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Abstract (English)

Brain activity measured using an electroencephalogram (EEG) in infants could support the study

of typical cognitive development and biomarkers for neurodevelopmental disorders.

Independent Component Analysis (ICA) is a well-established approach to clean EEG and remove

the impact of signals that are not of neural origin, such as muscle and eye movements.

However, ICA may not perform as effectively for artifact removal in infants as in adults. Our

study aims to compare ICA and Artifact blocking (AB), which has been shown to improve eye

movement artifact correction in infant data. We analyzed EEG collected from 50 infants

between 6 and 18 months of age as part of the International Infant EEG Data Integration

Platform (EEG-IP), a longitudinal multi-site study. EEG recordings were made while infants sat on

their caregivers’ laps and watched videos. We corrected for eye movement artifacts in the EEG

recordings using ICA and AB. We calculated the proportion of effectively corrected segments,

signal-to-noise ratio (SNR), power-spectral density (PSD), and multiscale entropy (MSE) in

segments with eye movement artifact and in clean segments. In the eye movement artifact

segments, we found that AB corrected the artifact effectively for a significantly lower proportion

of segments compared to ICA. The eye movement segments after correction by AB had a higher

SNR than after correction by ICA. Since the noise term, in our definition of the SNR, captures

what gets removed by the algorithm, the lower SNR of ICA indicates better artifact rejection for

this algorithm. The eye movement segments after correction by both AB and ICA had a

significantly lower PSD compared to the original signal, however, the difference in PSD between

ICA and the original signal was much greater, indicating more effective correction. The eye

movement segments after correction by both AB and ICA showed an overall higher MSE,

indicating equally effective correction. In the clean segments, SNR following correction by AB

was greater than that after correction by ICA, suggesting less distortion by AB. PSD following

correction by both AB and ICA was lower than that of the original signal, suggesting distortion

by both algorithms. MSE following correction by AB was similar to that of the original signal in

most channels. Results for MSE following ICA with respect to that of the original signal, were

mixed. Further investigation using SNR calculated on simulated EEG, PSD changes in higher

frequency bands caused by ICA and MSE calculated on the residuals of EEG signal, is required.

The results will guide the choice of artifact rejection methods in future studies that involve

infant EEG.
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Abstract (French)
L'activité cérébrale mesurée par l’ électroencéphalogramme (EEG) en bas âge pourrait soutenir
l'étude du développement cognitif typique et des biomarqueurs des troubles
neurodéveloppementaux. L'analyse en composantes indépendantes (independent component
analysis, ou ICA, en anglais) est une approche bien établie pour le prétraitement de l'EEG,
particulièrement pour supprimer l'impact des signaux qui ne sont pas d’origine cérébrale, tels
que ceux provenant des mouvements musculaires et oculaires. Cependant, l'ICA peut ne pas
fonctionner aussi efficacement pour l'élimination des artefacts chez les nourrissons que chez les
adultes. Notre étude vise à comparer la correction d’artéfact oculaires à l’aide de l’ICA et d’une
seconde méthode nommée le blocage d'artefacts (AB). Cette dernière a démontrée des
performances encourageantes pour les données provenant de nourrissons. Nous avons analysé
l'EEG recueilli auprès de 50 nourrissons âgés de 6 à 18 mois dans le cadre de l'International
Infant EEG Data Integration Platform (EEG-IP), une étude longitudinale multisite.
L’enregistrements de l’EEG a été réalisé pendant que les nourrissons étaient assis sur les genoux
de leurs parents et regardaient des vidéos. Nous avons corrigé les artefacts oculaires dans les
enregistrements EEG en utilisant ICA et AB. Nous avons calculé la proportion des segments
corrigés correctement, le rapport signal sur bruit (SNR), la puissance spectrale (PSD) et
l'entropie multi-échelle (MSE) pour des segments contenant ou non des artéfacts oculaires.
Pour les segments contenant des artefacts oculaires, nous avons constaté que AB corrigeait
corectement une proportion significativement plus faible de segments par rapport à ICA. La
correction des segments contenant des artéfacts oculaires résultait en un SNR plus élevé pour
AB que pour ICA. Puisque nous avons défini le bruit dans notre SNR comme étant la portion de
signal retiré par les algorithmes, un SNR plus faible pour des segments avec artéfacts indique un
filtrage plus efficace. ICA semble donc mieux performer selon ce critère. Les segments avec
mouvement oculaire avaient un PSD significativement inférieur par rapport au signal d'origine
après correction par AB et ICA. Cependant, cet effect était plus grand pour l'ICA, indiquant une
correction plus efficace. MSE était globalement plus élevée après correction par AB et ICA des
segments avec mouvement oculaire, indiquant une correction similiaire pour ces deux
algorithmes. Pour les segments sans artéfacts, le SNR après correction par AB était supérieur à
celui après correction par ICA, suggérant moins de distorsion par AB. Le PSD après correction
par AB et ICA était réduite dans des proportions similaires, suggérant une distorsion équivalente
pour les deux algorithmes. La MSE après correction par AB était similaire à celle du signal
d'origine dans la plupart des canaux. La comparaison des résultats pour la MSE avant et après
l’ICA étaient cependant mitigée. Une enquête plus approfondie sur les propriétés des artefacts
en fonction de l'échelle, à l'aide de MSE, est nécessaire. Les résultats suggèrent que les deux
algorithmes provoquent une distorsion des signaux cérébraux. Une enquête plus approfondie
sur les algorithmes de suppression des artefacts de mouvement oculaire chez les nourrissons
est nécessaire. Les résultats guideront le choix des méthodes d'élimination des artefacts pour
les futures études EEG en bas âge.
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Introduction

EEG recordings contain high amounts of signals not related to cortical processing, such as

muscular and ocular artifacts. This problem is particularly acute with recordings from infants

who are not yet responsive to instructions aimed at limiting such artifacts, e.g., directives to sit

still and avoid blinking. As a result, recordings from infants are often not long enough for

well-established approaches such as Independent Component Analysis (ICA) to work effectively

[1]. For example, to apply ICA on EEG collected from 128-channels with a 250 Hz sampling rate,

a minimum recording length of 3.2 minutes has been suggested [2]. Further, some studies

suggest that ICA may not be the best solution for the removal of ocular artifacts in infant data

[1]. Pre-processing pipelines have made significant progress in addressing these issues, to make

infant EEG compatible with ICA [2]–[7]. However, existing solutions still require improvement

and efforts to effectively account for different types of artifacts are continuing. In this study, we

compare ICA with Artifact Blocking (AB) [8], an alternative approach to remove high amplitude

eye movement artifacts from infant EEG. A previous study suggested that AB distorts clean EEG

less than ICA, while effectively correcting for high amplitude artifacts. However, this

demonstration was qualitative and used only one EEG recording. Our study aims to improve on

the state-of-the-art by quantitatively benchmarking the performance of AB and ICA.

We will analyze resting state EEG recordings from 50 typically developing infants. We will

annotate saccadic eye movement artifacts by visual inspection, apply ICA and AB, and compare

the effectiveness of these algorithms based on 1) visual inspection, 2) signal-to-noise-ratio

(SNR), 3) power spectral density (PSD), and 4) multiscale entropy (MSE) [8]. We aim to provide

empirical evidence to help researchers decide on which artifact correction method to use for

future studies.

Background

Electroencephalogram (EEG) studies in infants provide important information regarding typical

brain development. This information can be used to improve our understanding of the

development of cognitive processes in the context of neurodevelopmental disorders, such as
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Autism Spectrum Disorder (ASD) [9]. EEG studies have found that brain activity patterns change

differently during the first three years of life in infants who have an older sibling with ASD,

compared to those who do not [12, 44]. However, findings are not consistent. EEG recordings

contain a mix of neural signals and non-neural activity, or artifacts due to non-physiological

sources (such as power line noise) and physiological sources (such as muscle contraction and

eye movements). To avoid biasing the analysis, the recordings must be pre-processed to remove

these artifacts prior to analysis. One potential reason for inconsistencies in research findings is

that different research groups employ different techniques to pre-process the EEG.

In many studies, an experimenter visually inspects the recording to identify artifacts and reject

segments of the EEG recording containing artifacts [10]–[14]. When segments of a recording

containing eye movement artifacts are rejected, information regarding the neural activity of

interest is also lost. For this reason, approaches aiming to correct rather than reject recordings

with artifacts are often recommended [15].

Independent Component Analysis (ICA) is a well-established approach for artifact identification

and correction, incorporated into several pre-processing pipelines for adult EEG [2]–[7]. ICA

works by using statistical properties to separate a signal into independent components, which

may then be classified by experts or automated algorithms into different types of brain activity

or artifacts. Examples of these components are shown in Fig.1
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Fig 1: Examples of independent components corresponding to eye movements, from one of the

recordings included in this study

In adult EEG, artifact components are relatively easily distinguished from brain activity.

However, independent components in infant EEG often contain a mixture of brain signal and

artifacts [16][17] and artifacts from eye movements is often spread across multiple components

[15]. Similar to approaches relying on visual inspection OR although an improvement to

approaches relying on visual inspection, ICA can make specific artifact components hard to

identify and remove and, hence, leads to the removal of brain signal along with artifact [1]. Eye

movement artifacts specifically, are challenging to identify and correct with ICA. Identification of

independent components associated with artifacts relies on pre-identified, characteristic spatial

distributions of EEG power over the scalp. Spectral power due to eye movements tends to be

concentrated in the frontal region of the scalp in adults [18]. In infants, there is more variation

in the topography of components and therefore an increased risk for misidentification of eye

movements as brain activity, or vice versa [1].

In response to these recognized challenges, a number of pre-processing pipelines for infant EEG

have been developed often using complementary methods that address different challenges

and they each have strengths and limitations. Among these:

The Maryland Analysis of Developmental EEG (MADE) pipeline applies an automated processing

step, following ICA, to remove residual eye movement artifacts [4]. The first step is to epoch the

continuous data. EOG channels across epochs are then rejected when any electrooculogram (EOG)
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channel exceed a certain voltage threshold. Epochs are then examined and rejected if more than

10% of EEG channels exceed a fixed voltage threshold. For the remaining epochs, EEG channels

exceeding this threshold are interpolated.

The EEG Integrated Platform Lossless (EEG-IP-L) pipeline utilizes a procedure for removing

artifacts that is compatible with short recording durations, such as that seen in infant EEG. It

also applies a voltage-based criterion to identify time periods in the data that would not be

corrected effectively by ICA, but also tests for bad channels based on extreme correlations

between nearest neighbors. Further, the pipeline ensures a robust re-referencing to a consistent

average across different montages. It then applies multiple ICA decompositions and

semi-automatic component classification for artifact removal [5]. The classification is

semi-automatic in that although the initial identification of artifacts is performed automatically,

the user can review and edit automated artifact annotations for quality control.

The Newborn EEG Artifact Removal (NEAR) pipeline proposes another approach called Artifact

Subspace Reconstruction (ASR). It detects bad channels and adapts ASR, originally designed for

mobile adult EEG, to infant EEG. This approach was shown to be more effective than ICA to

remove artifacts such as eye movements that do not have a fixed pattern of scalp topography

and temporal dynamics [6]. However, the NEAR pipeline addresses specifically non-stereotyped

artifacts and, hence, must be followed by another approach (e.g., ICA) for stereotyped artifacts

such as eye movements. This may prove problematic in high-density recordings.

The Multiple Artifact Rejection Algorithm (iMARA) pipeline is trained specifically with

components from infant EEG, to be able to automatically classify them into neural and

artifactual categories after ICA decomposition [3]. However, the iMARA pipeline only works

effectively for frequencies between 1-20 Hz.

The ADJUST pipeline also automatically identifies independent components but instead of using

a training dataset, it simultaneously calculates multiple features associated with the

topographical and spectral properties of eye movement artifacts.

The HAPPE (Harvard Automated Processing Pipeline for Electroencephalography) pipeline uses

wavelet-thresholding ICA, which is said to mitigate distortions to spectral power estimates
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caused by ICA [19]. However, in high density recordings (for example, 128 channels), not all

channels may be included in analyses if the recording is not long enough for reliable

decomposition for ICA. This length in seconds is specified by the formula [30*(no.of

channels)2/sampling frequency]. In a recording with a sampling rate of 500 Hz, this equates to

983.04 s, which is not feasible when recording EEG from infants.

Complementary approaches have been used to augment capacity of such pipelines to

specifically detect eye movement artifcacts. One approach to identify components separated by

ICA is to compare their properties during periods of saccades and fixations, using eye-tracking

data [20]. However, this approach relies on the availability of accurate eye-tracking data.

Identification may be biased by the presence of microsaccadic eye movements during fixations.

Additionally, the method is effective only when there is a considerable number of

high-amplitude eye movements in the data.

Another approach is to apply regression-based approaches to correct for eye movement

artifacts by using recording from EOG channels, with electrodes placed above and below each

eye[21]. This approach enables calculation of the correlation coefficient between signal

recorded on the EOG and EEG electrodes, respectively, and correct for eye movements

accordingly. A limitation is that regression-based methods rely on the usage of electrodes

placed close to the eyes, which may not be feasible, depending on available resources in a lab

or the level of cooperation of participants (e.g., children with ASD tend not to tolerate well the

typical EOG electrode placement). They also may not be effective to correct for artifacts in

recordings with short lengths, or if there are issues with estimating signals from EOG placed on

either side of the eyes.

A systematic review of EEG and MEG studies of functional connectivity [57] found very few

consistencies across a large number of studies. These differences were attributed to the

following four factors: sample heterogeneity, acquisition, signal processing, hypothesis testing.
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The pipelines discussed above constitute a significant aspect of signal processing and the

standardization of EEG pre-processing pipelines, which will in turn enable consistencies across

studies investigating biomarkers for ASD and other neurodevelopmental disorders, such as the

ones above related to functional connectivity.

Hence, the choice of an eye movement artifact correction methods should consider the pros

and cons of the available methods and the experimental design. Here, we propose another

approach that has not been widely used in infant EEG, but has high potential to address known

challenges. Artifact Blocking (AB) is an algorithm that offers a potential solution to the distortion

of brain signals by ICA in infant EEG. It relies on an amplitude-based threshold to remove

artifacts. The algorithm is described in detail in section 2.5. AB has been systematically

evaluated and applied in the context of event-related potential (ERP) and high amplitude

artifacts in infant data [15] [22] [23] but not with continuous EEG or eye movement artifacts

specifically. When applied to infant EEG, AB has been reported to remove high amplitude

artifacts, while causing significantly lower distortion to non-artifactual segments of data than

ICA [8], [15].

Rationale for the study
A previous study presented a qualitative comparison of AB and ICA, using data from one infant

[8]. The comparison demonstrated that AB removed artifact without distorting clean signal.

However, this conclusion is not robust as it pertains to the data of only one infant. This study

aims to generate quantitative metrics comparing the performance of AB and ICA in removing

saccadic eye movement artifacts using a dataset of 50 infant EEG recordings. Further, we also

propose a systematic benchmark of these two approaches relying on multiple metrics, for

reference by researchers attempting to determine the best artifact correction method to use.
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Hypotheses and Specific Aims
We expect that AB and ICA will achieve a similar level of eye movement artifact correction but

that AB will not distort the clean signal as much as ICA [15]. Correction for artifacts and

distortion of clean signal will be evaluated based on four outcomes. Three of these measures

are commonly used in prior studies comparing algorithms for ocular artifact correction

[24]–[27]. The fourth one, multiscale entropy, is an emerging metric. To our knowledge, this

study is the first one where multiscale entropy has been used to evaluate the outcome of

artifact correction. Multiscale entropy provides information in the non-linear domain, not

provided by the other metrics. The four metrics are explained below:

i) Visual inspection of segments containing saccadic eye movements: A prior

inspection of AB-corrected and ICA-corrected signal showed that AB was equally

effective at removing eye movement artifacts compared to ICA [15]. We hypothesize

that the proportion of eye movement segments that are effectively corrected by ICA

will be the same as for AB.

ii) Signal to noise ratio (SNR) in segments containing saccade eye movements and in

clean segments: In this ratio, the signal is defined as the EEG after correcting for

artifacts and the noise refers to the portion removed from the original EEG while

correcting for artifacts. Based on the expectations that AB and ICA will achieve a

similar level of artifact correction (1) and AB will distort the clean signal less than ICA

(2), we hypothesize that:

a. In segments with eye movement artifacts, SNRAB≈ SNRICA

b. In clean segments, SNRAB > SNRICA

iii) Power spectral density (PSD) after applying AB and ICA: An effective ocular artifact

removal that does not distort neural signals should be associated with a decrease in

spectral power in the eye movement segments, but no change in the clean segments

[24], [25], [27]. Our corresponding hypotheses are formulated in Table 1.
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Table 1. Hypotheses for the effect of AB and ICA on spectral power

Eye movement segments Clean segments

ICA PSDICA < PSDORIGINAL PSDICA≠ PSDORIGINAL

AB PSDAB≠ PSDORIGINAL PSDAB≈ PSDORIGINAL

iv) Multiscale Entropy (MSE): Multiscale entropy (MSE) is a measure of complexity, or

information contained in the signal [28]. Certain artifact removal methods use MSE

to identify artifact-related components [29]. Since low-information artifacts can

overshadow high-information neural signals, segments containing artifacts have a

lower entropy compared to non-artifact segments [26]. Based on the expectations

that AB and ICA will achieve the same level of artifact correction (1) and AB will not

distort the clean signal, but ICA will (2), we hypothesize that:

Table 2. Hypotheses for the effect of AB and ICA on entropy

Eye movement segments Clean segments

ICA EntropyICA > EntropyORIGINAL EntropyICA < EntropyORIGINAL

AB EntropyAB > EntropyORIGINAL EntropyAB≈ EntropyORIGINAL

Materials and methods
2.1 Participants
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Recordings from the International Infant EEG Data Integration Platform (EEG-IP) were used for

our analysis [5], [30]. EEG-IP includes EEG recordings from longitudinal infant-sibling studies

conducted separately at two sites, London and Seattle [10], [11], [31]–[33]. EEG was recorded at

ages 6-7 months and 12 months at both sites, and at 18 months in Seattle. Each site contributed

raw EEG and behavioral data to this repository. Participants in these studies were grouped

based on familial risk for ASD, that is, whether they had an older sibling diagnosed with ASD

(elevated likelihood for ASD) or not (control group). The repository comprises a total of 420

recordings from 191 (94 females) infants. Table A1 presents a summary of recordings by

participant age, risk group, and site.

For this study, we used recordings from the control group to benchmark these algorithms on a

sample representative of the overall infant population. Taking into consideration the time

involved in manual annotations of artifacts and revisions of analyses (approximately

0.75h/recording), it was not feasible in this thesis to include all recordings from the control

group. Fifty recordings were randomly chosen; fifty was considered an adequate sample size

based on a review of prior studies that evaluated ocular artifacts. Table A2 presents a summary

of recordings by participant age, risk group, and site.

2.2 Recordings and pre-processing

EEG was recorded while infants sat on their caregivers’ laps and watched videos on a monitor.

An EGI 128 channel Hydrocel net was used. Videos consisted of either brightly colored toys

producing sounds or an adult woman singing nursery rhymes.

Data were pre-processed and standardized to be maximally compatible for cross-site analysis.

To establish an extendable standardized data state, open source solutions to technical

constraints that typically impede successful integration were employed, including the adoption

of the Brain Imaging Data Structure (BIDS) extension to EEG [34], [35] and standardized

pre-processing using the EEG-IP Lossless Pipeline [5].

The EEG-IP Lossless pipeline includes systematic pre-processing procedures for identifying

unreliable EEG signals and building comprehensive data annotation regarding signal quality. It

11



harmonizes data recordings by implementing data quality assessment procedures that are

sensitive to differences in EEG data acquisition across sites and systems. The pipeline first

addresses differences across datasets by executing staging scripts that are specific to each

project, including procedures for the co-registration of electrode coordinates to a common

shared head surface, a robust average reference, and a 1Hz high pass and notch filter (49-51hz

in the London dataset and 59-61hz in Seattle dataset). The staging scripts then flag noisy time

periods and channels based on consistently outlying variance values to make files more

comparable to one another for later stages of the pipeline. Following the staging scripts, the

pipeline performs signal quality assessments that use confidence intervals of signal properties

within each file to flag unusual time periods and channels. Each time that channels are flagged

as problematic, the data are re-referenced to interpolated channels on the shared co-registered

head surface. Following the scalp channel assessment, a robust Adaptive Mixture Independent

Component Analysis (AMICA) procedure is performed and components are automatically

classified as being of neural origin or from artifacts. The automatic classification is based on a

crowd-sourced database of labelled components. The database, ICLabels, includes 200,000

independent components from more than 6000 EEG recordings. It can be accessed at the

website: https://iclabel.ucsd.edu. The automated classification is followed by a manual quality

control step.

After their preprocessing with the EEG-IP Lossless pipeline, EEG recordings that retained enough

signal to be included in post-processing were assessed for comparability [30]. The proportion of

time removed from data due to artifact was similar across sites, as was the distribution of data

removed due to different properties (extreme voltage variance, low correlation with

neighboring channels, artifact identified by ICA decomposition). The average channel retention

(which ranged from 77% to 82%), and the spatial variance in both the retained and rejected

independent components was also similar across datasets. Finally, a power spectrum profile of

the EEG recordings showed that the EEG-IP Lossless Pipeline resulted in similar profiles across

datasets.

2.3 Annotations of eye movement artifact segments and clean segments

12
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2.3.1 Eye movement artifact segments

An interactive plot generated using MNE-Python (version 1.3.1) [36], [37] was used to manually

annotate (i.e., by visual inspection) the EEG recordings for eye movement and clean segments

(Fig. 2). Segments with eye movement artifacts are indicated by orange windows in Fig. 2. They

were annotated using reference images from prior studies that also examined eye movement

artifacts in the EEG [38]. We also consider specifically channels that were most susceptible to

eye movement artifacts in the EGI 128-channel Hydrocel Geodesic net (E1, E8, E14, E21, E32,

E125, E126, E127, and E128; Fig. 3).

Video recordings or direct measurement of eye movements were not available. To verify

accuracy of the annotated eye movement windows, we plotted scalp topographic plots of

amplitude. The amplitude for true ocular artifacts is expected to be higher in the frontal regions

compared to other regions of the scalp [39]. Lateral saccades are also expected to show as a

left-right polarity inversion. Final selection was based on both temporal and topological profiles.

An example is shown in Fig. 4.

2.3.2 Clean segments

Clean segments are indicated in Fig.2 by blue windows. We used an adult EEG atlas and a guide

for labelling independent components corresponding to a variety of artifact types and brain

activity [40]. Clean segments were evaluated by also considering the activity on channels Fz

(E11), Cz, Pz (E62), and Oz (E75). Segments without any discernible artifacts, were marked as

clean. We followed the recommendation from a previous study evaluating artifacts in pediatric
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EEG [39] and included a minimum of 30s of clean segments per recording.

Fig. 2: Window displaying annotations of eye movement segments (light orange sections) and

clean segments (blue sections). Channels used to annotate eye movement are indicated by the

blue lines, while clean segment reference channels are indicated by the black lines.
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Fig.3: EGI 128-channel Hydrocel Geodesic montage. Channels used for annotations of eye

movements and clean segments circled in green. Figure modified with green circles from [15].

Fig.4: Topographic plots used to verify three eye-movement segments: A) high amplitude in the

frontal region, as expected; B) high amplitude in the frontal as well as posterior regions; C) high

amplitude in the lateral central region overshadowing patterns in the frontal central region. In

all three cases, the eye movement segment annotations were retained, because the artifact can

be clearly distinguished as eye movement by visual inspection.

2.4 ICA-based artifact correction

ICA can be used to correct artifacts but depends on three assumptions: i) sources (S) of brain

activity and artifact activity detected at the electrodes are linearly mixed and statistically
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independent; ii) the number of channels is greater than the number of sources (components);

iii) there are negligible propagation delays between source of the signal and the scalp [41].

The linear model for sources S obtained through ICA is given as:

(1)

where X is the observed signals (i.e., the EEG) defined as a linear mixture of source signals in𝑠
𝑖

and A is the unknown mixing matrix. The sources S are approximated by𝑆 = (𝑠
1
, 𝑠

2
, 𝑠

3
, …,  𝑠

𝑛
)

finding the unmixing matrix A-1 :

(2)

such that the sources the sources have a minimal mutual information.𝑠
𝑖

There are several different implementations of ICA. We used a robust adaptive mixture ICA

(AMICA) [42]. These ICA have already been computed and visually validated when the EEG-IP-L

pipeline was run prior to this project. All components indicative of artifacts were selected for

rejection (i.e., this ICA artifact rejection is not specific to eye movement artifacts). AMICA is

available as part of EEGlab [18].

Fig.5 shows an example ICA decomposition of signal contaminated with eye movement artifact.
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Fig.6. An example of ICA decomposition of ocular artifacts in infant EEG. A) Original signal

contaminated with eye movement artifact. B) Independent components decomposing the

signal into sources. C) Relative projection strengths of the components over all the channels.

2.5 AB-based artifact correction

The AB algorithm relies on a threshold 𝜃 to distinguish between brain signal and high amplitude

artifacts. Since such a threshold is likely to be recording- and subject-dependent (e.g., due to

differences in electrode impedance or head tissue conductivities causing systematic biases in

EEG amplitude), we developed a procedure to calculate the optimal threshold 𝜃. This is defined

as the voltage at which eye movements would be maximally removed while minimizing

distortion to clean segments. Prior to starting calculation, channels used for annotating eye

movement and clean segments were examined for each recoding, so that only the ones with

sufficient data for analysis would be used (Fig.3). Channels that remained noisy after

interpolation (less than ~30s clean EEG) were not included in the calculation of optimal

threshold. Table S2 lists the channels that were selected for each participant. For each channel,

the following procedure was followed:

1. The maximum amplitude in each annotated segment (eye movement and clean) was

calculated. These maximum amplitudes were used to construct a range of amplitudes, as
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thresholds to be tested. The range consisted of all thresholds, in increments of 1 μV,

from the lowest to the highest maximum amplitude recorded across channels.

2. For each threshold, the mean absolute error (MAE) for each annotation was calculated

as follows:

(3)

where e is the total error, t is the threshold index, i denotes the index of the annotation,

Ni stands for number of time samples in annotation i, j is time sample index, xO and xAB

represent the amplitude of the original and the AB-processed signal, respectively.

3. The average MAE across all eye movement annotations and across all clean annotations

were calculated.

4. The average MAE for eye movement and clean segments was normalized to be on the

same scale (Fig.6):

(4)

18



Fig.7: Normalized MAE across tested thresholds, for one channel in one recording. The shaded

region represents the 95% confidence interval.

5. The total error at each threshold takes into account the MAE at that threshold for both

eye movement and clean segments. Note that a large “error” for eye movement

segments is desirable (i.e., the cleaned signals should be different than the raw signals)

while a small error is desirable for the clean segments (i.e., the artifact rejection should

not distort the signals in such epochs), hence the subtraction of the former and the

addition of the latter type of errors. Also, note that an equal weight for the contribution

of both types of errors is implicitly used by not further weighting these two types of

errors.

(5)

6. The optimal threshold for the channel is the threshold corresponding to the minimum of

all total errors calculated (Fig.7):

(6)
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Fig.8: The optimal threshold for this channel is 83 μV, i.e., the threshold corresponding to the

minimum of all total errors calculated.

Since the original algorithm uses a common threshold for all channels, the optimal threshold for

the recording was calculated as the average optimal thresholds of all selected channels.

Following the setting of the optimal threshold 𝜃, a matrix Y is constructed from the original

matrix X by zeroing values exceeding 𝜃. X and Y are two-dimensional matrices of sizes n x T, with

n being the number of channels and T being the number of time points [19], [20]. A matrix Bopt,

referred to as the blocking matrix, is constructed as follows:

(7)

where xt and yt refer to the tth column of matrices X and Y, respectively. E stands for the

expectation operator [43]. Additional details on the calculation of B are available in [15].

By performing this calculation, the algorithm produces an output where samples exceeding 𝜃

are removed, while those not exceeding 𝜃 remain un-distorted. This output may be examined

for over-smoothing, and the threshold in the first step may be adjusted accordingly.

The MATLAB script for AB was obtained from the original authors [8]. Output from MATLAB was

exported to Python for comparison with output from ICA. Portions of code written in MATLAB

were integrated into the Python pipeline by running them from Python using the MATLAB

engine.
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2.6 Performance metrics

2.6.1 Visual inspection to compare correction by AB and ICA

Visual inspection of the eye movement epochs was done for one channel in each recording that

displayed eye movement artifacts. For each recording, the channel where eye movement

artifacts were most visible, was chosen. Table A3 displays the number of recordings for which

each channel has been used for visual inspection. The inspection incorporated a blinded scoring

of the level of correction achieved by AB and ICA. To make this annotation procedure systematic

and efficient, we implemented a custom interactive window displaying the corresponding time

series and accepting sequential annotations through keystrokes (Fig.8). The following

procedure was used:

1) For each annotated eye movement segment, time series plots of the original signal, signal

corrected with ICA, and signal corrected with AB were overlaid.

2) For each segment, AB- and ICA-corrected traces were randomly assigned one of two colors,

red or blue

3) The red and blue plots were rated as having under-corrected or effectively corrected for the

eye movement artifact. The authors discussed various examples and arrived at a consensus on

criteria for effective correction vs under-correction. If an eye movement artifact was clearly

visible on the plot after correction, it was rated as an under-correction.

4) At the end of the scoring procedure, blinded scoring was automatically associated with their

true labels (i.e., ICA or AB) based on a log of the random draws. Proportions of segments where

AB and ICA corrected effectively or under-corrected for the eye movements were calculated.

The eye movement artifacts were not as distinctive in every recordings. Examples of ratings for

such recordings are shown in Fig. S1.

Clean segments were not manually annotated as the ideal outcome is known (i.e., it is identical

to the original signal since these segments are free from artifacts). Any deviation will be
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considered overcorrection, and this deviation can be measure quantitatively, e.g., through the

SNR.
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A)

B)

Fig.9: Example of visual inspection of an eye movement segment. Scoring was blinded by

randomly assigning red or blue to signal corrected by AB and ICA. Black indicates the original

signal. Ratings for correction were based on whether an eye movement was clearly visible after

correction. In A), both algorithms have undercorrected for the eye movement. In B), both

algorithms have effectively corrected for the eye movement.

2.6.2 Signal-to-noise ratio (SNR)
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The SNR is a measure of signal quality of a time series. In our calculations, the signal refers to

the processed EEG after applying a correction algorithm, while noise refers to the portion of

EEG removed during preprocessing. We calculated SNR for each annotated eye movement and

clean segment. Following the application of the algorithms, we expect the SNR to be lower in

the eye movement segments than in the clean segments, because more noise is removed and

hence the denominator is larger.

SNR was calculated for each eye movement and clean segment. To calculate the SNR, the

root-mean-square-error (RMSE) for the segment processed with AB or ICA (signal) was first

calculated using its classic definition:

(8)

with yi being the processed segment (signal) and n the number of samples in the segment.

Then, the RMSE for noise removed in the segment was calculated:

(9)

with xi being the original, unprocessed segment.

Finally, the SNR was calculated as the quotient of the two RMSE values, using a base 10

logarithmic scale and multiplying by 10 to express this ratio is decibels (dB), as is usual:

(10)

A value of 0 dB indicates a signal and noise RMSE values of equal amplitude. A value of 10 dB

(i.e., a signal 10 time as large as the noise) or more indicates a large SNR. Since we defined the

noise as what was removed from the raw data by the artifact correction algorithm, a large

“noise” (hence a low SNR) is desirable when assessing the performance of the algorithm on

epochs with artifact, while this “noise” would ideally be zero (hence large SNR) for epochs
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without artifacts, indicating that the algorithm did not distort clean signals. SNR calculations

were implemented in Python.

2.6.3 Power spectral density (PSD)

The PSD is a measure of energy contained in the signal at different frequencies. It was

calculated for eye movement and clean segments, for all channels and recording. For each

recording, we first cropped individual eye movement and clean segments from the signal. They

were then concatenated in two separate files, one for eye movement and one for clean

segments. An average reference was used. The Welch method (the ‘psd_welch’ function in

MNE-Python [24]) was used to estimate the spectrum. In short, a Hamming window taper was

applied on the segmented windows with 50% overlap. A periodogram for each window was

calculated and averaged over the epochs in each of multiple frequency bands, at each channel.

PSD values were log10 transformed to account for skewed distributions.

The following frequency bands were chosen for analysis: delta (2-4 Hz), theta (4-6 Hz), low alpha

(6-9 Hz), high alpha (9-13 Hz), beta (13-30 Hz), and gamma (30-48 Hz) [44].

2.6.4 Multiscale entropy (MSE)

MSE is a non-linear measure of signal complexity. We calculated MSE by first coarse graining the

EEG signal for multiple scales [28]:

(11)

where yj is the coarse-grained series, 𝞽 is the scale factor, and xi is the original signal. A list of 𝛕

was determined as a range between 0 and 𝛕max, determined as follows:

(12)

where N is the length of the signal and m is the embedding dimension and is equal to 2.
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Then, sample entropy [45], [46] was calculated for the coarse-grained signal at each scale:

(13)

where r is known as the tolerance and d the distance between time series i and j. MSE was then

calculated as the sum of sample entropy across all scales. MSE calculations were implemented

using the ‘entropy_multiscale’ function of the neurokit2 package on Python [47]. Statistical

analyses were performed using the python libraries StatsModels and SciPy [48], [49].

Results
We report on results for the four metrics we previously defined to assess the efficacy of

algorithms in removing eye movement artifacts without distorting clean signal.

3.1 Visual inspection

We performed a blinded comparison of the level of correction achieved by AB and ICA for eye

movement segments. To compare the difference in proportions of under-corrected and

effectively corrected by each algorithm, we performed a McNemar’s test for difference in

proportions. This non-parametric test was used as the data did not meet the assumption for

normality.

In segments with eye movements, there was a lower proportion of instances where AB

effectively corrected for ocular artifacts compared to ICA (Fig. 10). This difference was

statistically significant (𝞆2=62.77, df=1, p=1.182 x 10-8.
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Fig.10: Proportion of all eye movement segments, where AB and ICA effectively corrected for

the eye movement, based on visual inspection. Error bars indicate the standard error.

3.2 SNR

To assess the efficacy of ICA and AB in the time domain, we calculated SNR in eye movement

segments and clean segments. As the assumption of normality was violated, a nonparametric

Wilcoxon-signed rank test was used for testing difference in means. A cluster-based

permutation test was applied for multiple comparisons across channels. 

In both the eye movement and clean epochs, SNR was higher following AB than ICA (Fig.10).

The difference is most pronounced in the left frontal, central and right-posterior regions. A

cluster-based permutation test found that there was one significant cluster with a probability of

p<0.0001. These findings do not support our predictions that both AB and ICA would correct

equally effectively for eye movement segments. The trends suggest that ICA corrects for eye

movement better than AB. 

The higher SNR for AB in clean segments supports our prediction that this algorithm causes less

distortion of clean EEG compared to ICA. 
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Fig.11: Scalp topographic plots of average SNR per channel across all participants, following

AB-correction and SNR following ICA-correction in A) eye movement segments B) clean

segments.

3.3 PSD

To assess the efficacy of AB and ICA in the frequency domain, we calculated log10PSD in the eye

movement and clean segments of the original, AB-corrected, and ICA-corrected signals across

different frequency bands between 0 and 48Hz. For each recording, eye movement and clean

segments were concatenated prior to calculating log10PSD. The average length of concatenated

eye movement segments was 3.29s, and that of concatenated clean segments was 27.37s. As

the assumption for normality was violated, a Wilcoxon signed-rank test was performed. A

cluster-based permutation test was applied for multiple comparisons across channels. 

Fig.12 shows the difference in log10PSD between the original signal and the AB and ICA-corrected

signals, for eye movement and clean segments. 
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In the eye movement segments, across all frequency bands, the log10PSD following AB is slightly

lower than for the original signal (Fig.12A). Though the difference is small, it is statistically

significant across all frequency bands. A cluster-based permutation test showed one cluster,

with a positive sum of w values and a probability of p<0.0001, for each frequency band. The

log10PSD following ICA is noticeably lower than that of the original signal (Fig.12A). A

cluster-based permutation test showed one cluster, with a positive sum of w values and a

probability of p<0.0001, for each frequency band. As a greater decrease was observed following

ICA, the findings suggest that ICA corrects more effectively for eye movement artifacts. This

does not support our prediction that the algorithms would equally effectively correct for eye

movement segments.

In the clean segments, log10PSD following AB is slightly lower than that of the original signal

across all frequency bands and regions of the scalp (Fig.12B). The log10PSD for ICA is also lower

than that of the original signal across all frequency bands, more noticeably in the beta and

gamma bands (Fig.12B). A cluster-based permutation test showed one cluster, with a probability

of p<0.0001, for each frequency band. The findings do not support our prediction, that

correction by AB would not alter log10PSD in clean segments. However, they do support the

prediction that correction with ICA would cause distortion to clean segments. 
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Fig.12: Scalp topographic plots depicting the differences in log10PSD between original signal and

processed signal in A) eye movement epochs and B) clean epochs. Log10PSD values have been

calculated by averaging across 50 participants, per frequency band, per channel.

3.4 MSE

We calculated MSE as a non-linear measure of signal efficacy, in selected channels (Fz, F7, F8,

Fp1, Fp2, Pz, Cz). As the assumption for normality was violated, a Wilcoxon signed-rank test was

performed. A cluster-based permutation test was applied for multiple comparisons. 

In the eye movement segments, across all channels, MSE following both AB and ICA increases

compared to the original signal, across 25 scales, indicating an equal amount of artifact correction.

This increase is more pronounced in channels F7, F8, Oz and T6 (Fig 13). We calculated the mean

MSE across all scales, for each of the select channels. Mean MSE following both AB and ICA

increased, compared to the original signal. Cluster-based permutation tests for multiple

comparisons found that the differences were statistically significant (p values for the difference
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in MSE between original signal and AB: 0.0039, 0.0125, 0.2416, p values for the difference in

MSE between original signal and ICA: 0.0206, 0.0084, 0.245).

Hence, these results support our prediction that AB and ICA would equally effectively correct

for eye movement segments.

In the clean segments, we found mixed results. In eight channels (Fz, F7, F8, Fp1, Fp2, Pz, Cz, 

Oz), the MSE of AB across 25 scales is similar to that of the original signal, indicating negligible 

distortion. In two of the channels (T5, T6), MSE of AB is greater than that of the original signal, 

indicating some distortion. In five channels, the MSE following ICA across 25 scales is greater

than that of the original signal, indicating some distortion. In one channel, the MSE following

ICA across 25 scales was similar to that of the original signal, indicating negligible distortion (Fig

14). Mean MSE increased following AB compared to the original signals, for all channels, except

Fz. However, a cluster-based permutation test for multiple comparisons showed that the

difference was not statistically significant (p’s > 0.05). Mean MSE following ICA increased in half

the channels and decreased in half the channels. The cluster-based permutation test for

multiple comparisons yielded zero clusters. The findings support our prediction that MSE would

not significantly change following AB, and hence the hypothesis that AB would not distort clean

segments. However, the findings regarding ICA are inconclusive, with no clusters found.
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Fig 13: Scale-wise MSE following correction by ICA and AB, compared to the original signal, in

eye movement segments.
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Fig 14: Scale-wise MSE following correction by ICA and AB, compared to the original signal, in

clean segments.
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Discussion

We compared AB and ICA for their effectiveness in the removal of eye movement artifacts from

infant EEG (i.e., sensitivity) while not distorting clean signal (i.e., specificity). We relied on four

key metrics to assess these outcomes: proportion of effectively corrected segments,

signal-to-noise ratio (SNR), power spectral density (PSD) and multiscale entropy (MSE).

Comparing the MSE and PSD following the two algorithms supported the first hypothesis we

tested, that AB would correct for eye movements just as effectively as ICA. Comparing the SNR

following the two algorithms supported the second hypothesis that AB would not distort brain

activity, while ICA would. Table 3 below summarizes these findings.

Table 3: Summary of findings from the four metrics

Proportion of
effectively corrected
segments

SNR PSD MSE

Hypothesis 1: AB will correct
for eye movements just as
effectively as ICA

No No Partial Yes

Hypothesis 2: ICA but not AB
will not distort brain activity

NA Yes No Partial
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More specifically, with regards to the removal of eye movement artifacts, we found that ICA was

superior to AB as demonstrated by the proportion of effectively corrected eye movement

segments, SNR and PSD. ICA effectively corrected for a higher proportion of eye movement

segments compared to AB, as assessed by visual inspection. ICA-corrected eye movement

segments had a lower SNR compared to AB-corrected eye movement segments. Our SNR

calculation involved signal in the numerator and noise removed, in the denominator. Hence, a

lower SNR indicates that more noise was removed by ICA. The PSD of both AB and

ICA-corrected segments decreased compared to the original signal, though by a much greater

amount for ICA, indicating that ICA was more superior. The scale-wise MSE of both AB and

ICA-corrected segments increased by similar amounts, compared to the original signal,

indicating either that there was equally effective correction by both algorithms. Hence, MSE

was not sensitive to differences between AB and ICA in the processing of eye movement

segments, indicating that MSE might be a robust measure of distortion in the clean segments.

With regards to the distortion of clean signal, we found that AB-corrected segments had a 

higher SNR compared to ICA-corrected segments, indicating more distortion by ICA. Both 

AB-corrected and ICA-corrected segments had a lower PSD compared to the original signal, 

indicating distortion by both AB and ICA. Scale-wise MSE following AB did not change

significantly compared to the original signal, supporting the prediction that AB would not

distort clean segments.

Our results from visual inspection are contrary to a prior visual comparison of AB and ICA

conducted using real infant EEG that found that AB was more effective at removing eye
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movement artifacts compared to ICA [15]. However, since this previous study relied only on

one recording, these results are likely unreliable.

Our findings also suggest that the performance of the artifact correction algorithms is

dependent on specific regions of recording. We obtained a lower SNR in the frontal channels

compared to the central, parietal, and temporal channels, meaning that more artifacts were

removed from the frontal channels. This observation is in agreement with the expectation that

eye movement artifacts are dominant in the frontal regions. Many studies that have evaluated

ICA and other algorithms for ocular artifact removal have calculated the SNR on simulated

rather than real EEG, because the ground truth is unknown in real EEG. While a comparison

with real EEG is essential because of its ecological validity, simulations provide complementary

evidence because they allow to verify how well the algorithm performs knowing the ground

truth about the (simulated) brain activity and eye activity [50]. A potential next step to

strengthen our analyses is to compare AB and ICA using simulated EEG generated using ocular

artifacts extracted from a real dataset. Simulated recordings would be generated by extracting

segments of eye artifacts from real EEG recordings [51]. Our lab is currently collecting

synchronized eye-tracking and EEG data. This will provide for a robust way to know which

periods are associated with eye movements, and extract those, when creating simulated EEG

recordings.

One other study has used SNR to evaluate the performance of different types of ICA algorithms

for EOG artifact removal in real EEG [52].  In this study, the authors evaluated the performance

of a novel ICA-based method on removing different types of physiological artifacts from EEG

collected from adults. In their calculation of SNR, they regarded signal as a segment of variable
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length immediately following a beep tone used to cue an eyeblink, and noise as the segment

associated with 200 ms prior to the blink artifact. In our calculation, we defined the signal as the

original EEG, and the noise as the difference between this original and the corrected segments.

Due to the difference in calculation of SNR, we are unable to compare our results for SNR with

this study. 

PSD is the most commonly evaluated metric in studies using real EEG to evaluate artifact

removal algorithms. We found that ICA reduced PSD compared to original signals in the eye

movement segments. This reduction was notable in frontal channels, across all frequencies. The

difference was approximately 1-1.5 μV2/Hz, which is close to the magnitude of the difference

between ICA-corrected and original signal in a prior study that evaluated ICA to correct ocular

artifacts in EEG collected from adults [50]. However, we also found that ICA reduced power

noticeably in the beta and gamma bands, in clean segments, in the frontal channels. This is

contrary to the findings of the prior study [50]. The reduction in power at these higher

frequencies may be related to components associated with other sources of noise, such as

muscle movement [53]. Unfortunately, the manual selection of independent components to be

rejected for cleaning the signals were done prior to this work and was not specific to EOG

artifacts. 

To our knowledge, this is the first study that calculated the difference in MSE between the

original and corrected versions of eye movement artifact segments. However, there are prior

studies that have calculated the MSE of eye movement artifacts, calculated MSE of infant EEG,

or made recommendations with respect to the calculation of MSE in infant EEG. These recent

studies have introduced different approaches and choices of parameters in the calculation of
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MSE in infant EEG. One recommendation is to recalculate r at each scale, whereas we used a

fixed r of 0.2 across all scales [54]. Another approach is to decompose each channel into six

frequency bands prior to coarse-graining and calculating multiscale entropy [55]. A final

recommendation is to calculate entropy on the residuals of the EEG signal rather than on the

EEG signal itself [54]. This process is designed for use in scenarios where not sufficient data is

available, as with infant EEG recordings. The residuals of the EEG signal for given participant are

found as per the following procedure: 1) selecting the trials where the global field power (GFP)

is equal to the median GFP for a given participant 2) subtracting the within-person average

response across trials within each condition of the experiment.

This current study can support future decisions on whether to use ICA or AB in artifact-removal

pipelines. To our knowledge, none of the pipelines discussed in the paper used AB. This is also

the first study where four metrics have been used to evaluate eye movement artifact removal

and non-distortion of clean EEG. Furthermore, consideration of the above methodological

improvements will make a significant contribution to efforts to standardize EEG pre-processing

pipelines. Such standardization is important for consistency in biomarker research.

One limitation to our methodology is that there was no independent measure of eye

movements available [56]. Hence, annotations of eye movement segments were performed

based on templates of the characteristic appearance of these artifacts. Moreover, only one rater

performed these annotations. The visual inspection for proportion of effectively corrected eye

movement segments were discussed and validated between the authors , and the annotation

process iteratively improved. A potential next step to arrive at conclusive results, is to involve

additional raters in the visual inspection process and assess the inter-rater agreement. A future
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study involving eye-tracking with infants might provide a stronger basis to compare ocular

artifact removal techniques. 

Conclusion

This study applied AB and ICA on infant EEG to compare their effectiveness for removing eye

movement artifact without distorting neural signals in EEG. While the results on eye movement

artifact removal did not allow to select a clear winner between these two algorithms, our study

showed that both algorithms distort clean EEG and that a better alternative must be devised. 

The findings yielded some insights regarding the benchmarking of artifact removal in real infant

EEG. We identified venues to better utilize SNR for this application. We also identified ways to

extract more information from MSE calculations. Future work should incorporate these

modifications and either utilize infant EEG with direct recordings of eye movement or involve

multiple raters for artifact annotation.
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Appendices

Figures A1-A3 show further examples of visual inspection of an eye movement segments.

Scoring was blinded by randomly assigning red or blue to signal corrected by AB or ICA. Black

indicates the original signal. Ratings for correction were based on whether an eye movement

was clearly visible after correction.

Fig. A1: Both algorithms effectively corrected for the eye movement.
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Fig. A2 Both algorithms undercorrected for the eye movement.

Fig. A3 Blue algorithm effectively corrected, while the red algorithm undercorrected for eye

movement.
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Table A.1: Number of recordings by participant age, risk group and site

Site 6m EEG 12m EEG 18m EEG

At-Risk 91 84 36

Seattle 39 37 36

London 52 47

Control 88 81 40

Seattle 42 38 40

London 46 43

Total 179 165 76
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Table A.2: Channels used for optimal threshold calculation, per recording.

Recording ID Channels

s058_m12 E1,E8,E14,E17,E21,E25,E32,E125,E126,E127,E128,E11,E62,E75,Cz

s059_m12 E1,E17,E21,E25,E32,E128,E11,E62,E75,Cz

s060_m12 E17,E21,E25,E32,E11,E62,E75,Cz

s062_m12 E14,E17,E21,E25,E32,E128,E11,E62,E75,Cz

s063_m6 E17,E21,E25,E32,E128,E11,E62,E75,Cz

s063_m12 E17,E32,E128,E11,E62,E75,Cz

s069_m12 E17,E21,E25,E32,E127,E128,E11,E62,E75,Cz

s134_m18 E17,E21,E25,E32,E127,E128,E11,E62,E75,Cz

s067_m18 E17,E32,E125, E128,E11,E62,E75,Cz

s085_m12 E17,E21,E25,E32,E128,E11,E62,E75,Cz

s102_m18 E1,E8,E14,E17,E21,E32,E125,E126,E128,E11,E62,E75,Cz

s106_m18 E17,E21,E25,E32,,E128,E11,E62,E75,Cz

s115_m6 E1,E8,E17,E21,E25,E32,E125,E126,E127,E128,E11,E62,E75,Cz

s138_m12 E1,E17,E21,E25,E32,E125,E128,E11,E62,E75,Cz

s146_m12 E17, E32, E128,E11,E62,E75,Cz

s713_m6 E17, E11, E62, E75, Cz

s741_m6 E1,E17,E128,E11,E62,E75,Cz

s702_m6 E17, E11, E62, E75, Cz

s147_m6 E1,E8,E14,E17,E21,E25,E32,E125,E126,E127,E128,E11,E62,E75,Cz

s147_m12 E17,E21,E25,E32, E127,E128,E11,E62,E75,Cz

s161_m6 E17,E21,E32,E125,E128,E11,E62,E75,Cz

s166_m6 E17,E21,E32,E128,E11,E62,E75,Cz
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s937_m12 E17,E21,E32,E128,E11,E62,E75,Cz

s131_m18 E17,E21,E25, E32,E128,E11,E62,E75,Cz

s137_m6 E17,E21,E25, E32,E128,E11,E62,E75,Cz

s164_m6 E17,E21,E25,E32,E128,E11,E62,E75,Cz

s129_m12 E17,E21,E25,E32,E128,E11,E62,E75,Cz

s143_m12 E17,E21,E25,E32,E126,E127,E128,E11,E62,E75,Cz

s136_m6 E17,E21,E25,E32,E11,E62,E75,Cz

s107_m6 E1, E17, E32, E11,E62,E75,Cz

s730_m6 E32,E128,E11, E62, E75, Cz

s711_m6 E1,E8,E14,E17,E21,E25,E32,E125,E126,E127,E128,E11,E62,E75,Cz

s110_m18 E17,E21,E25,E32,E128,E11,E62,E75,Cz

s102_m12 E1,E17,E21,E125, E128,E11,E62,E75,Cz

s163_m6 E17,E21,E32,E11,E62,E75,Cz

s051_m6 E17,E21,E32,E128,E11,E62,E75,Cz

s937_m18 E32,E128,E11,E62,E75,Cz

s915_m6 E21, E32,E128,E11,E62,E75,Cz

s062_m18 E1,E8,E14,E17,E21,E25,E32,E125,E126,E127,E128,E11,E62,E75,Cz

s057_m12 E1,E8,E14,E17,E21,E25,E32,E125,E126,E127,E128,E11,E62,E75,Cz

s065_m6 E17,E21,E25,E32,E128,E11,E62,E75,Cz

s128_m6 E1,E8,E14,E17,E21,E25,E32,E125,E126,E128,E11,E62,E75,Cz

s742_m6 E17,E125,E11,E62,E75,Cz

s712_m6 E1,E32,E125,E128,E11,E62,E75,Cz

s747_m6 E17,E128,E11,E62,E75,Cz

s721_m6 E1,E8,E17,E25,E32,E125,E126,E127,E128,E11,E62,E75,Cz

s729_m6 E17,E11,E62,E75,Cz

s734_m6 E17,E125, E11,E62,E75,Cz
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s716_m6 E1, E17, E11,E62,E75,Cz

s166_m12 E1,E8,E14,E17,E21,E25,E32,E125,E126,E127,E128,E11,E62,E75,Cz

Table A.3: Channels used for visual inspection of eye movement segments.

Channel Number of recordings where
the channel was used for
visual inspection

E1 4

E8 1

E17 11

E21 6

E25 3

E32 2

E125 6

E126 3

E127 3

E128 11

45



References:
[1] V. Noreika, S. Georgieva, S. Wass, and V. Leong, “14 challenges and their solutions for conducting

social neuroscience and longitudinal EEG research with infants,” Infant Behavior and Development, vol.

58, p. 101393, Feb. 2020, doi: 10.1016/j.infbeh.2019.101393.

[2] “Frontiers | The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE):

Standardized Processing Software for Developmental and High-Artifact Data,” Oct. 24, 2022.

https://www.frontiersin.org/articles/10.3389/fnins.2018.00097/full (accessed Oct. 23, 2022).

[3] I. Marriott Haresign et al., “Automatic classification of ICA components from infant EEG using

MARA,” Developmental Cognitive Neuroscience, vol. 52, p. 101024, Dec. 2021, doi:

10.1016/j.dcn.2021.101024.

[4] R. Debnath, G. A. Buzzell, S. Morales, M. E. Bowers, S. C. Leach, and N. A. Fox, “The Maryland

analysis of developmental EEG (MADE) pipeline,” Psychophysiology, vol. 57, no. 6, p. e13580, 2020, doi:

10.1111/psyp.13580.

[5] J. A. Desjardins, S. van Noordt, S. Huberty, S. J. Segalowitz, and M. Elsabbagh, “EEG Integrated

Platform Lossless (EEG-IP-L) pre-processing pipeline for objective signal quality assessment incorporating

data annotation and blind source separation,” Journal of Neuroscience Methods, vol. 347, p. 108961, Jan.

2021, doi: 10.1016/j.jneumeth.2020.108961.

[6] V. P. Kumaravel, E. Farella, E. Parise, and M. Buiatti, “NEAR: An artifact removal pipeline for

human newborn EEG data,” Developmental Cognitive Neuroscience, vol. 54, p. 101068, Apr. 2022, doi:

10.1016/j.dcn.2022.101068.

[7] “Adjusting ADJUST: Optimizing the ADJUST algorithm for pediatric data using geodesic nets -

Leach - 2020 - Psychophysiology - Wiley Online Library,” Oct. 24, 2022.

https://onlinelibrary.wiley.com/doi/abs/10.1111/psyp.13566 (accessed Oct. 23, 2022).

[8] N. Mourad, J. P. Reilly, H. de Bruin, G. Hasey, and D. MacCrimmon, “A Simple and Fast Algorithm

for Automatic Suppression of High-Amplitude Artifacts in EEG Data,” in 2007 IEEE International

Conference on Acoustics, Speech and Signal Processing - ICASSP ’07, Apr. 2007, p. I-393-I–396. doi:

10.1109/ICASSP.2007.366699.

[9] J. Wang, J. Barstein, L. E. Ethridge, M. W. Mosconi, Y. Takarae, and J. A. Sweeney, “Resting state

EEG abnormalities in autism spectrum disorders,” J Neurodev Disord, vol. 5, no. 1, Art. no. 1, Sep. 2013,

doi: 10.1186/1866-1955-5-24.

[10] E. V. Orekhova et al., “EEG hyper-connectivity in high-risk infants is associated with later autism,”

Journal of Neurodevelopmental Disorders, vol. 6, no. 1, p. 40, Nov. 2014, doi: 10.1186/1866-1955-6-40.

[11] E. J. H. Jones, K. Venema, R. Lowy, R. K. Earl, and S. J. Webb, “Developmental changes in infant

brain activity during naturalistic social experiences,” Dev Psychobiol, vol. 57, no. 7, pp. 842–853, Nov.

2015, doi: 10.1002/dev.21336.

[12] A. L. Tierney, L. Gabard-Durnam, V. Vogel-Farley, H. Tager-Flusberg, and C. A. Nelson,

“Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder,”

PLoS One, vol. 7, no. 6, p. e39127, 2012, doi: 10.1371/journal.pone.0039127.

[13] G. Righi, A. L. Tierney, H. Tager-Flusberg, and C. A. Nelson, “Functional connectivity in the first

year of life in infants at risk for autism spectrum disorder: an EEG study,” PLoS One, vol. 9, no. 8, p.

e105176, 2014, doi: 10.1371/journal.pone.0105176.

46



[14] B. C. N. Müller, N. Kühn-Popp, J. Meinhardt, B. Sodian, and M. Paulus, “Long-term stability in

children’s frontal EEG alpha asymmetry between 14-months and 83-months,” Int J Dev Neurosci, vol. 41,

pp. 110–114, Apr. 2015, doi: 10.1016/j.ijdevneu.2015.01.002.

[15] T. Fujioka, N. Mourad, C. He, and L. J. Trainor, “Comparison of artifact correction methods for

infant EEG applied to extraction of event-related potential signals,” Clinical Neurophysiology, vol. 122, no.

1, Art. no. 1, Jan. 2011, doi: 10.1016/j.clinph.2010.04.036.

[16] D. Kampis, E. Parise, G. Csibra, and Á. M. Kovács, “On potential ocular artefacts in infant

electroencephalogram: a reply to comments by Köster,” Proceedings of the Royal Society B: Biological

Sciences, vol. 283, no. 1835, Art. no. 1835, Jul. 2016, doi: 10.1098/rspb.2016.1285.

[17] M. A. Bell and K. Cuevas, “Using EEG to Study Cognitive Development: Issues and Practices,” J

Cogn Dev, vol. 13, no. 3, pp. 281–294, Jul. 2012, doi: 10.1080/15248372.2012.691143.

[18] “SCCN: Independent Component Labeling.” https://labeling.ucsd.edu/tutorial/labels (accessed

Nov. 16, 2022).

[19] L. J. Gabard-Durnam, C. Wilkinson, K. Kapur, H. Tager-Flusberg, A. R. Levin, and C. A. Nelson,

“Longitudinal EEG power in the first postnatal year differentiates autism outcomes,” Nat Commun, vol.

10, no. 1, p. 4188, Sep. 2019, doi: 10.1038/s41467-019-12202-9.

[20] M. Plöchl, J. Ossandón, and P. König, “Combining EEG and eye tracking: identification,

characterization, and correction of eye movement artifacts in electroencephalographic data,” Frontiers in

Human Neuroscience, vol. 6, 2012, Accessed: Jan. 10, 2023. [Online]. Available:

https://www.frontiersin.org/articles/10.3389/fnhum.2012.00278

[21] S. B. Agyei, F. R. R. van der Weel, and A. L. H. van der Meer, “Longitudinal study of preterm and

full-term infants: High-density EEG analyses of cortical activity in response to visual motion,”

Neuropsychologia, vol. 84, pp. 89–104, Apr. 2016, doi: 10.1016/j.neuropsychologia.2016.02.001.

[22] E. Flaten, S. A. Marshall, A. Dittrich, and L. J. Trainor, “Evidence for top-down metre perception in

infancy as shown by primed neural responses to an ambiguous rhythm,” Eur J Neurosci, vol. 55, no. 8, pp.

2003–2023, Apr. 2022, doi: 10.1111/ejn.15671.

[23] A. Leleu et al., “Maternal odor shapes rapid face categorization in the infant brain,”

Developmental Science, vol. 23, no. 2, p. e12877, 2020, doi: 10.1111/desc.12877.

[24] “Frontiers | A Novel Method Based on Combination of Independent Component Analysis and

Ensemble Empirical Mode Decomposition for Removing Electrooculogram Artifacts From Multichannel

Electroencephalogram Signals,” Oct. 24, 2022.

https://www.frontiersin.org/articles/10.3389/fnins.2021.729403/full (accessed Oct. 23, 2022).

[25] S. Romero et al., “Evaluation of an automatic ocular filtering method for awake spontaneous EEG

signals based on independent component analysis,” Conf Proc IEEE Eng Med Biol Soc, vol. 2004, pp.

925–928, 2004, doi: 10.1109/IEMBS.2004.1403311.

[26] S. Mariani, A. F. T. Borges, T. Henriques, A. L. Goldberger, and M. D. Costa, “Use of multiscale

entropy to facilitate artifact detection in electroencephalographic signals,” Annu Int Conf IEEE Eng Med

Biol Soc, vol. 2015, pp. 7869–7872, 2015, doi: 10.1109/EMBC.2015.7320216.

[27] B. Fortune, X. Zhang, D. C. Hood, S. Demirel, and C. A. Johnson, “Normative ranges and

specificity of the multifocal VEP,” Doc Ophthalmol, vol. 109, no. 1, pp. 87–100, Jul. 2004, doi:

10.1007/s10633-004-3300-5.

47



[28] M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy analysis of complex physiologic

time series,” Phys Rev Lett, vol. 89, no. 6, p. 068102, Aug. 2002, doi: 10.1103/PhysRevLett.89.068102.

[29] R. Mahajan and B. I. Morshed, “Unsupervised Eye Blink Artifact Denoising of EEG Data with

Modified Multiscale Sample Entropy, Kurtosis, and Wavelet-ICA,” IEEE Journal of Biomedical and Health

Informatics, vol. 19, no. 1, pp. 158–165, Jan. 2015, doi: 10.1109/JBHI.2014.2333010.

[30] S. van Noordt et al., “EEG-IP: an international infant EEG data integration platform for the study

of risk and resilience in autism and related conditions,” Mol Med, vol. 26, no. 1, Art. no. 1, May 2020, doi:

10.1186/s10020-020-00149-3.

[31] M. Elsabbagh et al., “Infant neural sensitivity to dynamic eye gaze is associated with later

emerging autism,” Curr Biol, vol. 22, no. 4, pp. 338–342, Feb. 2012, doi: 10.1016/j.cub.2011.12.056.

[32] “Reduced engagement with social stimuli in 6-month-old infants with later autism spectrum

disorder: a longitudinal prospec/tive study of infants at high familial risk - Google Search.”

https://www.google.com/search?q=Reduced+engagement+with+social+stimuli+in+6-month-old+infants

+with+later+autism+spectrum+disorder%3A+a+longitudinal+prospec%2Ftive+study+of+infants+at+high+

familial+risk&rlz=1C1GCEA_enCA981CA981&oq=Reduced+engagement+with+social+stimuli+in+6-month

-old+infants+with+later+autism+spectrum+disorder%3A+a+longitudinal+prospec%2Ftive+study+of+infa

nts+at+high+familial+risk&aqs=chrome..69i57.301j0j9&sourceid=chrome&ie=UTF-8 (accessed Mar. 16,

2023).

[33] E. J. H. Jones, K. Venema, R. K. Earl, R. Lowy, and S. J. Webb, “Infant social attention: an

endophenotype of ASD-related traits?,” J Child Psychol Psychiatry, vol. 58, no. 3, pp. 270–281, Mar. 2017,

doi: 10.1111/jcpp.12650.

[34] C. R. Pernet et al., “EEG-BIDS, an extension to the brain imaging data structure for

electroencephalography,” Scientific Data, vol. 6, no. 1, Art. no. 1, Jun. 2019, doi:

10.1038/s41597-019-0104-8.

[35] K. J. Gorgolewski et al., “The brain imaging data structure, a format for organizing and describing

outputs of neuroimaging experiments,” Scientific Data, vol. 3, no. 1, Art. no. 1, Jun. 2016, doi:

10.1038/sdata.2016.44.

[36] E. Larson et al., “MNE-Python.” Zenodo, Feb. 23, 2023. doi: 10.5281/zenodo.7671973.

[37] A. Gramfort et al., “MEG and EEG data analysis with MNE-Python,” Frontiers in Neuroscience, vol.

7, 2013, Accessed: Mar. 16, 2023. [Online]. Available:

https://www.frontiersin.org/articles/10.3389/fnins.2013.00267

[38] A. López, F. J. Martin, and O. Postolache, “An Affordable Method for Evaluation of Ataxic

Disorders Based on Electrooculography,” Sensors, vol. 19, p. 3756, Aug. 2019, doi: 10.3390/s19173756.

[39] K. McEvoy, K. Hasenstab, D. Senturk, A. Sanders, and S. S. Jeste, “Physiologic artifacts in resting

state oscillations in young children: methodological considerations for noisy data,” Brain Imaging Behav,

vol. 9, no. 1, Art. no. 1, Mar. 2015, doi: 10.1007/s11682-014-9343-7.

[40] “https://eegatlas-online.com/index.php/en/.”

[41] A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and

blind deconvolution,” Neural Comput, vol. 7, no. 6, pp. 1129–1159, Nov. 1995, doi:

10.1162/neco.1995.7.6.1129.

[42] J. Palmer, K. Kreutz-Delgado, and S. Makeig, “AMICA: An Adaptive Mixture of Independent

Component Analyzers with Shared Components,” Jan. 2011.

48



[43] “Parent-delivered early intervention in infants at risk for ASD: Effects on electrophysiological and

habituation measures of social attention: Intervention in infants at risk for ASD - Google Search.”

https://www.google.com/search?q=Parent-delivered+early+intervention+in+infants+at+risk+for+ASD%3

A+Effects+on+electrophysiological+and+habituation+measures+of+social+attention%3A+Intervention+in

+infants+at+risk+for+ASD&rlz=1C1GCEA_enCA981CA981&oq=Parent-delivered+early+intervention+in+in

fants+at+risk+for+ASD%3A+Effects+on+electrophysiological+and+habituation+measures+of+social+atten

tion%3A+Intervention+in+infants+at+risk+for+ASD&aqs=chrome..69i57.307j0j9&sourceid=chrome&ie=U

TF-8 (accessed Mar. 16, 2023).

[44] “Association between spectral electroencephalography power and autism risk and diagnosis in

early development - Huberty - 2021 - Autism Research - Wiley Online Library,” Oct. 24, 2022.

https://onlinelibrary.wiley.com/doi/full/10.1002/aur.2518 (accessed Oct. 23, 2022).

[45] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy

and sample entropy,” Am J Physiol Heart Circ Physiol, vol. 278, no. 6, pp. H2039-2049, Jun. 2000, doi:

10.1152/ajpheart.2000.278.6.H2039.

[46] A. Delgado-Bonal and A. Marshak, “Approximate Entropy and Sample Entropy: A Comprehensive

Tutorial,” Entropy (Basel), vol. 21, no. 6, p. 541, May 2019, doi: 10.3390/e21060541.

[47] D. Makowski et al., “NeuroKit2: A Python toolbox for neurophysiological signal processing,”

Behav Res, vol. 53, no. 4, pp. 1689–1696, Aug. 2021, doi: 10.3758/s13428-020-01516-y.

[48] S. Seabold and J. Perktold, “Statsmodels: Econometric and Statistical Modeling with Python,”

presented at the Python in Science Conference, Austin, Texas, 2010, pp. 92–96. doi:

10.25080/Majora-92bf1922-011.

[49] P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific computing in Python,” Nat

Methods, vol. 17, no. 3, Art. no. 3, Mar. 2020, doi: 10.1038/s41592-019-0686-2.

[50] S. Romero, M. A. Mañanas, and M. J. Barbanoj, “A comparative study of automatic techniques

for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation

case,” Comput Biol Med, vol. 38, no. 3, pp. 348–360, Mar. 2008, doi:

10.1016/j.compbiomed.2007.12.001.

[51] Q. Shi et al., “High-speed ocular artifacts removal of multichannel EEG based on improved

moment matching,” J Neural Eng, vol. 18, no. 5, Sep. 2021, doi: 10.1088/1741-2552/ac1d5a.

[52] G. Tamburro, P. Fiedler, D. Stone, J. Haueisen, and S. Comani, “A new ICA-based fingerprint

method for the automatic removal of physiological artifacts from EEG recordings,” PeerJ, vol. 6, p. e4380,

2018, doi: 10.7717/peerj.4380.

[53] S. Georgieva, S. Lester, V. Noreika, M. N. Yilmaz, S. Wass, and V. Leong, “Toward the

Understanding of Topographical and Spectral Signatures of Infant Movement Artifacts in Naturalistic

EEG,” Front Neurosci, vol. 14, p. 352, 2020, doi: 10.3389/fnins.2020.00352.

[54] M. H. Puglia, J. S. Slobin, and C. L. Williams, “The automated preprocessing pipe-line for the

estimation of scale-wise entropy from EEG data (APPLESEED): Development and validation for use in

pediatric populations,” Dev Cogn Neurosci, vol. 58, p. 101163, Dec. 2022, doi:

10.1016/j.dcn.2022.101163.

[55] W. J. Bosl, H. Tager-Flusberg, and C. A. Nelson, “EEG Analytics for Early Detection of Autism

Spectrum Disorder: A data-driven approach,” Sci Rep, vol. 8, no. 1, Art. no. 1, Dec. 2018, doi:

10.1038/s41598-018-24318-x.

49



[56] “The EEGLAB News.” https://sccn.ucsd.edu/eeglab/eeglab_news/14/Q_and_A.php (accessed

Apr. 17, 2023).

[57] C. O’Reilly, J. D. Lewis, and M. Elsabbagh, “Is functional brain connectivity atypical in autism? A

systematic review of EEG and MEG studies,” PLoS One, vol. 12, no. 5, p. e0175870, 2017, doi:

10.1371/journal.pone.0175870.

50


