approaches

The publications seen in Table 1.1 are in the spirit of constraint learning using ML in power
systems operation problems which includes OPF, UC, and SCUC. Several ML techniques
have been proposed to predict the set of active line constraints in optimal power flow [90,
123] and unit commitment problems [88]. Particularly, replacing the optimization-based
constraints screening with machine learning algorithms can achieve the most computational
time savings but it is incapable of guaranteeing optimality, or/and feasibility.

Our work in this thesis is closest related to the proposed approaches in [28, 89] which
integrates ML and CG in SCUC and UC, respectively. Xavier et al. [89] suggested a heuristic
refinement to the CG approach which goes as follows. Rather than including all of the
violated post-contingency transmission constraints in the UC relaxation, as previous methods
have done [23, 103], they devised a rapid heuristic procedure to narrow down this list by
selecting the constraints that exhibit the most significant violation [8]. The drawback of this
ad-hoc approach is that it relies on empirical evidence and does not provide a well-defined
constraint set to be selected with certain performance guarantees. In other words, the most
probable violated constraint set is ill-defined, and consequently, the constraint generation
approach might necessitate a potentially significant number of iterations, leading to only
minor computational savings. Furthermore, reference [28] enhanced the idea of Xavier et
al. [89] by defining binding and critical non-binding constraints set for a UC problem. The
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downside of [28] is that its authors did not include contingencies as part of their developments.
In fact, the work by [28] only addressed a simplified unit commitment problem and did not
tackle the more intricate and demanding task of security-constrained unit commitment,
which necessitates additional investigation.

1.8 Thesis Contributions

We first seek to reduce the conservativeness of the constraint screening for unit
commitment problems by proposing techno-economic umbrella constraint screening. We
extend the UCD formulation of Abiri-Jahromi and Bouffard [125], by comprehensively
capturing the spatial correlation of historic net load prediction errors when identifying the
umbrella line flow limits in the UC problem. Consequently, we focus on generating
computationally-tractable and robust data-driven polyhedral uncertainty sets. Compared to
previous work, our proposed uncertainty set is less conservative than a conventional
box-shaped uncertainty sets as used by [106] and computationally cheaper to set up than
the convex hull of compiled historic net load prediction error data [48]. We demonstrate
how it provides more conservative uncertainty coverage while, at the same time, improving
significantly the computational performance of the constraint screening while guaranteeing
the same cost and technical outcomes. From the research gaps presented earlier,
state-of-the-art uncertainty set determination methods considering spatial correlations
suffer from either conservativeness or computational burden in high-dimensional cases,
which is one of the problems to be solved in this thesis. Furthermore, we introduce a valid
upper bound inequality constraint whose calculation is based on past UC solution runs as
suggested by [108] to eliminate a subset of non-binding constraints on top of non-umbrella
constraints. This allows the elimination of unrealistic generation schedules—with, for
example, prohibitively high costs—as we run UCD. In contrast to the suggestion
from [108], we include adjustment factors to mitigate model misspecification and potential
UCD infeasibility, known weaknesses of “predict-then-optimize” and moving towards
“smart predict-then-optimize” approach [127].
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To this end, we tighten the LP relaxation of the UC by imposing the data-driven
polyhedral uncertainty sets and cost-driven upper bound as inequality constraints in the
problem formulation. In doing so, we substantially increase the number of line flow
constraints that should be eliminated from the original UC without jeopardizing its
feasibility nor its optimality. Furthermore, as the UCD algorithm can lend itself well to
decomposition, we deploy the decomposition technique suggested (but never tested)
by [125] to further expedite its solution. This considers a crucial feature compared to the
state-of-the-art Clarkson’s redundancy removal in [110], where the inherent sequential
nature of the algorithm prevents parallel computation because every constraint is checked
against both already identified non-redundant constraints and unchecked constraints.

We next explain the notion of constraint learning using a regression model for constraint
screening in the UC problem. We introduce three cases for UCD and UC problems using
an illustrative optimization problem in two variables with schematic diagrams as shown in
Fig. 1.3, Fig. 1.4, and Fig. 1.5. By inspection, it is clear that the solution of the UC problems
in Fig. 1.3(b), Fig. 1.4(b), and Fig. 1.5(b) is point A. The first case shows the UCD problem
where a line flow constraint represented by the red line in Fig. 1.3(a) does not intersect the
feasibility region of the UCD problem. Consequently, this constraint –represented by a red
dotted line– will be flagged as redundant in the corresponding UC problem in Fig. 1.3(b).
Case 2 shows that the line constraint contributes to shaping the minimal feasibility region in
the UCD problem in Fig. 1.4(a) and is consequently flagged as a non-redundant (umbrella)
constraint in the UC problem in Fig. 1.4(b). Lastly, we introduce a new constraint inferred
from previous instances of the UC commitment represented by the blue line in Fig. 1.5(a)
through constraint learning approach. The addition of this constraint which embodied the
economical nature of the UC problem makes the line constraint in case 2 flagged as a non-
umbrella constraint in the UCD problem as shown in Fig. 1.5(a). Although the line constraint
represented by a red dotted line in Fig. 1.5(b) is necessary for shaping the minimal feasible
region of the UC problem but does not affect the minimization of the UC problem. Hence,
this constraint is a non-redundant constraint in the UC problem, but it’s also an inactive
constraint that can be eliminated from the UC problem without affecting the minimization
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of the objective function.

2 4 6 8 10

2

4

6

8

10

x1

x2

(a) UCD problem - case 1

2 4 6 8 10

2

4

6

8

10

A

x1

x2

(b) UC problem - case 1

Figure 1.3: UCD and UC case 1
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Figure 1.4: UCD and UC case 2
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Figure 1.5: UCD and UC case 3

In the context of a nonlinear problem such as ACOPF, we propose a refinement to the
OBBT approach. First, instead of attempting to solve OBBT with the nonconvex ACOPF
problem directly, we utilize convex relaxations to establish an upper limit on the global
solution. Second, rather than identifying only redundant line constraints in the ACOPF,
as suggested in [121], we propose a valid upper bound inequality constraint that embodied
prior economical information to filter down these redundant constraints.

After discovering the optimal solution for operational planning problems through a
more compact formulation, we present a novel method for assessing the distance associated
with the obtained solution with respect to the umbrella constraints set, or even its violated
constraints in cases when problems are infeasible. This assessment is meant to be
quantitatively indicative of how much flexibility exists in the bulk power system to handle
net load uncertainty for given unit commitment solutions and network topologies. We
propose novel system flexibility metrics which are calculated by solving an associated
inverse optimization problem. Finally, we enhance the loadability set characterization
previously proposed in [125, 128] by incorporating data-driven polyhedral uncertainty set
along with the proposed flexibility metrics results from the inverse optimization problem.
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1.9 Claim of Originality

This thesis makes the following distinct original contributions to the field of power systems
operation and planning, computation, and operational flexibility characterization in power
systems.

1. We propose a reformulation of the umbrella constraint discovery problem, which was
originally presented for identifying all the redundant constraints in the unit
commitment problem. This new formulation, called techno-economic umbrella
constraint discovery, tightens the linear relaxation of the original UC problem
constraints in the UCD formulation by adding two data-driven distinct sets of
inequality constraints:

(a) We set forth a tractable and robust polyhedral uncertainty set induced by
historical net load prediction errors. This set of inequality constraints is an
uncertainty set that captures correlated net load prediction errors compared to
the conventional UCD formulation that ignores them.

(b) The second inequality constraint is a linear upper bound based on historical
objective function values whose role is to predict which of the umbrella
constraints have the potential of being active.

2. We propose a refinement to the constraint generation procedure in
security-constrained unit commitment. The primary contribution of this approach is
that it employs a machine learning technique to warm-start the constraint generation
technique in SCUC. This narrows down the number of violated post-contingency
transmission constraints, rather than including all of them in the iterative scheme.
This goal has been achieved by defining binding and critical non-binding constraints.

3. This thesis addresses the constraint screening problem using the bound tightening
technique in the context of the OPF problem formulated with a full ac power flow
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characterization. Due to the non-convexity of the ACOPF, we investigate line
constraint screening under different convex relaxations of the problem. To the best of
our knowledge, this is the first comprehensive comparative analysis of constraint
screening under state-of-the-art convex relaxation techniques. This allows us also to
evaluate how the economics of the OPF impact screening outcomes.

4. Finally, a novel data-driven inverse optimization problem formulation is proposed
which seeks to identify existing system flexibility for uncertainty mitigation. This
accomplishes three objectives for flexibility characterization:

(a) The notion of the loadability set is redefined in the context of data-driven
polyhedral uncertainty sets.

(b) We propose a unified framework to characterize power system flexibility explicitly
and geometrically in the demand space using data-driven inverse optimization
(DDIO).

(c) We demonstrate how DDIO can be used to determine system flexibility deficits
and how to mitigate them.

1.10 Thesis Outline

This thesis is organized as follows.
Chapter 2 presents the formulation of the umbrella constraint discovery approach for unit

commitment, and it explains how it is able to incorporate net load uncertainty set details
to capture spatial correlation. Furthermore, we show how UCD can be tightened using
an economic-driven constraint inferred from previous UC instances. Also, the proposed
updated UCD methodology is then validated on IEEE test cases by comparing with the
bound tightening constraint screening technique that uses conventional box uncertainty sets.

In Chapter 3, we integrate learning and constraint generation to develop a
computationally efficient and rigorous approach for implementing faster
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security-constrained unit commitment solution in online applications with the objective of
preserving feasibility and optimality. Our proposed method is based on learning offline
relevant sets of constraints, from which the optimal solution can be obtained efficiently.
Then online, we predict these relevant constraints set and warm-start the constraint
generation method. We conduct case studies on IEEE test cases to demonstrate the
effectiveness of the proposed approach.

Chapter 4 addresses the constraint screening problem using the bound tightening
technique in the context of the OPF problem formulated with a full ac power flow
characterization. Due to the non-convexity of the ac OPF, we investigate line constraint
screening under different convex relaxations of the problem. We propose a novel constraint
learning approach that first learns from previous instances and then embodied that
constraint which inherits the economical information from the objective function into the
bound tightening technique. Finally, we evaluate the constraints screening approach on
PgLib test cases.

The aim of Chapter 5 is to introduce a framework for defining the feasibility region
of power systems within the demand space, referred to as loadability sets. These sets are
projections of the generation-demand-network space onto the demand space. In the past,
loadability sets were characterized for power systems without capturing spatial correlation.
However, this chapter expands on this characterization by accurately capturing the net load
uncertainty set. Additionally, we propose a novel data-driven inverse optimization framework
for flexibility characterization of power systems using loadability sets along with its geometric
intuition. The proposed inverse optimization scheme, recast as a linear optimization problem,
is used to infer system flexibility adequacy from loadability sets.

Chapter 6 closes the thesis by summarizing its contributions and suggesting lines of future
investigation.
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Chapter 2

Tight Data-Driven Linear Relaxations

for Constraint Screening in Unit

Commitment

The daily operation of real-world power systems and their underlying markets relies on
the timely solution of the unit commitment problem. However, given its computational
complexity, several optimization-based methods have been proposed to lighten its problem
formulation by removing redundant line flow constraints. These approaches often ignore the
spatial couplings of renewable generation and demand, which have an inherent impact of
market outcomes and corresponding transmission network use. Moreover, the elimination
procedures primarily focus on the feasible region and exclude how the problem’s objective
function plays a role here.

In this chapter, we address these pitfalls, by ruling out redundant and inactive constraints
over a tight linear programming relaxation of the original unit commitment feasibility region
by adding valid inequality constraints. We extend the optimization-based approach called
umbrella constraint discovery through the enforcement of a consistency logic on the set of
constraints by adding the proposed inequality constraints to the formulation. Hence, we
reduce the conservativeness of the screening approach using the available historical data
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and thus lead to a tighter unit commitment formulation. Numerical tests are performed on
standard IEEE test networks to substantiate the effectiveness of the proposed approach.

2.1 Unit Commitment Model

2.1.1 Introduction and Assumptions

For expository purposes, we carry out our developments using a simplified single-period unit
commitment [88,106,108] according to the following simplifying assumptions:

• Single-period: UC is usually formulated as a multi-period problem that incorporates
inter-temporal constraints typically associated to generation, for example minimum up
and down times. However, since this work focuses on investigating the impact of net
load spatial correlation on network reduction, we prefer to investigate this solely by
considering a single-period UC [88,106].

• DC power flow: The power flows in the transmission lines are estimated via a dc
approximation by using power transfer distribution factors (PTDF) to keep the model
linear. The PTDF of line l with respect to node n is denoted as hln. Besides, fmax

l

represents the maximum flow capacity of transmission line l. The number of buses
and lines are denoted by N and L, respectively. The PTDF formulation compared to
the Bθ formulation leverages an important characteristic of the UC problem, where
only a small percentage of line flow limits with the PTDF formulation is binding at
the optimal solution [129].

• Generation portfolio: Each generating unit m is characterized by a minimum and a
maximum power output which are denoted as gmin

m and gmax
m , respectively.

• Net load: The net demand at bus n, dn, is a net load (demand less non-dispatchable
renewable generation). Without loss of generality, we assume that the forecast errors
are multivariate normally distributed correlated random variables.
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• No contingencies: We assume that all generators and lines are fully operational and
therefore security constraints are neglected.

2.1.2 Problem Formulation

The optimization problem corresponding to this simplified UC is a MILP problem and
formulated as in [88]:

min
um,gm,qn

∑
m∈M

cmgm (2.1)

Subject to:

qn =
∑

m∈Mn

gm − dn, ∀n ∈ N (2.2)

N∑
n=1

qn = 0 (2.3)

umgmin
m ≤ gm ≤ uggmax

m , ∀m ∈ M (2.4)

−fmax
l ≤

N∑
n=1

hlnqn ≤ fmax
l , ∀l ∈ L (2.5)

um ∈ {0, 1}, ∀m ∈ M (2.6)

Decision variables include the commitment status of the generating units um, the power
output schedules gm, the net power injections at each node qn. The objective function (2.1)
minimizes the total generation cost. Constraint (2.2) computes the net injected power at
each node, while constraint (2.3) ensures power balance in the system. Constraints (2.4) and
(2.5) respectively enforce limits on generator outputs and power flows on transmission lines
using PTDFs. Finally, (2.6) requires that the on/off status of generators are binary (um = 0
if off, um = 1 if on). We note here that the problem (2.1)–(2.6) could be also formulated to
include curtailment decision variables meant to reduce the input of wind or solar power. In
that case, curtailment variables would need to be added to the nodal power balances (2.2)
along with bounds on those variables and corresponding penalties in the objective function.
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2.2 Umbrella Constraint Discovery

An umbrella constraint [33] of an optimization problem is a constraint that, if removed,
changes the feasibility region of that problem. The umbrella set of an optimization problem
is the set of constraints containing the fewest constraints preserving the original optimization
problem feasibility region.

2.2.1 Identification of Umbrella Network Constraints in UC

The UC problem (2.1)–(2.6) can be made significantly easier to solve if constraints (2.5) with
no impact on the optimal UC plan are removed [33]. In this chapter, we tailor the UCD
problem with the objective of favoring the identification of potentially active transmission
lines power flow constraints in the unit commitment problem rather than identifying the
complete umbrella set.

In its original incarnation UCD, see for example [33], can identify the set of umbrella
line flow limits constraints. That minimal set of constraints is necessary and sufficient to
characterize the feasible region of the original UC problem. We utilize the enhanced UCD
(E-UCD) formulation proposed by authors of [125] that has lighter computational demands
and is better adapted when net load uncertainty is considered. In fact, E-UCD is an iterative
algorithm which, at each iteration, solves the optimization problem (2.7)–(2.20) stated next.
Each iteration finds the set of line constraints forming one of the vertices of the feasible region
of the original UC problem. Once all vertices have been found, the algorithm terminates.
Specifically at each iteration, we solve for the binary vectors v±

l ∈ {0, 1}L, and continuous
vectors g ∈ RM , q ∈ RN , d ∈ RN and z± ∈ RL

+.

min
∑
l∈L

(v+
l + v−

l ) (2.7)
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Subject to:

qn =
∑

m∈Mn

gm − dn, ∀n ∈ N (2.8)

N∑
n=1

qn = 0 (2.9)

umgmin
m ≤ gm ≤ uggmax

m , ∀m ∈ M (2.10)
N∑

n=1
hlnqn ≤ fmax

l , ∀l ∈ L (2.11)

−
N∑

n=1
hlnqn ≤ fmax

l , ∀l ∈ L (2.12)

N∑
n=1

hlnqn + z+
l ≥ fmax

l , ∀l ∈ L (2.13)

−
N∑

n=1
hlnqn + z−

l ≥ fmax
l , ∀l ∈ L (2.14)

v+
l − z+

l

Ω ≥ 0, ∀l ∈ L (2.15)

v−
l − z−

l

Ω ≥ 0, ∀l ∈ L (2.16)

z+
l , z−

l ≥ 0, ∀l ∈ L (2.17)

v+
l , v−

l ∈ {0, 1}, ∀l ∈ L (2.18)

0 ≤ um ≤ 1, ∀m ∈ M (2.19)

dmin
n ≤ dn ≤ dmax

n , ∀n ∈ N (2.20)

where Ω is a large positive number. Here, the binary variables v±
l take the value of 0 if one of

the flow limits associated with line l are umbrella (v+
l = 0 if the upper flow limit is umbrella

or v−
l = 0 if the lower flow limit is umbrella). Otherwise, v±

l are set to 1.
The objective function (2.7) aims to minimize the sum of the binary variables, v±

l , by
finding the maximum number of line flow constraints that can be hit as part of the UC
problem solution.

The set of constraints (2.8)–(2.10) from the UC, controls the decision variables qn and
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gm. Each line flow constraint in the blocks of constraints (2.11) and (2.12) is paired with
a constraint in the block (2.13) and (2.14). By inspection, the auxiliary variables z±

l can
be equal to zero only if there is ∑n qn satisfying both (2.11) and (2.13) for the upper flow
limits, or (2.12) and (2.14) for lower flow limits. As a result, the binary variable v±

l = 0.
Conversely, z±

l has to be positive and the binary variables v±
l = 1 as required by (2.17).

Furthermore, the constraints for which v±
l = 1 have to intersect at the same value of ∑n qn.

Since ∑n qn is an intersection of line constraints over the LP-relaxation of the feasible set of
the UC problem, it is therefore a vertex of this set. Additionally, the vector of net load at
each bus n is turned into a vector of decision variables as in (2.20).

Following the first iteration, which revealed the vertex with the most intersecting
constraints, the next step is to pinpoint the other vertices that have the same or fewer
intersecting umbrella constraints. This is done while the previously discovered umbrella
constraints are removed from the search by setting their respective binary variable v±

l equal
to 1. We terminate the search when there are no more umbrella constraints to identify.
The UCD 1 procedure is summarized in Algorithm 1.

Algorithm 1: Umbrella Constraint Discovery
Data: Network and generators data, historical net-load
Result: Non redundant constraints.

1 while ∑l v+
l + v−

l ̸= 2L do
2 Solve UCD (2.7)–(2.20);
3 if (v+

l = 0 OR v−
l = 0) then

4 Set v+
l = 1 OR v−

l = 1;
5 go to step 2;
6 else
7 go to step 9;
8 end if
9 end while

The drawback of the UCD algorithm relates to the modeling of net load forecast errors
in constraint (2.20). This result will be sub-optimal because it ignores the spatial correlation

1Note that there is some abuse of notation in UCD here. In order to be rigorous, we should write E-UCD.
Nevertheless, in order to make the notation clearer, we remove the prefix E in E-UCD in this chapter.
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among the net loads. Therefore, we propose next a data-driven UCD (D-UCD) where the
net load vector is characterized using polyhedral uncertainty sets as described in Section 2.3,
rather than a simple box in N -dimensional space. We will refer to the UCD framework
described in (2.7)–(2.20) as the base UCD (B-UCD) approach. In addition, note that the
UCD solution benefits from decomposition; the interested reader can view its details in
Appendix A.

2.3 Tightening Umbrella Constraint Discovery

As argued in Chapter 1, our goal is to eliminate both redundant and inactive constraints
with the aim of running a computationally-lighter unit commitment. At the same time, we
have to target a formulation that is able to map adequately net load forecast uncertainty.
As a first step to accomplish this, we compute uncertainty sets of net load forecast errors as
a function of historical records of net load and their initial forecasts.

We are aiming to obtain a compact formulation of the UC problem by predicting its
potential active constraints out of its umbrella set. Being able to do so leads to two main
benefits: first, having obtained a compact formulation entails that the UC is formulated with
much fewer “symbols”, constraints here, which reduces memory requirements; and, second,
with an accurate prediction of the UC’s active set, solution times for the UC are expected
to be reduced dramatically. From a practical perspective, the use of these techniques could
allow for much faster market clearing which, in turn, could allow for UCs with finer time
resolutions (e.g., sub-hourly rather than hourly), a key feature for running efficient electricity
markets in the presence deep penetrations of variable generation like wind and solar power.

2.3.1 Data-Driven Polyhedral Uncertainty Sets

Without loss of generality, we focus on capturing the spatially-correlated uncertain net load.
Inspired by [114,130], we develop two data-driven polyhedral uncertainty sets by leveraging
principal component analysis (PCA) [50,131]. PCA is applied to historical time series of net
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load. All the input time series have the same length of T , and they are synchronized and
evenly spaced in time (e.g. one hour intervals).

We denote a matrix W ∈ RT ×N whose elements wnt are the time series of observed net
load at bus n ∈ N = {1, ..., N} for each time instance t ∈ T = {1, ..., T}. Similarly, we
define the matrix µ ∈ RT ×N whose elements µnt are the time series of past forecasted net
demand at bus n ∈ N for each past time instance t ∈ T .

Using µ, we obtain the centered data matrix Wc [50, 131], whose contents are the net
load forecast errors at all nodes n ∈ N and times t ∈ T

Wc = W − µ (2.21)

Assuming net load forecast errors are unbiased2, its spatial forecast error covariance matrix
Σ ∈ RN×N is approximated by

Σ = 1
T − 1W ⊤

c Wc (2.22)

PCA is performed by conducting an eigenvalue decomposition of the covariance matrix.
We let the columns of an N ×N matrix V and the diagonal entries of another N ×N matrix
Λ represent, respectively, the orthonormal eigenvectors and the eigenvalues of Σ. Here, the
diagonal elements of Λ are ordered such that λ11 ≥ λ22 ≥ · · · ≥ λNN , while the columns of
V are arranged such that its nth column (eigenvector) is associated with the nth eigenvalue,
λnn.

We underline that when net load forecast errors follow a multivariate Gaussian
distribution the resulting principal components are independent. However, in possible cases
when net load forecast errors are non-Gaussian and/or biased, there are techniques capable
of transforming original net load forecast errors into are approximately unbiased and
Gaussian ones [50,131].

The spatial decorrelation process proposed by [131, 132] can transform detrended time
series of observed net load forecast error in (2.21) into Gaussian time series onto which PCA is

2In the case where errors are unbiased, one would need to calculate the biases at each node and then
remove them from Wc.
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then performed. Once the spatial dependency is eliminated from non-Gaussian observations,
the resulting principal components are, therefore, independent of each other.

Thus, we can project the data contained in Wc onto the eigenvectors k = 1, . . . , N of the
covariance matrix [131]

Zk = WcVk (2.23)

where Zk is a T × 1 vector of data which has been projected onto Vk, the kth principal
component of Σ.

Next, let us find the coordinates of the extrema of each data projection Zk

S̄k = arg max
t∈T

∥Zk∥2 (2.24)

that is S̄k is the data point projected along principal component Vk which is the furthest
away from the origin. Keeping a conservative approach, we will assume data can range
between −S̄k and S̄k along the principal component Vk. Moreover, we can argue that the
extrema of the original data points can be reconstructed using the K principal components
and their data projections Zk

3 recentered on a net load forecast d0 ∈ RN

S+
k = d0 + S̄kV T

k (2.25)

S−
k = d0 − S̄kV T

k (2.26)

In the case where Wc was originally biased and/or non-Gaussian, the spatial biases would
be re-incorporated in (2.25) and (2.26), and the transformed non-Gaussian data can be
reverted into its original non-Gaussian form [131, 132]. The use of this technique enables
one to handle diverse types of forecasting errors and thus enable the use of our proposal for
realistic systems with wind and photovoltaic generation, whose forecast errors are themselves
biased and/or non-Gaussian, as can be seen in details in [50], for example.

Considering that typically only the first few dominant principal components are sufficient
3In the case where Wc was biased, the forecast error biases found prior to applying PCA would also need

to be added back.
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Figure 2.1: Schematic illustration of polyhedral uncertainty envelope with d0 =
(250, 300) MW and K = 2.

to describe accurately the original data’s uncertainty, it is common practice to limit the
number of principal components to K < N . A first data-driven polyhedral uncertainty set
(DPUS), as proposed in [133], is

P1(S, K) =
E ∈ RN | E =

K∑
k=1

(
ωkS+

k + (1 − ωk)S−
k

)

0 ≤ ωk ≤ 1, k ∈ {1, . . . , K}

 (2.27)

Fig. 2.1 illustrates the construction of a polyhedral uncertainty set in a two dimensional
uncertainty space. Fig. 2.1 shows P1(S, K) for K = 2 in black. The orange dots represent
the original data as it is projected along the two principal components of historical forecast
error data. By inspection, we see that this polyhedral set encloses all original data points.

Inspired by the data-driven convex hull uncertainty set concept proposed previously in
[48,114], we propose to define an alternative data-driven polyhedral uncertainty set (DPUS)
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P2(S, K) =
{

E ∈ RN | E =
K∑

k=1

(
ω+

k S+
k + ω−

k S−
k

)
,

K∑
k=1

(
ω+

k + ω−
k

)
= 1,

0 ≤ ω+
k ≤ 1, 0 ≤ ω−

k ≤ 1,

k ∈ {1, . . . , K}

 (2.28)

where we notice that P2(S, K) ⊆ P1(S, K).
The set P2(S, K) represents the smallest convex set that contains every data point

projected onto the K retained principal components. Moreover, that DPUS P2(S, K) is a
convex hull of the extrema of the retained Zk data projections, where we define
S = ∪k(S+

k ∪ S−
k ). In Fig. 2.1, we see the historical data, represented by blue dots, and the

data projected onto two of its principal components (orange dots). By inspection, the
rhombus-shaped red envelope, whose principal axes correspond to the principal
components of the data, encapsulates the vast majority of the original data 4.

Later in Section 2.4, we will examine the pros and cons of these two net load uncertainty
representations as applied to the UC problem and the reduction of its number of constraints.

2.3.2 Cost-Driven UCD (CD-UCD)

Another relevant limitation of conventional UCD as seen in (2.7)–(2.20) is that it solely seeks
to establish the minimal set of constraints required to describe the feasible space of the UC.
It is incapable of providing information regarding which of the umbrella constraints could

4We underline that the historical data used here may contain points corresponding to instances where
renewable generation curtailment was applied. If many such points exist, we would expect that the portions
closest to the origin of the net demand point clouds (like the one in Fig. 2.1) would display points congregated
along the horizontal and/or the vertical. Such behavior would happen because past curtailment stopped the
net demand from going further down. We argue that the approach presented here would still be valid;
however, it is clear that in such cases the data would not be as Gaussian than if curtailment was not present,
and the resulting DPUS might look more like a box.
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Figure 2.2: Observed production cost against system net load.

become active as we solve the UC. We argue that having such information ahead of UC
solution would be a valuable asset in UC solution time reduction.

To illustrate this, consider Fig. 2.2 that shows how the total production cost of a UC
problem formulation as a function of the total net load for 400 solution instances of a given
UC problem. Clearly, the positive correlation between the operating cost and total net
demand drives towards modeling this relationship using a linear regression technique.5 In
fact, if the range of total net load variation is small enough, you can approximate the cost
with a linear function only. We argue that all UC outcomes in a given range of net demand
would have their corresponding production costs bounded above by the dashed line shown
in Fig. 2.2.

Therefore, we propose that if we are to add the following new constraints to the UC,
5We note that a family of such curves may be necessary to cover a wider range of net demands. One would

expect that these taken together would form a piecewise linear convex function of the total net demand. In
addition, knowing that in the case of multi-period UC (which we do not consider explicitly here), system-
wide incremental costs are expected grow with net demand, one might have to employ piecewise linear cost
approximations especially. This decision should be taken by the user in light of historical cost information.
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which we cast as follows [108]:

∑
m∈M

cmgm ≤ (1 + ∆σ)a0 + (1 + Γ)b0D (2.29)

D =
N∑

n=1
dn (2.30)

Dmin ≤ D ≤ Dmax (2.31)

and perform UCD on the resulting problem, we would be able to identify which of the original
problem’s umbrella constraints are most likely to be active at the UC’s own optimum. The
premise here is that (2.29) should be intersecting the active umbrella constraints of the
original UC. Obviously, here there is some tuning to be carried out in determining the
parameters a0 and b0 of the proposed cost upper bound, while ∆σ and Γ are user-specified
conservativeness parameters.

The upper bound uses a basic linear fitted model a0 + b0D. The minimum and maximum
aggregate net load for each is denoted by Dmin and Dmax, respectively. The upper bound
can impact the screening outcomes in terms of expected eliminated constraints.

Through the selection of the value of ∆ ≥ 0, which multiplies the standard deviation
σ of its underlying data with respect to the best fit line, it is possible to push up on the
cost upper bound. This way it is possible to capture most if not all prior cost observations.
For example, with 3σ one will typically capture production costs of almost (if not) all prior
observed instances as shown by the dashed line in Fig. 2.2. On the other hand, if ∆ is
set too high, there will be a risk that the cost upper bound (2.29) is in fact found to be
redundant when running UCD on the augmented UC constraint set and, thus, be of little
value. Moreover, we note that if ∆ is too small, we run the risk that (2.29) renders the
augmented UCD infeasible. However, in this chapter, we adjust the ∆ parameter to create
a 100% prediction interval, ensuring that the cost upper bound encompasses all prior cost
observations.

Second, we add the factor Γ ≥ 0 to the linear model to further trade-off between the
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number of retained umbrella constraints and the risk of excluding an umbrella constraint
which may become active in the UC. The consequence of excluding potentially active
constraints will be that UC solutions may be infeasible since one or more UC constraints
are not satisfied by virtue of having been excluded by the augmented UCD. In fact, by
setting Γ > 0 one is lowering the risk of the augmented UCD weeding out constraints that
need to be considered in the UC. The optimal choice appears to be Γ = 0. However,
additional empirical analysis, in conjunction with the UCD algorithm, would recommend
adjusting this value to mitigate the possibility of active constraint elimination.

Finally, we note that the cost-driven upper bound can be extended using a piecewise linear
set of constraints to capture net load and cost data over different ranges of net demand as
suggested by [108]. The interested reader may refer to Appendix B for detailed modeling
of piecewise linear cost upper bound. Also, we will consider a modified cost-driven upper
bound constraint by defining a subset of generators that were historically committed in given
ranges of net demand, Mc, and restricting the summation in the left-hand side of (2.29)
to this subset. At the same time, the total running cost associated with the historically
uncommitted generators (subset Mnc) in that net demand range is forced to zero through
a complementary equality constraint. This enhanced CD (ECD) replaces (2.29) with the
following ∑

m∈Mc

cmgm ≤ (1 + ∆σ)a0 + (1 + Γ)b0D (2.32)

∑
m∈Mnc

cmgm = 0 (2.33)

while (2.30) and (2.31) still apply 6.
Next, we will illustrate how the combination of data-driven polyhedral uncertainty sets

and CD-UCD can reduce dramatically the computational effort required to solve robust UC
problems. Table 2.1 summarizes the various tightened UCD problems which we will be
comparing in the following section. Using this information, Fig. 2.3 presents a Venn diagram

6In the case where the UC is formulated with curtailment variables, the cost upper bounds ((2.29) or
(2.32)) would need to include a second summation on their respective left-hand sides to account for the cost
of wind and solar power curtailments.
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active constraints

D-UCDCD+D-UCD

B-UCD

umbrella constraints

redundant constraints

Figure 2.3: Venn diagram of the solutions sets for various UCD (set sizes in this illustration
are not to scale)

Table 2.1: Constraints Screening Methods

Method Screening optimization problem Description

B-UCD (2.7) s.t (2.8)–(2.20) base approach

D1-UCD (2.7) s.t (2.8)–(2.19), (2.27) data-driven

D2-UCD (2.7) s.t (2.8)–(2.19), (2.28) data-driven

CD-UCD (2.7) s.t (2.8)–(2.20), (2.29)–(2.31) base cost-driven

CD+D1-UCD (2.7) s.t (2.8)–(2.19), (2.27), (2.29)–(2.31) data and cost-driven

of UCD tightening approaches to reflect the various strengthened relaxations considered here
and the types of screened constraints.
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2.4 Case Studies

2.4.1 Benchmark Approach (BA): Roald’s Method

This method was proposed in [106]; it is based upon the solution of one maximization and
one minimization for each transmission line l̂, these two optimizations are jointly formulated
as

max / min
N∑

n=1
hl̂nqn (2.34)

Subject to:

(2.8) − (2.12), (2.19) − (2.20) (2.35)

In short, problem (2.34)–(2.35) seeks to maximize/minimize the power flow through each
transmission line l̂ over an LP-relaxation of the feasible region of the UC problem. If the
maximum (minimum) limit for the flow of line l̂ given by the objective function does not
reach line capacity limit fmax

l , then the upper (lower) line constraint is flagged as redundant.
We note that for realistic systems containing thousands of lines, this method is very time
consuming, while, at the same time, it is highly conservative due to its use of box uncertainty
sets (2.20). Also, we introduce a cost-driven version of the BA by adding the extra constraints
(2.29)–(2.31) to (2.34)–(2.35), as proposed in [108]. We will refer to this benchmark as CD-
BA (cost-driven BA).

2.4.2 Benchmark Approach 2: Constraint Generation (CG)

As highlighted in the introduction, this approach begins by solving the UC without imposing
any network flow constraints. Subsequently, by running a simultaneous feasibility test (SFT)
line flow constraint violations are identified. The corresponding violated flow constraints are
added iteratively into the UC, which is re-solved until all previously-violated constraints have
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been accounted for and satisfied [102]. We note that the solution of this iterative process
leads to the same solution as that the of the UC with all its network flow constraints taken
into account simultaneously. However, we note that CG works for a single vector of nodal net
demands, not a set of net demands or net demands forecast errors as it is the case for Roald’s
method and our proposal. To offer a fair comparison between CG and our approach (as well
as Roald’s method), we utilize a vector of nodal net demands which corresponds to the peak
net demand of the test system, as was suggested by the authors of [134]. The computational
burden of this method is heavily influenced by the number of iterations needed since a UC
problem needs to be solved at each iteration. In the end, the reason why CG is a relevant
benchmark here is that it is implicitly a potentially-active constraint identification tool.

2.4.3 Procedure for Constructing Correlated Net Load Time

Series

We generate N synthetic spatially-correlated net load time series of length T , which are
then consigned to matrix W . They consist of historic net load forecasts µ ∈ RT ×N , which
correspond to the nominal demand values from the data sets in [135]. These are
superimposed with zero-mean normally-distributed forecast errors with spatial correlation
given by a covariance matrix Σ. Here, we take the approach outlined in [136], where errors
are assumed to be proportional to forecasts and whose variance and correlation are
adjusted with an uncertainty level parameter. Thus, this parameter controls the magnitude
of net load forecast errors. We utilize the exact data generation approach proposed by [136]
which includes a random process in modeling net loads’ correlation. First, we generate a
positive definite matrix C = ĈĈ⊤ where each element of the matrix Ĉ is a sample
randomly drawn from a uniform distribution with support in [0, 1]. Then, to obtain a
positive definite covariance matrix in which the diagonal elements are cnn = (ηd0

n)2, and
off-diagonals

σnm = η2 cnm√
cnncmm

d0
nd0

m, ∀n, m ∈ N , n ̸= m (2.36)
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where cnm are the nmth elements of the matrix C, and d0
n is the net demand forecast at node

n. Finally, we generate T = 8760 nodal net load vectors using the described approach. Of
the 8640 values of net load generated, 7200 are randomly selected to obtain the data-driven
cost upper bound (2.29) and uncertainty sets (2.27) and (2.28), and the remaining 1440
instances are used for testing and investigating UC performance. This division of datasets
into training and testing subsets is approximately aligned with the commonly employed split
ratio in machine learning applications, typically set at 80/20.

2.4.4 Performance Evaluation

The procedure to measure the performance of the method described in Section 2.2 and its
coupling with Section 2.3 to remove redundant line flow constraints—with the overarching
objective of reducing the UC solution computational effort—is run as suggested by [88]:

1. Given the historical data, set up net load uncertainty representations (as described
in Section 2.3). Then, determine the transmission constraints that can be eliminated
according to each approach described in Table. 2.1.

2. Record the computational time needed to screen out the redundant network constraints
using each screening approach. We consider that the computational time of each
approach is given as the sum of the time required to run each iteration for different
versions of the UCD algorithm. On the other hand, the benchmark approach runs in
a sequential manner for transmission line constraint screening.

3. Solve the reduced UC problem on the set of unseen time periods without the superfluous
constraints identified in Step 1.

4. Use the binary commitment variables obtained in Step 3) as a warm start solution and
solve the unit commitment problem including all constraints.

5. Assess the performance of the screening method in terms of (i) the percentage of
retained network constraints from each screening approach in Step 1, (ii) the



2. Tight Data-Driven Linear Relaxations for Constraint Screening in Unit
Commitment 51

Table 2.2: Description of test power systems

System # Nodes # Generators # Lines
IEEE-RTS-73 73 96 120

IEEE-118 118 19 186
CASE500 pserc 500 49 733

computational time required to run each screening approach, (iii) the computational
time required to solve the reduced UC problem in Step 3) with respect to the full UC
formulation, and (iv) whether or not all necessary and sufficient constraints needed to
solve the UC have been retained. The latter performance measure applies to
CD-UCD and CD+D1-UCD since the application of the production cost upper
bound may discard potentially active UC constraints out of the original umbrella set,
as explained in Section 2.3. (v) the cost error (optimality loss) of the solution
obtained in step 3 with respect to that of the full UC problem in Step 4.

2.4.5 Experimental Setup

The B-UCD, D1-UCD and D2-UCD screening approaches and the UC are formulated as
MILP problems. We test our algorithm in two standard IEEE test networks, namely IEEE-
RTS-73 and IEEE-118 test systems [137]. Also, another test case is adopted from the IEEE
PES PGLib-OPF v17.08 benchmark library [135] which is called CASE500 pserc. All the
technical data related to these systems are available in [137], and their main features are
listed in Table. 2.2. For these medium size test networks, the solution optimality gap was
set to 0%. For the benchmark approach, we run 2L optimizations in a sequential manner.
The calculations have all been performed using GAMS and the CPLEX MILP solver. The
computer used is equipped with an Intel Core i7 3.10 GHz processor and 16 GB of RAM.
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Table 2.3: Solution time for redundant constraint screening for medium size networks

Screening time (s)
Method BA B-UCD D1-UCD D2-UCD

(% change) (% change) (% change)
IEEE-RTS-73 45 10 14 15

- (−77.7%) (−68.9%) (−66.6%)
IEEE-118 62 17 35 38

- (−72.6%) (−43.5%) (−38.7%)

2.4.6 Redundant Constraints’ Screening Results

Medium-Size Networks

In this subsection, we provide simulation results for the two medium-size test systems
provided in Table 2.2 (IEEE-RTS-73 and IEEE-118), and we assess the computational
complexity of each screening approach. We set the uncertainty parameter η = 0.035 for the
two test systems 7. For the umbrella constraint screening algorithm with polyhedral
uncertainty sets, all principal components are utilized to determine the corresponding
uncertainty sets.

First, one of the main advantages of the proposed approach is that in terms of run time,
it is significantly faster than Roald’s method (BA), as seen in Table 2.3. Note that we
assess the computational time while we consider all K = N⋆ principal components, where
N⋆ is the number of nodes with uncertain net demand such that N⋆ ≤ N . The conventional
UCD algorithm has lower computational cost compared to the enhanced data-driven versions
(D1-UCD and D2-UCD); however, with B-UCD a higher number of umbrella constraints are
recorded. Table 2.3 clearly shows that the solution time of the BA is directly proportional to
the number of lines in the power system. The performance of the UCD runtime is primarily

7Setting η = 0.035 yields load variations of approximately 10% to 12% around the nominal loading, a
valid assumption for short-term operational planning studies. Moreover, for the IEEE-RTS-73 test system,
setting η to a value greater than 0.035 results in the UC problem becoming infeasible. However, in Chapter
5 of this thesis, we evaluate higher variations, up to η = 0.1. Indeed, as the value of η increases, so does the
likelihood of encountering additional umbrella constraints.
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(a) (b)

(c) (d)

Figure 2.4: (a) The impact of K on screening time in IEEE-RTS-73; (b) The impact of K

on screening time in IEEE-118. (c) The impact of K on retained constraints in IEEE-RTS-
73; (d) The impact of K on retained constraints in IEEE-118.
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Table 2.4: Number of Umbrella Constraints Identified by UCD Iteration for Medium-Size
Networks

Number of constraints found Total
Iteration number 1 2 3 4 5 6 7 8 9 10

B-UCD
RTS-73 10 5 2 2 2 1 1 1 – – 24

IEEE-118 22 11 9 7 3 2 2 2 2 – 60
D1-UCD

RTS-73 8 5 2 2 1 1 – – – – 19
IEEE-118 22 9 7 4 3 3 2 2 1 1 53

influenced by the system size, as well as the total number of identified umbrella constraints.
Fig. 2.4 illustrates the impact of the number of retained principal components on the

constraint screening time and the proportion of retained constraints when running UCD
without relaxing the generator’s commitment variables. We see that through the use of
DPUS P1(S, K), while retaining only 10% (for IEEE-RTS-73) and 40% (for IEEE-118) of
the most dominant principal components (Fig. 2.4c and Fig. 2.4d, respectively), it was
possible to obtain the minimum number umbrella constraints for each system. On the other
hand, P2(S, K) needs respectively 60% and 50% of the principal components to match the
umbrella constraint set counts found with P1(S, K).

By inspection of Fig. 2.1, P1(S, K) is much more robust to outliers than P2(S, K). In
fact, we argue that the use of P2(S, K) could be risky in practice. In addition, its use leads
to significantly improved constraint screening performance over P2(S, K) without having to
consider a large number of principal components. This behavior can be explained by the fact
that the volume occupied in the net load forecast error space by P1(S, K) is larger than that
of P2(S, K). In turn, the likelihood that several of the constraints defining P1(S, K) intersect
with other problem constraints is increased. As UCD seeks to find the largest number of
intersecting constraints at every iteration, this is why P1(S, K) is preferable to P2(S, K).

The number of umbrella line flow constraints identified in each iteration of the UCD
algorithm is provided in Table 2.4. The B-UCD flavor of the algorithm identifies the umbrella
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line flow constraints of the networks IEEE-RTS-73 and IEEE-118 in eight, and nine iterations,
respectively. On the other hand, D1-UCD converges in six iterations for IEEE-RTS-73, and in
10 iterations for the IEEE-118 test system. The results further indicate that the maximum
number of line flow limits which may become active simultaneously under D1-UCD is at
most eight and 22 for IEEE-RTS-73 and IEEE-118, respectively. This is the case because
in the first iteration UCD found the maximum number of intersecting constraints for each
problem. We note also that D1-UCD retains fewer constraints in comparison to B-UCD.
This is because the DPUS used here are tighter than the box sets defined by (2.20).

On the contrary, the first important observation to be made is that the UCD
approaches yield for the 1440 time periods in the test set the same optimal UC solutions
and costs as those obtained with BA constraint screening—since all necessary constraints
are retained by UCD. Consequently, the performance of these methods, which is
summarized in Table 2.5, is assessed and compared in terms of the percentage of umbrella
constraints and the computational burden of the reduced UC running time relative to the
computational time required to solve the full UC problem. Our proposed approach
outperforms Roald’s method in terms of network constraints removal for both
IEEE-RTS-73 and IEEE-118. Therefore, the proposed approach provides UC solution time
computational savings 21.7% and 14.8% lower than Roald’s method for IEEE-RTS-73 and
IEEE-118, respectively. Note that UC performance results using D1-UCD are identical to
those for D2-UCD; this explains why the D2-UCD results have been omitted from
Table 2.3. Also, CG retained only 5% of the line flow constraints; this is lower than the
retained constraints for the BA and D1-UCD screening approaches for IEEE-RTS-73.
Nevertheless, D1-UCD results in a reduced UC problem that is 699% faster than running
UC with CG. While for the IEEE-118 test system, CG keeps 20.9% of the line flow
constraints and reduces the UC computational time to 24.9% of the time required by the
full UC. In fact, CG takes 47.3% longer to reach the optimal UC solution when compared
to solving the reduced UC problem obtained from D1-UCD. This is due to the fact that
CG retains more constraints and the fact that three iterations (i.e., three UC solutions) are
needed to converge to the global optimal solution.
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Table 2.5: Redundant Constraint Screening for Medium-Size Networks

D1-UCD BA (% change) CG (% change)
IEEE RTS-73

Retained constraints (%) 7.9 10.0 (+26.6%) 5 (−36.7%)
Reduced UC compute time (%) 11.5 14.0 (+21.7%) 91.9 (+699.13%)

IEEE-118
Retained constraints (%) 14.2 16.1 (+13.4%) 20.9 (+47.7%)

Reduced UC compute time (%) 16.9 19.4 (+14.8%) 24.9 (+47.3%)

Table 2.6: Redundant Constraint Screening Time for the Large-Size Network

Method B-UCD D1-UCD D2-UCD
Total screening time (s) 122 355 380

Average screening time per block (s) 15.2 44.3 47.5

Finally, we also see the advantage procured by the use of DPUS over box-shaped
uncertainty sets. D1-UCD and D2-UCD both yield constraint counts under those offered
by Roald’s method and B-UCD which both make use of box-shaped uncertainty sets whose
principal axes are independent from each other. The reason why D1-UCD and D2-UCD
offer improved screening performance is because their respective DPUS are much tighter
and aligned with historical net demand forecast error observations.

Large-Size Network

To show the efficiency of the proposed approach for more realistic cases, this section compares
the simulation results of the different methods for the CASE500 pserc test system which has
500 buses and 733 lines. All system data are available from the IEEE PES PGLib-OPF
v17.08 benchmark library [138]. To keep computational times within reasonable limits, the
optimality gap is set to 1% when solving UC problems. Line-based decomposition [97, 125]
is used to partition all versions of UCD problems (B-UCD, D1-UCD, D2-UCD) into smaller
sub-problems as explained in UCD decomposition in Appendix A. These sub-problems are
independent from each other and have been considered in a sequential manner to allow
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Table 2.7: Large-Size Network Computational Results

Method D1-UCD BA (% change) CG (% change)
Retained constraints (%) 6.34 8.45 (+25.0%) 0 (−100%)

Screening time (s) 380 690 (+81.6%) –
Reduced UC compute time (%) 3.0 3.7 (+23.3%) 0.9 (−70%)

for a fair comparison with Roald’s benchmark approach. To this end, we have partitioned
arbitrarily the full line constraint set which consists of 1466 line constraints into 8 blocks;
each subgroup Lκ contains 183 line flow constraints to be considered by each sub-problem
(A.1)–(A.8) in Appendix A except for the last block which has 2 extra line constraints to
be examined.8 The training set contains 7200 time periods instances while the test set was
reduced to 480 time periods. Here, we consider keeping K = 50 principal components to
formulate both P1 and P2. Results in Table 2.6 illustrate that B-UCD’s screening time is
lower than P1’s and P2’s by an average of 65%. This is a direct result of the fact that the
number of constraints retained by DPUS is significantly larger than that of the box constraint
set (2.20).

On the other hand, results found in Table 2.7 show that the proposed method involves
reductions in the number of umbrella constraints and screening time compared to the
benchmark, consequently, the reduced UC problem and computational time decrease. The
screening time of our proposed method is 81.9% faster than the benchmark approach.
Also, imposing a polyhedral uncertainty set reduces the number of retained UC umbrella
constraints and computational time for solving the UC by 25% and 23.3%, respectively.
Finally, CG does not add any line constraints. This is indicative of the fact that the
network is lightly loaded, while its reduced UC computation time is just under 1% of the
full UC compute time.

8This choice is purely arbitrary here. Other partitioning approaches are possible.
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Table 2.8: Parameters of Production Cost Upper Bounds

Test system a0 b0 ∆ Γ
IEEE-RTS-73 −6.03 × 104 24.64 5.0 0

−8.80 × 104 27.79
IEEE-118 −1.35 × 104 18.9 3.7 0

CASE500 pserc −8.84 × 104 20.52 3.6 0
−1.03 × 105 21.44
−2.63 × 105 30.00

2.4.7 Inactive Constraints Screening

Finally, we experiment on evaluating the benefits of adding the production cost upper bound
(2.29) (along with (2.30) and (2.31)) to the UC constraints prior to solving its corresponding
UCD. Here, we test for the addition of the cost upper bound with (i) box uncertainty sets
(CD-UCD), (ii) data-driven polyhedral uncertainty sets, namely P1 (CD+D1-UCD). In this
study, the same data sets used in prior sections are deployed for DPUS computation and
cost upper bound characterization.

For the IEEE-RTS-73 system, there are two constraints set up to provide a piecewise
cost upper bound, while we use a single linear constraint for the IEEE-118 test system—see
Table 2.8 for the production cost upper bound parameters used. Here these choices were
made upon visual inspection of the historical production cost data plotted against observed
system-wide net load for each system. As a first observation, the two cost-driven approaches
provide for the test set the same optimal costs as obtained by the benchmark approach except
for two instances (out of 1440) of the IEEE-RTS-73 which provides infeasible UC results.
This happened as a result of two outliers from the historical production cost data points
in the cost-net load regressions which were not covered by the upper bound constraints.
The total cost error for the test instances is 0.006%. The results in Table 2.9 show that
CD+D1-UCD leads to considerable reductions in both the number of retained constraints
and computational burden in comparison to CD-UCD. For the IEEE-RTS-73 test system,
imposing a data-driven uncertainty set combined with the cost-driven constraints reduces
retained constraints and computational time by 100% and 32%, respectively. For the IEEE-
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Table 2.9: Inactive Constraints Screening

Method CD+D1-UCD CD-UCD (% change) CD-BA (% change)
IEEE RTS-73

Retained constraints (%) 4.6 9.2 (+100.0%) 9.2 (+100.0%)
Screening time (s) 19 25 (+31.5%) 175 (+821%)

Number of infeasibilities 2 2 2
Cost error (%) 0.006 0.006 0.006

Reduced UC compute time (%) 8.0 11.9 (+32.8%) 11.9 (+32.8%)
IEEE-118

Retained constraints (%) 4.5 10.2 (+126.7%) 10.2 (+126.7%)
Screening time (s) 19.7 40.3 (+104.6%) 256 (+1200%)

Number of infeasibilities 0 0 0
Cost error (%) 0 0 0

Reduced UC compute time (%) 6.8 12.0 (+76.5%) 12.0 (+76.5%)
CASE500 pserc

Retained constraints (%) 0.8 1.7 (+112.5%) 1.7 (+112.5%)
Screening time (s) 166 217 (+30.7%) 690 (+315.6%)

Number of infeasibilities 0 0 0
Cost error (%) 0 0 0

Reduced UC compute time (%) 1.0 1.1 (+10%) 1.1 (+10%)
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118 test system, CD+D1-UCD obtains reduced UC problems with 126.7% fewer constraints
than CD-UCD with a computational time lower by 7%. In that case none of the 1440
cases tested led to infeasible UC results. The CD-BA approach reveals the same result as
the B-UCD method in terms of retained constraints. Hence, the cost error, the number
of infeasibilities, and reduced compute time are similar to B-UCD as shown in Table 2.9.
However, the screening time is slower than CD+D1-UCD by 821% and 1200% for IEEE-
RTS-73 and IEEE-118 test systems, respectively.

For the CASE500 pserc case, the cost-driven approach has been applied by fitting three
piecewise linear segments; see Table 2.8. The results reveal the percentage of retained
constraint with CD+D1-UCD slightly below 1%, indicating that this network is not
congested for the patterns of net load it has to handle. Also, the result reveals the reduced
UC computation time from CD+D1-UCD is slightly faster than that obtained after
running CD-UCD with a lower screening time. The screening time for CD-BA is slower
than CD+D1-UCD by 315%.

2.4.8 Sensitivity Analysis – Effects of the Conservativeness Factor

Γ

Since the conservativeness factor has the potential of influencing the retained constraints, this
section provides an analysis of the sensitivity of the proposed CD-UCD approach to variation
in the slope value. To that end, Fig. 2.5 shows how the conservativeness factor Γ influences
the constraint screening performance in CD+D1-UCD for the IEEE-RTS-73 and IEEE-118
cases. The conservativeness factor increases the fitted slope values and yields higher numbers
of retained umbrella constraints. For the IEEE-RTS-73 system, with conservativness factor
values above 4%, constraint screening results coincide with the number constraints found
with D1-UCD as seen in Table 2.4. While for the IEEE-118 case, similar results are obtained
when Γ ≥ 12%.
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Figure 2.5: Retained umbrella constraints in CD+D1-UCD as a function of Γ.

2.4.9 Congested Case Study

Motivated by the previous case study CASE500 pserc in subsection 2.4.7, where the network
is very light loading condition of the test system. Testing the fidelity of our proposed
approach becomes imperative due to the noticeable slowdown in the solution time of the
complete UC problem when operating within a congested network. Therefore, We show the
proposed approach’s efficiency for a congested CASE500 pserc test system. The congested
test system is obtained by multiplying the original line capacities [137] with a factor equals
0.7. The set of 1466 line constraints has been divided into 8 equal blocks in an arbitrary
manner. We use η = 0.035 for the test system with the nominal loading level given in [137].
The cost upper bound and DPUS (K = 50 principal components) have been determined
with 7200 net demand vectors, while 240 instances were retained for testing.
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Generally, the percentage of retained constraints and the UC computation time reduction
in Table 2.10 are larger compared to results in the normal congested case in Table 2.7 and
Table 2.9. The CG method adds 9.4% of the network constraints, but it requires more
time compared to the full UC since a UC instance has to be solved several times. The
BA and B-UCD approaches retained 14% of the network constraints with an advantage of
B-UCD with a screening time lower by 79.1%. Furthermore, the performance of D1-UCD
surprisingly outperforms CD-UCD in terms of retrieved constraints by retaining 11.6% and
12.9%, respectively. This is a direct result of the impact of shrinking the uncertainty set
which reveals a higher influence compared to cost-driven constraints with Box uncertainty
set. Lastly, considering the cost-driven CD+D1-UCD, imposing a data-driven uncertainty set
(P1(S, K)) combined with the cost-driven constraints reduces screening time and retained
constraints by 58.3% and 48.1% compared to the BA, respectively. Indeed, the method
CD+D1-UCD obtains the lowest UC solution time with a percentage of 8% with respect
to the full UC problem. This result emphasizes the power of the synergistic impact of CD
and D1 which involves the largest improvement across all other methods that produces no
infeasible instances or cost error.

Lastly, we are showing through the conservativeness factor Γ how poor tuning of the cost
upper bound can have negative consequences on the adequacy of constraint screening. In this
case, we are forcing Γ to be −10% with the expected consequence of seeing valid constraints
being screened out.9 Indeed, with Γ = −10% the number of retained constraints drops along
with the screening time by 64% and 54.9% with respect to the BA, respectively. Similar
drops are observed with respect to the other screening approaches as seen in Table 2.10.
As expected, with tighter cost upper bounds essential constraints end up being left out as
evidenced by the cost errors and nonzero number of infeasible UC solutions. This “over-
screening” problem can be managed by the user by tuning of the conservatism parameters
∆σ and Γ and by carefully validating reduced UC solutions against the full original UC.
The fact that ∆σ and Γ are available here is an advantage over the proposal of [108]. Here

9In fact, here the first fitted line segment of the three piecewise linear regression was not adjusted with
Γ to avoid CD+D1-UCD being infeasible.
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the price to pay by increasing conservatism parameters is larger retained constraint counts,
which come with the benefit of increasing the likelihood that the reduced UC solutions are
consistently feasible for the original UC.

2.4.10 Real-World Case Study

To demonstrate the effectiveness of the suggested method in a practical case study, this
section evaluates the simulation outcomes of various techniques applied to a model of the
Texas power system [139]. The power system being examined consists of 2000 buses and 3206
lines. The generating units data has been modified to make the UC more challenging, as
suggested in [88]. We use η = 0.035 for the test system with the nominal loading level given
in [137]. The cost upper bound and DPUS have been determined with 7200 net demand
vectors, while 240 instances were retained for testing. All UC instances are computed with
an optimality gap of 1%. For UCD with polyhedral uncertainty sets, we consider keeping
K = 50 principal components when determining P1(S, K). Line-based decomposition is used
when running all versions of UCD (B-UCD, D1-UCD, CD-UCD, ED+D1-UCD). Without
loss of generality, we generated 14 sub-problems each containing 458 line flow constraints as
explained in Appendix A.

Table 2.11 provides the relevant experimental results. One main observation that needs
to be highlighted is that all six methods under consideration yield the same optimal UC cost
as the full UC for the 240 instances in the test set. Furthermore, no infeasibility cases were
recorded in this case study. As a result, the performance of these methods, is evaluated and
compared based on screening time, the percentage of constraints retained, and the reduced
UC compute time relative to the time taken to solve the complete UC problem. Our proposed
approaches except for B-UCD — which yields the same result as BA — outperform Roald’s
method in terms of network constraint removal. Although the tightest screening approach
CD+D1-UCD has retained a slightly higher percentage of retained constraints compared
to the CG approach. Nevertheless, CD+D1-UCD and also CD-UCD provide faster UC
computation time with respect to the BA and CG approaches. Indeed, when compared to
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Table 2.11: Texas Power System Results

Method Screening time Retained constraints Reduced UC compute time
(s) (%) (%)

BA 118,190 4.28 3.80
CG – 0.46 (−89.1%) 1.90 (−51.1%)

B-UCD 18,967 (−83.9%) 4.28 (0%) 3.90 (+3.2%)
D1-UCD 37,637 (−68.1%) 2.60 (−39.3%) 1.80 (−52.6%)
CD-UCD 24,861 (−78.9%) 1.30 (−68.4%) 1.60 (−57.9%)

CD+D1-UCD 17,585 (−85.1%) 0.60 (−86.2%) 1.56 (−59.0%)

Roald’s method, the reduced UC solution time achieved by CD-UCD and CD+D1-UCD are
57.9% and 59% lower, respectively. Similarly, the CG approach shows 51.1% reduction in
UC solution time computational time compared to Roald’s method.

2.4.11 Enhanced CD-UCD comparison with CD-UCD and

CD+D1-UCD

Lastly, we study how the enhanced cost-driven upper bound (ECD-UCD), (2.32) and (2.33),
compares to the original CD-UCD. This study is performed by imposing a box uncertainty
set and the P1(S, K) DPUS. The intuition behind ECD-UCD is that in the conventional
cost upper bound (2.29), all integer solutions for the UC are considered for both cheap and
expensive generators for a given range of net demand (2.31). Nevertheless, we argue that it is
more advantageous to adjust this upper bound to eliminate certain feasible yet sub-optimal
UC integer solutions. In this section, we assess the relative benefits in terms of screening
time and retained constraints between the base CD-UCD, (2.29)–(2.31), and ECD-UCD,
which replaces (2.29)–(2.31) with (2.30),(2.31), (2.32) and (2.33).

Using ECD-UCD with the box uncertainty set leads to noteworthy computational
improvements in screening time, exhibiting improvements over CD-UCD ranging from
14.7% to 65.9% across the four test case; see Table 2.12. Likewise, ECD-UCD with DPUS
also shows considerable improvement over CD+D1-UCD in terms of screening time ranging
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Table 2.12: Comparison of the Enhanced CD-UCD (ECD-UCD) with CD-UCD

(CD − ECD)/CD (%)
Measures Screening time (%) Retained constraints (%)

Uncertainty set Box DPUS Box DPUS
RTS-73 61.9 34 14.1 0

IEEE-118 65.9 23.6 23.5 0
Congested CASE500 pserc 14.7 31.9 28.5 24.2

Texas 60.7 28.3 12.3 11.6

from 23.6% to 34% across the four test cases.
In addition, generally we observe a decrease in number of retained constraints with ECD-

UCD and ECD+D1-UCD in comparison to CD-UCD and CD+D1-UCD. No improvement
is found when applying ECD+D1-UCD over CD+D1-UCD for IEEE-RTS-73 and IEEE-
118 test systems—albeit the same number of constraints are identified in a fraction of the
computation time. Improvements in screening results are more significant with the box
uncertainty set. On the other hand, we notice that as the test power systems get larger, the
use of DPUS yields similar screening performance to what is offered by box uncertainty sets.

2.5 Summary

A widespread observation in power system operation and planning optimization is that only
a very small proportion of transmission line limitations are ever binding. In this chapter,
we proposed a data-driven umbrella constraint discovery approach that takes advantage
of historical information to disregard redundant constraints in unit commitment problem
formulations robust to uncertain net demand (demand less non-dispatchable generation).

This approach requires first a characterization of polyhedral uncertainty sets using
historical net demand observations and their past forecasts along with principal component
analysis. We demonstrated how data-driven polyhedral uncertainty sets offer a good
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robustness compromise in comparison to cruder box-like uncertainty sets since they
acknowledge cross-node correlations between demand and non-dispatchable generation.

Furthermore, we presented a proposal to refine the process of umbrella constraint
discovery with the objective of predicting which of the umbrella constraints will be active in
a unit commitment instance. With that prediction at hand, we demonstrate significant unit
commitment solution speed-ups. This refinement is rendered possible by recognizing that
the original set of umbrella constraints of a problem will intersect with a set of production
cost upper bounds, whose computation is based on historical unit commitment solutions.
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Chapter 3

Integrating Learning and Constraint

Generation for Security-Constrained

Unit Commitment Acceleration

In this chapter, we extend the single-period unit commitment formulation from chapter 2
by incorporating line contingencies where a single transmission line is unavailable (N − 1)
security. The security-constrained unit commitment (SCUC) problem is one of the
fundamental tools for power systems operational planning and real-time operation.
Conventionally, this problem requires the online solution of a mixed-integer optimization
problem, which faces computational requirements limitations in real-world power systems
due to its inherent large size. Although pure optimization-based methods, such as iterative
constraint generation, provide optimal solutions when given enough time, the substantial
time required to use them in online applications hinders their implementation in large
systems. On the other hand, practically speaking SCUC is solved repeatedly with only
minor changes in input data. Thus, we consider the auxiliary procedure of learning
essential solution characteristics from the previous optimal solutions as functions of the
input parameters. In this chapter, we integrate learning and constraint generation to
develop a computationally-efficient and rigorous approach for implementing faster
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security-constrained unit commitment for online applications while preserving its feasibility
and optimality. Our proposed method is based on learning offline relevant sets of
constraints from which the optimal solution can be obtained efficiently. Then online, we
can predict relevant constraint sets and warm-start the constraint generation method. The
advantage of this procedure is much faster than conventional constraint generation
approaches while still preserving the feasibility and optimality of full-fidelity constraint
generation. We conduct case studies to demonstrate the effectiveness of the proposed
approach.

3.1 Introduction

Security-constrained unit commitment is a fundamental tool for all major independent
system operators in the US, such as ISO New England, CAISO and PJM, for the daily
operation of power systems [140, 141]. The goal of the SCUC problem is to minimize
system operational cost as offered by generators, while satisfying generation, network, and
security constraints. As mentioned in chapter 1, SCUC is generally formulated as a
mixed-integer linear programming problem, which belongs to the class of NP-hard
problems even if a single time period is considered [18]. Hence, solving this problem in
online applications becomes computationally challenging.

One distinctive aspect of power systems operation is that the SCUC problem is solved
repeatedly at least every hour or even more often in response to variations in the operating
conditions because of uncertainty in demand and renewable energy production [89].
Therefore, the resulting problem size quickly becomes computationally intractable with
increasing system size and more complex contingency scenarios. The main computational
cumbersomeness of the SCUC problem is the number of post-contingency scenarios and
their associated constraints and variables [8, 23, 89,103].

As argued in the introduction of the thesis, extensive research efforts have been devoted
to simplifying and accelerating the traditional optimization algorithms for MILP problems
through machine learning techniques [71,72]. By learning an effective and fast approximation
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Table 3.1: Comparison of CG and ML Methods

Property CG ML
Paradigm model-based data-driven

Constraints handling in the optimization mature✓ immature
Online computational complexity high low✓

Guaranteeing solution feasibility yes✓ no
Preserving the optimality of solution yes✓ no

of some underlying heavy computations, the resulting ML models, once well-trained, can
significantly reduce the online computational burden of the original optimization problems.
Our objective in this chapter is to develop a framework that enables the SCUC problem to
be solved in a more efficient manner by utilizing machine learning methods. We leverage
an interpretable classification algorithm for constraint learning and integrate the constraint
learning outcome with a constraint generation approach. Constraint learning here refers to
the learning process of a subset of constraints based on statistical data.

Moreover, we can see from the discussion in Section 1.6 of Chapter 1 that the properties
of CG and ML are clearly complementary (see Table 3.1). The key outcome from Table 3.1
and discussion in Section 1.4 of Chapter 1 is that substituting SCUC with ML predictions
does not ensure the provision of optimal operating points that will not violate any line flow
limits [68] for future instances. Evaluating the worst-case performance using discrete samples
from the entire training and test dataset establishes solely an empirical lower bound for the
worst-case guarantee [68]. In contrast, the optimization method consistently ensures both
solution feasibility and optimality. Therefore, in this chapter we integrate ML and CG to
develop a computationally efficient and rigorous solution for accelerating the SCUC problem
in online mode. We aim to fully leverage the benefits of both techniques while overcoming
their respective drawbacks.
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3.2 Motivation

In a general MILP problem Q[J ] with set of inequality constraints J , we denote z = (x, y) as
the decision variable vector defined by the continuous variables x ∈ Rv and integer variables
y ∈ Zw. We assume Q[J ] is feasible and bounded, and its optimal solution z∗[J ] is unique1.
However, it is important to note that if multiple optimal solutions emerge, our proposal only
requires the retention of a single solution. The feasible region defined by constraints in J
includes the subset of binding constraints B ⊆ J .

In a continuous linear programming problem where y vector does not exist, the binding
constraints set B can be obtained based on the optimal solution z∗[J ]. Hence, the optimal
objective values of Q[J ] can be obtained through the reduced problem Q[B] i.e., Q[B] =
Q[J ]. On the other hand, for a MILP problem, a subset of constraints S ⊆ J is defined
as the invariant constraint set if the optimal objective values of problems Q[J ] and Q[S]
are equal [142]. In fact, as argued in the introduction of the thesis that minimal feasible
region includes binding constraints and critical non-binding constraints. The set of binding
constraints of a MILP does not necessarily entail the optimal objective value as that of the full
problem. In MILP, the invariant constraint set comprises not just the binding constraints,
but also some of the non-binding ones namely the critical non-binding constraints. Hence,
we can state that for MILP problems B ⊆ S [28,142]. These critical non-binding constraints
are essential for MILP problem-solving, as removing them from the original feasible region
would compromise the feasibility and optimality of the resulting solution. In other words,
the reduced problem Q[B] does not guarantee the optimality of the produced solution as the
original problem Q[J ]. The goal of this chapter is to show that a reduced problem with fewer
constraints generally requires less computational effort, making it more suitable for online
applications in SCUC while focusing on defining an invariant constraint set for SCUC.

1The unique optimal solution in a MILP is a strong assumption that has been made to motivate the
application in this chapter.
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3.3 Security-Constrained Unit Commitment

3.3.1 Assumptions

For expository purposes, we use a simplified single-period security-constrained unit
commitment optimization problem. Most of the current research publications that suggest
techniques to filter network constraints focus on single-period problems [33,79,88,106,110].
Furthermore, we model line contingencies and their effects with line outage distribution
factors (LODF) as in [8, 23,33,110] to the single-period unit commitment.

3.3.2 Problem Formulation

The optimization problem corresponding to this simplified SCUC is a MILP formulated as:

min
u,g,q

∑
m∈M

cmgm (3.1)

Subject to:
qn =

∑
m∈Mn

gm − dn, ∀n ∈ N (3.2)

N∑
n=1

qn = 0 (3.3)

umgmin
m ≤ gm ≤ umgmax

m , ∀m ∈ M (3.4)

−f
0
l ≤

N∑
n=1

h0
lnqn ≤ f

0
l , ∀l ∈ L (3.5)

−f
c

l ≤
N∑

n=1
hc

lnqn ≤ f
c

l , ∀l, c ∈ L, C (3.6)

um ∈ {0, 1}, ∀m ∈ M (3.7)

Decision variables include the commitment status of the generating units um, the power
output schedules gm, the net power injections at each node qn. The objective function (3.1)
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minimizes the total generation cost. Constraint (3.2) computes the net injected power at each
node, while constraint (3.3) ensures power balance in the system. Constraint (3.4) imposes
limits on generator outputs. Constraints (3.5) and (3.6) enforce the power flow limits for the
base case i.e., normal operating condition and every contingency using PTDFs and LODFs,
respectively. The symbols f

0
l and f

c

l represent the maximum power flow limits on line l in
pre- and post-contingency outage states. Finally, (3.6) defines the binary variables of the
generating units. For a more compact formulation, constraints (3.5) and (3.6), which define
the feasible region of net injected power vector given base and contingency PTDFs matrices,
and the transmission flow limits can be reformulated as follows:

F(H, f̄) = {q : −f̄ ≤ Hq ≤ f̄} (3.8)

where

H =



H0

H1

...
HC

 , f̄ =



f̄ 0

f̄ 1

...
f̄C

 (3.9)

Here the PTDF matrix H0 ∈ RL×N (h0
ln are the lnth elements of the matrix H0) is a linear

mapping of nodal power injections vector qn to power flows vector f
0. In order to represent

the maximum and minimum values of the feasible region F(H, f̄), every contingency PTDF
matrix starting from H1 and going all the way to HC adds 2(L − 1) linear inequalities to
the SCUC problem. Furthermore, with the imposition of the N − 1 security criterion, the
feasible region F(H, f̄) is defined by 2(L+C(L−1)) inequalities. For a detailed explanation
of the contingency PTDF matrices and their derivation, please refer to [110].

Here, we consider the set of line constraints that construct the feasible region in (3.8)
is reformulated by the compact form (A ∈ RI×N , f̄ ∈ RI×1). The number of columns of A

corresponds to the number of buses in the network, N , while its rows (as well as that of f̄))
are defined with a set of indices I of size I such that I = 2(L + C(L − 1)) which corresponds
for all the line limits in both pre- and post-contingency states such that [110]:
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F(A, f̄ , I) =
{
q ∈ RN : Aiq ≤ f̄i, ∀i ∈ I

}
(3.10)

where Ai is the i-th row of matrix A and f̄i is the i-th entry of vector f̄ . Nevertheless,
it has been proven that only a portion of these inequalities is required to adequately define
the SCUC problem, thus reducing the computational complexity of SCUC. For brevity, we
can refer to feasible region in equation (3.10) as F(A, f̄).

3.3.3 Constraint Generation Algorithm

This chapter tackles the deterministic SCUC problem which is solved based on the standard
CG approach. Leveraging the fact that a candidate SCUC solution can easily be checked for
feasibility, the standard CG approach adds constraints in an iterative way to a reduced base
problem, which is a unit commitment problem with no transmission constraints [8]. The
CG approach is an iterative technique where violated constraints from the original SCUC
are gradually added to the reduced one until the solution to the latter is feasible in the
former [102]; see Fig. 3.1. The interested reader may refer to the constraint generation
approach that has been applied to large-scale robust optimization in unit commitment and
OPF problems [143,144].

3.4 Learning-Based SCUC Constraint Generation

Next, we seek to demonstrate that the results of a CG algorithm can be predicted for a
SCUC. We posit that it is possible to use a predicted invariant constraint set, Ŝ. The
predicted invariant constraint set can be obtained by having learned which constraints are
part of the invariant set in the past. With such a set readily on hand, it is, therefore, possible
to solve the full SCUC with a limited number of CG iterations—at least one if Ŝ = S, and
more if Ŝ ⊂ S.

The elaboration of a learning-based CG algorithm requires both offline training and
testing phases based on the outputs of past SCUC runs and/or simulated SCUC runs. As
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Solve relaxed network-constrained UC

Estimation of each pre- and
post-contingency flow using

PTDFs and LODFs, respectively

For all lines
−f̄ ≤ f ≤ f̄

Add the constraints
associated with the
violations to SCUC

End

Solve SCUC

No

Yes

Figure 3.1: Constraint generation algorithm.

explained in the introduction, discovering an invariant constraint set can be difficult for the
SCUC. Therefore, the development of an effective method for acquiring knowledge about an
invariant constraint set S ⊆ I remains an important research question.

3.4.1 Invariant Constraint Set Identification

We adopt the algorithm proposed in [28] to define the invariant set of a SCUC problem
instance. This methodology seeks to identify an invariant constraint set, St, for each training
instance t. To compute the invariant constraint set St for a previously solved instance t, we
follow these steps:

Step 1. We begin by initializing St with its set of binding constraints, Bt.

Step 2. Next, a reduced SCUC problem denoted UCdt [St] is solved providing the optimal
net power injections solution vector q∗

dt
[St].
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Algorithm 2: Identifying an invariant constraint set
Data: Historical or simulated net demand and its corresponding SCUC solution
Result: Invariant constraint set

1 Initialize St = Bt;
2 Solve UCdt [St] with solution q∗

dt
[St];

3 if maxi∈I\St

{
A⊤

i q∗
dt

[St] − f̄i

}
> 0 then

4 St := St ∪
{
arg maxi∈I\St

{
A⊤

i q∗
dt

[St] − f̄i

}}
;

5 go to step 2;
6 else
7 go to step 9;
8 end if
9 end;

Step 3. In the case that all the initial constraints in F(A, f̄) are met, i.e., Aiq
∗
dt

[St] ≤
f̄i, ∀i ∈ I\St, then the algorithm terminates.

Step 4. Otherwise, the violated constraint or constraints are included in the set St, and we
return to Step 2.

The identification of the invariant constraint set method is summarized in Algorithm 2.

3.4.2 Training Data Generation

The premise of our proposal is that historical nodal net demand data indexed by previously
solved instances t = 1, ..., T and their corresponding SCUC invariant sets (dt, St) can be
used to train a machine learning model capable of predicting the invariant constraint set for
some unseen operating conditions. The predicted invariant constraint set is denoted by Ŝt̃,
where t̃ is a test sample to be considered in the test phase.

Despite the availability of various machine learning methods, the K-nearest neighbors
(KNN) algorithm [66] was chosen due to its clarity, interpretability, and its acceptance in
the power systems community. Other classification methods such as support vector machines,
decision trees, and neural networks could also be used for this task. A study utilizes the



3. Integrating Learning and Constraint Generation for Security-Constrained
Unit Commitment Acceleration 77

KNN algorithm to distinguish if a line constraint belongs to an invariant set or not during
time period t, using net demand data.

The training of the KNN model and the resulting construction of the invariant set St

is cast as a binary classification problem. In the context of the KNN algorithm, the term
“training” refers to the process of feeding the model with a labeled dataset. This labeled
dataset is essential for the algorithm to learn the characteristics and patterns of the data 2.
Accordingly, we assign a label si

t = 1 or si
t = 0 to each line constraint i ∈ I in the SCUC

problem instance t, based on whether the line constraint is in the invariant set St or not,
respectively. This process makes sure all binding and critically non-binding constraints are
included in St thus insuring that if the SCUC solved for dt and St would return the same
optimal solution that would have been obtained with the full set of constraints I.

Unlike in classical classification training algorithms, here the focus is on SCUC
performance, not classification or regression accuracy. The most commonly used Euclidean
distance has been chosen as a distance metric to train KNN classifiers offline. The selection
of the parameter K plays a critical role in KNN classification. A small value of K can
increase the prediction sensitivity to noise, whereas a large value of K can result in
over-generalization. Therefore, we consider multiple values of K to train offline different
KNN models to be deployed next in the testing phase.

3.4.3 Testing

In the testing phase, each constraint i ∈ I in an unseen problem instance will be assigned
the label si

t̃ = 1 if the machine learning model predicts that the constraint i is in St̃, or si
t̃ = 0

otherwise.
It is widely recognized that the performance of machine learning models heavily relies

on how data is split into training and testing samples. In order to achieve consistent out-
of-sample results, this chapter employs the leave-one-out technique; the reader may refer

2Unlike training a neural network for instance, where the model optimizes a set of parameters to make
predictions on unseen data, training the KNN model involves storing the entire dataset.
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to [66] for more details. Specifically, the chapter assumes that there is a database of T

previously solved SCUC instances, and that the optimal solution for each instance is unique.
The leave-one-out strategy involves running T iterations of the KNN predictions, where in
each iteration, one MILP instance is chosen to be the test set. During each iteration, the
approach selects one SCUC instance and designates it as the test set {t̃} to be run in the
online phase. The remaining T − 1 instances constitute the training set, {1, . . . , T}\{t̃}.
Note that the training phase includes T − 1 time instances that were performed offline. The
subsequent step is to make online predictions for the invariant constraint set for the kept test
instance using the trained model. This predicted set is then used to initialize or warm-start
the constraint generation algorithm, resulting in the optimal solution for the test instance.

3.5 Computational Experiments

All the computations reported next were carried out on an Intel(R) Core(TM) i7-11700K
CPU @ 3.60 GHz and 64 GB of RAM platform. The optimization problems were solved
using the commercial MIP solver CPLEX. The Invariant constraint set training and testing
using KNN classification is carried out using ML software from MATLAB [145].

3.5.1 Test Systems

Points of comparison

We compare the chapter’s proposed approach with two other algorithms. The first algorithm
is the standard constraint generation algorithm in Fig. 3.1 that ignores any information
provided by the data and only adds violated constraints at each iteration; it is denoted as
CG. The second algorithm uses the binding constraint set, B, to warm-start the constraint
generation method as suggested in [88]. This method is denoted as the B-CG algorithm. The
proposed approach, which uses a prediction of the invariant constraint set S to warm-start
the constraint generation, is denoted as S-CG.
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Performance metrics

We assess the performance of the proposed approach over T runs in terms of the following
metrics:

• The number of constraints included in the reduced SCUC. It is given by two values:
the minimum and maximum number of constraints. These values are denoted as αmin

and αmax, respectively.

• The minimum and maximum number of CG iterations executed for the various
strategies (CG, B-CG, and S-CG), averaged over all test instances. The notation
used is βmin and βmax to denote the minimum and maximum values, respectively.

• The percentage of test instances that can be solved with only one iteration of the
constraint generation method is denoted as τ .

• The fraction (in percent) of the SCUC online computation time required in comparison
to that of the fully-constrained original SCUC, denoted by δ.

Test environment

In this subsection, we test our proposed methodology in a number of IEEE test networks from
the MATPOWER database [137]. Also, generator marginal costs cm have been modified so
that they vary in the range [15, 40] $/MWh. We generate T net load instances of dimension
N⋆, where N⋆ is the number of nodes with uncertain net demand such that N⋆ ≤ N which
are then consigned to matrix d. The net demand at each node n is sampled randomly from
a uniform distribution within a certain range U = [∆mind0

n, ∆maxd0
n], where d0

n is the nominal
net demand taken from [137]. In addition, an alternative method is utilized for generating
T samples of the net loads, where the net loads follow a multivariate normal distribution.
In this case, for each net load dn, the mean value is set at µn = lf ∗ d0

n and its standard
deviation at σn = ζ ∗ d0

n, where lf is the loading factor. We further sample correlations
across net loads uniformly from [0, 1] and use it to create the covariance matrix. In both
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cases, we generate 2000 time instances, and we apply the leave-one-out strategy for testing.
We train the KNN model for different numbers of k neighbors and investigate the impact on
performance metrics.

3.6 Computational Results

3.6.1 IEEE RTS-73 Test System

Here, we run two scenarios: one where net load is uniformly distributed, and a second where
it is normally-distributed. For uniformly-distributed scenario, we generate 2000 load data
instances in the range U = [0.6, 1]d0

n. For the normally-distributed scenario, the loading
factor lf = 0.8 and ζ = 0.045. The total number of line constraints generated by the SCUC
problem for this system is 26896. In the no-contingency state, we have 120 × 2 = 240
constraints. In each contingency, we have 119 × 2 = 238 constraints. Given that we are
examining only 112 contingencies 3, the total number of constraints arising from lines, for
operation under no-contingency and contingency states is 240+112×238 = 26896 constraints.
Considering the two cases, We run 2000 instances for the SCUC problem offline to identify the
binding and invariant constraint sets in the training set. The invariant constraints set were
generated using all the violated constraints 4 at each iteration for each simulated instance t

as in Algorithm 2.
In this section, we have generated box plots to compare the binding and invariant

constraints resulting from solving T instances of SCUC problem offline as shown in Fig 3.2.
In each box plot, the middle red line represents the median, while the lower and upper
edges of the box represent the 25th and 75th percentiles, respectively. The whiskers extend
to the furthest data points that are not considered outliers, and any outliers are displayed
separately using the + marker symbol. From Fig 3.2, we notice that one of the percentiles
in B and S coincide with the median which reveals minimal variations in the binding and

3We had to disregard the potential failure of 8 branches which lead to infeasible SCUC solutions.
4This corresponds to the max operator in step 3 in algorithm 2
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Figure 3.2: IEEE RTS-73 – Box plot of the number of constraints in each method from
training set; uniformly-distributed net load

Table 3.2: IEEE RTS-73 – Testing results for uniformly-distributed net loads

Method k [αmin, αmax] [βmin, βmax] τ(%) δ(%)
CG - [0, 14] [1, 4] 0.2 110.93

B-CG 1 [2, 16] [1, 3] 88.25 50.31
5 [2, 16] [1, 3] 98.4 43.8

100 [14, 16] [1, 2] 99.95 42.59
S-CG 1 [2, 24] [1, 3] 99.85 42.95

5 [24, 24] [1, 1] 100 42.8
100 [24, 24] [1, 1] 100 42.6

invariant set across the simulated instances T . Also, we can see that the median number of
constraints in the invariant set in the training set is four constraints, while the number of
binding constraints is two at the median. Note that we demonstrate the number of
constraints in the CG approach in Fig 3.2 along with the binding and invariant sets from
training instances, but we are deploying the CG approach to be compared with
warm-started B-CG and S-CG approaches in the testing phase.

We train KNN predictors for k ∈ {1, 5, 10} using the information provided by sets B and
S in Fig 3.2 for B-CG and S-CG approaches. In the testing phase, we can see from Table 3.2
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that the reduced problems generated from the three algorithms have 99.9% fewer constraints
compared to the original SCUC problem. Moreover, when considering various values of k

for KNN, both B-CG and S-CG require only 50% or less of the original computation time in
the full SCUC problem. Notice that the CG approach is more computationally demanding
than solving the full SCUC problem in this case. The main outcome of Table 3.2 is that
the larger k is, the more conservative we are, which means the larger number of retained
constraints and consequently fewer iterations are needed to recover the optimal solution.
Also, more than 88% and 99% of the test instances only needed a single iteration to recover
the optimal solution considering B-CG and S-CG approaches, respectively. Finally, the
number of invariant constraints in S-CG is relatively larger than the number of retained
constraints from the other two algorithms.

For a normally-distributed net load scenario, we train KNN models for k ∈ {1, 5, 100}
using the information provided by sets B and S in Fig 3.3. From Table 3.3, the maximum
number of retained constraints from the CG algorithm is approximately twice the maximum
number of constraints resulted from the warm-started CG algorithms. Also, Table 3.3 shows
that the maximum number of iterations with S-CG is two, where sometimes four iterations
are necessary with the CG algorithm which results in higher computational time as compared
to the S-CG algorithm. For B-CG, the computational cost of the algorithm varies based on
the value of k. The higher the value of k, the fewer iterations are needed and, consequently,
the necessary compute time is reduced. In fact, the B-CG approach that warm-started
with the predicted binding constraints set needs more iterations to recover some invariant
constraints to achieve optimality. Finally, Fig 3.3 illustrates the statistical properties of the
retained constraints from all training samples before running the prediction. Notice that the
SCUC problem with normally-distributed net loads has slightly higher constraints as shown
in Fig 3.3 compared to the uniformly-distributed net loads case in Fig 3.2.
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Figure 3.3: IEEE RTS-73 – Box plot of the number of constraints in each method from
training set; normally-distributed net load

Table 3.3: IEEE RTS-73 – Testing results for normally-distributed net loads

Method k [αmin, αmax] [βmin, βmax] τ(%) δ(%)
CG - [0, 22] [1, 4] 0.06 104.31

B-CG 1 [0, 10] [1, 3] 77.05 59.73
5 [0, 10] [1, 3] 83.4 55.9

100 [2, 10] [1, 3] 90.9 51.02
S-CG 1 [0, 12] [1, 2] 99.85 43.5

5 [0, 12] [1, 1] 100 43.2
100 [12, 12] [1, 1] 100 43.2
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Figure 3.4: IEEE 118 – Box plot of the number of constraints in each method from training
set; uniformly-distributed net load

3.6.2 IEEE-118 Test System

Like with the IEEE RTS-73 case, we also run two net load scenarios: uniform and normal
distributions. For uniformly-distributed net loads, we generate 2000 load data instances in
the range [0.6, 1]d0

n. For normally-distributed net loads, the loading factor equals 0.8 and
ζ = 0.05. The training data for uniformly- and normally-distributed net loads are collated
in Fig 3.4 and Fig 3.5, respectively.

Due to the high number of invariant constraints found from algorithm 2, we train KNN
predictor models for k ∈ {5, 10, 500} with a small adjustment. In fact, the max operator
threshold in algorithm 2 in step 3 controls how many violated constraints will be added to the
invariant constraints set in the training phase. Here, we investigate the impact of selecting
only 70 and 100 of the total number of invariant constraints in each instance for the S-
CG algorithm in normal and uniform scenarios, respectively. These subsets of constraints
are randomly selected from the invariant constraints for each simulated training instance t.
The testing cases are collated in Table 3.4 and Table 3.5 for the uniformly- and normally-
distributed net load cases, respectively.

Additionally, when we examine the amount of CG iterations used in both B-CG and
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Figure 3.5: IEEE 118 – Box plot of the number of constraints in each method from training
set; normally-distributed net load

S-CG approaches under a uniform distribution scenario, it becomes evident that the B-CG
requires at the most two iterations compared to the S-CG which needed only one, regardless
of the values of k. The total number of binding constraints across all the simulated instances
in the training phase in Fig 3.4 is 48 constraints. In the testing phase, Table 3.4 shows
that αmax value is 52 with different values of k. These four added constraints on top of
the binding constraints in B-CG are necessary and sufficient critical non-binding constraints
to recover the optimal solution. Additionally, randomly selecting invariant constraints from
each training instance significantly increases the size of the invariant constraint set in the
S-CG approach.

However, the results from Table 3.4 indicate a slightly different conclusion. Both B-CG
and S-CG are able to converge using a maximum of three iterations. In fact, the impact of
randomly selecting a subset of invariant constraints 5 has been reflected in the low percentage
of instances which needed only one iteration compared to B-CG approach (77% to 93%).
This result is necessary to reflect how the warm starting set is a crucial factor in the speed
of the convergence of the data-driven CG approach. Some instances of the S-CG approach

5The selection procedure is performed randomly from the invariant constraints set which includes both
binding and critical non-binding constraints.
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Table 3.4: IEEE-118 – Testing results for uniformly-distributed net loads

Method k [αmin, αmax] [βmin, βmax] τ(%) δ(%)
CG - [2338, 4346] [3, 4] 0 33.34

B-CG 5 [48, 52] [1, 2] 99.85 11.95
10 [48, 52] [1, 2] 99.85 11.94
500 [48, 52] [1, 2] 99.85 11.94

S-CG 5 [212, 228] [1, 1] 100 11.95
10 [212, 228] [1, 1] 100 11.94
500 [228, 228] [1, 1] 100 11.89

Table 3.5: IEEE-118 – Testing results for normally-distributed net loads

Method k [αmin, αmax] [βmin, βmax] τ(%) δ(%)
CG - [2768, 5144] [2, 4] 0 39.32

B-CG 5 [30, 70] [1, 3] 93.05 11.2
10 [30, 70] [1, 3] 93.05 11.1
500 [30, 70] [1, 3] 93.05 11.3

S-CG 5 [78, 114] [1, 3] 77.7 12.39
10 [78, 114] [1, 3] 77.7 12.37
500 [88, 114] [1, 3] 77.7 12.35

needed more iterations to recover some binding and essential critical non-binding constraints
that were missed during the random selection procedure. Compared to the B-CG which
also needed three iterations to uncover some critical non-binding constraints that were not
provided in the training instances in Fig 3.5. The S-CG with a randomly selected invariant
constraint set still provides competitive results in terms of the number of iterations and the
total number of constraints with CG approach.

Note that the choice of the number of neighbors, K, is connected to the confidence level
in relaxing line capacity constraints that are input to the CG approach. A larger K

indicates a more conservative approach, resulting in the retention of more constraints and,
consequently, fewer iterations in online computation. While increasing the number of
neighbors enhances the conservativeness of the proposed method, there are situations
where recovering the original solution of SCUC becomes impossible solely from the learned
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constraints, even with a sufficiently large value of K, without running the CG approach
online. This challenge is notably evident in the B-CG approach, where a specific network
constraint might be a critical non-binding constraint across all historical data points.
Regardless of the chosen value for K, the B-CG approach consistently removes such line
flow constraints, potentially resulting in inaccurate solutions for certain operating
conditions without running the CG approach. Therefore, this chapter emphasizes on
defining invariant constraints set.

Overall, addressing the SCUC problem and achieving an optimal solution for a large-scale
network can pose significant challenges. The advantage of the warm-started CG approach is
that the online time needed to find the set of binding and critical non-binding constraints has
been moved to be performed offline in the training phase. For a system operator or planner,
the machine learning model can be trained using a year’s worth of training data, and then
run the SCUC in the next (unseen) year with considerable speed improvements. Hence, the
system operator or planner in the testing phase with the warm-started CG approach would
be able to distinguish the new potential binding and critical non-binding constraints. Also,
other machine learning models such as graphical neural networks can be deployed to enhance
prediction accuracy by utilizing existing network structures embodied in PTDF and LODF
matrices along with demand data correlation. Ultimately, the suggested method has the
potential for further expansion into multi-period SCUC for large-scale networks, presenting
a more formidable challenge. Consequently, the advantages of the proposed approach are
expected to become even more prominent in such a context.

3.7 Summary

The computational burden of using traditional algorithms to solve the SCUC for online
applications—like security-constrained day-ahead and (possibly in the future) real-time
electricity market clearing problems—can make it difficult to achieve optimality when a
limited time window is available to run market-clearing algorithms. While some machine
learning techniques have been used to speed up SCUC solutions, these methods may
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produce sub-optimal or even infeasible solutions. In this chapter, we proposed a
machine-learning-assisted warm-start constraint generation algorithm that can achieve
optimal SCUC solutions in a significantly shorter amount of time. Our approach is based
on identifying invariant constraint sets from previous instances of the SCUC in an offline
fashion. As a result, much fewer iterations are needed to run the SCUC constraint
generation algorithm since a great majority of them have already been predicted. This
generally leads to significant SCUC solution time speed-ups, a necessary feature for future
low-carbon power systems.
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Chapter 4

Cost-Aware Bound Tightening for

Constraint Screening in AC OPF

In this chapter, we address the constraint screening problem using the bound tightening
technique in the context of the OPF problem formulated with a full ac power flow
characterization. As discussed in Chapter 1, the classic AC-OPF problem is both
non-linear, nonconvex, and therefore NP-hard. Due to the non-convexity of the AC-OPF,
we investigate line constraint screening under different convex relaxations of the problem.
In this chapter, we introduce a valid inequality constraint that is directly connected to the
objective function of the AC-OPF in the bound-tightening optimization-based screening
approach. We employ constraint learning to augment an upper-bound cost-driven
constraint derived by fitting an appropriate regression model using past instances of the
AC-OPF problem. Hence, we reduce the conservativeness of the screening approach using
the available historical data and thus lead to a tighter AC-OPF formulation.

4.1 Introduction

The optimal power flow (OPF) problem seeks to find optimal operating conditions subject
to physical and engineering constraints of power systems [33, 55]. The OPF incorporates
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physical constraints to represent power flow phenomena and constraints such as voltage,
generator, and line flow limits. The ac optimal power flow (AC-OPF) problem is both
nonlinear, nonconvex and therefore NP-hard [55]. Furthermore, the number of variables and
constraints becomes large as network size increases, posing more computational challenges
for large realistic systems.

Despite the fact that all constraints in the OPF problem must be satisfied for a solution
to be feasible, power system operators’ experience and past research have shown that only a
small proportion of the problem’s inequality constraints (especially line flow limits) can be
potentially binding (i.e., satisfied with equality) at the optimal solution [33]. As a result, it
is widely common to screen out redundant constraints in order to reduce the problem size
and speed up computations.

Umbrella constraint discovery is a pioneer constraint screening algorithm which has been
proposed for DC-OPF problems to filter out redundant constraints [33]. Another dominant
technique is optimization-based bound tightening (OBBT) which was proposed primarily to
enhance the quality of convex relaxations of OPF problems [118,119]. The general procedure
of OBBT is performed by minimizing or maximizing the desired variable while considering
the constraints of the relaxation. This approach has been extended to screen out line flow
constraints in DC-OPF, unit commitment [106] and AC-OPF [121] problems. Using OBBT,
the authors of [106, 121] identify line flow limits that will never become active by solving
one minimization and one maximization optimization problem associated with each line
flow limit. In a broader sense, several constraints are satisfied indirectly through other
constraints in the problem, allowing them to be eliminated confidently before requesting a
solver’s assistance.

At the same time, several convex relaxations of the AC-OPF problem have garnered
substantial attention for various reasons. These relaxations include the quadratic convex
relaxation (QCR) [118], the semidefinite relaxation (SDR) [146], and the second-order cone
relaxation (SOCR) [147]. Generally, convex relaxations are only approximations of the
original nonconvex optimization problem; they offer a limit on the best possible global
optimal value of the AC-OPF problem. The advantage of convex relaxations with respect
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to constraint screening problems is that relaxations provide a lower (optimistic) objective
bound (assuming the problem is a minimization; the converse applies if one is solving a
maximization). Therefore, if the limit provided by a relaxation falls within the set
boundaries for the restricted variable, we can be confident that the constraint is
unnecessary or redundant in the original problem [121].

In this chapter, we propose a refinement to OBBT for AC-OPF constraint screening.
First, instead of attempting to solve OBBT with the nonconvex AC-OPF problem directly,
we utilize a convex relaxation to establish an upper bound on the global solution. Second,
rather than identifying only redundant line constraints as suggested in [121], we propose a
valid upper bound inequality constraint that embodies prior economical information to filter
out even more redundant constraints. This refinement distinguishes between redundant,
active, and inactive constraints in the AC-OPF problem. Finally, we apply the proposed
method on state-of-the-art convex relaxations [148] to compare the relative effectiveness of
the our proposal. The main contributions of this chapter are twofold:

1. To investigate constraints screening for the AC-OPF problem and show how different
convex relaxations yield varying outcomes. We provide a comparative analysis to
determine the conservativeness of various convex relaxations in terms of constraint
screening.

2. To improve the OBBT method to identify not only redundant constraints but also
inactive ones, thus leading to lighter AC-OPF formulations.

4.2 AC Optimal Power Flow Formulation

Consider a typical power system which consists of a set of N = {1, . . . , n} buses (a subset of
which have generators denoted by the set G) and L = {1, . . . , l} branches. Every node k ∈ N
in the network has three properties, voltage vk = Vk∠δk, power generation sGk

= pGk
+ jqGk

,
and power consumption sDk

= pDk
+ jqDk

, all of which are complex numbers because of
the AC power’s oscillatory characteristics. Each branch ℓ ∈ L has a series admittance
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yℓ = gℓ + jbℓ and a total shunt susceptance b′
ℓ. We denote each bus’s shunt conductance and

susceptance as g′
k and b′

k, respectively. Each branch ℓ ∈ L has a from end k and a to end
m such that we denote ℓ = (k, m). From these we have active and reactive power flows for
each branch ℓ leaving its from end—pfℓ, qfℓ—and corresponding flows at its to end—ptℓ, qtℓ.
Lastly, in the case where a branch ℓ is a tap-changing transformer, we denote its off-nominal
setting with the symbol tℓ. The AC-OPF problem is formulated as specified in [148,149]:

min
∑
g∈G

cg2p
2
Gg + cg1pGg + cg0 (4.1)

where variables pG, qG ∈ R|G|, pf , qf , pt, qt, t ∈ R|L|, and v ∈ C|N |, is subject to:

∑
g∈Gk

pGg − pDk − g′
k |vk|2

=
∑

ℓ=(k,m)∈L
pfℓ +

∑
ℓ=(m,k)∈L

ptℓ, ∀k ∈ N (4.2)

∑
g∈Gk

qGg − qDk + b′
k |vk|2

=
∑

ℓ=(k,m)∈L
qfℓ +

∑
ℓ=(m,k)∈L

qtℓ, ∀k ∈ N (4.3)

vk

tℓ

[(
j

b′
ℓ

2 + yℓ

)
vk

tℓ

− yℓvm

]∗

= pfℓ + jqfℓ, ∀ℓ = (k, m) ∈ L (4.4)

vm

− yℓ
vℓ

tℓ

+
(

j
bℓ

2 + yℓ

)
vm

∗

= ptℓ + jqtℓ, ∀ℓ = (k, m) ∈ L (4.5)

p
Gg

≤ pGg ≤ pGg
, q

Gg
≤ qGg ≤ qGg, ∀g ∈ G (4.6)
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|pfℓ + jqfℓ| ≤ s̄ℓ, |ptℓ + jqtℓ| ≤ s̄ℓ, ∀ℓ ∈ L (4.7)

vk ≤ |vk| ≤ vk, ∀k ∈ N (4.8)

∠v1 = 0 (4.9)

The objective function (4.1) minimizes the total production cost, with cg2, cg1 and cg0

denoting the coefficients for a quadratic cost function for all g ∈ G. Constraints (4.2)–(4.3)
represent the nodal power balance equations for active and reactive powers, respectively.
Constraints (4.4)–(4.5) represent the active and reactive power flow equations in each branch.
In addition to these physical laws, operational constraints (4.6)–(4.9) are required in AC
power flows. Constraints (4.6)–(4.7) impose limits on generator active and reactive power
outputs and line thermal limits, respectively. We assume that vk > 0 for all k ∈ N in (4.9).
Constraint (4.10) specifies, without loss of generality, node k = 1 as the reference.

Constraints (4.4) and (4.5) are nonlinear and nonconvex; this makes problem (4.1)–(4.9)
difficult to solve and, in fact, NP-hard [55]. Applying local methods to this problem provides
no guarantees on the optimality of any solution found. Moreover, it is intractable to solve
to global optimality for large-scale instances. Hence, techniques aiming at convexifying and
reducing the dimensions of this problem are part of one’s arsenal in the hope of efficiently
finding a good local optimal solution to this problem.

4.3 Line Flow Constraint Screening

4.3.1 Existing Optimization-based Screening Approaches

This chapter proposes a screening method for line thermal limits adapted to the AC-OPF
problem. The method uses optimizations to determine each line’s minimum and maximum
power flow values subject to all other constraints. If those flows are within the specified line
flow limits, the limits are considered to be redundant and can be eliminated. However, if the
flows reach established limits, the constraint is non-redundant. The method first assesses the
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binding potential of constraints based on the other problem constraints without considering
generation cost functions.

Here we formulate the OBBT problem. It involves the solution of two maximization and
two minimization problems for each line flow constraint across a range of load fluctuations.
The constraint screening problem objective (4.11) aims to minimize and to maximize active
and reactive power flows while considering all the remaining constraints of the original OPF
(4.2)–(4.10), including added load variability constraints (4.12)–(4.13). The optimization
problem includes additional decision variables for every active load pDk

and reactive load qDk

for each k ∈ N . We assume that the power losses are small in typical meshed transmission
networks, which means pfℓ ≈ −ptℓ, while a similar assumption applies to reactive power
flows. Hence, we consider only one line end (to) for the optimization problems in (4.11).
The parameter λ specifies load uncertainty ranges, and p◦

Dk
and q◦

Dk
refer respectively to

nominal nodal active and reactive power loadings.

min
v,t,pG,qG,pD,qD

/ max
v,t,pG,qG,pD,qD

ptℓ/qtℓ (4.10)

subject to:
Constraints (4.2) − (4.9) (4.11)

(1 − λ)po
Dk

≤ pDk
≤ (1 + λ)po

Dk
, ∀k ∈ N (4.12)

(1 − λ)qo
Dk

≤ qDk
≤ (1 + λ)qo

Dk
, ∀k ∈ N (4.13)

When the optimal solution of (4.10)–(4.13) (whether one is maximizing or minimizing
and is optimizing either one of ptℓ or qtℓ) is such that |p⋆

tℓ + jq⋆
tℓ| = s̄ℓ, it indicates that the

flow limit for line ℓ is non-redundant. On the other hand, if flows are strictly within their
allowable range, the corresponding bounds are redundant and could be ignored when solving
(4.1)–(4.10). We will refer to this formulation as the benchmark approach (BA).
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Figure 4.1: Observed production cost against system net load.

4.3.2 Cost-Driven Constraint Screening

To further the power of OBBT in screening line flow constraints, we propose to add an extra
valid inequality whose role is to capture the effect of the original problem’s objective function
(4.1) as part of constraint screening. For this, we add the constraint

∑
g∈G

cg2p
2
Gg + cg1pGg + cg0 ≤ C̄ (4.14)

to (4.10)–(4.13). This constraint, by putting an upper bound on the operational cost, ends
up identifying line flow constraints which are not only non-redundant but also potentially
binding in the original problem. This is the case because (4.14) limits the allowable power
generation in a way similar the objective function (4.1) is attempting to minimize cost. We
note here that the right-hand side of (4.14) C̄ is a function of the forecasted net load in the
power system, and it reflects expected system-level operating costs for the given net load
forecast. Also, C̄ would be set slightly higher than historically-observed system costs for
similar loading levels to lower the risk of infeasibility of OBBT.

Fig. 4.1 provides an illustration of the total operating cost as a function of the aggregated
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active power demand for 200 prior problem instances of (4.1)–(4.9), with Cmax being the
highest observed cost. It is not surprising that various allocations of demand among network
buses may result in different operating costs, even if the aggregated net demand values are
similar. In fact, one could argue that setting C = Cmax is a possible option; however, it is
all but too conservative. In fact, for low net demand values, the actual operating cost would
be much lower than this upper bound. This implies that the constraint-screening capability
with (4.14) would not be superior to that of (4.10)–(4.13) in such a scenario. Therefore, to
maximize the benefits of the valid inequality, we make Cmax dependent on the active power
demand. By doing this, it is possible to obtain tighter upper bounds for all net demand
levels, which would enable a larger number of line capacity constraints to be screened out.

Next, we will explain the reasons behind our modeling choice for estimating the function
C(pD), where pD is the active power demand vector. To minimize the complexity of the
model and the possibility of over-fitting, we opt to make the upper-bound C dependent on the
aggregated active power demand only D = ∑

k∈N pDk
, instead of utilizing all nodal active

power demands as explanatory variables. Furthermore, to ensure that problems (4.10)–
(4.13) remain manageable and computationally tractable, we choose to approximate the
relationship between the upper-bound Cmax and the aggregated net demand D using a linear
function [108]. The upper bound for an aggregate net demand D can be thus computed as:

C(D) = (1 + ∆σ)a0 + (1 + Γ)b0D (4.15)

where a0 and b0 are the intercept and slope of the linear function. Obviously, here there
is some tuning to be carried out in determining the parameters a0 and b0 of the proposed
cost upper bound, while ∆σ and Γ are user-specified conservativeness parameters as defined
previously in chapter 2.

Hence, we cast the cost-driven optimization-based screening as follows:

min / max ptℓ/qtℓ (4.16)
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subject to:
Constraints (4.2) − (4.9), (4.12) − (4.13) (4.17)

∑
g∈G

cg2p
2
Gg + cg1pGg + cg0 ≤ (1 + ∆σ)a0 + (1 + Γ)b0D (4.18)

D =
∑
k∈N

pDk
(4.19)

Dmin ≤ D ≤ Dmax (4.20)

The minimum and maximum aggregate net demand is denoted by Dmin and Dmax,
respectively. We will refer to this approach as cost-driven (CD) optimization-based bound
tightening constraint screening. We also introduce a different version of the cost-driven
approach where the cost upper bound —i.e. the right-hand side of constraint (4.14)— is
modeled as C(D) = Cmax. In this case, the cost upper bound limit represents the
maximum observed cost and is not a function of aggregate net demand. We refer to this
this approach as the naive cost-driven (NCD) approach.

4.4 AC-OPF Convex Relaxations

As argued in the introduction, globally solving problem (4.1)–(4.9) is challenging, as the
AC-OPF problem is NP-hard. Convex relaxations of the AC-OPF problem have garnered
substantial attention in recent years. Convex relaxation extends the nonconvex AC-OPF
feasible space to become convex by adding infeasible points while including all the feasible
points of the original AC-OPF. Actually, utilizing convex relaxation to solve AC-OPF
presents numerous advantages. Firstly, they have the potential to achieve global optimality.
Secondly, being relaxations, they offer a bound on the global optimal value of the AC-OPF
problem. Thirdly, if any of these relaxations proves infeasible, it indicates that the original
AC-OPF problem is also infeasible. Integrating these features with powerful convex
optimization tools used in industry, like Gurobi [150] and Mosek [151], opens new venues to
develop new efficient approaches and algorithms for the AC-OPF problem.
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For the constraint screening approach, we use convex relaxations to bound its possible
(if feasible) global solution. If the limit of the relaxed bound falls within the set limits of the
constrained quantity, then we can be certain that a constraint under study through OBBT
is redundant. We will compare the performance of four state-of-the-art convex relaxations
namely, the QCR relaxation [118], the SDR relaxation [146], the SOCR relaxation [147], and
the tight-and-cheap relaxation (TCR) [149]. In the optimization-based screening approach,
we substitute the original AC-OPF set of constraints in (4.11) with each convex relaxation.
The interested reader is invited to consult [118,146,147,149] for detailed descriptions of each
of those formulations.

4.4.1 Semidefinite Relaxation (SDR)

Assuming V = vvH , the AC-OPF problem (4.1)–(4.9) can be reformulated as follows:

min
∑
g∈G

cg2p
2
Gg + cg1pGg + cg0 (4.21)

subject to:

Constraints (4.6), (4.7), (4.9) (4.22)

∑
g∈Gk

pGg − pDk − g′
kVkk

=
∑

ℓ=(k,m)∈L
pfℓ +

∑
ℓ=(m,k)∈L

ptℓ, k ∈ N
(4.23)

∑
g∈Gk

qGg − qDk + b′
kVkk

=
∑

ℓ=(k,m)∈L
qfℓ +

∑
ℓ=(m,k)∈L

qtℓ, k ∈ N
(4.24)

1
|tℓ|2

(
−j

b′
ℓ

2 + y∗
ℓ

)
Vkk − y∗

ℓ

tℓ

Vkm

= pfℓ + jqfℓ, ℓ = (k, m) ∈ L
(4.25)
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−y∗
ℓ

t∗
ℓ

V mk +
(

−j
b′

ℓ

2 + y∗
ℓ

)
Vmm

= ptℓ + jqtℓ, ℓ = (k, m) ∈ L
(4.26)

v2
k ≤ Vkk ≤ v2

k, k ∈ N (4.27)

|Im (Vkm)| ≤ Re (Vkm) tan δ̄ℓ, ℓ = (k, m) ∈ L, (4.28)

V = vvH (4.29)

We denote the phase angle difference as |∠vk − ∠vm| ≤ δ̄ℓ, ∀ℓ = (k, m) ∈ L such that
0 < δ̄ℓ < π/2 for all ℓ ∈ L. Therefore, we added the constraint (4.28) to the formulation.
The nonconvexity of problem (4.21)–(4.29) is seen with the constraint (4.29). It can be
shown that V = vvH if and only if V ⪰ 01 and rank(V ) = 1. However, standard semidefinite
relaxation is derived by eliminating the rank constraint which is non-convex [146].

4.4.2 Second-order Cone Relaxation (SOCR)

Different relaxations have been derived by manipulating the nonconvex constraint (4.29) in
different ways. For instance, the second-order cone relaxation (SOCR) [152] has been derived
by relaxing V ⪰ 0 in SDR by |L| constraints in the matrix as follow:

V{k,m} =

 Vkk V km

V ∗
km V mm

 ⪰ 0, ∀(k, m) ∈ L (4.30)

Hence, constraint (4.29) in SDR will be replaced by (4.30) which leads to a new
formulation called SOCR.

4.4.3 Tight-and-Cheap Relaxation (TCR)

Inspired by the SDR formulation, and to enhance the computational complexity of SDR for
large-scale power systems, the authors of [149] derived a computational cheaper reformulation

1The symbol ⪰ means positive semidefinite.



4. Cost-Aware Bound Tightening for Constraint Screening in AC OPF 100

of the semidefinite relaxation. The constraint (4.30) has been replaced using the following
constraint


1 v∗

k v∗
m

vk V kk V km

vm V ∗
km V mm

 ⪰ 0, ∀ℓ = (k, m) ∈ L (4.31)

combined with the reformulation-linearization technique for the reference bus

Re (v1) ≥ V11 + v1v̄1

v1 + v̄1
, Im (v1) = 0 (4.32)

Hence, constraint (4.29) in SDR formulation has been replaced by combining (4.31) and
(4.32) which leads to TCR formulation.

4.4.4 Quadratic Convex Relaxation (QCR)

Finally, an alternative convex relaxation with similar benefits as that of the TCR is the
quadratic convex relaxation (QCR). We note also that the QCR can serve as an intriguing
substitute for the SDR because it is computationally cheaper. The previous relaxations
preserved the relation between V and v in constraint (4.29) in a rectangular form. The polar
coordinates of voltage variable v in constraint (4.29) is given by vk = |vk| and θk = ∠vk for
all k ∈ N . Hence, the connection between polar voltage variables v, θ and the voltage V can
be given by [153]:

Vkk = v2
k ∀k ∈ N , (4.33)

Re (Vkm) = vkvm cos (θk − θm) ∀ℓ = (k, m) ∈ L, (4.34)

Im (Vkm) = vkvm sin (θk − θm) ∀ℓ = (k, m) ∈ L, (4.35)

Next, we introduce auxiliary variables as suggested in [148]: wℓ = vkvm, c̃ℓ = cos (θk − θm)
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and s̃ℓ = sin (θk − θm) for all ℓ = (k, m) ∈ L. The QCR model addresses the non-convexity
of equations (4.33)–(4.35) by composing convex envelopes of these equations [120]. We
introduce the preliminaries for deriving the convex relaxation of these non-convex equations
in Appendix C, we use ⟨.⟩ notation to refer to it. The interested reader may refer to [120,154]
for a detailed explanation of this relaxation. We introduce QCR by relaxing non-convex
nonlinear equations (4.33)–(4.35) as done in [148]:

Vkk =
〈
v2

k

〉
, ∀k ∈ N , (4.36)

Re (Vkm) = ⟨wℓc̄ℓ⟩ , ∀ℓ = (k, m) ∈ L, (4.37)

Im (Vkm) = ⟨wℓs̄ℓ⟩ , ∀ℓ = (k, m) ∈ L, (4.38)

wℓ = ⟨vkvm⟩ , ∀ℓ = (k, m) ∈ L, (4.39)

c̄ℓ = ⟨cos (θk − θm)⟩ , ∀ℓ = (k, m) ∈ L, (4.40)

s̄ℓ = ⟨sin (θk − θm)⟩ , ∀ℓ = (k, m) ∈ L, (4.41)

θ1 = 0 (4.42)

The QCR relaxation will add the set of constraints (4.36)–(4.42) and (4.30) to the SDR
formulation in subsection 4.4.1 to construct the QCR formulation.

4.5 Case Studies

4.5.1 Computational Setup

This section demonstrates the methods described in section 4.3 and section 4.4 for various
PGLib-OPF test cases [138]. The implementation of all convex relaxations were based on
the CONICOPF package in [148]. We solved all the relaxations in MATLAB using CVX 2.2
with the solver MOSEK 9.1.9 and its default precision and parameters. All the computations
were carried out on an Intel(R) Core(TM) i7-11700K CPU @ 3.60 GHz and 64 GB of RAM.
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4.5.2 Results: Fixed Load

We consider the first scenario in which the active and reactive powers in (4.12) and (4.13)
are unique. Specifically, the elements in pD and qD are given by the dataset [138] (which is
assumed to be known). In this case, we will only be able to assess the benchmark and NCD
approaches.

Also, the original AC-OPF problem was solved using the MATPOWER-solver MIPS 7.0
to calculate the historical cost upper bound C̄. Notice that when the demand is fixed, the
CD approach becomes equivalent to the NCD approach. Moreover, to avoid an over-tight
cost upper bound, which could lead to infeasibility of (4.11)–(4.14), we set a conservativeness
factor to 2% 2 of the historical cost values, which we then applied as an additional component
on top of the historical cost values to establish the upper bound Cmax. In all cases here, we
consider load variability of λ = 0 around the nominal load values. All tap changers t are set
to their nominal levels and are not optimized.

The results in Table 4.1 summarize how the proposed constraint screening approach
works with (WB) and without (WTB) the addition of the cost upper bound (4.14) for the
four convex relaxations under consideration.

Firstly, all convex relaxations show a considerable enhanced constraint screening
performance with cost-driven tightening in comparison to the approach without cost-driven
tightening. Secondly, the SDR reveals the highest constraint screening ability with an
average of 83% and 77% superfluous constraint elimination with and without bound
tightening, respectively. This outcome complies with the fact that the SDR is the tightest
relaxation among those tested. Screening results for all other relaxations are compared to
those obtained with the SDR. SOCR is the weakest relaxation among the others
considering the screening approaches. TCR dominates QCR in five out of seven instances
for WB, while for WTB, TCR outperforms QCR in four out of seven instances. In fact,
TCR has achieved an optimum enhancement in terms of redundancy removal considering
the WB approach in comparison to the WTB approach by an average of 40%.

2For cases ‘case5 pjm’ and ‘case118 ieee’, the conservativeness factor is set to 10% and 5%, respectively.
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4.5.3 Results: Variable Load

We will now explore a different scenario where the net demand elements pD and qD are not
limited to a single element. The goal here is to examine the cost-driven OBBT capabilities in
the case of demand variation. For active load pDk

and reactive load qDk
for each k ∈ N , we

consider a uniform demand variation between the nominal base case values in [138] to 80%
of their nominal values. This means that positive active and reactive demands vary within
80% and 100% of their nominal value. For characterizing the cost-driven constraint (4.18) in
subsection 4.3.2, we generate a synthetic random loading factor vector in the range [0.8, 1.0],
consisting of 48 sorted elements. The loading factor is multiplied by the net load pDk

+ jqDk

for each k ∈ N to simulate 48 time instances for the AC-OPF problem. For the production
cost upper bound setting, we set ∆ = 3.3 and Γ = 0 for all test networks. For testing the
computational enhancement of the reduced AC-OPF, we test on 24 time instances generated
using the same approach used for determining cost-driven constraint. All these models were
implemented using a single-period AC-OPF problem with no inter-temporal constraints.

We will compare three optimization-based screening approaches: BA, NCD, and CD,
under three convex relaxations. These results have been recorded in Table 4.2 for different
PGLib-OPF test cases. We discard the SOCR from the comparison as a result of poor
performance in Table 4.1. From Table 4.2, the NCD approach with SDR and QCR has
achieved a negligible enhancement in terms of superfluous constraint elimination with respect
to the BA approach with an average of 2% and 3%, respectively. While the TCR increases the
percentage of redundant constraint elimination approximately by an average of 16% across
all test cases with respect to BA approach under the NCD approach. Moreover, across all
convex relaxations, the CD approach demonstrates notably improved constraint screening
performance compared to the other two approaches. The TCR under the CD approach results
in a 92% increase in the percentage of superfluous constraint elimination compared to the BA
approach under the same relaxation. While SDR and QCR under the CD approach increase
the percentage of the superfluous constraint elimination by 44% and 54%, respectively with
respect to their BA approaches. The outcomes of this comparison across standard test cases
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Table 4.2: Percentage of Redundant Line Flow Constraints Identified From Each Convex
Relaxation – Variable Load

Method SDR TCR QCR SDR TCR QCR SDR TCR QCR
Test case BA approach NCD CD
case5 pjm 50 0 0 50 33 0 83 83 50
case24 rts 79 55 58 82 55 58 82 61 58

case30 59 46 29 59 46 34 93 90 34
case30 as 10 5 2 12 5 2 56 49 22

case57 ieee 95 85 81 95 85 81 99 98 88
case118 ieee 46 14 18 46 14 18 83 77 46

Average (change %) 56 34 31 57 (2%) 40 (16%) 32 (3%) 83 (44%) 76 (92%) 50 (54%)

indicate that the SDR relaxation offers a tighter relaxation, allowing for the exclusion of a
significantly larger number of constraints.

Furthermore, Fig. 4.2 shows the percentage of change in a few case studies which drives
this improvement in constraint screening capabilities considering both NCD and CD
approaches with respect to the BA approach. In the case of case30 as network, the CD
approach significantly increases the superfluous constraints by approximately 480% when
compared to the BA approach using SDR relaxation. While for the same network, TCR
and QCR approaches achieve an increase in the constraint redundancy removal percentage
by 800% and 900% compared to their BA approches, respectively. Also, for the 118 IEEE
test system, TCR, QCR, and SDR combined with CD approach increase the constraint
elimination by 450%, 160%, and 80%, respectively. In contrast, the conservative
cost-driven optimization-based screening demonstrates either no discernible difference or
only minor enhancement concerning redundant constraint removal when compared to the
BA approach. Finally, we used 24 testing time instances to check whether the reduced
AC-OPF problem for each convex relaxation produces the same solution as the original
relaxation or not. All the testing instances for the three convex relaxations verify that the
cost-driven constraint screening does not affect the optimality gap 3 resulting from the full

3optimality gap is calculated as the percentage difference between the lower bound obtained from a convex
relaxation and the upper bound provided by MIPS
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Figure 4.2: Percentage change of redundant constraints in NCD and CD approaches
compared to BA approach.

convex relaxation solution while it considerably enhancing the computation time.

4.5.4 Computational Advantage of Constraint Screening for AC-

OPF

Eliminating unnecessary constraints decreases the size of optimization problems. In this
context, we explore the computational benefits of employing the cost-driven constraint
screening approach outlined in subsection 4.5.2 for solving reduced AC-OPF problems. We
will assess the solution time of the simplified AC-OPF problem, obtained by removing
unnecessary constraints, in comparison to the full AC-OPF problem for each convex
relaxation. Here, we will examine the computation complexity for the case of fixed load in
subsection 4.5.2. We apply the outcomes derived from the bound tightening scenario in
Table 4.1 to solve a reduced AC-OPF problem for a single-demand instance. Additionally,
we solve the full AC-OPF under the same convex relaxation. Fig. 4.3 shows the percentage
difference in CPU time needed to solve the simplified AC-OPF in comparison to the full
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Figure 4.3: Computation advantage of reduced AC-OPF with respect to full ACOPF –
Fixed Load

AC-OPF problem under each convex relaxation. We observe that QCR relaxation reveals
the lowest computation time enhancement with respect to full AC-OPF. The computation
savings for QCR compute time is less than 12% for all test instances reported in Fig. 4.3.
Conversely, the SDR and the TCR show a considerable time reduction in AC-OPF
compute time. The reduced AC-OPF with the SDR illustrates a decrease in the solution
time ranging from 19% to 36% across the test networks. Furthermore, the TCR with
constraint elimination demonstrates a reduction in the solution time ranging from 9% and
41%.

4.5.5 Computational Complexity of Screening for AC-OPF

OBBT—with and without a cost upper bound—entails having to run two minimizations and
two maximizations for each branch in a sequential manner for transmission line constraint
screening. The total CPU screening time across the three different approaches, namely
the benchmark approach, the naive cost-driven approach, and the cost-driven approach
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Figure 4.4: Screening time under CD approach.

is relatively the same for the test cases under the study for the variable load scenario.
Therefore, we will analyze the screening time considering the cost-driven OBBT approach
i.e. CD approach. It is clearly shown from Fig. 4.4 that among the three convex relaxations
considered, the screening time is proportional to the size of the network. Also, the QCR
revealed the highest screening computational cost. TCR’s computational time is slightly
faster than SDR for small-size test systems, but it is considerably faster than SDR for larger
systems.

Overall, the cost-driven constraint screening approach has augmented the economical
aspect of the objective function into the conventional OBBT. The computational effort for
cost-driven OBBT is similar to the conventional one. The cost-driven OBBT constraint
screening does not jeopardize the lower-bound solution revealed by the original convex
relaxation. The outcomes of this evaluation across standard test cases indicate that the
SDR relaxation proves to be the tighter relaxation as it allows for the exclusion of a
significantly larger number of constraints. The encouraging reduction in computational
time achieved through the screening of line constraints can be expanded to encompass the
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screening of other constraints as well. More specifically, voltage constraints represent
cumbersome for the solver as they are more dense constraints compared to line constraints.
Besides eliminating the constraints only, variables can also be removed if they are
associated with redundant or inactive constraints and are not part of the objective
function.

4.6 Summary

We have extended the cost upper bound proposal from Chapter 2 to constraint screening of
convex relaxations of the AC-OPF. Cost-driven constraints clearly enhanced the screening
capabilities of the standard optimization-based bound tightening (OBBT) method and
provides a future venue to embodied critical information from non-convex AC-OPF into
convex relaxations. Using PGLib-OPF test cases with up to 118 buses, we show that on
average, SDR dominates other relaxations. Furthermore, for the test cases with and
without bound tightening, TCR is stronger than QCR. Results show that cost-driven
constraint-reduced AC-OPF convex relaxations obtain better solution time performance
than the original unscreened relaxations.
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Chapter 5

Flexibility Characterization in the

Demand Space: A Data-Driven

Inverse Optimization Approach

Chapters 2 and 3 presented and validated different approaches for managing the flexibility of
conventional generators to meet net loads using the unit commitment. This chapter presents
a framework for quantifying and characterizing the existing system flexibility for given unit
commitment solutions and network topologies under uncertain net load. In this chapter, we
propose a novel data-driven inverse optimization framework for flexibility characterization
of power systems in the demand space along with its geometric intuition. The approach
captures the spatial correlation of multi-site renewable generation and load using polyhedral
uncertainty sets. Moreover, the framework projects the uncertainty on the feasibility region
of power systems in the demand space, which are also called loadability sets. By using inverse
optimization, we succeed in inferring system flexibility adequacy or lack thereof.
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5.1 Introduction

The shares of renewable energy resources (RES) have increased significantly in the last
decade and will grow at even faster paces as economies decarbonize and electrify. This
large-scale, uncertain, and volatile renewable generation creates many challenges to power
system operations. Power system flexibility is defined as the system’s ability to
accommodate any component outage or variation in its net load (i.e., demand less
non-dispatchable generation) to keep the system secure [2]. The increasing integration of
renewable energy sources into large-scale power systems necessitates adequate flexible
resources to address the real-time imbalances between generation and demand. Diverse
flexibility resources, such as conventional controllable power plants, energy storage, and
demand response, can effectively address the requirements for flexibility.

In general, quantifying power system flexibility for bulk power system operation with
renewable energy sources can be classified into two main categories [51]. The first category
focuses on the robust generation scheduling problem, aiming to handle the pre-specified
uncertainty as previously addressed in chapter 2. The second category addresses a different
problem: assessing the extent to which available resources can manage net load uncertainty.
This involves evaluating the system’s flexibility under the given operating conditions. In this
chapter, our focus will be on assessing flexibility from the perspective of the second category.

Explicit flexibility assessment is characterized mainly through the use of region-based
geometrical approaches. A pioneering study proposed the concept of do-not-exceed (DNE)
limits to define the maximum variations of uncertain parameters a system can
accommodate using robust optimization [155]. These limits leverage unambiguously the
utilization of renewable resources while treating uncertainty sets as a decision variable.
Further enhancements of the DNE dispatch method has been proposed considering
corrective topology control actions [156], and using historical data of wind power
realizations [157]. Along similar lines, the dispatchable region concept was introduced to
characterize flexibility regions explicitly. The authors of [158] characterized the
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dispatchable region of wind generation and revealed its geometry to be a polytope in
uncertainty space. This concept was generalized in [159] to include a full ac network model.
Another form of dispatchable region was optimized using energy and reserve scheduling
based on an affine redispatch policy [160]. The flexibility set determination approach
proposed in [161] infers a polytope describing the allowed deviations from current system
state in generation and tie lines spaces. Likewise, reference [162] estimated the size of a
power system’s feasible region in generation space under different levels of uncertainties.

Similar research directions have expanded to quantify flexibility using various metrics.
Zhao et al. [163] suggested a flexibility measure based on a system’s DNE region. They
defined a binary flexibility metric to check if the largest variation of uncertainty is within
the admissible range or not. Another flexibility framework has quantified insufficient
flexibility by power imbalance event magnitude and frequency [164]. There is a family of
publications [52, 165–167] that investigated wind generation admissibility assessment using
two-stage robust optimization. In these publications, wind accommodation capabilities
under a given solution UC strategy is assessed using expected load shedding and wind
curtailment.

However, most of the previous work was built on budget-constrained polyhedral
uncertainty sets and neglected spatial and temporal trends in historical data [52, 165, 166].
Another drawback of budget-constrained uncertainty modeling is the combinatorial growth
of vertices needed to represent the uncertainty set with respect to the uncertain
parameters [48]. A more accurate way of modeling uncertainty is to calculate the convex
hull of spatial and temporal scenarios for wind generation admissibility assessment [167].
The empirical study in [114] does not recommend the use of the convex hull for wind and
photovoltaics in dimensions higher than four—a number too small for practical
applications—because of inherent computational costs.

From a broader perspective, the majority of region-based flexibility assessment methods
have assessed and visualised dispatchable regions in either generation or uncertainty spaces
considering system operational constraints regardless of the uncertainty impacts of the RES
output [158, 159, 168]. Moreover, when the dimensionality of the uncertainty grows, these
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regions cannot be easily visualized. This chapter’s proposal attempts to fill this research gap
by developing a comprehensive flexibility assessment framework under deep penetration of
renewables, leveraging the advantages of region-based approaches and metric-based methods.
In this context, the proposed method is considered a complement to energy and reserve
scheduling problems [48, 50], and belongs to the latter type of flexibility assessments such
as [51]. The framework relies on a given unit commitment strategy, and consequently assesses
the impact of the uncertainty of RES outputs at a given operating condition.

Compared to previous work, our proposal has the following features. First, it extends the
notion of RES accommodation assessment proposed in [155,158,165], which maps feasibility
regions from the generation-demand space to the demand space only using the loadability
set approach [125,128,169]. Second, it captures the spatial correlation of multiple renewable
generation sites and loads using data-driven polyhedral uncertainty sets. In addition, a
novel data-driven inverse optimization problem formulation is proposed to identify existing
system flexibility for uncertainty mitigation by exploring the feasibility region of a linear
programming (LP)-relaxation i.e loadability set. Finally, this assessment is meant to be
quantitatively indicative of how much “room” exists in the bulk power system to handle net
load uncertainty for given unit commitment solutions and network topologies. In cases where
flexibility is found to be inadequate, the inverse optimization problem is able to quantify the
“shortest distance” to flexibility adequacy.

The main benefit of our work proposed in this chapter is summarized as follows.

1. We revisit the loadability set characterization and implicitly incorporate the data-
driven uncertainty set to redefine the loadability set.

2. We propose a unified framework to characterize power system flexibility explicitly and
geometrically in the demand space using a data-driven inverse optimization technique
(DDIO).

3. We present a solution methodology for DDIO which considers uncertainty sets which
may or may not intersect its feasibility region along with its geometric intuition.
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Figure 5.1: Overview of the method proposed in this chapter

4. We propose a framework that has the ability to assess both excessive and inadequate
system flexibility by assessing how far operating points are from their feasibility region
boundaries.

An overview of our proposed method in this chapter is shown in Fig. 5.1.

5.2 Data-Driven Nodal Net Load Uncertainty Set

In this chapter, we will use the previously developed uncertainty set DPUS P2(S, K) as
described in subsection 2.3.1 in chapter 2. For brevity, we will refer to DPUS P2(S, K)
as PUS in this chapter. Without reinventing the wheel here, assuming that the number
of historical forecast error data points is large and reflects a good sample of a diversity
of operating conditions, we argue that PUS(S, K) is time invariant. Therefore, we posit
that PUS shifted by a vector of nodal net load forecasts looking into the future (i.e., not
historical, like µ in chapter 2) d0 is an adequate representation of possible future net load
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Figure 5.2: Two-dimensional polyhedral uncertainty set.

and its uncertainty. Otherwise said, we define the forward-looking net load PUS as

P (S, K) =
{

E ∈ RN | E = d0 +
K∑

k=1

(
ω+

k S+
k + ω−

k S−
k

)
,

K∑
k=1

(
ω+

k + ω−
k

)
= 1,

0 ≤ ω+
k ≤ 1, 0 ≤ ω−

k ≤ 1, ∀k

 (5.1)

Fig. 5.2 illustrates the construction of PUS in a two-node power system. In this example,
we see the original historical net load forecast error data, represented by blue dots, and
the data projected onto two of its principal components (orange dots). By inspection, the
rhombus-shaped envelope, whose principal axes correspond to the principal components of
the data, encapsulates the vast majority of the original data. Moreover, the vertices of
this rhombus correspond to the extrema of the data projection into the retained principle
components as previously mentioned in chapter 2. Moreover, we notice here that d0 =[
2.5 3.0

]⊤
MW is the forecast net load at nodes 1 and 2, respectively.
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Compared to the conventional convex hull encapsulation approach [48], the number of
edges of the PUS depends on the chosen number of retained principal components K, which
can be at most 2N , Moreover, PUS can be represented using 2K linear constraints.

In the context of this chapter, we sought to determine the smallest possible loadability
sets. The reason why one would want to find the smallest loadability set is to be able to
reliably test whether or not a net demand vector would be feasible in a given network-
constrained generation scheduling or dispatch problem. If a loadability set is loose (like
P1(S, K) in comparison to P2(S, K)), there is a chance that some net demand vectors may
be deemed feasible while, in fact, they are not.

5.3 Net load forecast errors Uncertainty

Accommodation Assessment Framework

5.3.1 Introduction

The standard two-stage robust unit commitment with a single uncertainty set [48]
determines in the first-stage the generators’ commitment status, energy and reserve
schedules. The second-stage finds the minimum cost redispatch solution given the worst
uncertainty realization. This computationally-heavy approach goes against existing
industry practice, where stress tests are applied ex-post as offline validation procedures [48].

Next, we present, starting from a first-stage unit commitment solution, how much
uncertainty can be handled by a power system. For expository purposes, we use a relaxed
linear optimization of the second-stage assuming first-stage variables are known, as it is
usually the case in most RES admissibility assessment frameworks [52,155,158,165,166].

5.3.2 Problem Formulation

A net load admissibility framework evaluates quantitatively how much demand less non-
dispatchable renewables can be accommodated by the bulk power system given a specific
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UC solution without causing any operational infeasibility.
We formulate the following linear optimization problem, which optimizes net load

admissibility as a function of the first-stage unit commitment solution, expressed by the
collection of the tuples ζm = (um, g0

m + r↑
m, g0

m − r↓
m) for each of the system’s dispatchable

generators m ∈ M = {1, . . . , M}. Specifically, ζm contains: um its commitment status
(on/off), g0

m its scheduled power output, and r↑
m and r↓

m respectively its scheduled up- and
down-reserves.

f(ζ1, . . . , ζM) = min
ĝ,q,ϵ,d

N∑
n=1

γ |ϵn| (5.2)

Subject to:

qn + ϵn = ĝn − dn, ∀n ∈ N (5.3)
N∑

n=1
qn = 0 (5.4)

ĝn ≤
∑

m∈Mn

(
g0

m + r↑
m

)
, ∀n ∈ N (5.5)

ĝn ≥
∑

m∈Mn

(
g0

m − r↓
m

)
, ∀n ∈ N (5.6)

∑
m∈Mn

(
g0

m − r↓
m

)
≥

∑
m∈Mn

gmin
m um, ∀n ∈ N (5.7)

∑
m∈Mn

(
g0

m + r↑
m

)
≤

∑
m∈Mn

gmax
m um, ∀n ∈ N (5.8)

−fmax
l ≤

N∑
n=1

hlnqn ≤ fmax
l , ∀l ∈ L (5.9)

dmin
n ≤ dn ≤ dmax

n , ∀n ∈ N (5.10)

The objective function (5.2) minimizes the “cost” of total power imbalance, which
consists of renewable curtailment and load shedding, as captured by the slack variables ϵn

and weighed by an imbalance price γ. Constraint (5.3) determines the net power injection
at each bus, while constraint (5.4) guarantees power balance across the system. The
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dispatchable generation capacity limits, and up and down reserves limits are defined by
constraints (5.5)–(5.8), respectively. Constraint (5.9) enforces flow limits on the
transmission lines. Finally, net load vector limits are enforced using minimum and
maximum limits, as denoted by dmin

n and dmax
n , respectively. We will refer to this model as

the benchmark approach (BA) for evaluating net load admissibility.

5.3.3 Limitations of the Benchmark Net Load Admissibility

Assessment Approach

The BA calculates allowable generation reserve deployment variables bus-per-bus
ĝn = ∑

m∈Mn
gm, net power injections qn, allowable net loads dn and their possible

curtailment ϵn, ∀n ∈ N based on the specified range of net loads set in (5.10).
The first drawback of the BA relates to the modeling of net load range limits (5.10),

which is a simple box in N -dimensional space. This constraint may lead to sub-optimal
or even incorrect admissibility assessments because it ignores the spatial correlation which
may exist among net loads at different locations of a power system. Instead, we argue in
favor of the use of a PUS, dn ∈ P2(S, K) as described in section 5.2 which captures those
correlations.

Another shortcoming of the BA occurs when the N -dimensional box of net loads (5.10)
is big enough that none of the inequality constraints (5.5)–(5.9) are active. In this case, the
objective function of the BA equals zero, which means that the power system has sufficient
reserve and transmission capacity to handle all allowable net load values. In these cases,
one may argue that too much flexibility—in the form of reserves—was scheduled, which may
be grossly uneconomical. On the other hand, there may also be cases where the margin
offered by scheduled flexibility resources and available transmission capacity with respect to
the range of net loads is in fact very small. These are risky situations, where simple errors
in characterizing the net load range, may lead to infeasibility, albeit the original flexibility
assessment having come back with a positive outcome.

Clearly, the BA fails to assess the possible risks associated with poorly-assessed
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uncertainty that might lead to infeasibility. In this chapter, we will propose a framework
that has the ability to assess both excessive and inadequate system flexibility by assessing
how far operating points are from their feasibility region boundaries. We recall that the
aim of flexibility assessment methods such as ours and [52, 165–167] is to estimate possible
power imbalances; they do not calculate optimal reserve deployment such as dispatch
problems [48,50].

5.3.4 Feasibility Region Projection onto the Demand Space

The first step in recasting the BA, is to determine its corresponding loadability set. The
loadability set of a power system is a set of net load realizations that can be supplied by
generation while respecting all transmission and reserve capacity limits [169]. A loadability
set in the generation-demand space, Ξgd(ζ), is characterized as a function of ζ = [ζ1 · · · ζM ]⊤,
a specific unit commitment solution

Ξgd(ζ) = {(g, d) | (5.5) − (5.10)} (5.11)

On the other hand, the loadability set, Ξd(ζ), is the projection of Ξgd(ζ) onto demand space
only. It is defined as

Ξd(ζ) = {d | ∃(g, d) ∈ Ξgd(ζ)} (5.12)

The loadability set Ξgd(ζ) is a relaxation of the BA original feasibility region. It enforces
all its inequalities, but ignores its equality constraints. Alternatively, Ξd(ζ) describes which
net load vectors can be supported by a power system considering a specific unit commitment
instance ζ. As seen in [128] and [125], the projection process whereby we pass from Ξgd(ζ) to
Ξd(ζ) involves the generation of large numbers of constraints, many of which are redundant.

To counter the explosion in the number of redundant constraints associated with the
mapping of Ξgd(ζ) onto Ξd(ζ), we adopt the iterative approach for determining the minimal
representation of the loadability set proposed by [125]. This approach combines the umbrella
constraint discovery (UCD) algorithm and the Fourier–Motzkin elimination (FME) method
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as follows. First, we identify network constraints which are umbrella—i.e., which are non-
redundant in the BA and effectively contribute in shaping its feasibility region—, and we rule
out the corresponding redundant network constraints. Second, we construct the loadability
set in the generation-demand space considering the dispatchable generators capabilities and
umbrella network constraints only. The loadability set constraints are mapped from the
generation-demand space onto the demand space by removing the generator variables one
by one using FME [128]. After each elimination, redundant constraints are identified and
removed to keep the number of constraints as small as possible. We terminate the procedure
once all dispatchable generator variables have been eliminated.

5.4 Explicit Flexibility Characterization by Inverse

Optimization

In this section, inspired by recent advances in data-driven inverse optimization
techniques [170–172], we present how inverse optimization can be used to address the
flexibility assessment problem. Inverse optimization describes the “reverse” process of the
conventional mathematical optimization. An inverse optimization problem takes decisions
or observations as input and determines the objective function and/or the constraints that
render these decisions/observations approximately or exactly optimal. In fact, the classical
inverse optimization framework implicitly posits the existence of parameter values that
render the provided solution optimal [173]. Yet, in numerous applications, it might be
impractical to find parameter values that precisely accomplish this goal exactly [174].

The goal of inverse optimization (IO) shares similarities with certain machine learning
approaches. Both IO and ML seek to infer the unknown parameters of a model using
observable data. Nevertheless, a significant differentiation exists in the aspect that IO’s
model corresponds to the forward optimization, while its parameters carry meaningful
interpretability [175]. In our context, starting from an observable solution of an operational
planning problem, we can infer the critical constraint given an uncertain net load vector.
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In this case, IO offers a basic framework to do so.

5.4.1 Generalized Inverse Linear Optimization Problems

Here, we introduce a general inverse optimization (GIO) model [172] for a linear optimization
problem without making any explicit assumptions regarding its feasibility as in [170]. First,
we start from a linear optimization problem which is called the forward problem (FO). Let
c, x ∈ RN denote cost and decision vectors, respectively. Let A ∈ RJ×N , and b ∈ RJ denote
the constraint and the right hand side vector, respectively.1

FO (c) : min c⊤x (5.13)

Subject to:
Ax ≥ b (5.14)

Assuming that the forward problem does not have redundant constraints, given a
decision x̂ ∈ RN and for a r-norm (r ≥ 1), the single observation generalized inverse linear
optimization problem (GIO) is

GIOr (x̂) : min
c,y,s

∥s∥r (5.15)

Subject to:
A⊤y = c, y ≥ 0 (5.16)

c⊤x̂ = b⊤y + c⊤s (5.17)

A (x̂ − s) ≥ b (5.18)

∥c∥1 = 1 (5.19)

The objective function (5.15) minimizes the error (perturbation) vector s ∈ RN using an
arbitrary r-norm, which provides a natural measure of error in the space of decision

1We are using dimensions J and N in a generic sense here; at this stage, there is no explicit connection
with prior developments presented earlier in the chapter and the thesis.
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variables. In the GIO, y ∈ RJ represents the vector of dual variables of the forward
problem’s inequality constraints. Constraints in (5.16) enforces the dual feasibility of the
forward problem. Constraint (5.17) connects the cost vector of the forward problem and its
dual variables’ vector, including the perturbation vector whose value may have to be
non-zero to satisfy strong duality of the forward problem for the given x̂. Constraint (5.18)
enforces primal feasibility of the perturbed decisions x̂ − s. Finally, constraint (5.19)
normalizes of the cost vector to prevent it from collapsing to the trivial solution, which is
zero.

5.4.2 GIO for Flexibility Assessment

Consider a power system’s feasible space whose minimum realization loadability set has been
determined (D(ζ)) based on (5.5)–(5.10), or, more accurately, by imposing d ∈ PUS(S) in
lieu of (5.10). We demonstrate next how GIO can assess the “distance” of any d to the
boundaries of D(ζ). We posit that knowledge of how far (or near) an operating point is
to the boundary of its feasibility region is highly valuable to power system operators and
planners alike. With such knowledge at hand, one could seek to extend that distance for
increased robustness or try to reduce it, when excessively large, to aim for more economical
system operations.

We now consider some instance d0 (as x̂ in the general case), as well as vectors α′
j and

β′
j, j ∈ J ′ = {1, . . . , J ′}—exogenously determined by calculating D(ζ)—vectors to form the

input data set to infer GIO variables. Aiming for a more compact notation, we stack the J ′

inequalities of D(ζ) into an RJ ′×N matrix A (whose rows are (α′
j)⊤, ∀j ∈ J ′) and a RJ ′×1

vector b (whose rows are β′
j, ∀j ∈ J ′); from these we now have D(ζ) = {d ∈ RN | Ad ≥ b}.

Therefore, we define the data-driven inverse optimization problem (DDIO) for flexibility
assessment

DDIOr

(
d0, ζ

)
: min

c,y,s
∥s∥r (5.20)

Subject to:
A⊤y = c, y ≥ 0 (5.21)
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c⊤
(
d0 − s

)
= b⊤y (5.22)

A
(
d0 − s

)
≥ b (5.23)

∥c∥1 = 1 (5.24)

When the objective function of DDIO is equal to zero, this means d0 is optimal. In the
case where D(ζ) is a polytope and if ∥s∥r = 0, it effectively means that d0 is on one of the
boundaries of D(ζ) (hence optimal for the forward linear program with some c). Otherwise,
d0 is interior or exterior to D(ζ). In fact, it is possible to construct a c that puts d0 on
an edge of D(ζ), that is where the pair (d0 − s, y) in constraint (5.22) satisfies the strong
duality with respect to c. Therefore, the vector s ̸= 0, and the norm of s can be interpreted
as a measure of distance to the closest boundary of D(ζ) (based on an appropriately chosen
norm).

We note that DDIO (5.20)–(5.24) is a nonlinear, non-convex optimization problem
because of the of the c⊤s term in the strong duality constraint (5.22). In the next
subsection, we will propose a computationally efficient method to solve DDIO in reasonable
time using off-the-shelf optimization software.

To overcome the non-convexity of (5.22), we leverage the feasibility projection problem
structure described in [171, 172] to solve the inverse problem. The problem can be
decomposed into j = 1, . . . , J ′ linear sub-problems

min
sj

∥sj∥r (5.25)

Subject to:
A(d0 − sj) ≥ b (5.26)(

α′
j

)⊤
(d0 − sj) = β′

j (5.27)

and then picking out the smallest ∥sj∥r over all j ∈ J ′. The problem (5.25)–(5.27) finds
the shortest distance between the net load forecast d0 and each of the constraints j ∈ J ′.
The vector sj that is found has to be consistent with all constraints (5.26), and it has to
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Figure 5.3: Geometrical interpretation of inverse optimization solution methodology.

bring d0 in contact with constraint j as per (5.27). Picking out the constraint or constraints
j∗ ∈ J ∗ ⊆ J ′ with the shortest distance finds the closest point to the boundary of D(ζ) with
respect to d0. The first and infinity norms in feasibility projection problem (5.25)–(5.27) can
be linearised as in [176]. A geometrical illustration of (5.25)–(5.27) is shown in Fig. 5.3.
Here d0 can be in the interior of D(ζ), or its exterior, and, based on the specific choice of a
vector norm, we can determine how far d0 is from its boundary.

The authors of [170] demonstrate that the corresponding DDIO cost vector can be
determined analytically

c∗ =
α′

j∗∥∥∥α′
j∗

∥∥∥
1

(5.28)

where j∗ is the index of the constraint selected by (5.25)–(5.27). Although obtaining this
cost vector is an integral part of solving DDIO, it does not offer further information on
flexibility adequacy. Nevertheless, it opens up a potential avenue for future research.

5.4.3 Flexibility Assessment Through DDIO

As just seen, DDIO is capable of determining the shortest distance between a net load vector
d0 and the boundaries of a power system’s loadibility set D(ζ). Moreover, it is able to identify
which constraint or constraints of D(ζ) are either violated (if d0 is exterior) or close to be
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violated (if d0 is interior). Therefore, loosely speaking, a net load forecast is “flexibility
adequate” if d0 is in the interior of D(ζ) and has a large distance to its boundaries.

Based on these observations, we thus propose flexibility metrics based DDIO results:

• Analytical flexibility metric ρr: Inspired by [170], we argue that

ρr

(
d0, ζ

)
= 1 −

∥sj∗∥r

(1/J ′)∑J ′
j=1 ∥sj∥r

(5.29)

is a useful indicator of the relative security of the net load d0. It weighs the shortest
distance between d0 to the boundaries of D(ζ) relative to the average of boundary
distances. The indicator ρr → 1 if d0 is close to one or more boundaries (i.e., system
flexibility is in tight supply and/or may not be transmittable to all portions of the
network), or it would tend to zero if it is somewhat in the center of D(ζ) (i.e., system
flexibility is plenty and can be adequately transmitted across the network). We
distinguish one weakness of ρr, however. As formulated here, it is not possible to
distinguish whether or not sj is used to bring d0 to a boundary of D(ζ) from the
inside or the outside. In fact, we would argue that ρr is useful when d0 ∈ D(ζ). For
cases where d0 /∈ D(ζ), we propose the next metric.

• Net demand curtailed (NDC): In case there exists one or more j ∈ J ′ such that
(α′

j)⊤d0 < β′
j (i.e., d0 /∈ D(ζ)), net demand may need to be curtailed as indicated by

the components of sj. Defining the subset of violated boundaries of D(ζ), J̃ = {j ∈
J ′ | (α′

j)⊤d0 < β′
j}, we have

NDC =
∑
j∈J̃

N∑
n=1

sjn (5.30)

where we note that if NDC > 0 demand has to be shed, and if NDC < 0
non-dispatchable generation has to be curtailed.

We will see in the next section how the choice of norm can influence values of ρr and
NDC. Moreover, the advised reader may be tempted to suggest computing the volume of
the loadability set as a way to assess flexibility adequacy. As exposed in [177], this would be
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prohibitive from a computational point of view. The computational effort required to obtain
the volume of a polytope increases very rapidly with its number of vertices. In addition, we
recall from [128] that the number of vertices of loadability sets tends to grow very rapidly with
successive applications of Fourier-Motzkin elimination. Therefore, it would be ill-advised to
pursue this objective here. In our case studies presented next, we will nonetheless compute
the volume of D(ζ) for comparison purposes; however, we shall use an approach based on
Monte Carlo simulations rather than compute volumes analytically [114].

5.5 Case Studies

In this section, we illustrate how the use of forward-looking net load PUS and its coupling
with DDIO can work to assess post-unit commitment flexibility adequacy.

5.5.1 Procedure for Constructing Correlated Net Load Forecast

Error Time Series

We generate N synthetic spatially-correlated net load time series of length T , which are
then consigned to matrix W . They consist of historic net load forecasts µ ∈ RT ×N , which
correspond to the nominal demand values from the data sets in [137]. These are superimposed
with zero-mean normally-distributed forecast errors with spatial correlation given by the
covariance matrix Σ. Here, we take the approach outlined in [136], where errors are assumed
to be proportional to forecasts and whose variance and correlation are adjusted with an
uncertainty level parameter η ∈ [0, 1]. This way, the diagonal elements of Σ are σ2

nn =
(ηµn)2 for all n ∈ N , and, as proposed in [133], its off-diagonal elements are given by
σ2

nn′ = η2αµnµn′ , for all n ̸= n′ ∈ N , and where α ∈ [−1, 1] is an adjustable correlation
coefficient.
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Figure 5.4: Three-bus test system

5.5.2 Three-Bus Test System

Here we use the three-bus test system from [128] depicted in Fig. 5.4. We had a slight
modification by adding two wind farms at buses 2 and 3, and neglecting the two generators
ramping constraints [125]. The two conventional generators are identical, each with
maximum and minimum capacity limits set at 250 MW and 100 MW, respectively. Each
line in the system has the same per unit series reactance. The line capacities for lines
l = 1, 2, 3, 4 are as follows: 100 MW, 100 MW, 60 MW, and 80 MW, respectively. We
consider two scenarios whose past forecasted net loads were 320 and 50 MW (Scenario 1)
and 240 and 40 MW (Scenario 2) at buses 2 and 3, respectively. We generated T = 4000
time instances for each scenario as seen in Fig. 4 (a) for Scenario 1. In Scenario 1, net
loads have an uncertainty level η of 0.067 per unit and a correlation coefficient α of 0.8.
For Scenario 2, η = 0.1 per unit with α = 0.7. We assume that the penalty for load
shedding and renewable generation spillage is γ = $1000 per MWh.

We define three intact loadability sets which do not assume net load forecast errors and its
uncertainty; that is, they exclude (5.1) and (5.10) and only require that net loads be strictly
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(a) (b)

Figure 5.5: (a) Scatter plot of net loads for Scenario 1; (b) Uncertainty sets for Scenario 1.

Table 5.1: Uncertainty and Loadability Set Volumes

Volume (MW2)
Uncertainty set Loadability set

Scenario PUS Box PUSD(ζ3) BoxD(ζ3)
1 1163 3950 936 3520
2 1929 4740 1810 4530

positive. These sets are called D(ζ1) = D(u1 = 1, u2 = 0), D(ζ2) = D(u1 = 0, u2 = 1)
and D(ζ3) = D(u1 = 1, u1 = 1), and they are described by six, five, and six constraints,
respectively. Moreover, for these we constructed loadability sets based on both PUS and
box uncertainty sets, and we refer to them as PUSD and BoxD, respectively.

Uncertainty and Loadability Sets’ Volume

In Fig. 5.5 (b), one can see the PUS for the data from Scenario 1 (blue rhombus); in
addition, we provide the box set corresponding to (5.10) (red rectangle). By inspection,
we see that the PUS can effectively capture the spatial correlation between the net loads,
while being less conservative than the boxed uncertainty set. In Table. 5.1, we provide
the volume (areas here) for the two scenarios considering PUS and box-shaped uncertainty
modeling. The conservative box uncertainty set is 3.4 and 2.45 larger than PUS for Scenarios
1 and 2, respectively. Also, in Table 5.1 we characterize the loadability sets considering
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Table 5.2: Performance of Flexibility Assessment Strategies

Scenario Method NDC

1
DDIO1 98.527 (0.0%)
DDIO∞ 147.48 (+50%)

BA 98.527

2
DDIO1 39.065 (0.0%)

2 DDIO∞ 39.065 (0.0%)
BA 39.065

the two generators are committed on, the network constraints and data-driven uncertainty
sets. For Scenario 1, the loadability sets PUSD(ζ3) and BoxD(ζ3) are characterized by their
uncertainty boundaries plus one constraint representing the umbrella line flow constraint
after eliminating generator variables using FME and removing any redundancy using UCD.
Similarly for Scenario 2, PUSD(ζ3) and BoxD(ζ3) are characterised by their uncertainty sets
and one constraint representing the boundary defined by the generator minimum capacity
limits. Clearly, system constraints associated to respective loadability sets shave larger
volumes from the box set in comparison to PUS in both scenarios. In fact, BoxD(ζ3) volume’s
was shaved off by 1.90 and 1.76 times more than PUSD(ζ3) for Scenarios 1 and 2, respectively.

Flexibility Assessment Strategies’ Performance

Table 5.2 displays the performance of three proposed methods for both scenarios and the
loadability set D(ζ3). The percentage changes in NDC are taken with respect to the BA’s
optimal objective function value (which is equal to the amount of load and/or
non-dispachable generation curtailed). Both scenarios emphasize that DDIO1 (DDIO
solved using the r = 1 norm) is able to assess net load curtailed in the same way as the
BA. In the case of Scenario 1, DDIO∞ shows an increase in NDC of 50% compared to
DDIO1 and the BA. The reason for this is that when using the r = ∞ norm for calculating
the shortest distance to reach the loadability set boundary from d0, DDIO is using all
dimensions to get to the boundary. On the other hand, when the r = 1 norm is used,
DDIO is using only one dimension, while neglecting the others. However, in the calculation
of NDC in (5.30), all N components of sj are used, which the the case in the calculation of
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NDC and in the solution of DDIO1.

Impacts of Generation Schedules on Flexibility Metrics

Here, the properties of the flexibility metric ρr are discussed under the three different
loadability sets, D(ζi); i = 1, 2, 3. The variations of ρr under different generating conditions
are shown in Fig. 5.6. For r = ∞, we can see how ρ∞ varies for the three loadability sets as
a unit-free quantity in the range [0, 1]. By inspection, the flexibility metric varies in a
structured way inside the loadability set. It shows a non decreasing trend in a radial
fashion as the loading moves from the interior towards the loadability set boundaries.
Hence, for any d0 and generation schedule ζ it is possible to obtain a normalized “flexibility
score” indicating its degree of safety in terms of relative distance to the boundaries of
loadability sets.

5.5.3 IEEE Reliability Test System

Next, we test the proposed approach on the 24-bus IEEE Reliability Test System (RTS).
The data of the network, the nominal demand profile at each node, and the minimum and
maximum power outputs of generators are adopted from MATPOWER [137]. Generating
units ramp rate constraints are neglected as in [125]. We generated T = 4000 time
instances of net load while varying uncertainty levels to generate synthetic polyhedral and
box uncertainty sets. Lastly, we assume here that ζ corresponds to the RTS unit
commitment where all its units are online.

Loadability Set Construction

Here, we consider a case where net load is uncertain at 17 of the 24 network nodes. Historical
forecast errors are generated considering nominal loading levels with η = 0.067 and α = 0.7.
Polyhedral and box uncertainty sets are built to capture net load limits which are in turn
used in characterizing the loadability sets of the RTS including its transmission limits.
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Figure 5.6: Flexibility metric ρ∞ distribution across the intact loadability sets.
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We construct the loadability set constraints (5.5)–(5.9) of the network along the
polyhedral and box uncertainty sets in the generation-demand space considering all 10
generator nodes. For the polyhedral uncertainty set, we feed the UCD algorithm with
corresponding net load limits along with the generation and network constraints as follows.
First, we group uncertain net loads into three separate polyhedral sets: P1(S, 6) for d1−6,
P2(S, 6) for d7−10,13−14, and P3(S, 5) for d15−16,18−20. Set P1(S, 6) captures the uncertainty
in net load seen at nodes 1–6, set P2(S, 6) the uncertainty at nodes 7–10, 13 and 14, and
finally P3(S, 5) maps uncertainty at nodes 15, 16, 18–20 (for the grand total of 17 nodes).
The construction of three separate PUS rather than a single one is driven by the need to
limit the growth in the number of superfluous constraints when the FME algorithm is run.
Hence, instead of having 217 constraints considered simultaneously, much fewer constraints
need to be assessed at the UCD stage: 26 (for P1) + 26 (for P2) + 25 (for P3) = 160 native
PUS constraints. We choose to keep all principal components of each set to ensure
robustness of the resulting polyhedral uncertainty sets.

While there are ten generators in the RTS, we need to project only four generation
variables at a time using FME to characterize each loadability set. This is a valid assumption
since the maximum number of potentially active transmission constraints in the RTS is four,
as shown in [125]. This is done while the remaining generators are pushed to one of their
capacity limits with the aim of maximizing the resulting loadability set volumes. Going
with the approach taken in [125], we assume the marginal units are located at buses 1,
7, 16 and 22. The four marginal units are eliminated one by one using FME, and after
each elimination, the UCD algorithm removes superfluous constraints. Table 5.3 lists the
numbers of remaining umbrella constraints after each marginal unit elimination for both the
PUS and box uncertainty sets. We can see that the number of constraints required by the
PUS uncertainty is greater than that needed by the box set. This is due to the fact that the
PUS is much more surgical in bounding the uncertainty.
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Table 5.3: Number of umbrella constraints describing the loadability sets by uncertainty
set type

No. of constraints identified
PUSD(ζ) BoxD(ζ)

In generation-demand space 209 87
After eliminating ĝ1 200 77
After eliminating ĝ7 180 55
After eliminating ĝ16 178 53
After eliminating ĝ22 176 51

In demand space 161 35

Figure 5.7: Flexibility metric for PUSD(ζ) and BoxD(ζ).
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Flexibility Assessment Strategies’ Performance

Fig. 5.7 displays the flexibility metric ρ∞ while varying the loading in the range of ±14%
of the nominal loading level d0. By inspection, we see that ρ∞, when used with the PUS
uncertainty set, performs much better at characterizing flexibility than when used on its
corresponding box uncertainty set. The reason for this assessment is that ρ∞ spans a much
wider range under PUS than under the box set. This is a desirable feature because system
operators would have a more sensitive assessment of prevailing levels of flexibility. In the case
of the box set, variations in ρ∞ are so narrow (≈ 0.25 about the base index, in comparison
to ≈ 0.55 with the PUS). Moreover, it does not even get close to one as the system loading
becomes more critical, a feature required to signal clearly flexibility inadequacy.

Level of Uncertainty Influence on Constraints Projections into the Demand Space

We consider next the RTS nominal loading level with different levels of uncertainty η =
{0.033, 0.067, 0.1} for modelling load variations and a correlation factor α = 0.7. The line
capacities are reduced by half to have a more congested network. In Table. 5.4 we notice an
increasing trend in umbrella line flow constraints when the level of uncertainty grows. This
happens because the system has to cover wider ranges of net loads which tends to increase
the possibility of hitting one or more line flow limits.

In particular, for the case when η = 0.067 or 0.1, the box set retains a higher percentage
of its line constraints in comparison with the PUS, by 77.78% and 66.67%, respectively. On
the other hand, in the generation-demand space most generator constraints are expected to
be umbrellas. Still, while considering the highest level uncertainty, the PUS retains only up
to 22.7% of the total original constraints in comparison to 30.9% with the conventional box
approach. This is a positive outcome indicating the superiority of the PUS approach. With
fewer remaining constraints, the evaluation of ρr and NDC through DDIO is expected to be
simpler and faster.

Finally, the proposed approach provides a novel way to quantify flexibility inadequacies
in power systems. Using this information, one could identify which constraints are the most
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Table 5.4: Percentage of Constraints Retained in the BA and its Corresponding Loadability
Set After the Application of UCD

PUS Box PUS Box
η Line constraints (% change) Generation-demand space (% change)

0.033 9.21 9.21 (0.0%) 20.6 23.7 (+15%)
0.067 11.84 21.05 (+77.78%) 20.6 27.8 (+34.95%)
0.100 15.78 26.31 (+66.67%) 22.7 30.9 (+36.12%)

critical for operation. Also, the selection of a particular norm to use might be determined by
the specific application. For our case, we demonstrate how DDIO1 outperforms DDIO∞ by
providing lower NDC for the three-bus test system. This chapter considers complementary
to chapters 2 and 3, as it relies on a given unit commitment strategy, and consequently
assesses the impact of the uncertain net loads at a given operating condition.

There are many practical considerations one has to take into when moving to use
inverse optimization for power systems. For instance, the power systems operators and
planners might have empirical knowledge about feasible observations (decision variables
such as generator dispatch, demand response, energy storage and so on), but the explicit
constraints of this underlying model are not well defined. The inverse optimization problem
could be extended to determine the feasible region of an optimization problem that would
result in a given set of observations being feasible and/or optimal. In other words, the
inverse optimization approach could retrieve the constraint of a linear model, followed by
proposing a feasible reformulation that is compact and tractable.

5.6 Summary

This chapter proposed a novel data-driven inverse optimization scheme for assessing
flexibility explicitly in low-carbon power systems. Using historical demand data and its
forecasts, polyhedral uncertainty sets can capture the spatial correlation of net loads and
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their forecasting errors. A new flexibility metric provides a useful numerical and
visualization tool to assess how net load forecast errors are expected to be handled given
committed flexible resources. Moreover, umbrella constraint discovery is used to determine
the minimum number of constraints that shape the feasibility region and how that can be
affected under correlated uncertainties. The framework unlocks the integration assessment
of renewable generation with loadability set approaches by defining critical constraints.
Several interesting potential applications could be explored on the basis on the inverse
optimization scheme presented in the chapter. For example, one could assess how the
flexibility metric ρr and NDC are affected by deploying energy storage assets or demand
response programs.



137

Chapter 6

Conclusion

6.1 Thesis Overview

The accelerating decarbonization of society and its increasing reliance on electricity are
posing significant challenges to electric power system operation and planning. As
uncertainties—coming primarily from increases in variable and intermittent renewable
energy sources (like solar and wind power generation) and new emerging uses of electricity
(like electric vehicle charging)—become more prevalent in power systems, it is necessary for
system operators to incorporate them into their operational planning problem formulations
to maintain secure and economic operations. However, including uncertainties along with
the complexity of large-scale practical power systems leads to models that are difficult to
solve to high levels of accuracy within short computation timelines associated with
day-ahead planning and real-time operations. Solving operational planning problems such
as the unit commitment problem, security-constrained unit commitment and optimal
power flow repeatedly in daily operation is necessary, but their associated large number of
constraints can significantly increases their solution times and required fast memory.
Previous research and empirical evidence indicate that only a small percentage of
constraints are responsible for enclosing the feasible solution space of such problems;
moreover, at their optima the number of associated binding constraints is even lower.
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Led by these observations, in this thesis we sought to advance the state-of-the-art of
constraint screening for power system operational planning problems. We demonstrated
how constraint learning is essential to efficient constraint screening. Constraint learning
uses machine learning models to predict which constraints are necessary and sufficient to
represent the feasible space of planning problems on top of also predicting which ones would
be potentially active at the problems’ optima. Here the learning process is led by discovering
insights from previous solved operations planning instances. Although constraint learning
is time-consuming at the outset—due to offline training requirements—, its use to weed out
unnecessary constraints in large operations planning problems leads to significant solution
time savings for time-limited real-time computations.

Chapter 2 starts off with a critical review of state-of-the-art approaches used to
quantify the uncertainty space of variable renewable energy and demand, called net load or
net demand. Some approaches were found to be too conservative and negligent of multisite
spatial correlations. Those overly robust approaches employ large multidimensional boxes
set to encompass all credible net demand outcomes. On the other hand, convex hull
approaches seek to enclose all credible net demand outcomes by drawing a convex polytope
around historic net demand observations. Convex hull approaches are much less
conservative than multidimensional boxes, and they are able to capture multisite
correlations. However, they require the generation of overly large numbers of necessary
bounding constraints.

To overcome the shortcomings of multidimensional boxes and convex hulls, we proposed
the use of polyhedral uncertainty sets. These sets require a small number of constraints,
and they are capable of capturing spatial correlations seen across multiple sites in a system.
They offer coverage levels similar to those of convex hulls without the over conservatism of
multidimensional boxes.

Second, the constraint screening problem, oftentimes called umbrella constraint discovery,
is studied in the context of polyhedral uncertainty sets integrated in robust unit commitment
problems. Inasmuch umbrella constraint discovery is useful in stripping down optimization
problems like unit commitment to their bare bones in terms of constraint numbers, it is
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agnostic to the nature of the objective function of the original optimization problem. In light
of this, we proposed to augment the umbrella constraint discovery problem with the addition
of an upper bound1 on the value of the objective function of the original minimization
problem. In our case, this upper bound is found by fitting an appropriate regression model
using past instances of the unit commitment problem.

With the addition of this upper bound in the umbrella constraint discovery problem, the
constraints retained are no longer the constraints needed to describe minimally the feasible
set of the unit commitment. They are the constraints which are expected to be binding at
the optima of the problem. In practice, the ratio between the number of binding constraints
to the total number constraints is very low. Knowing this, one expects that the number of
retained constraints by our proposed constraint screening approach should be significantly
lower. Therefore, if one runs a unit commitment subject only to its predicted binding
constraints, significant solution speed ups should be achieved.

This property is proved to be the case when running computational experiments on
standard test power systems. Moreover, we showed how the use of polyhedral uncertainty
sets lead to improved constraint screening performance when compared to other state-of-
the-art approaches.

In that vein, Chapter 3 proposed an interpretable machine learning algorithm for
real-time constraint generation for security-constrained unit commitment problems. The
proposed algorithm predicts which constraints would be generated as part the iterative
simultaneous feasibility test which is used to identify and correct constraint violations in
practical security-constrained unit commitment problems. With a good prediction of such
constraints, it is possible to warm start the problem’s simultaneous feasibility test process
and reduce the number of iterations needed to complete the process. The algorithm
provides the same feasibility and the same optimality as the full simultaneous feasibility
test process and its associated constraint generation. Alike in Chapter 2, we illustrated
performance enhancements for security-constrained unit commitment solution applied on

1It should be a lower bound if the optimization problem is a maximization.
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several standard test systems of increasing sizes.
In Chapter 4, constraint learning is extended to address the challenging environment

associated with the ac optimal power flow. Knowing that the AC-OPF problem is NP-
hard, constraint learning is applied to convex relaxations of this problem rather than to its
original non-convex version. The approach taken sought to tighten convex relaxation bounds
with the assistance of economic information obtained from past optimal power flow runs,
thus identifying active and inactive constraints of convex relaxations. Experimental results
obtained from AC-OPF runs on the PGLib-OPF test cases showed important speed-ups for
large cases, a vital need to bring AC-OPF formulations to practical settings.

Throughout the thesis, constraint screening and learning have been underlined as essential
in carrying out generation planning problems for practical power systems close to real time.
Finding out ahead of time which constraints will determine the optimal solution is great;
however, it is not enough for the prudent operator. This is why, in Chapter 5, we developed
a novel approach to determine the distance of an optimization problem solution to its non-
binding constraints, or even its violated constraints in cases when problems are infeasible.
Here, the notion of “distance” to a problem’s constraints is associated with the ability of
the power system to respond to uncertain events, i.e., how flexible it is. For this purpose,
we proposed system flexibility metrics which are calculated by solving an associated inverse
optimization problem. We showed if this approach is used on the loadability set of a power
system, it is able to ascertain the feasibility of a net demand vector, and it is able to identify
which constraints are closest to that net demand vector.

6.2 Recommendations for Future Work

This thesis did shed light on constraint learning and its direct application to constraint
screening for several power system operations planning problems: unit commitment, security-
constrained unit commitment, and optimal power flow. Furthermore, we did introduce a
novel way to characterize flexibility explicitly in power system operation. Yet, several areas
remain open for future research.
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• In this thesis, we model the upper-bound cost-driven constraint based on the
aggregate demand using a linear regression model. However, the dual problem of the
unit commitment and the Lagrangian multipliers can provide insights into the
economic impacts of relaxing or tightening specific constraints. Utilizing location
marginal prices information with all nodal net loads using advanced machine learning
techniques might provide guarantees on the constraints screening outcome for
identifying the binding constraints.

• One could explore applying sensitivity analysis to discover how umbrella constraints
respond to changes in the objective function for the unit commitment problem. This
analysis would shed light on the transition of constraints from being inactive to
becoming active constraints. This information is crucial for system operators as it
enables them to promptly identify if a line constraint has the potential to be a
binding constraint if any changes occur in the system.

• The optimization with constraint learning approach can be extended to another
important problem which is optimal transmission switching, this problem is NP-hard
and can greatly benefit from the computational enhancement.

• An important area for future research involves exploring how systems planners can
integrate the identification of binding constraints and critical non-binding constraints
into long-term investment planning studies for power systems with high renewable
energy penetration.

• From a methodological standpoint, this thesis’s research opens up numerous avenues
for future exploration. One of the most intriguing areas is the future application of
inverse optimization technique to power systems area, whether for flexibility
assessment, optimal pricing for ancillary services, or any other potential use. The
research conducted in this thesis only scratches the surface of inverse optimization
and time series uncertainties, with a great deal of potential for improvement. For
instance, exploiting vast amounts of data, allowing for cost and demand relationships
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by employing machine learning techniques, and obtaining robust solutions are just
two of the many enhancements that need to be addressed. From a theoretical
standpoint, additional mathematical foundations that characterize generalized inverse
optimization problems’ with multiple solutions could help better understand the
models’ fundamental characteristics.
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Appendix A

UCD Decomposition

The computational burden of the UCD algorithm can be further reduced through a
decomposition technique [125], also called enhanced UCD (E-UCD), which searches for
umbrella constraints in computationally-manageable constraint blocks Lκ of the initial
optimization such that ∪κLκ = {1, . . . , L} and Lκ ∩ Lκ′ = ∅ for all κ ̸= κ′. To perform this
decomposition on UCD, one needs to consider the entire blocks of constraints (2.8)–(2.12)
and (2.19)–(2.20) in addition to one of the blocks Lκ of the block of constraints in
(2.13)–(2.18). Furthermore, this step can be executed by parallel processing to expedite the
solution of UCD problem. Hence, we solve (A.1)–(A.8) for each Lκ

min
∑

l′∈Lκ

(v+
l′ + v−

l′ ) (A.1)
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Subject to:

(2.8) − (2.12), (2.19) − (2.20) (A.2)
N∑

n=1
hl′nqn + z+

l′ ≥ fmax
l′ , ∀l′ ∈ Lκ (A.3)

−
N∑

n=1
hl′nqn + z−

l′ ≥ fmax
l′ , ∀l′ ∈ Lκ (A.4)

vl′ − z+
l′

Ω ≥ 0, ∀l′ ∈ Lκ (A.5)

v+
l′ − z−

l′

Ω ≥ 0, ∀l′ ∈ Lκ (A.6)

z+
l′ , z−

l′ ≥ 0, ∀l′ ∈ Lκ (A.7)

v+
l′ , v−

l′ ∈ {0, 1}, ∀l′ ∈ Lκ (A.8)

In this case, the number of binary variables induced for examining line constraints per sub-
problem is 2|Lκ|, where |Lκ| is the cardinality of the subset Lκ. By considering all the
umbrella constraints identified in each block, we obtain all the umbrella constraints of the
original UC problem.
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Appendix B

Piecewise Linear Cost Upper Bound

Modelling

The cost-driven upper bound linear constraint in chatper 2 is extended using a piecewise
linear set of constraints to capture net demand and cost data over different ranges of net
demand. The minimum and maximum net demand for each segment is denoted by Dmin

s

and Dmax
s , and we introduce a binary variable ys per segment s, which is equal to 1 if

ysD
min
s ≤ D ≤ ysD

max
s , and to 0 otherwise. The total number of segments is denoted as S.

The upper bound with multiple segments can be reformulated as follows:

∑
m∈M

cmgm ≤
S∑

s=1
ys ((1 + ∆sσs)as + (1 + Γ)bsD) (B.1)

Due to the non-linearity of equation (B.1) which creates a non-convex set, we introduce
a new variable rs to linearize the product of binary and continuous variables using Big-M
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method.

∑
m∈M

cmgm ≤
S∑

s=1
(1 + ∆sσs)ysas +

S∑
s=1

(1 + Γ)rsbs (B.2)

D =
N∑

n=1
dn (B.3)

rs ≤ ysM (B.4)

rs ≥ D + (ys − 1)M (B.5)
S∑

s=1
ysD

min
s ≤ D ≤

S∑
s=1

ysD
max
s (B.6)

S∑
s=1

ys = 1 (B.7)

ys ∈ {0, 1}, s = 1, . . . , S (B.8)
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Appendix C

Convex Envelopes Preliminaries for

Quadratic Convex Relaxation

This Appendix is associated with the quadratic convex relaxation presented in chapter 4 and
how the convex envelopes of the square and the product of variables are derived as detailed
in [154].

Consider a real variable denoted as x, satisfying the inequality x ≤ x ≤ x, with x < x.
If we define y as the square of x, i.e., y = x2, then it holds that:

⟨y⟩ ≡

 y ≥ x2

y ≤ (x + x) x − xx
(C.1)

On the other hand, consider two real variables, denoted as x and y, satisfying the
inequalities x ≤ x ≤ x and y ≤ y ≤ y, where x < x and y < y. If we define z as the product
of x and y, i.e., z = xy, then it holds that:

⟨z⟩ ≡



z ≥ xy + yx − xy

z ≥ xy + yx − xy

z ≤ xy + yx − xy

z ≤ xy + yx − xy

(C.2)
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Finally, for convex envelopes for sine and cosine functions, suppose we have a real number
t, subject to the condition |t| ≤ t, where 0 < t < π

2 . Let x = cos t and y = sin t. Then, for
the given values of t and t, the following inequalities hold [148]:

cos t ≤ x ≤ 1 − (1 − cos t)t2 (C.3)∣∣∣∣∣y − t cos t

2

∣∣∣∣∣ ≤ sin t

2 − t

2 cos t

2 . (C.4)
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