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Abstract

1. Climate change is a world-wide threat to biodiversity and ecosystem structure, 
functioning and services. To understand the underlying drivers and mechanisms, 
and to predict the consequences for nature and people, we urgently need better 
understanding of the direction and magnitude of climate change impacts across 
the soil–plant–atmosphere continuum. An increasing number of climate change 
studies are creating new opportunities for meaningful and high-quality gener-
alizations and improved process understanding. However, significant challenges 
exist related to data availability and/or compatibility across studies, compromising 
opportunities for data re-use, synthesis and upscaling. Many of these challenges 
relate to a lack of an established ‘best practice’ for measuring key impacts and 
responses. This restrains our current understanding of complex processes and 
mechanisms in terrestrial ecosystems related to climate change.

2. To overcome these challenges, we collected best-practice methods emerging 
from major ecological research networks and experiments, as synthesized by 115 
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1  | INTRODUC TION

Climate change is an increasing threat to biodiversity and ecosys-
tem functions and services world-wide (IPBES, 2019; Pacifici et al., 
2015; Schuur et al., 2015). Numerous studies, including experiments, 
long-term monitoring, resampling of historic data and various kinds 
of space-for-time approaches, have been and are being conducted. 
Such studies address climate and other global change-related ques-
tions for various players and processes in ecosystems across the 
soil–plant–atmosphere continuum. Plants are key players in our 
ecosystems: they make up the majority of biomass globally, are the 
main source of photosynthetically fixed carbon and serve as habi-
tat, food sources and hosts for other organismal groups, while also 
competing with them for resources (Bar-On, Phillips, & Milo, 2018; 
Fanin et al., 2019). Plants interact with other plants, microbes, in-
vertebrates and other organisms in multiple ways and on different 
trophic levels (e.g. decomposers, mutualists, pathogens, herbivores, 
predators). Together, they play a major role in controlling import-
ant terrestrial ecosystem processes such as carbon and nutrient 
cycling (Clemmensen et al., 2013). Improved understanding of the 
magnitude of climate change impacts, the underlying drivers and 
mechanisms and the ecological consequences at the individual, 
population, community and ecosystem scales across the soil–plant–
continuum, with a focus on first-order plant–animal interactions in 
detritivore and herbivore food web is urgently needed.

In climate change research, the most common empirical ap-
proaches include manipulative experiments sensu stricto (Elmendorf 
et al., 2012; Emmett et al., 2004; Guittar, Goldberg, Klanderud, 
Telford, & Vandvik, 2016; Wu, Dijkstra, Koch, Penuelas, & Hungate, 
2011) and natural experiments that explicitly contrast or compare 

different climates through space (i.e. climate gradient studies; 
Halbritter, Alexander, Edwards, & Billeter, 2013; Olsen, Töpper, 
Skarpaas, Vandvik, & Klanderud, 2016) and time (i.e. monitoring or 
resampling; Fitter & Fitter, 2002; Steinbauer et al., 2018). Climate 
change experiments sensu stricto are particularly useful in establish-
ing cause-and-effect relationships, disentangling the effects of and 
interactions between different drivers and understanding underly-
ing processes (De Boeck et al., 2015; Fraser et al., 2013). Natural 
experiments are useful to detect processes on large spatial and tem-
poral scales, related to evolutionary processes and equilibria, and 
they also avoid experimental limitations and side effects. Hereafter, 
we refer to these collectively as ‘climate change studies’ sensu lato 

(if not otherwise specified).
As the number of such climate change studies is quickly increas-

ing, new opportunities for meta-analyses and syntheses are emerg-
ing to explore broad-scale patterns and context dependencies in 
effects, responses and processes, as well as for model development 
and evaluation. However, there are major challenges for meaning-
ful and high-quality syntheses, including geographic and climatic 
biases in the available studies (Beier et al., 2012; Vicca et al., 2014), 
a lack of coordinated measurements and standardized protocols 
(Denny et al., 2014; Firbank et al., 2017; Vicca, Gilgen, et al., 2012) 
and a lack of basic and well-structured study information (i.e. co-
variates, metadata) needed for comparisons (Gerstner et al., 2017; 
Haddaway & Verhoeven, 2015). Similarly, model–experiment inter-
actions are hampered by methodological inconsistencies across ex-
periments, and by the lack of specific ancillary data to characterize 
sites and experimental treatments (Medlyn et al., 2015).

The majority of climate change studies are local or regional, 
and single- to multiple-site studies that are designed to address 

experts from across a wide range of scientific disciplines. Our handbook contains 
guidance on the selection of response variables for different purposes, protocols for 
standardized measurements of 66 such response variables and advice on data man-
agement. Specifically, we recommend a minimum subset of variables that should be 
collected in all climate change studies to allow data re-use and synthesis, and give 
guidance on additional variables critical for different types of synthesis and upscal-
ing. The goal of this community effort is to facilitate awareness of the importance 
and broader application of standardized methods to promote data re-use, avail-
ability, compatibility and transparency. We envision improved research practices 
that will increase returns on investments in individual research projects, facilitate 
second-order research outputs and create opportunities for collaboration across 
scientific communities. Ultimately, this should significantly improve the quality and 
impact of the science, which is required to fulfil society's needs in a changing world.

K E Y W O R D S

best practice, coordinated experiments, data management and documentation, ecosystem, 
experimental macroecology, methodology, open science, vegetation
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specific research questions. As a consequence, these stud-
ies often have unique experimental and sampling designs (e.g. 
Countryside survey, Emmett et al., 2010; ExpeEr, Bertora et al., 
2013; INCREASE, Schmidt et al., 2014). Individual research proj-
ects and networks invest considerable resources in collecting 
data for a number of environmental and biotic variables and in 
developing protocols for field measurements. This leads to a di-
versity of similar but not quite identical protocols, and hence to 
a diversity of ways to measure and quantify the same underly-
ing effects and responses. While some of this variability may be 
due to good scientific reasons, protocol selection is often based 
on traditions and habits. This methodological diversity can hin-
der backward compatibility, and thus, syntheses across studies, 
for example due to incompatible quantification of treatment ef-
fects, lack of necessary covariates or response variables, and/or 
incompatible scale or units of measurements (Estiarte et al., 2016; 
Lu et al., 2013; Vicca, Gilgen, et al., 2012). These issues largely 
stem from using a diversity of protocols, and we refer to this as 
the ‘data compatibility filter’ (Figure 1). Another issue that may hin-
der syntheses and meta-analyses is when key information is not 
available from the original studies. Data, covariates, metadata and 
detailed methodological information that are critical for the syn-
thesis step may not be necessary for first-order publications and 

are hence not reported, structured well or stored in an accessible 
location and format. We refer to this issue as the ‘data availability 

filter’ (Figure 1), which is increasingly recognized in the scientific 
community and is, in part, addressed in recent guidelines on data 
management and open science practices (e.g. British Ecological 
Society, 2017; Nosek et al., 2015; and see protocol 1.5). Together, 
the data compatibility filter and the data availability filter signifi-
cantly compromise second-order research outputs such as data 
re-use, synthesis and upscaling (Figure 1).

One way to address these challenges is through ‘coordinated and 

distributed experiments’ (Fraser et al., 2013; Luo et al., 2011; Figure 1), 
exemplified by the DroughtNet (Knapp et al., 2017), ITEX (Arft et al., 
1999), NutNet (Borer et al., 2014), INCREASE (Schmidt et al., 2014) and 
Tea Bag Index network (Keuskamp, Dingemans, Lehtinen, Sarneel, & 
Hefting, 2013). Similarly, broad-scale, long-term or repeated observa-
tional monitoring can be used, such as resampling studies (Steinbauer 
et al., 2018; Verheyen et al., 2016) or national phenological networks 
(Defila & Clot, 2001; Denny et al., 2014). An alternative to such formal-
ized networks is to facilitate coordination and standardization of meth-
ods and sampling protocols across studies more generally (Figure 1). 
The handbook for plant trait measurements is an excellent example of 
the latter approach; a collection of standardized, documented, state-
of-the-art protocols for trait-based plant ecological research, providing 

F I G U R E  1   Challenges and solutions to the integration of information from first-order outputs of individual experiments or observational 
studies (i.e. the original data and publications) to second-order research outputs resulting from, for example meta-analyses, reviews and 
modelling (i.e. data re-use, synthesis and upscaling). The figure illustrates the major challenges to achieve such second-order outputs, 
summarized as two filters (dashed lines) relating to data availability and data compatibility across studies. Two general approaches to solve 
these challenges exist; either using formally coordinated and distributed experiments or using standardized methods, sampling protocols and 
reporting across individual and independent studies. The aim of this paper is to contribute to the latter approach by offering guidance on 
selection of response variables, protocols for standardized measurements of these variables and advice on data reporting and management 
in climate change studies
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general methodological advice on how to select and measure traits, 
independent of the particularities of the individual experiments or 
study (Cornelissen et al., 2003; Pérez-Harguindeguy et al., 2013). This 
handbook has become a key resource for trait-based research as it has 
been hugely important in stimulating the use of standardized meth-
ods while at the same time providing an easily available resource for 
new researchers in the field. Its potential is evident from its high im-
pact world-wide (the two editions of the handbook have been cited 
over 1,700 times in Web of Science to date, September 2019). Other 
similar efforts exist like the web resource PrometheusWiki, a hand-
book for standardized physiological protocols (Sack et al., 2010), or 
the International Biological Program Handbooks (e.g. Milner & Elfyn 
Hughes, 1968), as well as national or community standards such as the 
UK Countryside survey (Emmett et al., 2010) or the UK Environmental 
Change Network (Sier & Monteith, 2016).

The aim of this paper was to provide a handbook (ClimEx) of stan-
dardized field and laboratory methods across the soil–plant–atmo-
sphere continuum applicable to a broad range of terrestrial ecosystem 
climate change studies (including both experiments and plot-based 
temporal and spatial gradient studies) world-wide. Because of their 
dominance in terrestrial ecosystems (Bar-On et al., 2018), we focus 
mainly on plant communities and the other organisms with which 

they interact. We discuss a variety of organisms (i.e. microbes, fungi, 
invertebrates and first-order plant–animal interactions) where the 
connection to vegetation and ecosystem functioning is apparent. 
Through a community effort by experts across scientific disciplines 
(Box 1), we provide a comprehensive collection of state-of-the-art 
methods and sampling protocols on key variables of relevance for 
terrestrial climate change research (Table 1).

The protocols are grouped into five chapters: site characteristics 
and data management, carbon and nutrient cycling, water cycling, 
species and interactions, and stress physiology. In each protocol, 
we describe which response variables should be measured broadly 
across studies to facilitate data re-use, synthesis and upscaling, 
using a Gold standard (if possible) and, if applicable, we offer mini-
mal requirement Bronze standards. We discuss Special cases, emerg-

ing issues and challenges that address adaptations needed for specific 
systems or situations and new methods under development. Finally, 
we give guidance on additional variables that should be measured 
more widely to improve inter-site and inter-study comparisons and 
model–experiment interactions.

Our intention is that the ClimEx handbook will be widely used 
and will stimulate standardized data collection and collaboration 
between projects within and across sub-disciplines. We acknowl-
edge that different projects may have different specific needs and 
resources available, and therefore propose a ‘minimal set’ of vari-
ables and practices that, if more widely applied, would significantly 
increase each individual study's potential contribution to sec-
ond-order outputs. Many of the methods described in this hand-
book are also applicable more generally in ecosystem ecology and 
for other global-change drivers (e.g. nitrogen deposition, invasion, 
pollution, land-use change). Where relevant, this is indicated in the 
protocols.

2  | MATERIAL S AND METHODS – A 
USER' S GUIDE

2.1 | How were the protocols produced and 
assessed?

We collected a large number of protocols from major terrestrial cli-
mate change experiments; ITEX, DroughtNet and NutNet to name 
a few, and complemented these with literature on methodology, 
method descriptions from publications and protocols from our 
own projects (see the appendix for full reference lists). From these 
sources, we extracted a list of response variables that are relevant 
and commonly used in terrestrial climate change research (Table 1). 
A core group outlined the writing process, the relevant response 
variables, the protocol structure and the final editing, while expert 
teams on each topic wrote the protocols (Box 1).

We focussed on variables that are relevant for understanding cli-
mate change impacts on the biodiversity and functioning of the soil–
plant–atmosphere continuum, and/or which are particularly useful 
for data re-use, synthesis and upscaling. We do not comprehensively 

BOX 1 ClimMani and the protocol writing team

The EU Cost Action ClimMani (2014–2018) focussed 
on building and strengthening the experimental climate 
change research community. Key goals of this Action 
were to provide guidelines for best experimental prac-
tices, and to advance experiment–data–model interac-
tions. ClimMani therefore set out to develop and promote 
common protocols as a community effort to guide future 
measurements and experiments, and to improve future 
inter-site comparisons, meta-analyses and model–experi-
ment interactions.
In March 2017, 26 ClimMani members met for a workshop 
and initiated the collection of measurement protocols in 
climate change studies. The structure and outline for the 
project was developed, and leaders for the five chapters 
appointed. Researchers were identified that could lead 
protocols based on their scientific expertise. In total, the 
protocol writing team consisted of 85 authors, who wrote 
the protocols based on their expert knowledge and exist-
ing protocols in the literature. In a second round, 50 ex-
perts reviewed the protocols, after which the authors 
finalized the protocols by the end of 2017. A second work-
shop was organized in January 2018 to finalize and harmo-
nize all protocols and agree on data presentation. In total, 
115 scientists from 21 countries on four continents were 
involved.
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cover plant functional traits as these are already extensively covered 
in the New handbook for standardised measurement of plant functional 

traits worldwide by Pérez-Harguindeguy et al. (2013), but provide a 
motivation and overview of relevant traits (see Chapter S4), and oth-
erwise refer to this source.

2.2 | Content and structure of the protocols

For each protocol, we provide a short overview of the equipment 
and running costs, installation and maintenance effort, knowledge-
needs and the type of measurements conducted (Table 1). Note 
that this overview is to a certain extent country-, habitat- and pro-
ject-dependent (i.e. costs differ between countries, knowledge-
needs for species identification might differ between a rainforest 
and a temperate bog). We give a short summary of the ecological 
background and its relevance to terrestrial climate change stud-
ies. We succinctly describe What and how to measure, providing 
sufficient detail to ensure reproducibility, and provide a reference 
list with more extensive literature on each method. We describe 
a Gold standard, that is the optimal measurement irrespective of 
economic, technical and practical constraints, and (if applicable) 
a Bronze standard, that is the minimal requirement for data of ad-
equate quality, which can be advisable in specific situations. In the 
section on Special cases, emerging issues and challenges, we explain 
how the method can be adapted in specific cases and provide 
guidance on relevant challenges and opportunities. We further 
provide an extensive list of key references on the underlying theo-
ries, assumptions and applications of each method in the section 
on Theory, significance and large datasets, as well as under More 

on methods and existing protocols. These references may be espe-
cially useful for students, early-career scientists or research teams 
getting started in setting up new studies, and more generally for 
readers interested in exploring the wider literature related to a 
specific ecological response variable. Each chapter is available as a 
separate supplement for easier handling, but we encourage the cli-
mate change research community to be aware of aspects of other 
chapters outside their own scientific expertise.

3  | RESULTS – OVERVIE W OF THE 
HANDBOOK CONTENT

We produced a collection of 66 protocols, describing response 
variables ranging from elements and organisms to the ecosystem 
scale, organized into five supporting information chapters (Table 1). 
All protocols can be found in the online Supporting Information to 
this paper. In addition, the protocols are also available online on the 
ClimEx handbook webpage (clime xhand book.w.uib.no). To ensure 
that the handbook will also be a useful resource for the community 
in the future, comments and suggestions for updating the protocols 
can be made via the webpage. These comments and suggestions will 
be assessed by the authors of this paper and every update will be 

tracked. The protocols should be cited as appendices to this paper, 
see individual protocols for details. In the following, we present a 
summary of these chapters, guidance on their use and examples of 
their relevance to climate change research.

3.1 | Chapter 1: Site characteristics and 
data management

Systematic reporting of background information of the studied sys-

tem, data analysis and results is necessary to ensure that studies are 
reproducible and to enable data syntheses and analyses across stud-
ies, meta-analyses, modelling and upscaling (Gerstner et al., 2017; 
Haddaway & Verhoeven, 2015). Such information includes a basic site 
description, such as geographic location and abiotic and biotic proper-
ties, pre-experimental baseline conditions (e.g. climate, soil properties), 
basic methodological descriptions (e.g. sample size, timing, duration), 
a proper characterization of treatments and results (e.g. units, ef-
fect sizes), and well structured and documented data management. 
Surprisingly, this necessary basic information is often incomplete or 
missing in scientific publications (Hillebrand & Gurevitch, 2013).

The site characteristics and data management chapter 

(Supporting Information S1) therefore describes which key site, 
study system, and study design variables and information should 
be collected, and how this information is best reported. We first 
give practical guidance on how to design and set up a climate 
change study that may serve multiple uses beyond the needs of 
the particular project. Then, we describe basic site description pa-
rameters (e.g. coordinates, elevation, land-use history, vegetation) 
and physical (e.g. soil horizon, pH), chemical (e.g. nutrient availabil-
ity) and meteorological variables. Although some of this informa-
tion may not directly relate to the particular research question or 
hypothesis of the original project, reporting all relevant informa-
tion is essential as it puts studies in a larger context and is key to 
making data and results useful beyond the particular research for 
which they were designed.

Arguably, improved collection and reporting of background in-
formation about the sites and study systems are probably the largest 
benefit of this handbook in terms of opportunities for second-order 
outputs (Figure 1). At the same time, these data are non-focus vari-
ables in most studies and therefore typically have low priority. To 
stimulate systematic and standardized collection and reporting of key 
background variables, we therefore provide an overview of the most 
critical variables, both overall and specifically for different kinds of 
data re-use, synthesis and upscaling (Table 2). Here, we also indicate 
the spatial scale (plot/treatment/site) at which the different variables 
should preferably be collected for different opportunities of data re-
use. The first ‘minimum requirement’ column in Table 2 lists variables 
that all climate change studies – regardless of research question and 
focus – should measure and report. Background data of particular rel-
evance for specific kinds of second-order outputs (i.e. meta-analyses, 
community modelling, ecosystem modelling, spatial and temporal up-
scaling) are indicated in the other columns (also see discussion below).
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TA B L E  1   List of all protocols in the five chapters: 1) Site characteristics and data management, 2) Carbon and nutrient cycling, 3) Water cycling, 4) Species and interactions and 5) 
Stress physiology. For each protocol, ranges of equipment costs and running costs (specified in euros, € = <100€, €€ = 100–1,000€, €€€ ≥ 1,000€), installation effort (installing or applying 
on–off measurements), maintenance effort (maintaining instrumentation or repeated measurements), knowledge-need specified in three categories low (L), medium (M) and high (H), and 
measurement mode as manual measurement (MM) and/or data logger (DL) are specified

   

Equipment 

costs

Running costs 

per exp. unit

Installation 

Effort

Maintenance 

Effort

Knowledge-

need

Measurement 

mode

1. Site character-
istics and data 
management

1.1 Optimizing the study design – – – – L –

1.2 Geographic location and basic site description – – – – L –

1.3 Soil type and physical characteristics – – L – L–M MM, DL
1.4 Soil chemistry and nutrient availability – – L – M MM

1.5 Meteorological measurements – – M L M MM, DL
1.6 Open science practice, reproducible workflow, and data 

management
– – – – L –

2. Carbon and 
nutrient cycling

2.1.1 Above-ground plant biomass €–€€ – L–M L L–M MM

2.1.2 Below-ground plant biomass €–€€€ None–€ M L–M M MM

2.1.3 Leaf-scale photosynthesis €€€ €€ M M H MM

2.1.4 Plant respiration €€€ € M–H – H MM, DL
2.1.5 Root exudation (in situ) €–€€€ €–€€€ H L–H M–H MM

2.1.6 Foliar stoichiometry and nutrient resorption € €–€€ L–M – L MM

2.2.1 Soil microbial biomass – C, N, and P — € L M M MM

2.2.2 Root and soil colonization by mycorrhizal fungi € € M–H – M–H MM

2.2.3 Soil CO2 (and other trace gas) fluxes €€–€€€ €–€€ M–H M M–H MM, DL
2.2.4 Soil carbon and nutrient stocks € € M – M MM

2.2.5 Nutrient mineralization None–€ €–€€ L–M M M MM

2.2.6 Foliar litter decomposition € € L L L MM

2.2.7 Root decomposition € € M–H L L MM (DL)
2.2.8 SOM decomposition €€ €€–€€€ M M M–H MM

2.2.9 Soil leaching €€ €€ M L M MM

2.2.10 Soil water erosion €€ € M M M MM

2.2.11 Biological nitrogen fixation – €€–€€€ M M M MM

2.3.1 Ecosystem CO2 and trace gas fluxes €€–€€€ €–€€ M–H L–H M–H MM, DL
2.3.2 Total below-ground carbon flux €€€ €€€ H M H MM, DL
2.3.3 Upscaling from the plot scale to the ecosystem and beyond €–€€€ NA M M M MM, DL

3. Water cycling 3.1 Soil moisture €€ € M M M DL

3.2 Soil hydraulic conductivity €€ € L L M MM

3.3 Soil water retention €€€ € M M M MM

3.4 Soil water potential €€€ – M L M DL

3.5 Soil temperature (thermal regime) €€ € M M M DL

3.6 Soil wettability or water repellency € – – – L MM

3.7 Sap flux €–€€ €–€€ M M–H H DL

3.8 Ecosystem water stress €€ € M M M–H DL

  (Continues)
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Equipment 

costs

Running costs 

per exp. unit

Installation 

Effort

Maintenance 

Effort

Knowledge-

need

Measurement 

mode

4. Species and 
interactions

4.1 Sexual plant reproduction € € L L M MM

4.2 Seed viability, germinability and dormancy € € L L L–H MM

4.3 Plant demography €€ € L L M MM

4.4 Bud dormancy depth € € L M–H L MM

4.5 Above-ground plant phenology €–€€ € L–M H M MM, DL
4.6 The soil seed bank (buried seed pool) € € M H H MM

4.7 Propagule rain € € L–M L–M H MM

4.8 Plant community composition € – L–M – H MM

4.9 Soil microbial community composition € €€–€€€ M – M–H MM

4.10 Soil micro- and mesofauna community composition € € L–H L–M M–H MM

4.11 Macroinvertebrate community composition € € L–M M–H H MM

4.12 Pollinator composition €€€ € L L H MM

4.13 Pollinator visitation €€€ € L L M MM

4.14 Plant pathogen and invertebrate herbivory € – L L M MM

4.15 Vertebrate herbivory €–€€ € L L M MM

4.16 Functional traits – – – – – –

5. Stress 
physiology

5.1 Chlorophyll fluorescence €€–€€€ € L M M–H MM

5.2 Chlorophyll and carotenoid content €–€€ € M L M MM

5.3 Non-structural carbohydrates €€€ € M M M MM

5.4 Lethal dose (LD50) to quantify stress tolerance exemplified 
by frost tolerance

€€€ € M L M MM

5.5 Leaf temperature €€–€€€ €–€€€ M M M MM, DL
5.6 Leaf thermal traits €€–€€€ €–€€€ M–H – M MM

5.7 Stomatal conductance €€–€€€ € L L M MM, DL
5.8 Psychrometry for water potential measurements €€ € M M M DL

5.9 Pressure-volume curves – TLP, ε, Ψo €€ € M L M MM

5.10 Maximum leaf hydraulic conductance €€€ € L L M DL

5.11 Metabolomic profiling in plants using mass-spectrometry €€€ €€ H M H MM

5.12 Reflectance assessment of plant physiological status €€–€€€ € L L M MM, DL
5.13 Stable isotopes of water for inferring plant function €€€ € M M H MM, DL
5.14 BVOCs emissions from plants and soils €€€ €€€ H H H MM

5.15 Water-use efficiency €€ € L L–M L–M MM, DL
5.16 Leaf hydraulic vulnerability to dehydration €€€ € L L M DL

TA B L E  1   (Continued)
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TA B L E  2   Guidance on the selection of variables to optimize different types of data re-use, synthesis and upscaling. The minimum requirement column lists variables that should be 
measured and reported in all climate change studies. The meta-analysis, community models, ecosystem models, and temporal and spatial upscaling columns list variables required for these 
specific kinds of data re-use. The critically important variables are in grey cells, whereas advised variables are in white cells. The letters indicate at which level the variables should be 
measured: S = site, T = treatment and P = individual plot. The last column gives the relevant specific protocols in the Supporting Information

 Variable

Minimum 

requirement

Meta-

analyses

Community 

models

Ecosystem 

models

Temporal and 

spatial upscaling

Protocol 

reference

Site description History: Soil and land management/ Disturbance/ Nutrient input/ Contamination S S    1.1.1

Location: Coordinates/ Name/ Country S S S S S 1.1.2

Elevation/ Slope/ Aspect S/P S/P S S S 1.1.3

Climate dataa: Mean annual temperature/ Precipitation/ Seasonality/ Length of grow-
ing season

S S S S S 1.1.4

Dominant vegetation/ Life strategy (density, volume, cover, or biomass)/ Plant func-
tional type

S S/T/P S/T/P S/T/P S 1.1.5

Abiotic and 
biotic proper-
ties of the 
ecosystem

Soil type S S S S S 1.2.1

Soil horizons (layers) S   S  1.2.1

Plant rooting depth S S S S S/T/P 1.2.2

Stone content    S  1.2.3

Bulk density S S  S  1.2.4
Soil texture/ Particle size analysis  S  S  1.2.5

Soil pH S S/T/P S S/T/P S/T/P 1.3.1

Soil organic matter (SOM)b S S/T/P S  S/T/P 1.3.2

Soil C, N and Pc S S/T/P  S/T/P  1.3.2

Cations (exchangeable base cations and cation exchange capacity)  S  S  1.3.2

Plant community composition and abundance S T/P T/P   4.8
Leaf area index S S S T/P  4.15
Plant traits, e.g. leaf mass per area (LMA)  T/P T/P T/P T/P 4.15

Weatherh Air temperatured S S S S S 1.4.2
Soil temperatured S/T S/T/P S S/T/P S/T/P 1.4.3, 3.5
Fraction of absorbed photosynthetically active radiation (FAPAR)/ Photosynthetically 

active radiation (PAR)e

S S S S S 1.4.4

Relative humidity S S    1.4.5
Precipitation (+ Snow depth and duration)d,f S S   S 1.4.6
Soil moistured S/T S/T/P S/T/P S/T/P S/T/P 1.4.7
Rain through-fallg T S  P  1.4.8

aFrom nearby meteorological station; >30 years of data are needed for meaningful means. 
bGold standard is via CN analyser; Silver standard Walkley–Black method; Bronze standard is loss-on-ignition (LOI). 
cOrganic C and N are essential; P is not always measured and is variable, so only continuous measurements are useful; for calcareous soils, inorganic C is important; gold standard is organic and inorganic 
C, N and P; bronze standard is LOI measurement converted to soil C by dividing by 2. 
dIncluded in standard automated meteorological station. 
eUsually easily measured as part of automated weather station; necessary if plant growth responses are studied. 
fSnow cover duration in alpine systems, where snow is important. 
gImportant in forests and in rainfall experiments. 
hContinuous measurements. 
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Alongside the planning of the study design and data collection, the 
‘data cycle’ in a research project – creating, processing, documenting, 
sharing, storing and re-using data – should also be planned, follow 
standardized practice and be well structured and documented (British 
Ecological Society, 2018; Poisot, Bruneau, Gonzalez, Gravel, & Peres-
Neto, 2019). Good data management practice is a key element of ‘pre-
producible’ research practice, a term describing a holistic approach to 
reproducible science (Stark, 2018). We argue that good data manage-
ment practice is a key step in overcoming the challenges related to the 
‘data availability filter’ (Figure 1) and thus in creating opportunities for 
data re-use, synthesis and upscaling. Funding bodies and publishers 
are increasingly recognizing this, and now often require data manage-
ment plans and open science practice (British Ecological Society, 2018). 
We therefore include guidance on open science practice, reproducible 
workflow and data management in this chapter.

3.2 | Chapter 2: Carbon and nutrient cycling

The cycles of carbon and nutrients involve many ecological pro-
cesses that are all sensitive to climate change (Bai et al., 2013; Yue et 
al., 2017), including photosynthesis, above- and below-ground plant 
growth, autotrophic and heterotrophic respiration, organic matter 
decomposition and nutrient mineralization. Even minor changes in 
any of these processes, or in the balance between them, can have 
implications for biodiversity and ecosystems, which again can im-
pact strongly on ecosystem goods and services such as provision-
ing of food and fibre, water regulation and carbon sequestration 
(Trumbore, Brando, & Hartmann, 2015).

In the carbon and nutrient cycling chapter (Supporting Information 
S2), we focus on the main components of the terrestrial carbon cycle, 
including above- and below-ground processes, pools and fluxes. 
Nutrients are also included, but limited to pools and processes that 
are linked to carbon cycling and ecosystem feedbacks to climate. We 
stratify measurements into three thematic protocols (plants, soil and 
ecosystems) that are particularly relevant when considering carbon 
and nutrient cycling processes within terrestrial ecosystems.

3.3 | Chapter 3: Water cycling

Ecosystems play key roles in water and energy cycles, with feedbacks 
to climate. The understanding of the water and energy exchange be-
tween the soil, plants and the atmosphere is still a major research chal-
lenge in climate change research because of difficulties in some of the 
measurements, which are needed to complete the water and energy 
balances. Water that enters the ecosystem via precipitation will be 
separated into evaporation, infiltration, transpiration by plants, drain-
age to groundwater and (temporary) storage in the soil. All these water 
fluxes need to be determined to fully understand the water and energy 
exchange between the ecosystem and the atmosphere.

In the water cycling chapter (Supporting Information S3), we 
start with soil hydraulic measurements, which include soil moisture, 

hydraulic conductivity, water retention and water potential. The 
methods included are key to determining parameters that link to, 
or are used in, modelling the soil–plant–atmosphere continuum. 
We also provide guidelines to quantify the ecosystem water stress 
aiming to facilitate comparison and syntheses across studies. We 
further include measurements used to track the progress of water 
through the plant and back to the atmosphere.

3.4 | Chapter 4: Species and interactions

As discussed above, plants and the interactions in which they par-
ticipate play key roles in terrestrial ecosystems. Impacts of climate 
change on ecosystems and their functioning are therefore to a large 
extent, mediated through the plant–soil food web, both through 
changes in the abundance and diversity of organisms, and through 
changes in their interactions (competition, mutualism, grazing, pre-
dation, decomposition, etc.).

In the species and interactions chapter (Supporting 
Information S4), we provide guidance on quantifying the conse-
quences of climate change for key organisms, biodiversity com-
ponents and ecological processes across the plant–soil food web. 
At the level of populations, we cover vital rates such as reproduc-
tion, recruitment, growth, mortality and phenology, as well as the 
overall impacts on the dynamics and growth rates of populations. 
At the community level, we provide guidance on the assessment 
of impacts on plant-, invertebrate- and microbial-species composi-
tion, abundance and diversity. For plants, we consider both above- 
and below-ground diversity, as well as community-level dynamics 
in the form of propagule rain. With regard to species interactions, 
we cover pollination, vertebrate and invertebrate herbivory, plant 
predation and pathogens, and decomposition. We also provide a 
short motivation for, and link to, the plant traits protocol (Pérez-
Harguindeguy et al., 2013). This chapter does not cover organism 
responses at the individual level, which are dealt with in chapter 5 
on stress physiology (see below).

3.5 | Chapter 5: Stress physiology

In uncovering how climate change will affect plants and ecosys-
tems, ecophysiology provides the means to mechanistically predict 
when tolerance limits are exceeded, and therefore when changes in 
the functioning of individual plants, species and entire ecosystems 
should occur. However, generalizations drawn from ecophysiologi-
cal measurements have specific methodological challenges related 
to factors such as microclimate versus tissue temperature (De 
Boeck, Velde, Groote, & Nijs, 2016; Michaletz et al., 2016), acclima-
tion (Neuner & Buchner, 2012) and scaling up from leaves to whole 
organisms or even ecosystems.

In the stress physiology chapter (Supporting Information S5), we 
describe a series of physiological or related measurements that are 
useful in climate change research. We focus mostly on their use as 
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indicators of stress, attained through determination of compounds 
(e.g. chlorophyll and carotenoid content, non-structural carbohy-
drates), plant functional traits (e.g. reflectance, leaf hydraulic con-
ductivity, leaf thermal properties, stable isotopes of carbon and 
water) and measurements that directly characterize or assess stress 
and tolerance.

4  | DISCUSSION – ADDING VALUE 
THROUGH BET TER COORDINATION OF 
CLIMATE CHANGE ECOLOGY

4.1 | The case for standardized data collection and 
reporting

Variation in the reporting of basic site and experimental character-
istics or in measurement methodologies substantially reduces the 
potential data (re-)use for analyses and comparisons across studies. 
Comprehensive comparisons across studies are therefore often 
hampered by (a) unrecorded factors increasing the unexplained 
variance in the data, (b) incompatible reporting leading to loss of 
information in the data (e.g. necessitate a simplification from quan-
titative to factor or qualitative variables) and (c) failure to report 
key (co)variates reducing the sample size (e.g. if studies have to 
be excluded from a synthesis) (Gerstner et al., 2017; Haddaway & 
Verhoeven, 2015). Using standardized protocols and reporting – to 
the extent that these are appropriate for the individual study – will 
therefore substantially increase the potential downstream use of 
data and added value of individual studies (affecting both filters; 
Figure 1).

Another challenge relates to specific parameters that are im-
portant for syntheses and meta-analyses, but which are often not 
measured or reported in stand-alone studies (affecting the data 
availability filter; Figure 1). For example, nutrient availability and nu-
trient dynamics may not be important in all individual studies but are 
increasingly being recognized as key drivers of across-site variation in 
ecosystem properties, dynamics and responses to climate and global 
changes (De Graaff, Van Groeningen, Six, Hungate, & Van Kessel, 
2006; Janssens et al., 2010; Ren et al., 2017; Stevens et al., 2015; 
Terrer, Vicca, Hungate, Phillips, & Prentice, 2016; Vicca, Luyssaert, 
et al., 2012). Carbon-cycle models have traditionally overlooked the 
role of nutrient availability, but the overwhelming evidence of its 
dominant role is now encouraging the modelling community to ad-
dress the roles of nitrogen and, more recently, phosphorus (Goll et 
al., 2012; Peñuelas et al., 2013; Wang, Law, & Pak, 2010). While the 
scientific community is increasingly acknowledging the importance 
of nitrogen, phosphorus and other nutrients for understanding and 
projecting the carbon cycle, there is still a significant lack of informa-
tive and comparable datasets at regional and global scales (Vicca et 
al., 2018). In the Site characteristics and data management chapter, we 
therefore provide a section on what variables to measure to enable 
disentangling the role of nutrients in carbon synthesis studies (sum-
marized in Table 2).

4.2 | The case for using standardized and relevant 
units and scales

Several of the key variables and covariates for inter-study compari-
sons (Table 2) include data and parameters that may be measured in 
different units or scales, depending on the research tradition in the 
specific fields. Such variables are, or can easily be made, compara-
ble across studies, as long as the necessary information needed for 
conversions are also reported along with the original variables (these 
may relate to area/volume, climatic data, vegetation characteriza-
tion, soil properties, nutrients; Table 2; affecting the compatibility 
filter, Figure 1). For example, changes in soil organic carbon in re-
sponse to a manipulation are typically reported either per unit area 
or as a weight percentage. These metrics are both valid, but they are 
not comparable unless the data necessary for conversion (bulk den-
sity and sampling depth) are provided. The necessary information for 
recalculation or conversion across reporting traditions should there-
fore be recorded and reported.

A second challenge relates to the need to quantify the treat-
ments as experienced by the biota. For example, precipitation ma-
nipulation experiments typically report the amount of water added 
or removed, but the manipulation as experienced by the biota may 
deviate substantially from what is reflected in the absolute or per-
centage change in precipitation. Specifically, soil water availability 
is influenced by many factors, including soil water-holding capac-
ity, run-off, hydrological legacy, rooting depth and drainage (Vicca, 
Luyssaert, et al., 2012). Hence, assessing water availability in a 
standardized way will substantially improve our understanding of 
the sensitivity of ecosystems to the manipulations and facilitate 
cross-experimental comparisons (see protocol 3.8 on Ecosystem 
water stress).

4.3 | The case for upscaling through models

Various types of mechanistic models can be used to generalize and 
extrapolate the data collected from in situ climate change stud-
ies in space and time. The potential of model-data interaction and 
its potential high impact, however, is often forgotten during ex-
perimental planning. Here, we want to illustrate the importance of 
early project planning for future data use (Table 2). For example, 
soil pH as an easy and low-cost measure may have been tradition-
ally measured at the site level (lowest resolution), but in order 
to be a useful variable in meta-analyses, ecosystem models and 
temporal and spatial upscaling, soil pH data are more valuable if 
measured at a higher resolution (e.g. treatment or plot level). Thus, 
investing time in considering the aspired impact of the data-to-be-
collected already in the project planning phase can direct budget 
investments and will be beneficial for the wider experimental and 
modelling community.

Purely statistical models attempt to describe cause-and-ef-
fect based on independent measurements of key processes. On 
the other hand, process-based models are built on a theoretical 
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understanding of relevant ecological processes and provide un-
derstanding about specific responses to various environmental 
conditions. Here, we suggest three strategies for stimulating in-
formation flow between models and experiments and/or obser-
vational studies. First, data-model comparisons can be used as 
a tool to directly test hypotheses, where observations are com-
pared directly against model output. Second, experimental and/
or observational data can be used as for model calibration tool, 
where parameters and predictor variables measured at a site or 
within a treatment are used to calibrate the model. In this case, 
the uncalibrated response variables can be compared to the model 
output; flexible parameterization can be considered a hypothesis 
(i.e. a form of sensitivity analysis) and can be used to inform the 
final model selection. Finally, the model parameters can be used in 
process-based models to ‘tune’ or ‘benchmark’ the model, which 
means that the model is simply fitted to the model-derived data. In 
this latter case, the model provides no hypothesis test, but simply 
synthesizes the data within the logical structure provided by the 
model (Luo et al., 2012). Each of these strategies has its place, but 
the difference in objectives and data requirements needs to be 
recognized.

To give an example, sensitivity analyses often identify similar 
variables as important for similar models. The BIOME-BGC model, 
which describes biogeochemical processes, is especially sensitive 
to leaf area index, cumulative soil water-holding capacity, leaf 
mass to area ratio, temperature and some measure of nutrient sta-
tus (White, Thornton, Running, & Nemani, 2000). Similarly, Yang 
et al. (2016) described a sensitivity test of a model predicting the 
distribution of plant functional types. They found that leaf area 
index, leaf nitrogen per mass and leaf mass per area provided a 
particularly powerful combination of predictions. When exercised 
with changes in temperature and precipitation, the model pre-
dicted, for example, that boreal forest, boreal steppe and tundra 
would lose significant area. By measuring and reporting the vari-
ables needed to meet the data requirements of different types of 
models (Table 2), the information flow between empirical studies 
and modelling will be increased.

4.4 | The case for considering new mechanisms and 
drivers under future climates

As the climate warms and rainfall patterns intensify in many re-
gions across the globe, mechanisms and driving factors that are 
currently of minor importance could become more dominant in 
the future. Thus, new variables might need to be considered for 
measurement protocols to adequately track modifications in eco-
systems under a changed climate. In particular, drought events 
are expected to occur more often, to last longer or to be more 
severe in many regions (Prudhomme et al., 2014; Touma, Ashfaq, 
Nayak, Kao, & Diffenbaugh, 2015). Conversely, increased rain-
fall intensities and flash flooding during the growing season are 
also predicted (Kendon et al., 2014), leading to a short-term rise 

in the availability of water. Drier conditions could have conse-
quences for the drivers and mechanisms operating in biogeo-
chemical cycles. For example, rain might periodically be absent, 
thus driving the ecosystem to pass a threshold and start relying 
on non-rainfall water inputs (occult precipitation, such as dew 
and fog) for plant, litter and soil processes (Gliksman et al., 2017; 
Hill, Dawson, Shelef, & Rachmilevitch, 2015; McHugh, Morrissey, 
Reed, Hungate, & Schwartz, 2015). Moreover, abiotic processes, 
such as photochemical and thermal processes, start to kick in after 
passing heat and drought thresholds (Austin & Vivanco, 2006; 
McCalley & Sparks, 2009). Methodologies need to be adapted to 
capture such changes in drivers and mechanisms. For example, 
litterbags to study decomposition should transmit UV radiation 
and should only minimally affect the energy balance of litter to 
prevent interfering with dew formation. In addition to the need 
of measurement devices to consider these mechanisms and allow 
their quantification, the relevant drivers have to be measured with 
affordable equipment, such as UV irradiance by UV sensors and 
duration of dew by leaf wetness sensors. In general, this illustrates 
how novel future climates and conditions will necessitate the con-
sideration of new drivers and mechanisms.

5  | CONCLUSIONS

Climate change experiments and observational studies are increas-
ingly being conducted across a broad range of habitats and regions. 
Experiments are generally designed to disentangle complex and inter-
active drivers, causal relationships, response surfaces and underlying 
mechanisms, whereas observational studies document large-scale 
temporal and spatial patterns. The growing interest in data re-use, 
synthesis and upscaling within and across experiments and observa-
tions highlights challenges and pitfalls regarding the downstream use 
of knowledge from these studies, especially regarding data availability 

and data compatibility across studies (Denny et al., 2014; Firbank et 
al., 2017; Vicca, Gilgen, et al., 2012) and the lack of basic study infor-
mation or covariates necessary for comparison (Gerstner et al., 2017; 
Haddaway & Verhoeven, 2015; Halbritter et al., 2018).

To overcome these challenges, we provide a handbook with 
guidance on the selection of response variables, protocols for 
standardized measurements of these variables and advice on data 
reporting and management. The ClimEx handbook summarizes 
best-practice methodologies emerging from major ecological re-
search networks and studies, as synthesized by 115 experts from 
across relevant research fields. Our ambition is that this commu-
nity effort will facilitate awareness by the next generation (and 
the older generation) climate- and global-change scientists of 
standardized methods to promote data availability, compatibility 
and transparency. We envision improved research practices that 
will not only result in better returns on the time and money in-
vested in individual research projects, but will especially facilitate 
second-order research outputs across projects and scientific dis-
ciplines. More general, this should lead to a better connection of 
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scientific communities and disciplines. The ultimate goal is to opti-
mize the quality and impact of our science to fulfil society's needs 
in a changing world.
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