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Abstract 

The common bean (Phaseolus vulgaris) or dry bean is a legume crop that many developing 

nations rely on for nutrients. As global populations rise, challenges with ensuring food security 

become exacerbated. Crop improvement of dry beans requires plant breeding, which can take up 

to 10 years. To ensure success in a breeding program, plant breeders must carefully consider the 

decisions they make, including phenotyping method, resource allocation, and choice of breeding 

strategy. Computer simulations can provide abundant information without the need for empirical 

studies. In this study, five conventional breeding strategies used for the selection of three traits 

with differing heritabilities were evaluated via computer simulation using the program QU-

GENE. These conventional breeding strategies were then compared to new proposed plant 

breeding methods, genomic selection and speed breeding. Finally, the accuracy of genomic 

selection was evaluated. 
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Résumé  

Le haricot commun (Phaseolus vulgaris), aussi appelé communément haricot sec, est une 

légumineuse jouant un rôle crucial dans l’alimentation de plusieurs pays en voie de 

développement de par son aspect nutritionnel. Avec l’augmentation de la population mondiale, 

plusieurs enjeux liés à la sécurité alimentaire seront exacerbés. L’amélioration génétique du 

haricot sec nécessite de longs cycles de sélection pouvant prendre jusqu’à dix années. Pour 

s’assurer du succès d’un programme d’amélioration, les sélectionneurs doivent effectuer les 

meilleurs choix quant à la méthode de phénotypage, le schéma d’allocation des ressources et la 

stratégie de sélection. Les simulations informatiques peuvent fournir des informations 

abondantes sans avoir besoin d'études empiriques. Dans cette étude, cinq stratégies de sélection 

conventionnelles utilisées pour la sélection de trois caractères avec des héritabilités différentes 

ont été évaluées par simulation informatique à l'aide du programme QU-GENE. Ces stratégies de 

sélection conventionnelles ont ensuite été comparées aux nouvelles méthodes de sélection 

végétale proposées, à la sélection génomique et à la sélection rapide. Enfin, la précision de la 

sélection génomique a été évaluée. 
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Chapter 1 Literature Review 

1.1 Introduction 

Rising global populations, unequal distributions of global food production, and the implications of climate 

change may have serious consequences for future food security. Malnutrition, in the form of undernutrition, 

nutrient deficiency, and obesity are issues that developed and developing countries alike continue to face. 

Undernutrition and nutrient deficiency are particularly problematic in impoverished regions around the 

globe. Individuals living in low-income areas that rely solely on mono cereal crops as a food source are at 

risk of inadequate protein intake. Meanwhile, populations in developed countries are at risk of malnutrition 

in the form of obesity, resulting from low quality nutrients and high intake of carbohydrates and saturated 

fats. Thus, emphasis should be placed on developing sustainable crops. Common beans, (Phaseolus 

vulgaris) are an important legume crop which numerous countries across the globe rely on for proteins, 

healthy carbohydrates, and other nutrients. Previous studies have shown that common beans offer a number 

of health benefits, including reduced risk of diabetes, heart disease, cancer, and obesity. As a nutritionally 

compact legume, dry beans have the potential to fight malnutrition. Dry bean breeding programs in Canada 

and the United States have tackled increasing dry bean yield, as well as resistance to biotic and abiotic 

stresses. Due to the complexity and lengthy duration of breeding programs, plant breeders must carefully 

consider each aspect that goes into their breeding programs, including selection methods, selection intensity, 

labour and land resources available, and genotyping and phenotyping tools at hand. Computer simulations, 

which have become popular in the last few decades, may be used to assist plant breeders in decision 

making. Simulations provide information that could not be obtained empirically. Softwares including 

AlphaSimR, DeltaGen, ADAM-Plant, and QU-GENE are capable of simulating breeding programs. The 

stochastic simulation platform QU-GENE, which is based on the E(N:K) model, offers ease and flexibility.    
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1.2 Pulses and food security  

1.2.3 Global malnutrition   

Worldwide populations have been projected to surpass 9.5 billion by 2050 and reach 11 billion 

by 2100 (UN, 2021). This unrestrained population growth, coupled with uneven global crop 

production and the pressing concerns with climate change, may mean serious food shortages in 

the near future. Adoption of sustainable food sources will be needed to ensure food security and 

combat malnutrition. Malnutrition is a serious global concern that comes in many forms, 

including undernutrition, nutrient deficiency, and obesity. In 2020, 194 million children were 

either too short or too thin for their respective age and height, while 38.9 million children were 

either obese or overweight. While every country in the world experiences at least one form of 

malnutrition, it is particularly devastating for impoverished nations. Protein malnutrition is 

especially problematic in developing countries. Many regions in sub-Saharan Africa rely on 

mono cereal crops to feed its populace. Thus, the inhabitants do not receive adequate protein in 

their diets. Malnutrition in developed countries must also be addressed. Diets that are 

disproportionately high in carbohydrates and saturated fats, while simultaneously low in quality 

proteins and essential micronutrients can lead to obesity. Thus, emphasis should be placed on 

increasing production of highly nutritious crops that are sustainable to grow. 

 
1.2.2 Nutritional aspects of common beans 

Common beans and other pulses have numerous health benefits. Pulses, which are categorized as 

dry edible seeds in the legume family, are low in fat and contain high levels of complex 

carbohydrates and proteins. Important minerals, such as zinc, iron, potassium, phosphorus, and 

selenium, can also be found in pulses. Furthermore, pulses are rich in folate, thiamin, niacin6, 

and other B vitamins (Rosegrant, 2003). Global organizations, such as the United Nations and 
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World Health Organization made efforts to promote the health benefits of pulses through World 

Pulses Day. American and Canadian individuals that regularly consume pulses were found to 

have better diet quality, with higher intakes of fibres, proteins, carbohydrates, and vitamins 

(Mitchell et al., 2009; Mudryj et al., 2012). There have also been some studies that point to an 

association between the consumption of pulses and the reduction of risk for cardiovascular 

disease, diabetes, and obesity. Pulses have a low glycemic index, which has been shown to 

decrease the risk of coronary heart disease in women. Subjects that were given a diet consisting 

of pulses for five weeks had greater glycemic control and produced more high-density 

lipoproteins. They were also predicted to have a greater decrease in waist circumference and 

eventually lose weight if they should remain on the diet (Mollard et al., 2012). Finally, some 

studies suggest that dietary pulses may reduce the risk of certain types of cancer. In higher 

quantities, some of the nutrients and bioactive components in pulses may protect against cancer 

(Mathers, 2002). In an Italian population, pulses were found to protect against pancreatic cancer 

(Polesel et al., 2010). Thus, common beans are a nutritionally dense crop with many health 

benefits that may be utilized to combat malnutrition.  

1.3 History of common bean breeding  

1.3.1 General characteristics of common beans 

Common beans are an annual legume grown in both tropical and temperate climates. The 

common bean is diploid (2n = 2x = 22) with 11 chromosomes and a genome size of 

approximately 587 Mb (Schmutz et al., 2014). Common beans are sustainable to grow. They are 

capable of growing in soil that is poor in macro and micro-nutrients. By forming symbiotic 

relationships with nitrogen-fixing microbes at the root level, common beans are able to improve 

soil health by increasing nitrogen availability. In addition, as they continue to grow, carbon 
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exudates are released into the soil from their roots, which then alters the chemical properties of 

the soil favourably (Gogoi, Baruah, & Meena, 2018). Common beans have been grown for its 

dry edible seeds for thousands of years and are currently considered to be a staple crop across the 

world.  

1.3.2 Domestication of dry beans and genetic implications 

Phaseolus vulgaris, otherwise known as the common bean or dry bean, was first domesticated, 

likely more than once, in the Andes and Mesoamerica (Shree P. Singh et al., 1991; Chacón s et 

al., 2005). Domestication led to drastic changes in the morphology of the bean plants.  

In addition to this, as a result of separate domestication events, the common bean has two distinct 

gene pools: the Andean gene pool and the Middle American gene pool. Due to multiple 

domestication events in the Mesoamerican region, the Middle American gene pool has greater 

genetic variation (Siddiq & Uebersax, 2012). The gene pools can be differentiated with phaseolin 

and allozymes analyses (P. Gepts, Osborn, Rashka, & Bliss, 1986; Koenig & Gepts, 1989). 

Within these gene pools, dry beans can be further classified into different races mainly based on 

morphological characteristics. There are four Mesoamerican races (Mesoamerica, Durango, 

Jalisco, and Guatemala) and three Andean races (Nueva Granada, Peru, and Chile). Previously, 

chloroplast DNA was used to further explore how common beans were domesticated. Results 

from the study support the hypothesis of a single domestication event for the Andean gene pool 

and multiple domestication events for the Mesoamerican gene pool (Chacón, Pickersgill, & 

Debouck, 2005). Modern varieties of dry beans come from one of these two gene pools. The 

black, navy, pinto, great northern, and small red market classes belong to the Mesoamerican gene 

pool. Meanwhile, the kidney and cranberry market classes belong to the Andean gene pool.   
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1.3.3 Dry bean breeding 

Dry bean breeding programs in Canada and the United States have made substantial progress in 

improving biotic and abiotic tolerances, in addition to increasing yield. Breeding efforts have 

been focused on improving specific market classes locally. The objective of every breeding 

program is to improve yield, which is typically measured in kg/ha. In the United States, the rate 

of genetic gain reported for pinto beans was 13.9 kg/ha per year, and 17.4 kg/ha per year for 

navy beans. Dry bean breeding programs typically follow a general procedure, beginning with 

hybridization, followed by multiple rounds of generation advancement, during which selection 

takes place, and concluding with multi-location and multi-year field trials, in which the best 

genotypes are identified and released as a new variety (Siddiq & Uebersax, 2012). Despite the 

vast amount of genetic and phenotypic information available to plant breeders, there is still a gap 

in transferring this knowledge to breeding practices. Breeding programs are both time consuming 

and resource extensive, with each decision made having consequences for the outcome of the 

program. With the aid of genome wide association studies (GWAS), useful quantitative trait loci 

(QTL) or genes have been identified in the common bean. For many cereals, a common approach 

to selecting based on QTL is marker-assisted selection (MAS). However, MAS is not widely 

used in pulses due to difficulties in establishing marker-trait associations for useful markers and 

the high genotype by environment interactions present in many pulse crops (Kumar, Choudhary, 

Solanki, & Pratap, 2011). Thus, challenges still remain for accumulating desirable QTL and gene 

pyramiding multiple traits in new varieties (Assefa et al., 2019). These challenges may be 

addressed with the aid of computer simulations  
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1.4 Computer simulations in plant breeding 

1.4.1 Simulation theory 

Computer simulations have come into the spotlight in recent decades as a way to evaluate all 

possible conditions that one may face in practice. They allow current models to be tested in 

different scenarios, which may in turn increase confidence in said models. Simulation studies 

may be classified as either deterministic or stochastic. In deterministic simulations, the output 

obtained from one input will always be the same. Contrarily, stochastic simulations allow for 

randomness. The outputs are distributed around the true value, so they are considered to be 

probabilistic. In other words, the same input may result in different outputs. Computer 

simulations may be applied to four areas of plant breeding: comparison of breeding schemes, 

validating the effectiveness of gene mapping, crop modeling to link genotypes and phenotypes, 

and simulating entire breeding processes to accommodate gene-environment interactions (Li, 

Zhu, Wang, & Yu, 2012). A simulation study was previously conducted to assess two breeding 

strategies used in CIMMYT’s wheat breeding program. The findings from the study indicated 

that the selected bulk method had 3.3% greater gains compared to the modified pedigree method 

(Jiankang Wang et al., 2003). Thus, computer simulations have become highly informative for 

deciding upon the best breeding strategy to use.  

1.4.2 Plant breeding simulation platforms  

Numerous plant breeding simulation platforms have been developed that currently available to 

plant breeders. These include ADAM-Plant, AlphaSimR, DeltaGen, Plabsoft, MBP, GREGOR, 

and GENEFLOW. Each program makes certain assumptions, which must be carefully 

considered when deciding whether it is suited for simulating a breeding program. 
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ADAM-Plant 

ADAM-Plant is a stochastic simulation software extending from the animal breeding software, 

ADAM. It is applicable to self-pollinated and cross-pollinated crops and has the capacity to 

simulate overlapping generations. In addition, it considers genotype by environment interactions. 

Two genetic models are available: an infinitesimal model and a genomic model, where users 

must indicate markers and QTLs (Liu et al., 2019).   

AlphaSimR 

AlphaSimR is a stochastic simulation that generates founder haplotypes with linkage 

disequilibrium and allele frequency distributions matching user specific genetic model. Traits are 

simulated based on additive, dominance, epistatic, or GxE models. Meanwhile, a number of 

functions are available to simulate different selection schemes, including genomic selection 

(Gaynor, Gorjanc, & Hickey, 2021).  

DeltaGen 

DeltaGen is a plant breeding decision support application that can be implemented in the 

statistical software R. DeltaGen facilitates statistical analysis of field data with linear and mixed 

models that are integrated within its framework. DeltaGen allows for simulation of breeding 

strategies that are defined within the program. These strategies include half-sib, half-sib with 

progeny testing, among and within half-sib, etc. (Jahufer & Luo, 2018). A drawback of this 

program is that it does not allow for simulation of user defined breeding strategies.    

Plabsoft 

Plabsoft is a population genetics simulation program that is available as a package in R. it may 

be used to estimate allele frequencies, various genetic distances, and genetic diversity. It is also 

applications in plant breeding and is capable of simulating stages or even the entirety of a 
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breeding program. The genotypic value is estimated as the sum effects of a select number of loci. 

The software also consists of an algorithm that locates haplotype blocks. (Maurer, Melchinger, & 

Frisch, 2004). One of the criticisms it faces is the lack of a user-friendly interface. 

MBP  

MBP was developed to assist in hybrid maize breeding using double haploids. The software 

incorporates cost effectiveness estimates to allow users to make decisions based on available 

resources and materials. The genotypic variance is estimate from the general and specific 

combining ability of a test cross. Thus, MBP may be used to optimize the general combining 

ability given a restricted budget. The software can also output loss of genetic variance per year 

(Gordillo & Geiger, 2008). A concern with this program may be the capacity to simulate 

breeding schemes outside of double haploids. 

GREGOR  

GREGOR is a research and educational software that can simulate outcomes from different 

mating or selection schemes. The inputs are defined in three objects: population, traits, and 

marker list. The population can undergo specific mating or selection schemes, and the phenotype 

of the resulting population is estimated from the trait and marker list. (Tinker & Mather, 1993). 

While GREGOR is very straightforward to use, all inputs are simulated within the program and 

results are based on a hypothetical genome, which may not be reflective of reality. 

GENEFLOW  

GENEFLOW is a commercial software that may be used for plant breeding decision support. It 

uses an amalgamation of pedigree information, genotypic data, and phenotypic data to help users 

understand genetic relationships, trait inheritance, and population structures. It provides 

estimates for genetic diversity and gives information on gene-trait relationships.   
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1.4.3 QU-GENE 

QU-GENE (QUantitative-GENEtics) is a software that can be used as a simulation platform for 

studying genetic models (Podlich and Cooper, 1998). It is versatile and can be used to investigate 

populations from a quantitative genetics standpoint, such as how different genotype-by-

environment models can impact the performance of a genotype. The QU-GENE software is 

made up of two elements, an engine and a module. The engine essentially specifies a genetic 

model for the genotype-environment system. Meanwhile, the module is used to alter and 

examine genotype populations in the specified genotype-environment system. One of the 

benefits of QU-GENE is that the engine produces baseline information regarding the genotype-

environment system, meaning that to conduct computer simulations, one only needs to focus on 

applying the module. Thus, it is possible to run a number of simulations using different modules 

in the same genotype-environment system. There are several modules that are available for use. 

These include mass selection (MSSLT), half mass selection (HMSSLT), half-sib reciprocal 

recurrent selection (HSRRS), double haploid (DHAP), germplasm enhancement (GEPRSS), half 

germplasm enhancement (HGPRSS), pedigree (PEDIGREE), and genetic experiments (GEXP) 

(Podlich and Cooper, 1998).  

Before discussing how QU-GENE can be used for simulation experiments, it is important to 

understand the E(N:K) model, which is essentially the backbone of the QU-GENE program 

(Podlich and Cooper, 1998). The E(N:K) model makes use of linear statistical and landscape 

models by bringing together stochastic and deterministic elements. In the E(N:K) model, E 

stands for the number of different environment types in the genotype-environment system. The 

number of environment types and how often they occur then determines the target population of 

environments (TPE). Next, N stands for the number of genes involved in expression of traits 
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(Podlich and Cooper, 1998). Lastly, K stands for the average amount of epistasis in the genotype-

environment system. Once the E(N:K) model has been chosen, the researcher can then indicate 

additional information to include. For example, information on the locations of the genes on the 

chromosomes, the number of traits that are affected by the genes, if there are interactions 

between the loci, the types of environments in which certain genes are expressed, and the 

heritability of traits (Podlich and Cooper, 1998).  The main advantage to using QU-GENE over 

other simulation platforms is the flexibility The breeding strategies are user-defined, making it 

possible to compare even small differences between strategies. Another aspect is the extensive 

output provided by QU-GENE. The population files generated by QU-GENE contain allelic 

information for every individual. This allows for additional analysis to be conducted. 

Due to the flexibility, accessibility, and user-friendliness of the platform, QU-GENE was used to 

simulate multiple breeding scenarios. This paper focuses on five conventional breeding strategies 

under three breeding frameworks with four different parental population sizes. Among the three 

frameworks is genomic selection, a novel selection method that relies on the prediction of 

phenotypes from genotypes via modeling. The effectiveness of this framework is considered in 

chapter 2, while its accuracy is investigated in chapter 3. 
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Chapter 2 Evaluation of breeding scenarios in the common bean 
with the use of simulations in QU-GENE 

Abstract 

The common bean is a nutritiously dense legume that is consumed by developing nations around 

the world. The progress to improve this crop has been quite steady. However, with the continued 

rise in global populations, there are demands to expedite genetic gains. Plant breeders have been 

at the forefront at increasing yields in the common bean. As breeding programs are both time 

consuming and resource intensive, resource allocation must be carefully considered. To assist 

plant breeders, computer simulations can provide useful information that may then be applied to 

the real world. This study evaluated multiple breeding scenarios in the common bean and 

involved five breeding strategies, three breeding frameworks, and four different parental 

population sizes. In addition, the breeding scenarios were implemented in three different traits: 

days to flowering, white mold tolerance, and seed yield. Results from the study reflect the 

complexity of breeding programs, with the optimal breeding scenario varying based on trait 

being selected. Relative genetic gains per cycle of up to 8.69% for seed yield could be obtained 

under the use of the optimal breeding scenario. Principal component analyses revealed similarity 

between strategies, where single seed descent and the modified pedigree method would often 

aggregate. As well, clusters in the direction of the Hamming distance eigenvector are a good 

indicator of poor performance in a strategy. 

2.1 Introduction 

2.1.1 Importance of dry beans 

With ever increasing global populations and the current implications of climate change, meeting 

demands for food security while instilling sustainable practices is imperative. In addition to 
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providing high quality nutrients for both human and animal consumption, legumes are 

remarkably sustainable to grow. They can reduce greenhouse gas emissions and can improve soil 

fertility by increasing carbon and nitrogen content and availability (Stagnari, Maggio, Galieni, & 

Pisante, 2017). Dry beans are an important legume crop grown in many developing countries that 

greatly contribute to the energy and nutritional intake in low-income regions (Siddiq & 

Uebersax, 2012; Stagnari et al., 2017). Rich in proteins, carbohydrates, fibers, vitamins, and 

minerals, dry beans offer health benefits that are unrivaled. Research has shown that dry beans 

contain soluble fibers that can lower serum cholesterol, which in turn improves coronary health. 

Dry beans are also excellent for metabolic control. They lead to miniscule increases in blood 

glucose and insulin, making them highly suitable for diabetic individuals. Due to the nutritional 

quality of dry beans, they may be also used to combat obesity (Geil & Anderson, 1994).  

2.1.2 Traits for improvement 

Increasing dry bean yield is of importance for both developed and developing countries that rely 

on this legume. The main hindrances to increasing yield are biotic and abiotic stresses. Breeding 

for tolerance to drought stress, heat stress, cold stress, and low nutrient stress is important in 

particularly in areas with harsher growing conditions. Meanwhile, for biotic stresses, dry beans 

are susceptible to a number of diseases that can severely limit yield. In temperate growing 

regions, the most common diseases include common bacterial blight, halo blight, rust, and white 

mold. Some breeders are also interested in agronomic traits that may improve yield. For 

example, selecting for upright plant architecture can facilitate harvest and reduce vulnerability to 

disease, which can indirectly benefit yield (Soltani et al., 2016). When it comes to dry bean 

breeding, the market class must be taken into consideration. For certain market classes, 

enhancing yield may be difficult due to the yield component compensation, where some yield 
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components are negatively correlated with each other (Adams, 1967). In general, plant breeders 

will develop strategies that are applicable to their growing region and market class of choice. 

Traditionally, dry bean breeders have used early generation testing and visual selection to 

improve yield. However, these strategies have their limitations, namely in that yield testing is 

extremely costly and laborious. Thus, it may be worthwhile to delay yield testing until later 

generations (Kelly, Kolkman, & Schneider, 1998). Other traits of interest for improvement 

include those that are consumer driven. In developing countries, faster cooking time is desired 

since fuel is often in short supply. To fight malnutrition in low-income areas, breeding programs 

may focus on improving nutrient content, such as zinc and iron. In developed countries, canning 

quality is an important trait for improvement (Beaver & Osorno, 2009). The focus of this paper 

will be on yield-related traits and biotic stresses. More specifically, the three traits of differing 

heritability levels that were examined include seed yield, days to flowering, and white mold 

tolerance. 

2.1.3 Dry bean yield 

Enhanced crop yield is a result of improved cultivars, higher production inputs, suitable 

agronomic practices, and good growing conditions. In general, improved cultivars plays a major 

role in allowing for high crop productivity. Since dry beans growing conditions are rarely free 

from diseases, drought, insects, or extreme temperatures, breeding for seed yield often involves 

the accumulation of genes and QTL that improve yield, as well as genes that confer tolerance to 

abiotic and biotic stresses. For the purpose of accumulating genes for high yield, it is necessary 

to understand the underlying genetics that dictate seed yield. This can be accomplished by 

performing quantitative trait loci (QTL) analyses to identify regions in the genome that are 

associated with a high yield. Association mapping studies are preferable to bi-parental mapping 
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studies for the detection of QTL because greater resolutions can be obtained due to smaller 

linkage disequilibrium (LD) blocks. A number of studies have been conducted to identify QTL 

associated with seed yield in units of kg/hectare. In one study, nine QTL were identified in a 

population advanced from a cross between a commercial common bean variety and a wild 

common bean. These QTL were found on linkage groups 2, 3, 4, and 9, and together, they 

accounted for 9 to 21% of the variance with effect sizes ranging from 98 to 326 kg/ha (Blair, 

Iriarte, & Beebe, 2006). A recombinant inbred line (RIL) obtained from crossing two black bean 

cultivars revealed QTL on linkage groups 3, 5, 10, and 11 with additive effects ranging from 41 

to 192 kg/ha. One of the QTL on group 10 and explained 28% of the variance (E. M. Wright & 

Kelly, 2011). In a study involving three half-sib populations obtained from small red bean 

crosses, four QTL were found that collectively explained 87.9% of the variance. The QTL found 

on linkage group 3 had the largest effect size, contributing 435 kg/ha (Hoyos-Villegas, Song, 

Wright, Beebe, & Kelly, 2016).  

An important factor to consider is market class. Dry bean market classes include black bean, 

cranberry bean, great northern bean, red kidney bean, navy bean, pinto bean, and small red bean 

(Sinha, Hui, Evranuz, Siddiq, & Ahmed, 2010). These market classes vary in size and may be 

categorized as small seeded (<25 g 100 seed weight-1), medium seeded (25 to 40g 100 seed 

weight-1), and large seeded (>40 g 100 seed weight-1). Dry beans sometimes exhibit yield 

component compensation, where seed yield is negatively correlated with seed weight (Paul 

Gepts et al., 1991).  However, this phenomenon is influenced by the environment and is 

exacerbated when there is competition between plants due to limited resources (Westermann & 

Crothers, 1977).  
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2.1.4 Dry bean flowering time 

Dry beans may be day-neutral, meaning that they will flower irrespective of photoperiod. 

Alternatively, they may be photoperiod-sensitive, whereby flowering is influenced by day length 

(J. W. White & Laing, 1989). Research into dry bean photoperiods has given more direction into 

developing cultivars that have increased production in their respective growing regions. 

Latitudes play a role in photoperiod sensitivity. Common bean genotypes grown in regions 

further from the equator are more likely to be day-neutral. Meanwhile, dry bean cultivars from 

countries located close to the equator show more variability. However, this variability may be 

due to differing preferences for selected traits. When considering the influence of latitudes, 

temperature must also be accounted for. Higher temperatures are correlated with increased 

photoperiod sensitivity. Genotypes originating from warmer regions are commonly day-neutral, 

while those originating from cooler locations are more often photoperiod-sensitive. Day-

neutrality appears to be associated with increased seed yield, regardless of temperatures. 

Growing photo-sensitive genotypes in warmer environments leads to lower yields (J. W. White 

& Laing, 1989). Photoperiod and temperatures both impact the number of days to flowering, 

which has been positively correlated with yield-related traits, such as number of pods per plant 

(AlBallat & Al-Araby, 2019). Therefore, making selections for days to flowering may indirectly 

improve yield. Understanding the underlying genetics that control days to flowering may ease 

the breeding process. QTL analyses from inter-gene pool derived populations have revealed a 

number of QTL contributing to days to flowering. One study found three QTL on linkage groups 

1, 2, and 8, which when combined, explained 85.5% of the phenotypic variation (Pérez-Vega et 

al., 2010). In another study, a QTL found on linkage group 1 explained 8.6 to 22.3% of the 

phenotypic variation. Meanwhile, a QTL found on linkage group 4 explained 7.1 to 14.3% of the 
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phenotypic variation (Mukeshimana, Butare, Cregan, Blair, & Kelly, 2014). A different study 

found a QTL on linkage group 1 that explained up to 18.96% of the phenotypic variation 

(González et al., 2016). Further studies have identified some candidate genes involved in days to 

flowering on chromosomes 1, 3, 5, 7, and 8. Two of these genes encode a putative 5′-

nucleotidase SurE and a putative ubiquitin-conjugating enzyme E2, both of which are involved 

in plant growth. Another candidate gene, encoding an ATP binding/protein kinase, was thought 

to play a role in sensing light. Finally, a probable polygalacturonase gene may be responsible for 

pollen growth (Ates et al., 2018).  

2.1.5 Dry bean white mold tolerance  

Sclerotinia sclerotiorum Lib. de bary is a destructive fungal pathogen with disease incidences 

that are difficult to predict. Disease impact is highly contingent on environmental and agronomic 

conditions. Fungal growth escalates in humid conditions, this dense canopies, which accumulate 

moisture, promote white mold colonization (HAAS & BOLWYN, 1972). Total resistance to 

white mold does not exist in common beans. However, some dry bean cultivars display partial 

resistance to white mold, either though physiological tolerance or disease avoidance. Dry bean 

cultivars with upright architectures exhibit white mold avoidance and are less susceptible to 

infection due to more sunlight and air being able to infiltrate the canopy (Miklas, Johnson, 

Delorme, & Gepts, 2001). When selecting for white mold tolerance, breeders will typically 

introgress both physiological resistance and avoidance genes. A number of studies have reported 

QTL that contribute to white mold resistance. A large-effect QTL was previously identified on 

linkage group 7, which accounted for 38% of the phenotypic variation in straw test disease 

scores (Miklas et al., 2001). QTLs on linkage group 5 and 8 were later found to explain 10.7% 
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and 9.2% of the phenotypic variation for plot-based disease severity, respectively (Ender & 

Kelly, 2005).  Linkage group 7 was also found to contain a QTL  

In recent years, researchers have been able to identify candidate genes that may contribute to 

white mold resistance. Researchers have successfully narrowed down 9 meta-QTL regions from 

existing QTL studies and from new populations. Sources of genetic resistance were derived from 

Andean gene pool, the sister species, P. coccineus, and the navy bean ICA bunsi. Some of the 

candidate genes described were those involved with pathogen recognition and signal relaying, 

while others were involved with metabolism during abiotic and biotic stress. The authors also 

identified ethylene-responsive transcription factors that play a role in programmed cell death 

(Lucy Milena Diaz et al., 2018). Other candidate genes include those that encode leucine-rich 

repeat (LRR) proteins, as well as an EF-Tu receptor gene, and may also confer physiological 

resistance in dry beans (Oladzadabbasabadi, Mamidi, Miklas, Lee, & McClean, 2019). 

Additional candidate genes were discussed in a meta-QTL analysis, which revealed 37 different 

QTL, 20 identified through the straw test and 13 identified through field evaluations. Within the 

WM1.1 QTL, a candidate gene coding for a wall-associated receptor kinase protein is thought to 

be involved in recognizing pathogens invading the cell wall. Another candidate gene in this 

region is a coronatine-insensitive protein 1 (COI 1) believed to take part in the jasmonic acid 

signaling cascade during plant defense. Within the WM2.2 QTL region, the pathogenesis-related 

protein chalcone synthase (ChS) was identified. A candidate gene encoding a peroxidase was 

found on WM3.1, while a gene coding for an MYB domain protein was found on WM5.4. When 

selecting for white mold tolerance, breeders will typically introgress both physiological 

resistance and avoidance genes.  
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2.1.2 Progress in breeding for Quantitative traits in common bean breeding 

Most traits of interest in plant breeding are quantitative and will display a measurable phenotype, 

such as plant height. The variation in a trait may be partially explained by regions in the genome 

known as QTL (Doerge, 2002). Environmental factors may also contribute to variation in a 

quantitative trait. QTL may have large or small effects. For example, Mendelian loci are discrete 

with large effects. Essentially, a single gene is responsible for trait. On the other hand, numerous 

small effect QTL may determine the phenotype. In these cases, detection of QTL comes with 

challenges.  

2.1.6 The breeder’s equation  

An important concept in plant breeding is genetic gain (∆G), which is the rate of change in the 

mean of a trait being selected for in a population (Falconer, 1960; Moose and Mumm, 2008; Sun 

et al., 2011). The equation for genetic gain is as follows: 

                                                                 ∆𝐺 = ℎ! ×	𝜎" 	× 	
#
$
     [2.1] 

    
 
Where, h2 refers to the narrow sense heritability, σa is the additive variance, i is the selection 

intensity, and L is the generation interval (Sun et al., 2011). Due to the complexity of breeding 

programs, the breeder’s equation is used as a basis for which the simulation studies were 

conducted. The data obtained from the study may be used to help breeders decide where 

emphasis should be placed when designing a breeding program. The goal of any breeding 

program is to maximize genetic gain in the shortest amount of time. The heritability of a trait will 

impact a breeding program. Traits with a higher heritability can result in greater genetic gain. 

The selection intensity will also impact the genetic gain  
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2.1.7 Objectives  

Improvement of dry beans continues to be a challenge amidst rising global populations. Typical 

dry bean breeding programs take up to 10 years and require extensive resources in the process. 

Due to the long-term commitment, the decisions that go into a breeding program must be 

carefully considered. Plant breeders can make use of computer simulations to assist in decision 

making. The simulation platform QU-GENE was used to simulate the outcomes of different 

breeding strategies and selection intensities.  

The following hypotheses were tested: 

1. Simulated breeding strategies (mass selection, bulk breeding, single seed descent, 

pedigree method, and the modified pedigree method) will significantly differ in terms of 

genetic gain, percentage of fixed favourable alleles, and Hamming distance 

2. Higher initial parental population size and trait heritability will lead to increased genetic 

gain and percentage of fixed favourable alleles 

3. New proposed methods for plant breeding (genomic selection and speed breeding) will 

outperform conventional breeding methods in terms of genetic gain, allele fixation rate, 

and Hamming distance 

2.2 Methods 

2.2.1 Breeding strategies and new proposed methods of plant breeding 

There are a number of breeding strategies available to plant breeders. Well-known conventional 

breeding strategies include bulk breeding, single seed descent, mass selection, the pedigree 

method, and the modified pedigree method. These conventional strategies rely solely on 

phenotypic selection. In recent years, new proposed breeding methods have begun to emerge, 

namely, speed breeding and genomic selection. These methods have garnered more popularity in 
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the literature due to promises of enhancing genetic gains. Speed breeding can circumvent the 

developmental constraints in plants, thus reducing the total length of a breeding program and 

subsequently allowing for greater genetic gains per year. Genomic selection uses models that 

predict phenotypes from all markers across a genome in order to select on genotypes. This allows 

for selection to take place before a plant has reached maturity. For example, using genomic 

selection, a plant breeder may genotype entire germplasms to select against poor performing 

lines. This saves the time and resources that would have been required to assess the phenotype of 

each germplasm accession.  

Mass selection 

Mass selection is the oldest form of crop improvement and was carried out by farmers 

long before the concepts of Mendelian genetics and the development of pure-lines were 

commonplace (Fehr, 1987). In mass selection, desirable plants are selected from an entire 

population and a sample of the seeds collected then form the next generation of plants. This 

process is repeated for a number of generations until the multi-environment trial phase (Figure 

2.1). The key purpose of mass selection is to improve the average of the baseline population 

(Acquaah, 2009). However, this improvement is typically constrained by the genetic variability 

of the initial population. Mass selection may be used to develop varieties from a hybridized 

population. In this approach, undesirable plants are picked off and removed from the population. 

In some cases, mass selection is performed to purify lines. When deciding to use mass selection, 

the trait heritability should be considered, as high heritability traits are much more successful 

(Fehr, 1987).  
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Figure 2.1: Mass selection breeding strategy 

 
Bulk breeding 

Bulk breeding is a strategy that relies on natural selection in early generations to remove 

low performing genotypes (Fehr, 1987). Artificial selection is only conducted in later generations 

once a high amount of homozygosity is present in the F2 derived lines. The process begins with 

the crossing of two parents and continues with the bulking of each segregating generation. Once 

sufficient homozygosity has been achieved, the plants will be assessed and those with the desired 

trait will be selected. Following this, multi-environment testing will take place, and superior lines 

will be identified (Figure 2.2). One of the major criticisms of bulk breeding is that it promotes 
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competition between genotypes, so there is a possibility that a desirable genotype is outcompeted 

by an undesirable genotype. Another concern is that some traits that persist due to natural 

selection have no agricultural benefit. Nevertheless, bulk breeding is still less labour intensive 

and cheaper than some other strategies and it allows plant breeders to make and assess more 

crosses (Acquaah, 2009). 

 
Figure 2.2: Bulk breeding strategy 
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Single seed descent 

Single seed descent is a method that attempts to achieve homozygosity in the shortest 

amount of time (Acquaah, 2009). The objective is to advance as many F2 plants as possible to the 

F5 generation. This is done by taking one random seed from each plant to advance to the next 

generation until yield trials (Figure 2.3). Not only does this method require fewer resources, but 

it is also possible to advance multiple generations in a single year by using greenhouses and 

winter nurseries. Selection only takes place in later generations once adequate homozygosity is 

reached. Unlike bulk breeding, earlier generations do not undergo natural selection and each F2 

plant is equally represented, meaning each generation has more genetic diversity. The main 

disadvantage is that not every seed will germinate, so some F2 plants will not be represented in 

the later generations (Acquaah, 2009).  
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Figure 2.3: Single seed descent breeding strategy 

Pedigree method 

The pedigree method is a strategy whereby parent-progeny relationships are carefully 

recorded; thus, any individual plant can be easily traced back to an F2 plant. The pedigree 

method differs from the previous methods in that artificial selection takes place in segregating 

populations. Selection occurs in each generation begin at the F2 generation. Individual F2 plants 

that were selected are grown in rows, forming the F3 generation. Each row can also be referred to 

as a family. Individual plants within rows or even entire rows may be selected (Figure 2.4). This 

continues until there is an acceptable level of homozygosity (Fehr, 1987). A benefit to using the 

pedigree method is that through record-keeping, valuable genetic information is now available to 
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plant breeders. Furthermore, the records may be used to better select lines that carry a desirable 

trait. The main concern with the pedigree method is that it is resource demanding. Record-

keeping is time-consuming and progeny rows can take up lots of space (Acquaah, 2009).  

 
Figure 2.4: Pedigree method breeding strategy 

Modified Pedigree method 
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in bulk (Figure 2.5). In short, the use of winter nurseries in the modified pedigree method saves 

time and resources, as harvesting plants in bulk is easier to manage. Meanwhile, it 

simultaneously allows plants to achieve homozygosity in less time (Acquaah, 2009). This 

method has most recently been used for breeding a rust resistant variety of black bean (Osorno et 

al., 2021).  

 
Figure 2.5: Modified pedigree method breeding strategy 
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involve lengthening the photoperiod, with 22 hours of light and 2 hours of dark. Speed breeding 

has been successfully implemented in a number of crop species, including wheat, barley, 

chickpea, canola, and pea (Watson et al., 2018). In dry beans, speed breeding may be used to 

advance plants from the crossing block to the F4 generation in a single year, significantly cutting 

down the duration of a breeding program (Larsen et al., 2019).   

Genomic selection 

First described by Meuwissen et al., (2001), genomic selection (GS) involves estimating 

the effects of all molecular markers and selecting on individuals based on their genomic 

estimated breeding value (GEBV) (Michel et al., 2016). Figure 2.6 shows a schematic for how 

GS is conducted. With a high number of markers, certain alleles will be correlated with a 

positive effect on a quantitative trait. The large number of markers also ensures that each QTL 

will be in LD with at least one marker (Goddard and Hayes, 2007; Nadeem et al., 2018). Markers 

that are close in proximity may be joined together as a haplotype. Individuals that have the same 

rare marker haplotype likely share a common ancestor and will have the same QTL allele 

(Meuwissen et al., 2001). To carry out GS, a training population is first created. The genotypic 

and phenotypic information of each individual is combined in the training population. A model is 

then “trained” on population, validated, and then applied to a testing population (Taylor, 2014). 

It is important to note that individuals in the testing population have not been phenotyped, only 

genotyped. The model will then predict a GEBV for each individual in the testing population 

(Crossa et al., 2017). GS is advantageous in that it can save time. Since only genotypic 

information is required for selection, individuals can be genotyped during early stages of 

development.  
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Figure 2.6: Genomic selection scheme 
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2.2.2 QU-GENE simulation workflow and simulation files 

A number of simulations were conducted to compare four different numbers of initial parents, 

three different traits, three breeding methods, and five breeding strategies. Each simulation 

consisted of 10 cycles with 50 runs. A summary of the simulation criteria is displayed in Table 

2.1. All of the files required by the simulation can be found on the lab GitHub page (McGill 

University Pulse Breeding and Genetics Laboratory, 2021). 

Table 2.1: Simulation criteria 
Cycles Runs Parents Traits Environments Framework Strategies  

10 50 

15, 

30, 
60, 

100 

DF, 
WM, 

SY 

Nursery, 
Winter 
Nursery, 
Field 

Conventional,  
Speed breeding, 
Genomic 
selection 

Mass selection, 

Bulk breeding, 
Single seed descent, 

Pedigree method, 
Modified pedigree 
method 

 

Figure 2.7 shows the workflow in QU-GENE for the simulation of conventional breeding, as 

well as the new proposed breeding methods, which require additional steps.  
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Figure 2.7: QU-GENE simulation workflow for the simulation of genomic selection (GS), 
conventional methods (CONV), and speed breeding (SB). 
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The file required by the QU-GENE engine is the .qug file, which contained the following:  

traits, environments, error variances, linkage map, QTLs, markers, populations, and diagnostics. 

In terms of traits, the three simulated traits were days to flowering, white mold tolerance, and 

seed yield. The simulation also involved three environments: nursery, winter nursery, and field. 

The error variances were based on within error variances and were calculated from the narrow 

sense heritability reported for each trait from the literature. Heritability estimates obtained for 

each trait in each environment are summarized in Table 2.2. The linkage map, QTL, and markers 

described in a previous section were included in the .qug file. The population is automatically 

generated by QU-GENE. The diagnostic indicated that the file was error free and was able to be 

run in the QU-GENE engine.  

Table 2.2: Narrow-sense heritability (h2) estimates for three traits in three environments. 
Trait  Environment  h2 estimate  Reference  

DF 

Nursery 0.67 (Singh et al., 1990) 
Winter nursery 0.6895 (Nienhuis & Singh, 1988) 

Field  0.92 (Atuahene-Amankwa, Beatie, Michaels, 
& Falk, 2004) 

WM 
Nursery 0.33 (Carneiro, Santos, Gonçalves, Antonio, 

& Souza, 2011) 
Winter nursery 0.65 (Carvalho, Lima, Alves, & Santos, 2013) 
Field  0.78 (Miklas et al., 2001) 

SY 

Nursery 0.21 (Jeffrey W. White & Singh, 1991) 

Winter nursery 0.29 (Mendes, Botelho, Ramalho, Abreu, & 
Furtini, 2008) 

Field  0.7 (Kolkman & Kelly, 2002) 
DF: days to flowering (in days); WM: white mold tolerance (in disease incidence); SY: seed 
yield (in kg/hectare) 
 

Since QU-GENE simulates error variances based on the per plant heritability, it was necessary to 

calculate these values based on the per plot heritability estimates reported in the literature. The 

following equation was used to determine the per plant heritability:  
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ℎ!%&'	%)"*+ =
,!

,!-
"#
$ 	×*

     [2.2] 

where Vg is the genotypic variance, the phenotypic variance 𝑉% = 	 /
0%&#'	&)*+

 , the error variance 

𝑉& = 𝑉% − 𝑉1, n is the plot size, and y is the year. 

The .qmp file included information on the breeding strategies to be simulated. For each strategy, 

one cycle consisted of 8 generations, with selection occurring at different stages. As a closed 

system was being simulated, initial and final family sizes were the same. It included general 

information such as the number of strategies, the number of runs, and the number of cycles that 

were completed. It also included information specific to each breeding strategy such as 

propagation type, generation advance method, number of replications, plot size, number of 

testing locations, and how selection was to be done. The propagation type indicated how the 

selected individuals from the previous generation were to be propagated to generate the 

individuals in the current generation. This experiment only considered “self” (self-pollination) 

and “clone” (asexual) as the propagation type. The generation advance method indicated how the 

selected plants were harvested. This experiment will use the following generation advances: 

“pedigree”, “bulk”, and “superbulk”. “pedigree” meant plants were harvested individually, and 

each plant would result in a family in the next generation. “bulk” involved harvesting all plants 

in a family together, with no mixing of families. Finally, in “superbulk”, all plants were 

harvested to form one population regardless of family. Details for each strategy are shown in 

Table 2.3.  
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The QuLinePlus module was used to simulate the breeding strategies. It is capable of simulating 

both self-pollinating and cross-pollinating species, making it quite versatile (Hoyos-Villegas et 

al., 2019). Output files obtained from the Qu-Gene engine were used as input files for 

QuLinePlus. 

As the simulations required a high level of computing power, they were performed remotely on 

servers provided by Compute Canada (Digital Research Alliance of Canada, 2020). Access to 

remote servers required establishing a secure shell via the terminal on MacOS. To browse and 

manipulate files, the cloud storage browser, Cyberduck was used (iterate GmbH, 2020). 

2.2.3 Linkage map and QTLs 

The common bean consensus linkage map reported by Galeano et al. (2011) was used for this 

study. It was developed from the recombinant inbred lines from three different Mesoamerican 

intra-gene pool linkage mapping populations. The consensus linkage map was made up of 1010 

markers and had a map length of 2041 cM over 11 linkage groups. Each linkage group had an 

average of 91 markers. Since more markers could be identified through the combined from 

multiple segregating populations than can be obtained from a single population, and greater 

coverage can be achieved, this consensus map was selected for conducting the simulations. A 

second reason for the use of the consensus linkage map is that QU-GENE does not accept maps 

with physical distances. 

A total of 38 QTL found in the literature were considered for this study, more specifically 11 

seed yield QTL, 8 white mold disease incidence QTL, and 19 days to flowering QTL were 

selected (Table 2.4). Seed yield QTL effect sizes ranged from -36.91 to -197.46. Effect sizes for 

white mold disease incidence QTL ranged from 3.16 to -7.2. Lastly, QTL effect sizes in days to 

flowering ranged from 0.68 to -1.21. The reported QTL effect sizes were the additive genetic 
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effects that could be attributed to having one of the alleles. In the simulation, it was assumed that 

having the alterative allele would lead to an equal but opposite effect. If at locus A, the possible 

genotypes were AA, Aa, and aa, and allele A had an effect size of s, then it was assumed that AA 

would have effect size 2s, Aa would have effect size 0, and aa would have effect size -2s.  

Table 2.4: Description of QTLs used in the simulation 

Trait QTL 
name 

Linkage 
group 

Position 
(cM) 

Effect 
size 

Mapping population Reference 

DF 

DF41 4 167.11 0.68 DOR 364 × BAT 477 (Lucy M Diaz et al., 2017) 
DF51 5 45.21 0.45 DOR 364 × BAT 477 (Lucy M Diaz et al., 2017) 
DF52 5 56.71 0.49 DOR 364 × BAT 477 (Lucy M Diaz et al., 2017) 
DF53 5 82.21 0.46 DOR 364 × BAT 477 (Lucy M Diaz et al., 2017) 
DF54 5 105.21 0.43 DOR 364 × BAT 477 (Lucy M Diaz et al., 2017) 
DF11a 11 96.51 -0.6 DOR 364 × BAT 477 (Lucy M Diaz et al., 2017) 
DF11b 11 108.71 -0.49 DOR 364 × BAT 477 (Lucy M Diaz et al., 2017) 
EM86 2 21.6 0.57 Bunsi × Newport (Ender & Kelly, 2005) 
EM78 7 1.1 -0.6 Bunsi × Newport (Ender & Kelly, 2005) 
EM550 7 13.6 -0.96 Bunsi × Newport (Ender & Kelly, 2005) 
EM223 7 8.6 -1.21 Bunsi × Newport (Ender & Kelly, 2005) 
DF121 1 51 0.02 SER48 × Merlot (Hoyos-Villegas et al., 2016) 
DF122 1 62 -0.69 SER48 × Merlot (Hoyos-Villegas et al., 2016) 
DF111 1 47 -0.62 SER48 × Merlot (Hoyos-Villegas et al., 2016) 
DF13 1 19 0.12 SER48 × Merlot (Hoyos-Villegas et al., 2016) 
DF112 1 40 0.03 SER48 × Merlot (Hoyos-Villegas et al., 2016) 
DF123 1 59 -0.66 SER48 × Merlot (Hoyos-Villegas et al., 2016) 

DFmn1 1 16.9 -0.8 AN-37 × P02630 (Hoyos-Villegas, Mkwaila, 
Cregan, & Kelly, 2015) 

DFmn2 1 105.7 -0.8 AN-37 × P02630 (Hoyos-Villegas et al., 2015) 

WM 

WM2010 3 91.5 -7.2 AN-37 × P02630 (Hoyos-Villegas et al., 2015) 
WM31 3 111.1 -4 AN-37 × P02630 (Hoyos-Villegas et al., 2015) 
DSI1 2 8 3.15 Bunsi × Newport (Ender & Kelly, 2005) 
DSI2 2 21 -2.66 Bunsi × Newport (Ender & Kelly, 2005) 
DSI3 5 27.7 3.16 Bunsi × Newport (Ender & Kelly, 2005) 
DSI4 7 8.6 -4.17 Bunsi × Newport (Ender & Kelly, 2005) 
DSI5 7 14.8 -4.01 Bunsi × Newport (Ender & Kelly, 2005) 
DSI6 8 1.4 2.93 Bunsi × Newport (Ender & Kelly, 2005) 

SY 
Yd21 2 151.2 -46.88 DOR 364 × BAT 477 (Lucy M Diaz et al., 2017) 
Yd71 7 35.1 -36.91 DOR 364 × BAT 477 (Lucy M Diaz et al., 2017) 
Yd72 7 47.8 -97.3 DOR 364 × BAT 477 (Lucy M Diaz et al., 2017) 
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syMO14 3 113.7 -153.6 
BK004-001 × H68-4 (Sandhu, You, Conner, 

Balasubramanian, & Hou, 
2018) 

syMO16a 7 10.6 -170.9 BK004-001 × H68-4 (Sandhu et al., 2018) 
syMO16b 8 0.5 -140.2 BK004-001 × H68-4 (Sandhu et al., 2018) 
SY10v1 10 41 -178.77 SER48 × Merlot (Hoyos-Villegas et al., 2016) 
SY3v3 3 53 -155.91 SER48 × Merlot (Hoyos-Villegas et al., 2016) 
SY7v3 7 51 -197.46 SER48 × Merlot (Hoyos-Villegas et al., 2016) 
SY7v4a 7 68 -178.85 SER48 × Merlot (Hoyos-Villegas et al., 2016) 
SY7v4b 7 67 -97.54 SER48 × Merlot (Hoyos-Villegas et al., 2016) 

 

2.2.4 Model for genomic selection  

                                                           
𝑦	 = 	𝑋𝛽	 + 	𝑍𝑢	 + 	𝜀    [2.3] 

 
The model used to determine the marker effects in genomic selection is shown in Equation 2.3, 

where u	~	𝑁(0, 𝐾𝜎!2), y is the phenotypic value of a trait, X is the design matrix for the fixed 

effects 𝛽, Z is the design matrix for random effects u, and 𝜀 is the residual error. The R package 

rrBLUP using the function mixed.solve was used to calculate the marker effects, or fixed effects 

𝛽. The calculated marker effects were then input into the .qug file as locus effects. The training 

population consisted of the parental populations that were generated via SimuPop (Peng & 

Kimmel, 2005). Thus, the size of the training population was 15, 30, 60, and 100, corresponding 

to the different parental population sizes for the different simulations. 

 

2.2.5 Simulating LD through SimuPOP  

By default, QU-GENE will generate populations in Hardy-Weinberg equilibrium with little to no 

linkage disequilibrium (LD). This is an issue for simulating genomic selection since adequate LD 

is necessary for markers to be linked to QTL. LD can be formally defined as a non-random 

association between alleles found at different loci (Flint-Garcia, Thornsberry, & Buckler, 2003). 
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Two popular methods for estimating LD make use of the parameters D’ and r2. For verifying LD 

measures, the r2 parameter was used. To understand how r2 is calculated, one may consider the 

following example. For two loci, with alleles A and a at the first loci and allele B and b at the 

second loci, the allele frequencies can be expressed as PA, Pa, PB, and Pb, respectively. The 

resulting haplotype or allele pair will be AB, Ab, aB, and aB, with the respective haplotype 

frequencies, PAB, PAb, PaB, and PAB. The difference between the haplotype frequencies that are 

observed and the frequencies that are expected can be written as:                                                             

𝐷34 = 𝑃34 − 𝑃3𝑃4    [2.4] 

 

This difference is also known as the coefficient of linkage disequilibrium and is important for 

calculating D’ and r2. r2 square can be expressed as follows: 

𝑟! = (6,-)%

8,8-8.8/
      [2.5] 

 

There are a number of factors that are responsible for the LD found in a population. Mutations 

create the polymorphisms that will be in LD. The reduction of intrachromosomal LD can be 

attributed to recombination. Meanwhile, independent assortment is the main cause for the 

breakdown of interchromosomal LD. Furthermore, the population size can greatly influence LD. 

Small populations are subject to more genetic drift, which results in the fixation of alleles. The 

resulting loss of rare combinations of alleles will increase LD. Mating systems in a population 

can also impact LD. Selfing populations are less affected by recombination, since individuals are 

typically homozygous. As a result, species that undergo outcrossing generally experience a faster 

decay in LD compared to selfing species. LD can be generated from admixed populations, where 

genetically distinct populations intermate. In populations that undergo random mating, LD will 
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decrease rapidly. Another factor that can influence LD is the drastic fall in population size or a 

bottleneck event, which results in genetic drift and consequently an increase in LD. Selection can 

also increase LD between the selected locus and any loci linked to it (Flint-Garcia et al., 2003). 

To generate a population with an adequate level of LD, the forward-in-time simulation tool, 

SimuPOP was used. SimuPOP is implemented in python. Supplemental code can be found on the 

lab GitHub page (McGill Pulse Breeding and Genetics Lab, 2021). The program can be used to 

evolve a population over time in silico. By allowing a population to undergo natural selection via 

the simuPOP program, populations with substantial LD could be obtained. The population 

generated from simuPOP was converted to the QU-GENE format via R. Analysis of LD in the 

population was also performed in R, using the LD.Measures() function in the package LDcorSV 

and an LD heatmap was generated using the function LDheatmaps() in the package LDheatmap. 

The population generated by QU-GENE had essentially no LD (Figure S2.1), while the one 

generated by simuPOP had substantial LD (Figure S2.2).  

2.2.6 Handling simulation output data  

QU-GENE produces a number of output files that can be used to estimate the genetic gain, 

fixation of favourable alleles, Hamming distance, genetic variance, and effective population size. 

The .fit file reports the adjusted genotypic or fitness values for the population after each cycle. 

This is calculated using Equation 2.6, where F is the fitness, TGh is the highest target genotypic 

value, and TGl is the lowest target genotypic value.                                        
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𝐹39 = 	 :	;<=)
<=0;<=)

× 100    [2.6] 

 

The adjusted genetic gain can then be calculated as the difference from one cycle to the next, as 

shown in Equation 2.7, where ∆GAD is the adjusted genetic gain, FAD(n) is the adjusted fitness 

value after n cycles and FAD(n-1) is the adjusted fitness value after n-1 cycles.  

                                                              
𝛥𝐺39 = 𝐹39(*) − 𝐹39(*;/)     [2.7] 

 
The .fix file reports the percentage of fixed favourable and unfavourable alleles after each cycle. 

sThis can be used to determine the allele fixation rate. The .ham file reports the Hamming 

distance of the population after each cycle. In information theory, Hamming distance is used as a 

measure of dissimilarity between two strings of the same length (Li et al., 2012; C. Wang, Kao, 

& Hsiao, 2015). When applied to breeding programs for assessing individuals, the Hamming 

distance refers to the number of alleles that differ from the target genotype for all loci. A smaller 

Hamming distance would indicate an individual is closer to the target or ideal genotype, thus a 

lower value for the Hamming distance is more desirable. The .var file reports the additive 

genetic variance after each cycle. The reported values were converted to relative percentages 

where cycle 0 was used as a baseline and set to 100%. This parameter was used to assess the 

amount of genetic diversity in the population. The R packages dplyr and ggplot2 were used to 

subset the data and generate plots.  

2.2.7 Statistical analysis  

A multi-way ANOVA was performed based on a mixed model which was defined using the 

lme4 package in R. Finally, a principal component analysis (PCA) was generated for each 

strategy to compare the following factors: genetic gain, Hamming distance, fixation of 
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favourable alleles, genetic variance, and effective population size. The PCA plots were created 

using the ggbiplot package in R. All other figures were created using ggplot2 package in R.  

2.2.8 Model 

The following equation specifies the general formula for ANOVA: 
 

yijkmn = u + parenti + frameworkij + strategyijk + cycleijkm + eijkmn   [2.8] 

 
 
The terms of the model are defined by the following: 
 
yijkmn: the reported genetic gain variable in the nth run of the mth cycle of the kth strategy of the jth 
framework of the ith parental population size  
 

i: parental population size; i= 15, 30, 60, 100 
j: framework; j=1, 2, 3 which corresponds to conventional breeding, speed breeding, GS 
k: strategy; k=1, 2, 3, 4, 5 (corresponds to mass selection, bulk breeding, single seed 
descent, pedigree method, and the modified pedigree method 
m: cycle; m= 1, 2, 3…10 
n: a run  

 
u: overall genetic gain variable irrespective of cycle, strategy, framework, and parental 
population size 
 
parenti: the fixed effect of the ith parental population size on the genetic gain variable in a run 
 
frameworkij: the fixed effect of the jth framework on the genetic gain variable of a run. The 
framework is nested within the parental population size 
 
strategyijk: the fixed effect of the kth strategy on the genetic gain variable of a run. The strategy is 
nested within the framework, which is nested within the parental population size. 
 
cycleijkmn: the fixed effect of the mth cycle on the genetic gain variable of a run. The cycle is 
nested within the strategy, which is nested within the framework, which is nested within the 
parental population size. 
 
eijkmn: the random residual associated with the nth run of the mth cycle of the kth strategy of the jth 
framework of the ith parental population size. 
 eijkmn ~ N(0, σ2

e) 
 
The parameters of the model are defined as follows: 
 
u, parenti , frameworkij , strategyijk , cycleijkm : fixed effects 
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σ2
e : random effect 

 

The nested model was compared to an unnested model in terms of goodness of fit, which was 

dictated by AIC and BIC scores. According to these scores the nested model led to a greater 

goodness of fit (Tables S2.1, S2.3, S2.5, and S2.7) 

 

2.3 Results 

2.3.1 Genetic variance    

The breeding strategies and methods were first compared in terms of changes to genetic variance 

for the three simulated traits, days to flowering (DF), white mold tolerance (WM), and seed yield 

(SY). Genetic variance was represented as a relative percentage, with cycle 0 defined as 100%. 

Differing numbers of initial parents were also compared for each trait. The analysis of variance 

(ANOVA) for additive genetic variance revealed that the strategy, framework, and number of 

parents were all statistically significant (Table S2.2). In general, the relative genetic variance saw 

a decrease over the five cycles. For days to flowering, as the number of initial parents increased, 

less relative genetic gain was maintained (Figure 2.8). Similar trends were observed for white 

mold tolerance (Figure 2.9) and seed yield (Figure 2.10). Genomic selection led to equal or 

greater genetic variance being maintained when compared to conventional breeding. Meanwhile, 

speed breeding resulted in lower genetic variance maintained compared to both conventional 

breeding and genomic selection. Interestingly, the use of genomic selection for seed yield 

resulted in maintenance of more genetic variance under the mass selection strategy, when 

compared to conventional breeding. For days to flowering, bulk breeding maintained the greatest 

amount of genetic variance for most scenarios. With 30 initial parents under genomic selection, 
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the modified pedigree method maintained the most genetic variance. With 60 initial parents 

under genomic selection, mass selection maintained the most genetic variance.  

 
Figure 2.8: Comparison of five breeding strategies in terms of genetic variance over 5 cycles of 
selection across 50 runs in a closed system. Selection for days to flowering was simulated with 
increasing numbers of initial parents displayed on the right and differing breeding methods 
shown at the top. Breeding strategies included mass selection, bulk breeding, single seed descent, 
pedigree method, modified pedigree method. Genetic variance is relative to cycle 0, which is 
100%. 
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For white mold tolerance, bulk breeding led to the greatest genetic variance maintained when the 

parental population size was 15. For parental population sizes of 30, 60, and 100, mass selection 

resulted in the most genetic variance maintained. 

 
Figure 2.9: Comparison of five breeding strategies in terms of genetic variance over 5 cycles of 
selection across 50 runs in a closed system. Selection of white mold tolerance was simulated 
with increasing numbers of initial parents displayed on the right and differing breeding methods 
shown at the top. Breeding strategies include mass selection, bulk breeding, single seed descent, 
pedigree method, modified pedigree method. Genetic variance is relative to cycle 0, which is 
100%. 
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For seed yield, mass selection resulted in the most genetic variance being maintained for most 

scenarios. With 15 initial parents under conventional and speed breeding, bulk breeding led to 

the greatest genetic variance maintained. 

 
Figure 2.10: Comparison of five breeding strategies in terms of genetic variance over 5 cycles of 
selection across 50 runs in a closed system. Seed yield selection was simulated with increasing 
numbers of initial parents displayed on the right and differing breeding methods shown at the 
top. Breeding strategies include mass selection, bulk breeding, single seed descent, pedigree 
method, modified pedigree method. Genetic variance is relative to cycle 0, which is 100%.  
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2.3.2 Fixation of favourable alleles and Hamming distance   

The fixation of favourable alleles was plotted over 10 cycles. The ANOVA demonstrated that the 

strategy, framework, and parental population size were statistically significant (Table S2.4). 

Figures 2.11, 2.12, and 2.13 display the plots for the fixation of favourable alleles in days to 

flowering, white mold tolerance, and seed yield, respectively. For days to flowering, as the 

parental population size increased, a lower percentage of alleles were fixed. Across all scenarios, 

the pedigree method had the fastest allele fixation rate. Mass selection had the slowest allele 

fixation rate and resulted in the fewest alleles being fixed. The scenario resulting in the greatest 

percentage of fixed alleles was single seed descent under genomic selection with 15 parents, 

where 93.68% of favourable alleles were fixed.
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Figure 2.11: Comparison of five breeding strategies in terms of fixation of favourable alleles 
over 10 cycles of selection across 50 runs in a closed system. Selection for days to flowering was 
simulated with increasing numbers of initial parents displayed on the right and differing breeding 
methods shown at the top. Breeding strategies include mass selection, bulk breeding, single seed 
descent, pedigree method, modified pedigree method. Error bars indicate standard error. 
 

For white mold tolerance, multiple scenarios led to 100% of favourable alleles being fixed. In 

general, as parental population size increased, a higher percentage of alleles were fixed. Under 

genomic selection with 100 initial parents, the pedigree method allowed for 100% of favourable 
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alleles to be fixed in only 2 cycles. This scenario led to the greatest percentage of fixed alleles in 

the fewest cycles. Across all scenarios, the pedigree method had the fastest allele fixation rate.  

 
Figure 2.12: Comparison of five breeding strategies in terms of fixation of favourable alleles 
over 10 cycles of selection across 50 runs in a closed system. Selection for white mold tolerance 
was simulated with increasing numbers of initial parents displayed on the right and differing 
breeding methods shown at the top. Breeding strategies include mass selection, bulk breeding, 
single seed descent, pedigree method, modified pedigree method. Error bars indicate standard 
error. 
 
For seed yield, a parental population size of 15 resulted in the greatest fixation of alleles.  
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The scenario resulting in the highest percentage of fixed favourable alleles was single seed 

descent under speed breeding with 15 initial parents, where 98.91% of alleles were fixed.  

 
Figure 2.13: Comparison of five breeding strategies in terms of fixation of favourable alleles 
over 10 cycles of selection averaged across 50 runs in a closed system. Selection for seed yield 
was simulated with increasing numbers of initial parents displayed on the right and differing 
breeding methods shown at the top. Breeding strategies include mass selection, bulk breeding, 
single seed descent, pedigree method, modified pedigree method. Error bars indicate standard 
error.  
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The plots for average Hamming distance are displayed in Figures 2.14, 2.15, and 2.16. The 

ANOVA for Hamming distance indicated that the strategy, framework, and parental population 

size were all statistically significant (Table S2.6). Overall, the Hamming distance had a general 

decreasing trend which eventually plateaued. For days to flowering, the Hamming distance was 

higher in scenarios with larger parental population sizes, particularly for 60 and 100 parents. 

Across all scenarios, mass selection had the highest Hamming distance. This was especially 

pronounced under genomic selection when 30 and 100 parents were simulated. Conventional 

breeding, speed breeding, and genomic selection were all comparable, with minor differences. 

Under conventional and speed breeding, bulk breeding and single seed descent resulted in the 

lowest Hamming distance. Under genomic selection, the optimal strategy for Hamming distance 

depended on the parental population size. Bulk breeding, single seed descent, pedigree method, 

and modified pedigree method led to the smallest Hamming distance for the parental population 

sizes 15, 30, 60, and 100, respectively.  
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Figure 2.14: Comparison of five breeding strategies in terms of Hamming distance over 10 
cycles of selection averaged across 50 runs in a closed system. Selection for days to flowering 
was simulated with increasing numbers of initial parents displayed on the right and differing 
breeding methods shown at the top. Breeding strategies include mass selection, bulk breeding, 
single seed descent, pedigree method, modified pedigree method. Error bars indicate standard 
error. 
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For white mold tolerance, larger parental population sizes produced smaller Hamming distances 

in the selected individuals. In addition, differences between the strategies were only observed 

with fewer initial parents. Across all scenarios, mass selection resulted in the largest Hamming 

distance. The three frameworks, conventional breeding, speed breeding, and genomic selection 

led to similar results. With 15 initial parents, bulk breeding allowed for the smallest Hamming 

distance. For 30 parents under conventional and speed breeding, all strategies, except for mass 

selection, led to the same Hamming distance. Under genomic selection with 30 parents, bulk 

breeding, single seed descent, and the modified pedigree method had the smallest Hamming 

distance. When the parental population size was 60 and 100, the strategies, with the exception of 

mass selection, resulted in the same Hamming distance after 10 cycles.  
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Figure 2.15: Comparison of five breeding strategies in terms of Hamming distance over 10 
cycles of selection averaged across 50 runs in a closed system. Selection for white mold 
tolerance was simulated with increasing numbers of initial parents displayed on the right and 
differing breeding methods shown at the top. Breeding strategies include mass selection, bulk 
breeding, single seed descent, pedigree method, modified pedigree method. Error bars indicate 
standard error. 
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For seed yield, a parental population size of 15 led to a smaller Hamming distance compared to 

larger parental population sizes. Similar to white mold tolerance, differences between the 

strategies were more noticeable with few initial parents. Mass selection consistently resulted in 

the largest Hamming distance across all scenarios. When comparing the Hamming distance 

observed in the final cycle, conventional breeding, speed breeding, and genomic selection 

produced similar results. It was noted that mass selection had a much larger Hamming distance 

under genomic selection than for the other frameworks. For 15 parents, single seed descent was 

the strategy that led to the smallest Hamming distance. For 30, 60, and 100 parents, the 

strategies, except for mass selection, resulted in the same Hamming distance.  
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Figure 2.16: Comparison of five breeding strategies in terms of Hamming distance over 10 
cycles of selection averaged across 50 runs in a closed system. Seed yield selection was 
simulated with increasing numbers of initial parents displayed on the right and differing breeding 
methods shown at the top. Breeding strategies include mass selection, bulk breeding, single seed 
descent, pedigree method, modified pedigree method. Error bars indicate standard error. 
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2.3.3 Genetic gain  

The relative genetic gain averaged across runs was determined for each cycle for the various 

simulation scenarios. The ANOVA revealed that the strategy, framework, and parental 

population size were all statistically significant (Table S2.8). Figure 2.17 displays the trend in 

genetic gain for the five strategies, as well as the cumulative genetic gain averaged across 

strategies when days to flowering was selected. There was a general decreasing trend for the 

average genetic gain, where it eventually plateaued at 0. The cumulative genetic gain was greater 

in conventional and speed breeding compared to genomic selection for all parental population 

sizes. Figure 2.18 displays a similar plot for white mold tolerance, while Figure 2.19 shows the 

plot for seed yield. The parental population size of 100 led to the greatest percent cumulative 

genetic gain, followed by 30, 15, and 60. For days to flowering, the parental population size of 

100 resulted in a maximum of 50% cumulative genetic gain, while the parental population size of 

60 led to a minimum of 36% cumulative genetic gain. Conventional and speed breeding resulted 

in greater cumulative genetic gains compared to genomic selection.  
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Figure 2.17: Comparison of five breeding strategies in terms of genetic gain over 10 cycles of 
selection averaged across 50 runs in a closed system. Selection for days to flowering was 
simulated with increasing numbers of initial parents displayed on the right and differing breeding 
methods shown at the top. Breeding strategies include mass selection, bulk breeding, single seed 
descent, pedigree method, modified pedigree method. Cumulative genetic gain averaged across 
strategies indicated in black. Error bars indicate standard error.  
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For white mold tolerance, a parental population of 30 led to the greatest cumulative genetic gain, 

followed by 15, 100, and 60. Interestingly, genomic selection resulted in similar cumulative 

gains to conventional and speed breeding when the parental population size was 30, 60, and 100. 

Meanwhile, genomic selection had much lower cumulative gains than conventional and speed 

breeding when 15 parents were used. The parental population size of 30 resulted in a maximum 

of 49% cumulative genetic gain. In contrast, the parental population size 15 led to a minimum of 

37% cumulative genetic gain. 
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Figure 2.18: Comparison of five breeding strategies in terms of genetic gain over 10 cycles of 
selection averaged across 50 runs in a closed system. Selection for white mold tolerance was 
simulated with increasing numbers of initial parents displayed on the right and differing breeding 
methods shown at the top. Breeding strategies include mass selection, bulk breeding, single seed 
descent, pedigree method, modified pedigree method. Cumulative genetic gain averaged across 
strategies indicated in black. Error bars indicate standard error. 

 
 
For seed yield, a larger parental population size resulted in greater cumulative genetic gains, with 

100 parents leading to the highest cumulative genetic gains. In general, conventional and speed 
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breeding led to higher cumulative genetic gains compared to genomic selection. The parental 

population size of 100 resulted in a maximum of 50% cumulative genetic gain. Meanwhile, the 

parental population size of 15 led to a minimum of 29% cumulative genetic gain. 

 
Figure 2.19: Comparison of five breeding strategies in terms of genetic gain over 10 cycles of 
selection averaged across 50 runs in a closed system. Selection for seed yield was simulated with 
increasing numbers of initial parents displayed on the right and differing breeding methods 
shown at the top. Breeding strategies include mass selection, bulk breeding, single seed descent, 
pedigree method, modified pedigree method. Cumulative genetic gain averaged across strategies 
indicated in black. Error bars indicate standard error. 
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The proportion of cumulative genetic gain was determined for each cycle when averaged across 

all strategies. The proportions were determined for the simulation of days to flowering. For 

conventional methods, by cycle five, on average the strategies had achieved between 91 and 96% 

of cumulative genetic gain. Meanwhile, for speed breeding, 91 to 96% of cumulative genetic 

gain was achieved within the first three cycles. Lastly, for genomic selection, 89 to 98% of the 

cumulative genetic gain was achieved in 6 cycles. In the simulation for improving white mold 

tolerance, 83 to 97% of cumulative genetic gain was achieved by cycle 3 for conventional 

methods. Meanwhile, speed breeding led to 83 to 97% of cumulative genetic gains in the first 2 

cycles. 93 to 96% cumulative gains were observed in genomic selection. Figure 2.20 shows the 

number of cycles required for 95% cumulative ΔG. On average across all scenarios, it took 3.31 

cycles to achieve 95% cumulative ΔG. The scenario requiring the fewest cycles to obtain 95% 

cumulative ΔG was dependant on the trait. For days to flowering, the pedigree method under 

speed breeding with 60 parents required only 1.12 cycles to achieve 95% cumulative ΔG. For 

white mold tolerance, the pedigree method under speed breeding with 30 initial parents required 

1.02. For seed yield, the pedigree method under speed breeding with 30 initial parents allowed 

for 95% cumulative ΔG to be obtained in 1.04 cycles.  
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Figure 2.20: Comparison of five breeding strategies in terms of number of cycles until 95% 
cumulative of genetic gain for 10 cycles averaged over 50 runs in a closed system. Selected traits 
include days to flowering (DF), white mold tolerance (WM), and seed yield (SY). Increasing 
numbers of initial parents displayed on the top along with different breeding methods. Breeding 
methods include conventional breeding (CV), speed breeding (SB), and genomic selection (GS). 
Coloured bars represent the breeding strategies, which include mass selection, bulk breeding, 
single seed descent, pedigree method, and modified pedigree method. Error bars indicate 
standard error. 
 

 

The average ΔG per cycle was determined for all scenarios (Figure 2.21). On average across all 

strategies, 5.25% ΔG could be obtained per cycle. The scenario resulting in the greatest ΔG per 

cycle varied depending on the trait being selected. For days to flowering, single seed descent 

with 100 initial parents under speed breeding led to 8.45% ΔG per cycle. For white mold 

tolerance, bulk breeding with 15 initial parents under speed breeding resulted in 8.32% ΔG per 
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cycle. For seed yield, single seed descent, pedigree method, and modified pedigree method with 

100 initial parents under speed breeding each led to 8.69% ΔG per cycle. 

 
Figure 2.21: Comparison of five breeding strategies in terms of relative genetic gain per cycle 
across 10 cycles averaged over 50 runs in a closed system. Selected traits include days to 
flowering (DF), white mold tolerance (WM), and seed yield (SY). Increasing numbers of initial 
parents displayed on the top along with different breeding methods. Breeding methods include 
conventional breeding (CV), speed breeding (SB), and genomic selection (GS). Coloured bars 
represent the breeding strategies, which include mass selection, bulk breeding, single seed 
descent, pedigree method, and modified pedigree method. Error bars indicate standard error. 
Values above bars indicate the total cumulative genetic gain at the end of the simulation. 
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2.3.4 Principal component analysis  

Principal component analyses were plotted to show overall patterns in the simulation outputs. 

Results for conventional selection are shown in Figures 2.22, 2.23, and 2.24, which correspond 

to the selection of days to flowering, white mold tolerance, and seed yield, respectively. For days 

to flowering, the first two principal components explained 78.8% of the variance. Under 

conventional breeding, a notable cluster was formed for parental population size of 100, which 

separated it from other parental population sizes. There were overlaps observed for the other 

parental population sizes. A cluster for bulk breeding with a parental population size of 15 

formed in the direction of the eigenvector for effective population size. Alongside this was an 

overlapping cluster consisting of single seed descent and the modified pedigree method, both 

with a parental population size of 15. The pedigree method, with parental population sizes of 15, 

30, and 60, formed a cluster in the direction of the eigenvector for the fixation of favourable 

alleles. Mass selection, with parental population sizes of 15, 30, and 60, mainly clustered around 

the center of the PCA plot.  
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Figure 2.22: Principal component analysis (PCA) plot displaying the variation among five 
breeding strategies under conventional breeding in terms of genetic gain variables in a closed 
system. Days to flowering was selected with increasing parental population sizes represented by 
different shapes. Breeding strategies include mass selection, bulk breeding, single seed descent, 
pedigree method, and modified pedigree method, and are distinguished by colour. Vectors 
specify the direction and strength of genetic gain variables. The first two principal axes 
explained 78.8% of the variance. 

 
For white mold tolerance, the first two principal components explained 89.7% of the variance. 

The eigenvectors for genetic gain and fixation of favourable alleles point in similar directions. 

Single seed descent, the pedigree method, and the modified pedigree method with parental 

population sizes of 30 formed a cluster in the direction of the fixed favourable alleles. The 

pedigree method with a parental population size of 100 was grouped in the direction of genetic 

gain. Single seed descent and the modified pedigree with 60 parents formed clusters next to each 
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other along the eigenvector for effective population size. Another cluster consisting of these two 

strategies with 100 parents was found to the right. In the direction of the Hamming distance 

eigenvector is a large cluster with overlaps for all five strategies. The cluster found in the 

outermost part of the axis for the Hamming distance vector is bulk breeding and mass selection 

with a parental population size of 15. 

 

Figure 2.23: Principal component analysis (PCA) plot displaying the variation among five 
breeding strategies under conventional breeding in terms of genetic gain variables in a closed 
system. White mold tolerance was selected with increasing parental population sizes represented 
by different shapes. Breeding strategies include mass selection, bulk breeding, single seed 
descent, pedigree method, and modified pedigree method, and are distinguished by colour. 
Vectors specify the direction and strength of genetic gain variables. The first two principal axes 
explained 89.7% of the variance. 
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The PCA plot for seed yield revealed some regular patterns, with multiple linear-like clusters. 

The first two principal components accounted for 76.9% of the variance. Mass selection and bulk 

breeding were distinctly separate from single seed descent, the pedigree method, and the 

modified pedigree method. Clusters for bulk breeding and mass selection formed in the direction 

of the Hamming distance and effective population size eigenvectors. Meanwhile, the clusters for 

single seed descent, the pedigree method, and the modified pedigree method formed along the 

eigenvectors for genetic gain and the fixation of favourable alleles. Clusters for mass selection 

and bulk breeding with a parental population size of 15 formed to the left of the fixed favourable 

alleles eigenvector. The cluster for mass selection with a parental population size of 100 was 

located in the extreme of the Hamming distance eigenvector. A large linear-like cluster 

consisting of bulk breeding with 60 parents formed in between the eigenvectors for effective 

population size and Hamming distance. In general, single seed descent and the modified pedigree 

method overlapped with each other. Found in the most extreme of the genetic gain eigenvector 

was the pedigree method with a cluster for the parental population size of 100 and a single point 

representing a parental population size of 30. The Pedigree method with a parental population 

size of 15 formed a cluster in the most extreme of the fixed favourable alleles eigenvector.  
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Figure 2.24: Principal component analysis (PCA) plot displaying the variation among five 
breeding strategies under conventional breeding in terms of genetic gain variables in a closed 
system. Seed yield was selected with increasing parental population sizes represented by 
different shapes. Breeding strategies include mass selection, bulk breeding, single seed descent, 
pedigree method, and modified pedigree method, and are distinguished by colour. Vectors 
specify the direction and strength of genetic gain variables. The first two principal axes 
explained 76.9% of the variance. 

 
The PCA plots were also generated with the inclusion of genomic selection and speed breeding. 

For days to flowering, the first two principal components explained 75.1% of the variance 

(Figure 2.25). To the right side of the PCA plot between the eigenvectors for genetic gain and 

Hamming distance, there was a large linear-like cluster representing a parental population size of 

100. In the extreme of the eigenvector for Hamming distance, was a cluster for mass selection 

under genomic selection. There was a cluster for pedigree method with 100 parents under 
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conventional breeding in the direction of the eigenvector of the genetic gain. In the extreme of 

the eigenvector for effective population size, there was a cluster corresponding to bulk breeding 

with a parental population size of 100 under speed breeding. A cluster representing the pedigree 

method with 15 and 30 parents under speed breeding formed in the extreme of the eigenvector 

for the fixation of favourable alleles. Between the eigenvectors for fixed favourable alleles and 

genetic gain, there was a large cluster corresponding to the pedigree method under genomic 

selection and speed breeding. A cluster representing both single seed descent and the modified 

pedigree method was located closer to the center of the plot along the axis of the genetic gain 

vector. Between the eigenvectors for fixed favourable alleles and effective population size, there 

was a sparse cluster consisting of multiple strategies including mass selection, the pedigree 

method, single seed descent, and the modified pedigree method.  
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Figure 2.25: Principal component analysis (PCA) plot displaying the variation among five 
breeding strategies in terms of genetic gain variables in a closed system. Days to flowering was 
selected with increasing parental population sizes represented by different shapes. Breeding 
strategies include mass selection, bulk breeding, single seed descent, pedigree method, and 
modified pedigree method, and are distinguished by colour. Vectors specify the direction and 
strength of genetic gain variables. The first two principal axes explained 75.1% of the variance. 
 

For white mold tolerance, the first two principal components accounted for 81.8% of the 

variance (Figure 2.26). Notably, there were fewer distinct clusters that formed, with most points 

concentrated in the center of the plot. To the extreme in the direction of the effective population 

size eigenvector, there was a linear-like cluster representing the pedigree method under speed 

breeding. Between the eigenvectors for effective population size and fixed favourable alleles, 

there was a cluster consisting of single seed descent and the modified pedigree method under 
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speed breeding. Between the eigenvectors for Hamming distance and effective population size, 

there were many points corresponding to mass selection. Points reflecting all the strategies were 

dispersed between the vectors for Hamming distance and genetic gain, with a larger parental 

population size concentrated towards the center of the plot. In the most extreme of the vector for 

genetic gain, there were many points representing the pedigree method with 15 and 30 parents 

under conventional breeding.  

 
Figure 2.26: Principal component analysis (PCA) plot displaying the variation among five 
breeding strategies under conventional breeding in terms of genetic gain variables in a closed 
system. White mold tolerance was selected with increasing parental population sizes represented 
by different shapes. Breeding strategies include mass selection, bulk breeding, single seed 
descent, pedigree method, and modified pedigree method, and are distinguished by colour. 
Vectors specify the direction and strength of genetic gain variables. The first two principal axes 
explained 81.8% of the variance. 
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For seed yield, the two major principal components explained 72.3% of the variance (Figure 

2.27). Overall, there were many linear-like clusters that formed. In the outermost region of the 

plot, there were a number of points representing bulk breeding with 100 parents under 

conventional breeding between the vectors for Hamming distance and effective population size. 

As one moves towards the center of the plot, there were clusters for bulk breeding that 

corresponded to speed breeding and genomic selection, as well as multiple points constituting 

mass selection. There was a distinct cluster for mass selection with 100 parents under genomic 

selection that was in the direction of the Hamming distance eigenvector. In the direction of the 

genetic gain eigenvector, there was a cluster corresponding to the pedigree method under 

conventional breeding. Meanwhile, there was a sparse cluster along the fixed favourable alleles 

eigenvector, which consisted of the pedigree method, single seed descent, and the modified 

pedigree method. More points representing single seed descent and the modified pedigree 

method with 100 parents were found in the center of the plot. In the extreme of the fixed 

favourable allele eigenvector were points corresponding to the pedigree method with 30 parents 

under speed breeding.   
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Figure 2.27: Principal component analysis (PCA) plot displaying the variation among five 
breeding strategies under conventional breeding in terms of genetic gain variables in a closed 
system. Seed yield was selected with increasing parental population sizes represented by 
different shapes. Breeding strategies include mass selection, bulk breeding, single seed descent, 
pedigree method, and modified pedigree method, and are distinguished by colour. Vectors 
specify the direction and strength of genetic gain variables. The first two principal axes 
explained 72.3% of the variance. 
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2.4 Discussion 

2.4.1 Comparison of breeding strategies  

The breeding strategies performed differently for each breeding scenario simulated and depended 

on the trait being selected. For days to flowering, the scenario utilizing single seed descent led to 

the highest genetic gain per cycle. Meanwhile, for white mold tolerance, the breeding scenario 

using bulk breeding resulted in the greatest gain achieved for each cycle. For seed yield, the 

scenario producing to the greatest genetic gain per cycle relied upon single seed descent, the 

pedigree method, or the modified pedigree method. Interestingly, for all three traits, the pedigree 

method required fewer cycles until 95% cumulative genetic gain, meaning it may have been 

more efficient, but the genetic gains achieved were smaller.  

Limited studies have been conducted in common beans to compare breeding strategies. 

However, researchers have investigated the use of different breeding strategies in soybean 

breeding. One particular study demonstrated that for the selection of yield, the highest 

performing lines were obtained via the pedigree method, while single seed descent produced the 

highest mean seed yield. The authors also found that bulk breeding was impractical for soybean 

breeding (Djukic et al., 2011). In contrast, a separate study conducted on soybean breeding found 

that bulk breeding was the most effective for obtaining the highest yielding individuals, while the 

pedigree method was ideal for less complex traits. (Agric Res, 2019). The authors noted that bulk 

breeding was better suited to cases where breeding materials are abundant, and in cases with 

limited resources, pedigree may be the better choice. The results of the simulation study, which 

was conducted in the common bean, closely reflect previous findings in soybean breeding. 

Specifically, when it came to seed yield with few breeding materials, it was found that single 
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seed descent, the pedigree method, and the modified pedigree method resulted in the greatest 

genetic gains. For days to flowering, a less complex trait,  

2.4.2 Comparison of breeding framework    

Three different breeding frameworks were compared in this study. These included conventional 

breeding, speed breeding, and genomic selection. Conventional breeding was used as a baseline 

for the other two frameworks to see if they may be worthwhile to implement in future breeding 

programs. Based on the results, speed breeding led to the greatest genetic gain achieved. It also 

led to the fixation of favourable alleles in the shortest time. Considering the breeder’s equation, 

where L, the years per cycle, was greatly reduced, this outcome was to be expected. From the 

simulation, it was revealed that genomic selection had a similar performance to conventional 

methods. The effectiveness of genomic selection greatly depends on the prediction accuracy, as 

well as the time and costs saved by replacing phenotyping with genotyping. While prediction 

accuracies of genomic selection were determined, this study did not factor in the time and cost 

savings that could be associated with the use of genomic selection. Nonetheless, genomic 

selection performed on a level that was similar to conventional breeding.  As the main advantage 

with genomic selection is the opportunity to circumvent phenotyping costs, breeders may find 

utilizing genomic selection to be worthwhile if they have the means to perform large-scale 

genotyping. They may also need to consider the expenses tied with establishing a good training 

population, which may require more resources (Hickey et al., 2014). In terms of prediction 

accuracy, (Taylor, 2014) reported that GS is optimized when the training population is dynamic, 

where the progeny of the training population is combined with the training population. In 

addition, GS is expected to perform poorly if training takes place in one population, but GEBV 

are to be obtained for a reproductively isolated population. Finally, it was noted that GS becomes 
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less effective in each advancing generation if a static training population is to be used for 

predicting traits that are difficult to phenotype (Taylor, 2014).  The prediction accuracies of 

genomic selection are discussed in chapter 3. 

2.4.3 Number of initial parents and crosses  

Four different parental population sizes were investigated in this study. A full diallel crossing 

scheme was employed for each breeding scenario. Since a closed breeding system was 

simulated, the lines selected at the end of the cycle would be used as the parents of the next 

cycle. As a result, there was a need for fewer parents and more crosses. While this scheme was 

mainly used to accommodate the requirements of a closed breeding system, previous researchers 

have theorized that having more crosses with smaller populations is more effective. At the F2 

generation, a breeder with limited resources has the option to create more crosses, each with 

smaller populations, or create fewer crosses, each with larger populations. Based on 

mathematical formulation and simulated data, the use of more crosses with smaller populations 

was more effective (Bernardo, 2003; Witcombe & Virk, 2001; Yonezawa & Yamagata, 1978). 

This was based on the assumption that no prior knowledge on the crosses were available and was 

found to be true for any choice of parents. In practice, plant breeders will often have information, 

such as the cross pedigree and the performance of parents. The optimal choice of parents can 

typically be ascertained from general and specific combining abilities, and breeders can make 

decisions accordingly. For simulations, where parents are not thoroughly tested for general and 

specific combining, the inclusion of more parents may influence the effectiveness of the breeding 

program. The simulation study presented here considered four different parental population 

sizes. For two of the three traits analyzed, a larger parental population size resulted in 

higher %ΔG per cycle compared to smaller parental population sizes. Since a full diallel crossing 
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scheme was implemented, there was a greater likelihood that a high performing cross was 

created and later selected for. For the trait white mold, the smallest parental population size led 

to the greatest %ΔG per cycle. The total cumulative genetic gain was higher with the use of 15 

parents. Under 100 parents, the initial genetic gains were quite high, but gains dropped off very 

quickly within the first few cycles. The white mold simulation consisted of the fewest QTLs, and 

100% of the favourable alleles were fixed within the first two cycles. Thus, selection for white 

mold was very efficient and it’s likely that there was no genetic variance remained after the first 

couple cycles in the scenario involving 100 parents. Based on the breeder’s equation [1], the 

amount of additive genetic variance will influence the genetic gain. As a result, after the first two 

cycles of selection under 100 parents, no additional genetic gain could be achieved. 

2.4.4 Trait heritability and number of QTL 

The three traits that were simulated had different heritability levels. Days to flowering was a high 

heritability trait, with a narrow sense heritability of 0.9. White mold tolerance had a moderate 

heritability of 0.6, while seed yield had a low heritability of 0.3. The traits also had differing 

numbers of QTLs, which were included based on certain criteria and available information in the 

literature. The aim of the study was to simulate breeding scenarios that would closely reflect 

breeding programs in real life. Thus, only QTLs with reported effects were included. This is 

unique from previous studies, in which QTL effects were randomly drawn from a normal 

distribution (Ali et al., 2020; Lorenz, 2013; Jiankang Wang et al., 2003). For all traits, the 

optimal framework was speed breeding. However, the optimal strategy and number of parents 

was dependant on the trait being selected. For white mold tolerance, the optimal number of 

parents was 15, while for seed yield and days to flowering, the optimal number of parents was 

100. This may be due to the number of QTLs that were included in the simulation. For white 
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mold tolerance, only 8 QTLs were considered. Selection was likely very efficient and in a closed 

system, little to no genetic gain could be achieved after the first few cycles. This is reflected in 

Figure 2.21, where the cumulative genetic gain is much lower in the scenario with 100 parents. 

Days to flowering considered many QTL and seed yield had a lower heritability, meaning 

selection was likely not as efficient and the use of 100 parents was beneficial for obtaining high 

performing lines.   

2.4.5 Patterns observed from the PCA plots 

The PCA plots revealed that the pedigree method often formed clusters in the direction of the 

eigenvector for the fixation of favourable alleles. This would suggest that the pedigree method 

had advantages over the other strategies. However, when considering genetic gain, the pedigree 

method was outperformed by single seed descent and bulk breeding for the simulation of days to 

flowering and white mold tolerance. This may be due to the efficiency of the pedigree method, 

which resulted in little to no genetic variance early on. Other patterns observed from the PCA 

plots indicated that single seed descent and the modified pedigree method had similarities, as 

they would often cluster together. This was the case for most breeding scenarios when 

considering the genetic gain per cycle. The exception, however, was under genomic selection 

with 15 parents for white mold tolerance and seed yield, where the two strategies differed 

significantly in terms of genetic gain per cycle. Lastly, mass selection would often cluster in the 

direction of the Hamming distance eigenvector. As higher values for a Hamming distance 

indicates a poor performing line, strategies clustering in the direction of the Hamming distance 

eigenvector are likely to underperform compared to the other strategies. Thus, the Hamming 

distance eigenvector is a useful indicator of the performance of a strategy, unlike the fixation of 

favourable alleles, which may be misleading. 
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2.4.6 Conclusions 

Breeding programs are complex and may be influenced by many factors. Computer simulations 

provide the opportunity to investigate multiple breeding scenarios at the same time to evaluate 

their effectiveness. The findings from this study show that the success of a breeding program is 

impacted by the strategy used, the chosen framework, and the parental population size. As well, 

the optimal breeding scenario depends on the trait being simulated. For a low heritability trait or 

a polygenic trait, a large parental population size produced the greatest genetic gain per cycle. 

For trait involving few QTL, use of a small parental population size is sufficient. In terms of the 

optimal strategy, single seed descent was the most effective for days to flowering, while bulk 

breeding was ideal for the selection of white mold tolerance. Finally, for the improvement of 

seed yield, single seed descent, the pedigree method, and the modified pedigree method are all 

acceptable strategies to use. Some of the limitations in this study mainly involved the inclusion 

of QTLs. QU-GENE requires a genetic map rather than a physical map. As a result, QTLs 

identified as physical positions could not easily be converted to a genetic distance and thus were 

omitted. In addition, seed yield is a complex trait with many small effect QTLs that are difficult 

to detect, meaning the QTLs included in this study represent a small sample of the total QTLs 

that contribute to the trait.  
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2.5 Supplemental data  
 
Table S2.1: Goodness of fit for the genetic variance model 

Trait Model† Df AIC BIC 
DF 1 12 122965.6  123057.0 

2 62 119742.5 120214.6 
WM 
        

1 12 124321.0 124412.4 
2 62 121197.8 121670.0 

SY 1 12 120999.9 121091.3 
2 62 118965.5 119437.7 

† Model 1 refers to an unnested model, while model 2 refers to a nested model 
 
 
Table S2.2: Analysis of variance (ANOVA) for percent genetic variance 

Trait Source  Sum Sq Mean Sq NumDF DenDF F value  
DF Parents 55219.92 18406.64 3 14995 108.50 *** 
 Framework (Parents) 136114.56 17014.32 8 14995 100.29 *** 
 Strategy (Framework) 1788840.96 37267.52 48 14995 219.68 *** 
WM Parents 96172.96 32057.65 3 14995 171.46 *** 
 Framework (Parents) 409903.96 51237.99 8 14995 274.05 *** 
 Strategy (Framework) 2000944.47 41686.34 48 14995 222.96 *** 
SY Parents 56267.46 18755.82 3 14995 116.43 *** 
 Framework (Parents) 250154.13 31269.27 8 14995 194.11 *** 
 Strategy (Framework) 3163532.34 65906.92 48 14995 409.14 *** 

*** indicates a 0.001 significance level   
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Table S2.3: Goodness of fit for the fixation of favourable alleles model 

Trait Model† Df AIC BIC 
DF 1 12 231244.9  231344.6 

2 62 227671.8 228187.0 
WM 
        

1 12 240336.5 240436.2 
2 62 238545.2 239060.3 

SY 1 12 238983.0 239082.7 
2 62 235970.3 236485.5 

† Model 1 refers to an unnested model, while model 2 refers to a nested model 
 
 
Table S2.4: Analysis of variance (ANOVA) for fixation of favourable alleles 

Trait Source  Sum Sq Mean Sq NumDF DenDF F value  
DF Parents 117931.59 39310.53 3 29981 343.03 *** 
 Framework (Parents) 330146.12 41268.26 8 29985 360.12 *** 
 Strategy (Framework) 2370853.31 49392.78 48 29981 431.01 *** 
WM Parents 282025.86 94008.62 3 29981 570.74 *** 
 Framework (Parents) 208787.54 26098.44 8 29983 158.45 *** 
 Strategy (Framework) 3345298.00 69693.71 48 29981 423.12 *** 
SY Parents 171666.81 57222.27 3 29981 378.63 *** 
 Framework (Parents) 440869.60 55108.70 8 29985 364.64 *** 
 Strategy (Framework) 6895079.20 143647.48 48 29981 950.48 *** 

*** indicates a 0.001 significance level   
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Table S2.5: Goodness of fit for the Hamming distance model 

Trait Model† Df AIC BIC 
DF 1 12 190300.7 190400.4 

2 62 174181.4 174696.6 
WM 
        

1 12 194058.8 194158.5 
2 62 186527.6 187042.7 

SY 1 12 201445.1 201544.8 
2 62 181481.6 181996.8 

† Model 1 refers to an unnested model, while model 2 refers to a nested model 
 
Table S2.6: Analysis of variance (ANOVA) for Hamming distance 

Trait Source  Sum Sq Mean Sq NumDF DenDF F value  
DF Parents 165737.3 55245.78 3 29981 2866.33 *** 
 Framework (Parents) 332251.9 41531.49 8 29983 2154.79 *** 
 Strategy (Framework) 1140641.9 23763.37 48 29981 1232.92 *** 
WM Parents 167665.3 55888.43 3 29981 1920.50 *** 
 Framework (Parents) 133810.0 16726.25 8 29960 574.77 *** 
 Strategy (Framework) 1014786.1 21141.38 48 29981 726.48 *** 
SY Parents 149621.2 49873.72 3 29981 2028.44 *** 
 Framework (Parents) 440943.1 55117.89 8 29980 2241.73 *** 
 Strategy (Framework) 3430251.5 71463.57 48 29981 2906.53 *** 

*** indicates a 0.001 significance level   
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Table S2.7: Goodness of fit for the genetic gain model 

Trait Model† Df AIC BIC 
DF 1 12 153313.5 153413.2 

2 62 152762.4 153277.5 
WM 
        

1 12 171961.2 172060.9 
2 62 171772.7 172287.9 

SY 1 12 169043.5 169143.2 
2 62 168792.8 169307.9 

† Model 1 refers to an unnested model, while model 2 refers to a nested model 
 
 
 
Table S2.8: Analysis of variance (ANOVA) of genetic gain  

Trait Source  Sum Sq Mean Sq NumDF DenDF F value  
DF Parents 191.90 63.97 3 29981 6.78 *** 
 Framework (Parents) 4856.43 607.05 8 29985 64.34 *** 
 Strategy (Framework) 12827.25 267.23 48 29981 28.32 *** 
WM Parents 423.86 141.29 3 29981 7.9 *** 
 Framework (Parents) 2039.48 254.94 8 29984 14.3 *** 
 Strategy (Framework) 7620.33 158.76 48 29981 8.9 *** 
SY Parents 801.16 267.05 3 29981 16.58 *** 
 Framework (Parents) 2658.14 332.27 8 29982 20.63 *** 
 Strategy (Framework) 19176.76 399.52 48 29981 24.80 *** 

*** indicates a 0.001 significance level   
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Chapter 3 Accuracy of Genomic selection  

Abstract 

Genomic selection is a technique that predicts the performance of an individual according to 

genotypes that are predicted to be desirable based on a model. The effectiveness of genomic 

selection is strongly tied to its prediction accuracy. Previous studies have evaluated the accuracy 

of genomic selection using simulations. The aim of this study was to evaluate changes in 

accuracy of genomic selection based on many known QTLs identified in the literature and 

determine their relationship with true breeding values. Simulation results revealed that 

correlation-based prediction accuracies (also referred to as realized accuracy) fluctuate 

depending on trait genetic architecture, breeding strategy and the number of initial parents 

involved in the breeding program. Generally, maximum accuracies were achieved under a mass 

selection strategy followed by pedigree single seed descent methods. Model updating benefitted 

some breeding strategies more than others (e.g., single seed descent vs mass selection). For low 

heritability traits (i.e., yield), conventional methods provided comparable rates of genetic gain, 

but genetic gain under genomic selection reached a plateau in a lower number of cycles.  

3.1 Introduction 

3.1.1 Genomic selection 

First described by (Meuwissen, Hayes, & Goddard, 2001), genomic selection (GS) is a technique 

that can make use of the vast amount of information from genetic markers. With advances DNA 

technology and declining costs for genotyping, breeders can now gain access to large quantities 

of genetic information. In particular, genome wide association studies (GWAS) have allowed for 

the discovery of quantitative trait loci (QTL). These QTL are predicted to contribute to the 
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phenotype of a trait. In the past, markers that were closely linked to a QTL could be used to 

select on individuals with a desired allele. Much of the success with from marker assisted 

selection (MAS) was in traits that were controlled by single genes. Application of MAS to 

polygenic traits, or traits controlled by many genes, has seen less success. Even with high density 

markers, there are limitations to the effectiveness of MAS. This is because the linkage phase 

between a marker and a QTL must be determined each time before its use.  GS is a method that 

relies on estimating breeding values based on model-predicted phenotypic values. The key 

component in genomic selection is that all markers across the genome are used for prediction. A 

training population, where individuals are both genotyped and phenotyped, is first used to train a 

model. Then, the model is applied to a testing population, where individuals have only been 

genotyped, to predict their phenotypes and assign genomic estimated breeding values (GEBV) to 

each individual. The advantage to using genomic selection is that it has the potential to save the 

time and resources that would normally be put towards phenotyping individuals. This is because 

individuals would only need to be genotyped, so only genotyping costs would need to be 

considered. 

3.1.2 Factors impacting genomic selection accuracy  

The main drawback to the use of genomic selection is the accuracy with which the model can 

predict phenotypes from the genotypes. Genomic selection has been widely used in animal 

breeding programs. For example, in dairy cattle, one study found annual genetic gain increases 

of 33 to 77% in three different breeds following the implementation of genomic selection 

(Doublet et al., 2019). Despite the promising findings for animal breeding, the move towards 

implementing genomic selection in plants, especially for complex quantitative traits, has been 

slow. This is likely due to a number of factors that affect the accuracy of genomic selection. 
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Training population size and trait heritability  

A number of studies have found that the training population size greatly impacts the accuracy of 

genomic selection. A larger training population may increase accuracy by up to 20%. 

Furthermore, the heritability of a trait can impact the training population size required, especially 

when the h2 is less than 0.4. For example, to obtain an accuracy of 0.7, a training population size 

of 9000 is required for a trait with h2 = 0.2 if the effective population size is 1000. This greatly 

contrasts a training population size of 3000 when the trait heritability is 0.5 (Lorenz et al., 2011) 

Population structure  

Accounting for population structure is a key factor for successfully implementing GS. Isidro et 

al. (2015) demonstrated that stratifying populations can improve the accuracy of GS. Another 

group of researchers considered the effects of relatedness between individuals when designing a 

training population. GS accuracy was determined to be highest when individuals in the training 

population was closely related to individuals in the testing population. Furthermore, in cases 

where relatedness is low, increasing the diversity of a training population can improve accuracy 

(Norman, Taylor, Edwards, & Kuchel, 2018). 

Genomic selection model  

A number of different models are available for predicting marker effects. (Heslot, Yang, Sorrells, 

& Jannink, 2012) previously compared the effectiveness of 11 GS models. These included 

random regression best linear unbiased prediction (rrBLUP), Bayesian ridge regression (BRR), 

and Bayesian Lasso (BL), BayesB, weighted Bayesian shrinkage regression (wBSR), BayesCπ, 

empirical Bayes (E-Bayes), elastic net, reproducing kernel Hilbert space (RKHS), support vector 

machine (SVM), random forest (RF), and neural network (NNET). The authors recommended 

the use of rrBLUP, BL, and wBSR due to their ease of implementation, versatility, and limited 
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overfitting. They noted that BayesCπ was not an ideal model due to the high computational time. 

Meanwhile, E-Bayes and NNET both led to overfitting, with E-Bayes also having reduced 

accuracy and NNET requiring more computational power. Interestingly, RKHS also resulted in 

overfitting, however the accuracy was not impacted, meaning that while the model picked up 

more noise, it was able to capture more genetic signal. RF led to promising accuracies, but may 

require more validation before being established as a GS model ((Heslot et al., 2012). As 

rrBLUP has been demonstrated to be a reliable model, it was used to determine the marker 

effects to simulate GS in the study. The model for rrBLUP is shown in Equation 3.1 

𝑦	 = 	𝑋𝛽	 + 	𝑍𝑢	 + 	𝜀      [3.1] 

 
where y is a list of phenotypes, X is a design matrix for the fixed effects β, Z is a design matrix 

for the random effects u; where u ~ N (0, Kσ2
u), and ε is residual variance.  

 

Model update  

A simulation study conducted based on a sorghum breeding program found that updating the 

genomic selection model every year can increase genetic gains up to 39% (Muleta, Pressoir, & 

Morris, 2019). Accuracy is greater when the training population contains individuals in the same 

generation as the selection candidates. In essence, as the number of generations separating the 

training population and selection candidates increases, the accuracy will decrease. Thus, model 

updates are required to ensure the genomic selection accuracy is maintained (Heffner, Lorenz, 

Jannink, & Sorrells, 2010).  

3.1.3 Objectives  

Although genomic selection has been widely implemented in animal breeding, its use in plant 

breeding still requires further validation. The objective of this study is to investigate the accuracy 



 
 

 98 

of genomic selection in a simulation study. Five breeding strategies were simulated with the 

selection of three traits. The following hypotheses were tested: 

1. Genomic selection accuracy, measured via the correlation between the breeding value 

and genomic estimate breeding value, will be greater in traits with a high heritability. 

2. The genomic selection accuracy estimated from the simulation will be similar to 

accuracies predicted from the formula described by Hans D Daetwyler, Ricardo Pong-

Wong, Beatriz Villanueva, & John A Woolliams, 2010 

3. Updating the model will lead to an increase in GS accuracy. 

3.2 Methods 

3.2.1 Simulation setup 

Simulation parameters in the Unchanged GS model simulation are described in chapter 2. A 

second simulation, henceforth referred to as the Updated GS model simulation, consisted of 

updating the genomic selection model after the third cycle of selection. For the Updated GS 

model simulation, five breeding strategies with a parental population size of 30 were simulated 

with the selection of three traits, which included days to flowering, white mold tolerance, and 

seed yield. The Updated GS model simulation consisted of 20 runs, with 6 cycles in total. To 

simulate GS, a parental population was created using the SimuPOP software and run through 

QU-GENE to obtain genotypic and phenotypic values for the individual in the population. The 

mixed.solve function in the rrBLUP package was used to estimate marker effects using the 

genotypic and phenotypic values obtained from the SimuPOP parental population. The marker 

effects were then used to make selections for 3 cycles. To simulate updating the model, a random 

sample of individuals at the third cycle were used to re-train the model. The genotypic and 
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phenotypic values of these individuals were used to determine marker effects, which were then 

used to perform selections from cycle 4 to 6.  

3.2.2 Expected genomic selection accuracy 

(Hans D Daetwyler et al., 2010) described a number of components that impact the accuracy of 

GS. The authors derived a formula for GS accuracy, as follows: 

𝑟11>= = ?
?&0%

?&0%-	*1	
       [3.2] 

 

Where NP refers to the number of individuals in a training population, h2 is the heritability, and 

nG is the number of independent loci. Based on the derived formula, the accuracy of GS is 

influenced by the heritability of the trait, the number individuals in the training population, and 

the number of loci being considered. This formula, however, does not properly account for 

situations with a very large number of loci. Based on Equation 3.2, as the number of loci 

increases, the accuracy will wrongly shift towards 0, since there cannot be an infinite number of 

independent loci. As LD will result in some of the loci being linked, the number of independent 

chromosome segments, Me, should be used in place of nG (H. D. Daetwyler, R. Pong-Wong, B. 

Villanueva, & J. A. Woolliams, 2010). By replacing nG with Me, one can derive Equation 3.3:  

𝑟11>= = ?
?&0%

?&0%-	@#
         [3.3] 

 

Where NP refers to the number of individuals in a training population, h2 is the heritability, 

and Me is the number of independent chromosome segments. The equation to calculate Me is 

shown below: 
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𝑀& =
!?#$

)A1(B?#$)
    [3.4] 

 
Where Ne is the effective population size, and L is the genome length in Morgans.  

The effective population size (Ne) is an important concept in population genetics. In a closed 

population with a finite number of individuals, the genetic variation within that population will 

diminish after several generations. The number of individuals in that population will determine 

how well the genetic variability can be sustained. Maintaining genetic variation in a population 

will reduce inbreeding and its negative effects. However, one factor that causes the genetic 

variation to decline is genetic drift, which is a random occurrence that leads to the fixation of 

alleles at polymorphic loci. Effective population size is a term that was coined by Sewall Wright 

to refer to the size of an ideal population, in reference to an actual population, if genetic drift was 

the only force that was acting on the population (Soulé, 1987). A number of models have been 

proposed for the estimation of Ne (Caballero & Toro, 2000; Crow & Morton, 1955; Jinliang 

Wang & Hill, 2000; S. Wright, 1938). Depending on the model used, certain assumptions are 

made regarding the population under investigation. For plant species in particular, few estimates 

have been made for Ne. Siol et al. (2007) first reported estimates for the highly-selfing, model 

legume species, Medicago truncatula. To estimate Ne, the authors used the variance effective 

size estimator described by Waples (1989):  

𝑁A& =	
+

!C:D2;	E
3
%45

- 3
%4+

FG
         [3.5] 

 

where t refers to the number of generations that have elapsed between the two sampled 

populations, 𝐹BH refers to the estimator for the standardized variance of gene frequency changes at 
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a single locus, S0 and St indicate the sample sizes of the population at time 0 and time t, 

respectively. The estimator Fc can be written as: 

𝐹H =
/
I
∑ (J6	;	K6)%

(J6-K6)/!	;	J6K6
I
#M/           [3.6] 

 

where k is the number of alleles, xi is the observed allele frequency at time 0, and yi is the 

observed allele frequency at time t. Average Fc estimates for all loci was determined and used to 

determine the Ne. From there, the genomic selection accuracy was estimated using Equation 3.2.  

3.2.3 In silico realized genomic selection accuracy 

To estimate the in silico realized GS accuracy, the outputs from the simulation were used. QU-

GENE reports the genotypic values obtained from conventional breeding and genomic selection. 

In QU-GENE, the phenotypic selection used for conventional breeding is based entirely on the 

QTLs provided. QU-GENE will output genotypic values for each individual and assign 

phenotypic values drawn from a distribution, which depends on the error variance supplied. In 

essence, the genotypic value reported by QU-GENE may be considered the true breeding value 

(TBV), as it assumes that the QTLs are the genes controlling a trait. Since the genomic selection 

model is trained on the phenotypic values assigned by QU-GENE for a training population, the 

genomic estimated breeding values (GEBVs) are indirectly based upon the TBV. The ratio 

between the mean population GEBV and TBV may be used as a rough estimator of genomic 

selection accuracy.  

3.2.4 Principal component analysis 

Principal component analyses were conducted to visualize the relationships between the factors 

that influence both genetic gain and genomic selection accuracy. The family means for 7 

different factors that contribute to the genetic gain and genomic selection accuracy in the first 
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cycle were determined for each of the 20 runs. The 7 factors included genetic gain, fixation of 

favourable alleles, Hamming distance, genetic variance, effective population size, true breeding 

value, and genomic estimated breeding value. The fixation of favourable alleles described the 

average percentage of beneficial alleles that were fixed in the population. Meanwhile, the 

Hamming distance was used to describe the distance of an individual from an ideal genotype. 

This distance was determined as the number of base pairs that differ from the optimal genotype. 

The effective population size was calculated according to equation 5. All calculations were 

performed using original code written in R and may be located on our lab GitHib page ((McGill 

University Pulse Breeding and Genetics Laboratory, 2021). Lastly, the R package ggbiplot was 

used to create the principal component analyses. 

3.3 Results  

3.3.1 Unchanged GS model  

The GS accuracies obtained from the simulations described in chapter 2 are presented here. The 

simulation conducted in chapter 2 used an unchanged GS model. GS accuracies were estimated 

in two manners, the first being formula-based, using Equation 3.2, and the second being in silico 

realized GS accuracies based on correlations between the TBV and the GEBV.  

3.3.1.1 Expected formula-based GS accuracy  

Using the unchanged GS model, the GS accuracies determined using Equation 3.2 ranged from 

0.07 to 0.63 (Figure 3.1). For most breeding scenarios, prediction accuracy decreased over the 10 

cycles. The decline was smaller with parental population sizes of 15 and 30. Prediction 

accuracies were higher with larger parental population sizes. The strategies had similar 

accuracies and followed similar trends when the parental population size was small. However, 

with large parental population sizes, mass selection had a much greater prediction accuracy 
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compared to the other strategies. Furthermore, the accuracy remained relatively high for mass 

selection. The accuracy was highest under days to flowering, followed by white mold tolerance 

and then seed yield. For days to flowering under mass selection with 100 parents, the accuracy 

decreased from 0.63 to 0.47 over 10 cycles. For white mold tolerance under mass selection with 

100 parents, the accuracy decreased from 0.46 to 0.39 over 10 cycles. For seed yield under mass 

selection with 100 parents, the accuracy decreased from 0.43 to 0.29 over 10 cycles. In most 

breeding scenarios, bulk breeding resulted in the lowest prediction accuracies. For days to 

flowering with 15 parents, the accuracy in bulk breeding decreased from 0.18 to 0.10 over 10 

cycles. For white mold tolerance with 15 parents, the accuracy declined from 0.11 to 0.09 over 

10 cycles when bulk breeding was used. For the selection of seed yield with 15 initial parents, 

the accuracy with bulk breeding decreased from 0.09 to 0.07 over 10 cycles. Heritability had an 

impact on GS accuracy, where accuracy was highest under days to flowering, followed by white 

mold tolerance and then seed yield. However, selection strategies had similar accuracies when 

the parental population size was small, regardless of heritability. 
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Figure 3.1: Expected genomic selection accuracies predicted from Equation 3.2 using an 
unchanged GS model. Coloured lines correspond to breeding strategies, which include mass 
selection, bulk breeding, single seed descent, the pedigree method, and the modified pedigree 
method. Three traits were selected with differing parental population sizes indicated at the top 
and right-hand side of the panels. Traits included days to flowering (DF), white mold tolerance 
(WM), seed yield (SY). 

 
3.3.1.2 True breeding values (TBV) 

True breeding values were obtained from the QU-GENE output files and plotted over 10 cycles 

(Figure 3.2). For days to flowering and seed yield, the TBVs increased and eventually plateaued. 
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The opposite was true for white mold tolerance, where TBVs plummeted before reaching a 

plateau. There were notable differences between the TBVs when different numbers of parents 

were used at the beginning of the cycle. For each of the traits, as the number of parents 

increased, the average TBV for the strategies decreased. For days to flowering, the average 

TBVs across strategies at the end of the 10th cycle were 20.21, 17.69, 13.95, 9.96 for 15, 30, 60, 

and 100 parents, respectively.  For white mold tolerance after 10 cycles, the average TBVs were 

-46.17, -62.32, -62.51, -62.55 for 15, 30, 60, and 100 parents. For seed yield, the average TBVs 

were 2830.95, 2759.40, 2190.16, 2189.79 for 15, 30, 60, and 100 parents. For most breeding 

scenarios, bulk breeding, single seed descent, the pedigree method, and the modified pedigree 

method led to similar TBVs. Mass selection resulted in a lower TBV for days to flowering and 

seed yield, while it led to a higher TBV for white mold tolerance in comparison to the other four 

strategies. 
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Figure 3.2: True breeding values provided by QU-GENE plotted over 10 cycles for increasing 
parental population sizes and three traits for an unchanged GS model. Traits include days to 
flowering (DF), white mold tolerance (WM), seed yield (SY). 

3.3.1.3 Genomic estimated breeding values (GEBV) 

Genomic estimated breeding values were determined for each cycle for 10 cycles (Figure 3.3). 

For days to flowering and seed yield, the GEBVs increased rapidly before plateauing. The 

opposite trend was observed for white mold tolerance. The parental population sizes had an 

impact on the GEBVs at the end of the breeding program. For days to flowering, the GEBVs 

averaged across the strategies were 19.90, 17.47, 13.98, and 9.87 for 15, 30, 60, and 100 parents. 

For white mold tolerance, parental population sizes of 15, 30, 60, and 100 resulted in average 

GEBVs of -35.26, -61.52, -62.34, and -62.52. Lastly, for seed yield, the average GEBVs were 

2420.18, 2745.80, 2185.04, 2183.38 for parental population sizes of 15, 30, 60, and 100.  
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Figure 28 Genomic estimated breeding values plotted over 10 cycles for increasing parental 
population sizes and three traits for an unchanged model. Traits include days to flowering (DF), 
white mold tolerance (WM), seed yield (SY). 

 
3.3.1.4 In silico Realized GS accuracy 

In silico realized GS accuracies were obtained from the correlation between the TBV and the 

GEBV. They ranged from -0.35 to 0.32 (Figure 3.4). The mean accuracies for each strategy were 

-0.03, -0.02, 0.02, 0.05, and -0.01, for mass selection, bulk breeding, single seed descent, the 

pedigree method, and the modified pedigree method, respectively.  For days to flowering, the 

highest accuracy (0.31) was observed under the pedigree method with 30 parents, while the 

lowest accuracy (-0.35) was in bulk breeding with 100 parents. When considering white mold 

tolerance, single seed descent with 15 parents resulted in the greatest accuracy (0.32). The lowest 
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accuracy was seen under mass selection with 60 parents (-0.29). Interestingly, in cycle 2, there 

was an increase in accuracy, after which the accuracy declined rapidly and became negative by 

cycle 4. For seed yield, both the highest (0.24) and lowest (-0.34) accuracies were observed in 

mass selection. Notably, the parental population size of 30 led to the highest mean accuracy of 

0.01, while the population size of 60 led to the lowest mean accuracy of -0.03. For certain cycles, 

a correlation could not be obtained. In these cycles, the variance was zero and the correlation was 

undefined. 
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Figure 29: In silico realized genomic selection accuracy estimated from QU-GENE for three 
selected traits with an unchanged GS model. Traits included days to flowering (DF), white mold 
tolerance (WM), and seed yield (SY). Accuracies were calculated as the correlation between the 
true breeding value and the genomic estimated breeding value. 

 
 
3.3.2 Updated GS Model 

The Updated GS model simulation described here in chapter 3 involved updating the GS model. 

The simulation was based on a parental population size of 30. The GS model was updated at 
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cycle 3. GS accuracies were assessed via two measurements, the first being formula-based, 

where estimated were calculated from Equation 3.2, and the second being in silico realized GS 

accuracies determined from the correlation between TBV and GEBV. 

3.3.2.1 Genetic gain following GS model update 

The results from the model update indicated that there was a sharp increase followed by a rapid 

decline in genetic gain. Model update only seemed to improve genetic gain in one or two cycles 

immediately after the update, only to return to the rates of genetic gain prior to the update. 

Conventional breeding was included alongside genomic selection as a comparison for model 

update. Figure 3.5 shows that updating the GS model resulted in an increase in genetic gain right 

after cycle 3 for mass selection, the pedigree method, and the modified pedigree method when 

selecting for days to flowering and seed yield. However, it led to a decrease in genetic gain 

immediately after cycle 3, followed by an increase after cycle 4, and a decrease after cycle 5 for 

all strategies when selecting for white mold tolerance. When compared to conventional breeding, 

genomic selection led to much higher levels of genetic gain for certain strategies in the cycle 

following the GS model update. For days to flowering, mass selection under genomic selection 

was 23.8% higher compared to conventional breeding. Meanwhile, the pedigree method and the 

modified pedigree method were 30.2% and 34.0% higher in genomic selection, respectively. For 

white mold tolerance, mass selection led to 17.0% greater genetic gain using genomic selection 

than conventional breeding, while the modified pedigree method under genomic selection 

resulted in 9.94% higher genetic gain. Finally, for seed yield, mass selection, the pedigree 

method, and the modified pedigree method resulted in 22.7%, 11.3%, and 18.2% higher genetic 

gain, respectively using genomic selection compared to conventional breeding. For all other 
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breeding scenarios, there was little to no difference between genomic selection and conventional 

breeding in the cycle after the GS model update. 

 
Figure 30 Comparison of five breeding strategies in terms of relative genetic gain following 
model update. Conventional breeding was included as a control for interruption of the simulation 
run. Coloured lines correspond to the breeding strategies, mass selection, bulk breeding, single 
seed descent, pedigree method, and modified pedigree method. Black line indicates the 
cumulative genetic gain averaged across the five strategies. Simulated traits included days to 
flowering (DF), white mold tolerance (WM), and seed yield (SY). Dotted line shows when 
model update took place. 
 



 
 

 112 

3.3.2.2 Expected formula-based GS accuracy  

For the updated GS model, the GS accuracies determined using Equation 3.2 ranged from 0.08 to 

0.58 (Figure 3.6). For all breeding scenarios, a general trend was observed where an increase in 

accuracy occurred after the GS model update at cycle 3, followed by a decline from cycle 4 to 5. 

The peak accuracy predicted from the days to flowering simulation was 0.58, occurring at cycle 

4 with mass selection. For white mold tolerance, the peak accuracy was 0.51, occurring at cycle 

4 with the pedigree method. The peak accuracy for seed yield was 0.38 at cycle 4 using the 

pedigree method. Across the breeding strategies and cycles, the average GS accuracies were 

0.28, 0.26, and 0.18 for days to flowering, white mold tolerance, and seed yield, respectively. 

 
Figure 31 Expected genomic selection accuracies estimated from Equation 3.2 with a GS model 
update. Prediction accuracies shown over 7 cycles. Coloured lines correspond to strategies, 
which include mass selection, bulk breeding, single seed descent, the pedigree method, and the 
modified pedigree method.  
 

3.3.2.3 True breeding values (TBV) 

After model update, the true breeding values were determined and plotted over 6 cycles (Figure 

3.7). At cycle 3, where the update occurred, there was an increase in the TBV for all breeding 
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scenarios. For days to flowering, the TBV increased by 9.53, 7.05, 6.32, 4.34, and 6.38 from 

cycle 3 to cycle 4 for mass selection, bulk breeding, single seed descent, the pedigree method, 

and the modified pedigree method respectively. For white mold tolerances, TBVs rose by 15.0, 

38.3, 9.44, 0.73, and 10.7 from cycle 3 to cycle 4 for mass selection, bulk breeding, single seed 

descent, the pedigree method, and the modified pedigree method, respectively. Lastly, for seed 

yield from cycle 3 to cycle 4, mass selection, bulk breeding, single seed descent, the pedigree 

method, and the modified pedigree method had increases in TBVs of 761, 299, 134, 129, and 

134, respectively. TBVs appeared to plateau after cycle 4 for days to flowering and seed yield. 

However, for white mold tolerance, TBVs rapidly declined after cycle 4. 

Figure 32 True breeding values plotted over 6 cycles for increasing parental population sizes and 
three traits with an updated GS model. Traits include days to flowering (DF), white mold 
tolerance (WM), seed yield (SY). Vertical dotted line indicates the point at which the GS model 
was updated. 
 

3.3.2.4 Genomic estimated breeding values (GEBV) 

Next, genomic estimated breeding values were plotted over 6 cycles (Figure 3.8). For days to 

flowering, there was a pronounced increase from cycle 3 to cycle 4 for mass selection, the 

pedigree method, and the modified pedigree method, with increases of 19.0, 18.8, and 20.6, 

respectively. Smaller increases were observed for the other two strategies. GEBVs increased by 
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7.66 and 6.02 between cycle 3 and 4 for bulk breeding and single seed descent, respectively. 

From cycle 3 to cycle 4 for white mold tolerance, GEBVs increased by 4.03, 39.1, 9.43, 16.7, 

and 13.1 for mass selection, bulk breeding, single seed descent, the pedigree method, and the 

modified pedigree method, respectively. Lastly, for seed yield, all five strategies resulted in an 

increase in GEBV following model update, with the greatest increase observed in mass selection 

and the smallest increase in single seed descent. GEBVs increased by 1867, 367, 130, 886, and 

1251 for mass selection, bulk breeding, single seed descent, the pedigree method, and the 

modified pedigree method, respectively. 

Figure 33 Genomic estimated breeding values plotted over 6 cycles for increasing parental 
population sizes and three traits with an updated GS model. Traits include days to flowering 
(DF), white mold tolerance (WM), seed yield (SY). Vertical dotted line corresponds to GS model 
updated. 
 

3.3.2.5 In silico Realized GS accuracy 

In silico realized GS accuracies for the updated GS model were obtained and plotted over 6 

cycles (Figure 3.9). Once again, the accuracy fluctuated over the different cycles. In particular, 

mass selection had the greatest variability in accuracy, in some cycles having the highest 

accuracy, while in others having the lowest accuracies. For days to flowering, following the 

model update at cycle 4, there was a small improvement in accuracy for single seed descent and 
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the modified pedigree method, where accuracies increased by 0.08 and 0.04, respectively. The 

other three strategies saw a decrease in accuracy. From cycle 3 to cycle 4, white mold tolerance 

GS accuracies declined by 0.09, 0.13, and 0.12 for mass selection, bulk breeding, and the 

pedigree method, respectively. Lastly, for seed yield, GS accuracies increased by 0.14, 0.03, and 

0.02 between cycle 3 and 4 for mass selection, bulk breeding, and single seed descent, 

respectively. Decreases in GS accuracy after the third cycle were observed for the pedigree 

method and the modified pedigree method. However, in the last cycle for seed yield, the pedigree 

method had the greatest accuracy, with a value of 0.06. Across the breeding strategies and 

cycles, in silico GS accuracies were -0.01, -0.03, and -0.01 for days to flowering, white mold 

tolerance, and seed yield, respectively. 

Figure 34: Genomic selection accuracy estimated from QU-GENE following model update. 
Accuracies were calculated as the correlation between the true breeding value and the genomic 
estimated breeding value. Simulations began with a parental population size of 30. Traits 
simulated include days to flowering (DF), white mold tolerance (WM), and seed yield (SY). 
Coloured lines correspond to the breeding strategies: mass selection, bulk breeding, single seed 
descent, the pedigree method, and the modified pedigree method. 

 

3.3.2.6 Principal component analysis 

A principal component analysis was conducted to show the overall result of the simulation with 

the model update. Figure 3.10 shows the PCA plot for days to flowering, where 80.53% of the 
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variance is explained by the first two principal components. Notably, the eigenvectors for TBV 

and GEBV are very close together and point towards similar directions. The eigenvector for 

Genetic gain and Hamming distance point in similar directions. Towards the right side of the 

PCA plot, there were two clusters for mass selection that formed on the extreme of the GEBV 

and TBV eigenvectors. On the opposite side, a cluster containing all five strategies was found in 

the extremes of both the Hamming distance vector and the genetic gain vector. In the direction of 

the eigenvector for fixation of favourable alleles, there was a cluster consisting of bulk breeding. 
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No clusters formed in the extreme of the effective population size eigenvector. Near the center of 

the plot was a cluster consisting of the pedigree method and single seed descent.  

 

Figure 35: Principal component analysis (PCA) plot displaying the two major principal 
components accounting for 80.53% of the variance in a simulation with GS model update. Days 
to flowering was selected for, with colours corresponding to the breeding strategy used. Breeding 
strategies include mass selection, bulk breeding, single seed descent, the pedigree method, the 
modified pedigree method. 
 
The first two principal components in the white mold tolerance PCA explained 79.13% of the 

variance (Figure 3.11). Like days to flowering, the eigenvectors for GEBV and TBV were close 

to each other. Meanwhile, the eigenvectors for genetic gain, effective population size, and 

fixation of favourable alleles pointed in similar directions. In the extreme of the Hamming 
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distance eigenvector, there was a cluster consisting of mass selection. Along the axis of the 

genetic gain eigenvector, there were some points corresponding to the modified pedigree method 

and bulk breeding. In the direction of the eigenvector for the fixation of favourable alleles, there 

was a cluster for bulk breeding.  

 
Figure 36: Principal component analysis (PCA) plot with the first two principal components, 
which explain a total of 79.13% of the variance. White mold tolerance was selected for in a 
simulation with GS model update. Breeding strategies are indicated by the colour, and include 
mass selection, bulk breeding, single seed descent, the pedigree method, and the modified 
pedigree method. 
 

 
For seed yield, the first two principal components described 79.47% of the variance (Figure 

3.12). The GEBV and TBV eigenvectors are very close together and point in similar directions. 
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On the opposite end are the Hamming distance and genetic gain eigenvectors, which are located 

close together. Towards the extreme of the Hamming distance eigenvector is a cluster made of 

mass selection and bulk breeding. Between the eigenvectors for fixed favourable alleles and 

effective population size, there was a cluster corresponding to bulk breeding.  

 
Figure 37: Principal component analysis (PCA) plot consisting of the two principal components 
that explain the greatest amount of variance, together accounting for 79.47% of the variance. 
Seed yield was selected for in a simulation with GS model update. Colours refer to the breeding 
strategy used. Strategies include mass selection, bulk breeding, single seed descent, the pedigree 
method, and the modified pedigree method. 
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3.4 Discussion  

For the unchanged GS model, the GS accuracy results obtained from Equation 3.2 showed that 

increased parental population sizes should lead to a higher accuracy. In addition, this increase 

should be particularly evident in mass selection. The accuracies predicted from Equation 3.2 did 

not reflect the in silico realized GS accuracies. The formula-based accuracies were much higher 

than the in silico realized accuracies. Moreover, the in silico realized accuracies greatly 

fluctuated from one cycle to the next, while the equation-based accuracies saw a gradual decline 

over six cycles. According to the in silico realized GS accuracies, the pedigree method and single 

seed descent led to the greatest accuracies by the end of the 10 cycles under selection for days to 

flowering. For white mold tolerance and seed yield, correlations could not be obtained for some 

of the later cycles due to the correlation being undefined. As previously stated in chapter 2, this 

may be due to the low number of QTLs included, which consequently increased the efficiency of 

selection. Within the first few cycles of selection, the variance of genotypic values decreased to 

zero. The fluctuating accuracies may have been influenced by the simulation setup. The training 

population consisted of the parents that were used at the beginning of the simulation. Since the 

simulation involved a closed system, where the progeny at the end of the cycle are used as the 

parents for the next cycle, a limited number of parents were used due to computational restraints. 

The small training population size likely reduced the performance of the GS model in its 

predictive abilities. Interestingly, for certain strategies, in particular single seed descent and the 

pedigree method, in silico GS accuracies continued to remain high even at the end of the 10th 

cycle. This was an unexpected result, as theoretically, when a GS model is used to predict on the 

progeny of a population after several generations, prediction accuracy would be expected to 
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decline. Thus, future investigations into these strategies must be done to determine the reason 

that GS accuracies remained high. 

For the updated GS model, there was a short-term increase in genetic gain immediately 

following the model update. Conventional breeding was presented alongside genomic selection 

to account for the interruption that occurred during the simulation. For mass selection, the 

pedigree method, and the modified pedigree method across the three traits, genomic selection 

resulted in higher genetic gain compared to conventional breeding between cycle 3 and 4, while 

the other strategies saw little to no difference between genomic selection and conventional 

methods. Thus, for most breeding scenarios, there was an improvement in genetic gain following 

the model update. The expected formula-based accuracies following GS model update indicated 

that there would be a spike in accuracy after cycle 3 that would quickly decline once again in the 

next cycle. However, these formula-based accuracies were not reflected by the in silico realized 

accuracies. Similar to the unchanged GS model, the in silico accuracies fluctuated from one 

cycle to the next. Updating the GS model was most beneficial for the single seed descent and the 

modified pedigree method for days to flowering simulation. It also appeared that mass selection 

may also benefit from the GS model update, as there was an increase from cycle 4 to 6 after the 

initial decrease after cycle 3 in days to flowering. For white mold tolerance, use of mass 

selection and the modified pedigree method may benefit from updating the GS model. 

Meanwhile, the model update was beneficial for the use of the mass selection and single seed 

descent in selecting for seed yield. To further investigate how the different genetic gain variables 

played a role in the simulations overall, PCA plots were generated. Notably, the strategies did 

not cluster separately from one another. Most of the clusters that formed consisted of more than 

one strategy. Another key aspect is that the eigenvectors for TBV and GEBV pointed in similar 
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directions. This would suggest that the correlations would be an effective manner to access the 

accuracy of GS. For days to flowering and seed yield, the genetic gain eigenvector was closest to 

the Hamming distance eigenvector and far away from the eigenvector for the fixation of 

favourable alleles. Thus, results for the GS model update should be taken cautiously. One of the 

major factors that influence genomic selection accuracy is the training population size. The 

closed system that was simulated in QU-GENE demanded few parents and many crosses. Since 

the parents were used for training, the training population size was very small. As a result, the in 

silico GS accuracies were very low, averaging -0.02 across all breeding scenarios, cycles, and 

traits. Population structure, which can also impact the accuracy, would not have been a concern 

in this study because there was no population structure present (results not included). Overall, 

simulation of GS using this method may require further validation.  

3.5 Conclusion 

GS has been widely used in animal breeding, however its effectiveness in plant breeding still 

requires more validation. GS will only be useful if the model can accurately predict the 

phenotype of a trait from the genotype. Numerous studies have investigated the prediction 

accuracy in simulations. However, in those studies, QTLs were simulated and were evenly 

distributed across the genome with effect sizes drawn from a random distribution. This study 

aimed to assess the accuracy of GS in a simulation that better reflected the real world, in which 

QTLs effect sizes and positions were based on reported literature. The findings from the study 

indicate that equation-based estimates of accuracy do not reflect of accuracies obtained from 

correlations between TBV and GEBV. Nonetheless, according to the correlation-based 

accuracies, there may be some benefits to using single seed descent or the modified pedigree 

method.  
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Chapter 4 General Conclusions 

Breeding programs are complex systems. Plant breeders must take into account the time, labour, 

breeding materials, land, and phenotyping means, in order make the appropriate decisions to 

enhance genetic gain. By making use of computer simulations, multiple breeding scenarios may 

be compared at the same time. This study aimed to simulate breeding scenarios that would 

closely reflect the real world. Rather than simulating QTL positions and effect sizes, real QTLs 

were identified in the literature and incorporated into the simulation. The findings demonstrated 

that the chosen strategy, framework, and parental population size significantly contributed to the 

genetic gain that can be achieved. The optimal breeding scenario leading to the greatest %ΔG 

differed according to the trait being selected. The genetic architecture of the trait likely 

contributed to this result. With the versatility of computer simulations, repeating the experiments 

in the study with the inclusion of more QTLs once they have been discovered, could improve the 

robustness of the findings presented. Another key finding was that genomic selection either 

underperformed or performed equally to conventional methods. This led to investigations into 

the accuracy of genomic selection. It was found that equation-based estimates for accuracy did 

not correspond to correlation-based estimates for accuracy. Thus, it is imperative to consider the 

applicability and assumptions of the equation prior using it for evaluating GS accuracy. Overall, 

the correlation-based estimates were quite low. However, in certain scenarios, the pedigree 

method and single seed descent outperformed other strategies and maintained accuracy even in 

later cycles. Finally, updating the GS model resulted in an increase in genetic gain. Model update 

also improved the accuracy in the pedigree method for days to flowering and seed yield.  

Therefore, the pedigree method may be beneficial if GS is to be used in a breeding program. 

Although this study did not factor in the costs, implementing GS can save both time and money. 
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In scenarios where GS performed equally to conventional methods, it may be worthwhile to use 

GS to save on time and phenotyping costs.  
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